Science.gov

Sample records for steel thick plate

  1. Effect of Cadmium Plating Thickness on the Charpy Impact Energy of Hydrogen-Charged 4340 Steel

    NASA Astrophysics Data System (ADS)

    Es-Said, O. S.; Alcisto, J.; Guerra, J.; Jones, E.; Dominguez, A.; Hahn, M.; Ula, N.; Zeng, L.; Ramsey, B.; Mulazimoglu, H.; Li, Yong-Jun; Miller, M.; Alrashid, J.; Papakyriakou, M.; Kalnaus, S.; Lee, E. W.; Frazier, W. E.

    2016-09-01

    Hydrogen was intentionally introduced into ultra-high strength steel by cadmium plating. The purpose was to examine the effect of cadmium plate thickness and hence hydrogen on the impact energy of the steel. The AISI 4340 steel was austenitized at 1000 °C for 1 h, water quenched, and tempered at temperatures between 257 and 593 °C in order to achieve a range of targeted strength levels. The specimens were cadmium plated with 0.00508 mm (0.2 mils), 0.00762 mm (0.3 mils), and 0.0127 mm (0.5 mils). Results demonstrated that the uncharged specimens exhibited higher impact energy values when compared to the plated specimens at all tempering temperatures. The cadmium-plated specimens had very low Charpy impact values irrespective of their ultimate tensile strength values. The model of hydrogen transport by mobile dislocations to the fracture site appears to provide the most suitable explanation of the results.

  2. Effect of mechanical restraint on weldability of reduced activation ferritic/martensitic steel thick plates

    NASA Astrophysics Data System (ADS)

    Serizawa, Hisashi; Nakamura, Shinichiro; Tanaka, Manabu; Kawahito, Yousuke; Tanigawa, Hiroyasu; Katayama, Seiji

    2011-10-01

    As one of the reduced activation ferritic/martensitic steels, the weldability of thick F82H plate was experimentally examined using new heat sources in order to minimize the total heat input energy in comparison with TIG welding. A full penetration of 32 mm thick plate could be produced as a combination of a 12 mm deep first layer generated by a 10 kW fiber laser beam and upper layers deposited by a plasma MIG hybrid welding with Ar + 2%O shielding gas. Also, the effect of mechanical restraint on the weldability under EB welding of thick F82H plate was studied by using FEM to select an appropriate specimen size for the basic test. The appropriate and minimum size for the basic test of weldability under EB welding of 90 mm thick plate might be 200 mm in length and 400 mm in width where the welding length should be about 180 mm.

  3. Air-coupled ultrasonic through-transmission thickness measurements of steel plates.

    PubMed

    Waag, Grunde; Hoff, Lars; Norli, Petter

    2015-02-01

    Non-destructive ultrasonic testing of steel structures provide valuable information in e.g. inspection of pipes, ships and offshore structures. In many practical applications, contact measurements are cumbersome or not possible, and air-coupled ultrasound can provide a solution. This paper presents air-coupled ultrasonic through-transmission measurements on a steel plate with thicknesses 10.15 mm; 10.0 mm; 9.8 mm. Ultrasound pulses were transmitted from a piezoelectric transducer at normal incidence, through the steel plate, and were received at the opposite side. The S1, A2 and A3 modes of the plate are excited, with resonance frequencies that depend on the material properties and the thickness of the plate. The results show that the resonances could be clearly identified after transmission through the steel plate, and that the frequencies of the resonances could be used to distinguish between the three plate thicknesses. The S1-mode resonance was observed to be shifted 10% down compared to a simple plane wave half-wave resonance model, while the A2 and S2 modes were found approximately at the corresponding plane-wave resonance frequencies. A model based on the angular spectrum method was used to predict the response of the through-transmission setup. This model included the finite aperture of the transmitter and receiver, and compressional and shear waves in the solid. The model predicts the frequencies of the observed modes of the plate to within 1%, including the down-shift of the S1-mode.

  4. Quasi-Rayleigh waves in butt-welded thick steel plate

    NASA Astrophysics Data System (ADS)

    Kamas, Tuncay; Giurgiutiu, Victor; Lin, Bin

    2015-03-01

    This paper discusses theoretical and experimental analyses of weld guided surface acoustic waves (SAW) through the guided wave propagation (GWP) analyses. The GWP analyses have been carried out by utilizing piezoelectric wafer active sensors (PWAS) for in situ structural inspection of a thick steel plate with butt weld as the weld bead is ground flush. Ultrasonic techniques are commonly used for validation of welded structures in many in-situ monitoring applications, e.g. in off-shore structures, in nuclear and pressure vessel industries and in a range of naval applications. PWAS is recently employed in such ultrasonic applications as a resonator as well as a transducer. Quasi-Rayleigh waves a.k.a. SAW can be generated in relatively thick isotropic elastic plate having the same phase velocity as Rayleigh waves whereas Rayleigh waves are a high frequency approximation of the first symmetric (S0) and anti-symmetric (A0) Lamb wave modes. As the frequency becomes very high the S0 and the A0 wave speeds coalesce, and both have the same value. This value is exactly the Rayleigh wave speed and becomes constant along the frequency i.e. Rayleigh waves are non-dispersive guided surface acoustic waves. The study is followed with weld-GWP tests through the pitch-catch method along the butt weld line. The tuning curves of quasi-Rayleigh wave are determined to show the tuning and trapping effect of the weld bead that has higher thickness than the adjacent plates on producing a dominant quasi-Rayleigh wave mode. The significant usage of the weld tuned and guided quasi-Rayleigh wave mode is essentially discussed for the applications in the in-situ inspection of relatively thick structures with butt weld such as naval offshore structures. The paper ends with summary, conclusions and suggestions for future work.

  5. Quasi-Rayleigh waves in butt-welded thick steel plate

    SciTech Connect

    Kamas, Tuncay E-mail: victorg@sc.edu Giurgiutiu, Victor E-mail: victorg@sc.edu Lin, Bin E-mail: victorg@sc.edu

    2015-03-31

    This paper discusses theoretical and experimental analyses of weld guided surface acoustic waves (SAW) through the guided wave propagation (GWP) analyses. The GWP analyses have been carried out by utilizing piezoelectric wafer active sensors (PWAS) for in situ structural inspection of a thick steel plate with butt weld as the weld bead is ground flush. Ultrasonic techniques are commonly used for validation of welded structures in many in-situ monitoring applications, e.g. in off-shore structures, in nuclear and pressure vessel industries and in a range of naval applications. PWAS is recently employed in such ultrasonic applications as a resonator as well as a transducer. Quasi-Rayleigh waves a.k.a. SAW can be generated in relatively thick isotropic elastic plate having the same phase velocity as Rayleigh waves whereas Rayleigh waves are a high frequency approximation of the first symmetric (S0) and anti-symmetric (A0) Lamb wave modes. As the frequency becomes very high the S0 and the A0 wave speeds coalesce, and both have the same value. This value is exactly the Rayleigh wave speed and becomes constant along the frequency i.e. Rayleigh waves are non-dispersive guided surface acoustic waves. The study is followed with weld-GWP tests through the pitch-catch method along the butt weld line. The tuning curves of quasi-Rayleigh wave are determined to show the tuning and trapping effect of the weld bead that has higher thickness than the adjacent plates on producing a dominant quasi-Rayleigh wave mode. The significant usage of the weld tuned and guided quasi-Rayleigh wave mode is essentially discussed for the applications in the in-situ inspection of relatively thick structures with butt weld such as naval offshore structures. The paper ends with summary, conclusions and suggestions for future work.

  6. High power laser welding of thick steel plates in a horizontal butt joint configuration

    NASA Astrophysics Data System (ADS)

    Atabaki, M. Mazar; Yazdian, N.; Ma, J.; Kovacevic, R.

    2016-09-01

    In this investigation, two laser-based welding techniques, autogenous laser welding (ALW) and laser welding assisted with a cold wire (LWACW), were applied to join thick plates of a structural steel (A36) in a horizontal narrow gap butt joint configuration. The main practical parameters including welding method and laser power were varied to get the sound weld with a requirement to achieve a full penetration with the reinforcement at the back side of weld in just one pass. The weld-bead shape, cross-section and mechanical properties were evaluated by profilometer, micro-hardness test and optical microscope. In order to investigate the stability of laser-induced plasma plume, the emitted optical spectra was detected and analyzed by the spectroscopy analysis. It was found that at the laser power of 7 kW a fully penetrated weld with a convex back side of weld could be obtained by the LWACW. The microstructural examinations showed that for the ALW the acicular ferrite and for the LWACW the pearlite were formed in the heat affected zone (HAZ). The prediction of microstructure based on continuous cooling transformation (CCT) diagram and cooling curves obtained by thermocouple measurement were in good agreement with each other. According to the plasma ionization values obtained from the spectroscopy analysis the plume for both processes was recognized as dominated weakly ionized plasma including the main vaporized elemental composition. At the optimum welding condition (LWACW at the laser power of 7 kW) the fluctuation of the electron temperature was reduced. The spectroscopy analysis demonstrated that at the higher laser power more of the elemental compositions such as Mn and Fe were evaporated.

  7. The dynamic mechanical properties study on the sandwich panel of different thickness steel plate-foam aluminum core

    NASA Astrophysics Data System (ADS)

    Chang, Zhongliang; Zou, Guangping; Zhao, Weiling; Xia, Peixiu

    2009-12-01

    The foam aluminum belongs to multi-cell materials, and it has good mechanical performance, such as large deformation capacity and good energy absorption, and usually used as core material of sandwich panel, now it is widely used in automotive, aviation, aerospace and other fields, particularly suitable for various anti-collision structure and buffer structure. In this article, based on an engineering background, the INSTRON4505 electronic universal testing machine and split Hopkinson pressure bar (SHPB) were used for testing the static and dynamic mechanical properties of sandwich panel with different thickness steel plate- foam aluminum core, from the results we can see that the steel plate thickness has big influence on the stress-strain curve of the sandwich panel, and also takes the sandwich panel with 1mm steel panel to study the material strain rate dependence which under different high shock wave stress loaded, the results show that the sandwich panel is strain rate dependence material. And also, in order to get good waveforms in the SHPB experiment, the waveform shaped technique is used in the dynamic experiments, and the study of this paper will good to sandwich panel used in the engineering.

  8. Application of MMC model on simulation of shearing process of thick hot-rolled high strength steel plate

    SciTech Connect

    Dong, Liang; Li, Shuhui; Yang, Bing; Gao, Yongsheng

    2013-12-16

    Shear operation is widely used as the first step in sheet metal forming to cut the sheet or plate into the required size. The shear of thick hot-rolled High Strength Steel (HSS) requires large shearing force and the sheared edge quality is relatively poor because of the large thickness and high strength compared with the traditional low carbon steel. Bad sheared edge quality will easily lead to edge cracking during the post-forming process. This study investigates the shearing process of thick hot-rolled HSS plate metal, which is generally exploited as the beam of heavy trucks. The Modified Mohr-Coulomb fracture criterion (MMC) is employed in numerical simulation to calculate the initiation and propagation of cracks during the process evolution. Tensile specimens are designed to obtain various stress states in tension. Equivalent fracture strains are measured with Digital Image Correlation (DIC) equipment to constitute the fracture locus. Simulation of the tension test is carried out to check the fracture model. Then the MMC model is applied to the simulation of the shearing process, and the simulation results show that the MMC model predicts the ductile fracture successfully.

  9. Stress measurement in thick plates using nonlinear ultrasonics

    SciTech Connect

    Abbasi, Zeynab E-mail: dozevin@uic.edu; Ozevin, Didem E-mail: dozevin@uic.edu

    2015-03-31

    In this paper the interaction between nonlinear ultrasonic characteristics and stress state of complex loaded thick steel plates using fundamental theory of nonlinear ultrasonics is investigated in order to measure the stress state at a given cross section. The measurement concept is based on phased array placement of ultrasonic transmitter-receiver to scan three angles of a given cross section using Rayleigh waves. The change in the ultrasonic data in thick steel plates is influenced by normal and shear stresses; therefore, three measurements are needed to solve the equations simultaneously. Different thickness plates are studied in order to understand the interaction of Rayleigh wave penetration depth and shear stress. The purpose is that as the thickness becomes smaller, the shear stress becomes negligible at the angled measurement. For thicker cross section, shear stress becomes influential if the depth of penetration of Rayleigh wave is greater than the half of the thickness. The influences of plate thickness and ultrasonic frequency on the identification of stress tensor are numerically studied in 3D structural geometry and Murnaghan material model. The experimental component of this study includes uniaxial loading of the plate while measuring ultrasonic wave at three directions (perpendicular, parallel and angled to the loading direction). Instead of rotating transmitter-receiver pair for each test, a device capable of measuring the three angles is designed.

  10. Growth defects in thick ion-plated coatings

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1975-01-01

    Industrial ion plating conditions were selected to deposit metallic coatings such as copper, gold, and chromium 2 micrometer thick on metal and glass substrates. The surface finishes of 304 stainless steel, copper, and brass were utilized with mechanically and electrolytically polished surfaces. Nodular growth occurred in these coatings during ion plating as revealed by scanning electron microscopy. Surface irregularities such as scratches, steps, ledges, and so forth are responsible for outward growth, the typical cone type, whereas surface contaminants and loosely settled foreign particles are responsible for lateral growth; namely, the extreme localized surface outgrowths. These defect crystallographic features create porosity in the coatings when subjected to stresses and strains.

  11. Variable thickness double-refracting plate

    DOEpatents

    Hadeishi, Tetsuo

    1976-01-01

    This invention provides an A.C., cyclic, current-controlled, phase retardation plate that uses a magnetic clamp to produce stress birefringence. It was developed for an Isotope-Zeeman Atomic Absorption Spectrometer that uses polarization modulation to effect automatic background correction in atomic absorption trace-element measurements. To this end, the phase retardation plate of the invention is a variable thickness, photoelastic, double-refracting plate that is alternately stressed and released by the magnetic clamp selectively to modulate specific components selected from the group consisting of circularly and plane polarized Zeeman components that are produced in a dc magnetic field so that they correspond respectively to Zeeman reference and transmission-probe absorption components. The polarization modulation changes the phase of these polarized Zeeman components, designated as .sigma. reference and .pi. absorption components, so that every half cycle the components change from a transmission mode to a mode in which the .pi. component is blocked and the .sigma. components are transmitted. Thus, the Zeeman absorption component, which corresponds in amplitude to the amount of the trace element to be measured in a sample, is alternately transmitted and blocked by a linear polarizer, while the circularly polarized reference components are continuously transmitted thereby. The result is a sinusoidally varying output light amplitude whose average corresponds to the amount of the trace element present in the sample.

  12. Design parameters of stainless steel plates for maximizing high frequency ultrasound wave transmission.

    PubMed

    Michaud, Mark; Leong, Thomas; Swiergon, Piotr; Juliano, Pablo; Knoerzer, Kai

    2015-09-01

    This work validated, in a higher frequency range, the theoretical predictions made by Boyle around 1930, which state that the optimal transmission of sound pressure through a metal plate occurs when the plate thickness equals a multiple of half the wavelength of the sound wave. Several reactor design parameters influencing the transmission of high frequency ultrasonic waves through a stainless steel plate were examined. The transmission properties of steel plates of various thicknesses (1-7 mm) were studied for frequencies ranging from 400 kHz to 2 MHz and at different distances between plates and transducers. It was shown that transmission of sound pressure through a steel plate showed high dependence of the thickness of the plate to the frequency of the sound wave (thickness ratio). Maximum sound pressure transmission of ∼ 60% of the incident pressure was observed when the ratio of the plate thickness to the applied frequency was a multiple of a half wavelength (2 MHz, 6mm stainless steel plate). In contrast, minimal sound pressure transmission (∼ 10-20%) was measured for thickness ratios that were not a multiple of a half wavelength. Furthermore, the attenuation of the sound pressure in the transmission region was also investigated. As expected, it was confirmed that higher frequencies have more pronounced sound pressure attenuation than lower frequencies. The spatial distribution of the sound pressure transmitted through the plate characterized by sonochemiluminescence measurements using luminol emission, supports the validity of the pressure measurements in this study.

  13. 46 CFR 154.170 - Outer hull steel plating.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Outer hull steel plating. 154.170 Section 154.170... Structure § 154.170 Outer hull steel plating. (a) Except as required in paragraph (b) of this section, the outer hull steel plating, including the shell and deck plating must meet the material standards of...

  14. 46 CFR 154.170 - Outer hull steel plating.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Outer hull steel plating. 154.170 Section 154.170... Structure § 154.170 Outer hull steel plating. (a) Except as required in paragraph (b) of this section, the outer hull steel plating, including the shell and deck plating must meet the material standards of...

  15. 46 CFR 154.170 - Outer hull steel plating.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Outer hull steel plating. 154.170 Section 154.170... Structure § 154.170 Outer hull steel plating. (a) Except as required in paragraph (b) of this section, the outer hull steel plating, including the shell and deck plating must meet the material standards of...

  16. 46 CFR 154.170 - Outer hull steel plating.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Outer hull steel plating. 154.170 Section 154.170... Structure § 154.170 Outer hull steel plating. (a) Except as required in paragraph (b) of this section, the outer hull steel plating, including the shell and deck plating must meet the material standards of...

  17. 46 CFR 154.170 - Outer hull steel plating.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Outer hull steel plating. 154.170 Section 154.170... Structure § 154.170 Outer hull steel plating. (a) Except as required in paragraph (b) of this section, the outer hull steel plating, including the shell and deck plating must meet the material standards of...

  18. 49 CFR 179.200-6 - Thickness of plates.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... bursting pressure in psig; S = Minimum tensile strength of plate material in p.s.i. as prescribed in § 179... strength of plate material in p.s.i. as prescribed in § 179.200-7; t = Minimum thickness of plate in inches... strength of plate material in p.s.i. as prescribed in § 179.200-7; t = Minimum thickness of plate......

  19. Development of Reduction Technique of Thermal Stress Induced in Steel Plate Bonded by CFRP Plates

    NASA Astrophysics Data System (ADS)

    Ishikawa, Toshiyuki; Hattori, Atsushi; Kawano, Hirotaka; Nagao, Takashi; Kobayashi, Akira

    In CFRP bonded onto steel plate, thermal stress is induced in steel plate by temperature change, due to difference in coefficients of thermal expansion between steel and CFRP. In this study, reduction technique of the thermal stress in steel plate, which is additional bonding of aluminum alloy plates, is proposed. Namely, the coefficient of thermal expansion of composite plate consisted of CFRP and aluminum plates is designed as that of steel. In this research, to verify the effectiveness of developed method, heat tests of CFRP and aluminum plates bonded onto steel plate were carried out. As a result of the tests, infinitesimal thermal stresses in steel plate with CFRP and aluminum plates were measured while large thermal stresses were measured in conventional CFRP bonded onto steel plate. Additionally, to confirm the test results, numerical analysis was also carried out.

  20. Monitoring of weathering steel structures. The induction ultrasonic thickness testers

    NASA Astrophysics Data System (ADS)

    McKenzie, M.

    Long term corrosion tests carried out in the UK show that weathering steels continue to corrode at a finite rate. It is therefore necessary to use thicker steel and to monitor the corrosion. An ultrasonic instrument to measure residual steel thickness was assessed. This measures steel thickness through a rust layer, requires no couplant to transmit the ultrasound into the steel and gives only the steel thickness not the thickness of the steel plus a layer of rust. This instrument provides a suitable method of measuring the residual steel thickness on weathering steel structures where corrosion has been generally uniform. However, the instrument can give no information on localized roughness or pitting of the underlying steel surface and it would seem worthwhile to include test specimens in any monitoring scheme so that the surface condition of the steel can be assessed.

  1. 49 CFR 179.100-6 - Thickness of plates.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ....; S = Minimum tensile strength of plate material in p.s.i., as prescribed in § 179.100-7; t = Minimum thickness of plate in inches after forming. (b) If plates are clad with material having tensile strength... determining thickness. If cladding material does not have tensile strength at least equal to the base...

  2. High Power Laser Beam Welding of Thick-walled Ferromagnetic Steels with Electromagnetic Weld Pool Support

    NASA Astrophysics Data System (ADS)

    Fritzsche, André; Avilov, Vjaceslav; Gumenyuk, Andrey; Hilgenberg, Kai; Rethmeier, Michael

    The development of modern high power laser systems allows single pass welding of thick-walled components with minimal distortion. Besides the high demands on the joint preparation, the hydrostatic pressure in the melt pool increases with higher plate thicknesses. Reaching or exceeding the Laplace pressure, drop-out or melt sagging are caused. A contactless electromagnetic weld support system was used for laser beam welding of thick ferromagnetic steel plates compensating these effects. An oscillating magnetic field induces eddy currents in the weld pool which generate Lorentz forces counteracting the gravity forces. Hysteresis effects of ferromagnetic steels are considered as well as the loss of magnetization in zones exceeding the Curie temperature. These phenomena reduce the effective Lorentz forces within the weld pool. The successful compensation of the hydrostatic pressure was demonstrated on up to 20 mm thick plates of duplex and mild steel by a variation of the electromagnetic power level and the oscillation frequency.

  3. Thickness Evaluation of Aluminium Plate Using Pulsed Eddy Current Technique

    NASA Astrophysics Data System (ADS)

    Singh, Gurpartap; Bapat, Harsh Madhukar; Singh, Bhanu Pratap; Bandyopadhyay, Manojit; Puri, Rakesh Kumar; Badodkar, Deepak Narayanrao

    2013-10-01

    This paper describes a pulsed eddy current (PEC) based non-destructive testing system used for detection of thickness variation in aluminium plate. A giant magneto-resistive sensor has been used instead of pick up coil for detecting resultant magnetic field. The PEC response signals obtained from 1 to 5 mm thickness change in aluminium plate were investigated. Two time domain features, namely peak value and time to peak, of PEC response were used for extracting information about thickness variation in aluminium plate. The variation of peak value and time to peak with thickness was compared. A program was developed to display the thickness variation of the tested sample.

  4. Plate Thickness Variation Effects on Crack Growth Rates in 7050-T7451 Alloy Thick Plate

    NASA Astrophysics Data System (ADS)

    Schubbe, Joel J.

    2011-02-01

    A study has been accomplished to characterize the fatigue crack growth rates and mechanisms in thick plate (16.51 cm) commercial grade 7050-T7451 aluminum plate in the L-S orientation. Examination of the effects of potential property gradients in the plate material was accomplished through hardness measurements along the short transverse direction and with compact tension tests. Tests exhibited a distinct trend of reduced center plane hardness in the plates. Compact tension specimens and the compliance method were used to determine crack growth rates for specimens machined from the t/4 and t/2 planar locations and oriented for L-S crack growth. Crack growth rate data (long crack) from the tests highlighted significant growth rate differences between the t/4 and t/2 locations. No significant effect of R-ratio was observed in the 0.05-0.3 range tested. Additionally, crack front splitting was noted in all specimens to differing degrees with data showing significant retardation of growth rate curves for the L-S orientation above 13 MPa √m in the center plane, and 10 MPa √m at quarter plane, where branching and splitting parallel to the load axis are dominant growth mechanisms.

  5. 49 CFR 179.220-6 - Thickness of plates.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... required bursting pressure in psig; S = Minimum tensile strength of plate material in p.s.i. as prescribed... pressure in psig; S = Minimum tensile strength of plate material in psi as prescribed in AAR Specifications... 49 Transportation 3 2013-10-01 2013-10-01 false Thickness of plates. 179.220-6 Section...

  6. 49 CFR 179.300-6 - Thickness of plates.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... psig; S = minimum tensile strength of plate material in p.s.i. as prescribed in § 179.300-7; t = minimum thickness of plate material in inches after forming. (b) For class DOT-106A tanks, the wall... stress in psig (c) If plates are clad with material having tensile strength at least equal to the...

  7. Design of a Variable Thickness Plate to Focus Bending Waves

    NASA Technical Reports Server (NTRS)

    Schiller, Noah H.; Lin, Sz-Chin Steven; Cabell, Randolph H.; Huang, Tony Jun

    2012-01-01

    This paper describes the design of a thin plate whose thickness is tailored in order to focus bending waves to a desired location on the plate. Focusing is achieved by smoothly varying the thickness of the plate to create a type of lens, which focuses structural-borne energy. Damping treatment can then be positioned at the focal point to efficiently dissipate energy with a minimum amount of treatment. Numerical simulations of both bounded and unbounded plates show that the design is effective over a broad frequency range, focusing traveling waves to the same region of the plate regardless of frequency. This paper also quantifies the additional energy dissipated by local damping treatment installed on a variable thickness plate relative to a uniform plate.

  8. Fragmentation of armor piercing steel projectiles upon oblique perforation of steel plates

    NASA Astrophysics Data System (ADS)

    Paris, V.; Weiss, A.; Vizel, A.; Ran, E.; Aizik, F.

    2012-08-01

    In this study, a constitutive strength and failure model for a steel core of a14.5 mm API projectile was developed. Dynamic response of a projectile steel core was described by the Johnson-Cook constitutive model combined with principal tensile stress spall model. In order to obtain the parameters required for numerical description of projectile core material behavior, a series of planar impact experiments was done. The parameters of the Johnson-Cook constitutive model were extracted by matching simulated and experimental velocity profiles of planar impact. A series of oblique ballistic experiments with x-ray monitoring was carried out to study the effect of obliquity angle and armor steel plate thickness on shattering behavior of the 14.5 mm API projectile. According to analysis of x-ray images the fragmentation level increases with both steel plate thickness and angle of inclination. The numerical modeling of the ballistic experiments was done using commercial finite element code, LS-DYNA. Dynamic response of high hardness (HH) armor steel was described using a modified Johnson-Cook strength and failure model. A series of simulations with various values of maximal principal tensile stress was run in order to capture the overall fracture behavior of the projectile's core. Reasonable agreement between simulated and x-ray failure pattern of projectile core has been observed.

  9. DETAIL VIEW OF STEEL PLATES IN WALKWAY CONNECTING NO. 3 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF STEEL PLATES IN WALKWAY CONNECTING NO. 3 TREATMENT SHOP (HIGH HOUSE) WITH NO. 2 TREATMENT SHOP - Bethlehem Steel Corporation, Along Lehigh River, North of Fourth Street, Bethlehem, Northampton County, PA

  10. Northwest view of steel plate "cans" in bay 7 of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Northwest view of steel plate "cans" in bay 7 of the main pipe mill building. Historian for scale. - U.S. Steel National Tube Works, Main Pipe Mill Building, Along Monongahela River, McKeesport, Allegheny County, PA

  11. Overriding plate thickness control on subducting slab curvature

    NASA Astrophysics Data System (ADS)

    Holt, A.; Buffett, B. A.; Becker, T. W.

    2014-12-01

    The curvature of subducting lithosphere controls deformation due to bending at the trench, which results in a force that dissipates gravitational potential energy and may affect seismic coupling. We use 2-D, thermo-mechanical subduction models to explore the dependence of the radius of curvature on the thickness of the subducting and overriding plates for models with both viscous and effectively plastic lithospheric rheologies. Such a plastic rheology has been shown to reproduce the bending stresses/moment computed using a kinematic strain rate description and a laboratory derived composite rheology. Laboratory and numerical models show that the bending geometry of subducting slabs with a viscous rheology is strongly dependent on slab thickness; thicker plates have a larger radius of curvature. However, the curvature of subducting plates on Earth, illuminated by the distribution of earthquake hypocenters, shows little to no dependence on the plate thickness or age. Such an observation is instead compatible with plates that have a plastic rheology. Indeed, our numerical models show that the radius of curvature of viscous plates has a stronger dependence on subducting plate thickness than in equivalent plastic models. In viscous plates, the bending moment produces a torque, which balances the torque exerted by buoyancy. However, for the plastic plate case the bending moment saturates at a maximum value and so cannot balance the gravitational torque. The saturation of bending moment means that, (a) the radius of curvature of the bending region is not constrained by this torque balance, and, (b) other forces are required to balance the gravitational torque. We explore the role that the overriding plate could play in controlling the subducting plate curvature in plastic plate models where the bending stresses have saturated. For such plates, we find that increasing the thickness of the overriding plate causes the radius of curvature to increase. The same correlation is

  12. Rolling contact fatigue life of chromium ion plated 440C bearing steel

    NASA Technical Reports Server (NTRS)

    Bhat, B. N.; Davis, J. H.

    1985-01-01

    Rolling contact fatigue (RCF) test specimens of heat treated 440C bearing steel were chromium ion plated in thicknesses from 0.1 to 8.0 micron and tested in RCF tester using 700 ksi maximum Hertzian stress. Heavy coatings, greater than about 5 micron in thickness, peeled off or spalled readily, whereas thin coatings, less than 3 micron thick, were tenacious and did not come off. Furthermore, significant improvement in RCF life was obtained with thin chromium ion plated test specimens. The average increase in B10 life was 75% compared with unplated 440C. These preliminary results indicate that ion plating is a promising way to improve bearing life.

  13. Thick plate flexure. [for lithospheric models of Mars and earth

    NASA Technical Reports Server (NTRS)

    Comer, R. P.

    1983-01-01

    Analytical expressions are derived for the displacements and stresses due to loading of a floating, uniform, elastic plate of arbitrary thickness by a plane or axisymmetric harmonic load. The solution is exact except for assumptions of small strains and linear boundary conditions, and gravitation within the plate is neglected. For typical earth parameters its predictions are comparable to those of the usual thin plate theory frequently assumed in studies of lithospheric flexure, gravity and regional isostasy. Even for a very thick lithosphere, which may exist in some regions of Mars, the thin plate theory is a better approximation to the thick plate solution than the elastic half-space limit, except for short-wavelength loads.

  14. Ultrasonic guided wave detection of scatterers on large clad steel plates

    NASA Astrophysics Data System (ADS)

    Gong, Peng; Harley, Joel B.; Berges, Mario; Junker, Warren R.; Greve, David W.; Oppenheim, Irving J.

    2016-04-01

    "Clad steel" refers to a thick carbon steel structural plate bonded to a corrosion resistant alloy (CRA) plate, such as stainless steel or titanium, and is widely used in industry to construct pressure vessels. The CRA resists the chemically aggressive environment on the interior, but cannot prevent the development of corrosion losses and cracks that limit the continued safe operation of such vessels. At present there are no practical methods to detect such defects from the exposed outer surface of the thick carbon steel plate, often necessitating removing such vessels from service and inspecting them visually from the interior. In previous research, sponsored by industry to detect and localize damage in pressurized piping systems under operational and environmental changes, we investigated a number of data-driven signal processing methods to extract damage information from ultrasonic guided wave pitch-catch records. We now apply those methods to relatively large clad steel plate specimens. We study a sparse array of wafer-type ultrasonic transducers adhered to the carbon steel surface, attempting to localize mass scatterers grease-coupled to the stainless steel surface. We discuss conditions under which localization is achieved by relatively simple first-arrival methods, and other conditions for which data-driven methods are needed; we also discuss observations of plate-like mode properties implied by these results.

  15. 49 CFR 179.300-6 - Thickness of plates.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... bursting pressure in psig; S = minimum tensile strength of plate material in p.s.i. as prescribed in § 179.300-7; t = minimum thickness of plate material in inches after forming. (b) For class DOT-106A tanks... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS SPECIFICATIONS FOR TANK...

  16. Modelling ultrasound guided wave propagation for plate thickness measurement

    NASA Astrophysics Data System (ADS)

    Malladi, Rakesh; Dabak, Anand; Murthy, Nitish Krishna

    2014-03-01

    Structural Health monitoring refers to monitoring the health of plate-like walls of large reactors, pipelines and other structures in terms of corrosion detection and thickness estimation. The objective of this work is modeling the ultrasonic guided waves generated in a plate. The piezoelectric is excited by an input pulse to generate ultrasonic guided lamb waves in the plate that are received by another piezoelectric transducer. In contrast with existing methods, we develop a mathematical model of the direct component of the signal (DCS) recorded at the terminals of the piezoelectric transducer. The DCS model uses maximum likelihood technique to estimate the different parameters, namely the time delay of the signal due to the transducer delay and amplitude scaling of all the lamb wave modes due to attenuation, while taking into account the received signal spreading in time due to dispersion. The maximum likelihood estimate minimizes the energy difference between the experimental and the DCS model-generated signal. We demonstrate that the DCS model matches closely with experimentally recorded signals and show it can be used to estimate thickness of the plate. The main idea of the thickness estimation algorithm is to generate a bank of DCS model-generated signals, each corresponding to a different thickness of the plate and then find the closest match among these signals to the received signal, resulting in an estimate of the thickness of the plate. Therefore our approach provides a complementary suite of analytics to the existing thickness monitoring approaches.

  17. 49 CFR 179.200-6 - Thickness of plates.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... diameter in inches; E = 0.9 Welded joint efficiency; except E=1.0 for seamless heads; P = Minimum required....200-7; t = Minimum thickness of plate in inches after forming. (b) The wall thickness after forming...

  18. 49 CFR 179.400-8 - Thickness of plates.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY..., whichever is greater: t = Pd / 2SE Where: t = minimum thickness of plate, after forming, in inches; P... joints, except that for seamless heads, E = 1.0. (b) The minimum wall thickness, after forming, of any...

  19. 49 CFR 179.400-8 - Thickness of plates.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY..., whichever is greater: t = Pd / 2SE Where: t = minimum thickness of plate, after forming, in inches; P... joints, except that for seamless heads, E = 1.0. (b) The minimum wall thickness, after forming, of any...

  20. 49 CFR 179.200-6 - Thickness of plates.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... diameter in inches; E = 0.9 Welded joint efficiency; except E=1.0 for seamless heads; P = Minimum required....200-7; t = Minimum thickness of plate in inches after forming. (b) The wall thickness after forming...

  1. 49 CFR 179.200-6 - Thickness of plates.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... diameter in inches; E = 0.9 Welded joint efficiency; exceptE=1.0 for seamless heads; P = Minimum required....200-7; t = Minimum thickness of plate in inches after forming. (b) The wall thickness after forming...

  2. 49 CFR 179.400-8 - Thickness of plates.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY..., whichever is greater: t = Pd / 2SE Where: t = minimum thickness of plate, after forming, in inches; P... joints, except that for seamless heads, E = 1.0. (b) The minimum wall thickness, after forming, of any...

  3. Brazing open cell reticulated copper foam to stainless steel tubing with vacuum furnace brazed gold/indium alloy plating

    DOEpatents

    Howard, Stanley R.; Korinko, Paul S.

    2008-05-27

    A method of fabricating a heat exchanger includes brush electroplating plated layers for a brazing alloy onto a stainless steel tube in thin layers, over a nickel strike having a 1.3 .mu.m thickness. The resultant Au-18 In composition may be applied as a first layer of indium, 1.47 .mu.m thick, and a second layer of gold, 2.54 .mu.m thick. The order of plating helps control brazing erosion. Excessive amounts of brazing material are avoided by controlling the electroplating process. The reticulated copper foam rings are interference fit to the stainless steel tube, and in contact with the plated layers. The copper foam rings, the plated layers for brazing alloy, and the stainless steel tube are heated and cooled in a vacuum furnace at controlled rates, forming a bond of the copper foam rings to the stainless steel tube that improves heat transfer between the tube and the copper foam.

  4. 49 CFR 179.400-8 - Thickness of plates.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... the outer jacket shell may not be less than 7/16 inch. The minimum wall thickness, after forming, of the outer jacket heads may not be less than 1/2 inch and they must be made from steel specified in § 179.16(c). The annular space is to be evacuated, and the cylindrical portion of the outer...

  5. An advanced theory of moderately thick plate vibrations

    NASA Astrophysics Data System (ADS)

    Senjanović, Ivo; Vladimir, Nikola; Tomić, Marko

    2013-04-01

    In thick plate vibration theory, the governing equations are stated with a system of three partial differential equations of motion with total deflection, which consists of bending deflection and shear contribution, and angles of rotation as fundamental variables. Most of the methods deal with these three equations, some of them with two, and recently a solution based on one equation has been offered. In the present paper, a system of three equations for a moderately thick plate is reduced to a single equation in terms of bending deflection only as a fundamental variable. Shear deflection and angles of rotation depend on bending deflection as a potential function. A simple formula for natural frequencies of a simply supported plate is derived. A characteristic equation is also obtained for a plate with simply supported two opposite edges. Numerical results for a simply supported plate and a plate clamped on the two remaining opposite edges are compared with those known in literature, for different aspect ratios and relative thickness, and very good agreement is achieved.

  6. Stainless Steel Bipolar Plates Deposited with Multilayer Films for PEMFC Applications

    NASA Astrophysics Data System (ADS)

    Cho, Hyun; Yun, Young-Hoon

    2013-08-01

    A chromium nitride (CrN, Cr2N)/chromium (Cr)/indium-tin-oxide (ITO) system and a gold (Au)/titanium (Ti) system were separately deposited using a sputtering method and an E-beam method, respectively, onto stainless steel 316 and 304 plates. The XRD patterns of the deposited stainless steel plates showed the crystalline phase of typical indium-tin oxide and of metallic phases, such as chromium, gold, and the metal substrate, as well as those of external chromium nitride films. The nitride films were composed of two metal nitride phases that consisted of CrN and Cr2N compounds. The surface morphologies of the modified stainless steel bipolar plates were observed using atomic force microscopy and FE-SEM. The chromium nitride (CrN, Cr2N)/chromium (Cr)/indium-tin-oxide (ITO) multilayer that was formed on the stainless steel plates had a surface microstructural morphology that consisted of fine columnar grains 10 nm in diameter and 60 nm in length. The external gold films that were formed on the stainless steel plates had a grain microstructure approximately 100 nm in diameter. The grain size of the external surface of the stainless steel plates with the gold (Au)/titanium (Ti) system increased with increasing gold film thickness. The electrical resistances and water contact angles of the stainless steel bipolar plates that were covered with the multilayer films were examined as a function of the thickness of the ITO film or of the external gold film. In the corrosion test, ICP-MS results indicated that the gold (Au)/titanium (Ti) films showed relatively excellent chemical stability after exposure to H2SO4 solution with pH 3 at 80 °C.

  7. Propagation of thickness-twist waves in elastic plates with periodically varying thickness and phononic crystals.

    PubMed

    Zhu, Jun; Chen, Weiqiu; Yang, Jiashi

    2014-09-01

    We study the propagation of thickness-twist (TT) waves in a crystal plate of AT-cut quartz with periodically varying, piecewise constant thickness. The scalar differential equation by Tiersten and Smythe is employed. The problem is found to be mathematically equivalent to the motion of an electron in a periodic potential field governed by Schrodinger's equation. An analytical solution is obtained. Numerical results show that the eigenvalue (frequency) spectrum of the waves has a band structure with allowed and forbidden bands. Therefore, for TT waves, plates with periodically varying thickness can be considered as phononic crystals. The effects of various parameters on the frequency spectrum are examined. PMID:24924785

  8. Vibration Analysis of Rectangular Isotropic Thick Plates Using Mindlin Plate Characteristic Functions

    NASA Astrophysics Data System (ADS)

    Lee, J. M.; Kim, K. C.

    1995-11-01

    An iterative Kantorovich method is presented for the vibration analysis of rectangular isotropic thick plates. Mindlin plate characteristic functions are derived in general forms by the Kantorovich method initially starting with Timoshenko beam functions consistent with the boundary conditions of the plate. Through numerical calculations of a natural pairs and dynamic responses of appropriate models, it has been confirmed that the method presented is superior to the Rayleigh-Ritz analysis or the FEM analysis in accuracy and computational efficiency.

  9. 49 CFR 179.220-6 - Thickness of plates.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... = Inside diameter in inches; E = 0.9 welded joint efficiency; except E=1.0 for seamless heads; P = Minimum... in AAR Specifications for Tank Cars, appendix M, Table M1; t = Minimum thickness of plate in...

  10. 49 CFR 179.220-6 - Thickness of plates.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... = Inside diameter in inches; E = 0.9 welded joint efficiency; except E=1.0 for seamless heads; P = Minimum... in AAR Specifications for Tank Cars, appendix M, Table M1; t = Minimum thickness of plate in...

  11. 49 CFR 179.220-6 - Thickness of plates.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... = Inside diameter in inches; E = 0.9 welded joint efficiency; except E=1.0 for seamless heads; P = Minimum... in AAR Specifications for Tank Cars, appendix M, Table M1; t = Minimum thickness of plate in...

  12. Application of laser in seam welding of dissimilar steel to aluminium joints for thick structural components

    NASA Astrophysics Data System (ADS)

    Meco, S.; Pardal, G.; Ganguly, S.; Williams, S.; McPherson, N.

    2015-04-01

    Laser welding-brazing technique, using a continuous wave (CW) fibre laser with 8000 W of maximum power, was applied in conduction mode to join 2 mm thick steel (XF350) to 6 mm thick aluminium (AA5083-H22), in a lap joint configuration with steel on the top. The steel surface was irradiated by the laser and the heat was conducted through the steel plate to the steel-aluminium interface, where the aluminium melts and wets the steel surface. The welded samples were defect free and the weld micrographs revealed presence of a brittle intermetallic compounds (IMC) layer resulting from reaction of Fe and Al atoms. Energy Dispersive Spectroscopy (EDS) analysis indicated the stoichiometry of the IMC as Fe2Al5 and FeAl3, the former with maximum microhardness measured of 1145 HV 0.025/10. The IMC layer thickness varied between 4 to 21 μm depending upon the laser processing parameters. The IMC layer showed an exponential growth pattern with the applied specific point energy (Esp) at a constant power density (PD). Higher PD values accelerate the IMC layer growth. The mechanical shear strength showed a narrow band of variation in all the samples (with the maximum value registered at 31.3 kN), with a marginal increase in the applied Esp. This could be explained by the fact that increasing the Esp results into an increase in the wetting and thereby the bonded area in the steel-aluminium interface.

  13. Effect of polyurea on dynamic response and fracture resistance of steel plates under impulsive loads

    NASA Astrophysics Data System (ADS)

    Amini, Mahmoud Reza

    Enhancing the dynamic performance and fracture resistance of steel plates under impulsive loads has always been of great interest to the researchers and scientists. A convenient technique to enhance the energy absorption capability of steel plates is to spray-cast a layer of polyurea onto the plates. Since polyurea readily adheres to metallic surfaces and has a short curing time, the technique may be used to retrofit existing metallic structures to improve their blast resistance. We have examined the effectiveness of this approach, focusing on the question of the significance of the relative position of the polyurea layer with respect to the loading direction; i.e. , we have explored whether the polyurea layer cast on the front face (the impulse-receiving face) or on the back face of the steel plate would provide a more effective blast mitigating composite. In addition we have studied the effects of the thickness of the polyurea layer and the steel-polyurea interface bonding strength. The experimental results suggest that the polyurea layer can have a significant effect on the response of the steel plate to dynamic impulsive loads, both in terms of failure mitigation and energy absorption, if it is deposited on the back face of the plate. And, remarkably, when polyurea is placed on the front face of the plate, it may actually enhance the destructive effect of the blast, promoting the failure of the steel plate, depending on the interface bonding strength between the polyurea and steel layers and the polyurea layer thickness. These experimental results are supported by our computational simulations of the entire experiments. In addition, SEM and optical microscopy is performed to examine the microstructure of the failed samples, and also understand the fracture and necking patterns, and the underpinning mechanisms of failure. Based on the micrographs, finite-element models are developed that are capable of predicting the fracture process of the steel plates. An

  14. VIEW OF STEEL PLATE DOOR IN NUCLEAR PHYSICS LABORATORY, BETWEEN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF STEEL PLATE DOOR IN NUCLEAR PHYSICS LABORATORY, BETWEEN LABORATORY AND SP-SE REACTOR ROOM,LEVEL -15’, LOOKING NORTHWEST - Physics Assembly Laboratory, Area A/M, Savannah River Site, Aiken, Aiken County, SC

  15. Impact on thin steel plates by tumbling projectiles

    SciTech Connect

    Li, K.; Goldsmith, W.

    1995-12-31

    An experimental, analytical, and numerical investigation into the effects of tumbling projectiles on the impact response of thin 4130 steel target plates was performed. Deformation patterns and failure phenomena as well as the final velocities and trajectories of the projectiles are correlated with initial conditions such as the initial velocity and impact angle (or yaw angle with a zero oblique angle) of the projectile and plate thickness. In the experiments, tumbling motion of the projectiles was induced by impact of a portion of the front face of the projectile with the edge of a massive block placed along the trajectory. Cylinders with a diameter of 12.7 mm, a length of 38.1 mm, and a hardness of R{sub c} 54 were fired at velocities from 400 m/s - 800 m/s. The forward speed of the projectile after tumbling production ranged from 300 m/s-700 m/s. Rotational speeds ranged from 0 rad/s - 3000 rad/s and concomitant impact angles varied from 0{degrees} to 60{degrees}. These parameters were determined from high speed photographic records. The targets were 1.6 mm and 3.2 mm thick. An analytical model developed for thin aluminum target plates was employed in the present study. The model divides the penetration process into three stages: (1) plugging; (2) hole enlargement; and (3) frontal petaling. The processes are quantified using energy dissipation descriptions of the various deformation mechanisms. Numerical simulations of the penetration processes were performed by employment of the program DYNA3D, a nonlinear, three-dimensional finite element code. The material of the target was modeled as elasto-plastic with failure, while the projectile was assumed to be undeformable. The failure criterion of the target is based on the ultimate tensile strain.

  16. Progress in thermomechanical control of steel plates and their commercialization

    NASA Astrophysics Data System (ADS)

    Nishioka, Kiyoshi; Ichikawa, Kazutoshi

    2012-04-01

    The water-cooled thermomechanical control process (TMCP) is a technology for improving the strength and toughness of water-cooled steel plates, while allowing control of the microstructure, phase transformation and rolling. This review describes metallurgical aspects of the microalloying of steel, such as niobium addition, and discusses advantages of TMCP, for example, in terms of weldability, which is reduced upon alloying. Other covered topics include the development of equipment, distortions in steel plates, peripheral technologies such as steel making and casting, and theoretical modeling, as well as the history of property control in steel plate production and some early TMCP technologies. We provide some of the latest examples of applications of TMCP steel in various industries such as shipbuilding, offshore structures, building construction, bridges, pipelines, penstocks and cryogenic tanks. This review also introduces high heat-affected-zone toughness technologies, wherein the microstructure of steel is improved by the addition of fine particles of magnesium-containing sulfides and magnesium- or calcium-containing oxides. We demonstrate that thanks to ongoing developments TMCP has the potential to meet the ever-increasing demands of steel plates.

  17. 22. TRANSPORTING STEEL FLOOR PLATES ON HAND CART TO NORTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. TRANSPORTING STEEL FLOOR PLATES ON HAND CART TO NORTH END OF BRIDGE. NOTE RETAINING ANGLE FOR SURFACING AT CUT-SIDE EDGE OF FLOOR PLATES. NOTE TUNNELS IN TOP OF ROCK FACE FOR MAIN CABLES - Kaibab Trail Suspension Bridge, Spanning Colorado River, Grand Canyon, Coconino County, AZ

  18. Unilateral buckling of elastically restrained rectangular mild steel plates

    NASA Astrophysics Data System (ADS)

    Smith, S. T.; Bradford, M. A.; Oehlers, D. J.

    This paper considers the elastic unilateral buckling of rectangular mild steel plates that are restrained elastically and subjected to bending and axial actions. A variational formulation of the Ritz method using linear combinations of harmonic functions for the buckling deformations is used to establish an eigenproblem to determine the plate local buckling coefficients. The motivation for the study is the retrofit of reinforced concrete beams by gluing and then bolting steel plates to the sides of the beam. Such plates, when acting compositely with the concrete beam, are subjected to predominantly bending and axial actions which may cause unilateral local buckling. Whereas the bolts provide complete restraint against buckling at discrete points, the glue may also inhibit local buckling between these nodal points since it acts as a continuous elastic restraint. The influence of the glue stiffness, support conditions and plate proportions on the unilateral buckling of such plates are assessed.

  19. Transverse vibration of trapezoidal plates of variable thickness - Symmetric trapezoids

    NASA Astrophysics Data System (ADS)

    Liew, K. M.; Lim, M. K.

    1993-07-01

    A set of simple 2D polynomial functions is employed as the admissible displacement function in the Rayleigh-Ritz energy approach for the free transverse vibration analysis of symmetric trapezoidal plates with linearly varying thickness. The admissible function consists the product of a 2D polynomial function and a basic function defined by the product of the equations of the prescribed continuous piecewise boundary shape, each raised to the power of 0, 1 or 2 (corresponding to a free, simply supported, or clamped edge, respectively). The set of functions generated ensures the satisfaction of all the kinematic boundary conditions at the outset. The proposed method is applied to solve several symmetric trapezoidal plates with different combinations of boundary conditions and variable thickness. The results, for some cases, are compared with the available published values from the open literature. These new results may serve as benchmark data for the development of other numerical methods.

  20. Thermal Stress Cracking of Slide-Gate Plates in Steel Continuous Casting

    NASA Astrophysics Data System (ADS)

    Lee, Hyoung-Jun; Thomas, Brian G.; Kim, Seon-Hyo

    2016-04-01

    The slide-gate plates in a cassette assembly control the steel flow through the tundish nozzle, and may experience through-thickness cracks, caused by thermal expansion and/or mechanical constraint, leading to air aspiration and safety concerns. Different mechanisms for common and rare crack formation are investigated with the aid of a three-dimensional finite-element model of thermal mechanical behavior of the slide-gate plate assembly during bolt pretensioning, preheating, tundish filling, casting, and cooling stages. The model was validated with previous plant temperature measurements of a ladle plate during preheating and casting, and then applied to a typical tundish-nozzle slide-gate assembly. The formation mechanisms of different types of cracks in the slide-gate plates are investigated using the model and evaluated with actual slide-gate plates at POSCO. Common through-thickness radial cracks, found in every plate, are caused during casting by high tensile stress on the outside surfaces of the plates, due to internal thermal expansion. In the upper plate, these cracks may also arise during preheating or tundish filling. Excessive bolt tightening, combined with thermal expansion during casting may cause rare radial cracks in the upper and lower plates. Rare radial and transverse cracks in middle plate appear to be caused during tundish filling by impingement of molten steel on the middle of the middle plate that generates tensile stress in the surrounding refractory. The mechanical properties of the refractory, the bolt tightening conditions, and the cassette/plate design are all important to service life.

  1. Development of narrow gap welding technology for extremely thick steel

    NASA Astrophysics Data System (ADS)

    Imai, K.; Saito, T.; Okumura, M.

    In the field of extremely thick steel, various narrow gap welding methods were developed on the basis of former welding methods and are used in practice. It is important to develop and improve automatic narrow gap welding, J edge preparation by gas cutting, the prevention of welding defects, wires for narrow gap welding and so on in order to expand the scope of application of the method. Narrow gap welding technologies are described, based on new concepts developed by Nippon Steel Corporation.

  2. The Influence of Pre-existing Deformation on GMA Welding Distortion in Thin Steel Plates

    NASA Astrophysics Data System (ADS)

    Davies, C. M.; Ahn, J.; Tsunori, M.; Dye, D.; Nikbin, K. M.

    2015-01-01

    Weld distortion is particularly problematic for large thin structures that are used in the assembly of ships. The drive toward lighter ships and thinner plate is restricted by the significant increase in distortion as the plate thickness decreases. The influence of pre-existing deformation in the plates to be joined on the resultant distortion in gas metal arc welded structure has been studied. DH-36 steel plate surface profiles were measured before and after the butt welding of two plates 1000 × 500 × 4 mm in size. Three dimensional finite element models that incorporate the initial plate profile have been created to simulate the welding process and to examine the relationship between the final welded plate profiles and the initial deformation present in the plates. Both symmetric and asymmetric models were considered. A significant variation in the unwelded base plates' initial distortion was observed. Generally, it has been found that if an out-of-plane deformation exists in a plate prior to welding, the level of distortion further increases in the same direction following welding. The final distortions are strongly related to the initial plate profiles. The residual stress distributions in the plates are also to some extent affected by the level of distortion initially present.

  3. Incremental ECAP of thick continuous plates - machine and initial trials

    NASA Astrophysics Data System (ADS)

    Rosochowski, A.; Olejnik, L.

    2014-08-01

    Incremental ECAP (I-ECAP) can be used for SPD of continuous bars, plates and sheets. This paper describes design, construction and preliminary trials of a prototype machine capable of processing thick continuous plates. To increase productivity, a two-turn I-ECAP is used, which is equivalent to route C in conventional one-turn ECAP. The machine has a reciprocating punch inclined at 45°, a clamp holding the plate in the die during deformation and a feeder incrementally feeding the plate when it is not deformed; all these devices are driven by hydraulic actuators controlled by a PLC. The machine is capable of deforming materials at room temperature as well as elevated temperatures. The die is heated with electric heaters. The machine has also an integrated cooling system and a lubrication system. The material used for the initial trials was Al 1050 plate (10×50×1000) conversion coated with calcium aluminate and lubricated with dry soap. The process was carried out at room temperature using 1.6 mm feeding stroke and a low cycle frequency of approximately 0.2 Hz. The UFG structure after the first pass of the process revealed by STEM confirms process feasibility.

  4. Investigation of residual stresses in a multipass weld in 1 in. stainless steel plate

    SciTech Connect

    Spooner, S.; Fernandez Baca, J.A.; David, S.A.; Hubbard, C.R.; Holden, T.M.; Root, J.H.

    1994-06-01

    Residual stresses and strains were measured in two welded 25-mm thick plates of type 304 stainless steel by the neutron diffraction. The filler metal was type 308 stainless steel and the weld zone had a two phase microstructure in which the austenitic phase lattice parameter differs from the base metal. In these circumstances stain-free samples were taken from the weld zone area for analysis of the lattice parameters and ferrite content using neutron powder diffraction. Corrections for lattice parameter variation were applied permitting the calculation of residual strains and stresses in weld zone, heat affected zone (HAZ) and base metal. One of the two welds was examined without stress relief and the other was given a stress relief treatment consisting of vibration at a frequency below the resonant condition dudng welding. In both plates the largest residual stress component (longitudinal) is found in the fusion zone near the boundary between the weld zone and the heat affected zone. This longitudinal component is 400 {plus_minus} 50 MPa in tension. The normal stresses are generally close to zero although large fluctuations are found in the weld zone. The transverse stresses are as high as 200 MPa in the weld zone and decrease to 50 MPa {plus_minus} 40 MPa. The lattice parameter variation was equivalent to 5 {times} l0{minus}4 compressive strain and the ferrite content approached 9 percent at the center of the weld zone. Variations in residual stresses with thickness through the base metal plate were small. The treated plate and untreated plate showed nearly identical patterns of stress distribution. Differences in the measured stresses between vibratory-stress-relief treated and untreated plates fall within error bars of the stress determination in these particular 25 mm thick 300-type stainless steel plates.

  5. Material Corrosion and Plate-Out Test of Types 304L and 316L Stainless Steel

    SciTech Connect

    Zapp, P.E.

    2001-02-06

    Corrosion and plate-out tests were performed on 304L and 316L stainless steel in pretreated Envelope B and Envelope C solutions. Flat coupons of the two stainless steels were exposed to 100 degrees C liquid and to 74 degrees C and 88 degrees C vapor above the solutions for 61 days. No significant corrosion was observed either by weight-loss measurements or by microscopic examination. Most coupons had small weight gains due to plate-out of solids, which remained to some extent even after 24-hour immersion in 1 N nitric acid at room temperature. Plate-out was more significant in the Envelope B coupons, with film thickness from less than 0.001 in. to 0.003-inches.

  6. Changes in Flat Plate Wake Characteristics Obtained With Decreasing Plate Thickness

    NASA Technical Reports Server (NTRS)

    Rai, Man Mohan

    2016-01-01

    The near and very near wake of a flat plate with a circular trailing edge is investigated with data from direct numerical simulations. Computations were performed for four different Reynolds numbers based on plate thickness (D) and at constant plate length. The value of ?/D varies by a factor of approximately 20 in the computations (? being the boundary layer momentum thickness at the trailing edge). The separating boundary layers are turbulent in all the cases. One objective of the study is to understand the changes in wake characteristics as the plate thickness is reduced (increasing ?/D). Vortex shedding is vigorous in the low ?/D cases with a substantial decrease in shedding intensity in the largest ?/D case (for all practical purposes shedding becomes almost intermittent). Other characteristics that are significantly altered with increasing ?/D are the roll-up of the detached shear layers and the magnitude of fluctuations in shedding period. These effects are explored in depth. The effects of changing ?/D on the distributions of the time-averaged, near-wake velocity statistics are discussed.

  7. High-power Laser Welding of Thick Steel-aluminum Dissimilar Joints

    NASA Astrophysics Data System (ADS)

    Lahdo, Rabi; Springer, André; Pfeifer, Ronny; Kaierle, Stefan; Overmeyer, Ludger

    According to the Intergovernmental Panel on Climate Change (IPCC), a worldwide reduction of CO2-emissions is indispensable to avoid global warming. Besides the automotive sector, lightweight construction is also of high interest for the maritime industry in order to minimize CO2-emissions. Using aluminum, the weight of ships can be reduced, ensuring lower fuel consumption. Therefore, hybrid joints of steel and aluminum are of great interest to the maritime industry. In order to provide an efficient lap joining process, high-power laser welding of thick steel plates (S355, t = 5 mm) and aluminum plates (EN AW-6082, t = 8 mm) is investigated. As the weld seam quality greatly depends on the amount of intermetallic phases within the joint, optimized process parameters and control are crucial. Using high-power laser welding, a tensile strength of 10 kN was achieved. Based on metallographic analysis, hardness tests, and tensile tests the potential of this joining method is presented.

  8. Thermal distortion tests of aluminum and stainless steel plates

    SciTech Connect

    Bielick, E.; Fornek, T.; Spinka, H.; Underwood, D.

    1993-06-25

    An important upgrade to the STAR detector at the Brookhaven National Laboratory RHIC accelerator will be an electromagnetic calorimeter. One design being considered for this calorimeter involves cast lead modules covering {Delta}{phi} = 6{degree} and 0 {le} {vert_bar}{eta}{vert_bar} {le} 1. These modules would consist of alternating layers of lead and sheets of plastic scintillator. The gaps for scintillator between the layers of lead would be created by parallel aluminum plates of thickness {approx_equal}6.6 mm = 0.260in. in the mold for the modules. These plates would need to be machined or ground to be reasonably flat, perhaps to {plus_minus}0.003in., and of uniform thickness from plate to plate. These requirements are imposed by the need to remove the plates from the casting after cooling, and to have good uniformity of the lead layer thickness, which gives good performance for the modules as a calorimeter. Aluminum was chosen for the plates because of its high coefficient of thermal expansion. An important cost in this calorimeter design is associated with the machining or grinding of the plates to proper thickness and flatness. In most cost estimates, it has been assumed that the mold parts could be used many times. This note describes a simple test which was conducted to investigate possible distortions in the plates after repeated heating to temperatures at which the lead would be poured into the mold and cooling.

  9. 6. WORKMEN REPLACING STEEL PLATES IN FLUME NO. 10, ABOVE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. WORKMEN REPLACING STEEL PLATES IN FLUME NO. 10, ABOVE SAR-1. FLUME FOR SAR-3 WAS REBUILT AT THE SAME TIME. SCE negative no. 11776, May 1, 1926. Photograph by G. Haven Bishop. - Santa Ana River Hydroelectric System, Flumes & Tunnels below Sandbox, Redlands, San Bernardino County, CA

  10. 78 FR 7451 - Clad Steel Plate From Japan; Determination

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-01

    ..., 2012 (77 FR 5052) and determined on May 7, 2012 that it would conduct a full review (77 FR 37439, June..., 2012 (77 FR 38825). The hearing was held in Washington, DC, on December 6, 2012, and all persons who... COMMISSION Clad Steel Plate From Japan; Determination On the basis of the record \\1\\ developed in the...

  11. DETAIL OF STEEL PLATE SET INTO THE CONCRETE SLAB OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF STEEL PLATE SET INTO THE CONCRETE SLAB OF THE NORTH END OF THE ABOVE-GROUND PORTION. VIEW FACING NORTH - U.S. Naval Base, Pearl Harbor, Ford Island 5-Inch Antiaircraft Battery, Battery Command Center, Ford Island, Pearl City, Honolulu County, HI

  12. Effect of Rolling Temperature and Ultrafast Cooling Rate on Microstructure and Mechanical Properties of Steel Plate

    NASA Astrophysics Data System (ADS)

    Ye, Qibin; Liu, Zhenyu; Yang, Yu; Wang, Guodong

    2016-07-01

    Microstructure can vary significantly through thickness after ultrafast cooling of rolled steel plates, impacting their mechanical properties. This study examined the microstructure, microstructural banding at centerline, and mechanical properties through thickness for different ultrafast cooling conditions and rolling temperatures. One set of steels (UC1 and UC2) were ultrafast-cooled (UFC) at 40 K/s after finish rolling at 1223 K and 1193 K (950 °C and 910 °C), respectively, while the second set (LC) was cooled by laminar cooling at 17 K/s after finish rolling at 1238 K (965 °C). UFC produced microstructural variation through thickness; highly dislocated lath-type bainitic ferrite was formed near the surface, whereas the primary microstructure was acicular ferrite and irregular polygonal ferrite in the interior of UC1 and UC2 steels, respectively. However, UFC has the advantage of suppression of microstructural banding in centerline segregation regions. The ferrite grain size in both UFC-cooled steels was refined to ~5 μm, increasing strength and toughness. The optimum combination of properties was obtained in UC2 steel with appropriate low finish rolling temperature, being attributed to the distinct microstructure resulting from work-hardened austenite before UFC.

