Challenges in Special Steel Making
NASA Astrophysics Data System (ADS)
Balachandran, G.
2018-02-01
Special bar quality [SBQ] is a long steel product where an assured quality is delivered by the steel mill to its customer. The bars have enhanced tolerance to higher stress application and it is demanded for specialised component making. The SBQ bars are sought for component making processing units such as closed die hot forging, hot extrusion, cold forging, machining, heat treatment, welding operations. The final component quality of the secondary processing units depends on the quality maintained at the steel maker end along with quality maintained at the fabricator end. Thus, quality control is ensured at every unit process stages. The various market segments catered to by SBQ steel segment is ever growing and is reviewed. Steel mills need adequate infrastructure and technological capability to make these higher quality steels. Some of the critical stages of processing SBQ and the critical quality maintenance parameters at the steel mill in the manufacture has been brought out.
40 CFR 420.111 - Specialized definitions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... AND STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY Alkaline Cleaning Subcategory § 420.111 Specialized definitions. (a) The term batch means those alkaline cleaning operations which process... continuous means those alkaline cleaning operations which process steel products other than in discrete...
40 CFR 420.111 - Specialized definitions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... AND STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY Alkaline Cleaning Subcategory § 420.111 Specialized definitions. (a) The term batch means those alkaline cleaning operations which process... continuous means those alkaline cleaning operations which process steel products other than in discrete...
40 CFR 420.111 - Specialized definitions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... AND STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY Alkaline Cleaning Subcategory § 420.111 Specialized definitions. (a) The term batch means those alkaline cleaning operations which process... continuous means those alkaline cleaning operations which process steel products other than in discrete...
40 CFR 420.121 - Specialized definitions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... AND STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY Hot Coating Subcategory § 420.121 Specialized definitions. (a) The term galvanizing means coating steel products with zinc by the hot dip... products with terne metal by the hot dip process including the immersion of the steel product in a molten...
40 CFR 420.121 - Specialized definitions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... AND STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY Hot Coating Subcategory § 420.121 Specialized definitions. (a) The term galvanizing means coating steel products with zinc by the hot dip... products with terne metal by the hot dip process including the immersion of the steel product in a molten...
40 CFR 420.121 - Specialized definitions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... AND STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY Hot Coating Subcategory § 420.121 Specialized definitions. (a) The term galvanizing means coating steel products with zinc by the hot dip... products with terne metal by the hot dip process including the immersion of the steel product in a molten...
40 CFR 420.111 - Specialized definitions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... steel products such as coiled wire, rods, and tubes in discrete batches or bundles. (b) The term continuous means those alkaline cleaning operations which process steel products other than in discrete... AND STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY Alkaline Cleaning Subcategory § 420...
40 CFR 420.111 - Specialized definitions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... steel products such as coiled wire, rods, and tubes in discrete batches or bundles. (b) The term continuous means those alkaline cleaning operations which process steel products other than in discrete...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Xiao-Dong; Xu, Yun-Bo, E-mail: yunbo_xu@126.com; Yang, Xiao-Long
Microstructures composed of lath martensite and retained austenite with volume fraction between 8.0 vol.% and 12.0 vol.% were obtained in a low-C low-Si Al-free steel through hot-rolling direct quenching and dynamical partitioning (HDQ&DP) processes. The austenite stabilization mechanism in the low-C low-Si Al-free steel under the special dynamical partitioning processes is investigated by analyzing the carbon partition behavior from martensite to austenite and the carbide precipitation-coarsening behavior in martensite laths combining with the possible hot rolling deformation inheritance. Results show that the satisfying retained austenite amount in currently studied low-Si Al-free HDQ&DP steel is caused by the high-efficiency carbon enrichmentmore » in the 30–80 nm thick regions of austenite near the interfaces in the hot-rolled ultra-fast cooled structure and the avoidance of serious carbides coarsening during the continuous cooling procedures. The excellent strength-elongation product reaching up to 26,000 MPa% shows that the involved HDQ&DP process is a promising method to develop a new generation of advanced high strength steel. - Highlights: • HDQ&DP processes were applied to a low-C low-Si Al-free steel. • Effective partitioning time during the continuous cooling processes is 1–220 s. • Retained austenite with volume fraction between 8.0 vol. % and 12.0 vol. % has been obtained. • The special austenite stabilization mechanism has been expounded.« less
Pressurized metallurgy for high performance special steels and alloys
NASA Astrophysics Data System (ADS)
Jiang, Z. H.; Zhu, H. C.; Li, H. B.; Li, Y.; Liu, F. B.
2016-07-01
The pressure is one of the basic parameters which greatly influences the metallurgical reaction process and solidification of steels and alloys. In this paper the history and present situation of research and application of pressurized metallurgy, especially pressurized metallurgy for special steels and alloys have been briefly reviewed. In the following part the physical chemistry of pressurized metallurgy is summarized. It is shown that pressurizing may change the conditions of chemical reaction in thermodynamics and kinetics due to the pressure effect on gas volume, solubility of gas and volatile element in metal melt, activity or activity coefficient of components, and change the physical and chemical properties of metal melt, heat transfer coefficient between mould and ingot, thus greatly influencing phase transformation during the solidification process and the solidification structure, such as increasing the solidification nucleation rate, reducing the critical nucleation radius, accelerating the solidification speed and significant macro/micro-structure refinement, and eliminating shrinkage, porosity and segregation and other casting defects. In the third part the research works of pressured metallurgy performed by the Northeastern University including establishment of pressurized induction melting (PIM) and pressurized electroslag remelting (PESR) equipments and development of high nitrogen steels under pressure are described in detail. Finally, it is considered in the paper that application of pressurized metallurgy in manufacture of high performance special steels and alloys is a relatively new research area, and its application prospects will be very broad and bright.
Phase transformations in steels: Processing, microstructure, and performance
Gibbs, Paul J.
2014-04-03
In this study, contemporary steel research is revealing new processing avenues to tailor microstructure and properties that, until recently, were only imaginable. Much of the technological versatility facilitating this development is provided by the understanding and utilization of the complex phase transformation sequences available in ferrous alloys. Today we have the opportunity to explore the diverse phenomena displayed by steels with specialized analytical and experimental tools. Advances in multi-scale characterization techniques provide a fresh perspective into microstructural relationships at the macro- and micro-scale, enabling a fundamental understanding of the role of phase transformations during processing and subsequent deformation.
Investigation of the plastic fracture of high strength steels
NASA Technical Reports Server (NTRS)
Cox, T. B.; Low, J. R., Jr.
1972-01-01
An investigation of the plastic fracture process to improve tensile strength in high strength steels is presented. Two generic types of steels are considered: a quenched and tempered grade and a maraging grade, in order to compare two different matrix microstructures. Each type of steel was studied in commercial grade purity and in special melted high purity form, low in residual and impurity elements. The specific alloys dealt with include AISI 4340 and 18 Ni, 200 grade maraging steel, both heat treated to the same yield strength level of approximately 200 ksi.
Friction Stir Welding of Steel Alloys
NASA Technical Reports Server (NTRS)
Ding, R. Jeffrey; Munafo, Paul M. (Technical Monitor)
2001-01-01
The friction stir welding process has been developed primarily for the welding of aluminum alloys. Other higher melting allows such, as steels are much more difficult to join. Special attention must be given to pin tool material selection and welding techniques. This paper addresses the joining of steels and other high melting point materials using the friction stir welding process. Pin tool material and welding parameters will be presented. Mechanical properties of weldments will also be presented. Significance: There are many applications for the friction stir welding process other than low melting aluminum alloys. The FSW process can be expanded for use with high melting alloys in the pressure vessel, railroad and ship building industries.
Cold resistant nickel-alloy steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Legostaev, Yu.L.; Karchevskaya, N.I.; Karchevnikov, V.P.
1988-05-01
Low-alloy cold-resistant steel 10GNB was developed for the construction of ships and floating drill rigs. The optimal heat-treatment regime for the steel was refinement. Reducing the carbon content improved its weldability and toughness properties. Optical metallography and electron microscopy established that the optimal structure was a tempered martensitic-bainitic mixture with uniformly distributed particles of disperse special niobium carbides NbC. The substructure and the processes of carbide and carbonitride phase segregation were studied by transmission and extraction electron microscopy. In mechanical tests the steel exhibited high resistance to brittle failure. In terms of corrosion resistance the steel corresponds to the requirementsmore » set forth for shipbuilding steels.« less
Graded High-Strength Spring-Steels by a Special Inductive Heat T reatment
NASA Astrophysics Data System (ADS)
Tump, A.; Brandt, R.
2016-03-01
A method for effective lightweight design is the use of materials with high specific strength. As materials e.g. titanium are very expensive, steel is still the most important material for manufacturing automotive components. Steel is cost efficient, easy to recycle and its tensile strength easily exceeds 2,000 MPa by means of modern QT-technology (Quenched and Tempered). Therefore, lightweight design is still feasible in spite of the high density of steel. However, a further increase of tensile strength is limited, especially due to an increasing notch sensitivity and exposure to a corrosive environment. One solution is a special QT-process for steel, which creates a hardness gradient from the surface to the core of the material. This type of tailored material possesses a softer layer, which improves material properties such as fracture toughness and notch sensitivity. This leads to a better resistance to stress corrosion cracking and corrosion fatigue. Due to this optimization, a weight reduction is feasible without the use of expensive alloying elements. To understand the damage mechanism a comprehensive testing procedure was performed on homogeneous and gradient steels. Some results regarding the fracture mechanic behavior of such steels will be discussed.
Special features of the technology of boronizing steel in a calcium chloride melt
NASA Astrophysics Data System (ADS)
Chernov, Ya. B.; Anfinogenov, A. I.; Veselov, I. N.
1999-12-01
A technology for hardening machine parts and tools by boronizing in molten calcium chloride with amorphous-boron powder in electrode salt baths has been developed with the aim of creating a closed cycle of utilizing the raw materials and the washing water. A process of boronizing that includes quenching and tempering of the boronized articles is described. The quenching medium is an ecologically safe and readily available aqueous solution of calcium chloride. The process envisages return of the melt components to the boronizing bath. Boronizing by the suggested method was tested for different classes of steel, namely, structural and tool steels for cold and hot deformation. The wear resistance of the boronized steels was studied.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-02
.... Electronic files should avoid the use of special characters, any form of encryption, and be free of any... Production 327310 Portland cement manufacturing plants. CO2 Enhanced Oil and Gas Recovery 211 Oil and gas... steel mills, steel companies, sinter plants, blast furnaces, basic oxygen process furnace shops. Lead...
DOT National Transportation Integrated Search
2003-07-01
The current KYTC SPECIAL PROVISION NO. 4 WELDING STEEL BRIDGES prohibits the use of welding processes other than shielded metal arc welding (SMAW) and submerged arc welding (SAW). Nationally, bridge welding is codified under ANSI/AASHTO/AWS D1....
40 CFR 420.71 - Specialized definitions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... means those steel hot forming operations that produce butt welded or seamless tubular steel products. (f... STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY Hot Forming Subcategory § 420.71 Specialized definitions. (a) The term hot forming means those steel operations in which solidified, heated steel is shaped...
40 CFR 420.71 - Specialized definitions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... means those steel hot forming operations that produce butt welded or seamless tubular steel products. (f... STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY Hot Forming Subcategory § 420.71 Specialized definitions. (a) The term hot forming means those steel operations in which solidified, heated steel is shaped...
40 CFR 420.71 - Specialized definitions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... means those steel hot forming operations that produce butt welded or seamless tubular steel products. (f... STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY Hot Forming Subcategory § 420.71 Specialized definitions. (a) The term hot forming means those steel operations in which solidified, heated steel is shaped...
40 CFR 420.71 - Specialized definitions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... means those steel hot forming operations that produce butt welded or seamless tubular steel products. (f... STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY Hot Forming Subcategory § 420.71 Specialized definitions. (a) The term hot forming means those steel operations in which solidified, heated steel is shaped...
Occupational asthma due to manual metal-arc welding of special stainless steels.
Hannu, T; Piipari, R; Kasurinen, H; Keskinen, H; Tuppurainen, M; Tuomi, T
2005-10-01
Occupational asthma (OA) can be induced by fumes of manual metal-arc welding on stainless steel. In recent years, the use of special stainless steels (SSS) with high chromium content has increased. This study presents two cases of OA caused by manual metal-arc welding on SSS. In both cases, the diagnosis of OA was based on respiratory symptoms, occupational exposure and positive findings in the specific challenge tests. In the first case, a 46-yr-old welder had experienced severe dyspnoea while welding SSS (SMO steel), but not in other situations. Challenge tests with both mild steel and stainless steel using a common electrode were negative. Welding SSS with a special electrode caused a delayed 37% drop in forced expiratory volume in one second (FEV1). In the second case, a 34-yr-old male had started to experience dyspnoea during the past few years, while welding especially SSS (Duplex steel). The workplace peak expiratory flow monitoring was suggestive of OA. Challenge tests with both mild steel and stainless steel using a common electrode did not cause bronchial obstruction. Welding SSS with a special electrode caused a delayed 31% drop in FEV1. In conclusion, exposure to manual metal-arc welding fumes of special stainless steel should be considered as a new cause of occupational asthma.
NASA Astrophysics Data System (ADS)
Nadig, D. S.; Bhat, M. R.; Pavan, V. K.; Mahishi, Chandan
2017-09-01
Cryogenic treatment on metals is a well known technology where the materials are exposed to cryogenic temperature for prolonged time duration. The process involves three stages viz. slow cooling, holding at cryogenic temperature and warming to room temperature. During this process, hard and micro sized carbide particles are released within the steel material. In addition, soft and unconverted austenite of steel changes to strong martensite structure. These combined effects increase the strength and hardness of the cryotreated steel. In this experimental study, the effects of cryogenic treatment, austenitising and tempering on the mechanical properties of stainless steel (07X16H6) have been carried. After determining the strength properties of the original material, the specimens were cryotreated at 98K for 24 hours in a specially developed cryotreatment system. The effects of austenitising prior to cryogenic treatment and tempering post cryotreatment on the mechanical properties of steel samples have been experimentally determined and analysed.
40 CFR 420.71 - Specialized definitions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... tube mill means those steel hot forming operations that produce butt welded or seamless tubular steel... AND STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY Hot Forming Subcategory § 420.71 Specialized definitions. (a) The term hot forming means those steel operations in which solidified, heated...
40 CFR 420.91 - Specialized definitions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... wire, rods, and tubes in discrete batches or bundles. (f) The term continuous means those pickling operations which process steel products other than in discrete batches or bundles. (g) The term acid recovery...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This standard covers alloy steel nuts for bolting for high-pressure and high-temperature service in nuclear and associated applications. This standard does not cover bar or other starting materials. The only implied special considerations for starting materials are that they be capable of passing the required tests when processed into finished products in accordance with this standard.
40 CFR 420.41 - Specialized definitions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY Steelmaking Subcategory § 420.41 Specialized definitions. (a) The term basic oxygen furnace steelmaking means the production of steel from molten iron, steel scrap, fluxes, and various combinations thereof, in refractory lined furnaces by adding oxygen. (b...
PCT MAO’s Enhanced Performance by Specially Designed Sealers for Superior Service & Environments
2014-11-01
PCT’s Process is with low silicon content. • Aluminized Steel + PCT MAO can be a cost effective alternative to Stainless Steel, Super Duplex...is applied PCT – P seal • Typical Layer thickness: 40-80 micron* • Organic sealer • Hydrophobic surface, reduces sedimentation...PCT - S seal • Typical Layer thickness: 10-40 micron* • Organo-ceramic sealer • Hydrophobic surface, reduces sedimentation. PCT Classic 1000
40 CFR 420.91 - Specialized definitions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY Acid Pickling Subcategory § 420.91 Specialized definitions. (a) The term sulfuric acid pickling means those operations in which steel products are immersed... steel products are immersed in hydrochloric acid solutions to chemically remove oxides and scale, and...
Corrosion of steel drums containing cemented ion-exchange resins as intermediate level nuclear waste
NASA Astrophysics Data System (ADS)
Duffó, G. S.; Farina, S. B.; Schulz, F. M.
2013-07-01
Exhausted ion-exchange resins used in nuclear reactors are immobilized by cementation before being stored. They are contained in steel drums that may undergo internal corrosion depending on the presence of certain contaminants. The objective of this work is to evaluate the corrosion susceptibility of steel drums in contact with cemented ion-exchange resins with different aggressive species. The corrosion potential and the corrosion rate of the steel, and the electrical resistivity of the matrix were monitored for 900 days. Results show that the cementation of ion-exchange resins seems not to pose special risks regarding the corrosion of the steel drums. The corrosion rate of the steel in contact with cemented ion-exchange resins in the absence of contaminants or in the presence of 2.3 wt.% sulphate content remains low (less than 0.1 μm/year) during the whole period of the study (900 days). The presence of chloride ions increases the corrosion rate of the steel at the beginning of the exposure but, after 1 year, the corrosion rate drops abruptly reaching a value close to 0.1 μm/year. This is probably due to the lack of water to sustain the corrosion process. When applying the results obtained in the present work to estimate the corrosion depth of the steel drums containing the cemented radioactive waste after a period of 300 years, it is found that in the most unfavourable case (high chloride contamination), the corrosion penetration will be considerably lower than the thickness of the wall of the steel drums. Cementation of ion-exchange resins does not seem to pose special risks regarding the corrosion of the steel drums that contained them; even in the case the matrix is highly contaminated with chloride ions.
46 CFR 154.170 - Outer hull steel plating.
Code of Federal Regulations, 2011 CFR
2011-10-01
... strake must be at least Grade E steel or a grade of steel that has equivalent chemical properties, mechanical properties, and heat treatment, and that is specially approved by the Commandant (CG-522). (2) The... chemical properties, mechanical properties, and heat treatment, and that is specially approved by the...
ERIC Educational Resources Information Center
Frick, Theodore W.; And Others
The document is part of the final report on Project STEEL (Special Teacher Education and Evaluation Laboratory) intended to extend the utilization of technology in the training of preservice special education teachers. This volume focuses on the second of four project objectives, the development of a special education teacher computer literacy…
NASA Astrophysics Data System (ADS)
Korshunov, L. G.; Kositsina, I. I.; Sagaradze, V. V.; Chernenko, N. L.
2011-07-01
Effect of special carbides (VC, M 6C, Mo2C) on the wear resistance and friction coefficient of austenitic stable ( M s below -196°C) antiferromagnetic ( T N = 40-60°C) steels 80G20F2, 80G20M2, and 80G20F2M2 has been studied. The structure and the effective strength (microhardness H surf, shear resistance τ) of the surface layer of these steels have been studied using optical and electron microscopy. It has been shown that the presence of coarse particles of primary special carbides in the steels 80G20F2, 80G20M2, and 80G20F2M2 quenched from 1150°C decreases the effective strength and the resistance to adhesive and abrasive wear of these materials. This is caused by the negative effect of carbide particles on the toughness of steels and by a decrease in the carbon content in austenite due to a partial binding of carbon into the above-mentioned carbides. The aging of quenched steels under conditions providing the maximum hardness (650°C for 10 h) exerts a substantial positive effect on the parameters of the effective strength ( H surf, τ) of the surface layer and, correspondingly, on the resistance of steels to various types of wear (abrasive, adhesive, and caused by the boundary friction). The maximum positive effect of aging on the wear resistance is observed upon adhesive wear of the steels under consideration. Upon friction with enhanced sliding velocities (to 4 m/s) under conditions of intense (to 500-600°C) friction-induced heating, the 80G20F2, 80G20M2, and, especially, 80G20F2M2 steels subjected to quenching and aging substantially exceed the 110G13 (Hadfield) steel in their tribological properties. This is due to the presence in these steels of a favorable combination of high effective strength and friction heat resistance of the surface layer, which result from the presence of a large amount of special carbides in these steels and from a high degree of alloying of the matrix of these steels by vanadium and molybdenum. In the process of friction, there are formed nanocrystalline austenitic structures possessing high effective strength and wear resistance on the wear surface of these steels.
40 CFR 420.121 - Specialized definitions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... operations. (e) The term strip, sheet, and miscellaneous products means steel products other than wire products and fasteners. (f) The term wire products and fasteners means steel wire, products manufactured from steel wire, and steel fasteners manufactured from steel wire or other steel shapes. ...
40 CFR 420.121 - Specialized definitions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... operations. (e) The term strip, sheet, and miscellaneous products means steel products other than wire products and fasteners. (f) The term wire products and fasteners means steel wire, products manufactured from steel wire, and steel fasteners manufactured from steel wire or other steel shapes. ...
Process for the synthesis of nanophase dispersion-strengthened aluminum alloy
Barbour, John C.; Knapp, James Arthur; Follstaedt, David Martin; Myers, Samuel Maxwell
1998-12-15
A process for fabricating dispersion-strengthened ceramic-metal composites is claimed. The process comprises in-situ interaction and chemical reaction of a metal in gaseous form with a ceramic producer in plasma form. Such composites can be fabricated with macroscopic dimensions. Special emphasis is placed on fabrication of dispersion-strengthened aluminum oxide-aluminum composites, which can exhibit flow stresses more characteristic of high strength steel.
Surface thermohardening by the fast-moving electric arch
NASA Astrophysics Data System (ADS)
Gabdrakhmanov, Az T.; Shafigullin, L. N.; Galimov, E. R.; Ibragimov, A. R.
2017-01-01
This paper describes the technology of modern engineering-plasma hardening steels and prospects of its application. It gives the opportunity to manage the process without using of cooling media, vacuum, special coatings to improve the absorptive capacity of hardened surfaces; the simplicity, the low cost, the maneuverability, a small size of the process equipment; a possibility of the automation and the robotization of technological process.
NASA Astrophysics Data System (ADS)
Johansson, Leena-Sisko; Saastamoinen, Tuomas
1999-04-01
We have investigated the interactions of an exopolymer-producing bacteria, Burkholderia sp. with polished AISI 304 stainless steel substrates using X-ray photoelectron spectroscopy (XPS). Steel coupons were exposed to the pure bacteria culture in a specially designed flowcell for 6 h during which the experiment was monitored in situ with an optical microscope. XPS results verified the formation of biofilm containing extracellular polymer on all the samples exposed to bacteria. Sputter results indicated that some ions needed for metabolic processes were trapped within the biofilm. Changes in the relative Fe concentration and Fe 2p peak shape indicated that also iron had accumulated into the biofilm.
Investigation of corrosion of welded joints of austenitic and duplex stainless steels
NASA Astrophysics Data System (ADS)
Topolska, S.
2016-08-01
Investigation of corrosion resistance of materials is one of the most important tests that allow determining their functional properties. Among these tests the special group consist electrochemical investigations, which let to accelerate the course of the process. These investigations allow rapidly estimating corrosion processes occurring in metal elements under the influence of the analysed environment. In the paper are presented results of investigations of the resistance to pitting corrosion of the steel of next grades: austenitic 316L and duplex 2205. It was also analysed the corrosion resistance of welded joints of these grades of steel. The investigations were conducted in two different corrosion environments: in the neutral one (3.5 % sodium chloride) and in the aggressive one (0.1 M sulphuric acid VI). The obtained results indicate different resistance of analysed grades of steel and their welded joints in relation to the corrosion environment. The austenitic 316L steel characterizes by the higher resistance to the pitting corrosion in the aggressive environment then the duplex 2205 steel. In the paper are presented results of potentiodynamic tests. They showed that all the specimens are less resistant to pitting corrosion in the environment of sulphuric acid (VI) than in the sodium chloride one. The 2205 steel has higher corrosion resistance than the 316L stainless steel in 3.5% NaCl. On the other hand, in 0.1 M H2SO4, the 316L steel has a higher corrosion resistance than the 2205 one. The weld has a similar, very good resistance to pitting corrosion like both steels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eghlimi, Abbas, E-mail: a.eghlimi@ma.iut.ac.ir; Shamanian, Morteza; Eskandarian, Masoomeh
In the present paper, microstructural changes across an as-welded dissimilar austenitic/duplex stainless steel couple welded by a super duplex stainless steel filler metal using gas tungsten arc welding process is characterized with optical microscopy and electron back-scattered diffraction techniques. Accordingly, variations of microstructure, texture, and grain boundary character distribution of base metals, heat affected zones, and weld metal were investigated. The results showed that the weld metal, which was composed of Widmanstätten austenite side-plates and allotriomorphic grain boundary austenite morphologies, had the weakest texture and was dominated by low angle boundaries. The welding process increased the ferrite content but decreasedmore » the texture intensity at the heat affected zone of the super duplex stainless steel base metal. In addition, through partial ferritization, it changed the morphology of elongated grains of the rolled microstructure to twinned partially transformed austenite plateaus scattered between ferrite textured colonies. However, the texture of the austenitic stainless steel heat affected zone was strengthened via encouraging recrystallization and formation of annealing twins. At both interfaces, an increase in the special character coincident site lattice boundaries of the primary phase as well as a strong texture with <100> orientation, mainly of Goss component, was observed. - Graphical abstract: Display Omitted - Highlights: • Weld metal showed local orientation at microscale but random texture at macroscale. • Intensification of <100> orientated grains was observed adjacent to the fusion lines. • The austenite texture was weaker than that of the ferrite in all duplex regions. • Welding caused twinned partially transformed austenites to form at SDSS HAZ. • At both interfaces, the ratio of special CSL boundaries of the primary phase increased.« less
Structure and creep of Russian reactor steels with a BCC structure
NASA Astrophysics Data System (ADS)
Sagaradze, V. V.; Kochetkova, T. N.; Kataeva, N. V.; Kozlov, K. A.; Zavalishin, V. A.; Vil'danova, N. F.; Ageev, V. S.; Leont'eva-Smirnova, M. V.; Nikitina, A. A.
2017-05-01
The structural phase transformations have been revealed and the characteristics of the creep and long-term strength at 650, 670, and 700°C and 60-140 MPa have been determined in six Russian reactor steels with a bcc structure after quenching and high-temperature tempering. Creep tests were carried out using specially designed longitudinal and transverse microsamples, which were fabricated from the shells of the fuel elements used in the BN-600 fast neutron reactor. It has been found that the creep rate of the reactor bcc steels is determined by the stability of the lath martensitic and ferritic structures in relation to the diffusion processes of recovery and recrystallization. The highest-temperature oxide-free steel contains the maximum amount of the refractory elements and carbides. The steel strengthened by the thermally stable Y-Ti nanooxides has a record high-temperature strength. The creep rate at 700°C and 100 MPa in the samples of this steel is lower by an order of magnitude and the time to fracture is 100 times greater than that in the oxide-free reactor steels.
NASA Astrophysics Data System (ADS)
Hemmer, H.; Grong, Ø.; Klokkehaug, S.
2000-03-01
In the present investigation, a process model for electron beam (EB) welding of different grades of duplex stainless steels (i.e. SAF 2205 and 2507) has been developed. A number of attractive features are built into the original finite element code, including (1) a separate module for prediction of the penetration depth and distribution of the heat source into the plate, (2) adaptive refinement of the three-dimensional (3-D) element mesh for quick and reliable solution of the differential heat flow equation, and (3) special subroutines for calculation of the heat-affected zone (HAZ) microstructure evolution. The process model has been validated by comparison with experimental data obtained from in situ thermocouple measurements and optical microscope examinations. Subsequently, its aptness to alloy design and optimization of welding conditions for duplex stainless steels is illustrated in different numerical examples and case studies pertaining to EB welding of tubular joints.
Galvanic Liquid Applied Coating System for Protection of Embedded Steel Surfaces from Corrosion
NASA Technical Reports Server (NTRS)
Curran, Joseph; MacDowell, Louis; Voska, N. (Technical Monitor)
2002-01-01
The corrosion of reinforcing steel in concrete is an insidious problem for the Kennedy Space Center, government agencies, and the general public. Existing corrosion protection systems on the market are costly, complex, and time-consuming to install, require continuous maintenance and monitoring, and require specialized skills for installation. NASA's galvanic liquid-applied coating offers companies the ability to conveniently protect embedded steel rebar surfaces from corrosion. Liquid-applied inorganic galvanic coating contains one ore more of the following metallic particles: magnesium, zinc, or indium and may contain moisture attracting compounds that facilitate the protection process. The coating is applied to the outer surface of reinforced concrete so that electrical current is established between metallic particles and surfaces of embedded steel rebar; and electric (ionic) current is responsible for providing the necessary cathodic protection for embedded rebar surfaces.
Fuzzy control strategy for secondary cooling of continuous steel casting
NASA Astrophysics Data System (ADS)
Tirian, G. O.; Gheorghiu, C. A.; Hepuţ, T.; Rob, R.
2017-05-01
The purpose of this paper is to create an original fuzzy solution on the existing structure of the control system of continuous casting that eliminates fissures in the poured material from the secondary cooling of steel. For this purpose a system was conceived with three fuzzy database decision rules, which by analyzing a series of measurements taken from the process produces adjustments in the rate of flow of the cooling water and the speed of casting and determine the degree of risk of the wire. In the specialized literature on the national plan and the world, there is no intelligent correction in the rate of flow of the cooling water and the speed of casting in the secondary cooling of steel. The database of rules was made using information collected directly from the installation process of continuous casting of the Arcelor Mittal Hunedoara.
Influence of Process Parameters on the Process Efficiency in Laser Metal Deposition Welding
NASA Astrophysics Data System (ADS)
Güpner, Michael; Patschger, Andreas; Bliedtner, Jens
Conventionally manufactured tools are often completely constructed of a high-alloyed, expensive tool steel. An alternative way to manufacture tools is the combination of a cost-efficient, mild steel and a functional coating in the interaction zone of the tool. Thermal processing methods, like laser metal deposition, are always characterized by thermal distortion. The resistance against the thermal distortion decreases with the reduction of the material thickness. As a consequence, there is a necessity of a special process management for the laser based coating of thin parts or tools. The experimental approach in the present paper is to keep the energy and the mass per unit length constant by varying the laser power, the feed rate and the powder mass flow. The typical seam parameters are measured in order to characterize the cladding process, define process limits and evaluate the process efficiency. Ways to optimize dilution, angular distortion and clad height are presented.
NASA Astrophysics Data System (ADS)
Kuleshova, E. A.; Gurovich, B. A.; Lavrukhina, Z. V.; Saltykov, M. A.; Fedotova, S. V.; Khodan, A. N.
2016-08-01
In reactor pressure vessel (RPV) bcc-lattice steels temper embrittlement is developed under the influence of both operating temperature of ∼300 °C and neutron irradiation. Segregation processes in the grain boundaries (GB) begin to play a special role in the assessment of the safe operation of the RPV in case of its lifetime extension up to 60 years or more. The most reliable information on the RPV material condition can be obtained by investigating the surveillance specimens (SS) that are exposed to operational factors simultaneously with the RPV itself. In this paper the GB composition in the specimens with different thermal exposure time at the RPV operating temperature as well as irradiated by fast neutrons (E ≥ 0.5 MeV) to different fluences (20-71)·1022 m-2 was studied by means of Auger electron spectroscopy (AES) including both impurity and main alloying elements content. The data obtained allowed to trace the trend of the operating temperature and radiation-stimulated diffusion influence on the overall segregants level in GB. The revealed differences in the concentration levels of GB segregants in different steels, are due to the different chemical composition of the steels and also due to different grain boundary segregation levels in initial (unexposed) state. The data were used to estimate the RPV steels working capacity for 60 years. The estimation was carried out using both the well-known Langmuir-McLean model and the one specially developed for RPV steels, which takes into account the structure and phase composition of VVER-1000 RPV steels, as well as the long-term influence of operational factors.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-26
... employees from General Steel Industries in Granite City, Illinois, to the Special Exposure Cohort (SEC... worked in any location at the General Steel Industries site, located at 1417 State Street, Granite City...
Special Features of Induction Annealing of Friction Stir Welded Joints of Medium-Alloy Steels
NASA Astrophysics Data System (ADS)
Priymak, E. Yu.; Stepanchukova, A. V.; Bashirova, E. V.; Fot, A. P.; Firsova, N. V.
2018-01-01
Welded joints of medium-alloy steels XJY750 and 40KhN2MA are studied in the initial condition and after different variants of annealing. Special features of the phase transformations occurring in the welded steels are determined. Optimum modes of annealing are recommended for the studied welded joints of drill pipes, which provide a high level of mechanical properties including the case of impact loading.
An Experimental Investigation on Hardness and Microstructure of Heat Treated EN 9 Steel
NASA Astrophysics Data System (ADS)
Biswas, Palash; Kundu, Arnab; Mondal, Dhiraj
2017-08-01
In the modern engineering world, extensive research has led to the development of some special grades of steel, often suited for enhanced functions. EN 9 steel is one such grade, having major applications in power plants, automobile and aerospace industry. Different heat treatment processes are employed to achieve high hardness and high wear resistance, but machinability subsequently decreases. Existing literature is not sufficient to achieve a balance between hardness and machinability. The aim of this experimental work is to determine the hardness values and observe microstructural changes in EN9 steel, when it is subjected to annealing, normalizing and quenching. Finally, the effects of tempering after each of these heat treatments on hardness and microstructure have also been shown. It is seen that the tempering after normalizing the specimen achieved satisfactory results. The microstructure was also observed to be consisting of fine grains.
UOE Pipe Manufacturing Process Simulation: Equipment Designing and Construction
NASA Astrophysics Data System (ADS)
Delistoian, Dmitri; Chirchor, Mihael
2017-12-01
UOE pipe manufacturing process influence directly on pipeline resilience and operation capacity. At present most spreaded pipe manufacturing method is UOE. This method is based on cold forming. After each technological step appears a certain stress and strain level. For pipe stress strain study is designed and constructed special equipment that simulate entire technological process.UOE pipe equipment is dedicated for manufacturing of longitudinally submerged arc welded DN 400 (16 inch) steel pipe.
NASA Astrophysics Data System (ADS)
Stepanov, A. I.; Belikov, S. V.; Musikhin, S. A.; Burmasov, S. P.; Popov, A. A.
2017-03-01
Special features of formation of structure and properties of seamless pipes from medium-carbon low-alloy steel for oil and gas applications are considered and associated with chemical inhomogeneity of the metal of the pipes.
NASA Astrophysics Data System (ADS)
Setiawan, Jody; Nakazawa, Shoji
2017-10-01
This paper discusses about comparison of seismic response behaviors, seismic performance and seismic loss function of a conventional special moment frame steel structure (SMF) and a special moment frame steel structure with base isolation (BI-SMF). The validation of the proposed simplified estimation method of the maximum deformation of the base isolation system by using the equivalent linearization method and the validation of the design shear force of the superstructure are investigated from results of the nonlinear dynamic response analysis. In recent years, the constructions of steel office buildings with seismic isolation system are proceeding even in Indonesia where the risk of earthquakes is high. Although the design code for the seismic isolation structure has been proposed, there is no actual construction example for special moment frame steel structure with base isolation. Therefore, in this research, the SMF and BI-SMF buildings are designed by Indonesian Building Code which are assumed to be built at Padang City in Indonesia. The material of base isolation system is high damping rubber bearing. Dynamic eigenvalue analysis and nonlinear dynamic response analysis are carried out to show the dynamic characteristics and seismic performance. In addition, the seismic loss function is obtained from damage state probability and repair cost. For the response analysis, simulated ground accelerations, which have the phases of recorded seismic waves (El Centro NS, El Centro EW, Kobe NS and Kobe EW), adapted to the response spectrum prescribed by the Indonesian design code, that has, are used.
19 CFR 12.145 - Entry or admission of certain steel products.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 19 Customs Duties 1 2013-04-01 2013-04-01 false Entry or admission of certain steel products. 12...; DEPARTMENT OF THE TREASURY SPECIAL CLASSES OF MERCHANDISE Steel Products § 12.145 Entry or admission of certain steel products. In any case in which a steel import license number is required to be obtained...
19 CFR 12.145 - Entry or admission of certain steel products.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 19 Customs Duties 1 2014-04-01 2014-04-01 false Entry or admission of certain steel products. 12...; DEPARTMENT OF THE TREASURY SPECIAL CLASSES OF MERCHANDISE Steel Products § 12.145 Entry or admission of certain steel products. In any case in which a steel import license number is required to be obtained...
19 CFR 12.145 - Entry or admission of certain steel products.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 19 Customs Duties 1 2012-04-01 2012-04-01 false Entry or admission of certain steel products. 12...; DEPARTMENT OF THE TREASURY SPECIAL CLASSES OF MERCHANDISE Steel Products § 12.145 Entry or admission of certain steel products. In any case in which a steel import license number is required to be obtained...
19 CFR 12.145 - Entry or admission of certain steel products.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 19 Customs Duties 1 2011-04-01 2011-04-01 false Entry or admission of certain steel products. 12...; DEPARTMENT OF THE TREASURY SPECIAL CLASSES OF MERCHANDISE Steel Products § 12.145 Entry or admission of certain steel products. In any case in which a steel import license number is required to be obtained...
19 CFR 12.145 - Entry or admission of certain steel products.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 19 Customs Duties 1 2010-04-01 2010-04-01 false Entry or admission of certain steel products. 12...; DEPARTMENT OF THE TREASURY SPECIAL CLASSES OF MERCHANDISE Steel Products § 12.145 Entry or admission of certain steel products. In any case in which a steel import license number is required to be obtained...
21 CFR 886.4155 - Scleral plug.
Code of Federal Regulations, 2014 CFR
2014-04-01
... stainless steel with or without a gold, silver, or titanium coating. The special controls for the surgical grade stainless steel scleral plug (with or without a gold, silver, or titanium coating) are: (i) The... titanium coating). The special controls for scleral plugs made of other materials are: (i) The device must...
46 CFR 56.01-2 - Incorporation by reference.
Code of Federal Regulations, 2010 CFR
2010-10-01
...-675 (1998), Specification for Steel Bars, Carbon, Hot-Wrought, Special Quality, Mechanical Properties...-1; (40) ASTM A 575-96, Standard Specification for Steel Bars, Carbon, Merchant Quality, M-Grades...-Wrought, Special Quality (“ASTM A 576”), 56.60-2; (42) ASTM B 16-92, Standard Specification for Free...
Wu, Haipeng; Cao, Wanlin; Qiao, Qiyun; Dong, Hongying
2016-01-01
A method is presented to predict the complete stress-strain curves of concrete subjected to triaxial stresses, which were caused by axial load and lateral force. The stress can be induced due to the confinement action inside a special-shaped steel tube having multiple cavities. The existing reinforced confined concrete formulas have been improved to determine the confinement action. The influence of cross-sectional shape, of cavity construction, of stiffening ribs and of reinforcement in cavities has been considered in the model. The parameters of the model are determined on the basis of experimental results of an axial compression test for two different kinds of special-shaped concrete filled steel tube (CFT) columns with multiple cavities. The complete load-strain curves of the special-shaped CFT columns are estimated. The predicted concrete strength and the post-peak behavior are found to show good agreement within the accepted limits, compared with the experimental results. In addition, the parameters of proposed model are taken from two kinds of totally different CFT columns, so that it can be concluded that this model is also applicable to concrete confined by other special-shaped steel tubes. PMID:28787886
Wu, Haipeng; Cao, Wanlin; Qiao, Qiyun; Dong, Hongying
2016-01-29
A method is presented to predict the complete stress-strain curves of concrete subjected to triaxial stresses, which were caused by axial load and lateral force. The stress can be induced due to the confinement action inside a special-shaped steel tube having multiple cavities. The existing reinforced confined concrete formulas have been improved to determine the confinement action. The influence of cross-sectional shape, of cavity construction, of stiffening ribs and of reinforcement in cavities has been considered in the model. The parameters of the model are determined on the basis of experimental results of an axial compression test for two different kinds of special-shaped concrete filled steel tube (CFT) columns with multiple cavities. The complete load-strain curves of the special-shaped CFT columns are estimated. The predicted concrete strength and the post-peak behavior are found to show good agreement within the accepted limits, compared with the experimental results. In addition, the parameters of proposed model are taken from two kinds of totally different CFT columns, so that it can be concluded that this model is also applicable to concrete confined by other special-shaped steel tubes.
NASA Astrophysics Data System (ADS)
Zhang, J. M.; Li, H.; Yang, F.; Chi, Q.; Ji, L. K.; Feng, Y. R.
2013-12-01
In this paper, two different heat treatment processes of a 9% Ni steel for large liquefied natural gas storage tanks were performed in an industrial heating furnace. The former was a special heat treatment process consisting of quenching and intercritical quenching and tempering (Q-IQ-T). The latter was a heat treatment process only consisting of quenching and tempering. Mechanical properties were measured by tensile testing and charpy impact testing, and the microstructure was analyzed by optical microscopy, transmission electron microscopy, and x-ray diffraction. The results showed that outstanding mechanical properties were obtained from the Q-IQ-T process in comparison with the Q-T process, and a cryogenic toughness with charpy impact energy value of 201 J was achieved at 77 K. Microstructure analysis revealed that samples of the Q-IQ-T process had about 9.8% of austenite in needle-like martensite, while samples of the Q-T process only had about 0.9% of austenite retained in tempered martensite.
NASA Astrophysics Data System (ADS)
Foughani, Milad; Kolahi, Alireza; Palizdar, Yahya
2018-01-01
Nowadays, Nano structure bainitic steel have attracted attention mostly because of its special mechanical properties such as high tensile strength, hardness, appropriate toughness and low manufacturing cost. The main concern for the mass production of this type of steels is prolong austempering process which increases the production costs as well as time. In this research, in order to accelerate the bainitic transformation and decrease the production time, a medium carbon steel has been prepared and two steps austempering process was employed to prevent the bainite laths thickening. The Samples were austenetized at 1000°C for 15 min and were kept in the salt bath between 1 - 12 hours at 290°C in one step and between 1 - 12 hours at the temperature range of 250°C - 300°C in two steps bainite transformation. The obtained micro structures were studied by the optical and scanning electron microscopy (FESEM) and the mechanical properties were investigated by using tensile and hardness tests. The results show that the two steps austempering process and lower carbon concentration lead to lower austempering time as well as the formation of more stable retained austenite and nanostructured bainite lath which results in higher mechanical properties.
Sodium Heat Pipe Module Processing For the SAFE-100 Reactor Concept
NASA Technical Reports Server (NTRS)
Martin, James; Salvail, Pat
2003-01-01
To support development and hardware-based testing of various space reactor concepts, the Early Flight Fission-Test Facility (EFF-TF) team established a specialized glove box unit with ancillary systems to handle/process alkali metals. Recently, these systems have been commissioned with sodium supporting the fill of stainless steel heat pipe modules for use with a 100 kW thermal heat pipe reactor design. As part of this effort, procedures were developed and refined to govern each segment of the process covering: fill, leak check, vacuum processing, weld closeout, and final "wet in". A series of 316 stainless steel modules, used as precursors to the actual 321 stainless steel modules, were filled with 35 +/- 1 grams of sodium using a known volume canister to control the dispensed mass. Each module was leak checked to less than10(exp -10) std cc/sec helium and vacuum conditioned at 250 C to assist in the removal of trapped gases. A welding procedure was developed to close out the fill stem preventing external gases from entering the evacuated module. Finally the completed modules were vacuum fired at 750 C allowing the sodium to fully wet the internal surface and wick structure of the heat pipe module.
Sodium Heat Pipe Module Processing For the SAFE-100 Reactor Concept
NASA Astrophysics Data System (ADS)
Martin, James; Salvail, Pat
2004-02-01
To support development and hardware-based testing of various space reactor concepts, the Early Flight Fission-Test Facility (EFF-TF) team established a specialized glove box unit with ancillary systems to handle/process alkali metals. Recently, these systems have been commissioned with sodium supporting the fill of stainless steel heat pipe modules for use with a 100 kW thermal heat pipe reactor design. As part of this effort, procedures were developed and refined to govern each segment of the process covering: fill, leak check, vacuum processing, weld closeout, and final ``wet in''. A series of 316 stainless steel modules, used as precursors to the actual 321 stainless steel modules, were filled with 35 +/-1 grams of sodium using a known volume canister to control the dispensed mass. Each module was leak checked to <10-10 std cc/sec helium and vacuum conditioned at 250 °C to assist in the removal of trapped gases. A welding procedure was developed to close out the fill stem preventing external gases from entering the evacuated module. Finally the completed modules were vacuum fired at 750 °C allowing the sodium to fully wet the internal surface and wick structure of the heat pipe module.
NASA Astrophysics Data System (ADS)
Siva kumar, R.; Mohammed, Raffi; Srinivasa Rao, K.
2018-03-01
Integrated Steel Plants commonly uses Blast Furnace route for iron production which accounts for over 60 % of the world iron output. Blast Furnace runs for ten to twenty years without repairing hearth walls and Tap Hole (TH). Tap hole is an outlet for hot metal produced in a Blast Furnace and run from the shell of the furnace into the interior allowing access to the molten material. Tapping is the term used for drilling a hole through the tap hole which allows the molten iron and slag to flow out. In Iron making process, removal of liquid iron from furnace and sending it for steel making is known as cast house practice. For tapping liquid iron and operating the tap hole requires a special type of clay. Tap hole clay (THC) used to stop the flow of liquid iron and slag from the blast furnace. Present work deals with the study on manufacturing of THC at Visakhapatnam Steel Plant and problems related to manufacturing. Experiments were conducted to solve the identified problems and results are furnished in detail. The findings can improve the manufacturing process and improve the productivity of tap hole clay.
"2sDR": Process Development of a Sustainable Way to Recycle Steel Mill Dusts in the 21st Century
NASA Astrophysics Data System (ADS)
Rösler, Gernot; Pichler, Christoph; Antrekowitsch, Jürgen; Wegscheider, Stefan
2014-09-01
Significant amounts of electric arc furnace dust originating from steel production are recycled every year by the Waelz process, despite the fact that this type of process has several disadvantages. One alternative method would be the recovery of very high-quality ZnO as well as iron and even chromium in the two-step dust recycling process, which was invented to treat special waste for the recovery of heavy metal-containing residues. The big advantage of that process is that various types of residues, especially dusts, can be treated in an oxidizing first step for cleaning, with a subsequent reducing step for the metal recovery. After the treatment, three different fractions—dust, slag, and an iron alloy, can be used without any limitations. This study focuses on the development of the process along with some thermodynamic considerations. Moreover, a final overview of mass balances of an experiment performed in a 100-kg top blowing rotary converter with further developments is provided.
Optimization of parameters of special asynchronous electric drives
NASA Astrophysics Data System (ADS)
Karandey, V. Yu; Popov, B. K.; Popova, O. B.; Afanasyev, V. L.
2018-03-01
The article considers the solution of the problem of parameters optimization of special asynchronous electric drives. The solution of the problem will allow one to project and create special asynchronous electric drives for various industries. The created types of electric drives will have optimum mass-dimensional and power parameters. It will allow one to realize and fulfill the set characteristics of management of technological processes with optimum level of expenses of electric energy, time of completing the process or other set parameters. The received decision allows one not only to solve a certain optimizing problem, but also to construct dependences between the optimized parameters of special asynchronous electric drives, for example, with the change of power, current in a winding of the stator or rotor, induction in a gap or steel of magnetic conductors and other parameters. On the constructed dependences, it is possible to choose necessary optimum values of parameters of special asynchronous electric drives and their components without carrying out repeated calculations.
NASA Astrophysics Data System (ADS)
Durrenberger, L.; Even, D.; Molinari, A.; Rusinek, A.
2006-08-01
In order to reduce the gas emission without decreasing the passengers safety, the UHSS (Ultra High Strength Steel) steels are more and more used in the automotive industry. The very high mechanical characteristics of these steels allow to reduce the car weight thanks to the thickness reduction of the structure parts. The aim of this study is to analyse the plastic pre-strain effect (forming) on the crash properties of a crash-box structure. In order to achieve this goal, experimental rheological tests have been performed by combining quasi-static tensile tests followed by dynamic tensile test (8.10 - 3 s - 1 ≤ dot{\\varepsilon} ≤ 1000 s - 1) for a TRIP steel produced by ARCELOR. The combination of these results allows to obtain a better understanding of the steel behaviour in dynamic loading under different strain paths. All these information are necessary for an efficient simulation of crash test by including a pertinent material response. A special attention is given to the influence of the previous forming process on the dynamical response of crash boxes.
NASA Astrophysics Data System (ADS)
Josan, A.; Pinca Bretotean, C.
2015-06-01
The paper presents the possibility of using special additions to the execution of moulding mixtures for steel castings, drive wheel type. Critical analysis of moulding technology leads to the idea that most defects appear due to using improper moulding mixture. Using a improper moulding mixture leads to penetration of steel in moulding mixture, resulting in the formation of adherences, due to inadequate refractarity of the mould and core mixtures. Using only the unique mixture to the moulding leads to increasing consumption of new sand, respectively to the increase of price of piece. Acording to the dates registered in the industrial practice is necessary to use the special additions to obtain the moulding mixtures, carbonaceous materials respectively.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-26
... duty order on seamless carbon and alloy steel standard, line, and pressure pipe from the People's... the antidumping duty order on seamless carbon and alloy steel standard, line, and pressure pipe from... Making Co., Ltd.; Wuxi Seamless Special Pipe Co., Ltd.; Wuxi Sifang Steel Tube Co., Ltd.; Wuxi Zhenda...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-15
... Status; North American Stainless, (Stainless Steel), Ghent, KY Pursuant to its authority under the... application to the Board for authority to establish a special-purpose subzone at the stainless steel mill of... stainless steel at the facility of North American Stainless, located in Ghent, Kentucky (Subzone 29L), as...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perrin, J.S.; Fromm, E.O.; Server, W.L.
1982-01-01
The arc stud welding process has been adapted for use in producing reconstituted Charpy V-notch impact specimens. In this process, each half of a tested and fractured Charpy specimen is used as the central region of a reconstituted specimen. End tabs are joined to one half of a fractured specimen by a specially designed stud welding apparatus. SA533B-1 and SA508-2 unirradiated and irradiated pressure vessel steel specimens have been produced. Both conventional and precracked reconstituted specimen data have been produced. Both types of data have been shown to be in excellent agreement with original specimen data. The arc stud weldingmore » process can therefore be used to increase the amount of data obtainable from a limited number of specimens or to obtain Charpy data when full size specimens cannot otherwise be obtained.« less
NASA Astrophysics Data System (ADS)
Shahi, Amandeep S.; Pandey, Sunil
2008-02-01
Weld cladding is a process for producing surfaces with good corrosion resistant properties by means of depositing/laying of stainless steels on low-carbon steel components with an objective of achieving maximum economy and enhanced life. The aim of the work presented here was to investigate the effect of auxiliary preheating of the solid filler wire in mechanized gas metal arc welding (GMAW) process (by using a specially designed torch to preheat the filler wire independently, before its emergence from the torch) on the quality of the as-welded single layer stainless steel overlays. External preheating of the filler wire resulted in greater contribution of arc energy by resistive heating due to which significant drop in the main welding current values and hence low dilution levels were observed. Metallurgical aspects of the as welded overlays such as chemistry, ferrite content, and modes of solidification were studied to evaluate their suitability for service and it was found that claddings obtained through the preheating arrangement, besides higher ferrite content, possessed higher content of chromium, nickel, and molybdenum and lower content of carbon as compared to conventional GMAW claddings, thereby giving overlays with superior mechanical and corrosion resistance properties. The findings of this study not only establish the technical superiority of the new process, but also, owing to its productivity-enhanced features, justify its use for low-cost surfacing applications.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-12
... countervailing duty order on seamless carbon and alloy steel standard, line, and pressure pipe from the People's... administrative review of the countervailing duty order on seamless carbon and alloy steel standard, line, and... Making Co., Ltd., Wuxi Seamless Special Pipe Co., Ltd., Wuxi Sifang Steel Tube Co., Ltd., Wuxi Zhenda...
