Science.gov

Sample records for steeps inclines lokomotivfoerderung

  1. Avian orientation at steep angles of inclination: experiments with migratory white-crowned sparrows at the magnetic North Pole.

    PubMed

    Akesson, S; Morin, J; Muheim, R; Ottosson, U

    2001-09-22

    The Earth's magnetic field and celestial cues provide animals with compass information during migration. Inherited magnetic compass courses are selected based on the angle of inclination, making it difficult to orient in the near vertical fields found at high geomagnetic latitudes. Orientation cage experiments were performed at different sites in high Arctic Canada with adult and young white-crowned sparrows (Zonotrichia leucophrys gambelii) in order to investigate birds' ability to use the Earth's magnetic field and celestial cues for orientation in naturally very steep magnetic fields at and close to the magnetic North Pole. Experiments were performed during the natural period of migration at night in the local geomagnetic field under natural clear skies and under simulated total overcast conditions. The experimental birds failed to select a meaningful magnetic compass course under overcast conditions at the magnetic North Pole, but could do so in geomagnetic fields deviating less than 3 degrees from the vertical. Migratory orientation was successful at all sites when celestial cues were available.

  2. Inclined Levitron experiments

    NASA Astrophysics Data System (ADS)

    Michaelis, Max M.

    2012-11-01

    An inclined Levitron demonstration serves to illustrate macroscopically the basic non-quantum mechanical principle of nuclear magnetic resonance. By tuning a "rotary driver" to either the precession or the nutation frequency, the levitated top is made to precess or nutate visibly. By reflecting the beam from a laser-pointer off the Levitron, cycloidal pictures of the induced motion are obtained. Steady inclination at a steep angle is demonstrated in contrast to rotating inclination. Levitron traps are analogous to particle traps. Inclined or horizontal axis operation could lead to nearly frictionless bearings.

  3. STEEP32 computer code

    NASA Technical Reports Server (NTRS)

    Goerke, W. S.

    1972-01-01

    A manual is presented as an aid in using the STEEP32 code. The code is the EXEC 8 version of the STEEP code (STEEP is an acronym for shock two-dimensional Eulerian elastic plastic). The major steps in a STEEP32 run are illustrated in a sample problem. There is a detailed discussion of the internal organization of the code, including a description of each subroutine.

  4. Flow Around Steep Topography

    DTIC Science & Technology

    2015-09-30

    Flow around steep topography T. M. Shaun Johnston Scripps Institution of Oceanography University of California, San Diego 9500 Gilman Drive, M...tall, steep, submarine topography and islands. During the Flow Encountering Abrupt Topography (FLEAT) DRI, investigators will determine: • Whether...estimates from making accurate statistical/deterministic predictions at ᝺ km resolution around submarine topography and islands? How can we

  5. The Steep Nekhoroshev's Theorem

    NASA Astrophysics Data System (ADS)

    Guzzo, M.; Chierchia, L.; Benettin, G.

    2016-03-01

    Revising Nekhoroshev's geometry of resonances, we provide a fully constructive and quantitative proof of Nekhoroshev's theorem for steep Hamiltonian systems proving, in particular, that the exponential stability exponent can be taken to be {1/(2nα_1\\cdotsα_{n-2}}) ({α_i}'s being Nekhoroshev's steepness indices and {n ≥ 3} the number of degrees of freedom). On the base of a heuristic argument, we conjecture that the new stability exponent is optimal.

  6. Robot Would Climb Steep Terrain

    NASA Technical Reports Server (NTRS)

    Kennedy, Brett; Ganino, Anthony; Aghazarian, Hrand; Hogg, Robert; McHerny, Michael; Garrett, Michael

    2007-01-01

    This brief describes the steep terrain access robot (STAR) -- a walking robot that has been proposed for exploring steep terrain on remote planets. The STAR would be able to climb up or down on slopes as steep as vertical, and even beyond vertical to overhangs. Its system of walking mechanisms and controls would be to react forces and maintain stability. To enable the STAR to anchor itself in the terrain on steep slopes to maintain stability and react forces, it would be necessary to equip the tips of the walking legs with new ultrasonic/ sonic drill corers (USDCs) and to develop sensors and control algorithms to enable robust utilization of the USDCs.

  7. Dense granular flows down an inclined plane

    NASA Astrophysics Data System (ADS)

    Ecke, Robert; Borzsonyi, Tamas

    2006-03-01

    Granular flow on a rough inclined plane is an important model system in which to study the basic rules of the dynamics of granular materials. Despite intensive study, many features of such flows are still incompletely understood. For uniformly flowing layers at relatively shallow inclination, we consider experimentally the the basic flow rheology of the granular media and propose new scalings to collapse our data for glass beads and rough sand as a function of inclination angle and particle diameter. At steep inclinations above some angle θs (θs/θr 1.3-1.5, where θr stands for the angle of repose) for flowing grains, numerics and theory predict that the surface roughness is inadequate to dissipate energy gained in the gravitational field, and the flow should continue to accelerate. We report on our experimental results on the properties of granular flows on a steeply inclined plane and define the domains of steady flows. We also discuss the instabilities of such flows leading to spatial patterns.

  8. Maximum likelihood solution for inclination-only data in paleomagnetism

    NASA Astrophysics Data System (ADS)

    Arason, P.; Levi, S.

    2010-08-01

    We have developed a new robust maximum likelihood method for estimating the unbiased mean inclination from inclination-only data. In paleomagnetic analysis, the arithmetic mean of inclination-only data is known to introduce a shallowing bias. Several methods have been introduced to estimate the unbiased mean inclination of inclination-only data together with measures of the dispersion. Some inclination-only methods were designed to maximize the likelihood function of the marginal Fisher distribution. However, the exact analytical form of the maximum likelihood function is fairly complicated, and all the methods require various assumptions and approximations that are often inappropriate. For some steep and dispersed data sets, these methods provide estimates that are significantly displaced from the peak of the likelihood function to systematically shallower inclination. The problem locating the maximum of the likelihood function is partly due to difficulties in accurately evaluating the function for all values of interest, because some elements of the likelihood function increase exponentially as precision parameters increase, leading to numerical instabilities. In this study, we succeeded in analytically cancelling exponential elements from the log-likelihood function, and we are now able to calculate its value anywhere in the parameter space and for any inclination-only data set. Furthermore, we can now calculate the partial derivatives of the log-likelihood function with desired accuracy, and locate the maximum likelihood without the assumptions required by previous methods. To assess the reliability and accuracy of our method, we generated large numbers of random Fisher-distributed data sets, for which we calculated mean inclinations and precision parameters. The comparisons show that our new robust Arason-Levi maximum likelihood method is the most reliable, and the mean inclination estimates are the least biased towards shallow values.

