Sample records for steel-kh13

  1. Removal of Carbide Net in Steel ShKh15 by Optimizing the Mode of Spheroidizing Annealing

    NASA Astrophysics Data System (ADS)

    Popova, E. V.; Khomutova, A. P.; Yuzhakova, I. V.; Pilipova, A. M.; Smulakovskii, M. E.

    2018-03-01

    A metallographic study of the carbide phase in rolled sections from bearing steels ShKh15 and ShKh15SG etched in different reagents is performed. The steels are treated by different variants. The experimental results are processed with the aim to correct the mode of spheroidizing annealing of steel ShKh15. The characteristic of the "carbide net remainder" is reduced from 4 - 5 divisions of scale 4 of the GOST 801-78 Standard to 2 scale divisions.

  2. Nitrogen-containing superlow-carbon austenitic steel 02Kh25N22AM2

    NASA Astrophysics Data System (ADS)

    Fe'ldgandler, É. G.; Svistunova, T. V.; Savkina, L. Ya.; Lapshina, O. B.

    1996-02-01

    At present the equipment for manufacturing carbamide mineral fertilizers is produced from domestic steel 03Kh17N14M3 having "carbamide quality." Imported equipment also used in the industry is produced from steel of the 25-22-2 (Cr -Ni-Mo) type shipped by various firms, namely, 2RE69 (Sandvik, Sweden), 254SFER (Avesta, Sweden), 2522LCN (VDM, Germany), DM 1.4466 (Germany), and X2CrNiMo 25-22-2 (Dalmine, Italy). The imported steels are used because in some units steel 03Khl7Nl4M3 does not provide the requisite corrosion resistance in an intensified process of carbamide manufacturing. We currently possess domestic high-alloyed steel for producing new and repairing imported equipment operating under the severe conditions of carbamide synthesis. The present paper concerns the structure, mechanical properties, and corrosion resistance of industrially produced steel 02Kh25N22AM2 (ChS-108) and the recommended range of its application.

  3. Ways to Improve the Quality of Die Steel 5KhNM

    NASA Astrophysics Data System (ADS)

    Efimov, S. V.; Malykhina, O. Yu; Pavlova, A. G.; Milyuts, V. G.; Tsukanov, V. V.; Vikharev, V. V.

    2017-12-01

    There was performed an analysis of influence of the deoxidation technology, hydrogen content and high concentration of titanium in steel 5KhNM (Rus. “5XHM”) on quality of die blanks, evaluated based on the results of the ultrasonic test. The fractographic examinations of fractures and the X-ray microprobe analysis of chemical composition of non-metallic inclusions were conducted, the evaluation of macro- and micro-structure of a die blank with high titanium content was performed. It is demonstrated that defects of dies from steel 5KhNM (Rus. “5XHM”) are cracks from merged flakes and micro-flakes; in most cases large concentrations of sulphides appeared to be hydrogen collectors for formation of flakes and micro-flakes.

  4. The Kinetics of Bainitic Transformation of Roll Steel 75Kh3MF

    NASA Astrophysics Data System (ADS)

    Kletsova, O. A.; Krylova, S. E.; Priymak, E. Yu.; Gryzunov, V. I.; Kamantsev, S. V.

    2018-01-01

    The critical points of steel 75Kh3MF and the temperature of the start of martensitic transformation are determined by a dilatometric method. The thermokinetic and isothermal diagrams of decomposition of supercooled austenite are plotted. The microstructure and microhardness of steel specimens cooled at different rates are studied. The kinetics of the occurrence of bainitic transformation in the steel is calculated using the Austin-Ricket equation.

  5. Long-term strength and allowable stresses of grade 10Kh9MFB and X10CrMoVNb9-1 (T91/P91) chromium heat-resistant steels

    NASA Astrophysics Data System (ADS)

    Skorobogatykh, V. N.; Danyushevskiy, I. A.; Schenkova, I. A.; Prudnikov, D. A.

    2015-04-01

    Currently, grade X10CrMoVNb9-1 (T91, P91) and 10Kh9MFB (10Kh9MFB-Sh) chromium steels are widely applied in equipment manufacturing for thermal power plants in Russia and abroad. Compilation and comparison of tensile, impact, and long-term strength tests results accumulated for many years of investigations of foreign grade X10CrMoVNb9-1, T91, P91, and domestic grade 10Kh9MFB (10Kh9MFB-Sh) steels is carried out. The property identity of metals investigated is established. High strength and plastic properties of steels, from which pipes and other products are made, for operation under creep conditions are confirmed. Design characteristics of long-term strength on the basis of tests with more than one million of hour-samples are determined ( and at temperatures of 500-650°C). The table of recommended allowable stresses for grade 10Kh9MFB, 10Kh9MFB-SH, X10CrMoVNb9-1, T91, and P91 steels is developed. The long-time properties of pipe welded joints of grade 10Kh9MFB+10Kh9MFB, 10Kh9MFB-Sh+10Kh9MFB-Sh, X10CrMoVNb9-1+X10CrMoVNb9-1, P91+P91, T91+T91, 10Kh9MFB (10Kh9MFB-Sh)+X10CrMoVNb9-1(T/P91) steels is researched. The welded joint reduction factor is experimentally determined.

  6. Simulation of Microdamage and Evaluation of Remaining Life of Steam Conduit Components from New-Generation Refractory Steel 10Kh9MF-Sh

    NASA Astrophysics Data System (ADS)

    Gladshtein, V. I.

    2018-03-01

    The effects of microdamage on the remaining life of high-temperature components of steam conduits from high-chromium steel 10Kh9MF-Sh and low-alloy steel 12Kh1M1F are compared. To simulate the microdamage, specimens with a circular notch and different relative diameters are fabricated. Specimens with a notch simulating the highest degree of microdamage and smooth specimens are tested for long-term strength. The coefficient of the remaining life of a conduit is computed for the range of relative damage presenting practical interest.

  7. On the possibility of producing piston pins for diesel engines from steel 18KhGT with the use of mechanical and chemical heat treatment

    NASA Astrophysics Data System (ADS)

    Zolot'ko, V. A.

    1997-06-01

    At the present time pisto pins of highly loaded diesel engines are produced by mechanical treatment from tube preforms of steel 12KhN3A and carburized by subsequent heat treatment. The high cost of domestic steel and the absence of preforms of the requisite size make it necessary to choose a less scare material and develop a treatment process that would provide the requisite operational characteristics of the parts. The present work is devoted to a study of the possibility of using for the purpose steel 18KhGT in a state of substructural toughening created by cold plastic straining (CPS) and a stabilizing heat treatment with subsequent ion nitriding.

  8. Effect of the Initial State of a Steel 38KhN3MFA Billet on the Microstructure and the Mechanical Properties of Seamless Pipes

    NASA Astrophysics Data System (ADS)

    Vorob'ev, R. A.; Dubinskii, V. N.; Sorokina, S. A.

    2017-11-01

    The effect of the initial structure of 38KhN3MFA steel on the mechanical properties of heattreated seamless pipes is studied. It is found that satisfactory macrostructure, strength, and plastic characteristics are insufficient to achieve the required set of service properties of the end product in the presence of a structural heterogeneity in tubular billets. A banded structure can cause a substantial scatter of the mechanical properties of the end product and a decrease in the impact toughness of the steel. It is shown that, in the presence of a banded structure, the required mechanical properties of the end product made of 38KhN3MFA steel can be achieved by correcting the final heat treatment conditions.

  9. Corrosion resistance of 0Kh18N10T steel in gadolinium nitrate solutions in the liquid regulation of the reactivity of nuclear reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganzha, V.D.; Konoplev, K.A.; Mashchetov, V.P.

    1986-03-01

    This study was carried out in connection with the preparation of the design for the PIK research reactor. The corrosion resistance of 0Kh18N10T steel in gadolinium nitrate solutions was tested in laboratory, ampule, and loop corrosion tests. At all stages of the tests, the authors investigated the effect produced on the corrosion processes by factors related to the technology of preparation of the equipment (mechanical working of the surfaces, welding, sensitizing, annealing, stressed state of the material, cracks, etc.). Ampule tests were conducted in order to determine the effect produced by reactor radiation and shutdown regimes on the corrosion resistancemore » of the steel. Special ampules made of 0Kh18N10T steel were filled with gadolinium nitrate solutions of various concentrations, sealed, and irradiated for a long period in the core of the VVR-M reactor at a temperature of 20-50 degrees C. The results of the tests are shown. The investigations showed that the corrosion of 0Kh18N10T steel in solutions of gadolinium nitrate is uniform, regardless of the state of the surface, the concentration of gadolinium nitrate, the duration of the tests, the action of the reactor radiation under static and dynamic conditions, and the presence of mechanical stresses.« less

  10. Corrosion of austenitic steels and their components in vanadium-containing chloride melts

    NASA Astrophysics Data System (ADS)

    Abramov, A. V.; Polovov, I. B.; Rebrin, O. I.; Lisienko, D. G.

    2014-08-01

    The corrosion of austenitic 12Kh18N10T, 10Kh17N13M2T, and 03Kh17N14M3 steels and their components (Cr, Fe, Ni, Mo) in NaCl-KCl-VCl2 melts with 5 wt % V at 750°C is studied. The rates and mechanisms of corrosion of the materials under these conditions are determined. The processes that occur during contact of the metals and steels with vanadium-containing chloride electrolytes are investigated.

  11. Structure and mechanical and corrosion properties of new high-nitrogen Cr-Mn steels containing molybdenum

    NASA Astrophysics Data System (ADS)

    Berezovskaya, V. V.; Savrai, R. A.; Merkushkin, E. A.; Makarov, A. V.

    2012-05-01

    The structure, mechanical properties, and pitting corrosion of nickel-free high-nitrogen (0.8% N) austenitic 06Kh18AG19M2 and 07Kh16AG13M3 steels have been studied in various structural states obtained after hot deformation, quenching, and tempering at 300 and 500°C. Both steels are shown to be resistant to the γ → α and γ → ɛ martensite transformations irrespective of the decomposition of a γ solid solution (06Kh18AG19M2 steel). Austenite of the steel with 19 wt % Mn shows lower resistance to recrystallization, which provides its higher plasticity (δ5) and fracture toughness at a lower strength as compared to the steel with 13 wt % Mn. Electrochemical studies of the steels tempered at 300 and 500°C show that they are in a stable passive state during tests in a 3.5% NaCl solution and have high pitting resistance up to a potential E pf = 1.3-1.4 V, which is higher than that in 12Kh18N10T steel. In the quenched state, the passive state is instable but pitting formation potentials E pf retain their values. In all steels under study, pitting is shown to form predominantly along the grain boundaries of nonrecrystallized austenite. The lowest pitting resistance is demonstrated by the structure with a double grain boundary network that results from incomplete recrystallization at 1100°C and from the existence of initial and recrystallized austenite in the 07Kh16AG13M3 steel. To obtain a set of high mechanical and corrosion properties under given rolling conditions (1200-1150°C), annealing of the steels at temperatures no less than 1150°C (for 1 h) with water quenching and tempering at 500°C for 2 h are recommended.

  12. Investigation into the Cyclic Strength of the Bodies of Steam Shutoff Valves from 10Kh9MFB-Sh Steel

    NASA Astrophysics Data System (ADS)

    Skorobogatykh, V. N.; Kunavin, S. A.; Prudnikov, D. A.; Shchenkova, I. A.; Bazhenov, A. M.; Zadoinyi, V. A.; Starkovskii, G. L.

    2018-02-01

    Steam shutoff valves are operated under complex loading conditions at thermal and nuclear power stations. In addition to exposure to high temperature and stresses resulting in fatigue, these valves are subjected to cyclic loads in heating-up-cooling down, opening-closing, etc. cycles. The number of these cycles to be specified in designing the valves should not exceed the maximum allowable value. Hence, the problem of cyclic failure rate of steam shutoff valve bodies is critical. This paper continues the previous publications about properties of the construction material for steam shutoff valve bodies (grade 10Kh9MFB-Sh steel) produced by electroslag melting and gives the results of investigation into the cyclic strength of this material. Fatigue curves for the steal used for manufacturing steam shutoff valve bodies are presented. The experimental data are compared with the calculated fatigue curves plotted using the procedures outlined in PNAE G-002-986 and RD 10-249-98. It is confirmed that these procedures may be used in designing valve bodies from 10Kh9MFB-Sh steel. The effect of the cyclic damage after preliminary cyclic loading of the specimens according to the prescribed load conditions on the high-temperature strength of the steel is examined. The influence of cyclic failure rate on the long-term strength was investigated using cylindrical specimens with a smooth working section in the as-made conditions and after two regimes of preliminary cyclic loading (training) at a working temperature of 570°C and the number of load cycles exceeding the design value, which was 2 × 103 cycles. The experiments corroborated that the material (10Kh9MFB-Sh steel) of the body manufactured by the method of electroslag melting had high resistance to cyclic failure rate. No effect of cyclic damages in the metal of the investigated specimens on the high-temperature strength has been found.

  13. Corrosion behavior of austenitic steels and their components in niobium-containing chloride melts

    NASA Astrophysics Data System (ADS)

    Abramov, A. V.; Polovov, I. B.; Rebrin, O. I.; Volkovich, V. A.; Lisienko, D. G.

    2014-02-01

    The mechanism of corrosion of austenitic steels 12Kh18N10T, 10Kh17N13M2T, and 03Kh17N14M3 and metals Cr, Fe, Ni, and Mo in a NaCl-KCl-NbCl n ( n = 3.5, Nb content is 5 ± 0.1 wt %) melt at 750°C is studied. The metal and steel corrosion rates under these conditions are determined. The character of material fracture and the mechanisms of material corrosion are found.

  14. Effect of heat treatment and plastic deformation on the structure and the mechanical properties of nitrogen-bearing 04N9Kh2A steel

    NASA Astrophysics Data System (ADS)

    Blinov, V. M.; Bannykh, O. A.; Lukin, E. I.; Kostina, M. V.; Blinov, E. V.

    2014-11-01

    The effect of the conditions of heat treatment and plastic deformation on the structure and the mechanical properties of low-carbon martensitic nickel steel (9 wt % Ni) with an overequilibrium nitrogen content is studied. The limiting strain to failure of 04N9Kh2A steel is found to be 40% at a rolling temperature of 20°C and 80% at a rolling temperature of 900°C. Significant strengthening of the steel (σ0.2 = 1089 MPa) is obtained after rolling at a reduction of 40% at 20°C. The start and final temperatures of the α → γ transformation on heating and those of the γ → α transformation on cooling are determined by dilatometry. The specific features of the formation of the steel structure have been revealed as functions of the annealing and tempering temperatures. Electron-microscopic studies show that, after quenching from 850°C and tempering at 600°C for 1 h, the structure contains packet martensite with thin interlayers of retained austenite between martensite crystals. The strength of the nitrogen-bearing 04N9Kh2A steel after quenching from 850 and 900°C, cooling in water, and subsequent tempering at 500°C for 1 h is significantly higher than that of carboncontaining 0H9 steel used in cryogenic engineering.

  15. Effect of hot rolling on the structure and the mechanical properties of nitrogen-bearing austenitic-martensitic 14Kh15AN4M steel

    NASA Astrophysics Data System (ADS)

    Bannykh, O. A.; Betsofen, S. Ya.; Lukin, E. I.; Blinov, V. M.; Voznesenskaya, N. M.; Tonysheva, O. A.; Blinov, E. V.

    2016-04-01

    The effect of the rolling temperature and strain on the structure and the properties of corrosionresistant austenitic-martensitic 14Kh15AN4M steel is studied. The steel is shown to exhibit high ductility: upon rolling in the temperature range 700-1100°C at a reduction per pass up to 80%, wedge steel specimens are uniformly deformed along and across the rolling direction without cracking and other surface defects. Subsequent cold treatment and low-temperature tempering ensure a high hardness of the steel (50-56 HRC). Austenite mainly contributes to the hardening upon rolling in the temperature range 700-800°C at a reduction of 50-70%, and martensite makes the main contribution at higher temperatures and lower strains. Texture does not form under the chosen deformation conditions, which indicates dynamic recrystallization with the nucleation and growth of grains having no preferential orientation.

  16. Investigation of Creep Processes and Microdamages in 10Kh9V2MFBR-Sh High-Chromium Steel

    NASA Astrophysics Data System (ADS)

    Grin', E. A.; Pchelintsev, A. V.

    2018-01-01

    During the modernization and the new construction of power units at TPPs in Russia, high-chromium martensitic steels with higher heat-resistant properties than the traditional perlite steels are increasingly used as structural materials. High-chromium steels have a necessary regulatory support for their use in domestic power engineering. However, up to the present time, the issue of assessing the quality of these steels at the analysis of their state during long-term operation remains open. The article proposed is one of the first attempts to create a system of quality criteria for martensitic steels based on their microdamage parameters. Tests were carried out on the long-term strength and creep of samples from 10Kh9V2MFBR-Sh steel at high temperatures with the construction of creep curves in relative coordinates "deformation related to the deformation of fracture, current time related to time to failure." For some samples, the tests were interrupted and the metal was subjected to metallographic studies consisting of the analysis of microdamage with reference to the accumulated creep strain. It has been shown experimentally that the deformation curve of high-chromium steel differs from the analogous curve of pearlitic steel by a longer and flat section of steady creep and by a sharper transition to the third accelerated creep stage, which has a very short time period (approximately 10% of the total durability). The tendency to the increase in the microdamage of the structure of steel as the accumulated creep strain increases with time was confirmed. The beginning of transition to the final creep phase is characterized by the formation of contours of future pore chains and by the appearance of individual large pores of up to 6 μm in size, the presence of which in the microstructure of the martensitic steel indicates a very significant accumulation of creep strain, and corresponds to the predestruction stage of metal. It is necessary to continue the research to

  17. Application experience of grade 10Kh9MFB chromium steel for steam shutoff and control valve bodies

    NASA Astrophysics Data System (ADS)

    Skorobogatykh, V. N.; Schenkova, I. A.; Danyushevskiy, I. A.; Grin', E. A.; Levkov, L. Ya.; Prudnikov, D. A.; Zhuravlev, D. N.; Bazhenov, A. M.

    2017-04-01

    In 2014-2015, the engineers of JSC "NPO "TsNIITMash", in cooperation with JSC "Energomash (Chekhov)—ChZEM", developed a technology for manufacturing D u = 250 mm valve bodies from 10Kh9MFB chromium steel by electroslag melting (ESM) and produced their pilot copies within the frame of import substitution program. This article provides results of research into determining the design values of metal characteristics, including short-term mechanical properties at working temperatures and impact and long-term strength. The test specimens have been sampled from the following four zones: bottom, central, branch-pipe, and head. Tensile short-term rupture testing has been performed at temperatures of 350, 450, 500, 550, 600, and 650°C. Testing for long-term strength has been carried out at temperatures of 550, 575, 600, and 625°C and stresses of 156.8, 137.2, 117.6, and 98 MPa. To estimate brittle fracture resistance, impact-strength tests have been run at temperatures of-20 and-10°C; 20 and 50°C. The specimens have been sampled from the middle of the blank section. All short-term mechanical properties and impact strength are in agreement with the requirements imposed on the metal of hot-deformed steam piping made of 10Kh9MFB steel as per TU (Technical Conditions) 14-3R-55-2001. The absence of microliquation of alloying elements and the high homogeneity of chemical composition (as demonstrated with nine specimens) have also been experimentally confirmed. Metallographic analysis has shown that the structure of the tested metal is that of tempered martensite with local areas of tempered bainite. Overall, the microscopic structure of metal is practically the same in all the studied zones. Service-life calculation of pilot valve bodies has proved conformity with the safety-margin regulations. Such properties of electroslag melting blank as long-term strength and allowable stress correspond to the level of deformed metal and to regulations.

  18. Experimental research results of solid particle erosion resistance of blade steel with protective coating

    NASA Astrophysics Data System (ADS)

    Kachalin, G. V.; Mednikov, A. F.; Tkhabisimov, A. B.; Seleznev, L. I.

    2017-11-01

    The paper presents the results of metallographic studies and solid particle erosion tests of uncoated blade steel 20kH13 samples and samples with a protective coating based on chromium carbide (Cr-CrC) at a flow (air) velocity CA = 180 m/s, flow temperature tA = 25 °C, attack angle α = 30° and consumption of solid abrasive particles GP = 5·10-4 kg/s. It was found that the coating has a granular structure, a thickness is about 11 μm, the microhardness of the surface is 1520 ± 50 HV0.05. Processing of the obtained data by statistical analysis methods showed that the protective coating based on Cr-CrC increases the solid particle erosion resistance of the blade steel 20kH13 by the incubation-transitional period duration more than 2.5 times.

  19. Effect of Friction-Induced Deformation on the Structure, Microhardness, and Wear Resistance of Austenitic Chromium—Nickel Stainless Steel Subjected to Subsequent Oxidation

    NASA Astrophysics Data System (ADS)

    Korshunov, L. G.; Chernenko, N. L.

    2016-03-01

    The effect of plastic deformation that occurs in the zone of the sliding friction contact on structural transformations in the 12Kh18N9T austenitic steel subjected to subsequent 1-h oxidation in air at temperatures of 300-800°C, as well as on its wear resistance, has been studied. It has been shown that severe deformation induced by dry sliding friction produces the two-phase nanocrystalline γ + α structure in the surface layer of the steel ~10 μm thick. This structure has the microhardness of 5.2 GPa. Subsequent oxidation of steel at temperatures of 300-500°C leads to an additional increase in the microhardness of its deformed surface layer to the value of 7.0 GPa. This is due to the active saturation of the austenite and the strain-assisted martensite (α') with the oxygen atoms, which diffuse deep into the metal over the boundaries of the γ and α' nanocrystals with an increased rate. The concentration of oxygen in the surface layer of the steel and in wear products reaches 8 wt %. The atoms of the dissolved oxygen efficiently pin dislocations in the γ and α' phases, which enhances the strength and wear resistance of the surface of the 12Kh18N9T steel. The oxidation of steel at temperatures of 550-800°C under a light normal load (98 N) results in the formation of a large number of Fe3O4 (magnetite) nanoparticles, which increase the resistance of the steel to thermal softening and its wear resistance during dry sliding friction in a pair with 40Kh13 steel. Under a heavy normal load (196 N), the toughness of 12Kh18N9T steel and, therefore, the wear resistance of its surface layer decrease due to the presence of the brittle oxide phase.

  20. Effect of Shear Strain on the Structure and Properties of Chromium-Nickel Corrosion-Resistant Steels

    NASA Astrophysics Data System (ADS)

    Dobatkin, S. V.; Rybal'chenko, O. V.; Kliauga, A.; Tokar', A. A.

    2015-07-01

    The structure and properties of metastable austenitic steel 08Kh18N10T and stable austenitic steel ASTM F138 under shear deformation implemented by torsion under hydrostatic pressure (THP) at T = 300 and 450°C and by equichannel angular pressing (ECAP) at T = 400°C are studied. The THP yields an ultrafine-grain structure in a fully austenitic matrix with grain size 45 - 70 nm in steel ASTM F138 and 87 - 123 nm in steel 08Kh1810T. The ECAP at 400°C yields a grain-subgrain structure with structural elements 100 - 300 nm in size in steel 08Kh18N10T and 200 - 400 nm in size in steel ASTM F138.

  1. Microstructural changes in steel 10Kh9V2MFBR during creep for 40000 hours at 600°C

    NASA Astrophysics Data System (ADS)

    Fedoseeva, A. E.; Kozlov, P. A.; Dudko, V. A.; Skorobogatykh, V. N.; Shchenkova, I. A.; Kaibyshev, R. O.

    2015-10-01

    In this work, we have investigated microstructural changes in steel 10Kh9V2MFBR (analog of P02 steel) after long-term creep tests at a temperature of 600°C under an initial stress of 137 MPa. Time to rupture was found to be more than 40000 h. It has been established that, in the zone of grips and in the neck region of the sample, the size of the particles of the M 23C6 carbides increases from 85 nm to 152 nm and 182 nm, respectively. In addition, large particles of the Laves phase with an average size of 295 nm are separated. The particles of these phases are located along high-angle boundaries. During prolonged aging and creep, the transformation of the M(C,N) particles enriched in V into the Z phase occurs. The average size of particles of the Z phase after prolonged ageing was 48 nm; after creep, it reached 97 nm. The size of M(C,N) particles enriched by Nb increases from 26 nm after tempering to 55 nm after prolonged aging and creep. It has been established that, in spite of an increase in the transverse size of the laths of tempered martensite from 0.4 to 0.9 µm in the neck of the sample, the misorientation of the lath boundaries does not increase. No recrystallization processes were found to develop in the steel during creep.

  2. PHOTOCOPY OF STANDARD USDA/USFS PLAN FOR 13' X 13' STEEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PHOTOCOPY OF STANDARD USDA/USFS PLAN FOR 13' X 13' STEEL LOOKOUT HOUSE (CAB); ELEVATIONS, SECTIONS, MISC. DETAILS; DATED 1961 - North Mountain Lookout, Stanislaus National Forest, Groveland, Tuolumne County, CA

  3. Effects of heat treatment on mechanical properties of h13 steel

    NASA Astrophysics Data System (ADS)

    Guanghua, Yan; Xinmin, Huang; Yanqing, Wang; Xingguo, Qin; Ming, Yang; Zuoming, Chu; Kang, Jin

    2010-12-01

    Heat treatment on the mechanical properties of H13 hot working die steel for die casting is discussed. The H13 steel for die casting was treated by different temperatures of vacuum quenching, tempering, and secondary tempering to investigate its mechanical properties. Strength, plasticity, hardness, and impact toughness of the H13 hot working die steel for die casting were measured. Microstructure, grain size, and carbide particle size after heat treatment have a great impact on the mechanical properties of H13 hot working die steel for die casting. The microstructure of the H13 was analyzed by scanning electron microscopy (SEM) and by a metallographic microscope. It is found that H13 exhibits excellent mechanical properties after vacuum quenching at 1050°C and twice tempering at 600°C.

  4. Evolution of secondary-phase precipitates during annealing of the 12Kh18N9T steel irradiated with neutrons to a dose of 5 DPA

    NASA Astrophysics Data System (ADS)

    Tsai, K. V.; Maksimkin, O. P.; Turubarova, L. G.

    2007-03-01

    The formation and evolution of thermally-induced secondary precipitates in an austenitic stainless steel 12Kh18N9T irradiated in the core of a laboratory reactor VVR-K to a dose of 5 dpa and subjected to post-radiation isochronous annealings for 1 h in a temperature range from 450 to 1050°C have been studied using transmission electron microscopy (TEM) and microhardness measurements. It has been shown that the formation of stitch (secondary) titanium carbides and M 23C6 carbides at grain and twin boundaries after annealing at 1050°C is preceded by a complex evolution of fineparticles of secondary phases (titanium carbides and nitrides) precipitated at dislocation loops and dislocations during annealing at temperatures above 750°C.

  5. Studying damage accumulation in martensitic corrosion-resistant steel under cold radial reduction

    NASA Astrophysics Data System (ADS)

    Karamyshev, A. P.; Nekrasov, I. I.; Nesterenko, A. V.; Parshin, V. S.; Smirnov, S. V.; Shveikin, V. P.; Fedulov, A. A.

    2017-12-01

    Cold radial reduction of specimens made of the Kh17N2 corrosion-resistant martensitic steel is studied on a lever-type radial-forging machine (RFM). The mechanical properties of the deformed specimens, the "damage accumulation - strain" relation in the specimens are obtained with the application of hydrostatic and fractographic methods for fractured specimens. The damage of the Kh17N2 corrosion-resistant steel is evaluated as a result of an experimental study considering the data of simulation by a complex finite element model of cold deformation on a lever-type RFM.

  6. Structural transformations in hull material clad by nitrogen stainless steel using various methods

    NASA Astrophysics Data System (ADS)

    Sagaradze, V. V.; Kataeva, N. V.; Mushnikova, S. Yu.; Khar'kov, O. A.; Kalinin, G. Yu.; Yampol'skii, V. D.

    2014-02-01

    Specimens of a 10N3KhDMBF shipbuilding hull steel were clad by a 04Kh20N6G11M2AFB nitrogen austenitic steel using various treatment conditions, which included hot rolling, austenitic facing, and explosive welding followed by hot rolling and heat treatment. Between the base and cladding materials, an intermediate layer with variable concentrations of chromium, manganese, and nickel was found, in which a martensitic structure was formed. In all the cases, the strength of bonding of the cladding layer to the hull steel (determined in tests for shear to fracture) was fairly high (σsh = 437-520 MPa). The only exception was the specimen produced by unidirectional facing without subsequent hot rolling (σsh = 308 MPa), in which nonfusions between the faced beads of stainless steel were detected.

  7. Structural features and properties of the laser-deposited nickel alloy layer on a KhV4F tool steel after heat treatment

    NASA Astrophysics Data System (ADS)

    Shcherbakov, V. S.; Dikova, Ts. D.; Stavrev, D. S.

    2017-07-01

    The study and application of the materials that are stable in the temperature range up to 1000°C are necessary to repair forming dies operating in this range. Nickel-based alloys can be used for this purpose. The structural state of a nickel alloy layer deposited onto a KhV4F tool steel and then heat treated is investigated. KhV4F tool steel (RF GOST) samples are subjected to laser deposition using a pulsed Nd:YAG laser. A nickel-based material (0.02C-73.8Ni-2.5Nb-19.5Cr-1.9Fe-2.8Mn) is employed for laser deposition. After laser deposition, the samples are subjected to heat treatment at 400°C for 5 h, 600°C for 1 h, 800°C for 1 h, and 1000°C for 1 h. The microstructure, the phase composition, and the microhardness of the deposited layer are studied. The structure of the initial deposited layer has relatively large grains (20-40 μm in size). The morphology is characterized by a cellular-dendritic structure in the transition zone. The following two structural constituents with a characteristic dendritic structure are revealed: a supersaturated nickel-based γ solid solution and a chromium-based bcc α solid solution. In the initial state and after heat treatment, the hardness of the deposited material (210-240 HV 0.1) is lower than the hardness of the base material (400-440 HV 0.1). Only after heat treatment at 600°C for 1 h, the hardness increases to 240-250 HV0.1. Structure heredity in the form of a dendritic morphology is observed at temperatures of 400, 600, and 800°C. The following sharp change in the structural state is detected upon heat treatment at 1000°C for 1 h: the dendritic morphology changes into a typical α + γ crystalline structure. The hardness of the base material decreases significantly to 160-180 HV 0.1. The low hardness of the deposited layer implies the use of the layer material in limited volume to repair the forming surfaces of dies and molds for die casting. However, the high ductility of the deposited layer of the nickel

  8. A comparative study of the in vitro corrosion behavior and cytotoxicity of a superferritic stainless steel, a Ti-13Nb-13Zr alloy, and an austenitic stainless steel in Hank's solution.

    PubMed

    Assis, S L; Rogero, S O; Antunes, R A; Padilha, A F; Costa, I

    2005-04-01

    In this study, the in vitro corrosion resistance of a superferritic stainless steel in naturally aerated Hank's solution at 37 degrees C has been determined to evaluate the steel for use as a biomaterial. The potentiodynamic polarization method and electrochemical impedance spectroscopy (EIS) were used to determine the corrosion resistance. The polarization results showed very low current densities at the corrosion potential and electrochemical behavior typical of passive metals. At potentials above 0.75 V (SCE), and up to that of the oxygen evolution reaction, the superferritic steel exhibited transpassive behavior followed by secondary passivation. The superferritic stainless steel exhibited high pitting resistance in Hank's solution. This steel did not reveal pits even after polarization to 3000 mV (SCE). The EIS results indicated high impedance values at low frequencies, supporting the results obtained from the polarization measurements. The results obtained for the superferritic steel have been compared with those of the Ti-13Nb-13Zr alloy and an austenitic stainless steel, as Ti alloys are well known for their high corrosion resistance and biocompatibility, and the austenitic stainless steel is widely used as an implant material. The cytotoxicity tests indicated that the superferritic steel, the austenitic steel, and the Ti-13Nb-13Zr alloy were not toxic. Based on corrosion resistance and cytotoxicity results, the superferritic stainless steel can be considered as a potential biomaterial. (c) 2005 Wiley Periodicals, Inc.

  9. Fragile X Mental Retardation Syndrome: Structure of the KH1-KH2 Domains of Fragile X Mental Retardation Protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valverde,R.; Poznyakova, I.; Kajander, T.

    Fragile X syndrome is the most common form of inherited mental retardation in humans, with an estimated prevalence of about 1 in 4000 males. Although several observations indicate that the absence of functional Fragile X Mental Retardation Protein (FMRP) is the underlying basis of Fragile X syndrome, the structure and function of FMRP are currently unknown. Here, we present an X-ray crystal structure of the tandem KH domains of human FMRP, which reveals the relative orientation of the KH1 and KH2 domains and the location of residue Ile304, whose mutation to Asn is associated with a particularly severe incidence ofmore » Fragile X syndrome. We show that the Ile304Asn mutation both perturbs the structure and destabilizes the protein.« less

  10. Thermomechanical modelling of laser surface glazing for H13 tool steel

    NASA Astrophysics Data System (ADS)

    Kabir, I. R.; Yin, D.; Tamanna, N.; Naher, S.

    2018-03-01

    A two-dimensional thermomechanical finite element (FE) model of laser surface glazing (LSG) has been developed for H13 tool steel. The direct coupling technique of ANSYS 17.2 (APDL) has been utilised to solve the transient thermomechanical process. A H13 tool steel cylindrical cross-section has been modelled for laser power 200 W and 300 W at constant 0.2 mm beam width and 0.15 ms residence time. The model can predict temperature distribution, stress-strain increments in elastic and plastic region with time and space. The crack formation tendency also can be assumed by analysing the von Mises stress in the heat-concentrated zone. Isotropic and kinematic hardening models have been applied separately to predict the after-yield phenomena. At 200 W laser power, the peak surface temperature achieved is 1520 K which is below the melting point (1727 K) of H13 tool steel. For laser power 300 W, the peak surface temperature is 2523 K. Tensile residual stresses on surface have been found after cooling, which are in agreement with literature. Isotropic model shows higher residual stress that increases with laser power. Conversely, kinematic model gives lower residual stress which decreases with laser power. Therefore, both plasticity models could work in LSG for H13 tool steel.

  11. The use of Ni-Cr-Si-Be filler metals for brazing of stainless steels

    NASA Astrophysics Data System (ADS)

    Ivannikov, A.; Fedotov, V.; Suchkov, A.; Penyaz, M.; Fedotov, I.; Tarasov, B.

    2016-04-01

    Nanocrystalline ribbon filler metal-alloys of system Ni-Cr-Si-Be are produced by the rapidly quenching of the melt method. By these filler metals carried out hight temperature vacuum brazing of austenitic steels (12Kh18N10T and Kh18N8G2) and austenitic-ferritic class EI-811 (12Kh21N5T). The basic laws of structure-phase state foundation of brazed joints are determined, features of the interaction of the molten filler metal to the brazed materials are identified, the optimal temperature and time parameters of the brazing process are determined.

  12. H2 Emission Nebulosity Associated with KH 15D

    NASA Astrophysics Data System (ADS)

    Tokunaga, A. T.; Dahm, S.; Gässler, W.; Hayano, Yutaka; Hayashi, Masahiko; Iye, Masanori; Kanzawa, Tomio; Kobayashi, Naoto; Kamata, Yukiko; Minowa, Yosuke; Nedachi, Ko; Oya, Shin; Pyo, Tae-Soo; Saint-Jacques, D.; Terada, Hiroshi; Takami, Hideki; Takato, Naruhisa

    2004-01-01

    An H2 emission filament is found in close proximity to the unique object KH 15D using the adaptive optics system of the Subaru Telescope. The morphology of the filament, the presence of spectroscopic outflow signatures observed by Hamilton et al., and the detection of extended H2 emission from KH 15D by Deming, Charbonneau, & Harrington suggest that this filament arises from shocked H2 in an outflow. The filament extends about 15" to the north of KH 15D. Based on data collected at Subaru Telescope, which is operated by the National AstronomiObservatory of Japan.

  13. Optimizing Heat Treatment Process of Fe-13Cr-3Mo-3Ni Martensitic Stainless of Steel

    NASA Astrophysics Data System (ADS)

    Anwar, M. S.; Prifiharni, S.; Mabruri, E.

    2017-05-01

    The Fe-13Cr-3Mo-3Ni stainless steels are modified into martensitic stainless steels for steam turbine blades application. The working temperature of steam turbine was around 600 - 700 °C. The improvement properties of turbine blade material is necessary to maintain steam turbine work. The previous research revealed that it has corrosion resistance of Fe-13Cr-3Mo-3Ni which is better than 13Cr stainless steels in the chloride environment. In this work, the effect of heat treatment on microstructure and hardness of Fe-13Cr-3Mo-3Ni stainless steels has been studied. The steel was prepared by induction melting followed by hot forging. The steels were austenitized at 1000, 1050, and 1100 °C for 1 hour and were tempered at 600, 650, and 700 °C for 1 hour. The steels were then subjected to metallographic observation and hardness test of Rockwell C. The optimal heat treatment of Fe-13Cr-3Mo-3Ni was carried out austenitized in 1050 °C and tempered in 600 - 700 °C.

  14. Superplasticity of Annealed H13 Steel

    PubMed Central

    Duan, Zhenxin; Pei, Wen; Gong, Xuebo; Chen, Hua

    2017-01-01

    H13 steel is a widely used hot work die material. A new type of hot working method is imperative to develop complex and precise dies. In this paper, the heat treatment of H13 steel (AISI) was carried out by annealing, the final structure is a point or spherical pearlite, and the grain size is about 30–40 μm. The tensile properties of the annealed microstructure were investigated at 650, 750, and 850 °C with the strain rates of 1 × 10−3 s−1, 5 × 10−4 s−1, and 1 × 10−4 s−1. The tensile fracture and microstructure were analyzed by SEM and HREM. The results show that the tensile samples reach superplasticity at the strain rate of 1 × 10−4 s−1 in the temperature range of 750–850 °C. When the temperature is 850 °C, the maximum elongation rate reaches 112.5%. This demonstrates the possibility of making superplastic forming molds. During the tensile process, the refined M23C6 and other high hardness carbides which are dispersed uniformly in the matrix, effectively inhibits grain growth and hinders dislocation movement, leading to the improvement of plasticity. PMID:28773231

  15. Exploring protein interiors: the role of a buried histidine in the KH module fold.

    PubMed

    Fraternali, F; Amodeo, P; Musco, G; Nilges, M; Pastore, A

    1999-03-01

    The K-homology (KH) module is a novel RNA-binding motif. The structures of a representative KH motif from vigilin (vig-KH6) and of the first KH domain of fmr1 have been recently solved by nuclear magnetic resonance (NMR) and automated assignment-refinement techniques (ARIA). While a hydrophobic residue is found at position 21 in most of the KH modules, a buried His is conserved in all the 15 KH repeats of vigilin. This position must therefore have a key structural role in stabilizing the hydrophobic core. In the present work, we have addressed the following questions in order to obtain a detailed description of the role of His 21: i) what is the exact role of the histidine in the hydrophobic core of vig-KH6? ii) can we define the interactions that allow a conserved buried position to be occupied by a histidine both in vig-KH6 and in the whole vigilin KH sub-family? iii) how is the structure and stability of vig-KH6 influenced by the state of protonation of this histidine? To answer these questions, we have carried out an extensive refinement of the vig-KH6 structure using both an improved ARIA protocol starting from different initial structures and successively running restrained and unrestrained trajectories in water. An analysis of the stability of secondary structural elements, solvent accessibility, and hydrogen bonding patterns allows hypothesis on the structural role of residue His 21 and on the interactions that this residue forms with the environment. The importance of the protonation state of His 21 on the stability of the KH fold was addressed and validated by experimental results.

  16. KH+Ti co-doped NaAlH4 for high-capacity hydrogen storage

    NASA Astrophysics Data System (ADS)

    Wang, Ping; Kang, Xiang-Dong; Cheng, Hui-Ming

    2005-10-01

    A method for preparation of Ti-doped NaAlH4 with high hydrogen capacity was developed, in which the NaH/Al mixture was mechanically milled with a catalytic amount of KH together with metallic Ti. The addition of KH was found to result in a pronounced improvement in the dehydriding performance of the Na3AlH6/NaH+Al step. As a result, the practical cycling hydrogen capacity has been markedly enhanced from 3.3 wt % for the Ti-doped hydride to 4.7 wt % for KH+Ti co-doped material. Moreover, the pronounced enhancement on hydrogen capacity arising upon adding KH was observed to persist in the following dehydrogenation/hydrogenation cycles. Structural investigation shows that the addition of KH has led to a lattice expansion. Moreover, it was found that the enthalpy change of the Na3AlH6/NaH+Al decomposition step underwent a considerable decrease upon adding KH. Therefore, the observed property improvement may be ascribed to a favorable thermodynamic adjustment arising upon the addition of KH.

  17. Surface Nb-ALLOYING on 0.4C-13Cr Stainless Steel: Microstructure and Tribological Behavior

    NASA Astrophysics Data System (ADS)

    Yu, Shengwang; You, Kai; Liu, Xiaozhen; Zhang, Yihui; Wang, Zhenxia; Liu, Xiaoping

    2016-02-01

    0.4C-13Cr stainless steel was alloyed with niobium using double glow plasma surface alloying and tribological properties of Nb-alloyed steel such as hardness, friction and wear were measured. Effects of the alloying temperature on microstructure and the tribological behavior of the alloyed steel were investigated compared with untreated steel. Formation mechanisms of Nb-alloyed layers and increased wear resistance were also studied. The result shows that after surface Nb-alloying treatment, the 0.4C-13Cr steel exhibits a diffusion adhesion at the alloyed layer/substrate interface and improved tribological property. The friction coefficient of Nb-alloyed steel is decreased by about 0.3-0.45 and the wear rate after Nb-alloying is only 2-5% of untreated steel.

  18. High-Power Diode Laser-Treated 13Cr4Ni Stainless Steel for Hydro Turbines

    NASA Astrophysics Data System (ADS)

    Mann, B. S.

    2014-06-01

    The cast martensitic chromium nickel stainless steels such as 13Cr4Ni, 16Cr5Ni, and 17Cr4Ni PH have found wide application in hydro turbines. These steels have adequate corrosion resistance with good mechanical properties because of chromium content of more than 12%. The 13Cr4Ni stainless steel is most widely used among these steels; however, lacks silt, cavitation, and water impingement erosion resistances (SER, CER, and WIER). This article deals with characterizing 13Cr4Ni stainless steel for silt, cavitation, and water impingement erosion; and studying its improved SER, CER, and WIER behavior after high-power diode laser (HPDL) surface treatment. The WIER and CER have improved significantly after laser treatment, whereas there is a marginal improvement in SER. The main reason for improved WIER and CER is due to its increased surface hardness and formation of fine-grained microstructure after HPDL surface treatment. CER and WIER of HPDL-treated 13Cr4Ni stainless steel samples have been evaluated as per ASTM G32-2003 and ASTM G73-1978, respectively; and these were correlated with microstructure and mechanical properties such as ultimate tensile strength, modified ultimate resilience, and microhardness. The erosion damage mechanism, compared on the basis of scanning electron micrographs and mechanical properties, is discussed and reported in this article.

  19. Crustal Structure of Khövsgöl, Mongolia

    NASA Astrophysics Data System (ADS)

    Scott, A. M.; Meltzer, A.; Stachnik, J.; Russo, R.; Munkhuu, U.; Tsagaan, B.

    2017-12-01

    Mongolia is part of the Central Asian Orogenic Belt, an accretionary event that spanned 800 million years from the mid-Proterozoic to mid-Phanerozoic. As a result of the past collisional and rifting events, the modern Khövsgöl rift system of northern Mongolia contains a heterogeneous lithospheric structure. The current rift system has three parallel N-S trending basins that roughly align with terrane boundaries. Structures inherited during the accretionary events may be a factor influencing regional deformation. The forces that drive local deformation are not well understood, but varying processes have been proposed: far-field effects of India-Eurasian plate convergence, westward subduction of the Pacific plate, magmatic underplating at the base of the crust, mantle plume activity, and asthenospheric mantle convection. Determining the nature of crustal features within this poorly understood region may illuminate processes that control rifting within intracontinental settings. A network of 26 broadband seismic stations encompassing 200 square kilometers of the Khövsgöl rift system were deployed from August 2014 to June 2016. More than 2100 events were detected, and most earthquakes were concentrated near rift structures. Events between Busiin-Gol and Darkhad, the westernmost and central basins of the Khövsgöl rift system, are distributed within the crust. An active fault is outlined along the eastern border of the Darkhad basin. Khövsgöl earthquakes bound both sides of the rift. Along the northern border of Lake Khövsgöl, seismic events define a shallow active fault orthogonal to the basin. The largest event recorded within the network was a magnitude ml=5.2 located near the northeastern border of Lake Khövsgöl on 12-05-2014. The focal mechanism of this earthquake is predominantly strike-slip, but also includes an extensional component. This work focuses on earthquake relocation and calculating moment tensors and focal mechanisms of larger regional

  20. Potential of Ni supported on KH zeolite catalysts for carbon dioxide reforming of methane

    NASA Astrophysics Data System (ADS)

    Kaengsilalai, Athiya; Luengnaruemitchai, Apanee; Jitkarnka, Sirirat; Wongkasemjit, Sujitra

    The catalytic activity of Ni on a series of catalysts supported on the synthesized KH zeolite for the CO 2 reforming of methane has been investigated. The KH zeolite supports were previously synthesized via silatrane and alumatrane precursors using the sol-gel process and hydrothermal microwave treatment. Eight percent Ni was impregnated onto the synthesized KH zeolites, which have different morphologies: called dog-bone, flower, and disordered shapes. The prepared Ni/KH zeolites were tested for their catalytic activity at 700 °C, at atmospheric pressure, and at a CH 4/CO 2 ratio of 1. The results showed that Ni supported on dog-bone and flower-shaped KH zeolites provided better activity than that of disordered KH zeolite due to higher CH 4 and CO 2 conversions, a higher H 2 production, and a smaller amount of coke formation on the catalyst surface. Furthermore, the stability of the Ni/KH zeolite was greatly superior to that of Ni supported on alumina and clinoptiolite catalysts after 65 h on stream.

  1. Effect of preliminary thermal treatment on decomposition kinetics of austenite in low-alloyed pipe steel in intercritical temperature interval

    NASA Astrophysics Data System (ADS)

    Makovetskii, A. N.; Tabatchikova, T. I.; Yakovleva, I. L.; Tereshchenko, N. A.; Mirzaev, D. A.

    2013-06-01

    The decomposition kinetics of austenite that appears in the 13KhFA low-alloyed pipe steel upon heating the samples in an intercritical temperature interval (ICI) and exposure for 5 or 30 min has been studied by the method of high-speed dilatometry. The results of dilatometry are supplemented by the microstructure analysis. Thermokinetic diagrams of the decomposition of the γ phase are represented. The conclusion has been drawn that an increase in the duration of exposure in the intercritical interval leads to a significant increase in the stability of the γ phase.

  2. 13. TOP OF STATIC TEST TOWER VIEW OF STEEL TRUSS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. TOP OF STATIC TEST TOWER VIEW OF STEEL TRUSS STRUCTURE AND OVERHEAD CRANE. - Marshall Space Flight Center, Saturn Propulsion & Structural Test Facility, East Test Area, Huntsville, Madison County, AL

  3. Estimation of the notch sensitivity of a nitrided steel by acoustic emission

    NASA Astrophysics Data System (ADS)

    Rogachev, S. O.; Nikulin, S. A.; Khatkevich, V. M.; Ozherelkov, D. Yu.; Molyarov, A. V.

    2017-10-01

    The notch sensitivity of sheet corrosion-resistant 08Kh17T steel is estimated in the states before and after high-temperature (1000-1100°C) internal nitriding during tensile tests accompanied by the measurement of acoustic emission signals. A crack in the steel is shown to propagate according to a ductile mechanism is all states. As the nitrogen content increases from 0.60 to 0.85%, the ultimate tensile strength of the steel decreases by 15% in the presence of a stress concentrator and remains substantially higher than the yield strength of the sheet steel without a stress concentrator.

  4. 13. VIEW TO SOUTHEAST, BRICK SKINNER SALT ROASTER AND STEEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. VIEW TO SOUTHEAST, BRICK SKINNER SALT ROASTER AND STEEL SKINNER SALT ROASTER. - Vanadium Corporation of America (VCA) Naturita Mill, 3 miles Northwest of Naturita, between Highway 141 & San Miguel River, Naturita, Montrose County, CO

  5. Special Features of Induction Annealing of Friction Stir Welded Joints of Medium-Alloy Steels

    NASA Astrophysics Data System (ADS)

    Priymak, E. Yu.; Stepanchukova, A. V.; Bashirova, E. V.; Fot, A. P.; Firsova, N. V.

    2018-01-01

    Welded joints of medium-alloy steels XJY750 and 40KhN2MA are studied in the initial condition and after different variants of annealing. Special features of the phase transformations occurring in the welded steels are determined. Optimum modes of annealing are recommended for the studied welded joints of drill pipes, which provide a high level of mechanical properties including the case of impact loading.

  6. Hardness of H13 Tool Steel After Non-isothermal Tempering

    NASA Astrophysics Data System (ADS)

    Nelson, E.; Kohli, A.; Poirier, D. R.

    2018-04-01

    A direct method to calculate the tempering response of a tool steel (H13) that exhibits secondary hardening is presented. Based on the traditional method of presenting tempering response in terms of isothermal tempering, we show that the tempering response for a steel undergoing a non-isothermal tempering schedule can be predicted. Experiments comprised (1) isothermal tempering, (2) non-isothermal tempering pertaining to a relatively slow heating to process-temperature and (3) fast-heating cycles that are relevant to tempering by induction heating. After establishing the tempering response of the steel under simple isothermal conditions, the tempering response can be applied to non-isothermal tempering by using a numerical method to calculate the tempering parameter. Calculated results are verified by the experiments.

  7. Laser Cladding of CPM Tool Steels on Hardened H13 Hot-Work Steel for Low-Cost High-Performance Automotive Tooling

    NASA Astrophysics Data System (ADS)

    Chen, J.; Xue, L.

    2012-06-01

    This paper summarizes our research on laser cladding of high-vanadium CPM® tool steels (3V, 9V, and 15V) onto the surfaces of low-cost hardened H13 hot-work tool steel to substantially enhance resistance against abrasive wear. The results provide great potential for fabricating high-performance automotive tooling (including molds and dies) at affordable cost. The microstructure and hardness development of the laser-clad tool steels so obtained are presented as well.

  8. Study of the Effect of Trace Mg Additions on Carbides in Die Steel H13

    NASA Astrophysics Data System (ADS)

    Li, Ji; Li, Jing; Wang, Liang-liang; Zhu, Qin-tian

    2016-09-01

    Carbides in annealed steel H13 without magnesium and with a micro-addition of magnesium (0.0010%) are studied. Trace amounts of magnesium strengthen carbide segregation and reduce their size. Carbides phases M7C3, M6 C, and M(C, N) are detected in steel H13, and this agrees with results of thermodynamic calculations.

  9. 13. Building H9; view of stainless steel probes and vacuum ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. Building H-9; view of stainless steel probes and vacuum line, looking W. (Ryan and Harms) - Holston Army Ammunition Plant, RDX-and-Composition-B Manufacturing Line 9, Kingsport, Sullivan County, TN

  10. The thermal fatigue resistance of H-13 Die Steel for aluminum die casting dies

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The effects of welding, five selected surface coatings, and stress relieving on the thermal fatigue resistance of H-13 Die Steel for aluminum die casting dies were studied using eleven thermal fatigue specimens. Stress relieving was conducted after each 5,000 cycle interval at 1050 F for three hours. Four thermal fatigue specimens were welded with H-13 or maraging steel welding rods at ambient and elevated temperatures and subsequently, subjected to different post-weld heat treatments. Crack patterns were examined at 5,000, 10,000, and 15,000 cycles. The thermal fatigue resistance is expressed by two crack parameters which are the average maximum crack and the average cracked area. The results indicate that a significant improvement in thermal fatigue resistance over the control was obtained from the stress-relieving treatment. Small improvements were obtained from the H-13 welded specimens and from a salt bath nitrogen and carbon-surface treatment. The other surface treatments and welded specimens either did not affect or had a detrimental influence on the thermal fatigue properties of the H-13 die steel.

  11. Study of the wear resistance of ion-plasma coatings based on titanium and aluminum and obtained by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Kachalin, G. V.; Mednikov, A. F.; Tkhabisimov, A. B.; Sidorov, S. V.

    2017-05-01

    The paper presents the results of metallographic researches and erosion tests of ion-plasma coatings (based on titanium, aluminum and their nitrides), which were formed on samples of 12Kh13 and EI961 blade steels. Erosion tests and studies of characteristics of obtained by magnetron sputtering coatings were carried out by using a set of research equipment UNU “Erosion-M” NRU “MPEI”. It was found that the formed Ti/Al-TiN/AlN coatings increase the duration of blade steels erosion wear incubation period by at least in 1.5 times and have a layered structure with thicknesses of nitride layers 1.3-1.6 μm and intermediate metallic layers 0.3-0.5 μm, with a total thickness of coatings of 10-14 μm for 12Kh13steel samples and 19-21 μm for EI961 steel samples.

  12. The physical foundation of FN = kh(3/2) for conical/pyramidal indentation loading curves.

    PubMed

    Kaupp, G

    2016-01-01

    A physical deduction of the FN = kh(3/2) relation (where FN is normal force, k penetration resistance, and h penetration depth) for conical/pyramidal indentation loading curves has been achieved on the basis of elementary mathematics. The indentation process couples the productions of volume and pressure to the displaced material that often partly plasticizes due to such pressure. As the pressure/plasticizing depends on the indenter volume, it follows that FN = FNp(1/3) · FNV(2/3), where the index p stands for pressure/plasticizing and V for indentation volume. FNp does not contribute to the penetration, only FNV. The exponent 2/3 on FNV shows that while FN is experimentally applied; only FN(2/3) is responsible for the penetration depth h. Thus, FN = kh(3/2) is deduced and the physical reason is the loss of FN(1/3) for the depth. Unfortunately, this has not been considered in teaching, textbooks, and the previous deduction of numerous common mechanical parameters, when the Love/Sneddon deductions of an exponent 2 on h were accepted and applied. The various unexpected experimental verifications and applications of the correct exponent 3/2 are mentioned and cited. Undue mechanical parameters require correction not only for safety reasons. © Wiley Periodicals, Inc.

  13. Wear Characteristics and Mechanisms of H13 Steel with Various Tempered Structures

    NASA Astrophysics Data System (ADS)

    Cui, X. H.; Wang, S. Q.; Wei, M. X.; Yang, Z. R.

    2011-08-01

    Wear tests of H13 steel with various tempering microstructures were performed under atmospheric conditions at room temperature (RT), 200 °C, and 400 °C. The wear characteristics and wear mechanisms of various tempered microstructures of the steel were focused by investigating the structure, morphology, and composition of the worn surfaces. Under atmospheric conditions at RT, 200 °C, and 400 °C, adhesive wear, mild oxidation wear, and oxidation wear prevailed, respectively. The wear rate at 200 °C was substantially lower than those at RT and 400 °C due to the protection of tribo-oxides. In mild oxidation wear, the tempered microstructures of the steel presented almost no obvious influence on the wear resistance. However, in adhesive wear and oxidation wear, the wear resistance strongly depended on the tempered microstructures of the steel. The steel tempered at 600-650 °C presented pronouncedly lower wear rates than the one tempered at 200-550 or 700 °C. It can be suggested that the wear resistance of the steel was closely related with its fracture resistance.

  14. Fatigue crack growth at elevated temperature 316 stainless steel and H-13 steel

    NASA Technical Reports Server (NTRS)

    Chen, W. C.; Liu, H. W.

    1976-01-01

    Crack growths were measured at elevated temperatures under four types of loading: pp, pc, cp, and cc. In H-13 steel, all these four types of loading gave nearly the same crack growth rates, and the length of hold time had negligible effects. In AISI 316 stainless steel, the hold time effects on crack growth rate were negligible if the loading was tension-tension type; however, these effects were significant in reversed bending load, and the crack growth rates under these four types of loading varied considerably. Both tensile and compressive hold times caused increased crack growth rate, but the compressive hold period was more deleterious than the tensile one. Metallographic examination showed that all the crack paths under different types of loading were largely transgranular for both CTS tension-tension specimens and SEN reversed cantilever bending specimens. In addition, an electric potential technique was used to monitor crack growth at elevated temperature.

  15. Identification of 80K-H as a protein involved in GLUT4 vesicle trafficking

    PubMed Central

    2005-01-01

    PKCζ (protein kinase Cζ) is a serine/threonine protein kinase controlled by insulin, various growth factors and phosphoinositide 3-kinase. It has been implicated in controlling glucose transport in response to insulin by the translocation of GLUT4-(glucose transporter 4) containing vesicles to the plasma membrane in stimulated cells. How PKCζ modulates GLUT4 vesicle trafficking remains unknown. A yeast two-hybrid screen using full-length human PKCζ identified 80K-H protein as an interactor with PKCζ. GST (glutathione S-transferase) pull-down assays with GST-tagged 80K-H constructs confirmed the interaction and showed that the N-terminal portion of 80K-H was not required for the interaction. Immunoprecipitates of endogenous PKCζ from Cho cells, 3T3-L1 adipocytes or L6 myotubes contained endogenous 80K-H, demonstrating a physiological interaction. Insulin stimulation enhanced the association 3–5-fold. Immunoprecipitates of endogenous 80K-H contained endogenous munc18c and immunoprecipitates of endogenous munc18c contained endogenous PKCζ, with insulin markedly increasing the amount of co-immunoprecipitated protein in each case. These results show that insulin triggers interactions in vivo between PKCζ, 80K-H and munc18c. Overexpression of 80K-H constructs mimicked the action of insulin in stimulating both glucose uptake and translocation of Myc-tagged GLUT4 in Cho cells, with the level of effect proportional to the ability of the constructs to associate with munc18c. These results identify 80K-H as a new player involved in GLUT4 vesicle transport and identify a link between a kinase involved in the insulin signalling cascade, PKCζ, and a known component of the GLUT4 vesicle trafficking pathway, munc18c. The results suggest a model whereby insulin triggers the formation of a PKCζ–80K-H–munc18c complex that enhances GLUT4 translocation to the plasma membrane. PMID:15707389

  16. Effect of laser absorption on picosecond laser ablation of Cr12MoV mold steel, 9Cr18 stainless steel and H13A cemented carbide

    NASA Astrophysics Data System (ADS)

    Wu, Baoye; Liu, Peng; Wang, Xizhao; Zhang, Fei; Deng, Leimin; Duan, Jun; Zeng, Xiaoyan

    2018-05-01

    Due to excellent properties, Cr12MoV mold steel, 9Cr18 stainless steel and H13A cemented carbide are widely used in industry. In this paper, the effect of absorption of laser light on ablation efficiency and roughness have been studied using a picosecond pulse Nd:YVO4 laser. The experimental results reveal that laser wavelength, original surface roughness and chemical composition play an important role in controlling ablation efficiency and roughness. Firstly, higher ablation efficiency with lower surface roughness is achieved on the ablation of 9Cr18 at 532, comparing with 1064 nm. Secondly, the ablation efficiency increases while the Ra of the ablated region decreases with the decrease of original surface roughness on ablation of Cr12MoV mold steel at 532 nm. Thirdly, the ablation efficiency of H13A cemented carbide is much higher than 9Cr18 stainless steel and Cr12MoV mold steel at 1064 nm. Scanning electron microscopy images reveals the formation of pores on the surface of 9Cr18 stainless steel and Cr12MoV mold steel at 532 nm while no pores are formed at 1064 nm. As to H13A cemented carbide, worm-like structure is formed at 1064 nm. The synergetic effects of the heat accumulation, plasma shielding and ablation threshold on laser ablation efficiency and machining quality were analyzed and discussed systematically in this paper.

  17. Modeling the Spray Forming of H13 Steel Tooling

    NASA Astrophysics Data System (ADS)

    Lin, Yaojun; McHugh, Kevin M.; Zhou, Yizhang; Lavernia, Enrique J.

    2007-07-01

    On the basis of a numerical model, the temperature and liquid fraction of spray-formed H13 tool steel are calculated as a function of time. Results show that a preheated substrate at the appropriate temperature can lead to very low porosity by increasing the liquid fraction in the deposited steel. The calculated cooling rate can lead to a microstructure consisting of martensite, lower bainite, retained austenite, and proeutectoid carbides in as-spray-formed material. In the temperature range between the solidus and liquidus temperatures, the calculated temperature of the spray-formed material increases with increasing substrate preheat temperature, resulting in a very low porosity by increasing the liquid fraction of the deposited steel. In the temperature region where austenite decomposition occurs, the substrate preheat temperature has a negligible influence on the cooling rate of the spray-formed material. On the basis of the calculated results, it is possible to generate sufficient liquid fraction during spray forming by using a high growth rate of the deposit without preheating the substrate, and the growth rate of the deposit has almost no influence on the cooling rate in the temperature region of austenite decomposition.

  18. Analytical description of changes in the magnetic states of chromium-nickel steel under uniaxial elastic deformation

    NASA Astrophysics Data System (ADS)

    Gorkunov, E. S.; Yakushenko, E. I.; Zadvorkin, S. M.; Mushnikov, A. N.

    2017-12-01

    Dependences of magnetization and magnetic permeability of the 15KhN4D structural steel on the value of uniaxial stresses and magnetic field strength are obtained. A polynomial approximation fairly accurately describing the observed changes is proposed on the basis of experimental data.

  19. Atomic diffusion in laser surface modified AISI H13 steel

    NASA Astrophysics Data System (ADS)

    Aqida, S. N.; Brabazon, D.; Naher, S.

    2013-07-01

    This paper presents a laser surface modification process of AISI H13 steel using 0.09 and 0.4 mm of laser spot sizes with an aim to increase surface hardness and investigate elements diffusion in laser modified surface. A Rofin DC-015 diffusion-cooled CO2 slab laser was used to process AISI H13 steel samples. Samples of 10 mm diameter were sectioned to 100 mm length in order to process a predefined circumferential area. The parameters selected for examination were laser peak power, pulse repetition frequency (PRF), and overlap percentage. The hardness properties were tested at 981 mN force. Metallographic study and energy dispersive X-ray spectroscopy (EDXS) were performed to observe presence of elements and their distribution in the sample surface. Maximum hardness achieved in the modified surface was 1017 HV0.1. Change of elements composition in the modified layer region was detected in the laser modified samples. Diffusion possibly occurred for C, Cr, Cu, Ni, and S elements. The potential found for increase in surface hardness represents an important method to sustain tooling life. The EDXS findings signify understanding of processing parameters effect on the modified surface composition.