40 CFR 420.81 - Specialized definitions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY Salt Bath Descaling Subcategory § 420.81...-finished steel products by the action of molten salt baths other than those containing sodium hydride. (b) The term salt bath descaling, reducing means the removal of scale from semi-finished steel products by...
40 CFR 420.81 - Specialized definitions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY Salt Bath Descaling Subcategory § 420.81...-finished steel products by the action of molten salt baths other than those containing sodium hydride. (b) The term salt bath descaling, reducing means the removal of scale from semi-finished steel products by...
46 CFR 160.035-3 - Construction of steel oar-propelled lifeboats.
Code of Federal Regulations, 2011 CFR
2011-10-01
... after fabrication. Other methods of corrosion prevention will be given special consideration. (2) Where.... (j) Protection against corrosion. (1) All steel or iron entering into the construction of lifeboats... 46 Shipping 6 2011-10-01 2011-10-01 false Construction of steel oar-propelled lifeboats. 160.035-3...
Justification of the Production Process of Pressed Wood and Study of its Properties
NASA Astrophysics Data System (ADS)
Polilov, A. N.; Dornyak, O. R.; Shamaev, V. A.; Rumachik, M. M.
2018-05-01
Results of a numerical analysis of the stress-strain state of wood during its pressing in different symmetry directions of the anisotropic material are presented. It is shown that the anisotropy of mechanical properties of wood is an important factor determining both the structural characteristics of the porous system and its strength. A mathematical modeling of the process of pressing wood as a three-phase anisotropic rheologically complex capillary-porous system allows one to predict parameters of the resulting wood composite. The compressed wood obtained by the production modes developed has a tensile strength eight times greater than that of the natural one, which is comparable to the strength of the St3 steel, but its specific strength is higher than that of the St45 steel. Compression and impregnation of softwood species with an aqueous solution of carbamide allows one to harden them. This kind of treatment endows the wood with enhanced strength characteristics comparable to the characteristics of the St3 steel. The special features of tensile tests used to estimate the elastic modulus and strength characteristics of such materials are considered. Data obtained by different testing methods are correlated, and characteristics of the strengthened wood and some brends of steel are compared.
Guo, Peng; La Plante, Erika Callagon; Wang, Bu; Chen, Xin; Balonis, Magdalena; Bauchy, Mathieu; Sant, Gaurav
2018-05-22
The Cl - -induced corrosion of metals and alloys is of relevance to a wide range of engineered materials, structures, and systems. Because of the challenges in studying pitting corrosion in a quantitative and statistically significant manner, its kinetics remain poorly understood. Herein, by direct, nano- to micro-scale observations using vertical scanning interferometry (VSI), we examine the temporal evolution of pitting corrosion on AISI 1045 carbon steel over large surface areas in Cl - -free, and Cl - -enriched solutions. Special focus is paid to examine the nucleation and growth of pits, and the associated formation of roughened regions on steel surfaces. By statistical analysis of hundreds of individual pits, three stages of pitting corrosion, namely, induction, propagation, and saturation, are quantitatively distinguished. By quantifying the kinetics of these processes, we contextualize our current understanding of electrochemical corrosion within a framework that considers spatial dynamics and morphology evolutions. In the presence of Cl - ions, corrosion is highly accelerated due to multiple autocatalytic factors including destabilization of protective surface oxide films and preservation of aggressive microenvironments within the pits, both of which promote continued pit nucleation and growth. These findings offer new insights into predicting and modeling steel corrosion processes in mid-pH aqueous environments.
Electrochemical Micromachining with Fiber Laser Masking for 304 Stainless Steel
NASA Astrophysics Data System (ADS)
Li, Xiaohai; Wang, Shuming; Wang, Dong; Tong, Han
2017-10-01
In order to fabricate micro structure, the combined machining of electrochemical micro machining (EMM) and laser masking for 304 stainless steel was studied. A device of composite machining of EMM with laser masking was developed, and the experiments of EMM with laser masking were carried out. First, by marking pattern with fiber laser on the surface of 304 stainless steel, the special masking layer can be formed. Through X ray photoelectron spectroscopy (XPS), the corrosion resistance of laser masking layer was analyzed. It is proved by XPS that the iron oxide and chromium oxide on the surface of stainless steel generates due to air oxidation when laser scanning heats. Second, the localization and precision of EMM are improved, since the marking patterns forming on the surface of stainless steel by laser masking play a protective role in the process of subsequent EMM when the appropriate parameters of EMM are selected. At last, the shape and the roughness of the machined samples were measured by SEM and optical profilometer and analyzed. The results show that the rapid fabrication of micro structures on the 304 stainless steel surface can be achieved by EMM with fiber laser masking, which has a good prospect in the field of micro machining.
The Development of Lightweight Commercial Vehicle Wheels Using Microalloying Steel
NASA Astrophysics Data System (ADS)
Lu, Hongzhou; Zhang, Lilong; Wang, Jiegong; Xuan, Zhaozhi; Liu, Xiandong; Guo, Aimin; Wang, Wenjun; Lu, Guimin
Lightweight wheels can reduce weight about 100kg for commercial vehicles, and it can save energy and reduce emission, what's more, it can enhance the profits for logistics companies. The development of lightweight commercial vehicle wheels is achieved by the development of new steel for rim, the process optimization of flash butt welding, and structure optimization by finite element methods. Niobium micro-alloying technology can improve hole expansion rate, weldability and fatigue performance of wheel steel, and based on Niobium micro-alloying technology, a special wheel steel has been studied whose microstructure are Ferrite and Bainite, with high formability and high fatigue performance, and stable mechanical properties. The content of Nb in this new steel is 0.025% and the hole expansion rate is ≥ 100%. At the same time, welding parameters including electric upsetting time, upset allowance, upsetting pressure and flash allowance are optimized, and by CAE analysis, an optimized structure has been attained. As a results, the weight of 22.5in×8.25in wheel is up to 31.5kg, which is most lightweight comparing the same size wheels. And its functions including bending fatigue performance and radial fatigue performance meet the application requirements of truck makers and logistics companies.
NASA Astrophysics Data System (ADS)
Li, Ying-jun; Ai, Chang-sheng; Men, Xiu-hua; Zhang, Cheng-liang; Zhang, Qi
2013-04-01
This paper presents a novel on-line monitoring technology to obtain forming quality in steel ball's forming process based on load signal analysis method, in order to reveal the bottom die's load characteristic in initial cold heading forging process of steel balls. A mechanical model of the cold header producing process is established and analyzed by using finite element method. The maximum cold heading force is calculated. The results prove that the monitoring on the cold heading process with upsetting force is reasonable and feasible. The forming defects are inflected on the three feature points of the bottom die signals, which are the initial point, infection point, and peak point. A novel PVDF piezoelectric force sensor which is simple on construction and convenient on installation is designed. The sensitivity of the PVDF force sensor is calculated. The characteristics of PVDF force sensor are analyzed by FEM. The PVDF piezoelectric force sensor is fabricated to acquire the actual load signals in the cold heading process, and calibrated by a special device. The measuring system of on-line monitoring is built. The characteristics of the actual signals recognized by learning and identification algorithm are in consistence with simulation results. Identification of actual signals shows that the timing difference values of all feature points for qualified products are not exceed ±6 ms, and amplitude difference values are less than ±3%. The calibration and application experiments show that PVDF force sensor has good static and dynamic performances, and is competent at dynamic measuring on upsetting force. It greatly improves automatic level and machining precision. Equipment capacity factor with damages identification method depends on grade of steel has been improved to 90%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This standard covers alloy steel nuts for bolting for high-pressure and high-temperature service in nuclear and associated applications. This standard does not cover bar or other starting materials. The only implied special considerations for starting materials are that they be capable of passing the required tests when processed into finished products in accordance with this standard. Material shall conform to the requirements of ASME SA-194; to the requirements of the ASME Boiler and Pressure Vessel Code (ASME Code), Section III, Article NB-2000; to the requirements of NE E 8-18; and to the additional requirements of this standard.
ERIC Educational Resources Information Center
Stein, Mark J.; And Others
Prompted by the realization that a reference text presents special problems in audience address since there is typically a diverse set of users, a study was designed to provide preliminary data on the use of the reference text, "The Making, Shaping and Treating of Steel," a landmark book in the steel industry. Data on the use of the text were…
40 CFR 420.41 - Specialized definitions.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) [Reserved] (c) The term electric arc furnace steelmaking means the production of steel principally from steel scrap and fluxes in refractory lined furnaces by passing an electric current through the scrap or...
40 CFR 420.41 - Specialized definitions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... adding oxygen. (b) [Reserved] (c) The term electric arc furnace steelmaking means the production of steel principally from steel scrap and fluxes in refractory lined furnaces by passing an electric current through...
40 CFR 420.41 - Specialized definitions.
Code of Federal Regulations, 2014 CFR
2014-07-01
...) [Reserved] (c) The term electric arc furnace steelmaking means the production of steel principally from steel scrap and fluxes in refractory lined furnaces by passing an electric current through the scrap or...
40 CFR 420.41 - Specialized definitions.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) [Reserved] (c) The term electric arc furnace steelmaking means the production of steel principally from steel scrap and fluxes in refractory lined furnaces by passing an electric current through the scrap or...
46 CFR 153.530 - Special requirements for alkylene oxides.
Code of Federal Regulations, 2010 CFR
2010-10-01
...) and (c) of this section, a cargo containment system must be made of: (1) Stainless steel other than types 416 and 442; and (2) Steel. (b) Except as provided in paragraph (c) of this section, gaskets must be composites of spirally wound stainless steel and Teflon or similar flourinated polymer. (c) The...
Heat Treatment of Tools in Light Industry
NASA Astrophysics Data System (ADS)
Petukhov, V. A.
2005-09-01
Heat treatment processes for some tools (knitting needles, travelers for thimbles of spinning and doubling frames, thread-forming spinnerets) used for the production of cloths, hosiery, and other articles) in the knitting and textile industries are considered. Problems of the choice of steel and the kind and parameters of heat treatment are discussed in connection with the special features of tool design and operating conditions.
Stainless-steel elbows formed by spin forging
NASA Technical Reports Server (NTRS)
1964-01-01
Large seamless austenitic stainless steel elbows are fabricated by spin forging /rotary shear forming/. A specially designed spin forging tool for mounting on a hydrospin machine has been built for this purpose.
Anthropogenic nickel cycle: insights into use, trade, and recycling.
Reck, Barbara K; Müller, Daniel B; Rostkowski, Katherine; Graedel, T E
2008-05-01
The anthropogenic nickel cycle for the year 2000 was analyzed using a material flow analysis at multiple levels: 52 countries, territories, or country groups, eight regions, and the planet. Special attention was given to the trade in nickel-containing products at different stages of the cycle. A new circular diagram highlights process connections, the role and potential of recycling, and the relevance of trade at different life stages. The following results were achieved. (1) The nickel cycle is dominated by six countries or territories: USA, China and Hong Kong, Japan, Germany, Taiwan, and South Korea; only China also mines some of its nickel used. (2) Nickel is mostly used in alloyed form in stainless steels (68%). (3) More scrap is used for the production of stainless steels (42%) than for other first uses (11%). (4) Industrial machinery is the largest end use category for nickel (25%), followed by buildings and infrastructure (21%) and transportation (20%). (5) 57% of discarded nickel is recycled within the nickel and stainless steel industries, and 14% is lost to other metal markets where nickel is an unwanted constituent of carbon steel and copper alloy scrap.
Hybrid/Tandem Laser-Arc Welding of Thick Low Carbon Martensitic Stainless Steel Plates =
NASA Astrophysics Data System (ADS)
Mirakhorli, Fatemeh
High efficiency and long-term life of hydraulic turbines and their assemblies are of utmost importance for the hydropower industry. Usually, hydroelectric turbine components are made of thick-walled low carbon martensitic stainless steels. The assembly of large hydroelectric turbine components has been a great challenge. The use of conventional welding processes involves typical large groove design and multi-pass welding to fill the groove which exposes the weld to a high heat input creating relatively large fusion zone and heat affected zone. The newly-developed hybrid/tandem laser-arc welding technique is believed to offer a highly competitive solution to improve the overall hydro-turbine performance by combining the high energy density and fast welding speed of the laser welding technology with the good gap bridging and feeding ability of the gas metal arc welding process to increase the productivity and reduce the consumable material. The main objective of this research work is to understand different challenges appearing during hybrid laser-arc welding (HLAW) of thick gauge assemblies of low carbon 13%Cr- 4%Ni martensitic stainless steel and find a practical solution by adapting and optimizing this relatively new welding process in order to reduce the number of welding passes necessary to fill the groove gap. The joint integrity was evaluated in terms of microstructure, defects and mechanical properties in both as-welded and post-welded conditions. A special focus was given to the hybrid and tandem laser-arc welding technique for the root pass. Based on the thickness of the low carbon martensitic stainless steel plates, this work is mainly focused on the following two tasks: • Single pass hybrid laser-arc welding of 10-mm thick low carbon martensitic stainless steel. • Multi-pass hybrid/tandem laser-arc welding of 25-mm thick martensitic stainless steel.
Zinc toxicity among galvanization workers in the iron and steel industry.
El Safty, Amal; El Mahgoub, Khalid; Helal, Sawsan; Abdel Maksoud, Neveen
2008-10-01
Galvanization is the process of coating steel or cast iron pieces with zinc, allowing complete protection against corrosion. The ultimate goal of this work was to assess the effect of occupational exposure to zinc in the galvanization process on different metals in the human body and to detect the association between zinc exposure and its effect on the respiratory system. This study was conducted in 111 subjects in one of the major companies in the iron and steel industry. There were 61 subjects (workers) who were involved in the galvanization process. Fifty adult men were chosen as a matched reference group from other departments of the company. All workers were interviewed using a special questionnaire on occupational history and chest diseases. Ventilatory functions and chest X rays were assessed in all examined workers. Also, complete blood counts were performed, and serum zinc, iron, copper, calcium, and magnesium levels were tested. This study illustrated the relation between zinc exposure in the galvanization process and high zinc levels among exposed workers, which was associated with a high prevalence rate of metal fume fever (MFF) and low blood copper and calcium levels. There was no statistically significant difference between the exposed and control groups with regards to the magnesium level. No long-term effect of metals exposure was detected on ventilatory functions or chest X rays among the exposed workers.
NASA Astrophysics Data System (ADS)
Nadolny, K.; Kapłonek, W.
2014-08-01
The following work is an analysis of flatness deviations of a workpiece made of X2CrNiMo17-12-2 austenitic stainless steel. The workpiece surface was shaped using efficient machining techniques (milling, grinding, and smoothing). After the machining was completed, all surfaces underwent stylus measurements in order to obtain surface flatness and roughness parameters. For this purpose the stylus profilometer Hommel-Tester T8000 by Hommelwerke with HommelMap software was used. The research results are presented in the form of 2D surface maps, 3D surface topographies with extracted single profiles, Abbott-Firestone curves, and graphical studies of the Sk parameters. The results of these experimental tests proved the possibility of a correlation between flatness and roughness parameters, as well as enabled an analysis of changes in these parameters from shaping and rough grinding to finished machining. The main novelty of this paper is comprehensive analysis of measurement results obtained during a three-step machining process of austenitic stainless steel. Simultaneous analysis of individual machining steps (milling, grinding, and smoothing) enabled a complementary assessment of the process of shaping the workpiece surface macro- and micro-geometry, giving special consideration to minimize the flatness deviations
Deposition and characterization of magnetron sputtered bcc tantalum
NASA Astrophysics Data System (ADS)
Patel, Anamika
The goal of this thesis was to provide scientific and technical research results for developing and characterizing tantalum (Ta) coatings on steel substrates deposited by DC magnetron sputtering. Deposition of tantalum on steel is of special interest for the protection it offers to surfaces, e.g. the surfaces of gun barrels against the erosive wear of hot propellant gases and the mechanical damage caused by the motion of launching projectiles. Electro-plated chromium is presently most commonly used for this purpose; however, it is considered to be carcinogenic in its hexavalent form. Tantalum is being investigated as non-toxic alternative to chromium and also because of its superior protective properties in these extreme environments. DC magnetron sputtering was chosen for this investigation of tantalum coatings on steel substrates because it is a versatile industrial proven process for deposition of metals. Sputter deposited Ta films can have two crystallographic structures: (1) body center cubic (bcc) phase, characterized by high toughness and high ductility and (2) a tetragonal beta phase characterized by brittleness and a tendency to fail under stress. It was found in this work that the bcc Ta coatings on steel can be obtained reliably by either of two methods: (1) depositing Ta on a submicron, stoichiometric TaN seed layer reactively sputtered on unheated steel and (2) depositing Ta directly on steel heated above a critical temperature. For argon sputtering gas this critical temperature was found to be 400°C at a pressure of 5 mtorr. With the heavier krypton gas, this critical temperature is reduced to 350°C. X-ray diffraction (XRD) was used to investigate the structure of tantalum and nitride films, and the composition of the nitride films was measured by nuclear reaction analyses (NRA), which were used to study in detail the enhancement of the bcc phase of Ta on steel. The scratch adhesion tests performed with a diamond hemispherical tip of radius 200 mum under increasing loads revealed high critical load values for failure (>15 N) for the bcc coatings versus the low load values (<9 N) for the beta coatings. The coating deposited on TaN interlayers on sputter-etched steel had better adhesion than those on steel surface without sputter etching. The results for this work have demonstrated that by controlling the various process parameters of do magnetron sputtering, high quality bcc Ta coatings of multi-micron thickness with excellent adhesion to steel can be made. An important contribution of this dissertation is in the enhancing an understanding of this process. The impact of this research will be in a number of fields where superior protective castings are needed. These include military applications, electronic components, chemical processing, and others.
Fabrication of capsule assemblies, phase 3
NASA Technical Reports Server (NTRS)
Keeton, A. R.; Stemann, L. G.
1973-01-01
Thirteen capsule assemblies were fabricated for evaluation of fuel pin design concepts for a fast spectrum lithium cooled compact space power reactor. These instrumented assemblies were designed for real time test of prototype fuel pins. Uranium mononitride fuel pins were encased in AISI 304L stainless steel capsules. Fabrication procedures were fully qualified by process development and assembly qualification tests. Instrumentation reliability was achieved utilizing specially processed and closely controlled thermocouple hot zone fabrication and by thermal screening tests. Overall capsule reliability was achieved with an all electron beam welded assembly.
NASA Astrophysics Data System (ADS)
Sawicki, J.; Siedlaczek, P.; Staszczyk, A.
2018-03-01
A numerical three-dimensional model for computing residual stresses generated in cross section of steel 42CrMo4 after nitriding is presented. The diffusion process is analyzed by the finite-element method. The internal stresses are computed using the obtained profile of the distribution of the nitrogen concentration. The special features of the intricate geometry of the treated articles including edges and angles are considered. Comparative analysis of the results of the simulation and of the experimental measurement of residual stresses is performed by the Waisman-Philips method.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-31
... Co., Ltd. Wenzhou Juxing Special Steel Co. Ltd. Widesea Industrial Corporation Ltd. Wisco & Crm Wuhan... Corporation Ltd. Wisco & Crm Wuhan Materials & Trade WSP Pipe Co., Ltd. Wuhan Iron & Steel (Group) Corp. Wuxi...
Steel Foil Improves Performance Of Blasting Caps
NASA Technical Reports Server (NTRS)
Bement, Laurence J.; Perry, Ronnie; Schimmel, Morry L.
1990-01-01
Blasting caps, which commonly include deep-drawn aluminum cups, give significantly higher initiation performance by application of steel foils on output faces. Steel closures 0.005 in. (0.13 mm) thick more effective than aluminum. Caps with directly bonded steel foil produce fragment velocities of 9,300 ft/s (2.8 km/s) with large craters and unpredictable patterns to such degree that no attempts made to initiate explosions. Useful in military and aerospace applications and in specialized industries as mining and exploration for oil.
40 CFR 420.21 - Specialized definitions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Specialized definitions. 420.21 Section 420.21 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY Sintering Subcategory § 420.21 Specialized...
40 CFR 420.31 - Specialized definitions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Specialized definitions. 420.31 Section 420.31 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY Ironmaking Subcategory § 420.31 Specialized...
Ship Structure Committee Publications. A Special Bibliography.
1992-01-01
STEEL AND SUPPLEMENT ON EMBRITTLEMENT OF "C" STEEL BY NITROGEN Evans, EB. K lingler , Li .......................................................... 13...FROM: NTIS AD-8710SSC-28 CAUSES OF CLEAVAGE FRACTURE IN SHIP PLATE, HIGH YIELD STRENGTH STRUCTURAL STEEL SSC-31 The primary objective of the... careful design, selection of materials, and PART II: THE EFFECT OF SUBCRITICAL HEAT TREATMENT ON goo. workmanship are of the greatest importance in
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chandler, H.E.
The predictions of a special Metal Progress round table spanning the next 20 years in materials and process engineering in North America are given. Subjects discussed include the energy crunch, impact of computer technology, new roles for testing and inspection, happenings in non ferrous technology, materials substitution, composites and non metallics, people aspects of technology, materials availability, powder metallurgy changes, casting, welding and joining, heat treatments, carbon and alloy steels, new and improved materials, forming, coatings and conservation, and metal production. (FS)
Corrosion susceptibility of steel drums containing cemented intermediate level nuclear wastes
NASA Astrophysics Data System (ADS)
Duffó, Gustavo S.; Farina, Silvia B.; Schulz, Fátima M.; Marotta, Francesca
2010-10-01
Cementation processes are used as immobilization techniques for low or intermediate level radioactive waste for economical and safety reasons and for being a simple operation. In particular, ion-exchange resins commonly used for purification of radioactive liquid waste from nuclear reactors are immobilized before being stored to improve the leach resistance of the waste matrix and to maintain mechanical stability. Combustible solid radioactive waste can be incinerated and the resulting ashes can also be immobilized before storage. The immobilized resins and ashes are then contained in steel drums that may undergo corrosion depending on the presence of certain contaminants. The work described in this paper was aimed at evaluating the corrosion susceptibility of steel drums in contact with cemented ion-exchange resins and incineration ashes containing different concentrations of aggressive species (mostly chloride and sulphate ions). A special type of specimen was designed to simulate the cemented waste in the drum. The evolution of the corrosion potential and the corrosion current density of the steel, as well as the electrical resistivity of the matrix were monitored over a time period of 1 year. The results show the deleterious effect of chloride on the expected lifespan of the waste containers.
NASA Astrophysics Data System (ADS)
López, Ana María Camacho; Regueras, José María Gutiérrez
2017-10-01
The new goals of automotive industry related with environment concerns, the reduction of fuel emissions and the security requirements have driven up to new designs which main objective is reducing weight. It can be achieved through new materials such as nano-structured materials, fibre-reinforced composites or steels with higher strength, among others. Into the last group, the Advance High Strength Steels (AHSS) and particularly, dual-phase steels are in a predominant situation. However, despite of their special characteristics, they present issues related to their manufacturability such as springback, splits and cracks, among others. This work is focused on the deep drawing processof rectangular shapes, a very usual forming operation that allows manufacturing several automotive parts like oil pans, cases, etc. Two of the main parameters in this process which affect directly to the characteristics of final product are blank thickness (t) and die radius (Rd). Influence of t and Rd on the formability of dual-phase steels has been analysed considering values typically used in industrial manufacturing for a wide range of dual-phase steels using finite element modelling and simulation; concretely, the influence of these parameters in the percentage of thickness reduction pt(%), a quite important value for manufactured parts by deep drawing operations, which affects to its integrity and its service behaviour. Modified Morh Coulomb criteria (MMC) has been used in order to obtain Fracture Forming Limit Diagrams (FFLD) which take into account an important failure mode in dual-phase steels: shear fracture. Finally, a relation between thickness reduction percentage and studied parameters has been established fordual-phase steels, obtaining a collection of equations based on Design of Experiments (D.O.E) technique, which can be useful in order to predict approximate results.
Experimental Tests of a Real Building Seismically Retrofitted by Special Buckling-Restrained Braces
NASA Astrophysics Data System (ADS)
D'Aniello, Mario; Corte, Gaetano Della; Mazzolani, Federico M.
2008-07-01
Buckling Restrained Braces (BRBs), differently from conventional braces, do not exhibit appreciable difference between the tensile and compression capacity and no strength degradation of brace capacity under compressive and cyclic loading. Since lateral and local buckling behaviour modes are restrained, large inelastic capacities are attainable. Hence, BRBs may represent an efficient and reliable solution for reducing the seismic vulnerability of buildings. Results of experimental tests on the response of a real two-story reinforced concrete (RC) building equipped with BRBs are presented and discussed. The considered BRBs are a special `only-steel' version of the more common `unbonded braces'. In particular, two different BRBs have been tested. Both of them are detachable "only-steel" devices, consisting in a rectangular steel plate and a restraining steel sleeve. The latter is composed by two omega shapes which are bolted together. The main characteristic of the braces consists in the possibility to hide them within the space between the facing and the backing of masonry infill walls commonly used for RC buildings.
NASA Astrophysics Data System (ADS)
Djakow, Eugen; Springer, Robert; Homberg, Werner; Piper, Mark; Tran, Julian; Zibart, Alexander; Kenig, Eugeny
2017-10-01
Electrohydraulic Forming (EHF) processes permit the production of complex, sharp-edged geometries even when high-strength materials are used. Unfortunately, the forming zone is often limited as compared to other sheet metal forming processes. The use of a special industrial-robot-based tool setup and an incremental process strategy could provide a promising solution for this problem. This paper describes such an innovative approach using an electrohydraulic incremental forming machine, which can be employed to manufacture the large multifunctional and complex part geometries in steel, aluminium, magnesium and reinforced plastic that are employed in lightweight constructions or heating elements.
46 CFR 35.01-25 - Sacrificial anode installations-TB/ALL.
Code of Federal Regulations, 2012 CFR
2012-10-01
... bolted connections to the supporting structure. Special consideration will be given to proprietary... utilize a mild steel core with necessary attachments. Other types may be used but will require special...
Deducing material quality in cast and hot-forged steels by new bending test
NASA Astrophysics Data System (ADS)
Valberg, Henry; Langøy, Morten; Nedreberg, Mette; Helvig, Torgeir
2017-10-01
A special bend test has been developed and applied for the purpose of characterization and comparison of the material ductility in crankpin steel discs manufactured by casting, or casting subsequently followed by hot open-die forging (ODF) or closed-die forging (CDF). The bending test specimen consists of a small rectangular plate of material with a round hole cut out in the middle. The "eye-shape" specimens were cut out from various positions either near to the surface of, or from the interior of the discs. The test method revealed differences in ductility for the investigated materials, and for different depth positions inside the discs. The roughening of the specimen surface on the top-side of the specimen bend also varied dependent on the processing method for the material. Current results show that this test method is useful for evaluation of material quality in differently processed material. Experimental bend test results are presented for differently processed variants of the same material, i.e., crankpin discs either made by solely casting or casting subsequently followed by hot working either by ODF or CDF.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ganzha, V.D.; Konoplev, K.A.; Mashchetov, V.P.
1986-03-01
This study was carried out in connection with the preparation of the design for the PIK research reactor. The corrosion resistance of 0Kh18N10T steel in gadolinium nitrate solutions was tested in laboratory, ampule, and loop corrosion tests. At all stages of the tests, the authors investigated the effect produced on the corrosion processes by factors related to the technology of preparation of the equipment (mechanical working of the surfaces, welding, sensitizing, annealing, stressed state of the material, cracks, etc.). Ampule tests were conducted in order to determine the effect produced by reactor radiation and shutdown regimes on the corrosion resistancemore » of the steel. Special ampules made of 0Kh18N10T steel were filled with gadolinium nitrate solutions of various concentrations, sealed, and irradiated for a long period in the core of the VVR-M reactor at a temperature of 20-50 degrees C. The results of the tests are shown. The investigations showed that the corrosion of 0Kh18N10T steel in solutions of gadolinium nitrate is uniform, regardless of the state of the surface, the concentration of gadolinium nitrate, the duration of the tests, the action of the reactor radiation under static and dynamic conditions, and the presence of mechanical stresses.« less
1985-02-01
Institute of Technology. He spent many years at Woods Hole, and his primary interests are in the application of signal processing to the problems of...steel caisson island to perform conventional bathymetry surveys, a special system was required. This system which was contructed and used during the...National Ecological Research Areas. o USGS anticipates contacting COE for assistance in updating energy transportation maps, and maps showing port
29 CFR 1910.252 - General requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... gas-shielded welding operations. (12) Cutting of stainless steels. Oxygen cutting, using either a chemical flux or iron powder or gas-shielded arc cutting of stainless steel, shall be done using mechanical... special regard to height of ceiling). (B) Number of welders. (C) Possible evolution of hazardous fumes...
29 CFR 1910.252 - General requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... gas-shielded welding operations. (12) Cutting of stainless steels. Oxygen cutting, using either a chemical flux or iron powder or gas-shielded arc cutting of stainless steel, shall be done using mechanical... special regard to height of ceiling). (B) Number of welders. (C) Possible evolution of hazardous fumes...
29 CFR 1910.252 - General requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... gas-shielded welding operations. (12) Cutting of stainless steels. Oxygen cutting, using either a chemical flux or iron powder or gas-shielded arc cutting of stainless steel, shall be done using mechanical... special regard to height of ceiling). (B) Number of welders. (C) Possible evolution of hazardous fumes...
40 CFR 420.81 - Specialized definitions.
Code of Federal Regulations, 2013 CFR
2013-07-01
...-finished steel products by the action of molten salt baths other than those containing sodium hydride. (b... the action of molten salt baths containing sodium hydride. (c) The term batch, sheet and plate means... STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY Salt Bath Descaling Subcategory § 420.81...
40 CFR 420.81 - Specialized definitions.
Code of Federal Regulations, 2014 CFR
2014-07-01
...-finished steel products by the action of molten salt baths other than those containing sodium hydride. (b... the action of molten salt baths containing sodium hydride. (c) The term batch, sheet and plate means... STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY Salt Bath Descaling Subcategory § 420.81...
The neural network to determine the mechanical properties of the steels
NASA Astrophysics Data System (ADS)
Yemelyanov, Vitaliy; Yemelyanova, Nataliya; Safonova, Marina; Nedelkin, Aleksey
2018-04-01
The authors describe the neural network structure and software that is designed and developed to determine the mechanical properties of steels. The neural network is developed to refine upon the values of the steels properties. The results of simulations of the developed neural network are shown. The authors note the low standard error of the proposed neural network. To realize the proposed neural network the specialized software has been developed.
Effect of Ladle Usage on Cleanliness of Bearing Steel
NASA Astrophysics Data System (ADS)
Chi, Yunguang; Deng, Zhiyin; Zhu, Miaoyong
2018-02-01
To investigate the effects of ladle usage on the inclusions and total oxygen contents of bearing steel, MgO refractory rods with different glazes were used to simulate different ladle usages. The results show that the effects of different ladle usages on the cleanliness of the steel differ from each other. The total oxygen content of steel increases with the decreasing glaze basicity. Ladle glaze having a lower basicity has a more negative impact on the cleanliness of steel in the subsequent production. Inclusions can be generated by the flush-off of ladle glaze, and the initial glaze is important in the evolution of inclusions in the subsequent heats. To avoid the negative effect of ladle usage and to improve the steel cleanliness as much as possible, specialized ladles were suggested for producing high-quality steel grades.
40 CFR 420.81 - Specialized definitions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... from semi-finished steel products by the action of molten salt baths other than those containing sodium... products by the action of molten salt baths containing sodium hydride. (c) The term batch, sheet and plate... AND STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY Salt Bath Descaling Subcategory § 420...
NASA Astrophysics Data System (ADS)
Lingadurai, K.; Nagasivamuni, B.; Muthu Kamatchi, M.; Palavesam, J.
2012-06-01
Wire electrical discharge machining (WEDM) is a specialized thermal machining process capable of accurately machining parts of hard materials with complex shapes. Parts having sharp edges that pose difficulties to be machined by the main stream machining processes can be easily machined by WEDM process. Design of Experiments approach (DOE) has been reported in this work for stainless steel AISI grade-304 which is used in cryogenic vessels, evaporators, hospital surgical equipment, marine equipment, fasteners, nuclear vessels, feed water tubing, valves, refrigeration equipment, etc., is machined by WEDM with brass wire electrode. The DOE method is used to formulate the experimental layout, to analyze the effect of each parameter on the machining characteristics, and to predict the optimal choice for each WEDM parameter such as voltage, pulse ON, pulse OFF and wire feed. It is found that these parameters have a significant influence on machining characteristic such as metal removal rate (MRR), kerf width and surface roughness (SR). The analysis of the DOE reveals that, in general the pulse ON time significantly affects the kerf width and the wire feed rate affects SR, while, the input voltage mainly affects the MRR.
Hydrogen-vacancy-dislocation interactions in α-Fe
NASA Astrophysics Data System (ADS)
Tehranchi, A.; Zhang, X.; Lu, G.; Curtin, W. A.
2017-02-01
Atomistic simulations of the interactions between dislocations, hydrogen atoms, and vacancies are studied to assess the viability of a recently proposed mechanism for the formation of nanoscale voids in Fe-based steels in the presence of hydrogen. Quantum-mechanics/molecular-mechanics method calculations confirm molecular statics simulations based on embedded atom method (EAM) potential showing that individual vacancies on the compressive side of an edge dislocation can be transported with the dislocation as it glides. Molecular dynamics simulations based on EAM potential then show, however, that vacancy clusters in the glide plane of an approaching dislocation are annihilated or reduced in size by the creation of a double-jog/climb process that is driven by the huge reduction in energy accompanying vacancy annihilation. The effectiveness of annihilation/reduction processes is not reduced by the presence of hydrogen in the vacancy clusters because typical V-H cluster binding energies are much lower than the vacancy formation energy, except at very high hydrogen content in the cluster. Analysis of a range of configurations indicates that hydrogen plays no special role in stabilizing nanovoids against jog formation processes that shrink voids. Experimental observations of nanovoids on the fracture surfaces of steels must be due to as-yet undetermined processes.
NASA Astrophysics Data System (ADS)
Morrow, Benjamin M.; Lienert, Thomas J.; Knapp, Cameron M.; Sutton, Jacob O.; Brand, Michael J.; Pacheco, Robin M.; Livescu, Veronica; Carpenter, John S.; Gray, George T.
2018-05-01
Recent work in both 304L and 316L stainless steel produced by additive manufacturing (AM) has shown that in addition to the unique, characteristic microstructures formed during the process, a fine dispersion of sub-micron particles, with a chemistry different from either the powder feedstock or the expected final material, are evident in the final microstructure. Such fine-scale features can only be resolved using transmission electron microscopy (TEM) or similar techniques. The present work uses electron microscopy to study both the initial powder feedstock and microstructures in final AM parts. Special attention is paid to the chemistry and origin of these nanoscale particles in several different metal alloys, and their impact on the final build. Comparisons to traditional, wrought material will be made.
Evaluation of the mechanical properties of electroslag refined iron alloys
NASA Technical Reports Server (NTRS)
Bhat, G. K.
1976-01-01
Nitronic 40 (21Cr-6N-9Mn), HY-130, 9Ni-4Co, and D-6 alloys were prepared and evaluated in the form of 15.2 mm thick plates. Smooth bar tensile tests, double-edge sharp notch fracture toughness tests Charpy V-notch impact tests were conducted on appropriate heat treated specimens of the four steel plates at 22 C, -50 C, -100 C, -150 C, and -196 C. Similar material characterization, including metallographic evaluation studies on air melt and vacuum arc melt grades of same four alloy steels were conducted for comparative purposes. A cost analysis of manufacturing plates of air melt, electroslag remelt and vacuum arc remelt grades was performed. The results of both material characterization and cost analyses pointed out certain special benefits of electroslag processing iron base alloys.
NASA Astrophysics Data System (ADS)
Gupta, Shubhank; Panda, Aditi; Naskar, Ruchira; Mishra, Dinesh Kumar; Pal, Snehanshu
2017-11-01
Steels are alloys of iron and carbon, widely used in construction and other applications. The evolution of steel microstructure through various heat treatment processes is an important factor in controlling properties and performance of steel. Extensive experimentations have been performed to enhance the properties of steel by customizing heat treatment processes. However, experimental analyses are always associated with high resource requirements in terms of cost and time. As an alternative solution, we propose an image processing-based technique for refinement of raw plain carbon steel microstructure images, into a digital form, usable in experiments related to heat treatment processes of steel in diverse applications. The proposed work follows the conventional steps practiced by materials engineers in manual refinement of steel images; and it appropriately utilizes basic image processing techniques (including filtering, segmentation, opening, and clustering) to automate the whole process. The proposed refinement of steel microstructure images is aimed to enable computer-aided simulations of heat treatment of plain carbon steel, in a timely and cost-efficient manner; hence it is beneficial for the materials and metallurgy industry. Our experimental results prove the efficiency and effectiveness of the proposed technique.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-10
... for Parts and Materials B. Restriction of Special Taxation Act (``RSTA'') Article 26 C. Asset... A. Tax Credits Received Under the Restriction of Special Taxation Act (``RSTA'') 9. Conclusion [FR...
Anodic Behaviour of High Nitrogen-Bearing Steel in PEMFC Environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, H.; Turner, J. A.
2008-02-01
High nitrogen-bearing stainless steels, AISI Type 201 and AL219, were investigated in simulated polymer electrolyte membrane fuel cell (PEMFC) environments to assess the use of these materials in fuel cell bipolar plate applications. Both steels exhibit better corrosion behavior than 316L steel in the same environments. Type 201 steel shows similar but lower interfacial contact resistance (ICR) than 316L, while AL219 steel shows higher ICR than 316L. X-ray photoelectron spectroscopy (XPS) analysis shows that the air-formed films on Type 201 and AL219 are composed of iron oxides, chromium oxide, and manganese oxide. Iron oxides dominate the composition of the air-formedmore » film, specially the outer layer. Chromium oxide dominates passive films. Surface film thicknesses were estimated. The results suggest that high nitrogen-bearing stainless steels are promising materials for PEMFC bipolar plates.« less
Thermodynamic potential of free energy for thermo-elastic-plastic body
NASA Astrophysics Data System (ADS)
Śloderbach, Z.; Pająk, J.
2018-01-01
The procedure of derivation of thermodynamic potential of free energy (Helmholtz free energy) for a thermo-elastic-plastic body is presented. This procedure concerns a special thermodynamic model of a thermo-elastic-plastic body with isotropic hardening characteristics. The classical thermodynamics of irreversible processes for material characterized by macroscopic internal parameters is used in the derivation. Thermodynamic potential of free energy may be used for practical determination of the level of stored energy accumulated in material during plastic processing applied, e.g., for industry components and other machinery parts received by plastic deformation processing. In this paper the stored energy for the simple stretching of austenitic steel will be presented.
Code of Federal Regulations, 2014 CFR
2014-04-01
.... Material and Property Standard for Special Cast Iron Fittings—IAPMO PS 5-84. Welding and Seamless Wrought Steel Pipe—ANSI/ASME B36.10-1979. Standard Specification for Pipe, Steel, Black and Hot-Dipped, Zinc-Coated, Welded and Seamless—ASTM A53-93. Pipe Threads, General Purpose (Inch)—ANSI/ASME B1.20.1-1983...
40 CFR 420.131 - Specialized definitions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... gaseous (carbon monoxide-carbon dioxide, hydrogen) or solid reactants. (c) The term forging means the hot... commercially (as opposed to fines that may be reprocessed on site). (f) For forging, the term product means the tons of finished steel forgings produced by hot working steel shapes. (g) The term O&G (as HEM) means...
NASA Astrophysics Data System (ADS)
Maisuradze, M. V.; Ryzhkov, M. A.; Yudin, Yu. V.; Kuklina, A. A.
2017-11-01
Special features of the transformations of supercooled austenite occurring under continuous cooling of a promising high-strength steel grade not standardized in the Russian Federation are determined. A method for evaluating the volume fractions of structure constituents formed in the steel as a result of cooling from 925°C at various constant rates within 0.025 - 75 K/sec is proposed and tested. The results are generalized in the form of a thermokinetic diagram of transformations of supercooled austenite.
Intermetallic Precipitation in Low-Density Steel
NASA Astrophysics Data System (ADS)
Chatterjee, S.; Chatterjee, A.; Chakrabarti, D.
2018-06-01
Low-density steels (LDS) represent a relatively new class of material that contains a large concentration of aluminum. In the present work, we studied the effect of copper addition to these steels. Microanalysis and electron diffraction study were used to demonstrate that on the contrary to the theoretical expectation, copper formed a variety of intermetallic, instead of metallic, precipitates on reaction with aluminum. The precipitation led to a significant age-hardening response that imparted a special characteristic to this material, which had never been reported previously.
Setting Mechanical Properties of High Strength Steels for Rapid Hot Forming Processes
Löbbe, Christian; Hering, Oliver; Hiegemann, Lars; Tekkaya, A. Erman
2016-01-01
Hot stamping of sheet metal is an established method for the manufacturing of light weight products with tailored properties. However, the generally-applied continuous roller furnace manifests two crucial disadvantages: the overall process time is long and a local setting of mechanical properties is only feasible through special cooling techniques. Hot forming with rapid heating directly before shaping is a new approach, which not only reduces the thermal intervention in the zones of critical formability and requested properties, but also allows the processing of an advantageous microstructure characterized by less grain growth, additional fractions (e.g., retained austenite), and undissolved carbides. Since the austenitization and homogenization process is strongly dependent on the microstructure constitution, the general applicability for the process relevant parameters is unknown. Thus, different austenitization parameters are analyzed for the conventional high strength steels 22MnB5, Docol 1400M, and DP1000 in respect of the mechanical properties. In order to characterize the resulting microstructure, the light optical and scanning electron microscopy, micro and macro hardness measurements, and the X-ray diffraction are conducted subsequent to tensile tests. The investigation proves not only the feasibility to adjust the strength and ductility flexibly, unique microstructures are also observed and the governing mechanisms are clarified. PMID:28773354
Modeling of electric and heat processes in spot resistance welding of cross-wire steel bars
NASA Astrophysics Data System (ADS)
Iatcheva, Ilona; Darzhanova, Denitsa; Manilova, Marina
2018-03-01
The aim of this work is the modeling of coupled electric and heat processes in a system for spot resistance welding of cross-wire reinforced steel bars. The real system geometry, dependences of material properties on the temperature, and changes of contact resistance and released power during the welding process have been taken into account in the study. The 3D analysis of the coupled AC electric and transient thermal field distributions is carried out using the finite element method. The novel feature is that the processes are modeled for several successive time stages, corresponding to the change of contact area, related contact resistance, and reduction of the released power, occurring simultaneously with the creation of contact between the workpieces. The values of contact resistance and power changes have been determined on the basis of preliminary experimental and theoretical investigations. The obtained results present the electric and temperature field distributions in the system. Special attention has been paid to the temperature evolution at specified observation points and lines in the contact area. The obtained information could be useful for clarification of the complicated nature of interrelated electric, thermal, mechanical, and physicochemical welding processes. Adequate modeling is also an opportunity for proper control and improvement of the system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
May, Joseph J.; Dombrowski, David J.; Valenti, Paul J.
The principal mission of the West Valley Demonstration Project (WVDP) is to meet a series of objectives defined in the West Valley Demonstration Project Act (Public Law 96-368). Chief among these is the objective to solidify liquid high-level waste (HLW) at the WVDP site into a form suitable for disposal in a federal geologic repository. In 1982, the Secretary of Energy formally selected vitrification as the technology to be used to solidify HLW at the WVDP. One of the first steps in meeting the HLW solidification objective involved designing, constructing and operating the Vitrification (Vit) Facility, the WVDP facility thatmore » houses the systems and subsystems used to process HLW into stainless steel canisters of borosilicate waste-glass that satisfy waste acceptance criteria (WAC) for disposal in a federal geologic repository. HLW processing and canister production began in 1996. The final step in meeting the HLW solidification objective involved ending Vit system operations and shut ting down the Vit Facility. This was accomplished by conducting a discrete series of activities to remove as much residual material as practical from the primary process vessels, components, and associated piping used in HLW canister production before declaring a formal end to Vit system operations. Flushing was the primary method used to remove residual radioactive material from the vitrification system. The inventory of radioactivity contained within the entire primary processing system diminished by conducting the flushing activities. At the completion of flushing activities, the composition of residual molten material remaining in the melter (the primary system component used in glass production) consisted of a small quantity of radioactive material and large quantities of glass former materials needed to produce borosilicate waste-glass. A special system developed during the pre-operational and testing phase of Vit Facility operation, the Evacuated Canister System (ECS), was deployed at the West Valley Demonstration Project to remove this radioactively dilute, residual molten material from the melter before Vit system operations were brought to a formal end. The ECS consists of a stainless steel canister of the same size and dimensions as a standard HLW canister that is equipped with a special L-shaped snorkel assembly made of 304L stainless steel. Both the canister and snorkel assembly fit into a stainless steel cage that allows the entire canister assembly to be positioned over the melter as molten glass is drawn out by a vacuum applied to the canister. This paper describes the process used to prepare and apply the ECS to complete molten glass removal before declaring a formal end to Vit system operations and placing the Vit Facility into a safe standby mode awaiting potential deactivation.« less
Xu, Ying; Liu, Zhe; Park, Jinsoo; Clausen, Per A; Benning, Jennifer L; Little, John C
2012-11-20
The emission of di-2-ethylhexyl phthalate (DEHP) from vinyl flooring (VF) was measured in specially designed stainless steel chambers. In duplicate chamber studies, the gas-phase concentration in the chamber increased slowly and reached a steady state level of 0.8-0.9 μg/m(3) after about 20 days. By increasing the area of vinyl flooring and decreasing that of the stainless steel surface within the chamber, the time to reach steady state was significantly reduced, compared to a previous study (1 month versus 5 months). The adsorption isotherm of DEHP on the stainless steel chamber surfaces was explicitly measured using solvent extraction and thermal desorption. The strong partitioning of DEHP onto the stainless steel surface was found to follow a simple linear relationship. Thermal desorption resulted in higher recovery than solvent extraction. Investigation of sorption kinetics showed that it takes several weeks for the sorption of DEHP onto the stainless steel surface to reach equilibrium. The content of DEHP in VF was measured at about 15% (w/w) using pressurized liquid extraction. The independently measured or calculated parameters were used to validate an SVOC emission model, with excellent agreement between model prediction and the observed gas-phase DEHP chamber concentrations.
40 CFR 420.101 - Specialized definitions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Specialized definitions. 420.101 Section 420.101 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY Cold Forming Subcategory § 420.101...
40 CFR 420.101 - Specialized definitions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... AND STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY Cold Forming Subcategory § 420.101 Specialized definitions. (a) The term recirculation means those cold rolling operations which include recirculation of rolling solutions at all mill stands. (b) The term combination means those cold rolling...
40 CFR 420.101 - Specialized definitions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... AND STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY Cold Forming Subcategory § 420.101 Specialized definitions. (a) The term recirculation means those cold rolling operations which include recirculation of rolling solutions at all mill stands. (b) The term combination means those cold rolling...
40 CFR 420.101 - Specialized definitions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... AND STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY Cold Forming Subcategory § 420.101 Specialized definitions. (a) The term recirculation means those cold rolling operations which include recirculation of rolling solutions at all mill stands. (b) The term combination means those cold rolling...
40 CFR 420.101 - Specialized definitions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... AND STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY Cold Forming Subcategory § 420.101 Specialized definitions. (a) The term recirculation means those cold rolling operations which include recirculation of rolling solutions at all mill stands. (b) The term combination means those cold rolling...
78 FR 30391 - Notice of Applications for Modification of Special Permits
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-22
... diameter of 1-\\1/ 2\\ inches maximum for 4131 seamless steel tubing cylinder. 10704-M Air Liquide America 49... with CGA Pamphlet C-23. 12122-M ARC Automotive, Inc., 49 CFR 173.301(h), To modify the and special...
Existing drinking wells are widely used for the collection of ground water samples to evaluate chemical contamination. A well comparison study was conducted to compare pesticide and nitrate-N data from specially designed stainless steel research monitoring wells with data from ne...
Rapid production of hollow SS316 profiles by extrusion based additive manufacturing
NASA Astrophysics Data System (ADS)
Rane, Kedarnath; Cataldo, Salvatore; Parenti, Paolo; Sbaglia, Luca; Mussi, Valerio; Annoni, Massimiliano; Giberti, Hermes; Strano, Matteo
2018-05-01
Complex shaped stainless steel tubes are often required for special purpose biomedical equipment. Nevertheless, traditional manufacturing technologies, such as extrusion, lack the ability to compete in a market of customized complex components because of associated expenses towards tooling and extrusion presses. To rapid manufacture few of such components with low cost and high precision, a new Extrusion based Additive Manufacturing (EAM) process, is proposed in this paper, and as an example, short stainless steel 316L complex shaped and sectioned tubes were prepared by EAM. Several sample parts were produced using this process; the dimensional stability, surface roughness and chemical composition of sintered samples were investigated to prove process competence. The results indicate that feedstock with a 316L particle content of 92.5 wt. % can be prepared with a sigma blade mixing, whose rheological behavior is fit for EAM. The green samples have sufficient strength to handle them for subsequent treatments. The sintered samples considerably shrunk to designed dimensions and have a homogeneous microstructure to impart mechanical strength. Whereas, maintaining comparable dimensional accuracy and chemical composition which are required for biomedical equipment still need iterations, a kinematic correction and modification in debinding cycle was proposed.
NASA Astrophysics Data System (ADS)
Choi, Yun-Il; Beom, Won-Jin; Park, Chan-Jin; Paik, Doojin; Hong, Moon-Hi
2010-12-01
This study examined the surface oxidation of high-strength steels electrodeposited with Cu or Fe and the resultant defect formation in their coating during the following galvanizing and galvannealing processes. The high-strength steels were coated with an Cu or Fe layer by the electroplating method. Then, the coated steels were annealed in a reducing atmosphere, dipped in a molten zinc, and finally transformed into galvannealed steels through the galvannealing process. The formation of Si and Mn oxides on the surface of the high-strength steel was effectively suppressed, and the density of surface defects on the galvanized steel was significantly reduced by the pre-electrodeposition of Cu and Fe. This effect was more prominent for the steels electrodeposited at higher cathodic current densities. The finer electrodeposit layer formed at higher cathodic current density on the steels enabled the suppression of partial surface oxidation by Mn or Si and better wetting of Zn on the surface of the steels in the following galvanizing process. Furthermore, the pre-electrodeposited steels exhibited a smoother surface without surface cracks after the galvannealing process compared with the untreated steel. The diffusion of Fe and Zn in the Zn coating layer in the pre-electrodeposited steels appears to occur more uniformly during the galvannealing process due to the low density of surface defects induced by oxides.