  9. Energetics of ascent: insects on inclines.

    PubMed

    Full, R J; Tullis, A

    1990-03-01

    Small animals use more metabolic energy per unit mass than large animals to run on a level surface. If the cost to lift one gram of mass one vertical meter is constant, small animals should require proportionally smaller increases in metabolic cost to run uphill. To test this hypothesis on very small animals possessing an exceptional capacity for ascending steep gradients, we measured the metabolic cost of locomotion in the cockroach, Periplaneta americana, running at angles of 0, 45 and 90 degrees to the horizontal. Resting oxygen consumption (VO2rest) was not affected by incline angle. Steady-state oxygen consumption (VO2ss) increased linearly with speed at all angles of ascent. The minimum cost of locomotion (the slope of the VO2ss versus speed function) increased with increasing angle of ascent. The minimum cost of locomotion on 45 and 90 degrees inclines was two and three times greater, respectively, than the cost during horizontal running. The cockroach's metabolic cost of ascent greatly exceeds that predicted from the hypothesis of a constant efficiency for vertical work. Variations in stride frequency and contact time cannot account for the high metabolic cost, because they were independent of incline angle. An increase in the metabolic cost or amount of force production may best explain the increase in metabolic cost. Small animals, such as P. americana, can easily scale vertical surfaces, but the energetic cost is considerable.

  10. Evaporation of inclined water droplets

    NASA Astrophysics Data System (ADS)

    Kim, Jin Young; Hwang, In Gyu; Weon, Byung Mook

    2017-02-01

    When a drop is placed on a flat substrate tilted at an inclined angle, it can be deformed by gravity and its initial contact angle divides into front and rear contact angles by inclination. Here we study on evaporation dynamics of a pure water droplet on a flat solid substrate by controlling substrate inclination and measuring mass and volume changes of an evaporating droplet with time. We find that complete evaporation time of an inclined droplet becomes longer as gravitational influence by inclination becomes stronger. The gravity itself does not change the evaporation dynamics directly, whereas the gravity-induced droplet deformation increases the difference between front and rear angles, which quickens the onset of depinning and consequently reduces the contact radius. This result makes the evaporation rate of an inclined droplet to be slow. This finding would be important to improve understanding on evaporation dynamics of inclined droplets.

  11. Evaporation of inclined water droplets.

    PubMed

    Kim, Jin Young; Hwang, In Gyu; Weon, Byung Mook

    2017-02-16

    When a drop is placed on a flat substrate tilted at an inclined angle, it can be deformed by gravity and its initial contact angle divides into front and rear contact angles by inclination. Here we study on evaporation dynamics of a pure water droplet on a flat solid substrate by controlling substrate inclination and measuring mass and volume changes of an evaporating droplet with time. We find that complete evaporation time of an inclined droplet becomes longer as gravitational influence by inclination becomes stronger. The gravity itself does not change the evaporation dynamics directly, whereas the gravity-induced droplet deformation increases the difference between front and rear angles, which quickens the onset of depinning and consequently reduces the contact radius. This result makes the evaporation rate of an inclined droplet to be slow. This finding would be important to improve understanding on evaporation dynamics of inclined droplets.

  12. Evaporation of inclined water droplets

    PubMed Central

    Kim, Jin Young; Hwang, In Gyu; Weon, Byung Mook

    2017-01-01

    When a drop is placed on a flat substrate tilted at an inclined angle, it can be deformed by gravity and its initial contact angle divides into front and rear contact angles by inclination. Here we study on evaporation dynamics of a pure water droplet on a flat solid substrate by controlling substrate inclination and measuring mass and volume changes of an evaporating droplet with time. We find that complete evaporation time of an inclined droplet becomes longer as gravitational influence by inclination becomes stronger. The gravity itself does not change the evaporation dynamics directly, whereas the gravity-induced droplet deformation increases the difference between front and rear angles, which quickens the onset of depinning and consequently reduces the contact radius. This result makes the evaporation rate of an inclined droplet to be slow. This finding would be important to improve understanding on evaporation dynamics of inclined droplets. PMID:28205642

  13. Bidispersive-inclined convection

    PubMed Central

    Mulone, Giuseppe; Straughan, Brian

    2016-01-01

    A model is presented for thermal convection in an inclined layer of porous material when the medium has a bidispersive structure. Thus, there are the usual macropores which are full of a fluid, but there are also a system of micropores full of the same fluid. The model we employ is a modification of the one proposed by Nield & Kuznetsov (2006 Int. J. Heat Mass Transf. 49, 3068–3074. (doi:10.1016/j.ijheatmasstransfer.2006.02.008)), although we consider a single temperature field only. PMID:27616934

  14. Bidispersive-inclined convection

    NASA Astrophysics Data System (ADS)

    Falsaperla, Paolo; Mulone, Giuseppe; Straughan, Brian

    2016-08-01

    A model is presented for thermal convection in an inclined layer of porous material when the medium has a bidispersive structure. Thus, there are the usual macropores which are full of a fluid, but there are also a system of micropores full of the same fluid. The model we employ is a modification of the one proposed by Nield & Kuznetsov (2006 Int. J. Heat Mass Transf. 49, 3068-3074. (doi:10.1016/j.ijheatmasstransfer.2006.02.008)), although we consider a single temperature field only.

  15. Inclined, collisional sediment transport

    NASA Astrophysics Data System (ADS)

    Berzi, Diego; Fraccarollo, Luigi

    2013-10-01

    We apply the constitutive relations of kinetic theory of granular gases to the transport of cohesionless sediments driven by a gravitational liquid turbulent stream in steady uniform conditions. The sediment-laden flow forms self-equilibrated mechanisms of resistance at the bed surface, below which the sediments are at rest. This geo-physical process takes place quite often in streams at moderate slope and may be interpreted through tools common to fluid mechanics and particle physics. Taking into account the viscous dissipation of the fluctuation energy of the particles, and using approximate methods of integration of the governing differential equations, permit to obtain a set of simple formulas for predicting how depths and flow rates adjust to the angle of inclination of the bed, without requiring additional tuning parameters besides the particle and fluid properties. The agreement with laboratory experiments performed with either plastic cylinders or gravel in water is remarkable. We also provide quantitative criteria to determine the range of validity of the theory, i.e., the values of the Shields number and the angle of inclination of the bed for which the particle stresses can be mostly ascribed to collisional exchange of momentum.

  16. Tachyon inflation with steep potentials

    NASA Astrophysics Data System (ADS)

    Rezazadeh, K.; Karami, K.; Hashemi, S.