  20. Killing Effects of an Isolated Serratia marcescens KH-001 on Diaphorina citri via Lowering the Endosymbiont Numbers

    PubMed Central

    Hu, Wei; Kuang, Fan; Lu, Zhanjun; Zhang, Ning; Chen, Tingtao

    2018-01-01

    Huanglongbing (HLB) is the most devastating citrus disease worldwide, and suppression of the Asian citrus psyllid (Diaphorina citri) is regarded as an effective method to inhibit the spread of HLB. In this study, we isolated a strain named as Serratia marcescens KH-001 from D. citri nymphs suffering from disease, and evaluated its killing effect on D. citri via toxicity test and effect on microbial community in D. citri using high-throughput sequencing. Our results indicated that S. marcescens KH-001 could effectively kill 83% of D. citri nymphs, while the fermentation products of S. marcescens KH-001 only killed 40% of the D. citrinymphs. High-throughput sequencing results indicated that the S. marcescens KH-001 increased the OTU numbers from 62.5 (PBS buffer) to 81.5, while significantly lowered the Shannon index compared with Escherichia coli DH5α (group E) (p < 0.05). OTU analysis showed that the S. marcescens KH-001 had significantly reduced the relative abundance of endosymbionts Wolbachia, Profftella, and Carsonella in group S compared with that in other groups (p < 0.05). Therefore, the direct killing effect of the fermentation products of S. marcescens KH-001 and the indirect effect via reducing the numbers of endosymbionts (Wolbachia, Profftella, and Carsonella) of D. citri endow S. marcescens KH-001 a sound killing effect on D. citri. Further work need to do before this strain is used as a sound biological control agents. PMID:29765368

  1. Killing Effects of an Isolated Serratia marcescens KH-001 on Diaphorina citri via Lowering the Endosymbiont Numbers.

    PubMed

    Hu, Wei; Kuang, Fan; Lu, Zhanjun; Zhang, Ning; Chen, Tingtao

    2018-01-01

    Huanglongbing (HLB) is the most devastating citrus disease worldwide, and suppression of the Asian citrus psyllid ( Diaphorina citri ) is regarded as an effective method to inhibit the spread of HLB. In this study, we isolated a strain named as Serratia marcescens KH-001 from D. citri nymphs suffering from disease, and evaluated its killing effect on D. citri via toxicity test and effect on microbial community in D. citri using high-throughput sequencing. Our results indicated that S. marcescens KH-001 could effectively kill 83% of D. citri nymphs, while the fermentation products of S. marcescens KH-001 only killed 40% of the D. citri nymphs. High-throughput sequencing results indicated that the S. marcescens KH-001 increased the OTU numbers from 62.5 (PBS buffer) to 81.5, while significantly lowered the Shannon index compared with Escherichia coli DH5α (group E) ( p < 0.05). OTU analysis showed that the S. marcescens KH-001 had significantly reduced the relative abundance of endosymbionts Wolbachia , Profftella , and Carsonella in group S compared with that in other groups ( p < 0.05). Therefore, the direct killing effect of the fermentation products of S. marcescens KH-001 and the indirect effect via reducing the numbers of endosymbionts ( Wolbachia , Profftella , and Carsonella ) of D. citri endow S. marcescens KH-001 a sound killing effect on D. citri . Further work need to do before this strain is used as a sound biological control agents.

  2. Laser Surface Modification of H13 Die Steel using Different Laser Spot Sizes

    NASA Astrophysics Data System (ADS)

    Aqida, S. N.; Naher, S.; Brabazon, D.

    2011-05-01

    This paper presents a laser surface modification process of AISI H13 tool steel using three sizes of laser spot with an aim to achieve reduced grain size and surface roughness. A Rofin DC-015 diffusion-cooled CO2 slab laser was used to process AISI H13 tool steel samples. Samples of 10 mm diameter were sectioned to 100 mm length in order to process a predefined circumferential area. The parameters selected for examination were laser peak power, overlap percentage and pulse repetition frequency (PRF). Metallographic study and image analysis were done to measure the grain size and the modified surface roughness was measured using two-dimensional surface profilometer. From metallographic study, the smallest grain sizes measured by laser modified surface were between 0.51 μm and 2.54 μm. The minimum surface roughness, Ra, recorded was 3.0 μm. This surface roughness of the modified die steel is similar to the surface quality of cast products. The grain size correlation with hardness followed the findings correlate with Hall-Petch relationship. The potential found for increase in surface hardness represents an important method to sustain tooling life.

  3. Aircraft Steels

    DTIC Science & Technology

    2009-02-19

    component usage. PH 13-8Mo is a precipitation-hardenable martensitic stainless steel combining excellent corrosion resistance with strength. Custom 465 is...a martensitic , age-hardenable stainless steel capable of about 1,724 MPa (250 ksi) UTS when peak-aged (H900 condition). Especially, this steel can...NOTES 14. ABSTRACT Five high strength steels (4340, 300M, AerMet 100, Ferrium S53, and Hy-Tuf) and four stainless steels (High Nitrogen, 13

  4. Influence of the tempering temperature on the mechanical properties and the phase composition of thin sheet TRIP steel

    NASA Astrophysics Data System (ADS)

    Terent'ev, V. F.; Eliseev, E. A.; Matyunin, V. M.; Slizov, A. K.; Marchenkov, A. Yu.; Sirotinkin, V. P.; Baikin, A. S.; Seval'nev, G. S.

    2017-10-01

    The strength and the plasticity properties of sheet high-strength austenitic-martensitic VNS9-Sh TRIP steel (23Kh15N5AM3-Sh) are studied as functions of the tempering temperature in the range 125-600°C. A nonmonotonic decease in the strength and the plasticity properties of the steel has been detected when the tempering temperature increases, and they increase in the range 300-450°C. The influence of aging processes, the precipitation of carbide, and the phase transformations in tempering on the mechanical properties of austenitic-martensitic corrosion-resistant steel is discussed.

  5. 15. "TEST STANDS NOS. 11, 13, & 15; STRUCTURAL STEEL; ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. "TEST STANDS NOS. 1-1, 1-3, & 1-5; STRUCTURAL STEEL; PLAN & DETAILS." Specifications No. ENG 04-353-50-10; Drawing No. 60-09-04; no sheet number within title block. D.O. SERIES 1109/34, Rev. A. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract DA-04353 Eng. 177, Rev. A, no change; Date: 21 Dec. 1951. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-5, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA

  6. 16. "TEST STANDS NOS. 11, 13, & 15; STRUCTURAL STEEL; ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. "TEST STANDS NOS. 1-1, 1-3, & 1-5; STRUCTURAL STEEL; ELEVATIONS AND SECTIONS." Specifications No. ENG 04353-50-10; Drawing No. 60-09-04; no sheet number within title block. D.O. SERIES 1109/35, Rev. A. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract DA-04-353 Eng. 177, Rev. A; Date: 29 Dec. 1951. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-5, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA

  7. Correlation of microstructure and low cycle fatigue properties for 13.5Cr1.1W0.3Ti ODS steel

    NASA Astrophysics Data System (ADS)

    He, P.; Klimenkov, M.; Möslang, A.; Lindau, R.; Seifert, H. J.

    2014-12-01

    Reduced activation oxide dispersion strengthened (ODS) steels are prospective structural materials for the blanket system and first wall components in Tokamak-type fusion reactors. Under the pulsed operation, these components will be predominantly subjected to cyclic thermal-mechanical loading which leads to inevitable fatigue damage. In this work, strain controlled isothermal fatigue tests were conducted for 13.5Cr1.1W0.3Ti ODS steel at 550 °C. The total strain range varied from 0.54% to 0.9%. After thermomechanical processing, 13.5CrWTi-ODS steel exhibits a remarkable lifetime extension with a factor of 10-20 for strain ranges Δε ⩽ 0.7%. 13.5Cr ODS steel shows no cyclic softening at all during the whole testing process irrespective of the strain range. TEM observations reveal ultrastable grain structure and constant dislocation densities around 1014 m-2, independent of the number of cycles or the applied strain amplitude. The presence of the stabilized ultrafine Y-Ti-O dispersoids enhances the microstructural stability and therefore leads to outstanding fatigue resistance for 13.5Cr1.1W0.3Ti-ODS steel.

  8. Cavitation Fracture of the Typical Materials Used in Hydraulic Machines and Units

    NASA Astrophysics Data System (ADS)

    Kovalev, A. A.; Kuznetsov, N. N.

    2017-12-01

    The cavitation fracture of AMg6, BrAZh9-4, grade 20 steel, 12Kh18N10T, 20Kh13, and VT1-0 alloys, which are used in hydraulic machines and units, is studied. In tests, the materials are subjected to ultrasonic waves and the sample mass loss and the microhardness are measured. It is shown that new cavitation- resistant materials, which have a sufficient strength and plasticity, should be designed.

  9. Therapeutic effects of the mitochondrial ROS-redox modulator KH176 in a mammalian model of Leigh Disease.

    PubMed

    de Haas, Ria; Das, Devashish; Garanto, Alejandro; Renkema, Herma G; Greupink, Rick; van den Broek, Petra; Pertijs, Jeanne; Collin, Rob W J; Willems, Peter; Beyrath, Julien; Heerschap, Arend; Russel, Frans G; Smeitink, Jan A

    2017-09-15

    Leigh Disease is a progressive neurometabolic disorder for which a clinical effective treatment is currently still lacking. Here, we report on the therapeutic efficacy of KH176, a new chemical entity derivative of Trolox, in Ndufs4 -/- mice, a mammalian model for Leigh Disease. Using in vivo brain diffusion tensor imaging, we show a loss of brain microstructural coherence in Ndufs4 -/- mice in the cerebral cortex, external capsule and cerebral peduncle. These findings are in line with the white matter diffusivity changes described in mitochondrial disease patients. Long-term KH176 treatment retained brain microstructural coherence in the external capsule in Ndufs4 -/- mice and normalized the increased lipid peroxidation in this area and the cerebral cortex. Furthermore, KH176 treatment was able to significantly improve rotarod and gait performance and reduced the degeneration of retinal ganglion cells in Ndufs4 -/- mice. These in vivo findings show that further development of KH176 as a potential treatment for mitochondrial disorders is worthwhile to pursue. Clinical trial studies to explore the potency, safety and efficacy of KH176 are ongoing.

  10. Stress Corrosion Cracking Behavior of Hardening-Treated 13Cr Stainless Steel

    NASA Astrophysics Data System (ADS)

    Niu, Li-Bin; Ishitake, Hisamitsu; Izumi, Sakae; Shiokawa, Kunio; Yamashita, Mitsuo; Sakai, Yoshihiro

    2018-03-01

    Stress corrosion cracking (SCC) behavior of the hardening-treated materials of 13Cr stainless steel was examined with SSRT tests and constant load tests. In the simulated geothermal water and even in the test water without addition of impurities, the hardening-treated materials showed a brittle intergranular fracture due to the sensitization, which was caused by the present hardening-treatments.

  11. Slurry Erosion Studies on Surface Modified 13Cr-4Ni Steels: Effect of Angle of Impingement and Particle Size

    NASA Astrophysics Data System (ADS)

    Manisekaran, T.; Kamaraj, M.; Sharrif, S. M.; Joshi, S. V.

    2007-10-01

    Hydroturbine steels, such as 13Cr-4Ni martensitic steels, are generally subjected to heavy-erosive wear and loss of efficiency due to solid particulate entrainment in the water. Surface-modified steels have proven to give better performance in terms of erosive wear resistance. In the present study, an attempt is made to investigate the effect of angle of impingement and particle size on slurry-jet erosion behavior of pulsed plasma nitrided and laser hardened 13Cr-4Ni steels. Laser hardening process has shown good performance at all angles of impingement due to martensitic transformation of retained austenite. Plastic deformation mode of material removal was also an evident feature of all laser-hardened surface damage locations. However, pulsed-plasma nitrided steels have exhibited chip formation and micro-cutting mode of erosive wear. Erosion with 150-300 μm size was twice compared to 150 μm size slurry particulates.

  12. Gaseous hydrogen embrittlement of PH 13-8 Mo steel

    NASA Astrophysics Data System (ADS)

    Ding, Y. S.; Tsay, L. W.; Chiang, M. F.; Chen, C.

    2009-04-01

    In this study, notched tensile and fatigue crack growth tests in gaseous hydrogen were performed on PH 13-8 Mo stainless steel specimens at room temperature. These specimens were susceptible to hydrogen embrittlement (HE), but at different degrees, depending on the aging conditions or the microstructures of the alloys. In hydrogen, the accelerated fatigue crack growth rate (FCGR) usually accompanied a reduced notched tensile strength (NTS) of the specimens, i.e., the faster the FCGR the lower the NTS. It was proposed that the same fracture mechanism could be applied to these two different types of specimens, regardless of the loading conditions. Rapid fatigue crack growth and high NTS loss were found in the H800 (426 °C under-aged) and H900 (482 °C peak-aged) specimens. The HE susceptibility of the steel was reduced by increasing the aging temperature above 593 °C, which was attributed to the increased amount of austenite in the structure. Extensive quasi-cleavage fracture was observed for the specimens that were deteriorated severely by HE.

  13. Microstructure and Mechanical Properties of Laser Clad and Post-cladding Tempered AISI H13 Tool Steel

    NASA Astrophysics Data System (ADS)

    Telasang, Gururaj; Dutta Majumdar, Jyotsna; Wasekar, Nitin; Padmanabham, G.; Manna, Indranil

    2015-05-01

    This study reports a detailed investigation of the microstructure and mechanical properties (wear resistance and tensile strength) of hardened and tempered AISI H13 tool steel substrate following laser cladding with AISI H13 tool steel powder in as-clad and after post-cladding conventional bulk isothermal tempering [at 823 K (550 °C) for 2 hours] heat treatment. Laser cladding was carried out on AISI H13 tool steel substrate using a 6 kW continuous wave diode laser coupled with fiber delivering an energy density of 133 J/mm2 and equipped with a co-axial powder feeding nozzle capable of feeding powder at the rate of 13.3 × 10-3 g/mm2. Laser clad zone comprises martensite, retained austenite, and carbides, and measures an average hardness of 600 to 650 VHN. Subsequent isothermal tempering converted the microstructure into one with tempered martensite and uniform dispersion of carbides with a hardness of 550 to 650 VHN. Interestingly, laser cladding introduced residual compressive stress of 670 ± 15 MPa, which reduces to 580 ± 20 MPa following isothermal tempering. Micro-tensile testing with specimens machined from the clad zone across or transverse to cladding direction showed high strength but failure in brittle mode. On the other hand, similar testing with samples sectioned from the clad zone parallel or longitudinal to the direction of laser cladding prior to and after post-cladding tempering recorded lower strength but ductile failure with 4.7 and 8 pct elongation, respectively. Wear resistance of the laser surface clad and post-cladding tempered samples (evaluated by fretting wear testing) registered superior performance as compared to that of conventional hardened and tempered AISI H13 tool steel.

  14. TRIM67 Protein Negatively Regulates Ras Activity through Degradation of 80K-H and Induces Neuritogenesis*

    PubMed Central

    Yaguchi, Hiroaki; Okumura, Fumihiko; Takahashi, Hidehisa; Kano, Takahiro; Kameda, Hiroyuki; Uchigashima, Motokazu; Tanaka, Shinya; Watanabe, Masahiko; Sasaki, Hidenao; Hatakeyama, Shigetsugu

    2012-01-01

    Tripartite motif (TRIM)-containing proteins, which are defined by the presence of a common domain structure composed of a RING finger, one or two B-box motifs and a coiled-coil motif, are involved in many biological processes including innate immunity, viral infection, carcinogenesis, and development. Here we show that TRIM67, which has a TRIM motif, an FN3 domain and a SPRY domain, is highly expressed in the cerebellum and that TRIM67 interacts with PRG-1 and 80K-H, which is involved in the Ras-mediated signaling pathway. Ectopic expression of TRIM67 results in degradation of endogenous 80K-H and attenuation of cell proliferation and enhances neuritogenesis in the neuroblastoma cell line N1E-115. Furthermore, morphological and biological changes caused by knockdown of 80K-H are similar to those observed by overexpression of TRIM67. These findings suggest that TRIM67 regulates Ras signaling via degradation of 80K-H, leading to neural differentiation including neuritogenesis. PMID:22337885

  15. TRIM67 protein negatively regulates Ras activity through degradation of 80K-H and induces neuritogenesis.

    PubMed

    Yaguchi, Hiroaki; Okumura, Fumihiko; Takahashi, Hidehisa; Kano, Takahiro; Kameda, Hiroyuki; Uchigashima, Motokazu; Tanaka, Shinya; Watanabe, Masahiko; Sasaki, Hidenao; Hatakeyama, Shigetsugu

    2012-04-06

    Tripartite motif (TRIM)-containing proteins, which are defined by the presence of a common domain structure composed of a RING finger, one or two B-box motifs and a coiled-coil motif, are involved in many biological processes including innate immunity, viral infection, carcinogenesis, and development. Here we show that TRIM67, which has a TRIM motif, an FN3 domain and a SPRY domain, is highly expressed in the cerebellum and that TRIM67 interacts with PRG-1 and 80K-H, which is involved in the Ras-mediated signaling pathway. Ectopic expression of TRIM67 results in degradation of endogenous 80K-H and attenuation of cell proliferation and enhances neuritogenesis in the neuroblastoma cell line N1E-115. Furthermore, morphological and biological changes caused by knockdown of 80K-H are similar to those observed by overexpression of TRIM67. These findings suggest that TRIM67 regulates Ras signaling via degradation of 80K-H, leading to neural differentiation including neuritogenesis.

  16. Studies of the Cr-CrN coating characteristics formed by means of the magnetron sputtering method from bulk target

    NASA Astrophysics Data System (ADS)

    Kachalin, G. V.; Mednikov, A. F.; Tkhabisimov, A. B.; Sidorov, S. V.

    2017-07-01

    The paper presents the study’s results of ion-plasma chromium based coating characteristics produced on blade steel samples 12Kh13 and EI961 by means of the magnetron sputtering method from the bulk “hot” target. A set of metallographic studies and erosion tests of coatings were carried out using the research equipment URI (unique research installation) “Hydroshock rig Erosion-M” of NRU “MPEI”. Cr-CrN based coatings have a layered structure; thickness of intermediate Cr layers ranges from 0.7 to 1.7 μm, thickness of nitride layers CrN ranges from 1.5 to 4 μm, while the overall coating thickness is 17.0-21.5 μm coating microhardness is 1830-1880 HV0.05. The resulting coatings are found to increase 1.5 times the incubation period duration of erosion wear for steels 12Kh13 and EI961; they reduce the maximum erosion rate 1.3 times, and the steady erosion rate - 1.5 times.

  17. Effects of Mo Content on Microstructure and Mechanical Property of PH13-8Mo Martensitic Precipitation-Hardened Stainless Steel

    NASA Astrophysics Data System (ADS)

    Yubing, Pei; Tianjian, Wang; Zhenhuan, Gao; Hua, Fan; Gongxian, Yang

    This paper introduces the effects of Mo content on microstructure and mechanical property of PH13-8Mo martensitic precipitation-hardened stainless steel which is used for LP last stage blade in steam turbine. Thermodynamic software Thermo-Calc has been used to calculate precipitation temperature and the mass fraction of precipitated phases in PH13-8Mo steel with different Mo content. The result shows that when the mass of Mo is below 0.6wt.%, chi-phase mu-phase and sigma-phase could disappear. The microstructure and mechanical property of high Mo PH13-8Mo (Mo=0.57wt.%) and low Mo PH13-8Mo (Mo=2.15wt.%)have been investigated in different heat treatments. The investigations reveal that austenitizing temperature decrease with the reduce of Mo content, so the optimum solution temperature for low Mo PH13-8Mo is lower than that for high Mo PH13-8Mo.The influence of solution temperature on grain size is weakened with the increase of Mo content, Mo rich carbides could retard coarsening of grain. An enormous amount of nano-size uniformly distributed β-NiAl particles are found in both kinds of steels using transmission electron microscopy, they are the most important strengthening phase in PH13-8Mo.

  18. Static Recrystallization Behavior of Z12CN13 Martensite Stainless Steel

    NASA Astrophysics Data System (ADS)

    Luo, Min; Zhou, Bing; Li, Rong-bin; Xu, Chun; Guo, Yan-hui

    2017-09-01

    In order to increase the hot workability and provide proper hot forming parameters of forging Z12CN13 martensite stainless steel for the simulation and production, the static recrystallization behavior has been studied by double-pass hot compression tests. The effects of deformation temperature, strain rate and inter-pass time on the static recrystallization fraction by the 2% offset method are extensively studied. The results indicate that increasing the inter-pass time and the deformation temperature as well as strain rate appropriately can increase the fraction of static recrystallization. At the temperature of 1050-1150 °C, inter-pass time of 30-100 s and strain rate of 0.1-5 s-1, the static recrystallization behavior is obvious. In addition, the kinetics of static recrystallization behavior of Z12CN13 steel has been established and the activation energy of static recrystallization is 173.030 kJ/mol. The substructure and precipitates have been studied by TEM. The results reveal that the nucleation mode is bulging at grain boundary. Undissolved precipitates such as MoNi3 and Fe3C have a retarding effect on the recrystallization kinetics. The effect is weaker than the accelerating effect of deformation temperature.

  19. Lactobacillus crustorum KH: novel prospective probiotic strain isolated from Iranian traditional dairy products.

    PubMed

    Sharafi, Hakimeh; Derakhshan, Venos; Paknejad, Mojgan; Alidoust, Leila; Tohidi, Azadeh; Pornour, Majid; Hajfarajollah, Hamidreza; Zahiri, Hossein Shahbani; Noghabi, Kambiz Akbari

    2015-02-01

    In recent years, exploring novel probiotic strains for therapeutic intervention has been raised due to the significant increase in market demand. This study aimed to investigate the certain probiotic properties of 15 Lactobacillus isolates from Iranian traditional dairy products. Among them, a novel potential probiotic strain was isolated and identified as Lactobacillus crustorum. The characteristics of potential probiotics were examined in terms of resistance to acidity, bile, and salinity as well as antibiotic tolerance and antibacterial activity. L. crustorum KH has shown tolerance property to bile (0.3 % w), acidity (pH 2-9), and salinity (1-5 % NaCl) and strong antibacterial activity against tested enteropathogens by well-diffusion assay. Furthermore, in vivo study and histological assays were performed to study whether live and heat-killed cells of L. crustorum KH are able to protect against the challenge of Escherichia coli O157:H7 in the gastrointestinal tract of mice used as an experimental model. Therefore, heat-killed and live cells of L. crustorum KH were inoculated by gavage to different groups of 4-6-week-old female BALB/c mice in doses of 10(8) colony-forming unit (CFU)/dose. Thereafter, these mice were challenged with E. coli O157:H7 also inoculated in the gastrointestinal tract (GIT) of the animals. The results showed that heat-killed cells of L. crustorum KH exert a protective effect against E. coli O157:H7 colonization at different degrees, being lower than that produced by viable cells.

  20. Toolpath strategy for cutter life improvement in plunge milling of AISI H13 tool steel

    NASA Astrophysics Data System (ADS)

    Adesta, E. Y. T.; Avicenna; hilmy, I.; Daud, M. R. H. C.

    2018-01-01

    Machinability of AISI H13 tool steel is a prominent issue since the material has the characteristics of high hardenability, excellent wear resistance, and hot toughness. A method of improving cutter life of AISI H13 tool steel plunge milling by alternating the toolpath and cutting conditions is proposed. Taguchi orthogonal array with L9 (3^4) resolution will be employed with one categorical factor of toolpath strategy (TS) and three numeric factors of cutting speed (Vc), radial depth of cut (ae ), and chip load (fz ). It is expected that there are significant differences for each application of toolpath strategy and each cutting condition factor toward the cutting force and tool wear mechanism of the machining process, and medial axis transform toolpath could provide a better tool life improvement by a reduction of cutting force during machining.

  1. [Effect of KH2PO4 on the odonto- and osteogenic differentiation potential of human stem cells from apical papillae].

    PubMed

    Wang, Yan-ping; Wu, Jin-tao; Wang, Zi-lu; Zheng, Yang-yu; Zhang, Guang-dong; Yu, Jin-hua

    2013-01-01

    To determine the effects of KH2PO4 on the odonto- and osteogenic differentiation potential of human stem cells from apical papillae (SCAP) in vitro. SCAP were isolated and cultured respectively in alpha minimum essential medium (α-MEM) or α-MEM containing 1.8 mmol/L KH2PO4. Alkaline phosphatase (ALP) activity, alizarin red staining, real-time reverse transcription polymerase chain reaction (RT-PCR) and Western blotting were used to examine the odonto and osteogenic potential of SCAP in the two media. SCAP cultured in α-MEM containing 1.8 mmol/L KH2PO4 exhibited a higher ALP activity [(0.370 ± 0.013) Sigma unit×min(-1)×mg(-1)] at day 3 than control group [(0.285 ± 0.008) Sigma unit×min(-1)×mg(-1)] and KH2PO4-treated SCAP formed more calcified nodules at day 5 [(0.539 ± 0.007) µg/g] and day 7 [(1.617 ± 0.042) µg/g] than those in normal medium [(0.138 ± 0.037) µg/g, P < 0.01]. The expression of odonto- and osteogenic markers were significantly up-regulated after the stimulation of KH2PO4 at day 3 and 7 respectively, as compared with control group. 1.8 mmol/L KH2PO4 can promote the odonto and osteogenic differentiation potential of human SCAP.

  2. Evolution of the structure and the phase composition of a bainitic structural steel during plastic deformation

    NASA Astrophysics Data System (ADS)

    Nikitina, E. N.; Glezer, A. M.; Ivanov, Yu. F.; Aksenova, K. V.; Gromov, V. E.; Kazimirov, S. A.

    2017-10-01

    The evolution of the phase composition and the imperfect substructure of the 30Kh2N2MFA bainitic structural steel subjected to compressive deformation by 36% is quantitatively analyzed. It is shown that deformation is accompanied by an increase in the scalar dislocation density, a decrease in the longitudinal fragment sizes, an increase in the number of stress concentrators, the dissolution of cementite particles, and the transformation of retained austenite.

  3. Vacuum investment cast PH13-8Mo corrosion resistant steel. (SAE standard)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1991-07-01

    An industry-wide interest has arisen with regards to the properties and capabilities of investment cast PH 13-8Mo corrosion resistant steel. Specifically of interest are the structural applications in the aerospace industry for this product heat treated to the H1000 condition. The objective of this AMEC cooperative test program was to generate and compile useful data for aerospace structural evaluation of investment cast PH 13-8Mo heat treated to H1000. The determination was made of overall mechanical properties, fatigue, fracture toughness, and crack growth data along with basic microstructural evaluation of the investment cast material. The evaluation of mechanical property variations betweenmore » cast and machined tensile specimens and evaluation of microstructural constituents. PH 13-8Mo, H1000 investment castings for use in the aerospace industry is included.« less

  4. Cytotoxicity and DNA cleavage with core-shell nanocomposites functionalized by a KH domain DNA binding peptide

    NASA Astrophysics Data System (ADS)

    Bazak, Remon; Ressl, Jan; Raha, Sumita; Doty, Caroline; Liu, William; Wanzer, Beau; Salam, Seddik Abdel; Elwany, Samy; Paunesku, Tatjana; Woloschak, Gayle E.

    2013-11-01

    A nanoconjugate was composed of metal oxide nanoparticles decorated with peptides and fluorescent dye and tested for DNA cleavage following UV light activation. The peptide design was based on a DNA binding domain, the so called KH domain of the hnRNPK protein. This ``KH peptide'' enabled cellular uptake of nanoconjugates and their entry into cell nuclei. The control nanoconjugate carried no peptide; it consisted only of the metal oxide nanoparticle prepared as Fe3O4@TiO2 nanocomposite and the fluorescent dye alizarin red S. These components of either construct are responsible for nanoconjugate activation by UV light and the resultant production of reactive oxygen species (ROS). Production of ROS at different subcellular locations causes damage to different components of cells: only nanoconjugates inside cell nuclei can be expected to cause DNA cleavage. Degradation of cellular DNA with KH peptide decorated nanoconjugates exceeded the DNA damage obtained from control, no-peptide nanoconjugate counterparts. Moreover, caspase activation and cell death were more extensive in the same cells.A nanoconjugate was composed of metal oxide nanoparticles decorated with peptides and fluorescent dye and tested for DNA cleavage following UV light activation. The peptide design was based on a DNA binding domain, the so called KH domain of the hnRNPK protein. This ``KH peptide'' enabled cellular uptake of nanoconjugates and their entry into cell nuclei. The control nanoconjugate carried no peptide; it consisted only of the metal oxide nanoparticle prepared as Fe3O4@TiO2 nanocomposite and the fluorescent dye alizarin red S. These components of either construct are responsible for nanoconjugate activation by UV light and the resultant production of reactive oxygen species (ROS). Production of ROS at different subcellular locations causes damage to different components of cells: only nanoconjugates inside cell nuclei can be expected to cause DNA cleavage. Degradation of cellular DNA

  5. Influence of Powder Bed Preheating on Microstructure and Mechanical Properties of H13 Tool Steel SLM Parts

    NASA Astrophysics Data System (ADS)

    Mertens, R.; Vrancken, B.; Holmstock, N.; Kinds, Y.; Kruth, J.-P.; Van Humbeeck, J.

    Powder bed preheating is a promising development in selective laser melting (SLM), mainly applied to avoid large thermal stresses in the material. This study analyses the effect of in-process preheating on microstructure, mechanical properties and residual stresses during SLM of H13 tool steel. Sample parts are produced without any preheating and are compared to the corresponding parts made with preheating at 100°, 200°, 300°, and 400°C. Interestingly, internal stresses at the top surface of the parts evolve from compressive (-324MPa) without preheating to tensile stresses (371MPa) with preheating at 400°C. Nevertheless, application of powder bed preheating results in a more homogeneous microstructure with better mechanical properties compared to H13 SLM parts produced without preheating. The fine bainitic microstructure leads to hardness values of 650-700Hv and ultimate tensile strength of 1965MPa, which are comparable to or even better than those of conventionally made and heat treated H13 tool steel.

  6. Heat treatment of investment cast PH 13-8 Mo stainless steel: Part II. Isothermal aging kinetics

    NASA Astrophysics Data System (ADS)

    Robino, C. V.; Cieslak, M. J.; Hochanadel, P. W.; Edwards, G. R.

    1994-04-01

    The hardening response of investment cast PH 13-8 Mo stainless steel has been evaluated by hardness measurements following aging in the temperature range normally specified for this alloy (510 °C to 593 °C). A new relationship between fraction transformed and hardness was developed, and analysis of the data in terms of the kinetics of precipitation, in a manner similar to that frequently applied to other precipitation-hardenable martensitic steels, yielded low time exponents and a low value for the apparent activation energy. The values of the time exponents were 0.49, 0.37, 0.56, and 0.53 at 510 °C, 538 °C, 566 °C, and 593 °C, respectively, and that for the apparent activation energy was 139 kJ/mole. As has been proposed for other maraging type steels, these estimates suggest that Β-NiAl precipitates along or near dislocations and that growth of the precipitates is dominated by dislocation pipe diffusion. However, these predictions were neither supported nor refuted by transmission electron microscopy (TEM) because of difficulties in imaging the Β-NiAl precipitates at the aging times and temperatures used. Further, analysis of the data using the formalism of Wert and Zener for the growth of precipitates with interfering diffusion fields indicated that the estimates of fraction transformed from hardness data are not fully appropriate for maraging type steels. Consideration of the nature of the Avrami analysis and the electron microscopy results suggests that other phenomena, including dislocation recovery and reversion of martensite to austenite, occur at rates sufficient to convolute the Avrami analysis. It is further suggested that these results cast doubt on the fundamental implications of previous analyses of precipitation kinetics in age-hardening martensitic steels. Although the Avrami analysis was found not to provide a tenable description of the precipitation kinetics, it does provide a reasonable methodology for portrayal of the hardening response

  7. Designing Pulse Laser Surface Modification of H13 Steel Using Response Surface Method

    NASA Astrophysics Data System (ADS)

    Aqida, S. N.; Brabazon, D.; Naher, S.

    2011-01-01

    This paper presents a design of experiment (DOE) for laser surface modification process of AISI H13 tool steel in achieving the maximum hardness and minimum surface roughness at a range of modified layer depth. A Rofin DC-015 diffusion-cooled CO2 slab laser was used to process AISI H13 tool steel samples. Samples of 10 mm diameter were sectioned to 100 mm length in order to process a predefined circumferential area. The parameters selected for examination were laser peak power, overlap percentage and pulse repetition frequency (PRF). The response surface method with Box-Behnken design approach in Design Expert 7 software was used to design the H13 laser surface modification process. Metallographic study and image analysis were done to measure the modified layer depth. The modified surface roughness was measured using two-dimensional surface profilometer. The correlation of the three laser processing parameters and the modified surface properties was specified by plotting three-dimensional graph. The hardness properties were tested at 981 mN force. From metallographic study, the laser modified surface depth was between 37 μm and 150 μm. The average surface roughness recorded from the 2D profilometry was at a minimum value of 1.8 μm. The maximum hardness achieved was between 728 and 905 HV0.1. These findings are significant to modern development of hard coatings for wear resistant applications.

  8. Effect of cryogenic treatment on microstructure, mechanical and wear behaviors of AISI H13 hot work tool steel

    NASA Astrophysics Data System (ADS)

    Koneshlou, Mahdi; Meshinchi Asl, Kaveh; Khomamizadeh, Farzad

    2011-01-01

    This paper focuses on the effects of low temperature (subzero) treatments on microstructure and mechanical properties of H13 hot work tool steel. Cryogenic treatment at -72 °C and deep cryogenic treatment at -196 °C were applied and it was found that by applying the subzero treatments, the retained austenite was transformed to martensite. As the temperature was decreased more retained austenite was transformed to martensite and it also led to smaller and more uniform martensite laths distributed in the microstructure. The deep cryogenic treatment also resulted in precipitation of more uniform and very fine carbide particles. The microstructural modification resulted in a significant improvement on the mechanical properties of the H13 tool steel.

  9. TRIP effect in austenitic-martensitic VNS9-Sh steel at various strain rates

    NASA Astrophysics Data System (ADS)

    Terent'ev, V. F.; Slizov, A. K.; Prosvirnin, D. V.

    2016-10-01

    The mechanical properties of austenitic-martensitic VNS9-Sh (23Kh15N5AM3-Sh) steel are studied at a static strain rate from 4.1 × 10-5 to 17 × 10-3 s-1 (0.05-20 mm/min). It is found that, as the strain rate increases, the ultimate tensile strength decreases and the physical yield strength remains unchanged (≈1400 MPa). As the strain rate increases, the yield plateau remains almost unchanged and the relative elongation decreases continuously. Because of high microplastic deformation, the conventional yield strength is lower than the physical yield strength over the entire strain rate range under study. The influence of the TRIP effect on the changes in the mechanical properties of VNS9-Sh steel at various strain rates is discussed.

  10. Thermodynamics of complex structures formed between single-stranded DNA oligomers and the KH domains of the far upstream element binding protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakraborty, Kaushik; Sinha, Sudipta Kumar; Bandyopadhyay, Sanjoy, E-mail: sanjoy@chem.iitkgp.ernet.in

    The noncovalent interaction between protein and DNA is responsible for regulating the genetic activities in living organisms. The most critical issue in this problem is to understand the underlying driving force for the formation and stability of the complex. To address this issue, we have performed atomistic molecular dynamics simulations of two DNA binding K homology (KH) domains (KH3 and KH4) of the far upstream element binding protein (FBP) complexed with two single-stranded DNA (ss-DNA) oligomers in aqueous media. Attempts have been made to calculate the individual components of the net entropy change for the complexation process by adopting suitablemore » statistical mechanical approaches. Our calculations reveal that translational, rotational, and configurational entropy changes of the protein and the DNA components have unfavourable contributions for this protein-DNA association process and such entropy lost is compensated by the entropy gained due to the release of hydration layer water molecules. The free energy change corresponding to the association process has also been calculated using the Free Energy Perturbation (FEP) method. The free energy gain associated with the KH4–DNA complex formation has been found to be noticeably higher than that involving the formation of the KH3–DNA complex.« less

  11. Identification of Streptomyces sp. KH29, which produces an antibiotic substance processing an inhibitory activity against multidrug-resistant Acinetobacter baumannii.

    PubMed

    Lee, Keyong Ho; Kim, Kye-Woong; Rhee, Ki-Hyeong

    2010-12-01

    The Actinomycete strain KH29 is antagonistic to the multidrug-resistant Acinetobacter baumannii. Based on the diaminopimelic acid (DAP) type, and the morphological and physiological characteristics observed through the use of scanning electron microscopy (SEM), KH29 was confirmed as belonging to the genus Streptomyces. By way of its noted 16S rDNA nucleotide sequences, KH29 was found to have a relationship with Streptomyces cinnamonensis. The production of an antibiotic from this strain was found to be most favorable when cultured with glucose, polypeptone, and yeast extract (PY) medium for 6 days at 27 degrees C. The antibiotic produced was identified, through comparisons with reported spectral data including MS and NMR as a cyclo(L-tryptophanyl-L-tryptophanyl). Cyclo(L-Trp-L-Trp), from the PY cultures of KH29, was seen to be highly effective against 41 of 49 multidrugresistant Acinetobacter baumannii. Furthermore, cyclo(LTrp- L-Trp) had antimicrobial activity against Bacillus subtilis, Micrococcus luteus, Staphylococcus aureus, Saccharomyces cerevisiae, Aspergillus niger, and Candida albicans, However, it was ineffective against Streptomyces murinus.

  12. Precipitation of Carbides in Early Aging Stages and Their Crystallographic Orientations in Hadfield Steel Mn13

    NASA Astrophysics Data System (ADS)

    Ding, Zhimin; Liang, Bo; Zhao, Ruirong; Chen, Chunhuan

    2015-05-01

    The methods of transmission electron microscopy (TEM) and electron diffraction are used to study the carbides precipitated in Hadfield steel Mn13 during 2-h aging at 475°C. It is shown that carbides of types (Fe, Mn, Cr)23C6 and mixed (Fe, Mn, Cr)7C3 + (Fe, Mn, Cr)3C precipitate simultaneously over austenite grain boundaries. The data on precipitation of M23C- and M7C3-type carbides in a Hadfield steel after water quenching and aging are pioneer ones. Strict orientation relations of the M23C6 carbides and of the austenite matrix are determined.

  13. Effect of 0.2 and 0.5% Ti on the microstructure and mechanical properties of 13Cr supermartensitic stainless steel

    NASA Astrophysics Data System (ADS)

    Lian, Yong; Huang, Jinfeng; Zhang, Jin; Zhang, Cheng; Gao, Wen; Zhao, Chao

    2015-11-01

    The effect that a 0, 0.2, and 0.5 wt.% titanium content has on the microstructure and mechanical properties of 13Cr supermartensitic stainless steel was investigated using an optical microscope, transmission electron microscope, and X-ray diffraction. The resultant microstructures of the three steels were tempered martensite with a reversed austenite dispersed throughout the matrix. Additionally, the formation of Cr-rich carbides was suppressed by stable Ti(C, N), which improved the strength without severely decreasing in the Ti-microalloyed steel toughness. Nano-precipitation of Ni3Ti was found for the 0.5 wt.% Ti steel during tempering, which significantly increased the strength, but decreased the toughness. The reversed austenite volume fraction also significantly influenced the mechanical properties.

  14. Surface modification of AISI H13 tool steel by laser cladding with NiTi powder

    NASA Astrophysics Data System (ADS)

    Norhafzan, B.; Aqida, S. N.; Chikarakara, E.; Brabazon, D.

    2016-04-01

    This paper presents laser cladding of NiTi powder on AISI H13 tool steel surface for surface properties enhancement. The cladding process was conducted using Rofin DC-015 diffusion-cooled CO2 laser system with wavelength of 10.6 µm. NiTi powder was pre-placed on H13 tool steel surface. The laser beam was focused with a spot size of 90 µm on the sample surface. Laser parameters were set to 1515 and 1138 W peak power, 18 and 24 % duty cycle and 2300-3500 Hz laser pulse repetition frequency. Hardness properties of the modified layer were characterized by Wilson Hardness tester. Metallographic study and chemical composition were conducted using field emission scanning electron microscope and energy-dispersive X-ray spectrometer (EDXS) analysis. Results showed that hardness of NiTi clad layer increased three times that of the substrate material. The EDXS analysis detected NiTi phase presence in the modified layer up to 9.8 wt%. The metallographic study shows high metallurgical bonding between substrate and modified layer. These findings are significant to both increased hardness and erosion resistance of high-wear-resistant components and elongating their lifetime.

  15. Two dimensional finite element thermal model of laser surface glazing for H13 tool steel

    NASA Astrophysics Data System (ADS)

    Kabir, I. R.; Yin, D.; Naher, S.

    2016-10-01

    A two dimensional (2D) transient thermal model with line-heat-source was developed by Finite Element Method (FEM) for laser surface glazing of H13 tool steel using commercial software-ANSYS 15. The geometry of the model was taken as a transverse circular cross-section of cylindrical specimen. Two different power levels (300W, 200W) were used with 0.2mm width of laser beam and 0.15ms exposure time. Temperature distribution, heating and cooling rates, and the dimensions of modified surface were analysed. The maximum temperatures achieved were 2532K (2259°C) and 1592K (1319°C) for laser power 300W and 200W respectively. The maximum cooling rates were 4.2×107 K/s for 300W and 2×107 K/s for 200W. Depths of modified zone increased with increasing laser power. From this analysis, it can be predicted that for 0.2mm beam width and 0.15ms time exposer melting temperature of H13 tool steel is achieved within 200-300W power range of laser beam in laser surface glazing.

  16. Mechanical characteristics and microstructure of weld joint of high-temperature martensitic steel containing 9% Cr

    NASA Astrophysics Data System (ADS)

    Shakhova, Ya. E.; Belyakov, A. N.; Kaibyshev, R. O.

    2016-04-01

    The structure and mechanical characteristics of a weld joint of 10Kh9K3V2MFBR steel (0.097 C, 0.17.Si, 0.54 Mn, 8.75 Cr, 0.21 Ni, 0.51 Mo, 0.07 Nb, 0.23 V, 0.004 N, 0.003 B, 1.6 W, 0.15 Cu, and Fe for balance, wt %) have been studied; the joint was produced by hand welding in an argon atmosphere using 03Kh20N45M7G6B welding wire (0.3 C, 20 Cr, 45 Ni, 7 Mo, 6 Mn, and 1 Nb, wt %). The weld joint is divided into the zone of the base metal, a thermal effect zone, which consists of zones that contain fine and coarse original austenitic grains, and the zone of seam metal. It has been shown that the weld joint of 10Kh9K3V2MFBR steel possesses high strength characteristics at the room temperature under static loading and a satisfactorily impact toughness, which has the minimum value of 30 J/cm2 in the zone of the seam metal and does not depend on the temperature. With a decrease in the temperature from the room temperature to 253 K, a ductile-brittle transition occurs in the thermal effect zone. Creep tests carried out at the temperature of 923 K have shown that the long-term strength of the weld seam is lower than that of the base material in the entire stress range being tested. At stresses of 140 MPa or higher, the acceleration of creep in the weld seam is observed, while at low stresses of about 120 MPa, the rates of creep in the weld seam and in the base metal remain similar until the transition to the stage of accelerated fracture occurs. The difference in the values of the long-term strength is due to premature fracture, which occurs in the thermal effect zone with the finegrained structure.

  17. Structural transformations, strengthening, and wear resistance of titanium nickelide upon abrasive and adhesive wear

    NASA Astrophysics Data System (ADS)

    Korshunov, L. G.; Pushin, V. G.; Chernenko, N. L.; Makarov, V. V.

    2010-07-01

    Wear resistance and structural transformations upon abrasive and adhesive wear of titanium nickelide Ti49.4Ni50.6 in microcrystalline (MC) and submicrocrystalline (SMC) states have been investigated. It has been shown that the abrasive wear resistance of this alloy exceeds that of the steel 12Kh18N9 by a factor of about 2, that of the steel 110G13 (Hadfield steel), by a factor of 1.3, and is close to that of the steel 95Kh18. Upon adhesive wear in a testing-temperature range from -50 to +300°C, the Ti49.4Ni50.6 alloy, as compared to the steel 12Kh18N9, is characterized by the wear rate that is tens of times smaller and by a reduced (1.5-2.0 times) friction coefficient. The enhanced wear resistance of the Ti49.4Ni50.6 alloy is due to the development of intense strain hardening in it and to a high fracture toughness, which is a consequence of effective relaxation of high contact stresses arising in the surface layer of the alloy. The SMC state produced in the alloy with the help of equal-channel angular pressing (ECAP) has no effect on the abrasive wear resistance of the alloy. The favorable effect of ECAP on the wear resistance of the Ti49.4Ni50.6 alloy takes place under conditions of its adhesive wear at temperatures from -25 to +70°C. The electron-microscopic investigation showed that under conditions of wear at negative and room temperatures in the surface layer (1-5 μm thick) of titanium nickelide there arises a mixed structure consisting of an amorphous phase and nanocrystals of supposedly austenite and martensite. Upon friction at 200-300°C, a nanocrystalline structure of the B2 phase arises near the alloy surface, which, as is the case with the amorphous-nanocrystalline structure, is characterized by significant effective strength and wear resistance.

  18. Interrelationship of mechanical and corrosion-mechanical characteristics of type 12KhN4MF steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voronin, V.P.; Goncharov, A.F.; Maslov, V.A.

    1985-11-01

    Investigations presented include a comparative evaluation of the corrosionmechanical characteristics of specimens of high-strength chrome-nickelmolybdenum steel taking into consideration the different methods of melting of the original metal. A comparison of the corrosion-mechanical test results obtained with the results of acceptance tests are presented. A study of the fracture surfaces and the specimen material with the use of fractographic, macroscopic, and microscopic analyses is given. The systematization of the corrosion-mechanical test results with the use of methods of mathematical statistics are presented.

  19. MTS-MD of Biomolecules Steered with 3D-RISM-KH Mean Solvation Forces Accelerated with Generalized Solvation Force Extrapolation.

    PubMed

    Omelyan, Igor; Kovalenko, Andriy

    2015-04-14

    We developed a generalized solvation force extrapolation (GSFE) approach to speed up multiple time step molecular dynamics (MTS-MD) of biomolecules steered with mean solvation forces obtained from the 3D-RISM-KH molecular theory of solvation (three-dimensional reference interaction site model with the Kovalenko-Hirata closure). GSFE is based on a set of techniques including the non-Eckart-like transformation of coordinate space separately for each solute atom, extension of the force-coordinate pair basis set followed by selection of the best subset, balancing the normal equations by modified least-squares minimization of deviations, and incremental increase of outer time step in motion integration. Mean solvation forces acting on the biomolecule atoms in conformations at successive inner time steps are extrapolated using a relatively small number of best (closest) solute atomic coordinates and corresponding mean solvation forces obtained at previous outer time steps by converging the 3D-RISM-KH integral equations. The MTS-MD evolution steered with GSFE of 3D-RISM-KH mean solvation forces is efficiently stabilized with our optimized isokinetic Nosé-Hoover chain (OIN) thermostat. We validated the hybrid MTS-MD/OIN/GSFE/3D-RISM-KH integrator on solvated organic and biomolecules of different stiffness and complexity: asphaltene dimer in toluene solvent, hydrated alanine dipeptide, miniprotein 1L2Y, and protein G. The GSFE accuracy and the OIN efficiency allowed us to enlarge outer time steps up to huge values of 1-4 ps while accurately reproducing conformational properties. Quasidynamics steered with 3D-RISM-KH mean solvation forces achieves time scale compression of conformational changes coupled with solvent exchange, resulting in further significant acceleration of protein conformational sampling with respect to real time dynamics. Overall, this provided a 50- to 1000-fold effective speedup of conformational sampling for these systems, compared to conventional MD

  20. Evaluation of rolling contact fatigue of induction heated 13Cr-2Ni-2Mo Stainless steel bar with Si3N4-ball

    NASA Astrophysics Data System (ADS)

    Yadoiwa, Ariyasu; Mizobe, Koshiro; Kida, Katsuyuki

    2018-03-01

    13Cr % martensitic stainless steels were used in various industry, because they have excellent corrosion resistance and high hardness among other stainless steels. They are also expected as a bearing material, however, the research on rolling contact fatigue (RCF) is not enough. In this study, 13Cr-2Ni-2Mo stainless steels were quenched by induction heating and their RCF lives were evaluated. A Si3N4-ball was used in order to apply higher stress (Pmax = 5.6 GPa) than our previous tests (Pmax=5.3 GPa), in a single-ball RCF testing machine. It was found that the basic life (L10) was 2.20×106 cycles and Median life (L50) was 6.04×106 cycles. In addition, Weibull modulus became higher than the previous tests.

  1. Octanol-Water Partition Coefficient from 3D-RISM-KH Molecular Theory of Solvation with Partial Molar Volume Correction.

    PubMed

    Huang, WenJuan; Blinov, Nikolay; Kovalenko, Andriy

    2015-04-30

    The octanol-water partition coefficient is an important physical-chemical characteristic widely used to describe hydrophobic/hydrophilic properties of chemical compounds. The partition coefficient is related to the transfer free energy of a compound from water to octanol. Here, we introduce a new protocol for prediction of the partition coefficient based on the statistical-mechanical, 3D-RISM-KH molecular theory of solvation. It was shown recently that with the compound-solvent correlation functions obtained from the 3D-RISM-KH molecular theory of solvation, the free energy functional supplemented with the correction linearly related to the partial molar volume obtained from the Kirkwood-Buff/3D-RISM theory, also called the "universal correction" (UC), provides accurate prediction of the hydration free energy of small compounds, compared to explicit solvent molecular dynamics [ Palmer , D. S. ; J. Phys.: Condens. Matter 2010 , 22 , 492101 ]. Here we report that with the UC reparametrized accordingly this theory also provides an excellent agreement with the experimental data for the solvation free energy in nonpolar solvent (1-octanol) and so accurately predicts the octanol-water partition coefficient. The performance of the Kovalenko-Hirata (KH) and Gaussian fluctuation (GF) functionals of the solvation free energy, with and without UC, is tested on a large library of small compounds with diverse functional groups. The best agreement with the experimental data for octanol-water partition coefficients is obtained with the KH-UC solvation free energy functional.

  2. An investigation of phase transformation and crystallinity in laser surface modified H13 steel

    NASA Astrophysics Data System (ADS)

    Aqida, S. N.; Brabazon, D.; Naher, S.

    2013-03-01

    This paper presents a laser surface modification process of AISI H13 tool steel using 0.09, 0.2 and 0.4 mm size of laser spot with an aim to increase hardness properties. A Rofin DC-015 diffusion-cooled CO2 slab laser was used to process AISI H13 tool steel samples. Samples of 10 mm diameter were sectioned to 100 mm length in order to process a predefined circumferential area. The parameters selected for examination were laser peak power, overlap percentage and pulse repetition frequency (PRF). X-ray diffraction analysis (XRD) was conducted to measure crystallinity of the laser-modified surface. X-ray diffraction patterns of the samples were recorded using a Bruker D8 XRD system with Cu K α ( λ=1.5405 Å) radiation. The diffraction patterns were recorded in the 2 θ range of 20 to 80°. The hardness properties were tested at 981 mN force. The laser-modified surface exhibited reduced crystallinity compared to the un-processed samples. The presence of martensitic phase was detected in the samples processed using 0.4 mm spot size. Though there was reduced crystallinity, a high hardness was measured in the laser-modified surface. Hardness was increased more than 2.5 times compared to the as-received samples. These findings reveal the phase source of the hardening mechanism and grain composition in the laser-modified surface.

  3. LOCATING THE TRAILING EDGE OF THE CIRCUMBINARY RING IN THE KH 15D SYSTEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Capelo, Holly L.; Herbst, William; Leggett, S. K.

    2012-09-20

    Following two years of complete occultation of both stars in the binary T Tauri star KH 15D by its opaque circumbinary ring, KH 15D has abruptly brightened again during apastron phases, reaching I = 15 mag. Here, we show that the brightening is accompanied by a change in spectral class from K6/K7 (the spectral class of star A) to {approx}K1, and a bluing of the system in V - I by about 0.3 mag. A radial velocity measurement confirms that, at apastron, we are now seeing direct light from star B, which is more luminous and of earlier spectral classmore » than star A. Evidently, the trailing edge of the occulting screen has just become tangent to one anse of star B's projected orbit. This confirms a prediction of the precession models, supports the view that the tilted ring is self-gravitating, and ushers in a new era of the system's evolution that should be accompanied by the same kind of dramatic phenomena observed from 1995 to 2009. It also promotes KH 15D from a single-lined to a double-lined eclipsing binary, greatly enhancing its value for testing pre-main-sequence models. The results of our study strengthen the case for truncation of the outer ring at around 4 AU by a sub-stellar object such as an extremely young giant planet. The system is currently at an optimal configuration for detecting the putative planet and we urge expedient follow-up observations.« less

  4. Improvement of Tribological Performance of AISI H13 Steel by Means of a Self-Lubricated Oxide-Containing Tribo-layer

    NASA Astrophysics Data System (ADS)

    Cui, Xianghong; Jin, Yunxue; Chen, Wei; Zhang, Qiuyang; Wang, Shuqi

    2018-03-01

    A self-lubricated oxide-containing tribo-layer was induced to form by continuously adding particles of MoS2, Fe2O3 or their mixtures onto sliding interfaces of AISI H13 and 52100 steels. The artificial tribo-layer was always noticed to form continuously and cover the worn surface (termed as cover-type), whereas the original tribo-layer spontaneously formed with no additive was usually discontinuous and inserted into the substrate (termed as insert-type). Clearly, the cover-type and insert-type tribo-layers exactly corresponded to low and high wear rates, respectively. For the mixed additives of Fe2O3 + MoS2, the protective tribo-layers presented a load-carrying capability and lubricative function, which are attributed to the existence of Fe2O3 and MoS2. Hence, the wear rates and friction coefficients of H13 steel were markedly reduced.

  5. [Effects of different amounts of phosphate fertilizers on copper, zinc transfer in red soil under the application of KH2PO4].

    PubMed

    Guo, Liang; Li, Zhong-wu; Huang, Bin; Wang, Yan; Zhang, Yan

    2014-09-01

    In order to study the effects of different phosphate addition amounts on migration and transformation of heavy metals (Cu, Zn) in soil, an indoor leaching experiment using soil columns was carry out to study the leaching behavior of Cu and Zn. The KH2PO4 was chosen as the fertilizer application at the doses of 5 mg.kg-1, 15 mg.kg-1 and 25 mg.kg-1. The results showed that KH2PO4, could reduce the leachate pH, but different phosphate amounts had little effect on leachate pH, pH in leachate kept rising in the whole leaching process. With the application of KH2PO4, Cu migration was mainly in the surface layer while Zn migrated into deeper soil. Concentrations of Cu, Zn in deep soil leachate were low indicating that it was harmless to the shallow groundwater. After leaching, heavy metals mainly existed in the residual form in soil, the proportion of residual form of Cu was around 60% and the proportion of residual form of Zn was around 40%. High concentration of KH2PO4 helps the transformation of Zn from residual organic combination state to exchange state.

  6. Effect of KH2PO4 on gene expression, morphological and biochemical characteristics of stevia rebaudiana Bertoni under in vitro conditions.

    PubMed

    Kahrizi, D; Ghari, S M; Ghaheri, M; Fallah, F; Ghorbani, T; Beheshti Ale Agha, A; Kazemi, E; Ansarypour, Z

    2017-08-15

    Stevia rebaudiana is one of the most important biologically sourced and low-calorie sweeteners Bertoni that has a lot of steviol glycosides. Tissue culture is the best for propagation of stevia and micro nutrients can affect both morphological traits and steviol glycosides production. Therefore, the effect of different concentrations of KH2PO4on stevia growth factors and gene expression had been studied by tissue culture methods, RT-PCR and HPLC. According the results, bud numbers had increased significantly in MS + 0.034 mMKH2PO4 media and the highest measured length was seen in plants grown under MS + 0.034 mM KH2PO4 treatment. Also, the highest growth rate (1.396 mm/d) was observed in MS + 0.034 mMKH2PO4.The best concentration of KH2PO4 for expression of UGT74G1 was 0.00425mMand the best one for UGT76G1 expression was 0.017mM. Interestingly, the best media for both stevioside and rebaudioside A accumulation was 0.017mM KH2PO4containing media. There was positive correlation between the best media for gene expression and the best one for steviol glycosides production.

  7. Spark Plasma Co-Sintering of Mechanically Milled Tool Steel and High Speed Steel Powders

    PubMed Central

    Pellizzari, Massimo; Fedrizzi, Anna; Zadra, Mario

    2016-01-01

    Hot work tool steel (AISI H13) and high speed steel (AISI M3:2) powders were successfully co-sintered to produce hybrid tool steels that have properties and microstructures that can be modulated for specific applications. To promote co-sintering, which is made difficult by the various densification kinetics of the two steels, the particle sizes and structures were refined by mechanical milling (MM). Near full density samples (>99.5%) showing very fine and homogeneous microstructure were obtained using spark plasma sintering (SPS). The density of the blends (20, 40, 60, 80 wt % H13) was in agreement with the linear rule of mixtures. Their hardness showed a positive deviation, which could be ascribed to the strengthening effect of the secondary particles altering the stress distribution during indentation. A toughening of the M3:2-rich blends could be explained in view of the crack deviation and crack arrest exerted by the H13 particles. PMID:28773603

  8. Spark Plasma Co-Sintering of Mechanically Milled Tool Steel and High Speed Steel Powders.

    PubMed

    Pellizzari, Massimo; Fedrizzi, Anna; Zadra, Mario

    2016-06-16

    Hot work tool steel (AISI H13) and high speed steel (AISI M3:2) powders were successfully co-sintered to produce hybrid tool steels that have properties and microstructures that can be modulated for specific applications. To promote co-sintering, which is made difficult by the various densification kinetics of the two steels, the particle sizes and structures were refined by mechanical milling (MM). Near full density samples (>99.5%) showing very fine and homogeneous microstructure were obtained using spark plasma sintering (SPS). The density of the blends (20, 40, 60, 80 wt % H13) was in agreement with the linear rule of mixtures. Their hardness showed a positive deviation, which could be ascribed to the strengthening effect of the secondary particles altering the stress distribution during indentation. A toughening of the M3:2-rich blends could be explained in view of the crack deviation and crack arrest exerted by the H13 particles.

  9. Wear and Adhesive Failure of Al2O3 Powder Coating Sprayed onto AISI H13 Tool Steel Substrate

    NASA Astrophysics Data System (ADS)

    Amanov, Auezhan; Pyun, Young-Sik

    2016-07-01

    In this study, an alumina (Al2O3) ceramic powder was sprayed onto an AISI H13 hot-work tool steel substrate that was subjected to sanding and ultrasonic nanocrystalline surface modification (UNSM) treatment processes. The significance of the UNSM technique on the adhesive failure of the Al2O3 coating and on the hardness of the substrate was investigated. The adhesive failure of the coating sprayed onto sanded and UNSM-treated substrates was investigated by a micro-scratch tester at an incremental load. It was found, based on the obtained results, that the coating sprayed onto the UNSM-treated substrate exhibited a better resistance to adhesive failure in comparison with that of the coating sprayed onto the sanded substrate. Dry friction and wear property of the coatings sprayed onto the sanded and UNSM-treated substrates were assessed by means of a ball-on-disk tribometer against an AISI 52100 steel ball. It was demonstrated that the UNSM technique controllably improved the adhesive failure of the Al2O3 coating, where the critical load was improved by about 31%. Thus, it is expected that the application of the UNSM technique to an AISI H13 tool steel substrate prior to coating may delay the adhesive failure and improve the sticking between the coating and the substrate thanks to the modified and hardened surface.

  10. Effects of Deep Cryogenic Treatment on the Wear Resistance and Mechanical Properties of AISI H13 Hot-Work Tool Steel

    NASA Astrophysics Data System (ADS)

    Çiçek, Adem; Kara, Fuat; Kıvak, Turgay; Ekici, Ergün; Uygur, İlyas

    2015-11-01

    In this study, a number of wear and tensile tests were performed to elucidate the effects of deep cryogenic treatment on the wear behavior and mechanical properties (hardness and tensile strength) of AISI H13 tool steel. In accordance with this purpose, three different heat treatments (conventional heat treatment (CHT), deep cryogenic treatment (DCT), and deep cryogenic treatment and tempering (DCTT)) were applied to tool steel samples. DCT and DCTT samples were held in nitrogen gas at -145 °C for 24 h. Wear tests were conducted on a dry pin-on-disk device using two loads of 60 and 80 N, two sliding velocities of 0.8 and 1 m/s, and a wear distance of 1000 m. All test results showed that DCT improved the adhesive wear resistance and mechanical properties of AISI H13 steel. The formation of small-sized and uniformly distributed carbide particles and the transformation of retained austenite to martensite played an important role in the improvements in the wear resistance and mechanical properties. After cleavage fracture, the surfaces of all samples were characterized by the cracking of primary carbides, while the DCT and DCTT samples displayed microvoid formation by decohesion of the fine carbides precipitated during the cryo-tempering process.

  11. Conversion electron Mössbauer spectroscopy of plasma immersion ion implanted H13 tool steel

    NASA Astrophysics Data System (ADS)

    Terwagne, G.; Collins, G. A.; Hutchings, R.

    1994-12-01

    Conversion electron Mössbauer spectroscopy (CEMS) has been used to investigate nitride formation in AISI-H13 tool steel after treatment by plasma immersion ion implantation (PI3) at 350 °C. With only slight variation in the plasma conditions, it is possible to influence the kinetics of nitride precipitation so as to obtain nitrogen concentrations that range from those associated with ɛ-Fe2N through ɛ-Fe3N to γ'-Fe4N. The CEMS results enable a more definite identification of the nitrides than that obtained by glancing-angle X-ray diffraction and nuclear reaction analysis alone.