13 CFR 400.205 - Application process.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Section 400.205 Business Credit and Assistance EMERGENCY STEEL GUARANTEE LOAN BOARD EMERGENCY STEEL GUARANTEE LOAN PROGRAM Steel Guarantee Loans § 400.205 Application process. (a) Application process. An... “Application for Steel Guarantee Loan”; (2) The information required for the completion of Form “Environmental...
13 CFR 400.205 - Application process.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Section 400.205 Business Credit and Assistance EMERGENCY STEEL GUARANTEE LOAN BOARD EMERGENCY STEEL GUARANTEE LOAN PROGRAM Steel Guarantee Loans § 400.205 Application process. (a) Application process. An... “Application for Steel Guarantee Loan”; (2) The information required for the completion of Form “Environmental...
13 CFR 400.205 - Application process.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Section 400.205 Business Credit and Assistance EMERGENCY STEEL GUARANTEE LOAN BOARD EMERGENCY STEEL GUARANTEE LOAN PROGRAM Steel Guarantee Loans § 400.205 Application process. (a) Application process. An... “Application for Steel Guarantee Loan”; (2) The information required for the completion of Form “Environmental...
13 CFR 400.205 - Application process.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Section 400.205 Business Credit and Assistance EMERGENCY STEEL GUARANTEE LOAN BOARD EMERGENCY STEEL GUARANTEE LOAN PROGRAM Steel Guarantee Loans § 400.205 Application process. (a) Application process. An... “Application for Steel Guarantee Loan”; (2) The information required for the completion of Form “Environmental...
Technical Requirements for the Development of Marine Steel in China
NASA Astrophysics Data System (ADS)
Su, Hang; Pan, Tao; Chai, Feng; Yang, Caifu
China now experiences a fast development in shipbuilding and marine steel, the self-developed steel could meet the needs among 95% domestic clients. But in the items of some special high-end products, there are still certain gaps with advanced foreign countries, and these are mainly high-quality and strong-capacity products, large-size products, low-temperature products, and anti-corrosion, anti-fatigue and high-level failure arrest products. In the present paper, some domestic research and development (R& D) results in industry have been introduced, also, it points out that to eliminate these gaps, should rely on both the tech-progress in iron and steel industry, shipbuilding, and marine steel industry, and the establishment and improvement of the R& D system in researching, manufacturing, testing, producing and application.
Structures to Resist the Effects of Accidental Explosions. Volume 5. Structural Steel Design
1987-05-01
STRUCTURES TO RESIST THE EFFECTS OF ACCIDENTAL EXPLOSIONS VOLUME V - STRUCTURAL STEEL DESIGN ] DAVID KOSSOVER NORVAL DOBBS AMMANN ft WHITNEY 96...STEEL DESIGN S. TYPE OF REPORT A PERIOO COVERED Special Publication Jan 85 - Apr 87 «. PERFORMING one. REPORT NUMICH 7. AuTNORf*,» David ...Connections Cold formed panels I>a«e ae»4gn Fia^meuL ymit-i^tatfln I 2a ABSTRACT rCmm^mmm —. ~< w «» «CM» m III.IIIBI mud twrnrntty »T
2007-06-01
threads connected to a steel braided hose with ¼” pipe ends. The steel braided hose is then connected to a ¼” 107 three-way union, which is...which can be switched back and forth, are connected to the nitrogen and vacuum source. The nitrogen source is connected through a steel braided hose ...from hot piping during hot runs. This is where most of the cryogenic piping and valves are mounted. The piping near the pump and the flex hose at
Specialized computer system to diagnose critical lined equipment
NASA Astrophysics Data System (ADS)
Yemelyanov, V. A.; Yemelyanova, N. Y.; Morozova, O. A.; Nedelkin, A. A.
2018-05-01
The paper presents data on the problem of diagnosing the lining condition at the iron and steel works. The authors propose and describe the structure of the specialized computer system to diagnose critical lined equipment. The relative results of diagnosing lining condition by the basic system and the proposed specialized computer system are presented. To automate evaluation of lining condition and support in making decisions regarding the operation mode of the lined equipment, the specialized software has been developed.
NASA Astrophysics Data System (ADS)
Hafiz Abd Malek, Muhamad; Hayati Saad, Nor; Kiyai Abas, Sunhaji; Mohd Shah, Noriyati
2013-06-01
Usage of protective coating for corrosion protection was on highly demand during the past decade; and thermal spray coating played a major part during that time. In recent years, the thermal arc spray coating becomes a popular coating. Many big players in oil and gas such as PETRONAS, EXXON MOBIL and SHELL in Malaysia tend to use the coating on steel structure as a corrosion protection. Further developments in coating processes, the devices, and raw materials have led to expansion of functional coatings and applications scope from conventional coating to specialized industries. It is widely used because of its ability to withstand high process temperature, offer advantages in efficiency, lower cost and acts as a corrosion protection. Previous research also indicated that the thermal arc spray offers better coating properties compared to other methods of spray. This paper reviews some critical area of thermal spray coating by discussing the process/parameter of thermal arc spray technology and quality control of coating. Coating performance against corrosion, wear and special characteristic of coating are also described. The field application of arc spray technology are demonstrated and reviewed.
Adaptable bioinspired special wetting surface for multifunctional oil/water separation
NASA Astrophysics Data System (ADS)
Kavalenka, Maryna N.; Vüllers, Felix; Kumberg, Jana; Zeiger, Claudia; Trouillet, Vanessa; Stein, Sebastian; Ava, Tanzila T.; Li, Chunyan; Worgull, Matthias; Hölscher, Hendrik
2017-01-01
Inspired by the multifunctionality of biological surfaces necessary for the survival of an organism in its specific environment, we developed an artificial special wetting nanofur surface which can be adapted to perform different functionalities necessary to efficiently separate oil and water for cleaning accidental oil spills or separating industrial oily wastewater. Initial superhydrophobic nanofur surface is fabricated using a hot pulling method, in which nano- and microhairs are drawn out of the polymer surface during separation from a heated sandblasted steel plate. By using a set of simple modification techniques, which include microperforation, plasma treatment and subsequent control of storage environment, we achieved selective separation of either water or oil, variable oil absorption and continuous gravity driven separation of oil/water mixtures by filtration. Furthermore, these functions can be performed using special wetting nanofur made from various thermoplastics, including biodegradable and recyclable polymers. Additionally, nanofur can be reused after washing it with organic solvents, thus, further helping to reduce the environmental impacts of oil/water separation processes.
Adaptable bioinspired special wetting surface for multifunctional oil/water separation
Kavalenka, Maryna N.; Vüllers, Felix; Kumberg, Jana; Zeiger, Claudia; Trouillet, Vanessa; Stein, Sebastian; Ava, Tanzila T.; Li, Chunyan; Worgull, Matthias; Hölscher, Hendrik
2017-01-01
Inspired by the multifunctionality of biological surfaces necessary for the survival of an organism in its specific environment, we developed an artificial special wetting nanofur surface which can be adapted to perform different functionalities necessary to efficiently separate oil and water for cleaning accidental oil spills or separating industrial oily wastewater. Initial superhydrophobic nanofur surface is fabricated using a hot pulling method, in which nano- and microhairs are drawn out of the polymer surface during separation from a heated sandblasted steel plate. By using a set of simple modification techniques, which include microperforation, plasma treatment and subsequent control of storage environment, we achieved selective separation of either water or oil, variable oil absorption and continuous gravity driven separation of oil/water mixtures by filtration. Furthermore, these functions can be performed using special wetting nanofur made from various thermoplastics, including biodegradable and recyclable polymers. Additionally, nanofur can be reused after washing it with organic solvents, thus, further helping to reduce the environmental impacts of oil/water separation processes. PMID:28051163
4 Metre diameter penstock construction for the Raymond Reservoir Hydro Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, H.D.; Alexander, M.
1995-12-31
A four metre diameter 770 m long buried steel penstock was constructed for the 20 MW Raymond Reservoir Hydro Project in southern Alberta. The penstock delivers up to 56.7 m{sup 3}/sec of irrigation water at an effective head of 44 m to a 2.6 m diameter Kaplan turbine. The hydro facility was commissioned in the spring of 1994. The steel pipe was delivered to the site in 18 m long sections from a fabrication plant located 250 km away. Specialized equipment was engineered and constructed to externally coat and internally line the pipe sections on site. The pipe sections, weighingmore » from 27,000 to 30,000 kg, were rolled and moved on a specially built lathe during the external sandblasting and tape wrapping operation. The external tape wrapping is one element of the cathodic protection system for the steel pipe. Specialized equipment was modified to sandblast the interior to white metal and then mechanically apply three coats of internal epoxy lining. The internal lining improves the hydraulic characteristics of the pipe in addition to protecting the pipe from corrosion. This innovative approach to coating and lining the pipe resulted in an exceptionally high quality product at an affordable cost.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, S.T., E-mail: xst-2007@163.com; Liu, Z.Y.; Wang, Z.
Quenching-partitioning-tempering (Q-P-T) process was used to treat a Ti-microalloyed low-carbon stainless steel after cold rolling. In addition to martensite, ferrite and retained austenite, TiN, coarse TiC, fine TiC, (Fe,Cr){sub 3}C and ultra-fine TiC precipitates were formed after the Q-P-T treatment. Based on field emission-scanning electron microscope (FESEM) and transmission electron microscope (TEM) observations, thermodynamic, crystallographic and statistical analyses were used to reveal the precipitation behaviors of these particles. The effects of partitioning-tempering (P-T) temperature and time on the microstructure and mechanical properties of Q-P-T treated specimens were specially studied. The coarsening and spheroidization of (Fe,Cr){sub 3}C particles during P-T stagemore » were obviously retarded by large Cr addition. The retained austenite was obtained significantly with appropriate P-T parameters. The precipitation of ultra-fine TiC particles in the martensite during the P-T stage at 500 °C induced a secondary hardening. - Highlights: • Some fine TiC with 30–70 nm precipitated in austenite during partial austenization. • A part of fine TiC had K-S OR with martensite after Q-P-T treatment. • A part of fine TiC had a OR specially deviating from K-S OR with martensite. • Coarsening and spheroidization of (Fe,Cr){sub 3}C were retarded during P-T stage. • Ultra-fine TiC with < 10 nm precipitated in martensite during P-T stage at 500 °C.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donald R. Fosnacht; Richard F. Kiesel; David W. Hendrickson
2011-12-22
The current trend in the steel industry is an increase in iron and steel produced in electric arc furnaces (EAF) and a gradual decline in conventional steelmaking from taconite pellets in blast furnaces. In order to expand the opportunities for the existing iron ore mines beyond their blast furnace customer base, a new material is needed to satisfy the market demands of the emerging steel industry while utilizing the existing infrastructure and materials handling capabilities. This demand creates opportunity to convert iron ore or other iron bearing materials to Nodular Reduced Iron (NRI) in a recently designed Linear Hearth Furnacemore » (LHF). NRI is a metallized iron product containing 98.5 to 96.0% iron and 2.5 to 4% C. It is essentially a scrap substitute with little impurity that can be utilized in a variety of steelmaking processes, especially the electric arc furnace. The objective of this project was to focus on reducing the greenhouse gas emissions (GHG) through reducing the energy intensity using specialized combustion systems, increasing production and the use of biomass derived carbon sources in this process. This research examined the use of a solid fuel-oxygen fired combustion system and compared the results from this system with both oxygen-fuel and air-fuel combustion systems. The solid pulverized fuels tested included various coals and a bio-coal produced from woody biomass in a specially constructed pilot scale torrefaction reactor at the Coleraine Minerals Research Laboratory (CMRL). In addition to combustion, the application of bio-coal was also tested as a means to produce a reducing atmosphere during key points in the fusion process, and as a reducing agent for ore conversion to metallic iron to capture the advantage of its inherent reduced carbon footprint. The results from this study indicate that the approaches taken can reduce both greenhouse gas emissions and the associated energy intensity with the Linear Hearth Furnace process for converting iron ore to metallic iron nodules. Various types of coals including a bio-coal produced though torrefaction can result in production of NRI at reduced GHG levels. The process results coupled with earlier already reported developments indicate that this process technique should be evaluated at the next level in order to develop parameter information for full scale process design. Implementation of the process to full commercialization will require a full cost production analysis and comparison to other reduction technologies and iron production alternatives. The technical results verify that high quality NRI can be produced under various operating conditions at the pilot level.« less
78 FR 12415 - Notice of Applications for Modification of Special Permit
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-22
... 173.302(a), permit to authorize Columbus, OH. 173.304(a), a Class 8 packaging 173.304(d), group I... the special Industries 173.302(a)(1) permit to authorize Sharpsville, PA. and 173.304. additional seamless stainless steel type 304 packaging and remove requirements when reoffered for transportation...
NASA Astrophysics Data System (ADS)
Maziasz, Philip J.
2018-01-01
Austenitic stainless steels are cost-effective materials for high-temperature applications if they have the oxidation and creep resistance to withstand prolonged exposure at such conditions. Since 1990, Oak Ridge National Laboratory (ORNL) has developed advanced austenitic stainless steels with creep resistance comparable to Ni-based superalloy 617 at 800-900°C based on specially designed "engineered microstructures" utilizing a microstructure/composition database derived from about 20 years of radiation effect data on steels. The wrought high temperature-ultrafine precipitate strengthened (HT-UPS) steels with outstanding creep resistance at 700-800°C were developed for supercritical boiler and superheater tubing for fossil power plants in the early 1990s, the cast CF8C-Plus steels were developed in 1999-2001 for land-based gas turbine casing and diesel engine exhaust manifold and turbocharger applications at 700-900°C, and, in 2015-2017, new Al-modified cast stainless steels with oxidation and creep resistance capabilities up to 950-1000°C were developed for automotive exhaust manifold and turbocharger applications. This article reviews and summarizes their development and their properties and applications.
Chromium Extraction via Chemical Processing of Fe-Cr Alloys Fine Powder with High Carbon Content
NASA Astrophysics Data System (ADS)
Torres, D. M.; Navarro, R. C. S.; Souza, R. F. M.; Brocchi, E. A.
2017-06-01
Ferrous alloys are important raw materials for special steel production. In this context, alloys from the Fe-Cr system, with typical Cr weight fraction ranging from 0.45 to 0.95, are prominent, particularly for the stainless steel industry. During the process in which these alloys are obtained, there is considerable production of fine powder, which could be reused after suitable chemical treatment, for example, through coupling pyrometallurgical and hydrometallurgical processes. In the present study, the extraction of chromium from fine powder generated during the production of a Fe-Cr alloy with high C content was investigated. Roasting reactions were performed at 1073 K, 1173 K, and 1273 K (800 °C, 900 °C, and 1000 °C) with 300 pct (w/w) excess NaOH in an oxidizing atmosphere (air), followed by solubilization in deionized water, selective precipitation, and subsequent calcination at 1173 K (900 °C) in order to convert the obtained chromium hydroxide to Cr2O3. The maximum achieved Cr recovery was around 86 pct, suggesting that the proposed chemical route was satisfactory regarding the extraction of the chromium initially present. Moreover, after X-ray diffraction analysis, the final produced oxide has proven to be pure Cr2O3 with a mean crystallite size of 200 nm.
Simulation of Laboratory Tests of Steel Arch Support
NASA Astrophysics Data System (ADS)
Horyl, Petr; Šňupárek, Richard; Maršálek, Pavel; Pacześniowski, Krzysztof
2017-03-01
The total load-bearing capacity of steel arch yielding roadways supports is among their most important characteristics. These values can be obtained in two ways: experimental measurements in a specialized laboratory or computer modelling by FEM. Experimental measurements are significantly more expensive and more time-consuming. However, for proper tuning, a computer model is very valuable and can provide the necessary verification by experiment. In the cooperating workplaces of GIG Katowice, VSB-Technical University of Ostrava and the Institute of Geonics ASCR this verification was successful. The present article discusses the conditions and results of this verification for static problems. The output is a tuned computer model, which may be used for other calculations to obtain the load-bearing capacity of other types of steel arch supports. Changes in other parameters such as the material properties of steel, size torques, friction coefficient values etc. can be determined relatively quickly by changing the properties of the investigated steel arch supports.
The crimping problem in stapes surgery.
Kwok, Pingling; Fisch, Ugo; Strutz, Jürgen
2007-01-01
The goal of this study was to compare the attachment of stapes prostheses with differently shaped loops to the long process of the incus. Gold, steel/Teflon, platinum/Teflon, and two different titanium stapes prostheses were inserted in 30 specially prepared temporal bones by three experienced surgeons using the Fisch technique with the McGee crimper and straight alligator forceps for the crimping of the loops. In all prostheses, a sufficiently firm attachment of the long process of the incus was achieved. The band-shaped loops showed a better contact with the incus than did the wire loops. However, the broad spiral-shaped loops led to a loss of the perpendicular axis of the piston to the long incus process. The geometry of the loop affects the final length of the piston in the vestibule and its angle to the long process of the incus.
NASA Astrophysics Data System (ADS)
Yang, S. W.; Ma, J. J.; Wang, J. M.
2018-04-01
As representative vulnerable regions of the city, dense distribution areas of temporary color steel building are a major target for control of fire risks, illegal buildings, environmental supervision, urbanization quality and enhancement for city's image. In the domestic and foreign literature, the related research mainly focuses on fire risks and violation monitoring. However, due to temporary color steel building's special characteristics, the corresponding research about temporal and spatial distribution, and influence on urban spatial form etc. has not been reported. Therefore, firstly, the paper research aim plans to extract information of large-scale color steel building from high-resolution images. Secondly, the color steel plate buildings were classified, and the spatial and temporal distribution and aggregation characteristics of small (temporary buildings) and large (factory building, warehouse, etc.) buildings were studied respectively. Thirdly, the coupling relationship between the spatial distribution of color steel plate and the spatial pattern of urban space was analysed. The results show that there is a good coupling relationship between the color steel plate building and the urban spatial form. Different types of color steel plate building represent the pattern of regional differentiation of urban space and the phased pattern of urban development.
Comprehensive surface treatment of high-speed steel tool
NASA Astrophysics Data System (ADS)
Fedorov, Sergey V.; Aleshin, Sergey V.; Swe, Min Htet; Abdirova, Raushan D.; Kapitanov, Alexey V.; Egorov, Sergey B.
2018-03-01
One of the promising directions of hardening of high-speed steel tool is the creation on their surface of the layered structures with the gradient of physic-chemical properties between the wear-resistant coatings to the base material. Among the methods of such surface modification, a special process takes place based on the use of pulsed high-intensity charged particle beams. The high speed of heating and cooling allows structural-phase transformations in the surface layer, which cannot be realized in a stationary mode. The treatment was conducted in a RITM-SP unit, which constitutes a combination of a source of low-energy high-current electron beams "RITM" and two magnetron spraying systems on a single vacuum chamber. The unit enables deposition of films on the surface of the desired product and subsequent liquid-phase mixing of materials of the film and the substrate by an intense pulse electron beam. The article discusses features of the structure of the subsurface layer of high-speed steel M2, modified by surface alloying of a low-energy high-current electron beam, and its effect on the wear resistance of the tool when dry cutting hard to machine Nickel alloy. A significant decrease of intensity of wear of high-speed steel with combined treatment happens due to the displacement of the zone of wear and decrease the radius of rounding of the cutting edge because of changes in conditions of interaction with the material being treated.
Sensitization of Laser-beam Welded Martensitic Stainless Steels
NASA Astrophysics Data System (ADS)
Dahmen, Martin; Rajendran, Kousika Dhasanur; Lindner, Stefan
Ferritic and martensitic stainless steels are an attractive alternative in vehicle production due to their inherent corrosion resistance. By the opportunity of press hardening, their strength can be increased to up to 2000 MPa, making them competitors for unalloyed ultra-high strength steels. Welding, nevertheless, requires special care, especially when it comes to joining of high strength heat treated materials. With an adopted in-line heat treatment of the welds in as-rolled as well as press hardened condition, materials with sufficient fatigue strength and acceptable structural behavior can be produced. Because of microstructural transformations in the base material such as grain coarsening and forced carbide precipitation, the corrosion resistance of the weld zone may be locally impaired. Typically the material in the heat-affected zone becomes sensitive to intergranular cracking in the form of knife-edge corrosion besides the fusion line. The current study comprises of two text scenarios. By an alternating climate test, general response in a corroding environment is screened. In order to understand the corrosion mechanisms and to localize the sensitive zones, sensitisation tests were undertaken. Furthermore, the applicability of a standard test according to ASTM 763-83 was examined. It was found that the alternative climate test does not reveal any corrosion effects. Testing by the oxalic acid test revealed clearly the effect of welding, weld heat treatment and state of thermal processing. Also application of the standard which originally suited for testing ferritic stainless steels could have been justified.
P/M Processing of Rare Earth Modified High Strength Steels.
1980-12-01
AA094 165 TRW INC CLEVELAND OH MATERIALS TECHNOLOGY F 6 P/N PROCESSING OF RARE EARTH MODIFIED HIGH STRENGTH STEELS DEC So A A SHEXM(ER NOOŕT76-C...LEVEL’ (7 PIM PROCESSING OF RARE EARTH MODIFIED HIGH STRENGTH STEELS By A. A. SHEINKER 00 TECHNICAL REPORT Prepared for Office of Naval Research...Processing of Rare Earth Modified High 1 Technical -’ 3t eC"Strength Steels * 1dc4,093Se~ 9PEFRIGOGNZTONAEADADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK
Xu, Yunze; Li, Kaiqiang; Liu, Liang; Yang, Lujia; Wang, Xiaona; Huang, Yi
2016-01-01
In this paper, a new kind of carbon steel (CS) and stainless steel (SS) galvanic sensor system was developed for the study of rebar corrosion in different pore solution conditions. Through the special design of the CS and SS electronic coupons, the electronic resistance (ER) method and zero resistance ammeter (ZRA) technique were used simultaneously for the measurement of both the galvanic current and the corrosion depth. The corrosion processes in different solution conditions were also studied by linear polarization resistance (LPR) and the measurements of polarization curves. The test result shows that the galvanic current noise can provide detailed information of the corrosion processes. When localized corrosion occurs, the corrosion rate measured by the ER method is lower than the real corrosion rate. However, the value measured by the LPR method is higher than the real corrosion rate. The galvanic current and the corrosion current measured by the LPR method shows linear correlation in chloride-containing saturated Ca(OH)2 solution. The relationship between the corrosion current differences measured by the CS electronic coupons and the galvanic current between the CS and SS electronic coupons can also be used to evaluate the localized corrosion in reinforced concrete. PMID:27618054
Xu, Yunze; Li, Kaiqiang; Liu, Liang; Yang, Lujia; Wang, Xiaona; Huang, Yi
2016-09-08
In this paper, a new kind of carbon steel (CS) and stainless steel (SS) galvanic sensor system was developed for the study of rebar corrosion in different pore solution conditions. Through the special design of the CS and SS electronic coupons, the electronic resistance (ER) method and zero resistance ammeter (ZRA) technique were used simultaneously for the measurement of both the galvanic current and the corrosion depth. The corrosion processes in different solution conditions were also studied by linear polarization resistance (LPR) and the measurements of polarization curves. The test result shows that the galvanic current noise can provide detailed information of the corrosion processes. When localized corrosion occurs, the corrosion rate measured by the ER method is lower than the real corrosion rate. However, the value measured by the LPR method is higher than the real corrosion rate. The galvanic current and the corrosion current measured by the LPR method shows linear correlation in chloride-containing saturated Ca(OH)₂ solution. The relationship between the corrosion current differences measured by the CS electronic coupons and the galvanic current between the CS and SS electronic coupons can also be used to evaluate the localized corrosion in reinforced concrete.
NASA Astrophysics Data System (ADS)
Fu, Liming; Shan, Mokun; Zhang, Daoda; Wang, Huanrong; Wang, Wei; Shan, Aidang
2017-05-01
The microstructures and deformation behavior were studied in a high-temperature annealed high-manganese dual-phase (28 vol pct δ-ferrite and 72 vol pct γ-austenite) transformation-induced plasticity/twinning-induced plasticity (TRIP/TWIP) steel. The results showed that the steel exhibits a special Lüders-like yielding phenomenon at room temperature (RT) and 348 K (75 °C), while it shows continuous yielding at 423 K, 573 K and 673 K (150 °C, 300 °C and 400 °C) deformation. A significant TRIP effect takes place during Lüders-like deformation at RT and 348 K (75 °C) temperatures. Semiquantitative analysis of the TRIP effect on the Lüders-like yield phenomenon proves that a softening effect of the strain energy consumption of strain-induced transformation is mainly responsible for this Lüders-like phenomenon. The TWIP mechanism dominates the 423 K (150 °C) deformation process, while the dislocation glide controls the plasticity at 573 K (300 °C) deformation. The delta-ferrite, as a hard phase in annealed dual-phase steel, greatly affects the mechanical stability of austenite due to the heterogeneous strain distribution between the two phases during deformation. A delta-ferrite-aided TRIP effect, i.e., martensite transformation induced by localized strain concentration of the hard delta-ferrite, is proposed to explain this kind of Lüders-like phenomenon. Moreover, the tensile curve at RT exhibits an upward curved behavior in the middle deformation stage, which is principally attributed to the deformation twinning of austenite retained after Lüders-like deformation. The combination of the TRIP effect during Lüders-like deformation and the subsequent TWIP effect greatly enhances the ductility in this annealed high-manganese dual-phase TRIP/TWIP steel.
Surface modification of hydroturbine steel using friction stir processing
NASA Astrophysics Data System (ADS)
Grewal, H. S.; Arora, H. S.; Singh, H.; Agrawal, A.
2013-03-01
Friction stir processing (FSP) has proved to be a viable tool for enhancing the mechanical properties of materials, however, the major focus has been upon improving the bulk properties of light metals and their alloys. Hydroturbines are susceptible to damage owing to slurry and cavitation erosion. In this study, FSP of a commonly employed hydroturbine steel, 13Cr4Ni was undertaken. Microstructural characterization of the processed steel was conducted using optical microscopy (OM), scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDS), X-ray diffraction (XRD) and electron back scatter diffraction (EBSD) techniques. Mechanical characterization of the steel was undertaken in terms of microhardness and resistance to cavitation erosion (CE). FSP resulted in the refinement of the microstructure with reduction in grain size by a factor of 10. EBSD results confirmed the existence of submicron and ultrafine grained microstructure. The microhardness of the steel was found to enhance by 2.6 times after processing. The processed steel also showed 2.4 times higher resistance against cavitation erosion in comparison to unprocessed steel. The primary erosion mechanism for both the steels was identical in nature, with plastic deformation responsible for the loss of material.
Vinoth Jebaraj, A; Ajaykumar, L; Deepak, C R; Aditya, K V V
2017-05-01
In the present review, attempts have been made to analyze the metallurgical, mechanical, and corrosion properties of commercial marine alloy duplex stainless steel AISI 2205 with special reference to its weldability, machinability, and surfacing. In the first part, effects of various fusion and solid-state welding processes on joining DSS 2205 with similar and dissimilar metals are addressed. Microstructural changes during the weld cooling cycle such as austenite reformation, partitioning of alloying elements, HAZ transformations, and the intermetallic precipitations are analyzed and compared with the different welding techniques. In the second part, machinability of DSS 2205 is compared with the commercial ASS grades in order to justify the quality of machining. In the third part, the importance of surface quality in a marine exposure is emphasized and the enhancement of surface properties through peening techniques is highlighted. The research gaps and inferences highlighted in this review will be more useful for the fabrications involved in the marine applications.
NASA Astrophysics Data System (ADS)
Park, Jun Seok; Lee, Min-Gyu; Cho, Yong-Jae; Sung, Ji Hyun; Jeong, Myeong-Sik; Lee, Sang-Kon; Choi, Yong-Jin; Kim, Da Hye
2016-01-01
The directed energy deposition process has been mainly applied to re-work and the restoration of damaged steel. Differences in material properties between the base and the newly deposited materials are unavoidable, which may affect the mechanical properties and durability of the part. We investigated the effect of heat treatment on the characteristics of tool steel deposited by the DED process. We prepared general tool steel materials of H13 and D2 that were deposited onto heat-treated substrates of H13 and D2, respectively, using a direct metal tooling process. The hardness and microstructure of the deposited steel before and after heat treatment were investigated. The hardness of the deposited H13 steel was higher than that of wrought H13 steel substrate, while that of the deposited D2 was lower than that of wrought D2. The evolution of the microstructures by deposition and heat treatment varied depending on the materials. In particular, the microstructure of the deposited D2 steel after heat treatment consisted of fine carbides in tempered martensite and it is expected that the deposited D2 steel will have isotropic properties and high hardness after heat treatment.
DPT/CT: A Realistic Answer for Preventive Special Education Services in Rural School Setting.
ERIC Educational Resources Information Center
Sapp, David N.
The consulting teacher program involving the use of special classes and resource rooms, which serves mildly to moderately handicapped students in Griggs, Steele, and Traill Counties in North Dakota, a rural school district, is described. Outlined is the service design model consisting of 11 steps: referral, observation, initial parent contact,…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-24
... DEPARTMENT OF HEALTH AND HUMAN SERVICES Determination Concerning a Petition To Add a Class of Employees to the Special Exposure Cohort AGENCY: National Institute for Occupational Safety and Health... determination concerning a petition to add a class of employees from the Bliss & Laughlin Steel Company located...
NASA Astrophysics Data System (ADS)
Jiang, Bo; Wu, Meng; Sun, He; Wang, Zhilin; Zhao, Zhigang; Liu, Yazheng
2018-01-01
The austenite growth behavior of non-quenched and tempered steels (casted by continuous casting and molding casting processes) was studied. The austenite grain size of steel B casted by continuous casting process is smaller than that of steel A casted by molding casting process at the same heating parameters. The abnormal austenite growth temperature of the steels A and B are 950 °C and 1000 °C, respectively. Based on the results, the models for the austenite grain growth below and above the abnormal austenite growth temperature of the investigated steels were established. The dispersedly distributed fine particles MnS in steel B is the key factor refining the austenite grain by pinning the migration of austenite grain boundary. The elongated inclusions MnS are ineffective in preventing the austenite grain growth at high heating temperature. For the non-quenched and tempered steel, the continuous casting process should be adopted and the inclusion MnS should be elliptical, smaller in size and distributed uniformly in order to refine the final microstructure and also improve the mechanical properties.
Zero degree contour cutting below 100 μm feature size with femtosecond laser
NASA Astrophysics Data System (ADS)
Stolberg, Klaus; Friedel, Susanna
2016-03-01
By the use of a 16 W femtosecond laser we demonstrate steep wall angles and small feature spacings for non-thermal melt-free laser drilling and contour cutting of 100 to 500 μm thick metals like Cu-alloy, stainless steel, titanium and tantalum as well as for ceramics and polymer (polycarbonate). Especially processing of thin materials is a challenge, because heat accumulation in thermal processing usually causes mechanical distortion or edge melting as well as material. The combination of beam deflection in trepanning optics and sample motion allowed us to work in a special "laser milling mode" with rotating beam. Zero degree taper angle as well as positive or negative tapers can be achieved at micrometer scale.
Wear Characteristic of Stellite 6 Alloy Hardfacing Layer by Plasma Arc Surfacing Processes
Zhou, Xiaowei
2017-01-01
The microstructure and wear resistance of Stellite 6 alloy hardfacing layer at two different temperatures (room temperature and 300°C) were investigated by plasma arc surfacing processes on Q235 Steel. Tribological test was conducted to characterize the wear property. The microstructure of Stellite 6 alloy coating mainly consists of α-Co and (Cr, Fe)7C3 phases. The friction coefficient of Stellite 6 alloys fluctuates slightly under different loads at 300°C. The oxide layer is formed on the coating surface and serves as a special lubricant during the wear test. Abrasive wear is the dominant mechanism at room temperature, and microploughing and plasticity are the key wear mechanisms at 300°C. PMID:29359005
Simplified Methods for Improving the Blast Resistance of Cold-Formed Steel Walls
2011-01-01
sheathing products such as oriented strand board ( OSB ) offer a level of blast resistance that may be effective in mitigating lower-level blast...considered in order to keep designs to a minimum cost. Standard sheathing materials such as OSB , gypsum and plywood— as well as specially selected sheathing...commercially available clip connectors. Sheathing materials such as gypsum and OSB are brittle and have significantly lower capacity than sheet steel
Control of Hydrogen Embrittlement in High Strength Steel Using Special Designed Welding Wire
2016-03-01
microstructure 4. A low near ambient temperature is reached. • All four factor must be simultaneously present 3 Mitigating HIC and Improving Weld Fatigue...Performance Through Weld Residual Stress Control UNCLASIFIED:DISTRIBUTION A. Approved for public release: distribution unlimited. Click to edit Master...title style 4 • Welding of Armor Steels favors all these conditions for HIC • Hydrogen Present in Sufficient Degree – Derived from moisture in the
The analysis of critical cooling rate for high-rise building steel S460
NASA Astrophysics Data System (ADS)
Lu, Shiping; Chen, Xia; Li, Qun; Wang, Haibao; Gu, Linhao
2017-09-01
High-rise building steel S460 is an important structure steel.The product process of the steel is Quenching&Tempering. The critical cooling rate of steel is very important in heavy plate quenching process, and it is also the basis of the cooling process[1].The critical cooling rate of HSLA steel S460 is obtained from the Thermal simulation method,and the differences about the microstructure and properties of different cooling rate is also analyzed.In this article, the angle of the grain boundary and the average grain size are analyzed by EBSD under different cooling rate. The relationship between grain boundary angle and grain size with the cooling rate is obtained. According to the experiment,it provides the basis for the formulation of the quenching process of the industrial production.
NASA Astrophysics Data System (ADS)
Arrieta, I.; Courbon, C.; Cabanettes, F.; Arrazola, P.-J.; Rech, J.
2017-10-01
The aim of this work is to characterize the effect of microstructural parameters on surface roughness in dry broaching with a special emphasis on the ferrite-pearlite (FP) ratio. An experimental approach combining cutting and tribological tests has been developed on three grades 27MnCr5, C45, C60 covering a wide range of FP ratio. Fundamental broaching tests have been performed with a single tooth to analyse the resulting surface quality with uncoated M35 HSS tools. A specially designed open tribometer has been used to characterize the friction coefficient at the tool-chip-workpiece interface under appropriate conditions. Specific phenomena have been observed depending on the FP ratio and an interesting correlation with the tribological tests has been found. This clearly shows that friction has an important contribution in broaching and that phase distribution has to be highly considered when cutting a FP steel at a microscopic scale. This work also provides quantitative data of the friction coefficient depending on the sliding velocity and FP content which can be implemented in any analytical or numerical model of a broaching operation.
Galvanised steel to aluminium joining by laser and GTAW processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sierra, G.; Universite Montpellier 2, Laboratoire de Mecanique et Genie Civil, UMR 5508 CNRS, Montpellier, 34095; Peyre, P.
A new means of assembling galvanised steel to aluminium involving a reaction between solid steel and liquid aluminium was developed, using laser and gas tungsten arc welding (GTAW) processes. A direct aluminium melting strategy was investigated with the laser process, whereas an aluminium-induced melting by steel heating and heat conduction through the steel was carried out with the GTAW process. The interfaces generated during the interaction were mainly composed of a 2-40 {mu}m thick intermetallic reaction layers. The linear strength of the assemblies can be as high as 250 N/mm and 190 N/mm for the assemblies produced respectively by lasermore » and GTAW processes. The corresponding failures were located in the fusion zone of aluminium (laser assemblies), or in the reaction layer (GTAW assemblies)« less
Water requirements of the iron and steel industry
Walling, Faulkner B.; Otts, Louis Ethelbert
1967-01-01
Twenty-nine steel plants surveyed during 1957 and 1958 withdrew from various sources about 1,400 billion gallons of water annually and produced 40.8 million tons of ingot steel. This is equivalent to about 34,000 gallons of water per ton of steel. Fifteen iron ore mines and fifteen ore concentration plants together withdrew annually about 89,000 million gallons to produce 15 million tons of iron ore concentrate, or 5,900 gallons per ton of concentrate. About 97 percent of the water used in the steel plants came from surface sources, 2.2 percent was reclaimed sewage, and 1.2 percent was ground water. Steel plants supplied about 96 percent of their own water requirements, although only three plants used self-supplied water exclusively. Water used by the iron ore mines and concentration plants was also predominantly self supplied from surface source. Water use in the iron and steel industry varied widely and depended on the availability of water, age and condition of plants and equipment, kinds of processes, and plant operating procedures. Gross water use in integrated steel plants ranged from 11,200 to 110,000 gallons per ton of steel ingots, and in steel processing plants it ranged from 4,180 to 26,700 gallons per ton. Water reuse also varied widely from 0 to 18 times in integrated steel plants and from 0 to 44 times in steel processing plants. Availability of water seemed to be the principal factor in determining the rate of reuse. Of the units within steel plants, a typical (median) blast furnace required 20,500 gallons of water per ton of pig iron. At the 1956-60 average rate of pig iron consumption, this amounts to about 13,000 gallons per ton of steel ingots or about 40 percent of that required by a typical integrated steel plant 33,200 gallons per ton. Different processes of iron ore concentration are devised specifically for the various kinds of ore. These processes result in a wide range of water use from 124 to 11,300 gallons of water per ton of iron ore concentrate. Water use in concentration plants is related to the physical state of the ore. The data in this report indicate that grain size of the ore is the most important factor; the very fine grained taconite and jasper required the greatest amount of water. Reuse was not widely practiced in the iron ore industry.Consumption of water by integrated steel plants ranged from 0 to 2,010 gallons per ton of ingot steel and by steel processing plants from 120 to 3,420 gallons per ton. Consumption by a typical integrated steel plant was 681 gallons per ton of ingot steel, about 1.8 percent of the intake and about 1 percent of the gross water use. Consumption by a typical steel processing plant was 646 gallons per ton, 18 percent of the intake, and 3.2 percent of the gross water use. The quality of available water was found not to be a critical factor in choosing the location of steel plants, although changes in equipment and in operating procedures are necessary when poor-quality water is used. The use of saline water having a concentration of dissolved solids as much as 10,400 ppm (parts per million) was reported. This very saline water was used for cooling furnaces and for quenching slag. In operations such as rolling steel in which the water comes into contact with the steel being processed, better quality water is used, although water containing as much as 3,410 ppm dissolved solids has been used for this purpose. Treatment of water for use in the iron and steel industry was not widely practiced. Disinfection and treatment for scale and corrosion control were the most frequently used treatment methods.
Study of Profile Changes during Mechanical Polishing using Relocation Profilometry
NASA Astrophysics Data System (ADS)
Kumaran, S. Chidambara; Shunmugam, M. S.
2017-10-01
Mechanical polishing is a finishing process practiced conventionally to enhance quality of surface. Surface finish is improved by mechanical cutting action of abrasive particles on work surface. Polishing is complex in nature and research efforts have been focused on understanding the polishing mechanism. Study of changes in profile is a useful method of understanding behavior of the polishing process. Such a study requires tracing same profile at regular process intervals, which is a tedious job. An innovative relocation technique is followed in the present work to study profile changes during mechanical polishing of austenitic stainless steel specimen. Using special locating fixture, micro-indentation mark and cross-correlation technique, the same profile is traced at certain process intervals. Comparison of different parameters of profiles shows the manner in which metal removal takes place in the polishing process. Mass removal during process estimated by the same relocation technique is checked with that obtained using weight measurement. The proposed approach can be extended to other micro/nano finishing processes and favorable process conditions can be identified.
NASA Astrophysics Data System (ADS)
Wang, Xiaoshu; Zhang, Zhijun; Zhang, Peng
Recently, with the rapid upgrading of the equipment in the steel Corp, the rolling technology of TMCP has been rapidly developed and widely applied. A large amount of steel plate has been produced by using the TMCP technology. The TMCP processes have been used more and more widely and replaced the heat treatment technology of normalizing, quenching and tempering heat process. In this paper, low financial input is considered in steel plate production and the composition of the steel has been designed with low C component, a limited alloy element of the Nb, and certain amounts of Mn element. During the continuous casting process, the size of the continuous casting slab section is 300 mm × 2400 mm. The rolling technology of TMCP is controlled at a lower rolling and red temperature to control the transformation of the microstructure. Four different rolling treatments are chosen to test its effects on the 390MPa grade low carbon steel of bainitic microstructure and properties. This test manages to produce a proper steel plate fulfilling the standard mechanical properties. Specifically, low carbon bainite is observed in the microstructure of the steel plate and the maximum thickness of steel plate under this TMCP technology is up to 80mm. The mechanical property of the steel plate is excellent and the KV2 at -40 °C performs more than 200 J. Moreover, the production costs are greatly reduced when the steel plate is produced by this TMCP technology when replacing the current production process of quenching and tempering. The low cost steel plate could well meet the requirements of producing engineering machinery in the steel market.
Applications of infrared thermography for nondestructive testing of fatigue cracks in steel bridges
NASA Astrophysics Data System (ADS)
Sakagami, Takahide; Izumi, Yui; Kobayashi, Yoshihiro; Mizokami, Yoshiaki; Kawabata, Sunao
2014-05-01
In recent years, fatigue crack propagations in aged steel bridge which may lead to catastrophic structural failures have become a serious problem. For large-scale steel structures such as orthotropic steel decks in highway bridges, nondestructive inspection of deteriorations and fatigue damages are indispensable for securing their safety and for estimating their remaining strength. As conventional NDT techniques for steel bridges, visual testing, magnetic particle testing and ultrasonic testing have been commonly employed. However, these techniques are time- and labor- consuming techniques, because special equipment is required for inspection, such as scaffolding or a truck mount aerial work platform. In this paper, a new thermography NDT technique, which is based on temperature gap appeared on the surface of structural members due to thermal insulation effect of the crack, is developed for detection of fatigue cracks. The practicability of the developed technique is demonstrated by the field experiments for highway steel bridges in service. Detectable crack size and factors such as measurement time, season or spatial resolution which influence crack detectability are investigated.
Production of Green Steel from Red Mud: A Novel Concept
NASA Astrophysics Data System (ADS)
Bhoi, Bhagyadhar; Behera, Pravas Ranjan; Mishra, Chitta Ranjan
Red mud of Indian origin contains around 55% plus of Fe2O3 and is considered as a hazardous waste for the alumina industry. For production of one tone of alumina employing the Bayer's Process, around two tones of red mud is generated from three tones of Bauxite. Conventional process of steel making is not devoid of environmental pollution. In the present investigation, efforts have been made to produce steel from red mud by adopting reduction roasting, magnetic separation and hydrogen plasma smelting route. Magnetic fraction, containing enriched iron oxide and minimal content of alumina, is produced following the first two stages which is then subjected to hydrogen plasma smelting process for production of steel. This novel concept follows a green path way for production of steel free from pollution and is termed as green steel. Further, the only by-product that is produced in the process, is water, which is eco-friendly and recyclable.
State of the Art Control Measures for Aluminium Fade and SEN Clogging during Steelmaking Operations
NASA Astrophysics Data System (ADS)
Kamaraj, Ashok; Saravanakumar, R.; Rajaguru, M.
2018-02-01
Crack formation, fatigue failure of components and other process interruptions in liquid steel practices such as ladle nozzle clogging, SEN clogging, break outs are mainly due to residual deoxidation products such as alumina present in steels. The present paper deals with the issues in steel processing operations and provides state-of-the-art control measures for clean steel production. Investigations regarding the residual alumina content and its consequences at integrated steel plant shows that, Al-fade of maximum 0.02% is observed, which produces equivalent of 37 Kg of alumina in the liquid steel. Furthermore, slag carry over, re-oxidation, improper argon rinsing practice, aluminium consumption at secondary steelmaking practices also influences the alumina formation during steelmaking practices. The residual alumina not only affects the quality of steel, but also results in process interruptions such as ladle choking, SEN choking, subsequent break outs etc. various steelmaking practices influences clogging and aluminium fade are discussed and possible suggestions are given to improve the cleanliness of steel.
Influence of Punch Geometry on Process Parameters in Cold Backward Extrusion
NASA Astrophysics Data System (ADS)
Plančak, M.; Barišić, B.; Car, Z.; Movrin, D.
2011-01-01
In cold extrusion of steel tools make direct contact with the metal to be extruded. Those tools are exposed to high contact stresses which, in certain cases, may be limiting factors in applying this technology. The present paper was bound to the influence of punch head design on radial stress at the container wall in the process of cold backward extrusion. Five different punch head geometries were investigated. Radial stress on the container wall was measured by pin load cell technique. Special tooling for the experimental investigation was designed and made. Process has been analyzed also by FE method. 2D models of tools were obtained by UGS NX and for FE analysis Simufact Forming GP software was used. Obtained results (experimental and obtained by FE) were compared and analyzed. Optimal punch head geometry has been suggested.
Simple Heat Treatment for Production of Hot-Dip Galvanized Dual Phase Steel Using Si-Al Steels
NASA Astrophysics Data System (ADS)
Equihua-Guillén, F.; García-Lara, A. M.; Muñíz-Valdes, C. R.; Ortíz-Cuellar, J. C.; Camporredondo-Saucedo, J. E.
2014-01-01
This work presents relevant metallurgical considerations to produce galvanized dual phase steels from low cost aluminum-silicon steels which are produced by continuous strip processing. Two steels with different contents of Si and Al were austenized in the two-phase field ferrite + austenite (α + γ) in a fast manner to obtain dual phase steels, suitable for hot-dip galvanizing process, under typical parameters of continuous annealing processing line. Tensile dual phase properties were obtained from specimens cooled from temperature below Ar3, held during 3 min, intermediate cooling at temperature above Ar1 and quenching in Zn bath at 465 °C. The results have shown typical microstructure and tensile properties of galvanized dual phase steels. Finally, the synergistic effect of aluminum, silicon, and residual chromium on martensite start temperature ( M s), critical cooling rate ( C R), volume fraction of martensite, and tensile properties has been studied.
49 CFR 178.50 - Specification 4B welded or brazed steel cylinders.
Code of Federal Regulations, 2014 CFR
2014-10-01
... service pressure of at least 150 but not over 500 psig. Cylinders closed in by spinning process are not authorized. (b) Steel. Open-hearth, electric or basic oxygen process steel of uniform quality must be used... using equipment and processes adequate to ensure that each cylinder produced conforms to the...
49 CFR 178.50 - Specification 4B welded or brazed steel cylinders.
Code of Federal Regulations, 2012 CFR
2012-10-01
... service pressure of at least 150 but not over 500 psig. Cylinders closed in by spinning process are not authorized. (b) Steel. Open-hearth, electric or basic oxygen process steel of uniform quality must be used... using equipment and processes adequate to ensure that each cylinder produced conforms to the...
49 CFR 178.50 - Specification 4B welded or brazed steel cylinders.
Code of Federal Regulations, 2013 CFR
2013-10-01
... service pressure of at least 150 but not over 500 psig. Cylinders closed in by spinning process are not authorized. (b) Steel. Open-hearth, electric or basic oxygen process steel of uniform quality must be used... using equipment and processes adequate to ensure that each cylinder produced conforms to the...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-11
... DEPARTMENT OF HEALTH AND HUMAN SERVICES Final Effect of Designation of a Class of Employees for Addition to the Special Exposure Cohort AGENCY: National Institute for Occupational Safety and Health... concerning the final effect of the HHS decision to designate a class of employees from Simonds Saw and Steel...
Coast Guard Polar Icebreaker Modernization: Background and Issues for Congress
2016-05-27
stating that Polar Star and Polar Sea “were built to take a beating. They were built with very thick special steel , so you might be able to do a...renovation on them and keep going…. I think there are certain types of steel that, if properly maintained, they can go on for an awful long time. What the...the service develop an acquisition strategy, it says. 52 Valerie Insinna, “Coast Guard to Finalize
1989-03-01
been a success. I am deeply grateful to Professor Ronald R. Biederman entrusting me with his TEM after business hours. Special thanks to both John V...During Shear Deformation of Ultrahigh Strength Steels, Proceedings of the Thirty-fourth Sagamore Army Materials Research Conference ( 1987 ), in press. 3...Materials Science and Engineering, V.95 ( 1987 ), pp. 93-99. 14. L. Anand, Some Experimental Observations on Localized Shear Bands in Plane- Strain
29 CFR 1926.751 - Definitions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... process of erection. Steel joist means an open web, secondary load-carrying member of 144 feet (43.9 m) or... structural steel trusses or cold-formed joists. Steel joist girder means an open web, primary load-carrying... structural steel trusses. Steel truss means an open web member designed of structural steel components by the...
29 CFR 1926.751 - Definitions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... process of erection. Steel joist means an open web, secondary load-carrying member of 144 feet (43.9 m) or... structural steel trusses or cold-formed joists. Steel joist girder means an open web, primary load-carrying... structural steel trusses. Steel truss means an open web member designed of structural steel components by the...
Pilot-scale steam aging of steel slags.
Kumar, Praveen; Satish Kumar, D; Marutiram, K; Prasad, Smr
2017-06-01
Solid waste management has gained importance in the steel industry in view of rising environmental concerns and scarcity of raw materials. In spite of significant developments in reducing waste generation and development of recycling technologies, steel slag is still a concern for the industry as most of it is dumped. Steel slag is similar to stone aggregates in strength, but its volumetric instability in contact with water hinders its application as aggregates in construction. A part of steel slag is normally exposed to rain and sun for natural aging and stabilization for months before use. The natural aging process is slow and time-consuming, and thus restricts its usage. The steelmaking slag can be put to effective use as coarse aggregates if quickly aged and stabilized by pre-reacting the free expansive phases. In the present work, a new process has been developed to accelerate the steel slag aging process using steam in a 30 T pilot scale facility. The setup has controlled steam injection, distribution, and process control system for steam, temperature, flow, and pressure. Steam percolates through the minute pores in the slag lumps and hydrates the expansive free lime and MgO phases, making it stable. The aged slag expansion properties were tested using an in-house developed expansion testing apparatus. The process is capable of reducing the expansion of steel slag from 3.5% to <1.5% (standard requirement) in 7 days. The aged steel slag is currently being used in roads at JSW Steel, Vijayanagar Works.
NASA Astrophysics Data System (ADS)
Nagaraju, S.; Vasantharaja, P.; Brahadees, G.; Vasudevan, M.; Mahadevan, S.