    2017-05-01

    Within the framework of tachyon inflation, we consider different steep potentials and check their viability in light of the Planck 2015 data. We see that in this scenario, the inverse power-law potential V (ϕ )=V0(ϕ /ϕ0)-n with n =2 leads to the power-law inflation with the scale factor a (t )∝tq where q >1 , while with n <2 , it gives rise to the intermediate inflation with the scale factor a (t )∝exp (A tf) where A >0 and 0 2 can be compatible with the 95% CL region of Planck 2015 TT, TE, EE +lowP data. We further conclude that the exponential potential V (ϕ )=V0e-ϕ /ϕ0, the inverse cosh potential V (ϕ )=V0/cosh (ϕ /ϕ0), and the mutated exponential potential V (ϕ )=V0[1 +(n -1 )-(n -1 )(ϕ /ϕ0)n] e-ϕ /ϕ0 with n =4 , can be consistent with the 95% CL region of Planck 2015 TT, TE, EE +lowP data. Moreover, using the r -ns constraints on the model parameters, we also estimate the running of the scalar spectral index d ns/d ln k and the local non-Gaussianity parameter fNLlocal. We find that the lower and upper bounds evaluated for these observables are compatible with the Planck 2015 results.

  17. Standing jumps in shallow granular flows down smooth inclines

    NASA Astrophysics Data System (ADS)

    Faug, Thierry; Childs, Philippa; Wyburn, Edward; Einav, Itai

    2015-07-01

    The shapes of standing jumps formed in shallow granular flows down an inclined smooth-based chute are analysed in detail, by varying both the slope and mass discharge. Laboratory tests and analytic jump solutions highlight two important transitions. First, for dense flows at high mass discharge, we observe a transition between steep jumps and more diffuse jumps. The traditional shallow-water equation offers a valid prediction for the thickness of the steep water-like jumps. Diffuse frictional jumps require a more general equation accounting for the forces acting inside the jump volume. Second, moving from dense to dilute flows produces another transition between incompressible and compressible jumps. The observed jump height decrease may be reproduced for a more dilute incoming flow by including experimentally measured density variation in the jump equation. Finally, we briefly discuss the likely relevance to avalanche protection dam design that currently utilises traditional shock equations for incompressible frictionless fluids.

  18. Percent Agricultural Land Cover on Steep Slopes

    EPA Pesticide Factsheets

    Clearing land for agriculture tends to increase soil erosion. The amount of erosion is related to the steepness of the slope, farming methods used and soil type. High amounts of agriculture on steep slopes can increase the amount of soil erosion leading to increased sediment in surface water. Agricultural land cover on steep slopes (AGSL) is the percent of agriculture on slopes greater than or equal to 9%. More information about these resources, including the variables used in this study, may be found here: https://edg.epa.gov/data/Public/ORD/NERL/ReVA/ReVA_Data.zip.

  19. Impact of the steepness of the slope on the biomechanics of World Cup slalom skiers.

    PubMed

    Supej, Matej; Hébert-Losier, Kim; Holmberg, Hans-Christer

    2015-04-01

    Numerous environmental factors can affect alpine-ski-racing performance, including the steepness of the slope. However, little research has focused on this factor. Accordingly, the authors' aim was to determine the impact of the steepness of the slope on the biomechanics of World Cup slalom ski racers. The authors collected 3-dimensional kinematic data during a World Cup race from 10 male slalom skiers throughout turns performed on a relatively flat (19.8°) and steep (25.2°) slope under otherwise similar course conditions. Kinematic data revealed differences between the 2 slopes regarding the turn radii of the skis and center of gravity, velocity, acceleration, and differential specific mechanical energy (all P < .001). Ground-reaction forces (GRFs) also tended toward differences (P = .06). Examining the time-course behaviors of variables during turn cycles indicated that steeper slopes were associated with slower velocities but greater accelerations during turn initiation, narrower turns with peak GRFs concentrated at the midpoint of steering, more pronounced lateral angulations of the knees and hips at the start of steering that later became less pronounced, and overall slower turns that involved deceleration at completion. Consequently, distinct energy-dissipation-patterns were apparent on the 2 slope inclines, with greater pregate and lesser postgate dissipation on the steeper slope. The steepness of the slope also affected the relationships between mechanical skiing variables. The findings suggest that specific considerations during training and preparation would benefit the race performance of slalom skiers on courses involving sections of varying steepness.

  20. Critical inclinations in satellite theory

    NASA Technical Reports Server (NTRS)

    Deprit, A.

    1978-01-01

    The main problem of satellite theory is described in polar coordinates by a Hamiltonian function. It is proposed to find a solution of the Hamiltonian function with the following properties: (1) the reference orbit is Keplerian; (2) no restriction is imposed on the eccentricity; in particular, it is exempt of singularities - real or apparent - for small eccentricities; and (3) no restriction is imposed on the inclination; in particular, it is exempt of singularities - real or apparent - for small inclinations; also it is valid even in the neighborhood of inclinations at which the perigee is stationary.

  1. The Divergence of Wear Propagation and Stress at Steep Acetabular Cup Positions Using Ceramic Heads and Sequentially Cross-Linked Polyethylene Liners.

    PubMed

    Zietz, Carmen; Fabry, Christian; Baum, Felix; Bader, Rainer; Kluess, Daniel

    2015-08-01

    The aim of the present wear simulator study was to assess the effect of steep acetabular cup positions on the wear propagation of highly cross-linked-PE (HX-PE) liners. Furthermore, a finite element analysis (FEA) was performed in order to calculate the stress within the HX-PE material in case of steep cup positions under physiological loadings. The higher stress in the HX-PE at a steep acetabular cup position did not result in increased wear in the present wear simulator study. The gravimetrical wear rates at normal (45°) and steep cup inclinations (75°) showed wear amounts of 3.15±0.27mg and 2.18±0.31mg per million cycles (p=0.028), respectively. However, FEA revealed clear increase in stress at the HX-PE liners with respect to steep cup positions.

  2. On the relation between steep monoclinal flexure zones and steep hydraulic gradients.

    PubMed

    Yechieli, Y; Kafri, U; Wollman, S; Lyakhovsky, V; Weinberger, R

    2007-01-01

    Steep hydraulic gradients are found in association with steep monoclinal flexures. However, the physics of the reduction of the hydraulic conductivity, which is responsible for the steep gradients, has seldom been studied. We present results of hydrological and mechanical modeling aiming to study the effect of such steep hydraulic gradients demonstrated in the Judea Group Aquifer system, Israel. The hydrological configuration of steep dips and anisotropy between flows parallel and perpendicular to the bedding planes was simulated using the FEFLOW code. It exhibited a situation whereby part of the flow is oblique to the bedding planes and therefore some steepening of the hydraulic gradients occurred due to actual conductivity reduction. However, this reduction is not enough to account for the steeper gradients observed. The effect of a deep-seated reverse fault under the monocline on the permeability distribution within the structure was examined by numerical mechanical simulations. It exhibited a compressional stress distribution in the steep part of the monocline, which, due to shortening and closure of joints and voids, is presumably responsible for a significant pressure-induced permeability reduction. This process by itself in a layered structure, including interlayering of thin marl layers, could be responsible for the steep hydraulic gradients in the steep part of the monocline.