  13. 48 CFR 252.225-7030 - Restriction on Acquisition of Carbon, Alloy, and Armor Steel Plate.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... of Carbon, Alloy, and Armor Steel Plate. 252.225-7030 Section 252.225-7030 Federal Acquisition... Acquisition of Carbon, Alloy, and Armor Steel Plate. As prescribed in 225.7011-3, use the following clause: Restriction on Acquisition of Carbon, Alloy, and Armor Steel Plate (DEC 2006) (a) Carbon, alloy, and...

  14. 48 CFR 252.225-7030 - Restriction on Acquisition of Carbon, Alloy, and Armor Steel Plate.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... of Carbon, Alloy, and Armor Steel Plate. 252.225-7030 Section 252.225-7030 Federal Acquisition... Acquisition of Carbon, Alloy, and Armor Steel Plate. As prescribed in 225.7011-3, use the following clause: Restriction on Acquisition of Carbon, Alloy, and Armor Steel Plate (DEC 2006) (a) Carbon, alloy, and...

  15. 48 CFR 252.225-7030 - Restriction on Acquisition of Carbon, Alloy, and Armor Steel Plate.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... of Carbon, Alloy, and Armor Steel Plate. 252.225-7030 Section 252.225-7030 Federal Acquisition... Acquisition of Carbon, Alloy, and Armor Steel Plate. As prescribed in 225.7011-3, use the following clause: Restriction on Acquisition of Carbon, Alloy, and Armor Steel Plate (DEC 2006) (a) Carbon, alloy, and...

  16. 48 CFR 252.225-7030 - Restriction on Acquisition of Carbon, Alloy, and Armor Steel Plate.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... of Carbon, Alloy, and Armor Steel Plate. 252.225-7030 Section 252.225-7030 Federal Acquisition... Acquisition of Carbon, Alloy, and Armor Steel Plate. As prescribed in 225.7011-3, use the following clause: Restriction on Acquisition of Carbon, Alloy, and Armor Steel Plate (DEC 2006) (a) Carbon, alloy, and...

  17. 48 CFR 252.225-7030 - Restriction on Acquisition of Carbon, Alloy, and Armor Steel Plate.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... of Carbon, Alloy, and Armor Steel Plate. 252.225-7030 Section 252.225-7030 Federal Acquisition... Acquisition of Carbon, Alloy, and Armor Steel Plate. As prescribed in 225.7011-3, use the following clause: Restriction on Acquisition of Carbon, Alloy, and Armor Steel Plate (DEC 2006) (a) Carbon, alloy, and...

  18. Vibration of variable thickness orthotropic plates using eigensensitivity analysis

    SciTech Connect

    Barton, O. Jr.; Raouf, R.A.

    1995-12-31

    An approximate closed-form expression is presented which can be used to compute the fundamental frequency of specially orthotropic laminates having a linearly varying thickness. The desired expression is determined by casting the governing differential equation into discrete form using the Ritz method and expanding the discrete equations in a Maclaurin series about the off-diagonal elements of both the stiffness and mass matrices. Fundamental frequencies are computed for a combination of simply-supported and clamped boundary conditions using both beam shape functions and orthogonal polynomials as the admissible basis. Results are compared with those obtained numerically using the Rayleigh-Ritz approach for several laminate tapers {xi} and plate aspect ratios R.

  19. Laser cutting of thick steel sheets using supersonic oxygen jets

    SciTech Connect

    Zaitsev, A V; Kovalev, O B; Malikov, A G; Orishich, A M; Shulyat'ev, V B

    2007-09-30

    High-quality cutting of steel sheets of thickness up to 50 mm is performed upon a simultaneous action of laser radiation and a supersonic oxygen jet on the material. Parameters of the nozzle used for jet formation are determined by simulating numerically three-dimensional flows of a viscous and heat-conducting gas in a plane channel that is geometrically similar to the laser cut. (laser technologies)

  20. Wear behavior of austenite containing plate steels

    NASA Astrophysics Data System (ADS)

    Hensley, Christina E.

    As a follow up to Wolfram's Master of Science thesis, samples from the prior work were further investigated. Samples from four steel alloys were selected for investigation, namely AR400F, 9260, Hadfield, and 301 Stainless steels. AR400F is martensitic while the Hadfield and 301 stainless steels are austenitic. The 9260 exhibited a variety of hardness levels and retained austenite contents, achieved by heat treatments, including quench and tempering (Q&T) and quench and partitioning (Q&P). Samples worn by three wear tests, namely Dry Sand/Rubber Wheel (DSRW), impeller tumbler impact abrasion, and Bond abrasion, were examined by optical profilometry. The wear behaviors observed in topography maps were compared to the same in scanning electron microscopy micrographs and both were used to characterize the wear surfaces. Optical profilometry showed that the scratching abrasion present on the wear surface transitioned to gouging abrasion as impact conditions increased (i.e. from DSRW to impeller to Bond abrasion). Optical profilometry roughness measurements were also compared to sample hardness as well as normalized volume loss (NVL) results for each of the three wear tests. The steels displayed a relationship between roughness measurements and observed wear rates for all three categories of wear testing. Nanoindentation was used to investigate local hardness changes adjacent to the wear surface. DSRW samples generally did not exhibit significant work hardening. The austenitic materials exhibited significant hardening under the high impact conditions of the Bond abrasion wear test. Hardening in the Q&P materials was less pronounced. The Q&T microstructures also demonstrated some hardening. Scratch testing was performed on samples at three different loads, as a more systematic approach to determining the scratching abrasion behavior. Wear rates and scratch hardness were calculated from scratch testing results. Certain similarities between wear behavior in scratch testing

  1. Surface modified stainless steels for PEM fuel cell bipolar plates

    DOEpatents

    Brady, Michael P [Oak Ridge, TN; Wang, Heli [Littleton, CO; Turner, John A [Littleton, CO

    2007-07-24

    A nitridation treated stainless steel article (such as a bipolar plate for a proton exchange membrane fuel cell) having lower interfacial contact electrical resistance and better corrosion resistance than an untreated stainless steel article is disclosed. The treated stainless steel article has a surface layer including nitrogen-modified chromium-base oxide and precipitates of chromium nitride formed during nitridation wherein oxygen is present in the surface layer at a greater concentration than nitrogen. The surface layer may further include precipitates of titanium nitride and/or aluminum oxide. The surface layer in the treated article is chemically heterogeneous surface rather than a uniform or semi-uniform surface layer exclusively rich in chromium, titanium or aluminum. The precipitates of titanium nitride and/or aluminum oxide are formed by the nitriding treatment wherein titanium and/or aluminum in the stainless steel are segregated to the surface layer in forms that exhibit a low contact resistance and good corrosion resistance.

  2. 49 CFR 192.109 - Nominal wall thickness (t) for steel pipe.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Nominal wall thickness (t) for steel pipe. 192.109 Section 192.109 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND... Nominal wall thickness (t) for steel pipe. (a) If the nominal wall thickness for steel pipe is not...

  3. 49 CFR 192.109 - Nominal wall thickness (t) for steel pipe.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Nominal wall thickness (t) for steel pipe. 192.109 Section 192.109 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND... Nominal wall thickness (t) for steel pipe. (a) If the nominal wall thickness for steel pipe is not...

  4. 49 CFR 192.109 - Nominal wall thickness (t) for steel pipe.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Nominal wall thickness (t) for steel pipe. 192.109 Section 192.109 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND... Nominal wall thickness (t) for steel pipe. (a) If the nominal wall thickness for steel pipe is not...

  5. 49 CFR 192.109 - Nominal wall thickness (t) for steel pipe.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Nominal wall thickness (t) for steel pipe. 192.109 Section 192.109 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND... Nominal wall thickness (t) for steel pipe. (a) If the nominal wall thickness for steel pipe is not...

  6. 49 CFR 192.109 - Nominal wall thickness (t) for steel pipe.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Nominal wall thickness (t) for steel pipe. 192.109 Section 192.109 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND... Nominal wall thickness (t) for steel pipe. (a) If the nominal wall thickness for steel pipe is not...

  7. Study of hypervelocity projectile impact on thick metal plates

    DOE PAGES

    Roy, Shawoon K.; Trabia, Mohamed; O’Toole, Brendan; Hixson, Robert S.; Becker, Steven; Pena, Michael T.; Jennings, Richard; Somasoundaram, Deepak; Matthes, Melissa; Daykin, Edward P.; et al

    2016-01-01

    Hypervelocity impacts generate extreme pressure and shock waves in impacted targets that undergo severe localized deformation within a few microseconds. These impact experiments pose unique challenges in terms of obtaining accurate measurements. Similarly, simulating these experiments is not straightforward. This paper proposed an approach to experimentally measure the velocity of the back surface of an A36 steel plate impacted by a projectile. All experiments used a combination of a two-stage light-gas gun and the photonic Doppler velocimetry (PDV) technique. The experimental data were used to benchmark and verify computational studies. Two different finite-element methods were used to simulate the experiments:more » Lagrangian-based smooth particle hydrodynamics (SPH) and Eulerian-based hydrocode. Both codes used the Johnson-Cook material model and the Mie-Grüneisen equation of state. Experiments and simulations were compared based on the physical damage area and the back surface velocity. Finally, the results of this study showed that the proposed simulation approaches could be used to reduce the need for expensive experiments.« less

  8. Study of hypervelocity projectile impact on thick metal plates

    SciTech Connect

    Roy, Shawoon K.; Trabia, Mohamed; O’Toole, Brendan; Hixson, Robert S.; Becker, Steven; Pena, Michael T.; Jennings, Richard; Somasoundaram, Deepak; Matthes, Melissa; Daykin, Edward P.; Machorro, Eric

    2016-01-01

    Hypervelocity impacts generate extreme pressure and shock waves in impacted targets that undergo severe localized deformation within a few microseconds. These impact experiments pose unique challenges in terms of obtaining accurate measurements. Similarly, simulating these experiments is not straightforward. This paper proposed an approach to experimentally measure the velocity of the back surface of an A36 steel plate impacted by a projectile. All experiments used a combination of a two-stage light-gas gun and the photonic Doppler velocimetry (PDV) technique. The experimental data were used to benchmark and verify computational studies. Two different finite-element methods were used to simulate the experiments: Lagrangian-based smooth particle hydrodynamics (SPH) and Eulerian-based hydrocode. Both codes used the Johnson-Cook material model and the Mie-Grüneisen equation of state. Experiments and simulations were compared based on the physical damage area and the back surface velocity. Finally, the results of this study showed that the proposed simulation approaches could be used to reduce the need for expensive experiments.

  9. Effect of Backing Plate Thermal Property on Friction Stir Welding of 25-mm-Thick AA6061

    NASA Astrophysics Data System (ADS)

    Upadhyay, Piyush; Reynolds, Anthony

    2014-04-01

    By using backing plates made out of materials with widely varying thermal diffusivity this work seeks to elucidate the effects of the root side thermal boundary condition on weld process variables and resulting joint properties. Welds were made in 25.4-mm-thick AA6061 using ceramic, titanium, steel, and aluminum as backing plate (BP) material. Welds were also made using a "composite backing plate" consisting of longitudinal narrow strip of low diffusivity material at the center and two side plates of high diffusivity aluminum. Stir zone temperature during the welding was measured using two thermocouples spot welded at the core of the probe: one at the midplane height and another near the tip of the probe corresponding to the root of the weld. Steady state midplane probe temperatures for all the BPs used were found to be very similar. Near root peak temperature, however, varied significantly among weld made with different BPs all other things being equal. Whereas the near root and midplane temperature were the same in the case of ceramic backing plate, the root peak temperature was 318 K (45 °C) less than the midplane temperature in the case of aluminum BP. The trends of nugget hardness and grain size in through thickness direction were in agreement with the measured probe temperatures. Hardness and tensile test results show that the use of composite BP results in stronger joint compared to monolithic steel BP.

  10. Estimates of elastic plate thicknesses beneath large volcanos on Venus

    NASA Technical Reports Server (NTRS)

    Mcgovern, Patrick J.; Solomon, Sean C.

    1992-01-01

    Megellan radar imaging and topography data are now available for a number of volcanos on Venus greater than 100 km in radius. These data can be examined to reveal evidence of the flexural response of the lithosphere to the volcanic load. On Earth, flexure beneath large hotspot volcanos results in an annual topographic moat that is partially to completely filled in by sedimentation and mass wasting from the volcano's flanks. On Venus, erosion and sediment deposition are considered to be negligible at the resolution of Magellan images. Thus, it may be possible to observe evidence of flexure by the ponding of recent volcanic flows in the moat. We also might expect to find topographic signals from unfilled moats surrounding large volcanos on Venus, although these signals may be partially obscured by regional topography. Also, in the absence of sedimentation, tectonic evidence of deformation around large volcanos should be evident except where buried by very young flows. We use analytic solutions in axisymmetric geometry for deflections and stresses resulting from loading of a plate overlying an inviscid fluid. Solutions for a set of disk loads are superimposed to obtain a solution for a conical volcano. The deflection of the lithosphere produces an annular depression or moat, the extent of which can be estimated by measuring the distance from the volcano's edge to the first zero crossing or to the peak of the flexural arch. Magellan altimetry data records (ARCDRs) from data cycle 1 are processed using the GMT mapping and graphics software to produce topographic contour maps of the volcanos. We then take topographic profiles that cut across the annular and ponded flows seen on the radar images. By comparing the locations of these flows to the predicted moat locations from a range of models, we estimate the elastic plate thickness that best fits the observations, together with the uncertainty in that estimate.

  11. The Timoshenko-Reissner generalized model of a plate highly nonuniform in thickness

    NASA Astrophysics Data System (ADS)

    Morozov, N. F.; Tovstik, P. E.; Tovstik, T. P.

    2016-08-01

    A thin plate fabricated of material that is transversally isotropic and nonuniform in thickness is considered. The model of the monolayer transversally homogeneous isotropic plate, which is approximately equivalent to a thickness-nonuniform plate in the deflection and in the lowest frequencies of free vibrations, is constructed. The range of applicability of the model constructed is very wide. The main result of this study is a formula for calculating the transverse-shear rigidity of an equivalent transversally isotropic plate.

  12. Time-resolved penetration response of ceramic and steel plates

    SciTech Connect

    Wise, J.L.; Kipp, M.E.

    1989-01-01

    A laser velocity interferometer system (VISAR) has generated records of free-surface particle velocity for target assemblies incorporating alumina, boron carbide, titanium diboride, and steel plates that were subjected to impact loading by small scale, long-rod penetrators fabricated from a tungsten alloy. The measured particle-velocity data have been compared to calculational results obtained with a multidimensional wave-propagation code (CTH). 5 refs., 6 figs., 3 tabs.

  13. Measurement of steel plate perforation tests with digital image correlation.

    SciTech Connect

    Cordova, Theresa Elena; Reu, Phillip L.; Vangoethem, Douglas J.

    2009-03-01

    The results of a series of punch-through tests performed on steel plates are presented. The geometry consisted of circular plates with welded boundary condition penetrated by a conical shaped punch with either a radiused or flat cylindrical end. After initial failure, the conical portion of the punch was driven through the plate to exercise tearing mechanics. Tests were performed quasi-statically with a hydraulic actuator and dynamically using a high-capacity drop table. Deformation and strain were measured with a stereo DIC system. The quasi-static tests utilized a conventional direct-view DIC technique while the dynamic tests required development of an indirect-view technique using a mirror. Experimental details used to conduct the test series will be presented along with test results. Methods of assessing test-to-test repeatability will be discussed. DIC results will also be synchronized and compared with transducer data (displacement and strain).

  14. Ultrasonic butt welding of aluminum, aluminum alloy and stainless steel plate specimens.

    PubMed

    Tsujino, Jiromaru; Hidai, Kazuaki; Hasegawa, Atsushi; Kanai, Ryoichi; Matsuura, Hisanori; Matsushima, Kaoru; Ueoka, Tetsugi

    2002-05-01

    Welding characteristics of aluminum, aluminum alloy and stainless steel plate specimens of 6.0 mm thickness by a 15 kHz ultrasonic butt welding system were studied. There are no detailed welding condition data of these specimens although the joining of these materials are required due to anticorrosive and high strength characteristics for not only large specimens but small electronic parts especially. These specimens of 6.0 mm thickness were welded end to end using a 15 kHz ultrasonic butt welding equipment with a vibration source using eight bolt-clamped Langevin type PZT transducers and a 50 kW static induction thyristor power amplifier. The stainless steel plate specimens electrolytically polished were joined with welding strength almost equal to the material strength under rather large vibration amplitude of 25 microm (peak-to-zero value), static pressure 70 MPa and welding time of 1.0-3.0 s. The hardness of stainless steel specimen adjacent to a welding surface increased about 20% by ultrasonic vibration.

  15. Corrosion resistance of a magnetic stainless steel ion-plated with titanium nitride.

    PubMed

    Hai, K; Sawase, T; Matsumura, H; Atsuta, M; Baba, K; Hatada, R

    2000-04-01

    This in vitro study evaluated the corrosion resistance of a titanium nitride (TiN) ion-plated magnetic stainless steel (447J1) for the purpose of applying a magnetic attachment system to implant-supported prostheses made of titanium. The surface hardness of the TiN ion-plated 447J1 alloy with varying TiN thickness was determined prior to the corrosion testing, and 2 micrometers thickness was confirmed to be appropriate. Ions released from the 447J1 alloy, TiN ion-plated 447J1 alloy, and titanium into a 2% lactic acid aqueous solution and 0.1 mol/L phosphate buffered saline (PBS) were determined by means of an inductively coupled plasma atomic emission spectroscopy (ICP-AES). Long-term corrosion behaviour was evaluated using a multisweep cyclic voltammetry. The ICP-AES results revealed that the 447J1 alloy released ferric ions into both media, and that the amount of released ions increased when the alloy was coupled with titanium. Although both titanium and the TiN-plated 447J1 alloy released titanium ions into lactic acid solution, ferric and chromium ions were not released from the alloy specimen for all conditions. Cyclic voltamograms indicated that the long-term corrosion resistance of the 447J1 alloy was considerably improved by ion-plating with TiN.

  16. 49 CFR 179.400-8 - Thickness of plates.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... tensile strength of the plate material, as prescribed in AAR Specifications for Tank Cars, appendix M... inches; S = minimum tensile strength of the plate material, as prescribed in AAR Specifications for Tank... = inside knuckle radius, in inches; S = minimum tensile strength of plate material, as prescribed in...

  17. 49 CFR 179.200-6 - Thickness of plates.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...; P = Minimum required bursting pressure in psig; S = Minimum tensile strength of plate material in p... in psig; S = Minimum tensile strength of plate material in p.s.i. as prescribed in § 179.200-7; t... pressure in psig; S = Minimum tensile strength of plate material in p.s.i. as prescribed in § 179.200-7;...

  18. [Theoretical analysis and numerical simulation of effect of steel plate positions on steel plate rigidity in internal fixation of bone surgery].

    PubMed

    Chen, Bingzhi; Gu, Yuanxian; Lü, Decheng; Lü, Xuemin

    2003-09-01

    In this study we calculate theoretically and use FEM to simulate the effect of plate position relative to bending direction on the overall bending stiffness of the composite system plate-bone. The results show that for different bending directions the effect of the modulus of elasticity of the plate is negligible. Changing the position of a plate will often alter the stress obviously. During the operation, the steel plate should be assigned onto the tension side of the bone. PMID:14565005

  19. Improving Toughness of Heavy Steel Plate by Deformation Distribution Under Low Finish Cooling Temperature

    NASA Astrophysics Data System (ADS)

    Shen, Xin-jun; Tang, Shuai; Chen, Jun; Liu, Zhen-yu; Wang, Guo-dong

    2016-09-01

    The significant role of deformation distribution in toughness improvement of heavy steel plate under low finish cooling temperature was investigated. Deformation distribution was conducted by changing temperature-holding thickness in two-stage control rolling. The results show that the low finish cooling temperature always inhibits the ferrite transformation. However, when heavy deformation was applied at noncrystallization region, extensive ferrite was formed and ferrite was also effectively refined. Hence, homogeneous ferrite microstructure through the thickness with the ferrite volume fraction of 82.4% and grain size refined to 6.7 μm at quarter thickness of 40-mm heavy steel plate was obtained when the deformation at nonrecrystallization region reaches 70%. Thus, high toughness can be achieved, showing that the fully ductile fracture can be maintained at -60 °C and the ductile-to-brittle transition temperature is lowered to -91 °C. The improved toughness is ascribed to the high ferrite volume fraction, refinement of ferrite and hard phase colony and the increase in the percent of high-angle grain boundaries and average grain boundary misorientation.

  20. 75 FR 81309 - Stainless Steel Plate from Belgium, Italy, Korea, South Africa, and Taiwan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-27

    ... Plate from Belgium, Italy, Korea, South Africa, and Taiwan AGENCY: United States International Trade... stainless steel plate from Belgium and South Africa and the antidumping duty orders on stainless steel plate from Belgium, Italy, Korea, South Africa, and Taiwan. SUMMARY: The Commission hereby gives notice...

  1. 76 FR 53882 - Continuation of Antidumping and Countervailing Duty Orders: Stainless Steel Plate in Coils From...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-30

    ..., South Africa, and Taiwan, 76 FR 50495 (Aug. 15, 2011), and Stainless Steel Plate in Coils from Belgium... Plate in Coils From Belgium, the Republic of Korea, South Africa, and Taiwan AGENCY: Import... on stainless steel plate in coils (SSPC) from Belgium, the Republic of Korea (Korea), South...

  2. 75 FR 59744 - Stainless Steel Plate From Belgium, Italy, Korea, South Africa, and Taiwan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-28

    ... Plate From Belgium, Italy, Korea, South Africa, and Taiwan AGENCY: United States International Trade... countervailing duty orders on stainless steel plate from Belgium and South Africa and the antidumping duty orders on stainless steel plate from Belgium, Italy, Korea, South Africa, and Taiwan. SUMMARY:...

  3. SnO2:F Coated Duplex Stainless Steel for PEM Fuel Cell Bipolar Plates

    SciTech Connect

    Wang, H.; Turner, J. A.

    2008-01-01

    Duplex 2205 stainless steel was deposited with 0.6 {micro}m thick SnO2:F coating; coated steel was characterized for PEMFC bipolar plate application. Compared with bare alloy, interfacial contact resistance (ICR) values of the coated 2205 steel are higher. SnO2:F coating adds its own resistance to the air-formed film on the steel. In a PEMFC anode environment, a current peak of ca. 25 {micro}A/cm2 registered at ca. 30 min for coated 2205 steel. It stabilized at ca. 2.0 {approx} -1.0 {micro}A/cm2. This peak is related to the complicated process of coating dissolution and oxide-layer formation. Anodic-cathodic current transfer occurred at ca. 200 min polarization. In a PEMFC cathode environment, current was stable immediately after polarization. The stable current was ca. 0.5 {approx} 2.0 {micro}A/cm2 during the entire polarization period. AES depth profiles with tested samples and ICP analysis with the tested solutions confirmed the excellent corrosion resistance of the SnO2:F coated 2205 alloy in simulated PEMFC environments.

  4. 49 CFR 179.100-6 - Thickness of plates.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... bursting pressure in p.s.i.; S = Minimum tensile strength of plate material in p.s.i., as prescribed in... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS SPECIFICATIONS FOR TANK CARS... material having tensile strength properties at least equal to the base plate, the cladding may...

  5. 49 CFR 179.220-6 - Thickness of plates.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... heads; P = Minimum required bursting pressure in psig; S = Minimum tensile strength of plate material in... = Minimum required bursting pressure in psig; S = Minimum tensile strength of plate material in psi as... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS SPECIFICATIONS FOR TANK...

  6. Color Anodizing of Titanium Coated Rolled Carbon Steel Plate

    SciTech Connect

    Sarajan, Zohair; Mobarakeh, Hooman Nikbakht; Namiranian, Sohrab

    2011-12-26

    As an important kind of structural materials, the titanium cladded steel plates have the advantages of both metals and have been applied in aviation, spaceflight, chemical and nuclear industries. In this study, the specimens which were prepared under soldering mechanism during rolling were anodized by electrochemical process under a given conditions. The color anodizing takes place by physical phenomenon of color interference. Part of incident light on the titanium oxide is reflected and the other part reflects inside coated titanium layer. Major part of the light which reflects from titanium-oxide interface, reflects again inside of the oxide layer.

  7. A Mindlin-Reissner variational principle to analyze the behavior of moderately thick plates

    SciTech Connect

    Carnicer, R.S. ); Alliney, S. )

    1989-11-01

    In the present work a method to solve the plate behavior under the assumption of the Mindlin plate theory is analyzed by means of finite element techniques, avoiding the tendency of the thin element to lock when the thickness of the plates becomes very small. A different formulation is developed from the Mindlin-Reissner principle for general boundary conditions. Numerical examples to evaluate the noninfluence of locking on clamped and simple support plates are calculated.

  8. Impact extractive fracture of jointed steel plates of a bolted joint

    NASA Astrophysics Data System (ADS)

    Daimaruya, M.; Fujiki, H.; Ambarita, H.

    2012-08-01

    This study is concerned with the development of a fracture criterion for the impact fracture of jointed steel plates of a bolted joint used in a car body. For the accurate prediction of crash characteristics of car bodies by computer-aided engineering (CAE), it is also necessary to examine the behavior and fracture of jointed steel plates subjected to impact loads. Although the actual impact fracture of jointed steel plates of a bolted joint used in cars is complicated, for simplifying the problem it might be classified into the shear fracture and the extractive fracture of jointed steel plates. Attention is given to the extractive fracture of jointed steel plates in this study. The extractive behavior and fracture of three kinds of steel plates used for cars are examined in experiments and numerical simulations. The impact extraction test of steel plates jointed by a bolt is performed using the one-bar method, together with the static test. In order to understand the mechanism of extractive fracture process of jointed steel plates, numerical simulations by a FEM code LS-DYNA are also carried out. The obtained results suggest that a stress-based fracture criterion may be developed for the impact extractive fracture of jointed steel plates of a bolted joint used in a car body.

  9. Strengthening and Toughening of a Heavy Plate Steel for Shipbuilding with Yield Strength of Approximately 690 MPa

    NASA Astrophysics Data System (ADS)

    Liu, Dongsheng; Cheng, Binggui; Chen, Yuanyuan

    2013-01-01

    HSLA-100 steel with high content of alloying elements (nominally in wt pct, 3.5 Ni, 1.6 Cu, and 0.6Mo) is now used to produce heavy plates for constructing a hull and drilling platform. We proposed here a substantially leaner steel composition (containing 1.7 Ni, 1.1 Cu, and 0.5Mo) to produce a heavy plate to 80 mm thickness with mechanical properties comparable with those of the HSLA-100 grade. A continuous cooling transformation (CCT) diagram of the steel was constructed. Key parameters of thermal treatment and revealing mechanisms of strengthening and toughening were derived based on industrial production trials. The microstructures of the 80-mm-thick plate were lath-like bainite (LB) at near surface of the quarter thickness ( t/4), and granular bainite (GB)+LB at center thickness ( t/2) after solutionizing and water quenching (Q). The effect of tempering (T) on the microstructures and properties of the plate was investigated. Excellent combination of room temperature strength and low-temperature Charpy V-notch (CVN) toughness approximately equivalent to that of the HSLA 100 grade (YS > 690 MPa, CVN energy >100 J even at 193 K [-80 °C]) was achieved in the plate treated by the QT process with tempering temperature of 898 K (625 °C). The combination of strength and toughness at t/4 is superior to that at t/2 of the plate under both as-quenched and QT conditions. This result is attributed to that the fraction of high-angle grain boundaries (HAGBs) at t/4 is higher than that at t/2.

  10. Ultra fast cooling of hot steel plate by air atomized spray with salt solution

    NASA Astrophysics Data System (ADS)

    Mohapatra, Soumya S.; Ravikumar, Satya V.; Jha, Jay M.; Singh, Akhilendra K.; Bhattacharya, Chandrima; Pal, Surjya K.; Chakraborty, Sudipto

    2014-05-01

    In the present study, the applicability of air atomized spray with the salt added water has been studied for ultra fast cooling (UFC) of a 6 mm thick AISI-304 hot steel plate. The investigation includes the effect of salt (NaCl and MgSO4) concentration and spray mass flux on the cooling rate. The initial temperature of the steel plate before the commencement of cooling is kept at 900 °C or above, which is usually observed as the "finish rolling temperature" in the hot strip mill of a steel plant. The heat transfer analysis shows that air atomized spray with the MgSO4 salt produces 1.5 times higher cooling rate than atomized spray with the pure water, whereas air atomized spray with NaCl produces only 1.2 times higher cooling rate. In transition boiling regime, the salt deposition occurs which causes enhancement in heat transfer rate by conduction. Moreover, surface tension is the governing parameter behind the vapour film instability and this length scale increases with increase in surface tension of coolant. Overall, the achieved cooling rates produced by both types of salt added air atomized spray are found to be in the UFC regime.

  11. 75 FR 29519 - Certain Cut-to-Length Carbon Steel Plate from the People's Republic of China: Rescission of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-26

    ... International Trade Administration Certain Cut-to-Length Carbon Steel Plate from the People's Republic of China... antidumping duty order on certain cut-to-length carbon steel plate (``CTL Plate'') from the People's Republic of China (``PRC''). See Suspension Agreement on Certain Cut- to-Length Carbon Steel Plate From...

  12. 76 FR 24462 - Certain Cut-to-Length Carbon Steel Plate From the People's Republic of China: Rescission of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-02

    ... International Trade Administration Certain Cut-to-Length Carbon Steel Plate From the People's Republic of China... antidumping duty order on certain cut-to-length carbon steel plate (``CTL Plate'') from the People's Republic of China (``PRC''). See Suspension Agreement on Certain Cut- to-Length Carbon Steel Plate From...

  13. 75 FR 67108 - Cut-To-Length Carbon Steel Plate From India, Indonesia, Italy, Japan, and Korea

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-01

    ... orders on imports of CTL carbon steel plate from India, Indonesia, Italy, and Korea (65 FR 6587) and... that corresponds to Commerce's scope description, including grade X-70 plate, micro-alloy steel plate... COMMISSION Cut-To-Length Carbon Steel Plate From India, Indonesia, Italy, Japan, and Korea AGENCY:...

  14. General analytical approach for sound transmission loss analysis through a thick metamaterial plate

    SciTech Connect

    Oudich, Mourad; Zhou, Xiaoming; Badreddine Assouar, M.

    2014-11-21

    We report theoretically and numerically on the sound transmission loss performance through a thick plate-type acoustic metamaterial made of spring-mass resonators attached to the surface of a homogeneous elastic plate. Two general analytical approaches based on plane wave expansion were developed to calculate both the sound transmission loss through the metamaterial plate (thick and thin) and its band structure. The first one can be applied to thick plate systems to study the sound transmission for any normal or oblique incident sound pressure. The second approach gives the metamaterial dispersion behavior to describe the vibrational motions of the plate, which helps to understand the physics behind sound radiation through air by the structure. Computed results show that high sound transmission loss up to 72 dB at 2 kHz is reached with a thick metamaterial plate while only 23 dB can be obtained for a simple homogeneous plate with the same thickness. Such plate-type acoustic metamaterial can be a very effective solution for high performance sound insulation and structural vibration shielding in the very low-frequency range.

  15. 49 CFR 179.300-6 - Thickness of plates.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... = inside diameter in inches; E = 1.0 welded joint efficiency; P = minimum required bursting pressure in psig; S = minimum tensile strength of plate material in p.s.i. as prescribed in § 179.300-7;...

  16. 49 CFR 179.300-6 - Thickness of plates.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... = inside diameter in inches; E = 1.0 welded joint efficiency; P = minimum required bursting pressure in psig; S = minimum tensile strength of plate material in p.s.i. as prescribed in § 179.300-7;...

  17. 49 CFR 179.300-6 - Thickness of plates.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... = inside diameter in inches; E = 1.0 welded joint efficiency; P = minimum required bursting pressure in psig; S = minimum tensile strength of plate material in p.s.i. as prescribed in § 179.300-7;...

  18. Transverse vibration of a quarter of a circular plate with variable thickness

    NASA Astrophysics Data System (ADS)

    Singh, B.; Saxena, V.

    1995-05-01

    The Rayleigh-Ritz method has been employed to find the first three frequencies of free flexural vibration of a plate in the form of a quadrant of a circle and of thickness varying quadratically with radial distance. The results for constant thickness and linearly varying thickness have been obtained as special cases. The three edges of the plate have been taken as clamped, simply supported or free. This gives rise to 18 different cases. Previous results are available only for a few simple cases of uniform thickness which agree well with our results. Graphs and tables are given to depict the effect of various parameters on the frequencies and mode shapes.

  19. Energy trapping of thickness-shear vibration modes of elastic plates with functionally graded materials.

    PubMed

    Wang, Ji; Yang, Jiashi; Li, Jiangyu

    2007-03-01

    Energy trapping has important applications in the design of thickness-shear resonators. Considerable efforts have been made for the effective utilization and improvement of energy trapping with variations of plate configurations, such as adding electrodes and contouring. As a new approach in seeking improved energy trapping feature, we analyze thickness-shear vibrations in an elastic plate with functionally graded material (FGM) of in-plane variation of mechanical properties, such as elastic constants and density. A simple and general equation governing the thickness-shear modes is derived from a variational analysis. A plate with piecewise constant material properties is analyzed as an example. It is shown that such a plate can support thickness-shear vibration modes with obvious energy trapping. Bechmann's number for the existence of only one trapped mode also can be determined accordingly.

  20. Variation of strain energy release rate with plate thickness. [fracture mode transition

    NASA Technical Reports Server (NTRS)

    Sih, G. C.; Hartranft, R. J.

    1973-01-01

    An analytical model of a through-thickness crack in a statically stretched plate is presented in which the crack front stress state is permitted to vary in the direction of the plate thickness. The amplitude or intensity of this stress field can be made nearly constant over a major portion of the interior crack front which is in a state of plane strain. The average amount of work available for extending a small segment of the crack across the thickness is associated with an energy release rate quantity in a manner similar to the two-dimensional Griffith crack model. The theoretically calculated energy release rate is shown to increase with increasing plate thickness, indicating that available work for crack extension is higher in a thicker plate.

  1. Linear and non-linear deflection analysis of thick rectangular plates. 2: Numerical applications

    NASA Astrophysics Data System (ADS)

    Bencharif, N.; Ng, S. F.

    1994-03-01

    Variational methods are widely used for the solution of complex differential equations in mechanics for which exact solutions are not possible. The finite difference method, although well known as an efficient numerical method, was applied in the past only for the analysis of linear and non-linear thin plates. In this paper the suitability of the method for the analysis of non-linear deflection of thick plates is studied for the first time. While there are major differences between small deflection and large deflection plate theories, the former can be treated as a particular case of the latter, when the centre deflection of the plate is less than or equal to 0.2-0.25 of the thickness of the plate. The finite difference method as applied here is a modified finite difference approach to the ordinary finite difference method generally used for the solution of thin plate problems. In this analysis thin plates are treated as a particular case of the corresponding thick plate when the boundary conditions of the plates are taken into account. The method is first applied to investigate the deflection behaviour of clamped and simply supported square isotropic thick plates. After the validity of the method is established, it is then extended to the solution of rectangular thick plates of various aspect ratios and thicknesses. Generally, beginning with the use of a limited number of mesh sizes for a given plate aspect ratio and boundary conditions, a general solution of the problem including the investigation of accuracy and convergence was extended to rectangular thick plates by providing more detailed functions satisfying the rectangular mesh sizes generated automatically by the program. Whenever possible results obtained by the present method are compared with existing solutions in the technical literature obtained by much more laborious methods and close agreements are found. The significant number of results presented here are not currently available in the technical

  2. 78 FR 31577 - Diffusion-Annealed, Nickel-Plated Flat-Rolled Steel Products From Japan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-24

    ... Commission, Washington, DC, and by publishing the notice in the Federal Register of April 2, 2013 (78 FR... COMMISSION Diffusion-Annealed, Nickel-Plated Flat-Rolled Steel Products From Japan Determination On the basis... injured by reason of imports from Japan of diffusion-annealed, nickel-plated flat-rolled steel...

  3. 76 FR 50495 - Stainless Steel Plate From Belgium, Italy, Korea, South Africa, and Taiwan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-15

    ... COMMISSION Stainless Steel Plate From Belgium, Italy, Korea, South Africa, and Taiwan Determinations On the.... 1675(c)), that revocation of the countervailing duty order on stainless steel plate from South Africa..., South Africa, and Taiwan. \\3\\ Commissioner Charlotte R. Lane dissents with respect to the...

  4. 48 CFR 225.7011 - Restriction on carbon, alloy, and armor steel plate.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 3 2011-10-01 2011-10-01 false Restriction on carbon, alloy, and armor steel plate. 225.7011 Section 225.7011 Federal Acquisition Regulations System DEFENSE... on carbon, alloy, and armor steel plate....

  5. 48 CFR 225.7011 - Restriction on carbon, alloy, and armor steel plate.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 3 2013-10-01 2013-10-01 false Restriction on carbon, alloy, and armor steel plate. 225.7011 Section 225.7011 Federal Acquisition Regulations System DEFENSE... on carbon, alloy, and armor steel plate....

  6. 48 CFR 225.7011 - Restriction on carbon, alloy, and armor steel plate.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 3 2014-10-01 2014-10-01 false Restriction on carbon, alloy, and armor steel plate. 225.7011 Section 225.7011 Federal Acquisition Regulations System DEFENSE... on carbon, alloy, and armor steel plate....

  7. 48 CFR 225.7011 - Restriction on carbon, alloy, and armor steel plate.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 3 2012-10-01 2012-10-01 false Restriction on carbon, alloy, and armor steel plate. 225.7011 Section 225.7011 Federal Acquisition Regulations System DEFENSE... on carbon, alloy, and armor steel plate....

  8. 48 CFR 225.7011 - Restriction on carbon, alloy, and armor steel plate.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Restriction on carbon, alloy, and armor steel plate. 225.7011 Section 225.7011 Federal Acquisition Regulations System DEFENSE... on carbon, alloy, and armor steel plate....

  9. Plate Rolling Modeling at Mill 5000 of OJSC ``Magnitogorsk Iron and Steel'' for Analysis and Optimization of Temperature Rates

    NASA Astrophysics Data System (ADS)

    Salganik, V.; Shmakov, A.; Pesin, A.; Pustovoytov, D.

    2010-06-01

    Modeling of strip deflected mode and thermal state in rolling is an integral part of the technology and perspective rolling-mill machinery such as plate mill 5000 of the OJSC "Magnitogorsk Iron and Steel". To comprehend metal behavior in the deformation zone in the rough passes during plate rolling it is essential to assess the impact of various temperature factors on variations in field of stress and strain intensities as well as temperature fields in deformation. To do such researches in consideration of various software products and adequate results one of the most effective methods nowadays is regarded as the method of finite elements. The research shows modeling of roughing rolling of a pipe steel sheet with strength category X80 according to standard API-5L. In the research of the metal deflected mode software product DEFORM 2D has been used for the isothermal and nonisothermic process. The mathematical modeling allows revealing the impact of temperature field on the metal deflected mode in the rough passes in plate rolling. Supposedly, it is deformation heating that can have more impact on the ingot temperature profile in the finishing passes in controlled rolling of the pipe steel grades. It is defined by high percent reduction, rolling speeds; more area of heat exchange surface; less thickness and lower temperature of rolling. The results can be used to develop efficient modes of plate rolling of the pipe steels.

  10. The displacement field in the vibration analysis of laminated thick plates

    SciTech Connect

    Ohta, Yoshiki; Narita, Yoshihiro

    1995-11-01

    The present paper discusses the assumption of displacement fields used in the vibration analysis of FRP laminated thick plates. For this purpose, the strain and kinetic energies of a FRP cross-ply laminated plate are evaluated analytically based on the three-dimensional theory of elasticity, and the displacements of the rectangular plate, which are simply-supported at all edges, are expanded into the polynomial forms with respect to thickness coordinate. A frequency equation is formulated by using the energy method minimizing the Lagrange function. In the numerical calculations, natural frequencies are obtained for the plates with various stacking sequence and the thickness ratios, and the validity of the assumption of displacement fields and the range of applicability of the various plate theories (e.g. the Classical Plate Theory (CPT), the First-Order Shear Deformation Theory (FSDT) and the Higher-Order Shear Deformation Theory (HSDT)), which are widely used in the vibration analysis of FRP laminated plates, to the laminated thick plates are discussed by comparing the present results with the CPT and the FSDT solutions.

  11. Estimating the convergence rate for eigenfrequencies of anisotropic plates with variable thickness

    NASA Astrophysics Data System (ADS)

    Nazarov, Serguei A.

    Estimates of the differences between rescaled eigenvalues of the spectral problem for a thin anisotropic plate and eigenvalues of its two-dimensional models are obtained with bounds expressed in terms of the plate's thickness and attributes of the limit eigenvalue. To cite this article: S.A. Nazarov, C. R. Mecanique 330 (2002) 603-607.

  12. Oscillating layer thickness and vortices generated in oscillation of finite plate

    NASA Astrophysics Data System (ADS)

    Sin, V. K.; Wong, I. K.

    2016-06-01

    Moving mesh strategy is used in the model of flow induced by oscillating finite plate through software - COMSOL Multiphysics. Flow is assumed to be laminar and arbitrary Lagrangian-Eulerian method is used for moving mesh in the simulation. Oscillating layer thickness is found which is different from the analytical solution by 2 to 3 times depends on the oscillating frequency. Vortices are also observed near the oscillating finite plate because of the edge effect of the finite plate.

  13. Ultrasonic transmission from fiber optic generators on steel plate

    NASA Astrophysics Data System (ADS)

    Bi, Siwen; Wu, Nan; Zhou, Jingcheng; Tang, Qixiang; OwusuTwumasi, Jones; Yu, Tzuyang; Wang, Xingwei

    2016-04-01

    Fiber optic acoustic generators have generated a lot of interest due to its great potential in many applications including nondestructive tests. This paper reports four acoustic generation configurations. All the configurations are based on gold nanoparticles/polydimethylsiloxane (PDMS) composites. Since gold nanoparticles have high absorption efficiency to optical energy and PDMS has a high coefficient of thermal expansion, the composites can transfer optical energy to ultrasonic waves with high conversion efficiency. The strength and bandwidth of ultrasonic waves generated by the composites can be changed by different designs and structures of the composites. This paper explores the relation between the structure of fiber optic acoustic generators and the profile of generated ultrasonic waves. Experimental results also demonstrated that four ultrasonic generation configurations have similar features of ultrasonic transmission on a steel plate, which is important for future choices of ultrasonic receivers.

  14. 46 CFR 54.25-3 - Steel plates (modifies UCS-6).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...; see 46 CFR 54.01-1) will be allowed only in Class III pressure vessels (see Table 54.01-5(b)). ... 46 Shipping 2 2011-10-01 2011-10-01 false Steel plates (modifies UCS-6). 54.25-3 Section 54.25-3... Construction With Carbon, Alloy, and Heat Treated Steels § 54.25-3 Steel plates (modifies UCS-6). The...

  15. 46 CFR 54.25-3 - Steel plates (modifies UCS-6).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...; see 46 CFR 54.01-1) will be allowed only in Class III pressure vessels (see table 54.01-5(b)). ... 46 Shipping 2 2013-10-01 2013-10-01 false Steel plates (modifies UCS-6). 54.25-3 Section 54.25-3... Construction With Carbon, Alloy, and Heat Treated Steels § 54.25-3 Steel plates (modifies UCS-6). The...

  16. 46 CFR 54.25-3 - Steel plates (modifies UCS-6).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...; see 46 CFR 54.01-1) will be allowed only in Class III pressure vessels (see Table 54.01-5(b)). ... 46 Shipping 2 2010-10-01 2010-10-01 false Steel plates (modifies UCS-6). 54.25-3 Section 54.25-3... Construction With Carbon, Alloy, and Heat Treated Steels § 54.25-3 Steel plates (modifies UCS-6). The...

  17. 46 CFR 54.25-3 - Steel plates (modifies UCS-6).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...; see 46 CFR 54.01-1) will be allowed only in Class III pressure vessels (see Table 54.01-5(b)). ... 46 Shipping 2 2012-10-01 2012-10-01 false Steel plates (modifies UCS-6). 54.25-3 Section 54.25-3... Construction With Carbon, Alloy, and Heat Treated Steels § 54.25-3 Steel plates (modifies UCS-6). The...

  18. 46 CFR 54.25-3 - Steel plates (modifies UCS-6).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...; see 46 CFR 54.01-1) will be allowed only in Class III pressure vessels (see table 54.01-5(b)). ... 46 Shipping 2 2014-10-01 2014-10-01 false Steel plates (modifies UCS-6). 54.25-3 Section 54.25-3... Construction With Carbon, Alloy, and Heat Treated Steels § 54.25-3 Steel plates (modifies UCS-6). The...

  19. Shear fracture of jointed steel plates of bolted joints under impact load

    NASA Astrophysics Data System (ADS)

    Daimaruya, M.; Fujiki, H.; Ambarita, H.; Kobayashi, H.; Shin, H.-S.

    2013-07-01

    The present study is concerned with the development of a fracture criterion for the impact fracture of jointed steel plates of bolted joints used in a car body, which contributes to crash simulations by CAE. We focus our attention on the shear fracture of the jointed steel plates of lap-bolted joints in the suspension of a car under impact load. Members of lap-bolted joints are modelled as a pair of steel plates connected by a bolt. One of the plates is a specimen subjected to plastic deformation and fracture and the other is a jig subjected to elastic deformation only. Three kinds of steel plate specimens are examined, i.e., a common steel plate with a tensile strength of 270 MPa and high tensile strength steel plates of 440 and 590 MPa used for cars. The impact shear test was performed using the split Hopkinson bar technique for tension impact, together with the static test using a universal testing machine INSTRON 5586. The behaviour of the shear stress and deformation up to rupture taking place in the joint was discussed. The obtained results suggest that a stress-based fracture criterion may be developed for the impact fracture of jointed steel plates of a lap-bolted joint.

  20. 46 CFR 32.59-1 - Minimum section modulus and plating thickness requirements-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... I oil cargo listed in 46 CFR Table 30.25-1. (c) For all vessels except those limited on their... SPECIAL EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Minimum Longitudinal Strength and Plating Thickness...-percent midship length, the average flange and web thicknesses of each longitudinal stiffener must be...

  1. Experimental and Numerical Investigation on the Ballistic Resistance of Double-Layered Steel Plates

    NASA Astrophysics Data System (ADS)

    Xiao, Xinke; Zhang, Wei; Guo, Zitao; Wei, Gang

    2011-06-01

    The ballistic perforation resistance of double-layered steel plates impacted by flat-nosed projectiles was investigated both experimentally and numerically. In the tests, 10 mm thick (intact or spaced by 200 mm gap space) targets of Q235A steel were impacted using a gas-gun at sub-ordnance velocity, and the ballistic limit velocity of the different target configurations was obtained. The Johnson-Cook strength and fracture models were used in the finite element simulations, where the model constants were calibrated by preliminary material tests and taken from open literature. In general, good agreement was obtained between the numerical simulations and the experimental results. It was found that the ballistic resistance of spaced targets suffers from large divergence due to the projectile's different residual attitude after perforation of the front plate, and that it seems the initial-residual velocity data yield to two groups and therefore give birth to two ballistic limit velocities. However, the overall ballistic resistance of the spaced targets is less than that of the in contact ones.

  2. Vibration and damping of laminated, composite-material plates including thickness-shear effects

    NASA Technical Reports Server (NTRS)

    Bert, C. W.; Siu, C. C.

    1972-01-01

    An analytical investigation of sinusoidally forced vibration of laminated, anisotropic plates including bending-stretching coupling, thickness-shear flexibility, all three types of inertia effects, and material damping is presented. In the analysis the effects of thickness-shear deformation are considered by the use of a shear correction factor K, analogous to that used by Mindlin for homogeneous plates. Two entirely different approaches for calculating the thickness-shear factor for a laminate are presented. Numerical examples indicate that the value of K depends on the layer properties and the stacking sequence of the laminate.

  3. Understanding the antimicrobial activity behind thin- and thick-rolled copper plates.

    PubMed

    Yousuf, Basit; Ahire, Jayesh J; Dicks, Leon M T

    2016-06-01

    The aim of this study was to compare the antibacterial properties of the surfaces of copper plates that were rolled to a thickness of 25 and 100 μm. Differences in topology of 25- and 100-μm-thick copper plates were studied using scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray diffraction (XRD). Antibacterial activity of the copper surfaces was tested against strains of Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Listeria monocytogenes, Salmonella typhimurium, Streptococcus sp. BY1, Enterococcus sp. BY2, and Bacillus cereus BY3. Changes in viable cell numbers were determined by plating onto optimal growth media and staining with LIVE/DEAD BacLight™. Changes in metabolic activity were recorded by expression of the luciferase (lux) gene. Cell morphology was studied using SEM. Accumulation and diffusion of copper from cells were recorded using inductively coupled plasma mass spectroscopy (ICP-MS). Lipid and protein oxidation were recorded spectrophotometrically. Surfaces of 25-μm-thick copper plates were rough compared to that of 100-μm-thick copper plates. For most species, a five-log reduction in cell numbers, cell membrane instability, and a decline in metabolic activity were recorded after 15 min of exposure to 25-μm-thick copper plates. Copper accumulated in the cells, and lipids and proteins were oxidized. The rough surface of thinner copper plates (25 μm thick) released more copper and was more antimicrobial compared to thicker (100 μm) copper plates. Cell death was attributed to destabilization of the cell membrane, lipid peroxidation, and protein oxidation.

  4. Understanding the antimicrobial activity behind thin- and thick-rolled copper plates.

    PubMed

    Yousuf, Basit; Ahire, Jayesh J; Dicks, Leon M T

    2016-06-01

    The aim of this study was to compare the antibacterial properties of the surfaces of copper plates that were rolled to a thickness of 25 and 100 μm. Differences in topology of 25- and 100-μm-thick copper plates were studied using scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray diffraction (XRD). Antibacterial activity of the copper surfaces was tested against strains of Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Listeria monocytogenes, Salmonella typhimurium, Streptococcus sp. BY1, Enterococcus sp. BY2, and Bacillus cereus BY3. Changes in viable cell numbers were determined by plating onto optimal growth media and staining with LIVE/DEAD BacLight™. Changes in metabolic activity were recorded by expression of the luciferase (lux) gene. Cell morphology was studied using SEM. Accumulation and diffusion of copper from cells were recorded using inductively coupled plasma mass spectroscopy (ICP-MS). Lipid and protein oxidation were recorded spectrophotometrically. Surfaces of 25-μm-thick copper plates were rough compared to that of 100-μm-thick copper plates. For most species, a five-log reduction in cell numbers, cell membrane instability, and a decline in metabolic activity were recorded after 15 min of exposure to 25-μm-thick copper plates. Copper accumulated in the cells, and lipids and proteins were oxidized. The rough surface of thinner copper plates (25 μm thick) released more copper and was more antimicrobial compared to thicker (100 μm) copper plates. Cell death was attributed to destabilization of the cell membrane, lipid peroxidation, and protein oxidation. PMID:26860943

  5. Influence of the Poisson Ratio on the Natural Frequencies of Stepped-Thickness Circular Plate

    NASA Astrophysics Data System (ADS)

    AL-JUMAILY, A. M.; JAMEEL, K.

    2000-07-01

    The natural frequencies of simply supported and clamped, stepped-thickness plates are determined using classical plate solutions with exact continuity conditions at the step. The effect of incorporating the Poisson ratio in the continuity conditions on the natural frequencies for nodal diameters, 0, 1 and nodal interior circle numbers 0, 1, 2 is thoroughly investigated. For engineering applications, a design criterion is proposed for simply supported and clamped plates based on an approximate linear model for the natural frequencies. The literature lacks experimental results on this type of plates. Hence, in this paper experimental results are presented for four models with two Poisson's ratios and prove their consistency with the proposed criterion.

  6. Microstructure and Mechanical Properties of Plasma Arc Brazed AISI 304L Stainless Steel and Galvanized Steel Plates

    NASA Astrophysics Data System (ADS)

    Jin, Yajuan; Li, Ruifeng; Yu, Zhishui; Wang, Yu

    2016-04-01

    Plasma arc brazing is used to join the AISI 304L stainless steel and galvanized steel plate butt joints with the CuSi3Mn1 filler wire. The effect of parameters on weld surface appearance, interfacial microstructure, and composition distribution in the joint was studied. The microhardness and mechanical tests were conducted to determine the mechanical properties of the welded specimens. The results indicated that good appearance, bead shape, and sufficient metallurgical bonding could be obtained when the brazing process was performed with a wire feeding speed of 0.8 m/min, plasma gas flow rate of 3.0 l/min, welding current of 100 A, and welding speed of 27 cm/min. During plasma arc brazing process, the top corner of the stainless steel and galvanized steel plate were heated and melted, and the melted quantity of stainless steel was much more than that of the galvanized steel due to the thermal conductivity coefficient difference between the dissimilar materials. The microhardness test results shows that the microhardness value gradually increased from the side of the galvanized steel to the stainless steel in the joint, and it is good for improving the mechanical properties of joint. The tensile strength was a little higher than that of the brazing filler, and the fracture position of weld joint was at the base metal of galvanized steel plate.

  7. Effect of confining pressure due to external jacket of steel plate or shape memory alloy wire on bond behavior between concrete and steel reinforcing bars.

    PubMed

    Choi, Eunsoo; Kim, Dongkyun; Park, Kyoungsoo

    2014-12-01

    For external jackets of reinforced concrete columns, shape memory alloy (SMA) wires are easy to install, and they provide active and passive confining pressure; steel plates, on the other hand, only provide passive confining pressure, and their installation on concrete is not convenient because of the requirement of a special device. To investigate how SMA wires distinctly impact bond behavior compared with steel plates, this study conducted push-out bond tests of steel reinforcing bars embedded in concrete confined by SMA wires or steel plates. For this purpose, concrete cylinders were prepared with dimensions of 100 mm x 200 mm, and D-22 reinforcing bars were embedded at the center of the concrete cylinders. External jackets of 1.0 mm and 1.5 mm thickness steel plates were used to wrap the concrete cylinders. Additionally, NiTiNb SMA wire with a diameter of 1.0 mm was wound around the concrete cylinders. Slip of the reinforcing bars due to pushing force was measured by using a displacement transducer, while the circumferential deformation of specimens was obtained by using an extensometer. The circumferential deformation was used to calculate the circumferential strains of the specimens. This study assessed the radial confining pressure due to the external jackets on the reinforcing bars at bond strength from bond stress-slip curves and bond stress-circumferential strain curves. Then, the effects of the radial confining pressure on the bond behavior of concrete are investigated, and an equation is suggested to estimate bond strength using the radial confining pressure. Finally, this study focused on how active confining pressure due to recovery stress of the SMA wires influences bond behavior.

  8. Radiological Design Review Screening Steel Cover Plate Replacement at 241-U-107

    SciTech Connect

    FOUST, D.J.

    2001-01-10

    This document provides the calculated basis for the level of radiological design review required for the replacement of the existing 241-U-107 pump pit 5.1 cm (2 inch) steel cover plate with a 7.6 cm (3 inch) carbon steel plate. The determination of the expected dose rate over the 241-U-107 pump pit after the installation of a 5.1 cm (2 in.) or alternatively 7.6 cm (3 inch) cover plate is described. The existing 61 cm (24 inch) concrete cover block must be removed to provide access for saltwell pumping. The pit opening will be covered by a 5.1 cm (2 in.) or 7.6 cm (3 inch) carbon steel plate. Also calculated is the lifecycle dose due to this facility modification including replacement of the concrete cover block with a steel plate, and operation of the Hose-in-Hose Transfer Line (HIHTL).

  9. Damage assessment and residual compression strength of thick composite plates with through-the-thickness reinforcements

    NASA Technical Reports Server (NTRS)

    Smith, Barry T.

    1990-01-01

    Damage in composite materials was studied with through-the-thickness reinforcements. As a first step it was necessary to develop new ultrasonic imaging technology to better assess internal damage of the composite. A useful ultrasonic imaging technique was successfully developed to assess the internal damage of composite panels. The ultrasonic technique accurately determines the size of the internal damage. It was found that the ultrasonic imaging technique was better able to assess the damage in a composite panel with through-the-thickness reinforcements than by destructively sectioning the specimen and visual inspection under a microscope. Five composite compression-after-impact panels were tested. The compression-after-impact strength of the panels with the through-the-thickness reinforcements was almost twice that of the comparable panel without through-the-thickness reinforcement.

  10. Damage assessment and residual compression strength of thick composite plates with through-the-thickness reinforcements

    NASA Technical Reports Server (NTRS)

    Smith, Barry T.; Farley, Gary L.; Maiden, Janice; Coogan, Dreux; Moore, Judith G.

    1991-01-01

    Damage in composite materials was studied with through-the-thickness reinforcements. As a first step it was necessary to develop new ultrasonic imaging technology to better assess internal damage of the composite. A useful ultrasonic imaging technique was successfully developed to assess the internal damage of composite panels. The ultrasonic technique accurately determines the size of the internal damage. It was found that the ultrasonic imaging technique was better able to assess the damage in composite panel with through-the-thickness reinforcements than by destructively sectioning the specimen and visual inspection under a microscope. Five composite compression-after-impact panels were tested. The compression-after-impact strength of the panels with the through-the-thickness reinforcements was almost twice that of the comparable panel without through-the-thickness reinforcement.

  11. Thickness effects on the plastic collapse of perforated plates with triangular penetration patterns

    SciTech Connect

    Gordon, J.L.; Jones, D.P.; Holliday, J.E.

    2000-03-01

    This paper investigates the effects of plate thickness on the accuracy of limit load solutions obtained using an elastic-perfectly plastic [EPP] equivalent solid [EQS] procedure for flat perforated plates with a triangular array of penetrations. The EQS approach for limit loads is based on an EQS collapse surface that is valid for generalized plane strain. This assumption is applicable for very thick plates but is known to be less reasonable for very thin plates where plane stress may be a better assumption. The limits of applicability of the generalized plane strain assumption are investigated by obtaining limit load solutions for perforated plates of various thicknesses that are subjected to in-plane and bending loads. Plastic limit load solutions obtained using three-dimensional EPP finite element analysis [FEA] of models which include each penetration explicitly are compared with solutions obtained using the EQS approximation. The penetration pattern chosen for this study has a ligament efficiency (ligament width-to-pitch ratio, h/P) of 0.32. For plates thicker than the pitch, the limit load calculated using the EQS method for both in-plane and bending loads is shown to be very accurate (within 4%) of the limit load calculated for the explicit model. On the other hand, for thin plates (t/P< 2), the EQS limit load is 5% greater than the explicit limit load for bending and 8% greater than the explicit limit load for in-plane loads. For thinner plates, the collapse surface is tied to the local geometry deformation and, hence, an equivalent solid plate representation of plastic collapse is a function of deformation mode and thickness.

  12. 76 FR 12322 - Certain Cut-to-Length Carbon-Quality Steel Plate From India, Indonesia, Italy, Japan, and the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-07

    ... ASTM A710 and A736 or their proprietary equivalents; (4) abrasion-resistant steels (i.e., USS AR 400... equivalents; (6) ball bearing steels; (7) tool steels; and (8) silicon manganese steel or silicon electric... International Trade Administration Certain Cut-to-Length Carbon-Quality Steel Plate From India, Indonesia,...

  13. A study on friction stir welding of 12mm thick aluminum alloy plates

    NASA Astrophysics Data System (ADS)

    Kumar, Deepati Anil; Biswas, Pankaj; Tikader, Sujoy; Mahapatra, M. M.; Mandal, N. R.

    2013-12-01

    Most of the investigations regarding friction stir welding (FSW) of aluminum alloy plates have been limited to about 5 to 6 mm thick plates. In prior work conducted the various aspects concerning the process parameters and the FSW tool geometry were studied utilizing friction stir welding of 12 mm thick commercial grade aluminum alloy. Two different simple-to-manufacture tool geometries were used. The effect of varying welding parameters and dwell time of FSW tool on mechanical properties and weld quality was examined. It was observed that in order to achieve a defect free welding on such thick aluminum alloy plates, tool having trapezoidal pin geometry was suitable. Adequate tensile strength and ductility can be achieved utilizing a combination of high tool rotational speed of about 2000 r/min and low speed of welding around 28 mm/min. At very low and high dwell time the ductility of welded joints are reduced significantly.