2017-12-01
9Cr-1Mo steel designated as P9 is widely used in the construction of power plants and high-temperature applications. It is chosen for fabricating hexcan fuel subassembly wrapper components of fast breeder reactors. Arc welding processes are generally used for fabricating 9Cr-1Mo steel weld joints. A-TIG welding process is increasingly being adopted by the industries. In the present study, shielded metal arc (SMA), tungsten inert gas (TIG) and A-TIG welding processes are used for fabricating the 9Cr-1Mo steel weld joints of 10 mm thickness. Effect of the above welding processes on the microstructure evolution, mechanical properties and residual stresses of the weld joints has been studied in detail. All the three weld joints exhibited comparable strength and ductility values. 9Cr-1Mo steel weld joint fabricated by SMAW process exhibited lower impact toughness values caused by coarser grain size and inclusions. 9Cr-1Mo steel weld joint fabricated by TIG welding exhibited higher toughness due to finer grain size, while the weld joint fabricated by A-TIG welding process exhibited adequate toughness values. SMA steel weld joint exhibited compressive residual stresses in the weld metal and HAZ, while TIG and A-TIG weld joint exhibited tensile residual stresses in the weld metal and HAZ.
NASA Astrophysics Data System (ADS)
Bai, Ching-Yuan; Wen, Tse-Min; Hou, Kung-Hsu; Ger, Ming-Der
The low-temperature pack chromization, a reforming pack cementation process, is employed to modify AISI 1045 steel for the application of bipolar plates in PEMFC. The process is conducted to yield a coating, containing major Cr-carbides and minor Cr-nitrides, on the substrate in view of enhancing the steel's corrosion resistance and lowering interfacial contact resistance between the bipolar plate and gas diffusion layer. Electrical discharge machining and rolling approach are used as the pretreatment to produce an activated surface on the steel before pack chromization process to reduce operating temperatures and increase deposition rates. The rolled-chromized steel shows the lowest corrosion current density, 3 × 10 -8 A cm -2, and the smallest interfacial contact resistance, 5.9 mΩ cm 2, at 140 N cm -2 among all tested steels. This study clearly states the performance of 1045 carbon steel modified by activated and low-temperature pack chromization processes, which possess the potential to be bipolar plates in the application of PEMFC.
State of the Art Reinforcement for Concrete Bridge Decks
2009-02-01
Microcomposite Martensitic Ferretic Steel (MMFX 2) • Initial proprietary technology developed at the University of California Berkeley by...Center US Army Corps of Engineers Microcomposite Steel Microcomposite Steels , Packet Lath Martensite Dislocated laths of martensite enveloped by... steel cladding with carbon steel core • Patented “green” process bonds stainless steel to carbon steel • Optimizes stainless steel’s very high
49 CFR 178.61 - Specification 4BW welded steel cylinders with electric-arc welded longitudinal seam.
Code of Federal Regulations, 2014 CFR
2014-10-01
.... Cylinders closed in by spinning process are not authorized. (b) Authorized steel. Steel used in the.... Cylinders must be manufactured using equipment and processes adequate to ensure that each cylinder produced... seams must be of the butt welded type. Welds must be made by a machine process including automatic feed...
49 CFR 178.61 - Specification 4BW welded steel cylinders with electric-arc welded longitudinal seam.
Code of Federal Regulations, 2013 CFR
2013-10-01
.... Cylinders closed in by spinning process are not authorized. (b) Authorized steel. Steel used in the.... Cylinders must be manufactured using equipment and processes adequate to ensure that each cylinder produced... seams must be of the butt welded type. Welds must be made by a machine process including automatic feed...
49 CFR 178.61 - Specification 4BW welded steel cylinders with electric-arc welded longitudinal seam.
Code of Federal Regulations, 2012 CFR
2012-10-01
.... Cylinders closed in by spinning process are not authorized. (b) Authorized steel. Steel used in the.... Cylinders must be manufactured using equipment and processes adequate to ensure that each cylinder produced... seams must be of the butt welded type. Welds must be made by a machine process including automatic feed...
A pilot study to characterize fine particles in the environment of an automotive machining facility.
Sioutas, C
1999-04-01
The main goal of this study was to characterize fine particles (e.g., smaller than about 3 microns) in an automotive machining environment. The Toledo Machining Plant of Chrysler Corporation was selected for this purpose. The effect of local mechanical processes as aerosol sources was a major part of this investigation. To determine the size-dependent mass concentration of particles in the plant, the Micro-Orifice Uniform Deposit Impactor (MOUDI Model 100, MSP Corp., Minneapolis, Minnesota) was used. The MOUDI was placed at central locations in departments with sources inside the plant, so that the obtained information on the size distribution realistically represents the aerosol to which plant workers are exposed. Sampling was conducted over a 4-day period, and during three periods per day, each matching the work shifts. A special effort was made to place the MOUDI at a central location of a department with relatively homogeneous particle sources. The selected sampling sites included welding, grinding, steel machining, and heat treating processes. The average 24-hour mass concentrations of particles smaller than 3.2 microns in aerodynamic diameter were 167.8, 103.9, 201.7, and 112.7 micrograms/m3 for welding, grinding, mild steel, and heat treating processes, respectively. Finally, the mass median diameters of welding, heat treatment, machining, and grinding operations were approximately 0.5, 0.5, 0.6, and 0.8 micron, respectively.
Spray Deposition: A Fundamental Study of Droplet Impingement, Spreading and Consolidation
1989-12-01
low alloy (HSLA) steel. Preforms of HSLA-100, a low carbon bainitic, copper precipitation strengthened HSLA steel...manufacturing process. Specifically, HSLA-100, a copper precipitation strengthened high-strength, low - alloy steel was spray cast via the Osprey’ m process...by spray casting. Preforms of HSLA-100, a low carbon bainitic, copper precipitation strengthened steel, were spray cast under differing conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Wei; Landon, James; Irvin, Bradley
Corrosion studies were carried out on metal coated and noncoated carbon steel as well as stainless steel in a pilot-scale post-combustion CO 2 capture process. Aqueous 30 wt % monoethanolamine (MEA) solvent was used without any chemical additive for antioxidation to examine a worst-case scenario where corrosion is not mitigated. The corrosion rate of all carbon steels was almost zero in the absorber column and CO 2 lean amine piping except for Ni-coated carbon steel (<1.8 mm/yr). Ni 2Al 3/Al 2O 3 precoated carbon steels showed initial protection but lost their integrity in the stripping column and CO 2 richmore » amine piping, and severe corrosion was eventually observed for all carbon steels at these two locations. Stainless steel was found to be stable and corrosion resistant in all of the sampling locations throughout the experiment. This study provides an initial framework for the use of carbon steel as a potential construction material for process units with relatively mild operating conditions (temperature less than 80 °C), such as the absorber and CO 2 lean amine piping of a post-combustion CO 2 capture process. As a result, it also warrants further investigation of using carbon steel with more effective corrosion mitigation strategies for process units where harsh environments are expected (such as temperatures greater than 100 °C).« less
Li, Wei; Landon, James; Irvin, Bradley; ...
2017-04-13
Corrosion studies were carried out on metal coated and noncoated carbon steel as well as stainless steel in a pilot-scale post-combustion CO 2 capture process. Aqueous 30 wt % monoethanolamine (MEA) solvent was used without any chemical additive for antioxidation to examine a worst-case scenario where corrosion is not mitigated. The corrosion rate of all carbon steels was almost zero in the absorber column and CO 2 lean amine piping except for Ni-coated carbon steel (<1.8 mm/yr). Ni 2Al 3/Al 2O 3 precoated carbon steels showed initial protection but lost their integrity in the stripping column and CO 2 richmore » amine piping, and severe corrosion was eventually observed for all carbon steels at these two locations. Stainless steel was found to be stable and corrosion resistant in all of the sampling locations throughout the experiment. This study provides an initial framework for the use of carbon steel as a potential construction material for process units with relatively mild operating conditions (temperature less than 80 °C), such as the absorber and CO 2 lean amine piping of a post-combustion CO 2 capture process. As a result, it also warrants further investigation of using carbon steel with more effective corrosion mitigation strategies for process units where harsh environments are expected (such as temperatures greater than 100 °C).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Price, L.K.; Phylipsen, G.J.M.; Worrell, E.
Iron and steel production consumes enormous quantities of energy, especially in developing countries where outdated, inefficient technologies are still used to produce iron and steel. Carbon dioxide emissions from steel production, which range between 5 and 15% of total country emissions in key developing countries (Brazil, China, India, Mexico, and South Africa), will continue to grow as these countries develop and as demand for steel products such as materials, automobiles, and appliances increases. In this report, we describe the key steel processes, discuss typical energy-intensity values for these processes, review historical trends in iron and steel production by process inmore » five key developing countries, describe the steel industry in each of the five key developing countries, present international comparisons of energy use and carbon dioxide emissions among these countries, and provide our assessment of the technical potential to reduce these emissions based on best-practice benchmarking. Using a best practice benchmark, we find that significant savings, in the range of 33% to 49% of total primary energy used to produce steel, are technically possible in these countries. Similarly, we find that the technical potential for reducing intensities of carbon dioxide emissions ranges between 26% and 49% of total carbon dioxide emissions from steel production in these countries.« less
NASA Astrophysics Data System (ADS)
Mondal, Mounarik; Das, Hrishikesh; Ahn, Eun Yeong; Hong, Sung Tae; Kim, Moon-Jo; Han, Heung Nam; Pal, Tapan Kumar
2017-09-01
Friction stir welding (FSW) of dissimilar stainless steels, low nickel austenitic stainless steel and 409M ferritic stainless steel, is experimentally investigated. Process responses during FSW and the microstructures of the resultant dissimilar joints are evaluated. Material flow in the stir zone is investigated in detail by elemental mapping. Elemental mapping of the dissimilar joints clearly indicates that the material flow pattern during FSW depends on the process parameter combination. Dynamic recrystallization and recovery are also observed in the dissimilar joints. Among the two different stainless steels selected in the present study, the ferritic stainless steels shows more severe dynamic recrystallization, resulting in a very fine microstructure, probably due to the higher stacking fault energy.
NASA Astrophysics Data System (ADS)
Lavrov, V. V.; Spirin, N. A.
2016-09-01
Advances in modern science and technology are inherently connected with the development, implementation, and widespread use of computer systems based on mathematical modeling. Algorithms and computer systems are gaining practical significance solving a range of process tasks in metallurgy of MES-level (Manufacturing Execution Systems - systems controlling industrial process) of modern automated information systems at the largest iron and steel enterprises in Russia. This fact determines the necessity to develop information-modeling systems based on mathematical models that will take into account the physics of the process, the basics of heat and mass exchange, the laws of energy conservation, and also the peculiarities of the impact of technological and standard characteristics of raw materials on the manufacturing process data. Special attention in this set of operations for metallurgic production is devoted to blast-furnace production, as it consumes the greatest amount of energy, up to 50% of the fuel used in ferrous metallurgy. The paper deals with the requirements, structure and architecture of BF Process Engineer's Automated Workstation (AWS), a computer decision support system of MES Level implemented in the ICS of the Blast Furnace Plant at Magnitogorsk Iron and Steel Works. It presents a brief description of main model subsystems as well as assumptions made in the process of mathematical modelling. Application of the developed system allows the engineering and process staff to analyze online production situations in the blast furnace plant, to solve a number of process tasks related to control of heat, gas dynamics and slag conditions of blast-furnace smelting as well as to calculate the optimal composition of blast-furnace slag, which eventually results in increasing technical and economic performance of blast-furnace production.
New sulphiding method for steel and cast iron parts
NASA Astrophysics Data System (ADS)
Tarelnyk, V.; Martsynkovskyy, V.; Gaponova, O.; Konoplianchenko, Ie; Dovzyk, M.; Tarelnyk, N.; Gorovoy, S.
2017-08-01
A new method for sulphiding steel and cast iron part surfaces by electroerosion alloying (EEA) with the use of a special electrode is proposed, which method is characterized in that while manufacturing the electrode, on its surface, in any known manner (punching, threading, pulling, etc.), there is formed at least a recess to be filled with sulfur as a consistent material, and then there is produced EEA by the obtained electrode without waiting for the consistent material to become dried.
NASA Astrophysics Data System (ADS)
Colla, V.; Desanctis, M.; Dimatteo, A.; Lovicu, G.; Valentini, R.
2011-09-01
The purpose of the present work is the implementation and validation of a model able to predict the microstructure changes and the mechanical properties in the modern high-strength dual-phase steels after the continuous annealing process line (CAPL) and galvanizing (Galv) process. Experimental continuous cooling transformation (CCT) diagrams for 13 differently alloying dual-phase steels were measured by dilatometry from the intercritical range and were used to tune the parameters of the microstructural prediction module of the model. Mechanical properties and microstructural features were measured for more than 400 dual-phase steels simulating the CAPL and Galv industrial process, and the results were used to construct the mechanical model that predicts mechanical properties from microstructural features, chemistry, and process parameters. The model was validated and proved its efficiency in reproducing the transformation kinetic and mechanical properties of dual-phase steels produced by typical industrial process. Although it is limited to the dual-phase grades and chemical compositions explored, this model will constitute a useful tool for the steel industry.
Process for dezincing galvanized steel
Morgan, W.A.; Dudek, F.J.; Daniels, E.J.
1998-07-14
A process is described for removing zinc from galvanized steel. The galvanized steel is immersed in an electrolyte containing at least about 15% by weight of sodium or potassium hydroxide and having a temperature of at least about 75 C and the zinc is galvanically corroded from the surface of the galvanized steel. The material serving as the cathode is principally a material having a standard electrode potential which is intermediate of the standard electrode potentials of zinc and cadmium in the electrochemical series. The corrosion rate may be accelerated by (1) increasing the number density of corrosion sites in the galvanized steel by mechanically abrading or deforming the galvanized steel, (2) heating the galvanized steel to form an alloy of zinc on the surface of the galvanized steel, (3) mixing the galvanized steel with a material having a standard electrode potential which is intermediate of the standard electrode potentials of zinc and cadmium in the electrochemical series, or (4) moving the galvanized steel relative to itself and to the electrolyte while immersed in the electrolyte. 1 fig.
Process for dezincing galvanized steel
Morgan, William A.; Dudek, Frederick J.; Daniels, Edward J.
1998-01-01
A process for removing zinc from galvanized steel. The galvanized steel is immersed in an electrolyte containing at least about 15% by weight of sodium or potassium hydroxide and having a temperature of at least about 75.degree. C. and the zinc is galvanically corroded from the surface of the galvanized steel. The material serving as the cathode is principally a material having a standard electrode potential which is intermediate of the standard electrode potentials of zinc and cadmium in the electrochemical series. The corrosion rate may be accelerated by (i) increasing the number density of corrosion sites in the galvanized steel by mechanically abrading or deforming the galvanized steel, (ii) heating the galvanized steel to form an alloy of zinc on the surface of the galvanized steel, (iii) mixing the galvanized steel with a material having a standard electrode potential which is intermediate of the standard electrode potentials of zinc and cadmium in the electrochemical series, or (iv) moving the galvanized steel relative to itself and to the electrolyte while immersed in the electrolyte.
Service Test of the Airfield Specialized Trailer System
1966-10-31
universal trailer is a lightweight, air-transportable, four- wheel trailer. It is capable of transferring loads to compatible main- tenance and storage...transverse beams). The suspension sys- tem is a specially designed, three-point system which protects loads from excessive wheel displacement when...lightweight steel and can accommodate hoist and lift facilities. Sockets are provided to permit attachment of several accessory kits (running gear caster
NASA Astrophysics Data System (ADS)
Morrev, P. G.; Gordon, V. A.
2018-03-01
Surface hardening by deep rolling can be considered as the axial symmetric problem in some special events (namely, when large R and small r radii of the deforming roller meet the requirement R>> r). An axisymmetric nodal averaged stabilized finite element is formulated. The formulation is based on a variational principle with a penalty (stabilizing) item in order to involve large elastic-plastic strain and near to incompressible materials. The deep rolling process for a steel rod is analyzed. Axial residual stress, yield stress, and Odkvist’s parameter are calculated. The residual stress is compared with the data obtained by other authors using a three-dimensional statement of the problem. The results obtained demonstrate essential advantages of the newly developed finite element.
77 FR 64844 - Notice of Application for Special Permits
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-23
... construction, specifically duplex stainless steels. (mode 1) 15716-N Department of 49 CFR 49 CFR Sec. To authorize the Energy, 173.310. transportation in Washington, DC. commerce of boron trifluoride in radiation...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kratz, J.L.; Minard, P.G.; Weinberg, D.E.
1982-01-01
The need for an alternate moisture-reheater tubing alloy is explored and the reasoning behind the selection of 439 stainless steel is presented. Significant advantages that are evident by using special tubing chemistry and special tubing heat treatment are discussed in relation to fin-die wear, alloy stabilization, maintaining a fully ferritic structure, and reducing the susceptibility to stress-corrosion cracking. Comparisons made between the fatigue response of 439SS tube-to-tube sheet welded specimens ''in air'' at 525/sup 0/F (274/sup 0/C) show a distinct advantage of the use of the 439SS tubing alloy over previously used tubing alloys. An ''in-service'' record of over twomore » years at Kewaunee shows excellent tubing operating experience.« less
A Fundamental Study of Tool Steels Processed from Rapidly Solidified Powders.
1981-12-01
structures, HIP or HIP and hot-worked high speed tool steels and powder forgings of low and medium alloy steels for load- bearing automotive...M7, M7S, M41, M42, M43S, T15 and M50 . These P/M tool steels exhibit a degree of alloy homogeneity and a fineness/uniformity of carbide dispersion...AD-AIl2 758 DREXEL UNIV PHILADEL.PH IA PA DEPT OF MATERIALS ENGINEERING F/6 11/6 A FUNDAMENTAL STUDY OF TOOL STEELS PROCESSED FROM L DEC 81 A
Study of Variable Frequency Induction Heating in Steel Making Process
NASA Astrophysics Data System (ADS)
Fukutani, Kazuhiko; Umetsu, Kenji; Itou, Takeo; Isobe, Takanori; Kitahara, Tadayuki; Shimada, Ryuichi
Induction heating technologies have been the standard technologies employed in steel making processes because they are clean, they have a high energy density, they are highly the controllable, etc. However, there is a problem in using them; in general, frequencies of the electric circuits have to be kept fixed to improve their power factors, and this constraint makes the processes inflexible. In order to overcome this problem, we have developed a new heating technique-variable frequency power supply with magnetic energy recovery switching. This technique helps us in improving the quality of steel products as well as the productivity. We have also performed numerical calculations and experiments to evaluate its effect on temperature distributions on heated steel plates. The obtained results indicate that the application of the technique in steel making processes would be advantageous.
NASA Astrophysics Data System (ADS)
Beck, Megan; Morse, Michael; Corolewski, Caleb; Fritchman, Koyuki; Stifter, Chris; Poole, Callum; Hurley, Michael; Frary, Megan
2017-08-01
Dynamic recrystallization (DRX) occurs during high-temperature deformation in metals and alloys with low to medium stacking fault energies. Previous simulations and experimental research have shown the effect of temperature and grain size on DRX behavior, but not the effect of the grain boundary character distribution. To investigate the effects of the distribution of grain boundary types, experimental testing was performed on stainless steel 316L specimens with different initial special boundary fractions (SBF). This work was completed in conjunction with computer simulations that used a modified Monte Carlo method which allowed for the addition of anisotropic grain boundary energies using orientation data from electron backscatter diffraction (EBSD). The correlation of the experimental and simulation work allows for a better understanding of how the input parameters in the simulations correspond to what occurs experimentally. Results from both simulations and experiments showed that a higher fraction of so-called "special" boundaries ( e.g., Σ3 twin boundaries) delayed the onset of recrystallization to larger strains and that it is energetically favorable for nuclei to form on triple junctions without these so-called "special" boundaries.
NASA Astrophysics Data System (ADS)
Jian-wen, Li; Hong-yan, Liu
Handan Iron and Steel production of high-strength structural car steel QStE500TM thin gauge products using Nb + Ti composite strengthening, with a small amount of Cr element to improve its hardenability, the process parameter control is inappropriate with Nb + Ti complex steel, it is easy to produce in the mixed crystal phenomenon, resulting in decreasing the toughness and uneven performance. In this paper, Gleeble 3500 thermal simulation testing machine for high-strength structural steel car QStE500TM product deformation austenite recrystallization behavior research, determined completely recrystallized, partial recrystallization and non-recrystallization region, provide theoretical basis and necessary data for reasonable controlled rolling process for production.
The Mechanical Property of Batch Annealed High Strength Low Alloy Steel HC260LA
NASA Astrophysics Data System (ADS)
Yang, Xiaojiang; Xia, Mingsheng; Zhang, Hongbo; Han, Bin; Li, Guilan
Cold rolled high strength low alloy steel is widely applied in the automotive parts due to its excellent formability and weldability. In this paper, the steel grade HC260LA according to European Norm was developed with batch annealing process. With commercial C-Mn mild steel as a benchmark, three different groups of chemistry namely C-Mn-Si, C-Mn-Nb-Ti and C-Mn-Nb were compared in terms of yield-tensile strength (Y/T) ratio. Microstructure and mechanical properties were characterized as well. Based on industrial production results, chemistry and detailed process parameters for batch annealing were identified. In the end the optimal Y/T ratio was proposed for this steel grade under batch annealing process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nesterova, E.V.; Bouvier, S.; Bacroix, B.
Transmission electron microscopy (TEM) microstructures of a high-strength dual-phase steel DP800 have been examined after moderate plastic deformations in simple shear and uniaxial tension. Special attention has been paid to the effect of the intergranular hard phase (martensite) on the microstructure evolution in the near-grain boundary regions. Quantitative parameters of dislocation patterning have been determined and compared with the similar characteristics of previously examined single-phase steels. The dislocation patterning in the interiors of the ferrite grains in DP800 steel is found to be similar to that already observed in the single-phase IF (Interstitial Free) steel whereas the martensite-affected zones presentmore » a delay in patterning and display very high gradients of continuous (gradual) disorientations associated with local internal stresses. The above stresses are shown to control the work-hardening of dual-phase materials at moderate strains for monotonic loading and are assumed to influence their microstructure evolution and mechanical behavior under strain-path changes. - Highlights: • The microstructure evolution has been studied by TEM in a DP800 steel. • It is influenced by both martensite and dislocations in the initial state. • The DP800 steel presents a high work-hardening rate due to internal stresses.« less
NASA Astrophysics Data System (ADS)
Farina, S.; Schulz Rodriguez, F.; Duffó, G.
2013-07-01
The present work is a study of the corrosion susceptibility of steel drums in contact with cemented ion-exchange resins contaminated with different types and concentrations of aggressive species. A special type of specimen was manufactured to simulate the cemented ion-exchange resins in the drum. The evolution of the corrosion potential and the corrosion rate of the steel, as well as the electrical resistivity of the matrix were monitored over a time period of 900 days. The aggressive species studied were chloride ions (the main ionic species of concern) and sulphate ions (produced during radiolysis of the cationic exchange-resins after cementation). The work was complemented with an analysis of the corrosion products formed on the steel in each condition, as well as the morphology of the corrosion products. When applying the results obtained in the present work to estimate the corrosion depth of the steel drumscontaining the cemented radioactive waste after a period of 300 years (foreseen durability of the Intermediate Level Radioactive Waste facility in Argentina) , it is found that in the most unfavourable case (high chloride contamination), the corrosion penetration will be considerably lower than the thickness of the wall of the steel drums.
Mechanical properties of low-alloy-steels with bainitic microstructures and varying carbon content
NASA Astrophysics Data System (ADS)
Weber, A.; Klarner, J.; Vogl, T.; Schöngrundner, R.; Sam, G.; Buchmayr, B.
2016-03-01
Materials used in the oilfield industry are subjected to special conditions. These requirements for seamless steel tubes are between the priorities of strength, toughness and sour gas resistance. Steels with bainitic microstructure provide a great opportunity for those harsh environmental conditions. With different morphologies of bainite, like carbide free, upper or lower bainite, the interaction of high tensile strength and elongation is assumed to be better than with tempered martensite. To form carbide free bainite two ways of processing are proposed, isothermal holding with accurate time control or controlled continuous cooling. Both require knowledge of time-temperature transformation behaviour, which can be reached through a detailed alloying concept, focused on the influence of silicon to supress the carbide nucleation and chromium to stabilize the austenite fraction. The present work is based on three alloys with varying silicon and chromium contents. The carbide free microstructure is obtained by a continuous cooling path. Additionally different heat treatments were done to compare the inherent performance of the bainitic morphologies. The bainitic structures were characterized metallographically for their microstructure and the primary phase by means of transmission electron microscopy. The mechanical properties of carbide-free structures were analysed with quasi-static tensile tests and Charpy impact tests. Moreover, investigations about hydrogen embrittlement were done with focus on the effect of retained austenite. The results were ranked and compared qualitatively.
Modelization of three-layered polymer coated steel-strip ironing process using a neural network
NASA Astrophysics Data System (ADS)
Sellés, M. A.; Schmid, S. R.; Sánchez-Caballero, S.; Seguí, V. J.; Reig, M. J.; Pla, R.
2012-04-01
An alternative to the traditional can manufacturing process is to use plastic laminated rolled steels as base stocks. This material consist of pre-heated steel coils that are sandwiched between one or two sheets of polymer. The heated sheets are then immediately quenched, which yields a strong bond between the layers. Such polymer-coated steels were investigated by Jaworski [1,2] and Sellés [3], and found to be suitable for ironing with carefully controlled conditions. A novel multi-layer polymer coated steel has been developed for container applications. This material presents an interesting extension to previous research on polymer laminated steel in ironing, and offers several advantages over the previous material (Sellés [3]). This document shows a modelization for the ironing process (the most crucial step in can manufacturing) done by using a neural network
Bearing and gear steels for aerospace applications
NASA Technical Reports Server (NTRS)
Zaretsky, Erwin V.
1990-01-01
Research in metallurgy and processing for bearing and gear steels has resulted in improvements in rolling-element bearing and gear life for aerospace application by a factor of approximately 200 over that obtained in the early 1940's. The selection and specification of a bearing or gear steel is dependent on the integration of multiple metallurgical and physical variables. For most aerospace bearings, through-hardened VIM-VAR AISI M-50 steel is the material of preference. For gears, the preferential material is case-carburized VAR AISI 9310. However, the VAR processing for this material is being replaced by VIM-VAR processing. Since case-carburized VIM-VAR M-50NiL incorporates the desirable qualities of both the AISI M-50 and AISI 9310 materials, optimal life and reliability can be achieved in both bearings and gears with a single steel. Hence, this material offers the promise of a common steel for both bearings and gears for future aerospace applications.
NPF MECHANICAL CELL NaK DISPOSAL AND FUME ABATEMENT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rey, G.
Some of the fuels originally scheduled for processing in the nonproduction fuel (NPF) processing program incorporated sodium or sodium- potassium alloy (NaK) as the bonding material between stainless-steel cladding and the uranium or uranium-molybdenum alloy core. Because of the special hazards involved in handling NaK, studies were made to determine safe methods for processing NaK-containing fuels. An underwater NaK dispensing system was installed, and tests were made to determine the characteristics of the NaK-water reaction. The equipment consisted of a dispenser, reaction pan, and off-gas scrubber. After initinl studies, a prototype test was made wherein U-Mo canned slugs containing NaKmore » reservoirs were hack sawed underwater. The studies demonstrated that the NaK reservoirs can be safely deactivated by hack sawing under a submerged hood in a shallow water bath. (W.L.H.)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dickerson, Patricia O'Donnell; Summa, Deborah Ann; Liu, Cheng
The goals of this project were to demonstrate reliable, reproducible solid state bonding of aluminum 6061 alloy plates together to encapsulate DU-10 wt% Mo surrogate fuel foils. This was done as part of the CONVERT Fuel Fabrication Capability effort in Process Baseline Development . Bonding was done using Hot Isotatic Pressing (HIP) of evacuated stainless steel cans (a.k.a HIP cans) containing fuel plate components and strongbacks. Gross macroscopic measurements of HIP cans prior to HIP and after HIP were used as part of this demonstration, and were used to determine the accuracy of a finitie element model of the HIPmore » bonding process. The quality of the bonding was measured by controlled miniature bulge testing for Al-Al, Al-Zr, and Zr-DU bonds. A special objective was to determine if the HIP process consistently produces good quality bonding and to determine the best characterization techniques for technology transfer.« less
NASA Astrophysics Data System (ADS)
Sentis, Marc L.; Delaporte, Philippe C.; Marine, Wladimir; Uteza, Olivier P.
2000-04-01
The application of excimer laser ablation process to the decontamination of radioactive surfaces is discussed. This technology is very attractive because it allows to efficiently remove the contaminated particles without secondary waste production. To demonstrate the capability of such technology to efficiently decontaminate large area, we studied and developed a prototype which include a XeCl laser, an optical fiber delivery system and an ablated particles collection cell. The main physical processes taking place during UV laser ablation will be explained. The influence of laser wavelength, pulse duration and absorption coefficient of material will be discussed. Special studies have been performed to understand the processes which limit the transmission of high average power excimer laser through optical fiber, and to determine the laser conditions to optimize the value of this transmission. An in-situ spectroscopic analysis of laser ablation plasma allows the real time control of the decontamination. The results obtained for painting or metallic oxides removal from stainless steel surfaces will be presented.
Evaluation of advanced austenitic alloys relative to alloy design criteria for steam service
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swindeman, R.W.; Maziasz, P.J.; Bolling, E.
1990-05-01
The results are summarized for a 6-year activity on advanced austenitic stainless steels for heat recovery systems. Commercial, near-commercial, and developmental alloys were evaluated relative to criteria for metallurgical stability, fabricability, weldability, and mechanical strength. Fireside and steamside corrosion were also considered, but no test data were collected. Lean stainless steel alloys that were given special attention in the study were type 316 stainless steel, fine-grained type 347 stainless steel, 17-14CuMo stainless steel, Esshete 1250, Sumitomo ST3Cu{reg sign} stainless steel, and a group of alloys identified as HT-UPS (high-temperature, ultrafine-precipitation strengthened) steels that were basically 14Cr--16Ni--Mo steels modified by variousmore » additions of MC-forming elements. It was found that, by solution treating the MC-forming alloys to temperatures above 1150{degree}C and subsequently cold or warm working, excellent metallurgical stability and creep strength could be achieved. Test data to beyond 35,000 h were collected. The ability to clad the steels for improved fireside corrosion resistance was demonstrated. Weldability of the alloys was of concern, and hot cracking was found to be a problem in the HT-UPS alloys. By reducing the phosphorous content and selecting either CRE 16-8-2 stainless steel or alloy 556 filler metal, weldments were produced that had excellent strength and ductility. The major issues related to the development of the advanced alloys were identified and ways to resolve the issues suggested. 89 refs., 45 figs., 8 tabs.« less
77 FR 5010 - Proposed Settlement Agreement, Clean Air Act Citizen Suit
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-01
... Environmental Quality to Consolidated Environmental Management, Inc.--Nucor Steel Louisiana for a pig iron....-- Nucor Steel Louisiana: a modified Title V permit for the aforementioned pig iron manufacturing process... Management, Inc.--Nucor Steel Louisiana for a pig iron manufacturing process in St. James Parish, Louisiana...
NASA Technical Reports Server (NTRS)
Stephens, J. R.; Barrett, C. A.; Gyorgak, C. A.
1979-01-01
An experimental program was undertaken to identify effective substitutes for part of the Cr in 304 stainless steel as a method of conserving the strategic element Cr. Although special emphasis was placed on tensile properties, oxidation and corrosion resistance were also examined. Results indicate that over the temperature range of -196 C to 540 C the yield stress of experimental austenitic alloys with only 12 percent Cr compare favorably with the 18 percent Cr in 304 stainless steel. Oxidation resistance and in most cases corrosion resistance for the experimental alloys were comparable to the commercial alloy. Effective substitutes for Cr included Al, Mo, Si, Ti, and V, while Ni and Mn contents were increased to maintain an austenitic structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Moor, Emmanuel
The present project investigated Quenching and Partitioning (Q&P) to process cold rolled steels to develop high strength sheet steels that exhibit superior ductility compared to available grades with the intent to allow forming of high strength parts at room temperature to provide an alternative to hot stamping of parts. Hot stamping of boron alloyed steel is the current technology to manufacture thinner gauge sections in automotive structures to guarantee anti-intrusion during collisions whilst improving fuel efficiency by decreasing vehicle weight. Hot stamping involves reheating steel to 900 °C or higher followed by deformation and quenching in the die to producemore » ultra-high strength materials. Hot stamping requires significant energy to reheat the steel and is less productive than traditional room temperature stamping operations. Stamping at elevated temperature was developed due to the lack of available steels with strength levels of interest possessing sufficient ductility enabling traditional room temperature forming. This process is seeing growing demand within the automotive industry and, given the reheating step in this operation, increased energy consumption during part manufacturing results. The present research program focused on the development of steel grades via Q&P processing that exhibit high strength and formability enabling room temperature forming to replace hot stamping. The main project objective consisted of developing sheet steels exhibiting minimum ultimate tensile strength levels of 1200 MPa in combination with minimum tensile elongation levels of 15 pct using Q&P processing through judicious alloy design and heat treating parameter definition. In addition, detailed microstructural characterization and study of properties, processing and microstructure interrelationships were pursued to develop strategies to further enhance tensile properties. In order to accomplish these objectives, alloy design was conducted towards achieving the target properties. Twelve alloys were designed and laboratory produced involving melting, alloying, casting, hot rolling, and cold rolling to obtain sheet steels of approximately 1 mm thickness. Q&P processing of the samples was then conducted. Target properties were achieved and substantially exceeded demonstrating success in the developed and employed alloy design approaches. The best combinations of tensile properties were found at approximately 1550 MPa with a total elongation in excess of 20 pct clearly showing the potential for replacement of hot stamping to produce advanced high strength steels.« less
Maxild, J; Andersen, M; Kiel, P
1978-01-01
Mutagenic activity of fume particles produced by metal arc welding on stainless steel (ss) is demonstrated by using the Salmonella/microsome mutagenicity test described by Ames et al., with strain TA100 (base-pair substitution) and TA98 (frame-shift reversion). Results of a representative but limited selection of processes and materials show that mutagenic activity is a function of process and process parameters. Welding on stainless steel produces particles that are mutagenic, whereas welding on mild steel (ms) produces particles that are not. Manual metal arc (MMA) welding on stainless steel produces particles of higher mutagenic activity than does metal inert gas (MIG) welding, and fume particles produced by MIG welding under short-arc transfer. Further studies of welding fumes (both particles and gases) must be performed to determine process parameters of significance for the mutagenic activity.
Effect of Aluminum Alloying on the Hot Deformation Behavior of Nano-bainite Bearing Steel
NASA Astrophysics Data System (ADS)
Yang, Z. N.; Dai, L. Q.; Chu, C. H.; Zhang, F. C.; Wang, L. W.; Xiao, A. P.
2017-12-01
Interest in using aluminum in nano-bainite steel, especially for high-carbon bearing steel, is gradually growing. In this study, GCr15SiMo and GCr15SiMoAl steels are introduced to investigate the effect of Al alloying on the hot deformation behavior of bearing steel. Results show that the addition of Al not only notably increases the flow stress of steel due to the strong strengthening effect of Al on austenite phase, but also accelerates the strain-softening rates for its increasing effect on stacking fault energy. Al alloying also increases the activation energy of deformation. Two constitutive equations with an accuracy of higher than 0.99 are proposed. The constructed processing maps show the expanded instability regions for GCr15SiMoAl steel as compared with GCr15SiMo steel. This finding is consistent with the occurrence of cracking on the GCr15SiMoAl specimens, revealing that Al alloying reduces the high-temperature plasticity of the bearing steel. On the contrary, GCr15SiMoAl steel possesses smaller grain size than GCr15SiMo steel, manifesting the positive effect of Al on bearing steel. Attention should be focused on the hot working process of bearing steel with Al.
Microstructural analysis of hot press formed 22MnB5 steel
NASA Astrophysics Data System (ADS)
Aziz, Nuraini; Aqida, Syarifah Nur; Ismail, Izwan
2017-10-01
This paper presents a microstructural study on hot press formed 22MnB5 steel for enhanced mechanical properties. Hot press forming process consists of simultaneous forming and quenching of heated blank. The 22MnB5 steel was processed at three different parameter settings: quenching time, water temperature and water flow rate. 22MnB5 was processed using 33 full factorial design of experiment (DOE). The full factorial DOE was designed using three factors of quenching time, water temperature and water flow rate at three levels. The factors level were quenching time range of 5 - 11 s, water temperature; 5 - 27°C and water flow rate; 20 - 40 L/min. The as-received and hot press forming processed steel was characterised for metallographic study and martensitic structure area percentage using JEOL Field Emission Scanning Electron Microscopic (FESEM). From the experimental finding, the hot press formed 22MnB5 steel consisted of 50 to 84% martensitic structure area. The minimum quenching time of 8 seconds was required to obtain formed sample with high percentage of martensite. These findings contribute to initial design of processing parameters in hot press forming of 22MnB5 steel blanks for automotive component.
NASA Astrophysics Data System (ADS)
Huang, Q.; Volkova, O.; De Cooman, BC; Biermann, H.; Mola, J.
2018-06-01
The effect of Si on the efficiency of carbon partitioning during quenching and partitioning (Q&P) processing of stainless steels was studied. For this purpose, 2 mass-% Si was added to a Fe-13Cr-0.47C reference steel. The Si-free (reference) and Si-added steels were subjected to Q&P cycles in dilatometer. The carbon enrichment of austenite in both steels was evaluated by determining the temperature interval between the quench temperature and the martensite start temperature of secondary martensite formed during final cooling to room temperature. In Q&P cycles with comparable martensite fractions at the quench temperature, the carbon enrichment of austenite after partitioning was similar for both steels. To compare the mechanical stability of austenite, Q&P-processed specimens of both steels were tensile tested in the temperature range 20-200 °C. The quench and partitioning temperatures were room temperature and 450 °C, respectively. Si addition had no meaningful influence on mechanical stability of austenite. The results indicate that the suppression of cementite formation by Si addition to stainless steels, as confirmed by transmission electron microscopy examinations, has no noticeable influence on the carbon enrichment of austenite in the partitioning step.
A comprehensive review on cold work of AISI D2 tool steel
NASA Astrophysics Data System (ADS)
Abdul Rahim, Mohd Aidil Shah bin; Minhat, Mohamad bin; Hussein, Nur Izan Syahriah Binti; Salleh, Mohd Shukor bin
2017-11-01
As a common material in mould and die application, AISI D2 cold work tool steel has proven to be a promising chosen material in the industries. However, challenges remain in using AISI D2 through a modified version with a considerable progress having been made in recent years. This paper provides a critical review of the original as-cast AISI D2 cold work tool steel up to the modified version. The main purpose is to develop an understanding of current modified tool steel trend; the machinability of AISI D2 (drilling, milling, turning, grinding and EDM/WEDM; and the microstructure evolution and mechanical properties of these cold work tool steels due to the presence of alloy materials in the steel matrix. The doping of rare earth alloy element, new steel fabrication processes, significant process parameter in machinability and surface treatment shows that there have been few empirical investigations into these cold work tool steel alloys. This study has discovered that cold work tool steel will remain to be explored in order to survive in the steel industries.
Simulation of Flow Fluid in the BOF Steelmaking Process
NASA Astrophysics Data System (ADS)
Lv, Ming; Zhu, Rong; Guo, Ya-Guang; Wang, Yong-Wei
2013-12-01
The basic oxygen furnace (BOF) smelting process consists of different chemical reactions among oxygen, slag, and molten steel, which engenders a vigorous stirring process to promote slagging, dephosphorization, decarbonization, heating of molten steel, and homogenization of steel composition and temperature. Therefore, the oxygen flow rate, lance height, and slag thickness vary during the smelting process. This simulation demonstrated a three-dimensional mathematical model for a 100 t converter applying four-hole supersonic oxygen lance and simulated the effect of oxygen flow rate, lance height, and slag thickness on the flow of molten bath. It is found that as the oxygen flow rate increases, the impact area and depth increases, which increases the flow speed in the molten bath and decreases the area of dead zone. Low oxygen lance height benefits the increase of impact depth and accelerates the flow speed of liquid steel on the surface of the bath, while high oxygen lance height benefits the increase of impact area, thereafter enhances the uniform distribution of radial velocity in the molten steel and increases the flow velocity of molten steel at the bottom of furnace hearth. As the slag thickness increases, the diameter of impinging cavity on the slag and steel surface decreases. The radial velocity of liquid steel in the molten bath is well distributed when the jet flow impact on the slag layer increases.
49 CFR 178.56 - Specification 4AA480 welded steel cylinders.
Code of Federal Regulations, 2014 CFR
2014-10-01
... by spinning process not permitted. (b) Steel. The limiting chemical composition of steel authorized... equipment and processes adequate to ensure that each cylinder produced conforms to the requirements of this... welding or by threads. If threads are used they must comply with the following: (i) Threads must be clean...
49 CFR 178.56 - Specification 4AA480 welded steel cylinders.
Code of Federal Regulations, 2010 CFR
2010-10-01
... by spinning process not permitted. (b) Steel. The limiting chemical composition of steel authorized... equipment and processes adequate to ensure that each cylinder produced conforms to the requirements of this... welding or by threads. If threads are used they must comply with the following: (i) Threads must be clean...
49 CFR 178.53 - Specification 4D welded steel cylinders for aircraft use.
Code of Federal Regulations, 2014 CFR
2014-10-01
... in by spinning process are not authorized. (b) Steel. Open-hearth or electric steel of uniform and.... (d) Manufacture. Cylinders must be manufactured using equipment and processes adequate to ensure that... fitting, boss, or pad, securely attached to the container by brazing or by welding or by threads. If...
49 CFR 178.56 - Specification 4AA480 welded steel cylinders.
Code of Federal Regulations, 2013 CFR
2013-10-01
... by spinning process not permitted. (b) Steel. The limiting chemical composition of steel authorized... equipment and processes adequate to ensure that each cylinder produced conforms to the requirements of this... welding or by threads. If threads are used they must comply with the following: (i) Threads must be clean...
49 CFR 178.53 - Specification 4D welded steel cylinders for aircraft use.
Code of Federal Regulations, 2013 CFR
2013-10-01
... in by spinning process are not authorized. (b) Steel. Open-hearth or electric steel of uniform and.... (d) Manufacture. Cylinders must be manufactured using equipment and processes adequate to ensure that... fitting, boss, or pad, securely attached to the container by brazing or by welding or by threads. If...
49 CFR 178.53 - Specification 4D welded steel cylinders for aircraft use.
Code of Federal Regulations, 2012 CFR
2012-10-01
... in by spinning process are not authorized. (b) Steel. Open-hearth or electric steel of uniform and.... (d) Manufacture. Cylinders must be manufactured using equipment and processes adequate to ensure that... fitting, boss, or pad, securely attached to the container by brazing or by welding or by threads. If...
49 CFR 178.56 - Specification 4AA480 welded steel cylinders.
Code of Federal Regulations, 2012 CFR
2012-10-01
... by spinning process not permitted. (b) Steel. The limiting chemical composition of steel authorized... equipment and processes adequate to ensure that each cylinder produced conforms to the requirements of this... welding or by threads. If threads are used they must comply with the following: (i) Threads must be clean...
NASA Astrophysics Data System (ADS)
Li, Yi-hong; Bao, Yan-ping; Wang, Rui; Ma, Li-feng; Liu, Jian-sheng
2018-02-01
A water model and a high-speed video camera were utilized in the 300-t RH equipment to study the effect of steel flow patterns in a vacuum chamber on fast decarburization and a superior flow-pattern map was obtained during the practical RH process. There are three flow patterns with different bubbling characteristics and steel surface states in the vacuum chamber: boiling pattern (BP), transition pattern (TP), and wave pattern (WP). The effect of the liquid-steel level and the residence time of the steel in the chamber on flow patterns and decarburization reaction were investigated, respectively. The liquid-steel level significantly affected the flow-pattern transition from BP to WP, and the residence time and reaction area were crucial to evaluate the whole decarburization process rather than the circulation flow rate and mixing time. A superior flow-pattern map during the practical RH process showed that the steel flow pattern changed from BP to TP quickly, and then remained as TP until the end of decarburization.
NASA Astrophysics Data System (ADS)
Li, Yu; Milbourn, David
Vanadium microalloying is highly effective in high strength strip steels produced by thin slab casting and direct rolled process. Because of the high solubility of V(C,N) in austenite, vanadium is likely to remain in solution during casting, equalisation and rolling. Vanadium microalloyed steels have better hot ductility and are less prone to transverse cracking than niobium containing steels. Despite a coarse as-cast austenite grain size before rolling, significant grain refinement can be achieved in vanadium microalloyed steels by repeated recrystallization during rolling, resulting in a fine uniform ferrite microstructure in final strip. Almost all vanadium present in microalloyed steels is available to precipitate in ferrite as very fine particles, contributing to precipitation strengthening. Vanadium microalloyed steels show less sensitivity to rolling process variables and exhibit excellent combination of strength and toughness.
NASA Astrophysics Data System (ADS)
García-Díaz, J. Carlos
2009-11-01
Fault detection and diagnosis is an important problem in process engineering. Process equipments are subject to malfunctions during operation. Galvanized steel is a value added product, furnishing effective performance by combining the corrosion resistance of zinc with the strength and formability of steel. Fault detection and diagnosis is an important problem in continuous hot dip galvanizing and the increasingly stringent quality requirements in automotive industry has also demanded ongoing efforts in process control to make the process more robust. When faults occur, they change the relationship among these observed variables. This work compares different statistical regression models proposed in the literature for estimating the quality of galvanized steel coils on the basis of short time histories. Data for 26 batches were available. Five variables were selected for monitoring the process: the steel strip velocity, four bath temperatures and bath level. The entire data consisting of 48 galvanized steel coils was divided into sets. The first training data set was 25 conforming coils and the second data set was 23 nonconforming coils. Logistic regression is a modeling tool in which the dependent variable is categorical. In most applications, the dependent variable is binary. The results show that the logistic generalized linear models do provide good estimates of quality coils and can be useful for quality control in manufacturing process.
NASA Astrophysics Data System (ADS)
Seo, Ja-Ye; Lee, Ki-Yong; Shim, Do-Sik
2018-01-01
This paper describes the fabrication of lightweight metal foams using the directed energy deposition (DED) method. DED is a highly flexible additive manufacturing process wherein a metal powder mixed with a foaming agent is sprayed while a high-power laser is used to simultaneously melt the powder mixture into layered metal foams. In this study, a mixture of a carbon steel material (P21 powder) and a widely used foaming agent, ZrH2, is used to fabricate metal foams. The effects of various process parameters, such as the laser power, powder feed rate, powder gas flow rate, and scanning speed, on the deposition characteristics (porosity, pore size, and pore distribution) are investigated. The synthesized metal foams exhibit porosities of 10% or lower, and a mean pore area of 7 × 105 μm2. It is observed that the degree of foaming increases in proportion to the laser power to a certain extent. The results also show that the powder feed rate has the most pronounced effect on the porosity of the metal foams, while the powder gas flow rate is the most suitable parameter for adjusting the size of the pores formed within the foams. Further, the scanning speed, which determines the amounts of energy and powder delivered, has a significant effect on the height of the deposits as well as on the properties of the foams. Thus, during the DED process for fabricating metal foams, the pore size and distribution and hence the foam porosity can be tailored by varying the individual process parameters. These findings should be useful as reference data for the design of processes for fabricating porous metallic materials that meet the specific requirements for specialized parts.
High Fragmentation Steel Production Process
1981-08-01
Hsv j , —U -I* : -’ 1 . ’ ; - * - 1 "^Sv i ! :.:.; 1 HEBUCTIOK AHU.,, .../y?.;-’" • jttoireAnoi..|..r!.5^«. ::^;;;i:^l^~!’in...on rmrerae aide 11 neceaaary and Identity by block number) HF- 1 Steel Metallurgical Evaluation MMT-Process improvement 20. ABSTRACT ("ContfBu...ao reraram attba tt n*c*aaMey and. IderUlty by block numbat) Two heats of B0F HF- 1 steel were purchased, one from Republic Steel and one from
Stainless steel anodes for alkaline water electrolysis and methods of making
Soloveichik, Grigorii Lev
2014-01-21
The corrosion resistance of stainless steel anodes for use in alkaline water electrolysis was increased by immersion of the stainless steel anode into a caustic solution prior to electrolysis. Also disclosed herein are electrolyzers employing the so-treated stainless steel anodes. The pre-treatment process provides a stainless steel anode that has a higher corrosion resistance than an untreated stainless steel anode of the same composition.
Supertough Stainless Bearing Steel
NASA Technical Reports Server (NTRS)
Olson, Gregory B.
1995-01-01
Composition and processing of supertough stainless bearing steel designed with help of computer-aided thermodynamic modeling. Fracture toughness and hardness of steel exceeds those of other bearing steels like 440C stainless bearing steel. Developed for service in fuel and oxidizer turbopumps on Space Shuttle main engine. Because of strength and toughness, also proves useful in other applications like gears and surgical knives.
Plasticity Modelling in PM Steels
NASA Astrophysics Data System (ADS)
Andersson, M.; Angelopoulos, V.
2017-12-01
Simulations are continuously becoming more and more important to predict the behaviour of materials, components and structures. Porous materials, such as PM, put special demands on the material models used. This paper investigates the application of the Gurson material model to PM steels. It is shown how the model can be calibrated to material data. The results are also applied to an indentation test, where it's demonstrated that experimental results can be reproduced with some accuracy. Limitations of the model, and the potential to use more advanced material models are also discussed.
X-ray fluorescence analysis of alloy and stainless steels using a mercuric iodide detector
NASA Technical Reports Server (NTRS)
Kelliher, Warren C.; Maddox, W. Gene
1988-01-01
A mercuric iodide detector was used for the XRF analysis of a number of NBS standard steels, applying a specially developed correction method for interelemental effects. It is shown that, using this method and a good peak-deconvolution technique, the HgI2 detector is capable of achieving resolutions and count rates needed in the XRF anlysis of multielement samples. The freedom from cryogenic cooling and from power supplies necessary for an electrically cooled device makes this detector a very good candidate for a portable instrument.
An Analysis of the Load-Bearing Capacity of Timber-Concrete Composite Beams with Profiled Sheeting
NASA Astrophysics Data System (ADS)
Szumigała, Maciej; Szumigała, Ewa; Polus, Łukasz
2017-12-01
This paper presents an analysis of timber-concrete composite beams. Said composite beams consist of rectangular timber beams and concrete slabs poured into the steel sheeting. The concrete slab is connected with the timber beam using special shear connectors. The authors of this article are trying to patent these connectors. The article contains results from a numerical analysis. It is demonstrated that the type of steel sheeting used as a lost formwork has an influence on the load-bearing capacity and stiffness of the timber-concrete composite beams.
Karnaukh, N G; Petrov, G A; Gapon, V A; Poslednichenko, I P; Shmidt, S E
1992-01-01
Inspection of the environment in manganese-alloyed steel production showed inadequate hygienic conditions of the technological processes employed. Air was more polluted by manganese oxides during the oxygen-converter process though their highest concentrations, 38 times exceeding the MAS, appeared during the casting of steel. An electric furnace coated by dust-noise-proof material and gas cleaning is preferable from a hygienic point of view. The influence of unfavourable microclimate, intensive infrared irradiation and loud noise on workers necessitates automation and mechanization of the process in order to improve the working conditions.