  3. Parameterization of the sediment transport in steep channels with boulders

    NASA Astrophysics Data System (ADS)

    Ghilardi, Tamara; Franca, Mário J.; Schleiss, Anton

    2015-04-01

    The presence of large relatively immobile boulders in steep mountain rivers is generally not taken into account in the development of equations to predict the bedload, leading to overestimates of the bedload rate by several times when applied to mountain rivers. Sediment transport in steep channels with boulders is herein investigated using 41 laboratory experiments carried out on a steep (longitudinal inclination of 6.7 to 13%), 8 m long (7 m usable) and 0.25 m wide, tilting flume. The experiments were made for varying flume slopes and boulder configurations (combination of boulder dimensionless distance and diameter), and for several sediment supply conditions. 35 experiments are made with boulders and six experiments without boulders. Boulders are herein defined as elements that although not transported by the flow, may move several times their diameter during experiments, mainly due to the scour holes formed around them. Water and poorly sorted sediments are constantly supplied at the flume inlet. Bedload at the channel downstream section, bulk flow velocities and morphological parameters are measured regularly during the experiments. The poorly sorted sediments (d50=9.3 mm, d65=11.9 mm, d30=7.1 mm, d84=16.6 mm, and d90=19.0 mm) are constantly fed into the system by a calibrated sediment feeder situated upstream, and recirculated during the experiments. The experiments show that the sediment transport capacity clearly decreases with the dimensionless boulder distance and is better estimated in terms of critical discharge for incipient motion of mobile sediments than in terms of critical bed shear stress. The channel longitudinal slope shows the strongest impact on the transport capacity, namely in what concerns the critical discharge for beginning of motion. In addition, it is also shown that the sediment transport decreases with boulder density. A sediment transport formula based on excess discharge relative to a critical value, which depends not only on the

  4. 30 CFR 816.107 - Backfilling and grading: Steep slopes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Backfilling and grading: Steep slopes. 816.107... ACTIVITIES § 816.107 Backfilling and grading: Steep slopes. (a) Surface mining activities on steep slopes... section except where mining is conducted on flat or gently rolling terrain with an occasional steep...

  5. Bursts in inclined layer convection

    NASA Astrophysics Data System (ADS)

    Busse, F. H.; Clever, R. M.

    2000-08-01

    A new instability of longitudinal rolls in an inclined fluid layer heated from below is analyzed in the case of the Prandtl number P=0.71. The instability assumes the form of subharmonic undulations and evolves into a spatially chaotic pattern when the angle of inclination is of the order of 20°. The chaotic state rapidly decays and longitudinal rolls recover until the next burst of chaotic convection occurs. The theoretical findings closely correspond to recent experimental observations by Daniels et al. [Phys. Rev. Lett. (to be published)].

  6. An exact solution for ideal dam-break floods on steep slopes

    USGS Publications Warehouse

    Ancey, C.; Iverson, R.M.; Rentschler, M.; Denlinger, R.P.

    2008-01-01

    The shallow-water equations are used to model the flow resulting from the sudden release of a finite volume of frictionless, incompressible fluid down a uniform slope of arbitrary inclination. The hodograph transformation and Riemann's method make it possible to transform the governing equations into a linear system and then deduce an exact analytical solution expressed in terms of readily evaluated integrals. Although the solution treats an idealized case never strictly realized in nature, it is uniquely well-suited for testing the robustness and accuracy of numerical models used to model shallow-water flows on steep slopes. Copyright 2008 by the American Geophysical Union.

  7. Interrill soil erosion processes on steep slopes

    USDA-ARS?s Scientific Manuscript database

    To date interrill erosion processes and regimes are not fully understood. The objectives are to 1) identify the erosion regimes and limiting processes between detachment and transport on steep slopes, 2) characterize the interactive effects between rainfall intensity and flow depth on sediment trans...

  8. Inclination-Independent Galaxy Classification

    NASA Astrophysics Data System (ADS)

    Bailin, Jeremy; Harris, William E.

    2008-07-01

    We present a new method to classify galaxies from large surveys such as the Sloan Digital Sky Survey using inclination-corrected concentration, inclination-corrected location on the color-magnitude diagram, and apparent axis ratio. Explicitly accounting for inclination tightens the distribution of each of these parameters and enables simple boundaries to be drawn that delineate three different galaxy populations: early-type galaxies, which are red, highly concentrated, and round; late-type galaxies, which are blue, have low concentrations, and are disk dominated; and intermediate-type galaxies, which are red, have intermediate concentrations, and have disks. We have validated our method by comparing to visual classifications of high-quality imaging data from the Millennium Galaxy Catalogue. The inclination correction is crucial to unveiling the previously unrecognized intermediate class. Intermediate-type galaxies, roughly corresponding to lenticulars and early spirals, lie on the red sequence. The red sequence is therefore composed of two distinct morphological types, suggesting that there are two distinct mechanisms for transiting to the red sequence. We propose that intermediate-type galaxies are those that have lost their cold gas via strangulation, while early-type galaxies are those that have experienced a major merger either that consumed their cold gas, or whose merger progenitors were already devoid of cold gas (the "dry merger" scenario).

  9. Inclination Distribution of Exoplanetary Systems

    NASA Astrophysics Data System (ADS)

    Ragozzine, Darin; K. Team

    2011-09-01

    The Kepler Space Telescope is revealing for the first time valuable constraints on the inclination distribution of planetary systems with the discovery of systems of candidate multiple transiting planets. As an ensemble, the 170 candidate multi-transiting systems discovered by Kepler reveal a large population of 3-4 small nearly-coplanar planets with periods less than 125 days (Lissauer, Ragozzine, et al. 2011). The presence of multiple transiting planets does not measure the true mutual inclinations, but transit timing and duration variations (or lack thereof), multi-Rossiter-McLaughlin, and/or exoplanet mutual events can measure or put good constraints on true mutual inclinations in individual systems (Ragozzine & Holman 2010). I will discuss the recent results from Kepler observations on the inclination distributions of different exoplanet population. I will also discuss a new method for validating candidates in multi-transiting systems that uses the coplanarity of planetary systems to minimize the probability that such candidates are false positives. A summary of our understanding of exoplanetary inclinations and implications for the formation and evolution of planetary systems will also be provided. ESSII SOC: It is possible that I will focus my talk on a detailed analysis of KOI-500, the Kepler system with 5 candidate planets with new results showing that all the candidates are planets and discussing the intricate three-body resonance structure seen in this system. This work is supported by the Institute for Theory and Computation at Harvard University. Kepler was competitively selected as the tenth Discovery mission. Funding for this mission is provided by NASA's Science Mission Directorate.