  14. Detecting the thickness mode frequency in a concrete plate using backward wave propagation.

    PubMed

    Bjurström, Henrik; Ryden, Nils

    2016-02-01

    Material stiffness and plate thickness are the two key parameters when performing quality assurance/quality control on pavement structures. In order to estimate the plate thickness non-destructively, the Impact Echo (IE) method can be utilized to extract the thickness resonance frequency. An alternative to IE for estimating the thickness resonance frequency of a concrete plate, and to subsequently enable thickness determination, is presented in this paper. The thickness resonance is often revealed as a sharp peak in the frequency spectrum when contact receivers are used in seismic testing. Due to a low signal-to-noise ratio, IE is not ideal when using non-contact microphone receivers. In studying the complex Lamb wave dispersion curves at a frequency infinitesimally higher than the thickness frequency, it is seen that two counter-directed waves occur at the same frequency but with phase velocities in opposite directions. Results show that it is possible to detect the wave traveling with a negative phase velocity using both accelerometers and air-coupled microphones as receivers. This alternative technique can possibly be used in non-contact scanning measurements based on air-coupled microphones. PMID:26936549

  15. Residual stresses in a multi-pass weld in an austenitic stainless steel plate before and after thermal stress relief

    SciTech Connect

    Spooner, S.; Wang, X.L.; Hubbard, C.R.; David, S.A.

    1994-06-01

    Changes in residual stresses due to thermal stress relief were determined in a welded 1/2 in. thick 304 stainless steel plate from two residual stress maps determined with the neutron diffraction technique. The 304 stainless plate was made from two 6 {times} 12 {times} 1/2 in. pieces joined along the length by a gas tungsten arc welding process. Multi-pass welds were made with a semiautomatic welding machine employing cold-wire feed of type 308 stainless steel filler alloy. The thermal stress relief treatment consisted of heating to 1150 F, holding for one hour at temperature and then air cooling. Strain components were measured along the weld direction (longitudinal), perpendicular to the weld line in the plate (transverse), and normal to the plate. Measurements were confined to the plane bisecting the weld at the center of the plate. The strain components were converted to stresses assuming that the measured strains were along the principal axes of the strain tensor. Parameters used in the calculation were E=224 GPa and v=0.25. As-welded longitudinal stresses are compressive in the base metal and become strongly tensile through the heat affected zone and into the fusion zone. The transverse stresses follow the longitudinal trend but with a lower magnitude while the normal stresses are small throughout. The stress relief treatment reduced the magnitudes of all the stresses. In the weld zone the longitudinal stress was lowered by 30% and the spatial range of residual stresses was reduced as well.

  16. Thick plate bending wave transmission using a mobility power flow approach

    NASA Technical Reports Server (NTRS)

    Mccollum, M. D.; Cuschieri, J. M.

    1990-01-01

    The mobility power flow (MPF) approach is used in this paper to describe the flexural behavior of an L-shaped plate structure consisting of thick plates with rotary inertia and shear deformation effects included in the analysis. The introduction of the thick plate effects significantly increases the complexity of the structural mobility functions used in the definitions of the power flow terms; however, because of the substructuring that is used in the MPF approach, the complexity of the problem is significantly reduced as compared to solving for the global structure. Additionally, with the MPF approach the modal behavior is described. The MPF analysis of the L-shaped plate is performed for the case of point force excitation on one plate, with the two plates being identical in both size and thickness. The results of this analysis are compared to results from the finite-element analysis (FEA) and the statistical energy analysis (SEA) and show very good agreement in the low- and high-frequency regimes, respectively.

  17. Crack-growth behavior in thick welded plates of Inconel 718 at room and cryogenic temperatures

    NASA Technical Reports Server (NTRS)

    Forman, R. G.

    1974-01-01

    Results of mechanical-properties and axial-load fatigue and fracture tests performed on thick welded plates of Inconel 718 superalloy are presented. The test objectives were to determine the tensile strength properties and the crack-growth behavior in electron-beam, plasma-arc, and gas tungsten are welds for plates 1.90 cm (0.75 in) thick. Base-metal specimens were also tested to determine the flaw-growth behavior. The tests were performed in room-temperature-air and liquid nitrogen environments. The experimental crack-growth-rate data are correlated with theoretical crack-growth-rate predictions for semielliptical surface flaws.

  18. High-precision thickness setting models for titanium alloy plate cold rolling without tension

    NASA Astrophysics Data System (ADS)

    Wang, Xiaochen; Yang, Quan; He, Fei; Sun, Youzhao; Xiao, Huifang

    2015-03-01

    Due to its highly favorable physical and chemical properties, titanium and titanium alloy are widely used in a variety of industries. Because of the low output of a single batch, plate cold rolling without tension is the most common rolling production method for titanium alloy. This method is lack of on-line thickness closed-loop control, with carefully thickness setting models for precision. A set of high-precision thickness setting models are proposed to suit the production method. Because of frequent variations in rolling specification, a model structural for the combination of analytical models and statistical models is adopted to replace the traditional self-learning method. The deformation resistance and friction factor, the primary factors which affect model precision, are considered as the objectives of statistical modeling. Firstly, the coefficient fitting of deformation resistance analytical model based on over-determined equations set is adopted. Additionally, a support vector machine(SVM) is applied to the modeling of the deformation resistance and friction factor. The setting models are applied to a 1450 plate-coiling mill for titanium alloy plate rolling, and then thickness precision is found consistently to be within 3%, exceeding the precision of traditional setting models with a self-learning method based on a large number of stable rolling data. Excellent application performance is obtained. The proposed research provides a set of high-precision thickness setting models which are well adapted to the characteristics of titanium alloy plate cold rolling without tension.

  19. Design Review Report for Concrete Cover Block Replaced by Steel Plate

    SciTech Connect

    JAKA, O.M.

    2000-07-27

    The design for the steel cover plates to replace concrete cover blocks for U-109 was reviewed and approved in a design review meeting. The design for steel plates to replace concrete blocks were reviewed and approved by comparison and similarity with U-109 for the following additional pits: 241-U-105. 241-I-103, 241-Ax-101. 241-A-101, 241-SX-105, 241-S-A, 241-S-C, 241-SX-A.

  20. An ultrasonic method for determination of elastic moduli, density, attenuation and thickness of a polymer coating on a stiff plate.

    PubMed

    Lavrentyev, A I; Rokhlin, S I

    2001-04-01

    An ultrasonic method proposed by us for determination of the complete set of acoustical and geometrical properties of a thin isotropic layer between semispaces (J. Acoust. Soc. Am. 102 (1997) 3467) is extended to determination of the properties of a coating on a thin plate. The method allows simultaneous determination of the coating thickness, density, elastic moduli and attenuation (longitudinal and shear) from normal and oblique incidence reflection (transmission) frequency spectra. Reflection (transmission) from the coated plate is represented as a function of six nondimensional parameters of the coating which are determined from two experimentally measured spectra: one at normal and one at oblique incidence. The introduction of the set of nondimensional parameters allows one to transform the reconstruction process from one search in a six-dimensional space to two searches in three-dimensional spaces (one search for normal incidence and one for oblique). Thickness, density, and longitudinal and shear elastic moduli of the coating are calculated from the nondimensional parameters determined. The sensitivity of the method to individual properties and its stability against experimental noise are studied and the inversion algorithm is accordingly optimized. An example of the method and experimental measurement for comparison is given for a polypropylene coating on a steel foil.

  1. Numerical Investigation of Residual Stress in Thick Titanium Alloy Plate Joined with Electron Beam Welding

    NASA Astrophysics Data System (ADS)

    Liu, Chuan; Wu, Bing; Zhang, Jian Xun

    2010-10-01

    A finite-element (FE) simulation process integrating three dimensional (3D) with two-dimensional (2D) models is introduced to investigate the residual stress of a thick plate with 50-mm thickness welded by an electron beam. A combined heat source is developed by superimposing a conical volume heat source and a uniform surface heat source to simulate the temperature field of the 2D model with a fine mesh, and then the optimal heat source parameters are employed by the elongated heat source for the 3D simulation without trial simulations. The welding residual stress also is investigated with emphasis on the through-thickness stress for the thick plate. Results show that the agreement between simulation and experiment is good with a reasonable degree of accuracy in respect to the residual stress on the top surface and the weld profile. The through-thickness residual stress of the thick plate induced by electron beam welding is distinctly different from that of the arc welding presented in the references.

  2. Practical method of diffusion-welding steel plate in air

    NASA Technical Reports Server (NTRS)

    Holko, K. H.; Moore, T. J.

    1971-01-01

    Method is ideal for critical service requirements where parent metal properties are equaled in notch toughness, stress rupture and other characteristics. Welding technique variations may be used on a variety of materials, such as carbon steels, alloy steels, stainless steels, ceramics, and reactive and refractory materials.

  3. On the relations between cratonic lithosphere thickness, plate motions, and basal drag

    USGS Publications Warehouse

    Artemieva, I.M.; Mooney, W.D.

    2002-01-01

    An overview of seismic, thermal, and petrological evidence on the structure of Precambrian lithosphere suggests that its local maximum thickness is highly variable (140-350 km), with a bimodal distribution for Archean cratons (200-220 km and 300-350 km). We discuss the origin of such large differences in lithospheric thickness, and propose that the lithospheric base can have large depth variations over short distances. The topography of Bryce Canyon (western USA) is proposed as an inverted analog of the base of the lithosphere. The horizontal and vertical dimensions of Archean cratons are strongly correlated: larger cratons have thicker lithosphere. Analysis of the bimodal distribution of lithospheric thickness in Archean cratons shows that the "critical" surface area for cratons to have thick (>300 km) keels is >6-8 ?? 106 km2 . Extrapolation of the linear trend between Archean lithospheric thickness and cratonic area to zero area yields a thickness of 180 km. This implies that the reworking of Archean crust should be accompanied by thinning and reworking of the entire lithospheric column to a thickness of 180 km in accord with thickness estimates for Proterozoic lithosphere. Likewise, extrapolation of the same trend to the size equal to the total area of all Archean cratons implies that the lithospheric thickness of a hypothesized early Archean supercontinent could have been 350-450 km decreasing to 280-400 km for Gondwanaland. We evaluate the basal drag model as a possible mechanism that may thin the cratonic lithosphere. Inverse correlations are found between lithospheric thickness and (a) fractional subduction length and (b) the effective ridge length. In agreement with theoretical predictions, lithospheric thickness of Archean keels is proportional to the square root of the ratio of the craton length (along the direction of plate motion) to the plate velocity. Large cratons with thick keels and low plate velocities are less eroded by basal drag than small

  4. 49 CFR Appendix C to Part 178 - Nominal and Minimum Thicknesses of Steel Drums and Jerricans

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Nominal and Minimum Thicknesses of Steel Drums and Jerricans C Appendix C to Part 178 Transportation Other Regulations Relating to Transportation PIPELINE AND... SPECIFICATIONS FOR PACKAGINGS Pt. 178, App. C Appendix C to Part 178—Nominal and Minimum Thicknesses of...

  5. 49 CFR Appendix C to Part 178 - Nominal and Minimum Thicknesses of Steel Drums and Jerricans

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Nominal and Minimum Thicknesses of Steel Drums and Jerricans C Appendix C to Part 178 Transportation Other Regulations Relating to Transportation (Continued...) SPECIFICATIONS FOR PACKAGINGS Pt. 178, App. C Appendix C to Part 178—Nominal and Minimum Thicknesses of...

  6. 49 CFR Appendix C to Part 178 - Nominal and Minimum Thicknesses of Steel Drums and Jerricans

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Nominal and Minimum Thicknesses of Steel Drums and Jerricans C Appendix C to Part 178 Transportation Other Regulations Relating to Transportation (Continued...) SPECIFICATIONS FOR PACKAGINGS Pt. 178, App. C Appendix C to Part 178—Nominal and Minimum Thicknesses of...

  7. 49 CFR Appendix C to Part 178 - Nominal and Minimum Thicknesses of Steel Drums and Jerricans

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Nominal and Minimum Thicknesses of Steel Drums and Jerricans C Appendix C to Part 178 Transportation Other Regulations Relating to Transportation (Continued...) SPECIFICATIONS FOR PACKAGINGS Pt. 178, App. C Appendix C to Part 178—Nominal and Minimum Thicknesses of...

  8. 49 CFR Appendix C to Part 178 - Nominal and Minimum Thicknesses of Steel Drums and Jerricans

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Nominal and Minimum Thicknesses of Steel Drums and Jerricans C Appendix C to Part 178 Transportation Other Regulations Relating to Transportation (Continued...) SPECIFICATIONS FOR PACKAGINGS Pt. 178, App. C Appendix C to Part 178—Nominal and Minimum Thicknesses of...

  9. 78 FR 67334 - Suspension Agreement on Certain Cut-to-Length Carbon Steel Plate From Ukraine; Final Results of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-12

    ... Carbon Steel Plate From Ukraine; Administrative Review, 78 FR 46570 (August 1, 2013) and accompanying...: Certain Cut-to-Length Carbon Steel Plate from Ukraine, 73 FR 57602 (October 3, 2008) (Agreement). On... covering Metinvest Holding LLC (Metinvest) and its affiliated companies Azovstal Iron & Steel...

  10. Fatigue crack detection in thick steel structures with piezoelectric wafer active sensors

    NASA Astrophysics Data System (ADS)

    Gresil, M.; Yu, L.; Giurgiutiu, V.

    2011-04-01

    This paper presents a set of numerical and experimental results on the use of guided waves for structural health monitoring (SHM) of crack growth during a fatigue test in a thick steel plate used for civil engineering application. The capability of embedded piezoelectric wafer active sensors (PWAS) to perform in situ nondestructive evaluation (NDE) is explored. Numerical simulation and experimental tests are used to prove that PWAS can perform active SHM using guided wave pitch-catch method and passive SHM using acoustic emission (AE). Multi-physics finite element (MPFEM) codes are used to simulate the transmission and reception of guided waves in a 1-mm plate and their diffraction by a through hole. The MP-FEM approach permitted that the input and output variables be expressed directly in electric terms while the two-ways electromechanical conversion was done internally in the MP-FEM formulation. The analysis was repeated for several hole sizes and a damage index performances was tested. AE simulation was performed with the MP-FEM approach in a 13-mm plate in the shape of the compact tension (CT) fracture mechanics specimen. The AE event was simulated as a pulse of defined duration and amplitude. The electrical signal measured at a receiver PWAS was simulated. Daubechies wavelet transform was used to process the signal and identify its Lamb modes and FFT frequency contents. Experimental tests were performed with PWAS transducers acting as passive receivers of AE signals. The 8-mm thick flange of an I beam was instrumented on one side with PWAS transducers and on the other side with conventional AE transducers (PAC R15I) acting as comparison witnesses. An AE source was simulated using 0.5- mm pencil lead breaks; the PWAS transducers were able to pick up AE signal with good strength. Subsequently, PWAS transducers and R15I sensors were applied to a 13-mm CT specimen subjected to accelerated fatigue testing. The PWAS and R15I transducers signals were collected with

  11. A discrete particle approach to simulate the combined effect of blast and sand impact loading of steel plates

    NASA Astrophysics Data System (ADS)

    Børvik, T.; Olovsson, L.; Hanssen, A. G.; Dharmasena, K. P.; Hansson, H.; Wadley, H. N. G.

    2011-05-01

    The structural response of a stainless steel plate subjected to the combined blast and sand impact loading from a buried charge has been investigated using a fully coupled approach in which a discrete particle method is used to determine the load due to the high explosive detonation products, the air shock and the sand, and a finite element method predicts the plate deflection. The discrete particle method is based on rigid, spherical particles that transfer forces between each other during collisions. This method, which is based on a Lagrangian formulation, has several advantages over coupled Lagrangian-Eulerian approaches as both advection errors and severe contact problems are avoided. The method has been validated against experimental tests where spherical 150 g C-4 charges were detonated at various stand-off distances from square, edge-clamped 3.4 mm thick AL-6XN stainless steel plates. The experiments were carried out for a bare charge, a charge enclosed in dry sand and a charge enclosed in fully saturated wet sand. The particle-based method is able to describe the physical interactions between the explosive reaction products and soil particles leading to a realistic prediction of the sand ejecta speed and momentum. Good quantitative agreement between the experimental and predicted deformation response of the plates is also obtained.

  12. Microstructure and Mechanical Properties in Hot-Rolled Extra High-Yield-Strength Steel Plates for Offshore Structure and Shipbuilding

    NASA Astrophysics Data System (ADS)

    Liu, Dongsheng; Li, Qingliang; Emi, Toshihiko

    2011-05-01

    Key parameters for a thermomechanically controlled processing and accelerated cooling process (TMCP-AcC) were determined for integrated mass production to produce extra high-yield-strength microalloyed low carbon SiMnCrNiCu steel plates for offshore structure and bulk shipbuilding. Confocal scanning microscopy was used to make in-situ observations on the austenite grain growth during reheating. A Gleeble 3800 thermomechanical simulator was employed to investigate the flow stress behavior, static recrystallization (SRX) of austenite, and decomposition behavior of the TMCP conditioned austenite during continuous cooling. The Kocks-Mecking model was employed to describe the constitutive behavior, while the Johnson-Mehl-Avrami-Kolmogorov (JMAK) approach was used to predict the SRX kinetics. The effects of hot rolling schedule and AcC on microstructure and properties were investigated by test-scale rolling trials. The bridging between the laboratory observations and the process parameter determination to optimize the mass production was made by integrated industrial production trials on a set of a 5-m heavy plate mill equipped with an accelerated cooling system. Successful production of 60- and 50-mm-thick plates with yield strength in excess of 460 MPa and excellent toughness at low temperature (213 K (-60 °C)) in the parent metal and the simulated coarse-grained heat affected zone (CGHAZ) provides a useful integrated database for developing advanced high-strength steel plates via TMCP-AcC.

  13. Analytical 3-D p-element for quadrilateral plates—Part 1: Thick isotropic plate structures

    NASA Astrophysics Data System (ADS)

    Zhu, B.; Leung, A. Y. T.; Li, Q. S.; Lu, J. W. Z.; Zhang, X. C.

    2007-06-01

    An analytical three-dimensional (3-D) p-version element for the vibration analysis of arbitrary quadrilateral thick plates is presented. With the additional hierarchical shape functions and analytically integrated element matrices, the computed accuracy is considerably improved. The computed natural frequencies of cantilever and simply supported square plates show that the convergence rate of the present element is very fast with respect to the number of hierarchical terms and it can predict very accurate modes. The element is applicable to the free vibration analysis of quadrilateral, polygonal plates as well as 3-D space structures. The continuous wavelet transform (CWT) is applied for the identification of damping ratios. Based on the Rayleigh damping model, the damped vibration response is obtained. A simple experiment is performed to verify the predicted vibration responses. The results show that the proposed element is also efficient for the vibration response analysis of plates.

  14. Influence of piezoceramic to fused silica plate thickness on the radii of curvature of piezoelectric bimorph mirror

    SciTech Connect

    Libu, M.; Susanth, S.; Vasanthakumari, K. G.; Dileep Kumar, C. J.; Raghu, N.

    2012-01-15

    Piezoelectric based bimorph mirrors (PBM) find extensive use in focusing of x-ray beams. Many optical instruments require use of PBM whose radii of curvature can be tuned precisely. The 100 mm and 300 mm PBMs were fabricated with varying piezoelectric to fused silica plate thicknesses. The radii of curvature of free standing mirrors were measured as a function of voltage and it was found to decrease with increasing voltage. For a given piezoelectric plate thickness, as the fused silica thickness increases, the radii of curvature was found to increase owing to increase in stiffness of the mirror. On the other hand, for a given fused silica plate thickness, when the piezoelectric plate thickness is increased, the radii of curvature are decreased for a given electric field, due to increase in generated force. This study brings out the influence of piezoceramic to fused silica plate thickness on the radii of curvature of PBM.

  15. Development of low-cost welding procedures for thick sections of HY-150 steel

    NASA Technical Reports Server (NTRS)

    Schmidt, P. M.; Snow, R. S.

    1972-01-01

    Low cost welding procedures were developed for welding 6-inch thick HY-150 steel to be used in the manufacture of large diameter motor case Y rings and nozzle attachment flanges. An extensive investigation was made of the mechanical and metallurgical properties and fracture toughness of HY-150 base plate and welds made with manual shielded metal arc process and semi-automatic gas metal arc process in the flat position. Transverse tensiles, all-weld metal tensiles, Charpy V-notch specimens and edge notched bend specimens were tested in the course of the program. In addition metallographic studies and hardness tests were performed on the weld, weld HAZ and base metal. The results of the work performed indicate that both the shielded metal arc and gas metal arc processes are capable of producing consistently sound welds as determined by radiographic and ultrasonic inspection. In addition, the weld metal, deposited by each process was found to exhibit a good combination of strength and toughness such that the selection of a rolled and welded procedure for fabricating rocket motor case components would appear to be technically feasible.

  16. Thick-section weldments in 21-6-9 and 316LN stainless steel for fusion energy applications

    NASA Astrophysics Data System (ADS)

    Alexander, D. J.; Goodwin, G. M.

    The Burning Plasma Experiment (BPX), formerly known as the Compact Ignition Tokomak, will be a major advance in the design of a fusion reactor. The successful construction of fusion reactors will require extensive welding of thick-section stainless steel plates. Severe service conditions will be experienced by the structure. Operating temperatures will range from room temperature (300 K) to liquid nitrogen temperature (77 K), and perhaps even lower. The structure will be highly stressed, and subject to sudden impact loads if plasma disruptions occur. This demands a combination of high strength and high toughness from the weldments. Significant portions of the welding will be done in the field, so preweld and postweld heat treatments will be difficult. The thick sections to be welded will require a high deposition rate process, and will result in significant residual stresses in the materials. Inspection of these thick sections in complex geometries will be very difficult. All of these constraints make it essential that the welding procedures and alloys be well understood, and the mechanical properties of the welds and their heat-affected zones must be adequately characterized. The candidate alloy for structural applications in the BPX such as the magnet cases was initially selected as 21-6-9 austenitic stainless steel, and later changed to 316LN stainless steel. This study examined several possible filler materials for thick-section (25 to 50 mm) weldments in these two materials. The tensile and Charpy V-notch properties were measured at room temperature and 77 K. The fracture toughness was measured for promising materials.

  17. Thick-section weldments in 21-6-9 and 316LN stainless steel for fusion energy applications

    SciTech Connect

    Alexander, D.J.; Goodwin, G.M.

    1991-01-01

    The Burning Plasma Experiment (BPX), formerly known as the Compact Ignition Tokomak, will be a major advance in the design of a fusion reactor. The successful construction of fusion reactors will require extensive welding of thick-section stainless steel plates. Severe service conditions will be experienced by the structure. Operating temperatures will range from room temperature (300 K) to liquid nitrogen temperature (77 K), and perhaps even lower. The structure will be highly stressed, and subject to sudden impact loads if plasma disruptions occur. This demands a combination of high strength and high toughness from the weldments. Significant portions of the welding will be done in the field, so preweld and postweld heat treatments will be difficult. The thick sections to be welded will require a high deposition rate process, and will result in significant residual stresses in the materials. Inspection of these thick sections in complex geometries will be very difficult. All of these constraints make it essential that the welding procedures and alloys be well understood, and the mechanical properties of the welds and their heat-affected zones must be adequately characterized. The candidate alloy for structural applications in the BPX such as the magnet cases was initially selected as 21-6-9 austenitic stainless steel, and later changed to 316LN stainless steel. This study examined several possible filler materials for thick-section (25 to 50 mm) weldments in these two materials. The tensile and Charpy V-notch properties were measured at room temperature and 77 K. The fracture toughness was measured for promising materials.

  18. The Transition from Thick to Thin Plate Wake Physics: Whither Vortex Shedding?

    NASA Technical Reports Server (NTRS)

    Rai, Man Mohan

    2016-01-01

    The near and very near wake of a flat plate with a circular trailing edge is investigated with data from direct numerical simulations. Computations were performed for six different combinations of the Reynolds numbers based on plate thickness (D) and boundary layer momentum thickness upstream of the trailing edge (theta). Unlike the case of the cylinder, these Reynolds numbers are independent parameters for the flat plate. The separating boundary layers are turbulent in all the cases investigated. One objective of the study is to understand the changes in the wake vortex shedding process as the plate thickness is reduced (increasing theta/D). The value of D varies by a factor of 16 and that of theta by approximately 5 in the computations. Vortex shedding is vigorous in the low theta/D cases with a substantial decrease in shedding intensity in the large theta/D cases. Other shedding characteristics are also significantly altered with increasing theta/D. A visualization of the shedding process in the different cases is provided and discussed. The basic shedding mechanism is explored in depth. The effect of changing theta/D on the time-averaged, near-wake velocity statistics is also discussed. A functional relationship between the shedding frequency and the Reynolds numbers mentioned above is obtained.

  19. Laser damage measurement of thick silica plates using a new laser injection scheme

    NASA Astrophysics Data System (ADS)

    Penninckx, D.; Diaz, R.; Bonville, O.; Courchinoux, R.; Lamaignère, L.; Luce, J.

    2016-07-01

    Some silica plates of high power nanosecond lasers may be a few centimeter thick for instance because they should sustain vacuum. Measuring laser-induced damage thresholds at the output surface of these thick silica plates is a complex task because non-linear laser propagation effects may occur inside the plate which prevents knowing accurately the fluence at the output. Two non-linear effects have to be considered: stimulated Brillouin scattering (SBS) and Kerr effect. SBS is mainly driven by the spectral power density of the pulses: if the spectral power density is below a threshold, SBS is negligible. Thus, spectral broadening is required. Kerr effect depends on the instantaneous intensity. Hence, a smooth temporal shape without overshoots is required. However, both conditions (wide spectrum and no overshoots) are impossible to fulfill with standard lasers. As a matter of fact, an injected laser has a smooth temporal profile but is spectrally narrow. Without injection, the laser is multimode yielding a wide spectrum but a chaotic temporal profile. We solved the problem by phase-modulating a continuous-wave seeder of our laser (patent pending). The phasemodulation frequency is adjusted to a multiple of the inverse of the round-trip time of the laser cavity. The laser pulses have a wide spectrum to suppress SBS and do not exhibit temporal overshoots to reduce Kerr effects. During the presentation, we will show the features of the laser pulses and laser-induced damage measurements of thick silica plates using this scheme.

  20. Natural frequencies of thick, symmetrically-laminated, skew, trapezoidal plates with various boundary supports

    SciTech Connect

    Kapania, R.K.; Lovejoy, A.E.

    1994-12-31

    Increasing use of composite materials in structures requires an accurate method of predicting response. Transverse shear effects can play an important role in laminated structures, even those that are considered thin, and as a result, should not be neglected. The free vibration response of generally laminated, thick, skewed, trapezoidal plates is investigated due of the lack of information in this area. In the method developed, Chebychev polynomials are used as displacement functions in the Rayleigh-Ritz method. To account for various edge supports, free, simply supported, and clamped, appropriate linear and rotational springs are introduced to satisfy the essential boundary conditions. First-order shear theory is used to account for transverse shear effects, and rotary inertia is also included in the model. Convergence of the solution resulting from changes in spring values and number of terms in the series is investigated. To demonstrate the accuracy of the method, results for thin isotropic and laminated plates are compared to past results for various planforms and boundary conditions. Next, thick isotropic plate results are compared to available published results. Thick laminated plate results for various planforms and boundary conditions are then presented. Variations in natural frequencies due to geometric parameter changes, such as taper ratio and sweep angle, are also studied.

  1. 76 FR 12702 - Certain Cut-to-Length Carbon-Quality Steel Plate From India, Indonesia, Italy, and the Republic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-08

    ...) abrasion-resistant steels (i.e., USS AR 400, USS AR 500); (5) products made to ASTM A202, A225, A514 grade S, A517 grade S, or their proprietary equivalents; (6) ball bearing steels; (7) tool steels; and (8... International Trade Administration Certain Cut-to-Length Carbon-Quality Steel Plate From India, Indonesia,...

  2. 75 FR 47777 - Certain Cut-to-Length Carbon-Quality Steel Plate Products From Italy: Final Results of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-09

    ... steels (i.e., USS AR 400, USS AR 500); (5) products made to ASTM A202, A225, A514 grade S, A517 grade S, or their proprietary equivalents; (6) ball bearing steels; (7) tool steels; and (8) silicon manganese... International Trade Administration Certain Cut-to-Length Carbon-Quality Steel Plate Products From Italy:...

  3. Vibration of visco-elastic rectangular plate with linearly thickness variations in both directions

    NASA Astrophysics Data System (ADS)

    Gupta, A. K.; Khanna, A.

    2007-04-01

    The analysis presented here is to study the effect of linear thickness variations in both directions on vibration of visco-elastic rectangular plate having clamped boundary conditions on all the four edges. Using the separation of variables method, the governing differential equation has been solved for vibration of visco-elastic rectangular plate. An approximate but quite convenient frequency equation is derived by using Rayleigh-Ritz technique with a two-term deflection function. Logarithmic decrement, time period and deflection at different points for the first two modes of vibration are calculated for various values of taper constants and aspect ratio.

  4. Biomechanics of bone-fracture fixation by stiffness-graded plates in comparison with stainless-steel plates

    PubMed Central

    Ganesh, VK; Ramakrishna, K; Ghista, Dhanjoo N

    2005-01-01

    Background In the internal fixation of fractured bone by means of bone-plates fastened to the bone on its tensile surface, an on-going concern has been the excessive stress-shielding of the bone by the excessively-stiff stainless-steel plate. The compressive stress-shielding at the fracture-interface immediately after fracture-fixation delays callus formation and bone healing. Likewise, the tensile stress-shielding of the layer of the bone underneath the plate can cause osteoporosis and decrease in tensile strength of this layer. Method In order to address this problem, we propose to use stiffness-graded plates. Accordingly, we have computed (by finite-element analysis) the stress distribution in the fractured bone fixed by composite plates, whose stiffness is graded both longitudinally and transversely. Results It can be seen that the stiffness-graded composite-plates cause less stress-shielding (as an example: at 50% of the healing stage, stress at the fracture interface is compressive in nature i.e. 0.002 GPa for stainless steel plate whereas stiffness graded plates provides tensile stress of 0.002 GPa. This means that stiffness graded plate is allowing the 50% healed bone to participate in loadings). Stiffness-graded plates are more flexible, and hence permit more bending of the fractured bone. This results in higher compressive stresses induced at the fractured faces accelerate bone-healing. On the other hand, away from the fracture interface the reduced stiffness and elastic modulus of the plate causes the neutral axis of the composite structure to be lowered into the bone resulting in the higher tensile stress in the bone-layer underneath the plate, wherein is conducive to the bone preserving its tensile strength. Conclusion Stiffness graded plates (with in-built variable stiffness) are deemed to offer less stress-shielding to the bone, providing higher compressive stress at the fractured interface (to induce accelerated healing) as well as higher tensile

  5. Laser-multi-pass-narrow-gap-welding of Hot Crack Sensitive Thick Aluminum Plates

    NASA Astrophysics Data System (ADS)

    Dittrich, D.; Schedewy, R.; Brenner, B.; Standfuß, J.

    Although the current process limitations for laser beam welding of thick aluminum plates (>10 mm) have been overcome by high brilliant multi-kilowatt laser, there are still difficulties resulting from the material physical properties, e.g. the high heat conductivity, the large heat capacity and the high thermal expansion coefficient of aluminum. Especially for very deep weld seams, insufficient dilution of filler wire material in the root of the weld seam and the danger of hot cracks increases. With a new welding technology, the Laser-Multi-Pass-Narrow-Gap-Welding, a innovative approach has been developed to weld thick aluminum plates with highest beam quality lasers and remarkably reduced laser power.

  6. An equilibrium method for prediction of transverse shear stresses in a thick laminated plate

    NASA Technical Reports Server (NTRS)

    Chaudhuri, R. Z.

    1986-01-01

    First two equations of equilibrium are utilized to compute the transverse shear stress variation through thickness of a thick laminated plate after in-plane stresses have been computed using an assumed quadratic displacement triangular element based on transverse inextensibility and layerwise constant shear angle theory (LCST). Centroid of the triangle is the point of exceptional accuracy for transverse shear stresses. Numerical results indicate close agreement with elasticity theory. An interesting comparison between the present theory and that based on assumed stress hybrid finite element approach suggests that the latter does not satisfy the condition of free normal traction at the edge. Comparison with numerical results obtained by using constant shear angle theory suggests that LCST is close to the elasticity solution while the CST is closer to classical (CLT) solution. It is also demonstrated that the reduced integration gives faster convergence when the present theory is applied to a thin plate.

  7. Modeling Crustal Thickness Variations Beneath the East Pacific Rise: Mantle Diapirs or Plate Kinematics?

    NASA Astrophysics Data System (ADS)

    George, S. A.; Toomey, D. R.

    2003-12-01

    Geophysical studies along the East Pacific Rise between the Siqueiros and Clipperton fracture zones reveal along- and cross-axis variations in crustal thickness whose origins are poorly understood. By one view, variations in crustal thickness are the result of three-dimensional upwelling of the mantle associated with a melt-rich diapir centered at 9° 50'N. Alternatively, it has been proposed that the migration of the 9° 03'N overlapping spreading center (OSC) alters the thickness of crust by increasing the amount of time that a crustal unit resides near the spreading axis. In this case, crustal thickness variations arise from plate kinematics, and not from three-dimensional variations in mantle upwelling. We report on a modeling study designed to explore how the evolution of OSCs may alter the thickness of newly-formed crust. OSC propagation is modeled using the kinematic algorithm developed by Wilson [1990], modified to track parcels of crust through time. Given an OSC's kinematic history and two-dimensional descriptions of the melt flux out of the mantle (i.e. invariant along the rise), we predict relative variations in crustal thickness. Our modeling assumes that underplating increases the thickness of the crust and/or Moho transition zone as long as a crustal unit resides over the source of mantle-derived melt. Results suggest two general kinematic mechanisms whereby variations in crustal thickness can occur: those due to an offset between the mantle-level magmatic system and the spreading axis, and those due to any relative reduction in the velocity of a crustal unit as it moves off axis. Offset-induced crustal thickness variations are manifest as long-wavelength ( ˜50 km), low-amplitude cross-axis asymmetries. Local slowing of crustal units as they move off axis -- in direct association with the OSC and its overlap basins -- results in relatively short-wavelength ( ˜10 km), high-amplitude variations in crustal thickness. Using a kinematic history

  8. Thick Plate Rolling—a Numerical Approach in Comparison with Analytics and Experimental Data

    NASA Astrophysics Data System (ADS)

    Prommer, Hannes; Bojahr, Manuel; Tschullik, Ralf; Kaeding, Patrick

    2011-05-01

    Today, wind turbines are mostly made of glass or carbon fibre. The manufacturing process leads to high precision and quality of the final product. Nevertheless, this fabrication method of rotor blades is very cost intensive and its production technology is not the best in terms of recyclability. In addition to its good recyclability, the handling of steel is well known and its fabrication is inexpensive. Due to these facts an idea of foils to be produced from steel arose. In cooperation with a metal forming company the 3-Dimensional rolling concept came up. Initially, rolling experiments with cold lead plates in a scale of 1:4 are made to simulate the later on used hot steel plates. Such an approach has to be accompanied by fundamental research. This paper sketches the lead rolling experiment and gives an assessment if it is applicable for a hot rolling process with steel. For this purpose, the lead test data are interpreted, the numerical model is explained and results are presented. Furthermore, an analytical flat rolling approach is used to calculate process parameters like stamping force of the upper roll and necessary friction. The applicability and precision of the analytical results are discussed in comparison with the results of the FEM model and the experimental data. Concluding the paper, validity and pitfalls of this concept are outlined and a short outlook for further research is given. The purpose of these considerations is to get closer to process parameters for an experiment in full scale for hot rolling of a rotor blade.

  9. Effect of Initial Stress on a Fiber-Reinforced Anisotropic Thermoelastic Thick Plate

    NASA Astrophysics Data System (ADS)

    Abbas, Ibrahim A.; Abd-alla, Abo-el-nour N.

    2011-05-01

    The two-dimensional problem of generalized thermoelasticity for a fiber-reinforced anisotropic thick plate under initial stress is studied in the context of the Lord and Shulman theory. The upper surface of the plate is thermally insulated with prescribed surface loading while the lower surface of the plate rests on a rigid foundation and temperature. The problem is solved numerically using a finite element method. Numerical results for the temperature distribution, and the displacement and stress components are given and illustrated graphically. It is found from the graphs that the initial stress significantly influences the variations of field quantities. The results obtained in this paper may offer a theoretical basis and meaningful suggestions for the design of various fiber-reinforced anisotropic thermoelastic elements under loading to meet special engineering requirements.

  10. Bending and Forced Vibration Response of a Clamped Orthotropic Thick Plate and Sandwich Panel

    NASA Astrophysics Data System (ADS)

    LOK, T. S.; CHENG, Q. H.

    2001-08-01

    A closed-form solution for the forced response of an orthotropic thick plate and sandwich panel has been developed and is presented in this paper. The paper outlines the methodology and develops the formulation to enable the solution to be derived. A novel truss-core sandwich panel is introduced and a method is outlined in which the panel is represented as an equivalent homogeneous orthotropic thick plate continuum. The 3-D dynamic finite element method is one of the most versatile developments of the 20th century. However, the software is not as accessible or as user-friendly for engineers who are not trained in such analytical tools. Therefore, alternative methods of analysis must be found, especially in the dynamic assessment of thin-walled truss-core sandwich panels. One way is to transform the sandwich structure into an equivalent homogeneous orthotropic thick plate continuum and to conduct the analysis on the equivalent model. The authors have derived the necessary elastic constants to hasten this transformation. In this paper, the derived elastic constants are used with closed-form solution to determine the bending and forced vibration response of a clamped truss-core sandwich panel, represented as a homogeneous orthotropic thick plate continuum. The Rayleigh-Ritz method is employed for the closed-form solution and the forced response is determined using Duhamel's integral. Admissible functions are taken as a series of products of beam mode-shape functions in the two orthogonal directions. The beam function in either direction is derived from the corresponding beam eigenvalue problem. Numerical examples, which include the influence of transverse shear on the response, show that the closed-form solution agrees with analytical and numerical data available in the literature and also with 3-D finite element results.

  11. Approximate three-dimensional analysis of rectangular thick laminated plates - Bending, vibration and buckling

    NASA Astrophysics Data System (ADS)

    Cheung, Y. K.; Kong, J.

    1993-04-01

    A global-local approach is proposed to analyze thick laminated plates. This approach treats a thick laminated plate as a three-dimensional inhomogeneous anisotropic elastic body. The cross-section of a laminated plate is first discretized into conventional eight-node elements. The interpolation function along the span of the plate is defined by the cubic B3-spline function. The displacement functions can be expressed as the product of the usual isoparametric shape functions and the spline function. A set of global polynomials of an appropriate order is selected to transform the nodal variables of the cross-section to a much smaller set of generalized parameters associated with the polynomials. These parameters can be obtained by means of the standard Rayleigh-Ritz technique. The total number of unknowns involved is drastically reduced with a minor sacrifice of accuracy. The six components of stresses, the fundamental natural frequencies, and the critical buckling loads can be determined with acceptable accuracy. Numerical examples are given to demonstrate the accuracy and effectiveness of the global-local procedures.

  12. Design Review Report for Concrete Cover Block Replaced by Steel Plate

    SciTech Connect

    JAKA, O.M.

    2001-02-07

    The design for the steel cover plates to replace concrete cover blocks for 241-U-109 was reviewed and approved in a design review meeting. The design for steel plates to replace concrete blocks were reviewed and approved by comparison and similarity with U-109 for the following additional pump pits: 241-U-105, U-103, AX-101, A-101, SX-105, Valve Pits S-A, S-C, SX-A, Pump Pits U-106, 5109, SX-103, SX-101, Valve Pits U-D (West) and U-D (East).

  13. Single Transducer Ultrasonic Imaging Method that Eliminates the Effect of Plate Thickness Variation in the Image

    NASA Technical Reports Server (NTRS)

    Roth, Don J.

    1996-01-01

    This article describes a single transducer ultrasonic imaging method that eliminates the effect of plate thickness variation in the image. The method thus isolates ultrasonic variations due to material microstructure. The use of this method can result in significant cost savings because the ultrasonic image can be interpreted correctly without the need for machining to achieve precise thickness uniformity during nondestructive evaluations of material development. The method is based on measurement of ultrasonic velocity. Images obtained using the thickness-independent methodology are compared with conventional velocity and c-scan echo peak amplitude images for monolithic ceramic (silicon nitride), metal matrix composite and polymer matrix composite materials. It was found that the thickness-independent ultrasonic images reveal and quantify correctly areas of global microstructural (pore and fiber volume fraction) variation due to the elimination of thickness effects. The thickness-independent ultrasonic imaging method described in this article is currently being commercialized under a cooperative agreement between NASA Lewis Research Center and Sonix, Inc.

  14. 76 FR 66271 - Stainless Steel Plate in Coils From Belgium: Notice of Preliminary Results of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-26

    ... Korea, South Africa, and Taiwan, 64 FR 27756 (May 21, 1999); Notice of Amended Antidumping Duty Orders... Steel Plate in Coils From Belgium, Canada, Italy, the Republic of Korea, South Africa, and Taiwan, 68 FR... Steel Plate in Coils From Belgium, Canada, Italy, the Republic of Korea, South Africa, and Taiwan, 68...

  15. 75 FR 61699 - Stainless Steel Plate in Coils From Belgium, Italy, South Africa, South Korea, and Taiwan: Final...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-06

    ... International Trade Administration Stainless Steel Plate in Coils From Belgium, Italy, South Africa, South Korea... orders on stainless steel plate in coils (SSPC) from Belgium, Italy, South Africa, South Korea, and..., South Africa, South Korea, and Taiwan pursuant to section 751(c) of the Act. See Initiation of...

  16. 76 FR 8772 - Cut-to-Length Carbon Steel Plate From India, Indonesia, Italy, Japan and Korea

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-15

    ... the domestic interested party group response to its notice of institution (75 FR 67108, November 1... COMMISSION Cut-to-Length Carbon Steel Plate From India, Indonesia, Italy, Japan and Korea AGENCY: United...-year reviews concerning the countervailing duty orders on cut-to-length carbon steel plate from...

  17. 76 FR 22725 - Cut-to-Length Carbon Steel Plate From India, Indonesia, Italy, Japan, and Korea; Scheduling of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-22

    ... (76 FR 8772, February 15, 2011). A record of the Commissioners' votes, the Commission's statement on... COMMISSION Cut-to-Length Carbon Steel Plate From India, Indonesia, Italy, Japan, and Korea; Scheduling of...-Length Carbon Steel Plate From India, Indonesia, Italy, Japan, and Korea AGENCY: United...

  18. 76 FR 75870 - Stainless Steel Plate in Coils From Belgium: Notice of Extension of Time Limit for Preliminary...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-05

    ... Administrative Reviews and Request for Revocation in Part, 76 FR 37781 (June 28, 2011). The preliminary results... International Trade Administration Stainless Steel Plate in Coils From Belgium: Notice of Extension of Time... administrative review of the antidumping duty order on stainless steel plate in coils from Belgium, covering...

  19. 77 FR 38825 - Clad Steel Plate From Japan; Scheduling of a Full Five-Year Review Concerning the Antidumping...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-29

    ... were such that a full review pursuant to section 751(c)(5) of the Act should proceed (77 FR 37439, June... COMMISSION Clad Steel Plate From Japan; Scheduling of a Full Five-Year Review Concerning the Antidumping Duty Order on Clad Steel Plate From Japan AGENCY: United States International Trade Commission....

  20. Buckling analysis of moderately thick rectangular plates using coupled displacement field method

    NASA Astrophysics Data System (ADS)

    Meera Saheb, K.; Aruna, K.

    2015-12-01

    A simple and efficient coupled displacement field method is developed to study the buckling load parameters of the moderately thick rectangular plates. This method has been successfully applied to study the same for the Timoshenko beams. A single term trigonometric admissible displacement field is assumed for one of the variables, say, the total rotations (in both X, Y directions). Making use of the coupling equations, the spatial variation for the remaining lateral displacement field is derived in terms of the total rotations. The coupled displacement field method makes the energy formulation to contains half the number of unknown independent coefficients, in the case of a rectangular plate, contrary to the conventional Rayleigh-Ritz method. The expressions for the non-dimensional buckling load parameters of the moderately thick rectangular plates with all the edges simply supported are derived. The numerical values of these parameters obtained using the coupled displacement field method match very well with open literature demonstrating the effectiveness of the coupled displacement field method.

  1. EVALUATION OF TERMINAL VERTEBRAL PLATE ON CERVICAL SPINE AT DIFFERENT AGE GROUPS AND ITS CORRELATION WITH INTERVERTEBRAL DISC THICKNESS

    PubMed Central

    Luiz Vieira, Juliano Silveira; da Silva Herrero, Carlos Fernando Pereira; Porto, Maximiliano Aguiar; Nogueira Barbosa, Marcello Henrique; Garcia, Sérgio Britto; Zambelli Ramalho, Leandra Náira; Aparecido Defino, Helton Luiz

    2015-01-01

    To evaluate, by means of histomorphometry, terminal vertebral plate thickness, intervertebral disc thickness and its correlation on different age groups, seeking to identify its correlation. Methods: C4-C5 and C5-C6 cervical segments removed from human cadavers of both genders were assessed and divided into five groups of 10-year age intervals, from 21 years old. TVP and intervertebral disc thickness evaluation was made by means of histomorphometry of histological slides stained with hematoxylin and eosyn. Lower C4 TVP, upper C5 TVP, and upper C6 TVP de were compared between each other and to the interposed intervertebral disc thickness between relevant TVP. Results: The thickness of terminal vertebral plates adjacent to the same ID did not show statistic differences. However, the comparison of upper and lower vertebral plates thickness on the same cervical vertebra (C5), showed statistical difference on all age groups studied. We found a statistical correlation coefficient above 80% between terminal vertebral plate and adjacent intervertebral disc, with a proportional thickness reduction of both structures on the different cervical levels studied, and also on the different age groups assessed. Conclusion: Terminal vertebral plate shows a morphologic correlation with the intervertebral disc next to it, and does not show correlation with the terminal vertebral plate on the same vertebra. PMID:26998448

  2. Measurement of relevant elastic and damping material properties in sandwich thick plates

    NASA Astrophysics Data System (ADS)

    Rébillat, Marc; Boutillon, Xavier

    2011-12-01

    An easy-to-implement method to measure relevant elastic and damping properties of the constituents of a sandwich structure, possibly with a heterogeneous core, is proposed. The method makes use of a one-point dynamical measurement on a thick-plate. The hysteretic model for each (possibly orthotropic) constituent is written generically as " E(1+jη)" for all mechanical parameters. The estimation method of the parameters relies on a mixed experimental/numerical procedure. The frequencies and dampings of the natural modes of the plate are obtained from experimental impulse responses by means of a high-resolution modal analysis technique. This allows for considerably more experimental data to be used. Numerical modes (frequencies, dampings, and modal shapes) are computed by means of an extended Rayleigh-Ritz procedure under the "light damping" hypothesis, for given values of the mechanical parameters. Minimising the differences between the modal characteristics yields an estimation of the values of the mechanical parameters describing the hysteretic behaviour. A sensitivity analysis assesses the reliability of the method for each parameter. Validations of the method are proposed by (a) applying it to virtual plates on which a finite-element model replaces the experimental modal analysis, (b) some comparisons with results obtained by static mechanical measurements, and (c) by comparing the results on different plates made of the same sandwich material.

  3. A large-deformation thin plate theory with application to one-atom-thick layers

    NASA Astrophysics Data System (ADS)

    Delfani, M. R.; Shodja, H. M.

    2016-02-01

    Nowadays, two-dimensional materials due to their vast engineering and biomedical applications have been the focus of many researches. The present paper proposes a large-deformation theory for thin plates with application to one-atom-thick layers (OATLs). The deformation is formulated exactly in the mathematical framework of Lagrangian description. In particular, an exact finite strain analysis is given - in addition to the usual strain tensor associated to the middle surface, the second and third fundamental forms of the middle surface of the deformed thin plate are also maintained in the analysis. Exact closed-form solutions for a uniaxially curved thin plate due to pure bending in one case and due to a combination of vertical and horizontal loading in another are obtained. As a special case of the latter problem, the exact solution for the plane-strain bulge test of thin plates is derived. Subsequently, the approximation of Vlassak and Nix [Vlassak, J.J., Nix, W.D., 1992. J. Mater. Res., 7(12), 3242-3249] for the load-deflection equation is recovered. The given numerical results are devoted to graphene as the most well-known OATL.

  4. 75 FR 21241 - Certain Cut-to-Length Carbon Steel Plate from the People's Republic of China: Initiation of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-23

    ... Stemcor was importing steel plate from PRC producers containing small amounts of boron resulting in the... incentive for PRC producers to add insignificant amounts of boron to their steel products for the purpose of... the characteristics that would be expected for steel to which boron has been added for...

  5. 77 FR 21527 - Certain Cut-to-Length Carbon-Quality Steel Plate Products From the Republic of Korea: Final...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-10

    ... proprietary equivalents; (4) abrasion-resistant steels (i.e., USS AR 400, USS AR 500); (5) products made to ASTM A202, A225, A514 grade S, A517 grade S, or their proprietary equivalents; (6) ball bearing steels... International Trade Administration Certain Cut-to-Length Carbon-Quality Steel Plate Products From the...

  6. 76 FR 54207 - Stainless Steel Plate in Coils From Italy: Revocation of Antidumping Duty Order

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-31

    ..., Italy, Korea, South Africa, and Taiwan, 76 FR 50495 (August 15, 2011) (ITC Final). Therefore, pursuant... antidumping duty orders on SSPC from Belgium, Italy, Korea, South Africa, and Taiwan pursuant to section 751(c... Stainless Steel Plate in Coils from Belgium, Italy, Korea, South Africa, and Taiwan (Inv. Nos....

  7. 75 FR 30434 - Stainless Steel Plate From Belgium, Italy, Korea, South Africa, and Taiwan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-01

    ...), and part 207, subparts A, D, E, and F (19 CFR part 207), as most recently amended at 74 FR 2847... FR 25288). On May 21, 1999, Commerce issued antidumping duty orders on imports of certain stainless steel plate from Belgium, Canada, Italy, Korea, South Africa, and Taiwan (64 FR 27756). On March...

  8. 76 FR 28809 - Stainless Steel Plate From Belgium; Termination of Five-Year Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-18

    ... review concerning the countervailing duty order on stainless steel plate from Belgium (75 FR 30777 and 75 FR 30434). On May 5, 2011, Commerce published notice in the Federal Register of the final results of... recurrence of a countervailable subsidy. Therefore, Commerce revoked the countervailing duty order (76...

  9. Feasibility study on welding and cutting methods for thick plate in fusion reactor

    SciTech Connect

    Osaki, T.; Nakayama, Y.; Kobayashi, T.

    1995-12-31

    Application of tungsten-arc inert-gas (TIG) welding with narrow gap has been considered as a hopeful joint method to suppress post welding deformation for thick plates. The authors studied some parameters to predict the post-welding deformation for the narrow gap shape of TIG welding. As for cutting methods, the water jet method was applied for weld joints in this study. Reweld tests by using the TIG welding method were successfully performed under the condition of cutting surface as it was. Results of tensile tests for reweld joints showed no reduction in strength. This reveals a good prospect of providing reweld groove surface without any machining on site.

  10. Effect of layer thickness on the properties of nickel thermal sprayed steel

    NASA Astrophysics Data System (ADS)

    Nurisna, Zuhri; Triyono, Muhayat, Nurul; Wijayanta, Agung Tri

    2016-03-01

    Thermal arc spray nickel coating is widely used for decorative and functional applications, by improving corrosion resistance, wear resistance, heat resistence or by modifying other properties of the coated materials. There are several properties have been studied. Layer thickness of nickel thermal sprayed steel may be make harder the substrate surface. In this study, the effect of layer thickness of nickel thermal sprayed steel has been investigated. The rectangular substrate specimens were coated by Ni-5 wt.% Al using wire arc spray method. The thickness of coating layers were in range from 0.4 to 1.0 mm. Different thickness of coating layers were conducted to investigate their effect on hardness and morphology. The coating layer was examined by using microvickers and scanning electron microscope with EDX attachment. Generally, the hardness at the interface increased with increasing thickness of coating layers for all specimens due to higher heat input during spraying process. Morphology analysis result that during spraying process aluminum would react with surrounding oxygen and form aluminum oxide at outer surface of splat. Moreover, porosity was formed in coating layers. However, presence porosity is not related to thickness of coating material. The thicker coating layer resulted highesr of hardness and bond strength.

  11. An improved plate theory of order (1,2) for thick composite laminates

    NASA Technical Reports Server (NTRS)

    Tessler, A.

    1992-01-01

    A new (1,2)-order theory is proposed for the linear elasto-static analysis of laminated composite plates. The basic assumptions are those concerning the distribution through the laminate thickness of the displacements, transverse shear strains and the transverse normal stress, with these quantities regarded as some weighted averages of their exact elasticity theory representations. The displacement expansions are linear for the inplane components and quadratic for the transverse component, whereas the transverse shear strains and transverse normal stress are respectively quadratic and cubic through the thickness. The main distinguishing feature of the theory is that all strain and stress components are expressed in terms of the assumed displacements prior to the application of a variational principle. This is accomplished by an a priori least-square compatibility requirement for the transverse strains and by requiring exact stress boundary conditions at the top and bottom plate surfaces. Equations of equilibrium and associated Poisson boundary conditions are derived from the virtual work principle. It is shown that the theory is particularly suited for finite element discretization as it requires simple C(sup 0)- and C(sup -1)-continuous displacement interpolation fields. Analytic solutions for the problem of cylindrical bending are derived and compared with the exact elasticity solutions and those of our earlier (1,2)-order theory based on the assumed displacements and transverse strains.

  12. Preliminary experimental research on friction characteristics of a thick gravitational casted babbit layer on steel substrate

    NASA Astrophysics Data System (ADS)

    Paleu, V.; Georgescu, S.; Baciu, C.; Istrate, B.; Baciu, E. R.

    2016-08-01

    The ability of the antifriction materials to withstand with no lubrication for a while can be a solution for the catastrophic failure of automotive journal bearings from the internal combustion engines in accidental breakdown of the oil pump. A thick layer of antifriction material (babbit) was deposited by gravitational casting on a steel disk substrate. Four tribological disk samples coated with babbit are tested against a steel shoe on Amsler tribometer at different speeds and loads in dry friction. The values of the friction coefficient versus speed and load are presented, the obtained results indicating a mild wear regime, recommending the new babbit as a possible coating for the bushes of the journal bearings in automotive internal combustion engines. Further tests must be dedicated to the establishment of the wear intensity of the steel shoe - babbit disk tribological pair, both for motor oil lubricated and dry friction conditions.

  13. Bond slip detection of steel plate and concrete beams using smart aggregates

    NASA Astrophysics Data System (ADS)

    Qin, Feng; Kong, Qingzhao; Li, Mo; Mo, Y. L.; Song, Gangbing; Fan, Feng

    2015-11-01

    The newly emerged steel plate concrete (SC), benefited from a composite effect of steel and concrete materials, has been applied to shield building and internal structures of AP1000 nuclear power plants. The detection of bond-slip between steel plate and concrete is of great importance to provide early warnings of steel plate and concrete debonding and to ensure the safety of SC structures. In this paper, an active sensing approach using smart aggregates (SAs) is developed to detect the initiation and to monitor the development of bond-slip. A SA, designed by sandwiching a fragile piezoceramic patch between protection materials, can be utilized as both actuator and sensor by taking advantage of the piezoelectricity of piezoceramic material. Two SC beams with distinct shear reinforcement ratios ≤ft({ρ }t\\right) were experimentally investigated. Based on the wavelet packet decomposition of the received signals from SAs, the initiation of bond-slip is detected, and the development of bond-slip is quantitatively monitored to better understand the structural performance of SC beams, including the stiffness and capacity. The bond-slip severities of the two SC beams are compared to study the improvement of bond-slip condition rendered by providing more shear reinforcement.

  14. Pre-oxidized and nitrided stainless steel alloy foil for proton exchange membrane fuel cell bipolar plates: Part 1. Corrosion, interfacial contact resistance, and surface structure

    NASA Astrophysics Data System (ADS)

    Brady, M. P.; Wang, H.; Turner, J. A.; Meyer, H. M.; More, K. L.; Tortorelli, P. F.; McCarthy, B. D.

    Thermal (gas) nitridation of stainless steel alloys can yield low interfacial contact resistance (ICR), electrically conductive and corrosion-resistant nitride containing surface layers (Cr 2N, CrN, TiN, V 2N, VN, etc.) of interest for fuel cells, batteries, and sensors. This paper presents results of scale-up studies to determine the feasibility of extending the nitridation approach to thin 0.1 mm stainless steel alloy foils for proton exchange membrane fuel cell (PEMFC) bipolar plates. Developmental Fe-20Cr-4V alloy and type 2205 stainless steel foils were treated by pre-oxidation and nitridation to form low-ICR, corrosion-resistant surfaces. As-treated Fe-20Cr-4V foil exhibited target (low) ICR values, whereas 2205 foil suffered from run-to-run variation in ICR values, ranging up to 2× the target value. Pre-oxidized and nitrided surface structure examination revealed surface-through-layer-thickness V-nitride particles for the treated Fe-20Cr-4V, but near continuous chromia for treated 2205 stainless steel, which was linked to the variation in ICR values. Promising corrosion resistance was observed under simulated aggressive PEMFC anode- and cathode-side bipolar plate conditions for both materials, although ICR values were observed to increase. The implications of these findings for stamped bipolar plate foils are discussed.

  15. Pre-Oxidized and Nitrided Stainless Steel Foil for Proton Exchange Membrane Fuel Cell Bipolar Plates: Part 1 Corrosion, Interfacial Contact Resistance, and Surface Structure

    SciTech Connect

    Brady, Michael P; Wang, Heli; Turner, John; Meyer III, Harry M; More, Karren Leslie; Tortorelli, Peter F; McCarthy, Brian D

    2010-01-01

    Thermal (gas) nitridation of stainless steels can yield low interfacial contact resistance (ICR), electrically-conductive and corrosion-resistant nitride containing surfaces (Cr2N, CrN, TiN, V2N, VN, etc) of interest for fuel cells, batteries, and sensors. This paper presents the results of scale up studies to determine the feasibility of extending the nitridation approach to thin 0.1 mm stainless steel alloy foils for proton exchange membrane fuel cell (PEMFC) bipolar plates. A major emphasis was placed on selection of alloy foil composition and nitidation conditions potentially capable of meeting the stringent cost goals for automotive PEMFC applications. Developmental Fe-20Cr-4V alloy and type 2205 stainless steel foils were treated by pre-oxidation and nitridation to form low-ICR, corrosion-resistant surfaces. Promising behavior was observed under simulated aggressive anode- and cathode- side bipolar plate conditions for both materials. Variation in ICR values were observed for treated 2205 foil, with lower (better) values generally observed for the treated Fe-20Cr-4V. This behavior was linked to the nature of the pre-oxidized and nitrided surface structure, which contained through surface layer thickness V-nitride particles in the case of Fe-20Cr-4V but near continuous chromia in the case of 2205 stainless steel. The implications of these findings for stamped bipolar plate foils are discussed.

  16. Arctic Crustal Thickness and Oceanic Lithosphere Distribution from Gravity Inversion: Constraining Plate Reconstructions

    NASA Astrophysics Data System (ADS)

    Kusznir, N. J.; Alvey, A.; Roberts, A. M.

    2013-12-01

    Mapping crustal thickness, continental lithosphere thinning and oceanic lithosphere distribution represents a substantial challenge for the Polar Regions. Using gravity anomaly inversion, we have produced the first comprehensive maps of crustal thickness and oceanic lithosphere distribution for the Arctic. The Arctic region formed as a series of small distinct ocean basins leading to a complex distribution of oceanic crust, thinned continental crust, possible micro-continents and rifted continental margins. Mapping of continental lithosphere thinning factor and crustal thickness from gravity inversion provide predictions of ocean-continent transition structure and magmatic type and continent ocean boundary location independent of magnetic isochrons. Restoration of crustal thickness and continent-ocean boundary location from gravity inversion may be used to test plate tectonic reconstructions. Using crustal thickness and continental lithosphere thinning factor maps with superimposed shaded-relief free-air gravity anomaly, we improve the determination of pre-breakup rifted margin conjugacy and sea-floor spreading trajectory within the Arctic basins. By restoring crustal thickness & continental lithosphere thinning maps of the Eurasia Basin & NE Atlantic to their initial post-breakup configuration we show the geometry and segmentation of the rifted continental margins at their time of breakup, together with the location of highly-stretched failed breakup basins and rifted micro-continents. Our gravity inversion predicts thin crust and high continental lithosphere thinning factors in the Makarov, Podvodnikov, Nautilus and Canada Basins consistent with these basins being underlain by oceanic or highly thinned continental crust. Larger crustal thicknesses, in the range 20 - 30 km, are predicted for the Lomonosov, Alpha and Mendeleev Ridges. Moho depths predicted compare well with seismic estimates. Predicted very thin continental or oceanic crust under the North Chuchki

  17. Effect of stiffness and thickness ratio of host plate and piezoelectric patches on reduction of the stress concentration factor

    NASA Astrophysics Data System (ADS)

    Fesharaki, Javad Jafari; Madani, Seyed Ghasem; Golabi, Sa'id

    2016-09-01

    This paper focuses on the effects of stiffness ratio and thickness ratio on reducing stress concentration factor using piezoelectric patches in a rectangular plate with a hole, as a classical shape. Various locations of actuators and induction of positive/negative strains into the host plate are investigated and the best location of patches is presented. The study investigated the ratio effects and piezoelectric patches bounded on a rectangular host plate having various thicknesses and materials. Results show that the best position of actuators varies based on values of thickness and stiffness ratios of the host plate and piezoelectric patches. Also, the location of maximum stress concentration is transmitted from top and bottom of the hole to another point around the edge by changing the location of the piezoelectric actuators. To verify the results, some experimental tests are applied. The results show good agreement between the finite element analysis and experimental tests.