  12. Modelling of Tool Wear and Residual Stress during Machining of AISI H13 Tool Steel

    NASA Astrophysics Data System (ADS)

    Outeiro, José C.; Umbrello, Domenico; Pina, José C.; Rizzuti, Stefania

    2007-05-01

    Residual stresses can enhance or impair the ability of a component to withstand loading conditions in service (fatigue, creep, stress corrosion cracking, etc.), depending on their nature: compressive or tensile, respectively. This poses enormous problems in structural assembly as this affects the structural integrity of the whole part. In addition, tool wear issues are of critical importance in manufacturing since these affect component quality, tool life and machining cost. Therefore, prediction and control of both tool wear and the residual stresses in machining are absolutely necessary. In this work, a two-dimensional Finite Element model using an implicit Lagrangian formulation with an automatic remeshing was applied to simulate the orthogonal cutting process of AISI H13 tool steel. To validate such model the predicted and experimentally measured chip geometry, cutting forces, temperatures, tool wear and residual stresses on the machined affected layers were compared. The proposed FE model allowed us to investigate the influence of tool geometry, cutting regime parameters and tool wear on residual stress distribution in the machined surface and subsurface of AISI H13 tool steel. The obtained results permit to conclude that in order to reduce the magnitude of surface residual stresses, the cutting speed should be increased, the uncut chip thickness (or feed) should be reduced and machining with honed tools having large cutting edge radii produce better results than chamfered tools. Moreover, increasing tool wear increases the magnitude of surface residual stresses.

  13. Machining-induced deformation in stepped specimens of PH 13-8 Mo, 18 nickel maraging steel grade 200T1 and grain-refined HP 9-4-20

    NASA Technical Reports Server (NTRS)

    Wigley, D. A.

    1985-01-01

    The results of a study to evaluate the dimensional changes created during machining and subsequent cycling to cryogenic temperatures for three different metallic alloys are presented. Experimental techniques are described and results presented for 18 Ni Grade 200 maraging steel, PH-13-8 Mo stainless steel, and Grain-refined HP 9-4-20.

  14. Identification of two novel mammalian genes establishes a subfamily of KH-domain RNA-binding proteins.

    PubMed

    Makeyev, A V; Liebhaber, S A

    2000-08-01

    We have identified two novel human genes encoding proteins with a high level of sequence identity to two previously characterized RNA-binding proteins, alphaCP-1 and alphaCP-2. Both of these novel genes, alphaCP-3 and alphaCP-4, are predicted to encode proteins with triplicated KH domains. The number and organization of the KH domains, their sequences, and the sequences of the contiguous regions are conserved among all four alphaCP proteins. The common evolutionary origin of these proteins is substantiated by conservation of exon-intron organization in the corresponding genes. The map positions of alphaCP-1 and alphaCP-2 (previously reported) and those of alphaCP-3 and alphaCP-4 (present report) reveal that the four alphaCP loci are dispersed in the human genome; alphaCP-3 and alphaCP-4 mapped to 21q22.3 and 3p21, and the respective mouse orthologues mapped to syntenic regions of the mouse genome, 10B5 and 9F1-F2, respectively. Two additional loci in the human genome were identified as alphaCP-2 processed pseudogenes (PCBP2P1, 21q22.3, and PCBP2P2, 8q21-q22). Although the overall levels of alphaCP-3 and alphaCP-4 mRNAs are substantially lower than those of alphaCP-1 and alphaCP-2, transcripts of alphaCP-3 and alphaCP-4 were found in all mouse tissues tested. These data establish a new subfamily of genes predicted to encode closely related KH-containing RNA-binding proteins with potential functions in posttranscriptional controls. Copyright 2000 Academic Press.

  15. Anti-Corrosion Performance of 1,3-BENZOTHIAZOLE on 410 Martensitic Stainless Steel in H2SO4

    NASA Astrophysics Data System (ADS)

    Loto, Roland Tolulope

    The corrosion inhibition effect of synthesized 1,3-benzothiazole at very low concentrations on 410 martensitic stainless steel in 3MH2SO4 solution was studied through potentiodynamic polarization and weight loss measurements. The observation showed that the organic compound performed effectively with average inhibition efficiencies of 94% and 98% at the concentrations studied from both electrochemical methods due to the inhibition action of protonated inhibitor molecules in the acid solution. The amine and aromatics functional groups of the molecules active in the corrosion inhibition reaction were exposed from Attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) spectroscopic analysis. Thermodynamic calculations showed cationic adsorption to be chemisorption adsorption, obeying the Langmuir adsorption isotherm. Images from optical microscopy showed an improved morphology in comparison to images from corroded stainless steel. Severe surface deterioration and macro-pits were observed in the uninhibited samples.

  16. Effect of electroslag remelting on carbides in 8Cr13MoV martensitic stainless steel

    NASA Astrophysics Data System (ADS)

    Zhu, Qin-tian; Li, Jing; Shi, Cheng-bin; Yu, Wen-tao

    2015-11-01

    The effect of electroslag remelting (ESR) on carbides in 8Cr13MoV martensitic stainless steel was experimentally studied. Phases precipitated from liquid steel during solidification were calculated using the Thermo-Calc software. The carbon segregation was analyzed by original position analysis (OPA), and the carbides were analyzed by optical microscopy (OM), scanning electron microscopy (SEM), energy- dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). The results indicated that more uniform carbon distribution and less segregation were obtained in the case of samples subjected to the ESR process. After ESR, the amount of netty carbides decreased significantly, and the chromium and vanadium contents in the grain-boundary carbides was reduced. The total area and average size of carbides were obviously smaller after the ESR process. In the sample subjected to ESR, the morphology of carbides changed from lamellar and angular to globular or lump, whereas the types of carbides did not change; both M23C6 and M7C3 were present before and after the ESR process.

  17. Preparation and characterization of 304 stainless steel/Q235 carbon steel composite material

    NASA Astrophysics Data System (ADS)

    Shen, Wenning; Feng, Lajun; Feng, Hui; Cao, Ying; Liu, Lei; Cao, Mo; Ge, Yanfeng

    The composite material of 304 stainless steel reinforced Q235 carbon steel has been prepared by modified hot-rolling process. The resulted material was characterized by scanning electron microscope, three-electrode method, fault current impact method, electrochemical potentiodynamic polarization curve measurement and electrochemical impedance spectroscopy. The results showed that metallurgical bond between the stainless steel layer and carbon steel substrate has been formed. The composite material exhibited good electrical conductivity and thermal stability. The average grounding resistance of the composite material was about 13/20 of dip galvanized steel. There has no surface crack and bubbling formed after fault current impact. The composite material led to a significant decrease in the corrosion current density in soil solution, compared with that of hot dip galvanized steel and bare carbon steel. On the basis polarization curve and EIS analyses, it can be concluded that the composite material showed improved anti-corrosion property than hot-dip galvanized steel.

  18. Structural properties of H13 tool steel parts produced with use of selective laser melting technology

    NASA Astrophysics Data System (ADS)

    Šafka, J.; Ackermann, M.; Voleský, L.

    2016-04-01

    This paper deals with establishing of building parameters for 1.2344 (H13) tool steel processed using Selective Laser Melting (SLM) technology with layer thickness of 50 µm. In the first part of the work, testing matrix of models in the form of a cube with chamfered edge were built under various building parameters such as laser scanning speed and laser power. Resulting models were subjected to set of tests including measurement of surface roughness, inspection of inner structure with aid of Light Optical Microscopy and Scanning Electron Microscopy and evaluation of micro-hardness. These tests helped us to evaluate an influence of changes in building strategy to the properties of the resulting model. In the second part of the work, mechanical properties of the H13 steel were examined. For this purpose, the set of samples in the form of “dog bone” were printed under three different alignments towards the building plate and tested on universal testing machine. Mechanical testing of the samples should then reveal if the different orientation and thus different layering of the material somehow influence its mechanical properties. For this type of material, the producer provides the parameters for layer thickness of 30 µm only. Thus, our 50 µm building strategy brings shortening of the building time which is valuable especially for large models. Results of mechanical tests show slight variation in mechanical properties for various alignment of the sample.

  19. 13 CFR 400.207 - Application evaluation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 13 Business Credit and Assistance 1 2012-01-01 2012-01-01 false Application evaluation. 400.207 Section 400.207 Business Credit and Assistance EMERGENCY STEEL GUARANTEE LOAN BOARD EMERGENCY STEEL GUARANTEE LOAN PROGRAM Steel Guarantee Loans § 400.207 Application evaluation. (a) Eligibility screening...

  20. 13 CFR 400.207 - Application evaluation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 13 Business Credit and Assistance 1 2013-01-01 2013-01-01 false Application evaluation. 400.207 Section 400.207 Business Credit and Assistance EMERGENCY STEEL GUARANTEE LOAN BOARD EMERGENCY STEEL GUARANTEE LOAN PROGRAM Steel Guarantee Loans § 400.207 Application evaluation. (a) Eligibility screening...

  1. 13 CFR 400.207 - Application evaluation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 13 Business Credit and Assistance 1 2014-01-01 2014-01-01 false Application evaluation. 400.207 Section 400.207 Business Credit and Assistance EMERGENCY STEEL GUARANTEE LOAN BOARD EMERGENCY STEEL GUARANTEE LOAN PROGRAM Steel Guarantee Loans § 400.207 Application evaluation. (a) Eligibility screening...

  2. 13 CFR 400.207 - Application evaluation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 13 Business Credit and Assistance 1 2011-01-01 2011-01-01 false Application evaluation. 400.207 Section 400.207 Business Credit and Assistance EMERGENCY STEEL GUARANTEE LOAN BOARD EMERGENCY STEEL GUARANTEE LOAN PROGRAM Steel Guarantee Loans § 400.207 Application evaluation. (a) Eligibility screening...

  3. 13 CFR 400.207 - Application evaluation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Application evaluation. 400.207 Section 400.207 Business Credit and Assistance EMERGENCY STEEL GUARANTEE LOAN BOARD EMERGENCY STEEL GUARANTEE LOAN PROGRAM Steel Guarantee Loans § 400.207 Application evaluation. (a) Eligibility screening...

  4. In-situ determination of austenite and martensite formation in 13Cr6Ni2Mo supermartensitic stainless steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bojack, A., E-mail: a.bojack@tudelft.nl; Delft University of Technology, Department of Materials Science and Engineering, Mekelweg 2, 2628 CD Delft; Zhao, L.

    2012-09-15

    In-situ analysis of the phase transformations in a 13Cr6Ni2Mo supermartensitic stainless steel (X2CrNiMoV13-5-2) was carried out using a thermo-magnetic technique, dilatometry and high temperature X-ray diffractometry (HT-XRD). A combination of the results obtained by the three applied techniques gives a valuable insight in the phase transformations during the austenitization treatment, including subsequent cooling, of the 13Cr6Ni2Mo supermartensitic stainless steel, where the magnetic technique offers a high accuracy in monitoring the austenite fraction. It was found by dilatometry that the austenite formation during heating takes place in two stages, most likely caused by partitioning of Ni into austenite. The in-situ evolutionmore » of the austenite fraction is monitored by high-temperature XRD and dilatometry. The progress of martensite formation during cooling was described with a Koistinen-Marburger relation for the results obtained from the magnetic and dilatometer experiments. Enhanced martensite formation at the sample surface was detected by X-ray diffraction, which is assumed to be due to relaxation of transformation stresses at the sample surface. Due to the high alloy content and high thermodynamic stability of austenite at room temperature, 4 vol.% of austenite was found to be stable at room temperature after the austenitization treatment. - Highlights: Black-Right-Pointing-Pointer We in-situ analyzed phase transformations and fractions of a 13Cr6Ni2Mo SMSS. Black-Right-Pointing-Pointer Higher accuracy of the austenite fraction was obtained from magnetic technique. Black-Right-Pointing-Pointer Austenite formation during heating takes place in two stages. Black-Right-Pointing-Pointer Enhanced martensite formation at the sample surface detected by X-ray diffraction.« less

  5. A third generation vaccine for human visceral leishmaniasis and post kala azar dermal leishmaniasis: First-in-human trial of ChAd63-KH

    PubMed Central

    Osman, Mohamed; Mistry, Anoop; Keding, Ada; Cook, Elizabeth; Wiggins, Rebecca; Di Marco, Stefania; Colloca, Stefano; Siani, Loredana; Smith, Deborah F.; Aebischer, Toni; Lacey, Charles J.

    2017-01-01

    Background Visceral leishmaniasis (VL or kala azar) is the most serious form of human leishmaniasis, responsible for over 20,000 deaths annually, and post kala azar dermal leishmaniasis (PKDL) is a stigmatizing skin condition that often occurs in patients after successful treatment for VL. Lack of effective or appropriately targeted cell mediated immunity, including CD8+ T cell responses, underlies the progression of VL and progression to PKDL, and can limit the therapeutic efficacy of anti-leishmanial drugs. Hence, in addition to the need for prophylactic vaccines against leishmaniasis, the development of therapeutic vaccines for use alone or in combined immuno-chemotherapy has been identified as an unmet clinical need. Here, we report the first clinical trial of a third-generation leishmaniasis vaccine, developed intentionally to induce Leishmania-specific CD8+ T cells. Methods We conducted a first-in-human dose escalation Phase I trial in 20 healthy volunteers to assess the safety, tolerability and immunogenicity of a prime-only adenoviral vaccine for human VL and PKDL. ChAd63-KH is a replication defective simian adenovirus expressing a novel synthetic gene (KH) encoding two Leishmania proteins KMP-11 and HASPB. Uniquely, the latter was engineered to reflect repeat domain polymorphisms and arrangements identified from clinical isolates. We monitored innate immune responses by whole blood RNA-Seq and antigen specific CD8+ T cell responses by IFNγ ELISPOT and intracellular flow cytometry. Findings ChAd63-KH was safe at intramuscular doses of 1x1010 and 7.5x1010 vp. Whole blood transcriptomic profiling indicated that ChAd63-KH induced innate immune responses characterized by an interferon signature and the presence of activated dendritic cells. Broad and quantitatively robust CD8+ T cell responses were induced by vaccination in 100% (20/20) of vaccinated subjects. Conclusion The results of this study support the further development of ChAd63-KH as a novel third

  6. A third generation vaccine for human visceral leishmaniasis and post kala azar dermal leishmaniasis: First-in-human trial of ChAd63-KH.

    PubMed

    Osman, Mohamed; Mistry, Anoop; Keding, Ada; Gabe, Rhian; Cook, Elizabeth; Forrester, Sarah; Wiggins, Rebecca; Di Marco, Stefania; Colloca, Stefano; Siani, Loredana; Cortese, Riccardo; Smith, Deborah F; Aebischer, Toni; Kaye, Paul M; Lacey, Charles J

    2017-05-01

    Visceral leishmaniasis (VL or kala azar) is the most serious form of human leishmaniasis, responsible for over 20,000 deaths annually, and post kala azar dermal leishmaniasis (PKDL) is a stigmatizing skin condition that often occurs in patients after successful treatment for VL. Lack of effective or appropriately targeted cell mediated immunity, including CD8+ T cell responses, underlies the progression of VL and progression to PKDL, and can limit the therapeutic efficacy of anti-leishmanial drugs. Hence, in addition to the need for prophylactic vaccines against leishmaniasis, the development of therapeutic vaccines for use alone or in combined immuno-chemotherapy has been identified as an unmet clinical need. Here, we report the first clinical trial of a third-generation leishmaniasis vaccine, developed intentionally to induce Leishmania-specific CD8+ T cells. We conducted a first-in-human dose escalation Phase I trial in 20 healthy volunteers to assess the safety, tolerability and immunogenicity of a prime-only adenoviral vaccine for human VL and PKDL. ChAd63-KH is a replication defective simian adenovirus expressing a novel synthetic gene (KH) encoding two Leishmania proteins KMP-11 and HASPB. Uniquely, the latter was engineered to reflect repeat domain polymorphisms and arrangements identified from clinical isolates. We monitored innate immune responses by whole blood RNA-Seq and antigen specific CD8+ T cell responses by IFNγ ELISPOT and intracellular flow cytometry. ChAd63-KH was safe at intramuscular doses of 1x1010 and 7.5x1010 vp. Whole blood transcriptomic profiling indicated that ChAd63-KH induced innate immune responses characterized by an interferon signature and the presence of activated dendritic cells. Broad and quantitatively robust CD8+ T cell responses were induced by vaccination in 100% (20/20) of vaccinated subjects. The results of this study support the further development of ChAd63-KH as a novel third generation vaccine for VL and PKDL. This

  7. Stress corrosion study of PH13-8Mo stainless steel using the Slow Strain Rate Technique

    NASA Technical Reports Server (NTRS)

    Torres, Pablo D.

    1989-01-01

    The need for a fast and reliable method to study stress corrosion in metals has caused increased interest in the Slow Strain Rate Technique (SSRT) during the last few decades. PH13-8MoH950 and H1000 round tensile specimens were studied by this method. Percent reduction-in-area, time-to-failure, elongation at fracture, and fracture energy were used to express the loss in ductility, which has been used to indicate susceptibility to stress corrosion cracking (SCC). Results from a 3.5 percent salt solution (corrosive medium) were compared to those in air (inert medium). A tendency to early failure was found when testing in the vicinity of 1.0 x 10(-6) mm/mm/sec in the 3.5 percent salt solution. PH13-8Mo H1000 was found to be less likely to suffer SCC than PH13-8Mo H950. This program showed that the SSRT is promising for the SCC characterization of metals and results can be obtained in much shorter times (18 hr for PH steels) than those required using conventional techniques.

  8. 13 CFR 400.204 - Loan terms.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 13 Business Credit and Assistance 1 2012-01-01 2012-01-01 false Loan terms. 400.204 Section 400.204 Business Credit and Assistance EMERGENCY STEEL GUARANTEE LOAN BOARD EMERGENCY STEEL GUARANTEE LOAN PROGRAM Steel Guarantee Loans § 400.204 Loan terms. (a) All loans guaranteed under the Program shall be...

  9. 13 CFR 400.204 - Loan terms.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 13 Business Credit and Assistance 1 2014-01-01 2014-01-01 false Loan terms. 400.204 Section 400.204 Business Credit and Assistance EMERGENCY STEEL GUARANTEE LOAN BOARD EMERGENCY STEEL GUARANTEE LOAN PROGRAM Steel Guarantee Loans § 400.204 Loan terms. (a) All loans guaranteed under the Program shall be...

  10. 13 CFR 400.204 - Loan terms.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 13 Business Credit and Assistance 1 2011-01-01 2011-01-01 false Loan terms. 400.204 Section 400.204 Business Credit and Assistance EMERGENCY STEEL GUARANTEE LOAN BOARD EMERGENCY STEEL GUARANTEE LOAN PROGRAM Steel Guarantee Loans § 400.204 Loan terms. (a) All loans guaranteed under the Program shall be...

  11. 13 CFR 400.204 - Loan terms.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Loan terms. 400.204 Section 400.204 Business Credit and Assistance EMERGENCY STEEL GUARANTEE LOAN BOARD EMERGENCY STEEL GUARANTEE LOAN PROGRAM Steel Guarantee Loans § 400.204 Loan terms. (a) All loans guaranteed under the Program shall be...

  12. 13 CFR 400.204 - Loan terms.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 13 Business Credit and Assistance 1 2013-01-01 2013-01-01 false Loan terms. 400.204 Section 400.204 Business Credit and Assistance EMERGENCY STEEL GUARANTEE LOAN BOARD EMERGENCY STEEL GUARANTEE LOAN PROGRAM Steel Guarantee Loans § 400.204 Loan terms. (a) All loans guaranteed under the Program shall be...

  13. Effect of Energy Input on the Characteristic of AISI H13 and D2 Tool Steels Deposited by a Directed Energy Deposition Process

    NASA Astrophysics Data System (ADS)

    Park, Jun Seok; Park, Joo Hyun; Lee, Min-Gyu; Sung, Ji Hyun; Cha, Kyoung Je; Kim, Da Hye

    2016-05-01

    Among the many additive manufacturing technologies, the directed energy deposition (DED) process has attracted significant attention because of the application of metal products. Metal deposited by the DED process has different properties than wrought metal because of the rapid solidification rate, the high thermal gradient between the deposited metal and substrate, etc. Additionally, many operating parameters, such as laser power, beam diameter, traverse speed, and powder mass flow rate, must be considered since the characteristics of the deposited metal are affected by the operating parameters. In the present study, the effect of energy input on the characteristics of H13 and D2 steels deposited by a direct metal tooling process based on the DED process was investigated. In particular, we report that the hardness of the deposited H13 and D2 steels decreased with increasing energy input, which we discuss by considering microstructural observations and thermodynamics.

  14. Effect of Heat Treatment on the Structure and Properties of Explosion Welded Bimetal Kh20N80 + AD1

    NASA Astrophysics Data System (ADS)

    Shmorgun, V. G.; Arisova, V. N.; Slautin, O. V.; Taube, A. O.; Bakuntseva, V. M.

    2017-05-01

    Results of a study of the effect of heat treatment on the microhardness, structure and phase composition of diffusion zone in explosion-welded `refractory nickel alloy Kh20N80 + aluminum alloy AD1' bimetal are presented.

  15. EPR spectra of Cu(2+) in KH(2)PO(4) single crystals.

    PubMed

    Biyik, Recep; Tapramaz, Recep

    2008-01-01

    Cu(2+) doped single crystals of KH(2)PO(4) were investigated using EPR technique at room temperature. The spectra of the complex contains large number of overlapping lines. Five sites are resolved and four of them are compatible with the tetragonal symmetry, and the fifth one belongs to an interstitial site. The results are discussed and compared with previous studies. Detailed investigation of the EPR spectra indicate that Cu(2+) substitute with K(+) ions. The principal values of the g and hyperfine tensors and the ground state wave function of Cu(2+) ions are obtained.

  16. Effect of biomimetic non-smooth unit morphology on thermal fatigue behavior of H13 hot-work tool steel

    NASA Astrophysics Data System (ADS)

    Meng, Chao; Zhou, Hong; Cong, Dalong; Wang, Chuanwei; Zhang, Peng; Zhang, Zhihui; Ren, Luquan

    2012-06-01

    The thermal fatigue behavior of hot-work tool steel processed by a biomimetic coupled laser remelting process gets a remarkable improvement compared to untreated sample. The 'dowel pin effect', the 'dam effect' and the 'fence effect' of non-smooth units are the main reason of the conspicuous improvement of the thermal fatigue behavior. In order to get a further enhancement of the 'dowel pin effect', the 'dam effect' and the 'fence effect', this study investigated the effect of different unit morphologies (including 'prolate', 'U' and 'V' morphology) and the same unit morphology in different sizes on the thermal fatigue behavior of H13 hot-work tool steel. The results showed that the 'U' morphology unit had the optimum thermal fatigue behavior, then the 'V' morphology which was better than the 'prolate' morphology unit; when the unit morphology was identical, the thermal fatigue behavior of the sample with large unit sizes was better than that of the small sizes.

  17. Vibrational spectra of Mg2KH(XO4)2·15H2O (X = P, As) containing dimer units [H(XO4)2

    NASA Astrophysics Data System (ADS)

    Stefov, V.; Koleva, V.; Najdoski, M.; Abdija, Z.; Cahil, A.; Šoptrajanov, B.

    2017-08-01

    Infrared and Raman spectra of Mg2KH(PO4)2·15H2O and Mg2KH(AsO4)2·15H2O and a series of their partially deuterated analogues were recorded and analyzed. Compounds of the type Mg2KH(XO4)2·15H2O (X = P, As) are little-known and a rare case of phosphate and arsenate salts containing dimer units [H(XO4)2] in the crystal structure. The analysis of their IR spectra (recorded at room and liquid nitrogen temperature) and Raman spectra showed that the spectral characteristics of the XO4 groups connected in a dimer through a proton are not consistent with the presence of X-O-H covalent linkage and C1 crystallographic symmetry of the XO4 groups. The observation of a singlet Raman band for the ν1(XO4) mode as well as the absence of substantial splitting of the ν3(XO4) modes and IR activation of the ν1(XO4) mode suggest that the dimer units [H(XO4)2] are most probably symmetric rather than non-symmetric ones. It was found that, in the vibrational spectra of Mg2KH(AsO4)2·15H2O, both ν1(AsО4) and ν3(AsО4) modes have practically the same wavenumber around 830 cm- 1. It was also established that the ν4(PО4) modes in the deuterated hydrogendiphosphate compound are strongly coupled, most probably with HDO and/or D2O librations. As a whole, the spectral picture of Mg2KH(XO4)2·15H2O (X = P, As) very much resembles that observed for the struvite type compounds with the formula KMgXO4·6H2O (X = P, As) which do not contain X-OH groups. This means that vibrations of the dimers [H(XO4)2] play a relatively small part in the general spectral appearance.

  18. Modeling of the flow stress for AISI H13 Tool Steel during Hard Machining Processes

    NASA Astrophysics Data System (ADS)

    Umbrello, Domenico; Rizzuti, Stefania; Outeiro, José C.; Shivpuri, Rajiv

    2007-04-01

    In general, the flow stress models used in computer simulation of machining processes are a function of effective strain, effective strain rate and temperature developed during the cutting process. However, these models do not adequately describe the material behavior in hard machining, where a range of material hardness between 45 and 60 HRC are used. Thus, depending on the specific material hardness different material models must be used in modeling the cutting process. This paper describes the development of a hardness-based flow stress and fracture models for the AISI H13 tool steel, which can be applied for range of material hardness mentioned above. These models were implemented in a non-isothermal viscoplastic numerical model to simulate the machining process for AISI H13 with various hardness values and applying different cutting regime parameters. Predicted results are validated by comparing them with experimental results found in the literature. They are found to predict reasonably well the cutting forces as well as the change in chip morphology from continuous to segmented chip as the material hardness change.

  19. Seismic response analysis of a 13-story steel moment-framed building in Alhambra, California

    USGS Publications Warehouse

    Rodgers, Janise E.; Sanli, Ahmet K.; Çelebi, Mehmet

    2004-01-01

    The seismic performance of steel moment-framed buildings has been of particular interest since brittle fractures were discovered at the beam-column connections of some frames following the M6.7 1994 Northridge earthquake. This report presents an investigation of the seismic behavior of an instrumented 13-story steel moment frame building located in the greater Los Angeles area of California. An extensive strong motion dataset, ambient vibration data, engineering drawings and earthquake damage reports are available for this building. The data are described and subsequently analyzed. The results of the analyses show that the building response is more complex than would be expected from its highly symmetrical geometry. The building's response is characterized by low damping in the fundamental mode, larger peak accelerations in the intermediate stories than at the roof, extended periods of vibration after the cessation of strong input shaking, beating in the response, and significant torsion during strong shaking at the top of the concrete piers which extend from the basement to the second floor. The analyses of the data and all damage detection methods employed except one method based on system identification indicate that the response of the structure was elastic in all recorded earthquakes. These findings are in general agreement with the results of intrusive inspections (meaning fireproofing and architectural finishes were removed) conducted on approximately 5 percent of the moment connections following the Northridge earthquake, which found no earthquake damage.

  20. Kh. A. Rakhmatulin's scientific legacy in the field of mechanics of deformable rigid bodies

    NASA Astrophysics Data System (ADS)

    Goldstein, R. V.; Dem'yanov, Yu. A.; Nikitin, L. V.; Smirnov, N. N.; Shemyakin, E. I.

    2010-02-01

    Kh. A. Rakhmatulin's scientific activity was aimed at solving the most important scientific and technical problems encountered by the country. Khalil Akhmetovich was a unique combination of a theorist and an experimenter, an engineer and an inventor, a talented teacher and a scientific research manager. He fruitfully worked in mechanics of deformable solids (the corresponding results are surveyed in the present paper) as well as in fluid mechanics (as described in detail in the journal [1] dedicated to his memory).

  1. Interface bonding of NiCrAlY coating on laser modified H13 tool steel surface

    NASA Astrophysics Data System (ADS)

    Reza, M. S.; Aqida, S. N.; Ismail, I.

    2016-06-01

    Bonding strength of thermal spray coatings depends on the interfacial adhesion between bond coat and substrate material. In this paper, NiCrAlY (Ni-164/211 Ni22 %Cr10 %Al1.0 %Y) coatings were developed on laser modified H13 tool steel surface using atmospheric plasma spray (APS). Different laser peak power, P p, and duty cycle, DC, were investigated in order to improve the mechanical properties of H13 tool steel surface. The APS spraying parameters setting for coatings were set constant. The coating microstructure near the interface was analyzed using IM7000 inverted optical microscope. Interface bonding of NiCrAlY was investigated by interfacial indentation test (IIT) method using MMT-X7 Matsuzawa Hardness Tester Machine with Vickers indenter. Diffusion of atoms along NiCrAlY coating, laser modified and substrate layers was investigated by energy-dispersive X-ray spectroscopy (EDXS) using Hitachi Tabletop Microscope TM3030 Plus. Based on IIT method results, average interfacial toughness, K avg, for reference sample was 2.15 MPa m1/2 compared to sample L1 range of K avg from 6.02 to 6.96 MPa m1/2 and sample L2 range of K avg from 2.47 to 3.46 MPa m1/2. Hence, according to K avg, sample L1 has the highest interface bonding and is being laser modified at lower laser peak power, P p, and higher duty cycle, DC, prior to coating. The EDXS analysis indicated the presence of Fe in the NiCrAlY coating layer and increased Ni and Cr composition in the laser modified layer. Atomic diffusion occurred in both coating and laser modified layers involved in Fe, Ni and Cr elements. These findings introduce enhancement of coating system by substrate surface modification to allow atomic diffusion.

  2. Vibrational spectra of Mg2KH(XO4)2·15H2O (X=P, As) containing dimer units [H(XO4)2].

    PubMed

    Stefov, V; Koleva, V; Najdoski, M; Abdija, Z; Cahil, A; Šoptrajanov, B

    2017-08-05

    Infrared and Raman spectra of Mg 2 KH(PO 4 ) 2 ·15H 2 O and Mg 2 KH(AsO 4 ) 2 ·15H 2 O and a series of their partially deuterated analogues were recorded and analyzed. Compounds of the type Mg 2 KH(XO 4 ) 2 ·15H 2 O (X=P, As) are little-known and a rare case of phosphate and arsenate salts containing dimer units [H(XO 4 ) 2 ] in the crystal structure. The analysis of their IR spectra (recorded at room and liquid nitrogen temperature) and Raman spectra showed that the spectral characteristics of the XO 4 groups connected in a dimer through a proton are not consistent with the presence of X-O-H covalent linkage and C 1 crystallographic symmetry of the XO 4 groups. The observation of a singlet Raman band for the ν 1 (XO 4 ) mode as well as the absence of substantial splitting of the ν 3 (XO 4 ) modes and IR activation of the ν 1 (XO 4 ) mode suggest that the dimer units [H(XO 4 ) 2 ] are most probably symmetric rather than non-symmetric ones. It was found that, in the vibrational spectra of Mg 2 KH(AsO 4 ) 2 ·15H 2 O, both ν 1 (AsО 4 ) and ν 3 (AsО 4 ) modes have practically the same wavenumber around 830cm -1 . It was also established that the ν 4 (PО 4 ) modes in the deuterated hydrogendiphosphate compound are strongly coupled, most probably with HDO and/or D 2 O librations. As a whole, the spectral picture of Mg 2 KH(XO 4 ) 2 ·15H 2 O (X=P, As) very much resembles that observed for the struvite type compounds with the formula KMgXO 4 ·6H 2 O (X=P, As) which do not contain X-OH groups. This means that vibrations of the dimers [H(XO 4 ) 2 ] play a relatively small part in the general spectral appearance. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. 13 CFR 400.103 - Offices.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Offices. 400.103 Section 400.103 Business Credit and Assistance EMERGENCY STEEL GUARANTEE LOAN BOARD EMERGENCY STEEL GUARANTEE LOAN PROGRAM Board Procedures § 400.103 Offices. The principal offices of the Board are in the U.S. Department of...

  4. Effect of Spheroidizing Annealing on Microstructure and Mechanical Properties of High-Carbon Martensitic Stainless Steel 8Cr13MoV

    NASA Astrophysics Data System (ADS)

    Yu, Wen-Tao; Li, Jing; Shi, Cheng-Bin; Zhu, Qin-Tian

    2017-02-01

    The effects of holding time during both austenitizing and spheroidizing on microstructure and mechanical properties of high-carbon martensitic stainless steel 8Cr13MoV were experimentally studied. The results showed that the amount of carbides and the proportion of fine carbides decrease first and then increase with the increase in austenitizing time ( t 1) in the case of short spheroidizing time ( t 2), whereas the amount of the lamellar carbides increases. In the case of long t 2, both the amount of carbides and the proportion of fine carbides decrease, and the amount of the lamellar carbides did not increase. The hardness of the steel decreases first and then increases with the increase of t 1. Under the conditions of different t 1, the change in the size of carbides and hardness of the steel show a same trend with the variation of t 2. The size of spheroidized carbides increases, whereas the hardness of the steel decreases with increasing t 2. The longer the holding time of austenitizing, the higher is the spheroidizing rate at the earlier stage. However, the spheroidizing rate shows an opposite trend with t 1 at the later stage of spheroidizing. The effect of cooling rate on microstructure is similar with t 2. With increasing cooling rate, the dimension of carbides became smaller, and the amount of lamellar carbides increased. The elongation of the sample fracture exhibits no corresponding relationship with holding time, whereas it is closely related to the precipitation of secondary carbides caused by the alloying elements segregation.

  5. Dynamics of water around the complex structures formed between the KH domains of far upstream element binding protein and single-stranded DNA molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakraborty, Kaushik; Bandyopadhyay, Sanjoy, E-mail: sanjoy@chem.iitkgp.ernet.in

    2015-07-28

    Single-stranded DNA (ss-DNA) binding proteins specifically bind to the single-stranded regions of the DNA and protect it from premature annealing, thereby stabilizing the DNA structure. We have carried out atomistic molecular dynamics simulations of the aqueous solutions of two DNA binding K homology (KH) domains (KH3 and KH4) of the far upstream element binding protein complexed with two short ss-DNA segments. Attempts have been made to explore the influence of the formation of such complex structures on the microscopic dynamics and hydrogen bond properties of the interfacial water molecules. It is found that the water molecules involved in bridging themore » ss-DNA segments and the protein domains form a highly constrained thin layer with extremely retarded mobility. These water molecules play important roles in freezing the conformational oscillations of the ss-DNA oligomers and thereby forming rigid complex structures. Further, it is demonstrated that the effect of complexation on the slow long-time relaxations of hydrogen bonds at the interface is correlated with hindered motions of the surrounding water molecules. Importantly, it is observed that the highly restricted motions of the water molecules bridging the protein and the DNA components in the complexed forms originate from more frequent hydrogen bond reformations.« less

  6. 13 CFR 400.1 - Purpose.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Purpose. 400.1 Section 400.1 Business Credit and Assistance EMERGENCY STEEL GUARANTEE LOAN BOARD EMERGENCY STEEL GUARANTEE LOAN PROGRAM..., Chapter 1 of Public Law 106-51, 113 Stat. 252, as amended by section 734 of Public Law 106-102, 113 Stat...

  7. 13 CFR 400.209 - Funding for the Program.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Funding for the Program. 400.209 Section 400.209 Business Credit and Assistance EMERGENCY STEEL GUARANTEE LOAN BOARD EMERGENCY STEEL GUARANTEE LOAN PROGRAM Steel Guarantee Loans § 400.209 Funding for the Program. The Act provides funding for...

  8. 13 CFR 400.209 - Funding for the Program.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 13 Business Credit and Assistance 1 2012-01-01 2012-01-01 false Funding for the Program. 400.209 Section 400.209 Business Credit and Assistance EMERGENCY STEEL GUARANTEE LOAN BOARD EMERGENCY STEEL GUARANTEE LOAN PROGRAM Steel Guarantee Loans § 400.209 Funding for the Program. The Act provides funding for...

  9. 13 CFR 400.209 - Funding for the Program.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 13 Business Credit and Assistance 1 2013-01-01 2013-01-01 false Funding for the Program. 400.209 Section 400.209 Business Credit and Assistance EMERGENCY STEEL GUARANTEE LOAN BOARD EMERGENCY STEEL GUARANTEE LOAN PROGRAM Steel Guarantee Loans § 400.209 Funding for the Program. The Act provides funding for...

  10. 13 CFR 400.208 - Issuance of the Guarantee.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 13 Business Credit and Assistance 1 2014-01-01 2014-01-01 false Issuance of the Guarantee. 400.208 Section 400.208 Business Credit and Assistance EMERGENCY STEEL GUARANTEE LOAN BOARD EMERGENCY STEEL GUARANTEE LOAN PROGRAM Steel Guarantee Loans § 400.208 Issuance of the Guarantee. (a) The Board's decisions...

  11. 13 CFR 400.209 - Funding for the Program.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 13 Business Credit and Assistance 1 2014-01-01 2014-01-01 false Funding for the Program. 400.209 Section 400.209 Business Credit and Assistance EMERGENCY STEEL GUARANTEE LOAN BOARD EMERGENCY STEEL GUARANTEE LOAN PROGRAM Steel Guarantee Loans § 400.209 Funding for the Program. The Act provides funding for...

  12. 13 CFR 400.208 - Issuance of the Guarantee.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Issuance of the Guarantee. 400.208 Section 400.208 Business Credit and Assistance EMERGENCY STEEL GUARANTEE LOAN BOARD EMERGENCY STEEL GUARANTEE LOAN PROGRAM Steel Guarantee Loans § 400.208 Issuance of the Guarantee. (a) The Board's decisions...

  13. 13 CFR 400.208 - Issuance of the Guarantee.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 13 Business Credit and Assistance 1 2013-01-01 2013-01-01 false Issuance of the Guarantee. 400.208 Section 400.208 Business Credit and Assistance EMERGENCY STEEL GUARANTEE LOAN BOARD EMERGENCY STEEL GUARANTEE LOAN PROGRAM Steel Guarantee Loans § 400.208 Issuance of the Guarantee. (a) The Board's decisions...

  14. 13 CFR 400.208 - Issuance of the Guarantee.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 13 Business Credit and Assistance 1 2011-01-01 2011-01-01 false Issuance of the Guarantee. 400.208 Section 400.208 Business Credit and Assistance EMERGENCY STEEL GUARANTEE LOAN BOARD EMERGENCY STEEL GUARANTEE LOAN PROGRAM Steel Guarantee Loans § 400.208 Issuance of the Guarantee. (a) The Board's decisions...

  15. 13 CFR 400.209 - Funding for the Program.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 13 Business Credit and Assistance 1 2011-01-01 2011-01-01 false Funding for the Program. 400.209 Section 400.209 Business Credit and Assistance EMERGENCY STEEL GUARANTEE LOAN BOARD EMERGENCY STEEL GUARANTEE LOAN PROGRAM Steel Guarantee Loans § 400.209 Funding for the Program. The Act provides funding for...

  16. 13 CFR 400.208 - Issuance of the Guarantee.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 13 Business Credit and Assistance 1 2012-01-01 2012-01-01 false Issuance of the Guarantee. 400.208 Section 400.208 Business Credit and Assistance EMERGENCY STEEL GUARANTEE LOAN BOARD EMERGENCY STEEL GUARANTEE LOAN PROGRAM Steel Guarantee Loans § 400.208 Issuance of the Guarantee. (a) The Board's decisions...

  17. Effect of "bridge" on the performance of organic-inorganic crosslinked hybrid proton exchange membranes via KH550

    NASA Astrophysics Data System (ADS)

    Han, Hailan; Li, Hai Qiang; Liu, Meiyu; Xu, Lishuang; Xu, Jingmei; Wang, Shuang; Ni, Hongzhe; Wang, Zhe

    2017-02-01

    A series of novel organic-inorganic crosslinked hybrid proton exchange membranes were prepared using sulfonated poly(arylene ether ketone sulfone) polymers containing carboxyl groups (C-SPAEKS), (3-aminopropyl)-triethoxysilane (KH550), and tetraethoxysilane (TEOS). KH550 acted as a "bridge" after reacting with carboxyl and sulfonic groups of C-SPAEKS to form covalent and ionic crosslinked structure between the C-SPAEKS and SiO2 phase. The crosslinked hybrid membranes (C-SPAEKS/K-SiO2) were characterized by FT-IR spectroscopy, TGA, and electrochemistry, etc. The thermal stability, mechanical properties and proton conductivity of the crosslinked hybrid membranes were improved by the presence of both crosslinked structure and inorganic phase. The proton conductivity of C-SPAEKS/K-SiO2-8 was recorded as 0.110 S cm-1, higher than that of Nafion® (0.028 S cm-1) at 120 °C. Moreover, the methanol permeability of the C-SPAEKS/K-SiO2-8 was measured as 3.86 × 10-7 cm2 s-1, much lower than that of Nafion® 117 membranes (29.4 × 10-7 cm2 s-1) at 25 °C.

  18. Effect of temperature on anodic behavior of 13Cr martensitic steel in CO2 environment

    NASA Astrophysics Data System (ADS)

    Zhao, G. X.; Zheng, M.; Lv, X. H.; Dong, X. H.; Li, H. L.

    2005-04-01

    The corrosion behavior of 13Cr martensitic stainless steel in a CO2 environment in a stimulated oilfield was studied with potentiodynamic polarization and the impedance spectra technique. The results showed that the microstructure of the surface scale clearly changed with temperature. This decreased the sensitivity of pitting corrosion and increased the tendency toward general (or uniform) corrosion. The capacitance, the charge transfer resistance, and the polarization resistance of the corrosion product scale decrease with increasing temperature from 90 to 120 °C, and thus the corrosion is a thermal activation controlled process. Charge transfer through the scale is difficult and the corrosion is controlled by a diffusion process at a temperature of 150 °C. Resistance charge transfer through the corrosion product layer is higher than that in the passive film.

  19. High Power Picosecond Laser Surface Micro-texturing of H13 Tool Steel and Pattern Replication onto ABS Plastics via Injection Moulding

    NASA Astrophysics Data System (ADS)

    Otanocha, Omonigho B.; Li, Lin; Zhong, Shan; Liu, Zhu

    2016-03-01

    H13 tool steels are often used as dies and moulds for injection moulding of plastic components. Certain injection moulded components require micro-patterns on their surfaces in order to modify the physical properties of the components or for better mould release to reduce mould contamination. With these applications it is necessary to study micro-patterning to moulds and to ensure effective pattern transfer and replication onto the plastic component during moulding. In this paper, we report an investigation into high average powered (100 W) picosecond laser interactions with H13 tool steel during surface micro-patterning (texturing) and the subsequent pattern replication on ABS plastic material through injection moulding. Design of experiments and statistical modelling were used to understand the influences of laser pulse repetition rate, laser fluence, scanning velocity, and number of scans on the depth of cut, kerf width and heat affected zones (HAZ) size. The characteristics of the surface patterns are analysed. The process parameter interactions and significance of process parameters on the processing quality and efficiency are characterised. An optimum operating window is recommended. The transferred geometry is compared with the patterns generated on the dies. A discussion is made to explain the characteristics of laser texturing and pattern replication on plastics.

  20. IOL Tetraflex, KH 3500--presbyopia treatment.

    PubMed

    Ferko, J; Ferkova, A

    2009-01-01

    Presbyopia is a loss of accommodative capacity of the eye determined by age. The possible solutions for its treatment are spectacle correction (mono-, bi- or multifocal), multifocal contact lenses, conductive keratoplasty, excimer laser surgery and surgical solution - CLE. Four-year experience with using LOL Tetraflex KH 3500 by Lenstec. Between 2005 and 2009, 71 eyes of 35 patients with the average age of 52 were operated at the private ophthalmological clinic 3F Microsurgery of the Eye in Kosice. The patients were selected by strict indication criteria recommended by the producer. We have evaluated the ability of the implanted lens to substitute for the presbyopic correction. The subjective criterion of patient's evaluation was the expression of content in common life situations on the scale of 1 to 10. The objective evaluation was constituted by the measurement of the accommodation width, the presence of PCO, its solution by means of YAG capsulotomy and the subsequent influence on the pseudo accommodative capacity of the lense. 92% of operated patients expressed their complete satisfaction with the surgery results. By objective accommodometer measurement, we have identified the average accommodation width of +1,5 dioptres on the operated eyes. The presence of PCO was discovered in 42,2% cases. All cases were treated by YAG Capsulotomy. By further observation we have tried to determine the influence of YAG Capsulotomy on the accommodation width and pseudo accommodative capacity of the eye. The selection and use of TETRAFLEX lens is an appropriate alternative to presbyopia treatment with suitable patients.

  1. 13 CFR 400.210 - Assignment or transfer of loans.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 13 Business Credit and Assistance 1 2013-01-01 2013-01-01 false Assignment or transfer of loans. 400.210 Section 400.210 Business Credit and Assistance EMERGENCY STEEL GUARANTEE LOAN BOARD EMERGENCY STEEL GUARANTEE LOAN PROGRAM Steel Guarantee Loans § 400.210 Assignment or transfer of loans. (a...

  2. 13 CFR 400.210 - Assignment or transfer of loans.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 13 Business Credit and Assistance 1 2014-01-01 2014-01-01 false Assignment or transfer of loans. 400.210 Section 400.210 Business Credit and Assistance EMERGENCY STEEL GUARANTEE LOAN BOARD EMERGENCY STEEL GUARANTEE LOAN PROGRAM Steel Guarantee Loans § 400.210 Assignment or transfer of loans. (a...

  3. 13 CFR 400.210 - Assignment or transfer of loans.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 13 Business Credit and Assistance 1 2012-01-01 2012-01-01 false Assignment or transfer of loans. 400.210 Section 400.210 Business Credit and Assistance EMERGENCY STEEL GUARANTEE LOAN BOARD EMERGENCY STEEL GUARANTEE LOAN PROGRAM Steel Guarantee Loans § 400.210 Assignment or transfer of loans. (a...

  4. Microstructural characteristics of Hadfield steel solidified under high pressure

    NASA Astrophysics Data System (ADS)

    Zhang, Yuzi; Li, Yanguo; Han, Bo; Zhang, Fucheng; Qian, Lihe

    2011-12-01

    Samples of Hadfield steel, high manganese austenite steel with 13 wt% manganese and 1.2 wt% carbon, were solidified under a pressure of 6 GPa. The microstructures of the samples were analyzed by metallography and X-ray diffraction. The results indicate that the solidification microstructure of the Hadfield steel was remarkably refined under high pressure. Additionally, the carbide of M23C6 was obtained in the Hadfield steel solidified under high pressure was different from the carbide of M3C obtained by solidification under normal pressure. Furthermore, high pressure promoted the formation of orientational solidified microstructure of the Hadfield steel.

  5. Steel Foil Improves Performance Of Blasting Caps

    NASA Technical Reports Server (NTRS)

    Bement, Laurence J.; Perry, Ronnie; Schimmel, Morry L.

    1990-01-01

    Blasting caps, which commonly include deep-drawn aluminum cups, give significantly higher initiation performance by application of steel foils on output faces. Steel closures 0.005 in. (0.13 mm) thick more effective than aluminum. Caps with directly bonded steel foil produce fragment velocities of 9,300 ft/s (2.8 km/s) with large craters and unpredictable patterns to such degree that no attempts made to initiate explosions. Useful in military and aerospace applications and in specialized industries as mining and exploration for oil.

  6. Friction-induced structural transformations of the carbide phase in Hadfield steel

    NASA Astrophysics Data System (ADS)

    Korshunov, L. G.; Sagaradze, V. V.; Chernenko, N. L.; Shabashov, V. A.

    2015-08-01

    Structural transformations of the carbide phase in Hadfield steel (110G13) that occur upon plastic deformation by dry sliding friction have been studied by methods of optical metallography, X-ray diffraction, and transmission electron microscopy. Deformation is shown to lead to the refinement of the particles of the carbide phase (Fe, Mn)3C to a nanosized level. The effect of the deformation-induced dissolution of (Fe, Mn)3C carbides in austenite of 110G13 (Hadfield) steel has been revealed, which manifests in the appearance of new lines belonging to austenite with an unusually large lattice parameter ( a = 0.3660-0.3680 nm) in the X-ray diffraction patterns of steel tempered to obtain a fine-lamellar carbide phase after deformation. This austenite is the result of the deformation-induced dissolution of disperse (Fe, Mn)3C particles, which leads to the local enrichment of austenite with carbon and manganese. The tempering that leads to the formation of carbide particles in 110G13 steel exerts a negative influence on the strain hardening of the steel, despite the increase in the hardness of steel upon tempering and the development of the processes of the deformation-induced dissolution of the carbide phase, which leads to the strengthening of the γ solid solution.

  7. Effect of microstructural anisotropy on fracture toughness of hot rolled 13Cr ODS steel - The role of primary and secondary cracking

    NASA Astrophysics Data System (ADS)

    Das, A.; Viehrig, H. W.; Bergner, F.; Heintze, C.; Altstadt, E.; Hoffmann, J.

    2017-08-01

    ODS steels have been known to exhibit anisotropic fracture behaviour and form secondary cracks. In this work, the factors responsible for the anisotropic fracture behaviour have been investigated using scanning electron microscopy and electron backscatter microscopy. Fracture toughness of hot rolled 13Cr ODS steel was determined using unloading compliance method for L-T and T-L orientations at various temperatures. L-T orientation had higher fracture toughness than T-L orientation and also contained more pronounced secondary cracking. Secondary cracks appeared at lower loads than primary cracks in both orientations. Primary crack propagation was found to be preferentially through fine grains in a bimodal microstructure. Grains were aligned and elongated the most towards rolling direction followed by T and S directions resulting in fracture anisotropy. Crystallographic texture and preferential alignment of Ti enriched particles parallel to rolling direction also contributed towards fracture anisotropy.

  8. Effect of Surface Modification on Corrosion Resistance of Uncoated and DLC Coated Stainless Steel Surface

    NASA Astrophysics Data System (ADS)

    Scendo, Mieczyslaw; Staszewska-Samson, Katarzyna

    2017-08-01

    Corrosion resistance of 4H13 stainless steel (EN-X46Cr13) surface uncoated and coated with an amorphous hydrogenated carbon (a-C:H) film [diamond-like carbon (DLC)] in acidic chloride solution was investigated. The DLC films were deposited on steel surface by a plasma deposition, direct current discharge (PDCD) method. The Fourier transform infrared (FTIR) was used to determine the chemical groups existing on DLC films. The surface of the specimens was observed by a scanning electron microscope (SEM). The tribological properties of the both materials were examined using a ball-on disk tribometer. The microhardness (HV) of diamond-like carbon film increased over five times in relation to the 4H13 stainless steel without of DLC coating. Oxidation kinetic parameters were determined by gravimetric and electrochemical methods. The high value of polarization resistance indicates that the DLC film on substrate was characterized by low electrical conductivity. The corrosion rate of 4H13 stainless steel with of DLC film decreased about eight times in relation to uncoated surface of 4H13 stainless steel.

  9. Thermal conductivity, electrical resistivity, and thermopower of aerospace alloys from 4 to 300 K. 6: Fe-22Cr-13Ni-5Mn stainless steel

    NASA Technical Reports Server (NTRS)

    Hust, J. G.; Sparks, L. L.

    1971-01-01

    The equipment and techniques for determining the thermal conductivity, electrical resistivity Lorenz ratio, and thermopower characteristics of Fe-22Cr-13Ni-5Mn stainless steel are discussed. The dimensions of the specimen and its preparation are described. The experimental data are represented by arbitrary functions over the entire range and smooth tables are generated from these functions.

  10. Behaviour of Strengthened RC Frames with Eccentric Steel Braced Frames

    NASA Astrophysics Data System (ADS)

    Kamanli, Mehmet; Unal, Alptug

    2017-10-01

    After devastating earthquakes in recent years, strengthening of reinforced concrete buildings became an important research topic. Reinforced concrete buildings can be strengthened by steel braced frames. These steel braced frames may be made of concentrically or eccentrically indicated in Turkish Earthquake Code 2007. In this study pushover analysis of the 1/3 scaled 1 reinforced concrete frame and 1/3 scaled 4 strengthened reinforced concrete frames with internal eccentric steel braced frames were conducted by SAP2000 program. According to the results of the analyses conducted, load-displacement curves of the specimens were compared and evaluated. Adding eccentric steel braces to the bare frame decreased the story drift, and significantly increased strength, stiffness and energy dissipation capacity. In this strengthening method lateral load carrying capacity, stiffness and dissipated energy of the structure can be increased.

  11. Direct Metal Deposition of H13 Tool Steel on Copper Alloy Substrate: Parametric Investigation

    NASA Astrophysics Data System (ADS)

    Imran, M. Khalid; Masood, S. H.; Brandt, Milan

    2015-12-01

    Over the past decade, researchers have demonstrated interest in tribology and prototyping by the laser aided material deposition process. Laser aided direct metal deposition (DMD) enables the formation of a uniform clad by melting the powder to form desired component from metal powder materials. In this research H13 tool steel has been used to clad on a copper alloy substrate using DMD. The effects of laser parameters on the quality of DMD deposited clad have been investigated and acceptable processing parameters have been determined largely through trial-and-error approaches. The relationships between DMD process parameters and the product characteristics such as porosity, micro-cracks and microhardness have been analysed using scanning electron microscope (SEM), image analysis software (ImageJ) and microhardness tester. It has been found that DMD parameters such as laser power, powder mass flow rate, feed rate and focus size have an important role in clad quality and crack formation.

  12. Optimization and Simulation of SLM Process for High Density H13 Tool Steel Parts

    NASA Astrophysics Data System (ADS)

    Laakso, Petri; Riipinen, Tuomas; Laukkanen, Anssi; Andersson, Tom; Jokinen, Antero; Revuelta, Alejandro; Ruusuvuori, Kimmo

    This paper demonstrates the successful printing and optimization of processing parameters of high-strength H13 tool steel by Selective Laser Melting (SLM). D-Optimal Design of Experiments (DOE) approach is used for parameter optimization of laser power, scanning speed and hatch width. With 50 test samples (1×1×1cm) we establish parameter windows for these three parameters in relation to part density. The calculated numerical model is found to be in good agreement with the density data obtained from the samples using image analysis. A thermomechanical finite element simulation model is constructed of the SLM process and validated by comparing the calculated densities retrieved from the model with the experimentally determined densities. With the simulation tool one can explore the effect of different parameters on density before making any printed samples. Establishing a parameter window provides the user with freedom for parameter selection such as choosing parameters that result in fastest print speed.

  13. Effect of heat treatment on the characteristics of tool steel deposited by the directed energy deposition process

    NASA Astrophysics Data System (ADS)

    Park, Jun Seok; Lee, Min-Gyu; Cho, Yong-Jae; Sung, Ji Hyun; Jeong, Myeong-Sik; Lee, Sang-Kon; Choi, Yong-Jin; Kim, Da Hye

    2016-01-01

    The directed energy deposition process has been mainly applied to re-work and the restoration of damaged steel. Differences in material properties between the base and the newly deposited materials are unavoidable, which may affect the mechanical properties and durability of the part. We investigated the effect of heat treatment on the characteristics of tool steel deposited by the DED process. We prepared general tool steel materials of H13 and D2 that were deposited onto heat-treated substrates of H13 and D2, respectively, using a direct metal tooling process. The hardness and microstructure of the deposited steel before and after heat treatment were investigated. The hardness of the deposited H13 steel was higher than that of wrought H13 steel substrate, while that of the deposited D2 was lower than that of wrought D2. The evolution of the microstructures by deposition and heat treatment varied depending on the materials. In particular, the microstructure of the deposited D2 steel after heat treatment consisted of fine carbides in tempered martensite and it is expected that the deposited D2 steel will have isotropic properties and high hardness after heat treatment.

  14. 13 CFR 400.106 - Ex parte communications.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Ex parte communications. 400.106 Section 400.106 Business Credit and Assistance EMERGENCY STEEL GUARANTEE LOAN BOARD EMERGENCY STEEL GUARANTEE LOAN PROGRAM Board Procedures § 400.106 Ex parte communications. Oral or written communication...

  15. Targeting a KH-domain protein with RNA decoys.

    PubMed

    Makeyev, Aleksandr V; Eastmond, Dawn L; Liebhaber, Stephen A

    2002-09-01

    RNA-binding proteins are involved in the regulation of many aspects of eukaryotic gene expression. Targeted interference with RNA-protein interactions could offer novel approaches to modulation of expression profiles, alteration of developmental pathways, and reversal of certain disease processes. Here we investigate a decoy strategy for the study of the alphaCP subgroup of KH-domain RNA-binding proteins. These poly(C)-binding proteins have been implicated in a wide spectrum of posttranscriptional controls. Three categories of RNA decoys to alphaCPs were studied: poly(C) homopolymers, native mRNA-binding sites, and a high-affinity structure selected from a combinatorial library. Native chemistry was found to be essential for alphaCP decoy action. Because alphaCP proteins are found in both the nucleus and cytoplasm, decoy cassettes were incorporated within both nuclear (U1 snRNA) and cytoplasmic (VA1 RNA) RNA frameworks. Several sequences demonstrated optimal decoy properties when assayed for protein-binding and decoy bioactivity in vitro. A subset of these transcripts was shown to mediate targeted inhibition of alphaCP-dependent translation when expressed in either the nucleus or cytoplasm of transfected cells. Significantly, these studies establish the feasibility of developing RNA decoys that can selectively target biologic functions of abundant and widely expressed RNA binding proteins.

  16. Targeting a KH-domain protein with RNA decoys.

    PubMed Central

    Makeyev, Aleksandr V; Eastmond, Dawn L; Liebhaber, Stephen A

    2002-01-01

    RNA-binding proteins are involved in the regulation of many aspects of eukaryotic gene expression. Targeted interference with RNA-protein interactions could offer novel approaches to modulation of expression profiles, alteration of developmental pathways, and reversal of certain disease processes. Here we investigate a decoy strategy for the study of the alphaCP subgroup of KH-domain RNA-binding proteins. These poly(C)-binding proteins have been implicated in a wide spectrum of posttranscriptional controls. Three categories of RNA decoys to alphaCPs were studied: poly(C) homopolymers, native mRNA-binding sites, and a high-affinity structure selected from a combinatorial library. Native chemistry was found to be essential for alphaCP decoy action. Because alphaCP proteins are found in both the nucleus and cytoplasm, decoy cassettes were incorporated within both nuclear (U1 snRNA) and cytoplasmic (VA1 RNA) RNA frameworks. Several sequences demonstrated optimal decoy properties when assayed for protein-binding and decoy bioactivity in vitro. A subset of these transcripts was shown to mediate targeted inhibition of alphaCP-dependent translation when expressed in either the nucleus or cytoplasm of transfected cells. Significantly, these studies establish the feasibility of developing RNA decoys that can selectively target biologic functions of abundant and widely expressed RNA binding proteins. PMID:12358435

  17. 13 CFR 400.100 - Purpose and scope.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 13 Business Credit and Assistance 1 2012-01-01 2012-01-01 false Purpose and scope. 400.100 Section 400.100 Business Credit and Assistance EMERGENCY STEEL GUARANTEE LOAN BOARD EMERGENCY STEEL GUARANTEE... authorities and organizational structure, the means and rules by which the Board takes actions, and procedures...

  18. 13 CFR 400.100 - Purpose and scope.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 13 Business Credit and Assistance 1 2013-01-01 2013-01-01 false Purpose and scope. 400.100 Section 400.100 Business Credit and Assistance EMERGENCY STEEL GUARANTEE LOAN BOARD EMERGENCY STEEL GUARANTEE... authorities and organizational structure, the means and rules by which the Board takes actions, and procedures...

  19. 13 CFR 400.100 - Purpose and scope.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 13 Business Credit and Assistance 1 2011-01-01 2011-01-01 false Purpose and scope. 400.100 Section 400.100 Business Credit and Assistance EMERGENCY STEEL GUARANTEE LOAN BOARD EMERGENCY STEEL GUARANTEE... authorities and organizational structure, the means and rules by which the Board takes actions, and procedures...

  20. 13 CFR 400.100 - Purpose and scope.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Purpose and scope. 400.100 Section 400.100 Business Credit and Assistance EMERGENCY STEEL GUARANTEE LOAN BOARD EMERGENCY STEEL GUARANTEE... authorities and organizational structure, the means and rules by which the Board takes actions, and procedures...

  1. 13 CFR 400.100 - Purpose and scope.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 13 Business Credit and Assistance 1 2014-01-01 2014-01-01 false Purpose and scope. 400.100 Section 400.100 Business Credit and Assistance EMERGENCY STEEL GUARANTEE LOAN BOARD EMERGENCY STEEL GUARANTEE... authorities and organizational structure, the means and rules by which the Board takes actions, and procedures...

  2. AC-Induced Bias Potential Effect on Corrosion of Steels

    DTIC Science & Technology

    2009-02-05

    induction, variable conduction Experimental Setup Super- martensitic stainless steel composition Analysis: C Mn Si Cr Ni Mo Cu N Typical 13 Cr ɘ.01 0.6... stainless steel used in pipelines. •Low carbon (ɘ.01): allows the formation of a “soft” martensite that is more resistant than standard martensitic ...Proposed AC Corrosion Models  AC Simulated Corrosion testing  Stainless steel pipe and coating  Cathodic protection  Experimental Setup  Preliminary

  3. High strength, high ductility low carbon steel

    DOEpatents

    Koo, Jayoung; Thomas, Gareth

    1978-01-01

    A high strength, high ductility low carbon steel consisting essentially of iron, 0.05-0.15 wt% carbon, and 1-3 wt% silicon. Minor amounts of other constituents may be present. The steel is characterized by a duplex ferrite-martensite microstructure in a fibrous morphology. The microstructure is developed by heat treatment consisting of initial austenitizing treatment followed by annealing in the (.alpha. + .gamma.) range with intermediate quenching.

  4. Temperature and composition profile during double-track laser cladding of H13 tool steel

    NASA Astrophysics Data System (ADS)

    He, X.; Yu, G.; Mazumder, J.