Simulation of Structural Transformations in Heating of Alloy Steel
NASA Astrophysics Data System (ADS)
Kurkin, A. S.; Makarov, E. L.; Kurkin, A. B.; Rubtsov, D. E.; Rubtsov, M. E.
2017-07-01
Amathematical model for computer simulation of structural transformations in an alloy steel under the conditions of the thermal cycle of multipass welding is presented. The austenitic transformation under the heating and the processes of decomposition of bainite and martensite under repeated heating are considered. Amethod for determining the necessary temperature-time parameters of the model from the chemical composition of the steel is described. Published data are processed and the results used to derive regression models of the temperature ranges and parameters of transformation kinetics of alloy steels. The method developed is used in computer simulation of the process of multipass welding of pipes by the finite-element method.
Optimization of Laser Keyhole Welding Strategies of Dissimilar Metals by FEM Simulation
NASA Astrophysics Data System (ADS)
Garcia Navas, Virginia; Leunda, Josu; Lambarri, Jon; Sanz, Carmen
2015-07-01
Laser keyhole welding of dissimilar metals has been simulated to study the effect of welding strategies (laser beam displacements and tilts) and combination of metals to be welded on final quality of the joints. Molten pool geometry and welding penetration have been studied but special attention has been paid to final joint material properties, such as microstructure/phases and hardness, and especially to the residual stress state because it greatly conditions the service life of laser-welded components. For a fixed strategy (laser beam perpendicular to the joint) austenitic to carbon steel laser welding leads to residual stresses at the joint area very similar to those obtained in austenitic to martensitic steel welding, but welding of steel to Inconel 718 results in steeper residual stress gradients and higher area at the joint with detrimental tensile stresses. Therefore, when the difference in thermo-mechanical properties of the metals to be welded is higher, the stress state generated is more detrimental for the service life of the component, and consequently more relevant is the optimization of welding strategy. In laser keyhole welding of austenitic to martensitic stainless steel and austenitic to carbon steel, the optimum welding strategy is displacing the laser beam 1 mm toward the austenitic steel. In the case of austenitic steel to Inconel welding, the optimum welding strategy consists in setting the heat source tilted 45 deg and moved 2 mm toward the austenitic steel.
Precipitation evolution in a Ti-free and Ti-containing stainless maraging steel.
Schober, M; Schnitzer, R; Leitner, H
2009-04-01
Stainless maraging steels have a Cr content higher than 12wt% and show a excellent combination of high strength and ductility, which make them attractive for use in machinery fields and aircraft applications. The massive increase of strength during ageing treatment of maraging steels is related to a precipitation sequence of various nm-scaled intermetallic phases. The peak hardness especially in Ti-containing maraging steels can be reached after short-time ageing at temperatures around 500 degrees C. However, precipitation reactions in different stainless maraging steels are not fully understood, especially the evolution from clustering over growing to coarsening. In the present work a commercial maraging steel and a Ti-containing model alloy are investigated and compared to each other. The steels were isothermally heat treated at 525 degrees C for a range of times. Special emphasis was laid on the correlation of hardness to the formation and presence of different kinds of precipitates. The isothermal aged samples were investigated by using two advanced three-dimensional energy compensated atom probes (LEAP and 3DAP) both in voltage mode and in laser mode. The atom probe data were correlated to standard hardness measurements. The results show that the partial substitution of Al by Ti results in a different precipitation behaviour. While the Ti-free maraging steel exhibit only one type of precipitate, the Ti-containing grade shows a change in the type of precipitates during ageing. However, this change leads to an accelerated coarsening and thus to a faster drop in hardness.
Modeling the Gas Nitriding Process of Low Alloy Steels
NASA Astrophysics Data System (ADS)
Yang, M.; Zimmerman, C.; Donahue, D.; Sisson, R. D.
2013-07-01
The effort to simulate the nitriding process has been ongoing for the last 20 years. Most of the work has been done to simulate the nitriding process of pure iron. In the present work a series of experiments have been done to understand the effects of the nitriding process parameters such as the nitriding potential, temperature, and time as well as surface condition on the gas nitriding process for the steels. The compound layer growth model has been developed to simulate the nitriding process of AISI 4140 steel. In this paper the fundamentals of the model are presented and discussed including the kinetics of compound layer growth and the determination of the nitrogen diffusivity in the diffusion zone. The excellent agreements have been achieved for both as-washed and pre-oxided nitrided AISI 4140 between the experimental data and simulation results. The nitrogen diffusivity in the diffusion zone is determined to be constant and only depends on the nitriding temperature, which is ~5 × 10-9 cm2/s at 548 °C. It proves the concept of utilizing the compound layer growth model in other steels. The nitriding process of various steels can thus be modeled and predicted in the future.
NASA Astrophysics Data System (ADS)
Lee, D.
1995-09-01
The JET KOTE coating process is a high-velocity oxyfuel process used to form coatings of high quality and density. Coatings can be produced from carbide-bearing composite, alloyed metallic, nonmetallic, intermetallic, or pure metal powders. The coatings are used for wear and/or corrosion resistance in the aircraft, chemical, oil and gas, and steel manufacturing industries, as well as in other demanding fields. Many applications, especially in the petrochemical field, require thick coatings. Coatings must be applied economically, without loss of integrity. Thickness limitations are thought to be due to coating stress, which results in coating cracks and/or delamination and ultimately in failure. This paper examines the effects of operating parameters and techniques on the physical properties of thick coatings produced from Stelcar JK117, a tungsten carbide/17 % Co composite powder. Special emphasis is placed on those parameters which are economically desirable to achieve high deposition rates.
Simulation of springback and microstructural analysis of dual phase steels
NASA Astrophysics Data System (ADS)
Kalyan, T. Sri.; Wei, Xing; Mendiguren, Joseba; Rolfe, Bernard
2013-12-01
With increasing demand for weight reduction and better crashworthiness abilities in car development, advanced high strength Dual Phase (DP) steels have been progressively used when making automotive parts. The higher strength steels exhibit higher springback and lower dimensional accuracy after stamping. This has necessitated the use of simulation of each stamped component prior to production to estimate the part's dimensional accuracy. Understanding the micro-mechanical behaviour of AHSS sheet may provide more accuracy to stamping simulations. This work can be divided basically into two parts: first modelling a standard channel forming process; second modelling the micro-structure of the process. The standard top hat channel forming process, benchmark NUMISHEET'93, is used for investigating springback effect of WISCO Dual Phase steels. The second part of this work includes the finite element analysis of microstructures to understand the behaviour of the multi-phase steel at a more fundamental level. The outcomes of this work will help in the dimensional control of steels during manufacturing stage based on the material's microstructure.
[Measurement of chemical agents in metallurgy field: electric steel plant].
Cottica, D; Grignani, E; Ghitti, R; Festa, D; Apostoli, P
2012-01-01
The steel industry maintains its important position in the context of the Italian production involving thousands of workers. The iron and steel processes are divided into primary steel industry, production of intermediate minerals, and secondary steel, scrap from the production of semi-finished industrial and consumer sector (metal inserted into components and metal used for dissipative uses, primarily coatings) and industrial waste. The paper presents the results of environmental monitoring carried out in some electric steel plant for the measurement of airborne chemicals that characterize the occupational exposure of workers employed in particular area like electric oven, to treatment outside the furnace, continuous casting area. For the sampling of the pollutants were used both personal and in fixed positions samplers. The pollutants measured are those typical of steel processes inhalable dust, metals, respirable dust, crystalline silica, but also Polycyclic Aromatic Hydrocarbons (PAH), polychlorinated dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs).
76 FR 52054 - Notice of Application for Special Permits
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-19
.... Column (9B), transportation in 172.204(c)(3), commerce of certain 173.27(b)(2), hazardous materials by..., Stainless Steel lined composite pressure vessels per DOT- CFFC specification. (modes 1, 2, 3, 4, 5) 15413-N...
Closed circuit TV system monitors welding operations
NASA Technical Reports Server (NTRS)
Gilman, M.
1967-01-01
TV camera system that has a special vidicon tube with a gradient density filter is used in remote monitoring of TIG welding of stainless steel. The welding operations involve complex assembly welding tools and skates in areas of limited accessibility.
Thermomechanical Processing and Texture Development in Ni-Cr-Mo and Mn-Mo-B Armor Steels
1984-04-01
steel , has a fairly low hardenability with respect to the forma- tion of ferrite fcom austenite. However, both steels transformed isothermally to...plates of both armor steels . Because of the relatively low hardenabilities of these steels , particularly the Ni-Cr-Mo steel , ferrite formation could not be...Austenite at Selected Temperatures. To obtain some information on the kinetics of phase transformations in highly deformed austenite of the two
NASA Astrophysics Data System (ADS)
Tang, Bingtao; Wang, Qiaoling; Wei, Zhaohui; Meng, Xianju; Yuan, Zhengjun
2016-05-01
Ultra-high-strength in sheet metal parts can be achieved with hot stamping process. To improve the crash performance and save vehicle weight, it is necessary to produce components with tailored properties. The use of tailor-welded high-strength steel is a relatively new hot stamping process for saving weight and obtaining desired local stiffness and crash performance. The simulation of hot stamping boron steel, especially tailor-welded blanks (TWBs) stamping, is more complex and challenging. Information about thermal/mechanical properties of tools and sheet materials, heat transfer, and friction between the deforming material and the tools is required in detail. In this study, the boron-manganese steel B1500HS and high-strength low-alloy steel B340LA are tailor welded and hot stamped. In order to precisely simulate the hot stamping process, modeling and simulation of hot stamping tailor-welded high-strength steels, including phase transformation modeling, thermal modeling, and thermal-mechanical modeling, is investigated. Meanwhile, the welding zone of tailor-welded blanks should be sufficiently accurate to describe thermal, mechanical, and metallurgical parameters. FE simulation model using TWBs with the thickness combination of 1.6 mm boron steel and 1.2 mm low-alloy steel is established. In order to evaluate the mechanical properties of the hot stamped automotive component (mini b-pillar), hardness and microstructure at each region are investigated. The comparisons between simulated results and experimental observations show the reliability of thermo-mechanical and metallurgical modeling strategies of TWBs hot stamping process.
Multicriteria Analysis of Assembling Buildings from Steel Frame Structures
NASA Astrophysics Data System (ADS)
Miniotaite, Ruta
2017-10-01
Steel frame structures are often used in the construction of public and industrial buildings. They are used for: all types of slope roofs; walls of newly-built public and industrial buildings; load bearing structures; roofs of renovated buildings. The process of assembling buildings from steel frame structures should be analysed as an integrated process influenced by such factors as construction materials and machinery used, the qualification level of construction workers, complexity of work, available finance. It is necessary to find a rational technological design solution for assembling buildings from steel frame structures by conducting a multiple criteria analysis. The analysis provides a possibility to evaluate the engineering considerations and find unequivocal solutions. The rational alternative of a complex process of assembling buildings from steel frame structures was found through multiple criteria analysis and multiple criteria evaluation. In multiple criteria evaluation of technological solutions for assembling buildings from steel frame structures by pairwise comparison method the criteria by significance are distributed as follows: durability is the most important criterion in the evaluation of alternatives; the price (EUR/unit of measurement) of a part of assembly process; construction workers’ qualification level (category); mechanization level of a part of assembling process (%), and complexity of assembling work (in points) are less important criteria.
NASA Astrophysics Data System (ADS)
Vogt, S.; Neumayer, F. F.; Serkyov, I.; Jesner, G.; Kelsch, R.; Geile, M.; Sommer, A.; Golle, R.; Volk, W.
2017-09-01
Steel is the most common material used in vehicles’ chassis, which makes its research an important topic for the automotive industry. Recently developed ultra-high-strength steels (UHSS) provide extreme tensile strength up to 1,500 MPa and combine great crashworthiness with good weight reduction potential. However, in order to reach the final shape of sheet metal parts additional cutting steps such as trimming and piercing are often required. The final trimming of quenched metal sheets presents a huge challenge to a conventional process, mainly because of the required extreme cutting force. The high cutting impact, due to the materials’ brittleness, causes excessive tool wear or even sudden tool failure. Therefore, a laser is commonly used for the cutting process, which is time and energy consuming. The purpose of this paper is to demonstrate the capability of a conventional blanking tool design in a continuous stroke piercing process using boron steel 22MnB5 sheets. Two different types of tool steel were tested for their suitability as active cutting elements: electro-slag remelted (ESR) cold work tool steel Bohler K340 ISODUR and powder-metallurgic (PM) high speed steel Bohler S390 MICROCLEAN. A FEM study provided information about an optimized punch design, which withstands buckling under high cutting forces. The wear behaviour of the process was assessed by the tool wear of the active cutting elements as well as the quality of cut surfaces.
Special Purpose Nuclear Reactor (5 MW) for Reliable Power at Remote Sites Assessment Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sterbentz, James William; Werner, James Elmer; McKellar, Michael George
The Phenomena Identification and Ranking Table (PIRT) technique was conducted on the Special Purpose Reactor nuclear plant design. The PIRT is a structured process to identify safety-relevant/safety-significant phenomena and assess the importance and knowledge base by ranking the phenomena. The Special Purpose Reactor is currently in the conceptual design stage. The candidate reactor has a solid monolithic stainless steel core with an array of heat pipes and fuel pellets embedded in the monolith. The heat pipes are used to remove heat from the core using simple, reliable, and well-characterized physics (capillarity, boiling, and condensation). In the initial design, one heatmore » exchanger is used for the working fluid that produces energy, and a second heat exchanger is used to remove decay heat in emergency or shutdown conditions. In addition, a power conversion cycle such as an open-air Brayton system is available as an option for power conversion and process heat. This report summarizes and documents the process and scope of the four PIRT reviews, noting the major activities and conclusions. The identified phenomena, analyses, rationales, and associated ratings are presented along with a summary of the findings from the four individual PIRTs, namely (1) Reactor Accident and Normal Operations, (2) Heat Pipes, (3) Materials, and (4) Power Conversion. The PIRT reports for these four major system areas evaluated are attached as appendixes to this report and provide considerably more detail about each assessment as well as a more complete listing of the phenomena that were evaluated.« less
Novel water-air circulation quenching process for AISI 4140 steel
NASA Astrophysics Data System (ADS)
Zheng, Liyun; Zheng, Dawei; Zhao, Lixin; Wang, Lihui; Zhang, Kai
2013-11-01
AISI 4140 steel is usually used after quenching and tempering. During the heat treatment process in industry production, there are some problems, such as quenching cracks, related to water-cooling and low hardness due to oil quenching. A water-air circulation quenching process can solve the problems of quenching cracks with water and the high cost quenching with oil, which is flammable, unsafe and not enough to obtain the required hardness. The control of the water-cooling and air-cooling time is a key factor in the process. This paper focuses on the quenching temperature, water-air cycle time and cycle index to prevent cracking for AISI 4140 steel. The optimum heat treatment parameters to achieve a good match of the strength and toughness of AISI 4140 steel were obtained by repeated adjustment of the water-air circulation quenching process parameters. The tensile strength, Charpy impact energy at -10 °C and hardness of the heat treated AISI 4140 steel after quenching and tempering were approximately 1098 MPa, 67.5 J and 316 HB, respectively.
Tensile strength/yield strength (TS/YS) ratios of high-strength steel (HSS) reinforcing bars
NASA Astrophysics Data System (ADS)
Tavio, Anggraini, Retno; Raka, I. Gede Putu; Agustiar
2018-05-01
The building codes such as American Concrete Institute (ACI) 318M-14 and Standard National Indonesia (SNI) 2847:2013 require that the ratio of tensile strength (TS) and yield strength (YS) should not less than 1.25. The requirement is based on the assumption that a capability of a structural member to develop inelastic rotation capacity is a function of the length of the yield region. This paper reports an investigation on various steel grades, namely Grades 420, 550, 650, and 700 MPa, to examine the impact of different TS/YS ratios if it is less or greater than the required value. Grades 550, 650, and 700 MPa were purposely selected with the intention to examine if these higher grades are still promising to be implemented in special structural systems since they are prohibited by the building codes for longitudinal reinforcement, whereas Grade 420 MPa bars are the maximum limit of yield strength of reinforcing bars that is allowable for longitudinal reinforcement of special structural systems. Tensile tests of these steel samples were conducted under displacement controlled mode to capture the complete stress-strain curves and particularly the post-yield response of the steel bars. From the study, it can be concluded that Grade 420 performed higher TS/YS ratios and they were able to reach up to more than 1.25. However, the High Strength Still (HSS) bars (Grades 550, 600, and 700 MPa) resulted in lower TS/YS ratios (less than 1.25) compared with those of Grade 420 MPa.
Complex Nano-Scale Structures for Unprecedented Properties in Steels
Caballero, Francisca G.; Poplawsky, Jonathan D.; Yen, Hung Wei; ...
2016-11-01
Processing bulk nanoscrystalline materials for structural applications still poses a rather large challenge, particularly in achieving an industrially viable process. In this context, recent work has proved that complex nanoscale steel structures can be formed by solid reaction at low temperatures. These nanocrystalline bainitic steels present the highest strength ever recorded, unprecedented ductility, fatigue on par with commercial bearing steels and exceptional rolling-sliding wear performances. In this paper, a description of the characteristics and significance of these remarkable structures in the context of the atomic mechanism of transformation is provided.
NASA Astrophysics Data System (ADS)
Qin, Shengwei; Liu, Yu; Hao, Qingguo; Wang, Ying; Chen, Nailu; Zuo, Xunwei; Rong, Yonghua
2015-09-01
In this article, a novel quenching-partitioning-tempering (Q-P-T) process was applied to treat Fe-0.6C-1.5Mn-1.5Si-0.6Cr-0.05Nb hot-rolled high-carbon steel and the microstructures including retained austenite fraction and the average dislocation densities in both martensite and retained austenite were characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy, respectively. The Q-P-T steel exhibits high strength (1950 MPa) and elongation (12.4 pct). Comparing with the steel treated by traditional quenching and tempering (Q&T) process, the mechanism of high ductility for high-carbon Q-P-T steel is revealed as follows. Much more retained austenite existing in Q-P-T steel than in Q&T one remarkably enhances the ductility by the following two effects: the dislocation absorption by retained austenite effect and the transformation-induced plasticity effect. Besides, lower dislocation density in martensite matrix produced by Q-P-T process plays an important role in the improvement of ductility. However, some thin plates of twin-type martensite embedded in dislocation-type martensite matrix in high-carbon Q-P-T steel affect the further improvement of ductility.
The Effect of Niobium Microalloying on Processing and Application Properties of Dual Phase Steel
NASA Astrophysics Data System (ADS)
Mohrbacher, Hardy
Dual phase steel is widely used in today's car body manufacturing. Its characteristics of high n-value and good elongation (A80) are the basis of good press formability. However, practical experience has shown unexpected failure in forming operations where tight bending, stretch flanging or hole expansion are predominant. The inhomogeneous microstructure of soft ferrite and hard martensite in combination with highly localized straining is the origin of these problems. Furthermore, weldability and delayed cracking have been experienced to cause problems in ultra-high strength DP steel. Refinement and homogenization of the two-phase microstructure as well as lowering of the carbon content have been identified as remedies to the mentioned problems. However, mill processing of DP steel with reduced carbon content is more difficult especially for the higher strength levels. Niobium microalloying proved to be very effective in increasing the processing window of low-carbon DP steels besides of its natural effect of refining the microstructure. Meanwhile the production of niobium microalloyed DP steel has been established in several markets including China. The paper details the fundamentals, demonstrates respective production concepts and presents examples of application of Nb-microalloyed DP steels.
Rod Has High Tensile Strength And Low Thermal Expansion
NASA Technical Reports Server (NTRS)
Smith, D. E.; Everton, R. L.; Howe, E.; O'Malley, M.
1996-01-01
Thoriated tungsten extension rod fabricated to replace stainless-steel extension rod attached to linear variable-differential transformer in gap-measuring gauge. Threads formed on end of rod by machining with special fixtures and carefully chosen combination of speeds and feeds.
Microwave detection of fatigue cracks in specially prepared steel specimens.
DOT National Transportation Integrated Search
1998-01-01
In the aging highway systems the problems of fatigue-induced damage and cracking in metal structures are very severe. Many such systems are operating even beyond their design lifetime, which requires more than the originally prescribed inspection cyc...
Surface enhancement of cold work tool steels by friction stir processing with a pinless tool
NASA Astrophysics Data System (ADS)
Costa, M. I.; Verdera, D.; Vieira, M. T.; Rodrigues, D. M.
2014-03-01
The microstructure and mechanical properties of enhanced tool steel (AISI D2) surfaces produced using a friction stir welding (FSW) related procedure, called friction stir processing (FSP), are analysed in this work. The surface of the tool steel samples was processed using a WC-Co pinless tool and varying processing conditions. Microstructural analysis revealed that meanwhile the original substrate structure consisted of a heterogeneous distribution of coarse carbides in a ferritic matrix, the transformed surfaces consisted of very small carbides, homogenously distributed in a ferrite- bainite- martensite matrix. The morphology of the surfaces, as well as its mechanical properties, evaluated by hardness and tensile testing, were found to vary with increasing tool rotation speed. Surface hardness was drastically increased, relative to the initial hardness of bulk steel. This was attributed to ferrite and carbide refinement, as well as to martensite formation during solid state processing. At the highest rotation rates, tool sliding during processing deeply compromised the characteristics of the processed surfaces.
A Metallurgical Evaluation of the Powder-Bed Laser Additive Manufactured 4140 Steel Material
NASA Astrophysics Data System (ADS)
Wang, Wesley; Kelly, Shawn
2016-03-01
Using laser powder bed fusion (PBF-L) additive manufacturing (AM) process for steel or iron powder has been attempted for decades. This work used a medium carbon steel (AISI 4140) powder to explore the feasibility of AM. The high carbon equivalent of 4140 steel (CEIIW ≈ 0.83) has a strong tendency toward cold cracking. As such, the process parameters must be carefully controlled to ensure the AM build quality. Through an orthogonally designed experimental matrix, a laser-welding procedure was successfully developed to produce 4140 steel AM builds with no welding defects. In addition, the microstructure and micro-cleanliness of the as-welded PBF-L AM builds were also examined. The results showed an ultra-fine martensite lath structure and an ultra-clean internal quality with minimal oxide inclusion distribution. After optimizing the PBF-L AM process parameters, including the laser power and scan speed, the as-welded AM builds yielded an average tensile strength higher than 1482 MPa and an average 33 J Charpy V-notch impact toughness at -18°C. The surface quality, tensile strength, and Charpy V-notch impact toughness of AM builds were comparable to the wrought 4140 steel. The excellent mechanical properties of 4140 steel builds created by the PBF-L AM AM process make industrial production more feasible, which shows great potential for application in the aerospace, automobile, and machinery industries.
Continuous steel production and apparatus
Peaslee, Kent D [Rolla, MO; Peter, Jorg J [McMinnville, OR; Robertson, David G. C. [Rolla, MO; Thomas, Brian G [Champaign, IL; Zhang, Lifeng [Trondheim, NO
2009-11-17
A process for continuous refining of steel via multiple distinct reaction vessels for melting, oxidation, reduction, and refining for delivery of steel continuously to, for example, a tundish of a continuous caster system, and associated apparatus.
Scuffing of aluminum/steel contacts under dry sliding conditions
NASA Astrophysics Data System (ADS)
Sheiretov, Todor Konstantinov
Some typical applications where scuffing may occur are gear teeth, piston rings and cylinder pairs, cams and followers, splines, sleeve bearings, and parts of swash and wobble plate compressors. Unlike other tribology-related failures, scuffing occurs very fast, without any warning, and usually leads to the complete destruction of the sliding pair. Practical experience with steel has helped to outline safe ranges of operation for some components. Very little, however, is known about aluminum, which is the second most commonly used engineering metal. The aim of this study is to obtain a better understanding scuffing and seizure of aluminum/steel contacts. The research includes an experimental study of scuffing of aluminum/steel contacts under dry sliding conditions, a study of the physics of the scuffing process, evaluation of various hypotheses for scuffing, and modeling of scuffing. The experiments are conducted in a custom-designed tribometer, which provides accurate control of the environmental conditions. Special instrumentation, experimental procedures and software are developed as a part of the experimental program. These provide a reliable reproduction and identification of scuffing under laboratory conditions. The scuffing characteristics of five materials are obtained in air and refrigerant (R134a) environments. The effects of load, sliding velocity, mechanical strength, environmental temperature, specimen geometry, time, loading history, and type of environment are evaluated. The mechanisms leading to scuffing are studied by examination of surfaces, subsurfaces and wear debris of specimens in the process of scuffing. Quantitative measurements of subsurface plastic strain are also obtained. The theoretical part of the study includes the development of a finite element model for the contact of runned-in rough surfaces and several other models for subsurface stresses, temperatures, and strains. These models provide information about the local conditions in the subsurface. Based on the experimental observations and the scuffing models a new hypothesis for scuffing is proposed. According to this hypothesis, scuffing involves initiation of cracks due to subsurface plastic deformation, propagation of these cracks leading to the removal of the existing protective surface layers, and finally cold welding due to adhesion between bare metal surfaces.
AIS/DOE Technology Roadmap Program: Strip Casting: Anticipating New Routes To Steel Sheet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prof. Alan W. Camb; Prof. Anthony Rollett
2001-08-31
To determine the potential for strip casting in the steel industry and to develop the fundamental knowledge necessary to allow the role of strip casting in the modern steel industry to be understood. Based upon a study of carbon steel strip castings that were either produced for the program at British Steel or were received from a pre-commercial production machine, the following conclusions were made. Strip casting of carbon steels is technically feasible for sheet material from slightly less than 1 mm thick to 3 mm thick, and, assuming that it is economically viable, it will be first applied inmore » carbon steel markets that do not require stringent surface quality or extensive forming. The potential of strip casting as a casting process to be developed for steel castings is very high as the cast strip has some very novel characteristics. Direct cast carbon strip has better surface quality, shape and profile than any other casting process currently available. The more rapidly solidified structure of direct cast strip tends to be strong with low ductility; however, with adequate thermal treatment, it is possible to develop a variety of properties from the same grade. The process is more amenable at this time to production tonnages per year of the order of 500,000 tons and as such will first find niche type applications. This technology is an additional technology for steel production and will be in addition to, rather than a replacement for, current casting machines.« less
Brazing process provides high-strength bond between aluminum and stainless steel
NASA Technical Reports Server (NTRS)
Huschke, E. G., Jr.; Nord, D. B.
1966-01-01
Brazing process uses vapor-deposited titanium and an aluminum-zirconium-silicon alloy to prevent formation of brittle intermetallic compounds in stainless steel and aluminum bonding. Joints formed by this process maintain their high strength, corrosion resistance, and hermetic sealing properties.
Distribution of Stress in Deformation Zone of Niobium Microalloyed Steel
NASA Astrophysics Data System (ADS)
Jandrlić, Ivan; Rešković, Stoja; Brlić, Tin
2018-03-01
Microalloyed steels today represent a significant part of total world production and processing of steel. Although widely used, there are scarce data on the stress distribution in the deformation zone of these steels. Research was carried out on two steel grades, both low-carbon structural steels with the same basic chemical composition, with one of them additionally microalloyed with niobium. Differences in the stress distribution in the deformation zone between two tested steels were continuously observed and measured using the methods of digital image correlation and thermography. It has been found out that niobium microalloyed steel has significantly more complex material flow and stress distribution in the deformation zone when compared to the plain low carbon steel.
Distribution of Stress in Deformation Zone of Niobium Microalloyed Steel
NASA Astrophysics Data System (ADS)
Jandrlić, Ivan; Rešković, Stoja; Brlić, Tin
2018-07-01
Microalloyed steels today represent a significant part of total world production and processing of steel. Although widely used, there are scarce data on the stress distribution in the deformation zone of these steels. Research was carried out on two steel grades, both low-carbon structural steels with the same basic chemical composition, with one of them additionally microalloyed with niobium. Differences in the stress distribution in the deformation zone between two tested steels were continuously observed and measured using the methods of digital image correlation and thermography. It has been found out that niobium microalloyed steel has significantly more complex material flow and stress distribution in the deformation zone when compared to the plain low carbon steel.
NASA Astrophysics Data System (ADS)
Sych, O. V.; Khlusova, E. I.; Yashin, E. A.
2017-12-01
The paper presents the results of quantitative analysis of C, Mn, Ni and Cu content on strength and cold-resistance of rolled plates. Relations between the ferritic-bainitic structure morphology and anisotropy and steel performance characteristics have been established. Influence of thermal and deformation rolling patterns on steel structure has been studied. The steel chemical composition has been improved and precision thermomechanical processing conditions for production of cold-resistant Arc-steel plates have been developed.
Qi, Guangxia; Yue, Dongbei; Fukushima, Masami; Fukuchi, Shigeki; Nie, Yongfeng
2012-01-01
Carbonated basic oxygen furnace steel slag (hereinafter referred to as "steel slag") is generated during iron and steel manufacturing and is often classified as waste. The effect of steel slag on humification process was investigated. Catechol, glycine and glucose were used as model humic precursors from degraded biowastes. To verify that humification occurred in the system, humic-like acids (HLAs) were isolated and characterized structurally by elemental analysis, FTIR spectra, solid-state CP-MAS (13)C NMR spectra, and TMAH-Py-GC/MS. Characteristics of the steel slag-HLA were compared with those of HLAs formed in the presence of zeolite and birnessite, and with that of mature compost humic acid. The results showed that steel slag-HLA, like zeolite- and birnessite-HLA, is complex organic material containing prominent aromatic structures. Steel slag substantially accelerated the humification process, which would be highly significant for accelerating the stabilization of biowastes during composting (e.g. municipal solid waste, sewage sludge, and food waste). Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Prakash; Vanaja, J.; Laha, K.; Nageswara Rao, G. V. S.
2018-03-01
The present study focuses on the evaluation of microstructure and mechanical properties of reduced activation ferritic-martensitic (RAFM) steel (9Cr-1W-0.06Ta) subjected to thermo-mechanical treatment (TMT) in ferritic phase field. The results obtained were compared with the steel in conventional normalised plus tempered (N+T) condition. The microstructure of the steel in N+T and TMT conditions was assessed by optical and scanning electron microscopes. Hardness, tensile and creep studies were carried out and the results were correlated with the microstructural studies. While the TMT processed steel resulted in coarser prior austenite grains and exhibited ferritic microstructure with large distribution of fine M23C6 and MX precipitates, the N+T steel reveals tempered martensitic structure with finer prior austenitic grains with coarser M23C6 and MX precipitates. Although ferritic structure is present in TMT processed steel, it exhibits better tensile and creep rupture strengths than N+T steel due to the presence of increased dislocation density and finer distribution of precipitates.
Characteristics of Al2O3, MnS, and TiN inclusions in the remelting process of bearing steel
NASA Astrophysics Data System (ADS)
Yang, Liang; Cheng, Guo-guang
2017-08-01
The Al2O3, MnS, and TiN inclusions in bearing steel will deteriorate the steel's mechanical properties. Therefore, elucidating detailed characteristics of these inclusions in consumable electrode during the electroslag remelting process is important for achieving a subsequently clean ingot. In this study, a confocal scanning violet laser microscope was used to simulate the remelting process and observe, in real time, the behaviors of inclusions. The obtained images show that, after the temperature exceeded the steel solidus temperature, MnS and TiN inclusions in the specimen began to dissolve. Higher temperatures led to faster dissolution, and the inclusions disappeared before the steel was fully liquid. In the case of an observed Al2O3 inclusion, its shape changed from angular to a smooth ellipsoid in the region where the solid and liquid coexisted and it began to dissolve as the temperature continued to increase. This dissolution was driven by the difference in oxygen potential between the inclusion and the liquid steel.
NASA Astrophysics Data System (ADS)
Wang, Jing; Lu, Min-xu; Zhang, Lei; Chang, Wei; Xu, Li-ning; Hu, Li-hua
2012-06-01
To obtain high-quality dissimilar weld joints, the processes of metal inert gas (MIG) welding and tungsten inert gas (TIG) welding for duplex stainless steel (DSS) and low alloy steel were compared in this paper. The microstructure and corrosion morphology of dissimilar weld joints were observed by scanning electron microscopy (SEM); the chemical compositions in different zones were detected by energy-dispersive spectroscopy (EDS); the mechanical properties were measured by microhardness test, tensile test, and impact test; the corrosion behavior was evaluated by polarization curves. Obvious concentration gradients of Ni and Cr exist between the fusion boundary and the type II boundary, where the hardness is much higher. The impact toughness of weld metal by MIG welding is higher than that by TIG welding. The corrosion current density of TIG weld metal is higher than that of MIG weld metal in a 3.5wt% NaCl solution. Galvanic corrosion happens between low alloy steel and weld metal, revealing the weakness of low alloy steel in industrial service. The quality of joints produced by MIG welding is better than that by TIG welding in mechanical performance and corrosion resistance. MIG welding with the filler metal ER2009 is the suitable welding process for dissimilar metals jointing between UNS S31803 duplex stainless steel and low alloy steel in practical application.
48 CFR 236.570 - Additional provisions and clauses.
Code of Federal Regulations, 2010 CFR
2010-10-01
... for major construction contracts that require— (A) Major or special items of plant and equipment; or... and Demobilization. Use this clause for contracts involving major mobilization expense, or plant... 252.236-7013, Requirement for Competition Opportunity for American Steel Producers, Fabricators, and...
Development of a Hybrid Deep Drawing Process to Reduce Springback of AHSS
NASA Astrophysics Data System (ADS)
Boskovic, Vladimir; Sommitsch, Christoph; Kicin, Mustafa
2017-09-01
In future, the steel manufacturers will strive for the implementation of Advanced High Strength Steels (AHSS) in the automotive industry to reduce mass and improve structural performance. A key challenge is the definition of optimal and cost effective processes as well as solutions to introduce complex steel products in cold forming. However, the application of these AHSS often leads to formability problems such as springback. One promising approach in order to minimize springback is the relaxation of stress through the targeted heating of materials in the radius area after the deep drawing process. In this study, experiments are conducted on a Dual Phase (DP) and TWining Induced Plasticity (TWIP) steel for the process feasibility study. This work analyses the influence of various heat treatment temperatures on the springback reduction of deep drawn AHSS.
NASA Astrophysics Data System (ADS)
Xia, Jinian; Huo, Xiangdong; Li, Liejun; Peng, Zhengwu; Chen, Songjun
2017-12-01
In this study, the TMCP parameters including non-recrystallization temperature (Tnr) and optimal isothermal temperature were determined by thermal simulation experiments, and a new Ti microalloyed high strength steel plate was developed by controlling thermo-mechanical control process (TMCP) schedule. The effects of TMCP process on microstructural features, precipitation behavior and mechanical properties of Ti microalloyed high strength steel plate were investigated. The results revealed that the double-stage rolling process consist of rolling in the γ recrystallization region and the γ non-recrystallization region was benefical to promoting the mechanical properties of Ti microalloyed steel by achieving grain refinement. It was also found that large amounts of fine TiC (<10 nm) particles were precipitated during the isothermal treatment at 600 °C, which generated a 215 MPa precipitation strengthening effect.
Study of Cold Coiling Spring Steel on Microstructure and Cold Forming Performance
NASA Astrophysics Data System (ADS)
Jiang, Y.; Liang, Y. L.; Ming, Y.; Zhao, F.
2017-09-01
Medium-carbon cold-coiling locomotive spring steels were treated by a novel Q-P-T (quenching-partitioning-tempering) process. Scanning electron microscopy (SEM), transmission electron microscope (TEM) and X-ray diffraction (XRD) were used to characterize the relevant parameters of the steel. Results show that the microstructure of tested steel treated by Q-P-T process is a complex microstructures composed of martensite, bainite and retained austenite. The volume fraction of retained austenite (wt.%) is up to 31%. After pre-deforming and tempering again at 310°C, the plasticity of samples treated by Q-P-T process is still well. Fracture images show that the Q-P-T samples are ductile fracture. It is attributed to the higher volume fraction of the retained austenite and the interactions between the multi-phases in Q-P-T processed sample.
NASA Astrophysics Data System (ADS)
Jin, Yajuan; Li, Ruifeng; Yu, Zhishui; Wang, Yu
2016-04-01
Plasma arc brazing is used to join the AISI 304L stainless steel and galvanized steel plate butt joints with the CuSi3Mn1 filler wire. The effect of parameters on weld surface appearance, interfacial microstructure, and composition distribution in the joint was studied. The microhardness and mechanical tests were conducted to determine the mechanical properties of the welded specimens. The results indicated that good appearance, bead shape, and sufficient metallurgical bonding could be obtained when the brazing process was performed with a wire feeding speed of 0.8 m/min, plasma gas flow rate of 3.0 l/min, welding current of 100 A, and welding speed of 27 cm/min. During plasma arc brazing process, the top corner of the stainless steel and galvanized steel plate were heated and melted, and the melted quantity of stainless steel was much more than that of the galvanized steel due to the thermal conductivity coefficient difference between the dissimilar materials. The microhardness test results shows that the microhardness value gradually increased from the side of the galvanized steel to the stainless steel in the joint, and it is good for improving the mechanical properties of joint. The tensile strength was a little higher than that of the brazing filler, and the fracture position of weld joint was at the base metal of galvanized steel plate.
[Modelling metallic bars in an orthopaedic laboratory: postural and biomechanical analysis].
Draicchio, F; Miccio, A; Mari, S; Silvetti, A; Forzano, F; Ranavolo, A
2012-01-01
Aim of this work is to assess, with an objective technique (i.e. surface electromyography), the upper limb biomechanical load in workers specialized in manufacturing of orthopedic prostheses. We considered two different working configurations (workstation height at 105 and 110 cm) and three different materials to be modeled (aluminum, steel and titanium). Our results showed significant differences between aluminum/steel and titanium bars. As regards the working configurations, we found differences in the muscle activation patterns between the two heights, with an increased exertion of the shoulder muscles at 110 cm with respect to 105.
Cryogenic thermal diode heat pipes
NASA Technical Reports Server (NTRS)
Alario, J.
1979-01-01
The development of spiral artery cryogenic thermal diode heat pipes was continued. Ethane was the working fluid and stainless steel the heat pipe material in all cases. The major tasks included: (1) building a liquid blockage (blocking orifice) thermal diode suitable for the HEPP space flight experiment; (2) building a liquid trap thermal diode engineering model; (3) retesting the original liquid blockage engineering model, and (4) investigating the startup dynamics of artery cryogenic thermal diodes. An experimental investigation was also conducted into the wetting characteristics of ethane/stainless steel systems using a specially constructed chamber that permitted in situ observations.
Vessel V-7 and V-8 repair and characterization of insert material. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Domian, H.A.
1984-05-01
Pieces of Type SA508-2 steel, specially tempered to produce a high-impact-transition temperature, were welded in the side walls of Intermediate Test Vessels V-7 and V-8. These vessels are to be tested by the Oak Ridge National Laboratory (ORNL) in the Pressurized-Thermal-Shock (PTS) Project of the Heavy-Section Steel Technology (HSST) Program. A comparable piece of forging taken from the same source and heat treated with the vessels was characterized for its mechanical properties to provide data for use in the PTS tests.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-25
... Process Facilities and Hydrochloric Acid Regeneration Plants (Renewal) AGENCY: Environmental Protection...: NESHAP for Steel Pickling, HCl Process Facilities and Hydrochloric Acid Regeneration Plants (Renewal...: Steel pickling, HCl process facilities and hydrochloric acid regeneration plants. Estimated Number of...
Industrial Test of High Strength Steel Plates Free Boron Q890D Used for Engineering Machinery
NASA Astrophysics Data System (ADS)
Dong, Ruifeng; Liu, Zetian; Gao, Jun
The chemistry composition, process parameters and the test results of Q890D free boron high strength steel plate used for engineering machinery was studied. The 16 40 mm thickness steel plates with good mechanical properties that was yield strength of 930 970 MPa, tensile strength of 978 1017 MPa, elongation of 13.5 15%, the average impact energy value of more than 100 J were developed by improving steel purity, adopting the reasonable controlled rolling and cooling process, using reasonable off-line quenching and tempering process. The test plates have good crack resistance in 60 °C preheat temperature condition because of that there are no any cracks in the surfaces, cross-section and roots of welding joints.
NASA Astrophysics Data System (ADS)
Kiss, I.; Alexa, V.; Serban, S.; Rackov, M.; Čavić, M.
2018-01-01
The cast hipereutectoid steel (usually named Adamite) is a roll manufacturing destined material, having mechanical, chemical properties and Carbon [C] content of which stands between steelandiron, along-withitsalloyelements such as Nickel [Ni], Chrome [Cr], Molybdenum [Mo] and/or other alloy elements. Adamite Rolls are basically alloy steel rolls (a kind of high carbon steel) having hardness ranging from 40 to 55 degrees Shore C, with Carbon [C] percentage ranging from 1.35% until to 2% (usually between 1.2˜2.3%), the extra Carbon [C] and the special alloying element giving an extra wear resistance and strength. First of all the Adamite roll’s prominent feature is the small variation in hardness of the working surface, and has a good abrasion resistance and bite performance. This paper reviews key aspects of roll material properties and presents an analysis of the influences of chemical composition upon the mechanical properties (hardness) of the cast hipereutectoid steel rolls (Adamite). Using the multiple regression analysis (the double and triple regression equations), some mathematical correlations between the cast hipereutectoid steel rolls’ chemical composition and the obtained hardness are presented. In this work several results and evidence obtained by actual experiments are presented. Thus, several variation boundaries for the chemical composition of cast hipereutectoid steel rolls, in view the obtaining the proper values of the hardness, are revealed. For the multiple regression equations, correlation coefficients and graphical representations the software Matlab was used.
Load Measurement on Foundations of Rockfall Protection Systems
Volkwein, Axel; Kummer, Peter; Bitnel, Hueseyin; Campana, Lorenzo
2016-01-01
Rockfall protection barriers are connected to the ground using steel cables fixed with anchors and foundations for the steel posts. It is common practice to measure the forces in the cables, while to date measurements of forces in the foundations have been inadequately resolved. An overview is presented of existing methods to measure the loads on the post foundations of rockfall protection barriers. Addressing some of the inadequacies of existing approaches, a novel sensor unit is presented that is able to capture the forces acting on post foundations in all six degrees of freedom. The sensor unit consists of four triaxial force sensors placed between two steel plates. To correctly convert the measurements into the directional forces acting on the foundation a special in-situ calibration procedure is proposed that delivers a corresponding conversion matrix. PMID:26840315
NASA Astrophysics Data System (ADS)
Zheng, Guojun; Li, Xiaodong; Chang, Ying; Wang, Cunyu; Dong, Han
2018-02-01
Third-generation advanced automotive medium-Mn steel, which can replace 22MnB5 steel, was newly developed to improve the lightweight and crashworthiness of automobile. Studies on the formability and simulation method of medium-Mn steel have just been initiated. In this study, finite element simulation models of square-cup deep drawing were established based on various material property experiments and validated by experiments. The effects of blank holder force (BHF), fillet radii of tools (die and punch) on the maximum drawing depth (MDD), thickness distribution of the formed products, and the microstructure before and after forming were investigated and compared with those on 22MnB5 steel. Results show that the MDD of the two steels decreased with increased BHF but increased with the fillet radius of punch; however, the fillet radius of die showed no significant effect on the MDD for both steels. Compared with hot-formed 22MnB5 steel, the martensitic transformation of the hot-formed medium-Mn steel is rarely influenced by the process parameters; thus, it holds the complete, fine-grained, and uniform martensitic microstructure. Moreover, the medium-Mn has better formability, lower initial blank temperature, and smaller impact of BHF and fillet radius of tools on the hot-formed product. Thus, a theoretical basis for the replacement of 22MnB5 steel by medium-Mn steel in hot forming process is provided.
Song, Kedong; Li, Liying; Li, Wenfang; Zhu, Yanxia; Jiao, Zeren; Lim, Mayasari; Fang, Meiyun; Shi, Fangxin; Wang, Ling; Liu, Tianqing
2015-10-01
Cartilage transplantation using in vitro tissue engineered cartilage is considered a promising treatment for articular cartilage defects. In this study, we assessed the advantages of adipose derived stem cells (ADSCs) combined with chitosan/gelatin hybrid hydrogel scaffolds, which acted as a cartilage biomimetic scaffold, to fabricate a tissue engineered cartilage dynamically in vitro and compared this with traditional static culture. Physical properties of the hydrogel scaffolds were evaluated and ADSCs were inoculated into the hydrogel at a density of 1×10(7) cells/mL and cultured in a spinner flask with a special designed steel framework and feed with chondrogenic inductive media for two weeks. The results showed that the average pore size, porosity, swelling rate and elasticity modulus of hybrid scaffolds with good biocompatibility were 118.25±19.51 μm, 82.60±2.34%, 361.28±0.47% and 61.2±0.16 kPa, respectively. ADSCs grew well in chitosan/gelatin hybrid scaffold and successfully differentiated into chondrocytes, showing that the scaffolds were suitable for tissue engineering applications in cartilage regeneration. Induced cells cultivated in a dynamic spinner flask with a special designed steel frame expressed more proteoglycans and the cell distribution was much more uniform with the scaffold being filled mostly with extracellular matrix produced by cells. A spinner flask with framework promoted proliferation and chondrogenic differentiation of ADSCs within chitosan/gelatin hybrid scaffolds and accelerated dynamic fabrication of cell-hydrogel constructs, which could be a selective and good method to construct tissue engineered cartilage in vitro. Copyright © 2015 Elsevier B.V. All rights reserved.
High temperature oxidation in boiler environment of chromized steel
NASA Astrophysics Data System (ADS)
Alia, F. F.; Kurniawan, T.; Asmara, Y. P.; Ani, M. H. B.; Nandiyanto, A. B. D.
2017-10-01
The demand for increasing efficiency has led to the development and construction of higher operating temperature power plant. This condition may lead to more severe thickness losses in boiler tubes due to excessive corrosion process. Hence, the research to improve the corrosion resistance of the current operated material is needed so that it can be applied for higher temperature application. In this research, the effect of chromizing process on the oxidation behaviour of T91 steel was investigated under steam condition. In order to deposit chromium, mixture of chromium (Cr) powder as master alloy, halide salt (NH4Cl) powder as activator and alumina (Al2O3) powder as inert filler were inserted into alumina retort together with the steel sample and heated inside furnace at 1050°C for ten hours under argon gas environment. Furthermore, for the oxidation process, steels were exposed at 700°C at different oxidation time (6h-24h) under steam condition. From FESEM/EDX analysis, it was found that oxidation rate of pack cemented steel was lower than the un-packed steel. These results show that Cr from chromizing process was able to become reservoir for the formation of Cr2O3 in high temperature steam oxidation, and its existence can be used for a longer oxidation time.
NASA Astrophysics Data System (ADS)
He, Tong; Bai, Yang; Liu, Xiuting; Guo, Dan; Liu, Yandong
2018-04-01
We investigated the effect of Sn micro-alloying on recrystallization nucleation and growth processes of ferritic stainless steels. The as-received hot rolled sheets were cold rolled up to 80% reduction and then annealed at 740-880 °C for 5 min. The cold rolling and recrystallization microstructures and micro-textures of Sn-containing and Sn-free ferritic stainless steels were all determined by electron backscatter diffraction. Our Results show that Sn micro-alloying has important effects on recrystallization nucleation and growth processes of ferritic stainless steels. Sn micro-alloying conduces to grain fragmentation in the deformation band, more fragmented grains are existed in Sn-containing cold rolled sheets, which provides more sites for recrystallization nucleation. Sn micro-alloying also promotes recrystallization process and inhibits the growth of recrystallized grains. The recrystallization nucleation and growth mechanism of Sn-containing and Sn-free ferritic stainless steels are both characterized by orientation nucleation and selective growth, but Sn micro-alloying promotes the formation of γ-oriented grains. Furthermore, Sn micro-alloying contributes to the formation of Σ13b CSL boundaries and homogeneous γ-fiber texture. Combining the results of microstructure and micro-texture, the formability of Sn-containing ferritic stainless steels will be improved to some extent.
Skid resistance performance of asphalt wearing courses with electric arc furnace slag aggregates.
Kehagia, Fotini
2009-05-01
Metallurgical slags are by-products of the iron and steel industry and are subdivided into blast furnace slag and steel slag according to the different steel-producing processes. In Greece, slags are mostly produced from steelmaking using the electric arc furnace process, and subsequently are either disposed in a random way or utilized by the cement industry. Steel slag has been recently used, worldwide, as hard aggregates in wearing courses in order to improve the skidding resistance of asphalt pavements. At the Highway Laboratory, Department of Civil Engineering of Aristotle University of Thessaloniki research has been carried out in the field of steel slags, and especially in electric arc furnace (EAF) slag, to evaluate their possible use in highway engineering. In this paper, the recent results of anti-skidding performance of steel slag aggregates in highway pavements are presented.
Controlling the mechanical properties of carbon steel by thermomechanical treatment
NASA Astrophysics Data System (ADS)
Balavar, Mohsen; Mirzadeh, Hamed
2018-01-01
The effect of thermomechanical processing and heat treatment on the microstructure and mechanical properties of low carbon steel was studied. It was revealed that the dual phase ferritic-martensitic microstructure shows a good combination of tensile strength and ductility along with superior work hardening response. On the other hand, the bimodal-sized structure containing ultrafine grained (UFG) and micron-sized ferrite phase can be easily produced by cold rolling and annealing of the dual phase starting microstructure. This steel showed high yield stress, tensile strength, and ductility, but poor work hardening ability. The full annealed ferritic-pearlitic sheet with banded morphology exhibited low strength and high total elongation with the appearance of the yield point phenomenon. The martensitic steels, however, had high tensile strength and low ductility. By comparing the tensile properties of these steels, it was shown that it is possible to control the mechanical properties of low carbon steel by simple processing routes.
NASA Astrophysics Data System (ADS)
Hu, Li-Shuang; Hu, Shuang-Qi; Cao, Xiong; Zhang, Jian-Ren
2014-01-01
The insensitive main charge explosive is creating new requirements for the booster pellet of detonation trains. The traditional cylindrical booster pellet has insufficient energy output to reliably initiate the insensitive main charge explosive. In this research, a concave spherical booster pellet was designed. The initiation capacity of the concave spherical booster pellet was studied using varied composition and axial steel dent methods. The initiation process of the concave spherical booster pellet was also simulated by ANSYS/LS-DYNA. The results showed that using a concave spherical booster allows a 42% reduction in the amount of explosive needed to match the initiation capacity of a conventional cylindrical booster of the same dimensions. With the other parameters kept constant, the initiation capacity of the concave spherical booster pellet increases with decreased cone angle and concave radius. The numerical simulation results are in good agreement with the experimental data.
Coating multilayer material with improved tribological properties obtained by magnetron sputtering
NASA Astrophysics Data System (ADS)
Mateescu, A. O.; Mateescu, G.; Balasoiu, M.; Pompilian, G. O.; Lungu, M.