  10. INCLINATION MIXING IN THE CLASSICAL KUIPER BELT

    SciTech Connect

    Volk, Kathryn; Malhotra, Renu

    2011-07-20

    We investigate the long-term evolution of the inclinations of the known classical and resonant Kuiper Belt objects (KBOs). This is partially motivated by the observed bimodal inclination distribution and by the putative physical differences between the low- and high-inclination populations. We find that some classical KBOs undergo large changes in inclination over gigayear timescales, which means that a current member of the low-inclination population may have been in the high-inclination population in the past, and vice versa. The dynamical mechanisms responsible for the time variability of inclinations are predominantly distant encounters with Neptune and chaotic diffusion near the boundaries of mean motion resonances. We reassess the correlations between inclination and physical properties including inclination time variability. We find that the size-inclination and color-inclination correlations are less statistically significant than previously reported (mostly due to the increased size of the data set since previous works with some contribution from inclination variability). The time variability of inclinations does not change the previous finding that binary classical KBOs have lower inclinations than non-binary objects. Our study of resonant objects in the classical Kuiper Belt region includes objects in the 3:2, 7:4, 2:1, and eight higher-order mean motion resonances. We find that these objects (some of which were previously classified as non-resonant) undergo larger changes in inclination compared to the non-resonant population, indicating that their current inclinations are not generally representative of their original inclinations. They are also less stable on gigayear timescales.

  11. Steep Spectrum Radio Sources in Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Clarke, Tracy E.

    2012-05-01

    Steep spectrum radio emission associated with galaxy clusters comes from compact central active galactic nuclei (AGN) driven radio sources in dense cool core clusters as well as from large regions of diffuse (halo and relic) emission associated with dynamically complex merging systems. These radio halos and relics are best traced at low radio frequencies where details of their morphology, location and spectral index distribution can be used to probe the underlying acceleration mechanism(s) as well as important details of large scale structure formation. Low frequency radio observations also play an important role in the study of AGN feedback into the intracluster medium and the regulation of cooling cores. While spectacular results are coming from the current generation of low frequency instruments, there will soon be a new revolution in studies of steep spectrum sources with the upcoming generation of low frequency interferometers on Earth and ultimately the moon.

  12. The role of speed and incline in the spontaneous choice of technique in classical roller-skiing.

    PubMed

    Ettema, Gertjan; Kveli, Espen; Øksnes, Magne; Sandbakk, Øyvind

    2017-10-01

    Cross-country skiers change technique depending on terrain (incline) and effort (work rate; speed at a particular incline or resistance). The literature is not unequivocal about the influence of incline or speed on the choice of technique, i.e., which of these act as a 'control parameter'. Identifying task related control parameters for spontaneous technique shifts assists elucidating which mechanisms are active for triggering technique transitions. The aim of this study was to investigate whether speed or incline acted as such control parameter for technique shifts during classic style roller skiing. In this study, we kept the exercise intensity constant while changing two potential control parameters (speed and incline). Thus, any effect of work rate was excluded. Eight male competitive cross-country skiers performed roller skiing on a treadmill while incline was altered from 3 to 11% and back to 3% each minute by 1% and speed changed accordingly to obtain a constant work rate. This protocol was performed at three submaximal work rates (170, 200, and 230W) to obtain various combinations of speed and incline. The athletes were free to choose their technique (double poling, double poling with kick and diagonal stride), which was identified using continuous phase analysis on the motion of the skis. Physiological response (heart rate, oxygen uptake) was recorded continuously. The incline seemed to affect choice of technique shift more than speed: the ANOVA for repeated measures on all work rates showed no significant effect of incline (p>0.2) and an effect for speed (p<0.001). No effect of protocol order (increasing versus decreasing incline) was found for transitions. The physiological response was lowest for conditions of steep incline-low speed and was affected by protocol order. Cycle rate was affected by incline only in the double poling technique. Possible mechanisms related to the triggering of technique transitions are discussed. Copyright © 2017 Elsevier B

  13. 30 CFR 817.107 - Backfilling and grading: Steep slopes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Backfilling and grading: Steep slopes. 817.107 Section 817.107 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE... ACTIVITIES § 817.107 Backfilling and grading: Steep slopes. (a) Underground mining activities on steep...

  14. Rough and Steep Terrain Lunar Surface Mobility

    NASA Technical Reports Server (NTRS)

    Wilcox, Brian

    2005-01-01

    In the summer of 2004, the NASA Exploration Systems Mission Directorate conducted an open call for projects relevant to human and robotic exploration of the Earth-Moon and Mars systems. A project entitled 'Rough and Steep Terrain Lunar Surface Mobility' was submitted by JPL and accepted by NASA. The principal investigator of this project describes the robotic vehicle being developed for this effort, which includes six 'wheels-on-legs' so that it can roll efficiently on relatively smooth terrain but walk (using locked wheels as footpads) when "the going gets rough".

  15. Rough and Steep Terrain Lunar Surface Mobility

    NASA Technical Reports Server (NTRS)

    Wilcox, Brian

    2005-01-01

    In the summer of 2004, the NASA Exploration Systems Mission Directorate conducted an open call for projects relevant to human and robotic exploration of the Earth-Moon and Mars systems. A project entitled 'Rough and Steep Terrain Lunar Surface Mobility' was submitted by JPL and accepted by NASA. The principal investigator of this project describes the robotic vehicle being developed for this effort, which includes six 'wheels-on-legs' so that it can roll efficiently on relatively smooth terrain but walk (using locked wheels as footpads) when "the going gets rough".

  16. Cooperative Three-Robot System for Traversing Steep Slopes

    NASA Technical Reports Server (NTRS)

    Stroupe, Ashley; Huntsberger, Terrance; Aghazarian, Hrand; Younse, Paulo; Garrett, Michael

    2009-01-01

    Teamed Robots for Exploration and Science in Steep Areas (TRESSA) is a system of three autonomous mobile robots that cooperate with each other to enable scientific exploration of steep terrain (slope angles up to 90 ). Originally intended for use in exploring steep slopes on Mars that are not accessible to lone wheeled robots (Mars Exploration Rovers), TRESSA and systems like TRESSA could also be used on Earth for performing rescues on steep slopes and for exploring steep slopes that are too remote or too dangerous to be explored by humans. TRESSA is modeled on safe human climbing of steep slopes, two key features of which are teamwork and safety tethers. Two of the autonomous robots, denoted Anchorbots, remain at the top of a slope; the third robot, denoted the Cliffbot, traverses the slope. The Cliffbot drives over the cliff edge supported by tethers, which are payed out from the Anchorbots (see figure). The Anchorbots autonomously control the tension in the tethers to counter the gravitational force on the Cliffbot. The tethers are payed out and reeled in as needed, keeping the body of the Cliffbot oriented approximately parallel to the local terrain surface and preventing wheel slip by controlling the speed of descent or ascent, thereby enabling the Cliffbot to drive freely up, down, or across the slope. Due to the interactive nature of the three-robot system, the robots must be very tightly coupled. To provide for this tight coupling, the TRESSA software architecture is built on a combination of (1) the multi-robot layered behavior-coordination architecture reported in "An Architecture for Controlling Multiple Robots" (NPO-30345), NASA Tech Briefs, Vol. 28, No. 10 (October 2004), page 65, and (2) the real-time control architecture reported in "Robot Electronics Architecture" (NPO-41784), NASA Tech Briefs, Vol. 32, No. 1 (January 2008), page 28. The combination architecture makes it possible to keep the three robots synchronized and coordinated, to use data

  17. Trajectories of balls on the inclined plane

    NASA Astrophysics Data System (ADS)

    Schröer, H.