    2010-01-01

    Multi-track laser cladding is now applied commercially in a range of industries such as automotive, mining and aerospace due to its diversified potential for material processing. The knowledge of temperature, velocity and composition distribution history is essential for a better understanding of the process and subsequent microstructure evolution and properties. Numerical simulation not only helps to understand the complex physical phenomena and underlying principles involved in this process, but it can also be used in the process prediction and system control. The double-track coaxial laser cladding with H13 tool steel powder injection is simulated using a comprehensive three-dimensional model, based on the mass, momentum, energy conservation and solute transport equation. Some important physical phenomena, such as heat transfer, phase changes, mass addition and fluid flow, are taken into account in the calculation. The physical properties for a mixture of solid and liquid phase are defined by treating it as a continuum media. The velocity of the laser beam during the transition between two tracks is considered. The evolution of temperature and composition of different monitoring locations is simulated.

  5. Micro-Raman observation on the H2PO4- association structures in a supersaturated droplet of potassium dihydrogen phosphate (KH2PO4)

    NASA Astrophysics Data System (ADS)

    Syed, Kamran Ajmal; Pang, Shu-Feng; Zhang, Yun; Zhang, Yun-Hong

    2013-01-01

    The efflorescence of an individual KH2PO4 droplet on Teflon substrate was investigated by micro-Raman spectroscopy. With the decrease of relative humidity (RH) from 98.0% to 73.0%, the KH2PO4 droplet lost water gradually and entered into supersaturated state, which was reflected by the area ratio between the water stretching band to the sum of νs-PO2 and νs-P(OH)2 bands of the H2PO4- (A_{H_2 O} /(A_{(ν _s -PO_2 } {+ A}_{ν _s -P(OH)_2 {)}} {)}). In 1.0 mol l-1 KH2PO4 solution, the νs-P(OH)2 and νs-PO2 bands appeared at 877 and 1077 cm-1. In the KH2PO4 droplet, the two bands shifted to 894 and 1039 cm-1 at 98.0% RH, to 899 and 1031 cm-1 at 89.6% RH, and then to 904 and 997 cm-1 at 73.0% RH. Moreover, the aggregation process between the H2PO4- ions was observed from the spectral characteristic of the νs-P(OH)2 band in the concentration process, including the transitions of the H2PO4- ions from monomer in bulk solutions (0.5-1.0 mol l-1) to possible dimers at 98.0% RH and then further to oligomers in the droplet with the RH decrease, which were indicated by the blueshift of the νs-P(OH)2 band and its full width at half-height as a function of the RH. When the RH reached at 72.0%, the anhydrous crystal was obtained. A strong peak appeared at 928 cm-1, implying that the four oxygen atoms of the H2PO4- were all hydrogen bonding through the bridge hydrogen atoms to get the extensive hydrogen-bonded network structure of the H2PO4- association, leading to the symmetric increase of the H2PO4- ion from C2v in dilute solution to quasi-Td in the anhydrous crystal.

  6. Potassium and the K+/H+ Exchanger Kha1p Promote Binding of Copper to ApoFet3p Multi-copper Ferroxidase*

    PubMed Central

    Wu, Xiaobin; Kim, Heejeong; Seravalli, Javier; Barycki, Joseph J.; Hart, P. John; Gohara, David W.; Di Cera, Enrico; Jung, Won Hee; Kosman, Daniel J.; Lee, Jaekwon

    2016-01-01

    Acquisition and distribution of metal ions support a number of biological processes. Here we show that respiratory growth of and iron acquisition by the yeast Saccharomyces cerevisiae relies on potassium (K+) compartmentalization to the trans-Golgi network via Kha1p, a K+/H+ exchanger. K+ in the trans-Golgi network facilitates binding of copper to the Fet3p multi-copper ferroxidase. The effect of K+ is not dependent on stable binding with Fet3p or alteration of the characteristics of the secretory pathway. The data suggest that K+ acts as a chemical factor in Fet3p maturation, a role similar to that of cations in folding of nucleic acids. Up-regulation of KHA1 gene in response to iron limitation via iron-specific transcription factors indicates that K+ compartmentalization is linked to cellular iron homeostasis. Our study reveals a novel functional role of K+ in the binding of copper to apoFet3p and identifies a K+/H+ exchanger at the secretory pathway as a new molecular factor associated with iron uptake in yeast. PMID:26966178

  7. Calcium Treatment for FeSi-killed Fe-13 Pct Cr Stainless Steel with Various Top Slag Compositions

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Wang, Lijun; Zhai, Jun; Li, Jianmin; Chou, Kuochih

    2018-02-01

    Calcium treatment of Fe-13 pct Cr stainless steel, with inclusion modification as its main purpose, was evaluated on a laboratory scale. The stability diagram of Ca-Al was obtained using the FactSage software and could be divided into three parts based on the [Al] content: the ultra-low-Al region, the low-Al region, and the medium-high-Al region. Each of these regions required different amounts of calcium for inclusion modification. The ferrosilicon deoxidation product could be modified into low melting temperature inclusions by a CaO-SiO2 top slag in the ultra-low-Al region ([Al] content less than 40 ppm). Calcium treatment was necessary to modify the ferrosilicon deoxidation product into low melting temperature inclusions in the low-Al region ([Al] content from 40 to 100 ppm) for the CaO-SiO2-Al2O3 top slag. Calcium addition has a "liquid window" where adding calcium can accelerate inclusion modification. Adding calcium for 15 and 30 minutes resulted in complete modification times of 45 and 60 minutes, respectively, which indicates that early calcium treatment can produce plastic inclusions sooner. The relationship between the steel and inclusion content was determined by fitting the experimental data in the low-Al region. An appropriate range of T.Ca/T.O (total calcium content/total oxygen content) for inclusion modification is 0.99 to 1.44.

  8. Semen quality and sex hormones among mild steel and stainless steel welders: a cross sectional study.

    PubMed Central

    Bonde, J P

    1990-01-01

    Welding may be detrimental to the male reproductive system. To test this hypothesis, semen quality was examined in 35 stainless steel welders, 46 mild steel welders, and 54 non-welding metal workers and electricians. These figures represent a participation rate of 37.1% in welders and 36.7% in non-welding subjects. The mean exposure to welding fume particulates was 1.3 mg/m3 (SD 0.8) in stainless steel welders using tungsten inert gas, 3.2 mg/m3 (SD 1.0) in low exposed mild steel welders using manual metal arc or metal active gas (n = 31), and 4.7 mg/m3 (SD 2.1) in high exposed mild steel welders (n = 15). The semen quality of each participant was defined in terms of the mean values of the particular semen parameters in three semen samples delivered at monthly intervals in a period with occupational exposure in a steady state. The sperm concentration was not reduced in either mild steel or stainless steel welders. The sperm count per ejaculate, the proportion of normal sperm forms, the degree of sperm motility, and the linear penetration rate of the sperm were significantly decreased and the sperm concentration of follicle stimulating hormone (FSH) was non-significantly increased in mild steel welders. A dose response relation between exposure to welding fumes and these semen parameters (sperm count excepted) was found. Semen quality decreased and FSH concentrations increased with increasing exposure. Significant deteriorations in some semen parameters were also observed in stainless steel welders. An analysis of information from questionnaires obtained from the whole population including subjects who declined to participate indicated an underestimation of effects due to selection bias. Potential confounding was treated by restriction and statistical analysis. The results support the hypothesis that mild steel welding and to a lesser extent stainless steel welding with tungsten inert gas is associated with reduced semen quality at exposure in the range of the

  9. Semen quality and sex hormones among mild steel and stainless steel welders: a cross sectional study.

    PubMed

    Bonde, J P

    1990-08-01

    Welding may be detrimental to the male reproductive system. To test this hypothesis, semen quality was examined in 35 stainless steel welders, 46 mild steel welders, and 54 non-welding metal workers and electricians. These figures represent a participation rate of 37.1% in welders and 36.7% in non-welding subjects. The mean exposure to welding fume particulates was 1.3 mg/m3 (SD 0.8) in stainless steel welders using tungsten inert gas, 3.2 mg/m3 (SD 1.0) in low exposed mild steel welders using manual metal arc or metal active gas (n = 31), and 4.7 mg/m3 (SD 2.1) in high exposed mild steel welders (n = 15). The semen quality of each participant was defined in terms of the mean values of the particular semen parameters in three semen samples delivered at monthly intervals in a period with occupational exposure in a steady state. The sperm concentration was not reduced in either mild steel or stainless steel welders. The sperm count per ejaculate, the proportion of normal sperm forms, the degree of sperm motility, and the linear penetration rate of the sperm were significantly decreased and the sperm concentration of follicle stimulating hormone (FSH) was non-significantly increased in mild steel welders. A dose response relation between exposure to welding fumes and these semen parameters (sperm count excepted) was found. Semen quality decreased and FSH concentrations increased with increasing exposure. Significant deteriorations in some semen parameters were also observed in stainless steel welders. An analysis of information from questionnaires obtained from the whole population including subjects who declined to participate indicated an underestimation of effects due to selection bias. Potential confounding was treated by restriction and statistical analysis. The results support the hypothesis that mild steel welding and to a lesser extent stainless steel welding with tungsten inert gas is associated with reduced semen quality at exposure in the range of the

  10. Evaluation of epoxy-coated reinforcing steel.

    DOT National Transportation Integrated Search

    1993-01-01

    Virginia's first installation of epoxy-coated reinforcing steel, which was opened to traffic in 1977, was evaluated during construction and through 13 years of service. It was apparent at the time of construction that the integrity of the coating app...

  11. Steel selection for UBC steel bridge

    NASA Astrophysics Data System (ADS)

    Liu, Haoyu

    2018-03-01

    This report conducts a material selection of different types of steel for UBC Steel Bridge Team. I am a third-year material engineering student, so the result from this material selection can only be taken into consideration but not fully adopted. As part of my academic journey, it is possible for technical mistakes in this material selection process. The mechanic properties are the most effective category of properties, making it necessary to be justified from the steel bridge design and chosen in accordance with the objective of the team. An introduction for currently-used steel properties and the expected steel properties is provided. The examination focus on how different alloy compositions of steel changes its properties. The properties of the steel are examined in three main aspects: hardness, strength, and toughness. The results suggest that more nickel, manganese, and chromium in the steel provide better steel for the team to use. Further research is needed if a more precise material selection is required.

  12. Laser surface modification of Yttria Stabilized Zirconia (YSZ) thermal barrier coating on AISI H13 tool steel substrate

    NASA Astrophysics Data System (ADS)

    Reza, M. S.; Aqida, S. N.; Ismail, I.

    2018-03-01

    This paper presents laser surface modification of plasma sprayed yttria stabilized zirconia (YSZ) coating to seal porosity defect. Laser surface modification on plasma sprayed YSZ was conducted using 300W JK300HPS Nd: YAG laser at different operating parameters. Parameters varied were laser power and pulse frequency with constant residence time. The coating thickness was measured using IM7000 inverted optical microscope and surface roughness was analysed using two-dimensional Mitutoyo Surface Roughness Tester. Surface roughness of laser surface modification of YSZ H-13 tool steel decreased significantly with increasing laser power and decreasing pulse frequency. The re-melted YSZ coating showed higher hardness properties compared to as-sprayed coating surface. These findings were significant to enhance thermal barrier coating surface integrity for dies in semi-solid processing.

  13. Effect of rolling on phase composition and microhardness of austenitic steels with different stacking-fault energies

    NASA Astrophysics Data System (ADS)

    Melnikov, Eugene; Astafurova, Elena; Maier, Galina; Moskvina, Valentina

    2017-12-01

    The influence of multi-pass cold rolling on the phase composition and microhardness of austenitic Fe-18Cr-9Ni-0.21C, Fe-18Cr-9Ni-0.5Ti-0.08C, Fe-17Cr-13Ni-3Mo-0.01C (in wt %) steels with different stacking fault energies was studied. The metastable Fe-18Cr-9Ni-0.5Ti-0.08C steel undergoes γ → α' phase transformations during rolling, the volume fraction of strain-induced α'-martensite in steel structure is increased with increasing strain. Metastable austenite Fe-18Cr-9Ni-0.21C steel does not undergo the formation of an appreciable amount of strain-induced α'-martensite under rolling, but the magnetophase analysis reveals a small amount of ferrite phase in the structure of steel after rolling. The structure of stable Fe-17Cr-13Ni-3Mo-0.01C steel remains austenitic independently under strain. Investigations of microhardness of the steels show that their values are increased with strain and are dependent on propensity of steels to strain-induced martensitic transformation.

  14. History of the formerly top secret KH-9 Hexagon spy satellite

    NASA Astrophysics Data System (ADS)

    Pressel, Phil

    2014-12-01

    This paper is about the development, design, fabrication and use of the KH-9 Hexagon spy in the sky satellite camera system that was finally declassified by the National Reconnaissance Office on September 17, 2011 twenty five years after the program ended. It was the last film based reconnaissance camera and was known by experts in the field as "the most complicated system ever put up in orbit." It provided important intelligence for the United States government and was the reason that President Nixon was able to sign the SALT treaty, and when President Reagan said "Trust but Verify" it provided the means of verification. Each satellite weighed 30,000 pounds and carried two cameras thereby permitting photographs of the entire landmass of the earth to be taken in stereo. Each camera carried up to 30 miles of film for a total of 60 miles of film. Ultra-complex mechanisms controlled the structurally "wimpy" film that traveled at speeds up to 204 inches per second at the focal plane and was perfectly synchronized to the optical image.

  15. Durability of bends in high-temperature steam lines under the conditions of long-term operation

    NASA Astrophysics Data System (ADS)

    Katanakha, N. A.; Semenov, A. S.; Getsov, L. B.

    2015-04-01

    The article presents the results of stress-strain state computations and durability of bent and steeply curved branches of high-temperature steam lines carried out on the basis of the finite element method using the modified Soderberg formula for describing unsteady creep processes with taking the accumulation of damage into account. The computations were carried out for bends made of steel grades that are most widely used for manufacturing steam lines (12Kh1MF, 15Kh1M1F, and 10Kh9MFB) and operating at different levels of inner pressure and temperature. The solutions obtained using the developed creep model are compared with those obtained using the models widely used in practice.

  16. Fabrication of spherical mitigation pit on KH2PO4 crystal by micro-milling and modeling of its induced light intensification.

    PubMed

    Cheng, Jian; Chen, Mingjun; Liao, Wei; Wang, Haijun; Xiao, Yong; Li, Mingquan

    2013-07-15

    Micro-machining is the most promising method for KH(2)PO(4) crystal to mitigate the surface damage growth in high power laser system. In this work, spherical mitigation pit is fabricated by micro-milling with an efficient machining procedure. The light intensification caused by rear surface features before and after mitigation is numerically modeled based on the finite-difference time-domain method. The results indicate that the occurrence of total internal reflections should be responsible for the largest light intensification inside the crystal. For spherical pits after mitigation, the light intensification can be greatly alleviated by preventing the occurrence of total internal reflections. The light intensification caused by spherical mitigation pit is strongly dependent on the width-depth ratio and it is suggested that the width-depth ratio of spherical mitigation pit must be devised to be larger than 5.0 to achieve the minimal light intensification for the mitigation of surface damage growth. Laser damage tests for KH(2)PO(4) crystal validate that the laser damage resistance of initially damaged surface can be retrieved to near the level of ideal surface by replacing initial damage site with predesigned mitigation pit.

  17. Paramagnetic defects in KH{sub 2}PO{sub 4} crystals with high concentration of embedded TiO{sub 2} nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grachev, Valentin G., E-mail: grachev@physics.montana.edu; Tse, Romand; Malovichko, Galina I.

    2016-01-21

    Qualitative transformations of spectra of Electron Paramagnetic Resonance, EPR, were found in KH{sub 2}PO{sub 4} crystals grown from liquor with 10{sup −5}–10{sup −1 }wt. % of anatase TiO{sub 2} nanoparticles in comparison with nominally pure KH{sub 2}PO{sub 4}. The nanoparticles have larger segregation coefficient for prismatic parts of the crystals than for pyramidal ones. Significant decrease in resonance absorption, complete disappearance of EPR lines of Fe{sup 3+} and Cr{sup 3+} centers, and appearance of four weak lines of equal intensities together with broad asymmetric lines with g-factors about 2.07–2.5 was observed in pyramidal parts grown with concentration of TiO{sub 2} nanoparticlesmore » larger than the threshold value 10{sup −2 }wt. %. The four lines were attributed to non-controlled impurity As substituted for P. In the presence of TiO{sub 2} nanoparticles, non-paramagnetic AsO{sub 4}{sup 3−} clusters trap electrons becoming AsO{sub 4}{sup 4−}. Disappearance of Fe{sup 3+} and Cr{sup 3+} centers was explained by their recharge to “EPR-silent” states and/or pairing at the surface of TiO{sub 2} nanoparticles.« less

  18. A K(+)/H (+) P-ATPase transport in the accessory cell membrane of the blowfly taste chemosensilla sustains the transepithelial potential.

    PubMed

    Sollai, Giorgia; Solari, Paolo; Masala, Carla; Liscia, Anna; Crnjar, Roberto

    2008-11-01

    An electrogenic K(+) transport in the tormogen cell of insect chemosensilla is involved in the generation and maintenance of the transepithelial potential (TEP). To gain more information about the K(+) transport system underlying the TEP generation and the location of its components in the plasma membrane of the tormogen cell, we studied the effects of inhibitors of K(+)/H(+) P-ATPase (bafilomycin A1, omeprazole and Na-orthovanadate), of K(+)/Cl(-) co-transport (bumetanide), of Cl(-) channels (NPPB) and of a K(+) channel blocker (BaCl(2)). The relationship between TEP amplitude and spike firing activity was also studied. Experiments were performed on the labellar chemosensilla of the blowfly Protophormia terraenovae using a modified tip-recording technique. Results show that: (a) K(+)/H(+) P-ATPase inhibitors significantly decrease the TEP, when properly applied to the labellum for 20 min, so as to reach the basolateral side of the plasma membrane, while no effect was detected when applied to the apical side, (b) bumetanide, NPPB and BaCl(2) decrease the TEP value only when administered to the apical side, (c) spike activity is positively correlated with the TEP. A model is proposed of the active and passive K(+) transports sustaining the TEP associated with the blowfly chemosensilla.

  19. Redemption of asthma pharmaceuticals among stainless steel and mild steel welders: a nationwide follow-up study.

    PubMed

    Kristiansen, Pernille; Jørgensen, Kristian Tore; Hansen, Johnni; Bonde, Jens Peter

    2015-08-01

    The purpose was to examine bronchial asthma according to cumulative exposure to fume particulates conferred by stainless steel and mild steel welding through a proxy of redeemed prescribed asthma pharmaceuticals. A Danish national company-based historical cohort of 5,303 male ever-welders was followed from 1995 to 2011 in the Danish Medicinal Product Registry to identify the first-time redemption of asthma pharmaceuticals including beta-2-adrenoreceptor agonists, adrenergic drugs for obstructive airway diseases and inhalable glucocorticoids. Lifetime exposure to welding fume particulates was estimated by combining questionnaire data on welding work with a welding exposure matrix. The estimated exposure accounted for calendar time, welding intermittence, type of steel, welding methods, local exhaustion and welding in confined spaces. Hazard ratios (HRs) with 95% confidence intervals (CIs) were calculated using a Cox proportional hazards model adjusting for potential confounders and taking modifying effects of smoking into account. The average incidence of redemption of asthma pharmaceuticals in the cohort was 16 per 1,000 person year (95% CI 10-23 per 1,000 person year). A moderate nonsignificant increased rate of redemption of asthma medicine was observed among high-level exposed stainless steel welders in comparison with low-level exposed welders (HR 1.54, 95% CI 0.76-3.13). This risk increase was driven by an increase risk among non-smoking stainless steel welders (HR 1.46, 95% CI 1.06-2.02). Mild steel welding was not associated with increased risk of use asthma pharmaceuticals. The present study indicates that long-term exposure to stainless steel welding is related to increased risk of asthma in non-smokers.

  20. Surface modification of hydroturbine steel using friction stir processing

    NASA Astrophysics Data System (ADS)

    Grewal, H. S.; Arora, H. S.; Singh, H.; Agrawal, A.

    2013-03-01

    Friction stir processing (FSP) has proved to be a viable tool for enhancing the mechanical properties of materials, however, the major focus has been upon improving the bulk properties of light metals and their alloys. Hydroturbines are susceptible to damage owing to slurry and cavitation erosion. In this study, FSP of a commonly employed hydroturbine steel, 13Cr4Ni was undertaken. Microstructural characterization of the processed steel was conducted using optical microscopy (OM), scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDS), X-ray diffraction (XRD) and electron back scatter diffraction (EBSD) techniques. Mechanical characterization of the steel was undertaken in terms of microhardness and resistance to cavitation erosion (CE). FSP resulted in the refinement of the microstructure with reduction in grain size by a factor of 10. EBSD results confirmed the existence of submicron and ultrafine grained microstructure. The microhardness of the steel was found to enhance by 2.6 times after processing. The processed steel also showed 2.4 times higher resistance against cavitation erosion in comparison to unprocessed steel. The primary erosion mechanism for both the steels was identical in nature, with plastic deformation responsible for the loss of material.

  1. Fracture behavior of neutron-irradiated high-manganese austenitic steels

    NASA Astrophysics Data System (ADS)

    Yoshida, H.; Miyata, K.; Narui, M.; Kayano, H.

    1991-03-01

    The instrumented Charpy impact test was applied to study the fracture behavior of high-manganese austenitic steels before and after neutron irradiations. Quarter-size specimens of a commercial high-manganese steel (18% Mn-5% Ni-16% Cr), three reference steels (21% Mn-1% Ni-9% Cr, 20% Mn-1% Ni-11% Cr, 15% Mn-1% Ni-13% Cr) and two model steels (17% Mn-4.5% Si-6.5% Cr, 22% Mn-4.5% Si-6.5% Cr-0.2% N) were used for the impact tests at temperatures between 77 and 523 K. The load-deflection curves showed typical features corresponding to characteristics of the fracture properties. The temperature dependences of fracture energy and failure deflection obtained from the curves clearly demonstrate only small effects up to 2 × 10 23 n/m 2 ( E > 0.1 MeV) and brittleness at room temperature in 17% Mn-Si-Cr steel at 1.6 × 10 25 n/m 2 ( E > 0.1 MeV), while ductility still remains in 22%Mn-Si-Cr steel.

  2. Reliability and validity of the Khmer version of the 10-item Connor-Davidson Resilience Scale (Kh-CD-RISC10) in Cambodian adolescents.

    PubMed

    Duong, Chanmettachampavieng; Hurst, Cameron P

    2016-06-08

    Resilience has been characterized as a defensive factor against the refinement of mental health problems. This study adapted the Connor-Davidson Resilience Scale (Kh-CD-RISC10) for use in Khmer adolescents and subsequently investigates its psychometric properties. Using stratified random sampling, this cross-sectional study sampled Cambodian adolescents from high schools selected randomly within three provinces (Phnom Penh, Battambang and Mondulkiri)-location (rural, urban) combinations. Parallel analysis was used to identify the number of component(s), and the structure of the single factor was subsequently explored using principal axis factoring. A confirmatory factor analysis was then performed to establish the fit of the Kh-CD-RISC10 to another sample. To assess convergent validity, the factor scores of the Khmer version of Connor-Davidson Resilience Scale were categorized into three levels, and then the general negative affectivity (GNA) and physiological hyperarousal (PH) scales (derived from the DASS 21) were compared among the three resilience groups. Of the 798 participants who responded (responded rate = 82.26 %), 440 (41.23 %) were female and the age ranged from 14 to 24 years old (mean = 17.36, SD = 1.325). The internal consistency of the Khmer 10-item CD-RISC was also shown to be high in Cambodian adolescents (Cronbach's alpha = 0. 82). Confirmatory factor analysis revealed the single factor model fit data adequately (χ(2) = 100.103, df = 35, p < 0.001, CFI = 0.9484, RMSEA = 0.0384). We found that there were significant differences in both General Negative affectivity and Physiological Hyperarousal among the three resilience groups (FGNA = 12. 84, df = 2, p < 0.001; FPH = 13. 01, df = 2, p < 0.001). The results from the present study indicate that the Khmer version of CD-RISC shows good psychometric properties in Cambodian adolescents. Our result confirms that a single dimension underlay the 10 items on the CD

  3. Effect of Explosion Bulge Test Parameters on the Measurement of Deformation Resistance for Steel

    DTIC Science & Technology

    2014-02-01

    UNCLASSIFIED UNCLASSIFIED Effect of Explosion Bulge Test Parameters on the Measurement of Deformation Resistance for Steel C...Measurement of Deformation Resistance for Steel Executive Summary The Explosion Bulge Test has been used for over 60 years as a standard test for...the assessment of steel toughness and deformation resistance under blast loading conditions [1-3]. However, details of the test conditions vary

  4. SEEING THROUGH THE RING: NEAR-INFRARED PHOTOMETRY OF V582 MON (KH 15D)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arulanantham, Nicole A.; Herbst, William; Cody, Ann Marie

    2016-04-15

    We examine the light and color evolution of the T Tauri binary KH 15D through photometry obtained at wavelengths between 0.55 and 8.0 μm. The data were collected with A Novel Dual Imaging CAMera (ANDICAM) on the 1.3 m SMARTS telescope at Cerro-Tololo Inter-American Observatory and with InfraRed Array Camera on the Spitzer Space Telescope. We show that the system’s circumbinary ring, which acts as a screen that covers and uncovers different portions of the binary orbit as the ring precesses, has reached an orientation where the brighter component (star B) fully or nearly fully emerges during each orbital cycle.more » The fainter component (star A) remains fully occulted by the screen at all phases. The leading and trailing edges of the screen move across the sky at the same rate of ∼15 m s{sup −1}, consistent with expectation for a ring with a radius and width of ∼4 au and a precession period of ∼6500 years. Light and color variations continue to indicate that the screen is sharp edged and opaque at VRIJH wavelengths. However, we find an increasing transparency of the ring edge at 2.2, 3.6, and 4.5 μm. Reddening seen at the beginning of the eclipse that occurred during the CSI 2264 campaign particularly suggests selective extinction by a population of large dust grains. Meanwhile, the gradual bluing observed while star B is setting is indicative of forward scattering effects at the edge of the ring. The spectral energy distribution of the system at its bright phase shows no evidence of infrared excess emission that can be attributed to radiation from the ring or other dust component out to 8 μm.« less

  5. 77 FR 64483 - Circular Welded Carbon-Quality Steel Pipe from the Socialist Republic of Vietnam: Notice of Final...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-22

    ... Pipe from the Socialist Republic of Vietnam;'' ``Verification of the Sales Response of Midwest Air... Steel Joint Stock Company.... Sun Steel Joint Stock 4.57 Company. Huu Lien Asia Corporation........ Huu Lien Asia 4.57 Corporation. Hoa Phat Steel Pipe Co Hoa Phat Steel Pipe Co.. 4.57 Vietnam-Wide Rate \\13...

  6. Structural and phase transformations in Hadfield steel upon frictional loading in liquid nitrogen

    NASA Astrophysics Data System (ADS)

    Korshunov, L. G.; Sagaradze, V. V.; Chernenko, N. L.

    2016-08-01

    Structural transformations that occur in 110G13 steel (Hadfield) upon sliding friction in liquid nitrogen (-196°C) have been investigated by metallographic, electron-microscopic, and X-ray diffraction methods. The frictional action was performed through the reciprocating sliding of a cylindrical indenter of quenched 110G13 steel over a plate of the studied steel. A like friction pair was immersed into a bath with liquid nitrogen. It has been shown that the Hadfield steel quenched from 1100°C under the given temperature conditions of frictional loading retains the austenitic structure completely. The frictional action forms in a surface layer up to 10 μm thick the nanocrystalline structure with austenite grains 10-50 nm in size and a hardness 6 GPa. Upon subsequent low-temperature friction, the tempering of steel at 400°C (3 h) and at 600°C (5 min and 5 h) brings about the formation of a large amount (tens of vol %) of ɛ (hcp) martensite in steel. The formation of this phase under friction is supposedly a consequence of the reduction in the stacking fault energy of Hadfield steel, which is achieved due to the combined action of the following factors: low-temperature cooling, a decrease in the carbon content in the austenite upon tempering, and the presence of high compressive stresses in the friction-contact zone.

  7. Investigation of plume dynamics during picosecond laser ablation of H13 steel using high-speed digital holography

    NASA Astrophysics Data System (ADS)

    Pangovski, Krste; Otanocha, Omonigho B.; Zhong, Shan; Sparkes, Martin; Liu, Zhu; O'Neill, William; Li, Lin

    2017-02-01

    Ablation of H13 tool steel using pulse packets with repetition rates of 400 and 1000 kHz and pulse energies of 75 and 44 μ {J}, respectively, is investigated. A drop in ablation efficiency (defined here as the depth per pulse or μ {m}{/}μ {J}) is shown to occur when using pulse energies of E_{{pulse}} > 44 μ {J}, accompanied by a marked difference in crater morphology. A pulsed digital holographic system is applied to image the resulting plumes, showing a persistent plume in both cases. Holographic data are used to calculate the plume absorption and subsequently the fraction of pulse energy arriving at the surface after traversing the plume for different pulse arrival times. A significant proportion of the pulse energy is shown to be absorbed in the plume for E_{{pulse}} > 44 μ {J} for pulse arrival times corresponding to {>}1 MHz pulse repetition rate, shifting the interaction to a vapour-dominated ablation regime, an energetically costlier ablation mechanism.

  8. A mortality study among mild steel and stainless steel welders.

    PubMed Central

    Moulin, J J; Wild, P; Haguenoer, J M; Faucon, D; De Gaudemaris, R; Mur, J M; Mereau, M; Gary, Y; Toamain, J P; Birembaut, Y

    1993-01-01

    A mortality study was carried out in conjunction with the European mortality study among welders coordinated by the International Agency for Research on Cancer (IARC). The study was aimed at assessing risks for lung cancer in relation to exposure to asbestos, welding fumes containing chromium and nickel, and tobacco smoke. The study included a cohort of 2721 welders and an internal comparison group of 6683 manual workers employed in 13 factories in France. The mortality of the two cohorts was studied from 1975 to 1988 by the historical prospective method. Job histories of welders were traced including welding processes used, metals welded, and proportion of worktime spent in welding. Data on smoking habits were collected from medical records. The observed number of deaths were compared with those expected (standardised mortality ratio (SMR)) based on national rates with adjustments for age, sex, and calendar time. The smoking habits of 87% of the whole study population were known. The distribution of welders and controls according to smoking was not statistically different. The overall mortality was slightly higher for welders (SMR = 1.02, 95% confidence interval (95% CI) 0.89-1.18) than for controls (SMR = 0.91, 95% CI 0.84-0.99). For lung cancer, the SMR was 1.24 (95% CI 0.75-1.94) for welders, whereas the corresponding value was lower for controls (SMR = 0.94, 95% CI 0.68-1.26). The SMR for lung cancer was 1.59 among non-shipyard mild steel welders (95% CI 0.73-3.02). This contrasted with the results for all stainless steel welders (SMR = 0.92, 95% CI 0.19-2.69), and for stainless steel welders predominantly exposed to chromium VI (SMR = 1.03, 95% CI 0.12-3.71). Moreover, SMRs for lung cancer for mild steel welders tended to increase with duration of exposure and time since first exposure, leading to significant excesses for duration > or = 20 years and latency > or = 20 years. Such a pattern was not found for stainless steel welders. PMID:8457490

  9. The effect of aluminium on mechanical properties and deformation mechanisms of hadfield steel single crystals

    NASA Astrophysics Data System (ADS)

    Zakharova, E. G.; Kireeva, I. V.; Chumlyakov, Y. I.; Shul'Mina, A. A.; Sehitoglu, H.; Karaman, I.

    2004-06-01

    On single crystals of Hadfield steel (Fe-13Mn-1.3C, Fe-13Mn-2.7Al-1.3C, wt.%) the systematical investigations of deformation mechanisms - slip and twinning, stages of plastic flow, strain hardening coefficient depending on orientation of tensile axis have been carried out by methods of optical and electron microscopy, x-ray analysis. Is has been shown that the combination of low stacking fault energy (γ{SF}=0.03J/m^2) with high concentration of carbon atoms in aluminium-free steel results in development of the mechanical twinning at room temperature in all crystal orientations. The new type of twinning with formation of extrinsic stacking fault has been found out in [001] single crystals. Experimentally it has been established that alloying with aluminium leads to increase of stacking fault energy of Hadfield steel and suppresses twinning in all orientations of crystals at preservation of high values of strain-hardening coefficients θ.

  10. Introgression of Blast Resistance Genes (Putative Pi-b and Pi-kh) into Elite Rice Cultivar MR219 through Marker-Assisted Selection

    PubMed Central

    Tanweer, Fatah A.; Rafii, Mohd Y.; Sijam, Kamaruzaman; Rahim, Harun A.; Ahmed, Fahim; Ashkani, Sadegh; Latif, Mohammad A.

    2015-01-01

    Blast is the most common biotic stress leading to the reduction of rice yield in many rice-growing areas of the world, including Malaysia. Improvement of blast resistance of rice varieties cultivated in blast endemic areas is one of the most important objectives of rice breeding programs. In this study, the marker-assisted backcrossing strategy was applied to improve the blast resistance of the most popular Malaysian rice variety MR219 by introgressing blast resistance genes from the Pongsu Seribu 2 variety. Two blast resistance genes, Pi-b and Pi-kh, were pyramided into MR219. Foreground selection coupled with stringent phenotypic selection identified 15 plants homozygous for the Pi-b and Pi-kh genes, and background selection revealed more than 95% genome recovery of MR219 in advanced blast resistant lines. Phenotypic screening against blast disease indicated that advanced homozygous blast resistant lines were strongly resistant against pathotype P7.2 in the blast disease endemic areas. The morphological, yield, grain quality, and yield-contributing characteristics were significantly similar to those of MR219. The newly developed blast resistant improved lines will retain the high adoptability of MR219 by farmers. The present results will also play an important role in sustaining the rice production of Malaysia. PMID:26734013

  11. Nano-composite stainless steel

    DOEpatents

    Dehoff, Ryan R.; Blue, Craig A.; Peter, William H.; Chen, Wei; Aprigliano, Louis F.

    2015-07-14

    A composite stainless steel composition is composed essentially of, in terms of wt. % ranges: 25 to 28 Cr; 11 to 13 Ni; 7 to 8 W; 3.5 to 4 Mo; 3 to 3.5 B; 2 to 2.5 Mn; 1 to 1.5 Si; 0.3 to 1.7 C; up to 2 O; balance Fe. The composition has an austenitic matrix phase and a particulate, crystalline dispersed phase.

  12. Feasibility of Underwater Friction Stir Welding of HY-80 Steel

    DTIC Science & Technology

    2011-03-01

    UNDERWATER FRICTION STIR WELDING OF HY-80 STEEL by William C. Stewart March 2011 Thesis Advisor: Terry McNelley Second Reader: Sarath Menon...Master’s Thesis 4. TITLE AND SUBTITLE Feasibility of Underwater Friction Stir Welding of HY-80 Steel 5. FUNDING NUMBERS 6. AUTHOR(S) William...DISTRIBUTION CODE A 13. ABSTRACT (maximum 200 words) The purpose of this thesis is to determine the feasibility of underwater friction stir welding

  13. Twitter K-H networks in action: Advancing biomedical literature for drug search.

    PubMed

    Hamed, Ahmed Abdeen; Wu, Xindong; Erickson, Robert; Fandy, Tamer

    2015-08-01

    The importance of searching biomedical literature for drug interaction and side-effects is apparent. Current digital libraries (e.g., PubMed) suffer infrequent tagging and metadata annotation updates. Such limitations cause absence of linking literature to new scientific evidence. This demonstrates a great deal of challenges that stand in the way of scientists when searching biomedical repositories. In this paper, we present a network mining approach that provides a bridge for linking and searching drug-related literature. Our contributions here are two fold: (1) an efficient algorithm called HashPairMiner to address the run-time complexity issues demonstrated in its predecessor algorithm: HashnetMiner, and (2) a database of discoveries hosted on the web to facilitate literature search using the results produced by HashPairMiner. Though the K-H network model and the HashPairMiner algorithm are fairly young, their outcome is evidence of the considerable promise they offer to the biomedical science community in general and the drug research community in particular. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Na/H and k/h antiport in root membrane vesicles isolated from the halophyte atriplex and the glycophyte cotton.

    PubMed

    Hassidim, M; Braun, Y; Lerner, H R; Reinhold, L

    1990-12-01

    Proton fluxes have been followed into and out of membrane vesicles isolated from the roots of the halophyte Atriplex nummularia and the glycophyte Gossypium hirsutum, with the aid of the DeltapH probe [(14)C]methylamine. Evidence is presented for the operation of Na(+)/H(+) and K(+)/H(+) antiporters in the membranes of both plants. Cation supply after a pH gradient has been set up across the vesicle membrane (either as a result of providing ATP to the H(+)-ATPase or by imposing an artificial pH gradient) brings about dissipation of the DeltapH, but does not depolarize the membrane potential as observed in similar experiments, but in the absence of Cl(-), using the DeltaPsi probe SCN(-). Cation/H(+) exchange is thus indicated. This exchange is not due to nonspecific electric coupling, nor to competition for anionic adsorption sites on the membrane, nor to inhibition of the H(+)-ATPase; coupling of the opposed cation and H(+) fluxes by a membrane component is the most likely explanation. Saturation kinetics have been observed for both Na(+)/H(+) and K(+)/H(+) antiport in Atriplex. Moreover, additive effects are obtained when Na(+) is supplied together with saturating concentrations of K(+), and vice versa, suggesting that separate antiporters for Na(+) and for K(+) may be operating. In the case of both Atriplex and Gossypium evidence was obtained suggesting the presence of antiporters in both plasmalemma and tonoplast.

  15. Multi-wavelength photometry of the T Tauri binary V582 Mon (KH 15D): A new epoch of occultations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Windemuth, Diana; Herbst, William, E-mail: dwindemuth@wesleyan.edu

    2014-01-01

    We present multi-wavelength (VRIJHK) observations of KH 15D obtained in 2012/2013, as well as a master table of standard photometry spanning the years 1967 to 2013. The system is a close, eccentric T Tauri binary embedded in an inclined precessing circumbinary (CB) ring. The most recent data show the continued rise of star B with respect to the trailing edge of the occulting horizon as the system's maximum brightness steadily increases. The wealth of data in time and wavelength domains allows us to track the long-term CCD color evolution of KH 15D. We find that the V – I behaviormore » is consistent with direct and scattered light from the composite color of two stars with slightly different temperatures. There is no evidence for any reddening or bluing associated with extinction or scattering by interstellar-medium-size dust grains. Furthermore, we probe the system's faint phase behavior at near-infrared wavelengths in order to investigate extinction properties of the ring and signatures of a possible shepherding planet sometimes invoked to confine the CB ring at ∼5 AU. The wavelength independence of eclipse depth at second contact is consistent with the ring material being fully opaque to 2.2 μm. The color-magnitude diagrams demonstrate excess flux in J and H at low light levels, which may be due to the presence of a hot, young Jupiter-mass planet.« less

  16. Multi-wavelength Photometry of the T Tauri Binary V582 Mon (KH 15D): a New Epoch of Occultations

    NASA Astrophysics Data System (ADS)

    Windemuth, Diana; Herbst, William

    2014-01-01

    We present multi-wavelength (VRIJHK) observations of KH 15D obtained in 2012/2013, as well as a master table of standard photometry spanning the years 1967 to 2013. The system is a close, eccentric T Tauri binary embedded in an inclined precessing circumbinary (CB) ring. The most recent data show the continued rise of star B with respect to the trailing edge of the occulting horizon as the system's maximum brightness steadily increases. The wealth of data in time and wavelength domains allows us to track the long-term CCD color evolution of KH 15D. We find that the V - I behavior is consistent with direct and scattered light from the composite color of two stars with slightly different temperatures. There is no evidence for any reddening or bluing associated with extinction or scattering by interstellar-medium-size dust grains. Furthermore, we probe the system's faint phase behavior at near-infrared wavelengths in order to investigate extinction properties of the ring and signatures of a possible shepherding planet sometimes invoked to confine the CB ring at ~5 AU. The wavelength independence of eclipse depth at second contact is consistent with the ring material being fully opaque to 2.2 μm. The color-magnitude diagrams demonstrate excess flux in J and H at low light levels, which may be due to the presence of a hot, young Jupiter-mass planet.

  17. Precipitation-hardening stainless steels with a shape-memory effect

    NASA Astrophysics Data System (ADS)

    Sagaradze, V. V.; Afanasiev, S. V.; Volkova, E. G.; Zavalishin, V. A.

    2016-02-01

    The possibility of obtaining the shape-memory effect as a result of the γ → ɛ → γ transformations in aging stainless steels strengthened by VC carbides has been investigated. Regimes are given for strengthening aging (at 650 and 720°C) for stainless steels that predominantly contain (in wt %) 0.06-0.45C, 1-2V, 2-5Si, 9 and 13-14Cr. The values of reversible deformation e (amount of shape-memory effect) determined after heating to 400°C in samples preliminarily deformed to 3.5-4% vary from 0.15 to 2.7%, depending on the composition of the steels and regimes of stabilizing and destabilizing aging.

  18. Window type: paired 3x2 multipaned steel window flanked by 1x3 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Window type: paired 3x2 multipaned steel window flanked by 1x3 multipaned steel casements, breaking building corner. Broad overhanging eave also illustrated. Second story detail. Building 13, facing east - Harbor Hills Housing Project, 26607 Western Avenue, Lomita, Los Angeles County, CA

  19. Atom probe tomography of the evolution of the nanostructure of oxide dispersion strengthened steels under ion irradiation

    NASA Astrophysics Data System (ADS)

    Orlov, N. N.; Rogozhkin, S. V.; Bogachev, A. A.; Korchuganova, O. A.; Nikitin, A. A.; Zaluzhnyi, A. G.; Kozodaev, M. A.; Kulevoy, T. V.; Kuibeda, R. P.; Fedin, P. A.; Chalykh, B. B.; Lindau, R.; Hoffmann, Ya.; Möslang, A.; Vladimirov, P.

    2017-09-01

    The atom probe tomography of the nanostructure evolution in ODS1 Eurofer, ODS 13.5Cr, and ODS 13.5Cr-0.3Ti steels under heavy ion irradiation at 300 and 573 K is performed. The samples were irradiated by 5.6 MeV Fe2+ ions and 4.8 MeV Ti2+ ions to a fluence of 1015 cm-2. It is shown that the number of nanoclusters increases by a factor of 2-3 after irradiation. The chemical composition of the clusters in the steels changes after irradiation at 300 K, whereas the chemical composition of the clusters in the 13.5Cr-0.3Ti ODS steel remains the same after irradiation at 573 K.

  20. Microstructure Investigation of 13Cr-2Mo ODS Steel Components Obtained by High Voltage Electric Discharge Compaction Technique.

    PubMed

    Bogachev, Igor; Yudin, Artem; Grigoryev, Evgeniy; Chernov, Ivan; Staltsov, Maxim; Khasanov, Oleg; Olevsky, Eugene

    2015-11-02

    Refractory oxide dispersion strengthened 13Cr-2Mo steel powder was successfully consolidated to near theoretical density using high voltage electric discharge compaction. Cylindrical samples with relative density from 90% to 97% and dimensions of 10 mm in diameter and 10-15 mm in height were obtained. Consolidation conditions such as pressure and voltage were varied in some ranges to determine the optimal compaction regime. Three different concentrations of yttria were used to identify its effect on the properties of the samples. It is shown that the utilized ultra-rapid consolidation process in combination with high transmitted energy allows obtaining high density compacts, retaining the initial structure with minimal grain growth. The experimental results indicate some heterogeneity of the structure which may occur in the external layers of the tested samples due to various thermal and electromagnetic in-processing effects. The choice of the optimal parameters of the consolidation enables obtaining samples of acceptable quality.

  1. Microstructure investigation of 13Cr-2Mo ODS steel components obtained by high voltage electric discharge compaction technique

    DOE PAGES

    Bogachev, Igor; Yudin, Artem; Grigoryev, Evgeniy; ...

    2015-11-02

    Refractory oxide dispersion strengthened 13Cr-2Mo steel powder was successfully consolidated to near theoretical density using high voltage electric discharge compaction. Cylindrical samples with relative density from 90% to 97% and dimensions of 10 mm in diameter and 10–15 mm in height were obtained. Consolidation conditions such as pressure and voltage were varied in some ranges to determine the optimal compaction regime. Three different concentrations of yttria were used to identify its effect on the properties of the samples. It is shown that the utilized ultra-rapid consolidation process in combination with high transmitted energy allows obtaining high density compacts, retaining themore » initial structure with minimal grain growth. The experimental results indicate some heterogeneity of the structure which may occur in the external layers of the tested samples due to various thermal and electromagnetic in-processing effects. As a result, the choice of the optimal parameters of the consolidation enables obtaining samples of acceptable quality.« less

  2. Stress corrosion cracking evaluation of martensitic precipitation hardening stainless steels

    NASA Technical Reports Server (NTRS)

    Humphries, T. S.; Nelson, E. E.

    1980-01-01

    The resistance of the martensitic precipitation hardening stainless steels PH13-8Mo, 15-5PH, and 17-4PH to stress corrosion cracking was investigated. Round tensile and c-ring type specimens taken from several heats of the three alloys were stressed up to 100 percent of their yield strengths and exposed to alternate immersion in salt water, to salt spray, and to a seacoast environment. The results indicate that 15-5PH is highly resistant to stress corrosion cracking in conditions H1000 and H1050 and is moderately resistant in condition H900. The stress corrosion cracking resistance of PH13-8Mo and 17-4PH stainless steels in conditions H1000 and H1050 was sensitive to mill heats and ranged from low to high among the several heats included in the tests. Based on a comparison with data from seacoast environmental tests, it is apparent that alternate immersion in 3.5 percent salt water is not a suitable medium for accelerated stress corrosion testing of these pH stainless steels.

  3. The effect of diamond burnishing on structure and properties of detonation-gas coatings on gas-turbine engine parts

    NASA Astrophysics Data System (ADS)

    Boguslaev, V. A.; Yatsenko, V. K.; Yakovlev, V. G.; Stepanova, L. P.; Pukhal'skaya, G. V.

    2008-01-01

    A diamond burnishing procedure for detonation coatings made from powder alloys PKKhN-15 and VKNA of parts made of steel Kh12NMBFSh is selected and substantiated, which ensures a favorable combination of the surface layer structure and properties.

  4. 77 FR 30589 - SteelRiver Infrastructure Partners LP, SteelRiver Infrastructure Associates LLC, SteelRiver...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-23

    ... DEPARTMENT OF TRANSPORTATION Surface Transportation Board [Docket No. FD 35622] SteelRiver Infrastructure Partners LP, SteelRiver Infrastructure Associates LLC, SteelRiver Infrastructure Fund North America LP, and Patriot Funding LLC--Control Exemption--Patriot Rail Corp., et al. SteelRiver...

  5. Molecular dynamics simulations show how the FMRP Ile304Asn mutation destabilizes the KH2 domain structure and affects its function.

    PubMed

    Di Marino, Daniele; Achsel, Tilmann; Lacoux, Caroline; Falconi, Mattia; Bagni, Claudia

    2014-01-01

    Mutations or deletions of FMRP, involved in the regulation of mRNA metabolism in brain, lead to the Fragile X syndrome (FXS), the most frequent form of inherited intellectual disability. A severe manifestation of the disease has been associated with the Ile304Asn mutation, located on the KH2 domain of the protein. Several hypotheses have been proposed to explain the possible molecular mechanism responsible for the drastic effect of this mutation in humans. Here, we performed a molecular dynamics simulation and show that the Ile304Asn mutation destabilizes the hydrophobic core producing a partial unfolding of two α-helices and a displacement of a third one. The affected regions show increased residue flexibility and motion. Molecular docking analysis revealed strongly reduced binding to a model single-stranded nucleic acid in agreement with known data that the two partially unfolded helices form the RNA-binding surface. The third helix, which we show here to be also affected, is involved in the PAK1 protein interaction. These two functional binding sites on the KH2 domain do not overlap spatially, and therefore, they can simultaneously bind their targets. Since the Ile304Asn mutation affects both binding sites, this may justify the severe clinical manifestation observed in the patient in which both mRNA metabolism activity and cytoskeleton remodeling would be affected.

  6. Project of Reforms Proposed for the Don Public Education in the First Half of 1860: A. M. Dondukov-Korsakov, Kh. I. Popov, N. I. Krasnov

    ERIC Educational Resources Information Center

    Peretyatko, Artyom Yu.; Zulfugarzade, Teymur E.

    2017-01-01

    The paper reviews the project of reforms in the Don education, which were proposed by prominent public figures in the early 1860s., namely by A. M. Dondukov-Korsakov, Kh. I. Popov and N. I. Krasnov. Based on archival materials and publications by these authors, which in some cases have not been previously used in scientific studies, the paper…

  7. Influence of Heat Treatment on the Microstructure and Corrosion Resistance of 13 Wt Pct Cr-Type Martensitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Lu, Si-Yuan; Yao, Ke-Fu; Chen, Yun-Bo; Wang, Miao-Hui; Ge, Xue-Yuan

    2015-12-01

    The effect of heat treatment on the microstructure and the electrochemical properties of a typical corrosion-resistant plastic mold steel in Cl--containing solution were studied in this research. Through X-ray diffraction patterns, SEM and TEM analysis, it was found that the sequence of the precipitates in the steels tempered at 573 K, 773 K, and 923 K (300 °C, 500 °C, and 650 °C) was θ-M3C carbides, nano-sized Cr-rich M23C6 carbides, and micro/submicron-sized Cr-rich M23C6 carbides, respectively. The results of the electrochemical experiments showed that the pitting potential of the as-quenched martensitic stainless steels increased with the austenitizing temperature. However, the corrosion resistance of the steels would decreased after tempering, especially when tempered at 773 K (500 °C), no passivation regime could be found in the polarization curve of the MSSs and no effective passive film could be formed on the steels in Cl--containing environments. The present results suggested that the temperature around 773 K (500 °C) should be avoided for tempering process of MSS used as plastic molds.

  8. Preparation of porous diatomite-templated carbons with large adsorption capacity and mesoporous zeolite K-H as a byproduct.

    PubMed

    Liu, Dong; Yuan, Weiwei; Deng, Liangliang; Yu, Wenbin; Sun, Hongjuan; Yuan, Peng

    2014-06-15

    In this study, KOH activation was performed to enhance the porosity of the diatomite-templated carbon and to increase its adsorption capacity of methylene blue (MB). In addition to serving as the activation agent, KOH was also used as the etchant to remove the diatomite templates. Zeolite K-H was synthesized as a byproduct via utilization of the resultant silicon- and potassium-containing solutions created from the KOH etching of the diatomite templates. The obtained diatomite-based carbons were composed of macroporous carbon pillars and tubes, which were derived from the replication of the diatomite templates and were well preserved after KOH activation. The abundant micropores in the walls of the carbon pillars and tubes were derived from the break and reconfiguration of carbon films during both the removal of the diatomite templates and KOH activation. Compared with the original diatomite-templated carbons and CO2-activated carbons, the KOH-activated carbons had much higher specific surface areas (988 m(2)/g) and pore volumes (0.675 cm(3)/g). Moreover, the KOH-activated carbons possessed larger MB adsorption capacity (the maximum Langmuir adsorption capacity: 645.2 mg/g) than those of the original carbons and CO2-activated carbons. These results showed that KOH activation was a high effective activation method. The zeolite K-H byproduct was obtained by utilizing the silicon- and potassium-containing solution as the silicon and potassium sources. The zeolite exhibited a stick-like morphology and possessed nanosized particles with a mesopore-predominant porous structure which was observed by TEM for the first time. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Na+/H+ and K+/H+ Antiport in Root Membrane Vesicles Isolated from the Halophyte Atriplex and the Glycophyte Cotton 1

    PubMed Central

    Hassidim, Miriam; Braun, Yael; Lerner, Henri R.; Reinhold, Leonora

    1990-01-01

    Proton fluxes have been followed into and out of membrane vesicles isolated from the roots of the halophyte Atriplex nummularia and the glycophyte Gossypium hirsutum, with the aid of the ΔpH probe [14C]methylamine. Evidence is presented for the operation of Na+/H+ and K+/H+ antiporters in the membranes of both plants. Cation supply after a pH gradient has been set up across the vesicle membrane (either as a result of providing ATP to the H+-ATPase or by imposing an artificial pH gradient) brings about dissipation of the ΔpH, but does not depolarize the membrane potential as observed in similar experiments, but in the absence of Cl−, using the ΔΨ probe SCN−. Cation/H+ exchange is thus indicated. This exchange is not due to nonspecific electric coupling, nor to competition for anionic adsorption sites on the membrane, nor to inhibition of the H+-ATPase; coupling of the opposed cation and H+ fluxes by a membrane component is the most likely explanation. Saturation kinetics have been observed for both Na+/H+ and K+/H+ antiport in Atriplex. Moreover, additive effects are obtained when Na+ is supplied together with saturating concentrations of K+, and vice versa, suggesting that separate antiporters for Na+ and for K+ may be operating. In the case of both Atriplex and Gossypium evidence was obtained suggesting the presence of antiporters in both plasmalemma and tonoplast. PMID:16667918

  10. Method of Electrolyte-Plasma Surface Hardening of 65G and 20GL Low-Alloy Steels Samples

    NASA Astrophysics Data System (ADS)

    Rakhadilov, Bauyrzhan; Zhurerova, Laila; Pavlov, Alexander

    2016-08-01

    This work is devoted to formation of modified surface layers in 65G and 20GL steels which using for the manufacture of railway transport parts, as well as the study of influence of the parametersof electrolyte-plasma surface hardening methodon the changes in structural-phase states, improving of wear-resistance. The process of electrolyte-plasma surface hardening of 65G and 20GL steels samples conducted in the electrolyte from water solution of 20% sodium carbonate, in the mode ~850°C - 2 seconds, ∼⃒1200°C - 3 seconds. It is established that in the initial state 20GL steel has ferrite-pearlite structure, and the 60G steel consists of pearlite and cement structure. After application of electrolyte-plasma surface hardening is observed the formation of carbides particles and martensite phase components in the structure of 20GL and 60G steels. It is determined that after electrolyte-plasma surface hardening with heating time - 2 seconds, the abrasive wear-resistance of 65G and 20GL steels increased to 1.3 times and 1.2 times, respectively, and the microhardness is increased to 1.6 times and 1.3 times, respectively.

  11. Microbial-Influenced Corrosion of Corten Steel Compared with Carbon Steel and Stainless Steel in Oily Wastewater by Pseudomonas aeruginosa

    NASA Astrophysics Data System (ADS)

    Mansouri, Hamidreza; Alavi, Seyed Abolhasan; Fotovat, Meysam

    2015-07-01

    The microbial corrosion behavior of three important steels (carbon steel, stainless steel, and Corten steel) was investigated in semi petroleum medium. This work was done in modified nutrient broth (2 g nutrient broth in 1 L oily wastewater) in the presence of Pseudomonas aeruginosa and mixed culture (as a biotic media) and an abiotic medium for 2 weeks. The behavior of corrosion was analyzed by spectrophotometric and electrochemical methods and at the end was confirmed by scanning electron microscopy. The results show that the degree of corrosion of Corten steel in mixed culture, unlike carbon steel and stainless steel, is less than P. aeruginosa inoculated medium because some bacteria affect Corten steel less than other steels. According to the experiments, carbon steel had less resistance than Corten steel and stainless steel. Furthermore, biofilm inhibits separated particles of those steels to spread to the medium; in other words, particles get trapped between biofilm and steel.

  12. Transmission electron microscopy study of the heavy-ion-irradiation-induced changes in the nanostructure of oxide dispersion strengthened steels

    NASA Astrophysics Data System (ADS)

    Rogozhkin, S. V.; Bogachev, A. A.; Orlov, N. N.; Korchuganova, O. A.; Nikitin, A. A.; Zaluzhnyi, A. G.; Kozodaev, M. A.; Kulevoy, T. V.; Kuibeda, R. P.; Fedin, P. A.; Chalykh, B. B.; Lindau, R.; Hoffman, Ya.; Möslang, A.; Vladimirov, P.; Klimenkov, M.

    2017-07-01

    Transmission electron microscopy was used to study the effect of heavy-ion irradiation on the structure and the phase state of three oxide dispersion strengthened (ODS) steels: ODS Eurofer, ODS 13.5Cr, and ODS 13.5Cr-0.3Ti (wt %). Samples were irradiated with iron and titanium ions to fluences of 1015 and 3 × 1015 cm-2 at 300, 573, and 773 K. The study of the region of maximum radiation damage shows that irradiation increases the number density of oxide particles in all samples. The fraction of fine inclusions increases in the particle size distribution. This effect is most pronounced in the ODS 13.5Cr steel irradiated with titanium ions at 300 K to a fluence of 3 × 1015 cm-2. It is demonstrated that oxide inclusions in ODS 13.5Cr-0.3Ti and ODS 13.5Cr steels are more stable upon irradiation at 573 and 773 K than upon irradiation at 300 K.

  13. Microstructure and Mechanical Properties of High Copper HSLA-100 Steel in 2-inch Plate Form

    DTIC Science & Technology

    1992-06-01

    2. HSLA-100 Steel Continuous Cooling Transformation Diagram [Ref. 13:p. 262] One of the most desirable characteristics of the low -carbon, copper ...none V mild v.strong v. strong V. strong moderate The use of copper as an alloying element in low carbon HSLA steel has resulted in the following...HY-130 steel . In research presently being done, it has been determined that the high copper alloy has a highly dislocated martensitic /bainitic

  14. Joining dissimilar stainless steels for pressure vessel components

    NASA Astrophysics Data System (ADS)

    Sun, Zheng; Han, Huai-Yue

    1994-03-01

    A series of studies was carried out to examine the weldability and properties of dissimilar steel joints between martensitic and austenitic stainless steels - F6NM (OCr13Ni4Mo) and AISI 347, respectively. Such joints are important parts in, e.g. the primary circuit of a pressurized water reactor (PWR). This kind of joint requires both good mechanical properties, corrosion resistance and a stable magnetic permeability besides good weldability. The weldability tests included weld thermal simulation of the martensitic steel for investigating the influence of weld thermal cycles and post-weld heat treatment (PWHT) on the mechanical properties of the heat-affected zone (HAZ); implant testing for examining the tendency for cold cracking of martensitic steel; rigid restraint testing for determining hot crack susceptibility of the multi-pass dissimilar steel joints. The joints were subjected to various mechanical tests including a tensile test, bending test and impact test at various temperatures, as well as slow strain-rate test for examining the stress corrosion cracking tendency in the simulated environment of a primary circuit of a PWR. The results of various tests indicated that the quality of the tube/tube joints is satisfactory for meeting all the design requirements.

  15. Inhibition of Mild Steel Corrosion in Hydrochloric Acid Solution by New Coumarin

    PubMed Central

    Kadhum, Abdul Amir H.; Mohamad, Abu Bakar; Hammed, Leiqaa A.; Al-Amiery, Ahmed A.; San, Ng Hooi; Musa, Ahmed Y.

    2014-01-01

    A new coumarin derivative, N,N′-((2E,2′E)-2,2′-(1,4-phenylenebis(methanylylidene))bis(hydrazinecarbonothioyl))bis(2-oxo-2H-chromene-3-carboxamide) PMBH, was synthesized and its chemical structure was elucidated and confirmed using spectroscopic techniques (Infrared spectroscopy IR, Proton nuclear magnetic resonance, 1H-NMR and carbon-13 nuclear magnetic resonance 13C-NMR). The corrosion inhibition effect of PMBH on mild steel in 1.0 M HCl was investigated using corrosion potential (ECORR), potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), and electrochemical frequency modulation (EFM) measurements. The obtained results indicated that PMBH has promising inhibitive effects on the corrosion of mild steel in 1.0 M HCl across all of the conditions examined. Scanning electron microscopy (SEM) was used to investigate the morphology of the mild steel before and after immersion in 1.0 M HCl solution containing 0.5 mM of PMBH. Surface analysis revealed improvement of corrosion resistance in presence of PMBH. PMID:28788680

  16. Inhibition of Mild Steel Corrosion in Hydrochloric Acid Solution by New Coumarin.

    PubMed

    Kadhum, Abdul Amir H; Mohamad, Abu Bakar; Hammed, Leiqaa A; Al-Amiery, Ahmed A; San, Ng Hooi; Musa, Ahmed Y

    2014-06-05

    A new coumarin derivative, N , N '-((2E,2'E)-2,2'-(1,4-phenylenebis (methanylylidene))bis(hydrazinecarbonothioyl))bis(2-oxo-2H-chromene-3-carboxamide) PMBH, was synthesized and its chemical structure was elucidated and confirmed using spectroscopic techniques (Infrared spectroscopy IR, Proton nuclear magnetic resonance, 1 H-NMR and carbon-13 nuclear magnetic resonance 13 C-NMR). The corrosion inhibition effect of PMBH on mild steel in 1.0 M HCl was investigated using corrosion potential ( E CORR ), potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), and electrochemical frequency modulation (EFM) measurements. The obtained results indicated that PMBH has promising inhibitive effects on the corrosion of mild steel in 1.0 M HCl across all of the conditions examined. Scanning electron microscopy (SEM) was used to investigate the morphology of the mild steel before and after immersion in 1.0 M HCl solution containing 0.5 mM of PMBH. Surface analysis revealed improvement of corrosion resistance in presence of PMBH.

  17. An experimental analysis of process parameters to manufacture micro-channels in AISI H13 tempered steel by laser micro-milling

    NASA Astrophysics Data System (ADS)

    Teixidor, D.; Ferrer, I.; Ciurana, J.

    2012-04-01

    This paper reports the characterization of laser machining (milling) process to manufacture micro-channels in order to understand the incidence of process parameters on the final features. Selection of process operational parameters is highly critical for successful laser micromachining. A set of designed experiments is carried out in a pulsed Nd:YAG laser system using AISI H13 hardened tool steel as work material. Several micro-channels have been manufactured as micro-mold cavities varying parameters such as scanning speed (SS), pulse intensity (PI) and pulse frequency (PF). Results are obtained by evaluating the dimensions and the surface finish of the micro-channel. The dimensions and shape of the micro-channels produced with laser-micro-milling process exhibit variations. In general the use of low scanning speeds increases the quality of the feature in both surface finishing and dimensional.