  18. Influence of Direct Quenching on Microstructure and Mechanical Properties of Steel Plate for Large Oil Storage Tanks

    NASA Astrophysics Data System (ADS)

    Xiao, Guizhi; di, Hongshuang; Zhu, Fuxian; Chen, Bingzhang; Qiu, Bing

    2010-08-01

    The influence of direct quenching on microstructure and mechanical properties of high performance steel plates for large oil storage tanks was studied. The direct quenched and tempered (DQ&T) steel plates were rolled at different finish rolling temperatures (1113 and 1173 K), and their microstructures and mechanical properties were compared with those of reheat quenched and tempered (RQ&T) steel plate. The optical microscopy of the DQ steel shows deformed grains elongated along the rolling direction, while complete equiaxed grains are visible in RQ steel. Transmission electron microscopy (TEM) of the DQ steel shows refined lath martensite with high density of dislocations, which acts as preferred precipitation sites for NbC or Nb(C,N) particles during tempering. In all the plates, strength decreases with increasing tempering temperature. The strength of RQ steel increased significantly compared with that of DQ steel at the higher tempering temperature, which leads to better tempering resistance in DQ steels. The optimum combination of strength and toughness (yield strength (YS) reaches 585 MPa, tensile strength (TS) 667 MPa, and Charpy impact energy at 253 K of 291 J) in the DQ steels is achieved by quenching at 1113 K and tempering at 923 K.

  19. Influence of stack plate thickness and voltage input on the performance of loudspeaker-driven thermoacoustic refrigerator

    NASA Astrophysics Data System (ADS)

    Putra, Nandy; Agustina, Dinni

    2013-04-01

    A loudspeaker-driven thermoacoustic refrigerator has been built and tested to gain understanding of its thermal performance and the cooling rate. The influence of plate thickness made of acrylic sheet was experimentally investigated by varying plate thickness of the stack, 0.15 mm, 0.5 mm and 1 mm, respectively. The experiments were conducted with various voltage input to the driver starting from setting 4 to 9 voltage peak-to-peak. The temperatures at both ends of the stack were acquired. For all variations, thermoacoustic cooling effect occurred in seconds and escalated rapidly in two minutes and became stable in ten-minute time. The experimental results showed that higher voltage input yielded higher thermal performance and faster cooling rate. For each set of experiment, the operating frequency and other parameters of the stack were kept unchanged. The experimental results show that the thermal performance and cooling rate increase with the decrease of plate thickness. The largest temperature difference, 14.8°C, was achieved with 0.1 mm plate thickness at voltage setting 9. However, the thermal performance gained for 0.5 mm plate thickness voltage setting of 9, was arguably the optimum thickness in terms of advantages in the ease of fabricating the stack and more consistent cooling.

  20. Dispersion and thermal interactions of molten metal fuel settling on a horizontal steel plate through a sodium pool

    SciTech Connect

    Gabor, J.D.; Purviance, R.T.; Aeschlimann, R.W.; Spencer, B.W.

    1989-01-01

    Although the Integral Fast Reactor (IFR) possesses inherent safety features, an assessment of the consequences of melting of the metal fuel is necessary for risk analysis. As part of this effort an experimental study was conducted to determine the depths of sodium at 600 C required for pour streams of various molten uranium alloys (U, U-5 wt % Zr, U-10 wt % Zr, and U-10 wt % Fe) to break up and solidify. The quenched particulate material, which was in the shape of filaments and sheets, formed coolable beds because of the high voidage ({approximately}0.9) and large particle size ({approximately}10 mm). In a test with a 0.15-m sodium depth, the fragments from a pure uranium pour stream did not completely solidify but formed an agglomerated mass which did not fuse to the base plate. However, the agglomerated fragments of U-10 wt % Fe eutectic fused to the stainless steel base plate. An analysis of the temperature response of a 25-mm thick base plate was made by volume averaging the properties of the sodium and metal particle phases and assuming two semi-infinite solids coming into contact. Good agreement was obtained with the data during the initial 5 to 10 s of the contact period. 16 refs., 5 figs., 1 tab.

  1. 75 FR 10207 - Certain Cut-to-Length Carbon-Quality Steel Plate From the Republic of Korea: Final Results of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-05

    ... ASTM A710 and A736 or their proprietary equivalents; (4) abrasion-resistant steels (i.e., USS AR 400... equivalents; (6) ball bearing steels; (7) tool steels; and (8) silicon manganese steel or silicon electric... International Trade Administration Certain Cut-to-Length Carbon-Quality Steel Plate From the Republic of...

  2. Steel Plate Shear Walls: Efficient Structural Solution for Slender High-Rise in China

    SciTech Connect

    Mathias, Neville; Long, Eric; Sarkisian, Mark; Huang Zhihui

    2008-07-08

    The 329.6 meter tall 74-story Jinta Tower in Tianjin, China, is expected, when complete, to be the tallest building in the world with slender steel plate shear walls used as the primary lateral load resisting system. The tower has an overall aspect ratio close to 1:8, and the main design challenge was to develop an efficient lateral system capable of resisting significant wind and seismic lateral loads, while simultaneously keeping wind induced oscillations under acceptable perception limits. This paper describes the process of selection of steel plate shear walls as the structural system, and presents the design philosophy, criteria and procedures that were arrived at by integrating the relevant requirements and recommendations of US and Chinese codes and standards, and current on-going research.

  3. Frictional Properties of Nickel and Copper Implanted Low Carbon Steel Plates

    NASA Astrophysics Data System (ADS)

    Iwaki, Masaya; Hayashi, Hisashi; Kohno, Akio; Yoshida, Kiyota

    1981-01-01

    A study has been made of the frictional properties of nickel and copper implanted steel plates. Ion implantation was performed with doses of 1× 1015--3× 1017 ions/cm2 energies of 50-200 keV. The friction coefficients of Ni and Cu implanted specimens, measured at atmospheric room temperature with a Bowden-Leben type friction testing machine, had a tendency to increase as the total dose increased and the acceleration energy decreased. Concentration profiles were measured by secondary ion mass analysis in order to investigate the element concentration which contributes to the frictional properties. The results suggest that the amount of implanted ions remaining in the surface layer (0-400 Å) is of first importance in the frictional properties of Ni and Cu implanted steel plates.

  4. Displaced avulsion fractures of the posterior cruciate ligament: Treated by stellate steel plate fixation

    PubMed Central

    Li, Lijun; Tian, Wei

    2015-01-01

    Background: The open reduction with internal fixation is an effective approach for treatment of avulsion fracture of posterior cruciate ligament. The previously used internal fixation materials including hollow screws, absorbable screw, tension bands and sutures have great defects such as insufficient fixation strength, susceptibility to re-fracture, etc. Stellate steel plate is novel material for internal fixation which has unique gear-like structure design. We used stellate steel plate for treatment of displaced avulsion fractures of posterior cruciate ligament in this study. Materials and Methods: 14 patients (9 men, 5 women; aged, 19–35 years; mean age, 28 years) with displaced avulsion fractures of the tibial insertion of the posterior cruciate ligament were retrospectively analyzed between June 2009 and June 2011. The mean duration from injury to the operation was 8.3 days (range 6–15 days). All the patients were treated with open reduction and internal fixation of a stellate steel plate (DePuy, Raynham, MA 02767, USA). The Lysholm-Tegner knee function score criteria were used to analyze results. Results: The mean followup was 24.6 months (range 18–32 months). After 6 months, all the fractures healed and knee joint activity was normal, with no knee stiffness or instability. The Lysholm-Tegner scores were 97.1 ± 1.7 points at the final followup. Conclusion: Owing to its unique gear structure, the stellate steel plate design can effectively fix an avulsion fracture block and it is a simple operation with short postoperative rehabilitation time and firm fixation. PMID:26015605

  5. The microstructural dependence of wear resistance in austenite containing plate steels

    NASA Astrophysics Data System (ADS)

    Wolfram, Preston Charles

    The purpose of this project was to examine the microstructural dependence of wear resistance of various plate steels, with interests in exploring the influence of retained austenite (RA). Materials resistant to abrasive wear are desirable in the industrial areas of agriculture, earth moving, excavation, mining, mineral processing, and transportation. Abrasive wear contributes to significant financial cost associated with wear to the industry. The motivation for the current study was to determine whether it would be beneficial from a wear resistance perspective to produce plate steels with increased amounts of retained austenite. This thesis investigates this motivation through a material matrix containing AR400F, Abrasive (0.21 wt pct C, 1.26 wt pct Mn, 0.21 wt pct Si, 0.15 wt pct Ni, 0.18 wt pct Mo), Armor (0.46 wt pct C, 0.54 wt pct Mn, 0.36 wt pct Si, 1.74 wt pct Ni, 0.31 wt pct Mo), 9260, 301SS, Hadfield, and SAE 4325 steels. The Abrasive, Armor and 9260 steels were heat treated using different methods such as quench and temper, isothermal bainitic hold, and quench and partitioning (Q&P). These heat treatments yielded various microstructures and the test matrix allowed for investigation of steels with similar hardness and varying levels of RA. The wear test methods used consisted of dry sand rubber wheel (DSRW), impeller-tumbler impact-abrasion (impeller), and Bond abrasion wear testing. DSRW and impeller wear resistance was found to increase with hardness and retained austenite levels at certain hardness levels. Some Q&P samples exhibited similar or less wear than the Hadfield steels in DSRW and impeller tests. Scanning electron microscopy investigation of wear surfaces revealed different wear mechanisms for the different wear test methods ranging from micro-plowing, to micro-cutting and to fragmentation.

  6. Crustal Thickness Variations Along the Southeastern Caribbean Plate Boundary From Teleseismic and Active Source Seismic Data

    NASA Astrophysics Data System (ADS)

    Bezada, M. J.; Niu, F.; Baldwin, T. K.; Pavlis, G.; Vernon, F.; Rendón, H.; Zelt, C. A.; Schmitz, M.; Levander, A.

    2006-12-01

    coastal mountains, suggesting a significant portion of the high topography of the costal mountain ranges has a dynamic origin. Crustal thickness changes of more than 10km are observed crossing the coast in the plate boundary zone, but are not always directly associated with the surface expression of the strike-slip fault system.

  7. Thickness resonances dispersion characteristics of a lossy piezoceramic plate with electrodes of arbitrary conductivity.

    PubMed

    Mezheritsky, Alex A; Mezheritsky, Alex V

    2007-12-01

    A theoretical description of the dissipative phenomena in the wave dispersion related to the "energytrap" effect in a thickness-vibrating, infinite thicknesspolarized piezoceramic plate with resistive electrodes is presented. The three-dimensional (3-D) equations of linear piezoelectricity were used to obtain symmetric and antisymmetric solutions of plane harmonic waves and investigate the eigen-modes of thickness longitudinal (TL) up to third harmonic and shear (TSh) up to ninth harmonic vibrations of odd- and even-orders. The effects of internal and electrode energy dissipation parameters on the wave propagation under regimes ranging from a short-circuit (sc) condition through RC-type relaxation dispersion to an opencircuit (oc) condition are examined in detail for PZT piezoceramics with three characteristic T -mode energy-trap figure-of-merit c-(D)(33)/c-(E)(44) values - less, near equal and higher 4 - when the second harmonic spurious TSh resonance lies below, inside, and above the fundamental TL resonanceantiresonance frequency interval. Calculated complex lateral wave number dispersion dependences on frequency and electrode resistance are found to follow the universal scaling formula similar to those for dielectrics characterization. Formally represented as a Cole-Cole diagram, the dispersion branches basically exhibit Debye-like and modified Davidson Cole dependences. Varying the dissipation parameters of internal loss and electrode conductivity, the interaction of different branches was demonstrated by analytical and numerical analysis. For the purposes of dispersion characterization of at least any thickness resonance, the following theorem was stated: the ratio of two characteristic determinants, specifically constructed from the oc and sc boundary conditions, in the limit of zero lateral wave number, is equal to the basic elementary-mode normalized admittance. As was found based on the theorem, the dispersion near the basic and nonbasic TL and TSh

  8. 78 FR 69371 - Diffusion-Annealed, Nickel-Plated Flat-Rolled Steel Products From Japan: Preliminary...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-19

    ...-Rolled Steel Products From Japan: Initiation of Antidumping Duty Investigation, 78 FR 23905 (April 23... Countervailing Duty Investigations, 76 FR 61042 (October 3, 2011). All Others Rate Section 735(c)(5)(A) of the... International Trade Administration Diffusion-Annealed, Nickel-Plated Flat-Rolled Steel Products From...

  9. 77 FR 31834 - Clad Steel Plate from Japan: Final Results of the Expedited Third Sunset Review of the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-30

    ... Five-Year (Sunset) Review, 77 FR 4995 (Feb. 1, 2012) (Notice of Initiation). On February 15, 2012, the... Value: Clad Steel Plate From Japan, 61 FR 21158, 21159 (May 9, 1996). ] Weighted- average Manufacturers... layer of cladding material (usually stainless steel or nickel) which is metallurgically bonded to a...

  10. Flaw growth behavior in thick welded plates of 2219-T87 aluminum at room and cryogenic temperatures

    NASA Technical Reports Server (NTRS)

    Forman, R. G.; Glorioso, S. V.; Medlock, J. D.

    1973-01-01

    Axial load fatigue and fracture tests were conducted on thick welded plates of 2219-T87 aluminum alloy to determine the tensile strength properties and the flaw growth behavior in electron beam, gas metal arc, and pulse current gas tungsten arc welds for plates 6.35 centimeters (2.5 in.) thick. The tests were conducted in room temperature air and in liquid nitrogen environments. Specimens were tested in both the as-welded and the aged after welding conditions. The experimental crack growth rate were correlated with theoretical crack growth rate predictions for semielliptical surface flaws.

  11. Protective coatings on stainless steel bipolar plates for proton exchange membrane (PEM) electrolysers

    NASA Astrophysics Data System (ADS)

    Gago, A. S.; Ansar, S. A.; Saruhan, B.; Schulz, U.; Lettenmeier, P.; Cañas, N. A.; Gazdzicki, P.; Morawietz, T.; Hiesgen, R.; Arnold, J.; Friedrich, K. A.

    2016-03-01

    Proton exchange membrane (PEM) electrolysis is a promising technology for large H2 production from surplus electricity from renewable sources. However, the electrolyser stack is costly due to the manufacture of bipolar plates (BPP). Stainless steel can be used as an alternative, but it must be coated. Herein, dense titanium coatings are produced on stainless steel substrates by vacuum plasma spraying (VPS). Further surface modification of the Ti coating with Pt (8 wt% Pt/Ti) deposited by physical vapour deposition (PVD) magnetron sputtering reduces the interfacial contact resistance (ICR). The Ti and Pt/Ti coatings are characterised by scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction (XRD), and X-ray photoelectron microscopy (XPS). Subsequently, the coatings are evaluated in simulated and real PEM electrolyser environments, and they managed to fully protect the stainless steel substrate. In contrast, the absence of the thermally sprayed Ti layer between Pt and stainless steel leads to pitting corrosion. The Pt/Ti coating is tested in a PEM electrolyser cell for almost 200 h, exhibiting an average degradation rate of 26.5 μV h-1. The results reported here demonstrate the possibility of using stainless steel as a base material for the stack of a PEM electrolyser.

  12. A {1,2}-Order Plate Theory Accounting for Three-Dimensional Thermoelastic Deformations in Thick Composite and Sandwich Laminates

    NASA Technical Reports Server (NTRS)

    Tessler, A.; Annett, M. S.; Gendron, G.

    2001-01-01

    A {1,2}-order theory for laminated composite and sandwich plates is extended to include thermoelastic effects. The theory incorporates all three-dimensional strains and stresses. Mixed-field assumptions are introduced which include linear in-plane displacements, parabolic transverse displacement and shear strains, and a cubic distribution of the transverse normal stress. Least squares strain compatibility conditions and exact traction boundary conditions are enforced to yield higher polynomial degree distributions for the transverse shear strains and transverse normal stress through the plate thickness. The principle of virtual work is used to derive a 10th-order system of equilibrium equations and associated Poisson boundary conditions. The predictive capability of the theory is demonstrated using a closed-form analytic solution for a simply-supported rectangular plate subjected to a linearly varying temperature field across the thickness. Several thin and moderately thick laminated composite and sandwich plates are analyzed. Numerical comparisons are made with corresponding solutions of the first-order shear deformation theory and three-dimensional elasticity theory. These results, which closely approximate the three-dimensional elasticity solutions, demonstrate that through - the - thickness deformations even in relatively thin and, especially in thick. composite and sandwich laminates can be significant under severe thermal gradients. The {1,2}-order kinematic assumptions insure an overall accurate theory that is in general superior and, in some cases, equivalent to the first-order theory.

  13. 78 FR 50378 - Diffusion-Annealed, Nickel-Plated Flat-Rolled Steel Products From Japan: Postponement of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-19

    ...: Initiation of Antidumping Duty Investigation, 78 FR 23905 (April 23, 2013). The current deadline for the... International Trade Administration Diffusion-Annealed, Nickel-Plated Flat-Rolled Steel Products From Japan... Department) initiated the antidumping duty investigation of diffusion-annealed, nickel-plated...

  14. 78 FR 75371 - Diffusion-Annealed, Nickel-Plated Flat-Rolled Steel Products From Japan; Scheduling of the Final...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-11

    ... accounts for at least 80 percent of the alloy by volume. (78 FR 69371, November 19, 2013) For further... COMMISSION Diffusion-Annealed, Nickel-Plated Flat-Rolled Steel Products From Japan; Scheduling of the Final... of less-than-fair-value imports from Japan of diffusion-annealed, nickel- plated flat-rolled...

  15. 77 FR 37439 - Clad Steel Plate From Japan; Notice of Commission Determination To Conduct a Full Five-Year Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-21

    ... responses to its notice of institution (77 FR 5052, February 1, 2012) were adequate. A record of the... COMMISSION Clad Steel Plate From Japan; Notice of Commission Determination To Conduct a Full Five-Year Review... plate from Japan would be likely to lead to continuation or recurrence of material injury within...

  16. Room temperature crack growth rates and -20 deg F fracture toughness of welded 1 1/4 inch A-285 steel plate

    NASA Technical Reports Server (NTRS)

    Shannon, J. L., Jr.; Rzasnicki, W.

    1977-01-01

    Data are presented which were developed in support of a structural assessment of NASA-LEWIS' 10-foot by 10-foot supersonic wind tunnel, critical portions of which are fabricated from rolled and welded 1 1/4 inch thick A-285 steel plate. Test material was flame cut from the tunnel wall and included longitudinal and circumferential weld joints. Parent metal, welds, and weld heat affected zone were tested. Tensile strength and fracture toughness were determined at -20 F, the estimated lowest tunnel operating temperature. Crack growth rates were measured at room temperature, where growth rates in service are expected to be highest.

  17. Thick-section Laser and Hybrid Welding of Austenitic Stainless Steels

    NASA Astrophysics Data System (ADS)

    Kujanpää, Veli

    Austenitic stainless steels are generally known to have very good laser weldability, when ordinary grades of sheets are concerned. But it is not necessarily the case, if special grades of fully austenitic structures with e.g. high molybdenum, or thick-section are used. It is also known that hot cracking susceptibility is strictly controlled by composition and welding parameters. If solidification is primary ferritic, hot cracking resistance is dramatically increased. It is also well known that laser welding needs a careful control of weld edge preparation and air gap between the edges. The dependence on edge quality can be decreased by using filler metal, either cold wire, hot wire or hybrid laser-arc welding. An additional role is high molybdenum contents where micro segregation can cause low local contents in weld which can decrease the corrosion properties, if filler metal is not used. Another feature in laser welding is its incomplete mixing, especially in thick section applications. It causes inhomogeneity, which can make uneven microstructure, as well as uneven mechanical and corrosion properties In this presentation the features of laser welding of thick section austenitic stainless steels are highlighted. Thick section (up to 60 mm) can be made by multi-pass laser or laser hybrid welding. In addition to using filler metal, it requires careful joint figure planning, laser head planning, weld parameter planning, weld filler metal selection, non-destructive and destructive testing and metallography to guarantee high-quality welds in practice. In addition some tests with micro segregation is presented. Also some examples of incomplete mixing is presented.

  18. Development of a System to Measure Recrystallization Ratio of Plate Steel Using Laser-Based Ultrasonics

    SciTech Connect

    Nagata, Y.; Yamada, H.; Hamada, N.; Lim, C. S.; Yi, J. K.; Hong, S. T.; Choi, S. G.; Oh, K. J.

    2007-03-21

    In this study, a material property measurement system of plate steel using laser-based ultrasonics has been developed. The system consists of pulsed Nd:YAG laser for ultrasonic generation, CW single frequency laser and Fabry-Perot interferometer for ultrasonic detection. The system generates and detects shear waves and precisely calculates anisotropy parameter values of shear wave velocities of test samples. At first, the relationship between anisotropy parameter and recrystallization ratio was investigated in the laboratory experiments. Quenching the test samples just after the ultrasonic measurement, recrystallization ratio values were measured by the conventional microscopic method. According to the experimental results, the anisotropy parameter values showed a good correlation with actual recrystallization ratio values. To evaluate the applicability of the system to real steel production line, the system was installed in hot rolling pilot plant of plate steel. As the results, it was demonstrated that the system could measure the recrystallization ratio using the anisotropy parameter values of shear wave velocities, even in the environment of hot rolling pilot plant.

  19. Experimental, numerical, and analytical studies on the seismic response of steel-plate concrete (SC) composite shear walls

    NASA Astrophysics Data System (ADS)

    Epackachi, Siamak

    The seismic performance of rectangular steel-plate concrete (SC) composite shear walls is assessed for application to buildings and mission-critical infrastructure. The SC walls considered in this study were composed of two steel faceplates and infill concrete. The steel faceplates were connected together and to the infill concrete using tie rods and headed studs, respectively. The research focused on the in-plane behavior of flexure- and flexure-shear-critical SC walls. An experimental program was executed in the NEES laboratory at the University at Buffalo and was followed by numerical and analytical studies. In the experimental program, four large-size specimens were tested under displacement-controlled cyclic loading. The design variables considered in the testing program included wall thickness, reinforcement ratio, and slenderness ratio. The aspect ratio (height-to-length) of the four walls was 1.0. Each SC wall was installed on top of a re-usable foundation block. A bolted baseplate to RC foundation connection was used for all four walls. The walls were identified to be flexure- and flexure-shear critical. The progression of damage in the four walls was identical, namely, cracking and crushing of the infill concrete at the toes of the walls, outward buckling and yielding of the steel faceplates near the base of the wall, and tearing of the faceplates at their junctions with the baseplate. A robust finite element model was developed in LS-DYNA for nonlinear cyclic analysis of the flexure- and flexure-shear-critical SC walls. The DYNA model was validated using the results of the cyclic tests of the four SC walls. The validated and benchmarked models were then used to conduct a parametric study, which investigated the effects of wall aspect ratio, reinforcement ratio, wall thickness, and uniaxial concrete compressive strength on the in-plane response of SC walls. Simplified analytical models, suitable for preliminary analysis and design of SC walls, were

  20. Reliability of thickness of oxide layer of stainless steels with chromium using cellular automaton model

    SciTech Connect

    Lan, K. C.; Chen, Y.; Yu, G. P.; Hung, T. C.

    2012-07-01

    A cellular automaton (CA) model based on the stochastic approach was proposed to simulate the process of oxidation and corrosion of stainless steels with different contents of chromium in-flowing lead bismuth eutectic (LBE). Chromium is a crucial alloying element added in stainless steels and nickel based alloys which have been proposed to be used in advanced nuclear reactors to improve resistance of the oxidation and corrosion. To verify the reliability of the thickness of the oxide layer by CA model, the influence of the stochastic character on the simulating results was investigated as changing parameter of chromium content of structure material in this study. Ten independent simulations were run for each specific environment. A stable and reasonable results were obtained according to the chi-square of goodness-of-fit test, the chi-square of the thickness of oxide layer for each case were significant smaller than critical chi-square value with a confidence level of 95% ({Chi}{sup 2}{alpha}, v = {Chi}{sup 2} 0.05,9 = 16.92). (authors)

  1. Thick shell tectonics on one-plate planets - Applications to Mars

    NASA Technical Reports Server (NTRS)

    Banerdt, W. B.; Saunders, R. S.; Phillips, R. J.; Sleep, N. H.

    1982-01-01

    Using the zero frequency equations of a self-gravitating elastic spherical shell overlying a strengthless fluid, a theory for stress distribution in thick lithospheric shells on one-plate planets is developed. For both the compensated and flexural modes, stress distributions in lithospheres are reviewed. For compensated modes, surface stresses depend only on surface topography, whereas for flexural modes it is shown that, for long wavelengths, stress trajectories are mainly dependent on the lithospheric lateral density distribution and not on elastic properties. Computational analyses are performed for Mars, and it is found that isostatically compensated models correctly predict the graben structure in the immediate Tharsis region and a flexural loading model is satisfactory in explaining the graben in the regions surrounding Tharsis. A three-stage model for the evolution of Tharsis is hypothesized: isostasy with north-south graben formation on Tharsis, followed by flexural loading and radial graben formation on the perimeter of Tharsis, followed by a last stage of loading with little or no regional deformation.

  2. Quantitative histological evaluation of early fracture healing of cortical bones immobilized by stainless steel and composite plates.

    PubMed

    Akeson, W H; Woo, S L; Coutts, R D; Matthews, J V; Gonsalves, M; Amiel, D

    1975-11-24

    Internal fixation devices of less bending stiffness than conventional plates made of stainless steel or vitallium were compared with conventional plates in a study of fracture healing. The material for this investigation was a fine graphite fiber reinforced methyl methacrylate resin composite with a modulus of elasticity approximately ten times less than that of stainless steel. Osteotomies were performed on canine radii. Internal fixation was accomplished by means of a composite plate on the left side, and a stainless steel plate on the right. Clinical assessment, as well as biomechanical and quantitative histological techniques, were used to compare osteotomy healing of the two sides. At four months, all osteotomies had healed and the bioengineering tests showed radii from the two sides had equivalent strength. However, significantly less cortical porosity was found in the side with the composite plate (6.8 per cent), as compared to that of the stainless steel plated side (14 per cent). These results suggest that a less stiff fixation plate may have some advantage in the treatment of long bone fracture if there is no implant failure, and if union rates are equivalent.

  3. Consideration on Elastic Vibration Control of a Magnetically Levitated Thin Steel Plate Using Sliding Mode Control

    NASA Astrophysics Data System (ADS)

    Hasegawa, Shinya; Oshinoya, Yasuo; Ishibashi, Kazuhisa

    We have proposed a magnetic levitation control system for a sheet steel and confirmed the realization by a digital control experiment. However, because of the strong nonlineality of the attractive force of the electromagnet and the various uncertainties in the circuit current such as changes in the resistance due to heat generation of the electromagnet, stability of levitation has not been sufficiently ensured. In this study, we aim to develop a noncontact support system for thin steel plates with high robustness using sliding mode control, which is tolerant to factors such as disturbances within control signals and external forces affecting the system. As a result, it was verified that the suppressive effect of the sliding mode control on disturbances is sufficient, and that the application of the continuous model provides the construction of a system with robustness to the disturbance of the external forces.

  4. Algorithm for detecting seam cracks in steel plates using a Gabor filter combination method.

    PubMed

    Choi, Doo-Chul; Jeon, Yong-Ju; Lee, Sang Jun; Yun, Jong Pil; Kim, Sang Woo

    2014-08-01

    Presently, product inspection based on vision systems is an important part of the steel-manufacturing industry. In this work, we focus on the detection of seam cracks in the edge region of steel plates. Seam cracks are generated in the vertical direction, and their width range is 0.2-0.6 mm. Moreover, the gray values of seam cracks are only 20-30 gray levels lower than those of the neighboring surface. Owing to these characteristics, we propose a new algorithm for detecting seam cracks using a Gabor filter combination method. To enhance the performance, we extracted features of seam cracks and employed a support vector machine classifier. The experimental results show that the proposed algorithm is suitable for detecting seam cracks.

  5. Non-destructive evaluation of the cladding thickness in LEU fuel plates by accurate ultrasonic scanning technique

    SciTech Connect

    Borring, J.; Gundtoft, H.E.; Borum, K.K.; Toft, P.

    1997-08-01

    In an effort to improve their ultrasonic scanning technique for accurate determination of the cladding thickness in LEU fuel plates, new equipment and modifications to the existing hardware and software have been tested and evaluated. The authors are now able to measure an aluminium thickness down to 0.25 mm instead of the previous 0.35 mm. Furthermore, they have shown how the measuring sensitivity can be improved from 0.03 mm to 0.01 mm. It has now become possible to check their standard fuel plates for DR3 against the minimum cladding thickness requirements non-destructively. Such measurements open the possibility for the acceptance of a thinner nominal cladding than normally used today.

  6. Use of characteristic orthogonal polynomials in two dimensions for transverse vibration of elliptic and circular plates with variable thickness

    NASA Astrophysics Data System (ADS)

    Singh, B.; Chakraverty, S.

    1994-06-01

    Free flexural vibrations of elliptic and circular plates with variable thickness have been studied by using characteristic orthogonal polynomials satisfying the essential boundary conditions and the Rayleigh-Ritz method. Two types of variable thickness have been considered: in the first case it varies linearly or quadratically parallel to the major axis; in the second case it is taken to be the same along concentric ellipses but varies linearly or quadratically as we move from one ellipse to another. The results for a circular plate with variable thickness follow as a special case. Computations have been carried out for clamped, simply supported, and free boundary. Comparison has been made with known results in special cases.

  7. A rapid determination of brass composition and plating weight on brass-plated steel wire and cord by X-ray fluorescence spectrometry.

    PubMed

    van Lingen, R L; Schuurs, H E; Veenstra, G J; Roes, J M; Loef, E C

    1980-08-01

    A rapid and simple means for determination of the brass composition and plating weight on brass-plated steel wire and cord is described. The sample preparation procedure is very simple; wires can be mounted as such, and cords can be mounted either as such or as unstranded single wires. The copper content of the brass and the plating weight are determined by measuring the intensities of the different elements by sequential X-ray fluorescence spectrometry (XRF). There is good agreement between the results obtained by XRF and those obtained by differential pulse polarography or spectrophotometry/ complexometry; the precision is even better. PMID:18962748

  8. Residual Stresses in LENS-Deposited AISI 410 Stainless Steel Plates

    SciTech Connect

    Wang, L; Felicellli, S D; Pratt, Phillip R

    2008-01-01

    The residual stress in thin plate components deposited by the laser engineered net shaping (LENS{reg_sign}) process was investigated experimentally and numerically. Neutron diffraction mapping was used to characterize the residual stress in LENS-deposited AISI 410 stainless steel thin wall plates. Using the commercial welding software SYSWELD, a thermo-mechanical three-dimensional finite element model was developed, which considers also the effect of metallurgical phase transformations. The model was employed to predict the temperature history and the residual stress field during the LENS process. Several simulations were performed with the geometry and process parameters that were used to build the experimental samples. The origin of the residual stress distribution is discussed based on the thermal histories of the samples, and the modeling results are compared with measurements obtained by neutron diffraction mapping.

  9. Investigating Transition Zone Thickness Variation under the Arabian Plate: Evidence Lacking for Deep Mantle Upwellings

    NASA Astrophysics Data System (ADS)

    Juliá, J.; Tang, Z.; Mai, P. M.; Zahran, H.

    2014-12-01

    Cenozoic volcanic outcrops in Arabia - locally known as harrats - span more than 2000 km along the western half of the Arabian plate, from eastern Yemen to southern Syria. The magmatism is bimodal in character, with older volcanics (30 to 20 My) being tholeiitic-to-transitional and paralleling the Red Sea margin, and younger volcanics (12 Ma to Recent) being transitional-to-strongly-alkalic and aligning in a more north-south direction. The bimodal character has been attributed to a two-stage rifting process along the Red Sea, where the old volcanics would have produced from shallow sources related to an initial passive rifting stage, and young volcanics would have originated from one or more deep-seated mantle plumes driving present active rifting. Early models suggested the harrats would have resulted from either lateral flow from the Afar plume in Ethiopia, or more locally from a separate mantle plume directly located under the shield. Most recently, tomographic images of the Arabian mantle have suggested the northern harrats could be resulting from flow originating at a deep plume under Jordan. In this work, we investigate the location of deep mantle plumes under the Arabian plate by mapping transition zone thickness with teleseismic receiver functions. The transition zone is bounded by seismic discontinuities, nominally at 410 and 660 km depth, originating from phase transitions in the olivine-normative component of the mantle. The precise depth of the discontinuities is strongly dependent on temperature and, due to the opposing signs of the corresponding Clapeyron slopes, positive temperature anomalies are expected to result in thinning of the transition zone. Our dataset consists of ~5000 low-frequency (fc < 0.25 Hz) receiver function waveforms obtained at ~110 broadband stations belonging to a number of permanent and temporary seismic networks in the region. The receiver functions were migrated to depth and stacked along a ~2000 km long record section

  10. Manufacturing and Performance Assessment of Stamped, Laser Welded, and Nitrided FeCrV Stainless Steel Bipolar Plates for Proton Exchange Membrane Fuel Cells

    SciTech Connect

    Brady, Michael P; Abdelhamid, Mahmoud; Dadheech, G; Bradley, J; Toops, Todd J; Meyer III, Harry M; Tortorelli, Peter F

    2013-01-01

    A manufacturing and single-cell fuel cell performance study of stamped, laser welded, and gas nitrided ferritic stainless steel foils in an advanced automotive bipolar plate assembly design was performed. Two developmental foil compositions were studied: Fee20Cre4V and Fee23Cre4V wt.%. Foils 0.1 mm thick were stamped and then laser welded together to create single bipolar plate assemblies with cooling channels. The plates were then surface treated by pre-oxidation and nitridation in N2e4H2 based gas mixtures using either a conventional furnace or a short-cycle quartz lamp infrared heating system. Single-cell fuel cell testing was performed at 80 C for 500 h at 0.3 A/cm2 using 100% humidification and a 100%/40% humidification cycle that stresses the membrane and enhances release of the fluoride ion and promotes a more corrosive environment for the bipolar plates. Periodic high frequency resistance potential-current scans during the 500 h fuel cell test and posttest analysis of the membrane indicated no resistance increase of the plates and only trace levels of metal ion contamination.

  11. Comparison of microstructural properties and Charpy impact behaviour between different plates of the Eurofer97 steel and effect of isothermal ageing

    NASA Astrophysics Data System (ADS)

    Stratil, Ludek; Hadraba, Hynek; Bursik, Jiri; Dlouhy, Ivo

    2011-09-01

    The microstructure and fracture properties of the Eurofer97 steel plates of thickness 14 mm and 25 mm were investigated in as-received state and in state after long-term thermal ageing (550 °C/5000 h). Detailed microstructure studies were carried out by means of optical light, electron and quantitative electron microscopy. Mechanical properties were evaluated by means of Charpy impact testing and hardness testing and fracture surfaces were fractographically analysed in macro and microscales. The microstructure of the Eurofer97 consisted of tempered martensite with M 23C 6 and MX precipitates. Microstructure of 14 mm plate was more homogenous and fine grained than 25 mm plate. Due to different microstructure the tDBTT of thicker plate was on +10 °C higher than for 14 mm plate for which reached -60 °C. Slight microstructural changes on the level of subgrain consisting of their partial recrystallization and slight carbide coarsening were observed after applied ageing. The isothermal ageing caused evident shift in tDBTT about +5 °C, which was most likely caused by recrystallization of subgrains.

  12. Pressure Measurements in a PBX 9501 Gauged Acceptor When Impacted by a Steel Plate that is Accelerated by a Thermally Cooked Off PBX 9501 Charge

    SciTech Connect

    Forbes, J W; Garcia, F; Urtiew, P A; Vandersall, K S; Greenwood, D W; Tarver, C M

    2002-03-11

    Measuring the violence of a thermal explosion of a cased explosive is important for evaluating safety issues of explosive devices in fires. A sympathetic initiation scenario was studied here where a 9.0 cm diameter by 2.5 cm thick disc of PBX 9501 donor charge encased in a 304 stainless steel assembly was heated on top and bottom flat surfaces until it thermally exploded. The initial heating rate at the metal/explosive interface was 5 C per minute until it reaches 170 C; then this temperature is held for 35 minutes to allow temperature equilibration to within a few degrees throughout the explosive. The heating resumed at a rate of 1 C per minute until the PBX 9501 donor thermally exploded. A PBX 9501 acceptor charge with carbon resistor and manganin foil pressure gauges inserted at various depths was placed at a 10 cm standoff distance from the donor charge's top steel cover plate. Piezoelectric arrival time pins were placed in front of the acceptor surface to measure the velocity and shape of the impacting plate. The stainless steel cover plate of the donor charge had a nominal velocity of 0.55 {+-} 0.04 mm/{micro}s upon impact and was non-symmetrically warped. The impact of the tilted curved plate induced a three-dimensional compression wave into the acceptor. The rise times of the pressure waves were nominally 1.5 {micro}s with the closest carbon resistor gauges giving peak pressure of 10 kb that decayed to 3 kb for a wave run distance of 2.4 cm.

  13. Characterization and Cytotoxic Assessment of Ballistic Aerosol Particulates for Tungsten Alloy Penetrators into Steel Target Plates

    PubMed Central

    Machado, Brenda I.; Murr, Lawrence E.; Suro, Raquel M.; Gaytan, Sara M.; Ramirez, Diana A.; Garza, Kristine M.; Schuster, Brian E.

    2010-01-01

    The nature and constituents of ballistic aerosol created by kinetic energy penetrator rods of tungsten heavy alloys (W-Fe-Ni and W-Fe-Co) perforating steel target plates was characterized by scanning and transmission electron microscopy. These aerosol regimes, which can occur in closed, armored military vehicle penetration, are of concern for potential health effects, especially as a consequence of being inhaled. In a controlled volume containing 10 equispaced steel target plates, particulates were systematically collected onto special filters. Filter collections were examined by scanning and transmission electron microscopy (SEM and TEM) which included energy-dispersive (X-ray) spectrometry (EDS). Dark-field TEM identified a significant nanoparticle concentration while EDS in the SEM identified the propensity of mass fraction particulates to consist of Fe and FeO, representing target erosion and formation of an accumulating debris field. Direct exposure of human epithelial cells (A549), a model for lung tissue, to particulates (especially nanoparticulates) collected on individual filters demonstrated induction of rapid and global cell death to the extent that production of inflammatory cytokines was entirely inhibited. These observations along with comparisons of a wide range of other nanoparticulate species exhibiting cell death in A549 culture may suggest severe human toxicity potential for inhaled ballistic aerosol, but the complexity of the aerosol (particulate) mix has not yet allowed any particular chemical composition to be identified. PMID:20948926

  14. Numerical study on the freely falling plate: Effects of density ratio and thickness-to-length ratio

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Shu, C.; Teo, C. J.; Yang, L. M.

    2016-10-01

    A numerical study on two-dimensional (2D) rectangular plates falling freely in water is carried out in the range of 1.2 ≤ ρs/f ≤ 5.0 and 1/20 ≤ β ≤ 1/4, where ρs/f is the solid-to-water density ratio and β is the plate thickness-to-length ratio. To study this problem, the immersed boundary-lattice Boltzmann flux solver in a moving frame is applied and validated. For the numerical result, a phase diagram is constructed for fluttering, tumbling, and apparent chaotic motions of the plate parameterized using ρs/f and β. The evolution of vortical structures in both modes is decomposed into three typical stages of initial transient, deep gliding, and pitching-up. Various mean and instantaneous fluid properties are illustrated and analyzed. It is found that fluttering frequencies have a linear relationship with the Froude number for all cases considered. Lift forces on fluttering plates are linearly dependent on the angle of attack α at the cusp-like turning point when |" separators=" α | ≥ π / 5 . Hysteresis of the lift force on fluttering plates is observed and explained whilst the drag forces are the same when |" separators=" α | has the same value. Meanwhile, the drag force in the tumbling motion may have a positive propulsive effect when the plate begins a tumbling rotation from α = π/2.

  15. Application of the HHT Method to the Non-contact Thickness Measurement of an Axially Moving Thin Plate

    NASA Astrophysics Data System (ADS)

    Wu, Yangfang; Lu, Qianqian; Xia, Chunlin; Ding, Fan

    2016-06-01

    Non-contact thickness measuring systems can be found in a wide spectrum of technologies. In this paper, Hilbert-Huang transform method is used to analyze the real time signals of a measuring system which includes two round conveyor strings carrying a thin plate, a solar wafer as a sample under test. The vibrations of moving strings and the plate, which are sensitive to moving speed and initial tension in the string, are introduced briefly; the relevant analyses should be helpful for the system design. Using EMD-based time-domain filtering and complementary method, thickness variations and error bands are estimated for different cases. The results show that HHT method as an adaptive time-frequency method, should be potential in measurement engineering applications.

  16. Out-of-Plane Bending of Beam-Wall Joints Based on Elastic Medium Thick Plate Theory

    NASA Astrophysics Data System (ADS)

    Zhifei, Shi; Shuling, Yang

    2011-01-01

    The out-of-plane response of beam-wall joints is studied in the present paper. The governing equations of shear walls obtained by using the orthotropic elastic medium thick plate theory are solved. Additionally, different reinforcing ratios for shear walls in different directions are considered. It is also found that reinforced shear walls can be simplified as isotropic walls no matter whether the reinforcing ratio in both directions is the same or not for most engineering structures. In view of this, the out-of-plane response of beam-wall joints is investigated based on the isotropic medium thick plate theory and the effects of geometrical parameters of the joints on the responses of the shear walls are discussed in detail. For further simplification, the equivalent frame model is introduced and a very simple formula to determine the equivalent width is suggested for practical applications.

  17. Hypervelocity plate acceleration

    SciTech Connect

    Marsh, S.P.; Tan, T.H.

    1991-01-01

    Shock tubes have been used to accelerate 1.5-mm-thick stainless steel plates to high velocity while retaining their integrity. The fast shock tubes are 5.1-cm-diameter, 15.2-cm-long cylinders of PBX-9501 explosive containing a 1.1-cm-diameter cylindrical core of low-density polystyrene foam. The plates have been placed directly in contact with one face of the explosive system. Plane-wave detonation was initiated on the opposite face. A Mach disk was formed in the imploding styrofoam core, which provided the impulse required to accelerate the metal plate to high velocity. Parametric studies were made on this system to find the effect of varying plate metal, plate thickness, foam properties, and addition of a barrel. A maximum plate velocity of 9.0 km/s has been observed. 6 refs., 17 figs.

  18. Differential Quadrature and RAYLEIGH RITZ Methods to Determine the Fundamental Frequencies of Simply Supported Rectangular Plates with Linearly Varying Thickness

    NASA Astrophysics Data System (ADS)

    Kukreti, A. R.; Farsa, J.; Bert, C. W.

    1996-01-01

    In this paper, differential quadrature and Rayleigh-Ritz methods are presented for computation of the fundamental frequency of simply supported, homogeneous, isotropic, thin rectangular plates with the thickness tapering linearly in one direction. The complete analytical formulation and solution procedure is presented for both methods. Results obtained by these two methods are compared with available results in the literature and by the finite element method. Effects of the level of discretization, aspect and taper ratios are also presented.

  19. Texture Study Across Thickness of API X70 Steel After Hot Deformation and Different Posttreatments

    NASA Astrophysics Data System (ADS)

    Masoumi, M.; Herculano, L. F. G.; Almeida, A. A.; Béreš, M.; de Abreu, H. F. G.

    2016-01-01

    In the present study, the texture heterogeneity across the thickness of API X70 steel subjected to hot deformation and different posttreatments was investigated. X-ray diffraction and electron backscattered diffraction were used to analyze crystallographic orientation and grain boundary distributions at the center and surface layers of specimens. The initial material was rolled at 1000°C to 67% reduction; then one deformed sample was cooled in air, and the others were quenched in water and finally tempered at 350°C and 700°C for 1 h. The shear strain generated by friction between rolls and strip induces heterogeneity across thickness. The results showed that in the center layer, the (001)[ bar{1}bar{1}0 ] texture dominated in all specimens, whereas the {110}//ND component was developed at the surface layer. Furthermore, a local misorientation histogram showed that the surface layer was subjected to a higher degree of deformation in comparison with the center layer due to additional shear deformation.

  20. Influence of Cu-Interlayer Thickness on Microstructures and Mechanical Properties of MIG-Welded Mg-Steel Joints

    NASA Astrophysics Data System (ADS)

    Wang, X. Y.; Sun, D. Q.; Sun, Y.

    2016-03-01

    The joining of AZ31B Mg alloy to Q235 steel was realized by metal inert-gas arc welding using Cu-interlayer. Microstructure characteristics and mechanical properties of Mg-steel joints with Cu-interlayer of different thicknesses were investigated. The results indicated that acceptable joints with sound appearance could be obtained by adjusting the thickness to the range of 0.1-0.2 mm. In particular, at the thickness of 0.15 mm, the average tensile strength reached a maximum of 190 MPa, representing a 79% joint efficiency relative to the Mg base metal. Further increasing the thickness would cause more formation of coarse and thick Mg-Cu eutectic structure and Mg-Al-Cu ternary phase, which resulted in the decrease of joint strength. Therefore, the best thickness of Cu-interlayer to obtain high strength of Mg-steel MIG-welded joint was in the range of 0.1-0.15 mm. The average microhardness reached the maximum value in the reaction layer because of the presence of FeAl intermetallic compounds.

  1. Probing Formability Improvement of Ultra-thin Ferritic Stainless Steel Bipolar Plate of PEMFC in Non-conventional Forming Process

    NASA Astrophysics Data System (ADS)

    Bong, Hyuk Jong; Barlat, Frédéric; Lee, Myoung-Gyu

    2016-08-01

    Formability increase in non-conventional forming profiles programmed in the servo-press was investigated using finite element analysis. As an application, forming experiment on a 0.15-mm-thick ferritic stainless steel sheet for a bipolar plate, a primary component of a proton exchange membrane fuel cell, was conducted. Four different forming profiles were considered to investigate the effects of forming profiles on formability and shape accuracy. The four motions included conventional V motion, holding motion, W motion, and oscillating motion. Among the four motions, the holding motion, in which the slide was held for a certain period at the bottom dead point, led to the best formability. Finite element simulations were conducted to validate the experimental results and to probe the formability improvement in the non-conventional forming profiles. A creep model to address stress relaxation effect along with tool elastic recovery was implemented using a user-material subroutine, CREEP in ABAQUS finite element software. The stress relaxation and variable contact conditions during the holding and oscillating profiles were found to be the main mechanism of formability improvement.

  2. Scattering of the fundamental shear horizontal guided wave by a part-thickness crack in an isotropic plate.

    PubMed

    Rajagopal, P; Lowe, M J S

    2008-11-01

    The interaction of the fundamental shear horizontal (SH0) guided mode with part-thickness cracks in an isotropic plate is studied as an extension within the context and general framework of previous work ["Short range scattering of the fundamental shear horizontal guided wave mode normally incident at a through thickness crack in an isotropic plate," J. Acoust Soc. Am. 122, 1527-1538 (2007); "Angular influence on scattering when the fundamental shear horizontal guided wave mode is incident at a through-thickness crack in an isotropic plate," J. Acoust. Soc. Am. 124, 2021-2030 (2008)] by the authors with through-cracks. The symmetric incidence case where the principal direction of the incident beam bisects the crack face at 90 degrees is studied using finite element simulations validated by experiments and analysis, and conclusions are inferred for general incidence angles using insights obtained with the through-thickness studies. The influence of the crack length and the monitoring distance on the specular reflection is first examined, followed by a study of the angular profile of the reflected field. With each crack length considered, the crack depth and operating frequencies are varied. For all crack depths studied, the trend of the results is identical to that for the corresponding through-thickness case and the values differ only by a frequency dependent scale factor. Theoretical analysis is used to understand the physical basis for such behavior and estimates are suggested for the scale factor--exact for the high-frequency scattering regime and empirical for the medium- and low-frequency regimes.

  3. Laser-assisted shearing of stainless steel and spring steel plates with the use of a laser scanner system - new hybrid production technology for the sheet metal industry

    NASA Astrophysics Data System (ADS)

    Emonts, Michael; Brecher, Christian

    The Fraunhofer IPT recently developed a new hybrid laser-assisted shearing process which enables conventional punching machines to produce punched sheared edges with continuous flush-cut surfaces in stainless steel plates (1.4301), spring steel plates (1.4310) and titanium alloy plates (3.7165). The new combination of localised laser-induced softening of the plate material in the shearing zone and the shearing process significantly reduces both process forces and process-related noise emissions. A modular system-upgrade for existing punching machines allows laser-assisted shearing to be implemented without the need for expensive new machine designs. The principle of the laser-assisted shearing process is based on briefly and selectively heating the material in the shearing zone via local absorption of laser radiation on the underside of the sheet metal plate before the punching tool comes into contact on the upper side of the metal plate. Laser-induced heating softens the material in the shearing zone within the material within a few tenths of a second. The laser-induced softening mechanisms also lead to a significant decrease of cutting forces as well as a reduction of tool wear, warping and noise emissions.

  4. Dynamic Fracture Initiation Toughness of ASTM A533, Grade B Steel Plate

    SciTech Connect

    Graham, S.M.; Link, R.E.

    1999-05-01

    The dynamic fracture toughness of an ASTM A533, Grade B steel plate was determined at several temperatures in the ductile-brittle transition region. Crack-tip loading rates ranged from approximately 10(sup3) to 10(sup5) MPa m/s. The fracture toughness was shown to decrease with increased loading rate. The dynamic fracture toughness was compared with results from previous investigations, and it was shown that the decrease in toughness due to increased loading rate at the highest test temperature was not as severe as reported in previous investigations. It was also shown that the reference temperature. T(sub0) was better index of the fracture toughness vs. temperature relationship than the nil-ductility temperature, RT(subNDT), for this material.

  5. A New XRD Method to Quantify Plate and Lath Martensites of Hardened Medium-Carbon Steel

    NASA Astrophysics Data System (ADS)

    Luo, Quanshun

    2016-06-01

    This paper introduces a new technique to separately measure the volume fraction and tetragonal ratio of co-existing lath and plate martensites in ultrahigh strength steel, and to calculate their different carbon contents. First, the two martensites are assumed to have body-centered tetragonal lattice structures of different tetragonal ratios. X-ray diffraction is then applied to obtain the overlapping {200} diffraction peak, which is subsequently separated as four sub-peaks using a self-made multiple Gaussian peak-fitting method to allow the measurement of the individual lattice parameters c and a. Finally, a modified equation is applied to calculate the carbon contents from the obtained tetragonal ratios. The new technique is then applied to investigate the effect of subsequent tempering on the decarbonization of the as-quenched martensites.

  6. 78 FR 19734 - Diffusion-Annealed, Nickel-Plated Steel Flat-Rolled Products From Japan; Institution of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-02

    .... Please consult the Commission's rules, as amended, 76 FR 61937 (Oct. 6, 2011) and the Commission's Handbook on Filing Procedures, 76 FR 62092 (Oct. 6, 2011), available on the Commission's Web site at http... COMMISSION Diffusion-Annealed, Nickel-Plated Steel Flat-Rolled Products From Japan; Institution...

  7. 75 FR 81966 - Stainless Steel Plate in Coils From Belgium: Extension of Time Limit for Preliminary Results of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-29

    ... Countervailing Duty Administrative Reviews and Requests for Revocation in Part, 75 FR 37759, 37763 (June 30, 2010... International Trade Administration Stainless Steel Plate in Coils From Belgium: Extension of Time Limit for.... Statutory Time Limits Section 751(a)(3)(A) of the Tariff Act of 1930, as amended (``the Act''), requires...

  8. 76 FR 25666 - Stainless Steel Plate in Coils from Belgium: Final Results of Full Sunset Review and Revocation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-05

    ... Initiation of Five-Year (``Sunset'') Review, 75 FR 30777 (June 2, 2010). ] Within the deadline specified in... From Belgium: Preliminary Results of Full Sunset Review, 75 FR 81217, 81218 (December 27, 2010... Duty Orders on Certain Stainless Steel Plate in Coils From Belgium, Italy, and South Africa, 70...

  9. 76 FR 45511 - Stainless Steel Plate in Coils From Belgium: Notice of Initiation of Antidumping Duty Changed...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-29

    ... Steel Plate in Coils From Belgium, Canada, Italy, the Republic of Korea, South Africa, and Taiwan, 68 FR... Coils From Belgium, Canada, Italy, the Republic of Korea, South Africa, and Taiwan, 68 FR 16117 (April 2... Coils From Belgium, Canada, Italy, the Republic of Korea, South Africa, and Taiwan, 68 FR 20114...

  10. 78 FR 30271 - Stainless Steel Plate in Coils From Belgium, South Africa, and Taiwan: Notice of Court Decision...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-22

    ... Orders: Stainless Steel Plate in Coils from Belgium, Italy and South Africa, 64 FR 25288 (May 11, 1999... Korea, South Africa, and Taiwan, 64 FR 27756 (May 21, 1999); Notice of Amended Antidumping Duty Orders..., and Taiwan, 68 FR 11520 (March 11, 2003); and Notice of Amended Countervailing Duty Orders;...

  11. 78 FR 73827 - Suspension Agreement on Certain Cut-to-Length Carbon Steel Plate From the Russian Federation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-09

    ... Certain Cut-to-Length Carbon Steel Plate from the Russian Federation, 68 FR 3859 (January 27, 2003... of the Antidumping Duty Suspension Agreement, 78 FR 61333 (October 3, 2013) and accompanying Decision... Russian Federation; Final Results of Antidumping Duty Administrative Review AGENCY: Enforcement...

  12. 75 FR 67346 - Stainless Steel Plate in Coils from South Korea: Correction to Final Results of the Expedited...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-02

    ... International Trade Administration Stainless Steel Plate in Coils from South Korea: Correction to Final Results... Co., Ltd. (POSCO), as well as the ``all others'' rate for South Korea. Specifically, the weighted-average margin for POSCO and the ``all others'' rate for South Korea, listed as 16.26 percent, should...

  13. 76 FR 56797 - Cut-to-Length Carbon-Quality Steel Plate From India, Indonesia, Italy, Japan, and Korea; Revised...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-14

    ... for the conduct of the subject five-year reviews (76 FR 22725, April 22, 2011). Due to scheduling... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Cut-to-Length Carbon-Quality Steel Plate From India, Indonesia, Italy, Japan, and Korea;...

  14. 75 FR 58351 - Stainless Steel Plate in Coils from Belgium: Extension of Time Limits for Preliminary and Final...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-24

    ... Tariff Act of 1930, as amended (``Act''). See Initiation of Five-year (``Sunset'') Review, 75 FR 30777... Determination Deadlines Pursuant to the Tariff Act of 1930, As Amended, 70 FR 24533 (May 10, 2005). Accordingly... International Trade Administration Stainless Steel Plate in Coils from Belgium: Extension of Time Limits...

  15. Stress corrosion evaluation of HP 9Ni-4Co-0.30C steel plate welds

    NASA Technical Reports Server (NTRS)

    Torres, Pablo D.

    1993-01-01

    A stress corrosion cracking (SCC) investigation was conducted on HP 9Ni-4Co-0.30C steel plate welds (welded by using straight polarity plasma arc and HP 9Ni-4Co-0.20C weld wire) since this material is being considered for use in the Advanced Solid Rocket Motor (ASRM) program. Prior to the welding, the material was double tempered at 538 C (1,000 F). After welding, only part of the material was stress relieved at 510 C (950 F) for 3 h. Round tensile specimens obtained from nonstress-relieved material were tested in 100-percent relative humidity at 38 C (100 F), in 3.5-percent NaCl alternate immersion, and in 5-percent salt spray at 35 C (95 F). Specimens obtained from stress-relieved material were tested in alternate immersion. The stress levels were 50, 75, and 90 percent of the corresponding 0.2-percent yield strength (YS). All the nonstress-relieved specimens exposed to salt spray and alternate immersion failed. Stress-relieved specimens (exposed to alternate immersion) failed at 75 and 90 percent of YS. No failures occurred at 50 percent of YS in the stress-relieved specimens which indicates a beneficial effect of the stress relief on the SCC resistance of these welds. The stress relief also had a positive effect on the mechanical properties of the welds (the most important being an increase of 21 percent on the YS). Under the conditions of these tests, the straight polarity plasma are welded HP 9Ni4Co-0.30C steel plate was found highly susceptible to SCC in the nonstress-relieved condition. This susceptibility to SCC was reduced by stress relieving.

  16. Azimuthal seismic anisotropy in the Earth's upper mantle and the thickness of tectonic plates

    NASA Astrophysics Data System (ADS)

    Schaeffer, A. J.; Lebedev, S.; Becker, T. W.

    2016-08-01

    Azimuthal seismic anisotropy, the dependence of seismic wave speeds on propagation azimuth, is largely due to fabrics within the Earth's crust and mantle, produced by deformation. It thus provides constraints on the distribution and evolution of deformation within the upper mantle. Here, we present a new global, azimuthally anisotropic model of the crust, upper mantle and transition zone. Two versions of this new model are computed: the rough SL2016svAr and the smooth SL2016svA. Both are constrained by a very large dataset of waveform fits (˜750, 000 vertical component seismogram fits). Automated, multimode waveform inversion was used to extract structural information from surface and S wave forms in broad period ranges (dominantly from 11 to 450 s, with the best global sampling in the 20-350 s range), yielding resolving power from the crust down to the transition zone. In our global tomographic inversion, regularization of anisotropy is implemented to more uniformly recover the amplitude and orientation of anisotropy, including near the poles. Our massive waveform dataset, with complementary large global networks and high-density regional array data, produces improved resolution of global azimuthal anisotropy patterns. We show that regional scale variations, related to regional lithospheric deformation and mantle flow, can now be resolved by the global models, in particular in densely sampled regions. For oceanic regions, we compare quantitatively the directions of past and present plate motions and the fast-propagation orientations of anisotropy. By doing so, we infer the depth of the boundary between the rigid, high-viscosity lithosphere (preserving ancient, frozen fabric) and the rheologically weak asthenosphere (characterized by fabric developed recently). The average depth of thus inferred rheological lithosphere-asthenosphere boundary (LAB) beneath the world's oceans is ˜115 km. The LAB depth displays a clear dependence on the age of the oceanic

  17. Azimuthal seismic anisotropy in the Earth's upper mantle and the thickness of tectonic plates

    NASA Astrophysics Data System (ADS)

    Schaeffer, A. J.; Lebedev, S.; Becker, T. W.

    2016-11-01

    Azimuthal seismic anisotropy, the dependence of seismic wave speeds on propagation azimuth, is largely due to fabrics within the Earth's crust and mantle, produced by deformation. It thus provides constraints on the distribution and evolution of deformation within the upper mantle. Here, we present a new global, azimuthally anisotropic model of the crust, upper mantle and transition zone. Two versions of this new model are computed: the rough SL2016svAr and the smooth SL2016svA. Both are constrained by a very large data set of waveform fits (˜750 000 vertical component seismogram fits). Automated, multimode waveform inversion was used to extract structural information from surface and S wave forms in broad period ranges (dominantly from 11 to 450 s, with the best global sampling in the 20-350 s range), yielding resolving power from the crust down to the transition zone. In our global tomographic inversion, regularization of anisotropy is implemented to more uniformly recover the amplitude and orientation of anisotropy, including near the poles. Our massive waveform data set, with complementary large global networks and high-density regional array data, produces improved resolution of global azimuthal anisotropy patterns. We show that regional scale variations, related to regional lithospheric deformation and mantle flow, can now be resolved by the global models, in particular in densely sampled regions. For oceanic regions, we compare quantitatively the directions of past and present plate motions and the fast-propagation orientations of anisotropy. By doing so, we infer the depth of the boundary between the rigid, high-viscosity lithosphere (preserving ancient, frozen fabric) and the rheologically weak asthenosphere (characterized by fabric developed recently). The average depth of thus inferred rheological lithosphere-asthenosphere boundary (LAB) beneath the world's oceans is ˜115 km. The LAB depth displays a clear dependence on the age of the oceanic

  18. Investigation of a fatigue failure in a stainless steel femoral plate.

    PubMed

    Marcomini, J B; Baptista, C A R P; Pascon, J P; Teixeira, R L; Reis, F P

    2014-10-01

    Surgical implants are exposed to severe working conditions and therefore a wide range of failure mechanisms may occur, including fatigue, corrosion, wear, fretting and combinations of them. The mechanical failures of metallic implants may also be influenced by several other factors, including the design, material, manufacturing, installation, postoperative complications and misuse. An 83-year-old patient suffered an oblique femoral shaft fracture due to a fall at home. A stainless steel locking compression plate (LCP) employed in the fracture reduction failed after four months and was sent back to the producer. A second LCP of the same type was implanted and also failed after six months. A failure analysis of the second femoral LCP is performed in this paper. The results demonstrate that poor material quality was decisive to the failure. The chemical analysis revealed a high P content in the steel, which is not in accordance to the standards. A combination of factors lead to LCP fracture and these include: brittle crack initiation due to phosphorus, segregation at grain boundaries, crack propagation due to cyclic loading and final fast fracture favored by the loss of ductility due to cold work. PMID:25023519

  19. Experimental Fatigue Study of Composite Patch Repaired Steel Plates with Cracks

    NASA Astrophysics Data System (ADS)

    Karatzas, Vasileios A.; Kotsidis, Elias A.; Tsouvalis, Nicholas G.