    We view trajectories of projection on the inclined plane. We will see that the inclined throw in the homogeneous field is a special case of the throw on the inclined plane. Here the trajectories of projection are dependent upon throwing angle and initial velocity. First we will treat the frictionless case. Thereafter, it will be easier to understand the friction case. In chapter 2 we take into consideration friction. There is an english and a german edition.

  18. Robotic chair at steep and narrow stairways

    NASA Astrophysics Data System (ADS)

    Imazato, Masahiro; Yamaguchi, Masahiro; Moromugi, Shunji; Ishimatsu, Takakazu

    2007-12-01

    A robotic chair is developed to support mobility of elderly and disabled people living in the house where steep and narrow stairways are installed. In order to deal with such mobility problem the developed robotic chair has a compact original configuration. The robotic chair vertically moves by actuation of electric cylinders and horizontally moves by push-pull operation given by a care-giver. In order to navigate safely every action of the chair is checked by the operator. Up-and-down motions of the robotic chair on the stairway are executed through combinations of motor and cylinder actuations. Performance of the robotic chair was evaluated through two kinds of experiments. The excellent ability of the robotic chair could be confirmed through these experiments.

  19. Bed load fluctuations in a steep channel

    NASA Astrophysics Data System (ADS)

    Ghilardi, Tamara; Franca, Mário J.; Schleiss, Anton J.

    2014-08-01

    Bed load transport rate fluctuations have been observed over time in steep rivers and flumes with wide grain size distributions even under constant sediment feeding and water discharge. The observed bed load transport rate pulses are periodic and a consequence of grain sorting. Moreover, the presence of large, relatively immobile boulders, such as erratic stones, which are often present in mountain streams, has an impact on flow conditions. The detailed analysis of a 13 h laboratory experiment is presented in this paper. Boulders were randomly placed in a flume with a steep slope (6.7%), and water and sediment were constantly supplied to the flume. Along with the sediment transport and bulk mean flow velocity, the boulder protrusion, boulder surface, and number of hydraulic jumps, which are indicators of the channel morphology, were measured regularly during the experiment. Periodic bed load transport rate pulses are clearly visible in the data collected during this long-duration experiment, along with correlated fluctuations in the flow velocity and bed morphology. The links among the bulk velocity, the time evolution of the morphology variables, and the bed load transport rate are analyzed via correlational analysis, showing that the fluctuations are strongly related. A phase analysis of all observed variables is performed, and the average shapes of the time cycles of the fluctuations are shown. Observations indicate that the detected periodic fluctuations correspond to different bed states. Furthermore, the grain size distribution through the channel, which varies in time and space, clearly influences these bed load transport rate pulses. Finally, known bed load transport rate formulae are tested, showing that only the application of a drag shear stress allows a correct estimation of the time fluctuations.

  20. Optimum inclination for shuttle retrieval of inclination non-sensitive satellites

    NASA Technical Reports Server (NTRS)

    Blackwell, D. L.

    1973-01-01

    A study to identify the optimum inclination for a satellite when the satellite is inclination non-sensitive and is to be retrieved is reported. This inclination is such that it provides an opportunity for a retrieval flight at least once each day with minimal on-orbit phasing requirements and minimal ascent performance losses.

  1. Slipping and Rolling on an Inclined Plane

    ERIC Educational Resources Information Center

    Aghamohammadi, Cina; Aghamohammadi, Amir

    2011-01-01

    In the first part of the paper, using a direct calculation two-dimensional motion of a particle sliding on an inclined plane is investigated for general values of friction coefficient ([mu]). A parametric equation for the trajectory of the particle is also obtained. In the second part of the paper, the motion of a sphere on the inclined plane is…

  2. 46 CFR 28.535 - Inclining test.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Inclining test. 28.535 Section 28.535 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY UNINSPECTED VESSELS REQUIREMENTS FOR COMMERCIAL FISHING INDUSTRY VESSELS Stability § 28.535 Inclining test. (a) Except as provided in paragraphs (b) and (c) of this...

  3. Slipping and Rolling on an Inclined Plane

    ERIC Educational Resources Information Center

    Aghamohammadi, Cina; Aghamohammadi, Amir

    2011-01-01

    In the first part of the paper, using a direct calculation two-dimensional motion of a particle sliding on an inclined plane is investigated for general values of friction coefficient ([mu]). A parametric equation for the trajectory of the particle is also obtained. In the second part of the paper, the motion of a sphere on the inclined plane is…

  4. Spatial distribution of steep lunar craters may be linked to size-dependent orbital distribution of impactors

    NASA Astrophysics Data System (ADS)

    JeongAhn, Youngmin; Malhotra, Renu; Werner, Stephanie; Lee, Jui-Chi; Trang, David; Ip, Wing-Huen; Reyes-Ruiz, Mauricio

    2016-10-01

    The depth/diameter (d/D) ratio of simple lunar craters (D<15km) is known to be ~0.2 at the time of formation; larger complex craters (D>15km) have smaller d/D ratios. We examine the spatial distribution of high d/D ratio (>0.18) craters using LU60645GT catalogue (Salamunićcar et al. 2012). We select craters larger than 8km for which the census is known to be almost complete over the whole lunar surface. We find that the number density of steep craters in maria is significantly lower than in highlands, which may be explained by the age differences of the background surfaces. We also find that the spatial density of steep craters in the equatorial region is lower than in the polar region. On the contrary, higher cratering flux on the lunar equator has been claimed: from the numerical calculations with the orbital distribution of observed Earth Crossing Objects (ECOs) larger than 1km (Le Feuvre & Wieczorek 2008; Ito & Malhotra 2010) and from the distribution of steepest slopes at a 25m baseline (Kreslavsky & Head, 2016). In order to reconcile our findings with previous observations, we hypothesize that the cratering rate at low latitudes has been higher for meter to decameter size ECOs than for kilometer size objects since the Late Imbrian epoch; smaller objects have triggered more frequent mass wasting on the pre-existing large steep craters (D>8km, d/D>0.18) at low latitudes, thereby reducing the surviving number of steep craters. Our hypothesis is supported by the finding that the power-law slope in the H magnitude distribution for the low inclination ECOs (i<15 deg) is steeper than for the high inclination objects. Renu Malhotra acknowledges research support from NSF (grant AST-1312498).

  5. Development of Forced Patches in Steep Channels

    NASA Astrophysics Data System (ADS)

    Monsalve Sepulveda, A.; Yager, E. M.