  18. Fire and Thermal Effects of HD 1.3 Accidents: History, Research, and Analysis

    DTIC Science & Technology

    2010-07-01

    consisted of a 1.3 cm thick steel plate (representing the external case), two layers of NBR rubber (representing case lining and ablative...1.3 cm steel plate, 2 layers of NBR rubber , 2.5 cm PMMA • Nitrogen co-flow to prevent ignition of NBR layers • 1D HEATING for prediction 0 200 400...and 100 kW/m 2 . The NBR layers will pyrolyze at elevated temperatures. In a real motor, those gases would be contained by the pressure tight case

  19. Demonstration and Validation of Stainless Steel Materials for Critical Above Grade Piping in Highly Corrosive Locations

    DTIC Science & Technology

    2017-05-01

    Protecting And Bonding Reinforcing Steel In Cement -Based Composites, Corrosion 2009, Atlanta, GA, 22-26 March 2009. 7. Hock, V., O. Marshall, S...ER D C/ CE RL T R- 17 -1 3 DoD Corrosion Prevention and Control Program Demonstration and Validation of Stainless Steel Materials for...ERDC/CERL TR-17-13 May 2017 Demonstration and Validation of Stainless Steel Materials for Critical Above-Grade Piping in Highly Corrosive

  20. Development oxide dispersion strengthened ferritic steels for fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukhopadhyay, D.K.; Froes, F.H.; Gelles, D.S.

    1997-04-01

    Uniaxial tension creep response is reported for an oxide dispersion strengthened (ODS) steel, Fe-13.5Cr-2W-0.5Ti-0.25 Y{sub 2}O{sub 3} (in weight percent) manufactured using the mechanical alloying process. Acceptable creep response is obtained at 900{degrees}C.

  1. Gas Furnace with Pulsed Feeding of the Heating Agent for Volume Precision Heat Treatment of CCM Rolls

    NASA Astrophysics Data System (ADS)

    Moroz, V. I.; Egorova, V. M.; Gusev, S. V.

    2001-05-01

    A standard chamber batch furnace of the Severstal' plant has been modified for precision heat treatment of CCM rolls. The certification tests of a charge of rolls from steel 24KhM1F have shown the technical and economical advantages of the new design.

  2. The Characteristics and Generating Mechanism of Large Precipitates in Ti-Containing H13 Tool Steel

    NASA Astrophysics Data System (ADS)

    Xie, You; Cheng, Guoguang; Chen, Lie; Zhang, Yandong; Yan, Qingzhong

    2017-02-01

    The characteristics of large precipitates in H13 tool steel with 0.015wt% Ti were studied. The result shows that three types of phases larger than 1 μm exist in the as-cast ingot, that is, (Ti, V) (C, N) type phase, (V, Mo, Cr)C type phase and sulfide. (Ti, V) (C, N) type phase could be further classified as the homogeneous Ti-rich one and the Ti-V-rich one in which Ti/V ratio gradually changes. (V, Mo, Cr)C type phase contains the V-rich one and the Mo-Cr-rich one. The compositional characteristics in all of them have little relation with the cutting position or cooling rate. The precipitating process could be well described through calculation by Thermo-Calc software. During solidification, the primary phase (Ti, V)(C, N) first starts to precipitate in the form of Ti-rich carbonitride. With the development of solidification, the ratio of Ti decreases and that of V increases. Then the primary phase Ti-V-rich (Ti, V)(C, N) and V-rich (V, Mo, Cr)C appears successively. Mo-Cr-rich (V, Mo, Cr)C phase does not precipitate until the solidification process reaches to the end. Sulfide precipitates before (V, Mo, Cr)C type phase and it could act as the nucleus of (V, Mo, Cr)C.

  3. Determination of Proper Austenitization Temperatures for Hot Stamping of AISI 4140 Steel

    NASA Astrophysics Data System (ADS)

    Samadian, Pedram; Parsa, Mohammad Habibi; Shakeri, Amid

    2014-04-01

    High strength steels are desirable materials for use in automobile bodies in order to reduce vehicle weight and increase the safety of car passengers, but steel grades with high strength commonly show poor formability. Recently, steels with controlled microstructures and compositions are used to gain adequate strength after hot stamping while maintaining good formability during processing. In this study, microstructure evolutions and changes in mechanical properties of AISI 4140 steel sheets resulting from the hot stamping process at different austenitization temperatures were investigated. To determine the proper austenitization temperatures, the results were compared with those of the cold-worked and cold-worked plus quench-tempered specimens. Comparisons showed that the austenitization temperatures of 1000 and 1100 °C are proper for hot stamping of 3-mm-thick AISI 4140 steel sheets due to the resultant martensitic microstructure which led to the yield and ultimate tensile strength of 1.3 and 2.1 GPa, respectively. Such conditions resulted in more favorable simultaneous strength and elongation than those of hot-stamped conventional boron steels.

  4. Effect of milling time and annealing temperature on nanoparticles evolution for 13.5% Cr ODS ferritic steel powders by joint application of XAFS and TEM

    NASA Astrophysics Data System (ADS)

    He, P.; Hoffmann, J.; Möslang, A.

    2018-04-01

    The characteristics of strengthening nanoparticles have a major influence on the mechanical property and irradiation resistance of oxide dispersion strengthened (ODS) steels. To determine how to control nanoparticles evolution, 0.3% Ti with 0.3% Y2O3 were added in 13.5%Cr pre-alloyed steel powders via different milling and consolidation conditions, then characterized by transmission electron microscopy (TEM) and X-ray absorption fine structure (XAFS) at synchrotron irradiation facility. The dissolution of Y2O3 is greatly dependent on the milling time at fixed milling speeds. After 24 h of milling, only minor amounts of the initially added Y2O3 dissolve into the steel matrix whereas TEM results reveal nearly complete dissolution of Y2O3 in 80-h-milled powder. The annealed powder FT-A800 (at 800 °C for 1 h) exhibits a structure near to the initially added Y2O3. The slightly deviation may be accounted for considerable lattice distortion related to the presence of atomic vacancies or formation of Y-Ti-O nucleus. The annealed powders FT-A1000 and FT-A1100 contain complex mixtures of Y-O/Y-Ti-O oxides, which cannot be fitted by any single thermally stable compounds. The coordination numbers of these first two shells in the annealed powders significantly raise as a function of the annealing temperature, indicating the formation of more ordered Y-O or Y-Ti-O particles. The extended X-ray absorption fine structure (EXAFS) spectrum could not necessarily distinguish the dominant oxide species.

  5. Analysis of the Mechanical Behavior, Creep Resistance and Uniaxial Fatigue Strength of Martensitic Steel X46Cr13

    PubMed Central

    Brnic, Josip; Krscanski, Sanjin; Lanc, Domagoj; Brcic, Marino; Turkalj, Goran; Canadija, Marko; Niu, Jitai

    2017-01-01

    The article deals with the analysis of the mechanical behavior at different temperatures, uniaxial creep and uniaxial fatigue of martensitic steel X46Cr13 (1.4034, AISI 420). For the purpose of considering the aforementioned mechanical behavior, as well as determining the appropriate resistance to creep and fatigue strength levels, numerous uniaxial tests were carried out. Tests related to mechanical properties performed at different temperatures are presented in the form of engineering stress-strain diagrams. Short-time creep tests performed at different temperatures and different stress levels are presented in the form of creep curves. Fatigue tests carried out at stress ratios R=0.25 and R=−1 are shown in the form of S–N (fatigue) diagrams. The finite fatigue regime for each of the mentioned stress ratios is modeled by an inclined log line, while the infinite fatigue regime is modeled by a horizontal line, which represents the fatigue limit of the material and previously was calculated by the modified staircase method. Finally, the fracture toughness has been calculated based on the Charpy V-notch impact energy. PMID:28772749

  6. Mechanical characteristics of a tool steel layer deposited by using direct energy deposition

    NASA Astrophysics Data System (ADS)

    Baek, Gyeong Yun; Shin, Gwang Yong; Lee, Eun Mi; Shim, Do Sik; Lee, Ki Yong; Yoon, Hi-Seak; Kim, Myoung Ho

    2017-07-01

    This study focuses on the mechanical characteristics of layered tool steel deposited using direct energy deposition (DED) technology. In the DED technique, a laser beam bonds injected metal powder and a thin layer of substrate via melting. In this study, AISI D2 substrate was hardfaced with AISI H13 and M2 metal powders for mechanical testing. The mechanical and metallurgical characteristics of each specimen were investigated via microstructure observation and hardness, wear, and impact tests. The obtained characteristics were compared with those of heat-treated tool steel. The microstructures of the H13- and M2-deposited specimens show fine cellular-dendrite solidification structures due to melting and subsequent rapid cooling. Moreover, the cellular grains of the deposited M2 layer were smaller than those of the H13 structure. The hardness and wear resistance were most improved in the M2-deposited specimen, yet the H13-deposited specimen had higher fracture toughness than the M2-deposited specimen and heat-treated D2.

  7. The effect of aluminum on the work hardening and wear resistance of hadfield manganese steel

    NASA Astrophysics Data System (ADS)

    Zuidema, B. K.; Subramanyam, D. K.; Leslie, W. C.

    1987-09-01

    A study has been made of the work-hardening and wear resistance of aluminum-modified Hadfield manganese steels ranging in composition from 1.00 to 1.75 Pct carbon and from 0.0 to 4.0 Pct aluminum. Aluminum additions reduced carbon activity and diffusivity in austenites of Hadfield’s composition, increasing the metastable solubility of carbon in Hadfield steel. Aluminum additions inhibited mechanical twinning and, by inference, increased the stacking fault energy of austenite. Increasing carbon in solution in austenite expanded the temperature range over which dynamic strain aging and rapid work hardening occurred. Simultaneous aluminum additions and increased carbon content increased the work-hardening rate and high-stress abrasion resistance of Hadfield steel, but there was an optimum aluminum content beyond which both declined. Maximum work-hardening rate was exhibited by an alloy containing nominally 1.75 Pct C, 13.5 Pct Mn, and 1.3 Pct Al. Improved high-stress abrasion resistance was also found in an alloy containing nominally 1.00 Pct C, 13.5 Pct Mn, and 4.0 Pct Al.

  8. Effect of Niobium on Phase Transformations, Mechanical Properties and Corrosion of Supermartensitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    de Oliveira, Mariana Perez; Calderón-Hernández, José Wilmar; Magnabosco, Rodrigo; Hincapie-Ladino, Duberney; Alonso-Falleiros, Neusa

    2017-04-01

    The influence of niobium addition in a supermartensitic stainless steel with 13Cr-5Ni-2Mo has been studied. The steel with Nb tempered at 600 °C for 2 h showed improved mechanical resistance properties and lower degree of sensitization, without compromising elongation and pitting corrosion resistance, when compared to the reference steel. In order to understand the Nb effect in such steel, mainly regarding phase transformation, different tempering time intervals have been studied. The better performance of the SM2MoNb is attributed to the hindering effect that Nb has in the kinetics of the phase transformations during tempering, delaying the precipitation start and coarsening stages of the present phases.

  9. Seismic Behaviour of Composite Steel Fibre Reinforced Concrete Shear Walls

    NASA Astrophysics Data System (ADS)

    Boita, Ioana-Emanuela; Dan, Daniel; Stoian, Valeriu

    2017-10-01

    In this paper is presented an experimental study conducted at the “Politehnica” University of Timisoara, Romania. This study provides results from a comprehensive experimental investigation on the behaviour of composite steel fibre reinforced concrete shear walls (CSFRCW) with partially or totally encased profiles. Two experimental composite steel fibre reinforced concrete walls (CSFRCW) and, as a reference specimen, a typical reinforced concrete shear wall (RCW), (without structural reinforcement), were fabricated and tested under constant vertical load and quasi-static reversed cyclic lateral loads, in displacement control. The tests were performed until failure. The tested specimens were designed as 1:3 scale steel-concrete composite elements, representing a three storeys and one bay element from the base of a lateral resisting system made by shear walls. Configuration/arrangement of steel profiles in cross section were varied within the specimens. The main objective of this research consisted in identifying innovative solutions for composite steel-concrete shear walls with enhanced performance, as steel fibre reinforced concrete which was used in order to replace traditional reinforced concrete. A first conclusion was that replacing traditional reinforcement with steel fibre changes the failure mode of the elements, as from a flexural mode, in case of element RCW, to a shear failure mode for CSFRCW. The maximum lateral force had almost similar values but test results indicated an improvement in cracking response, and a decrease in ductility. The addition of steel fibres in the concrete mixture can lead to an increase of the initial cracking force, and can change the sudden opening of a crack in a more stable process.

  10. [Prevalence and influence factors of hypertension among the workers exposed to noise in steel making and steel rolling workshop of an iron and steel plant].

    PubMed

    Li, Yanhong; Chen, Guoshun; Yu, Shanfa

    2015-05-01

    To investigate the prevalence and influence factors of hypertension among the workers exposed to noise in steel making and steel rolling workshop of an iron and steel plant. Using cluster sampling method, 3 150 workers exposed to noise participated in this study. According to do questionnaire survey and blood pressure measurement, 2 924 workers were tested, among which 1 313 workers were from steel making workshop and 1 611 workers were from steel rolling workshop. The relationships between different demographic characteristics, different habits, and different cumulative noise exposures of workers exposed to noise and hypertension were analyzed. For the hypertension prevalence rate, the total prevalence rate was 27.43% (802/2 924), the male was higher than the female (29.88 % (753/2 520) vs 12.13% (49/404), χ² = 55.13, P < 0.001), married ones were higher than the unmarried (29.84% (718/2 406) vs 16.22% (84/518), χ² = 39.76, P < 0.001), the smoking subjects were higher than the no smoking (30.31% (438/1 445) vs 24.61% (364/1 479), χ² = 11.93, P = 0.001), drinking ones were higher than the no drinking (31.53% (541/1 716) vs 21.61% (261/1 208), χ² = 35.05, P < 0.001). The hypertension prevalence rates among the subjects with education background in junior high school and below, high school (secondary) and university and above were separately 44.96%(125/278), 29.95%(455/1 519) and 19.70%(222/1 127) (χ² = 81.65, P < 0.001), among cumulative exposure groups 77-89, 90-94, 95-99, 100-104 and 105-113 were separately 8.43% (14/166), 14.48% (53/366), 24.28% (297/1 223), 36.65% (335/914) and 40.39%(103/255) (χ² = 127.58, P < 0.001). Multivariate logistic regression analysis showed that workers who exposed to cumulative noise in 95-99, 100-104 and 105-113 dB(A) ·year had the higher risk of hypertension, the OR (95%CI) were 1.84 (95% CI: 1.35-2.51), 1.74 (95% CI: 1.24-2.45) and 1.68 (95% CI: 1.09-2.58). Drinking (OR = 1.60, 95% CI: 1.32-1.95) and BMI ≥ 24.0 kg

  11. 77 FR 73646 - Essar Steel Minnesota, LLC v. Great Lakes Gas Transmission Limited Partnership; Notice of Complaint

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-11

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. RP13-313-000] Essar Steel Minnesota, LLC v. Great Lakes Gas Transmission Limited Partnership; Notice of Complaint Take notice that on.... 717(a), Essar Steel Minnesota, LLC (Complainant) filed a formal complaint against Great Lakes Gas...

  12. Dynamic strength properties and alpha-phase shock Hugoniot of iron and steel

    NASA Astrophysics Data System (ADS)

    Thomas, S. A.; Hawkins, M. C.; Matthes, M. K.; Gray, G. T.; Hixson, R. S.

    2018-05-01

    The properties of iron and steel are of considerable interest scientifically to the dynamic materials properties' community, as well as to a broader audience, for many applications. This is true in part because of the existence of a solid-solid phase (α-ɛ) transition at relatively modest stress (13 GPa). Because of this, there is a significant amount of data on iron and steel alloy shock compression properties at stresses above 13 GPa, but much less fundamental data under stress conditions lower than that, where the metals are in the α-phase. New data have been obtained under relatively low stress (below 10 GPa) conditions in which samples are subjected to low-velocity symmetric impact on the order of 0.2 to 0.4 km/s. We used well-developed flyer plate impact methods combined with velocity interferometry to measure wave speeds and strength properties in compression and tension. The shock α-phase Hugoniot data reported here are compared with literature values. A comparison of spall strength and Hugoniot elastic limit is made between different types of steel studied and for pure iron.

  13. Development of Low-Carbon, Copper-Strengthened HSLA Steel Plate for Naval Ship Construction

    DTIC Science & Technology

    1990-06-01

    steel plate microstructures, 2% nital etch . ...................................................... 13 2. Charpy V-notch impact energy transition for...met a minimum yield strength requirement of 80 ksi yield strength through 3/4 inch gage, had high Charpy V-notch impact energy at low tempera- tures...tempered HSLA line-pipe steels, which typically could not meet the minimum Charpy V-notch impact toughness requirement of 35 ft-lb at -1 200 F. In 1984

  14. Experimental investigation and modelling of surface roughness and resultant cutting force in hard turning of AISI H13 Steel

    NASA Astrophysics Data System (ADS)

    Boy, M.; Yaşar, N.; Çiftçi, İ.

    2016-11-01

    In recent years, turning of hardened steels has replaced grinding for finishing operations. This process is compared to grinding operations; hard turning has higher material removal rates, the possibility of greater process flexibility, lower equipment costs, and shorter setup time. CBN or ceramic cutting tools are widely used hard part machining. For successful application of hard turning, selection of suitable cutting parameters for a given cutting tool is an important step. For this purpose, an experimental investigation was conducted to determine the effects of cutting tool edge geometry, feed rate and cutting speed on surface roughness and resultant cutting force in hard turning of AISI H13 steel with ceramic cutting tools. Machining experiments were conducted in a CNC lathe based on Taguchi experimental design (L16) in different levels of cutting parameters. In the experiments, a Kistler 9257 B, three cutting force components (Fc, Ff and Fr) piezoelectric dynamometer was used to measure cutting forces. Surface roughness measurements were performed by using a Mahrsurf PS1 device. For statistical analysis, analysis of variance has been performed and mathematical model have been developed for surface roughness and resultant cutting forces. The analysis of variance results showed that the cutting edge geometry, cutting speed and feed rate were the most significant factors on resultant cutting force while the cutting edge geometry and feed rate were the most significant factor for the surface roughness. The regression analysis was applied to predict the outcomes of the experiment. The predicted values and measured values were very close to each other. Afterwards a confirmation tests were performed to make a comparison between the predicted results and the measured results. According to the confirmation test results, measured values are within the 95% confidence interval.

  15. Mathematical and physical modeling of thermal stratification phenomena in steel ladles

    NASA Astrophysics Data System (ADS)

    Putan, V.; Vilceanu, L.; Socalici, A.; Putan, A.

    2018-01-01

    By means of CFD numerical modeling, a systematic analysis of the similarity between steel ladles and hot-water model regarding natural convection phenomena was studied. The key similarity criteria we found to be dependent on the dimensionless numbers Fr and βΔT. These similarity criteria suggested that hot-water models with scale in the range between 1/5 and 1/3 and using hot water with temperature of 45 °C or higher are appropriate for simulating natural convection in steel ladles. With this physical model, thermal stratification phenomena due to natural convection in steel ladles were investigated. By controlling the cooling intensity of water model to correspond to the heat loss rate of steel ladles, which is governed by Fr and βΔT, the temperature profiles measured in the water bath of the model were to deduce the extent of thermal stratification in liquid steel bath in the ladles. Comparisons between mathematically simulated temperature profiles in the prototype steel ladles and those physically simulated by scaling-up the measured temperatures profiles in the water model showed good agreement. This proved that it is feasible to use a 1/5 scale water model with 45 °C hot water to simulate natural convection in steel ladles. Therefore, besides mathematical CFD models, the physical hot-water model provided an additional means of studying fluid flow and heat transfer in steel ladles.

  16. 46 CFR 59.20-1 - Carbon-steel or alloy-steel castings.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... BOILERS, PRESSURE VESSELS AND APPURTENANCES Welding Repairs to Castings § 59.20-1 Carbon-steel or alloy-steel castings. Defects in carbon-steel or alloy-steel castings may be repaired by welding. The repairs...

  17. 46 CFR 59.20-1 - Carbon-steel or alloy-steel castings.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... BOILERS, PRESSURE VESSELS AND APPURTENANCES Welding Repairs to Castings § 59.20-1 Carbon-steel or alloy-steel castings. Defects in carbon-steel or alloy-steel castings may be repaired by welding. The repairs...

  18. 46 CFR 59.20-1 - Carbon-steel or alloy-steel castings.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... BOILERS, PRESSURE VESSELS AND APPURTENANCES Welding Repairs to Castings § 59.20-1 Carbon-steel or alloy-steel castings. Defects in carbon-steel or alloy-steel castings may be repaired by welding. The repairs...

  19. 46 CFR 59.20-1 - Carbon-steel or alloy-steel castings.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... BOILERS, PRESSURE VESSELS AND APPURTENANCES Welding Repairs to Castings § 59.20-1 Carbon-steel or alloy-steel castings. Defects in carbon-steel or alloy-steel castings may be repaired by welding. The repairs...

  20. 46 CFR 59.20-1 - Carbon-steel or alloy-steel castings.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... BOILERS, PRESSURE VESSELS AND APPURTENANCES Welding Repairs to Castings § 59.20-1 Carbon-steel or alloy-steel castings. Defects in carbon-steel or alloy-steel castings may be repaired by welding. The repairs...

  1. Respiratory status of stainless steel and mild steel welders.

    PubMed

    Kalliomäki, P L; Kalliomäki, K; Korhonen, O; Nordman, H; Rahkonen, E; Vaaranen, V

    1982-01-01

    Eighty-three full-time stainless steel and 29 mild steel welders from one shipyard were examined clinically, and their lung function was measured. The stainless steel welders had used both tungsten inert-gas (low-fume concentration) and manual metal-arc (MMA) (high-fume concentration) welding methods. The individual exposure of the welders was estimated based on the time spent doing MMA welding, the amount of retained contaminants in the lungs (magnetopulmography), and urinary chromium excretion. The results suggest that there is a greater prevalence of small airway disease among shipyard mild steel MMA welders than among stainless steel welders. Among the stainless steel welders the impairment of lung function parameters was associated with the MMA welding method. The type of welding, then, is important when the health hazards of welders are studied, and welders cannot be regarded as a single, homogeneous group.

  2. Phase constitution in the interfacial region of laser penetration brazed magnesium–steel joints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miao, Yugang; Han, Duanfeng, E-mail: handuanfeng@gmail.com; Xu, Xiangfang

    2014-07-01

    The phase constitution in the interfacial region of laser penetration brazed magnesium–steel joints was investigated using electron microscopy. From the distribution of elements, the transition zone was mainly composed of elements Mg and Fe along with some Al and O. Furthermore, the transition layer consisted mainly of intermetallic compounds and metal oxides. The compounds were identified as Al-rich phases, such as Mg{sub 17}Al{sub 12}, Mg{sub 2}Al{sub 3}, FeAl and Fe{sub 4}Al{sub 13}. More noteworthy was that the thickness of the transition layer was determined by Fe–Al compounds. The presence of FeAl and Fe{sub 4}Al{sub 13} was a result of themore » complex processes that were associated with the interfacial reaction of solid steel and liquid Mg–Al alloy. - Highlights: • A technology of laser penetration brazed Mg alloy and steel has been developed. • The interface of Mg/Fe dissimilar joints was investigated using electron microscopy. • The transition layer consisted of intermetallic compounds and metal oxides. • Moreover, the thickness of transition layer was determined by Fe/Al compounds. • The presence of FeAl and Fe{sub 4}Al{sub 13} was associated with the interfacial reaction.« less

  3. Damage of target edges in brush-like geometry in the course of ELM-like plasma pulses in QSPA Kh-50

    NASA Astrophysics Data System (ADS)

    Makhlaj, V. A.; Garkusha, I. E.; Aksenov, N. N.; Bazylev, B.; Byrka, O. V.; Chebotarev, V. V.; Landman, I.; Herashchenko, S. S.; Staltsov, V. V.

    2015-08-01

    Castellated edges of macro-brush armour elements of ITER divertor can be a source of molten/solid dust particles which are injected into the plasma. The targets that combined in brush-like geometry have been irradiated under different inclination angles in QSPA Kh-50. The cubic brushes element has typical size of 1 cm. The titanium was used to investigate dynamics of mountains' formation. The onset of dust particles ejection from the exposed castellated targets has been studied. Formation of resolidified bridges through the gaps of brush-like targets due to the melt motion is studied in dynamics. With following plasma impacts such resolidified bridges became additional source of dust.

  4. EAST ELEVATION, LTV STEEL (FORMERLY REPUBLIC STEEL), 8" BAR MILL, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EAST ELEVATION, LTV STEEL (FORMERLY REPUBLIC STEEL), 8" BAR MILL, BUFFALO PLANT. VIEW LOOKING SOUTHWEST FROM ROLL SHOP. 8" BAR MILL DESIGNED AND BUILT BY DONNER STEEL CO. (PREDECESSOR OF REPUBLIC), 1919-1920. FOR DESCRIPTION OF ORIGINAL MILL SEE "IRON AGE", 116\\4 (23 JULY 1925): 201-204. - LTV Steel, 8-inch Bar Mill, Buffalo Plant, Buffalo, Erie County, NY

  5. 76 FR 45511 - Stainless Steel Plate in Coils From Belgium: Notice of Initiation of Antidumping Duty Changed...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-29

    ... Review, 57 FR 20460, 20462 (May 13, 1992) and Certain Cut-to-Length Carbon Steel Plate from Romania... 22847 (May 3, 2005) (Plate from Romania), unchanged in Notice of Final Results of Antidumping Duty Changed Circumstances Review: Certain Cut-to-Length Carbon Steel Plate from Romania 70 FR 35624 (June 21...

  6. Connections: Superplasticity, Damascus Steels, Laminated Steels, and Carbon Dating

    NASA Astrophysics Data System (ADS)

    Wadsworth, Jeffrey

    2016-12-01

    In this paper, a description is given of the connections that evolved from the initial development of a family of superplastic plain carbon steels that came to be known as Ultra-High Carbon Steels (UHCS). It was observed that their very high carbon contents were similar, if not identical, to those of Damascus steels. There followed a series of attempts to rediscover how the famous patterns found on Damascus steels blades were formed. At the same time, in order to improve the toughness at room temperature of the newly-developed UHCS, laminated composites were made of alternating layers of UHCS and mild steel (and subsequently other steels and other metals). This led to a study of ancient laminated composites, the motives for their manufacture, and the plausibility of some of the claims relating to the number of layers in the final blades. One apparently ancient laminated composite, recovered in 1837 from the great pyramid of Giza which was constructed in about 2750 B.C., stimulated a carbon dating study of ancient steels. The modern interest in "Bladesmithing" has connections back to many of these ancient weapons.

  7. A spectroscopic and photometric study of the unique pre- main sequence system KH 15D

    NASA Astrophysics Data System (ADS)

    Hamilton, Catrina Marie

    2004-09-01

    As a class, T Tauri stars are YSOs, some which are surrounded by circumstellar disks, and are recognized as the final stage of low-mass star formation. They also represent the earliest stage of stellar evolution that is optically visible, and, therefore, can be easily studied in detail. Understanding the processes through which these young stars interact with and eventually disperse their circumstellar disks is critical for understanding how they evolve from the T Tauri phase to the zero age main sequence (ZAMS), and how this affects the formation of planets, as well as their rotational evolution. KH 15D is a unique eclipsing system that could provide invaluable insight into the evolution of circumstellar disk material, as well as clues to the close stellar environment. Discovered in 1997, this star system has been observed to undergo an eclipse every 48 days in which the star's light is diminished by 3.5 magnitudes. What is so unusual about the eclipse is that the length of the eclipse has evolved over time, growing in length from 16 days initially, to ˜25 days in 2002/2003. Evolution of disk material on these timescales has never been observed before, and therefore provides us with a unique opportunity to refine our theories about remnant disks around young stars, how they transition, possibly into planets, and what role they play as the star matures and arrives on the zero age main sequence. Additionally, high resolution spectra obtained at specific phases during the December 2001 eclipse showed that as the obscuring matter cut across the star, dramatic spectral changes in the Hα and Hβ lines were seen. Its unique eclipse produces a “natural coronographic” effect in which the stellar photosphere is occulted, revealing details of its magnetosphere and surroundings during eclipse. There is evidence that the weak-lined T Tauri star (WTTS) central to the system is actively accreting gas, although probably not at the rate of a typical classical T Tauri star

  8. Water requirements of the iron and steel industry

    USGS Publications Warehouse

    Walling, Faulkner B.; Otts, Louis Ethelbert

    1967-01-01

    Twenty-nine steel plants surveyed during 1957 and 1958 withdrew from various sources about 1,400 billion gallons of water annually and produced 40.8 million tons of ingot steel. This is equivalent to about 34,000 gallons of water per ton of steel. Fifteen iron ore mines and fifteen ore concentration plants together withdrew annually about 89,000 million gallons to produce 15 million tons of iron ore concentrate, or 5,900 gallons per ton of concentrate. About 97 percent of the water used in the steel plants came from surface sources, 2.2 percent was reclaimed sewage, and 1.2 percent was ground water. Steel plants supplied about 96 percent of their own water requirements, although only three plants used self-supplied water exclusively. Water used by the iron ore mines and concentration plants was also predominantly self supplied from surface source. Water use in the iron and steel industry varied widely and depended on the availability of water, age and condition of plants and equipment, kinds of processes, and plant operating procedures. Gross water use in integrated steel plants ranged from 11,200 to 110,000 gallons per ton of steel ingots, and in steel processing plants it ranged from 4,180 to 26,700 gallons per ton. Water reuse also varied widely from 0 to 18 times in integrated steel plants and from 0 to 44 times in steel processing plants. Availability of water seemed to be the principal factor in determining the rate of reuse. Of the units within steel plants, a typical (median) blast furnace required 20,500 gallons of water per ton of pig iron. At the 1956-60 average rate of pig iron consumption, this amounts to about 13,000 gallons per ton of steel ingots or about 40 percent of that required by a typical integrated steel plant 33,200 gallons per ton. Different processes of iron ore concentration are devised specifically for the various kinds of ore. These processes result in a wide range of water use from 124 to 11,300 gallons of water per ton of iron ore

  9. Fine wavelength control in 1.3 μm Nd:YAG lasers by electro-optical crystal lens

    NASA Astrophysics Data System (ADS)

    Lü, Yanfei; Zhang, Jing; Liu, Huilong; Xia, Jing; Fu, Xihong; Zhang, Anfeng

    2014-02-01

    A diode-pumped tunable and multi-wavelength continuous-wave Nd:YAG laser based on the 4F3/2-4I13/2 transition has been demonstrated for the first time. The combination of the glass plane positioned at the Brewster angle and the electro-optical crystal KH2PO4 (KDP) lens formed a Lyot filter in the cavity and compressed the available gain bandwidth. With an adjustable voltage applied to the KDP crystal lens, the laser wavelength could be tuned from 1333.8 to 1338.2 nm. Moreover, we can also realize cw dual-wavelength and triple-wavelength lasers with smaller wavelength separation by adjusting the free spectral range of the Lyot filter.

  10. Fracture-tough, high hardness stainless steel and method of making same

    NASA Technical Reports Server (NTRS)

    Olson, Gregory B. (Inventor)

    1993-01-01

    A cryogenically-formed and tempered stainless steel is provided having improved fracture toughness and corrosion resistance at a given hardness level, such as, for example, of at least about Rc 60 for bearing applications. The steel consists essentially of, in weight %, about 21 to about 24% Co, about 11 to about 13% Cr, about 7 to about 9% Ni, about 0.1 to about 0.5% Mo, about 0.2 to about 0.3% V, about 0.28 to about 0.32% C, and the balance iron. The steel includes a cryogenically-formed martensitic microstructure tempered to include about 5 to about 10 volume % post-deformation retained austenite dispersed therein and M.sub.2 C-type carbides, where M is Cr, Mo, V, and/or Fe, dispersed in the microstructure.

  11. Nanoscale precipitation in a maraging steel studied by APFIM.

    PubMed

    Stiller, Krystyna; Hättestrand, Mats

    2004-06-01

    This article summarizes findings from our previous investigations and recent studies concerning precipitation in a maraging steel of type 13Cr-9Ni-2Mo-2Cu (at.%) with small additions of Ti (1 at.%) and Al (0.7 at.%). The material was investigated after aging at 475 degrees C up to 400 h using both conventional and three-dimensional atom-probe analyses. The process of phase decomposition in the steel proved to be complicated. It consisted of precipitation of several phases with different chemistry. A Cu-rich phase was first to precipitate and Mo was last in the precipitation sequence. The influence of the complex precipitation path on the material properties is discussed. The investigation clearly demonstrated the usefulness of the applied techniques for investigation of nanoscale precipitation. It is also shown that, complementary methods (such as TEM and EFTEM) giving structural and chemical information on a larger scale must be applied to explain the good properties of the steel after prolonged aging.

  12. Influence of Si addition on the carbon partitioning process in martensitic-austenitic stainless steels

    NASA Astrophysics Data System (ADS)

    Huang, Q.; Volkova, O.; De Cooman, BC; Biermann, H.; Mola, J.

    2018-06-01

    The effect of Si on the efficiency of carbon partitioning during quenching and partitioning (Q&P) processing of stainless steels was studied. For this purpose, 2 mass-% Si was added to a Fe-13Cr-0.47C reference steel. The Si-free (reference) and Si-added steels were subjected to Q&P cycles in dilatometer. The carbon enrichment of austenite in both steels was evaluated by determining the temperature interval between the quench temperature and the martensite start temperature of secondary martensite formed during final cooling to room temperature. In Q&P cycles with comparable martensite fractions at the quench temperature, the carbon enrichment of austenite after partitioning was similar for both steels. To compare the mechanical stability of austenite, Q&P-processed specimens of both steels were tensile tested in the temperature range 20-200 °C. The quench and partitioning temperatures were room temperature and 450 °C, respectively. Si addition had no meaningful influence on mechanical stability of austenite. The results indicate that the suppression of cementite formation by Si addition to stainless steels, as confirmed by transmission electron microscopy examinations, has no noticeable influence on the carbon enrichment of austenite in the partitioning step.

  13. Bond characteristics of steel fiber and deformed reinforcing steel bar embedded in steel fiber reinforced self-compacting concrete (SFRSCC)

    NASA Astrophysics Data System (ADS)

    Aslani, Farhad; Nejadi, Shami

    2012-09-01

    Steel fiber reinforced self-compacting concrete (SFRSCC) is a relatively new composite material which congregates the benefits of the self-compacting concrete (SCC) technology with the profits derived from the fiber addition to a brittle cementitious matrix. Steel fibers improve many of the properties of SCC elements including tensile strength, ductility, toughness, energy absorption capacity, fracture toughness and cracking. Although the available research regarding the influence of steel fibers on the properties of SFRSCC is limited, this paper investigates the bond characteristics between steel fiber and SCC firstly. Based on the available experimental results, the current analytical steel fiber pullout model (Dubey 1999) is modified by considering the different SCC properties and different fiber types (smooth, hooked) and inclination. In order to take into account the effect of fiber inclination in the pullout model, apparent shear strengths ( τ ( app)) and slip coefficient ( β) are incorporated to express the variation of pullout peak load and the augmentation of peak slip as the inclined angle increases. These variables are expressed as functions of the inclined angle ( ϕ). Furthurmore, steel-concrete composite floors, reinforced concrete floors supported by columns or walls and floors on an elastic foundations belong to the category of structural elements in which the conventional steel reinforcement can be partially replaced by the use of steel fibers. When discussing deformation capacity of structural elements or civil engineering structures manufactured using SFRSCC, one must be able to describe thoroughly both the behavior of the concrete matrix reinforced with steel fibers and the interaction between this composite matrix and discrete steel reinforcement of the conventional type. However, even though the knowledge on bond behavior is essential for evaluating the overall behavior of structural components containing reinforcement and steel fibers

  14. 13. LOOKING WEST AT THE LINDE 400 TONS PER DAY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. LOOKING WEST AT THE LINDE 400 TONS PER DAY LOW PURITY OXYGEN MAKING PLANT IN THE LOW PURITY BULK OXYGEN BUILDING. - U.S. Steel Duquesne Works, Fuel & Utilities Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  15. Characterization of steel rebar spacing using synthetic aperture radar imaging

    NASA Astrophysics Data System (ADS)

    Hu, Jie; Tang, Qixiang; Twumasi, Jones Owusu; Yu, Tzuyang

    2018-03-01

    Steel rebars is a vital component in reinforced concrete (RC) and prestressed concrete structures since they provide mechanical functions to those structures. Damages occurred to steel rebars can lead to the premature failure of concrete structures. Characterization of steel rebars using nondestructive evaluation (NDE) offers engineers and decision makers important information for effective/good repair of aging concrete structures. Among existing NDE techniques, microwave/radar NDE has been proven to be a promising technique for surface and subsurface sensing of concrete structures. The objective of this paper is to use microwave/radar NDE to characterize steel rebar grids in free space, as a basis for the subsurface sensing of steel rebars inside RC structures. A portable 10-GHz radar system based on synthetic aperture radar (SAR) imaging was used in this paper. Effect of rebar grid spacing was considered and used to define subsurface steel rebar grids. Five rebar grid spacings were used; 12.7 cm (5 in.), 17.78 cm (7 in.), 22.86 cm (9 in.), 27.94 cm (11 in.), and 33.02 cm (13 in.) # 3 rebars were used in all grid specimens. All SAR images were collected inside an anechoic chamber. It was found that SAR images can successfully capture the change of rebar grid spacing and used for quantifying the spacing of rebar grids. Empirical models were proposed to estimate actual rebar spacing and contour area using SAR images.

  16. Mass and energy transfer across the Earth's magnetopause caused by vortex-induced reconnection: Mass and energy transfer by K-H vortex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakamura, T. K. M.; Eriksson, S.; Hasegawa, H.

    When the interplanetary magnetic field (IMF) is strongly northward, a boundary layer that contains a considerable amount of plasma of magnetosheath origin is often observed along and earthward of the low-latitude magnetopause. Such a pre-existing boundary layer, with a higher density than observed in the adjacent magnetosphere, reduces the local Alfvén speed and allows the Kelvin-Helmholtz instability (KHI) to grow more strongly. We employ a three-dimensional fully kinetic simulation to model an event observed by the Magnetospheric Multiscale (MMS) mission in which the spacecraft detected substantial KH waves between a pre-existing boundary layer and the magnetosheath during strong northward IMF.more » Initial results of this simulation [Nakamura et al., 2017] have successfully demonstrated ion-scale signatures of magnetic reconnection induced by the non-linearly developed KH vortex, which are quantitatively consistent with MMS observations. Furthermore, we quantify the simulated mass and energy transfer processes driven by this vortex-induced reconnection (VIR) and show that during this particular MMS event (i) mass enters a new mixing layer formed by the VIR more efficiently from the pre-existing boundary layer side than from the magnetosheath side, (ii) mixed plasmas within the new mixing layer convect tailward along the magnetopause at more than half the magnetosheath flow speed, and (iii) energy dissipation in localized VIR dissipation regions results in a strong parallel electron heating within the mixing layer. Finally, the quantitative agreements between the simulation and MMS observations allow new predictions that elucidate how the mass and energy transfer processes occur near the magnetopause during strong northward IMF.« less

  17. Mass and energy transfer across the Earth's magnetopause caused by vortex-induced reconnection: Mass and energy transfer by K-H vortex

    DOE PAGES

    Nakamura, T. K. M.; Eriksson, S.; Hasegawa, H.; ...

    2017-10-23

    When the interplanetary magnetic field (IMF) is strongly northward, a boundary layer that contains a considerable amount of plasma of magnetosheath origin is often observed along and earthward of the low-latitude magnetopause. Such a pre-existing boundary layer, with a higher density than observed in the adjacent magnetosphere, reduces the local Alfvén speed and allows the Kelvin-Helmholtz instability (KHI) to grow more strongly. We employ a three-dimensional fully kinetic simulation to model an event observed by the Magnetospheric Multiscale (MMS) mission in which the spacecraft detected substantial KH waves between a pre-existing boundary layer and the magnetosheath during strong northward IMF.more » Initial results of this simulation [Nakamura et al., 2017] have successfully demonstrated ion-scale signatures of magnetic reconnection induced by the non-linearly developed KH vortex, which are quantitatively consistent with MMS observations. Furthermore, we quantify the simulated mass and energy transfer processes driven by this vortex-induced reconnection (VIR) and show that during this particular MMS event (i) mass enters a new mixing layer formed by the VIR more efficiently from the pre-existing boundary layer side than from the magnetosheath side, (ii) mixed plasmas within the new mixing layer convect tailward along the magnetopause at more than half the magnetosheath flow speed, and (iii) energy dissipation in localized VIR dissipation regions results in a strong parallel electron heating within the mixing layer. Finally, the quantitative agreements between the simulation and MMS observations allow new predictions that elucidate how the mass and energy transfer processes occur near the magnetopause during strong northward IMF.« less

  18. Characterisations Of Al{sub 2}O{sub 3}-13% Wt TiO{sub 2} Deposition On Mild Steel Via Plasma Spray Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yusoff, N. H.; Isa, M. C.; Ghazali, M. J.

    2011-01-17

    To date, plasma sprayed alumina titania have been widely used as wear resistance coatings in textile, machinery and printing industries. Previous studies showed that the coating microstructures and properties were strongly depended on various parameters such as ceramic composition, grain size powders and spray parameters, thus, influencing the melting degree of the alumina titania during the deposition process. The aim of this study focuses on the evolution of the micron sizes of alumina-13%wt titania at different plasma spray power, ranging from 20kW to 40kW. It was noted that the coating porosity of alumina-13%wt titania were decreased from 6.2% to 4%more » by increasing the plasma power from 20 to 40 kW. At lower power value, partially melted powders were deposited, generating over 6% porosity within the microstructures. Percentage of porosity about 5.6% gave the best ratio of bi-modal structures, providing the highest microhardness value. Furthermore, the effect of microstructure and porosity formation on wear resistance was also discussed. Coatings with less porosity exhibited better resistance to wear, in which the wear resistance of coated mild steel possessed only {approx}5 x 10{sup -4} cm{sup 3}/Nm with 4% of porosity.« less

  19. Friction Stir Spot Welding (FSSW) of Advanced High Strength Steel (AHSS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santella, M. L.; Hovanski, Yuri; Pan, Tsung-Yu

    Friction stir spot welding (FSSW) is applied to join advanced high strength steels (AHSS): galvannealed dual phase 780 MPa steel (DP780GA), transformation induced plasticity 780 MPa steel (TRIP780), and hot-stamped boron steel (HSBS). A low-cost Si3N4 ceramic tool was developed and used for making welds in this study instead of polycrystalline cubic boron nitride (PCBN) material used in earlier studies. FSSW has the advantages of solid-state, low-temperature process, and the ability of joining dissimilar grade of steels and thicknesses. Two different tool shoulder geometries, concave with smooth surface and convex with spiral pattern, were used in the study. Welds weremore » made by a 2-step displacement control process with weld time of 4, 6, and 10 seconds. Static tensile lap-shear strength achieved 16.4 kN for DP780GA-HSBS and 13.2kN for TRIP780-HSBS, above the spot weld strength requirements by AWS. Nugget pull-out was the failure mode of the joint. The joining mechanism was illustrated from the cross-section micrographs. Microhardness measurement showed hardening in the upper sheet steel (DP780GA or TRIP780) in the weld, but softening of HSBS in the heat-affect zone (HAZ). The study demonstrated the feasibility of making high-strength AHSS spot welds with low-cost tools.« less

  20. KH-type splicing regulatory protein is involved in esophageal squamous cell carcinoma progression

    PubMed Central

    Shoda, Katsutoshi; Naruto, Takuya; Hamada, Satoshi; Miyakami, Yuko; Kohmoto, Tomohiro; Watanabe, Miki; Takahashi, Rizu; Tange, Shoichiro; Saito, Masako; Kudo, Yasusei; Fujiwara, Hitoshi; Ichikawa, Daisuke; Tangoku, Akira; Otsuji, Eigo; Imoto, Issei

    2017-01-01

    KH-type splicing regulatory protein (KHSRP) is a multifunctional RNA-binding protein, which is involved in several post-transcriptional aspects of RNA metabolism, including microRNA (miRNA) biogenesis. It affects distinct cell functions in different tissues and can have an impact on various pathological conditions. In the present study, we investigated the oncogenic functions of KHSRP and their underlying mechanisms in the pathogenesis of esophageal squamous cell carcinoma (ESCC). KHSRP expression levels were elevated in ESCC tumors when compared with those in non-tumorous tissues by immunohistochemistry, and cytoplasmic KHSRP overexpression was found to be an independent prognosticator for worse overall survival in a cohort of 104 patients with ESCC. KHSRP knockdown inhibited growth, migration, and invasion of ESCC cells. KHSRP knockdown also inhibited the maturation of cancer-associated miRNAs, such as miR-21, miR-130b, and miR-301, and induced the expression of their target mRNAs, such as BMP6, PDCD4, and TIMP3, resulting in the inhibition of epithelial-to-mesenchymal transition. Our findings uncover a novel oncogenic function of KHSRP in esophageal tumorigenesis and implicate its use as a marker for prognostic evaluation and as a putative therapeutic target in ESCC. PMID:29254151

  1. KH-type splicing regulatory protein is involved in esophageal squamous cell carcinoma progression.

    PubMed

    Fujita, Yuji; Masuda, Kiyoshi; Hamada, Junichi; Shoda, Katsutoshi; Naruto, Takuya; Hamada, Satoshi; Miyakami, Yuko; Kohmoto, Tomohiro; Watanabe, Miki; Takahashi, Rizu; Tange, Shoichiro; Saito, Masako; Kudo, Yasusei; Fujiwara, Hitoshi; Ichikawa, Daisuke; Tangoku, Akira; Otsuji, Eigo; Imoto, Issei

    2017-11-24

    KH-type splicing regulatory protein (KHSRP) is a multifunctional RNA-binding protein, which is involved in several post-transcriptional aspects of RNA metabolism, including microRNA (miRNA) biogenesis. It affects distinct cell functions in different tissues and can have an impact on various pathological conditions. In the present study, we investigated the oncogenic functions of KHSRP and their underlying mechanisms in the pathogenesis of esophageal squamous cell carcinoma (ESCC). KHSRP expression levels were elevated in ESCC tumors when compared with those in non-tumorous tissues by immunohistochemistry, and cytoplasmic KHSRP overexpression was found to be an independent prognosticator for worse overall survival in a cohort of 104 patients with ESCC. KHSRP knockdown inhibited growth, migration, and invasion of ESCC cells. KHSRP knockdown also inhibited the maturation of cancer-associated miRNAs, such as miR-21, miR-130b, and miR-301, and induced the expression of their target mRNAs, such as BMP6, PDCD4, and TIMP3, resulting in the inhibition of epithelial-to-mesenchymal transition. Our findings uncover a novel oncogenic function of KHSRP in esophageal tumorigenesis and implicate its use as a marker for prognostic evaluation and as a putative therapeutic target in ESCC.

  2. Characterization of Microstructure and Texture of 13Cr4Ni Martensitic Stainless Steel Weld Before and After Tempering =

    NASA Astrophysics Data System (ADS)

    Mokhtabad Amrei, Mohsen

    13Cr4Ni martensitic stainless steels are known for their outstanding performances in the hydroelectric industry, where they are mainly used in the construction of turbine components. Considering the size and geometry of turbine runners and blades, multi-pass welding procedures are commonly used in the fabrication and repair of such turbines. The final microstructure and mechanical properties of the weld are sensitive to the welding process parameters and thermal history. In the case of 13Cr4Ni steel, the thermal cycles imposed by the multi-pass welding operation have significant effects on the complex weld microstructure. Additionally, post-weld heat treatments are commonly used to reduce weld heterogeneity and improve the material's mechanical properties by tempering the microstructure and by forming a "room-temperature-stable austenite." In the first phase of this research, the microstructures and crystallographic textures of aswelded single-pass and double-pass welds were studied as a basis to studying the more complex multi-pass weld microstructure. This study found that the maximum hardness is obtained in high temperature heat affected zone inside the base metal. In particular, the results showed that the heat cycle exposed by the second pass increases the hardness of the previous pass because it produces a finer martensite microstructure. In areas of heat affected zone, a tempering effect is reported from 3 up to 6 millimeters far from the fusion line. Finding austenite phase in these areas are matter of interest and it can be indicative of the microstructure complexity of multi-pass welds. In the second phase of research, the microstructure of multi-pass welds was found to be more heterogeneous than that of single- and double-pass welds. Any individual pass in a multi-pass weld consists of several regions formed by adjacent weld passes heat cycle. Results showed that former austenite grains modification occurred in areas close to the subsequent weld passes

  3. 13. VIEW OF CAUSEWAY, LOOKING EAST, PROFILING DETAILS OF RIGID ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. VIEW OF CAUSEWAY, LOOKING EAST, PROFILING DETAILS OF RIGID FRAME SPAN OVER CANAL STREET, AND SHOWING STEEL RIBS AND FLOOR BEANS ENCASED IN CONCRETE - Notre Dame Bridge, Spanning Merrimack River on Bridge Street, Manchester, Hillsborough County, NH

  4. 13. WESTERN VIEW OF INVERTED BASIC OXYGEN FURNACE No. 2 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. WESTERN VIEW OF INVERTED BASIC OXYGEN FURNACE No. 2 ON THE OPERATING FLOOR OF THE FURNACE AISLE IN THE BOP SHOP. - U.S. Steel Duquesne Works, Basic Oxygen Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  5. Castings, Steel, Homogenization of Steel Castings

    DTIC Science & Technology

    1942-12-05

    concerninr.. the ef- fe~ct of homogenizing herat-- treAment u-non the ballistic prop- erties -%f cLast steel armo--iercinr nrro jectilt:s. .arden.YD- 1 t...of hLmogenizing- treAments upon the3 corrosi;.A -.f quenched- Lr(- t c,-.rnered. c-.st steel. Harich, Riffin, -ri Bolotsk-2 .. ade two-bec-d weldahtil

  6. The steel scrap age.

    PubMed

    Pauliuk, Stefan; Milford, Rachel L; Müller, Daniel B; Allwood, Julian M

    2013-04-02

    Steel production accounts for 25% of industrial carbon emissions. Long-term forecasts of steel demand and scrap supply are needed to develop strategies for how the steel industry could respond to industrialization and urbanization in the developing world while simultaneously reducing its environmental impact, and in particular, its carbon footprint. We developed a dynamic stock model to estimate future final demand for steel and the available scrap for 10 world regions. Based on evidence from developed countries, we assumed that per capita in-use stocks will saturate eventually. We determined the response of the entire steel cycle to stock saturation, in particular the future split between primary and secondary steel production. During the 21st century, steel demand may peak in the developed world, China, the Middle East, Latin America, and India. As China completes its industrialization, global primary steel production may peak between 2020 and 2030 and decline thereafter. We developed a capacity model to show how extensive trade of finished steel could prolong the lifetime of the Chinese steelmaking assets. Secondary steel production will more than double by 2050, and it may surpass primary production between 2050 and 2060: the late 21st century can become the steel scrap age.

  7. Mechanisms of radiation embrittlement of VVER-1000 RPV steel at irradiation temperatures of (50-400)°C

    NASA Astrophysics Data System (ADS)

    Kuleshova, E. A.; Gurovich, B. A.; Bukina, Z. V.; Frolov, A. S.; Maltsev, D. A.; Krikun, E. V.; Zhurko, D. A.; Zhuchkov, G. M.

    2017-07-01

    This work summarizes and analyzes our recent research results on the effect of irradiation temperature within the range of (50-400)°C on microstructure and properties of 15Kh2NMFAA class 1 steel (VVER-1000 reactor pressure vessel (RPV) base metal). The paper considers the influence of accelerated irradiation with different temperature up to different fluences on the carbide and irradiation-induced phases, radiation defects, yield strength changes and critical brittleness temperature shift (ΔTK) as well as on changes of the fraction of brittle intergranular fracture and segregation processes in the steel. Low temperature irradiation resulted solely in formation of radiation defects - dislocation loops of high number density, the latter increased with increase in irradiation temperature while their size decreased. In this regard high embrittlement rate observed at low temperature irradiation is only due to the hardening mechanism of radiation embrittlement. Accelerated irradiation at VVER-1000 RPV operating temperature (∼300 °C) caused formation of radiation-induced precipitates and dislocation loops, as well as some increase in phosphorus grain boundary segregation. The observed ΔTK shift being within the regulatory curve for VVER-1000 RPV base metal is due to both hardening and non-hardening mechanisms of radiation embrittlement. Irradiation at elevated temperature caused more intense phosphorus grain boundary segregation, but no formation of radiation-induced precipitates or dislocation loops in contrast to irradiation at 300 °C. Carbide transformations observed only after irradiation at 400 °C caused increase in yield strength and, along with a contribution of the non-hardening mechanism, resulted in the lowest ΔTK shift in the studied range of irradiation temperature and fluence.

  8. Waterfowl exposure to lead and steel shot on selected hunting areas

    USGS Publications Warehouse

    White, D.H.; Stendell, R.C.

    1977-01-01

    Gizzards and wingbones from immature mallards (Anas platyrhynchos), pintails (Anas acuta), black ducks (A. rubripes), and Canada geese (Branta canadensis) were collected from 12 national and stat hunting are.as during the hunting season of 1974-75. The gizzards were examined for the occurrence of lead and steel shot and the wingbones were analyzed for lead residues. Incidence of lead shot in gizzards ranged from 1.3 percent in mallards from Monte Vista National Wildlife Refuge to 29 percent in pintails from Sauvie Island Wildlife Management Area. Lead in wingbones ranged from trace residues (<0.5 ppm) to 345 ppm. The incidence of steel shot in gizzards surpassed lead shot on some refuges that have had mandatory steel shot programs. There was a significant correlation between frequency of lead shot in gizzards and lead residues in wingbones.

  9. Recent developments in turning hardened steels - A review

    NASA Astrophysics Data System (ADS)

    Sivaraman, V.; Prakash, S.

    2017-05-01

    Hard materials ranging from HRC 45 - 68 such as hardened AISI H13, AISI 4340, AISI 52100, D2 STL, D3 STEEL Steel etc., need super hard tool materials to machine. Turning of these hard materials is termed as hard turning. Hard turning makes possible direct machining of the hard materials and also eliminates the lubricant requirement and thus favoring dry machining. Hard turning is a finish turning process and hence conventional grinding is not required. Development of the new advanced super hard tool materials such as ceramic inserts, Cubic Boron Nitride, Polycrystalline Cubic Boron Nitride etc. enabled the turning of these materials. PVD and CVD methods of coating have made easier the production of single and multi layered coated tool inserts. Coatings of TiN, TiAlN, TiC, Al2O3, AlCrN over cemented carbide inserts has lead to the machining of difficult to machine materials. Advancement in the process of hard machining paved way for better surface finish, long tool life, reduced tool wear, cutting force and cutting temperatures. Micro and Nano coated carbide inserts, nanocomposite coated PCBN inserts, micro and nano CBN coated carbide inserts and similar developments have made machining of hardened steels much easier and economical. In this paper, broad literature review on turning of hardened steels including optimizing process parameters, cooling requirements, different tool materials etc., are done.

  10. 13. Photocopy of engineering drawing (original drawing located in WWP ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. Photocopy of engineering drawing (original drawing located in WWP Building, Transmission Department, Spokane, Washington). DIMENSIONS AND DETAILS OF STEEL TOWERS, LITTLE FALLS TIE LINE. - Little Falls Tie Line Towers, Near Little Dam Falls on Spokane River, Wellpinit, Stevens County, WA

  11. Effect of heat treatment on the crystal structure of deformed samples of chromium-manganese steel

    NASA Astrophysics Data System (ADS)

    Chezganov, D. S.; Chikova, O. A.; Borovykh, M. A.

    2017-09-01

    Results of studying microstructures and the crystal structure of samples of 35KhGF steel (0.31-0.38 wt % C, 0.17-0.37 wt % Si, 0.95-1.25 wt % Mn, 1.0-1.3 wt % Cr, 0.06-0.12 wt % V, and the remainder was Fe) have been presented. The samples have been selected from hot-rolled pipes subjected to different heat treatments. A study has been carried out in order to explain the choice of the heat-treatment regime based on determining the structure-properties relationship that provides an increase in the corrosion resistance of pipes to the effect of hydrocarbons. Methods of the energy-dispersive X-ray spectroscopy (EDS) and electron backscatter diffraction (EBSD) have been used. In the microstructure of samples, oxide inclusions and discontinuities with sizes of 1-50 μm that presumably consist of the scale were detected. The ferrite grain size and the orientations of crystals were determined; the data on the local mechanical stresses in the Taylor orientation- factor maps were obtained. The grain refinement; the increase in the fraction of the low-angle boundaries; and the decrease in the local mechanical stresses and, therefore, the highest corrosion resistance to the effect of hydrocarbons is achieved by normalizing at 910°C.

  12. Abrasive Wear Resistance of Tool Steels Evaluated by the Pin-on-Disc Testing

    NASA Astrophysics Data System (ADS)

    Bressan, José Divo; Schopf, Roberto Alexandre

    2011-05-01

    Present work examines tool steels abrasion wear resistance and the abrasion mechanisms which are one main contributor to failure of tooling in metal forming industry. Tooling used in cutting and metal forming processes without lubrication fails due to this type of wear. In the workshop and engineering practice, it is common to relate wear resistance as function of material hardness only. However, there are others parameters which influences wear such as: fracture toughness, type of crystalline structure and the occurrence of hard precipitate in the metallic matrix and also its nature. In the present investigation, the wear mechanisms acting in tool steels were analyzed and, by normalized tests, wear resistance performance of nine different types of tool steels were evaluated by pin-on-disc testing. Conventional tool steels commonly used in tooling such as AISI H13 and AISI A2 were compared in relation to tool steels fabricated by sintering process such as Crucible CPM 3V, CPM 9V and M4 steels. Friction and wear testing were carried out in a pin-on-disc automated equipment which pin was tool steel and the counter-face was a abrasive disc of silicon carbide. Normal load of 5 N, sliding velocity of 0.45 m/s, total sliding distance of 3000 m and room temperature were employed. The wear rate was calculated by the Archard's equation and from the plotted graphs of pin cumulated volume loss versus sliding distance. Specimens were appropriately heat treated by quenching and three tempering cycles. Percentage of alloying elements, metallographic analyses of microstructure and Vickers microhardness of specimens were performed, analyzed and correlated with wear rate. The work is concluded by the presentation of a rank of tool steel wear rate, comparing the different tool steel abrasion wear resistance: the best tool steel wear resistance evaluated was the Crucible CPM 9V steel.

  13. Thermomechanical processing of microalloyed powder forged steels and a cast vanadium steel

    NASA Astrophysics Data System (ADS)

    Dogan, B.; Davies, T. J.

    1985-09-01

    The effects of controlled rolling on transformation behavior of two powder forged (P/F) microalloyed vanadium steels and a cast microalloyed vanadium steel were investigated. Rolling was carried out in the austenitic range below the recrystallization temperature. Equiaxed grain structures were produced in specimens subjected to different reductions and different cooling rates. The ferrite grain size decreased with increasing deformation and cooling rate. Ferrite nucleated on second phase particles, deformation bands, and on elongated prior austenite grain boundaries; consequently a high fractional ferrite refinement was achieved. Deformation raised the ferrite transformation start temperature while the time to transformation from the roll finish temperature decreased. Cooling rates in the cast steel were higher than in P/F steels for all four cooling media used, and the transformation start temperatures of cast steels were lower than that of P/F steel. Intragranular ferrite nucleation, which played a vital role in grain refinement, increased with cooling rate. Fully bainitic microstructures were formed at higher cooling rates in the cast steel. In the P/F steels inclusions and incompletely closed pores served as sites for ferrite nucleation, often forming a ‘secondary’ ferrite. The rolling schedule reduced the size of large pores and particle surface inclusions and removed interconnected porosity in the P/F steels.

  14. Superstrength of nanograined steel with nanoscale intermetallic precipitates transformed from shock-compressed martensitic steel

    PubMed Central

    Yu, Hailiang; Yan, Ming; Lu, Cheng; Tieu, Anh Kiet; Li, Huijun; Zhu, Qiang; Godbole, Ajit; Li, Jintao; Su, Lihong; Kong, Charlie

    2016-01-01

    An increasing number of industrial applications need superstrength steels. It is known that refined grains and nanoscale precipitates can increase strength. The hardest martensitic steel reported to date is C0.8 steel, whose nanohardness can reach 11.9 GPa through incremental interstitial solid solution strengthening. Here we report a nanograined (NG) steel dispersed with nanoscale precipitates which has an extraordinarily high hardness of 19.1 GPa. The NG steel (shock-compressed Armox 500T steel) was obtained under these conditions: high strain rate of 1.2 μs−1, high temperature rise rate of 600 Kμs−1 and high pressure of 17 GPa. The mean grain size achieved was 39 nm and reinforcing precipitates were indexed in the NG steel. The strength of the NG steel is expected to be ~3950 MPa. The discovery of the NG steel offers a general pathway for designing new advanced steel materials with exceptional hardness and excellent strength. PMID:27892460

  15. [Characteristic of Mercury Emissions and Mass Balance of the Typical Iron and Steel Industry].

    PubMed

    Zhang, Ya-hui; Zhang, Cheng; Wang, Ding-yong; Luo, Cheng-zhong; Yang, Xi; Xu, Feng

    2015-12-01

    To preliminarily discuss the mercury emission characteristics and its mass balance in each process of the iron and steel production, a typical iron and steel enterprise was chosen to study the total mercury in all employed materials and estimate the input and output of mercury during the steel production process. The results showed that the mercury concentrations of input materials in each technology ranged 2.93-159.11 µg · kg⁻¹ with the highest level observed in ore used in blast furnace, followed by coal of sintering and blast furnace. The mercury concentrations of output materials ranged 3.09-18.13 µg · kg⁻¹ and the mercury concentration of dust was the highest, followed by converter slag. The mercury input and the output in the coking plant were 1346.74 g · d⁻¹ ± 36.95 g · d⁻¹ and 177.42 g · d⁻¹ ± 13.73 g · d⁻¹, respectively. In coking process, mercury mainly came from the burning of coking coal. The sintering process was the biggest contributor for mercury input during the iron and steel production with the mercury input of 1075. 27 g · d⁻¹ ± 60.89 g · d⁻¹ accounting for 68.06% of the total mercury input during this production process, and the ore powder was considered as the main mercury source. For the solid output material, the output in the sintering process was 14.15 g · d⁻¹ ± 0.38 g · d⁻¹, accounting for 22.61% of the total solid output. The mercury emission amount from this studied iron and steel enterprise was estimated to be 553.83 kg in 2013 with the emission factor of 0.092 g · t⁻¹ steel production. Thus, to control the mercury emissions, iron and steel enterprises should combine with production practice, further reduce energy consumption of coking and sintering, or improve the quality of raw materials and reduce the input of mercury.