    2015-10-01

    Cracks are among the most commonly encountered defects in metallic structures operating at sea. Composite patch repairing is a repair method which is gaining popularity as it counters most of the problems faced by conventional renewal repairs. Extensive studies can be found in the literature addressing the efficiency of this novel repair method using techniques which meet higher performance and monitoring standards than these commonly found in naval applications. In this work the efficiency of practices widely used in the ship repair industry for the implementation of composite patch repairing is addressed. To this end, steel plates repaired with composite patches were tested under fatigue loading. The composite patches consisted of carbon fibers in epoxy matrix and were directly laminated to the steel surface using the vacuum infusion method. Two different surface preparation methods, namely grit-blasting and mechanical treatment with the use of a needle gun were studied. In addition, in order to account for the harsh environmental conditions during the operating life of the structure and to study its effect on the repair, two different aging scenarios were considered. Non-destructive evaluation of the patches was performed so as to assess the quality of the repair, and the evolution of debonding during testing.

  20. Analysis and seismic tests of composite shear walls with CFST columns and steel plate deep beams

    NASA Astrophysics Data System (ADS)

    Dong, Hongying; Cao, Wanlin; Wu, Haipeng; Zhang, Jianwei; Xu, Fangfang

    2013-12-01

    A composite shear wall concept based on concrete filled steel tube (CFST) columns and steel plate (SP) deep beams is proposed and examined in this study. The new wall is composed of three different energy dissipation elements: CFST columns; SP deep beams; and reinforced concrete (RC) strips. The RC strips are intended to allow the core structural elements — the CFST columns and SP deep beams — to work as a single structure to consume energy. Six specimens of different configurations were tested under cyclic loading. The resulting data are analyzed herein. In addition, numerical simulations of the stress and damage processes for each specimen were carried out, and simulations were completed for a range of location and span-height ratio variations for the SP beams. The simulations show good agreement with the test results. The core structure exhibits a ductile yielding mechanism characteristic of strong column-weak beam structures, hysteretic curves are plump and the composite shear wall exhibits several seismic defense lines. The deformation of the shear wall specimens with encased CFST column and SP deep beam design appears to be closer to that of entire shear walls. Establishing optimal design parameters for the configuration of SP deep beams is pivotal to the best seismic behavior of the wall. The new composite shear wall is therefore suitable for use in the seismic design of building structures.

  1. Propagation of the transverse normal stress in a thick plate due to distributed lateral impulsive loadings

    NASA Technical Reports Server (NTRS)

    Oline, L. W.

    1972-01-01

    A theoretical study of the elastic stresses produced in an infinite plate when struck by a high-speed object is presented. The solution is obtained by means of linear elasticity. Laplace transformation techniques are employed to solve the axisymmetric problem. The plate is loaded normal to its surface with a uniform load over a circular area. The normal stress at the wave front of the unreflected dilatation wave along the axis and its variation with the radius of loading are determined. Various facets of the problem are discussed.

  2. Asymptotic analysis of an arbitrary anisotropic plate of variable thickness (sloping shell)

    SciTech Connect

    Nazarov, S A

    2000-08-31

    The leading terms of the asymptotics of the solution of the problem of elasticity theory for a thin plane with curved bases are constructed; in addition, the resulting problem (a two-dimensional model) is written out explicitly. Arbitrary anisotropy of elastic properties is allowed; moreover, these properties may depend on the 'rapid' transversal and the 'slow' longitudinal variables. The substantiation of these asymptotics is carried out on the basis of Korn's weighted inequality. The cases of laminated plates, sloping shells, and plates with sharp edges are discussed separately.

  3. An investigation of the typical corrosion parameters used to test polymer electrolyte fuel cell bipolar plate coatings, with titanium nitride coated stainless steel as a case study

    NASA Astrophysics Data System (ADS)

    Orsi, A.; Kongstein, O. E.; Hamilton, P. J.; Oedegaard, A.; Svenum, I. H.; Cooke, K.

    2015-07-01

    Stainless steel bipolar plates (BPP) for polymer electrolyte membrane fuel cells (PEMFCs) have good manufacturability, durability and low costs, but inadequate corrosion resistance and elevated interfacial contact resistance (ICR) in the fuel cell environment. Thin film coatings of titanium nitride (TiN) of 1 μm in thickness, were deposited by means of physical vapour deposition (PVD) process on to stainless steel (SS) 316L substrates and were evaluated, in a series of tests, for their level of corrosion protection and ICR. In the ex-situ corrosion tests, variables such as applied potential, experimental duration and pH of the sulphate electrolyte at 80 °C were altered. The ICR values were found to increase after exposure to greater applied potentials and electrolytes of a higher pH. In terms of experimental duration, the ICR increased most rapidly at the beginning of each experiment. It was also found that the oxidation of TiN was accelerated after exposure to electrolytes of a higher pH. When coated BPPs were incorporated into an accelerated fuel cell test, the degradation of the fuel cell cathode resembled the plates that were tested at the highest anodic potential (1.4 VSHE).

  4. Evaluation of crack arrest fracture toughness of parent plate, weld metal and heat affected zone of BIS 812 EMA ship plate steel

    NASA Astrophysics Data System (ADS)

    Burch, I. A.

    1993-10-01

    The steel chosen for the pressure hull of the Collins class submarine has undergone evaluation to compare the crack arrest fracture toughness, K(Ia), of the parent plate with that of weld metal and heat affected zone. The tests were conducted over a range of subzero temperatures on specimens slightly outside the ASTM standard test method specimen configuration. Shallow face grooved specimens were used to vary the propagating crack velocity from that of non face grooved specimens and determine if K(Ia), is sensitive to changes in crack velocity. The weld metal, heat affected zone (HAZ), and parent plate were assessed to determine if the welding process had a deleterious effect on the crack arrest properties of this particular steel. Tests on each of these regions revealed that, for the combination of parent plate, welding procedure and consumables, no adverse effect on crack arrest properties was encountered. Crack arrest fracture toughness of the weld metal and HAZ was superior to that of the parent plate at comparable temperatures.

  5. Surface characteristic of chemically converted graphene coated low carbon steel by electro spray coating method for polymer electrolyte membrane fuel cell bipolar plate.

    PubMed

    Kim, Jungsoo; Kim, Yang Do; Nam, Dae Geun

    2013-05-01

    Graphene was coated on low carbon steel (SS400) by electro spray coating method to improve its properties of corrosion resistance and contact resistance. Exfoliated graphite was made of the graphite by chemical treatment (Chemically Converted Graphene, CCG). CCG is distributed using dispersing agent, and low carbon steel was coated with diffuse graphene solution by electro spray coating method. The structure of the CCG was analyzed using XRD and the coating layer of surface was analyzed using SEM. Analysis showed that multi-layered graphite structure was destroyed and it was transformed in to fine layers graphene structure. And the result of SEM analysis on the surface and the cross section, graphene layer was uniformly formed with 3-5 microm thickness on the surface of substrate. Corrosion resistance test was applied in the corrosive solution which is similar to the polymer electrolyte membrane fuel cell (PEMFC) stack inside. And interfacial contact resistance (ICR) test was measured to simulate the internal operating conditions of PEMFC stack. As a result of measuring corrosion resistance and contact resistance, it could be confirmed that low carbon steel coated with CCG was revealed to be more effective in terms of its applicability as PEMFC bipolar plate. PMID:23858864

  6. An approximate semi-analytical method for prediction of interlaminar shear stresses in an arbitrarily laminated thick plate

    NASA Technical Reports Server (NTRS)

    Chaudhuri, Reaz A.; Seide, Paul

    1987-01-01

    An approximate semianalytical method for determination of interlaminar shear stress distribution through the thickness of an arbitrarily laminated thick plate has been presented. The method is based on the assumptions of transverse inextensibility and layerwise constant shear angle theory (LCST) and utilizes an assumed quadratic displacement potential energy based finite element method (FEM). Centroid of the triangular surface has been proved from a rigorous mathematical point of view (Aubin-Nitsche theory), to be the point of exceptional accuracy for the interlaminar shear stresses. Numerical results indicate close agreement with the available three-dimensional elasticity theory solutions. A comparison between the present theory and that due to an assumed stress hybrid FEM suggest that the (normal) traction-free-edge condition is not satisfied in the latter approach. Furthermore, the present paper is the first to present the results for interlaminar shear stresses in a two-layer thick square plate of balanced unsymmetric angle-ply construction. A comparison with the recently proposed Equilibrium Method (EM) indicates the superiority of the present method, because the latter assures faster convergence as well as simultaneous vanishing of the transverse shear stresses on both of the exposed surfaces of the laminate. Superiority of the present method over the EM, in the case of a symmetric laminate, is limited to faster convergence alone. It has also been demonstrated that the combination of the present method and the reduced (quadratic order) numerical integration scheme yields convergence of the interlaminar shear stresses almost as rapidly as that of the nodal displacements, in the case of a thin plate.

  7. Fabrication of thick multilayered steel structure using A516 Grade 70 by multipass friction stir welding †

    DOE PAGES

    Lim, Y. C.; Sanderson, S.; Mahoney, M.; Wang, Y.; Chen, J.; David, S. A.; Feng, Z.

    2016-04-06

    Here, we fabricated a thick-sectioned multilayered steel structure by multipass friction stir welding on A516 Grade 70 steel. Tensile strength of the multilayered samples was comparable to that of the base metal. Failure was located in the base metal when a defect-free sample was tested. Charpy impact toughness was higher in the stir zone and heat affected zone than in the base metal. For higher microhardness values were found in the stir zone and heat affected zone than the base metal due to grain refinement and modification of the microstructures. As a result, improved mechanical properties compared to the basemore » metal were found in the weld zones of friction stir welded A516 Grade 70 steel.« less

  8. Neutron radiography of thick hydrogenous materials with use of an imaging plate neutron detector

    NASA Astrophysics Data System (ADS)

    Kato, Kazuo; Matsumoto, Gen'ichi; Karasawa, Yuuko; Niimura, Nobuo; Matsubayashi, Masahito; Tsuruno, Akira

    1996-02-01

    The value of the neutron mass attenuation coefficient of hydrogen being very high, it is extremely difficult to image normal size, living animals with neutron radiography. However, the authors suggest the possibility of applying neutron radiography for biomedical specimens. The organs in the breast, bones and cartilages in the extremities, and the tail of mice and rats were clearly imaged by neutron radiography with Gd foils as neutron converters and X-ray films. However, no contours of the organs in the mouse abdomen were visible with neutron radiography with an exposure time of 200 s. By adding Gd or Li compounds as neutron converters to imaging X-ray plates, imaging plates have been developed for neutron detectors. A trial using these imaging plates for neutron radiography of water-filled containers and the abdomen of mice was completed. The roundness of a 100 ml-beaker was imaged with a neutron exposure of 180 s. Obscure contours of the liver and kidneys of the mouse were imaged with a neutron exposure of 100 s.

  9. Thermochemical Analysis of Phases Formed at the Interface of a Mg alloy-Ni-plated Steel Joint during Laser Brazing

    NASA Astrophysics Data System (ADS)

    Nasiri, Ali M.; Chartrand, Patrice; Weckman, David C.; Zhou, Norman Y.

    2013-04-01

    The thermodynamic stability of precipitated phases at the steel-Ni-Mg alloy interface during laser brazing of Ni-plated steel to AZ31B magnesium sheet using AZ92 magnesium alloy filler wire has been evaluated using FactSage thermochemical software. Assuming local chemical equilibrium at the interface, the chemical activity-temperature-composition relationships of intermetallic compounds that might form in the steel-Ni interlayer-AZ92 magnesium alloy system in the temperature range of 873 K to 1373 K (600 °C to 1100 °C) were estimated using the Equilib module of FactSage. The results provided better understanding of the phases that might form at the interface of the dissimilar metal joints during the laser brazing process. The addition of a Ni interlayer between the steel and the Mg brazing alloy was predicted to result in the formation of the AlNi, Mg2Ni, and Al3Ni2 intermetallic compounds at the interface, depending on the local maximum temperature. This was confirmed experimentally by laser brazing of Ni electro-plated steel to AZ31B-H24 magnesium alloy using AZ92 magnesium alloy filler wire. As predicted, the formation of just AlNi and Mg2Ni from a monotectic and eutectic reaction, respectively, was observed near the interface.

  10. Thermal characterization of austenite stainless steel (304) and CNT films of varying thickness using micropipette thermal sensors

    NASA Astrophysics Data System (ADS)

    Dangol, Ashesh

    Thermal transport behavior of austenite stainless steel stripe (304) and the carbon nano-tubes (CNTs) films of varying thickness are studied using a micropipette thermal sensor. Micropipette sensors of various tip sizes were fabricated and tested for the sensitivity and reliability. The sensitivity deviated by 0.11 for a batch of pipette coated under same physical vapor deposition (PVD) setting without being affected by a tip size. Annealing, rubber coating and the vertical landing test of the pipette sensor proved to be promising in increasing the reliability and durability of the pipette sensors. A micro stripe (80microm x 6microm x 0.6microm) of stainless steel, fabricated using focused ion beam (FIB) machining, was characterized whose thermal conductivity was determined to be 14.9 W/m-K at room temperature. Similarly, the thermal characterization of CNT films showed the decreasing tendency in the thermal transport behavior with the increase in the film thickness.

  11. On plane stress state and stress free deformation of thick plate with FGM interface under thermal loading

    NASA Astrophysics Data System (ADS)

    Szubartowski, Damian; Ganczarski, Artur

    2016-10-01

    This paper demonstrates the plane stress state and the stress free thermo-elastic deformation of FGM thick plate under thermal loading. First, the Sneddon-Lockett theorem on the plane stress state in an isotropic infinite thick plate is generalized for a case of FGM problem in which all thermo-mechanical properties are optional functions of depth co-ordinate. The proof is based on application of the Iljushin thermo-elastic potential to displacement type system of equations that reduces it to the plane stress state problem. Then an existence of the purely thermal deformation is proved in two ways: first, it is shown that the unique solution fulfils conditions of simultaneous constant temperature and linear gradation of thermal expansion coefficient, second, proof is based directly on stress type system of equations which straightforwardly reduces to compatibility equations for purely thermal deformation if only stress field is homogeneous in domain and at boundary. Finally, couple examples of application to an engineering problem are presented.

  12. Effects of heat input on mechanical properties of metal inert gas welded 1.6 mm thick galvanized steel sheet

    NASA Astrophysics Data System (ADS)

    Rafiqul, M. I.; Ishak, M.; Rahman, M. M.

    2012-09-01

    It is usually a lot easier and less expensive to galvanize steel before it is welded into useful products. Galvanizing afterwards is almost impossible. In this research work, Galvanized Steel was welded by using the ER 308L stainless steel filler material. This work was done to find out an alternative way of welding and investigate the effects of heat input on the mechanical properties of butt welded joints of Galvanized Steel. A 13.7 kW maximum capacity MIG welding machine was used to join 1.6 mm thick sheet of galvanized steel with V groove and no gap between mm. Heat inputs was gradually increased from 21.06 to 25.07 joules/mm in this study. The result shows almost macro defects free welding and with increasing heat input the ultimate tensile strength and welding efficiency decrease. The Vickers hardness also decreases at HAZ with increasing heat input and for each individual specimen; hardness was lowest in heat affected zone (HAZ), intermediate in base metal and maximum in welded zone. The fracture for all specimens was in the heat affected zone while testing in the universal testing machine.

  13. Investigation on mechanical properties of contemporary metallic bone plates: towards the development of composite bone plates.

    PubMed

    Hoque, M E; Zainal, N H; Syarif, J

    2008-07-01

    This study aims at investigating the mechanical properties of the contemporary metallic bone plates determining the effect of their length, width and thickness on the properties and compares with the composite bone plates. Three-points bending test was performed over the stainless steel plates of different length, width and thickness. The test results showed that different plates had different mechanical properties. However, the properties are still much higher than that of particular bones intended to be treated. Therefore, the reported findings strongly encourage developing composite bone plates with biocompatible polymers/fibers that would have modulated properties according to the requirements.

  14. Development of a System to Measure Austenite Grain Size of Plate Steel Using Laser-Based Ultrasonics

    SciTech Connect

    Lim, C. S.; Hong, S. T.; Yi, J. K.; Choi, S. G.; Oh, K. J.; Nagata, Y.; Yamada, H.; Hamada, N.

    2007-03-21

    A measurement system for austenite grain size of plate steel using laser-based ultrasonics has been developed. At first, the relationship between the ultrasonic attenuation coefficients using longitudinal waves and austenite grain size of samples was investigated in the laboratory experiments. According to the experimental results, the ultrasonic attenuation coefficients showed a good correlation with actual austenite grain sizes. For the next step, the system was installed in a hot rolling pilot plant of plate steel, and it was verified that the austenite grain size could be measured even in the environment of a hot rolling pilot plant. In the experiments, it was also confirmed that the fiber delivery system could deliver Nd:YAG laser beam of 810 mJ/pulse and ultrasonic signals could be obtained successfully.

  15. Properties of graphite-stainless steel composite in bipolar plates in simulated anode and cathode environments of PEM fuel cells

    NASA Astrophysics Data System (ADS)

    Włodarczyk, Renata

    2014-09-01

    The use of a graphite-stainless steel composite as bipolar plates (BP) in polymer electrolyte membrane fuel cells (PEMFCs) has been evaluated. The study covers measurements of mechanical properties, microstructural examination, analysis of surface profile, wettability, porosity and corrosion resistance of the composite. The corrosion properties of the composite were examined in 0.1 mol·dm-3 H2SO4 + 2 ppm F- saturated with H2 or with O2 and in solutions with different pH: in Na2SO4+ 2 ppm F- (pH = 1.00, 3.00, 5.00) at 80 °C. The performed tests indicate that the graphite modified with stainless steel can be a good choice to be used as a bipolar plate in PEM fuel cells.

  16. Pre-oxidized and nitrided stainless steel alloy foil for proton exchange membrane fuel cell bipolar plates. Part 2: Single-cell fuel cell evaluation of stamped plates

    NASA Astrophysics Data System (ADS)

    Toops, Todd J.; Brady, Michael P.; Tortorelli, Peter F.; Pihl, Josh A.; Estevez, Francisco; Connors, Daniel; Garzon, Fernando; Rockward, Tommy; Gervasio, Don; Mylan, William; Kosaraju, Sree Harsha

    Thermal (gas) nitridation of stainless steel alloys can yield low interfacial contact resistance (ICR), electrically conductive and corrosion-resistant nitride containing surface layers (Cr 2N, CrN, TiN, V 2N, VN, etc.) of interest for fuel cells, batteries, and sensors. This paper presents results of proton exchange membrane (PEM) single-cell fuel cell studies of stamped and pre-oxidized/nitrided developmental Fe-20Cr-4V weight percent (wt.%) and commercial type 2205 stainless steel alloy foils. The single-cell fuel cell behavior of the stamped and pre-oxidized/nitrided material was compared to as-stamped (no surface treatment) 904L, 2205, and Fe-20Cr-4V stainless steel alloy foils and machined graphite of similar flow field design. The best fuel cell behavior among the alloys was exhibited by the pre-oxidized/nitrided Fe-20Cr-4V, which exhibited ∼5-20% better peak power output than untreated Fe-20Cr-4V, 2205, and 904L metal stampings. Durability was assessed for pre-oxidized/nitrided Fe-20Cr-4V, 904L metal, and graphite plates by 1000+ h of cyclic single-cell fuel cell testing. All three materials showed good durability with no significant degradation in cell power output. Post-test analysis indicated no metal ion contamination of the membrane electrode assemblies (MEAs) occurred with the pre-oxidized and nitrided Fe-20Cr-4V or graphite plates, and only a minor amount of contamination with the 904L plates.

  17. Pre-Oxidized and Nitrided Stainless Steel Foil for Proton Exchange Membrane Fuel Cell Bipolar Plates: Part 2- Single-Cell Fuel Cell Evaluation of Stamped Plates

    SciTech Connect

    Toops, Todd J; Brady, Michael P; Tortorelli, Peter F; Pihl, Josh A; EstevezGenCell, Francisco; Connors, Dan; Garzon, Fernando; Rockward, Tommy; Gervasio, Don; Kosaraju, S.H.

    2010-01-01

    Thermal (gas) nitridation of stainless steel alloys can yield low interfacial contact resistance (ICR), electrically conductive and corrosion-resistant nitride containing surface layers (Cr{sub 2}N, CrN, TiN, V{sub 2}N, VN, etc.) of interest for fuel cells, batteries, and sensors. This paper presents results of proton exchange membrane (PEM) single-cell fuel cell studies of stamped and pre-oxidized/nitrided developmental Fe-20Cr-4V weight percent (wt.%) and commercial type 2205 stainless steel alloy foils. The single-cell fuel cell behavior of the stamped and pre-oxidized/nitrided material was compared to as-stamped (no surface treatment) 904L, 2205, and Fe-20Cr-4V stainless steel alloy foils and machined graphite of similar flow field design. The best fuel cell behavior among the alloys was exhibited by the pre-oxidized/nitrided Fe-20Cr-4V, which exhibited {approx}5-20% better peak power output than untreated Fe-20Cr-4V, 2205, and 904L metal stampings. Durability was assessed for pre-oxidized/nitrided Fe-20Cr-4V, 904L metal, and graphite plates by 1000+ h of cyclic single-cell fuel cell testing. All three materials showed good durability with no significant degradation in cell power output. Post-test analysis indicated no metal ion contamination of the membrane electrode assemblies (MEAs) occurred with the pre-oxidized and nitrided Fe-20Cr-4V or graphite plates, and only a minor amount of contamination with the 904L plates.

  18. Effects of model coal tar components on adhesion strength of polyurethane coating on steel plate

    SciTech Connect

    Yokoyama, N.; Fujino, K.

    2005-04-15

    In order to study the effects of coal tar components on the adhesion strength of a heavy duty anticorrosive coating formed with tar-urethane resin oil on a steel plate, polyurethane coatings that were compounded with 15 kinds of polycyclic aromatic compounds as model coal tar components were prepared. In the model coal tar, components, naphthalene, quinoline, 2-naphthol, and phenanthrene showed good compatibility with polyurethane. To test their heavy duty anticorrosive properties, tensile adhesion strength of the cured coatings prepared with the compatible model coal tar components was measured, and the change in tensile adhesion strength as a function of time during salt-water spray treatment was measured. We found that the systems compounded with naphthalene, 2-naphthol, and phenanthrene showed good properties in an ordinary state for adhesion strength. However, only the system with 2-naphthol was found to have good properties in the change of tensile adhesion strength as a function or time during salt-water spray treatment. The curing time of the system with 2-naphthol was slower than that or the others, i.e., we found an inverse proportion between curing speed and adhesion durability. We also measured the dynamic viscoelasticity of cured coatings.

  19. Austenite decomposition during continuous cooling of an HSLA-80 plate steel

    SciTech Connect

    Thomspon, S.W.; Colvin, D.J.; Krauss, G.

    1996-06-01

    Decomposition of fine-grained austenite (10-{micro}m grain size) during continuous cooling of an HSLA-80 plate steel (containing 0.05C, 0.50Mn, 1.12Cu, 0.88Ni, 0.71Cr, and 0.20Mo) was evaluated by dilatometric measurements, light microscopy, scanning electron microscopy, transmission electron microscopy, and microhardness testing. Between 750 C and 600 C, austenite transforms primarily to polygonal ferrite over a wide range of cooling rates, and Widmanstaetten ferrite sideplates frequently evolve from these crystals. Carbon-enriched islands of austenite transform to a complex mixture of granular ferrite, acicular ferrite, and martensite (all with some degree of retained austenite) at cooling rates greater than approximately 5 C/s. Granular and acicular ferrite form at temperatures slightly below those at which polygonal and Widmanstaetten ferrite form. At cooling rates less than approximately 5 C/s, regions of carbon-enriched austenite transform to a complex mixture of upper bainite, lower bainite, and martensite (plus retained austenite) at temperatures which are over 100 C lower than those at which polygonal and Widmanstaetten ferrite form. Interphase precipitates of copper form only in association with polygonal and Widmanstaetten ferrite. Kinetic and microstructural differences between Widmanstaetten ferrite, acicular ferrite, and bainite (both upper and lower) suggest different origins and/or mechanisms of formation for these morphologically similar austenite transformation products.

  20. Identification and measurement of dirt composition of manufactured steel plates using laser-induced breakdown spectroscopy.

    PubMed

    Orzi, Daniel J O; Bilmes, Gabriel M

    2004-12-01

    Laser-induced breakdown spectroscopy (LIBS) was used for the characterization of the main components of the surface residual dirt produced in cold-rolled steel plates as a consequence of the manufacturing stages. At laser fluences between 0.05 J/cm(2) < F < 0.30 J/cm(2), dirt ablation takes place without any contribution from the substrate. Results show that the main components of the dirt are fine particles of Fe mostly homogeneously distributed in a thin layer of grease and soaps. In the primary stages of the manufacturing process carbon residuals can also be found. By measuring light emission from the lambda = 495.9 nm line of Fe(I) after laser ablation, we developed a real-time on-line method for the determination of the concentration of iron particles present in the surface dirt. The obtained results open new possibilities in the design of real-time instruments for industrial applications as a quality control of products and processes.

  1. Electrochemical behaviour and surface conductivity of niobium carbide-modified austenitic stainless steel bipolar plate

    NASA Astrophysics Data System (ADS)

    Wang, Lixia; Sun, Juncai; Kang, Bin; Li, Song; Ji, Shijun; Wen, Zhongsheng; Wang, Xiaochun

    2014-01-01

    A niobium carbide diffusion layer with a cubic NbC phase surface layer (∼6 μm) and a Nb and C diffusion subsurface layer (∼1 μm) is fabricated on the surface of AISI 304 stainless steel (304 SS) bipolar plate in a proton exchange membrane fuel cell (PEMFC) using plasma surface diffusion alloying. The electrochemical behaviour of the niobium carbide diffusion-modified 304 SS (Nb-C 304 SS) is investigated in simulated PEMFC environments (0.5 M H2SO4 and 2 ppm HF solution at 80 °C). Potentiodynamic, potentiostatic polarisation and electrochemical impedance spectroscopy measurements reveal that the niobium carbide diffusion layer considerably improves the corrosion resistance of 304 SS compared with untreated samples. The corrosion current density of Nb-C 304 SS is maintained at 0.058 μA cm-2 and 0.051 μA cm-2 under simulated anodic and cathodic conditions, respectively. The interfacial contact resistance of Nb-C 304 SS is 8.47 mΩ cm2 at a compaction force of 140 N cm-2, which is significantly lower than that of the untreated sample (100.98 mΩ cm2). Moreover, only a minor increase in the ICR of Nb-C 304 SS occurs after 10 h potentiostatic tests in both cathodic and anodic environments.

  2. Influence of TIG welding thermal cycles on HSLA-100 steel plate. Technical report. [TIG (tungsten-inert gas)

    SciTech Connect

    Fox, A.G.; Bhole, S.D.

    1993-11-01

    A series of five bead on plate autogenous tungsten-inert-gas (TIG) welds were performed on U.S. Navy HSLA-100 steel. Power variations in these welds was achieved by altering the welding speed, voltage and current and were as follows (in kJ/mm); 0.7, 1.1, 1.2, 1.6 and 2.2. No evidence was found of either weld metal or underbead HAZ cracking in any of the welds illustrating the advantage of low carbon steel for both weld wire and base plate. Microhardness traverses across both the weld metals and HAZs gave a maximum. Vickers diamond pyramid hardness of 345 HV in the coarse grain HAZ next to the fusion line in the lowest power weld; for the highest power weld this was somewhat lower at 328 HV. These are well below 375 which is usually considered to be the lowest Vickers Hardness value for which severe hydrogen induced cold cracking is observed in this type of steel. Optical, scanning and transmission electron microscopy studies of the coarse grain HAZ microstructure in the regions of maximum hardness was correlated with the continuous cooling transformation diagram for this steel and good agreement between observed and predicted microstructures was obtained.

  3. Multilayer graphene for long-term corrosion protection of stainless steel bipolar plates for polymer electrolyte membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Stoot, Adam C.; Camilli, Luca; Spiegelhauer, Susie-Ann; Yu, Feng; Bøggild, Peter

    2015-10-01

    Motivated by similar investigations recently published (Pu et al., 2015), we report a comparative corrosion study of three sets of samples relevant as bipolar plates for polymer electrolyte fuel cells: stainless steel, stainless steel with a nickel seed layer (Ni/SS) and stainless steel with Ni seed layer coated by a multi-layered graphene thin film (G/Ni/SS). The graphene film, synthesized by chemical vapour deposition (CVD), has a moderate amount of defects according to Raman spectroscopy. Short/medium-term corrosion test shows no significant advantage of using G/Ni/SS rather than Ni/SS, both samples exhibiting a similar trend, thus questioning the short-term positive effect of graphene coatings. However, partial immersion in boiling seawater for three weeks reveals a clear superiority of the graphene coating with respect to steel just protected by Ni. After the test, the graphene film is still intact with unchanged defect density. Our results show that even non-perfect multilayer graphene films can considerably increase the lifetime of future-generation bipolar plates for fuel cells.

  4. Stress-deformation theories for the analysis of steel beams reinforced with GFRP plates

    NASA Astrophysics Data System (ADS)

    Phe, Pham Van

    A theory is developed for the analysis of composite systems consisting of steel wide flange sections reinforced with GFRP plates connected to one of the flanges through a layer of adhesive. The theory is based on an extension of the Gjelsvik theory and thus incorporates local and global warping effects but omits shear deformation effects. The theory captures the longitudinal transverse response through a system of three coupled differential equations of equilibrium and the lateral-torsional response through another system of three coupled differential equations. Closed form solutions are developed and a super-convergent finite element is formulated based under the new theory. A comparison to 3D FEA results based on established solid elements in Abaqus demonstrates the validity of the theory when predicting the longitudinal-transverse response, but showcases its shortcomings in predicting the torsional response of the composite system. The comparison sheds valuable insight on means of improving the theory. A more advanced theory is subsequently developed based on enriched kinematics which incorporates shear deformation effects. The shear deformable theory captures the longitudinal-transverse response through a system of four coupled differential equations of equilibrium and the lateral-torsional response through another system of six coupled differential equations. A finite difference approximation is developed for the new theory and a new finite element formulation is subsequently to solve the new system of equations. A comparison to 3D FEA illustrates the validity of the shear deformable theory in predicting the longitudinal-transverse response as well as the lateral-torsional response. Both theories are shown to be computationally efficient and reduce the modelling and running time from several hours per run to a few minutes or seconds while capturing the essential features of the response of the composite system.

  5. Casimir force between a half-space and a plate of finite thickness

    NASA Astrophysics Data System (ADS)

    Høye, Johan S.; Brevik, Iver

    2016-05-01

    Zero-frequency Casimir theory is analyzed from different viewpoints, with the aim of obtaining further insight into the delicate Drude-plasma issue that turns up when one considers thermal corrections to the Casimir force. The problem is essentially that the plasma model, physically inferior in comparison to the Drude model since it leaves out dissipation in the material, apparently gives the best results when comparing with recent experiments. Our geometric setup is quite conventional, namely, a dielectric plate separated from a dielectric half-space by a vacuum gap, both media being made of the same material. Our investigation is divided into the following categories: (1) Making use of the statistical-mechanical method developed by J. S. Høye and I. Brevik [Physica A (Amsterdam, Neth.) 259, 165 (1998), 10.1016/S0378-4371(98)00249-0], implying that the quantized electromagnetic field is replaced by interaction between dipole moments oscillating in harmonic potentials, we first verify that the Casimir force is in agreement with the Drude prediction. No use of Fresnel's reflection coefficients is made at this stage. (2) Then turning to the field-theoretic description implying use of the reflection coefficients, we derive results in agreement with the forgoing when first setting the frequency equal to zero, before letting the permittivity become large. With the plasma relation the reflection coefficient for TE zero-frequency modes depends on the component of the wave vector parallel to the surfaces and lies between 0 and 1. This contradicts basic electrostatic theory. (3) Turning to high-permeability magnetic materials, the TE zero-frequency mode describes the static magnetic field in the same way the TM zero-frequency modes describe the static electric fields in electrostatics. With the plasma model magnetic fields, except for a small part, cannot pass through metals; that is, metals effectively become superconductors. However, recent experimental results clearly

  6. Organo-Chlorinated Thin Films Deposited by Atmospheric Pressure Plasma-Enhanced Chemical Vapor Deposition for Adhesion Enhancement between Rubber and Zinc-Plated Steel Monofilaments.

    PubMed

    Vandenabeele, Cédric; Bulou, Simon; Maurau, Rémy; Siffer, Frederic; Belmonte, Thierry; Choquet, Patrick

    2015-07-01

    A continuous-flow plasma process working at atmospheric pressure is developed to enhance the adhesion between a rubber compound and a zinc-plated steel monofilament, with the long-term objective to find a potential alternative to the electrolytic brass plating process, which is currently used in tire industry. For this purpose, a highly efficient tubular dielectric barrier discharge reactor is built to allow the continuous treatment of "endless" cylindrical substrates. The best treatment conditions found regarding adhesion are Ar/O2 plasma pretreatment, followed by the deposition from dichloromethane of a 75 nm-thick organo-chlorinated plasma polymerized thin film. Ar/O2 pretreatment allows the removal of organic residues, coming from drawing lubricants, and induces external growth of zinc oxide. The plasma layer has to be preferably deposited at low power to conserve sufficient hydrocarbon moieties. Surface analyses reveal the complex chemical mechanism behind the establishment of strong adhesion levels, more than five times higher after the plasma treatment. During the vulcanization step, superficial ZnO reacts with the chlorinated species of the thin film and is converted into porous and granular bump-shaped ZnwOxHyClz nanostructures. Together, rubber additives diffuse through the plasma layer and lead to the formation of zinc sulfide on the substrate surface. Hence, two distinct interfaces, rubber/thin film and thin film/substrate, are established. On the basis of these observations, hypotheses explaining the high bonding strength results are formulated. PMID:26069994

  7. Organo-Chlorinated Thin Films Deposited by Atmospheric Pressure Plasma-Enhanced Chemical Vapor Deposition for Adhesion Enhancement between Rubber and Zinc-Plated Steel Monofilaments.

    PubMed

    Vandenabeele, Cédric; Bulou, Simon; Maurau, Rémy; Siffer, Frederic; Belmonte, Thierry; Choquet, Patrick

    2015-07-01

    A continuous-flow plasma process working at atmospheric pressure is developed to enhance the adhesion between a rubber compound and a zinc-plated steel monofilament, with the long-term objective to find a potential alternative to the electrolytic brass plating process, which is currently used in tire industry. For this purpose, a highly efficient tubular dielectric barrier discharge reactor is built to allow the continuous treatment of "endless" cylindrical substrates. The best treatment conditions found regarding adhesion are Ar/O2 plasma pretreatment, followed by the deposition from dichloromethane of a 75 nm-thick organo-chlorinated plasma polymerized thin film. Ar/O2 pretreatment allows the removal of organic residues, coming from drawing lubricants, and induces external growth of zinc oxide. The plasma layer has to be preferably deposited at low power to conserve sufficient hydrocarbon moieties. Surface analyses reveal the complex chemical mechanism behind the establishment of strong adhesion levels, more than five times higher after the plasma treatment. During the vulcanization step, superficial ZnO reacts with the chlorinated species of the thin film and is converted into porous and granular bump-shaped ZnwOxHyClz nanostructures. Together, rubber additives diffuse through the plasma layer and lead to the formation of zinc sulfide on the substrate surface. Hence, two distinct interfaces, rubber/thin film and thin film/substrate, are established. On the basis of these observations, hypotheses explaining the high bonding strength results are formulated.

  8. Effect of grain refinement and electrochemical nitridation on corrosion resistance of the 316L stainless steel for bipolar plates in PEMFCs environment

    NASA Astrophysics Data System (ADS)

    Jinlong, Lv; Tongxiang, Liang; Hongyun, Luo

    2015-10-01

    The stain-induced nanocrystalline α'-martensite was obtained by cryogenic cold rolling at liquid-nitrogen temperature for 316L stainless steel. The electrochemical results showed nanocrystalline 316L stainless steel deteriorated its corrosion resistance in a typical proton exchange membrane fuel cell environment compared with coarse grained one. However, comparing with electrochemically nitrided coarse grained stainless steel, electrochemically nitrided nanocrystalline stainless steel improved significantly corrosion resistance in the same environment, which was supported further by Mott-Shottky analysis. X-ray photoelectron spectroscopy analysis revealed that the nanocrystalline promoted the enrichment of nitrogen and chromium and inhibited form of NH3 on the surface, which could significantly improve the corrosion resistance of the 316L stainless steel. The present study showed that the electrochemically nitrided 316L stainless steel was more suitable for the bipolar plates in proton exchange membrane fuel cell environment than the untreated one, especially for nanocrystalline stainless steel.

  9. Detection system for inclusion defects in hot-rolled steel plates using MFLT with two different magnetizing strengths

    NASA Astrophysics Data System (ADS)

    Yotsuji, Junichi; Koshihara, Takahiro

    2014-02-01

    Recently, steel can manufacturing requires higher quality because otherwise minute non-metallic inclusions in thin sheets cause cracks and result in a burst during pressurization after the pressing process. Quality testing systems have already been installed in the final process in steel plants, but if there were another inspection in an earlier step, for example, at the hot strip mill, the mass manufacture of nonconforming products could be avoided and maintaining quality control would be more efficient. In order to detect inclusion defects in hot-rolled steel plates, the authors developed a new technique for MFLT (Magnetic Flux Leakage Testing) using different magnetizing forces. According to an analysis of the noise factors in MFLT, it was found that the signals generated from the scale layer on a steel surface are dominant. A different magnetizing force method is the used to decrease this overpowering noise level in MFLT. In this paper, it was confirmed that inclusions larger than 160μm in diameter and less than 0.45mm in depth can be detected utilizing this method.

  10. Hybrid Laser-Arc Welding of 10-mm-Thick Cast Martensitic Stainless Steel CA6NM: As-Welded Microstructure and Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Mirakhorli, Fatemeh; Cao, Xinjin; Pham, Xuan-Tan; Wanjara, Priti; Fihey, Jean-Luc

    2016-07-01

    Cast CA6NM martensitic stainless steel plates, 10 mm in thickness, were welded using hybrid laser-arc welding. The effect of different welding speeds on the as-welded joint integrity was characterized in terms of the weld bead geometry, defects, microstructure, hardness, ultimate tensile strength, and impact energy. Significant defects such as porosity, root humping, underfill, and excessive penetration were observed at a low welding speed (0.5 m/min). However, the underfill depth and excessive penetration in the joints manufactured at welding speeds above 0.75 m/min met the specifications of ISO 12932. Characterization of the as-welded microstructure revealed untempered martensite and residual delta ferrite dispersed at prior-austenite grain boundaries in the fusion zone. In addition, four different heat-affected zones in the weldments were differentiated through hardness mapping and inference from the Fe-Cr-Ni ternary phase diagram. The tensile fracture occurred in the base metal for all the samples and fractographic analysis showed that the crack path is within the martensite matrix, along primary delta ferrite-martensite interfaces and within the primary delta ferrite. Additionally, Charpy impact testing demonstrated slightly higher fracture energy values and deeper dimples on the fracture surface of the welds manufactured at higher welding speeds due to grain refinement and/or lower porosity.

  11. Mo layer thickness requirement on the ion source back plate for the HNB and DNB ion sources in ITER

    SciTech Connect

    Singh, M. J.; Hemsworth, R.; Boilson, D.; De Esch, H. P. L.

    2015-04-08

    All the inner surfaces of the ion sources and the upstream surface of the plasma grid of the ITER neutral beam ion sources are proposed to be coated with molybdenum. This is done to avoid sputtering of the base material (Cu or CuCrZr) by the ions in the source plasma (D{sup +}, D{sub 2}{sup +}, D{sub 3}{sup +} or H{sup +}, H{sub 2}{sup +}, H{sub 3}{sup +}). The sputtering of Mo by the ions in the source plasma is low compared to that from Cu, and the threshold energy for sputtering ∼80 eV) is high compared to the energy of the ions in the source. However the D{sub 2}{sup +}, H{sub 2}{sup +} and D{sup +}, H{sup +} ions backstreaming from the accelerators will have energies that substantially exceed that threshold and it is important that the Mo layer is not eroded such that the base material is exposed to the source plasma. In the case of the HNB, the backstreaming ion power is calculated to be in the order of ∼1 MW, and the average energy of the backstreaming ions is calculated to be ∼300 keV. The ion sources in the HNB beam lines, 40 A 1 MeV D and 46 A 870 keV H beams, are supposed to operate for a period of 2 x 10{sup 7} s. For the DNB, 60 A 100 keV H beams, the corresponding number is 1.4 × 10{sup 6} s considering a beam duty cycle of 3s ON/20s OFF with 5 Hz modulation. The Mo layer on the ion source back plate should be thick enough to survive this operational time. Thickness estimation has been carried out taking into account the sputtering yields (atoms/ion), the energy spectrum of the backstreaming ions and the estimated profiles on the ion source back plate.

  12. Numerical Simulation Of Steel Plate Bending Process Using Stationary Laser Beam By A Coupled Finite Element Thermal Mechanical Analysis

    SciTech Connect

    Kheloufi, Karim; Amara, El Hachemi

    2008-09-23

    We analyze the deformation induced by focusing a CW high power laser beam on stainless steel plate. A non-linear 3D finite element approach is used to simulate the thermo-elastoplastic deformation, the heat conduction, and stresses. Material properties including density, yield stress, Young modulus, specific heat, and thermal expansion coefficient are considered as temperature-dependent. The effect of heating time on transient temperatures, stresses, strains and bending angles during the process is studied, and the process parameters affecting the bending angles were also investigated.

  13. An electrochemical treatment to improve corrosion and contact resistance of stainless steel bipolar plates used in polymer electrolyte fuel cells

    NASA Astrophysics Data System (ADS)

    Gabreab, Ebrahim M.; Hinds, Gareth; Fearn, Sarah; Hodgson, David; Millichamp, Jason; Shearing, Paul R.; Brett, Daniel J. L.

    2014-01-01

    An electrochemical surface treatment is presented that improves the properties of stainless steel (316SS) used as bipolar plates for polymer electrolyte fuel cells (PEFCs). The process is an anodic treatment, whereby the material is polarised beyond the transpassive region. Potentiodynamic corrosion testing, chemical and morphological surface characterisation and interfacial contact resistance measurements indicate that the improved properties of 316SS are primarily a consequence of an enrichment of Cr at the near-surface of the material. The surface treatment increases the corrosion resistance and significantly reduces interfacial contact resistance.

  14. Improvements in Low-Frequency, Ultrasonic Phased-Array Evaluation for Thick Section Cast Austenitic Stainless Steel Piping Components

    SciTech Connect

    Anderson, Michael T.; Crawford, Susan L.; Diaz, Aaron A.; Moran, Traci L.

    2010-12-01

    Research is being conducted for the U.S. Nuclear Regulatory Commission (NRC) at the Pacific Northwest National Laboratory (PNNL) to assess the effectiveness and reliability of advanced nondestructive examination (NDE) methods for the inspection of light water reactor (LWR) components. A primary objective of this work is to evaluate various NDE methods to assess their ability to detect, localize, and size cracks in coarse-grained steel components. This particular study focused on the evaluation of custom-designed, low-frequency (500 kHz) phased-array (PA) probes for examining welds in thick-section cast austenitic stainless steel (CASS) piping. In addition, research was conducted to observe ultrasonic sound field propagation effects from known coarse-grained microstructures found in parent CASS material. The study was conducted on a variety of thick-wall, coarse-grained CASS specimens that were previously inspected by an older generation 500-kHz PA-UT probe and acquisition instrument configuration. This comparative study describes the impact of the new PA probe design on flaw detection and sizing in a low signal-to-noise environment. The set of Pressurized Water Reactor Owners Group (PWROG) CASS specimens examined in this study are greater than 50.8-mm (2.0-in.) thick with documented flaws and microstructures. These specimens are on loan to PNNL from the Electric Power Research Institute (EPRI) NDE Center in Charlotte, North Carolina. The flaws contained within these specimens are thermal fatigue cracks (TFC) or mechanical fatigue cracks (MFC) and range from 13% to 42% in through-wall extent. In addition, ultrasonic signal continuity was evaluated on two CASS parent material ring sections by examining the edge-of-pipe response (corner geometry) for regions of signal loss.

  15. A study of narrow gap laser welding for thick plates using the multi-layer and multi-pass method

    NASA Astrophysics Data System (ADS)

    Li, Ruoyang; Wang, Tianjiao; Wang, Chunming; Yan, Fei; Shao, Xinyu; Hu, Xiyuan; Li, Jianmin

    2014-12-01

    This paper details a new method that combines laser autogenous welding, laser wire filling welding and hybrid laser-GMAW welding to weld 30 mm thick plate using a multi-layer, multi-pass process. A “Y” shaped groove was used to create the joint. Research was also performed to optimize the groove size and the processing parameters. Laser autogenous welding is first used to create the backing weld. The lower, narrowest part of the groove is then welded using laser wire filling welding. Finally, the upper part of the groove is welded using laser-GMAW hybrid welding. Additionally, the wire feeding and droplet transfer behaviors are observed by high speed photography. The two main conclusions from this work are: the wire is often biased towards the side walls, resulting in a lack of fusion at the joint and the creation of other defects for larger groove sizes. Additionally, this results in the droplet transfer behavior becoming unstable, leading to a poor weld appearance for smaller groove sizes.

  16. Nuclear Car Wash sensitivity in varying thicknesses of wood and steel cargo

    SciTech Connect

    Church, J; Slaughter, D; Asztalos, S; Biltoft, P; Descalle, M; Hall, J; Manatt, D; Mauger, J; Norman, E; Petersen, D; Prussin, S

    2006-10-05

    The influence of incident neutron attenuation on signal strengths in the Nuclear Car Wash has been observed experimentally for both wood and steel-pipe mock cargos. Measured decay curves are presented for {beta}-delayed high-energy {gamma}-rays and thermalized neutrons following neutron-induced fission of HEU through varying irradiation lengths. Error rates are extracted for delayed-{gamma} and delayed-n signals integrated to 30 seconds, assuming Gaussian distributions for the active background. The extrapolation to a field system of 1 mA deuterium current and to a 5 kg sample size is discussed.

  17. Corrosion fatigue crack growth in clad low-alloy steel. Part 2, Water flow rate effects in high sulfur plate steel

    SciTech Connect

    James, L.A; Lee, H.B.; Wire, G.L.; Novak, S.R.; Cullen, W.H.

    1996-04-01

    Corrosion fatigue crack propagation tests were conducted on a high- sulfur ASTM A302-B plate steel overlaid with weld-deposited Alloy EN82H cladding. The specimens featured semi-elliptical surface cracks penetrating approximately 6.3 mm of cladding into the underlying steel. The initial crack sizes were relatively large with surface lengths of 22.8--27.3 mm, and depths of 10.5--14.1 mm. The experiments were initiated in a quasi-stagnant low-oxygen (O{sub 2} < 10 ppb) aqueous environment at 243{degrees}C, under loading conditions ({Delta}K, R, cyclic frequency) conducive to environmentally-assisted cracking (EAC) under quasi-stagnant conditions. Following fatigue testing under quasi-stagnant conditions where EAC was observed, the specimens were then fatigue tested under conditions where active water flow of either 1.7 m/sec. or 4.7 m/sec. was applied parallel to the crack. Earlier experiments on unclad surface-cracked specimens of the same steel exhibited EAC under quasi- stagnant conditions, but water flow rates at 1.7 m/sec. and 5.0 m/sec. parallel to the crack mitigated EAC. In the present experiments on clad specimens, water flow at approximately the same as the lower of these velocities did not mitigate EAC, and a free stream velocity approximately the same as the higher of these velocities resulted in sluggish mitigation of EAC. The lack of robust EAC mitigation was attributed to the greater crack surface roughness in the cladding interfering with flow induced within the crack cavity. An analysis employing the computational fluid dynamics code, FIDAP, confirmed that frictional forces associated with the cladding crack surface roughness reduced the interaction between the free stream and the crack cavity.

  18. Torsional moment to failure for carbon fibre polysulphone expandable rivets as compared with stainless steel screws for carbon fibre-reinforced epoxy fracture plate fixation.

    PubMed

    Sell, P J; Prakash, R; Hastings, G W

    1989-04-01

    A method of securing carbon fibre-reinforced epoxy bone plates with carbon fibre polysulphone expanding rivets was investigated. Six carbon fibre-reinforced epoxy bone plates were secured to rods with carbon fibre polysulphone rivets and six were secured with standard cortical stainless steel screws. These constructions were then subjected to pure torsional load to failure. The carbon fibre expandable rivets failed at a greater torsional moment.

  19. An Approach to Maximize Weld Penetration During TIG Welding of P91 Steel Plates by Utilizing Image Processing and Taguchi Orthogonal Array

    NASA Astrophysics Data System (ADS)

    Singh, Akhilesh Kumar; Debnath, Tapas; Dey, Vidyut; Rai, Ram Naresh

    2016-06-01

    P-91 is modified 9Cr-1Mo steel. Fabricated structures and components of P-91 has a lot of application in power and chemical industry owing to its excellent properties like high temperature stress corrosion resistance, less susceptibility to thermal fatigue at high operating temperatures. The weld quality and surface finish of fabricated structure of P91 is very good when welded by Tungsten Inert Gas welding (TIG). However, the process has its limitation regarding weld penetration. The success of a welding process lies in fabricating with such a combination of parameters that gives maximum weld penetration and minimum weld width. To carry out an investigation on the effect of the autogenous TIG welding parameters on weld penetration and weld width, bead-on-plate welds were carried on P91 plates of thickness 6 mm in accordance to a Taguchi L9 design. Welding current, welding speed and gas flow rate were the three control variables in the investigation. After autogenous (TIG) welding, the dimension of the weld width, weld penetration and weld area were successfully measured by an image analysis technique developed for the study. The maximum error for the measured dimensions of the weld width, penetration and area with the developed image analysis technique was only 2 % compared to the measurements of Leica-Q-Win-V3 software installed in optical microscope. The measurements with the developed software, unlike the measurements under a microscope, required least human intervention. An Analysis of Variance (ANOVA) confirms the significance of the selected parameters. Thereafter, Taguchi's method was successfully used to trade-off between maximum penetration and minimum weld width while keeping the weld area at a minimum.

  20. Thickness of the Descending Philippine Sea Plate Estimated from Tomographic Images beneath the Kumano Basin, along the Nankai Trough, Southwestern Japan

    NASA Astrophysics Data System (ADS)

    Kamiya, S.; Suzuki, K.; Takahashi, N.

    2015-12-01

    The Philippine Sea plate subducts northwestward beneath the Japanese islands from the south. The average thickness of the overall Philippine Sea plate has been investigated in the oceanic area using surface wave analyses [e.g. Abe and Kanamori, 1970], suggesting a thin (30-40 km thick) plate. On the other hand, several studies have indicated a thicker Philippine Sea plate based on source mechanisms and seismicity in the eastern rim of the plate [Seno, 1987; Moriyama et al., 1989]. From tomographic images, Kamiya and Kobayashi [2007] pointed out that the subducting Philippine Sea slab has thickness variation with a stepwise offset east of Izu Peninsula. The eastern (the Kanto district) and western (north of Izu Peninsula and the Tokai district) regions have respective thicknesses of 60 and 25 km. In the Kumano basin, the Japan Agency for Marine-Earth Science and Technology (JAMSTEC) developed the Dense Oceanfloor Network System for Earthquakes and Tsunami (DONET) in order to monitor seismic activity [Kaneda et al., 2009; Kawaguchi et al., 2010]. DONET ocean-bottom stations are connected with an optical fiber cable, and data are transferred in real time to our laboratory at JAMSTEC. The present study obtains three-dimensional P-wave and S-wave seismic velocity models beneath the Kumano basin by employing an travel time tomography technique. We pick arrival times of P and S waves from the waveform data recorded by the DONET system during the period from January 2011 to December 2014. In order to improve the resolution in the deeper regions than the seismic area inside of the descending slab, we also pick arrival times from the seismic events occurred outside of this district. We use these picked arrival times adding to the JMA catalogue data in seismic tomography. From the obtained tomographic images, we find high velocity anomalies corresponding to the descending Philippine Sea slab. We also find low velocity anomalies under the high velocity slab clearly. There

  1. The properties of thickness-twist (TT) wave modes in a rotated Y-cut quartz plate with a functionally graded material top layer.

    PubMed

    Wang, Bin; Qian, Zhenghua; Li, Nian; Sarraf, Hamid

    2016-01-01

    We propose the use of thickness-twist (TT) wave modes of an AT-cut quartz crystal plate resonator for measurement of material parameters, such as stiffness, density and material gradient, of a functionally graded material (FGM) layer on its surface, whose material property varies exponentially in thickness direction. A theoretical analysis of dispersion relations for TT waves is presented using Mindlin's plate theory, with displacement mode shapes plotted, and the existence of face-shear (FS) wave modes discussed. Through numerical examples, the effects of material parameters (stiffness, density and material gradient) on dispersion curves, cutoff frequencies and mode shapes are thoroughly examined, which can act as a theoretical reference for measurements of unknown properties of FGM layer.

  2. Determination of mean free path for energy loss and surface oxide film thickness using convergent beam electron diffraction and thickness mapping: a case study using Si and P91 steel.

    PubMed

    Mitchell, D R G

    2006-11-01

    Determining transmission electron microscope specimen thickness is an essential prerequisite for carrying out quantitative microscopy. The convergent beam electron diffraction method is highly accurate but provides information only on the small region being probed and is only applicable to crystalline phases. Thickness mapping with an energy filter is rapid, maps an entire field of view and can be applied to both crystalline and amorphous phases. However, the thickness map is defined in terms of the mean free path for energy loss (lambda), which must be known in order to determine the thickness. Convergent beam electron diffraction and thickness mapping methods were used to determine lambda for two materials, Si and P91 steel. These represent best- and worst-case scenario materials, respectively, for this type of investigation, owing to their radically different microstructures. The effects of collection angle and the importance of dynamical diffraction contrast are also examined. By minimizing diffraction contrast effects in thickness maps, reasonably accurate (+/-15%) values of lambda were obtained for P91 and accuracies of +/-5% were obtained for Si. The correlation between the convergent beam electron diffraction-derived thickness and the log intensity ratios from thickness maps also permits estimation of the thickness of amorphous layers on the upper and lower surfaces of transmission electron microscope specimens. These estimates were evaluated for both Si and P91 using cross-sectional transmission electron microscopy and were found to be quite accurate. PMID:17204066

  3. Coating stainless steel plates with Ag/TiO2 for chlorpyrifos decontamination

    NASA Astrophysics Data System (ADS)

    Abdel Fattah, Wafa I.; Gobara, Mohammed M.; El-Hotaby, Walid; Mostafa, Sherif F. M.; Ali, Ghareib W.

    2016-05-01

    Spray coatings of either nanosilver (Ag), titanium (TiO2) or nanosilver titanium (Ag/TiO2) on stainless steel substrates prepared by sol-gel process were successfully achieved. The efficiency of the Ag/TiO2 coat onto 316 stainless steel surface towards cloropyrifos degradation as a chemical warfare agent (CWA) was proved. The crystalline structure and morphological characterization, as well as surface roughness measurements, were assessed. X-ray diffraction results proved the crystalline TiO2 anatase phase. The uniform distribution of Ag along with TiO2 nanoparticles was evidenced through transmission electron microscopy and scanning electron microscopy mapping. The hydrophilic nature of individual Ag, TiO2 and Ag/TiO2 coats was proved by contact angle measurements. The loading of Ag nanoparticles influenced positively the Ag/TiO2 coats surface roughness. The photocatalytic cloropyrifos degradation achieved about 50% within one-hour post UV treatment proving, therefore, the promising Ag/TiO2 continued decontamination efficiency. In conclusion, tuning the physical and morphological properties of TiO2 coated on stainless steel surface could be significantly enhanced by Ag nanoparticles incorporation. The developed Ag/TiO2 coat could be conveniently applied as CWA decontaminant.

  4. Coating stainless steel plates with Ag/TiO2 for chlorpyrifos decontamination

    NASA Astrophysics Data System (ADS)

    Abdel Fattah, Wafa I.; Gobara, Mohammed M.; El-Hotaby, Walid; Mostafa, Sherif F. M.; Ali, Ghareib W.

    2016-05-01

    Spray coatings of either nanosilver (Ag), titanium (TiO2) or nanosilver titanium (Ag/TiO2) on stainless steel substrates prepared by sol–gel process were successfully achieved. The efficiency of the Ag/TiO2 coat onto 316 stainless steel surface towards cloropyrifos degradation as a chemical warfare agent (CWA) was proved. The crystalline structure and morphological characterization, as well as surface roughness measurements, were assessed. X-ray diffraction results proved the crystalline TiO2 anatase phase. The uniform distribution of Ag along with TiO2 nanoparticles was evidenced through transmission electron microscopy and scanning electron microscopy mapping. The hydrophilic nature of individual Ag, TiO2 and Ag/TiO2 coats was proved by contact angle measurements. The loading of Ag nanoparticles influenced positively the Ag/TiO2 coats surface roughness. The photocatalytic cloropyrifos degradation achieved about 50% within one-hour post UV treatment proving, therefore, the promising Ag/TiO2 continued decontamination efficiency. In conclusion, tuning the physical and morphological properties of TiO2 coated on stainless steel surface could be significantly enhanced by Ag nanoparticles incorporation. The developed Ag/TiO2 coat could be conveniently applied as CWA decontaminant.

  5. Conductive and corrosion behaviors of silver-doped carbon-coated stainless steel as PEMFC bipolar plates

    NASA Astrophysics Data System (ADS)

    Liu, Ming; Xu, Hong-feng; Fu, Jie; Tian, Ying

    2016-07-01

    Ni-Cr enrichment on stainless steel SS316L resulting from chemical activation enabled the deposition of carbon by spraying a stable suspension of carbon nanoparticles; trace Ag was deposited in situ to prepare a thin continuous Ag-doped carbon film on a porous carbon-coated SS316L substrate. The corrosion resistance of this film in 0.5 mol·L-1 H2SO4 solution containing 5 ppm F- at 80°C was investigated using polarization tests. The results showed that the surface treatment of the SS316L strongly affected the adhesion of the carbon coating to the stainless steel. Compared to the bare SS316L, the Ag-doped carbon-coated SS316L bipolar plate was remarkably more stable in both the anode and cathode environments of proton exchange membrane fuel cell (PEMFC) and the interface contact resistance between the specimen and Toray 060 carbon paper was reduced from 333.0 mΩ·cm2 to 21.6 mΩ·cm2 at a compaction pressure of 1.2 MPa.

  6. Numerical Simulation and Artificial Neural Network Modeling for Predicting Welding-Induced Distortion in Butt-Welded 304L Stainless Steel Plates

    NASA Astrophysics Data System (ADS)

    Narayanareddy, V. V.; Chandrasekhar, N.; Vasudevan, M.; Muthukumaran, S.; Vasantharaja, P.

    2016-02-01

    In the present study, artificial neural network modeling has been employed for predicting welding-induced angular distortions in autogenous butt-welded 304L stainless steel plates. The input data for the neural network have been obtained from a series of three-dimensional finite element simulations of TIG welding for a wide range of plate dimensions. Thermo-elasto-plastic analysis was carried out for 304L stainless steel plates during autogenous TIG welding employing double ellipsoidal heat source. The simulated thermal cycles were validated by measuring thermal cycles using thermocouples at predetermined positions, and the simulated distortion values were validated by measuring distortion using vertical height gauge for three cases. There was a good agreement between the model predictions and the measured values. Then, a multilayer feed-forward back propagation neural network has been developed using the numerically simulated data. Artificial neural network model developed in the present study predicted the angular distortion accurately.