    2012-12-01

    Bed surface patchiness occurs in most gravel-bedded rivers. This spatial variability in grain size and sorting impacts bed load transport. Laboratory experiments have shown that patches can arise from a local sediment transport-supply imbalance, grain to grain interactions or size-selective cross-stream transport in the presence of topographically forced heterogeneous flow fields. It is still unknown if these mechanisms can explain the formation of patches in high gradient channels with large roughness elements, which create spatial and temporal variations in depth, velocity and shear stress and alter pressure gradients, centrifugal forces, boundary friction and along and cross-stream changes in fluid momentum. To understand how these forced patches (spatially persistent due to strong topographic controls) form, a set of flume experiments using staggered immobile boulders and steep slopes wasconducted through different stages of patch evolution, starting from a flat uniform bed until patch geometry was stable in time and sediment fluxes were in equilibrium. Areas, changes in elevation, stream and crosswise sediment fluxes, and grains size distributions for patches located upstream, downstream and between boulders were measured for five different discharges. Flow field properties were obtained using a quasi-three-dimensional model to explain the influence of different components of the momentum equations on patch formation and evolution. We present these flume measurements and numerical modeling results to determine how the formation of patches is influenced by immobile boulders and the relative submergence of these roughness elements.

  6. IONIZED OUTFLOWS FROM COMPACT STEEP SPECTRUM SOURCES

    SciTech Connect

    Shih, Hsin-Yi; Stockton, Alan; Kewley, Lisa E-mail: stockton@ifa.hawaii.edu

    2013-08-01

    Massive outflows are known to exist, in the form of extended emission-line regions (EELRs), around about one-third of powerful FR II radio sources. We investigate the origin of these EELRs by studying the emission-line regions around compact-steep-spectrum (CSS) radio galaxies that are younger (10{sup 3}-10{sup 5} yr old) versions of the FR II radio galaxies. We have searched for and analyzed the emission-line regions around 11 CSS sources by taking integral field spectra using Gemini Multi-Object Spectrograph on Gemini North. We fit the [O III] {lambda}5007 line and present the velocity maps for each detected emission-line region. We find, in most cases, that the emission-line regions have multi-component velocity structures with different velocity dispersions and/or flux distributions for each component. The velocity gradients of the emission-line gas are mostly well aligned with the radio axis, suggesting a direct causal link between the outflowing gas and the radio jets. The complex velocity structure may be a result of different driving mechanisms related to the onset of the radio jets. We also present the results from the line-ratio diagnostics we used to analyze the ionization mechanism of the extended gas, which supports the scenario where the emission-line regions are ionized by a combination of active galactic nucleus radiation and shock excitation.

  7. Bedform migration in steep channels: from local avalanches to large scale changes

    NASA Astrophysics Data System (ADS)

    Mettra, F.; Heyman, J.; Ancey, C.

    2013-12-01

    Many studies have emphasized the strength of bedload transport fluctuations in steep streams, especially at low and intermediate transport conditions (relative to the threshold of incipient motion). The origins of these fluctuations, which appear on a wide range of time scales, are still not well understood. In this study, we present the data obtained from a 2D idealized laboratory experiment with the objective of simultaneously recording the channel bed evolution and bedload transport rate at a high temporal resolution. A 3-m long by 8-cm wide transparent flume filled with well-sorted natural gravel (d50=6.5 mm) was used. An efficient technique using accelerometers has been developed to record the arrival time of every particle at the outlet of the flume for long experimental durations (up to a few days). In addition, bed elevation was monitored using cameras filming from the side of the channel, allowing the observation of global aggradation/degradation as well as bedform migration. The experimental parameters were the water discharge, the flume inclination (from 2° to 5°) and the constant feeding rate of sediments. Large-scale bed evolution showed successive aggradation and rapid degradation periods. Indeed, the measured global channel slope, i.e. mean slope over the flume length, fluctuated continuously within a range sometimes wider than 1° (experimental parameters were constant over the entire run). The analysis of these fluctuations provides evidence that steep channels behave like metastable systems, similarly to grain piles. The metastable effects increased for steeper channels and lower transport conditions. In this measurement campaign, we mainly observed upstream-migrating antidunes. For each run, various antidune heights and celerities were measured. On average, the mean antidune migration rate increased with decreasing channel slope and increasing sediment feeding rate. Relatively rare tall and fast-moving antidunes appeared more frequently at high

  8. Inclination Excitation in Compact Extrasolar Planetary Systems

    NASA Astrophysics Data System (ADS)

    Becker, Juliette; Adams, Fred C.

    2015-05-01

    The Kepler Mission has detected dozens of compact planetary systems with more than four transiting planets. This sample provides a collection of close-packed planetary systems with relatively little spread in the inclination angles of the inferred orbits. We have explored the effectiveness of dynamical mechanisms in exciting orbital inclination in this class of solar systems. The two mechanisms we discuss are self-excitation of orbital inclination in initially (nearly) coplanar planetary systems and perturbations by additional unseen larger bodies in the outer regions of the solar systems. For both of these scenarios, we determine the regimes of parameter space for which orbital inclination can be effectively excited. For compact planetary systems with the observed architectures, we find that the orbital inclination angles are not spread out appreciably through self-excitation, resulting in a negligible scatter in impact parameter and a subsequently stable transiting system. In contrast, companions in the outer solar system can be effective in driving variations of the inclination angles of the inner planetary orbits, leading to significant scatter in impact parameter and resultantly non-transiting systems. We present the results of our study, the regimes in which each excitation method - self-excitation of inclination and excitation by a perturbing secondary - are relevant, and the magnitude of the effects.

  9. Transforming gate misalignment into a unique opportunity to facilitate steep switching in junctionless nanotransistors

    NASA Astrophysics Data System (ADS)

    Gupta, Manish; Kranti, Abhinav

    2016-11-01

    In this work, we examine the feasibility of triggering impact ionisation at sub-bandgap voltages through optimal utilisation of structural non-ideality induced electric field redistribution in the semiconductor film for an energy efficient steep switching junctionless (JL) transistor. While misalignment between front and back gates is often considered as a disadvantage due to loss of gate controllability, the work highlights its usefulness and applicability in nanoscale devices to engineer the electric field to enhance the product of current density (J) and electric field (E) and activate impact ionisation at sub-bandgap applied voltages. Results show that intentionally misaligned gates in silicon and germanium based JL devices exhibit an inclined conduction channel and achieve a nearly ideal value of steep subthreshold swing (˜ 1 mV decade-1) at room temperature. The work provides new viewpoints to realise energy efficient JL devices through the sharp increase of drain current from off-state to on-state achieved due to intentional misalignment between front and back gates.

  10. Modelling Steep Surfaces by Various Configurations of Nadir and Oblique Photogrammetry

    NASA Astrophysics Data System (ADS)

    Casella, V.; Franzini, M.