  16. 13. INTERIOR OF ENGINE ROOM, CONTAINING MESTACORLISS CROSSCOMPOUND ENGINE, FOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. INTERIOR OF ENGINE ROOM, CONTAINING MESTA-CORLISS CROSS-COMPOUND ENGINE, FOR 40" BLOOMING MILL. THIS VIEW HIGHLIGHTS THE CRANK AND 24' DIAMETER FLYWHEEL. - Republic Iron & Steel Company, Youngstown Works, Blooming Mill & Blooming Mill Engines, North of Poland Avenue, Youngstown, Mahoning County, OH

  17. The Arabidopsis KH-Domain RNA-Binding Protein ESR1 Functions in Components of Jasmonate Signalling, Unlinking Growth Restraint and Resistance to Stress

    PubMed Central

    Thatcher, Louise F.; Kamphuis, Lars G.; Hane, James K.; Oñate-Sánchez, Luis; Singh, Karam B.

    2015-01-01

    Glutathione S-transferases (GSTs) play important roles in the protection of cells against toxins and oxidative damage where one Arabidopsis member, GSTF8, has become a commonly used marker gene for early stress and defense responses. A GSTF8 promoter fragment fused to the luciferase reporter gene was used in a forward genetic screen for Arabidopsis mutants with up-regulated GSTF8 promoter activity. This identified the esr1-1 (enhanced stress response 1) mutant which also conferred increased resistance to the fungal pathogen Fusarium oxysporum. Through positional cloning, the ESR1 gene was found to encode a KH-domain containing RNA-binding protein (At5g53060). Whole transcriptome sequencing of esr1-1 identified altered expression of genes involved in responses to biotic and abiotic stimuli, hormone signaling pathways and developmental processes. In particular was an overall significant enrichment for jasmonic acid (JA) mediated processes in the esr1-1 down-regulated dataset. A subset of these genes were tested for MeJA inducibility and we found the expression of some but not all were reduced in esr1-1. The esr1-1 mutant was not impaired in other aspects of JA-signalling such as JA- sensitivity or development, suggesting ESR1 functions in specific components of the JA-signaling pathway. Examination of salicylic acid (SA) regulated marker genes in esr1-1 showed no increase in basal or SA induced expression suggesting repression of JA-regulated genes is not due to antagonistic SA-JA crosstalk. These results define new roles for KH-domain containing proteins with ESR1 unlinking JA-mediated growth and defense responses. PMID:25985302

  18. The Arabidopsis KH-Domain RNA-Binding Protein ESR1 Functions in Components of Jasmonate Signalling, Unlinking Growth Restraint and Resistance to Stress.

    PubMed

    Thatcher, Louise F; Kamphuis, Lars G; Hane, James K; Oñate-Sánchez, Luis; Singh, Karam B

    2015-01-01

    Glutathione S-transferases (GSTs) play important roles in the protection of cells against toxins and oxidative damage where one Arabidopsis member, GSTF8, has become a commonly used marker gene for early stress and defense responses. A GSTF8 promoter fragment fused to the luciferase reporter gene was used in a forward genetic screen for Arabidopsis mutants with up-regulated GSTF8 promoter activity. This identified the esr1-1 (enhanced stress response 1) mutant which also conferred increased resistance to the fungal pathogen Fusarium oxysporum. Through positional cloning, the ESR1 gene was found to encode a KH-domain containing RNA-binding protein (At5g53060). Whole transcriptome sequencing of esr1-1 identified altered expression of genes involved in responses to biotic and abiotic stimuli, hormone signaling pathways and developmental processes. In particular was an overall significant enrichment for jasmonic acid (JA) mediated processes in the esr1-1 down-regulated dataset. A subset of these genes were tested for MeJA inducibility and we found the expression of some but not all were reduced in esr1-1. The esr1-1 mutant was not impaired in other aspects of JA-signalling such as JA- sensitivity or development, suggesting ESR1 functions in specific components of the JA-signaling pathway. Examination of salicylic acid (SA) regulated marker genes in esr1-1 showed no increase in basal or SA induced expression suggesting repression of JA-regulated genes is not due to antagonistic SA-JA crosstalk. These results define new roles for KH-domain containing proteins with ESR1 unlinking JA-mediated growth and defense responses.

  19. Investigation of the structure and properties of titanium-stainless steel permanent joints obtained by laser welding with the use of intermediate inserts and nanopowders

    NASA Astrophysics Data System (ADS)

    Cherepanov, A. N.; Orishich, A. M.; Pugacheva, N. B.; Shapeev, V. P.

    2015-03-01

    Results of an experimental study of the structure, the phase composition, and the mechanical properties of laser-welded joints of 3-mm thick titanium and 12Kh18N10T steel sheets obtained with the use of intermediate inserts and nanopowdered modifying additives are reported. It is shown that that such parameters as the speed of welding, the radiation power, and the laser-beam focal spot position all exert a substantial influence on the welding-bath process and on the seam structure formed. In terms of chemical composition, most uniform seams with the best mechanical strength are formed at a 1-m/min traverse speed of laser and 2.35-kW laser power, with the focus having been positioned at the lower surface of the sheets. Under all other conditions being identical, uplift of the focus to workpiece surface or to a higher position results in unsteady steel melting, in a decreased depth and reduced degree of the diffusion-induced mixing of elements, and in an interpolate connection formed according to the soldering mechanism in the root portion of the seam. The seam material is an over-saturated copper-based solid solution of alloying elements with homogeneously distributed intermetallic disperse particles (Ti(Fe, Cr)2 and TiCu3) contained in this alloy. Brittle fracture areas exhibiting cleavage and quasi-cleavage facets correspond to coarse Ti(Fe, Cr)2 intermetallic particles or to diffusion zones primarily occurring at the interface with the titanium alloy. The reported data and the conclusions drawn from the numerical calculations of the thermophysical processes of welding of 3-mm thick titanium and steel sheets through an intermediate copper insert are in qualitative agreement with the experimental data. The latter agreement points to adequacy of the numerical description of the melting processes of contacting materials versus welding conditions and focal-spot position in the system.

  20. Articles comprising ferritic stainless steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rakowski, James M.

    An article of manufacture comprises a ferritic stainless steel that includes a near-surface region depleted of silicon relative to a remainder of the ferritic stainless steel. The article has a reduced tendency to form an electrically resistive silica layer including silicon derived from the steel when the article is subjected to high temperature oxidizing conditions. The ferritic stainless steel is selected from the group comprising AISI Type 430 stainless steel, AISI Type 439 stainless steel, AISI Type 441 stainless steel, AISI Type 444 stainless steel, and E-BRITE.RTM. alloy, also known as UNS 44627 stainless steel. In certain embodiments, the articlemore » of manufacture is a fuel cell interconnect for a solid oxide fuel cell.« less

  1. Gas metal arc weldability of 1.5 GPa grade martensitic steels

    NASA Astrophysics Data System (ADS)

    Hwang, Insung; Yun, Hyeonsang; Kim, Dongcheol; Kang, Munjin; Kim, Young-Min

    2018-01-01

    The gas metal arc weldability of 1.5 GPa grade martensitic (MART) steel was evaluated using both inverter direct current (DC) and DC pulse power type welders, under conditions of different welding currents, welding speeds, and shielding gasses. By investigating the bead appearance, tensile strength, and arc stability, it was determined that DC pulse power is better than inverter DC power for arc welding of 1.3 mm thick 1.5 GPa grade MART steel. Further, from the results of the weldability for various shielding gases, it was determined that mixed shielding gas is more effective for welding 1.5 GPa grade MART steel than is pure inert gas (Ar) or active (CO2) gas. In the case of pure shielding gas, no sound bead was formed under any conditions. However, when the mixed shielding gas was used, sound and fine beads were obtained.

  2. 78 FR 19734 - Diffusion-Annealed, Nickel-Plated Steel Flat-Rolled Products From Japan; Institution of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-02

    ..., by reason of imports from Japan of diffusion-annealed, nickel-plated steel flat-rolled products... 45 days, or in this case by May 13, 2013. The Commission's views are due at Commerce within five.... Lisa R. Barton, Acting Secretary to the Commission. [FR Doc. 2013-07584 Filed 4-1-13; 8:45 am] BILLING...

  3. Prediction of Continuous Cooling Transformation Diagrams for Dual-Phase Steels from the Intercritical Region

    NASA Astrophysics Data System (ADS)

    Colla, V.; Desanctis, M.; Dimatteo, A.; Lovicu, G.; Valentini, R.

    2011-09-01

    The purpose of the present work is the implementation and validation of a model able to predict the microstructure changes and the mechanical properties in the modern high-strength dual-phase steels after the continuous annealing process line (CAPL) and galvanizing (Galv) process. Experimental continuous cooling transformation (CCT) diagrams for 13 differently alloying dual-phase steels were measured by dilatometry from the intercritical range and were used to tune the parameters of the microstructural prediction module of the model. Mechanical properties and microstructural features were measured for more than 400 dual-phase steels simulating the CAPL and Galv industrial process, and the results were used to construct the mechanical model that predicts mechanical properties from microstructural features, chemistry, and process parameters. The model was validated and proved its efficiency in reproducing the transformation kinetic and mechanical properties of dual-phase steels produced by typical industrial process. Although it is limited to the dual-phase grades and chemical compositions explored, this model will constitute a useful tool for the steel industry.

  4. Methods of forming steel

    DOEpatents

    Branagan, Daniel J.; Burch, Joseph V.

    2001-01-01

    In one aspect, the invention encompasses a method of forming a steel. A metallic glass is formed and at least a portion of the glass is converted to a crystalline steel material having a nanocrystalline scale grain size. In another aspect, the invention encompasses another method of forming a steel. A molten alloy is formed and cooled the alloy at a rate which forms a metallic glass. The metallic glass is devitrified to convert the glass to a crystalline steel material having a nanocrystalline scale grain size. In yet another aspect, the invention encompasses another method of forming a steel. A first metallic glass steel substrate is provided, and a molten alloy is formed over the first metallic glass steel substrate to heat and devitrify at least some of the underlying metallic glass of the substrate.

  5. Effects of mechanical strain amplitude on the isothermal fatigue behavior of H13

    NASA Astrophysics Data System (ADS)

    Zeng, Yan; Zuo, Peng-peng; Wu, Xiao-chun; Xia, Shu-wen

    2017-09-01

    Isothermal fatigue (IF) tests were performed on H13 tool steel subjected to three different mechanical strain amplitudes at a constant temperature to determine the effects of mechanical strain amplitude on the microstructure of the steel samples. The samples' extent of damage after IF tests was compared by observation of their cracks and calculation of their damage parameters. Optical microscopy (OM) and scanning electron microscopy (SEM) were used to observe the microstructure of the samples. Cracks were observed to initiate at the surface because the strains and stresses there were the largest during thermal cycling. Mechanical strain accelerated the damage and softening of the steel. A larger mechanical strain caused greater deformation of the steel, which made the precipitated carbides easier to gather and grow along the deformation direction, possibly resulting in softening of the material or the initiation of cracks.

  6. Effects of High Power Lasers, Number 5, September 1974 - February 1975

    DTIC Science & Technology

    1975-05-01

    EOM J AiO FG1V FiKhOM F-KhMM FMiM FTP FTT FZh GiA GiK IAN Arm D\\.N Az SOURCE AB13Ri:viATIONS Avtomatika i tclcmekhanika Acta physica ... polonica Akadcniya nauk Armyanskoy SSR. Doklady Akadcrniya nauk Azerbaydzhanskoy SSR. Doklady Akadcrniya nauk Belorusskoy SSR. Doklady Ak

  7. Effects of process variables in decarburization annealing of Fe-3%Si-0.3%C steel sheet on textures and magnetic properties

    NASA Astrophysics Data System (ADS)

    Park, Se Min; Koo, Yang Mo; Shim, Byoung Yul; Lee, Dong Nyung

    2017-01-01

    In Fe-3%Si-0.3%C steel sheet, a relatively strong <100>//ND texture can evolve in the surface layer through the α→γ→α phase transformation in relatively low vacuum (4 Pa) for an annealing time of 10 min and at a cooling rate of 20 K/s. Oxidation of the steel sheet surface prevents the evolution of the <100>//ND texture. However, vacuum-annealing under a vacuum pressure of 1.3×10-3 Pa causes decarburization of the steel sheet, which suppresses oxidation of the steel sheet surface, and subsequent annealing in wet hydrogen of 363 K in dew points causes a columnar grain structure with the <100>//ND texture. After the two-step-annealing (the vacuum annealing under a vacuum pressure of 1.3×10-3 Pa and subsequent decarburizing annealing in wet hydrogen of 363 K in dew points), the decarburized steel sheet exhibits good soft magnetic properties in NO with 3%Si, W15/50 (core loss at 1.5T and 50 Hz) = 2.47 W/kg and B50 (magnetic flux density at 5000 A/m) = 1.71 T.

  8. Steel Industry Analysis Brief

    EIA Publications

    2009-01-01

    The steel industry is critical to the U.S. economy. Steel is the material of choice for many elements of construction, transportation, manufacturing, and a variety of consumer products. It is the backbone of bridges, skyscrapers, railroads, automobiles, and appliances. Most grades of steel used today - particularly high-strength steels that are lighter and more versatile - were not available a decade ago.

  9. Supertough Stainless Bearing Steel

    NASA Technical Reports Server (NTRS)

    Olson, Gregory B.

    1995-01-01

    Composition and processing of supertough stainless bearing steel designed with help of computer-aided thermodynamic modeling. Fracture toughness and hardness of steel exceeds those of other bearing steels like 440C stainless bearing steel. Developed for service in fuel and oxidizer turbopumps on Space Shuttle main engine. Because of strength and toughness, also proves useful in other applications like gears and surgical knives.

  10. [Factors influencing electrocardiogram results in workers exposed to noise in steel-making and steel-rolling workshops of an iron and steel plant].

    PubMed

    Li, Y H; Yu, S F; Gu, G Z; Chen, G S; Zhou, W H; Wu, H; Jiao, J

    2016-02-20

    To investigate the factors influencing the electrocardiogram results in the workers exposed to noise in steel-making and steel rolling workshops of an iron and steel plant. From September to December, 2013, cluster sampling was used to select 3 150 workers exposed to noise in the steel-making and steel-rolling workshops of an iron and steel plant, and a questionnaire survey and physical examinations were performed. The number of valid workers was 2 915, consisting of 1 606 workers in the steel-rolling workshop and 1 309 in the steel-making workshop. The electrocardiogram results of the workers in steel-making and steel-rolling workshops were analyzed. The overall abnormal rate of electrocardiogram was 26.35%, and the workers in the steel-making workshop had a significantly higher abnormal rate of electrocardiogram than those in the steel-rolling workshop(32.24% vs 21.54%, P<0.05). Male workers had a significantly higher abnormal rate of electrocardiogram than female workers(27.59% vs 18.61%, P<0.05). The workers with a drinking habit had a significantly higher abnormal rate of electrocardiogram than those who did not drink(28.17% vs 23.75%, P<0.05). The workers exposed to high temperature had a significantly higher abnormal rate of electrocardiogram than those who were not exposed to high temperature(29.43% vs 20.14%, P<0.05). The abnormal rates of electrocardiogram in the workers with cumulative noise exposure levels of <90, 90~94, 95~99, 100~104, and 105~113 dB(A)·year were 21.21%, 21.76%, 26.50%, 27.27%, and 32.16%, respectively, with significant differences between any two groups(P<0.05). The multivariate logistic regression analysis showed that a cumulative noise exposure of 105-113 dB(A)·year(OR=1.36, 95% CI: 1.03~1.80), a drinking habit(OR=1.20, 95% CI: 1.01~1.43), and high temperature(OR=1.60, 95% CI: 1.32~1.92) were the risk factors for abnormal electrocardiogram results. High cumulative noise exposure, alcohol consumption, and high temperature may

  11. Thermal tests of large recirculation cooling installations for nuclear power plants

    NASA Astrophysics Data System (ADS)

    Balunov, B. F.; Lychakov, V. D.; Il'in, V. A.; Shcheglov, A. A.; Maslov, O. P.; Rasskazova, N. A.; Rakhimov, R. Z.; Boyarov, R. A.

    2017-11-01

    The article presents the results from thermal tests of some recirculation installations for cooling air in nuclear power plant premises, including the volume under the containment. The cooling effect in such installations is produced by pumping water through their heat-transfer tubes. Air from the cooled room is blown by a fan through a bundle of transversely finned tubes and is removed to the same room after having been cooled. The finning of tubes used in the tested installations was made of Grade 08Kh18N10T and Grade 08Kh18N10 stainless steels or Grade AD1 aluminum. Steel fins were attached to the tube over their entire length by means of high-frequency welding. Aluminum fins were extruded on a lathe from the external tube sheath into which a steel tube had preliminarily been placed. Although the fin extrusion operation was accompanied by pressing the sheath inner part to the steel tube, tight contact between them over the entire surface was not fully achieved. In view of this, the air gap's thermal resistance coefficient was introduced in calculating the heat transfer between the heat-transferring media. The air gap average thickness was determined from the test results taking into account the gap variation with temperature due to different linear expansion coefficients of steel and aluminum. These tests, which are part of the acceptance tests of the considered installations, were carried out at the NPO TsKTI test facility and were mainly aimed at checking if the obtained thermal characteristics were consistent with the values calculated according to the standard recommendations with introduction, if necessary, of modifications to those recommendations.

  12. Antimicrobial Particulate Silver Coatings on Stainless Steel Implants for Fracture Management.

    PubMed

    Devasconcellos, Paul; Bose, Susmita; Beyenal, Haluk; Bandyopadhyay, Amit; Zirkle, Lewis G

    2012-07-01

    We have used particulate silver coating on stainless steel to prevent in vivo bacterial infection. Stainless steel is commonly used as an implant material for fracture management. The antimicrobial use of silver has been well documented and studied, therefore the novelty of this research is the use of a particulate coating as well as facing the real world challenges of a fracture repair implant. The variable parameters for applying the coating were time of deposition, silver solution concentration, voltage applied, heat treatment temperature between 400 to 500 °C and time. The resultant coating is shown to be non-toxic to human osteoblasts using an MTT assay for proliferation and SEM images for morphology. In vitro silver release studies of various treatments were done using simulated body fluid. The bactericidal effects were tested by challenging the coatings with P. aeruginosa in a bioreactor and compared against uncoated stainless steel. A 13-fold reduction in bacteria was observed at 24 hours and proved to be statistically significant.

  13. Effect of elastic excitations on the surface structure of hadfield steel under friction

    NASA Astrophysics Data System (ADS)

    Kolubaev, A. V.; Ivanov, Yu. F.; Sizova, O. V.; Kolubaev, E. A.; Aleshina, E. A.; Gromov, V. E.

    2008-02-01

    The structure of the Hadfield steel (H13) surface layer forming under dry friction is examined. The deformation of the material under the friction surface is studied at a low slip velocity and a low pressure (much smaller than the yields stress of H13 steel). The phase composition and defect substructure on the friction surface are studied using scanning, optical, and diffraction electron microscopy methods. It is shown that a thin highly deformed nanocrystalline layer arises near the friction surface that transforms into a polycrystalline layer containing deformation twins and dislocations. The nanocrystalline structure and the presence of oxides in the surface layer and friction zone indicate a high temperature and high plastic strains responsible for the formation of the layer. It is suggested that the deformation of the material observed far from the surface is due to elastic wave generation at friction.

  14. 7. TYPICAL INTERIOR AND BOTTOM OF EMPTY 14.5FOOTDIAMETER RIVETED STEEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. TYPICAL INTERIOR AND BOTTOM OF EMPTY 14.5-FOOT-DIAMETER RIVETED STEEL SOAP KETTLE, WITH STEAM COILS; VIEW DOWN FROM KETTLE TOP, FIFTH FLOOR, EAST BAY, THIRD KETTLE FROM SOUTH - Colgate & Company Jersey City Plant, Building No. B-13, 48-50 Grand Street, Jersey City, Hudson County, NJ

  15. Mechanism of generation of large (Ti,Nb,V)(C,N)-type precipitates in H13 + Nb tool steel

    NASA Astrophysics Data System (ADS)

    Xie, You; Cheng, Guo-guang; Chen, Lie; Zhang, Yan-dong; Yan, Qing-zhong

    2016-11-01

    The characteristics and generation mechanism of (Ti,Nb,V)(C,N) precipitates larger than 2 μm in Nb-containing H13 bar steel were studied. The results show that two types of (Ti,Nb,V)(C,N) phases exist—a Ti-V-rich one and an Nb-rich one—in the form of single or complex precipitates. The sizes of the single Ti-V-rich (Ti,Nb,V)(C,N) precipitates are mostly within 5 to 10 μm, whereas the sizes of the single Nb-rich precipitates are mostly 2-5 μm. The complex precipitates are larger and contain an inner Ti-V-rich layer and an outer Nb-rich layer. The compositional distribution of (Ti,Nb,V)(C,N) is concentrated. The average composition of the single Ti-V-rich phase is (Ti0.511V0.356Nb0.133)(C x N y ), whereas that for the single Nb-rich phase is (Ti0.061V0.263Nb0.676)(C x N y ). The calculation results based on the Scheil-Gulliver model in the Thermo-Calc software combining with the thermal stability experiments show that the large phases precipitate during the solidification process. With the development of solidification, the Ti-V-rich phase precipitates first and becomes homogeneous during the subsequent temperature reduction and heat treatment processes. The Nb-rich phase appears later.

  16. Ultrasound Velocity Measurements in High-Chromium Steel Under Plastic Deformation

    NASA Astrophysics Data System (ADS)

    Lunev, Aleksey; Bochkareva, Anna; Barannikova, Svetlana; Zuev, Lev

    2016-04-01

    In the present study, the variation of the propagation velocity of ultrasound in the plastic deformation of corrosion-resistant high-chromium steel 40X13 with ferrite-carbide (delivery status), martensitic (quenched) and sorbitol (after high-temperature tempering) structures have beem studied/ It is found that each state shows its view of the loading curve. In the delivery state diagram loading is substantially parabolic throughout, while in the martensitic state contains only linear strain hardening step and in the sorbitol state the plastic flow curve is three-step. The velocity of ultrasonic surface waves (Rayleigh waves) was measured simultaneously with the registration of the loading curve in the investigated steel in tension. It is shown that the dependence of the velocity of ultrasound in active loading is determined by the law of plastic flow, that is, the staging of the corresponding diagram of loading. Structural state of the investigated steel is not only changing the type of the deformation curve under uniaxial tension, but also changes the nature of ultrasound speed of deformation.

  17. Flux effect analysis in WWER-440 reactor pressure vessel steels

    NASA Astrophysics Data System (ADS)

    Kryukov, A.; Blagoeva, D.; Debarberis, L.

    2013-11-01

    The results of long term research programme concerning the determination of irradiation embrittlement dependence on fast neutron flux for WWER-440 reactor pressure vessel steels before and after annealing are presented in this paper. The study of flux effect was carried out on commercial WWER-440 steels which differ significantly in phosphorous (0.013-0.036 wt%) and copper (0.08-0.20 wt%) contents. All specimens were irradiated in surveillance channel positions under similar conditions at high ˜4 × 1012 сm-2 s-1 and low ˜6 × 1011 сm-2 s-1 fluxes (E > 0.5 MeV) at a temperature of 270 °С. The radiation embrittlement was evaluated by transition temperature shift on the basis of Charpy specimens test results. In case of low flux, the measured Tk shifts could be 25-50 °C bigger than the Tk shifts obtained from high flux data. A significant flux effect is observed in WWER-440 reactor pressure vessel steels with higher copper content (>0.13 wt%).

  18. View northwest, wharf A, sheet steel bulkhead, steel lift tower ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View northwest, wharf A, sheet steel bulkhead, steel lift tower - U.S. Coast Guard Sandy Hook Station, Western Docking Structure, West of intersection of Canfield Road & Hartshorne Drive, Highlands, Monmouth County, NJ

  19. Absence of External Electric-Field Effects on Transformations in Steels

    DTIC Science & Technology

    1991-10-01

    12 2. Approximate CCT diagram for the high nickel composition used in the present measurements ...................................... 13 3...Main features of CCT diagram for 02 tool steel ........................ 14 4. DTA and THA data for the 3569C isothermal bainite transformation with...on the continuous-cooling-transformation ( CCT ) diagram obtained by examining transfor- mations in a 3.0 weight percent (wt.%) nickel specimen at

  20. Process for dezincing galvanized steel

    DOEpatents

    Morgan, W.A.; Dudek, F.J.; Daniels, E.J.

    1998-07-14

    A process is described for removing zinc from galvanized steel. The galvanized steel is immersed in an electrolyte containing at least about 15% by weight of sodium or potassium hydroxide and having a temperature of at least about 75 C and the zinc is galvanically corroded from the surface of the galvanized steel. The material serving as the cathode is principally a material having a standard electrode potential which is intermediate of the standard electrode potentials of zinc and cadmium in the electrochemical series. The corrosion rate may be accelerated by (1) increasing the number density of corrosion sites in the galvanized steel by mechanically abrading or deforming the galvanized steel, (2) heating the galvanized steel to form an alloy of zinc on the surface of the galvanized steel, (3) mixing the galvanized steel with a material having a standard electrode potential which is intermediate of the standard electrode potentials of zinc and cadmium in the electrochemical series, or (4) moving the galvanized steel relative to itself and to the electrolyte while immersed in the electrolyte. 1 fig.

  1. Process for dezincing galvanized steel

    DOEpatents

    Morgan, William A.; Dudek, Frederick J.; Daniels, Edward J.

    1998-01-01

    A process for removing zinc from galvanized steel. The galvanized steel is immersed in an electrolyte containing at least about 15% by weight of sodium or potassium hydroxide and having a temperature of at least about 75.degree. C. and the zinc is galvanically corroded from the surface of the galvanized steel. The material serving as the cathode is principally a material having a standard electrode potential which is intermediate of the standard electrode potentials of zinc and cadmium in the electrochemical series. The corrosion rate may be accelerated by (i) increasing the number density of corrosion sites in the galvanized steel by mechanically abrading or deforming the galvanized steel, (ii) heating the galvanized steel to form an alloy of zinc on the surface of the galvanized steel, (iii) mixing the galvanized steel with a material having a standard electrode potential which is intermediate of the standard electrode potentials of zinc and cadmium in the electrochemical series, or (iv) moving the galvanized steel relative to itself and to the electrolyte while immersed in the electrolyte.

  2. Assessment of biological chromium among stainless steel and mild steel welders in relation to welding processes.

    PubMed

    Edmé, J L; Shirali, P; Mereau, M; Sobaszek, A; Boulenguez, C; Diebold, F; Haguenoer, J M

    1997-01-01

    Air and biological monitoring were used for assessing external and internal chromium exposure among 116 stainless steel welders (SS welders) using manual metal arc (MMA), metal inert gas (MIG) and tungsten inert gas (TIG) welding processes (MMA: n = 57; MIG: n = 37; TIG: n = 22) and 30 mild steel welders (MS welders) using MMA and MIG welding processes (MMA: n = 14; MIG: n = 16). The levels of atmospheric total chromium were evaluated after personal air monitoring. The mean values for the different groups of SS welders were 201 micrograms/m3 (MMA) and 185 micrograms/m3 (MIG), 52 micrograms/m3 (TIG) and for MS welders 8.1 micrograms/m3 (MMA) and 7.3 micrograms/m3 (MIG). The curve of cumulative frequency distribution from biological monitoring among SS welders showed chromium geometric mean concentrations in whole blood of 3.6 micrograms/l (95th percentile = 19.9), in plasma of 3.3 micrograms/l (95th percentile = 21.0) and in urine samples of 6.2 micrograms/l (95th percentile = 58.0). Among MS welders, mean values in whole blood and plasma were rather more scattered (1.8 micrograms/l, 95th percentile = 9.3 and 1.3 micrograms/l, 95th percentile = 8.4, respectively) and in urine the value was 2.4 micrograms/l (95th percentile = 13.3). The analysis of variance of chromium concentrations in plasma previously showed a metal effect (F = 29.7, P < 0.001), a process effect (F = 22.2, P < 0.0001) but no metal-process interaction (F = 1.3, P = 0.25). Concerning urinary chromium concentration, the analysis of variance also showed a metal effect (F = 30, P < 0.0001), a process effect (F = 72, P < 0.0001) as well as a metal-process interaction (F = 13.2, P = 0.0004). Throughout the study we noted any significant differences between smokers and non-smokers among welders. Taking in account the relationships between chromium concentrations in whole, plasma or urine and the different welding process. MMA-SS is definitely different from other processes because the biological values

  3. Finite element simulation and experimental verification of steel cord extraction of steel cord conveyor belt splice

    NASA Astrophysics Data System (ADS)

    Li, X. G.; Long, X. Y.; Jiang, H. Q.; Long, H. B.

    2018-05-01

    The splice is the weakest part of the entire steel cord conveyor belt. And it occurs steel cord twitch fault frequently. If this fault cannot be dealt with timely and accurately, broken belt accidents would be occurred that affecting the safety of production seriously. In this paper, we investigate the steel cord pullout of the steel cord conveyor belt splice by using ABAQUS software. We selected the strength of steel cord conveyor belt ST630, the same as experiment sample in type specification. The finite element model consists of rubber, steel cord and failure unit. And the failure unit is used to simulate the bonding relationship between the steel cord and the rubber. Mooney-Rivlin hyper-elastic model for rubber was employed in the numerical simulations. The pullout force of length 50.0 mm single steel cord, on both sides of a single steel cord and on both sides of the double steel cords each impacted at steel cord conveyor belt splice were numerically computer and typical results obtained have been validated by experimental result. It shows that the relative error between simulation results and experimental results is within 10% and can be considered that the simulation model is reliable. A new method is provided for studying the steel cord twitch fault of the steel cord conveyor belt splice.

  4. Comparison of surface roughness and chip characteristics obtained under different modes of lubrication during hard turning of AISI H13 tool work steel.

    NASA Astrophysics Data System (ADS)

    Raj, Anil; Wins, K. Leo Dev; Varadarajan, A. S.

    2016-09-01

    Surface roughness is one of the important parameters, which not only affects the service life of a component but also serves as a good index of machinability. Near Dry Machining, methods (NDM) are considered as sustainable alternative for workshops trying to bring down their dependence on cutting fluids and the hazards associated with their indiscriminate usage. The present work presents a comparison of the surface roughness and chip characteristics during hard turning of AISI H13 tool work steel using hard metal inserts under two popular NDM techniques namely the minimal fluid application and the Minimum Quantity Lubrication technique(MQL) using an experiment designed based on Taguchi's techniques. The statistical method of analysis of variance (ANOVA) was used to determine the relative significance of input parameters consisting of cutting speed, feed and depth of cut on the attainable surface finish and the chip characteristics. It was observed that the performance during minimal fluid application was better than that during MQL application.

  5. Steel-reinforced concrete-filled steel tubular columns under axial and lateral cyclic loading

    NASA Astrophysics Data System (ADS)

    Farajpourbonab, Ebrahim; Kute, Sunil Y.; Inamdar, Vilas M.

    2018-03-01

    SRCFT columns are formed by inserting a steel section into a concrete-filled steel tube. These types of columns are named steel-reinforced concrete-filled steel tubular (SRCFT) columns. The current study aims at investigating the various types of reinforcing steel section to improve the strength and hysteresis behavior of SRCFT columns under axial and lateral cyclic loading. To attain this objective, a numerical study has been conducted on a series of composite columns. First, FEM procedure has been verified by the use of available experimental studies. Next, eight composite columns having different types of cross sections were analyzed. For comparison purpose, the base model was a CFT column used as a benchmark specimen. Nevertheless, the other specimens were SRCFT types. The results indicate that reinforcement of a CFT column through this method leads to enhancement in load-carrying capacity, enhancement in lateral drift ratio, ductility, preventing of local buckling in steel shell, and enhancement in energy absorption capacity. Under cyclic displacement history, it was observed that the use of cross-shaped reinforcing steel section causes a higher level of energy dissipation and the moment of inertia of the reinforcing steel sections was found to be the most significant parameter affecting the hysteresis behavior of SRCFT columns.

  6. Structural Amorphous Steels

    NASA Astrophysics Data System (ADS)

    Lu, Z. P.; Liu, C. T.; Thompson, J. R.; Porter, W. D.

    2004-06-01

    Recent advancement in bulk metallic glasses, whose properties are usually superior to their crystalline counterparts, has stimulated great interest in fabricating bulk amorphous steels. While a great deal of effort has been devoted to this field, the fabrication of structural amorphous steels with large cross sections has remained an alchemist’s dream because of the limited glass-forming ability (GFA) of these materials. Here we report the discovery of structural amorphous steels that can be cast into glasses with large cross-section sizes using conventional drop-casting methods. These new steels showed interesting physical, magnetic, and mechanical properties, along with high thermal stability. The underlying mechanisms for the superior GFA of these materials are discussed.

  7. Enhanced humification by carbonated basic oxygen furnace steel slag--I. Characterization of humic-like acids produced from humic precursors.

    PubMed

    Qi, Guangxia; Yue, Dongbei; Fukushima, Masami; Fukuchi, Shigeki; Nie, Yongfeng

    2012-01-01

    Carbonated basic oxygen furnace steel slag (hereinafter referred to as "steel slag") is generated during iron and steel manufacturing and is often classified as waste. The effect of steel slag on humification process was investigated. Catechol, glycine and glucose were used as model humic precursors from degraded biowastes. To verify that humification occurred in the system, humic-like acids (HLAs) were isolated and characterized structurally by elemental analysis, FTIR spectra, solid-state CP-MAS (13)C NMR spectra, and TMAH-Py-GC/MS. Characteristics of the steel slag-HLA were compared with those of HLAs formed in the presence of zeolite and birnessite, and with that of mature compost humic acid. The results showed that steel slag-HLA, like zeolite- and birnessite-HLA, is complex organic material containing prominent aromatic structures. Steel slag substantially accelerated the humification process, which would be highly significant for accelerating the stabilization of biowastes during composting (e.g. municipal solid waste, sewage sludge, and food waste). Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. An intermetallic forming steel under radiation for nuclear applications

    NASA Astrophysics Data System (ADS)

    Hofer, C.; Stergar, E.; Maloy, S. A.; Wang, Y. Q.; Hosemann, P.

    2015-03-01

    In this work we investigated the formation and stability of intermetallics formed in a maraging steel PH 13-8 Mo under proton radiation up to 2 dpa utilizing nanoindentation, microcompression testing and atom probe tomography. A comprehensive discussion analyzing the findings utilizing rate theory is introduced, comparing the aging process to radiation induced diffusion. New findings of radiation induced segregation of undersize solute atoms (Si) towards the precipitates are considered.

  9. Industrial Test of High Strength Steel Plates Free Boron Q890D Used for Engineering Machinery

    NASA Astrophysics Data System (ADS)

    Dong, Ruifeng; Liu, Zetian; Gao, Jun

    The chemistry composition, process parameters and the test results of Q890D free boron high strength steel plate used for engineering machinery was studied. The 16 40 mm thickness steel plates with good mechanical properties that was yield strength of 930 970 MPa, tensile strength of 978 1017 MPa, elongation of 13.5 15%, the average impact energy value of more than 100 J were developed by improving steel purity, adopting the reasonable controlled rolling and cooling process, using reasonable off-line quenching and tempering process. The test plates have good crack resistance in 60 °C preheat temperature condition because of that there are no any cracks in the surfaces, cross-section and roots of welding joints.

  10. Optimization of fermentation conditions for 1,3-propanediol production by marine Klebsiella pneumonia HSL4 using response surface methodology

    NASA Astrophysics Data System (ADS)

    Li, Lili; Zhou, Sheng; Ji, Huasong; Gao, Ren; Qin, Qiwei

    2014-09-01

    The industrially important organic compound 1,3-propanediol (1,3-PDO) is mainly used as a building block for the production of various polymers. In the present study, response surface methodology protocol was followed to determine and optimize fermentation conditions for the maximum production of 1,3-PDO using marine-derived Klebsiella pneumoniae HSL4. Four nutritional supplements together with three independent culture conditions were optimized as follows: 29.3 g/L glycerol, 8.0 g/L K2 HPO4, 7.6 g/L (NH4)2 SO4, 3.0 g/L KH2 PO4, pH 7.1, cultivation at 35°C for 12 h. Under the optimal conditions, a maximum 1,3-PDO concentration of 14.5 g/L, a productivity of 1.21 g/(L·h) and a conversion of glycerol of 0.49 g/g were obtained. In comparison with the control conditions, fermentation under the optimized conditions achieved an increase of 38.8% in 1,3-PDO concentration, 39.0% in productivity and 25.7% in glycerol conversion in flask. This enhancement trend was further confirmed when the fermentation was conducted in a 5-L fermentor. The optimized fermentation conditions could be an important basis for developing lowcost, large-scale methods for industrial production of 1,3-PDO in the future.

  11. Damascus steel ledeburite class

    NASA Astrophysics Data System (ADS)

    Sukhanov, D. A.; Arkhangelsky, L. B.; Plotnikova, N. V.

    2017-02-01

    Discovered that some of blades Damascus steel has an unusual nature of origin of the excess cementite, which different from the redundant phases of secondary cementite, cementite of ledeburite and primary cementite in iron-carbon alloys. It is revealed that the morphological features of separate particles of cementite in Damascus steels lies in the abnormal size of excess carbides having the shape of irregular prisms. Considered three hypotheses for the formation of excess cementite in the form of faceted prismatic of excess carbides. The first hypothesis is based on thermal fission of cementite of a few isolated grains. The second hypothesis is based on the process of fragmentation cementite during deformation to the separate the pieces. The third hypothesis is based on the transformation of metastable cementite in the stable of angular eutectic carbide. It is shown that the angular carbides are formed within the original metastable colony ledeburite, so they are called “eutectic carbide”. It is established that high-purity white cast iron is converted into of Damascus steel during isothermal soaking at the annealing. It was revealed that some of blades Damascus steel ledeburite class do not contain in its microstructure of crushed ledeburite. It is shown that the pattern of carbide heterogeneity of Damascus steel consists entirely of angular eutectic carbides. Believe that Damascus steel refers to non-heat-resistant steel of ledeburite class, which have similar structural characteristics with semi-heat-resistant die steel or heat-resistant high speed steel, differing from them only in the nature of excess carbide phase.

  12. Micro-Abrasion Wear Resistance of Borided 316L Stainless Steel and AISI 1018 Steel

    NASA Astrophysics Data System (ADS)

    Reséndiz-Calderon, C. D.; Rodríguez-Castro, G. A.; Meneses-Amador, A.; Campos-Silva, I. E.; Andraca-Adame, J.; Palomar-Pardavé, M. E.; Gallardo-Hernández, E. A.

    2017-11-01

    The 316L stainless steel has high corrosion resistance but low tribological performance. In different industrial sectors (biomedical, chemical, petrochemical, and nuclear engineering), improvement upon wear resistance of 316L stainless steel components using accessible and inexpensive methods is critical. The AISI 1018 steel is widely used in industry, but its tribological performance is not the best among steels. Therefore, in this study the behavior of the borided 316L stainless steel and 1018 steel is evaluated under micro-abrasion wear. The boriding was carried out at 1223 K over 6 h of exposure time, resulting in a biphase layer composed of FeB/Fe2B phases. In order to evaluate Fe2B phase with no influence from FeB phase, AISI 1018 steel samples were borided at 1273 K for over 20 min and then diffusion annealed at 1273 K over 2 h to obtain a Fe2B mono-phase layer. Micro-abrasion wear resistance was evaluated by a commercial micro-abrasion testing rig using a mix of F-1200 SiC particles with deionized water as abrasive slurry. The obtained wear rates for FeB and Fe2B phases and for the 316L stainless steel were compared. Wear resistance of 316L stainless steel increases after boriding. The wear mechanisms for both phases and for the stainless steel were identified. Also, transient conditions for rolling and grooving abrasion were determined for the FeB and Fe2B phases.

  13. Nuclear transmutation in steels

    NASA Astrophysics Data System (ADS)

    Belozerova, A. R.; Shimanskii, G. A.; Belozerov, S. V.

    2009-05-01

    The investigations of the effects of nuclear transmutation in steels that are widely used in nuclear power and research reactors and in steels that are planned for the application in thermonuclear fusion plants, which are employed under the conditions of a prolonged action of neutron irradiation with different spectra, made it possible to study the effects of changes in the isotopic and chemical composition on the tendency of changes in the structural stability of these steels. For the computations of nuclear transmutation in steels, we used a program complex we have previously developed on the basis of algorithms for constructing branched block-type diagrams of nuclide transformations and for locally and globally optimizing these diagrams with the purpose of minimizing systematic errors in the calculation of nuclear transmutation. The dependences obtained were applied onto a Schaeffler diagram for steels used for structural elements of reactors. For the irradiation in fission reactors, we observed only a weak influence of the effects of nuclear transmutation in steels on their structural stability. On the contrary, in the case of irradiation with fusion neutrons, a strong influence of the effects of nuclear transmutation in steels on their structural stability has been noted.

  14. Comminuting irradiated ferritic steel

    DOEpatents

    Bauer, Roger E.; Straalsund, Jerry L.; Chin, Bryan A.

    1985-01-01

    Disclosed is a method of comminuting irradiated ferritic steel by placing the steel in a solution of a compound selected from the group consisting of sulfamic acid, bisulfate, and mixtures thereof. The ferritic steel is used as cladding on nuclear fuel rods or other irradiated components.

  15. Study of the Micro-Nonuniformity of the Plastic Deformation of Steel

    NASA Technical Reports Server (NTRS)

    Chechulin, B. B.

    1957-01-01

    The plastic flow during deformation of real polycrystalline metals has specific characteristics which distinguish the plastic deformation of metals from the deformation of ordinary isotropic bodies. One of these characteristics is the marked micro-nonuniformity of the plastic deformation of metals. P.O. Pashkov demonstrated the presence of a considerable micro-nonuniformity of the plastic deformation of coarse-grained steel wit medium or low carbon content. Analogous results in the case of tension of coarse-grained aluminum were obtained by W. Boas, who paid particular attention to the role of the grain boundaries in plastic flow. The nonuniformit of the plastic deformation in microvolumes was also recorded by T.N. Gudkova and others, on the alloy KhN80T. N.F. Lashko pointed out the nonuniformity of the plastic deformation for a series of pure polycrystalline metals and one-phase alloys. In his later reports, P.O. Pashkov arrives at he conclusion that the nonuniformity of the distribution of the deformation along the individual grains has a significant effect on the strength and plastic characteristics of polycrystalline metals in the process of plastic flow. However, until now there has not existed any systematic investigation of the general rules of the microscopic nonuniformit of plastic deformation even though the real polycrystalline metals are extremely simple with regard to structure. In the present report, an attempt is made to study the micrononuniformity of the flow of polycrystalline metals by the method of statistical analysis of the variation of the frequency diagrams of the nonuniformity of the grains in the process of plastic deformation.

  16. Corrosion of stainless steel sternal wire after long-term implantation.

    PubMed

    Tomizawa, Yasuko; Hanawa, Takao; Kuroda, Daisuke; Nishida, Hiroshi; Endo, Masahiro

    2006-01-01

    A variety of metallic components have been used in medical devices where lifelong durability and physical strength are demanded. To investigate the in vivo changes of implanted metallic medical devices in humans, stainless steel sternal wires removed from patients were evaluated. Stainless steel (316L) sternal wires removed from four patients after 10, 13, 22, and 30 years of implantation were evaluated using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). Macroscopically, the removed specimens maintained their metallic luster and color. Under SEM, small holes were observed sporadically at 10 years and they tended to connect in the drawing direction. The longer the implanted duration, the more numerous and deeper were the crevices observed. By EDS, sulfur, phosphorus, and calcium were identified in all areas at 10 years, in addition to the component elements of stainless steel, comprising iron, chromium, nickel, and manganese. Corrosion products observed at 30 years were identified as calcium phosphate. In conclusion, stainless steel sternal wires develop corroded pores that grow larger and deeper with time after implantation; however, the pores remain shallow even after decades of implantation and they may not be a cause of mechanical failure. An amount of metal ions equivalent to the corroded volume must have been released into the human body, but the effect of these metal ions on the body is not apparent.

  17. Ultrahigh Carbon Steel.

    DTIC Science & Technology

    1984-10-01

    The unique mechanical properties achieved in UHC steels are due to the presence of micron-size ferrite grains and ultrafine spheroidized carbides. SN...unique mechanical properties achieved in UHC [0 steels are due to the presence of micron-size ferrite grains and ultrafine spheroidized carbides. 0... steel is that it has a low resistance to plastic flow upon deformation in the superplastic range at low strain rates (e.g., 2000 psi at 4 1041 e 10 s

  18. Corrigendum to 'On the influence of microstructure on the fracture behaviour of hot extruded ferritic ODS steels' [J. Nucl. Mater. 497 (2017) 60-75

    NASA Astrophysics Data System (ADS)

    Das, A.; Viehrig, H. W.; Altstadt, E.; Heintze, C.; Hoffmann, J.

    2018-02-01

    ODS steels are known to show inferior fracture properties as compared to ferritic martensitic non-ODS steels. Hot extruded 13Cr ODS steel however, showed excellent fracture toughness at a temperature range from room temperature to 400 °C. In this work, the factors which resulted in superior and anisotropic fracture behaviour were investigated by comparing different orientations of two hot extruded materials using scanning electron, electron backscatter and transmission electron microscopy. Fracture behaviour of the two materials was compared using unloading compliance fracture toughness tests. Anisotropic fracture toughness was predominantly influenced by grain morphology. Superior fracture toughness in 13Cr ODS-KIT was predominantly influenced by factors such as smaller void inducing particle size and higher sub-micron particle-matrix interfacial strength.

  19. Identification of delamination failure of boride layer on common Cr-based steels

    NASA Astrophysics Data System (ADS)

    Taktak, Sukru; Tasgetiren, Suleyman

    2006-10-01

    Adhesion is an important aspect in the reliability of coated components. With low-adhesion of interfaces, different crack paths may develop depending on the local stress field at the interface and the fracture toughness of the coating, substrate, and interface. In the current study, an attempt has been made to identify the delamination failure of coated Cr-based steels by boronizing. For this reason, two commonly used steels (AISI H13, AISI 304) are considered. The steels contain 5.3 and 18.3 wt.% Cr, respectively. Boriding treatment is carried out in a slurry salt bath consisting of borax, boric acid, and ferrosilicon at a temperature range of 800 950 °C for 3, 5, and 7 h. The general properties of the boron coating are obtained by mechanical and metallographic characterization tests. For identification of coating layer failure, some fracture toughness tests and the Daimler-Benz Rockwell-C adhesion test are used.

  20. The Passive Film Growth Mechanism of New Corrosion-Resistant Steel Rebar in Simulated Concrete Pore Solution: Nanometer Structure and Electrochemical Study

    PubMed Central

    Jiang, Jin-yang; Wang, Danqian; Chu, Hong-yan; Ma, Han; Liu, Yao; Gao, Yun; Shi, Jinjie; Sun, Wei

    2017-01-01

    An elaborative study was carried out on the growth mechanism and properties of the passive film for a new kind of alloyed corrosion-resistant steel (CR steel). The passive film naturally formed in simulated concrete pore solutions (pH = 13.3). The corrosion resistance was evaluated by various methods including open circuit potential (OCP), linear polarization resistance (LPR) measurements, and electrochemical impedance spectroscopy (EIS). Meanwhile, the 2205 duplex stainless steel (SS steel) was evaluated for comparison. Moreover, the passive film with CR steel was studied by means of X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), Atomic Force Microscope (AFM), and the Mott‑Schottky approach. The results showed that the excellent passivity of CR steel could be detected in a high alkaline environment. The grain boundaries between the fine passive film particles lead to increasing Cr oxide content in the later passivation stage. The filling of cation vacancies in the later passivation stage as well as the orderly crystalized inner layer contributed to the excellent corrosion resistance of CR steel. A passive film growth model for CR steel was proposed. PMID:28772772

  1. The Passive Film Growth Mechanism of New Corrosion-Resistant Steel Rebar in Simulated Concrete Pore Solution: Nanometer Structure and Electrochemical Study.

    PubMed

    Jiang, Jin-Yang; Wang, Danqian; Chu, Hong-Yan; Ma, Han; Liu, Yao; Gao, Yun; Shi, Jinjie; Sun, Wei

    2017-04-14

    An elaborative study was carried out on the growth mechanism and properties of the passive film for a new kind of alloyed corrosion-resistant steel (CR steel). The passive film naturally formed in simulated concrete pore solutions (pH = 13.3). The corrosion resistance was evaluated by various methods including open circuit potential (OCP), linear polarization resistance (LPR) measurements, and electrochemical impedance spectroscopy (EIS). Meanwhile, the 2205 duplex stainless steel (SS steel) was evaluated for comparison. Moreover, the passive film with CR steel was studied by means of X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), Atomic Force Microscope (AFM), and the Mott‑Schottky approach. The results showed that the excellent passivity of CR steel could be detected in a high alkaline environment. The grain boundaries between the fine passive film particles lead to increasing Cr oxide content in the later passivation stage. The filling of cation vacancies in the later passivation stage as well as the orderly crystalized inner layer contributed to the excellent corrosion resistance of CR steel. A passive film growth model for CR steel was proposed.

  2. Wear-resistance investigation of electro-screen coatings obtained using electroerosive powders of micro and nanofractions

    NASA Astrophysics Data System (ADS)

    Ageev, E. V.; Altukhov, A. Yu; Malneva, Yu V.; Novikov, A. N.

    2018-03-01

    The results of the wear resistance investigation of electro sparking coatings, applied using electrode material from electroerosive powders of hard alloy VK-8 (90%) with the addition of powder of high-speed steel of grade R6M5 (10%), are presented. Electro spark coatings were formed on samples of 30KhGSA steel using these electrodes and installation UR-121. The coefficient of friction and the wear rate of the surface of the sample and counterbody were measured on an automated friction machine “Tribometer” (CSM Instruments, Switzerland), controlled by a computer, according to the standard “ball-disk” test scheme.

  3. Methods of making bainitic steel materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bakas, Michael Paul; Chu, Henry Shiu-Hung; Zagula, Thomas Andrew

    Methods of making bainitic steels may involve austenitizing a quantity of steel by exposing the quantity of steel to a first temperature. A composition of the quantity of steel may be configured to impede formation of non-bainite ferrite, pearlite, and Widmanstatten ferrite. The quantity of steel may be heat-treated to form bainite by exposing the quantity of steel to a second, lower temperature. The second, lower temperature may be stabilized by exposing the quantity of steel to the second, lower temperature in the presence of a thermal ballast.

  4. 49 CFR 178.38 - Specification 3B seamless steel cylinders.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., and service pressure. A DOT 3B cylinder is seamless steel cylinder with a water capacity (nominal) of... permitted in paragraph (d) of this section. (f) Wall thickness. The wall stress may not exceed 24,000 psi.... Calculation must be made by the following formula: S = [P(1.3D2+0.4d2)]/(D2−d2) Where: S = wall stress in psi...

  5. Microstructural characterization in dissimilar friction stir welding between 304 stainless steel and st37 steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jafarzadegan, M.; State Key Laboratory of Advanced Welding Production Technology, School of Materials Science and Eng., Harbin Institute of Technology, P.O. Box: 150001, Harbin; Feng, A.H.

    2012-12-15

    In the present study, 3 mm-thick plates of 304 stainless steel and st37 steel were welded together by friction stir welding at a welding speed of 50 mm/min and tool rotational speed of 400 and 800 rpm. X-ray diffraction test was carried out to study the phases which might be formed in the welds. Metallographic examinations, and tensile and microhardness tests were used to analyze the microstructure and mechanical properties of the joint. Four different zones were found in the weld area except the base metals. In the stir zone of the 304 stainless steel, a refined grain structure withmore » some features of dynamic recrystallization was evidenced. A thermomechanically-affected zone was characterized on the 304 steel side with features of dynamic recovery. In the other side of the stir zone, the hot deformation of the st37 steel in the austenite region produced small austenite grains and these grains transformed to fine ferrite and pearlite and some products of displacive transformations such as Widmanstatten ferrite and martensite by cooling the material after friction stir welding. The heat-affected zone in the st37 steel side showed partially and fully refined microstructures like fusion welding processes. The recrystallization in the 304 steel and the transformations in the st37 steel enhanced the hardness of the weld area and therefore, improved the tensile properties of the joint. - Highlights: Black-Right-Pointing-Pointer FSW produced sound welds between st37 low carbon steel and 304 stainless steel. Black-Right-Pointing-Pointer The SZ of the st37 steel contained some products of allotropic transformation. Black-Right-Pointing-Pointer The material in the SZ of the 304 steel showed features of dynamic recrystallization. Black-Right-Pointing-Pointer The finer microstructure in the SZ increased the hardness and tensile strength.« less

  6. Friction and Wear Behavior of Plasma-Sprayed Al2O3-13 wt.%TiO2 Coatings Under the Lubrication of Liquid Paraffin

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaoqin; An, Yulong; Hou, Guoliang; Zhou, Huidi; Chen, Jianmin

    2014-04-01

    Two types of ceramic composite coatings (denoted as N-AT13 coating and M-AT13 coating) were fabricated on 1Cr18Ni9Ti stainless steel substrate from ultra-fine and coarse Al2O3-13%TiO2 feedstocks by air plasma spraying. The friction and wear behavior of as-prepared coatings sliding against Al2O3 and stainless steel balls under the lubrication of liquid paraffin was evaluated with an SRV friction and wear tester (Optimol, Germany). The fractured and worn surfaces of the coatings were observed using a scanning electron microscope and a field-emission scanning electron microscope; and the wear mechanisms of the coatings were discussed based on scanning electron microscopic analysis and energy dispersive spectrometric analysis. Results show that N-AT13 coating possesses a unique microstructure and strong inter-splat bonding, thereby showing increased microhardness and bonding strength as well as much better friction-reduction and wear resistance than M-AT13 coating. Moreover, there exist differences in the wear mechanisms of N-AT13 and M-AT13 coatings which slide against ceramic and stainless steel balls under the lubrication of liquid paraffin. Namely, with the increase of normal load, the burnishing of N-AT13 coating coupled with Al2O3 ball is gradually transformed to grain-abrasion and deformation, while M-AT13 coating is dominated by grain-pullout and brittle fracture in the whole range of tested normal load.

  7. High Nitrogen Stainless Steel

    DTIC Science & Technology

    2011-07-19

    STAINLESS STEEL by E. U. Lee R. Taylor 19 July 2011 Approved for...NAWCADPAX/TR-2011/162 19 July 2011 HIGH NITROGEN STAINLESS STEEL by E. U. Lee R. Taylor RELEASED BY...REPORT TYPE Technical Report 3. DATES COVERED 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER High Nitrogen Stainless Steel 5b. GRANT

  8. Comparison of the performance of concrete-filled steel tubular and hollow steel diagrid buildings

    NASA Astrophysics Data System (ADS)

    Peter, Minu Ann; S, Sajith A.; Nagarajan, Praveen

    2018-03-01

    In the recent construction scenario, diagrid structures are becoming a popular high-rise building structural system. Diagrid structures consist of diagonals in the perimeter and an interior core. The corner and interior vertical columns are not required due to the structural efficiency of diagrid structural systems. Steel and concrete are commonly used material for diagrid. An alternate material for diagrid is concrete-filled steel tube (CFST). CFST incorporates the advantages of both steel and concrete. In CFST, the inward buckling of the steel tube is effectively prevented by the filled concrete. The compressive strength of concrete increases due to the tri-axial state of stress in concrete induced by the steel tube. The longitudinal as well as lateral reinforcement to the concrete core is also provided by the steel tube. This paper compares the performance of CFST and steel diagrid buildings using linear static analysis. For this purpose, a 12 storey and 36 storey building are analysed using finite element method and CFST diagrid building is found to perform better.

  9. Challenges in Special Steel Making

    NASA Astrophysics Data System (ADS)

    Balachandran, G.

    2018-02-01

    Special bar quality [SBQ] is a long steel product where an assured quality is delivered by the steel mill to its customer. The bars have enhanced tolerance to higher stress application and it is demanded for specialised component making. The SBQ bars are sought for component making processing units such as closed die hot forging, hot extrusion, cold forging, machining, heat treatment, welding operations. The final component quality of the secondary processing units depends on the quality maintained at the steel maker end along with quality maintained at the fabricator end. Thus, quality control is ensured at every unit process stages. The various market segments catered to by SBQ steel segment is ever growing and is reviewed. Steel mills need adequate infrastructure and technological capability to make these higher quality steels. Some of the critical stages of processing SBQ and the critical quality maintenance parameters at the steel mill in the manufacture has been brought out.

  10. [Stainless steels for medical instruments].

    PubMed

    Feofilov, R N

    1981-01-01

    Both in the USSR and abroad similar types of martensitic and austenitic stainless steel are used for the manufacture of medical instruments. Martensitic steel, the cheapest and most economically alloyed, has the best combination of properties necessary for medical instruments. The analysis of the Soviet and foreign experience in using different grades of steel for the production of medical instruments demonstrates the expediency and possibility of improving the quality of martensitic steel and rolled stock, as well as that of medical instruments manufactured from these materials, by improving, the operations of the metallurgical and technological processes and by specifying more precisely the requirements for medical instruments. The possibility and expediency of using, in some technically justified cases, lower grades of alloyed steel instead of grade 12X18H9T for clamps and other instruments made of stainless steel, as well as highly corrosive grades of steel for microinstruments, have been established.

  11. Effect of Heat Treatment on Microstructure and Mechanical Properties of Laser Additively Manufactured AISI H13 Tool Steel

    NASA Astrophysics Data System (ADS)

    Chen, ChangJun; Yan, Kai; Qin, Lanlan; Zhang, Min; Wang, Xiaonan; Zou, Tao; Hu, Zengrong

    2017-11-01

    The effect of heat treatment on microstructure and mechanical properties (microhardness, wear resistance and impact toughness) of laser additively manufactured AISI H13 tool steel was systemically investigated. To understand the variation of microstructure and mechanical properties under different heat treatments, the as-deposited samples were treated at 350, 450, 550, 600 and 650 °C/2 h, respectively. Microstructure and phase transformation were investigated through optical microscopy, scanning electron microscope and transmission electron microscope. The mechanical properties were characterized by nanoindentation tests, Charpy tests and high-temperature wear tests. The microstructure of as-deposited samples consisted of martensite, ultrafine carbides and retained austenite. After the tempering treatment, the martensite was converted into tempered martensite and some fine alloy carbides which precipitated in the matrix. When treated at 550 °C, the greatest hardness and nanohardness were 600 HV0.3 and 6119.4 MPa due to many needle-like carbides precipitation. The value of hardness increased firstly and then decreased when increasing the temperature. When tempered temperatures exceeded 550 °C, the carbides became coarse, and martensitic matrix recrystallized at the temperature of 650 °C. The least impact energy was 6.0 J at a temperature of 550 °C. Samples tempered at 550 °C had larger wear volume loss than that of others. Wear resistances of all samples under atmospheric condition at 400 °C showed an oxidation mechanism.

  12. Surface modification of superaustenitic and maraging stainless steels by low-temperature gas-phase carburization

    NASA Astrophysics Data System (ADS)

    Gentil, Johannes

    Low-temperature gas-phase carburization of 316L austenitic stainless steel was developed in recent years by the Swagelok company. This process generates great mechanical and electrochemical surface properties. Hardness, wear resistance, fatigue behavior, and corrosion resistance are dramatically improved, while the formation of carbides is effectively suppressed. This new technique is of technical, economical, but especially of scientific interest because the surface properties of common stainless steel can be enhanced to a level of more sophisticated and more expensive superalloys. The consequential continuation of previous research is the application of the carburization process to other steel grades. Differences in chemical composition, microstructure, and passivity between the various alloys may cause technical problems and it is expected that the initial process needs to be optimized for every specific material. This study presents results of low-temperature carburization of AL-6XN (superaustenitic stainless steel) and PH13-8Mo (precipitation-hardened martensitic stainless steel). Both alloys have been treated successfully in terms of creating a hardened surface by introducing high amounts of interstitially dissolved carbon. The surface hardness of AL-6XN was increased to 12GPa and is correlated with a colossal carbon supersaturation at the surface of up to 20 at.%. The hardened case develops a carburization time-dependent thickness between 10mum after one carburization cycle and up to 35mum after four treatments and remains highly ductile. Substantial broadening of X-ray diffraction peaks in low-temperature carburized superaustenitic stainless steels are attributed to the generation of very large compressive biaxial residual stresses. Those large stresses presumably cause relaxations of the surface, so-called undulations. Heavily expanded regions of carburized AL-6XN turn ferromagnetic. Non-carburized AL-6XN is known for its outstanding corrosion resistance

  13. 13. INTERIOR OF POWER PLANT LOOKING EASTNORTHEAST. 1925 GE GENERATOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. INTERIOR OF POWER PLANT LOOKING EAST-NORTHEAST. 1925 GE GENERATOR IN FOREGROUND, WITH C. 1910 GENERATOR COVER IN BACKGROUND. STEEL FRAME SUPPORTS HOISTING MECHANISM USED TO MOVE, REPAIR, OR REPLACE GENERATORS. - Potomac Power Plant, On West Virginia Shore of Potomac River, about 1 mile upriver from confluence with Shenandoah River, Harpers Ferry, Jefferson County, WV

  14. Microstructural Evolution and Mechanical Properties of Simulated Heat-Affected Zones in Cast Precipitation-Hardened Stainless Steels 17-4 and 13-8+Mo

    NASA Astrophysics Data System (ADS)

    Hamlin, Robert J.; DuPont, John N.