2017-02-01
This work is based on the Patent no. RO 128094 B1, granted by the Romanian State Office for Inventions and Trademarks. The goal of the work is to obtain for investigations tribological coatings with multilayer structure with improved tribological properties, deposited by magnetron sputtering process from three materials (sputtering targets). Starting from compound chemical materials (TiC, TiB2 and WC), as sputtering targets, by deposition in argon atmosphere on polished stainless steel, we have obtained, based on the claims of the above patent, thin films of multilayer design with promising results regarding their hardness, elastic modulus, adherence, coefficient of friction and wear resistance. The sputtering process took place in a special sequence in order to ensure better tribological properties to the coating, comparing to those of the individual component materials. The tribological properties, such as the coefficient of friction, are evaluated using the tribometer test.
Rapid Prototyping: State of the Art Review
2003-10-23
Steel H13 Tool Steel CP Ti, Ti-6Al-4V Titanium Tungsten Copper Aluminum Nickel...The company’s LENS 750 and LENS 850 machines (both $440,000 to $640,000) are capable of producing parts in 16 stainless steel , H13 tool steel ...machining. 20 The Arcam EBM S12 model sells for $500,000 and is capable of processing two materials. One is H13 tool steel , while the other
Paint Removal Using Cryogenic Processes
1992-01-01
perature. Low-carbon 3 percent nickel steel has impact strength to -100 0 F, low-carbon 9 percent nickel steel and maraging (high nickel) steel to -3201F...by cryogenic meth- ods. Cryogenic methods aie not rccommended for use on ships because of the danger of steel embrittlement by low temperatures. It...not recommended for use on ships because of the danger of steel embrittlement by low temperalures. It was demonstrated that a jet of liquid nitrogen
Flexible Metal-Fabric Radiators
NASA Technical Reports Server (NTRS)
Cross, Cynthia; Nguyen, Hai D.; Ruemmele, Warren; Andish, Kambiz K.; McCalley, Sean
2005-01-01
Flexible metal-fabric radiators have been considered as alternative means of dissipating excess heat from spacecraft and space suits. The radiators also may be useful in such special terrestrial applications as rejecting heat from space-suit-like protective suits worn in hot work environments. In addition to flexibility and consequent ease of deployment and installation on objects of varying sizes and shapes, the main advantages of these radiators over conventional rigid radiators are that they weigh less and occupy less volume for a given amount of cooling capacity. A radiator of this type includes conventional stainless-steel tubes carrying a coolant fluid. The main radiating component consists of a fabric of interwoven aluminum-foil strips bonded to the tubes by use of a proprietary process. The strip/tube bonds are strong and highly thermally conductive. Coolant is fed to and from the tubes via flexible stainless-steel manifolds designed to accommodate flexing of, and minimize bending forces on, the fabric. The manifolds are sized to minimize pressure drops and distribute the flow of coolant evenly to all the tubes. The tubes and manifolds are configured in two independent flow loops for operational flexibility and protective redundancy.
Wang, Fengyang; Wang, Shuxiao; Zhang, Lei; Yang, Hai; Gao, Wei; Wu, Qingru; Hao, Jiming
2016-05-01
The iron and steel production process is one of the predominant anthropogenic sources of atmospheric mercury emissions worldwide. In this study, field tests were conducted to study mercury emission characteristics and mass flows at two iron and steel plants in China. It was found that low-sulfur flue gas from sintering machines could contribute up to 41% of the total atmospheric mercury emissions, and desulfurization devices could remarkably help reduce the emissions. Coal gas burning accounted for 17%-49% of the total mercury emissions, and therefore the mercury control of coal gas burning, specifically for the power plant burning coal gas to generate electricity, was significantly important. The emissions from limestone and dolomite production and electric furnaces can contribute 29.3% and 4.2% of the total mercury emissions from iron and steel production. More attention should be paid to mercury emissions from these two processes. Blast furnace dust accounted for 27%-36% of the total mercury output for the whole iron and steel production process. The recycling of blast furnace dust could greatly increase the atmospheric mercury emissions and should not be conducted. The mercury emission factors for the coke oven, sintering machine and blast furnace were 0.039-0.047gHg/ton steel, and for the electric furnace it was 0.021gHg/ton steel. The predominant emission species was oxidized mercury, accounting for 59%-73% of total mercury emissions to air. Copyright © 2016. Published by Elsevier B.V.
Modeling and Simulation of Quenching and Tempering Process in steels
NASA Astrophysics Data System (ADS)
Deng, Xiaohu; Ju, Dongying
Quenching and tempering (Q&T) is a combined heat treatment process to achieve maximum toughness and ductility at a specified hardness and strength. It is important to develop a mathematical model for quenching and tempering process for satisfy requirement of mechanical properties with low cost. This paper presents a modified model to predict structural evolution and hardness distribution during quenching and tempering process of steels. The model takes into account tempering parameters, carbon content, isothermal and non-isothermal transformations. Moreover, precipitation of transition carbides, decomposition of retained austenite and precipitation of cementite can be simulated respectively. Hardness distributions of quenched and tempered workpiece are predicted by experimental regression equation. In order to validate the model, it is employed to predict the tempering of 80MnCr5 steel. The predicted precipitation dynamics of transition carbides and cementite is consistent with the previous experimental and simulated results from literature. Then the model is implemented within the framework of the developed simulation code COSMAP to simulate microstructure, stress and distortion in the heat treated component. It is applied to simulate Q&T process of J55 steel. The calculated results show a good agreement with the experimental ones. This agreement indicates that the model is effective for simulation of Q&T process of steels.
Chen, Zejun; Han, Huiquan; Ren, Wei; Huang, Guangjie
2015-01-01
On-line spray water cooling (OSWC) of electric-resistance-welded (ERW) steel pipes can replace the conventional off-line heat treatment process and become an important and critical procedure. The OSWC process improves production efficiency, decreases costs, and enhances the mechanical properties of ERW steel pipe, especially the impact properties of the weld joint. In this paper, an annular OSWC process is investigated based on an experimental simulation platform that can obtain precise real-time measurements of the temperature of the pipe, the water pressure and flux, etc. The effects of the modes of annular spray water cooling and related cooling parameters on the mechanical properties of the pipe are investigated. The temperature evolutions of the inner and outer walls of the pipe are measured during the spray water cooling process, and the uniformity of mechanical properties along the circumferential and longitudinal directions is investigated. A heat transfer coefficient model of spray water cooling is developed based on measured temperature data in conjunction with simulation using the finite element method. Industrial tests prove the validity of the heat transfer model of a steel pipe undergoing spray water cooling. The research results can provide a basis for the industrial application of the OSWC process in the production of ERW steel pipes. PMID:26201073
Chen, Zejun; Han, Huiquan; Ren, Wei; Huang, Guangjie
2015-01-01
On-line spray water cooling (OSWC) of electric-resistance-welded (ERW) steel pipes can replace the conventional off-line heat treatment process and become an important and critical procedure. The OSWC process improves production efficiency, decreases costs, and enhances the mechanical properties of ERW steel pipe, especially the impact properties of the weld joint. In this paper, an annular OSWC process is investigated based on an experimental simulation platform that can obtain precise real-time measurements of the temperature of the pipe, the water pressure and flux, etc. The effects of the modes of annular spray water cooling and related cooling parameters on the mechanical properties of the pipe are investigated. The temperature evolutions of the inner and outer walls of the pipe are measured during the spray water cooling process, and the uniformity of mechanical properties along the circumferential and longitudinal directions is investigated. A heat transfer coefficient model of spray water cooling is developed based on measured temperature data in conjunction with simulation using the finite element method. Industrial tests prove the validity of the heat transfer model of a steel pipe undergoing spray water cooling. The research results can provide a basis for the industrial application of the OSWC process in the production of ERW steel pipes.
Analytical method for promoting process capability of shock absorption steel.
Sung, Wen-Pei; Shih, Ming-Hsiang; Chen, Kuen-Suan
2003-01-01
Mechanical properties and low cycle fatigue are two factors that must be considered in developing new type steel for shock absorption. Process capability and process control are significant factors in achieving the purpose of research and development programs. Often-used evaluation methods failed to measure process yield and process centering; so this paper uses Taguchi loss function as basis to establish an evaluation method and the steps for assessing the quality of mechanical properties and process control of an iron and steel manufacturer. The establishment of this method can serve the research and development and manufacturing industry and lay a foundation in enhancing its process control ability to select better manufacturing processes that are more reliable than decision making by using the other commonly used methods.
DOT National Transportation Integrated Search
2015-08-01
Many older reinforced concrete deck girder (RCDG) bridges contain straight-bar terminations of flexural reinforcement in : flexural tension zones without special detailing. Common bridge design practice of the 1950s did not consider the additional : ...
NASA Astrophysics Data System (ADS)
Switzner, Nathan
Friction welding, a solid-state joining method, is presented as a novel alternative process step for lining mild steel pipe and forged components internally with a corrosion resistant (CR) metal alloy for petrochemical applications. Currently, fusion welding is commonly used for stainless steel overlay cladding, but this method is costly, time-consuming, and can lead to disbonding in service due to a hard martensite layer that forms at the interface due to partial mixing at the interface between the stainless steel CR metal and the mild steel base. Firstly, the process parameter space was explored for inertia friction butt welding using AISI type 304L stainless steel and AISI 1018 steel to determine the microstructure and mechanical properties effects. A conceptual model for heat flux density versus radial location at the faying surface was developed with consideration for non-uniform pressure distribution due to frictional forces. An existing 1 D analytical model for longitudinal transient temperature distribution was modified for the dissimilar metals case and to account for material lost to the flash. Microstructural results from the experimental dissimilar friction welds of 304L stainless steel to 1018 steel were used to discuss model validity. Secondly, the microstructure and mechanical property implications were considered for replacing the current fusion weld cladding processes with friction welding. The nominal friction weld exhibited a smaller heat softened zone in the 1018 steel than the fusion cladding. As determined by longitudinal tensile tests across the bond line, the nominal friction weld had higher strength, but lower apparent ductility, than the fusion welds due to the geometric requirements for neck formation adjacent to a rigid interface. Martensite was identified at the dissimilar friction weld interface, but the thickness was smaller than that of the fusion welds, and the morphology was discontinuous due to formation by a mechanism of solid-state mixing. Thirdly, the corrosion resistance of multiple austenitic stainless steels (types 304, 316, and 309) processed in varying ways was compared for acid chloride environments using advanced electrochemical techniques. Physical simulation of fusion claddings and friction weld claddings (wrought stainless steels) was used for sample preparation to determine compositional and microstructural effects. Pitting resistance correlated firstly with Cr content, with N and Mo additions providing additional benefits. The high ferrite fraction of as-welded samples reduced their corrosion resistance. Wrought type 309L outperformed as-welded type 309L in dissolved mass loss and reverse corrosion rate from the potentiodynamic scan in 1.0 N HCl/3.5% NaCl solution. Electrochemical impedance results indicated that wrought 309L and 316L developed a corrosion resistant passive film more rapidly than other alloys in 0.1 N HCl/3.5% NaCl, and also performed well in long term (160-day) corrosion testing in the same environment. Fourthly, to prove the concept of internal CR lining by friction welding, a conical work piece of 304L stainless steel was friction welded internally to 1018 steel.
NASA Astrophysics Data System (ADS)
Behrens, Bernd-Arno; Chugreeva, Anna; Chugreev, Alexander
2018-05-01
Hot forming as a coupled thermo-mechanical process comprises numerous material phenomena with a corresponding impact on the material behavior during and after the forming process as well as on the final component performance. In this context, a realistic FE-simulation requires reliable mathematical models as well as detailed thermo-mechanical material data. This paper presents experimental and numerical results focused on the FE-based simulation of a hot forging process with a subsequent heat treatment step aiming at the prediction of the final mechanical properties and residual stress state in the forged component made of low alloy CrMo-steel DIN 42CrMo4. For this purpose, hot forging experiments of connecting rod geometry with a corresponding metallographic analysis and x-ray residual stress measurements have been carried out. For the coupled thermo-mechanical-metallurgical FE-simulations, a special user-defined material model based on the additive strain decomposition method and implemented in Simufact Forming via MSC.Marc solver features has been used.
Aluminum and stainless steel tubes joined by simple ring and welding process
NASA Technical Reports Server (NTRS)
Townhill, A.
1967-01-01
Duranel ring is used to join aluminum and stainless steel tubing. Duranel is a bimetal made up of roll-bonded aluminum and stainless steel. This method of joining the tubing requires only two welding operations.
Performance variances of galvanized steel in mortar and concrete
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hime, W.G.; Machin, M.
Mild steel is used as reinforcement in concrete structures because it is passivated by the highly alkaline cement paste system, preventing typical corrosion. Two processes can corrode the initially passivated steel: air carbonation and chloride (Cl[sup [minus
Stress Corrosion Behavior of 12Cr Martensite Steel for Steam Turbine LP Blade
NASA Astrophysics Data System (ADS)
Tianjian, Wang; Yubing, Pei; Zhenhuan, Gao; Hua, Fan; Gongxian, Yang
With the development of capacity and efficiency of coal-fired thermal power plant, the length of Low Pressure (LP) last-stage blade of steam turbine became longer. Therefore, the design static stress of blade gets closer or even higher than the yield strength of material. Because of the special operation condition of LP last stage blade, the stress corrosion crack of 12Cr-Ni-Mo-V-N Martensite stainless steel may happen especially at the root of the blade where designed the highest static stress. In this paper, the stress corrosion behavior of 12Cr-Ni-Mo-V-N Martensite stainless steels used for steam turbine LP last stage blade in 3vol% NaCl solution was studied, the constant stress is about 95%, 85%, 65% and 35% of yield stress respectively and the test was lasted for 3000 hours, the stress corrosion behavior was studied and then, the effect of shot penning strengthen for anti-stress corrosion property of 12Cr-Ni-Mo-V-N Martensitic steel was studied. The results showed that the purity of steel affects the stress corrosion behavior huge especially at the high and medium stress condition. The shot penning cannot enhances the anti-stress corrosion property of the 12Cr-Ni-Mo-V-N steel at high tensile constant stress condition, however it will make the anti-stress corrosion property better when the stress is low.
Shassere, Benjamin A.; Yamamoto, Yukinori; Babu, Sudarsanam Suresh
2016-02-23
Detailed microstructure characterization of Grade 91 (Modified 9Cr-1Mo, ASTM A387) steel subjected to a thermo-mechanical treatment (TMT) process was performed to rationalize the cross-weld creep properties. A series of thermo-mechanical processing in the austenite phase region, followed by isothermal aging at temperatures at 973 to 1173 K (700 to 900ºC) was applied to the Grade 91 steel to promote precipitation kinetics of MX (M: Nb and V, X: C and N) in the austenite matrix. Detailed characterization of the base metals after standard tempering confirmed the presence of fine MX dispersion within the tempered martensitic microstructure in steels processed at/andmore » above 1073 K (800 ºC). Relatively low volume fraction of M 23C 6 precipitates was observed after processing at 1073 K (800 ºC). The cross-weld creep strength after processing was increased with respect to the increase of MX dispersion, indicating that these MX precipitates maintained during weld thermal cycles in the fine grained heat affected zone (FGHAZ) region and thereby contribute to improved creep resistant of welds in comparison to the welds made with the standard “normalization and tempering” processes. Lastly, the steels processed in this specific processing condition showed improved cross-weld creep resistance and sufficient room-temperature toughness. The above data is also analysed based on existing theories of creep deformation based on dislocation climb mechanism.« less
NASA Astrophysics Data System (ADS)
Shassere, Benjamin A.; Yamamoto, Yukinori; Babu, Sudarsanam Suresh
2016-05-01
Detailed microstructure characterization of Grade 91 (Modified 9Cr-1Mo, ASTM A387) steel subjected to a thermo-mechanical treatment process was performed to rationalize the cross-weld creep properties. A series of thermo-mechanical processing in the austenite phase region, followed by isothermal aging at temperatures at 973 K to 1173 K (700 °C to 900 °C), was applied to the Grade 91 steel to promote precipitation kinetics of MX (M: Nb and V, X: C and N) in the austenite matrix. Detailed characterization of the base metals after standard tempering confirmed the presence of fine MX dispersion within the tempered martensitic microstructure in steels processed at/and above 1073 K (800 °C). Relatively low volume fraction of M23C6 precipitates was observed after processing at 1073 K (800 °C). The cross-weld creep strength after processing was increased with respect to the increase of MX dispersion, indicating that these MX precipitates maintained during weld thermal cycles in the fine-grained heat-affected zone region and thereby contribute to improved creep resistant of welds in comparison to the welds made with the standard "normalization and tempering" processes. The steels processed in this specific processing condition showed improved cross-weld creep resistance and sufficient room temperature toughness. The above data are also analyzed based on existing theories of creep deformation based on dislocation climb mechanism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shassere, Benjamin A.; Yamamoto, Yukinori; Babu, Sudarsanam Suresh
Detailed microstructure characterization of Grade 91 (Modified 9Cr-1Mo, ASTM A387) steel subjected to a thermo-mechanical treatment (TMT) process was performed to rationalize the cross-weld creep properties. A series of thermo-mechanical processing in the austenite phase region, followed by isothermal aging at temperatures at 973 to 1173 K (700 to 900ºC) was applied to the Grade 91 steel to promote precipitation kinetics of MX (M: Nb and V, X: C and N) in the austenite matrix. Detailed characterization of the base metals after standard tempering confirmed the presence of fine MX dispersion within the tempered martensitic microstructure in steels processed at/andmore » above 1073 K (800 ºC). Relatively low volume fraction of M 23C 6 precipitates was observed after processing at 1073 K (800 ºC). The cross-weld creep strength after processing was increased with respect to the increase of MX dispersion, indicating that these MX precipitates maintained during weld thermal cycles in the fine grained heat affected zone (FGHAZ) region and thereby contribute to improved creep resistant of welds in comparison to the welds made with the standard “normalization and tempering” processes. Lastly, the steels processed in this specific processing condition showed improved cross-weld creep resistance and sufficient room-temperature toughness. The above data is also analysed based on existing theories of creep deformation based on dislocation climb mechanism.« less
High adherence copper plating process
Nignardot, Henry
1993-01-01
A process for applying copper to a substrate of aluminum or steel by electrodeposition and for preparing an aluminum or steel substrate for electrodeposition of copper. Practice of the invention provides good adhesion of the copper layer to the substrate.
49 CFR 178.59 - Specification 8 steel cylinders with porous fillings for acetylene.
Code of Federal Regulations, 2013 CFR
2013-10-01
... welded; (2) Attachment of heads by welding or by brazing by dipping process; or (3) A welded... oxygen process steel of uniform quality must be used. Content percent may not exceed the following... the heat number. (d) Manufacture. Cylinders must be manufactured using equipment and processes...
49 CFR 178.59 - Specification 8 steel cylinders with porous fillings for acetylene.
Code of Federal Regulations, 2012 CFR
2012-10-01
... welded; (2) Attachment of heads by welding or by brazing by dipping process; or (3) A welded... oxygen process steel of uniform quality must be used. Content percent may not exceed the following... the heat number. (d) Manufacture. Cylinders must be manufactured using equipment and processes...
49 CFR 178.59 - Specification 8 steel cylinders with porous fillings for acetylene.
Code of Federal Regulations, 2014 CFR
2014-10-01
... welded; (2) Attachment of heads by welding or by brazing by dipping process; or (3) A welded... oxygen process steel of uniform quality must be used. Content percent may not exceed the following... the heat number. (d) Manufacture. Cylinders must be manufactured using equipment and processes...
Walker, D.E.; Noland, R.A.
1958-08-12
A process ts described for obtaining a closely bonded coating of steel or iron on uranium. The process consists of providing, between the steel and uramium. a layer of silver. amd then pressure rolling tbe assembly at about 600 deg C until a reduction of from l0 to 50% has been obtained.
NASA Astrophysics Data System (ADS)
Samadian, Pedram; Parsa, Mohammad Habibi; Ahmadabadi, M. Nili; Mirzadeh, Hamed
2014-10-01
Knowledge about the transformation temperatures is crucial in processing of steels especially in thermomechanical processes because microstructures and mechanical properties after processing are closely related to the extent and type of transformations. The experimental determination of critical temperatures is costly, and therefore, it is preferred to predict them by mathematical methods. In the current work, new thermodynamically based models were developed for computing the Ae3 and Acm temperatures in the equilibrium cooling conditions when austenite is deformed at elevated temperatures. The main advantage of the proposed models is their capability to predict the temperatures of austenite equilibrium transformations in steels with total alloying elements (Mn + Si + Ni + Cr + Mo + Cu) less than 5 wt.% and Si less than 1 wt.% under the deformation conditions just by using the chemical potential of constituents, without the need for determining the total Gibbs free energy of steel which requires many experiments and computations.
Researches concerning influence of magnesium, aluminum and titanium lime on steel desulfurization
NASA Astrophysics Data System (ADS)
Putan, V.; Putan, A.; Josan, A.; Vilceanu, L.
2016-02-01
The paper presents the results of laboratory experiments on steel desulphurisation with slag from the system MgO-Al2O3-TiO2. To determine the influence, on the desulphurisation process, of the titanium oxide added in calcium aluminate slag, we experimented, in the laboratory phase, the steel treatment with a mechanical mixture consisting of lime, aluminous slag and slag obtained from the titanium making process through the aluminothermic technology. The steel melting was carried out in an induction furnace of 10 kg capacity, existent in the "Metallic Melts" laboratory of the Engineering Faculty of Hunedoara. During the research, we aimed to establish correlation equations between the sulphur distribution coefficient and the slag components (MgO, Al2O3, TiO2). The data obtained in the experiments were processed in MATLAB programs, resulting multiple correlation equations, which allowed the elucidation of some physical-chemical phenomena specific to the desulphurisation processes.
2013-05-23
simulation of the conventional Gas Metal Arc Welding (GMAW) process, and the application of the developed methods and tools for prediction of the...technology in many industries such as chemical, oil , aerospace, and shipbuilding construction. In fact, within the metal fabrication industry as a...Mechanical Properties of Low Alloy Steel Products. Hardenability Concepts with Applications to Steel, The Metallurgical Society of AIME, Chicago, 1978, p
Application of lap laser welding technology on stainless steel railway vehicles
NASA Astrophysics Data System (ADS)
Wang, Hongxiao; Wang, Chunsheng; He, Guangzhong; Li, Wei; Liu, Liguo
2016-10-01
Stainless steel railway vehicles with so many advantages, such as lightweight, antirust, low cost of maintenance and simple manufacturing process, so the production of high level stainless steel railway vehicles has become the development strategy of European, American and other developed nations. The current stainless steel railway vehicles body and structure are usually assembled by resistance spot welding process. The weak points of this process are the poor surface quality and bad airtight due to the pressure of electrodes. In this study, the partial penetration lap laser welding process was investigated to resolve the problems, by controlling the laser to stop at the second plate in the appropriate penetration. The lap laser welding joint of stainless steel railway vehicle car body with partial penetration has higher strength and surface quality than those of resistance spot welding joint. The biggest problem of lap laser welding technology is to find the balance of the strength and surface quality with different penetrations. The mechanism of overlap laser welding of stainless steel, mechanical tests, microstructure analysis, the optimization of welding parameters, analysis of fatigue performance, the design of laser welding stainless steel railway vehicles structure and the development of non-destructive testing technology were systematically studied before lap laser welding process to be applied in manufacture of railway vehicles. The results of the experiments and study show that high-quality surface state and higher fatigue strength can be achieved by the partial penetration overlap laser welding of the side panel structure, and the structure strength of the car body can be higher than the requirements of En12663, the standard of structural requirements of railway vehicles bodies. Our company has produced the stainless steel subway and high way railway vehicles by using overlap laser welding technology. The application of lap laser welding will be a big change of railway vehicles manufacturing technology.
NASA Astrophysics Data System (ADS)
Cao, Qing; Nastac, Laurentiu; Pitts-Baggett, April; Yu, Qiulin
2018-03-01
A quick modeling analysis approach for predicting the slag-steel reaction and desulfurization kinetics in argon gas-stirred ladles has been developed in this study. The model consists of two uncoupled components: (i) a computational fluid dynamics (CFD) model for predicting the fluid flow and the characteristics of slag-steel interface, and (ii) a multicomponent reaction kinetics model for calculating the desulfurization evolution. The steel-slag interfacial area and mass transfer coefficients predicted by the CFD simulation are used as the processing data for the reaction model. Since the desulfurization predictions are uncoupled from the CFD simulation, the computational time of this uncoupled predictive approach is decreased by at least 100 times for each case study when compared with the CFD-reaction kinetics fully coupled model. The uncoupled modeling approach was validated by comparing the evolution of steel and slag compositions with the experimentally measured data during ladle metallurgical furnace (LMF) processing at Nucor Steel Tuscaloosa, Inc. Then, the validated approach was applied to investigate the effects of the initial steel and slag compositions, as well as different types of additions during the refining process on the desulfurization efficiency. The results revealed that the sulfur distribution ratio and the desulfurization reaction can be promoted by making Al and CaO additions during the refining process. It was also shown that by increasing the initial Al content in liquid steel, both Al oxidation and desulfurization rates rapidly increase. In addition, it was found that the variation of the initial Si content in steel has no significant influence on the desulfurization rate. Lastly, if the initial CaO content in slag is increased or the initial Al2O3 content is decreased in the fluid-slag compositional range, the desulfurization rate can be improved significantly during the LMF process.
NASA Astrophysics Data System (ADS)
Cao, Qing; Nastac, Laurentiu; Pitts-Baggett, April; Yu, Qiulin
2018-06-01
A quick modeling analysis approach for predicting the slag-steel reaction and desulfurization kinetics in argon gas-stirred ladles has been developed in this study. The model consists of two uncoupled components: (i) a computational fluid dynamics (CFD) model for predicting the fluid flow and the characteristics of slag-steel interface, and (ii) a multicomponent reaction kinetics model for calculating the desulfurization evolution. The steel-slag interfacial area and mass transfer coefficients predicted by the CFD simulation are used as the processing data for the reaction model. Since the desulfurization predictions are uncoupled from the CFD simulation, the computational time of this uncoupled predictive approach is decreased by at least 100 times for each case study when compared with the CFD-reaction kinetics fully coupled model. The uncoupled modeling approach was validated by comparing the evolution of steel and slag compositions with the experimentally measured data during ladle metallurgical furnace (LMF) processing at Nucor Steel Tuscaloosa, Inc. Then, the validated approach was applied to investigate the effects of the initial steel and slag compositions, as well as different types of additions during the refining process on the desulfurization efficiency. The results revealed that the sulfur distribution ratio and the desulfurization reaction can be promoted by making Al and CaO additions during the refining process. It was also shown that by increasing the initial Al content in liquid steel, both Al oxidation and desulfurization rates rapidly increase. In addition, it was found that the variation of the initial Si content in steel has no significant influence on the desulfurization rate. Lastly, if the initial CaO content in slag is increased or the initial Al2O3 content is decreased in the fluid-slag compositional range, the desulfurization rate can be improved significantly during the LMF process.
Creep and microstructural processes in a low-alloy 2.25%Cr1.6%W steel (ASTM Grade 23)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kucharova, K.; Sklenicka, V., E-mail: sklen@ipm.cz; CEITEC — IPM, Institute of Physics of Materials, Academy of Sciences of the Czech Republic, CZ-616 62 Brno
2015-11-15
A low-alloy 2.25%Cr1%Mo steel (ASTM Grade 22) has been greatly improved by the substitution of almost all of the 1%Mo by 1.6%W. The improved material has been standardized as P/T23 steel (Fe–2.25Cr–1.6W–0.25V–0.05Nb–0.07C). The present investigation was conducted on T23 steel in an effort to obtain a more complete description and understanding of the role of the microstructural evolution and deformation processes in high-temperature creep. Constant load tensile creep tests were carried out in an argon atmosphere in the temperature range 500–650 °C at stresses ranging from 50 to 400 MPa. It was found that the diffusion in the matrix latticemore » is the creep-rate controlling process. The results of an extensive transmission electron microscopy (TEM) analysis programme to investigate microstructure evolution as a function of temperature are described and compared with the thermodynamic calculations using the software package Thermo-Calc. The significant creep-strength drop of T23 steel after long-term creep exposures can be explained by the decrease in dislocation hardening, precipitation hardening and solid solution hardening due to the instability of the microstructure at high temperature. - Highlights: • The constant load creep tests of T23 steel were carried out at 500–650 °C. • The stress exponents of the creep rate correspond to power law (dislocation) creep. • Diffusion in the matrix lattice is the creep-rate controlling process. • The microstructure instability is the main creep degradation process in T23 steel.« less
Biomaterial Studies on AISI 316L Stainless Steel after Magnetoelectropolishing
Hryniewicz, Tadeusz; Rokosz, Krzysztof; Filippi, Massimiliano
2009-01-01
The polarisation characteristics of the electropolishing process in a magnetic field (MEP – magnetoelectropolishing), in comparison with those obtained under standard/conventional process (EP) conditions, have been obtained. The occurrence of an EP plateau has been observed in view of the optimization of MEP process. Up-to-date stainless steel surface studies always indicated some amount of free-metal atoms apart from the detected oxides and hydroxides. Such a morphology of the surface film usually affects the thermodynamic stability and corrosion resistance of surface oxide layer and is one of the most important features of stainless steels. With this new MEP process we can improve metal surface properties by making the stainless steel more resistant to halides encountered in a variety of environments. Furthermore, in this paper the stainless steel surface film study results have been presented. The results of the corrosion research carried out by the authors on the behaviour of the most commonly used material − medical grade AISI 316L stainless steel both in Ringer’s body fluid and in aqueous 3% NaCl solution have been investigated and presented earlier elsewhere, though some of these results, concerning the EIS Nyquist plots and polarization curves are also revealed herein. In this paper an attempt to explain this peculiar performance of 316L stainless steel has been undertaken. The SEM studies, Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS) were performed on 316L samples after three treatments: MP – abrasive polishing (800 grit size), EP – conventional electrolytic polishing, and MEP – magnetoelectropolishing. It has been found that the proposed magnetoelectropolishing (MEP) process considerably modifies the morphology and the composition of the surface film, thus leading to improved corrosion resistance of the studied 316L SS.
Li, Lester; Breedveld, Victor; Hess, Dennis W
2012-09-26
In this work, we present a method to render stainless steel surfaces superhydrophobic while maintaining their corrosion resistance. Creation of surface roughness on 304 and 316 grade stainless steels was performed using a hydrofluoric acid bath. New insight into the etch process is developed through a detailed analysis of the chemical and physical changes that occur on the stainless steel surfaces. As a result of intergranular corrosion, along with metallic oxide and fluoride redeposition, surface roughness was generated on the nano- and microscales. Differences in alloy composition between 304 and 316 grades of stainless steel led to variations in etch rate and different levels of surface roughness for similar etch times. After fluorocarbon film deposition to lower the surface energy, etched samples of 304 and 316 stainless steel displayed maximum static water contact angles of 159.9 and 146.6°, respectively. However, etching in HF also caused both grades of stainless steel to be susceptible to corrosion. By passivating the HF-etched samples in a nitric acid bath, the corrosion resistant properties of stainless steels were recovered. When a three step process was used, consisting of etching, passivation and fluorocarbon deposition, 304 and 316 stainless steel samples exhibited maximum contact angles of 157.3 and 134.9°, respectively, while maintaining corrosion resistance.
NASA Astrophysics Data System (ADS)
Seyfpour, M.; Ghanei, S.; Mazinani, M.; Kashefi, M.; Davis, C.
2018-04-01
The recovery process in steel is usually investigated by conventional destructive tests that are expensive, time-consuming and also cumbersome. In this study, an alternative non-destructive test technique (based on eddy current testing) is used to characterise the recovery process during annealing of cold-rolled low-carbon steels. For assessing the reliability of eddy current results corresponding to different levels of recovery, X-ray line broadening analysis is also employed. It is shown that there is a strong relationship between eddy current outputs and the extent to which recovery occurs at different annealing temperatures. Accordingly, the non-destructive eddy current test technique represents the potential to be used as a reliable process for detection of the occurrence of recovery in the steel microstructure.
Fabrication of stainless steel clad tubing. [gas pressure bonding
NASA Technical Reports Server (NTRS)
Kovach, C. W.
1978-01-01
The feasibility of producing stainless steel clad carbon steel tubing by a gas pressure bonding process was evaluated. Such a tube product could provide substantial chromium savings over monolithic stainless tubing in the event of a serious chromium shortage. The process consists of the initial assembly of three component tubesets from conventionally produced tubing, the formation of a strong metallurgical bond between the three components by gas pressure bonding, and conventional cold draw and anneal processing to final size. The quality of the tubes produced was excellent from the standpoint of bond strength, mechanical, and forming properties. The only significant quality problem encountered was carburization of the stainless clad by the carbon steel core which can be overcome by further refinement through at least three different approaches. The estimated cost of clad tubing produced by this process is greater than that for monolithic stainless tubing, but not so high as to make the process impractical as a chromium conservation method.
Energy efficiency technologies in cement and steel industry
NASA Astrophysics Data System (ADS)
Zanoli, Silvia Maria; Cocchioni, Francesco; Pepe, Crescenzo
2018-02-01
In this paper, Advanced Process Control strategies aimed at energy efficiency achievement and improvement in cement and steel industry are proposed. A flexible and smart control structure constituted by several functional modules and blocks has been developed. The designed control strategy is based on Model Predictive Control techniques, formulated on linear models. Two industrial control solutions have been developed, oriented to energy efficiency and process control improvement in cement industry clinker rotary kilns (clinker production phase) and in steel industry billets reheating furnaces. Tailored customization procedures for the design of ad hoc control systems have been executed, based on the specific needs and specifications of the analysed processes. The installation of the developed controllers on cement and steel plants produced significant benefits in terms of process control which resulted in working closer to the imposed operating limits. With respect to the previous control systems, based on local controllers and/or operators manual conduction, more profitable configurations of the crucial process variables have been provided.
Cleanliness of Ti-bearing Al-killed ultra-low-carbon steel during different heating processes
NASA Astrophysics Data System (ADS)
Guo, Jian-long; Bao, Yan-ping; Wang, Min
2017-12-01
During the production of Ti-bearing Al-killed ultra-low-carbon (ULC) steel, two different heating processes were used when the converter tapping temperature or the molten steel temperature in the Ruhrstahl-Heraeus (RH) process was low: heating by Al addition during the RH decarburization process and final deoxidation at the end of the RH decarburization process (process-I), and increasing the oxygen content at the end of RH decarburization, heating and final deoxidation by one-time Al addition (process-II). Temperature increases of 10°C by different processes were studied; the results showed that the two heating processes could achieve the same heating effect. The T.[O] content in the slab and the refining process was better controlled by process-I than by process-II. Statistical analysis of inclusions showed that the numbers of inclusions in the slab obtained by process-I were substantially less than those in the slab obtained by process-II. For process-I, the Al2O3 inclusions produced by Al added to induce heating were substantially removed at the end of decarburization. The amounts of inclusions were substantially greater for process-II than for process-I at different refining stages because of the higher dissolved oxygen concentration in process-II. Industrial test results showed that process-I was more beneficial for improving the cleanliness of molten steel.
Evaluation of Flash Bainite in 4130 Steel
2011-07-01
Technical Report ARWSB-TR-11011 Evaluation of Flash Bainite in 4130 Steel G. Vigilante M. Hespos S. Bartolucci...4. TITLE AND SUBTITLE Evaluation of Flash Bainite in 4130 Steel 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...need to be addressed, the Flash Bainite processing of 4130 steel demonstrates promise for applications needing a combination of high strength with
1982-01-01
0.5 percent carbon generally is avoided. The weldability of chromium corrosion- resistant steels and nickel- chromium stainless steels is good, with...19 75; Silk 19 74). Stainless steel welding processes may change drastically due to findings that hexavalent chromium is a potential carcinogen...Minato, S., Investigation of chromium in stainless steel welding fumes, Welding Journal, RS58(1979):195s. Lippold, J. C. , and Savage, W. F
Measurement of Outgassing Rates of Steels.
Park, Chongdo; Kim, Se-Hyun; Ki, Sanghoon; Ha, Taekyun; Cho, Boklae
2016-12-13
Steels are commonly used materials in the fabrication of vacuum systems because of their good mechanical, corrosion, and vacuum properties. A variety of steels meet the criterion of low outgassing required for high or ultrahigh vacuum applications. However, a given material can present different outgassing rates depending on its manufacturing process or the various pretreatment processes involved during the fabrication. Thus, the measurement of outgassing rates is highly desirable for a specific vacuum application. For this reason, the rate-of-pressure rise (RoR) method is often used to measure the outgassing of hydrogen after bakeout. In this article, a detailed description of the design and execution of the experimental protocol involved in the RoR method is provided. The RoR method uses a spinning rotor gauge to minimize errors that stem from outgassing or the pumping action of a vacuum gauge. The outgassing rates of two ordinary steels (stainless steel and mild steel) were measured. The measurements were made before and after the heat pretreatment of the steels. The heat pretreatment of steels was performed to reduce the outgassing. Extremely low rates of outgassing (on the order of 10 - 11 Pa m 3 sec - 1 m - 2 ) can be routinely measured using relatively small samples.
NASA Astrophysics Data System (ADS)
Dhua, Sanjay Kumar; Sarkar, Partha Pratim; Saxena, Atul; Jha, Bimal Kumar
2016-12-01
Low-carbon bainitic steels have created enormous interest among scientists across the world in the past few decades because of their high strength, toughness, and weldability replacing the conventional quenched and tempered medium-carbon steels. Three experimental steels with varying alloy additions were made in a 100-kg laboratory induction furnace and cast into 100-mm-diameter cylindrical ingots. These ingots were hot-rolled and air-cooled to 6-mm plates in an experimental rolling mill with selected thermomechanical parameters. Steels processed through this process provided an ultrafine low-carbon bainitic microstructure with maximum yield strength (YS) and ultimate tensile strength (UTS) 575 and 705 MPa, respectively. The Charpy impact toughness of the experimental steels was excellent, and at 253 K (-20 °C), it varied from 114 to 170 Joules. Cu-B-added steel was found to give an optimum combination of strength, YS-575 MPa, and toughness, 114 J at 253 K (-20 °C). Thus, fine-grained, low-carbon bainitic steels could be developed with a proper combination of alloying elements and thermomechanical parameters even by air-cooling.
Influence of TiN Inclusions on the Cleavage Fracture Behavior of Low-Carbon Microalloyed Steels
NASA Astrophysics Data System (ADS)
Yan, W.; Shan, Y. Y.; Yang, K.
2007-06-01
Toughness is a major concern for low-carbon microalloyed steels. In this work, the impact fracture behavior of two low-carbon Ti-V microalloyed steels was investigated in order to better understand the role of TiN inclusions in the toughness of the steels. The steels had similar chemical compositions and were manufactured by the same rolling process. However, there was an obvious difference in the ductile brittle transition temperature (DBTT) in the Charpy V-notch (CVN) impact tests of the two steels; one (steel 1) possessing a DBTT below -20 °C, while the DBTT of the other (steel 2) was above 15 °C. Scanning electron microscopy (SEM) fractography revealed that there were TiN inclusions at the cleavage fracture initiation sites on the fracture surfaces of steel 2 at both low and room temperatures. It is shown that the TiN inclusions had nucleated on Al2O3 particles and that they had pre-existing interior flaws. A high density of TiN inclusions was found in steel 2, but there was a much lower density in steel 1. Analysis indicates that these inclusions were responsible for the shift of DBTT to a higher temperature in steel 2. A mechanism is proposed for understanding the effect of the size and density of TiN inclusions on the fracture behavior, and the cleavage fracture initiation process is analyzed in terms of the distribution and development of stresses ahead of the notch tip during fracture at both low and room temperatures.
Development of fully dense and high performance powder metallurgy HSLA steel using HIP method
NASA Astrophysics Data System (ADS)
Liu, Wensheng; Pang, Xinkuan; Ma, Yunzhu; Cai, Qingshan; Zhu, Wentan; Liang, Chaoping
2018-05-01
In order to solve the problem that the mechanical properties of powder metallurgy (P/M) steels are much lower than those of traditional cast steels with the same composition due to their porosity, a high–strength–low–alloy (HSLA) steel with fully dense and excellent mechanical properties was fabricated through hot isostatic pressing (HIP) using gas–atomized powders. The granular structure in the P/M HIPed steel composed of bainitic ferrite and martensite–austenite (M–A) islands is obtained without the need of any rapid cooling. The P/M HIPed steel exhibit a combination of tensile strength and ductility that surpasses that of conventional cast steel and P/M sintered steel, confirming the feasibility of fabricating high performance P/M steel through appropriate microstructural control and manufacture process.
Literature review on pickling inhibitors and cadmium electroplating processes
NASA Technical Reports Server (NTRS)
Elsea, A. R.; Fletcher, E. E.; Groeneveld, T. P.
1969-01-01
Because introduction of hydrogen during bright-cadmium electroplating of high strength steels causes hydrogen-stress cracking, a program was undertaken to evaluate various processes and materials. Report describes effectiveness of inhibitors for reducing hydrogen absorption by steels.
Co-extrusion of semi-finished aluminium-steel compounds
NASA Astrophysics Data System (ADS)
Thürer, S. E.; Uhe, J.; Golovko, O.; Bonk, C.; Bouguecha, A.; Klose, C.; Behrens, B.-A.; Maier, H. J.
2017-10-01
The combination of light metals and steels allows for new lightweight components with wear-resistant functional surfaces. Within the Collaborative Research Centre 1153 novel process chains are developed for the manufacture of such hybrid components. Here, the production process of a hybrid bearing bushing made of the aluminium alloy EN AW-6082 and the case-hardened steel 20MnCr5 is developed. Hybrid semi-finished products are an attractive alternative to conventional ones resulting from massive forming processes where the individual components are joined after the forming process. The actual hybrid semi-finished products were manufactured using a lateral angular co-extrusion (LACE) process. The bearing bushings are subsequently produced by die forging. In the present study, a tool concept for the LACE process is described, which renders the continuous joining of a steel rod with an aluminium tube possible. During the LACE process, the rod is fed into the extrusion die at an angle of approx. 90°. Metallographic analysis of the hybrid profile showed that the mechanical bonding between the different materials begins about 75 mm after the edge of the aluminium sheath. In order to improve the bonding strength, the steel rod is to be preheated during extrusion. Systematic investigations using a dilatometer, considering the maximum possible co-extrusion process parameters, were carried out. The variable parameters for the dilatometer experiments were determined by numerical simulation. In order to form a bond between the materials, the oxide layer needs to be disrupted during the co-extrusion process. In an attempt to better understand this effect, a modified sample geometry with chamfered steel was developed for the dilatometer experiments. The influence of the process parameters on the formation of the intermetallic phase at the interface was analysed by scanning electron microscopy and X-ray diffraction. This article, which was originally published online on 16 October 2017, contained an error in the press ratio, where 9:1 should be 6:1. The corrected ratio appears in the Corrigendum attached to the pdf.
High strength, low carbon, dual phase steel rods and wires and process for making same
Thomas, Gareth; Nakagawa, Alvin H.
1986-01-01
A high strength, high ductility, low carbon, dual phase steel wire, bar or rod and process for making the same is provided. The steel wire, bar or rod is produced by cold drawing to the desired diameter in a single multipass operation a low carbon steel composition characterized by a duplex microstructure consisting essentially of a strong second phase dispersed in a soft ferrite matrix with a microstructure and morphology having sufficient cold formability to allow reductions in cross-sectional area of up to about 99.9%. Tensile strengths of at least 120 ksi to over 400 ksi may be obtained.
Mechanical Properties of Heat Affected Zone of High Strength Steels
NASA Astrophysics Data System (ADS)
Sefcikova, K.; Brtnik, T.; Dolejs, J.; Keltamaki, K.; Topilla, R.
2015-11-01
High Strength Steels became more popular as a construction material during last decade because of their increased availability and affordability. On the other hand, even though general use of Advanced High Strength Steels (AHSS) is expanding, the wide utilization is limited because of insufficient information about their behaviour in structures. The most widely used technique for joining steels is fusion welding. The welding process has an influence not only on the welded connection but on the area near this connection, the so-called heat affected zone, as well. For that reason it is very important to be able to determine the properties in the heat affected zone (HAZ). This area of investigation is being continuously developed in dependence on significant progress in material production, especially regarding new types of steels available. There are currently several types of AHSS on the world market. Two most widely used processes for AHSS production are Thermo-Mechanically Controlled Processing (TMCP) and Quenching in connection with Tempering. In the presented study, TMCP and QC steels grade S960 were investigated. The study is focused on the changes of strength, ductility, hardness and impact strength in heat affected zone based on the used amount of heat input.
Optimization of the A-TIG welding for stainless steels
NASA Astrophysics Data System (ADS)
Jurica, M.; Kožuh, Z.; Garašić, I.; Bušić, M.
2018-03-01
The paper presents the influence of the activation flux and shielding gas on tungsten inert gas (A-TIG) welding of the stainless steel. In introduction part, duplex stainless steel was analysed. The A-TIG process was explained and the possibility of welding stainless steels using the A-TIG process to maximize productivity and the cost-effectiveness of welded structures was presented. In the experimental part duplex, 7 mm thick stainless steel has been welded in butt joint. The influence of activation flux chemical composition upon the weld penetration has been investigated prior the welding. The welding process was performed by a robot with TIG equipment. With selected A-TIG welding technology preparation of plates and consumption of filler material (containing Cr, Ni and Mn) have been avoided. Specimens sectioned from the produced welds have been subjected to tensile strength test, macrostructure analysis and corrosion resistance analysis. The results have confirmed that this type of stainless steel can be welded without edge preparation and addition of filler material containing critical raw materials as Cr, Ni and Mn when the following welding parameters are set: current 200 A, welding speed 9,1 cm/min, heat input 1,2 kJ/mm and specific activation flux is used.
Studies on A-TIG welding of Low Activation Ferritic/Martensitic (LAFM) steel
NASA Astrophysics Data System (ADS)
Vasantharaja, P.; Vasudevan, M.
2012-02-01
Low Activation Ferritic-Martensitic steels (LAFM) are chosen as the candidate material for structural components in fusion reactors. The structural components are generally fabricated by welding processes. Activated Tungsten Inert Gas (A-TIG) welding is an emerging process for welding of thicker components. In the present work, attempt was made to develop A-TIG welding technology for LAFM steel plates of 10 mm thick. Activated flux was developed for LAFM steel by carrying out various bead-on-plate TIG welds without flux and with flux. The optimum flux was identified as one which gave maximum depth of penetration at minimum heat input values. With the optimized flux composition, LAFM steel plate of 10 mm thickness was welded in square butt weld joint configuration using double side welding technique. Optical and Scanning Electron Microscopy was used for characterizing the microstructures. Microhardness measurements were made across the weld cross section for as welded and post weld heat treated samples. Tensile and impact toughness properties were determined. The mechanical properties values obtained in A-TIG weld joint were comparable to that obtained in weld joints of LAFM steel made by Electron beam welding process.
Code of Federal Regulations, 2010 CFR
2010-10-01
... drums, Plastic drums and Jerricans, Composite packagings which are in the shape of a drum Six—(three for... of natural wood, Plywood boxes, Reconstituted wood boxes, Fiberboard boxes, Plastic boxes, Steel or... Administrator. (c) Special preparation of test samples for the drop test. (1) Testing of plastic drums, plastic...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liaw, P.K.; Nicholas, T.
This volume includes topics on fatigue crack propagation; isothermal and thermal-mechanical fatigue; and microstructure, fracture, and damage. Papers are presented on transients in fatigue crack growth, elevated-temperature fatigue crack propagation, the role of crack closure in crack retardation in P/M and I/M aluminum alloys, the acoustic interrogation of fatigue overload effects, and the effects of frequency and environment on crack growth in Inconel 718. Special attention is given to isothermal fatigue failure mechanisms in low-tin lead-based solder, the stress and strain controlled low-cycle fatigue of Pb-Sn solder for electronic packaging applications, load sequence effects on the deformation of isolated microplasticmore » grains, and thermal fatigue of stainless steel. Other papers are on the influence of thermal aging on the creep crack growth behavior of a Cr-Mo steel, the effect of cyclic loading on the fracture toughness of a modified 4340 steel, and the effects of hot rolling condition and boron microalloying on phase transformation and microstructure in niobium-bearing interstitial free steel.« less
A new tensile impact test for the toughness characterization of sheet material
NASA Astrophysics Data System (ADS)
Könemann, Markus; Lenz, David; Brinnel, Victoria; Münstermann, Sebastian
2018-05-01
In the past, the selection of suitable steels has been carried out primarily based on the mechanical properties of different steels. One of these properties is the resistance against crack propagation. For many constructions, this value plays an important role, because it can compare the impact toughness of different steel grades easily and gives information about the loading capacity of the specific materials. For thin sheets, impact toughness properties were usually not considered. One of the reasons for this is that the Charpy-impact test is not applicable for sheets with thicknesses below 2 mm. For a long time, this was not relevant because conventional steels had a sufficient impact toughness in a wide temperature range. However, since new multiphase steel grades with improved mechanical property exploitations are available, it turned out that impact toughness properties need to be considered during the component design phase, as the activation of the cleavage fracture mechanism is observed under challenging loading conditions. Therefore, this work aims to provide a new and practical testing procedure for sheet material or thin walled structures. The new testing procedure is based on tensile tests conducted in an impact pendulum similar to the Charpy impact hammer. A new standard geometry is provided, which enables a comparison between different steels or steel grades. A connection to the conventional Charpy test is presented using a damage mechanics model, which predicts material failure with consideration of to the stress state at various temperatures. Different specimen geometries are analysed to cover manifold stress states. A special advantage of the damage mechanics model is also the possibility to predict the materials behaviour in the transition area. To verify the method a conventional steel was tested in Charpy tests as well as in the new tensile impact test.
NASA Astrophysics Data System (ADS)
Jiang, Min; Wang, Xin-Hua; Yang, Die; Lei, Shao-Long; Wang, Kun-Peng
2015-12-01
Present work was attempted to explore the possibility of preventing CaO-containing inclusions in Al-deoxidized low-oxygen special steel during basic slag refining, which were known as ASTM D-type inclusions. Based on the analysis on formation thermodynamics of CaO-containing inclusions, a series of laboratory experiments were designed and carried out in a vacuum induction furnace. During the experiments, slag/steel reaction equilibrium was intentionally suppressed with the aim to decrease the CaO contents in inclusions, which is different from ordinary concept that slag/steel reaction should be promoted for better control of inclusions. The obtained results showed that high cleanliness of steel was obtained in all the steel melts, with total oxygen contents varied between 0.0003 and 0.0010 pct. Simultaneously, formation of CaO-containing inclusions was successfully prohibited, and all the formed oxide inclusions were MgO-Al2O3 or/and Al2O3 in very small sizes of about 1 to 3 μm. And 90 pct to nearly 98 pct of them were wrapped by relative thicker MnS outer surface layers to produce dual-phased "(MgO-Al2O3) + MnS" or "Al2O3 + MnS" complex inclusions. Because of much better ductility of MnS, certain deformability of these complex inclusions can be expected which is helpful to improve fatigue resistance property of steel. Only very limited number of singular MnS inclusions were with sizes larger than 13 μm, which were formed during solidification because of. In the end, formation of oxide inclusions in steel was qualitatively evaluated and discussed.