  7. ILC TARGET WHEEL RIM FRAGMENT/GUARD PLATE IMPACT ANALYSIS

    SciTech Connect

    Hagler, L

    2008-07-17

    A positron source component is needed for the International Linear Collider Project. The leading design concept for this source is a rotating titanium alloy wheel whose spokes rotate through an intense localized magnetic field. The system is composed of an electric motor, flexible motor/drive-shaft coupling, stainless steel drive-shaft, two Plumber's Block tapered roller bearings, a titanium alloy target wheel, and electromagnet. Surrounding the target wheel and magnet is a steel frame with steel guarding plates intended to contain shrapnel in case of catastrophic wheel failure. Figure 1 is a layout of this system (guard plates not shown for clarity). This report documents the FEA analyses that were performed at LLNL to help determine, on a preliminary basis, the required guard plate thickness for three potential plate steels.

  8. Microstructures and Mechanical Properties of Bearing Steels Modified for Preparing Nanostructured Bainite

    NASA Astrophysics Data System (ADS)

    Zhao, J.; Hou, C. S.; Zhao, G.; Zhao, T.; Zhang, F. C.; Wang, T. S.

    2016-08-01

    Mo containing high-C-Cr bearing steel was modified with Si (0.8-1.5 wt.%) and 0.8Si-1.0Al to prepare nanostructured bainite by low-temperature isothermal heat treatment. The modified steels were isothermal held at 220 to 240 °C after partial austenitization in an intercritical gamma+carbide region, and the resultant microstructure and mechanical properties were studied. Carbide-free nanostructured bainite with plate thickness below 100 nm and film retained austenite, as well as a small amount of undissolved carbide particles, was obtained in the modified steels except in 0.8Si steel, in which carbides precipitated in bainitic ferrite. As Si content increased, the mean thickness of bainitic ferrite plates modestly decreased, whereas the fraction of retained austenite markedly increased. The thickness of bainitic ferrite plate and the fraction of retained austenite in Si-Al-modified steel were smaller than those in Si-modified steels. The hardness and elongation of the Si-Al-modified steel were lower than those of Si-modified steels. The yield strength of Si-Al-modified steel was superior to that of Si-modified steels. Mid-level ultimate tensile strength and impact toughness were achieved in Si-Al-modified steel. For bearing applications, Si-modified steels could provide higher hardness and toughness but lower dimensional stability. Meanwhile, Si-Al-modified steel could offer higher dimensional stability but lower hardness and toughness.

  9. Microstructures and Mechanical Properties of Bearing Steels Modified for Preparing Nanostructured Bainite

    NASA Astrophysics Data System (ADS)

    Zhao, J.; Hou, C. S.; Zhao, G.; Zhao, T.; Zhang, F. C.; Wang, T. S.

    2016-10-01

    Mo containing high-C-Cr bearing steel was modified with Si (0.8-1.5 wt.%) and 0.8Si-1.0Al to prepare nanostructured bainite by low-temperature isothermal heat treatment. The modified steels were isothermal held at 220 to 240 °C after partial austenitization in an intercritical gamma+carbide region, and the resultant microstructure and mechanical properties were studied. Carbide-free nanostructured bainite with plate thickness below 100 nm and film retained austenite, as well as a small amount of undissolved carbide particles, was obtained in the modified steels except in 0.8Si steel, in which carbides precipitated in bainitic ferrite. As Si content increased, the mean thickness of bainitic ferrite plates modestly decreased, whereas the fraction of retained austenite markedly increased. The thickness of bainitic ferrite plate and the fraction of retained austenite in Si-Al-modified steel were smaller than those in Si-modified steels. The hardness and elongation of the Si-Al-modified steel were lower than those of Si-modified steels. The yield strength of Si-Al-modified steel was superior to that of Si-modified steels. Mid-level ultimate tensile strength and impact toughness were achieved in Si-Al-modified steel. For bearing applications, Si-modified steels could provide higher hardness and toughness but lower dimensional stability. Meanwhile, Si-Al-modified steel could offer higher dimensional stability but lower hardness and toughness.

  10. Effect of laser incidence angle on cut quality of 4 mm thick stainless steel sheet using fiber laser

    NASA Astrophysics Data System (ADS)

    Mullick, Suvradip; Agrawal, Arpit Kumar; Nath, Ashish Kumar

    2016-07-01

    Fiber laser has potential to outperform the more traditionally used CO2 lasers in sheet metal cutting applications due to its higher efficiency, better beam quality, reliability and ease of beam delivery through optical fiber. It has been however, reported that the higher focusability and shorter wavelength are advantageous for cutting thin metal sheets up to about 2 mm only. Better focasability results in narrower kerf-width, which leads to an earlier flow separation in the flow of assist gas within the kerf, resulting in uncontrolled material removal and poor cut quality. However, the advarse effect of tight focusability can be taken care by shifting the focal point position towards the bottom surface of work-piece, which results in a wider kerf size. This results in a more stable flow within the kerf for a longer depth, which improves the cut quality. It has also been reported that fiber laser has an unfavourable angle of incidence during cutting of thick sections, resulting in poor absorption at the metal surface. Therefore, the effect of laser incidence angle, along with other process parameters, viz. cutting speed and assist gas pressure on the cut quality of 4 mm thick steel sheet has been investigated. The change in laser incidence angle has been incorporated by inclining the beam towards and away from the cut front, and the quality factors are taken as the ratio of kerf width and the striation depth. Besides the absorption of laser radiation, beam inclination is also expected to influence the gas flow characteristics inside the kerf, shear force phenomena on the molten pool, laser beam coupling and laser power distribution at the inclined cut surface. Design of experiment has been used by implementing response surface methodology (RSM) to study the parametric dependence of cut quality, as well as to find out the optimum cut quality. An improvement in quality has been observed for both the inclination due to the combined effect of multiple phenomena.

  11. Effect of Coating Thickness on the Properties of TiN Coatings Deposited on Tool Steels Using Cathodic Arc Pvd Technique

    NASA Astrophysics Data System (ADS)

    Mubarak, A.; Akhter, Parvez; Hamzah, Esah; Mohd Toff, Mohd Radzi Hj.; Qazi, Ishtiaq A.

    Titanium nitride (TiN) widely used as hard coating material, was coated on tool steels, namely on high-speed steel (HSS) and D2 tool steel by physical vapor deposition method. The study concentrated on cathodic arc physical vapor deposition (CAPVD), a technique used for the deposition of hard coatings for tooling applications, and which has many advantages. The main drawback of this technique, however, is the formation of macrodroplets (MDs) during deposition, resulting in films with rougher morphology. Various standard characterization techniques and equipment, such as electron microscopy, atomic force microscopy, hardness testing machine, scratch tester, and pin-on-disc machine, were used to analyze and quantify the following properties and parameters: surface morphology, thickness, hardness, adhesion, and coefficient of friction (COF) of the deposited coatings. Surface morphology revealed that the MDs produced during the etching stage, protruded through the TiN film, resulting in film with deteriorated surface features. Both coating thickness and indentation loads influenced the hardness of the deposited coatings. The coatings deposited on HSS exhibit better adhesion compared to those on D2 tool steel. Standard deviation indicates that the coating deposited with thickness around 6.7 μm showed the most stable trend of COF versus sliding distance.

  12. Enhanced Higher Harmonic Imaging of Heterogeneities and Local Plastic Deformation in Steel Plates

    NASA Astrophysics Data System (ADS)

    Kawashima, K.; Imanishi, R.; Aida, T.; Zhou, Y.

    2014-06-01

    Conventional ultrasonic imaging based on the difference in acoustic impedance fails to detect and visualize small heterogeneities and local plastic deformation in metals. Nonlinear ultrasonic imaging technique visualizes higher harmonic amplitudes which are generated at the heterogeneities by finite amplitude sinusoidal burst waves, therefore, it can be applied for detecting small non-metallic inclusions, local plastic deformation and micro cracks. By transmitting 35 MHz sine burst waves and receiving harmonics of 105 MHz in the maximum, non-metallic inclusions in stainless steel of some ten in size and crack tip plastic zone of 2 mm in diameter are visualized.

  13. Reconstruction of size and depth of simulated defects in austenitic steel plate using pulsed infrared thermography

    NASA Astrophysics Data System (ADS)

    Wysocka-Fotek, Olga; Oliferuk, Wiera; Maj, Michał

    2012-07-01

    In this paper the size and depth (distance from the tested surface) of defects in austenitic steel were estimated using pulse infrared thermography. The thermal contrast calculated from the surface distribution of the temperature is dependent on both these parameters. Thus, two independent experimental methods of defect size and depth determination were proposed. The defect size was estimated on the basis of surface distribution of the time derivative of the temperature, whereas the defect depth was assessed from the dependence of surface thermal contrast vs. cooling time.

  14. A modification of 4330 alloy steel

    SciTech Connect

    Gogolewski, R.; Cunningham, B.J. ); Gentile, R.; Fleming, S. )

    1990-08-01

    We have developed a modification of 4330 alloy steel which does not have an exact equivalent expressed in any standard specification. When we compare the ballistic performance of our modified cast steel in thicknesses of about 120 mm with that of stacked, 24 mm thick rolled 4340 alloy steel plates of comparable hardness and the same total thickness, we do not find a significant difference in terminal ballistic performance against either heavy metal kinetic energy penetrators or precision shaped charges. This result is surprising in relation to contemporary experience in which cast steel has been found to be ballistically inferior to rolled steel against either kinetic energy projectiles or shaped charge warheads. 1 ref., 9 figs.

  15. Improved corrosion resistance and interfacial contact resistance of 316L stainless-steel for proton exchange membrane fuel cell bipolar plates by chromizing surface treatment

    NASA Astrophysics Data System (ADS)

    Lee, S. B.; Cho, K. H.; Lee, W. G.; Jang, H.

    The electrochemical performance and electrical contact resistance of chromized 316 stainless-steel (SS) are investigated under simulated operating condition in a proton-exchange membrane fuel cell (PEMFC). The corrosion resistance of the chromized stainless steel is assessed by potentiodynamic and potentiostatic tests and the interfacial contact resistance (ICR) is examined by measuring the electrical contact resistance as a function of the compaction force. The results show that the chromizing surface treatment improves the corrosion resistance of the stainless steel due to the high-chromium concentration in the diffuse coating layer. On the other hand, the excess Chromium content on the surface increases the contact resistance of the steel plate to a level that is excessively high for commercial applications. This study examines the root cause of the high-contact resistance after chromizing and reports the optimum process to improve the corrosion resistance without sacrificing the ICR by obtaining a chrome carbide on the outer layer.

  16. Graphene grown on stainless steel as a high-performance and ecofriendly anti-corrosion coating for polymer electrolyte membrane fuel cell bipolar plates

    NASA Astrophysics Data System (ADS)

    Pu, Nen-Wen; Shi, Gia-Nan; Liu, Yih-Ming; Sun, Xueliang; Chang, Jeng-Kuei; Sun, Chia-Liang; Ger, Ming-Der; Chen, Chun-Yu; Wang, Po-Chiang; Peng, You-Yu; Wu, Chia-Hung; Lawes, Stephen

    2015-05-01

    In this study, the growth of graphene by chemical vapor deposition (CVD) on SUS304 stainless steel and on a catalyzing Ni/SUS304 double-layered structure was investigated. The results indicated that a thin and multilayered graphene film can be continuously grown across the metal grain boundaries of the Ni/SUS304 stainless steel and significantly enhance its corrosion resistance. A 3.5 wt% saline polarization test demonstrated that the corrosion currents in graphene-covered SUS304 were improved fivefold relative to the corrosion currents in non-graphene-covered SUS304. In addition to enhancing the corrosion resistance of stainless steel, a graphene coating also ameliorates another shortcoming of stainless steel in a corrosive environment: the formation of a passive oxidation layer on the stainless steel surface that decreases conductivity. After a corrosion test, the graphene-covered stainless steel continued to exhibit not only an excellent low interfacial contact resistance (ICR) of 36 mΩ cm2 but also outstanding drainage characteristics. The above results suggest that an extremely thin, lightweight protective coating of graphene on stainless steel can act as the next-generation bipolar plates of fuel cells.

  17. Improved Middle-Temperature Strength of Unfired Slide Gate Plate for Continuous Casting of Steel

    NASA Astrophysics Data System (ADS)

    Wang, Fucheng; Zhao, Lei; Fang, Wei; He, Xuan; Chen, Hui; Du, Xing; Chen, Huan

    2015-11-01

    Unfired Al2O3-C slide gate plate refractories bonded with novel silicon-modified phenolic resin (MPR) and additives of Al and Si were prepared. The MPR was synthesized by silica sol via in situ polymerization with lignin-phenolic resin. The results showed that the MPR with corundum owns a better wettability and higher char yield than commercial resin (CR). The middle-temperature mechanical properties such as cold modulus of rupture (CMOR), flexural modulus ( E), and force-displacement of Al2O3-C refractory specimens bonded with MPR were improved especially ranging from 673 K to 1073 K (400 °C to 800 °C). The results showed that CMOR of the specimens bonded with MPR coked at 873 K (600 °C) had a considerable improvement with 7.04 MPa in sharp contrast to 3.31 MPa for CR-bonded specimens. It was suggested that the special organic-inorganic network structure of MPR and good wettability with corundum enhanced the bonding strength of Al2O3-C slide gate plate refractories.

  18. Effect of adhesive thickness on adhesively bonded T-joint

    NASA Astrophysics Data System (ADS)

    Abdullah, A. R.; Afendi, Mohd; Majid, M. S. Abdul

    2013-12-01

    The aim of this work is to analyze the effect of adhesive thickness on tensile strength of adhesively bonded stainless steel T-joint. Specimens were made from SUS 304 Stainless Steel plate and SUS 304 Stainless Steel perforated plate. Four T-joint specimens with different adhesive thicknesses (0.5, 1.0, 1.5 and 2.0 mm) were made. Experiment result shows T-joint specimen with adhesive thickness of 1.0 mm yield highest maximum load. Identical T-joint specimen jointed by spot welding was also tested. Tensile test shows welded T-Joint had eight times higher tensile load than adhesively bonded T-joint. However, in low pressure application such as urea granulator chamber, high tensile strength is not mandatory. This work is useful for designer in fertilizer industry and others who are searching for alternative to spot welding.

  19. Corrosive characteristics of surface-modified stainless steel bipolar plate in solid polymer fuel cell

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaowen; Wang, Lixia; Sun, Juncai

    2015-03-01

    In this paper, corrosion behavior of an AISI 304 stainless steel modified by niobium or niobium nitride (denoted as niobized 304 SS and Nb-N 304 SS, respectively) is investigated in simulated solid polymer fuel cell (SPFC) operating conditions. Potentiodynamic polarizations show that the corrosion potentials of surface modified 304 SS shift to positive direction while the corrosion current densities decrease greatly comparing with the bare 304 SS in simulated anodic SPFC environments. The order of corrosive resistance in corrosive potential, corrosive current density and pitting potential is: Nb-N 304 SS > niobized 304 SS > bare 304 SS. In the methanol-fueled SPFC operating conditions, the results show that the corrosion resistance of bare and niobized 304 SS increases with the methanol concentration increasing in the test solutions.

  20. On the thermally-induced residual stresses in thick fiber-thermoplastic matrix (PEEK) cross-ply laminated plates

    NASA Technical Reports Server (NTRS)

    Hu, Shoufeng; Nairn, John A.

    1992-01-01

    An analytical method for calculating thermally-induced residual stresses in laminated plates is applied to cross-ply PEEK laminates. We considered three cooling procedures: slow cooling (uniform temperature distribution); convective and radiative cooling; and rapid cooling by quenching (constant surface temperature). Some of the calculated stresses are of sufficient magnitude to effect failure properties such as matrix microcracking.

  1. On the thermally-induced residual stresses in thick fiber-thermoplastic matrix (PEEK) cross-ply laminated plates

    SciTech Connect

    Hu, S.; Nairn, J.A.

    1992-09-01

    An analytical method for calculating thermally-induced residual stresses in laminated plates is applied to cross-ply PEEK laminates. The authors considered three cooling procedures: slow cooling (uniform temperature distribution); convective and radiative cooling; and rapid cooling by quenching (constant surface temperature). Some of the calculated stresses are of sufficient magnitude to effect failure properties such as matrix microcracking.

  2. Simulations and measurements of artificial cracks and pits in flat stainless steel plates using tone burst eddy-current thermography (TBET)

    NASA Astrophysics Data System (ADS)

    Libin, M. N.; Balasubramaniam, Krishnan; Maxfield, B. W.; Krishnamurthy, C. V.

    2013-01-01

    Tone Burst Eddy current Thermography (TBET) is a new hybrid, non-contacting, Non-Destructive Evaluation (NDE) method which employs a combination of Pulsed Eddy current Thermography (PEC) and Thermographic Non-Destructive Evaluation (TNDE). For understanding the influence of cracking and pitting on heat generation and flow within a metallic body, a fundamental knowledge of the detailed induced current density distribution in the component under test is required. This information enables us to calculate the amount of heat produced by the defects and how that heat diffuses to the surface where it is imaged. This paper describes simulation work done for artificial pits and cracks within pits on the far surface of poorly conducting metals like stainless steel. The first phase of this investigation simulates the transient thermal distribution for artificial 2D pit and crack-like defects using the finite element package COMSOL multi-physics with the AC/DC module and general heat transfer. Considering the reflection measurement geometry where thermal excitation and temperature monitoring are on the same surface, pitting reduces the material volume thereby contributing to a larger temperature rise for the same thermal energy input. A crack within a pit gives a further increase in temperature above the pure pit baseline. The tone burst frequency can be changed to obtain approximately uniform heating (low frequency) or heating of a thin region at the observation surface. Although front surface temperature changes due to 10% deep far-side pits in a 6 mm thick plate can be measured, it is not yet clear whether a 20% deep crack within this pit can be discriminated against the background. Both simulations and measurements will be presented. The objective of this work is to determine whether the TBET method is suitable for the detection and characterization of far side pitting, cracking and cracks within those pits.

  3. 77 FR 2032 - Certain Cut-to-Length Carbon-Quality Steel Plate Products From the Republic of Korea: Preliminary...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-13

    ...) abrasion-resistant steels (i.e., USS AR 400, USS AR 500); (5) products made to ASTM A202, A225, A514 grade S, A517 grade S, or their proprietary equivalents; (6) ball bearing steels; (7) tool steels; and (8... Duty Administrative Review, 73 FR 45708, 45714 (August 6, 2008), unchanged in Stainless Steel Sheet...

  4. A Study on the compensation margin on butt welding joint of Large Steel plates during Shipbuilding construction.

    NASA Astrophysics Data System (ADS)

    Kim, J.; Jeong, H.; Ji, M.; Jeong, K.; Yun, C.; Lee, J.; Chung, H.

    2015-09-01

    This paper examines the characteristics of butt welding joint shrinkage for shipbuilding and marine structures main plate. The shrinkage strain of butt welding joint which is caused by the process of heat input and cooling, results in the difference between dimensions of the actual parent metal and the dimensions of design. This, in turn, leads to poor quality in the production of ship blocks and reworking through period of correction brings about impediment on improvement of productivity. Through experiments on butt welding joint's shrinkage strain on large structures main plate, the deformation of welding residual stress in the form of I, Y, V was obtained. In addition, the results of experiments indicate that there is limited range of shrinkage in the range of 1 ∼ 2 mm in 11t ∼ 21.5t thickness and the effect of heat transfer of weld appears to be limited within 1000 mm based on one side of seam line so there was limited impact of weight of parent metal on the shrinkage. Finally, it has been learned that Shrinkage margin needs to be applied differently based on groove phenomenon in the design phase in order to minimize shrinkage.

  5. Effects of Mo content on microstructure and corrosion resistance of arc ion plated Ti-Mo-N films on 316L stainless steel as bipolar plates for polymer exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Zhang, Min; Kim, Kwang Ho; Shao, Zhigang; Wang, Feifei; Zhao, Shuang; Suo, Ni

    2014-05-01

    Bipolar plates are one of the most important components in PEMFC stack and have multiple functions, such as separators and current collectors, distributing reactions uniformly, and etc. Stainless steel is ideal candidate for bipolar plates owing to good thermal and electrical conductivity, good mechanical properties etc. However, stainless steel plate still cannot resist the corrosion of working condition. In this work, ternary Ti-Mo-N film was fabricated on 316L stainless steel (SS316L) as a surface modification layer to enhance the corrosion resistance. Effects of Mo content on the microstructure and corrosion resistance of Ti-Mo-N films are systematically investigated by altering sputtering current of the Mo target. XRD results reveal that the preferred orientation changes from [111] to [220] direction as Mo content in the film increases. The synthesized Ti-Mo-N films form a substitutional solid solution of (Ti, Mo)N where larger Mo atoms replace Ti in TiN crystal lattice. The TiN-coated SS316L sample shows the best corrosion resistance. While Mo content in the Ti-Mo-N films increases, the corrosion resistance gradually degrades. Compared with the uncoated samples, all the Ti-Mo-N film coated samples show enhanced corrosion resistance in simulated PEMFC working condition.

  6. Progress in fabrication of large magnetic sheilds by using extended YBCO thick films sprayed on stainless steel with the HVOF technique

    SciTech Connect

    Pavese, F.; Bergadano, E.; Ferri, D.

    1997-06-01

    Fabricating a full box-type magnetic shield, by spraying a thick film of commercial YBCO powder on stainless steel with the oxygen-fuel high-velocity technique (HVOF, also referred to as {open_quotes}continuous detonation spray{close_quotes} (CDS)), requires the solution of several specific problems since the design stage of the project. The design problems of this type of shield are examined and the results obtained in the early stages of the realization are discussed.

  7. Large-Scale Evaluation of Nickel Aluminide Rools In A Heat-Treat Furnace at Bethlehem Steel's (now ISG) Burns Harbor Plate Mill

    SciTech Connect

    John Mengel; Anthony Martocci; Larry Fabina; RObert Petrusha; Ronald Chango

    2003-09-01

    At Bethlehem Steel Burns Harbor Plate Division (now ISG Burns Harbor Plate Inc.)'s annealing furnace, new nickel aluminide intermetallic alloy rolls provide greater high-temperature strength and wear resistance compared to the conventional H series cast austenitic alloys currently used in the industry, Oak Ridge National Laboratory and Bethlehem (ISG) partnered under a U.S. Department of Energy, Office of Industrial Technology's Emerging Technology Deployment Program to demonstrate and evaluate the nickel aluminide intermetallic alloy rolls as part of an updated energy efficient large commercial annealing furnace system.

  8. The study of fix composite panel and steel plates on testing stand

    NASA Astrophysics Data System (ADS)

    Wróbel, A.; Płaczek, M.; Wachna, M.

    2016-08-01

    In this paper the practical possibilities of strength verification analysis of composite materials used in the manufacture of selected components of railway wagons are presented. Real laboratory stand for measurements in a scale controlled by PLC controller were made. The study of different types of connections of composite materials with sheet metal is presented. In one of the chapter of this paper principles construction of testing stand with pneumatic cylinder were presented. Mainly checking of displacements and stresses generated on the sheet as a result of pneumatic actuators load for composite boards was carried out. The use of the controller with operating panel allows to easy programming testing cycle. The user can define the force generated by the actuator by change of air pressure in cylinder. Additionally the location of acting cylinders and their jump can be changed by operator. The examination of the volume displacements was done by displacement sensor, and the tensile strain gauge. All parameters are written in CatmanEasy - data acquisition software. This article presents the study of stresses and displacements in the composite plates joined with sheet metal, in summary of this article, the authors compare the obtained results with the computer simulation results in the article: "Simulation of stresses in an innovative combination of composite with sheet".

  9. Experimental investigation of transient temperature characteristic in high power fiber laser cutting of a thick steel plate

    NASA Astrophysics Data System (ADS)

    Phi Long, Nguyen; Matsunaga, Yukihiro; Hanari, Toshihide; Yamada, Tomonori; Muramatsu, Toshiharu

    2016-10-01

    Experiment of temperature measurement was performed to investigate the transient temperature characteristics of molten metal during laser cutting. The aim of this study was to establish a method for measuring the surface temperature variation near the molten pool correlated with changes in cutting parameters. The relationship between temperature inside the kerf cut and characteristic of the cut surface was investigated by using thermography and thermocouples. Results show strong correlations between the transient temperatures and the thermal image for different cutting conditions. In addition, two-color thermometer has been used to obtain radiation intensity emitted from the irradiating zone as a function of operating conditions. Experiments have shown that one can detect the cutting quality by characterization of the surface temperature during laser cutting process.

  10. Carbon fiber reinforced plastic (CFRP) plates versus stainless steel dynamic compression plates in the treatment of fractures of the tibiae in dogs.

    PubMed

    Skirving, A P; Day, R; Macdonald, W; McLaren, R

    1987-11-01

    In a series of 14 dogs, fractures of both tibiae were caused by a "bone-breaker" designed in the authors' department and observed to produce a consistent and realistic canine fracture. One tibia was plated with a carbon fiber reinforced plastic (CFRP) plate and the other with a dynamic compression (DC) plate. Roentgenographic examination demonstrated healing of the CFRP-plated tibiae with abundant callus, and almost total remodeling of the fracture callus between ten and 20 weeks. Biomechanical testing by three-point bending revealed little difference between the strength of union of the fractures at 12-16 weeks. At 20 weeks, although the numbers were too small for statistical confirmation, the CFRP-plated tibiae were consistently stronger than the DC-plated tibiae.

  11. Finite-element modelling of low-temperature autofrettage of thick-walled tubes of the austenitic stainless steel AISI 304 L: Part II. Thick-walled tube with cross-bore

    NASA Astrophysics Data System (ADS)

    Feng, H.; Donth, B.; Mughrabi, H.

    1998-01-01

    In part I, the autofrettage of a smooth thick-walled tube of the austenitic stainless steel AISI 304 L was studied by finite-element (FE) modelling. It was shown that low- temperature autofrettage is more efficient than autofrettage at room temperature, since it produces a larger beneficial compressive residual tangential (hoop) stress at the inner bore of the tube and hence permits a more significant enhancement of the fatigue resistance against pulsating internal pressure. The objective of the present study (part II) was to investigate the technically more relevant case of a thick-walled tube with a cross-bore made of the same steel. For this purpose, three-dimensional FE calculations were performed in order to characterize the influences of the autofrettage pressure and temperature on the stress and strain changes, in particular at the site of the cross-bore, also taking into account the effects of work hardening and reverse yielding. The results indicate that low-temperature autofrettage can also be applied advantageously in the case of thick-walled tubes with a cross-bore by virtue of the significantly larger residual compressive stresses, compared to room temperature autofrettage. From the quantitative FE calculations, the optimal combination of autofrettage temperature and pressure were concluded to lie in the range of 0965-0393/6/1/007/img1 to 0965-0393/6/1/007/img2, respectively. The calculated results were found to be in fair agreement with the measured values.

  12. Chromium ion plating studies for enhancement of bearing lifetime

    NASA Technical Reports Server (NTRS)

    Davis, J. H.

    1982-01-01

    Six 440-C hardened stainless steel roller bearing test rods were ion plated with various chromium films of thicknesses from .2 microns to 7 microns. The thinner (approximately .2 microns) coating sample had 3 times the fatigue life of the unplated (standard) specimens. Contrastingly, the samples having thicker coatings (several microns) had short fatigue lives (about 3% of the unplated standard).

  13. Studies on pulsed Nd:YAG laser cutting of thick stainless steel in dry air and underwater environment for dismantling applications

    NASA Astrophysics Data System (ADS)

    Choubey, Ambar; Jain, R. K.; Ali, Sabir; Singh, Ravindra; Vishwakarma, S. C.; Agrawal, D. K.; Arya, R.; Kaul, R.; Upadhyaya, B. N.; Oak, S. M.

    2015-08-01

    Dismantling of old equipments and structures is an important application in nuclear facilities and shipping industry. This paper presents a study on process optimization during pulsed Nd:YAG laser cutting of thick stainless steel (AISI SS304) sheets having a thickness in the range of 4-20 mm in dry air and underwater environment. Laser cutting experiments have been performed using a 500 W average power long pulse Nd:YAG laser system with fiber optic beam delivery. A water shielded laser cutting nozzle with coaxial gas jet was specifically developed to form a local dry cavity around the laser beam during the cutting experiments in underwater condition. It was found that for a given pulse energy, a higher cutting speed is possible with optimal value of pulse duration, spot overlapping, and assist gas pressure. Cutting speed of 20 mm thick SS sample was enhanced to about three times by means of increase in pulse duration from 14 ms to 20 ms and reduction in the required spot overlapping from a value of 80% to 40% using oxygen as the assist gas. A comparison of the cutting speed and heat affected zone in dry air and underwater environment has been performed. These results will be highly useful in laser based dismantling of old steel structures in radioactive and underwater environment to save time and minimize radiation dose consumption as compared to conventional dismantling methods.

  14. A new clinical unit for digital radiography based on a thick amorphous Selenium plate: Physical and psychophysical characterization

    SciTech Connect

    Rivetti, Stefano; Lanconelli, Nico; Bertolini, Marco; Acchiappati, Domenico

    2011-08-15

    Purpose: Here, we present a physical and psychophysical characterization of a new clinical unit (named AcSelerate) for digital radiography based on a thick a-Se layer. We also compared images acquired with and without a software filter (named CRF) developed for reducing sharpness and noise of the images and making them similar to images coming from traditional computed radiography systems. Methods: The characterization was achieved in terms of physical figures of merit [modulation transfer function (MTF), noise power spectra (NPS), detective quantum efficiency (DQE)], and psychophysical parameters (contrast-detail analysis with an automatic reading of CDRAD images). We accomplished measurements with four standard beam conditions: RAQ3, RQA5, RQA7, and RQA9. Results: The system shows an excellent MTF (about 50% at the Nyquist frequency). The DQE is about 55% at 0.5 lp/mm and above 20% at the Nyquist frequency and is almost independent from exposure. The contrast-detail curves are comparable to some of the best published data for other systems devoted to imaging in general radiography. The CRF filter influences both the MTF and NPS, but it does lead to very small changes on DQE. Also the visibility of CDRAD details is basically unaltered, when the filter is activated. Conclusions: As normally happens with detector based on direct conversion, the system presents an excellent MTF. The improved efficiency caused by the thick layer allows getting good noise characteristics and DQE results better (about 10% on average) than many of the computed radiography (CR) systems and comparable to those obtained by the best systems for digital radiography available on the market.

  15. Plate-Tectonic Analysis of Shallow Seismicity: Apparent Boundary Width, beta-Value, Corner Magnitude, Coupled Lithosphere Thickness, and Coupling in 7 Tectonic Settings

    NASA Astrophysics Data System (ADS)

    Bird, P.; Kagan, Y. Y.

    2003-12-01

    A new plate model [Bird, 2003, G3, 10.1029/2001GC000252] is used to analyze the mean seismicities of 7 types of plate boundary (CRB continental rift boundary, CTF continental transform fault, CCB continental convergent boundary, OSR oceanic spreading ridge, OTF oceanic transform fault, OCB oceanic convergent boundary, SUB subduction zone). We compare the plate-like (non-orogen) regions of model PB2002 with the CMT catalog to select apparent boundary half-widths, and then assign 95% of shallow earthquakes to one of these settings. A tapered Gutenberg-Richter model of the frequency/moment relation is fit to the subcatalog for each setting by maximum-likelihood. Best-fitting β values range from 0.53 to 0.92, but all 95%-confidence ranges are consistent with a common value of 0.61-0.66. To better determine some corner magnitudes we expand the subcatalogs by: (1) inclusion of orogens; and (2) inclusion of years 1900-1975 from the catalog of Pacheco and Sykes [1992]. Combining both earthquake statistics and the plate-tectonic constraint on moment rate, corner magnitudes include: CRB 7.64-.26+.76, CTF 8.01-.21+.45, CCB 8.46-.39+.21, OCB 8.04-.22+.52, and SUB 9.58-.46+.48. Coupled lithosphere thicknesses are found to be: CRB 3.0-1.4+7.0 km; CTF 8.6-4.1+11 km; CCB 18-11+? km; OSR 0.13-0.09+.13 km for normal-faulting and 0.40-.21+? km for strike-slip; OTF 12-7.1+?, 1.6-0.5+1.4, and 1.5-0.6+1.2 km at low, medium, and high velocities; OCB 3.8-2.3+13.7 km, and SUB 18.0-10.8+? km. Generally high coupling of subduction and continental plate boundaries suggests that here all seismic gaps are dangerous unless proven to be creeping. Generally low coupling within oceanic lithosphere suggests a different model of isolated seismic asperities surrounded by large seismic gaps which may be permanent.

  16. The repair of full-thickness articular cartilage defects. Immune responses to reparative tissue formed by allogeneic growth plate chondrocyte implants

    SciTech Connect

    Kawabe, N.; Yoshinao, M. )

    1991-07-01

    Growth plate cartilage cultivated in vitro was attached with a fibrin clot to a full-thickness articular cartilage defect on knee joints in allogeneic New Zealand rabbits. The healing of the defects was assessed by gross examination, light microscopy, and immunologic analysis for 24 weeks. Immunologic assessment of cell-mediated immunity, cytotoxicity of a humoral antibody by a 51 chromium release assay, and immunofluorescence studies were carried out. During the first two weeks following grafting, healing was excellent in 11 of the 17 defects. From three to 24 weeks, 11 of 42 defects examined had good results. Host lymphocytes had accumulated around the allograft at two to 12 weeks. Most of the implanted cartilage grown in vitro died and was replaced by fibrous tissue. The immunologic studies suggested that the implanted cartilage began to degenerate two to three weeks after implantation partially because of a humoral immune response but more importantly because of cell-mediated cytotoxicity.

  17. Remote quantitative temperature and thickness measurements of plasma-deposited titanium nitride thin coatings on steel using a laser interferometric thermoreflectance optical thermometer

    SciTech Connect

    Liu Yue; Mandelis, Andreas; Choy, Mervyn; Wang, Chinhua; Segal, Lee

    2005-08-15

    An optical thermometer based on the principle of laser thermoreflectance has been introduced to monitor the surface temperature of thin coatings on steel parts undergoing an industrial titanium nitride (TiN) alloy deposition process. To study the feasibility of the optical thermometer, various thermo-optical parameters of TiN affected by the deposition process have been investigated; namely, the reflectance-temperature relation, the thermoreflectance coefficient, and the coating thickness dependence of thermoreflectance and of total reflectance. A theory of interferometric thermoreflectance has been introduced to model the total reflectance variations during the coating process. An inverse reflectance-temperature relation for the TiN-D2 steel substrate system has been found and a first-order Taylor series expansion used to model thermoreflectance has been shown to yield a thermoreflectance coefficient which is independent of temperature. Both results are in quantitative agreement with the Drude-Zener theory of conductors and semi-conductors. An empirical formula has been derived to effectively model the experimental thermoreflectance coefficient dependence of the TiN-D2 steel system on TiN coating thickness, in qualitative agreement with scattering mechanisms of the Boltzmann transport theory in conductors and semiconductors. The good agreement of theoretical interferometric thermoreflectance simulations with in situ measurements during a specific industrial TiN sputter-coating growth process and the independence of the thermoreflectance and thin-coating-thickness reflectance coefficients from temperature show the potential of using this nonintrusive noncontacting technique as an optical thermometer to determine surface temperatures of physically inaccessible samples undergoing industrial coating deposition processes.

  18. Monte Carlo analysis of a time-dependent neutron and secondary gamma-ray integral experiment on a thick concrete and steel shield

    SciTech Connect

    Cramer, S.N.; Roussin, R.W.

    1981-11-01

    A Monte Carlo analysis of a time-dependent neutron and secondary gamma-ray integral experiment on a thick concrete and steel shield is presented. The energy range covered in the analysis is 15-2 MeV for neutron source energies. The multigroup MORSE code was used with the VITAMIN C 171-36 neutron-gamma-ray cross-section data set. Both neutron and gamma-ray count rates and unfolded energy spectra are presented and compared, with good general agreement, with experimental results.

  19. Influence of Temperature and Time of Post-weld Heat Treatment on Stress Relief in an 800-mm-Thick Steel Weldment

    NASA Astrophysics Data System (ADS)

    Mitra, Abhishek; Siva Prasad, N.; Janaki Ram, G. D.

    2016-04-01

    Ferritic steel weldments are invariably post-weld heat treated for relieving the residual stresses. However, the long duration of post-weld heat treatment (PWHT) required for very thick weldments can adversely affect the mechanical properties and fracture toughness. Thus, there is a need to establish the relative importance of temperature and time of PWHT with respect to stress relief. Accordingly, in the present work, the phenomenon of stress relief (due to PWHT) in an 800-mm-thick steel weldment was investigated using finite element analysis and the results were validated against experimental measurements. An analytical study was also carried out to determine the relative influence of temperature and time of PWHT on stress relief. It was found that time of PWHT plays a more significant role in case of relatively lower PWHT temperatures. It was also found that, for a given value of Hollomon parameter, different combinations of PWHT temperature and time can be employed to achieve the same level of stress relief. A mathematical relationship has been established between Hollomon parameter and magnitude of residual stress after PWHT. It has been shown that residual stress is a monotonically decreasing function of the Hollomon parameter.

  20. Acoustic Emission tomography based on simultaneous algebraic reconstruction technique to visualize the damage source location in Q235B steel plate

    NASA Astrophysics Data System (ADS)

    Jiang, Yu; Xu, Feiyun; Xu, Bingsheng

    2015-12-01

    Acoustic Emission (AE) tomography based on Simultaneous Algebraic Reconstruction Technique (SART), which combines the traditional location algorithm with the SART algorithm by using AE events as its signal sources, is a new visualization method for inspecting and locating the internal damages in the structure. In this paper, the proposed method is applied to examine and visualize two man-made damage source locations in the Q235B steel plate to validate its effectiveness. Firstly, the Q235B steel plate with two holes specimen is fabricated and the pencil lead break (PLB) signal is taken as the exciting source for AE tomography.Secondly, A 6-step description of the SART algorithm is provided and the three dimensional(3D)image contained the damage source locations is visualized by using the proposed algorithm in terms of a locally varying wave velocity distribution. It is shown that the AE tomography based on SART has great potential in the application of structure damage detection. Finally, to further improve the quality of 3D imaging, the Median Filter and the Adaptive Median Filter are used to reduce the noises resulting from AE tomography. The experiment results indicate that Median Filter is the optimal method to remove Salt & Pepper noises.

  1. Three Heavy Reflector Experiments in the IPEN/MB-01 Reactor: Stainless Steel, Carbon Steel, and Nickel

    NASA Astrophysics Data System (ADS)

    dos Santos, A.; de Andrade e Silva, G. S.; Mura, L. F.; Fuga, R.; Jerez, R.; Mendonça, A. G.

    2014-04-01

    The heavy reflector experiments performed in the IPEN/MB-01 research reactor facility comprise a set of critical configurations employing the standard 28×26-fuel-rod configuration. The heavy reflector, either Stainless Steel, Carbon Steel or Nickel plates, was placed at the west face of this reactor. 32 plates around 3.0 mm thick were used in all the experiments. The aim was to provide high quality experimental data for the interpretation and validation of the SS-304 heavy reflector calculation methods. The experiments of Carbon Steel, which is composed mainly of iron, and Nickel were performed to provide a consistent and an interpretative check to the SS-304 reflector measurements. The experimental data comprise a set of critical control bank positions, temperatures and reactivities as a function of the number of the plates. The competition between the effect of thermal neutron capture in the heavy reflector and the effect of fast neutrons back scattering to the core is highlighted by varying the reflector thickness. For the Carbon Steel case the reactivity gain when all the 32 plates are inserted is the smallest one, thus demonstrating that Carbon Steel or essentially iron does not have the same reflector properties as the Stainless Steel or Nickel plates do. Nickel has the highest reactivity gain, thus demonstrating that this material is better reflector than Iron and Stainless Steel. The theoretical analysis was performed by MCNP-5 with the nuclear data library ENDF/B-VII.0. It was shown that this library has a very good performance up to thirteen plates and overestimates the reactivity for higher number of plates independently of the type of the reflector.

  2. Tungsten Inert Gas and Friction Stir Welding Characteristics of 4-mm-Thick 2219-T87 Plates at Room Temperature and -196 °C

    NASA Astrophysics Data System (ADS)

    Lei, Xuefeng; Deng, Ying; Yin, Zhimin; Xu, Guofu

    2014-06-01

    2219-T87 aluminum alloy is widely used for fabricating liquid rocket propellant storage tank, due to its admirable cryogenic property. Welding is the dominant joining method in the manufacturing process of aerospace components. In this study, the tungsten inert gas welding and friction stir welding (FSW) characteristics of 4-mm-thick 2219-T87 alloy plate at room temperature (25 °C) and deep cryogenic temperature (-196 °C) were investigated by property measurements and microscopy methods. The studied 2219 base alloy exhibits a low strength plane anisotropy and excellent room temperature and cryogenic mechanical properties. The ultimate tensile strength values of TIG and FSW welding joints can reach 265 and 353 MPa at room temperature, and 342 and 438 MPa at -196 °C, respectively. The base metal consists of elongated deformed grains and many nano-scaled θ (Al2Cu) aging precipitates. Fusion zone and heat-affected zone (HAZ) of the TIG joint are characterized by coarsening dendritic grains and equiaxed recrystallized grains, respectively. The FSW-welded joint consists of the weld nugget zone, thermo-mechanically affected zone (TMAZ), and HAZ. In the weld nugget zone, a micro-scaled sub-grain structure is the main microstructure characteristic. The TMAZ and HAZ are both characterized by coarsened aging precipitates and elongated deformed grains. The excellent FSW welding properties are attributed to the preservation of the working structures and homogenous chemical compositions.

  3. BEHAVIOR OF MODEL ASPHALT PAVEMENT CONTAINING A HYDRAULIC, GRADED IRON AND STEEL SLAG BASE-COURSE UNDER REPEATED PLATE-LOADING

    NASA Astrophysics Data System (ADS)

    Yoshida, Nobuyuki; Sugisako, Yasunari

    In this paper, the dynamic response of asphalt pave ment containing a hydraulic, graded iron and steel slag (hereafter called HMS) base-course under repeated plate-loading was investigated using a model asphalt pavement and the influence of hydraulicity on th e pavement behavior was discussed. The model pavement constructed was a 4-layer system consis ting of a dense-graded asphalt mix surface layer, a dense-graded asphalt mix binder-course, a HMS base-course and a Masado (heavily-weathered granitic sand) subgrade. A repeated plate-loading test was carri ed out so as to achieve a resilient state. It is shown that surface resilient deflection decreases as curing progresses and after 90 days, the deflection becomes almost half of the initial. Large horizontal tensile strains develop at the bottoms of binder- and base-course, which decrease significantly with curing. It is indicative that HMS base-course behaves like a stiffer plate resulting in a hard-to-deflect state due to the development of hydraulicity.

  4. Microstructure of CrMnNi Cast Steel After Explosive-Driven Flyer-Plate Impact at Room Temperature and Below

    NASA Astrophysics Data System (ADS)

    Eckner, R.; Reichel, B.; Savinykh, A. S.; Krüger, L.; Razorenov, S. V.; Garkushin, G. V.

    2016-01-01

    A low-carbon metastable austenitic CrMnNi cast steel was investigated under shock conditions in a flyer-plate impact test. The samples were impacted by aluminum flyer-plates with impact velocities of 620 ± 30 m/s. Depending on deformation temperature and strain rate, the material exhibited different deformation mechanisms (dislocation glide, martensitic transformation, and mechanical twinning), which determined the microstructural evolution and mechanical behavior. Flyer-plate impact tests were carried out at 213 K and 293 K (-60 °C and +20 °C). A soft recovered sample revealed microstructural changes directly after impact. The subsequent microstructural investigations via light-optical microscopy and scanning electron microscopy revealed that transformation-induced plasticity (TRIP effect) was the primary deformation mechanism. Moreover, it was possible to quantify the martensite volume fraction by different methods and to identify the hcp ɛ-martensite phase as an intermediate transformation stage. A decrease in temperature also increased the driving force for the martensitic transformation.

  5. A comparative study of biofilm formation by Shiga toxigenic Escherichia coli using epifluorescence microscopy on stainless steel and a microtitre plate method.

    PubMed

    Rivas, Lucia; Dykes, Gary A; Fegan, Narelle

    2007-04-01

    Attachment of Shiga toxigenic Escherichia coli (STEC) to surfaces and the formation of biofilms may enhance persistence in a food processing environment and present a risk of contaminating products. Seven strains of STEC and three non-STEC strains were selected to compare two biofilm quantification methods; epifluorescence microscopy on stainless steel (SS) and a microtitre plate assay. The influence of prior growth in planktonic (nutrient broth) and sessile (nutrient agar) culture on biofilm production, as well as expression of surface structures and the possession of antigen 43 (encoded by agn43) on biofilm formation were also investigated. Biofilms were produced in diluted nutrient broth at 25 degrees C for 24 and 48 h. Curli expression was determined using congo red indicator agar, while the presence of agn43 was determined using polymerase chain reaction. No correlation was found between counts for epifluorescence microscopy on SS and the absorbance values obtained with the microtitre plate method for planktonic and sessile grown cultures. Different abilities of individual STEC strains to attach to SS and microtitre plates were found with some strains attaching better to each surface following growth in either planktonic or sessile culture. All O157 STEC strains had low biofilm counts on SS for planktonic and sessile grown cultures; however, one STEC O157:H- strain (EC516) had significantly greater (p<0.05) biofilm production on microtitre plates compared to the other O157 STEC strains. EC516 and other STEC (O174:H21 and O91:H21) strains expressing curli fimbriae were found to produce significantly greater (p<0.05) biofilms on microtitre plates compared to the non-curli expressing strains. No relationship was found between the production of type-I fimbriae, motility, agn43 and bacterial physicochemical properties (previously determined) and biofilm formation on SS or microtitre plates. Variations between the two biofilm determination methods may suggest that

  6. The influence of steel roughness and granulation on the accuracy of part thickness measurement by means of ultrasounds

    NASA Technical Reports Server (NTRS)

    Sontea, S.; Baltanoiu, M.

    1974-01-01

    Nondestructive measurement of the thickness of one-sided parts can be successfully conducted with the aid of ultrasounds. Using an ultrasonic defectoscope equipped with a highly precise device for thickness measurement, the experimental results obtained and the parameters that influence them are discussed. It is known that the manner of attaching the probe to the surface to be tested is influenced by the roughness of the surface. Likewise, in view of the fact that measurement results are influenced by the velocity of ultrasounds in the material to be investigated, they are also conditioned by the size of the structure. These factors and the manner in which they influence measurement results are also described.

  7. Rapid, automated measurement of layer thicknesses on steel coin blanks using laser-induced-breakdown spectroscopy depth profiling

    SciTech Connect

    Asimellis, George; Giannoudakos, Aggelos; Kompitsas, Michael

    2007-02-20

    We report application of a near-real-time method to determine layer thickness on electroplated coin blanks. The method was developed on a simple laser-induced-breakdown spectroscopy (LIBS) arrangement by monitoring relative emission-line intensities from key probe elements via successive laser ablation shots. This is a unique LIBS application where no other current spectroscopic method (inductively coupled plasma or x-ray fluorescence) can be applied effectively. Method development is discussed, and results with precalibrated coins are presented.

  8. Cyclotriphosphazene and TiO2 reinforced nanocomposite coated on mild steel plates for antibacterial and corrosion resistance applications

    NASA Astrophysics Data System (ADS)

    Krishnadevi, Krishnamoorthy; Selvaraj, Vaithilingam

    2016-03-01

    The mild steel surface has been modified to impart anticorrosion and antibacterial properties through a dip coating method followed by thermal curing of a mixture containing amine terminated cyclotriphosphazene and functionalized titanium dioxide nanoparticles reinforced benzoxazine based cyanate ester composite (ATCP/FTiO2/Bz-CE). The corrosion resistance behavior of coating material has been investigated by electrochemical and antibacterial studies by disc diffusion method. The nanocomposites coated mild steels have displayed a good chemical stability over long immersion in a corrosive environment. The protection efficiency has found to be high for ATCP/FTiO2/Bz-CE composites, which can be used in microelectronics and marine applications.

  9. 77 FR 73616 - Certain Cut-to-Length Carbon Steel Plate From the People's Republic of China: Final Results of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-11

    ... Administrative Review and Preliminary Determination of No Shipments, 77 FR 47593 (August 9, 2012) (``Preliminary...''), Anshan Iron & Steel Group (``Anshan''), and China Metallurgical Import and Export Liaoning Company... Republic of China; Termination of Suspension Agreement and Notice of Antidumping Duty Order, 68 FR...

  10. 78 FR 76279 - Certain Cut-to-Length Carbon Steel Plate From the People's Republic of China: Final Results and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-17

    ...; 2011-2012, 78 FR 44525 (July 24, 2013) (``Preliminary Results''). DATES: Effective Date: December 17... FR 65694 (October 24, 2011) (``Assessment Practice Refinement''); see also the ``Assessment'' section... PRC companies: Hunan Valin Xiangtan Iron & Steel Co., Ltd. (``Hunan Valin''), Shanghai Pudong Iron...

  11. Angular shear plate

    SciTech Connect

    Ruda, Mitchell C.; Greynolds, Alan W.; Stuhlinger, Tilman W.

    2009-07-14

    One or more disc-shaped angular shear plates each include a region thereon having a thickness that varies with a nonlinear function. For the case of two such shear plates, they are positioned in a facing relationship and rotated relative to each other. Light passing through the variable thickness regions in the angular plates is refracted. By properly timing the relative rotation of the plates and by the use of an appropriate polynomial function for the thickness of the shear plate, light passing therethrough can be focused at variable positions.

  12. Oxidation pretreatment to reduce corrosion of 20%Cr-25%Ni-Nb stainless steel. I. Weight gain and oxide thickness measurements

    SciTech Connect

    Tempest, P.A.; Wild, R.K.

    1988-10-01

    The improvement in corrosion resistance afforded by a low-pressure selective oxidation pretreatment on 20%Cr-25%Ni-Nb steel is assessed in terms of weight gain and oxide thickness measurements. Both can and sheet specimens were oxidized in a simulated CAGR CO/sub 2/ environment at 823, 923, and 1073 K, and gravimetric gross weight-gain measurements were supplemented by spinel and Cr/sub 2/O/sub 3/ oxide thickness measurements determined by X-ray diffractometry (XRD). The increased protection provided by the pretreatment resulted in a reduction in gross weigh gain of 3-4 times at 823 K, two and three times at 923 K, and a somewhat smaller improvement at higher temperatures. The improvement stemmed from the high proportion of Cr/sub 2/O/sub 3/ selectively formed in the preoxide layer itself. Thermally induced lattice strains in the oxide scale have been assessed from measurements of lattice expansion by XRD.

  13. Large-scale Evaluation of Nickel Aluminide Rolls in a Heat-Treat Furnace at Bethelehem Steel's (Now ISG) Burns Harbor Plate Mill

    SciTech Connect

    Mengel, J.

    2003-12-16

    At Bethlehem Steel Burns Harbor Plate Division (now ISG Burns Harbor Plate Inc.)'s annealing furnace, new nickel aluminide intermetallic alloy rolls provide greater high-temperature strength and wear resistance compared to the conventional H series cast austenitic alloys currently used in the industry. Oak Ridge National Laboratory and Bethlehem (ISG) partnered under a U.S. Department of Energy, Office of Industrial Technology's Emerging Technology Deployment Program to demonstrate and evaluate the nickel aluminide intermetallic alloy rolls as part of an updated energy efficient large commercial annealing furnace system. Many challenges were involved in this project, including developing welding procedures for joining nickel aluminide intermetallic alloys with H-series austenitic alloys, developing commercial cast roll manufacturing specifications, working with several commercial suppliers to produce a quantity of high quality, reproducible nickel aluminide rolls for a large steel industrial annealing furnace, installing and demonstrating the capability of the rolls in this furnace, performing processing trials to evaluate the benefits of new equipment and processes, and documenting the findings. Updated furnace equipment including twenty-five new automated furnace control dampers have been installed replacing older design, less effective units. These dampers, along with upgraded flame-safety control equipment and new AC motors and roll-speed control equipment, are providing improved furnace control and additional energy efficiency. Energy data shows up to a 34% energy reduction from baseline after the installation of upgraded furnace damper controls along with up to a 34% reduction in greenhouse gases, potential for an additional 3 to 6% energy reduction per campaign of light-up and shutdown, and a 46% energy reduction from baseline for limited trials of a combination of improved damper control and straight-through plate processing. The straight-through processing

  14. Electrodeposition process reduces cost of cold plates

    NASA Technical Reports Server (NTRS)

    Ruppe, E. P.

    1980-01-01

    Efficient nickel heat-exchanger cold plates can be fabricated less expensively than stainless steel plates. If adapted to mass production, it is estimated that nickel cold plates might be made for about 30 percent less than stainless-steel plates.

  15. Development of an impact-reduction device by applying ultrasonic vibrations to a high-strength steel plate using a downsized transducer

    NASA Astrophysics Data System (ADS)

    Suzuki, Atsuyuki; Ikeoka, Shota; Tsujino, Jiromaru

    2016-07-01

    In this study, we attempted to downsize an ultrasonic impact-reduction device and studied its use in vehicles because the use of large devices increases the overall vehicle weight and size and reduces fuel economy. We downsized the ultrasonic transducer to 195 mm from 435 mm and measured the vibration, deformation, and impact-reduction characteristics. The resonant frequency changed after a bolt-clamped Langevin-type transducer was connected with the horn, and the motional admittance decreased. Upon application of ultrasonic vibrations to a high-strength steel plate, the deformation magnitude increased, the springback magnitude decreased by up to 25%, and the impact force decreased by 18%. While the downsized impact reduction system was found to be less effective, it still showed an impact reduction effect.

  16. Multilayered Zr-C/a-C film on stainless steel 316L as bipolar plates for proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Bi, Feifei; Peng, Linfa; Yi, Peiyun; Lai, Xinmin

    2016-05-01

    A multilayered zirconium-carbon/amorphous carbon (Zr-C/a-C) coating is synthesized by magnetron sputtering in order to improve the corrosion resistance and interfacial conductivity of stainless steel 316L (SS316L) as bipolar plates for proton exchange membrane fuel cells (PEMFCs). Zr-C/a-C film contains an outmost pure amorphous carbon layer and a sub zirconium containing carbon layer. Interfacial contact resistance (ICR) between carbon paper and coated SS316L decreases to 3.63 mΩ cm2 at 1.4 MPa. Potentiodynamic polarization results reveal that the corrosion potential of Zr-C/a-C coated sample is more positive than pure a-C coated sample and the current density is only 0.49 μA cm-2 at the cathode applied potential 0.6 V. Electrochemical impendence spectroscopy also indicates that multilayered Zr-C/a-C film coated SS316L has much higher charge transfer resistance than the bare sample. After potentiostatic polarization, ICR values are 3.92 mΩ cm2 and 3.82 mΩ cm2 in the simulated PEMFCs cathode and anode environment, respectively. Moreover, XPS analysis of the coated samples before and after potential holding tests shows little difference, which disclose the chemical stability of multilayered Zr-C/a-C film. Therefore, the multilayered Zr-C/a-C coating exhibits excellent performance in various aspects and is preferred for the application of stainless steel bipolar plates.

  17. Finite-element modelling of low-temperature autofrettage of thick-walled tubes of the austenitic stainless steel AISI 304 L: Part I. Smooth thick-walled tubes

    NASA Astrophysics Data System (ADS)

    Feng, H.; Mughrabi, H.; Donth, B.

    1998-01-01

    The stresses and strains introduced by low-temperature autofrettage of smooth thick-walled tubes made of the austenitic stainless steel AISI 304 L were modelled by the finite-element (FE) method. The objective was to show that low-temperature autofrettage is much more efficient than autofrettage at room temperature in enhancing the fatigue resistance by introducing a higher beneficial tangential (hoop) residual compressive stress at the inner part of the tube. Attention was paid to the influences of the autofrettage temperature and pressure, the work hardening and the reverse yielding on the residual stress components and on the total strain components of the tube. The FE calculations confirmed that more beneficial residual stress patterns can be attained by autofrettage at low rather than at room temperature. From the quantitative calculations, the optimal autofrettage temperature and pressure of the tube were concluded to be about 0965-0393/6/1/006/img1 and 4000 bar, respectively. The results of the calculations were shown to be in good agreement with recently measured data.

  18. Ultrasonic Inspection Of Thick Sections

    NASA Technical Reports Server (NTRS)

    Friant, C. L.; Djordjevic, B. B.; O'Keefe, C. V.; Ferrell, W.; Klutz, T.

    1993-01-01

    Ultrasonics used to inspect large, relatively thick vessels for hidden defects. Report based on experiments in through-the-thickness transmission of ultrasonic waves in both steel and filament-wound composite cases of solid-fuel rocket motors.

  19. Electrochemical behavior of nanocrystalline Ta/TaN multilayer on 316L stainless steel: Novel bipolar plates for proton exchange membrane fuel-cells

    NASA Astrophysics Data System (ADS)

    Alishahi, M.; Mahboubi, F.; Mousavi Khoie, S. M.; Aparicio, M.; Hübner, R.; Soldera, F.; Gago, R.

    2016-08-01

    Insufficient corrosion resistance and surface conductivity are two main issues that plague large-scale application of stainless steel (SS) bipolar plates in proton exchange membrane fuel cells (PEMFCs). This study explores the use of nanocrystalline Ta/TaN multilayer coatings to improve the electrical and electrochemical performance of polished 316L SS bipolar plates. The multilayer coatings have been deposited by (reactive) magnetron sputtering and characterized by X-ray diffraction, field-emission scanning electron microscopy and transmission electron microscopy. The electrochemical behavior of bare and coated substrates has been evaluated in simulated PEMFC working environments by potentiodynamic and potentiostatic polarization tests at ambient temperature and 80 °C. The results show that the Ta/TaN multilayer coating increases the polarization resistance of 316L SS by about 30 and 104 times at ambient and elevated temperatures, respectively. The interfacial contact resistance (ICR) shows a low value of 12 mΩ × cm2 before the potentiostatic test. This ICR is significantly lower than for the bare substrate and remains mostly unchanged after potentiostatic polarization for 14 h. In addition, the high contact angle (92°) with water for coated substrates indicates a hydrophobic character, which can improve the water management within the cell in PEMFC stacks.

  20. Influence of Heat Treatments on the Microstructural Evolution and Resultant Mechanical Properties in a Low Carbon Medium Mn Heavy Steel Plate

    NASA Astrophysics Data System (ADS)

    Chen, Jun; Lv, Meng-yang; Liu, Zhen-yu; Wang, Guo-dong

    2016-05-01

    In this study, the microstructural evolution and resultant mechanical properties in a low carbon medium Mn heavy steel plate were investigated in detail. The results show that the introduction of medium manganese alloy design in the heavy steel plate has been shown to achieve the outstanding combination of strength, ductility, low-temperature impact toughness, and strain hardening capacity. It has been found that the austenite phase mainly displays at martensitic lath boundaries and shows lath shape for the heat treating at 873 K (600 °C) for 1 to 10 hours or 893 K (620 °C) for 2 hours, and not all the austenite phase obeys the K-S or N-W orientation relationship with respect to abutting martensitic lath. Although the microstructure in the steel after heat treating at 873 K (600 °C) for 1 to 10 hours is similar to each other, the resultant mechanical properties are very different because the volume fraction and stability of retained austenite vary with the heat treatments. The best low-temperature impact toughness is achieved after heat treating at 873 K (600 °C) for 2 hours due to the formation of a considerable volume fraction of retained austenite with relatively high stability, but the strain hardening capacity and ductility are disappointing because of insufficient TRIP effect. Based on enhancing TRIP effect, the two methods have been suggested. One is to increase the isothermal holding temperature to 893 K (620 °C), and the other one is to prolong the isothermal holding time to 10 hours at 873 K (600 °C). The two methods can significantly increase strain hardening capacity and ductility nearly without harming low-temperature impact toughness. In addition, the stability of retained austenite has been discussed by the quantitative analysis and it has been demonstrated that the stability of retained austenite is related to the chemical composition, size, and morphology. Moreover, the isothermal holding temperature has a great effect on the stability of

  1. Modern steels at atomic and nanometre scales

    SciTech Connect

    Caballero, F. G.; Garcia-Mateo, C.; Miller, M. K.

    2014-10-10

    Processing bulk nanocrystalline materials for structural applications still poses a difficult challenge, particularly in achieving an industrially viable process. Recent work in ferritic steels has proved that it is possible to move from ultrafine to nanoscale by exploiting the bainite reaction without the use of severe deformation, rapid heat treatment or mechanical processing. This new generation of steels has been designed in which transformation at low temperature leads to a nanoscale structure consisting of extremely fine, 20–40 nm thick plates of bainitic ferrite and films of retained austenite. Finally, a description of the characteristics and significance of this remarkable microstructure is provided here.

  2. Modern steels at atomic and nanometre scales

    DOE PAGES

    Caballero, F. G.; Garcia-Mateo, C.; Miller, M. K.