    2017-01-01

    Cast precipitation-hardened (PH) stainless steels 17-4 and 13-8+Mo are used in applications that require a combination of high strength and moderate corrosion resistance. Many such applications require fabrication and/or casting repair by fusion welding. The purpose of this work is to develop an understanding of microstructural evolution and resultant mechanical properties of these materials when subjected to weld thermal cycles. Samples of each material were subjected to heat-affected zone (HAZ) thermal cycles in the solution-treated and aged condition (S-A-W condition) and solution-treated condition with a postweld thermal cycle age (S-W-A condition). Dilatometry was used to establish the onset of various phase transformation temperatures. Light optical microscopy (LOM), scanning electron microscopy (SEM), and energy dispersive spectrometry (EDS) were used to characterize the microstructures, and comparisons were made to gas metal arc welds that were heat treated in the same conditions. Tensile testing was also performed. MatCalc thermodynamic and kinetic modeling software was used to predict the evolution of copper (Cu)-rich body center cubic precipitates in 17-4 and β-NiAl precipitates in 13-8+Mo. The yield strength was lower in the simulated HAZ samples of both materials prepared in the S-A-W condition when compared to their respective base metals. Samples prepared in the S-W-A condition had higher and more uniform yield strengths for both materials. Significant changes were observed in the matrix microstructure of various HAZ regions depending on the peak temperature, and these microstructural changes were interpreted with the aid of dilatometry results, LOM, SEM, and EDS. Despite these significant changes to the matrix microstructure, the changes in mechanical properties appear to be governed primarily by the precipitation behavior. The decrease in strength in the HAZ samples prepared in the S-A-W condition was attributed to the dissolution of precipitates

  15. USSR and Eastern Europe Scientific Abstracts Materials Science and Metallurgy No. 41.

    DTIC Science & Technology

    1976-12-10

    21 Steels 22 Thermomechanical Treatment 26 Thin Films 27 Titanium 29 Welding 35 Miscellaneous 39 -a - [III - USSR - 21- G S & T...Coatings USSR UDC 539.23 OSADIN, B. A., and SHAPOVALOV, G . I., Moscow APPLICATION OF THIN COATINGS WITH THE USE OF IMPULSE PLASMA GENERATORS...TSEYTLIN, KH. L., SOROKIN, YU. I., ISAYENKO, G . I., BABITSKAYA, S. M., Scientific Research Institute of Organic Intermediates and Dyes INFLUENCE

  16. 29 CFR 1926.754 - Structural steel assembly.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Structural steel assembly. 1926.754 Section 1926.754 Labor... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Steel Erection § 1926.754 Structural steel...) Tripping hazards. Shear connectors (such as headed steel studs, steel bars or steel lugs), reinforcing bars...

  17. 29 CFR 1926.754 - Structural steel assembly.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 8 2011-07-01 2011-07-01 false Structural steel assembly. 1926.754 Section 1926.754 Labor... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Steel Erection § 1926.754 Structural steel...) Tripping hazards. Shear connectors (such as headed steel studs, steel bars or steel lugs), reinforcing bars...

  18. Structure and Properties of High-Temperature Multilayer Hybrid Material Based on Vanadium Alloy and Stainless Steel

    NASA Astrophysics Data System (ADS)

    Nechaykina, Tatyana A.; Nikulin, Sergey A.; Rozhnov, Andrey B.; Khatkevich, Vladimir M.; Rogachev, Stanislav O.

    2017-03-01

    The present work is devoted to the development of new structural composite material having the unique complex of properties for operating in ultrahard conditions that combine high temperatures, radiation, and aggressive environments. A new three-layer composite tube material based on vanadium alloy (V-4Ti-4Cr) protected by stainless steel (Fe-0.2C-13Cr) has been obtained by co-extrusion. Mechanism and kinetics of formation as well as structure, composition, and mechanical properties of "transition" area between vanadium alloy and stainless steel have been studied. The transition area (13- to 22- µm thick) of the diffusion interaction between vanadium alloy and steel was formed after co-extrusion. The microstructure in the transition area was rather complicated comprising different grain sizes in components, but having no defects or brittle phases. Tensile strength of the composite was an average 493 ± 22 MPa, and the elongation was 26 ± 3 pct. Annealing at 1073 K (800 °C) increased the thickness of transition area up to 1.2 times, homogenized microstructure, and slightly changed mechanical properties. Annealing at 1273 K (1000 °C) further increased the thickness of transition area and also lead to intensive grain growth in steel and sometimes to separation between composite components during tensile tests. Annealing at 1073 K (800 °C) is proposed as appropriate heat treatment after co-extrusion of composite providing balance between diffusion interaction thickness and microstructure and monolithic-like behavior of composite during tensile tests.

  19. Steel Industry Wastes.

    ERIC Educational Resources Information Center

    Schmidtke, N. W.; Averill, D. W.

    1978-01-01

    Presents a literature review of wastes from steel industry, covering publications of 1976-77. This review covers: (1) coke production; (2) iron and steel production; (3) rolling operations; and (4) surface treatment. A list of 133 references is also presented. (NM)

  20. Secondary hardening steel having improved combination of hardness and toughness

    DOEpatents

    Parker, Earl R.; Zackay, Victor F.; Bhat, Manjeshwar S.; Garrison, Jr., Warren M.

    1979-01-01

    A secondary hardening alloy steel composition consisting essentially of about 0.25-0.5% carbon, about 0.5-1.0% manganese, about 1.5-3.0% nickel, about 0-1.0% chromium, about 1.75-2.5% molybdenum, about 0-0.4% vanadium, and an additive selected from about 1-3% aluminum and a combination of at least about 1% aluminum and at least about 1% silicon for a combined Al+Si content of about 2-4%, the balance being iron and impurity elements. The present steel composition has the following characteristics: it exhibits a flat tempering response, it is hardenable upon tempering to a Rockwell C hardness of at least 50, and it has an improved combination of hardness vs. toughness properties after tempering in the secondary hardening range. A method of preparation is also described.

  1. Stainless steel reinforcement as a replacement for epoxy coated steel in bridge decks : final report.

    DOT National Transportation Integrated Search

    2013-08-01

    The corrosion resistance of 2304 stainless steel reinforcement and stainless steel clad reinforcement was compared to conventional and epoxy-coated reinforcement (ECR). 2304 stainless steel was tested in both the as-received condition (dark mottled f...

  2. Review on cold-formed steel connections.

    PubMed

    Lee, Yeong Huei; Tan, Cher Siang; Mohammad, Shahrin; Tahir, Mahmood Md; Shek, Poi Ngian

    2014-01-01

    The concept of cold-formed light steel framing construction has been widespread after understanding its structural characteristics with massive research works over the years. Connection serves as one of the important elements for light steel framing in order to achieve its structural stability. Compared to hot-rolled steel sections, cold-formed steel connections perform dissimilarity due to the thin-walled behaviour. This paper aims to review current researches on cold-formed steel connections, particularly for screw connections, storage rack connections, welded connections, and bolted connections. The performance of these connections in the design of cold-formed steel structures is discussed.

  3. Review on Cold-Formed Steel Connections

    PubMed Central

    Tan, Cher Siang; Mohammad, Shahrin; Md Tahir, Mahmood; Shek, Poi Ngian

    2014-01-01

    The concept of cold-formed light steel framing construction has been widespread after understanding its structural characteristics with massive research works over the years. Connection serves as one of the important elements for light steel framing in order to achieve its structural stability. Compared to hot-rolled steel sections, cold-formed steel connections perform dissimilarity due to the thin-walled behaviour. This paper aims to review current researches on cold-formed steel connections, particularly for screw connections, storage rack connections, welded connections, and bolted connections. The performance of these connections in the design of cold-formed steel structures is discussed. PMID:24688448

  4. Cold resistant nickel-alloy steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Legostaev, Yu.L.; Karchevskaya, N.I.; Karchevnikov, V.P.

    1988-05-01

    Low-alloy cold-resistant steel 10GNB was developed for the construction of ships and floating drill rigs. The optimal heat-treatment regime for the steel was refinement. Reducing the carbon content improved its weldability and toughness properties. Optical metallography and electron microscopy established that the optimal structure was a tempered martensitic-bainitic mixture with uniformly distributed particles of disperse special niobium carbides NbC. The substructure and the processes of carbide and carbonitride phase segregation were studied by transmission and extraction electron microscopy. In mechanical tests the steel exhibited high resistance to brittle failure. In terms of corrosion resistance the steel corresponds to the requirementsmore » set forth for shipbuilding steels.« less

  5. Effect of Sn Micro-alloying on Recrystallization Nucleation and Growth Processes of Ferritic Stainless Steels

    NASA Astrophysics Data System (ADS)

    He, Tong; Bai, Yang; Liu, Xiuting; Guo, Dan; Liu, Yandong

    2018-04-01

    We investigated the effect of Sn micro-alloying on recrystallization nucleation and growth processes of ferritic stainless steels. The as-received hot rolled sheets were cold rolled up to 80% reduction and then annealed at 740-880 °C for 5 min. The cold rolling and recrystallization microstructures and micro-textures of Sn-containing and Sn-free ferritic stainless steels were all determined by electron backscatter diffraction. Our Results show that Sn micro-alloying has important effects on recrystallization nucleation and growth processes of ferritic stainless steels. Sn micro-alloying conduces to grain fragmentation in the deformation band, more fragmented grains are existed in Sn-containing cold rolled sheets, which provides more sites for recrystallization nucleation. Sn micro-alloying also promotes recrystallization process and inhibits the growth of recrystallized grains. The recrystallization nucleation and growth mechanism of Sn-containing and Sn-free ferritic stainless steels are both characterized by orientation nucleation and selective growth, but Sn micro-alloying promotes the formation of γ-oriented grains. Furthermore, Sn micro-alloying contributes to the formation of Σ13b CSL boundaries and homogeneous γ-fiber texture. Combining the results of microstructure and micro-texture, the formability of Sn-containing ferritic stainless steels will be improved to some extent.

  6. High-Strength Low-Alloy Steel Strengthened by Multiply Nanoscale Microstructures

    NASA Astrophysics Data System (ADS)

    Shen, Y. F.; Zuo, L.

    Recently, we have being focused on improving the strength without sacrificing ductility of High-strength low-alloy (HSLA) steels by designing nanostructures. Several developments have been obtained, summarized as the following three parts: (a) Depressively nanoscale precipitates: A ferritic steel with finely dispersed precipitates reveals a yield strength of 760 MPa, approximately three times higher than that of conventional Ti-bearing high strength hot-rolled sheet steels, and its ultimate tensile strength reaches 850 MPa with an elongation-to-failure value of 18%. The finely dispersed TiC precipitates in the matrix provide matrix strengthening. The estimated magnitude of precipitation strengthening is around 458 MPa. The effects of the particle size, particle distribution and intrinsic particle strength have been investigated through dislocation dynamics (DD) simulations. The DD results show that strengthening is not only a function of the density of the nano-scale precipitates but also of their size. (b) Ultrafinely ferritic plate: An interstitial-free (IF) steel sheet with a cold-rolling reduction of 75% shows a high tensile strength (710MPa) while preserving a considerable plastic strain (13%). The ductility recovery with increasing the rolling reduction up to 75% is related with the decreasing both in lamellar spacings and cell blocks sizes. (c) Parallel nano-laminated austenite: A composite microstructure consisting of ferrite, bainitic ferrite (BF) laths and retained austenite (RA) platelets has been found for the steel with a chemical composition of 0.19C-0.30Si-1.76Mn-1.52Al (in mass fraction), processed with annealing and bainitic holding. The sample annealed at 820oC (for 120s) and partitioned at 400oC (for 300s) has the best combination of ultimate tensile strength (UTS, 682 MPa) and elongation to failure ( 70%) with about 26% of BF plates 16% RA in its microstructure.

  7. Overexpression of KH-type splicing regulatory protein regulates proliferation, migration, and implantation ability of osteosarcoma.

    PubMed

    Pruksakorn, Dumnoensun; Teeyakasem, Pimpisa; Klangjorhor, Jeerawan; Chaiyawat, Parunya; Settakorn, Jongkolnee; Diskul-Na-Ayudthaya, Penchatr; Chokchaichamnankit, Daranee; Pothacharoen, Peraphan; Srisomsap, Chantragan

    2016-09-01

    Osteosarcoma is a common malignant bone tumor in children and adolescents. The current 5-year survival rate is ~60% and that seems to be reaching a plateau. In order to improve treatment outcomes of osteosarcoma, a better understanding of tumorigenesis and underlying molecular mechanisms is required for searching out possible new treatment targets. This study aimed to identify the potential proteins involving the pathogenesis of osteosarcoma using a proteomics approach. Proteins extracted from primary cell culture of osteosarcoma (n=7) and osteoblasts of cancellous bone (n=7) were studied. Using 2-DE based proteomics and LC-MS/MS analysis, we successfully determined seven differentially expressed protein spots. Four upregulated proteins and three downregulated proteins were observed in this study in which KH-type splicing regulatory protein (KSRP) was selected for further exploration. KSRP was significantly upregulated in osteosarcoma cells compared to osteoblasts using western blot assay. In addition, immunohistochemistry demonstrated that KSRP was also highly expressed in osteosarcoma tissue of independent cases from the experimental group. More importantly, KSRP silencing of osteosarcoma cell lines significantly decreased cell proliferation, migration ability, as well as implantation and growth ability in chick chorioallantoic membrane assay. Taken together, these findings demonstrate, that KSRP plays important roles in regulatory controls of osteosarcoma pathogenesis and serves as a potentially therapeutic target of osteosarcoma.

  8. Investigation of the magnetic properties of Si-gradient steel sheet by comparison with 6.5%Si steel sheet

    NASA Astrophysics Data System (ADS)

    Hiratani, T.; Zaizen, Y.; Oda, Y.; Yoshizaki, S.; Senda, K.

    2018-05-01

    In this study, we investigated the magnetic properties of Si-gradient steel sheet produced by CVD (chemical vapor deposition) siliconizing process, comparing with 6.5% Si steel sheet. The Si-gradient steel sheet having silicon concentration gradient in the thickness direction, has larger hysteresis loss and smaller eddy current loss than the 6.5% Si steel sheet. In such a loss configuration, the iron loss of the Si-gradient steel sheet becomes lower than that of the 6.5% Si steel sheet at high frequencies. The experiment suggests that tensile stress is formed at the surface layer and compressive stress is formed at the inner layer in the Si gradient steel sheet. The magnetic anisotropy is induced by the internal stress and it is considered to affect the magnetization behavior of the Si-gradient steel sheet. The small eddy current loss of Si-gradient steel sheet can be explained as an effect of magnetic flux concentration on the surface layer.

  9. Processing and refinement of steel microstructure images for assisting in computerized heat treatment of plain carbon steel

    NASA Astrophysics Data System (ADS)

    Gupta, Shubhank; Panda, Aditi; Naskar, Ruchira; Mishra, Dinesh Kumar; Pal, Snehanshu

    2017-11-01

    Steels are alloys of iron and carbon, widely used in construction and other applications. The evolution of steel microstructure through various heat treatment processes is an important factor in controlling properties and performance of steel. Extensive experimentations have been performed to enhance the properties of steel by customizing heat treatment processes. However, experimental analyses are always associated with high resource requirements in terms of cost and time. As an alternative solution, we propose an image processing-based technique for refinement of raw plain carbon steel microstructure images, into a digital form, usable in experiments related to heat treatment processes of steel in diverse applications. The proposed work follows the conventional steps practiced by materials engineers in manual refinement of steel images; and it appropriately utilizes basic image processing techniques (including filtering, segmentation, opening, and clustering) to automate the whole process. The proposed refinement of steel microstructure images is aimed to enable computer-aided simulations of heat treatment of plain carbon steel, in a timely and cost-efficient manner; hence it is beneficial for the materials and metallurgy industry. Our experimental results prove the efficiency and effectiveness of the proposed technique.

  10. 75 FR 1755 - Prestressed Concrete Steel Wire Strand From the People's Republic of China: Postponement of Final...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-13

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-570-945] Prestressed Concrete Steel Wire Strand From the People's Republic of China: Postponement of Final Determination AGENCY: Import Administration, International Trade Administration, Department of Commerce. DATES: Effective Date: January 13...

  11. Excellent mechanical properties and resistance to cavitation erosion for an ultra-low carbon CrMnN stainless steel through quenching and partitioning treatment

    NASA Astrophysics Data System (ADS)

    Zhou, Ze-an; Fu, Wan-tang; Zhu, Zhe; Li, Bin; Shi, Zhong-ping; Sun, Shu-hua

    2018-05-01

    The retained austenite content (RAC), the mechanical properties, and the resistance to cavitation erosion (CE) of the 00Cr13Mn8MoN steel after quenching and partitioning (Q&P) processing were investigated. The results show that the Q&P process affected the RAC, which reached the maximum value after partitioning at 400°C for 10 min. The tensile strength of the steel slightly decreased with increasing partitioning temperature and time. However, the elongation and product of strength and elongation first increased and then decreased. The sample partitioned at 400°C for 10 min exhibited the optimal property: a strength-ductility of 23.8 GPa·%. The resistance to CE for the 00Cr13Mn8MoN steel treated by the Q&P process was improved due to work hardening, spalling, and cavitation-induced martensitic transformation of the retained austenite.

  12. In situ post-weld heat treatment on martensitic stainless steel turbine runners using a robotic induction heating process to control temperature distribution

    NASA Astrophysics Data System (ADS)

    Boudreault, E.; Hazel, B.; Côté, J.; Godin, S.

    2014-03-01

    A new robotic heat treatment process is developed. Using this solution it is now possible to perform local heat treatment on large steel components. Crack, cavitation and erosion repairs on turbine blades and Pelton buckets are among the applications of this technique. The proof of concept is made on a 13Cr-4Ni stainless steel designated "CA6NM". This alloy is widely used in the power industry for modern system components. Given the very tight temperature tolerance (600 to 630 °C) for post-weld heat treatment on this alloy, 13Cr-4Ni stainless steel is very well suited for demonstrating the possibilities of this process. To achieve heat treatment requirements, an induction heating system is mounted on a compact manipulator named "Scompi". This robot moves a pancake coil in order to control the temperature distribution. A simulator using thermal finite element analysis is first used for path planning. A feedback loop adjusts parameters in function of environmental conditions.

  13. Experimental study on the use of steel-decks for prefabricated reinforced concrete beams

    NASA Astrophysics Data System (ADS)

    Priastiwi, Y. A.; Han, A. L.; Maryoto, A.; Noor, E. S.

    2017-11-01

    This paper presents an experimental study on the use of steel-decks for concrete beams. The purpose of this research is to determine the beam’s capacity, and the loaddisplacement relationships due to the use of steel-decks. The failure mechanism was also studied, since the behavior differs significantly from conventional concrete members. For analysis purposes, two beam prototypes with steel-decks (GB1 and GB2), and two conventional concrete beams having the exact same material properties and dimensions (NB1 and NB2) functioning as control elements, were tested. Load was applied by a two-point loading system, creating a pure bending state. To monitor vertical deflections, two LVDTs were used. All precision instruments were connected to a data logger, and a computer. The results showed that the beams GB had a significant ultimate moment capacity increase, which is 2,3 times the control element NB. The main enhancement contribution is originated from the presence of the bottom steel-deck, which due to bonding to the concrete, functioned as additional tensile reinforcement. The deck also increased the member’s ductility performance by 1.3 times. Specimen GB2 underwent bond loss in the transition zone between the deck and the concrete, reducing the initial stiffness of the member.

  14. Source Apportionment of Particulate Matter Collected Upwind and Downwind of a Steel Facility in Granite City, IL (USA)

    NASA Astrophysics Data System (ADS)

    Duvall, R. M.; Norris, G. A.; Willis, R. D.; Turner, J. R.; Kaleel, R.; Sweitzer, T.; Preston, B.; Hays, M. D.

    2009-04-01

    St. Louis is currently in nonattainment of the annual PM2.5 National Ambient Air Quality Standard (NAAQS). Granite City Steel Works (GSCW), located in Granite City, IL is considered to be a significant source impacting the St. Louis area and the largest PM2.5 point source contributor. Twelve grab samples were collected in and around the steel facility including the basic oxygen furnace, steel and iron slag crushing, coal pulverizing, baghouse dust, paved road dust, and unpaved road dust. The bulk samples were resuspended in a resuspension chamber using a PM2.5 cutpoint and collected on Teflon, quartz and polycarbonate filters. Fine particulate matter (PM) samples (12-hr and 24-hr) were collected upwind and downwind of GSCW from October 13 to December 13, 2007 to identify sources contributing to nonattainment in St. Louis. The samples were analyzed for trace metals (X-Ray Fluorescence), ions (Ion Chromatography), elemental and organic carbon (thermal optical analysis), and organic species (solvent extraction Gas Chromatography/Mass Spectrometry). Source apportionment was conducted using the EPA Chemical Mass Balance (CMB) Model (v 8.2). Major sources impacting the 12-hr samples included the blast oxygen furnace, secondary sulfate, and road dust. Higher excess steel and coke works contributions were associated with higher wind speeds (greater than 5 mph) and more variability in source impacts was observed. Major sources impacting the 24-hr samples included secondary sulfate and motor vehicles (diesel and gasoline). Contributions were similar between the coke and steel works sources. Disclaimer: Although this work was reviewed by EPA and approved for publication, it may not necessarily reflect official Agency policy.

  15. Proton-irradiation induced defects in modified 310S steels characterized with positron annihilation spectroscopy and transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Weiping; Shen, Zhenyu; Tang, Rui; Jin, Suoxue; Song, Yaoxiang; Long, Yunxiang; Wei, Yaxia; Zhou, Xiong; Chen, Cheng; Guo, Liping

    2018-07-01

    An effective method to improve the irradiation resistance of austenitic stainless steels is adding oversized solutes into steels. In this work, the irradiation resistances of two type of modified 310S steels, in one of which Zr was added and in another Nb, Ta, and W were added, were investigated by proton irradiations at 563 K. Irradiation induced vacancy-type defects was characterized with positron annihilation spectroscopy (PAS), while dislocation loops and bubbles whose size are greater than 1 nm are characterized with transmission electron microscopy (TEM). It is found that the relative S parameter ΔS/S extracted from PAS is more effective than S parameter in evaluating the quantity of vacancy-type defects. It was revealed from ΔS/S that more vacancy-type defects produced in (Nb, Ta, W)-added steels than that in Zr-added steels, and this trend became more obvious with the dose increasing. S-W curves reveal that proton irradiation induced two kinds of vacancy-type defects, i.e. vacancy clusters and proton-vacancy clusters. TEM observation shows that the density of small bubbles induced by proton in (Nb, Ta, W)-added steels is much higher than that in Zr-added steels. Both 1/3 <1 1 1> and 1/2 <1 1 0> dislocation loops were observed with TEM in all of the specimens. The mean size and number density of dislocation loops in (Nb, Ta, W)-added steels are slightly larger than that in Zr-added steels, and increased with increasing irradiation dose. Both PAS and TEM observations shows that irradiation damage in Zr-added steels is less serious than that (Nb, Ta, W)-added steels, and the possible mechanisms are discussed through the enhancement of point defect recombination by oversized solute atoms.

  16. Nitinol versus steel partially covered self-expandable metal stent for malignant distal biliary obstruction: a randomized trial.

    PubMed

    Soderlund, Claes; Linder, Stefan; Bergenzaun, Per E; Grape, Tomas; Hakansson, Hans-Olof; Kilander, Anders; Lindell, Gert; Ljungman, Martin; Ohlin, Bo; Nielsen, Jorgen; Rudberg, Claes; Stotzer, Per-Ove; Svartholm, Erik; Toth, Ervin; Frozanpor, Farshad

    2014-11-01

    Covered nitinol alloy self-expandable metal stents (SEMSs) have been developed to overcome the shortcomings of steel SEMS in patients with malignant biliary obstruction. In a randomized, multicenter trial, we compared stent patency, patient survival, and adverse events in patients with partly covered stents made from steel or nitinol. A total of 400 patients with unresectable distal malignant biliary obstruction were randomized at endoscopic retrograde cholangiopancreatography (ERCP) to insertion of a steel or nitinol partially covered SEMS, with 200 patients in each group. The primary outcome was confirmed stent failure during 300 days of follow-up.  At 300 days, the proportion of patients with patent stents was 77 % in the steel group, compared with 89 % in the nitinol group (P = 0.01). Confirmed stent failure occurred more often in the steel SEMS group compared with the nitinol SEMS group, in 30 versus 14 patients (P = 0.02). Stent migration occurred in 13 patients in the steel group and in 3 patients in the nitinol group (P = 0.01). Median patient survival (secondary outcome) was 137 days and 120 days in the steel SEMS and nitinol SEMS groups, respectively (P = 0.59). The nitinol SEMS showed longer patency time, and the nitinol group had fewer patients with stent failure, compared with the steel SEMS group. We could not detect any differences between the two groups regarding survival time, and regarding adverse event rate.Clinical trial registration : NCT 00980889. © Georg Thieme Verlag KG Stuttgart · New York.

  17. A-3 steel work completed

    NASA Image and Video Library

    2009-04-09

    Stennis Space Center engineers celebrated a key milestone in construction of the A-3 Test Stand on April 9 - completion of structural steel work. Workers with Lafayette (La.) Steel Erector Inc. placed the last structural steel beam atop the stand during a noon ceremony attended by more than 100 workers and guests.

  18. A-3 steel work completed

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Stennis Space Center engineers celebrated a key milestone in construction of the A-3 Test Stand on April 9 - completion of structural steel work. Workers with Lafayette (La.) Steel Erector Inc. placed the last structural steel beam atop the stand during a noon ceremony attended by more than 100 workers and guests.

  19. Development of Advanced 9Cr Ferritic-Martensitic Steels and Austenitic Stainless Steels for Sodium-Cooled Fast Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sham, Sam; Tan, Lizhen; Yamamoto, Yukinori

    2013-01-01

    Ferritic-martensitic (FM) steel Grade 92, with or without thermomechanical treatment (TMT), and austenitic stainless steels HT-UPS (high-temperature ultrafine precipitate strengthening) and NF709 were selected as potential candidate structural materials in the U.S. Sodium-cooled Fast Reactor (SFR) program. The objective is to develop advanced steels with improved properties as compared with reference materials such as Grade 91 and Type 316H steels that are currently in nuclear design codes. Composition modification and/or processing optimization (e.g., TMT and cold-work) were performed to improve properties such as resistance to thermal aging, creep, creep-fatigue, fracture, and sodium corrosion. Testings to characterize these properties for themore » advanced steels were conducted by the Idaho National Laboratory, the Argonne National Laboratory and the Oak Ridge National Laboratory under the U.S. SFR program. This paper focuses on the resistance to thermal aging and creep of the advanced steels. The advanced steels exhibited up to two orders of magnitude increase in creep life compared to the reference materials. Preliminary results on the weldment performance of the advanced steels are also presented. The superior performance of the advanced steels would improve reactor design flexibility, safety margins and economics.« less

  20. Relationship Between pH and Electrochemical Corrosion Behavior of Thermal-Sprayed Ni-Al-Coated Q235 Steel in Simulated Soil Solutions

    NASA Astrophysics Data System (ADS)

    Wei, Wei; Wu, Xin-qiang; Ke, Wei; Xu, Song; Feng, Bing; Hu, Bo-tao

    2017-09-01

    Electrochemical corrosion behavior of a thermal-sprayed Ni-Al-coated Q235 steel was investigated in the simulated soil solutions at different pH values using measurements of potentiodynamic polarization curves and electrochemical impedance spectroscopy as well as surface analyses including x-ray diffraction analysis, scanning electron microscope equipped with an energy-dispersive x-ray spectroscopy and x-ray photoelectron spectroscopy. The results showed that the corrosion resistance of the Ni-Al-coated Q235 steel was dependent on the pH of the test solution. From pH = 3.53 to pH = 4.79, the corrosion resistance of the coated steel increased rapidly. In the pH range from 4.79 to 12.26, the corrosion resistance exhibited no significant change. At pH 13.25, the corrosion resistance of the sample was found to decrease. The calculated corrosion rate of Ni-Al-coated Q235 steel was lower than that of the uncoated Q235 steel and galvanized steel in all the test solutions. Over a wide range of pH values, the Ni-Al-coated Q235 steel exhibited extremely good corrosion resistance. The experimental data together with the potential-pH diagrams provided a basis for a detailed discussion of the related corrosion mechanisms of the coated steel.

  1. Larson-Miller Constant of Heat-Resistant Steel

    NASA Astrophysics Data System (ADS)

    Tamura, Manabu; Abe, Fujio; Shiba, Kiyoyuki; Sakasegawa, Hideo; Tanigawa, Hiroyasu

    2013-06-01

    Long-term rupture data for 79 types of heat-resistant steels including carbon steel, low-alloy steel, high-alloy steel, austenitic stainless steel, and superalloy were analyzed, and a constant for the Larson-Miller (LM) parameter was obtained in the current study for each material. The calculated LM constant, C, is approximately 20 for heat-resistant steels and alloys except for high-alloy martensitic steels with high creep resistance, for which C ≈ 30 . The apparent activation energy was also calculated, and the LM constant was found to be proportional to the apparent activation energy with a high correlation coefficient, which suggests that the LM constant is a material constant possessing intrinsic physical meaning. The contribution of the entropy change to the LM constant is not small, especially for several martensitic steels with large values of C. Deformation of such martensitic steels should accompany a large entropy change of 10 times the gas constant at least, besides the entropy change due to self-diffusion.

  2. Scientific and Technological Principles of Development of New Cold-Resistant Arc-Steels (Steels for Arctic Applications)

    NASA Astrophysics Data System (ADS)

    Sych, O. V.; Khlusova, E. I.; Yashin, E. A.

    2017-12-01

    The paper presents the results of quantitative analysis of C, Mn, Ni and Cu content on strength and cold-resistance of rolled plates. Relations between the ferritic-bainitic structure morphology and anisotropy and steel performance characteristics have been established. Influence of thermal and deformation rolling patterns on steel structure has been studied. The steel chemical composition has been improved and precision thermomechanical processing conditions for production of cold-resistant Arc-steel plates have been developed.

  3. Effects of Manganese Content on Solidification Structures, Thermal Properties, and Phase Transformation Characteristics in Fe-Mn-Al-C Steels

    NASA Astrophysics Data System (ADS)

    Yang, Jian; Wang, Yu-Nan; Ruan, Xiao-Ming; Wang, Rui-Zhi; Zhu, Kai; Fan, Zheng-Jie; Wang, Ying-Chun; Li, Cheng-Bin; Jiang, Xiao-Fang

    2015-04-01

    To assist developments of the continuous-casting technology of Fe-Mn-Al-C steels, the solidification structures and the thermal properties of Fe-Mn-Al-C steel ingots with different manganese contents have been investigated and the phase transformation characteristics have been revealed by FactSage (CRCT-ThermFact Inc., Montréal, Canada). The results show that the thermal conductivity of the 0Mn steel is the highest, whereas the thermal conductivity of the 8Mn steel is slightly higher than that of the 17Mn steel. Increasing the manganese content promotes a columnar solidification structure and coarse grains in steel. With the increase of manganese content, the mass fraction of austenite phase is increased. Finally, a single austenite phase is formed in the 17Mn steel. The mean thermal expansion coefficients of the steels are in the range from 1.3 × 10-5 to 2.3 × 10-5 K-1, and these values increase with the increase of manganese content. The ductility of the 17Mn steel and the 8Mn steel are higher than 40 pct in the temperature range from 873 K to 1473 K (600 °C to 1200 °C), and the cracking during the straightening operation should be avoided. However, the ductility of the 0Mn steel is lower than 40 pct at 973 K and 1123 K (700 °C and 850 °C), which indicates that the temperature of the straightening operation during the continuous-casting process should be above 1173 K (900 °C). Manganese has the effect of enlarging the austenite phase region and reducing the δ-ferrite phase region and α-ferrite phase region. At the 2.1 mass pct aluminum level, the precipitate temperature of AlN is high. Thus, the formed AlN is too coarse to deteriorate the hot ductility of steel.

  4. Superhard Nanocrystalline Homometallic Stainless Steel on Steel for Seamless Coatings

    NASA Technical Reports Server (NTRS)

    Tobin, Eric J.; Hafley, R. (Technical Monitor)

    2002-01-01

    The objective of this work is to deposit nanocrystalline stainless steel onto steel substrates (homometallic) for enhanced wear and corrosion resistance. Homometallic coatings provide superior adhesion, and it has been shown that ultrafine-grained materials exhibit the increased hardness and decreased permeability desired for protective coatings. Nanocrystals will be produced by controlling nucleation and growth and use of an ion beam during deposition by e-beam evaporation or sputtering. Phase I is depositing 31 6L nanocrystalline stainless steel onto 31 6L stainless steel substrates. These coatings exhibit hardnesses comparable to those normally obtained for ceramic coatings such ZrO2, and possess the superior adhesion of seamless, homometallic coatings. Hardening the surface with a similar material also enhances adhesion, by avoiding problems associated with thermal and lattice mismatch. So far we have deposited nanocrystalline homometallic 316L stainless steel coatings by varying the ions and the current density of the ion beams. For all deposition conditions we have produced smooth, uniform, superhard coatings. All coatings exhibit hardness of at least 200% harder than that of bulk materials. Our measurements indicate that there is a direct relationship between nanohardness and the current density of the ion beam. Stress measurements indicate that stress in the films is increasingly proportional to current density of the ion beam. TEM, XPS, and XRD results indicate that the coated layers consist of FCC structure nanocrystallites with a dimension of about 10 to 20 nm. The Ni and Mo concentration of these coating are lower than those of bulk 316L but the concentration of Cr is higher.

  5. Initation of pitting corrosion in martensitic stainless steels. [17-4PH; 13-8Mo; Custom 450

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cieslak, W.R.; Semarge, R.E.; Bovard, F.S.

    1986-01-01

    The form of localized corrosion known as pitting often initiates preferentially at microstructural inhomogeneities. The pit initiation resistance, therefore, is controlled by the characteristics of the initiation sites, rather than by the bulk material composition. This investigation correlates the pit initiation resistance, as measured by critical pitting potentials, with preferred pit initiation sites for 3 martensitic stainless steels. Pit initiation sites are determined by secondary electron (SE) and backscattered electron (BSE) imaging and energy dispersive and wavelength dispersive spectrometries (EDS and WDS) with a scalling electron microscope (SEM) and an electron probe microanalyzer (EPMA).

  6. Brazing open cell reticulated copper foam to stainless steel tubing with vacuum furnace brazed gold/indium alloy plating

    DOEpatents

    Howard, Stanley R [Windsor, SC; Korinko, Paul S [Aiken, SC

    2008-05-27

    A method of fabricating a heat exchanger includes brush electroplating plated layers for a brazing alloy onto a stainless steel tube in thin layers, over a nickel strike having a 1.3 .mu.m thickness. The resultant Au-18 In composition may be applied as a first layer of indium, 1.47 .mu.m thick, and a second layer of gold, 2.54 .mu.m thick. The order of plating helps control brazing erosion. Excessive amounts of brazing material are avoided by controlling the electroplating process. The reticulated copper foam rings are interference fit to the stainless steel tube, and in contact with the plated layers. The copper foam rings, the plated layers for brazing alloy, and the stainless steel tube are heated and cooled in a vacuum furnace at controlled rates, forming a bond of the copper foam rings to the stainless steel tube that improves heat transfer between the tube and the copper foam.

  7. Effect of irradiation on the microstructure and the mechanical properties of oxide dispersion strengthened low activation ferritic/martensitic steel

    NASA Astrophysics Data System (ADS)

    Ramar, A.; Baluc, N.; Schäublin, R.

    2007-08-01

    Ferritic/martensitic (F/M) steels show good resistance to swelling and low damage accumulation upon irradiation relative to stainless steels. 0.3 wt% yttria particles were added to the F/M steel EUROFER 97 to produce oxide dispersion strengthened (ODS) steel, to increase the operating temperature as well as mechanical strength. ODS EUROFER 97 was irradiated in the PIREX facility with 590 MeV protons to 0.3, 1 and 2 dpa at 40 °C. Microstructure of the irradiated samples is analyzed in the transmission electron microscope using bright field, dark field and weak beam conditions. The presence of voids and dislocation loops is observed for the higher doses, where as at low dose (0.3 dpa) only small defects with sizes of 1-3 nm are observed as black dots. The relationship between the defect density to dispersoids is measured and the Burgers' vector of dislocation loops is analyzed.

  8. Cost-Benefit Analysis For Alternative Low-Emission Surface Preparation/ Depainting Technologies for Structural Steel

    NASA Technical Reports Server (NTRS)

    Lewis, Pattie

    2007-01-01

    Stennis Space Center (SSC), Kennedy Space Center (KSC) and Air Force Space Command (AFSPC) identified particulate emissions and waste generated from the depainting process of steel structures as hazardous materials to be eliminated or reduced. A Potential Alternatives Report, Potential Alternatives Report for Validation of Alternative Low Emission Surface Preparation/Depainting Technologies for Structural Steel, provided a technical analyses of identified alternatives to the current coating removal processes, criteria used to select alternatives for further analysis, and a list of those alternatives recommended for testing. The initial coating removal alternatives list was compiled using literature searches and stakeholder recommendations. The involved project participants initially considered approximately 13 alternatives. In late 2003, core project members selected the following depainting processes to be further evaluated: (1) Plastic Blast Media-Quickstrip(R)-A. (2) Hard Abrasive-Steel-Magic(R). (3) Sponge Blasting-Sponge-Jet(R). (4) Liquid Nitrogen-NItroJet(R). (5) Mechanical Removal with Vacuum Attachment-DESCO and OCM Clean-Air (6) Laser Coating Removal Alternatives were tested in accordance with the Joint Test Protocol for Validation of Alternative Low-Emission Surface Preparation/Depainting Technologies for Structural Steel, and the Field Evaluation Test Plan for Validation of Alternative Low-Emission Surface Preparation/Depainting Technologies for Structural Steel. Results of the testing are documented in the Joint Test Report. This Cost-Benefit Analysis (CBA) focuses on the three alternatives (Quickstrip(R)-A, SteelMagic (R), and Sponge-Jet(R)) that were considered viable alternatives for large area operations based on the results of the field demonstration and lab testing. This CBA was created to help participants determine if implementation of the candidate alternatives is economically justified. Each of the alternatives examined reduced Environmental

  9. Effect of Etching Methods in Metallographic Studies of Duplex Stainless Steel 2205

    NASA Astrophysics Data System (ADS)

    Kisasoz, A.; Karaaslan, A.; Bayrak, Y.

    2017-03-01

    Three different etching methods are used to uncover the ferrite-austenite structure and precipitates of secondary phases in stainless steel 22.5% Cr - 5.4% Ni - 3% Mo - 1.3% Mn. The structure is studied under a light microscope. The chemical etching is conducted in a glycerol solution of HNO3, HCl and HF; the electrochemical etching is conducted in solutions of KOH and NaOH.

  10. 13 CFR 400.2 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Business Credit and Assistance EMERGENCY STEEL GUARANTEE LOAN BOARD EMERGENCY STEEL GUARANTEE LOAN PROGRAM General § 400.2 Definitions. (a) Act means the Emergency Steel Loan Guarantee Act of 1999, Chapter 1 of... institution applying for a loan guarantee under this part. (e) Board means the Emergency Steel Guarantee Loan...

  11. 13 CFR 400.2 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Business Credit and Assistance EMERGENCY STEEL GUARANTEE LOAN BOARD EMERGENCY STEEL GUARANTEE LOAN PROGRAM General § 400.2 Definitions. (a) Act means the Emergency Steel Loan Guarantee Act of 1999, Chapter 1 of... institution applying for a loan guarantee under this part. (e) Board means the Emergency Steel Guarantee Loan...

  12. A microstructural comparison of two nuclear-grade martensitic steels using small-angle neutron scattering

    NASA Astrophysics Data System (ADS)

    Coppola, R.; Fiori, F.; Little, E. A.; Magnani, M.

    1997-06-01

    Results are presented of a small-angle neutron scattering (SANS) study on two 10-13% Cr martensitic stainless steels of interest for nuclear applications, viz. DIN 1.4914 (MANET specification, for fusion reactors) and AISI 410. The investigation has focussed principally on microstructural effects associated with the differences in chromium content between the two alloys. The size distribution functions determined from nuclear and magnetic SANS components for the two steels given identical heat treatments are in accord with an interpretation based on the presence of ˜ 1 nm size CCr aggregates in the microstructure. Much larger (˜ 10 nm) scattering inhomogeneities with different magnetic contrast are also present and tentatively identified as carbides.

  13. Passivation Characteristics of Alloy Corrosion-Resistant Steel Cr10Mo1 in Simulating Concrete Pore Solutions: Combination Effects of pH and Chloride

    PubMed Central

    Ai, Zhiyong; Sun, Wei; Jiang, Jinyang; Song, Dan; Ma, Han; Zhang, Jianchun; Wang, Danqian

    2016-01-01

    The electrochemical behaviour for passivation of new alloy corrosion-resistant steel Cr10Mo1 immersed in alkaline solutions with different pH values (13.3, 12.0, 10.5, and 9.0) and chloride contents (0.2 M and 1.0 M), was investigated by various electrochemical techniques: linear polarization resistance, electrochemical impedance spectroscopy and capacitance measurements. The chemical composition and structure of passive films were determined by XPS. The morphological features and surface composition of the immersed steel were evaluated by SEM together with EDS chemical analysis. The results evidence that pH plays an important role in the passivation of the corrosion-resistant steel and the effect is highly dependent upon the chloride contents. In solutions with low chloride (0.2 M), the corrosion-resistant steel has notably enhanced passivity with pH falling from 13.3 to 9.0, but does conversely when in presence of high chloride (1.0 M). The passive film on the corrosion-resistant steel presents a bilayer structure: an outer layer enriched in Fe oxides and hydroxides, and an inner layer, rich in Cr species. The film composition varies with pH values and chloride contents. As the pH drops, more Cr oxides are enriched in the film while Fe oxides gradually decompose. Increasing chloride promotes Cr oxides and Fe oxides to transform into their hydroxides with little protection, and this is more significant at lower pH (10.5 and 9.0). These changes annotate passivation characteristics of the corrosion-resistant steel in the solutions of different electrolyte. PMID:28773867

  14. Passivation Characteristics of Alloy Corrosion-Resistant Steel Cr10Mo1 in Simulating Concrete Pore Solutions: Combination Effects of pH and Chloride.

    PubMed

    Ai, Zhiyong; Sun, Wei; Jiang, Jinyang; Song, Dan; Ma, Han; Zhang, Jianchun; Wang, Danqian

    2016-09-01

    The electrochemical behaviour for passivation of new alloy corrosion-resistant steel Cr10Mo1 immersed in alkaline solutions with different pH values (13.3, 12.0, 10.5, and 9.0) and chloride contents (0.2 M and 1.0 M), was investigated by various electrochemical techniques: linear polarization resistance, electrochemical impedance spectroscopy and capacitance measurements. The chemical composition and structure of passive films were determined by XPS. The morphological features and surface composition of the immersed steel were evaluated by SEM together with EDS chemical analysis. The results evidence that pH plays an important role in the passivation of the corrosion-resistant steel and the effect is highly dependent upon the chloride contents. In solutions with low chloride (0.2 M), the corrosion-resistant steel has notably enhanced passivity with pH falling from 13.3 to 9.0, but does conversely when in presence of high chloride (1.0 M). The passive film on the corrosion-resistant steel presents a bilayer structure: an outer layer enriched in Fe oxides and hydroxides, and an inner layer, rich in Cr species. The film composition varies with pH values and chloride contents. As the pH drops, more Cr oxides are enriched in the film while Fe oxides gradually decompose. Increasing chloride promotes Cr oxides and Fe oxides to transform into their hydroxides with little protection, and this is more significant at lower pH (10.5 and 9.0). These changes annotate passivation characteristics of the corrosion-resistant steel in the solutions of different electrolyte.

  15. Steel Shear Walls, Behavior, Modeling and Design

    NASA Astrophysics Data System (ADS)

    Astaneh-Asl, Abolhassan

    2008-07-01

    In recent years steel shear walls have become one of the more efficient lateral load resisting systems in tall buildings. The basic steel shear wall system consists of a steel plate welded to boundary steel columns and boundary steel beams. In some cases the boundary columns have been concrete-filled steel tubes. Seismic behavior of steel shear wall systems during actual earthquakes and based on laboratory cyclic tests indicates that the systems are quite ductile and can be designed in an economical way to have sufficient stiffness, strength, ductility and energy dissipation capacity to resist seismic effects of strong earthquakes. This paper, after summarizing the past research, presents the results of two tests of an innovative steel shear wall system where the boundary elements are concrete-filled tubes. Then, a review of currently available analytical models of steel shear walls is provided with a discussion of capabilities and limitations of each model. We have observed that the tension only "strip model", forming the basis of the current AISC seismic design provisions for steel shear walls, is not capable of predicting the behavior of steel shear walls with length-to-thickness ratio less than about 600 which is the range most common in buildings. The main reasons for such shortcomings of the AISC seismic design provisions for steel shear walls is that it ignores the compression field in the shear walls, which can be significant in typical shear walls. The AISC method also is not capable of incorporating stresses in the shear wall due to overturning moments. A more rational seismic design procedure for design of shear walls proposed in 2000 by the author is summarized in the paper. The design method, based on procedures used for design of steel plate girders, takes into account both tension and compression stress fields and is applicable to all values of length-to-thickness ratios of steel shear walls. The method is also capable of including the effect of

  16. Microstructure and Mechanical Properties of Plasma Arc Brazed AISI 304L Stainless Steel and Galvanized Steel Plates

    NASA Astrophysics Data System (ADS)

    Jin, Yajuan; Li, Ruifeng; Yu, Zhishui; Wang, Yu

    2016-04-01

    Plasma arc brazing is used to join the AISI 304L stainless steel and galvanized steel plate butt joints with the CuSi3Mn1 filler wire. The effect of parameters on weld surface appearance, interfacial microstructure, and composition distribution in the joint was studied. The microhardness and mechanical tests were conducted to determine the mechanical properties of the welded specimens. The results indicated that good appearance, bead shape, and sufficient metallurgical bonding could be obtained when the brazing process was performed with a wire feeding speed of 0.8 m/min, plasma gas flow rate of 3.0 l/min, welding current of 100 A, and welding speed of 27 cm/min. During plasma arc brazing process, the top corner of the stainless steel and galvanized steel plate were heated and melted, and the melted quantity of stainless steel was much more than that of the galvanized steel due to the thermal conductivity coefficient difference between the dissimilar materials. The microhardness test results shows that the microhardness value gradually increased from the side of the galvanized steel to the stainless steel in the joint, and it is good for improving the mechanical properties of joint. The tensile strength was a little higher than that of the brazing filler, and the fracture position of weld joint was at the base metal of galvanized steel plate.

  17. Modern steels for light automobiles (review)

    NASA Astrophysics Data System (ADS)

    Tikhonov, A. K.

    1994-10-01

    The article considers the directions of work at VAZ together with metallurgists of the CIS for creating highly efficient economically-alloyed and microalloyed steels; highly ductile forged steels with improved corrosion resistance coated with zinc and with good stamping, welding, and painting capacity. Steels are created for petrol tanks with aluminum-zinc coatings instead of lead, and new heat and corrosion-resistant steels are developed for automobile exhaust gas systems.

  18. Life after Steel

    ERIC Educational Resources Information Center

    Mangan, Katherine

    2013-01-01

    Bobby Curran grew up in a working-class neighborhood in Baltimore, finished high school, and followed his grandfather's steel-toed bootprints straight to Sparrows Point, a 3,000-acre sprawl of industry on the Chesapeake Bay. College was not part of the plan. A gritty but well-paying job at the RG Steel plant was Mr. Curran's ticket to a secure…

  19. Performance Steel Castings

    DTIC Science & Technology

    2012-09-30

    Development of Sand Properties 103 Advanced Modeling Dataset.. 105 High Strength Low Alloy (HSLA) Steels 107 Steel Casting and Engineering Support...to achieve the performance goals required for new systems. The dramatic reduction in weight and increase in capability will require high performance...for improved weapon system reliability. SFSA developed innovative casting design and manufacturing processes for high performance parts. SFSA is

  20. High strength, tough alloy steel

    DOEpatents

    Thomas, Gareth; Rao, Bangaru V. N.

    1979-01-01

    A high strength, tough alloy steel is formed by heating the steel to a temperature in the austenite range (1000.degree.-1100.degree. C.) to form a homogeneous austenite phase and then cooling the steel to form a microstructure of uniformly dispersed dislocated martensite separated by continuous thin boundary films of stabilized retained austenite. The steel includes 0.2-0.35 weight % carbon, at least 1% and preferably 3-4.5% chromium, and at least one other substitutional alloying element, preferably manganese or nickel. The austenite film is stable to subsequent heat treatment as by tempering (below 300.degree. C.) and reforms to a stable film after austenite grain refinement.

  1. Development of High Heat Input Welding High Strength Steel Plate for Oil Storage Tank in Xinyu Steel Company

    NASA Astrophysics Data System (ADS)

    Zhao, Hemin; Dong, Fujun; Liu, Xiaolin; Xiong, Xiong

    This essay introduces the developed high-heat input welding quenched and tempered pressure vessel steel 12MnNiVR for oil storage tank by Xinyu Steel, which passed the review by the Boiler and Pressure Vessel Standards Technical Committee in 2009. The review comments that compared to the domestic and foreign similar steel standard, the key technical index of enterprise standard were in advanced level. After the heat input of 100kJ/cm electro-gas welding, welded points were still with excellent low temperature toughness at -20°C. The steel plate may be constructed for oil storage tank, which has been permitted by thickness range from 10 to 40mm, and design temperature among -20°C-100°C. It studied microstructure genetic effects mechanical properties of the steel. Many production practices indicated that the mechanical properties of products and the steel by stress relief heat treatment of steel were excellent, with pretreatment of hot metal, converter refining, external refining, protective casting, TMCP and heat treatment process measurements. The stability of performance and matured technology of Xinyu Steel support the products could completely service the demand of steel constructed for 10-15 million cubic meters large oil storage tank.

  2. Corrosion behavior of 2205 duplex stainless steel.

    PubMed

    Platt, J A; Guzman, A; Zuccari, A; Thornburg, D W; Rhodes, B F; Oshida, Y; Moore, B K

    1997-07-01

    The corrosion of 2205 duplex stainless steel was compared with that of AISI type 316L stainless steel. The 2205 stainless steel is a potential orthodontic bracket material with low nickel content (4 to 6 wt%), whereas the 316L stainless steel (nickel content: 10 to 14 wt%) is a currently used bracket material. Both stainless steels were subjected to electrochemical and immersion (crevice) corrosion tests in 37 degrees C, 0.9 wt% sodium chloride solution. Electrochemical testing indicates that 2205 has a longer passivation range than 316L. The corrosion rate of 2205 was 0.416 MPY (milli-inch per year), whereas 316L exhibited 0.647 MPY. When 2205 was coupled to 316L with equal surface area ratio, the corrosion rate of 2205 reduced to 0.260 MPY, indicating that 316L stainless steel behaved like a sacrificial anode. When 316L is coupled with NiTi, TMA, or stainless steel arch wire and was subjected to the immersion corrosion test, it was found that 316L suffered from crevice corrosion. On the other hand, 2205 stainless steel did not show any localized crevice corrosion, although the surface of 2205 was covered with corrosion products, formed when coupled to NiTi and stainless steel wires. This study indicates that considering corrosion resistance, 2205 duplex stainless steel is an improved alternative to 316L for orthodontic bracket fabrication when used in conjunction with titanium, its alloys, or stainless steel arch wires.

  3. Oxide Evolution in ODS Steel Resulting From Friction Stir Welding

    DTIC Science & Technology

    2014-06-01

    Master’s Thesis 4 . TITLE AND SUBTITLE OXIDE EVOLUTION IN ODS STEEL RESULTING FROM FRICTION STIR WELDING 5. FUNDING NUMBERS 6 . AUTHOR(S...temperatures, from [5]. ........... 6   Figure 4 .  The phase diagram for aluminum and yttrium oxide, from [13]. ......................8  Figure 5...millimeters per minute. FSW Conditions RPM IPM MMPM Heat Index 400 7 175 2.3 300 4 100 3 200 2 50 4 400 4 100 4 300 2 50 6 400 2 50 8 500 1 25

  4. Optical and Radio Observations of the T Tauri Binary KH 15D (V582 Mon): Stellar Properties, Disk Mass Limit, and Discovery of a CO Outflow

    NASA Astrophysics Data System (ADS)

    Aronow, Rachel A.; Herbst, William; Hughes, A. Meredith; Wilner, David J.; Winn, Joshua N.

    2018-01-01

    We present VRIJHK photometry of the KH 15D T Tauri binary system for the 2015/2016 and 2016/2017 observing seasons. For the first time in the modern (CCD) era, we are seeing Star B fully emerge from behind the trailing edge of the precessing circumbinary ring during each apastron passage. We are, therefore, able to measure its luminosity and color. Decades of photometry on the system now allow us to infer the effective temperature, radius, mass, and age of each binary component. We find our values to be in good agreement with previous studies, including archival photographic photometry from the era when both stars were fully visible, and they set the stage for a full model of the system that can be constructed once radial velocity measurements are available. We also present the first high-sensitivity radio observations of the system, taken with the Atacama Large Millimeter/submillimeter Array and the Submillimeter Array. The respective 2.0 and 0.88 mm observations provide an upper limit on the circumbinary (gas and dust) disk mass of 1.7 M Jup and reveal an extended CO outflow, which overlaps with the position, systemic velocity, and orientation of the KH 15D system and is certainly associated with it. The low velocity, tight collimation, and extended nature of the emission suggest that the outflow is inclined nearly orthogonal to the line of sight, implying it is also orthogonal to the circumbinary ring. The position angle of the radio outflow also agrees precisely with the direction of polarization of the optical emission during the faint phase. A small offset between the optical image of the binary and the central line of the CO outflow remains a puzzle and possible clue to the jet launching mechanism.

  5. High temperature oxidation behavior of ODS steels

    NASA Astrophysics Data System (ADS)

    Kaito, T.; Narita, T.; Ukai, S.; Matsuda, Y.

    2004-08-01

    Oxide dispersion strengthened (ODS) steels are being developing for application as advanced fast reactor cladding and fusion blanket materials, in order to allow increased operation temperature. Oxidation testing of ODS steel was conducted under a controlled dry air atmosphere to evaluate the high temperature oxidation behavior. This showed that 9Cr-ODS martensitic steels and 12Cr-ODS ferritic steels have superior high temperature oxidation resistance compared to 11 mass% Cr PNC-FMS and 17 mass% Cr ferritic stainless steel. This high temperature resistance is attributed to earlier formation of the protective α-Cr 2O 3 on the outer surface of ODS steels.

  6. Mechanical Properties and Microstructure of Dissimilar Friction Stir Welds of 11Cr-Ferritic/Martensitic Steel to 316 Stainless Steel

    NASA Astrophysics Data System (ADS)

    Sato, Yutaka S.; Kokawa, Hiroyuki; Fujii, Hiromichi T.; Yano, Yasuhide; Sekio, Yoshihiro

    2015-12-01

    Dissimilar joints between ferritic and austenitic steels are of interest for selected applications in next generation fast reactors. In this study, dissimilar friction-stir welding of an 11 pct Cr ferritic/martensitic steel to a 316 austenitic stainless steel was attempted and the mechanical properties and microstructure of the resulting welds were examined. Friction-stir welding produces a stir zone without macroscopic weld-defects, but the two dissimilar steels are not intermixed. The two dissimilar steels are interleaved along a sharp zigzagging interface in the stir zone. During small-sized tensile testing of the stir zone, this sharp interface did not act as a fracture site. Furthermore, the microstructure of the stir zone was refined in both the ferritic/martensitic steel and the 316 stainless steel resulting in improved mechanical properties over the adjacent base material regions. This study demonstrates that friction-stir welding can produce welds between dissimilar steels that contain no macroscopic weld-defects and display suitable mechanical properties.

  7. Study of modulation property to incident laser by surface micro-defects on KH2PO4 crystal

    NASA Astrophysics Data System (ADS)

    Chen, Ming-Jun; Cheng, Jian; Li, Ming-Quan; Xiao, Yong

    2012-06-01

    KH2PO4 crystal is a crucial optical component of inertial confinement fusion. Modulation of an incident laser by surface micro-defects will induce the growth of surface damage, which largely restricts the enhancement of the laser induced damage threshold. The modulation of an incident laser by using different kinds of surface defects are simulated by employing the three-dimensional finite-difference time-domain method. The results indicate that after the modulation of surface defects, the light intensity distribution inside the crystal is badly distorted, with the light intensity enhanced symmetrically. The relations between modulation properties and defect geometries (e.g., width, morphology, and depth of defects) are quite different for different defects. The modulation action is most obvious when the width of surface defects reaches 1.064 μm. For defects with smooth morphology, such as spherical pits, the degree of modulation is the smallest and the light intensity distribution seems relatively uniform. The degree of modulation increases rapidly with the increase of the depth of surface defects and becomes stable when the depth reaches a critical value. The critical depth is 1.064 μm for cuboid pits and radial cracks, while for ellipsoidal pits the value depends on both the width and the length of the defects.

  8. Final report on accident tolerant fuel performance analysis of APMT-Steel Clad/UO₂ fuel and APMT-Steel Clad/UN-U₃Si₅ fuel concepts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unal, Cetin; Galloway, Jack D.

    2014-09-12

    In FY2014 our group completed and documented analysis of new Accident Tolerant Fuel (ATF) concepts using BISON. We have modeled the viability of moving from Zircaloy to stainless steel cladding in traditional light water reactors (LWRs). We have explored the reactivity penalty of this change using the MCNP-based burnup code Monteburns, while attempting to minimize this penalty by increasing the fuel pellet radius and decreasing the cladding thickness. Fuel performance simulations using BISON have also been performed to quantify changes to structural integrity resulting from thinner stainless steel claddings. We account for thermal and irradiation creep, fission gas swelling, thermalmore » swelling and fuel relocation in the models for both Zircaloy and stainless steel claddings. Additional models that account for the lower oxidation stainless steel APMT are also invoked where available. Irradiation data for HT9 is used as a fallback in the absence of appropriate models. In this study the isotopic vectors within each natural element are varied to assess potential reactivity gains if advanced enrichment capabilities were levied towards cladding technologies. Recommendations on cladding thicknesses for a robust cladding as well as the constitutive components of a less penalizing composition are provided. In the first section (section 1-3), we present results accepted for publication in the 2014 TOPFUEL conference regarding the APMT/UO₂ ATF concept (J. Galloway & C. Unal, Accident Tolerant and Neutronically Favorable LWR Cladding, Proceedings of WRFPM 2014, Sendai, Japan, Paper No.1000050). Next we discuss our preliminary findings from the thermo-mechanical analysis of UN-U₃Si₅ fuel with APMT clad. In this analysis we used models developed from limited data that need to be updated when the irradiation data from ATF-1 test is available. Initial results indicate a swelling rate less than 1.5% is needed to prevent excessive clad stress.« less

  9. A Comparison of Iron and Steel Production Energy Use and Energy Intensity in China and the U.S.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasanbeigi, Ali; Price, Lynn; Aden, Nathaniel

    Production of iron and steel is an energy-intensive manufacturing process. In 2006, the iron and steel industry accounted for 13.6% and 1.4% of primary energy consumption in China and the U.S., respectively (U.S. DOE/EIA, 2010a; Zhang et al., 2010). The energy efficiency of steel production has a direct impact on overall energy consumption and related carbon dioxide (CO2) emissions. The goal of this study is to develop a methodology for making an accurate comparison of the energy intensity (energy use per unit of steel produced) of steel production. The methodology is applied to the steel industry in China and themore » U.S. The methodology addresses issues related to boundary definitions, conversion factors, and indicators in order to develop a common framework for comparing steel industry energy use. This study uses a bottom-up, physical-based method to compare the energy intensity of China and U.S. crude steel production in 2006. This year was chosen in order to maximize the availability of comparable steel-sector data. However, data published in China and the U.S. are not always consistent in terms of analytical scope, conversion factors, and information on adoption of energy-saving technologies. This study is primarily based on published annual data from the China Iron & Steel Association and National Bureau of Statistics in China and the Energy Information Agency in the U.S. This report found that the energy intensity of steel production is lower in the United States than China primarily due to structural differences in the steel industry in these two countries. In order to understand the differences in energy intensity of steel production in both countries, this report identified key determinants of sector energy use in both countries. Five determinants analyzed in this report include: share of electric arc furnaces in total steel production, sector penetration of energy-efficiency technologies, scale of production equipment, fuel shares in the iron and

  10. Occupational Profiles in the European Steel Industry.

    ERIC Educational Resources Information Center

    Franz, Hans-Werner; And Others

    The steel industry in Europe has faced great changes, with resulting layoffs and restructuring. Now that the most basic changes seem to be over, it has become evident that the remaining steel industry requires more highly trained workers than was the case previously. Although steel maintenance employees were always highly skilled, steel production…

  11. Acute changes in lung function associated with proximity to a steel plant: a randomized study.

    PubMed

    Dales, Robert; Kauri, Lisa Marie; Cakmak, Sabit; Mahmud, Mamun; Weichenthal, Scott A; Van Ryswyk, Keith; Kumarathasan, Premkumari; Thomson, Errol; Vincent, Renaud; Broad, Gayle; Liu, Ling

    2013-05-01

    Steel production is a major industry worldwide yet there is relatively little information on the pulmonary effects of air quality near steel manufacturing plants. The aim of this study was to examine how lung function changes acutely when healthy subjects are situated near a steel plant which is adjacent to a residential area. Sixty-one subjects were randomly assigned to spend 5 consecutive, 8-hour days in a residential neighborhood approximately 0.9km from a steel plant, or approximately 4.5km away at a college campus. Subjects crossed-over between sites after a nine-day washout period. Lung function was measured daily at both sites along with air pollutants including SO2, NO2, O3, PM2.5, and ultrafine particles. Diffusion capacity and pulse oximetry were also examined. Compared with the college site, the forced expiratory volume in 1-second/forced vital capacity, forced expiratory flow between 25% and 75% of the FVC, total lung capacity, functional residual capacity, and residual volume were lower near the steel plant by 0.67% (95% CI: 0.28, 1.06),1.62% (95% CI: 0.50, 2.75), 1.54% (95% CI: 0.68, 2.39), 3.54% (95% CI: 1.95, 5.13) and 11.3% (95% CI: 4.92, 17.75), respectively. Diffusion capacity, forced expiratory volume in 1s, and pulse oximetry were also lower near the plant but these effects were not statistically significant. Sulfur dioxide, ultrafine particulates, and oxides of nitrogen were greater near the steel plant site compared to the college site. Spending short periods of time near a steel plant is associated with a decrease in lung function. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  12. Characterization of friction stir welded joint of low nickel austenitic stainless steel and modified ferritic stainless steel

    NASA Astrophysics Data System (ADS)

    Mondal, Mounarik; Das, Hrishikesh; Ahn, Eun Yeong; Hong, Sung Tae; Kim, Moon-Jo; Han, Heung Nam; Pal, Tapan Kumar

    2017-09-01

    Friction stir welding (FSW) of dissimilar stainless steels, low nickel austenitic stainless steel and 409M ferritic stainless steel, is experimentally investigated. Process responses during FSW and the microstructures of the resultant dissimilar joints are evaluated. Material flow in the stir zone is investigated in detail by elemental mapping. Elemental mapping of the dissimilar joints clearly indicates that the material flow pattern during FSW depends on the process parameter combination. Dynamic recrystallization and recovery are also observed in the dissimilar joints. Among the two different stainless steels selected in the present study, the ferritic stainless steels shows more severe dynamic recrystallization, resulting in a very fine microstructure, probably due to the higher stacking fault energy.