NASA Astrophysics Data System (ADS)
Shi, Chengbin; Wang, Hui; Li, Jing
2018-06-01
Electroslag remelting (ESR) is increasingly used to produce some varieties of special steels and alloys, mainly because of its ability to provide extreme cleanliness and an excellent solidification structure simultaneously. In the present study, the combined effects of varying SiO2 contents in slag and reoxidation of liquid steel on the chemistry evolution of inclusions and the alloying element content in steel during ESR were investigated. The inclusions in the steel before ESR refining were found to be oxysulfides of patch-type (Ca,Mn)S adhering to a CaO-Al2O3-SiO2-MgO inclusion. The oxide inclusions in both the liquid metal pool and remelted ingots are CaO-Al2O3-MgO and MgAl2O4 together with CaO-Al2O3-SiO2-MgO inclusions (slightly less than 30 pct of the total inclusions), which were confirmed to originate from the reduction of SiO2 from the original oxide inclusions by dissolved Al in liquid steel during ESR. CaO-Al2O3-MgO and MgAl2O4 are newly formed inclusions resulting from the reactions taking place inside liquid steel in the liquid metal pool caused by reoxidation of liquid steel during ESR. Increasing the SiO2 content in slag not only considerably reduced aluminum pickup in parallel with silicon loss during ESR, but also suppressed the decrease in SiO2 content in oxide inclusions. (Ca,Mn)S inclusions were fully removed before liquid metal droplets collected in the liquid metal pool.
Influence of refining time on nonmetallic inclusions in a low-carbon, silicon-killed steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fernandes, Marcolino; Pires, Jose Carlos; Cheung, Noe
2003-12-15
Nonmetallic inclusions are harmful to the mechanical properties of every kind of steel produced worldwide. The greater the size of the inclusion present in the structure of a determined kind of steel, the greater its negative effect on the quality of the steel. Therefore, the objective of this work was to investigate the size, the quantity, the shape and the chemical composition of nonmetallic inclusions formed throughout the refining process of silicon-killed, low-carbon steel, as a function of the treatment time in a ladle furnace, trying to ensure the flotation of inclusions bigger than 25 {mu}m. This investigation was carriedmore » out using a scanning electron microscope (SEM), with an analysis system using energy dispersive spectometry (EDS). Based on this work, it was possible to know more precisely the nature of the inclusions, the necessary time to ensure flotation of large inclusions, the efficiency of the slag to capture the inclusions, and the inclusion level of the steel throughout its refining process to try to obtain a higher quality steel product.« less
Determination of Proper Austenitization Temperatures for Hot Stamping of AISI 4140 Steel
NASA Astrophysics Data System (ADS)
Samadian, Pedram; Parsa, Mohammad Habibi; Shakeri, Amid
2014-04-01
High strength steels are desirable materials for use in automobile bodies in order to reduce vehicle weight and increase the safety of car passengers, but steel grades with high strength commonly show poor formability. Recently, steels with controlled microstructures and compositions are used to gain adequate strength after hot stamping while maintaining good formability during processing. In this study, microstructure evolutions and changes in mechanical properties of AISI 4140 steel sheets resulting from the hot stamping process at different austenitization temperatures were investigated. To determine the proper austenitization temperatures, the results were compared with those of the cold-worked and cold-worked plus quench-tempered specimens. Comparisons showed that the austenitization temperatures of 1000 and 1100 °C are proper for hot stamping of 3-mm-thick AISI 4140 steel sheets due to the resultant martensitic microstructure which led to the yield and ultimate tensile strength of 1.3 and 2.1 GPa, respectively. Such conditions resulted in more favorable simultaneous strength and elongation than those of hot-stamped conventional boron steels.
NASA Astrophysics Data System (ADS)
Rana, R.; Singh, S. B.; Bleck, W.; Mohanty, O. N.
2009-04-01
Crash resistance and formability relevant mechanical properties of a copper-alloyed interstitial-free (IF) steel processed under various conditions of batch annealing (BA), continuous annealing (CA), and postcontinuous annealing aging have been studied in a wide range of strain rate (3.33 × 10-4 to 200 s-1) and temperature (-100 °C to +20 °C). These properties have been compared with similarly processed traditional mild and high-strength IF steels. Assessment of various parameters such as strength, elongation, strain rate sensitivity of stress, strain-hardening capacity, temperature sensitivity of stress, activation volume, and specific energy absorption of all these steels implies that copper-alloyed IF steel is soft and formable in CA condition. It can be made stronger and more crash resistant than the conventional mild- or high-strength IF steels when aged to peak strength after CA. Room-temperature strain rate sensitivity of stress of the investigated steels exhibits a two-stage behavior. Copper in solution in ferrite causes solid solution softening at low temperatures (≤20 °C) and at high strain rates (200 s-1).
[Characteristic of Mercury Emissions and Mass Balance of the Typical Iron and Steel Industry].
Zhang, Ya-hui; Zhang, Cheng; Wang, Ding-yong; Luo, Cheng-zhong; Yang, Xi; Xu, Feng
2015-12-01
To preliminarily discuss the mercury emission characteristics and its mass balance in each process of the iron and steel production, a typical iron and steel enterprise was chosen to study the total mercury in all employed materials and estimate the input and output of mercury during the steel production process. The results showed that the mercury concentrations of input materials in each technology ranged 2.93-159.11 µg · kg⁻¹ with the highest level observed in ore used in blast furnace, followed by coal of sintering and blast furnace. The mercury concentrations of output materials ranged 3.09-18.13 µg · kg⁻¹ and the mercury concentration of dust was the highest, followed by converter slag. The mercury input and the output in the coking plant were 1346.74 g · d⁻¹ ± 36.95 g · d⁻¹ and 177.42 g · d⁻¹ ± 13.73 g · d⁻¹, respectively. In coking process, mercury mainly came from the burning of coking coal. The sintering process was the biggest contributor for mercury input during the iron and steel production with the mercury input of 1075. 27 g · d⁻¹ ± 60.89 g · d⁻¹ accounting for 68.06% of the total mercury input during this production process, and the ore powder was considered as the main mercury source. For the solid output material, the output in the sintering process was 14.15 g · d⁻¹ ± 0.38 g · d⁻¹, accounting for 22.61% of the total solid output. The mercury emission amount from this studied iron and steel enterprise was estimated to be 553.83 kg in 2013 with the emission factor of 0.092 g · t⁻¹ steel production. Thus, to control the mercury emissions, iron and steel enterprises should combine with production practice, further reduce energy consumption of coking and sintering, or improve the quality of raw materials and reduce the input of mercury.
DETECTION OF BACTERIAL BIOFILM ON STAINLESS STEEL BY HYPERSPECTRAL FLUORESCENCE IMAGING
USDA-ARS?s Scientific Manuscript database
In this study, hyperspectral fluorescence imaging techniques were investigated for detection of microbial biofilm on stainless steel plates typically used to manufacture food processing equipment. Stainless steel coupons were immersed in bacterium cultures consisting of nonpathogenic E. coli, Pseudo...
NASA Astrophysics Data System (ADS)
Ren, Peng; Guo, Zitao
Quasi-static and dynamic fracture initiation toughness of gy4 armour steel material are investigated using three point bend specimen. The modified split Hopkinson pressure bar (SHPB) apparatus with digital image correlation (DIC) system is applied to dynamic loading experiments. Full-field deformation measurements are obtained by using DIC to elucidate on the strain fields associated with the mechanical response. A series of experiments are conducted at different strain rate ranging from 10-3 s-1 to 103 s-1, and the loading rate on the fracture initiation toughness is investigated. Specially, the scanning electron microscope imaging technique is used to investigate the fracture failure micromechanism of fracture surfaces. The gy4 armour steel material fracture toughness is found to be sensitive to strain rate and higher for dynamic loading as compared to quasi-static loading. This work is supported by National Nature Science Foundation under Grant 51509115.
Evolution of Non-metallic Inclusions and Precipitates in Oriented Silicon Steel
NASA Astrophysics Data System (ADS)
Luo, Yan; Yang, Wen; Ren, Qiang; Hu, Zhiyuan; Li, Ming; Zhang, Lifeng
2018-06-01
The evolution of inclusions in oriented silicon steel during the manufacturing process was carried out by chemical composition analysis, non-aqueous electrolytic corrosion, and thermodynamic calculation. The morphology, composition, and size of inclusions were analyzed introducing field emission scanning electron microscope. The oxides were mainly formed during the secondary refining, and the nitrides, sulfides, and compounds were formed during the solidification and cooling of steel in the processes of continuous casting and hot rolling.
Application of dynamic milling in stainless steel processing
NASA Astrophysics Data System (ADS)
Shan, Wenju
2017-09-01
This paper mainly introduces the method of parameter setting for NC programming of stainless steel parts by dynamic milling. Stainless steel is of high plasticity and toughness, serious hard working, large cutting force, high temperature in cutting area and easy wear of tool. It is difficult to process material. Dynamic motion technology is the newest NC programming technology of Mastercam software. It is an advanced machining idea. The tool path generated by the dynamic motion technology is more smooth, more efficient and more stable in the machining process. Dynamic motion technology is very suitable for cutting hard machining materials.
1978-07-01
AISI 4140 steel body, but additional work remains to be done because pure copper behaves differently than gilding metal when subjected to the inertia...bands to AISI 1340 steel bodies used with the 155-mm, M483A1 Projectile. As a result of the effort it was demon- strated that the process is practical...rotating bands to AISI 1340 steel bodies used with the 155-mm, M483A1 Projectile. As a result of the effort it was demonstrated that the process is
Decomposition of energetic chemicals contaminated with iron or stainless steel.
Chervin, Sima; Bodman, Glenn T; Barnhart, Richard W
2006-03-17
Contamination of chemicals or reaction mixtures with iron or stainless steel is likely to take place during chemical processing. If energetic and thermally unstable chemicals are involved in a manufacturing process, contamination with iron or stainless steel can impact the decomposition characteristics of these chemicals and, subsequently, the safety of the processes, and should be investigated. The goal of this project was to undertake a systematic approach to study the impact of iron or stainless steel contamination on the decomposition characteristics of different chemical classes. Differential scanning calorimetry (DSC) was used to study the decomposition reaction by testing each chemical pure, and in mixtures with iron and stainless steel. The following classes of energetic chemicals were investigated: nitrobenzenes, tetrazoles, hydrazines, hydroxylamines and oximes, sulfonic acid derivatives and monomers. The following non-energetic groups were investigated for contributing effects: halogens, hydroxyls, amines, amides, nitriles, sulfonic acid esters, carbonyl halides and salts of hydrochloric acid. Based on the results obtained, conclusions were drawn regarding the sensitivity of the decomposition reaction to contamination with iron and stainless steel for the chemical classes listed above. It was demonstrated that the most sensitive classes are hydrazines and hydroxylamines/oximes. Contamination of these chemicals with iron or stainless steel not only destabilizes them, leading to decomposition at significantly lower temperatures, but also sometimes causes increased severity of the decomposition. The sensitivity of nitrobenzenes to contamination with iron or stainless steel depended upon the presence of other contributing groups: the presence of such groups as acid chlorides or chlorine/fluorine significantly increased the effect of contamination on decomposition characteristics of nitrobenzenes. The decomposition of sulfonic acid derivatives and tetrazoles was not impacted by presence of iron or stainless steel.
Processing and Characterization of High Strength, High Ductility Hadfield Steel
1990-04-01
precipitation in high carbon content Hadfield steel resulting in the introduction of a grain boundary void nucleation softening mechanism leading to plastic...hardening, in comparison to the thin twin spacing of Fe-Ni martensite and inferred that carbon may have an important role in contributing to Hadfield steel ...approaches to strengthening from alloying or precipitation mechanisms are introduced, the deformation mechanisms responsible for Hadfield steel
A Study of the Effect of Interrupted Quenches on a Thermomechanically Processed High Carbon Steel.
1982-10-01
Martensite And Austenite Phases In Steel Using Copper Radiation ---------------------------- 38 4° J !7...34A General Equa- tion Prescribing the Extent of the Austenite- Martensite Transformation in Pure Iron-Carbon Alloys and Plain Carbon Steels ," Acta Met...relatively low temperatures, resulting in incomplete disso- lution of alloy carbides, predominantly Fe-Cr complexes. In some instances 52100 steel is
Self-Pierce Riveting Through 3 Sheet Metal Combinations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andersson, Roger; Jonason, Paul; Pettersson, Tommy
2011-05-04
One way to reduce the CO{sub 2} emissions in automotives is to reduce the weight of the Body-In-White. One easy to achieve the weight reduction is to replace steel sheet materials with Al alloys, which is 3 times lighter. One issue is the joining process, especially with combinations between steel grades and AL alloys. Example of combination of mixed material combinations (Al-steel) might be found in the door structure. The reason is because of the AL alloys worthier crash performance so the automotive manufacturer might want to use crash impact beams made by high strength steels in a AL intensivemore » door structure. The joining process between aluminum and steel are problematic due it's not possible to use traditional spot-welding technologies due to the materials total difference in microstructure characteristics as well thermal properties. To overcome this issue then mechanical as well adhesion joining are frequently used. This paper describes a development process and subsequently analysis of a self-pierce rivet (SPR) process between 3 sheet metal combinations. The multi-material combinations in this study were a combination of ultra high strength steels sheets (DP1000) and a Al-alloy (AA 6014). The analysis of the SPR process, in sense of mechanical strengths, has been done by peel- and shear tests. To reduce the amount of future physical tests a virtual FE-model has been developed for the process. This FE model of the process has been subsequently used to analyze the mechanical strength during plastic deformation. By using inverse analysis a correct contact algorithm has been evaluated that would predict the binding force between the rivet and sheet under a deformation process. With this new virtual model it will not only possible to analyze and develop the SPR process but also to achieve the final strength of the joint.« less
Alternative to Nitric Acid for Passivation of Stainless Steel Alloys
NASA Technical Reports Server (NTRS)
Lewis, Pattie L.; Kolody, Mark; Curran, Jerry
2013-01-01
Corrosion is an extensive problem that affects the Department of Defense (DoD) and National Aeronautics and Space Administration (NASA). The deleterious effects of corrosion result in steep costs, asset downtime affecting mission readiness, and safety risks to personnel. Consequently, it is vital to reduce corrosion costs and risks in a sustainable manner. The DoD and NASA have numerous structures and equipment that are fabricated from stainless steel. The standard practice for protection of stainless steel is a process called passivation. Typical passivation procedures call for the use of nitric acid; however, there are a number of environmental, worker safety, and operational issues associated with its use. Citric acid offers a variety of benefits including increased safety for personnel, reduced environmental impact, and reduced operational cost. DoD and NASA agreed to collaborate to validate citric acid as an acceptable passivating agent for stainless steel. This paper details our investigation of prior work developing the citric acid passivation process, development of the test plan, optimization of the process for specific stainless steel alloys, ongoing and planned testing to elucidate the process' resistance to corrosion in comparison to nitric acid, and preliminary results.
Hydrogen-enhanced fatigue crack growth in steels and its frequency dependence
NASA Astrophysics Data System (ADS)
Matsunaga, Hisao; Takakuwa, Osamu; Yamabe, Junichiro; Matsuoka, Saburo
2017-06-01
In the context of the fatigue life design of components, particularly those destined for use in hydrogen refuelling stations and fuel cell vehicles, it is important to understand the hydrogen-induced, fatigue crack growth (FCG) acceleration in steels. As such, the mechanisms for acceleration and its influencing factors are reviewed and discussed in this paper, with a special focus on the peculiar frequency dependence of the hydrogen-induced FCG acceleration. Further, this frequency dependence is debated by introducing some potentially responsible elements, along with new experimental data obtained by the authors. This article is part of the themed issue 'The challenges of hydrogen and metals'.
Chem I Supplement: Chemistry of Steel Making.
ERIC Educational Resources Information Center
Sellers, Neal
1980-01-01
Provides information about the chemistry of steel making applicable to teaching secondary school science. Generalized chemical reactions describe the manufacture of steel from iron ore. Also discussed are raw materials, processing choices, and how various furnaces (blast, direct reduction, open hearth, basic oxygen, electric) work. (CS)
Code of Federal Regulations, 2011 CFR
2011-07-01
... Standards for Hazardous Air Pollutants for Steel Pickling-HCl Process Facilities and Hydrochloric Acid... to remove residual acid. Carbon steel means steel that contains approximately 2 percent or less... equipment and tanks configured for pickling metal strip, rod, wire, tube, or pipe that is passed through an...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Standards for Hazardous Air Pollutants for Steel Pickling-HCl Process Facilities and Hydrochloric Acid... to remove residual acid. Carbon steel means steel that contains approximately 2 percent or less... equipment and tanks configured for pickling metal strip, rod, wire, tube, or pipe that is passed through an...
Heavy metal recovery from electric arc furnace steel slag by using hydrochloric acid leaching
NASA Astrophysics Data System (ADS)
Wei, Lim Jin; Haan, Ong Teng; Shean Yaw, Thomas Choong; Chuah Abdullah, Luqman; Razak, Mus'ab Abdul; Cionita, Tezara; Toudehdehghan, Abdolreza
2018-03-01
Electric Arc Furnace steel slag (EAFS) is the waste produced in steelmaking industry. Environmental problem such as pollution will occur when dumping the steel slag waste into the landfill. These steel slags have properties that are suitable for various applications such as water treatment and wastewater. The objective of this study is to develop efficient and economical chlorination route for EAFS extraction by using leaching process. Various parameters such as concentration of hydrochloric acid, particle size of steel slag, reaction time and reaction temperature are investigated to determine the optimum conditions. As a result, the dissolution rate can be determined by changing the parameters, such as concentration of hydrochloric acid, particle size of steel slag, reaction time and reaction temperature. The optimum conditions for dissolution rates for the leaching process is at 3.0 M hydrochloric acid, particle size of 1.18 mm, reaction time of 2.5 hour and the temperature of 90°C.
NASA Astrophysics Data System (ADS)
Koltsov, Alexey; Cretteur, Laurent
2018-03-01
The laser brazing process is successfully applied in automotive industry for joining of roofs and hatchbacks of vehicles. The bad wetting of the brazing alloy during the process can lead to the formation of random external porosities which are not allowed on visible parts. This paper describes the wettability and reactivity mechanisms at short contact time of Cu and Al matrix brazing alloys with different reactive elements (Si, Sn) on different steel products such as hot-dip galvanized steels, galvannealed steel and bare steel. Wetting experiments were carried out by the dispensed drop technique. The effects of alloying elements and brazing alloy matrix on interfacial reactivity are discussed. It was found that Cu matrix containing 3 wt.% Si is the most favorable for short time liquid/solid adhesion relatively to the other studied brazing alloy compositions. The brazing ability of different steel products is well correlated with the wettability and interfacial reactivity results.
Effect of process parameters on formability of laser melting deposited 12CrNi2 alloy steel
NASA Astrophysics Data System (ADS)
Peng, Qian; Dong, Shiyun; Kang, Xueliang; Yan, Shixing; Men, Ping
2018-03-01
As a new rapid prototyping technology, the laser melting deposition technology not only has the advantages of fast forming, high efficiency, but also free control in the design and production chain. Therefore, it has drawn extensive attention from community.With the continuous improvement of steel performance requirements, high performance low-carbon alloy steel is gradually integrated into high-tech fields such as aerospace, high-speed train and armored equipment.However, it is necessary to further explore and optimize the difficult process of laser melting deposited alloy steel parts to achieve the performance and shape control.This article took the orthogonal experiment on alloy steel powder by laser melting deposition ,and revealed the influence rule of the laser power, scanning speed, powder gas flow on the quality of the sample than the dilution rate, surface morphology and microstructure analysis were carried out.Finally, under the optimum technological parameters, the Excellent surface quality of the alloy steel forming part with high density, no pore and cracks was obtained.
NASA Astrophysics Data System (ADS)
Petryshynets, Ivan; Kováč, František; Puchý, Viktor; Šebek, Martin; Füzer, Ján; Kollár, Peter
2018-04-01
The present paper shows the impact of different laser scribing conditions on possible reduction of magnetic losses in grain oriented electrical steel sheets. The experimental Fe-3%Si steel was taken from industrial line after final box annealing. The surface of investigated steel was subjected to fiber laser processing using both pulse and continuous scribing regimes in order to generate residual thermal stresses inducing the magnetic domains structure refinement. The magnetic losses of experimental samples before and after individual laser scribing regimes were tested in AC magnetic field with 50Hz frequency and induction of 1.5T. The most significant magnetic losses reduction of 38% was obtained at optimized conditions of continuous laser scribing regime. A semi quantitative relationship has been found between the domain patterns and the used fiber laser processing.
Method and apparatus for manufacturing gas tags
Gross, K.C.; Laug, M.T.
1996-12-17
For use in the manufacture of gas tags employed in a gas tagging failure detection system for a nuclear reactor, a plurality of commercial feed gases each having a respective noble gas isotopic composition are blended under computer control to provide various tag gas mixtures having selected isotopic ratios which are optimized for specified defined conditions such as cost. Using a new approach employing a discrete variable structure rather than the known continuous-variable optimization problem, the computer controlled gas tag manufacturing process employs an analytical formalism from condensed matter physics known as stochastic relaxation, which is a special case of simulated annealing, for input feed gas selection. For a tag blending process involving M tag isotopes with N distinct feed gas mixtures commercially available from an enriched gas supplier, the manufacturing process calculates the cost difference between multiple combinations and specifies gas mixtures which approach the optimum defined conditions. The manufacturing process is then used to control tag blending apparatus incorporating tag gas canisters connected by stainless-steel tubing with computer controlled valves, with the canisters automatically filled with metered quantities of the required feed gases. 4 figs.
Method and apparatus for manufacturing gas tags
Gross, Kenny C.; Laug, Matthew T.
1996-01-01
For use in the manufacture of gas tags employed in a gas tagging failure detection system for a nuclear reactor, a plurality of commercial feed gases each having a respective noble gas isotopic composition are blended under computer control to provide various tag gas mixtures having selected isotopic ratios which are optimized for specified defined conditions such as cost. Using a new approach employing a discrete variable structure rather than the known continuous-variable optimization problem, the computer controlled gas tag manufacturing process employs an analytical formalism from condensed matter physics known as stochastic relaxation, which is a special case of simulated annealing, for input feed gas selection. For a tag blending process involving M tag isotopes with N distinct feed gas mixtures commercially available from an enriched gas supplier, the manufacturing process calculates the cost difference between multiple combinations and specifies gas mixtures which approach the optimum defined conditions. The manufacturing process is then used to control tag blending apparatus incorporating tag gas canisters connected by stainless-steel tubing with computer controlled valves, with the canisters automatically filled with metered quantities of the required feed gases.
Role of Fe-Oxidizing Bacteria in Metal Bio-Corrosion in the Marine Environment
2015-06-30
laboratory. This system allowed control of Oj levels, pH, flow rates, and supplemental iron additions, and was designed so steel coupons could be...2012. The microbial ferrous wheel: iron cycling in terrestrial, freshwater, and marine environments. Special Topics eBook for Frontiers in
46 CFR 153.530 - Special requirements for alkylene oxides.
Code of Federal Regulations, 2014 CFR
2014-10-01
... be composites of spirally wound stainless steel and Teflon or similar fluorinated polymer. (c) The...; (3) Be assembled from valves, fittings, and accessories having a pressure rating of not less than..., one in each emergency shutdown station required by § 153.296; and (3) Covers the area of application...
46 CFR 153.530 - Special requirements for alkylene oxides.
Code of Federal Regulations, 2013 CFR
2013-10-01
... be composites of spirally wound stainless steel and Teflon or similar flourinated polymer. (c) The...; (3) Be assembled from valves, fittings, and accessories having a pressure rating of not less than..., one in each emergency shutdown station required by § 153.296; and (3) Covers the area of application...
46 CFR 153.530 - Special requirements for alkylene oxides.
Code of Federal Regulations, 2012 CFR
2012-10-01
... be composites of spirally wound stainless steel and Teflon or similar flourinated polymer. (c) The...; (3) Be assembled from valves, fittings, and accessories having a pressure rating of not less than..., one in each emergency shutdown station required by § 153.296; and (3) Covers the area of application...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-28
... Services Limited Chongqing Petroleum Special Pipeline Factory of CNPC Sichuan Petroleum Goods & Material... Pipeline Materials Company Limited Shanghai Baodi Petroleum Pipe Development Co., Ltd Shanghai Baofu Steel... request. Respondent Selection In the event the Department limits the number of respondents for individual...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-10
... Limited Chongqing Petroleum Special Pipeline Factory of CNPC Sichuan Petroleum Goods & Material Supply... Manufacture Co., Ltd. Shanghai Baochen Oil Pipeline Materials Company Limited Shanghai Baoshun Steel Tube Co... served on the petitioner and each exporter or producer specified in the request. Respondent Selection In...
23. Cross section of newly completed concrete channel and trestle ...
23. Cross section of newly completed concrete channel and trestle supported steel flume, 1919. Courtesy of the Mandeville Department of Special Collections, Central Library, University of California, San Diego. - Lake Hodges Flume, Along San Dieguito River between Lake Hodges & San Dieguito Reservoir, Rancho Santa Fe, San Diego County, CA
DOT National Transportation Integrated Search
1995-11-12
Materials used for the shells of pressurized railroad tank cars : must be strong and inexpensive, yet also easily weldable and : resistant to fracture. The high costs associated with special alloy : compositions have made it difficult in the past to ...
Fact Sheet summarizing the main points of the national emssions standard for hazaradous air pollutants (NESHAP) for Steel Pickling— HCl Process Facilities and Hydrochloric Acid Regeneration Plants as promulgated on June 22, 1999.
High adherence copper plating process
Nignardot, H.
1993-09-21
A process is described for applying copper to a substrate of aluminum or steel by electrodeposition and for preparing the surface of an aluminum or steel substrate for the electrodeposition of copper. Practice of the invention provides good adhesion of the copper layer to either substrate.
PARAMETERS OF TREATED STAINLESS STEEL SURFACES IMPORTANT FOR RESISTANCE TO BACTERIAL CONTAMINATION
Use of materials that are resistant to bacterial contamination could enhance food safety during processing. Common finishing treatments of stainless steel surfaces used for components of poultry processing equipment were tested for resistance to bacterial attachment. Surface char...
NASA Astrophysics Data System (ADS)
Peng, Zhang; Liangfa, Xie; Ming, Wei; Jianli, Li
In the shipbuilding industry, the welding efficiency of the ship plate not only has a great effect on the construction cost of the ship, but also affects the construction speed and determines the delivery cycle. The steel plate used for large heat input welding was developed sufficiently. In this paper, the composition of the steel with a small amount of Nb, Ti and large amount of Mn had been designed in micro-alloyed route. The content of C and the carbon equivalent were also designed to a low level. The technology of oxide metallurgy was used during the smelting process of the steel. The rolling technology of TMCP was controlled at a low rolling temperature and ultra-fast cooling technology was used, for the purpose of controlling the transformation of the microstructure. The microstructure of the steel plate was controlled to be the mixed microstructure of low carbon bainite and ferrite. Large amount of oxide particles dispersed in the microstructure of steel, which had a positive effects on the mechanical property and welding performance of the steel. The mechanical property of the steel plate was excellent and the value of longitudinal Akv at -60 °C is more than 200 J. The toughness of WM and HAZ were excellent after the steel plate was welded with a large heat input of 100-250 kJ/cm. The steel plate processed by mentioned above can meet the requirement of large heat input welding.
Analysis of hot forming of a sheet metal component made of advanced high strength steel
NASA Astrophysics Data System (ADS)
Demirkaya, Sinem; Darendeliler, Haluk; Gökler, Mustafa İlhan; Ayhaner, Murat
2013-05-01
To provide reduction in weight while maintaining crashworthiness and to decrease the fuel consumption of vehicles, thinner components made of Advanced High Strength Steels (AHSS) are being increasingly used in automotive industry. However, AHSS cannot be formed easily at the room temperature (i.e. cold forming). The alternative process involves heating, hot forming and subsequent quenching. A-pillar upper reinforcement of a vehicle is currently being produced by cold forming of DP600 steel sheet with a thickness of 1.8 mm. In this study, the possible decrease in the thickness of this particular part by using 22MnB5 as appropriate AHSS material and applying this alternative process has been studied. The proposed process involves deep drawing, trimming, heating, sizing, cooling and piercing operations. Both the current production process and the proposed process are analyzed by the finite element method. The die geometry, blank holding forces and the design of the cooling channels for the cooling process are determined numerically. It is shown that the particular part made of 22MnB5 steel sheet with a thickness of 1.2 mm can be successfully produced by applying the proposed process sequence and can be used without sacrificing the crashworthiness. With the use of the 22MnB5 steel with a thickness of 1.2 mm instead of DP600 sheet metal with a thickness of 1.8 mm, the weight is reduced by approximately 33%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matlock, David K; Thomas, Larrin S; Taylor, Mark D
In the past 30+ years significant advancements have been made in the development of higher strength sheet steels with improved combinations of strength and ductility that have enabled important product improvements leading to safer, lighter weight, and more fuel efficient automobiles and in other applications. Properties of the primarily low carbon, low alloy steels are derived through careful control of time-temperature processing histories designed to produce multiphase ferritic based microstructures that include martensite and other constituents including retained austenite. The basis for these developments stems from the early work on dual-phase steels which was the subject of much interest. Inmore » response to industry needs, dual-phase steels have evolved as a unique class of advanced high strength sheet steels (AHSS) in which the thermal and mechanical processing histories have been specifically designed to produce constituent combinations for the purpose of simultaneously controlling strength and deformation behavior, i.e. stress-strain curve shapes. Improvements continue as enhanced dual-phase steels have recently been produced with finer microstructures, higher strengths, and better overall formability. Today, dual phase steels are the primary AHSS products used in vehicle manufacture, and several companies have indicated that the steels will remain as important design materials well into the future. In this presentation, fundamental results from the early work on dual-phase steels will be reviewed and assessed in light of recent steel developments. Specific contributions from industry/university cooperative research leading to product improvements will be highlighted. The historical perspective provided in the evolution of dual-phase steels represents a case-study that provides important framework and lessons to be incorporated in next generation AHSS products.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
This Preliminary Report is prepared to study the facilities required for recycling contaminated stainless steel scrap into plate which will be fabricated into boxes suitable for the storage of contaminated wastes and rubble. The study is based upon the underlying premise that the most cost effective way to produce stainless steel is to use the same processes employed by companies now in production of high quality stainless steel. Therefore, the method selected for this study for the production of stainless steel plate from scrap is conventional process using an Electric Arc Furnace for meltdown to hot metal, a Continuous Castermore » for production of cast slabs, and a Reversing Hot Mill for rolling the slabs into plate. The fabrication of boxes from the plate utilizes standard Shears, Punch Presses and welding equipment with Robotic Manipulators. This Study presumes that all process fumes, building dusts and vapors will be cycled through a baghouse and a nuclear grade HEPA filter facility prior to discharge. Also, all process waste water will be evaporated into the hot flue gas stream from the furnace utilizing a quench tank; so there will be no liquid discharges from the facility and all vapors will be processed through a HEPA filter. Even though HEPA filters are used today in controlling radioactive contamination from nuclear facilities there is a sparsity of data concerning radioactivity levels and composition of waste that may be collected from contaminated scrap steel processing. This report suggests some solutions to these problems but it is recommended that additional study must be given to these environmental problems.« less
1983-09-01
nominal carbon content bAtween 0.27 and 0.33 oircent c&.:-bon. Cases are deep drawn from a disk shaped billet in several thermo-mechanical processing...alloys, incfluding itlium car:bon martensitic steels . The :lassic precipitation process; 3? zones - cohe-, rent pr cipititsm - semicoherent pcecipitatis...incohqrqnt I precipitatis 3ccurs itn these steels with the primary ar-a of importance to this study being tha semicohe:.nt phase., Inj martensitic stels
Chemically Accelerated Vibratory Surface Finishing (CAVSF)
2009-02-01
media) • End-roughness and micro structure of different C- steels • Material removal and roughness changes versus the amount of treatment solution in...surface finishing (CAVSF) Visual appearance of strip steel test pieces during the CAVSF process. 0-120 minutes = acid treatment 120-135 minutes = water... steel during the super-finishing process 0 50 100 150 200 250 300 350 0 50 100 150 200 250 Time minutes R e m o v e d m a t e r i a l m i c r
NASA Astrophysics Data System (ADS)
Chan, Matthew Wei-Jen
Complex engineering systems ranging from automobile engines to geothermal wells require specialized sensors to monitor conditions such as pressure, acceleration and temperature in order to improve efficiency and monitor component lifetime in what may be high temperature, corrosive, harsh environments. Microelectromechanical systems (MEMS) have demonstrated their ability to precisely and accurately take measurements under such conditions. The systems being monitored are typically made from metals, such as steel, while the MEMS sensors used for monitoring are commonly fabricated from silicon, silicon carbide and aluminum nitride, and so there is a sizable thermal expansion mismatch between the two. For these engineering applications the direct bonding of MEMS sensors to the components being monitored is often required. This introduces several challenges, namely the development of a bond that is capable of surviving high temperature harsh environments while mitigating the thermally induced strains produced during bonding. This project investigates the development of a robust packaging and bonding process, using the gold-tin metal system and the solid-liquid interdiffusion (SLID) bonding process, to join silicon carbide substrates directly to type-316 stainless steel. The SLID process enables bonding at lower temperatures while producing a bond capable of surviving higher temperatures. Finite element analysis was performed to model the thermally induced strains generated in the bond and to understand the optimal way to design the bond. The cross-sectional composition of the bonds has been analyzed and the bond strength has been investigated using die shear testing. The effects of high temperature aging on the bond's strength and the metallurgy of the bond were studied. Additionally, loading of the bond was performed at temperatures over 415 °C, more than 100 °C, above the temperature used for bonding, with full survival of the bond, thus demonstrating the benefit of SLID bonding for high temperature applications. Lastly, this dissertation provides recommendations for improving the strength and durability of the bond at temperatures of 400 °C and provides the framework for future work in the area of high temperature harsh environment MEMS packaging that would take directly bonded MEMS to temperatures of 600 °C and beyond.
Steel selection for UBC steel bridge
NASA Astrophysics Data System (ADS)
Liu, Haoyu
2018-03-01
This report conducts a material selection of different types of steel for UBC Steel Bridge Team. I am a third-year material engineering student, so the result from this material selection can only be taken into consideration but not fully adopted. As part of my academic journey, it is possible for technical mistakes in this material selection process. The mechanic properties are the most effective category of properties, making it necessary to be justified from the steel bridge design and chosen in accordance with the objective of the team. An introduction for currently-used steel properties and the expected steel properties is provided. The examination focus on how different alloy compositions of steel changes its properties. The properties of the steel are examined in three main aspects: hardness, strength, and toughness. The results suggest that more nickel, manganese, and chromium in the steel provide better steel for the team to use. Further research is needed if a more precise material selection is required.
NASA Astrophysics Data System (ADS)
Hiratani, T.; Zaizen, Y.; Oda, Y.; Yoshizaki, S.; Senda, K.
2018-05-01
In this study, we investigated the magnetic properties of Si-gradient steel sheet produced by CVD (chemical vapor deposition) siliconizing process, comparing with 6.5% Si steel sheet. The Si-gradient steel sheet having silicon concentration gradient in the thickness direction, has larger hysteresis loss and smaller eddy current loss than the 6.5% Si steel sheet. In such a loss configuration, the iron loss of the Si-gradient steel sheet becomes lower than that of the 6.5% Si steel sheet at high frequencies. The experiment suggests that tensile stress is formed at the surface layer and compressive stress is formed at the inner layer in the Si gradient steel sheet. The magnetic anisotropy is induced by the internal stress and it is considered to affect the magnetization behavior of the Si-gradient steel sheet. The small eddy current loss of Si-gradient steel sheet can be explained as an effect of magnetic flux concentration on the surface layer.
Assessment of bacterial biofilm on stainless steel by hyperspectral fluorescence imaging
USDA-ARS?s Scientific Manuscript database
Hyperspectral fluorescence imaging techniques were investigated for detection of two genera of microbial biofilms on stainless steel material which is commonly used to manufacture food processing equipment. Stainless steel coupons were deposited in nonpathogenic E. coli O157:H7 and Salmonella cultu...
Friction Stir Spot Welding of Advanced High Strength Steels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hovanski, Yuri; Grant, Glenn J.; Santella, M. L.
Friction stir spot welding techniques were developed to successfully join several advanced high strength steels. Two distinct tool materials were evaluated to determine the effect of tool materials on the process parameters and joint properties. Welds were characterized primarily via lap shear, microhardness, and optical microscopy. Friction stir spot welds were compared to the resistance spot welds in similar strength alloys by using the AWS standard for resistance spot welding high strength steels. As further comparison, a primitive cost comparison between the two joining processes was developed, which included an evaluation of the future cost prospects of friction stir spotmore » welding in advanced high strength steels.« less
49 CFR 178.55 - Specification 4B240ET welded or brazed cylinders.
Code of Federal Regulations, 2012 CFR
2012-10-01
.... (a) Type, spinning process, size and service pressure. A DOT 4B240ET cylinder is a brazed type... process are authorized. (b) Steel. Open-hearth, basic oxygen, or electric steel of uniform quality must be... manufactured using equipment and processes adequate to ensure that each cylinder produced conforms to the...
49 CFR 178.55 - Specification 4B240ET welded or brazed cylinders.
Code of Federal Regulations, 2013 CFR
2013-10-01
.... (a) Type, spinning process, size and service pressure. A DOT 4B240ET cylinder is a brazed type... process are authorized. (b) Steel. Open-hearth, basic oxygen, or electric steel of uniform quality must be... manufactured using equipment and processes adequate to ensure that each cylinder produced conforms to the...
49 CFR 178.55 - Specification 4B240ET welded or brazed cylinders.
Code of Federal Regulations, 2014 CFR
2014-10-01
.... (a) Type, spinning process, size and service pressure. A DOT 4B240ET cylinder is a brazed type... process are authorized. (b) Steel. Open-hearth, basic oxygen, or electric steel of uniform quality must be... manufactured using equipment and processes adequate to ensure that each cylinder produced conforms to the...
49 CFR 178.55 - Specification 4B240ET welded or brazed cylinders.
Code of Federal Regulations, 2011 CFR
2011-10-01
.... (a) Type, spinning process, size and service pressure. A DOT 4B240ET cylinder is a brazed type... process are authorized. (b) Steel. Open-hearth, basic oxygen, or electric steel of uniform quality must be... manufactured using equipment and processes adequate to ensure that each cylinder produced conforms to the...
idRHa+ProMod - Rail Hardening Control System
NASA Astrophysics Data System (ADS)
Ferro, L.
2016-03-01
idRHa+ProMod is the process control system developed by Primetals Technologies to foresee the thermo-mechanical evolution and micro-structural composition of rail steels subjected to slack quenching into idRHa+ Rail Hardening equipments in a simulation environment. This tool can be used both off-line or in-line, giving the user the chance to test and study the best cooling strategies or letting the automatic control system free to adjust the proper cooling recipe. Optimization criteria have been tailored in order to determine the best cooling conditions according to the metallurgical requirements imposed by the main rail standards and also taking into account the elastoplastic bending phenomena occurring during all stages of the head hardening process. The computational core of idRHa+ProMod is a thermal finite element procedure coupled with special algorithms developed to work out the main thermo-physical properties of steel, to predict the non-isothermal austenite decomposition into all the relevant phases and subsequently to evaluate the amount of latent heat of transformation released, the compound thermal expansion coefficient and the amount of plastic deformation in the material. Air mist and air blades boundary conditions have been carefully investigated by means of pilot plant tests aimed to study the jet impingement on rail surfaces and the cooling efficiency at all working conditions. Heat transfer coefficients have been further checked and adjusted directly on field during commissioning. idRHa+ is a trademark of Primetals Technologies Italy Srl
DOE Office of Scientific and Technical Information (OSTI.GOV)
Felmy, Andrew R.; Qafoku, Odeta; Arey, Bruce W.
2010-09-22
The presence of corrosive and inhibiting chemicals on the tank walls in the vapor space, arising from the waste supernatant, dictate the type and degree of corrosion that occurs there. An understanding of how waste chemicals are transported to the walls and the affect on vapor species from changing supernatant chemistry (e.g., pH, etc.), are basic to the evaluation of risks and impacts of waste changes on vapor space corrosion (VSC). In order to address these issues the expert panel workshop on double-shell tank (DST) vapor space corrosion testing (RPP-RPT-31129) participants made several recommendations on the future data and modelingmore » needs in the area of DST corrosion. In particular, the drying of vapor phase condensates or supernatants can form salt or other deposits at the carbon steel interface resulting in a chemical composition at the near surface substantially different from that observed directly in the condensates or the supernatants. As a result, over the past three years chemical modeling and experimental studies have been performed on DST supernatants and condensates to predict the changes in chemical composition that might occur as condensates or supernatants equilibrate with the vapor space species and dry at the carbon steel surface. The experimental studies included research on both the chemical changes that occurred as the supernatants dried as well as research on how these chemical changes impact the corrosion of tank steels. The chemical modeling and associated experimental studies were performed at the Pacific Northwest National Laboratory (PNNL) and the research on tank steel corrosion at the Savannah River National Laboratory (SRNL). This report presents a summary of the research conducted at PNNL with special emphasis on the most recent studies conducted in FY10. An overall summary of the project results as well as their broader implications for vapor space corrosion of the DST’s is given at the end of this report.« less
Rolling Bearing Steels - A Technical and Historical Perspective
NASA Technical Reports Server (NTRS)
Zaretsky, Erwin V.
2012-01-01
Starting about 1920 it becomes easier to track the growth of bearing materials technology. Until 1955, with few exceptions, comparatively little progress was made in this area. AISI 52100 and some carburizing grades (AISI 4320, AISI 9310) were adequate for most applications. The catalyst to quantum advances in high-performance rolling-element bearing steels was the advent of the aircraft gas turbine engine. With improved bearing manufacturing and steel processing together with advanced lubrication technology, the potential improvements in bearing life can be as much as 80 times that attainable in the late 1950s or as much as 400 times that attainable in 1940. This paper summarizes the chemical, metallurgical and physical aspects of bearing steels and their effect on rolling bearing life and reliability. The single most important variable that has significantly increased bearing life and reliability is vacuum processing of bearing steel. Differences between through hardened, case carburized and corrosion resistant steels are discussed. The interrelation of alloy elements and carbides and their effect on bearing life are presented. An equation relating bearing life, steel hardness and temperature is given. Life factors for various steels are suggested and discussed. A relation between compressive residual stress and bearing life is presented. The effects of retained austenite and grain size are discussed.
Mechanical properties of high-Si plate steel produced by the quenching and partitioning process
NASA Astrophysics Data System (ADS)
Hong, Seung Chan; Ahn, Jae Cheon; Nam, Sang Yong; Kim, Seog Ju; Yang, Hee Choon; Speer, John G.; Matlock, David K.
2007-12-01
The microstructures and mechanical properties of a high-Si (1.5 wt.%) steel produced by a novel process of quenching and partitioning (Q & P) were compared with those obtained using traditional heat treatments (i.e. austempering, intercritical annealing for dual phase, quench and tempering). Plate steel was included for exploration of the Q & P process in applications requiring strength and toughness (such as an API line pipe), where retained austenite may contribute to the overall toughness via the TRIP phenomenon at a crack top. The Q & P process is based on the partial transformation of austenite to martensite, followed by partitioning of carbon from martensite into austenite, which leads to an untypical microstructure. Retained austenite amounts up to 6 vol.% with a carbon content of up to 0.88 wt.% were achieved in 0.1% carbon steel using Q & P. Superior impact toughness at higher yield strength levels was found after Q & P compared to other traditional heat treatments with equivalent partitioning, austempering or tempering conditions.
NASA Astrophysics Data System (ADS)
Yuan, Qing; Xu, Guang; Liang, Wei-cheng; He, Bei; Zhou, Ming-xing
2018-02-01
The oxidizing behavior of Si-containing steel was investigated in an O2 and N2 binary-component gas with oxygen contents ranging between 0.5vol% and 4.0vol% under anisothermal-oxidation conditions. A simultaneous thermal analyzer was employed to simulate the heating process of Si-containing steel in industrial reheating furnaces. The oxidation gas mixtures were introduced from the commencement of heating. The results show that the oxidizing rate remains constant in the isothermal holding process at high temperatures; therefore, the mass change versus time presents a linear law. A linear relation also exists between the oxidizing rate and the oxygen content. Using the linear regression equation, the oxidation rate at different oxygen contents can be predicted. In addition, the relationship between the total mass gain and the oxygen content is linear; thus, the total mass gain at oxygen contents between 0.5vol%-4.0vol% can be determined. These results enrich the theoretical studies of the oxidation process in Si-containing steels.
Microstructure, Mechanical and Corrosion Properties of Friction Stir-Processed AISI D2 Tool Steel
NASA Astrophysics Data System (ADS)
Yasavol, Noushin; Jafari, Hassan
2015-05-01
In this study, AISI D2 tool steel underwent friction stir processing (FSP). The microstructure, mechanical properties, and corrosion resistance of the FSPed materials were then evaluated. A flat WC-Co tool was used; the rotation rate of the tool varied from 400 to 800 rpm, and the travel speed was maintained constant at 385 mm/s during the process. FSP improved mechanical properties and produced ultrafine-grained surface layers in the tool steel. Mechanical properties improvement is attributed to the homogenous distribution of two types of fine (0.2-0.3 μm) and coarse (1.6 μm) carbides in duplex ferrite-martensite matrix. In addition to the refinement of the carbides, the homogenous dispersion of the particles was found to be more effective in enhancing mechanical properties at 500 rpm tool rotation rate. The improved corrosion resistance was observed and is attributed to the volume fraction of low-angle grain boundaries produced after friction stir process of the AISI D2 steel.
Influence of Sulfur Content on the Corrosion Resistance of 17-4PH Stainless Steel
NASA Astrophysics Data System (ADS)
Tavares, S. S. M.; Pardal, J. M.; Martins, T. R. B.; da Silva, M. R.
2017-04-01
According to specification standards, the basic chemical composition of steel 17-4PH for special and critical applications is 15-17% Cr, 3.0-5.0% Ni, 3.0-5.0% Cu, 0.07% C (max) and 0.15-0.45% (Nb + Ta) (wt.%). The maximum sulfur content is 0.030%. However, as it will be shown in this work, this maximum limit for sulfur is too high for services where high corrosion resistance is necessary. Two samples of 17-4PH steel with similar base compositions, but quite different sulfur contents (0.027% and 0.001%S), were compared with respect to pitting corrosion and sensitization. Both materials were heat treated according to commercial treatments A, H900, H1100, H1150 and H1150D (ASTM A-1082). Two corrosion tests were applied to compare the steels. The first one was the double-loop electrochemical potentiodynamic reactivation (DL-EPR) test in 0.25 M H2SO4 + 0.01 KSCN solution, which is used to measure the degree of sensitization. The second test was the anodic polarization in 3.5%NaCl solution, commonly used to evaluate the pitting corrosion resistance. Detailed microstructural characterization by magnetic measurements, light optical and scanning electron microscopy was performed. As main conclusion, despite that both steels have chemical compositions in accordance with the standards, the steel with higher sulfur was much more susceptible to pitting and sensitization.
NASA Astrophysics Data System (ADS)
Soni, Sourabh Kumar; Thomas, Benedict
2018-04-01
The term "weldability" has been used to describe a wide variety of characteristics when a material is subjected to welding. In our analysis we perform experimental investigation to estimate the tensile strength of welded joint strength and then optimization of welding process parameters by using taguchi method and Artificial Neural Network (ANN) tool in MINITAB and MATLAB software respectively. The study reveals the influence on weldability of steel by varying composition of steel by mechanical characterization. At first we prepare the samples of different grades of steel (EN8, EN 19, EN 24). The samples were welded together by metal inert gas welding process and then tensile testing on Universal testing machine (UTM) was conducted for the same to evaluate the tensile strength of the welded steel specimens. Further comparative study was performed to find the effects of welding parameter on quality of weld strength by employing Taguchi method and Neural Network tool. Finally we concluded that taguchi method and Neural Network Tool is much efficient technique for optimization.
NASA Astrophysics Data System (ADS)
Yeh, Sheng-Kai; Chang, Heng-Chung; Fang, Weileun
2018-04-01
This study presents an inductive tactile sensor with a chrome steel ball sensing interface based on the commercially available standard complementary metal-oxide-semiconductor (CMOS) process (the TSMC 0.18 µm 1P6M CMOS process). The tactile senor has a deformable polymer layer as the spring of the device and no fragile suspended thin film structures are required. As a tactile force is applied on the chrome steel ball, the polymer would deform. The distance between the chrome steel ball and the sensing coil would changed. Thus, the tactile force can be detected by the inductance change of the sensing coil. In short, the chrome steel ball acts as a tactile bump as well as the sensing interface. Experimental results show that the proposed inductive tactile sensor has a sensing range of 0-1.4 N with a sensitivity of 9.22(%/N) and nonlinearity of 2%. Preliminary wireless sensing test is also demonstrated. Moreover, the influence of the process and material issues on the sensor performances have also been investigated.
NASA Astrophysics Data System (ADS)
Mohanty, Itishree; Chintha, Appa Rao; Kundu, Saurabh
2018-06-01
The optimization of process parameters and composition is essential to achieve the desired properties with minimal additions of alloying elements in microalloyed steels. In some cases, it may be possible to substitute such steels for those which are more richly alloyed. However, process control involves a larger number of parameters, making the relationship between structure and properties difficult to assess. In this work, neural network models have been developed to estimate the mechanical properties of steels containing Nb + V or Nb + Ti. The outcomes have been validated by thermodynamic calculations and plant data. It has been shown that subtle thermodynamic trends can be captured by the neural network model. Some experimental rolling data have also been used to support the model, which in addition has been applied to calculate the costs of optimizing microalloyed steel. The generated pareto fronts identify many combinations of strength and elongation, making it possible to select composition and process parameters for a range of applications. The ANN model and the optimization model are being used for prediction of properties in a running plant and for development of new alloys, respectively.
On Some Interesting Trends in Research of Steel and Composite Structures
NASA Astrophysics Data System (ADS)
Marcinowski, Jakub
2017-06-01
This paper is a kind of introduction to the special issue of CEER devoted to metal and composite structures. Papers collected in this issue were ordered from Authors who took part in International Conference on Metal Structures which was held in Zielona Góra in 2016. Selection of Authors and theme of ordered papers were done in cooperation with Metal Structures Section of the Civil Engineering Committee of the Polish Academy of Sciences. Selected papers included in this special issue of CEER were shortly presented in this editorial.