    2014-10-10

    Processing bulk nanocrystalline materials for structural applications still poses a difficult challenge, particularly in achieving an industrially viable process. Recent work in ferritic steels has proved that it is possible to move from ultrafine to nanoscale by exploiting the bainite reaction without the use of severe deformation, rapid heat treatment or mechanical processing. This new generation of steels has been designed in which transformation at low temperature leads to a nanoscale structure consisting of extremely fine, 20–40 nm thick plates of bainitic ferrite and films of retained austenite. Finally, a description of the characteristics and significance of this remarkable microstructuremore » is provided here.« less

  3. Inverse problem of pulsed eddy current field of ferromagnetic plates

    NASA Astrophysics Data System (ADS)

    Chen, Xing-Le; Lei, Yin-Zhao

    2015-03-01

    To determine the wall thickness, conductivity and permeability of a ferromagnetic plate, an inverse problem is established with measured values and calculated values of time-domain induced voltage in pulsed eddy current testing on the plate. From time-domain analytical expressions of the partial derivatives of induced voltage with respect to parameters, it is deduced that the partial derivatives are approximately linearly dependent. Then the constraints of these parameters are obtained by solving a partial linear differential equation. It is indicated that only the product of conductivity and wall thickness, and the product of relative permeability and wall thickness can be determined accurately through the inverse problem with time-domain induced voltage. In the practical testing, supposing the conductivity of the ferromagnetic plate under test is a fixed value, and then the relative variation of wall thickness between two testing points can be calculated via the ratio of the corresponding inversion results of the product of conductivity and wall thickness. Finally, this method for wall thickness measurement is verified by the experiment results of a carbon steel plate. Project supported by the National Defense Basic Technology Research Program of China (Grant No. Z132013T001).

  4. High-temperature brazing of stainless steel

    NASA Technical Reports Server (NTRS)

    Beuyukian, C. S.; Heisman, R. M.; Mitchell, M. J.

    1978-01-01

    Prevention of iron contamination of platens is eliminated by placing alumina/silica ceramic-fiber blankets between platens and carbon-steel plate. Carbon-steel plates provide rigidity and improve heat transfer.

  5. Potentiodynamic studies of Ni-P-TiO2 nano-composited coating on the mild steel deposited by electroless plating method

    NASA Astrophysics Data System (ADS)

    Uttam, Vibha; Duchaniya, R. K.

    2016-05-01

    Now a days, corrosion studies are important for reducing the wastage of metals. The importance of corrosion studies is two folds i.e. first is economic, including the reduction of material losses resulting from the wasting away or sudden failure of materials and second is conservation Electroless process is an autocatalytic reduction method in which metallic ions are reduced in the solution. Nanocomposite coatings of Ni-P-TiO2 on mild steel are deposited by varying volume of TiO2 nano-powder by electroless method from Ni-P plating bath containing Nickel Sulphate as a source of nickel ions, sodium hypophosphite as the reducing agent, lactic acid as a complexing agents and TiO2 nano powder. Electroless Ni-P-TiO2 coating have been widely used in the chemical process industries, mechanical industries, electronic industries and chloroalkali industries due to their excellent corrosion with mechanical properties. In the present work, deposition of Ni-P alloy coating and Ni-P-TiO2 nanocomposited coatings were done on the mild steel and corrosion properties were studied with Potentio-dynamic polarization measurements method in 3.5 wt% sodium chloride solution. It showed in the experiments that Ni-P-TiO2 nanocomposited coating has better corrosion resistance as comparedthan Ni-P alloy coating. Morphological studies were done by field emission scanning electron microscopy (FESEM), energy-dispersive analysis of X-ray (EDAX) and X-ray diffraction (XRD). These studies confirmed the deposition of Ni-P alloy coating and Ni-P-TiO2 nanocomposited coating.

  6. Development of aluminium-clad steel sheet by roll-bonding for the automotive industry

    NASA Astrophysics Data System (ADS)

    Buchner, M.; Buchmayr, B.; Bichler, Ch.; Riemelmoser, F.

    2007-04-01

    The objective of the present work is a basic study of production, modelling and validation of sheet composites of AA6xxx-automotive alloy and IF-steel. In this context the influence of surface preparation, pre-heating temperature of aluminium and steel plate, and thickness reduction on the bond strength of the composites as well as on the formation of intermetallic interface layers is analysed by shear tests and metallographic evaluations of the interface.

  7. Cyclic-Tension Fatigue Behavior in a SS400 Steel Plate Studied Using Ultrasonic Linear and Nonlinear Techniques

    NASA Astrophysics Data System (ADS)

    Yamagishi, Hideki; Fukuhara, Mikio

    2015-11-01

    Three acoustic probe configurations were used to assess cyclic-tension fatigue in SS400 steel at room temperature via a diffracted horizontally polarized shear wave (SH) transmission method. Linear analysis of the propagation time and amplitude of shear and longitudinal waves with fatigue progression revealed that the linear behavior was governed by residual stress, attributed to the acoustoelastic effect. Specifically, the propagation time of the shear waves increased and the wave amplitude decreased with fatigue progression. Our results also revealed that the propagation paths of the waves became deeper with progressive fatigue. Additionally, when the probe angle was optimized for diffraction, the estimated change in the length prior to fatigue breakage was 0.61 pct. Nonlinear analysis results revealed that second harmonic β-parameters increased as fatigue progressed, up to ~800 pct for the optimal frequency configuration; this was attributed to an increase in the number of dislocation-associated viscoelastic effects. The proposed approach shows great potential for nondestructive evaluation of metal fatigue via parameter analysis of residual stress and dislocation variations.

  8. Study of electrodeposited polypyrrole coatings for the corrosion protection of stainless steel bipolar plates for the PEM fuel cell

    NASA Astrophysics Data System (ADS)

    García, M. A. Lucio; Smit, Mascha A.

    Polypyrrole coatings were prepared on stainless steel SS304 in order to study the corrosion protection provided by the conductive polymer in a simulated PEM fuel cell environment. The polypyrrole was deposited by electrochemical polymerization with 0.04, 0.07 and 0.14 g cm -2 onto SS304 electrodes. Polarization curves, taken after immersion for 1, 3 or 24 h in 0.1 M sulphuric acid at either room temperature or 60 °C were used as an accelerated test. For short immersion times, it was found that corrosion current densities (at free corrosion potentials), diminished up to 2 orders of magnitude for samples tested at room temperature and up to 4 orders of magnitude for samples tested at 60 °C. Furthermore, at potentials in the range of the PEM fuel cell anode potential, corrosion rates also decreased up to several orders of magnitude. However, these protective properties were lost at longer times of immersion. The addition of DBSA to the polypyrrole coatings did lead to improved corrosion current densities at the free corrosion potential, however due to the loss of passivity of these samples, the corrosion rates in the potential range applicable to PEM fuel cells were either similar to or larger than bare metal. SEM was used to determine the morphology of the coatings and showed that the most homogeneous coating was obtained for 0.07 g cm -2 polypyrrole, without the incorporation of DBSA.

  9. Corrosion behaviour of austenitic stainless steel as a function of methanol concentration for direct methanol fuel cell bipolar plate

    NASA Astrophysics Data System (ADS)

    Wang, Lixia; Kang, Bin; Gao, Na; Du, Xiao; Jia, Linan; Sun, Juncai

    2014-05-01

    The corrosion behaviour of an AISI 304 stainless steel (304 SS) is investigated in aqueous acid methanol solutions (0.5 M H2SO4 + 2 ppm HF + x M CH3OH, x = 0, 1, 5, 10 and 20) at 50 °C to simulate the varied anodic operating conditions of direct methanol fuel cells. Electrochemical measurements including potentiodynamic polarisation, potentiostatic polarisation and electrochemical impedance spectroscopy tests, are employed to analyse the corrosion behaviour. The results reveal that the corrosion resistance of 304 SS is enhanced in solutions with higher methanol content. Scanning electron microscopy and inductively coupled plasma atomic emission spectrometry data indicate that the surface corrosion on 304 SS is alleviated when the methanol concentration is increased. According to the X-ray photoelectron spectroscopy and Mott-Schottky analyses, the passive films formed on the 304 SS after potentiostatic tests in all the test solutions are composed of a duplex electronic structure with an external n-type semiconductor layer and an internal p-type semiconductor layer. Further analyses of the surface conductivity conducted by measuring the interfacial contact resistance between the 304 SS and carbon paper reveal that the passive film formed in the solution with higher methanol content exhibits lower conductivity.

  10. Development of ferritic steels for fusion reactor applications

    SciTech Connect

    Klueh, R.L.; Maziasz, P.J.; Corwin, W.R.

    1988-08-01

    Chromium-molybdenum ferritic (martensitic) steels are leading candidates for the structural components for future fusion reactors. However, irradiation of such steels in a fusion environment will produce long-lived radioactive isotopes that will lead to difficult waste-disposal problems. Such problems could be reduced by replacing the elements in the steels (i.e., Mo, Nb, Ni, N, and Cu) that lead to long-lived radioactive isotopes. We have proposed the development of ferritic steels analogous to conventional Cr-Mo steels, which contain molybdenum and niobium. It is proposed that molybdenum be replaced by tungsten and niobium be replaced by tantalum. Eight experimental steels were produced. Chromium concentrations of 2.25, 5, 9, and 12% were used (all concentrations are in wt %). Steels with these chromium compositions, each containing 2% W and 0.25% V, were produced. To determine the effect of tungsten and vanadium, 2.25 Cr steels were produced with 2% W and no vanadium and with 0.25% V and O and 1% W. A 9Cr steel containing 2% W, 0.25 V, and 0.07% Ta was also studied. For all alloys, carbon was maintained at 0.1%. Tempering studies on the normalized steels indicated that the tempering behavior of the new Cr-W steels was similar to that of the analogous Cr-Mo steels. Microscopy studies indicated that 2% tungsten was required in the 2.25 Cr steels to produce 100% bainite in 15.9-mm-thick plate during normalization. The 5Cr and 9Cr steels were 100% martensite, but the 12 Cr steel contained about 75% martensite with the balance delta-ferrite. 33 refs., 35 figs., 5 tabs.

  11. Effect of B2O3 containing fluxes on the microstructure and mechanical properties in submerged arc welded mild steel plates

    NASA Astrophysics Data System (ADS)

    Gupta, P.; Roy, J.; Rai, R. N.; Prasada Rao, A. K.; Saha, S. C.

    2016-02-01

    This paper represents a study on the effect of B2O3 additions in fluxes on the microstructure and mechanical properties of the weld metal formed during Submerged Arc Welding of Mild Steel plates. Five fluxes with about 2.5, 5, 7.5, 10 and 12.5% B2O3 were used with a low carbon electrode. Welding process parameters were kept constant for all the conditions. The microstructure of weld metal for each flux consisted mainly of acicular ferrite, polygonal ferrite, grain boundary ferrites and equiaxed pearlite. It was noted that the Vicker's hardness value was a function of boron content and shows a mixed trend. Impact Energy and Tensile Strength were increased with the increase in boron content in welds this can be attributed to relation with the higher acicular ferrite percentage. However an optimum level of toughness and tensile strength was available with 7.5% and 5% of B2O3 respectively. A qualitative comparison has also be done with fresh flux by means of full metallography and mechanically.

  12. The effect of current density and thickness of the active mass upon the corrosion rate of the spines of lead-acid battery plates

    NASA Astrophysics Data System (ADS)

    Rogatchev, T.; Papazov, G.; Pavlov, D.

    The effect of current density and the thickness of the active mass upon the corrosion of the spines of tubular lead-acid batteries has been determined by measuring the corrosion rate by the weight loss method. The presence of antimony in the alloy decreases the overvoltage of the corrosion reaction. Study of electrodes of different active mass layer thickness shows that with increase in thickness the corrosion rate decreases. If the thickness is above 3 mm, the corrosion rate remains constant, and is affected only by the nature of the alloy. The density of the active mass does not affect the corrosion behaviour of the electrodes. The experimental results confirm the validity of the oxygen corrosion model.

  13. Microstructural characterization in dissimilar friction stir welding between 304 stainless steel and st37 steel

    SciTech Connect

    Jafarzadegan, M.; Feng, A.H.; Abdollah-zadeh, A.; Saeid, T.; Shen, J.; Assadi, H.

    2012-12-15

    In the present study, 3 mm-thick plates of 304 stainless steel and st37 steel were welded together by friction stir welding at a welding speed of 50 mm/min and tool rotational speed of 400 and 800 rpm. X-ray diffraction test was carried out to study the phases which might be formed in the welds. Metallographic examinations, and tensile and microhardness tests were used to analyze the microstructure and mechanical properties of the joint. Four different zones were found in the weld area except the base metals. In the stir zone of the 304 stainless steel, a refined grain structure with some features of dynamic recrystallization was evidenced. A thermomechanically-affected zone was characterized on the 304 steel side with features of dynamic recovery. In the other side of the stir zone, the hot deformation of the st37 steel in the austenite region produced small austenite grains and these grains transformed to fine ferrite and pearlite and some products of displacive transformations such as Widmanstatten ferrite and martensite by cooling the material after friction stir welding. The heat-affected zone in the st37 steel side showed partially and fully refined microstructures like fusion welding processes. The recrystallization in the 304 steel and the transformations in the st37 steel enhanced the hardness of the weld area and therefore, improved the tensile properties of the joint. - Highlights: Black-Right-Pointing-Pointer FSW produced sound welds between st37 low carbon steel and 304 stainless steel. Black-Right-Pointing-Pointer The SZ of the st37 steel contained some products of allotropic transformation. Black-Right-Pointing-Pointer The material in the SZ of the 304 steel showed features of dynamic recrystallization. Black-Right-Pointing-Pointer The finer microstructure in the SZ increased the hardness and tensile strength.

  14. Brazing titanium to stainless steel

    NASA Technical Reports Server (NTRS)

    Batista, R. I.

    1980-01-01

    Titanium and stainless-steel members are usually joined mechanically for lack of any other effective method. New approach using different brazing alloy and plating steel member with nickel resolves problem. Process must be carried out in inert atmosphere.

  15. PLATE WAVE RESONANCE WITH AIR-COUPLED ULTRASONICS

    SciTech Connect

    Bar, H. N.; Dayal, V.; Barnard, D.; Hsu, D. K.

    2010-02-22

    Air-coupled ultrasonic transducers can excite plate waves in metals and composites. The coincidence effect, i.e., the wave vector of plate wave coincides with projection of exciting airborne sound vector, leads to a resonance which strongly amplifies the sound transmission through the plate. The resonance depends on the angle of incidence and the frequency. In the present study, the incidence angle for maximum transmission (theta{sub max}) is measured in plates of steel, aluminum, carbon fiber reinforced composites and honeycomb sandwich panels. The variations of (theta{sub max}) with plate thickness are compared with theoretical values in steel, aluminum and quasi-isotropic carbon fiber composites. The enhanced transmission of air-coupled ultrasound at oblique incidence can substantially improve the probability of flaw detection in plates and especially in honeycomb structures. Experimental air-coupled ultrasonic scan of subtle flaws in CFRP laminates showed definite improvement of signal-to-noise ratio with oblique incidence at theta{sub max}.

  16. Development of a Versatile Laser Ultrasonic System and Application to On-Line Measurement for Process Control of Wall Thickness and Eccentrictiy of Steel Seamless Mechanical Tubing

    SciTech Connect

    Kisner, R.A.; Kercel, S.W.; Damiano, B.; Bingham, P.R.; Gee, T.F.; Tucker, R.W.; Moore, M.R.; Hileman, M.; Emery, M.; Lenarduzzi, R.; Hardy, J.E.; Weaver, K.; Crutcher, R.; Kolarik, R.V., II; Vandervaart, R.H.

    2002-04-24

    Researchers at the Timken Company conceived a project to develop an on-line instrument for wall thickness measurement of steel seamless mechanical tubing based on laser ultrasonic technology. The instrument, which has been installed and tested at a piercing mill, provides data on tube eccentricity and concentricity. Such measurements permit fine-tuning of manufacturing processes to eliminate excess material in the tube wall and therefore provide a more precisely dimensioned product for their customers. The resulting process energy savings are substantial, as is lowered environmental burden. The expected savings are $85.8 million per year in seamless mechanical tube piercing alone. Applied across the industry, this measurement has a potential of reducing energy consumption by 6 x 10{sup 12} BTU per year, greenhouse gas emissions by 0.3 million metric tons carbon equivalent per year, and toxic waste by 0.255 million pounds per year. The principal technical contributors to the project were the Timken Company, Industrial Materials Institute (IMI, a contractor to Timken), and Oak Ridge National Laboratory (ORNL). Timken provided mill access as well as process and metallurgical understanding. Timken researchers had previously developed fundamental ultrasonic analysis methods on which this project is based. IMI developed and fabricated the laser ultrasonic generation and receiver systems. ORNL developed Bayesian and wavelet based real-time signal processing, spread-spectrum wireless communication, and explored feature extraction and pattern recognition methods. The resulting instrument has successfully measured production tubes at one of Timken's piercing mills. This report concentrates on ORNL's contribution through the CRADA mechanism. The three components of ORNL's contribution were met with mixed success. The real-time signal-processing task accomplished its goal of improvement in detecting time of flight information with a minimum of false data. The signal processing

  17. Nickel plating of FBG strain sensors for nuclear applications

    NASA Astrophysics Data System (ADS)

    Perry, Marcus; Niewczas, Pawel; Johnston, Michael; Mackersie, John

    2011-05-01

    We present a method for plating FBG strain sensors with a strongly-bonded, hermetic nickel layer, without exposure of the fiber to corrosive environments. A 1μm thick, highly adhesive chrome layer is deposited onto bare fibers via evaporation. Addition of an inert and electrically conductive gold layer then allows the fiber to be electroplated with a 50-100μm nickel layer. Finite element models have confirmed that nickel plated FBG sensors can be brazed into steel structures and used to monitor local strain and temperature. Embedding gratings that are temperature and radiation resistant will be particularly applicable to the structural health monitoring of steel prestressing tendons used in the concrete containments of nuclear power plants and other safety-significant structures.

  18. Stress Corrosion Cracking of Carbon Steel Weldments

    SciTech Connect

    POH-SANG, LAM

    2005-01-13

    An experiment was conducted to investigate the role of weld residual stress on stress corrosion cracking in welded carbon steel plates prototypic to those used for nuclear waste storage tanks. Carbon steel specimen plates were butt-joined with Gas Metal Arc Welding technique. Initial cracks (seed cracks) were machined across the weld and in the heat affected zone. These specimen plates were then submerged in a simulated high level radioactive waste chemistry environment. Stress corrosion cracking occurred in the as-welded plate but not in the stress-relieved duplicate. A detailed finite element analysis to simulate exactly the welding process was carried out, and the resulting temperature history was used to calculate the residual stress distribution in the plate for characterizing the observed stress corrosion cracking. It was shown that the cracking can be predicted for the through-thickness cracks perpendicular to the weld by comparing the experimental KISCC to the calculated stress intensity factors due to the welding residual stress. The predicted crack lengths agree reasonably well with the test data. The final crack lengths appear to be dependent on the details of welding and the sequence of machining the seed cracks, consistent with the prediction.

  19. Lightweight, Rack-Mountable Composite Cold Plate/Shelves

    NASA Technical Reports Server (NTRS)

    Hurlbert, Kathryn M.; Ruemmele, Warren; Nguyen, Hai D.; Andish, Kambiz; McCalley, Sean

    2004-01-01

    Rack-mountable composite-material structural components that would serve as both shelves and cold plates for removing heat from electronic or other equipment mounted on the shelves have been proposed as lightweight alternatives to all-metal cold plate/shelves now in use. A proposed cold plate/shelf would include a highly thermally conductive face sheet containing oriented graphite fibers bonded to an aluminum honeycomb core, plus an extruded stainless-steel substructure containing optimized flow passages for a cooling fluid, and an inlet and outlet that could be connected to standard manifold sections. To maximize heat-transfer efficiency, the extruded stainless-steel substructure would be connected directly to the face sheet. On the basis of a tentative design, the proposed composite cold plate/shelf would weigh about 38 percent less than does an all-aluminum cold plate in use or planned for use in some spacecraft and possibly aircraft. Although weight is a primary consideration, the tentative design offers the additional benefit of reduction of thickness to half that of the all-aluminum version.

  20. Nonlinear behavior of circular plates with work hardening

    NASA Technical Reports Server (NTRS)

    Winter, R.; Levine, H. S.

    1978-01-01

    Tests were performed on two simply supported plates of aluminum alloy 2024-0, under a central concentrated load, with peak deflections up to 2.6 times the thickness. The load was provided by a small-diameter hard-steel rod. The plates had diameter-to-thickness ratios (D/h) of 20 and 41. Measurements were made of load, deflections and strains; membrane and bending strains were calculated from the test data. The test data are presented in comparison with theoretical predictions generated by the finite-element-computer code PLANS, which includes material and geometric nonlinearities. The theoretical prediction was excellent for deflections, and generally good for strains, when the central force was represented by a line load around the loading rod's contact circle.

  1. Optical measurements of flyer plate acceleration by emulsion explosive

    NASA Astrophysics Data System (ADS)

    Kubota, Shiro; Shimada, Hideki; Matsui, Kikuo; Ogata, Yuji; Seto, Masahiro; Masui, Akira; Wada, Yuji; Liu, Zhi-Yue; Itoh, Shigeru

    2001-04-01

    This paper presents the study on the application of explosive welding technique to the field of the urgent repair of the gas and water pipe networks. The essential parameters related to the explosive welding are scrutinized from the point of view of the minimizing the damage to the steel pipe after welded explosively with a flyer plate. The emulsion explosive is contained in a rectangular hard-paper box whose bottom is the flyer plate with 100 mm length, 25 mm width and 1.5 mm thickness. The flyer motions of the flyer plates accelerated by emulsion explosive are observed by high-speed photography from the side and front view of the flyer plate. The damage to the pipe by the flyer plate is discussed with the results of the observation of flyer motion and explosive welding test under various experimental conditions. Moreover, one way to control the motion of the flyer plate is proposed. We put a PMMA buffer block into the explosive. The flying process of flyer plate is calculated by the finite different scheme based on the ALE method. The effectiveness of this method is demonstrated by the experimental and numerical studies.

  2. A new perspective on the influence of thickness and post-weld heat treatment for large scale welded joints

    SciTech Connect

    Hancock, P.; Chubb, J.P.; Spurrier, J.

    1995-04-01

    CTOD, Charpy, and wide plate results from welded constructional steels are collected from nine companies. The resulting large data bank is analyzed statistically to identify general trends in properties of welded constructional steels. The present paper uses the data bank to review the effect of post-weld heat treatment (PWHT) on the fracture behavior of the weldments. Analysis shows the beneficial effect of PWHT at all thicknesses. The results are subsequently used to question the normal practice of post-weld heat treating weldments of 50 mm and above in thickness while leaving weldments of below 50 mm thick in the as welded condition. It is suggested that there is no significant difference in as welded fracture properties in weldments until thicknesses are well in excess of 100 mm.

  3. Channel plate for DNA sequencing

    DOEpatents

    Douthart, R.J.; Crowell, S.L.

    1998-01-13

    This invention is a channel plate that facilitates data compaction in DNA sequencing. The channel plate has a length, a width and a thickness, and further has a plurality of channels that are parallel. Each channel has a depth partially through the thickness of the channel plate. Additionally an interface edge permits electrical communication across an interface through a buffer to a deposition membrane surface. 15 figs.

  4. Channel plate for DNA sequencing

    DOEpatents

    Douthart, Richard J.; Crowell, Shannon L.

    1998-01-01

    This invention is a channel plate that facilitates data compaction in DNA sequencing. The channel plate has a length, a width and a thickness, and further has a plurality of channels that are parallel. Each channel has a depth partially through the thickness of the channel plate. Additionally an interface edge permits electrical communication across an interface through a buffer to a deposition membrane surface.

  5. Studies on A-TIG welding of Low Activation Ferritic/Martensitic (LAFM) steel

    NASA Astrophysics Data System (ADS)

    Vasantharaja, P.; Vasudevan, M.

    2012-02-01

    Low Activation Ferritic-Martensitic steels (LAFM) are chosen as the candidate material for structural components in fusion reactors. The structural components are generally fabricated by welding processes. Activated Tungsten Inert Gas (A-TIG) welding is an emerging process for welding of thicker components. In the present work, attempt was made to develop A-TIG welding technology for LAFM steel plates of 10 mm thick. Activated flux was developed for LAFM steel by carrying out various bead-on-plate TIG welds without flux and with flux. The optimum flux was identified as one which gave maximum depth of penetration at minimum heat input values. With the optimized flux composition, LAFM steel plate of 10 mm thickness was welded in square butt weld joint configuration using double side welding technique. Optical and Scanning Electron Microscopy was used for characterizing the microstructures. Microhardness measurements were made across the weld cross section for as welded and post weld heat treated samples. Tensile and impact toughness properties were determined. The mechanical properties values obtained in A-TIG weld joint were comparable to that obtained in weld joints of LAFM steel made by Electron beam welding process.

  6. Eddy current thickness measurement apparatus

    DOEpatents

    Rosen, Gary J.; Sinclair, Frank; Soskov, Alexander; Buff, James S.

    2015-06-16

    A sheet of a material is disposed in a melt of the material. The sheet is formed using a cooling plate in one instance. An exciting coil and sensing coil are positioned downstream of the cooling plate. The exciting coil and sensing coil use eddy currents to determine a thickness of the solid sheet on top of the melt.

  7. Free and forced vibration control of piezoelectric FGM plate subjected to electro-mechanical loading

    NASA Astrophysics Data System (ADS)

    Jadhav, Priyanka A.; Bajoria, Kamal M.

    2013-06-01

    This paper investigates the free and forced vibration analysis of a newly introduced metal based functionally graded (FG) plate integrated with a piezoelectric actuator and sensor at the top and bottom faces respectively. The material properties of the FG plate are assumed to be graded along the thickness direction according to a simple power law distribution in terms of the volume fraction of the constituents, while the Poisson ratio is assumed to be constant. The plate is simply supported at all edges. The finite element model is based on higher order shear deformation theory (HOST), the von Karman hypothesis and degenerated shell elements. The displacement component of the present model is expanded in Taylor’s series in terms of the thickness co-ordinate. The Hamilton principle is used to derive the equation of motion for the piezoelectric functionally graded material (FGM) plate. The free and forced vibration analysis of the simply supported piezoelectric FG plate is carried out to present the effect of the power law index and the piezoelectric layer. The present analysis is carried out on a newly introduced FGM, which is a mixture of aluminum and stainless steel. Stainless steel is a high strength material but it can rust in extreme cases, and aluminum does not rust but it is a low strength material. The FGM exhibits corrosion resistance as well as the high strength property in a single material. This new FGM will definitely help in the construction as well as the metal industry.

  8. Development of low cost composite plates for humanitarian demining operations

    NASA Astrophysics Data System (ADS)

    Rabet, L.; Scheppers, J.; Verpoest, I.; Pirlot, M.; Desmet, B.; Gilson, L.; Pirard, P.

    2006-08-01

    Composite plates using flax fabrics and maleic anhydride modified polypropylene were fabricated on laboratory scale. The aim of the current research was to develop a low cost composite plate or a hybrid structure based on those plates and steel sheet, for making humanitarian demining clothes protecting against secondary fragmentation caused by anti-personnel blast mines. Ballistic impact tests according to STANAG 2920 were carried out for determining the v{50}-limit. So called field tests were performed by means of simulated anti-personnel mines using M112 explosive; the repeatability and the spatial distribution of the projected fragments were checked before fixing the final experimental setup. The performance of the bare composite plate was compared with the hybrid structures in terms of v{50} and in terms of damage mechanisms. All tested configurations performed amazingly well during the field tests, which was not the case for the ballistic impact tests. This led to the conclusion that v{50} might not be the best criterion to characterize protective clothing. This conclusion is sustained by energetic considerations and by field tests on plates with half the thickness of the initial plates.

  9. Numerical modelling of the effect of using multi-explosives on the explosive forming of steel cones

    NASA Astrophysics Data System (ADS)

    De Vuyst, T.; Kong, K.; Djordjevic, N.; Vignjevic, R.; Campbell, JC; Hughes, K.

    2016-08-01

    Modelling and analysis of underwater explosive forming process by using FEM and SPH formulation is presented in this work. The explosive forming of a steel cone is studied. The model setup includes a low carbon steel plate, plate holder, forming die as well as water and C4 explosive. The effect of multiple explosives on rate of targets deformation has been studied. Four different multi-explosives models have been developed and compared to the single explosive model. The formability of the steel plate based on forming limit failure criteria has been investigated. Aspects such as shape of plates deformation and thickness of the plate during the forming process have been examined. The model results indicate that a multi-explosives model does not always guarantee a faster rate of target deformation without central explosive. On the other hand the model results indicate that the multi-explosives setup is capable of preventing crack failure of the steel plate during the forming process which would occur if a single explosive model was used.

  10. Strain sensing of low-velocity impacts for smart composite plates

    SciTech Connect

    Pojanasomboon, P.; Watkins, S.E.; Chandrashekhara, K.

    1994-12-31

    Transient impact-induced strain in a composite plate and in an aluminum plate was measured using fiber optic extrinsic Fabry-Perot sensors and electrical resistance foil gauges. The composite plate is a four-ply [0/90/90/0] glass/epoxy laminate and is 1.0 mm thick. The aluminum plate is 1.3 mm thick. Both plates were subjected to low-velocity impacts using a drop-weight tester. The impact tester used free falling steel balls that have masses of 1.0 g and 3.5 g. The balls were dropped from heights of 90 cm and 23 cm onto the center of the plates. The impact events did not cause damage to either plate. The dynamic impact-induced strain during the contact duration of the balls was simultaneously monitored by the two sensing systems. All sensors were surface-mounted on the side opposite the impact. The strain information was extracted from the interferometric fiber optic data using a fringe counting procedure. The strain from the electrical resistance gauges was obtained with a Wheatstone bridge circuit. The strain characteristics obtained with the fiber optic sensors are compared to that obtained using the conventional electrical resistance gauges. The sensing systems exhibited repeatable results that were substantially similar. The influence of sensor type, point of impact, and impact energy are examined. The fiber optic strain sensor was in general superior to the electrical resistance gauge in terms of sensitivity and field suitability.

  11. Aluminum electroplating on steel from a fused bromide electrolyte

    SciTech Connect

    Prabhat K. Tripathy; Laura A. Wurth; Eric J. Dufek; Toni Y. Gutknecht; Natalie J. Gese; Paula Hahn; Steven M. Frank; Guy L. Frederickson; J. Stephen Herring

    2014-08-01

    A quaternary bromide bath (LiBr–KBr–CsBr–AlBr3) was used to electro-coat aluminum on steel substrates. The electrolytewas prepared by the addition of AlBr3 into the eutectic LiBr–KBr–CsBr melt. A smooth, thick, adherent and shiny aluminum coating could be obtained with 80 wt.% AlBr3 in the ternary melt. The SEM photographs of the coated surfaces suggest the formation of thick and dense coatings with good aluminum coverage. Both salt immersion and open circuit potential measurement suggested that the coatings did display a good corrosionresistance behavior. Annealing of the coated surfaces, prior to corrosion tests, suggested the robustness of the metallic aluminum coating in preventing the corrosion of the steel surfaces. Studies also indicated that the quaternary bromide plating bath can potentially provide a better aluminumcoating on both ferrous and non-ferrous metals, including complex surfaces/geometries.

  12. Aluminium Electroplating on Steel from a Fused Bromide Electrolyte

    SciTech Connect

    Prabhat Tripathy; Laura Wurth; Eric Dufek; Toni Y. Gutknecht; Natalie Gese; Paula Hahn; Steven Frank; Guy Fredrickson; J Stephen Herring

    2014-08-01

    A quaternary bromide bath (LiBr-KBr-CsBr-AlBr3) was used to electro-coat aluminium on steel substrates. The electrolyte was prepared by the addition of AlBr3 into the eutectic LiBr-KBr-CsBr melt. A smooth, thick, adherent and shiny aluminium coating could be obtained with 80 wt.% AlBr3 in the ternary melt. The SEM photographs of the coated surfaces suggest the formation of thick and dense coatings with good aluminium coverage. Both salt immersion and open circuit potential measurement suggest that the coatings did display good corrosion-resistance behavior. Annealing of the coated surfaces, prior to corrosion tests, suggested the robustness of the metallic aluminium coating in preventing the corrosion of the steel surfaces. Studies also indicated that the quaternary bromide plating bath can potentially provide a better aluminium coating on both ferrous and non-ferrous metals, including complex surfaces/geometries.

  13. Influence of the pulsed plasma treatment on the corrosion resistance of the low-alloy steel plated by Ni-based alloy

    NASA Astrophysics Data System (ADS)

    Dzhumaev, P.; Yakushin, V.; Kalin, B.; Polsky, V.; Yurlova, M.

    2016-04-01

    This paper presents investigation results of the influence of high temperature pulsed plasma flows (HTPPF) treatment on the corrosion resistance of low-alloy steel 0.2C-Cr-Mn- Ni-Mo cladded by the rapidly quenched nickel-based alloy. A technique that allows obtaining a defect-free clad layer with a good adhesion to the substrate was developed. It is shown that the preliminary treatment of steel samples by nitrogen plasma flows significantly increases their corrosion resistance in the conditions of intergranular corrosion test in a water solution of sulfuric acid. A change of the corrosion mechanism of the clad layer from intergranular to uniform corrosion was observed as a result of sub-microcrystalline structure formation and homogeneous distribution of alloying elements in the plasma treated surface layer thus leading to the significant increase of the corrosion resistance.

  14. Double-Sided Single-Pass Submerged Arc Welding for 2205 Duplex Stainless Steel

    NASA Astrophysics Data System (ADS)

    Luo, Jian; Yuan, Yi; Wang, Xiaoming; Yao, Zongxiang

    2013-09-01

    The duplex stainless steel (DSS), which combines the characteristics of ferritic steel and austenitic steel, is used widely. The submerged arc welding (SAW) method is usually applied to join thick plates of DSS. However, an effective welding procedure is needed in order to obtain ideal DSS welds with an appropriate proportion of ferrite (δ) and austenite (γ) in the weld zone, particularly in the melted zone and heat-affected zone. This study evaluated the effectiveness of a high efficiency double-sided single-pass (DSSP) SAW joining method for thick DSS plates. The effectiveness of the converse welding procedure, characterizations of weld zone, and mechanical properties of welded joint are analyzed. The results show an increasing appearance and continuous distribution feature of the σ phase in the fusion zone of the leading welded seam. The converse welding procedure promotes the σ phase to precipitate in the fusion zone of leading welded side. The microhardness appears to significantly increase in the center of leading welded side. Ductile fracture mode is observed in the weld zone. A mixture fracture feature appears with a shear lip and tears in the fusion zone near the fusion line. The ductility, plasticity, and microhardness of the joints have a significant relationship with σ phase and heat treatment effect influenced by the converse welding step. An available heat input controlling technology of the DSSP formation method is discussed for SAW of thick DSS plates.

  15. Plate motion

    SciTech Connect

    Gordon, R.G. )

    1991-01-01

    The motion of tectonic plates on the earth is characterized in a critical review of U.S. research from the period 1987-1990. Topics addressed include the NUVEL-1 global model of current plate motions, diffuse plate boundaries and the oceanic lithosphere, the relation between plate motions and distributed deformations, accelerations and the steadiness of plate motions, the distribution of current Pacific-North America motion across western North America and its margin, plate reconstructions and their uncertainties, hotspots, and plate dynamics. A comprehensive bibliography is provided. 126 refs.

  16. Section 3: Optimization of a 550/690-MPa high-performance bridge steel

    SciTech Connect

    Magee, A.B.; Gross, J.H.; Stout, R.D.

    1997-04-01

    This project to develop a high-performance bridge steel was intended to avoid susceptibility of the steel to weld heat-affected-zone cracking and therefore minimize the requirement for preheat, and to increase its fracture toughness at service temperatures. Previous studies by the Lehigh University Center for Advanced Technology for Large Structural Systems have suggested that a Cu-Ni steels with the following composition was an excellent candidate for such a bridge steel: C/0.070; Mn/1.50; P/0.009; S/0.005; Si/0.25; Cu/1.00; Ni/0.75; Cr/0.50; Mo/0.50; V/0.06; Cb/0.010. To confirm that observation, 227-kg heats of the candidate steel were melted and processed to 25- and 50-mm-thick plate by various thermomechanical practices, and the weldability and mechanical properties determined. To evaluate the feasibility of reduced alloy content, two 227-kg heats of a lower hardenability steel were melted with C reduced to 0.06, Mn to 1.25, and Mo to 0.25 and similarly processed and tested. The results indicate that the steels were not susceptible to hydrogen-induced weld-heat-affected-zone cracking when welded without preheat. Jominy end-quench tests of the higher-hardenability steel indicate that a minimum yield-strength of 690 MPa should be readily attainable in thicknesses through 50 mm and marginally at 100 mm. The toughness of the steel readily met AASHTO specifications for Zone 3 in all conditions and thicknesses, and may be sufficiently tough so that the critical crack size will minimize fatigue-crack-extension problems.

  17. Improvements in 500-kHz Ultrasonic Phased-Array Probe Designs for Evaluation of Thick Section Cast Austenitic Stainless Steel Piping Welds

    SciTech Connect

    Crawford, Susan L.; Cinson, Anthony D.; Moran, Traci L.; Anderson, Michael T.; Diaz, Aaron A.

    2011-02-01

    PNNL has been studying and performing confirmatory research on the inspection of piping welds in coarse-grained steels for over 30 years. More recent efforts have been the application of low frequency phased array technology to this difficult to inspect material. The evolution of 500 kHz PA probes and the associated electronics and scanning protocol are documented in this report. The basis for the probe comparisons are responses from one mechanical fatigue crack and two thermal fatigue cracks in large-bore cast mockup specimens on loan from the Electric Power Research Institution. One of the most significant improvements was seen in the use of piezo-composite elements in the later two probes instead of the piezo-ceramic material used in the prototype array. This allowed a reduction in system gain of 30 dB and greatly reduced electronic noise. The latest probe had as much as a 5 dB increase in signal to noise, adding to its flaw discrimination capability. The system electronics for the latest probe were fully optimized for a 500 kHz center frequency, however significant improvements were not observed in the center frequency of the flaw responses. With improved scanner capabilities, smaller step sizes were used, allowing both line and raster data improvements to be made with the latest probe. The small step sizes produce high resolution images that improve flaw discrimination and, along with the increased signal-to-noise ratio inherent in the latest probe design, enhanced detection of the upper regions of the flaw make depth sizing more plausible. Finally, the physical sizes of the probes were progressively decreased allowing better access to the area of interest on specimens with weld crowns, and the latest probe was designed with non-integral wedges providing flexibility in focusing on different specimen geometries.

  18. Drilling and cutting of thin metal plates in water with radiation of a repetitively pulsed Nd : YAG laser

    SciTech Connect

    Glova, A F; Lysikov, A Yu

    2011-10-31

    The conditions of drilling and cutting of 0.15-mm-thick titanium and stainless steel plates in water with the radiation of a repetitively pulsed Nd : YAG laser having the mean power up to 30 W are studied experimentally in the absence of water and gas jets. Dependences of the maximal cutting speed in water on the radiation power are obtained, the cutting efficiency is determined, and the comparison with the conditions of drilling and cutting of plates in air is carried out.

  19. Influence of elastomeric seal plate surface chemistry on interface integrity in biofouling-prone systems: Evaluation of a hydrophobic "easy-release" silicone-epoxy coating for maintaining water seal integrity of a sliding neoprene/steel interface

    NASA Astrophysics Data System (ADS)

    Andolina, Vincent L.

    The scientific hypothesis of this work is that modulation of the properties of hard materials to exhibit abrasion-reducing and low-energy surfaces will extend the functional lifetimes of elastomeric seals pressed against them in abrasive underwater systems. The initial motivation of this work was to correct a problem noted in the leaking of seals at major hydropower generating facilities subject to fouling by abrasive zebra mussel shells and extensive corrosion. Similar biofouling-influenced problems can develop at seals in medical devices and appliances from regulators in anesthetic machines and SCUBA diving oxygen supply units to autoclave door seals, injection syringe gaskets, medical pumps, drug delivery components, and feeding devices, as well as in food handling equipment like pasteurizers and transfer lines. Maritime and many other heavy industrial seal interfaces could also benefit from this coating system. Little prior work has been done to elucidate the relationship of seal plate surface properties to the friction and wear of elastomeric seals during sliding contacts of these articulating materials, or to examine the secondary influence of mineralized debris within the contacting interfaces. This investigation utilized the seal materials relevant to the hydropower application---neoprene elastomer against carbon steel---with and without the application of a silicone-epoxy coating (WearlonRTM 2020.98) selected for its wear-resistance, hydrophobicity, and "easy-release" capabilities against biological fouling debris present in actual field use. Analytical techniques applied to these materials before and after wear-producing processes included comprehensive Contact Angle measurements for Critical Surface Tension (CA-CST) determination, Scanning Electron Microscopic inspections, together with Energy Dispersive X-ray Spectroscopy (SEM-EDS) and X-Ray Fluorescence (XRF) measurements for determination of surface texture and inorganic composition, Multiple

  20. Development of a Resistive Plate Chamber with heat strengthened glass

    NASA Astrophysics Data System (ADS)

    Majumder, G.; Datar, V. M.; Kalmani, S. D.; Mondal, N. K.; Mondal, S.; Satyanarayana, B.; Shinde, R. R.

    2016-09-01

    The INO-ICAL is a proposed neutrino physics experiment, in which RPCs will be used as active detectors. The Iron Calorimeter (ICAL) detector will be made of 50 kTon of low carbon magnetized steel layers, tiled with 4 m × 2 m × 56 mm thick plates, alternating with layers of RPCs. The total number of 2 × 2 m2 RPCs required will be about 29000. However, during the assembly of RPCs, handling the 2 × 2 m2 normal float glass of thickness 3 mm is both difficult and risky. This prompted us to make RPCs with toughened glass and to characterize them. Toughened and tempered glass have higher mechanical strength compared to normal float glass and their processing involves controlled thermal or chemical treatment during the industrial production. This paper presents a comparison of the characteristics, such as noise rate, dark current, particle detection efficiency and time resolution, of normal and hardened glass RPCs.

  1. Seismic behavior of outrigger truss-wall shear connections using multiple steel angles

    NASA Astrophysics Data System (ADS)

    Li, Xian; Wang, Wei; Lü, Henglin; Zhang, Guangchang

    2016-06-01

    An experimental investigation on the seismic behavior of a type of outrigger truss-reinforced concrete wall shear connection using multiple steel angles is presented. Six large-scale shear connection models, which involved a portion of reinforced concrete wall and a shear tab welded onto a steel endplate with three steel angles, were constructed and tested under combined actions of cyclic axial load and eccentric shear. The effects of embedment lengths of steel angles, wall boundary elements, types of anchor plates, and thicknesses of endplates were investigated. The test results indicate that properly detailed connections exhibit desirable seismic behavior and fail due to the ductile fracture of steel angles. Wall boundary elements provide beneficial confinement to the concrete surrounding steel angles and thus increase the strength and stiffness of connections. Connections using whole anchor plates are prone to suffer concrete pry-out failure while connections with thin endplates have a relatively low strength and fail due to large inelastic deformations of the endplates. The current design equations proposed by Chinese Standard 04G362 and Code GB50011 significantly underestimate the capacities of the connection models. A revised design method to account for the influence of previously mentioned test parameters was developed.

  2. Neutron Diffraction Residual Strain Tensor Measurements Within The Phase IA Weld Mock-up Plate P-5

    SciTech Connect

    Hubbard, Camden R

    2011-09-01

    Oak Ridge National Laboratory (ORNL) has worked with NRC and EPRI to apply neutron and X-ray diffraction methods to characterize the residual stresses in a number of dissimilar metal weld mockups and samples. The design of the Phase IA specimens aimed to enable stress measurements by several methods and computational modeling of the weld residual stresses. The partial groove in the 304L stainless steel plate was filled with weld beads of Alloy 82. A summary of the weld conditions for each plate is provided in Table 1. The plates were constrained along the long edges during and after welding by bolts with spring-loaded washers attached to the 1-inch thick Al backing plate. The purpose was to avoid stress relief due to bending of the welded stainless steel plate. The neutron diffraction method was one of the methods selected by EPRI for non-destructive through thickness strain and stress measurement. Four different plates (P-3 to P-6) were studied by neutron diffraction strain mapping, representing four different welding conditions. Through thickness neutron diffraction strain mappings at NRSF2 for the four plates and associated strain-free d-zero specimens involved measurement along seven lines across the weld and at six to seven depths. The mountings of each plate for neutron diffraction measurements were such that the diffraction vector was parallel to each of the three primary orthogonal directions of the plate: two in-plane directions, longitudinal and transverse, and the direction normal to the plate (shown in left figure within Table 1). From the three orthogonal strains for each location, the residual stresses along the three plate directions were calculated. The principal axes of the strain and stress tensors, however, need not necessarily align with the plate coordinate system. To explore this, plate P-5 was selected for examination of the possibility that the principal axes of strain are not along the sample coordinate system axes. If adequate data could

  3. Heavy reflector experiments in the IPEN/MB-01 reactor: Stainless steel, carbon steel and nickel

    SciTech Connect

    Santos, Adimir dos; Andrade e Silva, Graciete Simoes de; Jerez, Rogerio; Liambos Mura, Luis Felipe; Fuga, Rinaldo

    2013-05-06

    New experiments devoted to the measurements of physical parameters of a light water core surrounded by a heavy reflector were performed in the IPEN/MB-01 research reactor facility. These experiments comprise three sets of heavy reflector (SS-304, Carbon Steel, and Nickel) in a form of laminates around 3 mm thick. Each set was introduced individually in the west face of the core of the IPEN/MB-01 reactor. The aim here is to provide high quality experimental data for the interpretation and validation of the SS-304 heavy reflector calculation methods. The experiments of Carbon Steel, which is composed mainly of iron, and Nickel were performed to provide a consistent and an interpretative check for the SS-304 reflector experiment. The experimental results comprise critical control bank positions, temperatures and reactivities as a function of the number of the plates. Particularly to the case of Nickel, the experimental data are unique of its kind. The theoretical analysis was performed by MCNP-5 with the nuclear data library ENDF/B-VII.0. It was shown that this nuclear data library has a very good performance up to thirteen plates and overestimates the reactivity for higher number of plates independently of the type of the reflector.

  4. Violin plate modes.

    PubMed

    Gough, Colin

    2015-01-01

    As the first step toward developing a generic model for the acoustically radiating vibrational modes of the violin and related instruments, the modes of both freely supported and edge-constrained top and back plates have been investigated as functions of shape, arching height, elastic anisotropy, the f-holes and associated island area, thickness graduations, and the additional boundary constraints of the ribs, soundpost, and bass-bar present in the assembled instrument. Comsol shell structure finite element software has been used as a quasi-experimental tool, with physical and geometric properties varied smoothly, often over several orders of magnitude, allowing the development of the plate modes to be followed continuously from those of an initially square plate to those of doubly-arched, guitar-shaped, orthotropic plates and their dependence on all the above factors. PMID:25618046

  5. Violin plate modes.

    PubMed

    Gough, Colin

    2015-01-01

    As the first step toward developing a generic model for the acoustically radiating vibrational modes of the violin and related instruments, the modes of both freely supported and edge-constrained top and back plates have been investigated as functions of shape, arching height, elastic anisotropy, the f-holes and associated island area, thickness graduations, and the additional boundary constraints of the ribs, soundpost, and bass-bar present in the assembled instrument. Comsol shell structure finite element software has been used as a quasi-experimental tool, with physical and geometric properties varied smoothly, often over several orders of magnitude, allowing the development of the plate modes to be followed continuously from those of an initially square plate to those of doubly-arched, guitar-shaped, orthotropic plates and their dependence on all the above factors.

  6. Role of electroless nickel diffusion barrier on the combinatorial plating characteristics of dense Pd/Ni/PSS composite membranes

    NASA Astrophysics Data System (ADS)

    Pujari, Murali; Agarwal, Amrita; Uppaluri, Ramgopal; Verma, Anil

    2014-06-01

    This work addresses the combinatorial plating characteristics of dense Pd/Ni/porous stainless steel (PSS) composite membranes in comparison with Pd/PSS membranes. While Pd/PSS membranes were fabricated using 0.1 μm nominal pore size PSS supports, Pd/Ni/PSS membranes were fabricated using 0.5 and 0.1 μm nominal pore size PSS supports. Both Ni and Pd films were deposited using an identified novel electroless plating process that characterizes the optimal utilization of surfactant, sonication and reducing agent contacting pattern in Pd electroless plating baths. It was observed that the combinatorial plating characteristics for Pd/Ni/PSS membranes were significantly different and poorer in comparison with those obtained for the Pd/PSS membranes. In summary, it has been inferred that the introduction of nickel interdiffusion barrier was not fruitful to reduce the critical thickness of dense Pd film without jeopardizing upon the pore densification.

  7. Hypervelocity impact on shielded plates

    NASA Technical Reports Server (NTRS)

    Smith, James P.

    1993-01-01

    A ballistic limit equation for hypervelocity impact on thin plates is derived analytically. This equation applies to cases of impulsive impact on a plate that is protected by a multi-shock shield, and it is valid in the range of velocity above 6 km/s. Experimental tests were conducted at the NASA Johnson Space Center on square aluminum plates. Comparing the center deflections of these plates with the theoretical deflections of a rigid-plastic plate subjected to a blast load, one determines the dynamic yield strength of the plate material. The analysis is based on a theory for the expansion of the fragmented projectile and on a simple failure criterion. Curves are presented for the critical projectile radius versus the projectile velocity, and for the critical plate thickness versus the velocity. These curves are in good agreement with curves that have been generated empirically.

  8. Fuel cell end plate structure

    DOEpatents

    Guthrie, Robin J.; Katz, Murray; Schroll, Craig R.

    1991-04-23

    The end plates (16) of a fuel cell stack (12) are formed of a thin membrane. Pressure plates (20) exert compressive load through insulation layers (22, 26) to the membrane. Electrical contact between the end plates (16) and electrodes (50, 58) is maintained without deleterious making and breaking of electrical contacts during thermal transients. The thin end plate (16) under compressive load will not distort with a temperature difference across its thickness. Pressure plate (20) experiences a low thermal transient because it is insulated from the cell. The impact on the end plate of any slight deflection created in the pressure plate by temperature difference is minimized by the resilient pressure pad, in the form of insulation, therebetween.

  9. Physical metallurgy of BATMAN II Ti-bearing martensitic steels

    NASA Astrophysics Data System (ADS)

    Pilloni, L.; Attura, F.; Calza-Bini, A.; De Santis, G.; Filacchioni, G.; Carosi, A.; Amato, S.

    1998-10-01

    Seven laboratory experimental casts of 7-9% Cr Ti-bearing martensitic steels were obtained via VIM process. Plates of 25 mm thickness were produced by hot rolling. On each cast CCT diagrams and critical temperatures were determined. Several austenitizing treatments were performed to study the grain size evolution. The effect of microstructure on impact properties were finally investigated. This paper discusses the role of chemical composition on microstructural and physical properties and shows the beneficial effect either of low-temperature austenitizing or double-austenitizing steps on impact properties.

  10. Physicochemical characterization of the human nail: I. Pressure sealed apparatus for measuring nail plate permeabilities.

    PubMed

    Walters, K A; Flynn, G L; Marvel, J R

    1981-02-01

    Diffusion characteristics of the nail plate are necessary in providing the baselines for rational topical management of nail infections. In order to develop such baselines a unique stainless steel diffusion cell has been designed. The cell permits the exposure of 0.38 cm2 of nail plate to a bathing medium which is stirred by small motors mounted above the cell. The diffusion of water, methanol and ethanol at constant temperature (37 degrees C), has been examined over periods up to 4 h. Average permeability coefficients of water, methanol and ethanol were determined as 16.5 +/- 5.9 X 10(-3) cm hr-1, 5.6 X 10(-3) cm hr-1 and 5.8 +/- 3.1 X 10(-3) cm hr-1 respectively. Moreover rates of diffusion across the nail were inversely proportional to nail thickness. Based on methanol data, nail plate barrier property appears stable for long periods of aqueous immersion.

  11. 19. VIEW OF THE PLATING BATHS AND CONTROL PANELS. GOLD ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. VIEW OF THE PLATING BATHS AND CONTROL PANELS. GOLD AND SILVER WERE AMONG THE MATERIALS PLATED ONTO PARTS MADE OF COPPER, STAINLESS STEEL AND STEEL. (11/15/89) - Rocky Flats Plant, Non-Nuclear Production Facility, South of Cottonwood Avenue, west of Seventh Avenue & east of Building 460, Golden, Jefferson County, CO

  12. Comparison of characteristics of fluorine doped zinc and gallium tin oxide composite thin films deposited on stainless steel 316 bipolar plate by electron cyclotron resonance-metal organic chemical vapor deposition for proton exchange membrane fuel cells.

    PubMed

    Park, Jihun; Hudaya, Chairul; Lee, Joong Kee

    2011-09-01

    In order to replace the brittle graphite bipolar plates currently used for the PEMFC stack, coated SUS 316 was employed. As a metallic bipolar plate, coated SUS 316 can provide higher mechanical strength, better durability to shocks and vibration, less permeability, improved thermal and bulk electrical conductivity, as well as being thinner and lighter. To enhance the interfacial contact resistance and corrosion resistance of SUS 316, the deposition of GTO:F and ZTO:F composite films was carried out by ECR-MOCVD. The surface morphology of the films consisted of tiny elliptically shaped grains with a thickness of 1 microm. The corrosion current for GTO:F was 0.13 Acm(-2) which was much lower than that of bare SUS 316 (50.16 Acm(-2)). The GTO:F coated film had the smallest corrosion current due to the formation of a tight surface morphology with very few pin-holes. The GTO:F coated film exhibited the highest cell voltage and power density due to its lower ICR values. PMID:22097519

  13. Applications of film thickness equations

    NASA Technical Reports Server (NTRS)

    Hamrock, B. J.; Dowson, D.

    1983-01-01

    A number of applications of elastohydrodynamic film thickness expressions were considered. The motion of a steel ball over steel surfaces presenting varying degrees of conformity was examined. The equation for minimum film thickness in elliptical conjunctions under elastohydrodynamic conditions was applied to roller and ball bearings. An involute gear was also introduced, it was again found that the elliptical conjunction expression yielded a conservative estimate of the minimum film thickness. Continuously variable-speed drives like the Perbury gear, which present truly elliptical elastohydrodynamic conjunctions, are favored increasingly in mobile and static machinery. A representative elastohydrodynamic condition for this class of machinery is considered for power transmission equipment. The possibility of elastohydrodynamic films of water or oil forming between locomotive wheels and rails is examined. The important subject of traction on the railways is attracting considerable attention in various countries at the present time. The final example of a synovial joint introduced the equation developed for isoviscous-elastic regimes of lubrication.

  14. Quantum levitation of a thin magnetodielectric plate on a metallic plate using the repulsive Casimir force

    NASA Astrophysics Data System (ADS)

    Inui, Norio

    2012-04-01

    Levitation of a thin magnetodielectric plate on a metallic plate by using the repulsive Casimir force is theoretically considered. If the permittivity of the metallic plate near zero frequency is expressed by a plasma model and the static permeability of the magnetodielectric plate is higher than its static permittivity, the Casimir force between the magnetodielectric plate and the metallic plate changes from attractive to repulsive as the separation between them increases. Furthermore, as the thickness of the magnetodielectric plate is decreased, the attractive component of the Casimir force decreases more than the repulsive one. This effect generates a larger repulsive Casimir force as compared with that between the plates having infinite thickness. Combined with the effect of decreasing the weight of the plate, this might enable a thin plate to levitate in vacuum. The height of quantum levitation is evaluated for a combination of yttrium iron garnet and gold.

  15. Cadmium plating replacements

    NASA Technical Reports Server (NTRS)

    Nelson, Mary J.; Groshart, Earl C.

    1995-01-01

    The Boeing Company has been searching for replacements to cadmium plate. Two alloy plating systems seem close to meeting the needs of a cadmium replacement. The two alloys, zinc-nickel and tin-zinc are from alloy plating baths; both baths are neutral pH. The alloys meet the requirements for salt fog corrosion resistance, and both alloys excel as a paint base. Currently, tests are being performed on standard fasteners to compare zinc-nickel and tin-zinc on threaded hardware where cadmium is heavily used. The Hydrogen embrittlement propensity of the zinc-nickel bath has been tested, and just beginning for the tin-zinc bath. Another area of interest is the electrical properties on aluminum for tin-zinc and will be discussed. The zinc-nickel alloy plating bath is in production in Boeing Commercial Airplane Group for non-critical low strength steels. The outlook is promising that these two coatings will help The Boeing Company significantly reduce its dependence on cadmium plating.

  16. NICKEL PLATING PROCESS

    DOEpatents

    Hoover, T.B.; Zava, T.E.

    1959-05-12

    A simplified process is presented for plating nickel by the vapor decomposition of nickel carbonyl. In a preferred form of the invention a solid surface is nickel plated by subjecting the surface to contact with a mixture containing by volume approximately 20% nickel carbonyl vapor, 2% hydrogen sulfide and .l% water vapor or 1% oxygen and the remainder carbon dioxide at room temperature until the desired thickness of nickel is obtained. The advantage of this composition over others is that the normally explosive nickel carbonyl is greatly stabilized.

  17. Influence of elastomeric seal plate surface chemistry on interface integrity in biofouling-prone systems: Evaluation of a hydrophobic "easy-release" silicone-epoxy coating for maintaining water seal integrity of a sliding neoprene/steel interface

    NASA Astrophysics Data System (ADS)

    Andolina, Vincent L.

    The scientific hypothesis of this work is that modulation of the properties of hard materials to exhibit abrasion-reducing and low-energy surfaces will extend the functional lifetimes of elastomeric seals pressed against them in abrasive underwater systems. The initial motivation of this work was to correct a problem noted in the leaking of seals at major hydropower generating facilities subject to fouling by abrasive zebra mussel shells and extensive corrosion. Similar biofouling-influenced problems can develop at seals in medical devices and appliances from regulators in anesthetic machines and SCUBA diving oxygen supply units to autoclave door seals, injection syringe gaskets, medical pumps, drug delivery components, and feeding devices, as well as in food handling equipment like pasteurizers and transfer lines. Maritime and many other heavy industrial seal interfaces could also benefit from this coating system. Little prior work has been done to elucidate the relationship of seal plate surface properties to the friction and wear of elastomeric seals during sliding contacts of these articulating materials, or to examine the secondary influence of mineralized debris within the contacting interfaces. This investigation utilized the seal materials relevant to the hydropower application---neoprene elastomer against carbon steel---with and without the application of a silicone-epoxy coating (WearlonRTM 2020.98) selected for its wear-resistance, hydrophobicity, and "easy-release" capabilities against biological fouling debris present in actual field use. Analytical techniques applied to these materials before and after wear-producing processes included comprehensive Contact Angle measurements for Critical Surface Tension (CA-CST) determination, Scanning Electron Microscopic inspections, together with Energy Dispersive X-ray Spectroscopy (SEM-EDS) and X-Ray Fluorescence (XRF) measurements for determination of surface texture and inorganic composition, Multiple

  18. Healing of fractures with freeze-dried cortical bone plates. Comparison with compression plating.

    PubMed

    Malinin, T; Latta, L L; Wagner, J L; Brown, M D

    1984-11-01

    The healing of fractures of the radius with internal fixation by stainless-steel compression plates was compared with fractures fixed with freeze-dried bone-plate allografts. Fractures fixed with metallic plates gained slightly less than half the biomechanical strength of the contralateral control bone and healed without noticeable external callus formation. Bone-plated fractures regained three-fourths of the biomechanical strength of controls and healed by forming an external callus. Bone-plate allografts were eventually incorporated in the host bone. Allograft plates were vascularized and remodeled into cancellous bone in the process of incorporation in the host bones.

  19. Structural and phase transformations in Hadfield steel upon frictional loading in liquid nitrogen

    NASA Astrophysics Data System (ADS)

    Korshunov, L. G.; Sagaradze, V. V.; Chernenko, N. L.

    2016-08-01

    Structural transformations that occur in 110G13 steel (Hadfield) upon sliding friction in liquid nitrogen (-196°C) have been investigated by metallographic, electron-microscopic, and X-ray diffraction methods. The frictional action was performed through the reciprocating sliding of a cylindrical indenter of quenched 110G13 steel over a plate of the studied steel. A like friction pair was immersed into a bath with liquid nitrogen. It has been shown that the Hadfield steel quenched from 1100°C under the given temperature conditions of frictional loading retains the austenitic structure completely. The frictional action forms in a surface layer up to 10 μm thick the nanocrystalline structure with austenite grains 10-50 nm in size and a hardness 6 GPa. Upon subsequent low-temperature friction, the tempering of steel at 400°C (3 h) and at 600°C (5 min and 5 h) brings about the formation of a large amount (tens of vol %) of ɛ (hcp) martensite in steel. The formation of this phase under friction is supposedly a consequence of the reduction in the stacking fault energy of Hadfield steel, which is achieved due to the combined action of the following factors: low-temperature cooling, a decrease in the carbon content in the austenite upon tempering, and the presence of high compressive stresses in the friction-contact zone.

  20. Weldability evaluation of high tensile plates using GMAW process

    NASA Astrophysics Data System (ADS)

    Datta, R.; Mukerjee, D.; Rohira, K. L.; Veeraraghavan, R.