  13. Utilization of structural steel in buildings.

    PubMed

    Moynihan, Muiris C; Allwood, Julian M

    2014-08-08

    Over one-quarter of steel produced annually is used in the construction of buildings. Making this steel causes carbon dioxide emissions, which climate change experts recommend be reduced by half in the next 37 years. One option to achieve this is to design and build more efficiently, still delivering the same service from buildings but using less steel to do so. To estimate how much steel could be saved from this option, 23 steel-framed building designs are studied, sourced from leading UK engineering firms. The utilization of each beam is found and buildings are analysed to find patterns. The results for over 10 000 beams show that average utilization is below 50% of their capacity. The primary reason for this low value is 'rationalization'-providing extra material to reduce labour costs. By designing for minimum material rather than minimum cost, steel use in buildings could be drastically reduced, leading to an equivalent reduction in 'embodied' carbon emissions.

  14. Utilization of structural steel in buildings

    PubMed Central

    Moynihan, Muiris C.; Allwood, Julian M.

    2014-01-01

    Over one-quarter of steel produced annually is used in the construction of buildings. Making this steel causes carbon dioxide emissions, which climate change experts recommend be reduced by half in the next 37 years. One option to achieve this is to design and build more efficiently, still delivering the same service from buildings but using less steel to do so. To estimate how much steel could be saved from this option, 23 steel-framed building designs are studied, sourced from leading UK engineering firms. The utilization of each beam is found and buildings are analysed to find patterns. The results for over 10 000 beams show that average utilization is below 50% of their capacity. The primary reason for this low value is ‘rationalization’—providing extra material to reduce labour costs. By designing for minimum material rather than minimum cost, steel use in buildings could be drastically reduced, leading to an equivalent reduction in ‘embodied’ carbon emissions. PMID:25104911

  15. Nickel-free austenitic stainless steels for medical applications.

    PubMed

    Yang, Ke; Ren, Yibin

    2010-02-01

    The adverse effects of nickel ions being released into the human body have prompted the development of high-nitrogen nickel-free austenitic stainless steels for medical applications. Nitrogen not only replaces nickel for austenitic structure stability but also much improves steel properties. Here we review the harmful effects associated with nickel in medical stainless steels, the advantages of nitrogen in stainless steels, and emphatically, the development of high-nitrogen nickel-free stainless steels for medical applications. By combining the benefits of stable austenitic structure, high strength and good plasticity, better corrosion and wear resistances, and superior biocompatibility compared to the currently used 316L stainless steel, the newly developed high-nitrogen nickel-free stainless steel is a reliable substitute for the conventional medical stainless steels.

  16. Nickel-free austenitic stainless steels for medical applications

    PubMed Central

    Yang, Ke; Ren, Yibin

    2010-01-01

    The adverse effects of nickel ions being released into the human body have prompted the development of high-nitrogen nickel-free austenitic stainless steels for medical applications. Nitrogen not only replaces nickel for austenitic structure stability but also much improves steel properties. Here we review the harmful effects associated with nickel in medical stainless steels, the advantages of nitrogen in stainless steels, and emphatically, the development of high-nitrogen nickel-free stainless steels for medical applications. By combining the benefits of stable austenitic structure, high strength and good plasticity, better corrosion and wear resistances, and superior biocompatibility compared to the currently used 316L stainless steel, the newly developed high-nitrogen nickel-free stainless steel is a reliable substitute for the conventional medical stainless steels. PMID:27877320

  17. Radiation resistant austenitic stainless steel alloys

    DOEpatents

    Maziasz, Philip J.; Braski, David N.; Rowcliffe, Arthur F.

    1989-01-01

    An austenitic stainless steel alloy, with improved resistance to radiation-induced swelling and helium embrittlement, and improved resistance to thermal creep at high temperatures, consisting essentially of, by weight percent: from 16 to 18% nickel; from 13 to 17% chromium; from 2 to 3% molybdenum; from 1.5 to 2.5% manganese; from 0.01 to 0.5% silicon; from 0.2 to 0.4% titanium; from 0.1 to 0.2% niobium; from 0.1 to 0.6% vanadium; from 0.06 to 0.12% carbon; from 0.01% to 0.03% nitrogen; from 0.03 to 0.08% phosphorus; from 0.005 to 0.01% boron; and the balance iron, and wherein the alloy may be thermomechanically treated to enhance physical and mechanical properties.

  18. Multicomponent click synthesis of new 1,2,3-triazole derivatives of pyrimidine nucleobases: promising acidic corrosion inhibitors for steel.

    PubMed

    González-Olvera, Rodrigo; Espinoza-Vázquez, Araceli; Negrón-Silva, Guillermo E; Palomar-Pardavé, Manuel E; Romero-Romo, Mario A; Santillan, Rosa

    2013-12-06

    A series of new mono-1,2,3-triazole derivatives of pyrimidine nucleobases were synthesized by one-pot copper(I)-catalyzed 1,3-dipolar cycloaddition reactions between N-1-propargyluracil and thymine, sodium azide and several benzyl halides. The desired heterocyclic compounds were obtained in good yields and characterized by NMR, IR, and high resolution mass spectrometry. These compounds were investigated as corrosion inhibitors for steel in 1 M HCl solution, using electrochemical impedance spectroscopy (EIS) technique. The results indicate that these heterocyclic compounds are promising acidic corrosion inhibitors for steel.

  19. Aerosol filtration with steel fiber filters

    NASA Astrophysics Data System (ADS)

    Bergman, W.; Wilson, K.; Larsen, G.; Lopez, R.

    1993-04-01

    An experimental study has been conducted of aerosol penetration through a new high efficiency steel fiber filter and filter media that was developed in cooperation with Pall Corporation. Previous studies have shown that sintered steel fiber media have significant improvements in higher filter efficiency and lower pressure drop than the previous steel filter technology based on sintered powder metal media. In the present study, measurements were made of the penetration of dioctyl sebacate (DOS) aerosols through flat sheet samples, pleated cartridge filters, and a 1000 cfm filter having 64 cartridges housed in a 2 x 2 x 1 ft. frame. The steel fiber media used in our study consists of 2 micron diameter stainless steel (316 L) fibers sintered together into sheets.

  20. Design of Fully Austenitic Medium Manganese Steels

    NASA Astrophysics Data System (ADS)

    Luan, G.; Volkova, O.; Mola, J.

    2018-06-01

    Due to their higher ferrite potential compared to high Mn twinning-induced plasticity (TWIP) steels, medium Mn steels usually exhibit austenitic-ferritic microstructures, which makes them suitable for third-generation advanced high-strength steel applications. Nevertheless, the strain hardening characteristics of medium Mn steels are inferior to those of fully austenitic high Mn steels. The present work introduces alloy design strategies to obtain fully austenitic medium Mn steels capable of the TWIP effect. To achieve a fully austenitic microstructure, the martensite start temperature is reduced by raising the C concentration to above 1 mass-%, which in turn facilitates the formation of cementite. The formation of cementite during cooling from austenitization temperature is counteracted by alloying with Al. Microstructural examination of slowly-cooled Fe‑Mn‑Al‑C and Fe‑Mn‑C steels indicated that Al changes the morphology of intergranular cementite from plate-shaped to equiaxed.

  1. Effects of heat input on mechanical properties of metal inert gas welded 1.6 mm thick galvanized steel sheet

    NASA Astrophysics Data System (ADS)

    Rafiqul, M. I.; Ishak, M.; Rahman, M. M.

    2012-09-01

    It is usually a lot easier and less expensive to galvanize steel before it is welded into useful products. Galvanizing afterwards is almost impossible. In this research work, Galvanized Steel was welded by using the ER 308L stainless steel filler material. This work was done to find out an alternative way of welding and investigate the effects of heat input on the mechanical properties of butt welded joints of Galvanized Steel. A 13.7 kW maximum capacity MIG welding machine was used to join 1.6 mm thick sheet of galvanized steel with V groove and no gap between mm. Heat inputs was gradually increased from 21.06 to 25.07 joules/mm in this study. The result shows almost macro defects free welding and with increasing heat input the ultimate tensile strength and welding efficiency decrease. The Vickers hardness also decreases at HAZ with increasing heat input and for each individual specimen; hardness was lowest in heat affected zone (HAZ), intermediate in base metal and maximum in welded zone. The fracture for all specimens was in the heat affected zone while testing in the universal testing machine.

  2. 46 CFR 56.60-5 - Steel (High temperature applications).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Steel (High temperature applications). 56.60-5 Section... SYSTEMS AND APPURTENANCES Materials § 56.60-5 Steel (High temperature applications). (a) (Reproduces 124.2... steel, plain nickel-alloy steel, carbon-manganese-alloy steel, manganese-vanadium-alloy steel, and...

  3. 46 CFR 56.60-5 - Steel (High temperature applications).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Steel (High temperature applications). 56.60-5 Section... SYSTEMS AND APPURTENANCES Materials § 56.60-5 Steel (High temperature applications). (a) (Reproduces 124.2... steel, plain nickel-alloy steel, carbon-manganese-alloy steel, manganese-vanadium-alloy steel, and...

  4. 46 CFR 56.60-5 - Steel (High temperature applications).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Steel (High temperature applications). 56.60-5 Section... SYSTEMS AND APPURTENANCES Materials § 56.60-5 Steel (High temperature applications). (a) (Reproduces 124.2... steel, plain nickel-alloy steel, carbon-manganese-alloy steel, manganese-vanadium-alloy steel, and...

  5. 46 CFR 56.60-5 - Steel (High temperature applications).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Steel (High temperature applications). 56.60-5 Section... SYSTEMS AND APPURTENANCES Materials § 56.60-5 Steel (High temperature applications). (a) (Reproduces 124.2... steel, plain nickel-alloy steel, carbon-manganese-alloy steel, manganese-vanadium-alloy steel, and...

  6. 46 CFR 56.60-5 - Steel (High temperature applications).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Steel (High temperature applications). 56.60-5 Section... SYSTEMS AND APPURTENANCES Materials § 56.60-5 Steel (High temperature applications). (a) (Reproduces 124.2... steel, plain nickel-alloy steel, carbon-manganese-alloy steel, manganese-vanadium-alloy steel, and...

  7. Great Lakes Steel -- PCI facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eichinger, F.T.; Dake, S.H.; Wagner, E.D.

    1997-12-31

    This paper discusses the planning, design, and start-up of the 90 tph PCI facility for National Steel`s Great Lakes Steel Division in River Rouge, MI. This project is owned and operated by Edison Energy Services, and was implemented on a fast-track basis by Raytheon Engineers and Constructors, Babcock Material Handling, and Babcock and Wilcox. This paper presents important process issues, basic design criteria, an the challenges of engineering and building a state-of-the-art PCI facility in two existing plants. Pulverized coal is prepared at the River Rouge Power Plant of Detroit Edison, is pneumatically conveyed 6,000 feet to a storage silomore » at Great Lakes Steel, and is injected into three blast furnaces.« less

  8. UNTANGLING THE NEAR-IR SPECTRAL FEATURES IN THE PROTOPLANETARY ENVIRONMENT OF KH 15D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arulanantham, Nicole A.; Herbst, William; Gilmore, Martha S.

    2017-01-10

    We report on Gemini/GNIRS observations of the binary T Tauri system V582 Mon (KH 15D) at three orbital phases. These spectra allow us to untangle five components of the system: the photosphere and magnetosphere of star B, the jet, scattering properties of the ring material, and excess near-infrared (near-IR) radiation previously attributed to a possible self-luminous planet. We confirm an early-K subgiant classification for star B and show that the magnetospheric He i emission line is variable, possibly indicating increased mass accretion at certain times. As expected, the H{sub 2} emission features associated with the inner part of the jetmore » show no variation with orbital phase. We show that the reflectance spectrum for the scattered light has a distinctive blue slope and spectral features consistent with scattering and absorption by a mixture of water and methane ice grains in the 1–50 μ m size range. This suggests that the methane frost line is closer than ∼5 au in this system, requiring that the grains be shielded from direct radiation. After correcting for features from the scattered light, jet, magnetosphere, and photosphere, we confirm the presence of leftover near-IR light from an additional source, detectable near minimum brightness. A spectral emission feature matching the model spectrum of a 10 M {sub J}, 1 Myr old planet is found in the excess flux, but other expected features from this model are not seen. Our observations, therefore, tentatively support the picture that a luminous planet is present within the system, although they cannot yet be considered definitive.« less

  9. A Comparative Study on Formability of the Third-Generation Automotive Medium-Mn Steel and 22MnB5 Steel

    NASA Astrophysics Data System (ADS)

    Zheng, Guojun; Li, Xiaodong; Chang, Ying; Wang, Cunyu; Dong, Han

    2018-02-01

    Third-generation advanced automotive medium-Mn steel, which can replace 22MnB5 steel, was newly developed to improve the lightweight and crashworthiness of automobile. Studies on the formability and simulation method of medium-Mn steel have just been initiated. In this study, finite element simulation models of square-cup deep drawing were established based on various material property experiments and validated by experiments. The effects of blank holder force (BHF), fillet radii of tools (die and punch) on the maximum drawing depth (MDD), thickness distribution of the formed products, and the microstructure before and after forming were investigated and compared with those on 22MnB5 steel. Results show that the MDD of the two steels decreased with increased BHF but increased with the fillet radius of punch; however, the fillet radius of die showed no significant effect on the MDD for both steels. Compared with hot-formed 22MnB5 steel, the martensitic transformation of the hot-formed medium-Mn steel is rarely influenced by the process parameters; thus, it holds the complete, fine-grained, and uniform martensitic microstructure. Moreover, the medium-Mn has better formability, lower initial blank temperature, and smaller impact of BHF and fillet radius of tools on the hot-formed product. Thus, a theoretical basis for the replacement of 22MnB5 steel by medium-Mn steel in hot forming process is provided.

  10. Measurement of Outgassing Rates of Steels.

    PubMed

    Park, Chongdo; Kim, Se-Hyun; Ki, Sanghoon; Ha, Taekyun; Cho, Boklae

    2016-12-13

    Steels are commonly used materials in the fabrication of vacuum systems because of their good mechanical, corrosion, and vacuum properties. A variety of steels meet the criterion of low outgassing required for high or ultrahigh vacuum applications. However, a given material can present different outgassing rates depending on its manufacturing process or the various pretreatment processes involved during the fabrication. Thus, the measurement of outgassing rates is highly desirable for a specific vacuum application. For this reason, the rate-of-pressure rise (RoR) method is often used to measure the outgassing of hydrogen after bakeout. In this article, a detailed description of the design and execution of the experimental protocol involved in the RoR method is provided. The RoR method uses a spinning rotor gauge to minimize errors that stem from outgassing or the pumping action of a vacuum gauge. The outgassing rates of two ordinary steels (stainless steel and mild steel) were measured. The measurements were made before and after the heat pretreatment of the steels. The heat pretreatment of steels was performed to reduce the outgassing. Extremely low rates of outgassing (on the order of 10 - 11 Pa m 3 sec - 1 m - 2 ) can be routinely measured using relatively small samples.

  11. Hydrogen attack in Cr-Mo steels. [3Cr-1. 5Mo and 2. 25Cr-1Mo steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruoff, S.; Stone, D.; Wanagel, J.

    Experiments conducted upon 3Cr-1.5Mo steel at elevated temperatures (600 C), and high pressure hydrogen (2000 psi), have shown a greater resistence to hydrogen attack compared with similar studies of 2.25Cr-lMo steels. Hydrogen exposure tests with and without an applied stress have been performed on both types of steels. Results of similar conditions show clear evidence of hydrogen attack in 2.25Cr-lMo steel, however, for the 3Cr-1.5Mo steel with exposure time up to 80 days without an applied stress no evidence of hydrogen attack is observed. For stress-rupture tests using stresses of 14 and 16 ksi, the 3Cr-1.5Mo steel showed no effectsmore » of hydrogen attack, and no damage was observed using a SEM.« less

  12. Steeling and Resilience in Art Education

    ERIC Educational Resources Information Center

    Heise, Donalyn

    2014-01-01

    Steel is an incredibly strong alloy of iron and carbon. Due to its incredible strength and durability, this resilient material is commonly used for constructing buildings. The transitive verb "steeling" is defined in Miriam-Webster dictionary as "to fill with resolution or determination, as in, she 'steeled herself to face the…

  13. [Application of computer-aided osteotomy template design in treatment of developmental dysplasia of the hip with steel osteotomy].

    PubMed

    Tong, Kuang; Zhang, Yuanzhi; Zhang, Sheng; Yu, Bin

    2013-06-01

    To provide an accurate method for osteotomy in the treatment of developmental dysplasia of the hip with steel osteotomy by three-dimensional reconstruction and Reverse Engineering technique. Between January 2011 and December 2012, 13 children with developmental dysplasia of the hip underwent steel osteotomy. 3D CT scan pelvic images were obtained and transferred via a DICOM network into a computer workstation to construct 3D models of the hip using Materialise Mimics 14.1 software in STL format. These models were imported into Imageware 12.0 software for steel osteotomy simulation until a stable hip was attained in the anatomical position for dislocation or subluxation of the hip in older children. The osteotomy navigational templates were designed according to the anatomical features after a stable hip was reconstructed. These navigational templates were manufactured using a rapid prototyping technique. The reconstruction hips in these children show good matching property and acetabulum cover. The computer-aided design of osteotomy template provides personalized and accurate solutions in the treatment of developmental dysplasia of the hip with steel osteotomy in older children.

  14. 13 CFR 400.205 - Application process.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Section 400.205 Business Credit and Assistance EMERGENCY STEEL GUARANTEE LOAN BOARD EMERGENCY STEEL GUARANTEE LOAN PROGRAM Steel Guarantee Loans § 400.205 Application process. (a) Application process. An... “Application for Steel Guarantee Loan”; (2) The information required for the completion of Form “Environmental...

  15. 13 CFR 400.200 - Eligible Borrower.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 400.200 Business Credit and Assistance EMERGENCY STEEL GUARANTEE LOAN BOARD EMERGENCY STEEL GUARANTEE LOAN PROGRAM Steel Guarantee Loans § 400.200 Eligible Borrower. (a) An eligible Borrower must be a Qualified Steel Company that can demonstrate: (1) Credit is not otherwise available to it under reasonable...

  16. 13 CFR 400.205 - Application process.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Section 400.205 Business Credit and Assistance EMERGENCY STEEL GUARANTEE LOAN BOARD EMERGENCY STEEL GUARANTEE LOAN PROGRAM Steel Guarantee Loans § 400.205 Application process. (a) Application process. An... “Application for Steel Guarantee Loan”; (2) The information required for the completion of Form “Environmental...

  17. 13 CFR 400.200 - Eligible Borrower.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 400.200 Business Credit and Assistance EMERGENCY STEEL GUARANTEE LOAN BOARD EMERGENCY STEEL GUARANTEE LOAN PROGRAM Steel Guarantee Loans § 400.200 Eligible Borrower. (a) An eligible Borrower must be a Qualified Steel Company that can demonstrate: (1) Credit is not otherwise available to it under reasonable...

  18. 13 CFR 400.200 - Eligible Borrower.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 400.200 Business Credit and Assistance EMERGENCY STEEL GUARANTEE LOAN BOARD EMERGENCY STEEL GUARANTEE LOAN PROGRAM Steel Guarantee Loans § 400.200 Eligible Borrower. (a) An eligible Borrower must be a Qualified Steel Company that can demonstrate: (1) Credit is not otherwise available to it under reasonable...

  19. 13 CFR 400.200 - Eligible Borrower.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 400.200 Business Credit and Assistance EMERGENCY STEEL GUARANTEE LOAN BOARD EMERGENCY STEEL GUARANTEE LOAN PROGRAM Steel Guarantee Loans § 400.200 Eligible Borrower. (a) An eligible Borrower must be a Qualified Steel Company that can demonstrate: (1) Credit is not otherwise available to it under reasonable...

  20. 13 CFR 400.200 - Eligible Borrower.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 400.200 Business Credit and Assistance EMERGENCY STEEL GUARANTEE LOAN BOARD EMERGENCY STEEL GUARANTEE LOAN PROGRAM Steel Guarantee Loans § 400.200 Eligible Borrower. (a) An eligible Borrower must be a Qualified Steel Company that can demonstrate: (1) Credit is not otherwise available to it under reasonable...

  1. 13 CFR 400.205 - Application process.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Section 400.205 Business Credit and Assistance EMERGENCY STEEL GUARANTEE LOAN BOARD EMERGENCY STEEL GUARANTEE LOAN PROGRAM Steel Guarantee Loans § 400.205 Application process. (a) Application process. An... “Application for Steel Guarantee Loan”; (2) The information required for the completion of Form “Environmental...

  2. 13 CFR 400.205 - Application process.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Section 400.205 Business Credit and Assistance EMERGENCY STEEL GUARANTEE LOAN BOARD EMERGENCY STEEL GUARANTEE LOAN PROGRAM Steel Guarantee Loans § 400.205 Application process. (a) Application process. An... “Application for Steel Guarantee Loan”; (2) The information required for the completion of Form “Environmental...

  3. Dynamic Strain Aging Phenomena and Tensile Response of Medium-Mn TRIP Steel

    NASA Astrophysics Data System (ADS)

    Field, Daniel M.; Van Aken, David C.

    2018-04-01

    Dynamic strain aging (DSA) and rapid work hardening are typical behaviors observed in medium-Mn transformation-induced plasticity (TRIP) steel. Three alloys with manganese ranging from 10.2 to 13.8 wt pct with calculated room temperature stacking fault energies varying from - 2.1 to 0.7 mJ/m2 were investigated. Significant serrations were observed in the stress-strain behavior for two of the steels and the addition of 4.6 wt pct chromium was effective in significantly reducing the occurrence of DSA. Addition of chromium to the alloy reduced DSA by precipitation of M23(C,N)6 during batch annealing at 873 K (600 °C) for 20 hours. Three distinct DSA mechanisms were identified: one related to manganese ordering in stacking faults associated with ɛ-martensite and austenite interface, with activation energies for the onset and termination of DSA being 145 and 277 kJ/mol. A second mechanism was associated with carbon diffusion in γ-austenite where Mn-C bonding added to the total binding energy, and activation energies of 88 and 155 kJ/mol were measured for the onset and termination of DSA. A third mechanism was attributed to dislocation pinning and unpinning by nitrogen in α-ferrite with activation energies of 64 and 123 kJ/mol being identified. Tensile behaviors of the three medium manganese steels were studied in both the hot band and batch annealed after cold working conditions. Ultimate tensile strengths ranged from 1310 to 1404 MPa with total elongation of 24.1 to 34.1 pct. X-ray diffraction (XRD) was used to determine the transformation response of the steels using interrupted tensile tests at room temperature. All three of the processed steels showed evidence of two-stage TRIP where γ-austenite first transformed to ɛ-martensite, and subsequently transformed to α-martensite.

  4. 13 CFR 400.202 - Loan amount.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ....202 Business Credit and Assistance EMERGENCY STEEL GUARANTEE LOAN BOARD EMERGENCY STEEL GUARANTEE LOAN PROGRAM Steel Guarantee Loans § 400.202 Loan amount. (a) The aggregate amount of loan principal guaranteed under this Program to a single Qualified Steel Company may not exceed $ 250 million. (b) Of the...

  5. 13 CFR 400.201 - Eligible Lender.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 400.201 Business Credit and Assistance EMERGENCY STEEL GUARANTEE LOAN BOARD EMERGENCY STEEL GUARANTEE LOAN PROGRAM Steel Guarantee Loans § 400.201 Eligible Lender. (a) A lender eligible to apply to the...), including its experience with loans to steel companies; (3) The scope, volume and duration of the Agent...

  6. 13 CFR 400.202 - Loan amount.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ....202 Business Credit and Assistance EMERGENCY STEEL GUARANTEE LOAN BOARD EMERGENCY STEEL GUARANTEE LOAN PROGRAM Steel Guarantee Loans § 400.202 Loan amount. (a) The aggregate amount of loan principal guaranteed under this Program to a single Qualified Steel Company may not exceed $ 250 million. (b) Of the...

  7. 13 CFR 400.202 - Loan amount.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ....202 Business Credit and Assistance EMERGENCY STEEL GUARANTEE LOAN BOARD EMERGENCY STEEL GUARANTEE LOAN PROGRAM Steel Guarantee Loans § 400.202 Loan amount. (a) The aggregate amount of loan principal guaranteed under this Program to a single Qualified Steel Company may not exceed $ 250 million. (b) Of the...

  8. 13 CFR 400.201 - Eligible Lender.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 400.201 Business Credit and Assistance EMERGENCY STEEL GUARANTEE LOAN BOARD EMERGENCY STEEL GUARANTEE LOAN PROGRAM Steel Guarantee Loans § 400.201 Eligible Lender. (a) A lender eligible to apply to the...), including its experience with loans to steel companies; (3) The scope, volume and duration of the Agent...

  9. 13 CFR 400.202 - Loan amount.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ....202 Business Credit and Assistance EMERGENCY STEEL GUARANTEE LOAN BOARD EMERGENCY STEEL GUARANTEE LOAN PROGRAM Steel Guarantee Loans § 400.202 Loan amount. (a) The aggregate amount of loan principal guaranteed under this Program to a single Qualified Steel Company may not exceed $ 250 million. (b) Of the...

  10. 13 CFR 400.201 - Eligible Lender.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 400.201 Business Credit and Assistance EMERGENCY STEEL GUARANTEE LOAN BOARD EMERGENCY STEEL GUARANTEE LOAN PROGRAM Steel Guarantee Loans § 400.201 Eligible Lender. (a) A lender eligible to apply to the...), including its experience with loans to steel companies; (3) The scope, volume and duration of the Agent...

  11. 13 CFR 400.202 - Loan amount.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ....202 Business Credit and Assistance EMERGENCY STEEL GUARANTEE LOAN BOARD EMERGENCY STEEL GUARANTEE LOAN PROGRAM Steel Guarantee Loans § 400.202 Loan amount. (a) The aggregate amount of loan principal guaranteed under this Program to a single Qualified Steel Company may not exceed $ 250 million. (b) Of the...

  12. Simple Heat Treatment for Production of Hot-Dip Galvanized Dual Phase Steel Using Si-Al Steels

    NASA Astrophysics Data System (ADS)

    Equihua-Guillén, F.; García-Lara, A. M.; Muñíz-Valdes, C. R.; Ortíz-Cuellar, J. C.; Camporredondo-Saucedo, J. E.

    2014-01-01

    This work presents relevant metallurgical considerations to produce galvanized dual phase steels from low cost aluminum-silicon steels which are produced by continuous strip processing. Two steels with different contents of Si and Al were austenized in the two-phase field ferrite + austenite (α + γ) in a fast manner to obtain dual phase steels, suitable for hot-dip galvanizing process, under typical parameters of continuous annealing processing line. Tensile dual phase properties were obtained from specimens cooled from temperature below Ar3, held during 3 min, intermediate cooling at temperature above Ar1 and quenching in Zn bath at 465 °C. The results have shown typical microstructure and tensile properties of galvanized dual phase steels. Finally, the synergistic effect of aluminum, silicon, and residual chromium on martensite start temperature ( M s), critical cooling rate ( C R), volume fraction of martensite, and tensile properties has been studied.

  13. The dimensional stability analysis of seventeen stepped specimens of 18Ni 200 grade, PH13-8Mo and A-286

    NASA Technical Reports Server (NTRS)

    Wigley, D. A.

    1983-01-01

    This report documents the results of a dimensional stability analysis of seventeen stepped specimens that were used in the evaluation of factors influencing warpage in metallic alloys being used for cryogenic wind tunnel models. Specimens used in the analysis were manufactured from 18Ni 200 Grade Maaraging steel, PH13-8Mo, and A-286 stainless steel. Quantitative data are provided on the behavior of the specimens due to the effects of both machining and cryogenic cycling effects.

  14. Corrosion of carbon steels, stainless steels, and titanium in aqueous lithium bromide solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guinon, J.L.; Garcia-Anton, J.; Perez-Herranz, V.

    1994-03-01

    Effects of lithium bromide (LiBr) concentration, pH, temperature, exposure time, and the action of some inhibitors on corrosion of several carbon (C) steels, stainless steels (SS), and a titanium (Ti) alloy were studied. Corrosion rates were determined by the polarization resistance method and compared to rates determined by weight-loss measurements. Pitting potentials (E[sub p]) were evaluated in neutral LiBr solution and with different inhibitors. Pit density and average pit depth depended on the metal tested, with lowest values for Ti, the next lowest values for type 316 SS (UNS S31600), and the highest values for UNS G41350 tempered steel.

  15. 13 CFR 400.203 - Guarantee percentage.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Section 400.203 Business Credit and Assistance EMERGENCY STEEL GUARANTEE LOAN BOARD EMERGENCY STEEL GUARANTEE LOAN PROGRAM Steel Guarantee Loans § 400.203 Guarantee percentage. A guarantee issued by the Board may not exceed 85 percent of the amount of the principal of a loan to a Qualified Steel Company...

  16. 13 CFR 400.203 - Guarantee percentage.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Section 400.203 Business Credit and Assistance EMERGENCY STEEL GUARANTEE LOAN BOARD EMERGENCY STEEL GUARANTEE LOAN PROGRAM Steel Guarantee Loans § 400.203 Guarantee percentage. A guarantee issued by the Board may not exceed 85 percent of the amount of the principal of a loan to a Qualified Steel Company...

  17. 13 CFR 400.203 - Guarantee percentage.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Section 400.203 Business Credit and Assistance EMERGENCY STEEL GUARANTEE LOAN BOARD EMERGENCY STEEL GUARANTEE LOAN PROGRAM Steel Guarantee Loans § 400.203 Guarantee percentage. A guarantee issued by the Board may not exceed 85 percent of the amount of the principal of a loan to a Qualified Steel Company...

  18. 13 CFR 400.203 - Guarantee percentage.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Section 400.203 Business Credit and Assistance EMERGENCY STEEL GUARANTEE LOAN BOARD EMERGENCY STEEL GUARANTEE LOAN PROGRAM Steel Guarantee Loans § 400.203 Guarantee percentage. A guarantee issued by the Board may not exceed 85 percent of the amount of the principal of a loan to a Qualified Steel Company...

  19. 13 CFR 400.203 - Guarantee percentage.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Section 400.203 Business Credit and Assistance EMERGENCY STEEL GUARANTEE LOAN BOARD EMERGENCY STEEL GUARANTEE LOAN PROGRAM Steel Guarantee Loans § 400.203 Guarantee percentage. A guarantee issued by the Board may not exceed 85 percent of the amount of the principal of a loan to a Qualified Steel Company...

  20. High Fragmentation Steel Production Process

    DTIC Science & Technology

    1981-08-01

    Hsv j , —U -I* : -’ 1 . ’ ; - * - 1 "^Sv i ! :.:.; 1 HEBUCTIOK AHU.,, .../y?.;-’" • jttoireAnoi..|..r!.5^«. ::^;;;i:^l^~!’in...on rmrerae aide 11 neceaaary and Identity by block number) HF- 1 Steel Metallurgical Evaluation MMT-Process improvement 20. ABSTRACT ("ContfBu...ao reraram attba tt n*c*aaMey and. IderUlty by block numbat) Two heats of B0F HF- 1 steel were purchased, one from Republic Steel and one from

  1. Persistence of deposited metals in the lungs after stainless steel and mild steel welding fume inhalation in rats.

    PubMed

    Antonini, James M; Roberts, Jenny R; Stone, Samuel; Chen, Bean T; Schwegler-Berry, Diane; Chapman, Rebecca; Zeidler-Erdely, Patti C; Andrews, Ronnee N; Frazer, David G

    2011-05-01

    Welding generates complex metal fumes that vary in composition. The objectives of this study were to compare the persistence of deposited metals and the inflammatory potential of stainless and mild steel welding fumes, the two most common fumes used in US industry. Sprague-Dawley rats were exposed to 40 mg/m(3) of stainless or mild steel welding fumes for 3 h/day for 3 days. Controls were exposed to filtered air. Generated fume was collected, and particle size and elemental composition were determined. Bronchoalveolar lavage was done on days 0, 8, 21, and 42 after the last exposure to assess lung injury/inflammation and to recover lung phagocytes. Non-lavaged lung samples were analyzed for total and specific metal content as a measure of metal persistence. Both welding fumes were similar in particle morphology and size. Following was the chemical composition of the fumes-stainless steel: 57% Fe, 20% Cr, 14% Mn, and 9% Ni; mild steel: 83% Fe and 15% Mn. There was no effect of the mild steel fume on lung injury/inflammation at any time point compared to air control. Lung injury and inflammation were significantly elevated at 8 and 21 days after exposure to the stainless steel fume compared to control. Stainless steel fume exposure was associated with greater recovery of welding fume-laden macrophages from the lungs at all time points compared with the mild steel fume. A higher concentration of total metal was observed in the lungs of the stainless steel welding fume at all time points compared with the mild steel fume. The specific metals present in the two fumes were cleared from the lungs at different rates. The potentially more toxic metals (e.g., Mn, Cr) present in the stainless steel fume were cleared from the lungs more quickly than Fe, likely increasing their translocation from the respiratory system to other organs.

  2. A review of wave celerity in frictionless and axisymmetrical steel-lined pressure tunnels

    NASA Astrophysics Data System (ADS)

    Hachem, F. E.; Schleiss, A. J.

    2011-02-01

    Generally applicable approaches for estimating the “quasi-static”, which means without fluid-structure interaction and frequency-dependent water-hammer wave speed in steel-lined pressure tunnels are analyzed. The external constraints and assumptions of these approaches are discussed in detail. The reformulated formulas are then compared to commonly used expressions. Some special cases of wave speed calculation such as unlined pressure tunnels and open-air penstocks are investigated. The quasi-static wave speed is significantly influenced by the state of the backfill concrete and the near-field rock zone (cracked or uncracked). In the case when these two layers are cracked, the quasi-static wave speed is overestimated in between 1% and 8% compared to uncracked concrete and near-field rock layers. Depending on the stiffness of steel liner and penstock, the fluid-structure interaction leads to significant difference in wave speeds values. Compared to the quasi-static case, the fluid-structure interaction approach, applied to steel-lined tunnels, results up to 13% higher wave speed values in the high-frequency range (higher than 600 Hz) and up to 150% lower values for frequencies between 150 and 300 Hz in the considered test case.

  3. Performance of weathered steel guardrail in NC.

    DOT National Transportation Integrated Search

    2011-05-23

    Weathered steel beam guardrail is a popular alternative to galvanized steel guardrail as an aesthetic solution that blends in with the surrounding natural environment. A research study from New Hampshire found that weathered steel guardrail deteriora...

  4. Continuous steel production and apparatus

    DOEpatents

    Peaslee, Kent D [Rolla, MO; Peter, Jorg J [McMinnville, OR; Robertson, David G. C. [Rolla, MO; Thomas, Brian G [Champaign, IL; Zhang, Lifeng [Trondheim, NO

    2009-11-17

    A process for continuous refining of steel via multiple distinct reaction vessels for melting, oxidation, reduction, and refining for delivery of steel continuously to, for example, a tundish of a continuous caster system, and associated apparatus.

  5. The Effects of Substitution of The Natural Sand by Steel Slag in The Properties of Eco-Friendly Concrete with The 1:2:3 Ratio Mixing Method

    NASA Astrophysics Data System (ADS)

    Rahmawati, A.; Saputro, I. N.

    2018-03-01

    This study was motivated by the need for the development of eco-friendly concrete, and the use of large quantities of steel slag as an industrial waste which is generated from the steel manufacturers. This eco-friendly concrete was developed with steel slag as a substitute for natural sand. Properties of concrete which used waste slag as the fine aggregate with the 1 cement: 2 sand : 3 coarse aggregate ratio mixing method were examined. That ratio was in volume. Then a part of natural sand replaced with steel slag sand in six variations percentages that were 0 %, 20 %, 40 %, 60 %, 80 % and 100 %. The compressive strength, tensile strength, and flexural strength of concrete specimens were determined after curing for 28 days. The research results demonstrate that waste steel slag can increase the performance of concrete. The optimal percentage substitution natural sand by steel slag sand reached of slag on the percentage of 20 % which reached strength ratios of steel slag concrete to the strength of conventional concrete with natural sandstone were 1.37 for compressive strength and 1.13 for flexural strength. While the tensile strength reached a higher ratio of concrete with steel slag sand to the concrete with natural sand on the 80% substitution of natural sand with steel slag sand.

  6. Risk of lung cancer according to mild steel and stainless steel welding.

    PubMed

    Sørensen, Anita Rath; Thulstrup, Ane Marie; Hansen, Johnni; Ramlau-Hansen, Cecilia Høst; Meersohn, Andrea; Skytthe, Axel; Bonde, Jens Peter

    2007-10-01

    Whether the elevated risk of lung cancer observed among welders is caused by welding emissions or by confounding from smoking or asbestos exposure is still not resolved. This question was addressed in a cohort with a long follow-up and quantified estimates of individual exposure to welding fume particulates. Male metal workers employed at least 1 year at one or more Danish stainless or mild steel industrial companies from 1964 through 1984 were enrolled in a cohort. Data on occupational and smoking history were obtained by questionnaire in 1986. Welders in the cohort who started welding in 1960 or later (N=4539) were followed from April 1968 until December 2003, when information on cancer diagnosis was obtained from the Danish Cancer Registry. During the follow-up, 75 cases of primary lung cancer were identified. Lifetime accumulated exposure to welding fume particulates was estimated by combining questionnaire information and more than 1000 welding-process-specific measurements of fume particulates in the Danish welding industry. The standardized incidence ratio (SIR) for lung cancer was increased among the welders [SIR 1.35, 95% confidence interval (95% CI) 1.06-1.70)]. Among the stainless steel welders, the risk increased significantly with increasing accumulative welding particulate exposure, while no exposure-response relation was found for mild steel welders, even after adjustment for tobacco smoking and asbestos exposure. The study corroborates earlier findings that welders have an increased risk of lung cancer. While exposure-response relations indicate carcinogenic effects related to stainless steel welding, it is still unresolved whether the mild steel welding process carries a carcinogenic risk.

  7. Preformed posterior stainless steel crowns: an update.

    PubMed

    Croll, T P

    1999-02-01

    For almost 50 years, dentists have used stainless steel crowns for primary and permanent posterior teeth. No other type of restoration offers the convenience, low cost, durability, and reliability of such crowns when interim full-coronal coverage is required. Preformed stainless steel crowns have improved over the years. Better luting cements have been developed and different methods of crown manipulation have evolved. This article reviews stainless steel crown procedures for primary and permanent posterior teeth. Step-by-step placement of a primary molar stainless steel crown is documented and permanent molar stainless steel crown restoration is described. A method for repairing a worn-through crown also is reviewed.

  8. High yttria ferritic ODS steels through powder forging

    NASA Astrophysics Data System (ADS)

    Kumar, Deepak; Prakash, Ujjwal; Dabhade, Vikram V.; Laha, K.; Sakthivel, T.

    2017-05-01

    Oxide dispersion strengthened (ODS) steels are being developed for future nuclear reactors. ODS Fe-18%Cr-2%W-0.2%Ti steels with 0, 0.35, 0.5, 1 and 1.5% Y2O3 (all compositions in weight%) dispersion were fabricated by mechanical alloying of elemental powders. The powders were placed in a mild steel can and forged in a stream of hydrogen gas at 1473 K. The steels were forged again to final density. The strength of ODS steel increased with yttria content. Though this was accompanied by a decrease in tensile elongation, all the steels showed significant ductility. The ductility in high yttria alloys may be attributed to improved inter-particle bonding between milled powders due to reduction of surface oxides by hydrogen. This may permit development of ODS steels with yttria contents higher than the conventional limit of 0.5%. It is suggested that powder forging is a promising route to fabricate ODS steels with high yttria contents and improved ductility.

  9. Fracture Characteristics of Structural Steels: Reference Manual

    DTIC Science & Technology

    1979-04-01

    materials were fractured undcr tensile, fatigue, and impact loading con- ditions. The effects of hydrogen embrittlement on the steels ’ behavior when...years after paint failure. The composition and the heat treatment of 4160 steel results in a steel extremely susceptible to stress corrosion cracking and...A35 Fracture Surface of Tensile Specimen No. 3 322 22 IL TABLES Number Page 1 Chemical Composition of Steels and Weld Metal 32 2 Welding Parameters 33

  10. 13. View northeast of boiler plant (Building 39), engineering work ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. View northeast of boiler plant (Building 39), engineering work order building/former tin shop (Building 129), laundry MAT workshop (Building 28), pipe shop/former water softening plant (Building 81), paint spray shop/former blacksmith shop (Building 95), fuel oil storage tank building (Building 103), mason's shop (Building 77), and carpenter shop (Building 97) with steel water tank (Building 124) in background - National Home for Disabled Volunteer Soldiers Western Branch, 4101 South Fourth Street, Leavenworth, Leavenworth County, KS

  11. Radiation resistant austenitic stainless steel alloys

    DOEpatents

    Maziasz, P.J.; Braski, D.N.; Rowcliffe, A.F.

    1987-02-11

    An austenitic stainless steel alloy, with improved resistance to radiation-induced swelling and helium embrittlement, and improved resistance to thermal creep at high temperatures, consisting essentially of, by weight percent: from 16 to 18% nickel; from 13 to 17% chromium; from 2 to 3% molybdenum; from 1.5 to 2.5% manganese; from 0.01 to 0.5% silicon; from 0.2 to 0.4% titanium; from 0.1 to 0.2% niobium; from 0.1 to 0.6% vanadium; from 0.06 to 0.12% carbon; from 0.01 to 0.03% nitrogen; from 0.03 to 0.08% phosphorus; from 0.005 to 0.01% boron; and the balance iron, and wherein the alloy may be thermomechanically treated to enhance physical and mechanical properties. 4 figs.

  12. Anodized Steel Electrodes for Supercapacitors.

    PubMed

    Sagu, Jagdeep S; Wijayantha, K G Upul; Bohm, Mallika; Bohm, Siva; Kumar Rout, Tapan

    2016-03-09

    Steel was anodized in 10 M NaOH to enhance its surface texture and internal surface area for application as an electrode in supercapacitors. A mechanism was proposed for the anodization process. Field-emission gun scanning electron microscopy (FEGSEM) studies of anodized steel revealed that it contains a highly porous sponge like structure ideal for supercapacitor electrodes. X-ray photoelectron spectroscopy (XPS) measurements showed that the surface of the anodized steel was Fe2O3, whereas X-ray diffraction (XRD) measurements indicated that the bulk remained as metallic Fe. The supercapacitor performance of the anodized steel was tested in 1 M NaOH and a capacitance of 18 mF cm(-2) was obtained. Cyclic voltammetry measurements showed that there was a large psueudocapacitive contribution which was due to oxidation of Fe to Fe(OH)2 and then further oxidation to FeOOH, and the respective reduction of these species back to metallic Fe. These redox processes were found to be remarkably reversible as the electrode showed no loss in capacitance after 10000 cycles. The results demonstrate that anodization of steel is a suitable method to produce high-surface-area electrodes for supercapacitors with excellent cycling lifetime.

  13. A Possible Trifunctional β-Carotene Synthase Gene Identified in the Draft Genome of Aurantiochytrium sp. Strain KH105

    PubMed Central

    Iwasaka, Hiroaki; Satoh, Ryota; Nagano, Akiko; Watanabe, Kenshi; Hisata, Kanako; Satoh, Noriyuki

    2018-01-01

    Labyrinthulomycetes have been regarded as a promising industrial source of xanthophylls, including astaxanthin and canthaxanthin, polyunsaturated fatty acids such as docosahexaenoic acid and docosapentaenoic acid, ω-3 oils, and terpenic hydrocarbons, such as sterols and squalene. A Thraustochytrid, Aurantiochytrium sp. KH105 produces carotenoids, including astaxanthin, with strong antioxidant activity. To gain genomic insights into this capacity, we decoded its 97-Mbp genome and characterized genes for enzymes involved in carotenoid biosynthesis. Interestingly, all carotenogenic genes, as well as other eukaryotic genes, appeared duplicated, suggesting that this strain is diploid. In addition, among the five genes involved in the pathway from geranylgeranyl pyrophosphate to astaxanthin, geranylgeranyl phytoene synthase (crtB), phytoene desaturase (crtI) and lycopene cyclase (crtY) were fused into single gene (crtIBY) with no internal stop codons. Functionality of the trifunctional enzyme, CrtIBY, to catalyze the reaction from geranylgeranyl diphosphate to β-carotene was confirmed using a yeast assay system and mass spectrometry. Furthermore, analyses of differential gene expression showed characteristic up-regulation of carotenoid biosynthetic genes during stationary and starvation phases under these culture conditions. This suggests genetic engineering events to promote more efficient production of carotenoids. We also showed an occurrence of crtIBY in other Thraustochytrid species. PMID:29642531

  14. A Possible Trifunctional β-Carotene Synthase Gene Identified in the Draft Genome of Aurantiochytrium sp. Strain KH105.

    PubMed

    Iwasaka, Hiroaki; Koyanagi, Ryo; Satoh, Ryota; Nagano, Akiko; Watanabe, Kenshi; Hisata, Kanako; Satoh, Noriyuki; Aki, Tsunehiro

    2018-04-09

    Labyrinthulomycetes have been regarded as a promising industrial source of xanthophylls, including astaxanthin and canthaxanthin, polyunsaturated fatty acids such as docosahexaenoic acid and docosapentaenoic acid, ω-3 oils, and terpenic hydrocarbons, such as sterols and squalene. A Thraustochytrid, Aurantiochytrium sp. KH105 produces carotenoids, including astaxanthin, with strong antioxidant activity. To gain genomic insights into this capacity, we decoded its 97-Mbp genome and characterized genes for enzymes involved in carotenoid biosynthesis. Interestingly, all carotenogenic genes, as well as other eukaryotic genes, appeared duplicated, suggesting that this strain is diploid. In addition, among the five genes involved in the pathway from geranylgeranyl pyrophosphate to astaxanthin, geranylgeranyl phytoene synthase ( crtB ), phytoene desaturase ( crtI ) and lycopene cyclase ( crtY ) were fused into single gene ( crtIBY ) with no internal stop codons. Functionality of the trifunctional enzyme, CrtIBY, to catalyze the reaction from geranylgeranyl diphosphate to β-carotene was confirmed using a yeast assay system and mass spectrometry. Furthermore, analyses of differential gene expression showed characteristic up-regulation of carotenoid biosynthetic genes during stationary and starvation phases under these culture conditions. This suggests genetic engineering events to promote more efficient production of carotenoids. We also showed an occurrence of crtIBY in other Thraustochytrid species.

  15. Fatigue life assessment of 316L stainless steel and DIN-1.4914 martensitic steel before and after TEXTOR exposure

    NASA Astrophysics Data System (ADS)

    Shakib, J. I.; Ullmaier, H.; Little, E. A.; Schmitz, W.; Faulkner, R. G.; Chung, T. E.

    1992-09-01

    The effects of plasma exposure in the TEXTOR tokomak on elevated temperature fatigue lifetime and failure micromechanisms of 316L austenitic stainless steel and DIN 1.4914 martensitic steel (NET reference heats) have been evaluated. Fatigue tests were carried out in vacuum in the temperature range 150°-450°C and compared with data from reference specimens.Plasma-induced surface modifications lead to significant deterioration in fatigue life of 316L steel, whereas the lifetime of 1.4914 steel is unaffected. Fatigue in the 1.4914 steel is surface-initiated only at high stresses. At low stress amplitudes internal fatigue initiation at inclusions was observed.

  16. Laser Surface Melting of Stainless Steel Anodes for Reduced Hydrogen Outgassing (Postprint)

    DTIC Science & Technology

    2016-12-29

    including baking [8– 12], vacuum baking [8,11,13,14], polishing [8,14], and surface treatments to create oxide or other protective surface films. Elec...quantity [15] and may necessitate an additional bake to thoroughly degas the surface [8]. The purpose of the work described here was to determine the...9] M. Bernardini, Air bake -out to reduce hydrogen outgassing from stainless steel, J. Vac. Sci. Technol. A Vacuum, Surfaces, Film 16 (1998) 188–193.4

  17. Dilatometry Analysis of Dissolution of Cr-Rich Carbides in Martensitic Stainless Steels

    NASA Astrophysics Data System (ADS)

    Huang, Qiuliang; Volkova, Olena; Biermann, Horst; Mola, Javad

    2017-12-01

    The dissolution of Cr-rich carbides formed in the martensitic constituent of a 13 pct Cr stainless steel was studied by dilatometry and correlative electron channeling contrast examinations. The dissolution of carbides subsequent to the martensite reversion to austenite was associated with a net volume expansion which in turn increased the dilatometry-based apparent coefficient of thermal expansion (CTEa) during continuous heating. The effects of carbides fraction and size on the CTEa variations during carbides dissolution are discussed.

  18. Atom probe tomography of intermetallic phases and interfaces formed in dissimilar joining between Al alloys and steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lemmens, B.

    While Si additions to Al are widely used to reduce the thickness of the brittle intermetallic seam formed at the interface during joining of Al alloys to steel, the underlying mechanisms are not clarified yet. The developed approach for the site specific atom probe tomography analysis revealed Si enrichments at grain and phase boundaries between the θ (Fe{sub 4}Al{sub 13}) and η (Fe{sub 2}Al{sub 5}) phase, up to about ten times that of the concentration in Al. The increase in Si concentration could play an important role for the growth kinetics of the intermetallic phases formed for example in hot-dipmore » aluminizing of steel. - Highlights: •Si additions to Al reduce thickness of intermetallic seam in joining with steel. •Approach developed for the site specific APT analysis of the intermetallic seam •Si enrichment at grain and phase boundaries possibly affects growth of intermetallics.« less

  19. An Experimental Study on the Shear Hysteresis and Energy Dissipation of the Steel Frame with a Trapezoidal-Corrugated Steel Plate.

    PubMed

    Shon, Sudeok; Yoo, Mina; Lee, Seungjae

    2017-03-06

    The steel frame reinforced with steel shear wall is a lateral load resisting system and has higher strength and shear performance than the concrete shear wall system. Especially, using corrugated steel plates in these shear wall systems improves out-of-plane stiffness and flexibility in the deformation along the corrugation. In this paper, a cyclic loading test of this steel frame reinforced with trapezoidal-corrugated steel plate was performed to evaluate the structural performance. The hysteresis behavior and the energy dissipation capacity of the steel frame were also compared according to the corrugated direction of the plate. For the test, one simple frame model without the wall and two frame models reinforced with the plate are considered and designed. The test results showed that the model reinforced with the corrugated steel plate had a greater accumulated energy dissipation capacity than the experimental result of the non-reinforced model. Furthermore, the energy dissipation curves of two reinforced frame models, which have different corrugated directions, produced similar results.

  20. The effect of steel chemistry on the formation of Fe-Zn intermetallic compounds of galvanneal-coated steel sheets

    NASA Astrophysics Data System (ADS)

    Lin, C. S.; Meshii, M.

    1994-10-01

    The effects of steel chemistry on the formation of Fe-Zn intermetallic compounds in the galvanneal coatings have been investigated by examining the microstructure of galvanneal coat-ings on extra-low-carbon (ELC) steel, interstitial-free (IF) steel, and interstitial-free rephos-phorized (IFP) steel. The layer structure of the coatings was revealed by chemical etching. Phases present in each layer were then identified using electron diffraction in transmission elec-tron microscopy (TEM). A two-layer structure, one consisting of the δ phase with a small fraction of the ζ, phase dispersed on the surface and Γ phases and another consisting of the δ and Γ1 phases, was observed in the ELC sample and the IFP sample, respectively. A three-layer structure consisting of the δ, Γ1 + δ, and Γ phases was observed in the IF sample. The presence of C in the steel substrate retarded the alloying between Fe and Zn; while P in the steel favored the formation of the Γ1, phase over the Γ phase by its surface segregation in the steel substrate. The orientation relationship between coating and substrate was also studied by electron diffraction. Three α-Fe/Γ orientation relationships were frequently observed.

  1. 29 CFR 1926.757 - Open web steel joists.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Open web steel joists. 1926.757 Section 1926.757 Labor... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Steel Erection § 1926.757 Open web steel joists. (a) General. (1) Except as provided in paragraph (a)(2) of this section, where steel joists are used...

  2. 29 CFR 1926.757 - Open web steel joists.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 8 2011-07-01 2011-07-01 false Open web steel joists. 1926.757 Section 1926.757 Labor... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Steel Erection § 1926.757 Open web steel joists. (a) General. (1) Except as provided in paragraph (a)(2) of this section, where steel joists are used...

  3. 19 CFR 360.104 - Steel import monitoring.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 3 2010-04-01 2010-04-01 false Steel import monitoring. 360.104 Section 360.104 Customs Duties INTERNATIONAL TRADE ADMINISTRATION, DEPARTMENT OF COMMERCE STEEL IMPORT MONITORING AND ANALYSIS SYSTEM § 360.104 Steel import monitoring. (a) Throughout the duration of the licensing requirement...

  4. 19 CFR 360.104 - Steel import monitoring.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 3 2011-04-01 2011-04-01 false Steel import monitoring. 360.104 Section 360.104 Customs Duties INTERNATIONAL TRADE ADMINISTRATION, DEPARTMENT OF COMMERCE STEEL IMPORT MONITORING AND ANALYSIS SYSTEM § 360.104 Steel import monitoring. (a) Throughout the duration of the licensing requirement...

  5. 19 CFR 360.104 - Steel import monitoring.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 3 2014-04-01 2014-04-01 false Steel import monitoring. 360.104 Section 360.104 Customs Duties INTERNATIONAL TRADE ADMINISTRATION, DEPARTMENT OF COMMERCE STEEL IMPORT MONITORING AND ANALYSIS SYSTEM § 360.104 Steel import monitoring. (a) Throughout the duration of the licensing requirement...

  6. 19 CFR 360.104 - Steel import monitoring.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 3 2012-04-01 2012-04-01 false Steel import monitoring. 360.104 Section 360.104 Customs Duties INTERNATIONAL TRADE ADMINISTRATION, DEPARTMENT OF COMMERCE STEEL IMPORT MONITORING AND ANALYSIS SYSTEM § 360.104 Steel import monitoring. (a) Throughout the duration of the licensing requirement...

  7. 19 CFR 360.104 - Steel import monitoring.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 3 2013-04-01 2013-04-01 false Steel import monitoring. 360.104 Section 360.104 Customs Duties INTERNATIONAL TRADE ADMINISTRATION, DEPARTMENT OF COMMERCE STEEL IMPORT MONITORING AND ANALYSIS SYSTEM § 360.104 Steel import monitoring. (a) Throughout the duration of the licensing requirement...

  8. Hybrid/Tandem Laser-Arc Welding of Thick Low Carbon Martensitic Stainless Steel Plates =

    NASA Astrophysics Data System (ADS)

    Mirakhorli, Fatemeh

    High efficiency and long-term life of hydraulic turbines and their assemblies are of utmost importance for the hydropower industry. Usually, hydroelectric turbine components are made of thick-walled low carbon martensitic stainless steels. The assembly of large hydroelectric turbine components has been a great challenge. The use of conventional welding processes involves typical large groove design and multi-pass welding to fill the groove which exposes the weld to a high heat input creating relatively large fusion zone and heat affected zone. The newly-developed hybrid/tandem laser-arc welding technique is believed to offer a highly competitive solution to improve the overall hydro-turbine performance by combining the high energy density and fast welding speed of the laser welding technology with the good gap bridging and feeding ability of the gas metal arc welding process to increase the productivity and reduce the consumable material. The main objective of this research work is to understand different challenges appearing during hybrid laser-arc welding (HLAW) of thick gauge assemblies of low carbon 13%Cr- 4%Ni martensitic stainless steel and find a practical solution by adapting and optimizing this relatively new welding process in order to reduce the number of welding passes necessary to fill the groove gap. The joint integrity was evaluated in terms of microstructure, defects and mechanical properties in both as-welded and post-welded conditions. A special focus was given to the hybrid and tandem laser-arc welding technique for the root pass. Based on the thickness of the low carbon martensitic stainless steel plates, this work is mainly focused on the following two tasks: • Single pass hybrid laser-arc welding of 10-mm thick low carbon martensitic stainless steel. • Multi-pass hybrid/tandem laser-arc welding of 25-mm thick martensitic stainless steel.

  9. 46 CFR 154.172 - Contiguous steel hull structure.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Contiguous steel hull structure. 154.172 Section 154.172... Structure § 154.172 Contiguous steel hull structure. (a) Except as allowed in paragraphs (b) and (c) of this... construction of the contiguous steel hull structure must meet the thickness and steel grade in Table 1 for the...

  10. 46 CFR 154.172 - Contiguous steel hull structure.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Contiguous steel hull structure. 154.172 Section 154.172... Structure § 154.172 Contiguous steel hull structure. (a) Except as allowed in paragraphs (b) and (c) of this... construction of the contiguous steel hull structure must meet the thickness and steel grade in Table 1 for the...

  11. 46 CFR 154.172 - Contiguous steel hull structure.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Contiguous steel hull structure. 154.172 Section 154.172... Structure § 154.172 Contiguous steel hull structure. (a) Except as allowed in paragraphs (b) and (c) of this... construction of the contiguous steel hull structure must meet the thickness and steel grade in Table 1 for the...

  12. 46 CFR 154.172 - Contiguous steel hull structure.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Contiguous steel hull structure. 154.172 Section 154.172... Structure § 154.172 Contiguous steel hull structure. (a) Except as allowed in paragraphs (b) and (c) of this... construction of the contiguous steel hull structure must meet the thickness and steel grade in Table 1 for the...

  13. 49 CFR 178.504 - Standards for steel drums.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Standards for steel drums. 178.504 Section 178.504...-bulk Performance-Oriented Packaging Standards § 178.504 Standards for steel drums. (a) The following are identification codes for steel drums: (1) 1A1 for a non-removable head steel drum; and (2) 1A2 for...

  14. 49 CFR 178.504 - Standards for steel drums.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Standards for steel drums. 178.504 Section 178.504...-Oriented Packaging Standards § 178.504 Standards for steel drums. (a) The following are identification codes for steel drums: (1) 1A1 for a non-removable head steel drum; and (2) 1A2 for a removable head...

  15. 49 CFR 178.504 - Standards for steel drums.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Standards for steel drums. 178.504 Section 178.504...-Oriented Packaging Standards § 178.504 Standards for steel drums. (a) The following are identification codes for steel drums: (1) 1A1 for a non-removable head steel drum; and (2) 1A2 for a removable head...

  16. 49 CFR 178.504 - Standards for steel drums.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Standards for steel drums. 178.504 Section 178.504...-Oriented Packaging Standards § 178.504 Standards for steel drums. (a) The following are identification codes for steel drums: (1) 1A1 for a non-removable head steel drum; and (2) 1A2 for a removable head...

  17. 49 CFR 178.504 - Standards for steel drums.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Standards for steel drums. 178.504 Section 178.504...-Oriented Packaging Standards § 178.504 Standards for steel drums. (a) The following are identification codes for steel drums: (1) 1A1 for a non-removable head steel drum; and (2) 1A2 for a removable head...

  18. Ligand specificity of MobR, a transcriptional regulator for the 3-hydroxybenzoate hydroxylase gene of Comamonas testosteroni KH122-3s

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshida, Mariko; Hiromoto, Takeshi; Hosokawa, Keiichi

    2007-10-19

    MobR from Comamonas testosteroni KH122-3s is a member of the MarR family of transcriptional regulators and functions as a repressor for the mobA gene that encodes a 3-hydroxybenzoate 4-hydroxylase. 3-Hydroxybenzoate binds to MobR as a ligand, resulting in an efficient induction of mobA. Various 3-hydroxybenzoate analogues were examined for their inducibilities using the mobA::lacZ transcriptional fusion system. {beta}-Galactosidase was induced by the addition of 2,3-dihydroxybenzoate or 3,5-dihydroxybenzoate besides 3-hydroxybenzoate, suggesting that the hydroxyl group at position 3 is critical in addition to the carboxyl group on the aromatic ring. A gel mobility-shift assay also showed that MobR was released frommore » the target DNA in the presence of these compounds. Circular dichroism studies demonstrated that MobR adopted two conformational states corresponding to the 3-hydroxybenzoate-bound and unbound forms. Other ligands also induced the structural change as well; however, the tertiary structures of converted forms were different from those by 3-hydroxybenzoate.« less

  19. Microscopic Observations of Adiabatic Shear Bands in Three Different Steels

    DTIC Science & Technology

    1988-09-01

    low thermal conductivity, and a high thermal softening rate. Examples include alloys of titanium. aluminum, copper , as well as steels [5-221... steels : 1 (1) an AISI 1018 cold rolled steel , (2) a high strength low alloy structural steel , and deformation in shear was impo.ed to produce shear bands...stecls: (1) an AISI 1018 cold rolled steel , (2) a high strength low alloy structural steel , and (3) an AISI 4340 VAR steel tempered

  20. 76 FR 2708 - Porcelain-on-Steel Cooking Ware From Taiwan; Top-of-the-Stove Stainless Steel Cooking Ware From...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-14

    .... 701- TA-267 and 731-TA-304 (Third Review)] Porcelain-on-Steel Cooking Ware From Taiwan; Top-of-the-Stove Stainless Steel Cooking Ware From Korea AGENCY: United States International Trade Commission...-steel cooking ware from Taiwan and the antidumping and countervailing duty orders on imports of top-of...