NASA Astrophysics Data System (ADS)
Zhibo, Ren; Kai, Liu; Wei, Wu
This paper analyzed and compared the competitive power of steel industry of 30 provinces in our country. At first, we extracted the data containing 16 economic indicators to reflect each province's business conditions of steel industry, then used correspondence analysis method to process the data. We can get every province's level located in the domestic steel industry and its corresponding advantage. This conclusion has important reference value for every province to develop its steel industry's policy.
Simulation of Decomposition Kinetics of Supercooled Austenite in Powder Steel
NASA Astrophysics Data System (ADS)
Tsyganova, M. S.; Ivashko, A. G.; Polyshuk, I. N.; Nabatov, R. I.; Tsyganova, A. I.
2017-10-01
To approve heat treatment of steel modes, quantitative data on austenite decomposition are required. Gaining these data experimentally appears to be extremely complicated. In present work, few approaches to simulate the phase transformation process are proposed considering structure characteristics of powder steels. Results of comparative analysis of these approaches are also given. Predicting the transformation kinetics by simulation is verified for PK40N2M (0.38% C, 2.10% Ni, 0.40% Mo) steel with 3% porosity and PK80 (0.80% C) steel with different porosity using published experimental data.
Laser beam welding of new ultra-high strength and supra-ductile steels
NASA Astrophysics Data System (ADS)
Dahmen, Martin
2015-03-01
Ultra-high strength and supra-ductile are entering fields of new applications. Those materials are excellent candidates for modern light-weight construction and functional integration. As ultra-high strength steels the stainless martensitic grade 1.4034 and the bainitic steel UNS 53835 are investigated. For the supra-ductile steels stand two high austenitic steels with 18 and 28 % manganese. As there are no processing windows an approach from the metallurgical base on is required. Adjusting the weld microstructure the Q+P and the QT steels require weld heat treatment. The HSD steel is weldable without. Due to their applications the ultra-high strength steels are welded in as-rolled and strengthened condition. Also the reaction of the weld on hot stamping is reflected for the martensitic grades. The supra-ductile steels are welded as solution annealed and work hardened by 50%. The results show the general suitability for laser beam welding.
NASA Astrophysics Data System (ADS)
Seikh, Asiful H.; Halfa, Hossam; Baig, Muneer; Khan, Sohail M. A.
2017-04-01
In this study, two different grades (M23 and M29) of cobalt-free low nickel maraging steel have been produced through electroslag remelting (ESR) process. The corrosion resistance of these ESR steels was investigated in 1 M H2SO4 solution using linear potentiodynamic polarization (LPP) and electrochemical impedance spectroscopy (EIS) techniques. The experiments were performed for different immersion time and solution temperature. To evaluate the corrosion resistance of the ESR steels, some significant characterization parameters from LPP and EIS curves were analyzed and compared with that of conventional C250 maraging steel. Irrespective of measurement techniques used, the results show that the corrosion resistance of the ESR steels was higher than the C250 steel. The microstructure of ESR steels was composed of uniform and well-distributed martensite accompanied with little amount of retained austenite in comparison with C250 steel.
Banking the Furnace: Restructuring of the Steel Industry in Eight Countries.
ERIC Educational Resources Information Center
Bain, Trevor
A study examined how the cross-national differences in the social contract among managers, unions, and government influenced adjustment strategies in steel. The restructuring process in eight major steel-producing countries was studied to determine who bore the costs of restructuring--employers, employees, or government--and which industrial…
Galvanizing and Galvannealing Behavior of CMnSiCr Dual-Phase Steels
NASA Astrophysics Data System (ADS)
Lin, Ko-Chun; Chu, Peng-Wei; Lin, Chao-Sung; Chen, Hon-Bor
2013-06-01
Alloying elements, such as Mn, Mo, Si, and Cr, are commonly used to enhance the strength of advanced high-strength steels. Those elements also play an important role in the hot-dip galvanizing (GI) and galvannealing (GA) process. In this study, two kinds of CMnSiCr dual-phase steels were galvanized and galvannealed using a hot-dip simulator to investigate the effect of the alloying elements on the microstructure of the GI and GA coatings. The results showed that the dual-phase steels had good galvanizability because no bare spots were observed and the Fe-Zn phases were readily formed at the interface. However, the alloying reaction during the GA process was significantly hindered. XPS analysis showed that external oxidation occurred under an extremely low dew point [213 K to 203 K (-60 °C to -70 °C)] atmosphere during the annealing prior to hot dipping. However, most of the oxides were reduced during the GI process. After the GI process, the Al was present as solid solutes in the Fe-Zn phase, suggesting that the Fe-Zn phase was formed from the transformation of the Fe-Al inhibition alloy. Meanwhile, the solubility of Si in the ζ phase was extremely low. With continued GA reaction, the ζ phase transformed into the δ phase, which contained approximately 1.0 at.pct Si. The Si also diffused into the Zn layer during the GA reaction. Hence, the ζ phase did not homogeneously nucleate at the steel substrate/Zn coating interface, but was found at the area away from the interface. Therefore, the Fe-Zn phases on the CMnSiCr dual-phase steels were relatively non-uniform compared to those on interstitial-free steel.
Modern steels at atomic and nanometre scales
Caballero, F. G.; Garcia-Mateo, C.; Miller, M. K.
2014-10-10
Processing bulk nanocrystalline materials for structural applications still poses a difficult challenge, particularly in achieving an industrially viable process. Recent work in ferritic steels has proved that it is possible to move from ultrafine to nanoscale by exploiting the bainite reaction without the use of severe deformation, rapid heat treatment or mechanical processing. This new generation of steels has been designed in which transformation at low temperature leads to a nanoscale structure consisting of extremely fine, 20–40 nm thick plates of bainitic ferrite and films of retained austenite. Finally, a description of the characteristics and significance of this remarkable microstructuremore » is provided here.« less
NASA Astrophysics Data System (ADS)
Zhao, Yu; Xu, Songsong; Zou, Yun; Li, Jinhui; Zhang, Z. W.
High strength low alloy (HSLA) steels with high strength, high toughness, good corrosion resistance and weldability, can be widely used in shipbuilding, automobile, construction, bridging industry, etc. The microstructure evolution and mechanical properties can be influenced by thermomechanical processing. In this study, themomechanical processing is optimized to control the matrix microstructure and nano-scale precipitates in the matrix simultaneously. It is found that the low-temperature toughness and ductility of the steels are significantly the matrix microstructure during enhancing the strength by introducing the nano-scale precipitates. The effects of alloying elements on the microstructure evolution and nano-scale precipitation are also discussed.
R&D and Applications of V-N Microalloyed Steels in China
NASA Astrophysics Data System (ADS)
Yang, Caifu
This paper reviews the recent development of V-N microalloying technologies and its applications in HSLA steels in China. Enhanced-nitrogen in V-containing steels promotes precipitation of fine V(C,N) particles, and improves markedly precipitation strengthening effectiveness of V(C,N), therefore, there is a significant saving of V addition in a given strength requirement. V-N microalloying can be used effectively for ferrite grain refinement as well by the nucleation of intra-granular ferrite promoted by VN precipitates in Austenite in V-N steels. V-N microalloying process is a cost-effective way which has been widely used for high strength rebars, section steels, forging steels, seamless pipes, and CSP strip steels in China.
Analysis of Fatigue Crack Paths in Cold Drawn Pearlitic Steel
Toribio, Jesús; González, Beatriz; Matos, Juan-Carlos
2015-01-01
In this paper, a fracto-metallographic analysis was performed on the cracked specimens of cold drawn pearlitic steel subjected to fatigue tests. Fatigue cracks are transcollonial and exhibit a preference for fracturing pearlitic lamellae, with non-uniform crack opening displacement values, micro-discontinuities, branchings, bifurcations and frequent local deflections that create microstructural roughness. At the micro-level, the cold drawn pearlitic steel exhibits higher micro-roughness than the hot rolled bar (this is a consequence of the manufacturing process by cold drawing), so that the actual fractured surface in the cold drawn wire is greater than that in the hot rolled bar, due to the fact that the crack deflection events are more frequent and with higher angle in the former (the heavily drawn prestressing steel wire). These findings show the relevant role on the manufacturing process by cold drawing in the fatigue crack propagation in pearlitic steel. PMID:28793647
Influence of shot peening on surface quality of austenitic and duplex stainless steel
NASA Astrophysics Data System (ADS)
Vinoth Jebaraj, A.; Sampath Kumar, T.; Ajay Kumar, L.; Deepak, C. R.
2017-11-01
In the present investigation, an attempt has been made to enhance the surface quality of austenitic stainless steel 316L and duplex stainless steel 2205 through shot peening process. The study mainly focuses the surface morphology, microstructural changes, surface roughness and microhardness of the peened layers. Metallography analysis was carried out and compared with the unpeened surface characteristics. As result of peening process, surface recrystallization was achieved on the layers of the peened samples. It was found that shot peening plays significant role in enhancing the surface properties of 316L and 2205. Particularly it has greater influence on the work hardening of austenitic stainless steel than the duplex stainless steel due to its more ductility nature under the investigated shot peening parameters. The findings of the present study will be useful with regard to the enhancement of surface texture achieved through peening.
Selection of rolling-element bearing steels for long-life applications
NASA Technical Reports Server (NTRS)
Zaretsky, Erwin V.
1989-01-01
Nearly four decades of research in bearing steel metallurgy and processing have resulted in improvements in bearing life by a factor of 100 over that obtained in the early 1940s. For critical applications such as aircraft, these improvements have resulted in longer lived, more reliable commercial aircraft engines. Material factors such as hardness, retained austenite, grain size and carbide size, number, and area can influence rolling-element fatigue life. Bearing steel processing such as double vacuum melting can have a greater effect on bearing life than material chemistry. The selection and specification of a bearing steel is dependent on the integration of all these considerations into the bearing design and application. The paper reviews rolling-element fatigue data and analysis which can enable the engineer or metallurgist to select a rolling-element bearing steel for critical applications where long life is required.
Selection of rolling-element bearing steels for long-life application
NASA Technical Reports Server (NTRS)
Zaretsky, E. V.
1986-01-01
Nearly four decades of research in bearing steel metallurgy and processing have resulted in improvements in bearing life by a factor of 100 over that obtained in the early 1940's. For critical applications such as aircraft, these improvements have resulted in longer lived, more reliable commercial aircraft engines. Material factors such as hardness, retained austenite, grain size and carbide size, number, and area can influence rolling-element fatigue life. Bearing steel processing such as double vacuum melting can have a greater efect on bearing life than material chemistry. The selection and specification of a bearing steel is dependent on the integration of all these considerations into the bearing design and application. The paper reviews rolling-element fatigue data and analysis which can enable the engineer or metallurgist to select a rolling-element bearing steel for critical applications where long life is required.
Analysis of Fatigue Crack Paths in Cold Drawn Pearlitic Steel.
Toribio, Jesús; González, Beatriz; Matos, Juan-Carlos
2015-11-04
In this paper, a fracto-metallographic analysis was performed on the cracked specimens of cold drawn pearlitic steel subjected to fatigue tests. Fatigue cracks are transcollonial and exhibit a preference for fracturing pearlitic lamellae, with non-uniform crack opening displacement values, micro-discontinuities, branchings, bifurcations and frequent local deflections that create microstructural roughness. At the micro-level, the cold drawn pearlitic steel exhibits higher micro-roughness than the hot rolled bar (this is a consequence of the manufacturing process by cold drawing), so that the actual fractured surface in the cold drawn wire is greater than that in the hot rolled bar, due to the fact that the crack deflection events are more frequent and with higher angle in the former (the heavily drawn prestressing steel wire). These findings show the relevant role on the manufacturing process by cold drawing in the fatigue crack propagation in pearlitic steel.
NASA Astrophysics Data System (ADS)
Mates, Steven; Stoudt, Mark; Gangireddy, Sindhura
2016-07-01
Carbon steels containing ferrite-pearlite microstructures weaken dramatically when pearlite dissolves into austenite on heating. The kinetics of this phase transformation, while fast, can play a role during dynamic, high-temperature manufacturing processes, including high-speed machining, when the time scale of this transformation is on the order of the manufacturing process itself. In such a regime, the mechanical strength of carbon steel can become time dependent. The present work uses a rapidly heated, high-strain-rate mechanical test to study the effect of temperature and time on the amount of pearlite dissolved and on the resulting transient effect on dynamic strength of a low and a high carbon (eutectoid) steel. Measurements indicate that the transient effect occurs for heating times less than about 3 s. The 1075 steel loses about twice the strength compared to the 1018 steel (85 MPa to 45 MPa) owing to its higher initial pearlite volume fraction. Pearlite dissolution is confirmed by metallographic examination of tested samples. Despite the different starting pearlite fractions, the kinetics of dissolution are comparable for the two steels, owing to the similarity in their initial pearlite morphology.
NASA Astrophysics Data System (ADS)
Chatterjee, Saikat; Li, Donghui; Chattopadhyay, Kinnor
2018-04-01
Multiphase flows are frequently encountered in metallurgical operations. One of the most effective ways to understand these processes is by flow modeling. The process of tundish open eye (TOE) formation involves three-phase interaction between liquid steel, slag, and argon gas. The two-phase interaction involving argon gas bubbles and liquid steel can be modeled relatively easily using the discrete phase modeling technique. However, the effect of an upper slag layer cannot be captured using this approach. The presence of an upper buoyant phase can have a major effect on the behavior of TOEs. Hence, a multiphase model, including three phases, viz. liquid steel, slag, and argon gas, in a two-strand slab caster tundish, was developed to study the formation and evolution of TOEs. The volume of fluid model was used to track the interphase between liquid steel and slag phases, while the discrete phase model was used to trace the movement of the argon gas bubbles in liquid steel. The variation in the TOE areas with different amounts of aspirated argon gas was examined in the presence of an overlying slag phase. The mathematical model predictions were compared against steel plant measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Z.H., E-mail: AZHLIU@ntu.edu.sg; Zhang, D.Q., E-mail: ZHANGDQ@ntu.edu.sg; Sing, S.L., E-mail: SING0011@e.ntu.edu.sg
2014-08-15
Multi-material processing in selective laser melting using a novel approach, by the separation of two different materials within a single dispensing coating system was investigated. 316L stainless steel and UNS C18400 Cu alloy multi-material samples were produced using selective laser melting and their interfacial characteristics were analyzed using focused ion beam, scanning electron microscopy, energy dispersive spectroscopy and electron back scattered diffraction techniques. A substantial amount of Fe and Cu element diffusion was observed at the bond interface suggesting good metallurgical bonding. Quantitative evidence of good bonding at the interface was also obtained from the tensile tests where the fracturemore » was initiated at the copper region. Nevertheless, the tensile strength of steel/Cu SLM parts was evaluated to be 310 ± 18 MPa and the variation in microhardness values was found to be gradual along the bonding interface from the steel region (256 ± 7 HV{sub 0.1}) to the copper region (72 ± 3 HV{sub 0.1}). - Highlights: • Multi-material processing was successfully implemented and demonstrated in SLM. • Bi-metallic laminates of steel/Cu were successfully produced with the SLM process. • A substantial amount of Fe and Cu diffusion was observed at the bond interface. • Good metallurgical bonding was obtained at the interface of the steel/Cu laminates. • Highly refined microstructure was obtained due to rapid solidification in SLM.« less
EMISSION FACTORS FOR IRON AND STEEL SOURCES: CRITERIA AND TOXIC POLLUTANTS
The report provides a comprehensive set of emission factors for sources of both criteria and toxic air pollutants in integrated iron and steel plants and specialty electric arc shops (minimills). Emission factors are identified for process sources, and process and open source fug...
Development of a 2-stage shear-cutting-process to reduce cut-edge-sensitivity of steels
NASA Astrophysics Data System (ADS)
Gläsner, T.; Sunderkötter, C.; Hoffmann, H.; Volk, W.; Golle, R.
2017-09-01
The edge cracking sensitivity of AHSS and UHSS is a challenging factor in the cold forming process. Expanding cut holes during flanging operations is rather common in automotive components. During these flanging operations the pierced hole is stretched so that its diameter is increased. These flanging operations stretch material that has already been subjected to large amounts of plastic deformation, therefore forming problems may occur. An innovative cutting process decreases micro cracks in the cutting surface and facilitates the subsequent cold forming process. That cutting process consists of two stages, which produces close dimensional tolerance and smooth edges. As a result the hole expanding ratio was increased by nearly 100 % when using thick high strength steels for suspension components. The paper describes the mechanisms of the trimming process at the cut edge, and the positive effect of the 2-stage shear-cutting process on the hole extension capability of multiphase steels.
Elements of the electric arc furnace's environmental management
NASA Astrophysics Data System (ADS)
Ioana, Adrian; Semenescu, Augustin; Costoiu, Mihnea; Marcu, Dragoş
2017-12-01
The paper presents a theoretical and experimental analysis of the polluting generating mechanisms for steel making in the Electric Arc Furnaces (EAF). The scheme for the environment's polluting system through the EAF is designed and presented in this paper. The ecological experimenting consisted of determining by specialized measures of the dust percentage in the evacuated gases from the EAF and of thereof gas pollutants. From the point of view of reducing the impact on the environment, the main problem of the electric arc furnace (EAF) is the optimization of the powder collecting from the process gases, both from the furnace and from the work-area. The paper deals with the best dependence between the aggregate's constructive, functional and technological factors, which are necessary for the furnace's ecologization and for its energetically-technologically performances increasing.
NASA Astrophysics Data System (ADS)
Rafi, H. Khalid; Pal, Deepankar; Patil, Nachiket; Starr, Thomas L.; Stucker, Brent E.
2014-12-01
The mechanical behavior and the microstructural evolution of 17-4 precipitation hardenable (PH) stainless steel processed using selective laser melting have been studied. Test coupons were produced from 17-4 PH stainless steel powder in argon and nitrogen atmospheres. Characterization studies were carried out using mechanical testing, optical microscopy, scanning electron microscopy, and x-ray diffraction. The results show that post-process heat treatment is required to obtain typically desired tensile properties. Columnar grains of smaller diameters (<2 µm) emerged within the melt pool with a mixture of martensite and retained austenite phases. It was found that the phase content of the samples is greatly influenced by the powder chemistry, processing environment, and grain diameter.
Low-carbon martensitic steels. Alloying and properties
NASA Astrophysics Data System (ADS)
Kleiner, L. M.; Shatsov, A. A.; Larinin, D. M.
2011-03-01
Requirements on the structure of a steel with structural strength and a set of characteristics higher than those of medium-carbon steels with a structure of tempered sorbite are formulated. Principles for choosing compositions for process-adaptable low-carbon martensitic steels are presented. The combination of carbon and alloying elements providing high stability of austenite in the ranges of normal and intermediate transformations is determined, which makes it possible to obtain lath martensite in slow cooling.
Preparation and characterization of 304 stainless steel/Q235 carbon steel composite material
NASA Astrophysics Data System (ADS)
Shen, Wenning; Feng, Lajun; Feng, Hui; Cao, Ying; Liu, Lei; Cao, Mo; Ge, Yanfeng
The composite material of 304 stainless steel reinforced Q235 carbon steel has been prepared by modified hot-rolling process. The resulted material was characterized by scanning electron microscope, three-electrode method, fault current impact method, electrochemical potentiodynamic polarization curve measurement and electrochemical impedance spectroscopy. The results showed that metallurgical bond between the stainless steel layer and carbon steel substrate has been formed. The composite material exhibited good electrical conductivity and thermal stability. The average grounding resistance of the composite material was about 13/20 of dip galvanized steel. There has no surface crack and bubbling formed after fault current impact. The composite material led to a significant decrease in the corrosion current density in soil solution, compared with that of hot dip galvanized steel and bare carbon steel. On the basis polarization curve and EIS analyses, it can be concluded that the composite material showed improved anti-corrosion property than hot-dip galvanized steel.
NASA Astrophysics Data System (ADS)
Panigrahi, B. K.; Srikanth, S.; Sahoo, G.
2009-11-01
The effect of copper, phosphorus, and chromium present in a semikilled reinforcing bar steel produced by in-line quenching [thermomechanical treatment (TMT)] process on the tensile properties, microstructure, and corrosion resistance of steel in simulated chloride environment has been investigated. The results have been compared with that of a semikilled C-Mn reinforcing bar steel without these alloying elements produced by the same process route. Though the amount of phosphorus (0.11 wt.%) was higher than that specified by ASTM A 706 standard, the Cu-P-Cr steel exhibited a composite microstructure, and good balance of yield stress, tensile stress, elongation, and ultimate tensile to yield stress ratio. Two conventional test methods, namely, the salt fog, and potentiodynamic polarization tests, were used for the corrosion test. The rust formed on Cu-P-Cr steel was adherent, and was of multiple colors, while the corrosion products formed on the C-Mn steel were weakly adherent and relatively darker blue. Also, the free corrosion potential of the Cu-P-Cr steel was nobler, and the corrosion current was markedly lower than that of a C-Mn rebar. The Cu-P-Cr steel did not develop any pits/deep grooves on its surface even after the prolonged exposure to salt fog. The improved corrosion resistance of the Cu-P-Cr steel has been attributed to the presence of copper, phosphorus, and small amount of chromium in the dense, adherent rust layer on the surface of reinforcing steel bar. A schematic mechanism of charge transfer has been proposed to explain the improved corrosion resistance of the Cu-P-Cr alloyed TMT rebar.
Sliding Wear Characteristics and Corrosion Behaviour of Selective Laser Melted 316L Stainless Steel
NASA Astrophysics Data System (ADS)
Sun, Y.; Moroz, A.; Alrbaey, K.
2014-02-01
Stainless steel is one of the most popular materials used for selective laser melting (SLM) processing to produce nearly fully dense components from 3D CAD models. The tribological and corrosion properties of stainless steel components are important in many engineering applications. In this work, the wear behaviour of SLM 316L stainless steel was investigated under dry sliding conditions, and the corrosion properties were measured electrochemically in a chloride containing solution. The results show that as compared to the standard bulk 316L steel, the SLM 316L steel exhibits deteriorated dry sliding wear resistance. The wear rate of SLM steel is dependent on the vol.% porosity in the steel and by obtaining full density it is possible achieve wear resistance similar to that of the standard bulk 316L steel. In the tested chloride containing solution, the general corrosion behaviour of the SLM steel is similar to that of the standard bulk 316L steel, but the SLM steel suffers from a reduced breakdown potential and is more susceptible to pitting corrosion. Efforts have been made to correlate the obtained results with porosity in the SLM steel.
Possibilities for specific utilization of material properties for an optimal part design
NASA Astrophysics Data System (ADS)
Beier, T.; Gerlach, J.; Roettger, R.; Kuhn, P.
2017-09-01
High-strength, cold-formable steels offer great potential for meeting cost and safety requirements in the automotive industry. In view of strengths of up to 1200 MPa now attainable, certain aspects need to be analysed and evaluated in advance in the development process using these materials. In addition to early assessment of crash properties, it is also highly important to adapt the forming process to match the material potential. The steel making companies have widened their portfolios of cold-rolled dual-phase steels well beyond the conventional high-strength steels. There are added new grades which offer a customized selection of high energy absorption, deformation resistance or enhanced cold-forming properties. In this article the necessary components for material modelling for finite element simulation are discussed. Additionally the required tests for material model calibration are presented and the potentials of the thyssenkrupp Steel material data base are introduced. Besides classical tensile tests at different angles to rolling direction and the forming limit curve, the hydraulic bulge test is now available for a wide range of modern steel grades. Using the conventional DP-K®60/98 and the DP-K®700Y980T with higher yield strength the method for calibrating yield locus, hardening and formability is given. With reference to the examples of an A-pillar reinforcement and different crash tests the procedure is shown how the customer can evaluate an optimal steel grade for specific requirements. Although the investigated materials have different yield strengths, no large differences in the forming process between the two steel grades can be found. However some advantages of the high-yield grade can be detected in crash performance depending on the specific boundary and loading conditions.
Bacteria adhere to food products and processing surfaces that can cross-contaminate other products and work surfaces (Arnold, 1998). Using materials for food processing surfaces that are resistant to bacterial contamination could enhance food safety. Stainless steel, although sus...
Hydrogen suppression of 'ductile' processes
NASA Technical Reports Server (NTRS)
Sisson, R. D., Jr.; Wilson, J. H.; Adler, T. A.; Mcnitt, R. P.; Louthan, M. R., Jr.
1980-01-01
Experimental results are reported for torsional fatigue specimens of high-strength steel 4370 and tensile bars of mild steel A-106 which present evidence of a hydrogen-induced strain-aided hardening effect. These results are consistent with the postulate that hydrogen suppresses ductile processes required for crack initiation at large plastic strains.
Evolution of Initial Atmospheric Corrosion of Carbon Steel in an Industrial Atmosphere
NASA Astrophysics Data System (ADS)
Pan, Chen; Han, Wei; Wang, Zhenyao; Wang, Chuan; Yu, Guocai
2016-12-01
The evolution of initial corrosion of carbon steel exposed to an industrial atmosphere in Shenyang, China, has been investigated by gravimetric, XRD, SEM/EDS and electrochemical techniques. The kinetics of the corrosion process including the acceleration and deceleration processes followed the empirical equation D = At n . The rust formed on the steel surface was bi-layered, comprised of an inner and outer layer. The outer layer was formed within the first 245 days and had lower iron content compared to the inner layer. However, the outer layer disappeared after 307 days of exposure, which is considered to be associated with the depletion of Fe3O4. The evolution of the rust layer formed on the carbon steel has also been discussed.
NASA Astrophysics Data System (ADS)
Linderov, M. L.; Segel, C.; Weidner, A.; Biermann, H.; Vinogradov, A. Yu.
2018-04-01
Modern metastable steels with TRIP/TWIP effects have a unique set of physical-mechanical properties. They combine both high-strength and high-plasticity characteristics, which is governed by processes activated during deformation, namely, twinning, the formation of stacking faults, and martensitic transformations. To study the behavior of these phenomena in CrMnNi TRIP/TWIP steels and stainless CrNiMo steel, which does not have these effects in the temperature range under study, we used the method of acoustic emission and modern methods of signal processing, including the cluster analysis of spectral-density functions. The results of this study have been compared with a detailed microstructural analysis performed with a scanning electron microscope using electron backscatter diffraction (EBSD).
46 CFR 148.04-23 - Unslaked lime in bulk.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Unslaked lime in bulk. 148.04-23 Section 148.04-23... HAZARDOUS MATERIALS IN BULK Special Additional Requirements for Certain Material § 148.04-23 Unslaked lime in bulk. (a) Unslaked lime in bulk must be transported in unmanned, all steel, double-hulled barges...
19 CFR 10.178a - Special duty-free treatment for sub-Saharan African countries.
Code of Federal Regulations, 2011 CFR
2011-04-01
... specifically determines, after public notice and comment, will not cause material injury to watch or watch band... insular possessions; (2) Certain electronic articles; (3) Certain steel articles; (4) Footwear, handbags... “Materials produced in a beneficiary developing country or members of the same association” should read...
19 CFR 10.178a - Special duty-free treatment for sub-Saharan African countries.
Code of Federal Regulations, 2010 CFR
2010-04-01
... specifically determines, after public notice and comment, will not cause material injury to watch or watch band... insular possessions; (2) Certain electronic articles; (3) Certain steel articles; (4) Footwear, handbags... “Materials produced in a beneficiary developing country or members of the same association” should read...
19 CFR 10.178a - Special duty-free treatment for sub-Saharan African countries.
Code of Federal Regulations, 2014 CFR
2014-04-01
... specifically determines, after public notice and comment, will not cause material injury to watch or watch band... insular possessions; (2) Certain electronic articles; (3) Certain steel articles; (4) Footwear, handbags... “Materials produced in a beneficiary developing country or members of the same association” should read...
19 CFR 10.178a - Special duty-free treatment for sub-Saharan African countries.
Code of Federal Regulations, 2012 CFR
2012-04-01
... specifically determines, after public notice and comment, will not cause material injury to watch or watch band... insular possessions; (2) Certain electronic articles; (3) Certain steel articles; (4) Footwear, handbags... “Materials produced in a beneficiary developing country or members of the same association” should read...
19 CFR 10.178a - Special duty-free treatment for sub-Saharan African countries.
Code of Federal Regulations, 2013 CFR
2013-04-01
... specifically determines, after public notice and comment, will not cause material injury to watch or watch band... insular possessions; (2) Certain electronic articles; (3) Certain steel articles; (4) Footwear, handbags... “Materials produced in a beneficiary developing country or members of the same association” should read...
Pyrolysis kinetics and combustion of thin wood using advanced cone calorimetry test method
Mark A. Dietenberger
2011-01-01
Mechanistic pyrolysis kinetics analysis of extractives, holocellulose, and lignin in solid wood over entire heating regime was possible using specialized cone calorimeter test and new mathematical analysis tools. Added hardware components include: modified sample holder for thin specimen with tiny thermocouples, methane ring burner with stainless steel mesh above cone...
46 CFR 153.558 - Special requirements for phosphoric acid.
Code of Federal Regulations, 2010 CFR
2010-10-01
... CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and... containment system must be: (a) Lined with natural rubber or neoprene; (b) Lined with a material approved for phosphoric acid tanks by the Commandant (CG-522); or (c) Made of a stainless steel that resists corrosion by...
49 CFR 179.500-7 - Physical tests.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 2 2010-10-01 2010-10-01 false Physical tests. 179.500-7 Section 179.500-7...-7 Physical tests. (a) Physical tests shall be made on two test specimens 0.505 inch in diameter... use of special alloy steels of definite composition that will give equal or better physical properties...
1979-12-01
ll i . -- II 53 I V. REFERENCES 1. Barton, J. R., "Early Fatigue Damage Detection in 4140 Steel Tubes", Proc. Fifth Annual Symposium on NDE of...34Advanced Non- destructive Testing Methods for Bearing Inspection", SAE Paper No. 720172, Automotive Engineering Congress, Detroit, Michigan, January
2016-06-06
toxic chemicals,4 protection of steel from corrosion,5 or in bioremediation .6 Of special interest is the potential use of the exoelectrogens in... Bioremediation of Uranium-Contaminated Groundwater: A Systems Approach to Subsurface Biogeochemistry. Curr. Opin. Biotechnol. 2013, 24, 489−497. (7
46 CFR 32.70-1 - Application-TB/ALL.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 1 2011-10-01 2011-10-01 false Application-TB/ALL. 32.70-1 Section 32.70-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL... Application—TB/ALL. All steel hull tank vessels, the construction or conversion of which was started prior to...
46 CFR 32.70-1 - Application-TB/ALL.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 1 2012-10-01 2012-10-01 false Application-TB/ALL. 32.70-1 Section 32.70-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL... Application—TB/ALL. All steel hull tank vessels, the construction or conversion of which was started prior to...
46 CFR 32.70-1 - Application-TB/ALL.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 1 2010-10-01 2010-10-01 false Application-TB/ALL. 32.70-1 Section 32.70-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL... Application—TB/ALL. All steel hull tank vessels, the construction or conversion of which was started prior to...
46 CFR 32.70-1 - Application-TB/ALL.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 1 2013-10-01 2013-10-01 false Application-TB/ALL. 32.70-1 Section 32.70-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL... Application—TB/ALL. All steel hull tank vessels, the construction or conversion of which was started prior to...
46 CFR 32.70-1 - Application-TB/ALL.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 1 2014-10-01 2014-10-01 false Application-TB/ALL. 32.70-1 Section 32.70-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL EQUIPMENT, MACHINERY, AND HULL... Application—TB/ALL. All steel hull tank vessels, the construction or conversion of which was started prior to...
Arici, Nursel
2015-01-01
Objective The coefficients of friction (COFs) of aesthetic ceramic and stainless steel brackets used in conjunction with stainless steel archwires were investigated using a modified linear tribometer and special computer software, and the effects of the bracket slot size (0.018 inches [in] or 0.022 in) and materials (ceramic or metal) on the COF were determined. Methods Four types of ceramic (one with a stainless steel slot) and one conventional stainless steel bracket were tested with two types of archwire sizes: a 0.017 × 0.025-in wire in the 0.018-in slots and a 0.019 × 0.025-in wire in the 0.022-in slot brackets. For pairwise comparisons between the 0.018-in and 0.022-in slot sizes in the same bracket, an independent sample t-test was used. One-way and two-way analysis of variance (ANOVA) and Tukey's post-hoc test at the 95% confidence level (α = 0.05) were also used for statistical analyses. Results There were significant differences between the 0.022-in and 0.018-in slot sizes for the same brand of bracket. ANOVA also showed that both slot size and bracket slot material had significant effects on COF values (p < 0.001). The ceramic bracket with a 0.022-in stainless steel slot showed the lowest mean COF (µ = 0.18), followed by the conventional stainless steel bracket with a 0.022-in slot (µ = 0.21). The monocrystalline alumina ceramic bracket with a 0.018-in slot had the highest COF (µ = 0.85). Conclusions Brackets with stainless steel slots exhibit lower COFs than ceramic slot brackets. All brackets show lower COFs as the slot size increases. PMID:25667915
Choi, Eunsoo; Kim, Dongkyun; Park, Kyoungsoo
2014-12-01
For external jackets of reinforced concrete columns, shape memory alloy (SMA) wires are easy to install, and they provide active and passive confining pressure; steel plates, on the other hand, only provide passive confining pressure, and their installation on concrete is not convenient because of the requirement of a special device. To investigate how SMA wires distinctly impact bond behavior compared with steel plates, this study conducted push-out bond tests of steel reinforcing bars embedded in concrete confined by SMA wires or steel plates. For this purpose, concrete cylinders were prepared with dimensions of 100 mm x 200 mm, and D-22 reinforcing bars were embedded at the center of the concrete cylinders. External jackets of 1.0 mm and 1.5 mm thickness steel plates were used to wrap the concrete cylinders. Additionally, NiTiNb SMA wire with a diameter of 1.0 mm was wound around the concrete cylinders. Slip of the reinforcing bars due to pushing force was measured by using a displacement transducer, while the circumferential deformation of specimens was obtained by using an extensometer. The circumferential deformation was used to calculate the circumferential strains of the specimens. This study assessed the radial confining pressure due to the external jackets on the reinforcing bars at bond strength from bond stress-slip curves and bond stress-circumferential strain curves. Then, the effects of the radial confining pressure on the bond behavior of concrete are investigated, and an equation is suggested to estimate bond strength using the radial confining pressure. Finally, this study focused on how active confining pressure due to recovery stress of the SMA wires influences bond behavior.
Olsen, Anna H.; Heaton, Thomas H.; Hall, John F.
2015-01-01
This work applies 64,765 simulated seismic ground motions to four models each of 6- or 20-story, steel special moment-resisting frame buildings. We consider two vector intensity measures and categorize the building response as “collapsed,” “unrepairable,” or “repairable.” We then propose regression models to predict the building responses from the intensity measures. The best models for “collapse” or “unrepairable” use peak ground displacement and velocity as intensity measures, and the best models predicting peak interstory drift ratio, given that the frame model is “repairable,” use spectral acceleration and epsilon (ϵ) as intensity measures. The more flexible frame is always more likely than the stiffer frame to “collapse” or be “unrepairable.” A frame with fracture-prone welds is substantially more susceptible to “collapse” or “unrepairable” damage than the equivalent frame with sound welds. The 20-story frames with fracture-prone welds are more vulnerable to P-delta instability and have a much higher probability of collapse than do any of the 6-story frames.
49 CFR 178.45 - Specification 3T seamless steel cylinder.
Code of Federal Regulations, 2012 CFR
2012-10-01
..., or electric furnace process steel of uniform quality is authorized. The steel analysis must conform... inches in diameter. (4) All openings must be circular. (5) All openings must be threaded. Threads must be in compliance with the following: (i) Each thread must be clean cut, even, without any checks, and to...
49 CFR 178.45 - Specification 3T seamless steel cylinder.
Code of Federal Regulations, 2014 CFR
2014-10-01
..., or electric furnace process steel of uniform quality is authorized. The steel analysis must conform... inches in diameter. (4) All openings must be circular. (5) All openings must be threaded. Threads must be in compliance with the following: (i) Each thread must be clean cut, even, without any checks, and to...
49 CFR 178.45 - Specification 3T seamless steel cylinder.
Code of Federal Regulations, 2013 CFR
2013-10-01
..., or electric furnace process steel of uniform quality is authorized. The steel analysis must conform... inches in diameter. (4) All openings must be circular. (5) All openings must be threaded. Threads must be in compliance with the following: (i) Each thread must be clean cut, even, without any checks, and to...
NASA Astrophysics Data System (ADS)
Liu, Zhenguang; Gao, Xiuhua; Du, Linxiu; Li, Jianping; Zhou, Xiaowei; Wang, Xiaonan; Wang, Yuxin; Liu, Chuan; Xu, Guoxiang; Misra, R. D. K.
2018-05-01
In this study, hydrogen induced cracking (HIC), sulfide stress corrosion cracking (SSCC) and hydrogen embrittlement (HE) were carried out to study hydrogen assisted cracking behavior (HIC, SSCC and HE) of high strength pipeline steel used for armor layer of flexible pipe in ocean. The CO2 corrosion behavior of designed steel with high strength was studied by using immersion experiment. The experimental results demonstrate that the corrosion resistance of designed steel with tempered martensite to HIC, SSCC and HE is excellent according to specific standards, which contributes to the low concentration of dislocation and vacancies previously formed in cold rolling process. The corrosion mechanism of hydrogen induced cracking of designed steel, which involves in producing process, microstructure and cracking behavior, is proposed. The designed steel with tempered martensite shows excellent corrosion resistance to CO2 corrosion. Cr-rich compound was first formed on the coupon surface exposed to CO2-saturated brine condition and chlorine, one of the corrosion ions in solution, was rich in the inner layer of corrosion products.
NASA Astrophysics Data System (ADS)
Derevyagina, L. S.; Gordienko, A. I.; Pochivalov, Yu. I.; Smirnova, A. S.
2018-01-01
The paper reports the investigation results on the microstructure and mechanical properties of low-carbon pipe steel after helical rolling. The processing of the steel leads to the refinement of ferritic grains from 12 (for the coarse-grained state) to 5 μm, to the strengthening of ferrite by carbide particles, a decrease in the total fraction of perlite grains, a more uniform alternation of ferrite and perlite, and the formation of regions with bainitic structure. The mechanical properties of the steel have been determined in the conditions of static and dynamic loading in the range of test temperatures from +20 to-70°C. As a result of processing, the ultimate tensile strength increases (from 650 to 770 MPa at a rolling temperature from 920°C) and the viscoplastic properties at negative temperatures are improved significantly. The ductile-brittle transition temperature of the rolled steel decreases from-32 to-55°C and the impact toughness at the test temperature-40°C increases eight times compared to the initial state of the steel.
Development of new ferritic steels as cladding material for metallic fuel fast breeder reactor
NASA Astrophysics Data System (ADS)
Tokiwai, Moriyasu; Horie, Masaaki; Kako, Kenji; Fujiwara, Masayuki
1993-09-01
The excellent thermal, chemical and neutronic properties of metallic fuel (U-Pu-Zr alloy) will lead to drastic improvements in fast reactor safety and the related fuel cycle economy. Some new high molybdenum 12Cr ferritic stainless steel candidate cladding alloys have been designed to achieve the mechanical properties required for high performance metallic fuel elements. These candidate claddings were irradiated by ion bombardment and tested to determine their strength and creep rupture properties. A 12Cr-8Mo and a 12Cr-8Mo-0.1Y 2O 3 steel were fabricated into cladding via a powder metallurgy process and by a mechanical alloying process, respectively. These claddings had two and three times the creep rupture strength (pressurized at 650°C for 10000 h) of a conventional 12Cr ferritic steel (HT-9). These two steels also showed no void formation up to 350 dpa by Ni 3+ irradiation. A zircaloy-2 lined steel cladding tube has also been fabricated for the purpose of reducing fuel-cladding interdiffusion and chemical interaction.
NASA Astrophysics Data System (ADS)
Neklyudov, I. M.; Voyevodin, V. N.
1994-09-01
The difference between crystal lattices of austenitic and ferritic steels leads to distinctive features in mechanisms of physical-mechanical change. This paper presents the results of investigations of dislocation structure and phase evolution, and segregation phenomena in austenitic and ferritic-martensitic steels and alloys during irradiation with heavy ions in the ESUVI and UTI accelerators and by neutrons in fast reactors BOR-60 and BN-600. The influence of different factors (including different alloying elements) on processes of structure-phase transformation was studied.
Lorenzo-Martin, Cinta; Ajayi, Oyelayo O.
2015-06-06
Tribological performance of steel materials can be substantially enhanced by various thermal surface hardening processes. For relatively low-carbon steel alloys, case carburization is often used to improve surface performance and durability. If the carbon content of steel is high enough (>0.4%), thermal treatments such as induction, flame, laser, etc. can produce adequate surface hardening without the need for surface compositional change. This paper presents an experimental study of the use of friction stir processing (FSP) as a means to hardened surface layer in AISI 4140 steel. The impacts of this surface hardening process on the friction and wear performance weremore » evaluated under both dry and lubricated contact conditions in reciprocating sliding. FSP produced the same level of hardening and superior tribological performance when compared to conventional thermal treatment, using only 10% of the energy and without the need for quenching treatments. With FSP surface hardness of about 7.8 GPa (62 Rc) was achieved while water quenching conventional heat treatment produced about 7.5 GPa (61 Rc) hardness. Microstructural analysis showed that both FSP and conventional heat treatment produced martensite. Although the friction behavior for FSP treated surfaces and the conventional heat treatment were about the same, the wear in FSP processed surfaces was reduced by almost 2× that of conventional heat treated surfaces. Furthermore, the superior performance is attributed to the observed grain refinement accompanying the FSP treatment in addition to the formation of martensite. As it relates to tribological performance, this study shows FSP to be an effective, highly energy efficient, and environmental friendly (green) alternative to conventional heat treatment for steel.« less
Transformation process for production of ultrahigh carbon steels and new alloys
Strum, M.J.; Goldberg, A.; Sherby, O.D.; Landingham, R.L.
1995-08-29
Ultrahigh carbon steels with superplastic properties are produced by heating a steel containing ferrite and carbide phases to a soaking temperature approximately 50 C above the A{sub 1} transformation temperature, soaking the steel above the A{sub 1} temperature for a sufficient time that the major portion of the carbides dissolve into the austenite matrix, and then cooling the steel in a controlled manner within predetermined limits of cooling rate or transformation temperature, to obtain a steel having substantially spheroidal carbides. New alloy compositions contain aluminum and solute additions which promote the formation of a fine grain size and improve the resistance of the carbides to coarsening at the forming temperature. 9 figs.
Transformation process for production of ultrahigh carbon steels and new alloys
Strum, Michael J.; Goldberg, Alfred; Sherby, Oleg D.; Landingham, Richard L.
1995-01-01
Ultrahigh carbon steels with superplastic properties are produced by heating a steel containing ferrite and carbide phases to a soaking temperature approximately 50.degree. C. above the A.sub.1 transformation temperature, soaking the steel above the A.sub.1 temperature for a sufficient time that the major portion of the carbides dissolve into the austenite matrix, and then cooling the steel in a controlled manner within predetermined limits of cooling rate or transformation temperature, to obtain a steel having substantially spheroidal carbides. New alloy compositions contain aluminum and solute additions which promote the formation of a fine grain size and improve the resistance of the carbides to coarsening at the forming temperature.
NASA Astrophysics Data System (ADS)
Sejč, Pavol; Kubíček, Rastislav
2011-12-01
Welding of austenitic stainless steel has its specific issues, even when the weldability is considered good. The main problems of austenitic stainless steel welding are connected with its metallurgical weldability. The amount of the components presented in the structure of stainless steel welded joint affect its properties, therefore the understanding of the behavior of stainless steel during its welding is important for successful processing and allows the fabricators the possibility to manage the resulting issues. This paper is focused on the influence of heat input on the structural changes in GTA welded joints of austenitic stainless steel designated: ASTM SA TP 304L.
All-metal, compact heat exchanger for space cryocoolers
NASA Technical Reports Server (NTRS)
Swift, Walter L.; Valenzuela, Javier; Sixsmith, Herbert
1990-01-01
This report describes the development of a high performance, all metal compact heat exchanger. The device is designed for use in a reverse Brayton cryogenic cooler which provides five watts of refrigeration at 70 K. The heat exchanger consists of a stainless steel tube concentrically assembled within a second stainless steel tube. Approximately 300 pairs of slotted copper disks and matching annular slotted copper plates are positioned along the centerline axis of the concentric tubes. Each of the disks and plates has approximately 1200 precise slots machined by means of a special electric discharge process. Positioning of the disk and plate pairs is accomplished by means of dimples in the surface of the tubes. Mechanical and thermal connections between the tubes and plate/disk pairs are made by solder joints. The heat exchanger assembly is 9 cm in diameter by 50 cm in length and has a mass of 10 kg. The predicted thermal effectiveness is greater than 0.985 at design conditions. Pressure loss at design conditions is less than 5 kPa in both fluid passages. Tests were performed on a subassembly of plates integrally soldered to two end headers. The measured thermal effectiveness of the test article exceeded predicted levels. Pressure losses were negligibly higher than predictions.
NASA Astrophysics Data System (ADS)
Ramos, António L. L.; Holm, Sverre; Gudvangen, Sigmund; Otterlei, Ragnvald
2013-06-01
Acoustical sniper positioning is based on the detection and direction-of-arrival estimation of the shockwave and the muzzle blast acoustical signals. In real-life situations, the detection and direction-of-arrival estimation processes is usually performed under the influence of background noise sources, e.g., vehicles noise, and might result in non-negligible inaccuracies than can affect the system performance and reliability negatively, specially when detecting the muzzle sound under long range distance and absorbing terrains. This paper introduces a multi-band spectral subtraction based algorithm for real-time noise reduction, applied to gunshot acoustical signals. The ballistic shockwave and the muzzle blast signals exhibit distinct frequency contents that are affected differently by additive noise. In most real situations, the noise component is colored and a multi-band spectral subtraction approach for noise reduction contributes to reducing the presence of artifacts in denoised signals. The proposed algorithm is tested using a dataset generated by combining signals from real gunshots and real vehicle noise. The noise component was generated using a steel tracked military tank running on asphalt and includes, therefore, the sound from the vehicle engine, which varies slightly in frequency over time according to the engine's rpm, and the sound from the steel tracks as the vehicle moves.
2016-06-01
Novosibirsk during the 1980s [14]. In this process, particles of the coating material are accelerated by entrainment in a supersonic jet of gas ...THERMAL PROCESSING IN COLD GAS DYNAMIC SPRAY DEPOSITED AUSTENITIC STAINLESS STEEL COATINGS by John A Luhn June 2016 Thesis Advisor: Sarath...REPORT TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE CORROSION AND THERMAL PROCESSING IN COLD GAS DYNAMIC SPRAY DEPOSITED AUSTENITIC
López Campos, José Ángel; Segade Robleda, Abraham; Vilán Vilán, José Antonio; García Nieto, Paulino José; Blanco Cordero, Javier
2015-10-10
Current knowledge of the behavior of heavy quadricycles under impact is still very poor. One of the most significant causes is the lack of energy absorption in the vehicle frame or its steel chassis structure. For this reason, special steels (with yield stresses equal to or greater than 350 MPa) are commonly used in the automotive industry due to their great strain hardening properties along the plastic zone, which allows good energy absorption under impact. This paper presents a proposal for a steel quadricycle energy absorption system which meets the percentages of energy absorption for conventional vehicles systems. This proposal is validated by explicit dynamics simulation, which will define the whole problem mathematically and verify behavior under impact at speeds of 40 km/h and 56 km/h using the finite element method (FEM). One of the main consequences of this study is that this FEM-based methodology can tackle high nonlinear problems like this one with success, avoiding the need to carry out experimental tests, with consequent economical savings since experimental tests are very expensive. Finally, the conclusions from this innovative research work are given.
A review of wave celerity in frictionless and axisymmetrical steel-lined pressure tunnels
NASA Astrophysics Data System (ADS)
Hachem, F. E.; Schleiss, A. J.
2011-02-01
Generally applicable approaches for estimating the “quasi-static”, which means without fluid-structure interaction and frequency-dependent water-hammer wave speed in steel-lined pressure tunnels are analyzed. The external constraints and assumptions of these approaches are discussed in detail. The reformulated formulas are then compared to commonly used expressions. Some special cases of wave speed calculation such as unlined pressure tunnels and open-air penstocks are investigated. The quasi-static wave speed is significantly influenced by the state of the backfill concrete and the near-field rock zone (cracked or uncracked). In the case when these two layers are cracked, the quasi-static wave speed is overestimated in between 1% and 8% compared to uncracked concrete and near-field rock layers. Depending on the stiffness of steel liner and penstock, the fluid-structure interaction leads to significant difference in wave speeds values. Compared to the quasi-static case, the fluid-structure interaction approach, applied to steel-lined tunnels, results up to 13% higher wave speed values in the high-frequency range (higher than 600 Hz) and up to 150% lower values for frequencies between 150 and 300 Hz in the considered test case.
10. AERIAL VIEW LOOKING NORTHWEST AT THE 400AREA COMPLEX. THIS ...
10. AERIAL VIEW LOOKING NORTHWEST AT THE 400-AREA COMPLEX. THIS AREA OF THE PLANT MANUFACTURED NON-PLUTONIUM WEAPONS COMPONENTS FROM BERYLLIUM, DEPLETED URANIUM, AND STAINLESS STEEL. THE 400 - AREA ALSO INCLUDED A FACILITY FOR THE MODIFICATION OF SAFE SECURE TRANSPORT VEHICLES FOR SPECIAL NUCLEAR MATERIALS BEING SHIPPED TO AND FROM THE SITE. BUILDING 444, IN THE UPPER RIGHT EDGE OF THE PHOTOGRAPH, WAS THE ORIGINAL PLANT A. THE LARGE BUILDING IN THE TOP OF THE PHOTOGRAPH IS BUILDING 460, BUILT AS A STATE-OF-THE-ART STAINLESS STEEL MANUFACTURING FACILITY (6/27/95). - Rocky Flats Plant, Bounded by Indiana Street & Routes 93, 128 & 72, Golden, Jefferson County, CO
Hydrogen-enhanced fatigue crack growth in steels and its frequency dependence.
Matsunaga, Hisao; Takakuwa, Osamu; Yamabe, Junichiro; Matsuoka, Saburo
2017-07-28
In the context of the fatigue life design of components, particularly those destined for use in hydrogen refuelling stations and fuel cell vehicles, it is important to understand the hydrogen-induced, fatigue crack growth (FCG) acceleration in steels. As such, the mechanisms for acceleration and its influencing factors are reviewed and discussed in this paper, with a special focus on the peculiar frequency dependence of the hydrogen-induced FCG acceleration. Further, this frequency dependence is debated by introducing some potentially responsible elements, along with new experimental data obtained by the authors.This article is part of the themed issue 'The challenges of hydrogen and metals'. © 2017 The Author(s).