    1999-08-01

    High tensile plates, SAILMA-450 high impact (HI) (yield strength, 45 kg/mm2 minimum; ultimate tensile strength, 57 kg/mm2 minimum; elongation, 19% minimum; Charpy impact energy 2.0 kg.m at -20 °C minimum) were successfully developed at the Steel Authority of India Ltd., up to 32 mm plate thickness. Since then the steel has been extensively used for the fabrication of impellers, bridges, excavators, and mining machineries, where welding is an important processing step. The present study deals with the weldability properties of SAILMA-450 HI plates employing the gas metal arc welding process and carbon dioxide gas. Implant and elastic restraint cracking tests were conducted to assess the cold cracking resistance of the weld joint under different welding conditions. The static fatigue limit values were found to be in excess of minimum specified yield strength at higher heat input levels (9.4 and 13.0 kJ/cm), indicating adequate cold cracking resistance. The critical restraint intensities, K cr, were found to vary between 720 and 1280 kg/mm2, indicating that the process can be utilized for fabrication of structures involving moderate to low restraint intensities (200 to 1000 kg/mm2). Lamellar tear tests conducted using full thickness plates at heat input levels ranging from 10 to 27 kJ/cm showed no incidence of lamellar tear upon visual, ultrasonic, and four-section macroexamination. These tests were repeated using machined plates, such that the midthickness of the plates (segregated zone) corresponded to the heat affected zone of the weld. No cracks were observed, indicating good lamellar tear resistance of the weld joint. Optimized welding conditions were formulated based on these tests. The weld joint was subjected to extensive tests to assess the physical properties and soundness of the weld joint. The weld joint exhibited good strength (64.7 kg/mm2) and impact toughness (5.7 and 3.5 kg.m at -20 °C for weld metal and heat affected zone properties. Crack tip

  1. Yb-fibre Laser Welding of 6 mm Duplex Stainless Steel 2205

    NASA Astrophysics Data System (ADS)

    Bolut, M.; Kong, C. Y.; Blackburn, J.; Cashell, K. A.; Hobson, P. R.

    Duplex stainless steel (DSS) is one of the materials of choice for structural and nuclear applications, having high strength and good corrosion resistance when compared with other grades of stainless steel. The welding process used to join these materials is critical as transformation of the microstructure during welding directly affects the material properties. High power laser welding has recently seen an increase in research interest as it offers both speed and flexibility. This paper presents an investigation into the important parameters affecting laser welding of DSS grade 2205, with particular focus given to the critical issue of phase transformation during welding. Bead-on-plate melt-run trials without filler material were performed on 6mm thick plates using a 5 kW Yb-fibre laser. The laser beam was characterized and a Design of Experiment approach was used to quantify the impact of the process parameters. Optical metallographic methods were used to examine the resulting microstructures.

  2. Axisymmetric vibrations of layered tapered plates

    NASA Astrophysics Data System (ADS)

    Navaneethakrishnan, P. V.; Chandrasekaran, K.; Ravisrinivas, N.

    1992-12-01

    The study of Navaneethakrishnan and Chandrasekaran (1989) on axisymmetric free vibrations of layered annular plates is extended to the vibrations of layered annular plates whose thickness can vary as the radial distance from the arbitrary concentric circle. Numerical results are presented, showing the relationship between the circular frequency of the plate vibration and the ratio between the inner and the outer radii of the plate.

  3. Comparative Tensile Flow and Work-Hardening Behavior of 9 Pct Chromium Ferritic-Martensitic Steels in the Framework of the Estrin-Mecking Internal-Variable Approach

    NASA Astrophysics Data System (ADS)

    Choudhary, B. K.; Christopher, J.

    2016-06-01

    The comparative tensile flow and work-hardening behavior of P9 steel in two different product forms, normalized and tempered plate and thick section tube plate forging, and P91 steel were investigated in the framework of the dislocation dynamics based Estrin-Mecking (E-M) one-internal-variable approach. The analysis indicated that the flow behavior of P9 and P91 steels was adequately described by the E-M approach in a wide range of temperatures. It was suggested that dislocation dense martensite lath/cell boundaries and precipitates together act as effective barriers to dislocation motion in P9 and P91 steels. At room and intermediate temperatures, the evolution of the internal-state variable, i.e., the dislocation density with plastic strain, exhibited insignificant variations with respect to temperature. At high temperatures, a rapid evolution of dislocation density with plastic strain toward saturation with increasing temperature was observed. The softer P9 steel tube plate forging exhibited higher work hardening in terms of larger gains in the dislocation density and flow stress contribution from dislocations than the P9 steel plate and P91 steel at temperatures ranging from 300 K to 873 K (27 °C to 600 °C). The evaluation of activation energy suggests that the deformation is controlled by cross-slip of dislocations at room and intermediate temperatures, and climb of dislocations at high temperatures. The relative influence of initial microstructure on flow and work-hardening parameters associated with the E-M approach was discussed in the three temperature regimes displayed by P9 and P91 steels.

  4. Bipolar battery plate

    NASA Technical Reports Server (NTRS)

    Rowlette, John J. (Inventor)

    1987-01-01

    A liquid-impermeable plate (10) having through-plate conductivity with essentially zero resistance comprises an insulator sheet (12) having a series of spaced perforations (14) each of which contains a metal element (16) sealingly received into the perforation (14). A low-cost plate can readily be manufactured by punching a thermoplastic sheet (40) such as polypropylene with a punching tool (52), filling the apertures with led spheres (63) having a diameter smaller than the holes (50) but larger than the thickness of the sheet, sweeping excess spheres (62) off the sheet with a doctor blade (60) and then pressing a heated platen (74) onto the sheet to swage the spheres into a cylindrical shape and melt the surrounding resin to form a liquid-impermeable collar (4) sealing the metal into the sheet.

  5. Reduced hydrogen cadmium plating

    SciTech Connect

    Hoeller, T.; Ross, L. ); Varma, R. ); Agarwala, V.S. )

    1991-01-01

    This paper demonstrates the advantages of using a periodic reverse pulse plating method, incorporating a fast cathodic pulse which is separated from the subsequent anodic/cathodic pulses by a long rest period in producing silvery cadmium coatings on steel from aqueous fluoroborate electrolyte. Also, the deposition obtained by combination of pulse currents and turbulent electrolyte flow system (forced convection of electrolyte, Re {approximately} 20-25,000) result in a near hydrogen-free electrodeposition of fine- grained cadmium. This is confirmed by the determination of diffusible hydrogen by the electrochemical (Barnach Electrode) method.

  6. Behaviour of plate anchorage in plate-reinforced composite coupling beams.

    PubMed

    Lam, W Y; Li, Lingzhi; Su, R K L; Pam, H J

    2013-01-01

    As a new alternative design, plate-reinforced composite (PRC) coupling beam achieves enhanced strength and ductility by embedding a vertical steel plate into a conventionally reinforced concrete (RC) coupling beam. Based on a nonlinear finite element model developed in the authors' previous study, a parametric study presented in this paper has been carried out to investigate the influence of several key parameters on the overall performance of PRC coupling beams. The effects of steel plate geometry, span-to-depth ratio of beams, and steel reinforcement ratios at beam spans and in wall regions are quantified. It is found that the anchorage length of the steel plate is primarily controlled by the span-to-depth ratio of the beam. Based on the numerical results, a design curve is proposed for determining the anchorage length of the steel plate. The load-carrying capacity of short PRC coupling beams with high steel ratio is found to be controlled by the steel ratio of wall piers. The maximum shear stress of PRC coupling beams should be limited to 15 MPa. PMID:24288465

  7. Behaviour of Plate Anchorage in Plate-Reinforced Composite Coupling Beams

    PubMed Central

    Lam, W. Y.; Li, Lingzhi; Su, R. K. L.; Pam, H. J.

    2013-01-01

    As a new alternative design, plate-reinforced composite (PRC) coupling beam achieves enhanced strength and ductility by embedding a vertical steel plate into a conventionally reinforced concrete (RC) coupling beam. Based on a nonlinear finite element model developed in the authors' previous study, a parametric study presented in this paper has been carried out to investigate the influence of several key parameters on the overall performance of PRC coupling beams. The effects of steel plate geometry, span-to-depth ratio of beams, and steel reinforcement ratios at beam spans and in wall regions are quantified. It is found that the anchorage length of the steel plate is primarily controlled by the span-to-depth ratio of the beam. Based on the numerical results, a design curve is proposed for determining the anchorage length of the steel plate. The load-carrying capacity of short PRC coupling beams with high steel ratio is found to be controlled by the steel ratio of wall piers. The maximum shear stress of PRC coupling beams should be limited to 15 MPa. PMID:24288465

  8. Consecutive plate acoustic suppressor apparatus and methods

    NASA Technical Reports Server (NTRS)

    Doychak, Joseph (Inventor); Parrott, Tony (Inventor)

    1992-01-01

    An apparatus and method for suppressing acoustic noise utilizes consecutive plates, closely spaced to each other so as to exploit dissipation associated with sound propagation in narrow channels to optimize the acoustic resistance at a liner surface. The closely spaced plates can be utilized as high temperature structural materials for jet engines by constructing the plates from composite materials. Geometries of the plates, such as plate depth, shape, thickness, inter-plate spacing, arrangement, etc., can be selected to achieve bulk material-like behavior.

  9. Consecutive Plate Acoustic Suppressor Apparatus and Methods

    NASA Technical Reports Server (NTRS)

    Doychak, Joseph (Inventor); Parrott, Tony L. (Inventor)

    1993-01-01

    An apparatus and method for suppressing acoustic noise utilizes consecutive plates, closely spaced to each other so as to exploit dissipation associated with sound propagation in narrow channels to optimize the acoustic resistance at a liner surface. The closely spaced plates can be utilized as high temperature structural materials for jet engines by constructing the plates from composite materials. Geometries of the plates, such as plate depth, shape, thickness, inter-plate spacing, arrangement, etc., can be selected to achieve bulk material-like behavior.

  10. Characterization of defect growth structures in ion plated films by scanning electron microscopy

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1979-01-01

    Gold and copper films (0.2-2 micron thick) are ion plated on very smooth stainless steel 304 and mica surfaces. The deposited films are examined by SEM to identify the morphological growth of defects. Three types of coating defects are distinguished: nodular growth, abnormal or runaway growth, and spits. The potential nucleation sites for defect growth are analyzed to determine the cause of defect formation. It is found that nuclear growth is due to inherent surface microdefects, abnormal or runaway growth is due to external surface inclusions, and spits are due to nonuniform evaporation and ejection of droplets. All these defects have adverse effects on the coatings.

  11. Material characterization of a novel new armour steel

    NASA Astrophysics Data System (ADS)

    Bester, J. N.; Stumpf, W. E.

    2012-08-01

    The material characterization of a novel new armour steel with comparison to a leading commercial benchmark alloy is presented. Direct ballistic and experimental comparison is drawn. The 5.56 × 45 mm [M193] and 7.62 × 51 mm [NATO Ball] projectiles were used in a cartridge type high pressure barrel configuration to evaluate the superior plugging resistance of the new steel over a range of plate thicknesses. To characterize the dynamic plasticity of the materials, quasi-static, notched and high temperature tensile tests as well as Split Hopkinson Pressure Bar tests in tension and compression were performed. The open source explicit solver, IMPACT (sourceforge.net) is used in an ongoing numerical and sensitivity analysis of ballistic impact. A simultaneous multi variable fitting algorithm is planned to evaluate several selected numerical material models and show their relative correlation to experimental data. This study as well as micro-metallurgical investigation of adiabatic shear bands and localized deformation zones should result in new insights in to the underlying metallurgical and physical behavior of armour plate steels during ballistic perforation.

  12. The effect of microstructure on the thermal fatigue resistance of investment cast and wrought AISI H13 hot work die steel

    SciTech Connect

    Hochanadel, P.W.; Edwards, G.R.; Maguire, M.C.; Baldwin, M.D.

    1995-07-01

    Variable thickness plate investment castings of AISI H13 hot work die steel were pour and characterized in the as-cast and heat treated conditions. The characterization included light microscopy and mechanical testing. Wrought samples of standard and premium grade H13 steel were heat treated and characterized similarly for comparison. Microstructural differences were observed in as-cast samples poured to different section thicknesses. Dendrite cell size and carbide morphology constituted the most prominent microstructural differences observed. After a full heat treatment, however, Microstructural differences between the wrought material and cast materials were slight regardless of section thickness. The mechanical properties of the cast and heat treated material proved similar to the properties of the standard heat treated wrought material. A thermal fatigue testing unit was designed and built to correlate the heat checking susceptibility of AISI H13 steel to its processing and consequent microstructural condition. Surface hardness decreased significantly with thermal cycling, and heat checking was noticed in as few as 50 cycles. Thermal softening and thermal fatigue susceptibility were quantified and discussed relative to the microstructural conditions created by processing and heat treatment. It was found that the premium grade wrought H13 steel provided the best overall resistance to heat checking; however, the heat-treat cast and as-cast H13 tool steel (made from standard grade wrought H13 tool steel) provided comparable resistance to heat checking in terms Of area fraction of heat checking and maximum crack length.

  13. Water Lubrication of Stainless Steel using Reduced Graphene Oxide Coating

    PubMed Central

    Kim, Hae-Jin; Kim, Dae-Eun

    2015-01-01

    Lubrication of mechanical systems using water instead of conventional oil lubricants is extremely attractive from the view of resource conservation and environmental protection. However, insufficient film thickness of water due to low viscosity and chemical reaction of water with metallic materials have been a great obstacle in utilization of water as an effective lubricant. Herein, the friction between a 440 C stainless steel (SS) ball and a 440 C stainless steel (SS) plate in water lubrication could be reduced by as much as 6-times by coating the ball with reduced graphene oxide (rGO). The friction coefficient with rGO coated ball in water lubrication was comparable to the value obtained with the uncoated ball in oil lubrication. Moreover, the wear rate of the SS plate slid against the rGO coated ball in water lubrication was 3-times lower than that of the SS plate slid against the uncoated ball in oil lubrication. These results clearly demonstrated that water can be effectively utilized as a lubricant instead of oil to lower the friction and wear of SS components by coating one side with rGO. Implementation of this technology in mechanical systems is expected to aid in significant reduction of environmental pollution caused by the extensive use of oil lubricants. PMID:26593645

  14. 49 CFR 178.346-2 - Material and thickness of material.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Thickness of Shell Using Mild Steel (MS), High Strength Low Alloy Steel (HSLA), Austenitic Stainless Steel... 49 Transportation 3 2014-10-01 2014-10-01 false Material and thickness of material. 178.346-2... HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS...

  15. 49 CFR 178.346-2 - Material and thickness of material.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Thickness of Shell Using Mild Steel (MS), High Strength Low Alloy Steel (HSLA), Austenitic Stainless Steel... 49 Transportation 3 2012-10-01 2012-10-01 false Material and thickness of material. 178.346-2... HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS...

  16. [Experimental study on carbon fiber reinforced plastic plate--analysis of stabilizing force required for plate].

    PubMed

    Iizuka, H

    1990-11-01

    Plates currently in use for the management of bone fracture made of metal present with various problems. We manufactured carbon fiber reinforced plastic (CFRP) plates from Pyrofil T/530 puriplegs overlaid at cross angles of +/- 10 degrees, +/- 20 degrees, and +/- 30 degrees for trial and carried out an experimental study on rabbit tibiofibular bones using 316L stainless steel plates of comparable shape and size as controls. The results indicate the influence of CFRP plate upon cortical bone was milder than that of stainless steel plate, with an adequate stabilizing force for the repair of fractured rabbit tibiofibular bones. CFRP has the advantages over metals of being virtually free from corrosion and fatigue, reasonably radiolucent and able to meet a wide range of mechanical requirements. This would make CFRP plate quite promising as a new devices of treating fracture of bones.

  17. Electrochemical Machining of Metal Plates

    SciTech Connect

    Cooper, J F; Evans, M C

    2005-03-04

    Electrochemical machining (ECM) with concentrated sodium chlorate electrolyte was used to rapidly cut a circular groove (13 cm diameter, 0.2 cm wide) through a 0.15 cm thick sheet of steel--thus opening a 5-inch porthole in as little as 10 minutes. The most favorable operating conditions were: T = 22 C; chlorate concentration 600 g NaClO{sub 3}/liter-solution; electric power of 100 A at 10 V; and flow of 0.5 l/s at a pressure drop of 10 kPa (1.5 psi). The porthole may be removed entirely by electrochemical means, or the electrochemical dissolution may continue until only thin membrane remains that is subsequently cut with a utility knife. An array of thermocouples was used to track temperature in the flowing solution and in the trough being machined; the maximum increase in temperature in the trough was 5 C over that of the flowing electrolyte which increased in temperature by 19 C because of power dissipation. ECM is shown feasible for rapid perforation of plates of ferrous and non-ferrous metals using portable equipment and commercial batteries. The technique can be extended to cut perforations of arbitrary shape through non-planar surfaces using a deformable ring cathode. Analysis of the power requirements for electrolyte flow and ECM indicate a total system weight of less than 45 kg (100 lb) using a commercial NiMH battery. The technique is recommended for reduction to practice and demonstration on full scale as an engineering prototype.

  18. 46 CFR 154.172 - Contiguous steel hull structure.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Contiguous steel hull structure. 154.172 Section 154.172... Structure § 154.172 Contiguous steel hull structure. (a) Except as allowed in paragraphs (b) and (c) of this... construction of the contiguous steel hull structure must meet the thickness and steel grade in Table 1 for...

  19. 46 CFR 154.172 - Contiguous steel hull structure.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Contiguous steel hull structure. 154.172 Section 154.172... Structure § 154.172 Contiguous steel hull structure. (a) Except as allowed in paragraphs (b) and (c) of this... construction of the contiguous steel hull structure must meet the thickness and steel grade in Table 1 for...

  20. 46 CFR 154.172 - Contiguous steel hull structure.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Contiguous steel hull structure. 154.172 Section 154.172... Structure § 154.172 Contiguous steel hull structure. (a) Except as allowed in paragraphs (b) and (c) of this... construction of the contiguous steel hull structure must meet the thickness and steel grade in Table 1 for...

  1. 46 CFR 154.172 - Contiguous steel hull structure.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Contiguous steel hull structure. 154.172 Section 154.172... Structure § 154.172 Contiguous steel hull structure. (a) Except as allowed in paragraphs (b) and (c) of this... construction of the contiguous steel hull structure must meet the thickness and steel grade in Table 1 for...

  2. 46 CFR 154.172 - Contiguous steel hull structure.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Contiguous steel hull structure. 154.172 Section 154.172... Structure § 154.172 Contiguous steel hull structure. (a) Except as allowed in paragraphs (b) and (c) of this... construction of the contiguous steel hull structure must meet the thickness and steel grade in Table 1 for...

  3. Study of issues in difficult-to-weld thick materials by hybrid laser arc welding

    NASA Astrophysics Data System (ADS)

    Mazar Atabaki, Mehdi

    There is a high interest for the high strength-to-weight ratio with good ductility for the welds of advanced alloys. The concern about the welding of thick materials (Advanced high strength steels (AHSS) and 5xxx and 6xxx series of aluminum alloys) has stimulated the development of manufacturing processes to overcome the associated issues. The need to weld the dissimilar materials (AHSS and aluminum alloys) is also required for some specific applications in different industries. Hence, the requirement in the development of a state-of-the-art welding procedure can be helpful to fulfill the constraints. Among the welding methods hybrid laser/arc welding (HLAW) has shown to be an effective method to join thick and difficult-to-weld materials. This process benefits from both advantages of the gas metal arc welding (GMAW) and laser welding processes. The interaction of the arc and laser can help to have enough penetration of weld in thick plates. However, as the welding of dissimilar aluminum alloys and steels is very difficult because of the formation of brittle intermetallics the present work proposed a procedure to effectively join the alloys. The reports showed that the explosively welded aluminum alloys to steels have the highest toughness, and that could be used as an "insert" (TRICLAD) for welding the thick plates of AHSS to aluminum alloys. Therefore, the HLAW of the TRICLAD-Flange side (Aluminum alloy (AA 5456)) to the Web side (Aluminum alloys (AA 6061 and AA 5456)) and the TRICLAD-Flange side (ASTM A516) to the Web side (AHSS) was studied in the present work. However, there are many issues related to HLAW of the dissimilar steels as well as dissimilar aluminum alloys that have to be resolved in order to obtain sound welds. To address the challenges, the most recent welding methods for joining aluminum alloys to steels were studied and the microstructural development, mechanical properties, and on-line monitoring of the welding processes were discussed as well

  4. Morphology of gold and copper ion-plated coatings

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1978-01-01

    Copper and gold films (0.2 to 2 microns thick) were ion plated onto polished 304-stainless-steel, glass, mica surfaces. These coatings were examined by SEM for defects in their morphological growth. Three types of defects were distinguished: nodular growth, abnormal or runaway growth, and spits. The cause for each type of defect was investigated. Nodular growth is due to inherent substrate microdefects, abnormal or runaway growth is due to external surface inclusions, and spits are due to nonuniform evaporation (ejection of droplets). All these defects induce stresses and produce porosity in the coatings and thus weaken their mechanical properties. During surface rubbing, large nodules are pulled out, leaving vacancies in the coatings.

  5. Effective elastic thickness and crustal thickness variations in west central Africa inferred from gravity data

    SciTech Connect

    Poudjom Djomani, Y.H.; Nnange, J.M.; Ebinger, C.J.

    1995-11-10

    This report uses coherence function analysis of 32,000 gravity and topography points from Cameroon west Africa to determine the relationship between the plate tectonic and flexural rigidity of the lithosphere in terms of the crusts effective elastic thickness.

  6. Real time monitoring of electroless nickel plating

    NASA Astrophysics Data System (ADS)

    Rains, Aaron E.; Kline, Ronald A.

    2013-01-01

    This work deals with the design and manufacturing of the heat and chemical resistant transducer case required for on-line immersion testing, experimental design, data acquisition and signal processing. Results are presented for several depositions with an accuracy of two ten-thousandths of an inch in coating thickness obtained. Monitoring the deposition rate of Electroless Nickel (EN) plating in-situ will provide measurement of the accurate dimensions of the component being plated, in real time. EN is used as for corrosion and wear protection for automotive an - Electroless Nickel (EN) plating is commonly used for corrosion and wear protection for automotive and aerospace components. It plates evenly and symmetrically, theoretically allowing the part to be plated to its final dimension. Currently the standard approach to monitoring the thickness of the deposited nickel is to remove the component from the plating bath and physically measure the part. This can lead to plating problems such as pitting, non-adhesion of the deposit and contamination of the plating solution. The goal of this research effort is to demonstrate that plating thickness can be rapidly and accurately measured using ultrasonic testing. Here a special housing is designed to allow immersion of the ultrasonic transducers directly into the plating bath. An FFT based signal processing algorithm was developed to resolve closely spaced echoes for precise thickness determination. The technique in this research effort was found to be capable of measuring plating thicknesses to within 0.0002 inches. It is expected that this approach will lead to cost savings in many EN plating operations.

  7. Exploratory loading techniques. [in holographic nondestructive testing of flat metal plates

    NASA Technical Reports Server (NTRS)

    Martin, A. M., III

    1976-01-01

    Interferometric holographic nondestructive testing of aluminum, copper, and steel flat plates is reported. Structural weaknesses under positive pressure, negative pressure, heating, and cooling are discussed.

  8. Dissimilar Friction Stir Welding Between UNS S31603 Austenitic Stainless Steel and UNS S32750 Superduplex Stainless Steel

    NASA Astrophysics Data System (ADS)

    Theodoro, Maria Claudia; Pereira, Victor Ferrinho; Mei, Paulo Roberto; Ramirez, Antonio Jose

    2015-02-01

    In order to verify the viability of dissimilar UNS S31603 austenitic and UNS S32750 superduplex stainless steels joined by friction stir welding, 6-mm-thick plates were welded using a PCBN-WRe tool. The welded joints were performed in position control mode at rotational speeds of 100 to 300 rpm and a feed rate of 100 mm/min. The joints performed with 150 and 200 rpm showed good appearance and no defects. The metallographic analysis of both joints showed no internal defects and that the material flow pattern is visible only in the stirred zone (SZ) of the superduplex steel. On the SZ top, these patterns are made of regions of different phases (ferrite and austenite), and on the bottom and central part of the SZ, these patterns are formed by alternated regions of different grain sizes. The ferrite grains in the superduplex steel are larger than those in the austenitic ones along the SZ and thermo-mechanically affected zone, explained by the difference between austenite and ferrite recrystallization kinetics. The amount of ferrite islands present on the austenitic steel base metal decreased near the SZ interface, caused by the dissolving of the ferrite in austenitic matrix. No other phases were found in both joints. The best weld parameters were found to be 200 rpm rotation speed, 100 mm/min feed rate, and tool position control.

  9. Characterization of Residual Stress as a Function of Friction Stir Welding Parameters in Oxide Dispersion Strengthened (ODS) Steel MA956

    SciTech Connect

    Brewer, Luke N.; Bennett, Martin S.; Baker, B. W.; Payzant, E. Andrew; Kolbus, Lindsay M.

    2015-09-08

    This article characterizes the residual stresses generated by friction stir welding of oxide dispersion strengthened steel MA956 over a series of welding conditions. A plate of MA956 steel was friction stir welded at three conditions: 500 rpm/25 millimeters per minute (mmpm), 400 rpm/50 mmpm and 400 rpm/100 mmpm. The residual stresses across these welds were measured using both x-ray and neutron diffraction techniques. Longitudinal residual stresses up to eighty percent of the yield strength were observed for the 400 rpm/100 mmpm condition. Increasing the traverse rate while holding the rotational speed fixed increased the residual stress levels in the stir zone and at the stir zone-thermomechanically affected zone interface. The stress profiles displayed the characteristic M shape, and the asymmetry between advancing and retreating stress peaks was limited, occurring mainly on the root side of the weld. The large magnitude of the stresses was maintained throughout the thickness of the plates.

  10. Fracture properties of a neutron-irradiated stainless steel submerged arc weld cladding overlay

    SciTech Connect

    Corwin, W.R.; Berggren, R.G.; Nanstad, R.K.

    1984-01-01

    The ability of stainless steel cladding to increase the resistance of an operating nuclear reactor pressure vessel to extension of surface flaws depends greatly on the properties of the irradiated cladding. Therefore, weld overlay cladding irradiated at temperatures and fluences relevant to power reactor operation was examined. The cladding was applied to a pressure vessel steel plate by the submerged arc, single-wire, oscillating-electrode method. Three layers of cladding provided a thickness adequate for fabrication of test specimens. The first layer was type 309, and the upper two layers were type 308 stainless steel. The type 309 was diluted considerably by excessive melting of the base plate. Specimens were taken from near the base plate-cladding interface and also from the upper layers. Charpy V-notch and tensile specimens were irradiated at 288/sup 0/C to a fluence of 2 x 10/sup 23/ neutrons/m/sup 2/ (>1 MeV). 10 refs., 16 figs., 4 tabs.

  11. Reliability assessment of different plate theories for elastic wave propagation analysis in functionally graded plates.

    PubMed

    Mehrkash, Milad; Azhari, Mojtaba; Mirdamadi, Hamid Reza

    2014-01-01

    The importance of elastic wave propagation problem in plates arises from the application of ultrasonic elastic waves in non-destructive evaluation of plate-like structures. However, precise study and analysis of acoustic guided waves especially in non-homogeneous waveguides such as functionally graded plates are so complicated that exact elastodynamic methods are rarely employed in practical applications. Thus, the simple approximate plate theories have attracted much interest for the calculation of wave fields in FGM plates. Therefore, in the current research, the classical plate theory (CPT), first-order shear deformation theory (FSDT) and third-order shear deformation theory (TSDT) are used to obtain the transient responses of flexural waves in FGM plates subjected to transverse impulsive loadings. Moreover, comparing the results with those based on a well recognized hybrid numerical method (HNM), we examine the accuracy of the plate theories for several plates of various thicknesses under excitations of different frequencies. The material properties of the plate are assumed to vary across the plate thickness according to a simple power-law distribution in terms of volume fractions of constituents. In all analyses, spatial Fourier transform together with modal analysis are applied to compute displacement responses of the plates. A comparison of the results demonstrates the reliability ranges of the approximate plate theories for elastic wave propagation analysis in FGM plates. Furthermore, based on various examples, it is shown that whenever the plate theories are used within the appropriate ranges of plate thickness and frequency content, solution process in wave number-time domain based on modal analysis approach is not only sufficient but also efficient for finding the transient waveforms in FGM plates.

  12. Bipolar battery plate

    NASA Technical Reports Server (NTRS)

    Rowlette, John J. (Inventor)

    1985-01-01

    A liquid-impermeable plate (10) having throughplate conductivity with essentially zero resistance comprises an insulator sheet (12) having a series of spaced perforations (14) each of which contains a metal element (16) sealingly received into the perforation (14). A low-cost plate can readily be manufactured by punching a thermoplastic sheet (40) such as polypropylene with a punching tool (52), filling the apertures with lead spheres (63) having a diameter smaller than the holes (50) but larger than the thickness of the sheet, sweeping excess spheres (62) off the sheet with a doctor blade (60) and then pressing a heated platen (74) onto the sheet to swage the spheres into a cylindrical shape and melt the surrounding resin to form a liquid-impermeable collar (4) sealing the metal into the sheet.

  13. Preparation of thick molybdenum targets

    NASA Technical Reports Server (NTRS)

    Singh, J. J.

    1974-01-01

    Thick natural molybdenum deposits on nickel plated copper substrates were prepared by thermal decomposition of molybdenum hexacarbonyl vapors on a heated surface in an inert gas atmosphere. The molybdenum metal atoms are firmly bonded to the substrate atoms, thus providing an excellent thermal contact across the junction. Molybdenum targets thus prepared should be useful for internal bombardment in a cyclotron where thermal energy inputs can exceed 10 kW.

  14. Martian plate tectonics

    NASA Astrophysics Data System (ADS)

    Sleep, N. H.

    1994-03-01

    The northern lowlands of Mars have been produced by plate tectonics. Preexisting old thick highland crust was subducted, while seafloor spreading produced thin lowland crust during late Noachian and Early Hesperian time. In the preferred reconstruction, a breakup margin extended north of Cimmeria Terra between Daedalia Planum and Isidis Planitia where the highland-lowland transition is relatively simple. South dipping subduction occured beneath Arabia Terra and east dipping subduction beneath Tharsis Montes and Tempe Terra. Lineations associated with Gordii Dorsum are attributed to ridge-parallel structures, while Phelegra Montes and Scandia Colles are interpreted as transfer-parallel structures or ridge-fault-fault triple junction tracks. Other than for these few features, there is little topographic roughness in the lowlands. Seafloor spreading, if it occurred, must have been relatively rapid. Quantitative estimates of spreading rate are obtained by considering the physics of seafloor spreading in the lower (approx. 0.4 g) gravity of Mars, the absence of vertical scarps from age differences across fracture zones, and the smooth axial topography. Crustal thickness at a given potential temperature in the mantle source region scales inversely with gravity. Thus, the velocity of the rough-smooth transition for axial topography also scales inversely with gravity. Plate reorganizations where young crust becomes difficult to subduct are another constraint on spreading age. Plate tectonics, if it occurred, dominated the thermal and stress history of the planet. A geochemical implication is that the lower gravity of Mars allows deeper hydrothermal circulation through cracks and hence more hydration of oceanic crust so that more water is easily subducted than on the Earth. Age and structural relationships from photogeology as well as median wavelength gravity anomalies across the now dead breakup and subduction margins are the data most likely to test and modify hypotheses

  15. Plates with Incompatible Prestrain

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Kaushik; Lewicka, Marta; Schäffner, Mathias

    2016-07-01

    We study effective elastic behavior of the incompatibly prestrained thin plates, where the prestrain is independent of thickness and uniform through the plate's thickness h. We model such plates as three-dimensional elastic bodies with a prescribed pointwise stress-free state characterized by a Riemannian metric G, and seek the limiting behavior as {h to 0}. We first establish that when the energy per volume scales as the second power of h, the resulting {Γ} -limit is a Kirchhoff-type bending theory. We then show the somewhat surprising result that there exist non-immersible metrics G for whom the infimum energy (per volume) scales smaller than h 2. This implies that the minimizing sequence of deformations carries nontrivial residual three-dimensional energy but it has zero bending energy as seen from the limit Kirchhoff theory perspective. Another implication is that other asymptotic scenarios are valid in appropriate smaller scaling regimes of energy. We characterize the metrics G with the above property, showing that the zero bending energy in the Kirchhoff limit occurs if and only if the Riemann curvatures R 1213, R 1223 and R 1212 of G vanish identically. We illustrate our findings with examples; of particular interest is an example where {G_{2 × 2}}, the two-dimensional restriction of G, is flat but the plate still exhibits the energy scaling of the Föppl-von Kármán type. Finally, we apply these results to a model of nematic glass, including a characterization of the condition when the metric is immersible, for {G = Id3 + γ n ⊗ n} given in terms of the inhomogeneous unit director field distribution { n in R^3}.

  16. Production and preliminary characterization of ferritic-martensitic steel T91 cladding tubes for LBE or Pb cooled nuclear systems

    NASA Astrophysics Data System (ADS)

    Van den Bosch, J.; Almazouzi, A.; Mueller, G.; Rusanov, A.

    2011-08-01

    Thin wall tubes with suitable dimensions for possible future use as nuclear fuel cladding based on ferritic-martensitic steel T91 have been produced. Several rolling routes for thin wall tube rolling have been successfully explored to produce T91 tubes of 8.5 mm OD and 0.5 mm wall thickness as well as 6.5 mm OD and 0.5 mm wall thickness. The results show that the cold rolled Т91 steel thin walled tubes remain ductile and the material easily carries fractional strains. Finally the microstructure of the resulting tubes was examined and preliminary burst and tensile tests were performed showing properties comparable to those of T91 plate material.

  17. Layered Plating Specimens For Mechanical Tests

    NASA Technical Reports Server (NTRS)

    Thompson, Linda B.; Flowers, Cecil E.

    1991-01-01

    Layered specimens readily made in standard sizes for tensile and other tests of mechanical properties. Standard specimen of metal ordinarily difficult to plate to standard grip thickness or diameter made by augmentation with easier-to-plate material followed by machining to standard size and shape.

  18. 98. Reproduction from glass plate negative (Modjeski and Masters office, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    98. Reproduction from glass plate negative (Modjeski and Masters office, Modjeski Collection, No. 181, May 5, 1908) STEEL ERECTION AT DRAW SPAN - Burlington Northern Railroad Bridge, Spanning Willamette River at River Mile 6.9, Portland, Multnomah County, OR

  19. Outgassing rate of the copper-plated beam tube for ISABELLE

    SciTech Connect

    Hseuh, H.C.; Gaudet, E.F.

    1981-01-01

    The ultrahigh vacuum system of the intersecting storage accelerator, ISABELLE, will consist of two interlaced rings of stainless steel beam tubes with a circumference 2-1/2 miles each. To obtain a good heat conduction during bakeout and to reduce the resistive wall instability during beam operation, a lmm thick copper coating will be electroplated to the outer surface of this 1.5 mm thick beam tube. To minimize the beam loss due to beam-gas collision, the pressure inside the beam tube is required to be 1 x 10/sup -11/ Torr (N/sub 2/ equivalent) or less. To achieve this ultrahigh vacuum, the outgassing rate of the 304 LN stainless steel tubes has been reduced to approx. 1 x 10/sup -13/ Torr. l/cm/sup 2/. sec by vacuum firing at 950/sup 0/C for one hour. However, during acid-bath electroplating of copper, significant amount of hydrogen will be reintroduced and trapped in stainless steel which will substantially increase the outgassing rate (to approx. 2 x 10/sup -12/ Torr . l/cm/sup 2/ sec). The outgassing characteristics of these copper-plated beam tubes are studied and discussed within the scope of diffusion and energy of activation. Methods to reduce the outgassing rate to an acceptable level (approx. 1 x 10/sup -13/ Torr . l/cm/sup 2/ . sec) are also given.

  20. A Method for Imaging Steel Bars Behind a Ferrous Steel Boundary

    NASA Astrophysics Data System (ADS)

    Fernandes, B.; Miller, G.; Zaid, M.; Gaydecki, P.

    2006-03-01

    A system for detecting steel objects behind ferrous steel boundaries is described. It may be used to image steel reinforcing bars in concrete, where a steel sheet exists between the bars and the surface. The sensor comprises a transmitter, receiver and a dummy coil, which cancels cross-talk and enhances the signal from the bars. It is possible to penetrate a 2mm thick sheet at 125 Hz and image 16 mm diameter bars placed underneath.

  1. Materials science and metallurgy of the Caribbean steel drum

    NASA Astrophysics Data System (ADS)

    Ferreyra Tello, Everaldo

    The fabrication of a steel drum (or steelpan), especially the sinking of the drum head by hand with a hammer, has been examined in detail utilizing light metallography (LM) and transmission electron microscopy (TEM). Residual microstructures corresponding to reductions in thickness of up to 50% at the bottom of the drum-head indicate that dislocation densities in the low carbon (0.04 to 0.09% C), ferritic steels, can exceed 1010 cm -2. This substructure in conjunction with a grain structure consisting of elongated grains produces hardness increases of up to 45% at the bottom of the drum head. The heat treatment (or ``burning'') of the Caribbean steel drum is an essential stage in the fabrication process and has been found to involve strain aging, which increases the hardness by an additional 5 to 20%. This is especially prominent in drum steels containing from 0.04 to 0.09% C. The strain aging combined with the strain hardening applied to the drum head sinking and note fabrication process, produces a requisite elastic-plastic interaction which allows for multi-harmonic tuning and the creation of the unique chromatic tones and harmonic overtones which are characteristic of the various instruments. These unique features of note vibrations were observed by comparing impact hardness profiles with the corresponding static Vickers hardness measurements for actual, tuned notes and the same, corresponding notes extracted from the drum head, respectively. Elastic-plastic and plastic hardness profiles were compared in unique color maps. In an effort to understand the influence of deformation on the sound of the steel drum, circular disks simulating free, ideal notes, and utilizing 316 stainless steel plates (0.05% C), were cold rolled to reductions up to 40%. Disks were hung on a wire through a hole drilled on the edge of the disk, and hit with a heavy (tungsten alloy) mallet to record the acoustic sound spectra. Requisite amounts of carbon interact with dislocations in

  2. Preparation of corrosion-resistant and conductive trivalent Cr-C coatings on 304 stainless steel for use as bipolar plates in proton exchange membrane fuel cells by electrodeposition

    NASA Astrophysics Data System (ADS)

    Wang, Hsiang-Cheng; Sheu, Hung-Hua; Lu, Chen-En; Hou, Kung-Hsu; Ger, Ming-Der

    2015-10-01

    In this study, Cr-C-coated bipolar plates are produced by electroplating on the SS304 plates with a machined flow channel. The resulting plates were tested using potentiodynamic and potentiostatic measurements in simulated PEMFC environments, which show that the bipolar plate coated with Cr-C exhibited good anticorrosion performance. The corrosive current density of the Cr-C coating formed for a plating time of 10 min for 10 h exhibits a low stable value of 1.51 × 10-10 A/cm2 during the potentiostatic test in a 0.5 M H2SO4 + 2 ppm HF solution at 70 °C with an air purge, indicating that the Cr-C coating plated for 10 min is stable in a cathode environment. The interfacial contact resistance (ICR) of the bipolar plate with the Cr-C coating clearly improved, presenting an ICR of 19.52 mΩ cm2 at a pressure of 138 N/cm2. The results from scanning electron microscopy (SEM) and ICR before and after the corrosion tests indicate that the bipolar plate with the Cr-C coating is electrochemically stable. In this study, the maximum power density (212.41 mW/cm2) is obtained at a cell temperature of 80 °C and a gas flow rate of 300 standard cubic centimeters per minute (sccm) when Cr-C coated SS304 bipolar plates were used.

  3. EMAT-generated Lamb waves for volumetric inspection of strip steel

    NASA Astrophysics Data System (ADS)

    Latham, Wayne M.; Latimer, P. J.; MacLauchlan, Daniel T.; Camplin, Kenneth R.; Lang, Dennis D.

    1998-03-01

    The detection of longitudinally oriented defects in steel plate using ultrasonics has been widely reported. Ultrasonic methods are capable of detecting extremely small volume flaws in strip steel, but are limited because of the need to maintain fluid couplant between the transducer and steel strip. At a minimum, this couplant requirement slows the test speeds considerably, can introduce errors in test results, and, in many cases, prevents the test from being performed at all. The purpose of this paper is to present the results of the investigation of EMAT generated Lamb waves for the volumetric inspection of steel strip and subsequent on-line system performance. The strip steel industry has described a manufacturing problem of internal inclusions in their strip steel product for use in the automotive/appliance industry which is manifested after the rolling operation. The 'pencil pipe', a non-metallic inclusion introduced during the continuous casting process, is not detected prior to the roll, and after rolling it is too late to recover. A major midwestern US steel company considers this defect to be their number one quality problem. A method of detecting these inclusions prior to rolling was needed and is the basis of this development. The objective of this evaluation was the selection and implementation of EMAT generated Lamb wave modes that could be used for on-line detection of pencil pipe defects in strip steel before the strip is rolled to its final thickness. In addition, different Lamb waves modes were used to discriminate between the internal pencil pipe and non- deleterious surface scratches.

  4. Micropatterning of a Bipolar Plate Using Direct Laser Melting Process

    SciTech Connect

    Jang, Jeong-hwan; Joo, Byeong-don; Mun, Sung-min; Moona, Young-hoon

    2010-06-15

    Direct laser melting (DLM) technology has been used to fabricate the micro-pattern of the bipolar plate in a direct methanol fuel cell (DMFC). A suitable approach to enhance the performance of the bipolar plate has been performed to optimize the DLM process. To fabricate the micro pattern, a DLM process with 316L stainless steel powder has been used. For the melted height of 1 mm, the DLM process conditions were optimized such as; laser power of 200 W, scan rate of 36.62 mm/s and the 8-layer structures. To characterize the effect of material type, the bipolar plates of various types were analyzed. In case of the 316L stainless steel DLM patterning, a current density of 297 mA/cm{sup 2} was achieved but the case of the 316L stainless steel plate, 248 mA/cm{sup 2} current density that is lower than that of other materials was achieved. The overall cell performance of 316L stainless steel DLM patterning bipolar plate was better than that of the 316L stainless steel plate. This has significant advantages for the micropatterning using DLM process. The use of 316L stainless steel powder material as micro pattern material will reduce the machining cost as well as volume of the fuel cell stack.

  5. Intermittent Plate Tectonics

    NASA Astrophysics Data System (ADS)

    Silver, P. G.; Behn, M. D.

    2006-12-01

    Intermittent Plate Tectonics A basic premise of Earth Science is that plate tectonics has been continuously operating since it began early in Earth's history. Yet, plate-tectonic theory itself, specifically the collisional phase of the Wilson Cycle, constitutes a process that is capable of stopping all plate motion. The plausibility of a plate-tectonic hiatus is most easily illustrated by considering the expected future of the present-day plate-tectonic configuration. Since the opening of the Atlantic at ~200 ma, the area of the Atlantic basin has been growing at the expense of the Pacific. If this trend continues, relative plate motion models predict that in ~350 my, the Pacific Ocean basin will effectively close leading to widespread continent-continent collisions. Since a continent-continent collision represents the termination of subduction locally, the accumulated effect of all collisions is to stop subduction globally. In this scenario, ridges would then stop spreading and young oceanic lithosphere would cool, reaching a steady-state thickness of 100 km in about 80 my, based on the properties of oceanic lithosphere today. This would constitute the stoppage of plate tectonics. The presumption that plate tectonics never stops in the face of continental collisions is equivalent to requiring that subduction flux is approximately constant through time, such that subduction initiation roughly balances subduction termination. Such a balance then raises several questions about the subduction initiation process. When and how does subduction initiate? Is there a detectible relationship between subduction cessation and subduction initiation? We can gain some guidance into these questions by examining the plate motion history over the last 200 my. Subduction initiation has occurred over the last 80 my in three intra- oceanic subduction zones: Aleutians, Marianas-Izu-Bonin and Tonga-Kermadec in the Pacific basin. In these cases, however, subduction initiation would not

  6. Microbiologically mediated reduction in the pitting of mild steel overlaid with plywood

    SciTech Connect

    Soracco, R J; Berger, L R; Berger, J A; Mayack, L A; Pope, D H; Wilde, E W

    1984-01-01

    Laboratory experiments were conducted to determine the role of microorganisms in the pitting of mild steel flooring, which had been overlaid with plywood. The experimental setups consisted of 4.8 mm (3/16 in.) mild steel plates covered with 12.7 mm (1/2 in.) thick pieces of plywood which were exposed to several different aqueous media supplemented with various combinations of a soil suspension and selected inorganic and organic compounds. Half of the replicate metal-wood-water setups were sterilized and aseptically maintained during incubation after which they were checked for the presence of viable microorganisms and pitting of the mild steel. Results of the first set of experiments showed that pitting of the mild steel specimens in many of these setups occurred after a reasonably short incubation period (3 to 6 months). However, the method used to exclude microorganisms by sterilizing the components separately was unsuccessful. In a second set of experiments, setups were sterilized by exposure to gamma irradiation after they had been assembled. The sterilized setups remained sterile after incubation while those which were not originally sterile still contained viable microorganisms. Pitting of the mild steel specimens was more severe when they were exposed to sterile conditions than when viable microorganisms were present. These experiments showed that while microorganisms are known to enhance corrosion processes in some circumstances, their presence can reduce corrosion in others.

  7. Investigation of the plastic fracture of high strength steels

    NASA Technical Reports Server (NTRS)

    Cox, T. B.; Low, J. R., Jr.

    1972-01-01

    This investigation deals in detail with the three recognized stages of plastic fracture in high strength steels, namely, void initiation, void growth, and void coalescence. The particular steels under investigation include plates from both commercial purity and high purity heats of AISI 4340 and 18 Ni, 200 grade maraging steels. A scanning electron microscope equipped with an X-ray energy dispersive analyzer, together with observations made using light microscopy, revealed methods of improving the resistance of high strength steels to plastic fracture.

  8. Technical Letter Report Assessment of Ultrasonic Phased Array Testing for Cast Austenitic Stainless Steel Pressurizer Surge Line Piping Welds and Thick Section Primary System Cast Piping Welds JCN N6398, Task 2A

    SciTech Connect

    Diaz, Aaron A.; Denslow, Kayte M.; Cinson, Anthony D.; Morra, Marino; Crawford, Susan L.; Prowant, Matthew S.; Cumblidge, Stephen E.; Anderson, Michael T.

    2008-07-21

    Research is being conducted for the NRC at PNNL to assess the effectiveness and reliability of advanced NDE methods for the inspection of LWR components. The scope of this research encompasses primary system pressure boundary materials including cast austenitic stainless steels (CASS), dissimilar metal welds (DMWs), piping with corrosion-resistant cladding, weld overlays, and far-side examinations of austenitic piping welds. A primary objective of this work is to evaluate various NDE methods to assess their ability to detect, localize, and size cracks in coarse-grained steel components. This interim technical letter report (TLR) provides a synopsis of recent investigations at PNNL aimed at evaluating the capabilities of phased-array (PA) ultrasonic testing (UT) methods as applied to the inspection of CASS welds in nuclear reactor piping. A description of progress, recent developments and interim results are provided.

  9. Hydrogen attack - Influence of hydrogen sulfide. [on carbon steel

    NASA Technical Reports Server (NTRS)

    Eliezer, D.; Nelson, H. G.

    1978-01-01

    An experimental study is conducted on 12.5-mm-thick SAE 1020 steel (plain carbon steel) plate to assess hydrogen attack at room temperature after specimen exposure at 525 C to hydrogen and a blend of hydrogen sulfide and hydrogen at a pressure of 3.5 MN/sq m for exposure times up to 240 hr. The results are discussed in terms of tensile properties, fissure formation, and surface scales. It is shown that hydrogen attack from a high-purity hydrogen environment is severe, with the formation of numerous methane fissures and bubbles along with a significant reduction in the room-temperature tensile yield and ultimate strengths. However, no hydrogen attack is observed in the hydrogen/hydrogen sulfide blend environment, i.e. no fissure or bubble formation occurred and the room-temperature tensile properties remained unchanged. It is suggested that the observed porous discontinuous scale of FeS acts as a barrier to hydrogen entry, thus reducing its effective equilibrium solubility in the iron lattice. Therefore, hydrogen attack should not occur in pressure-vessel steels used in many coal gasification processes.

  10. Processing and mechanical behavior of hypereutectoid steel wires

    SciTech Connect

    Lesuer, D.R.; Syn, C.K.; Sherby, O.D.; Kim, D.K.

    1996-06-25

    Hypereutectoid steels have the potential for dramatically increasing the strength of wire used in tire cord and in other high strength wire applications. The basis for this possible breakthrough is the elimination of a brittle proeutectoid network that can form along grain boundaries if appropriate processing procedures and alloy additions are used. A review is made of work done by Japanese and other researchers on eutectoid and mildly hypereutectoid wires. A linear extrapolation of the tensile strength of fine wires predicts higher strengths at higher carbon contents. The influence of processing, alloy additions and carbon content in optimizing the strength, ductility and fracture behavior of hypereutectoid steels is presented. It is proposed that the tensile strength of pearlitic wires is dictated by the fracture strength of the carbide lamella at grain boundary locations in the carbide. Methods to improve the strength of carbide grain boundaries and to decrease the carbide plate thickness will contribute to enhancing the ultrahigh strength obtainable in hypereutectoid steel wires. 23 refs., 13 figs., 1 tab.

  11. Effect of manufacturing process sequence on the corrosion resistance characteristics of coated metallic bipolar plates

    NASA Astrophysics Data System (ADS)

    Dur, Ender; Cora, Ömer Necati; Koç, Muammer

    2014-01-01

    Metallic bipolar plate (BPP) with high corrosion and low contact resistance, durability, strength, low cost, volume, and weight requirements is one of the critical parts of the PEMFC. This study is dedicated to understand the effect of the process sequence (manufacturing then coating vs. coating then manufacturing) on the corrosion resistance of coated metallic bipolar plates. To this goal, three different PVD coatings (titanium nitride (TiN), chromium nitride (CrN), zirconium nitride (ZrN)), with three thicknesses, (0.1, 0.5, 1 μm) were applied on BPPs made of 316L stainless steel alloy before and after two types of manufacturing (i.e., stamping or hydroforming). Corrosion test results indicated that ZrN coating exhibited the best corrosion protection while the performance of TiN coating was the lowest among the tested coatings and thicknesses. For most of the cases tested, in which coating was applied before manufacturing, occurrence of corrosion was found to be more profound than the case where coating was applied after manufacturing. Increasing the coating thickness was found to improve the corrosion resistance. It was also revealed that hydroformed BPPs performed slightly better than stamped BPPs in terms of the corrosion behavior.

  12. 2. SOUTH FACADE OF THE 48' PLATE MILL BUILDINGS SHOWING, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. SOUTH FACADE OF THE 48' PLATE MILL BUILDINGS SHOWING, LEFT TO RIGHT, TWO FURNACE BAYS, THE MAIN MILL BUILDINGS, AND THE REMAINS OF THE SHIPPING BUILDING. - U.S. Steel Homestead Works, 48" Plate Mill, Along Monongahela River, Homestead, Allegheny County, PA

  13. Computerized Ultrasonic Testing System (CUTS) for in-process thickness determination

    NASA Technical Reports Server (NTRS)

    Frankel, J.; Doxbeck, M.; Schroeder, S. C.; Abbate, A.

    1994-01-01

    A Computerized Ultrasonic Testing System (CUTS) was developed to measure, in real-time, the rate of deposition and thickness of chromium plated on the inside of thick steel tubes. The measurements are made from the outside of the tubes with the ultrasonic pulse-echo technique. The resolution of the system is 2.5 micron. (0.0001 in.) and the accuracy is better than 10 micron (0.0004 in.). The thickness is measured using six transducers mounted at different locations on the tube. In addition, two transducers are mounted on two reference standards, thereby allowing the system to be continuously calibrated. The tube temperature varies during the process, thus the input from eight thermocouples, located at the measurement sites, is used to calculate and compensate for the change in return time of the ultrasonic echo due to the temperature dependence of the sound velocity. CUTS is applicable to any commercial process where real-time change of thickness of a sample has to be known, with the advantage of facilitating increased efficiency and of improving process control.

  14. Charpy toughness and tensile properties of a neutron irradiated stainless steel submerged-arc weld cladding overlay

    SciTech Connect

    Corwin, W.R.; Berggren, R.G.; Nanstad, R.K.

    1984-01-01

    The possibility of stainless steel cladding increasing the resistance of an operating nuclear reactor pressure vessel to extension of surface flaws is highly dependent upon the irradiated properties of the cladding. Therefore, weld overlay cladding irradiated at temperatures and fluences relevant to power reactor operation was examined. The cladding was applied to a pressure vessel steel plate by the submerged-arc, single-wire, oscillating electrode method. Three layers of cladding were applied to provide a cladding thickness adequate for fabrication of test specimens. The first layer was type 309, and the upper two layers were type 308 stainless steel. There was considerable dilution of the type 309 in the first layer of cladding as a result of excessive melting of the base plate. Specimens for the irradiation study were taken from near the base plate/cladding interface and also from the upper layers of cladding. Charpy V-notch and tensile specimens were irradiated at 288/sup 0/C to neutron fluences of 2 x 10/sup 23/ n/m/sup 2/ (E > 1 MeV). When irradiated, both types 308 and 309 cladding showed a 5 to 40% increase in yield strength accompanied by a slight increase in ductility in the temperature range from 25 to 288/sup 0/C. All cladding exhibited ductile-to-brittle transition behavior during impact testing.

  15. A numerical study on intended and unintended failure mechanisms in blanking of sandwich plates

    NASA Astrophysics Data System (ADS)

    Chen, L.; Soyarslan, C.; Tekkaya, A. E.

    2013-05-01

    Metal-polymer-metal sandwich plates are widely used in the automotive and aerospace industry. As for different applications the sandwich plates can be divided into two types. They are sound-damping laminates with a polymer core much thinner than the metallic faces and low-density laminates with a core thickness of approximately 40-60% of the total thickness. One frequent process step in production of parts made of these plates is the blanking process whose hereditary effects draw the limits of further forming stages or service performance and life; e.g. the failure of the adhesive in the thermoplastic polymer interface affects the sound-damping efficiency intensively. With this motivation, we present FE simulation of an axi-symmetric blanking process of steel/polyethylene/steel sound-damping laminates. The mechanical behavior of the metallic layers was characterized by finite strain rate independent elasto-plasticity where progressive material deterioration and fracture are given account for using continuum damage mechanics (CDM). This material model is made accessible via implementations as VUMAT subroutines for ABAQUS/Explicit. Possible failure of the thermoplastic polymer which may lead to delamination of the metallic layers is modeled using ABAQUS built-in cohesive zone elements. The results show that existing intended and unintended failure modes, e.g. blanking of the metallic and thermoplastic polymer constituents as well as failure of polymer layer under shear and compression, can be effectively studied with the proposed framework for process enhancement. As a future work, a damage coupled nonlinear visco-elastic constitutive model will be devised for the simulation of the thermoplastic layer in low-density laminates.

  16. Impact on multilayered composite plates

    NASA Technical Reports Server (NTRS)

    Kim, B. S.; Moon, F. C.

    1977-01-01

    Stress wave propagation in a multilayer composite plate due to impact was examined by means of the anisotropic elasticity theory. The plate was modelled as a number of identical anisotropic layers and the approximate plate theory of Mindlin was then applied to each layer to obtain a set of difference-differential equations of motion. Dispersion relations for harmonic waves and correction factors were found. The governing equations were reduced to difference equations via integral transforms. With given impact boundary conditions these equations were solved for an arbitrary number of layers in the plate and the transient propagation of waves was calculated by means of a Fast Fourier Transform algorithm. The multilayered plate problem was extended to examine the effect of damping layers present between two elastic layers. A reduction of the interlaminar normal stress was significant when the thickness of damping layer was increased but the effect was mostly due to the softness of the damping layer. Finally, the problem of a composite plate with a crack on the interlaminar boundary was formulated.

  17. Experimental and numerical study on fragmentation of steel projectiles

    NASA Astrophysics Data System (ADS)

    Råkvaag, K. G.; Børvik, T.; Hopperstad, O. S.; Westermann, I.

    2012-08-01

    A previous experimental study on penetration and perforation of circular Weldox 460E target plates with varying thicknesses struck by blunt-nose projectiles revealed that fragmentation of the projectile occurred if the target thickness or impact velocity exceeded a certain value. Thus, numerical simulations that do not account for fragmentation during impact can underestimate the perforation resistance of protective structures. Previous numerical studies have focused primarily on the target plate behaviour. This study considers the behaviour of the projectile and its possible fragmentation during impact. Hardened steel projectiles were launched at varying velocities in a series of Taylor tests. The impact events were captured using a high-speed camera. Fractography of the fragmented projectiles showed that there are several fracture mechanisms present during the fragmentation process. Tensile tests of the projectile material revealed that the hardened material has considerable variations in yield stress and fracture stress and strain. In the finite element model, the stress-strain behaviour from tensile tests was used to model the projectile material with solid elements and the modified Johnson-Cook constitutive relation. Numerical simulations incorporating the variations in material properties are capable of reproducing the experimental fracture patterns, albeit the predicted fragmentation velocities are too low.

  18. Failure Analysis of a Nickel-Plated Electronic Connector Due to Salt-Induced Corrosion (ENGE 2014).

    PubMed

    Lee, Na-Ri; Choi, Hyoung-Seuk; Choi, Duck-Kyun

    2015-10-01

    When electronic connectors in mobile devices are miniaturized, the thickness of plating decreases. However, this thin plating is expected to decrease the life of the connector due to problems with corrosion. In this study, salt spray aging tests were performed on miniaturized nickel-plated stainless steel electronic connectors to observe failure mechanisms in realistic environments. The tests were performed three times using a 5% NaCl solution in an atmosphere of 45 °C; each test included several cycles where one cycle was one 24-h period consisting of 8 h of salt spray and 16 h without salt spray. The nickel-plating layers were periodically observed by electron probe X-ray micro-analyzer, wavelength dispersive spectroscopy, and field-emission scanning electron microscopy to analyze and identify the corrosion mechanism. We found that the primary failure mode of the nickel plating is blistering and delamination. The corrosion mechanism is typically a chain reaction of several corrosion mechanisms: pitting corrosion --> stress corrosion cracking --> hydrogen-induced cracking --> blistering and delamination. Finally, we discuss countermeasures to prevent corrosion of the nickel layer based on the corrosion mechanisms identified in this study. PMID:26726358

  19. Overriding Plate Deformation During Subduction Evolution

    NASA Astrophysics Data System (ADS)

    Davies, J. H.; Garel, F.; Davies, R.; Goes, S. D. B.

    2015-12-01

    Subduction dynamics has been widely studied in free subduction models, which document the important control of the downgoing plate. However, various models have shown how the overriding plate can influence subduction dynamics through its thermal structure, thickness and coupling. Using the code Fluidity we investigate overriding plate deformation in a 2-D thermo-mechanical model of the two-plate subduction system. We use Fluidity's adaptive mesh and free-surface formulation. The model includes a composite temperature- and stress-dependent rheology, and plates are decoupled by a weak layer, which allows for free trench motion. We focus on the evolution of the topography and state of stress in the overriding plate during the different phases of the subduction process: early stages of subduction, free-fall sinking in the upper mantle and interaction of the slab with the high-viscosity lower mantle.

  20. Creep of A508/533 Pressure Vessel Steel

    SciTech Connect

    Richard Wright

    2014-08-01

    ABSTRACT Evaluation of potential Reactor Pressure Vessel (RPV) steels has been carried out as part of the pre-conceptual Very High Temperature Reactor (VHTR) design studies. These design studies have generally focused on American Society of Mechanical Engineers (ASME) Code status of the steels, temperature limits, and allowable stresses. Initially, three candidate materials were identified by this process: conventional light water reactor (LWR) RPV steels A508 and A533, 2¼Cr-1Mo in the annealed condition, and Grade 91 steel. The low strength of 2¼Cr-1Mo at elevated temperature has eliminated this steel from serious consideration as the VHTR RPV candidate material. Discussions with the very few vendors that can potentially produce large forgings for nuclear pressure vessels indicate a strong preference for conventional LWR steels. This preference is based in part on extensive experience with forging these steels for nuclear components. It is also based on the inability to cast large ingots of the Grade 91 steel due to segregation during ingot solidification, thus restricting the possible mass of forging components and increasing the amount of welding required for completion of the RPV. Grade 91 steel is also prone to weld cracking and must be post-weld heat treated to ensure adequate high-temperature strength. There are also questions about the ability to produce, and very importantly, verify the through thickness properties of thick sections of Grade 91 material. The availability of large components, ease of fabrication, and nuclear service experience with the A508 and A533 steels strongly favor their use in the RPV for the VHTR. Lowering the gas outlet temperature for the VHTR to 750°C from 950 to 1000°C, proposed in early concept studies, further strengthens the justification for this material selection. This steel is allowed in the ASME Boiler and Pressure Vessel Code for nuclear service up to 371°C (700°F); certain excursions above that temperature are