    2016-06-01

    Among the parts of the territory requiring periodical and careful monitoring, many have steep surfaces: quarries, river basins, land-slides, dangerous mountainsides. Aerial photogrammetry based on lightweight unmanned aircraft systems (UAS) is rapidly becoming the tool of election to survey limited areas of land with a high level of detail. Aerial photogrammetry is traditionally based on vertical images and only recently the use of significantly inclined imagery has been considered. Oblique photogrammetry presents peculiar aspects and offers improved capabilities for steep surface reconstruction. Full comprehension of oblique photogrammetry still requires research efforts and the evaluation of diverse case studies. In the present paper, the focus is on the photogrammetric UAS-based survey of a part of a large sandpit. Various flight configurations are considered: ordinary linear strips, radial strips (as the scarp considered has a semi-circular shape) and curved ones; moreover, nadir looking and oblique image blocks were acquired. Around 300 control points were measured with a topographic total station. The various datasets considered are evaluated in terms of density of the extracted point cloud and in terms of the distance between the reconstructed surface and a number of check points.

  11. The early history of the lunar inclination. [effect of tidal friction

    NASA Technical Reports Server (NTRS)

    Rubincam, D. P.

    1973-01-01

    The effect of tidal friction on the inclination of the lunar orbit to the earth's equator for earth-moon distances of less than 10 earth radii is examined. The results obtained bear on a conclusion drawn by Gerstenkorn and others which has been raised as a fatal objection to the fission hypothesis of lunar origin, namely, that the present nonzero inclination of the moon's orbit to the ecliptic implies a steep inclination of the moon's orbit to the earth's equatorial plane in the early history of the earth-moon system. This conclusion is shown to be valid only for particular rheological models of the earth. The earth is assumed to behave like a highly viscous fluid in response to tides raised in it by the moon. The moon is assumed to be tideless and in a circular orbit about the earth. The equations of tidal friction are integrated numerically to give inclination of the lunar orbit as a function of earth-moon distance.

  12. Inclination of Nations to Control Press and Attitudes on Professionalization.

    ERIC Educational Resources Information Center

    Merrill, John C.

    1988-01-01

    Interviews official representatives of 58 nations to investigate their "inclination to control" the press. Finds the region most inclined to control the press is the Middle East, whereas regions least inclined are Western Europe and North America. (RS)

  13. 23. INCLINED END POST / VERTICAL / DIAGONAL / PORTAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. INCLINED END POST / VERTICAL / DIAGONAL / PORTAL BRACING DETAIL. VIEW TO SOUTHEAST. - Abraham Lincoln Memorial Bridge, Spanning Missouri River on Highway 30 between Nebraska & Iowa, Blair, Washington County, NE

  14. Inclination Excitation in Extrasolar Planetary Systems

    NASA Astrophysics Data System (ADS)

    Becker, Juliette; Adams, Fred C.

    2015-01-01

    The Kepler Mission has detected dozens of planetary systems with more than four transiting planets. This sample provides a collection of planetary systems with little or no excited inclination between the inferred orbits. This present study examines the magnitude and efficacy of three potential mechanisms for exciting orbital inclination in these systems: self-excitation of orbital inclination in initially coplanar planetary systems, perturbations by larger bodies within the planetary systems, and perturbations by massive bodies external to the systems. For each of these mechanisms, we determine the regime(s) of parameter space for which orbital inclination excitation is effective. This work provides constraints on the properties (masses and orbital elements) of possible additional bodies in observed planetery systems, and on their dynamical history. One interesting application is to consider the relative size of the external perturbations both in and out of clusters.

  15. Biomechanical differences between incline and plane hopping.

    PubMed

    Kannas, Theodoros M; Kellis, Eleftherios; Amiridis, Ioannis G

    2011-12-01

    Kannas, TM, Kellis, E, and Amiridis, IG. Biomechanical differences between incline and plane hopping. J Strength Cond Res 25(12): 3334-3341, 2011-The need for the generation of higher joint power output during performance of dynamic activities led us to investigate the force-length relationship of the plantar flexors during consecutive stretch-shortening cycles of hopping. The hypothesis of this study was that hopping (consecutive jumps with the knee as straight as possible) on an inclined (15°) surface might lead to a better jumping performance compared with hopping on a plane surface (0°). Twelve active men performed 3 sets of 10 consecutive hops on both an incline and plane surface. Ground reaction forces; ankle and knee joint kinematics; electromyographic (EMG) activity from the medial gastrocnemius (MG), soleus (Sol) and tibialis anterior (TA); and architectural data from the MG were recorded. The results showed that participants jumped significantly higher (p < 0.05) when hopping on an inclined surface (30.32 ± 8.18 cm) compared with hopping on a plane surface (27.52 ± 4.97 cm). No differences in temporal characteristics between the 2 types of jumps were observed. Incline hopping induced significantly greater ankle dorsiflexion and knee extension at takeoff compared with plane hopping (p < 0.05). The fascicle length of the MG was greater at initial contact with the ground during incline hopping (p < 0.05). Moreover, the EMG activities of Sol and TA during the propulsion phase were significantly higher during incline compared with that during plane hopping (p < 0.05). It does not seem unreasonable to suggest that, if the aim of hopping plyometrics is to improve plantar flexor explosivity, incline hopping might be a more effective exercise than hopping on a plane surface.

  16. Potential changes of wave steepness and occurrence of rogue waves

    NASA Astrophysics Data System (ADS)

    Bitner-Gregersen, Elzbieta M.; Toffoli, Alessandro

    2015-04-01

    Wave steepness is an important characteristic of a sea state. It is also well established that wave steepness is one of the parameter responsible for generation of abnormal waves called also freak or rogue waves. The study investigates changes of wave steepness in the past and future wave climate in the North Atlantic. The fifth assessment report IPCC (2013) uses four scenarios for future greenhouse gas concentrations in the atmosphere called Representative Concentration Pathways (RCP). Two of these scenarios RCP 4.5 and RCP 8.5 have been selected to project future wave conditions in the North Atlantic. RCP 4.5 is believed to achieve the political target of a maximum global mean temperature increase of 2° C while RPC 8.5 is close to 'business as usual' and expected to give a temperature increase of 4° C or more. The analysis includes total sea, wind sea and swell. Potential changes of wave steepness for these wave systems are shown and compared with wave steepness derived from historical data. Three historical data sets with different wave model resolutions are used. The investigations show also changes in the mean wind direction as well as in the relative direction between wind sea and swell. Consequences of wave steepness changes for statistics of surface elevation and generation of rogue waves are demonstrated. Uncertainties associated with wave steepness projections are discussed.

  17. Evolution of Vortex Rings Exiting Inclined Cylinders

    NASA Astrophysics Data System (ADS)

    Longmire, E. K.; Webster, D. R.; Reetz, M.; Gefroh, D.

    1996-11-01

    Vortex rings initiated in cylinders with exit incline lengths of 0, D/4, and D/2 were investigated for Reynolds numbers up to 30,000. The fluid exiting each cylinder was visualized with an ionized bromothymol blue solution, and velocity fields were obtained with PIV. In each inclined case, vortex rings form at angles smaller than the cylinder incline angle. Entrainment of ambient fluid on the short side of the cylinder is much stronger than that on the long side. This results in a larger circulation about the short side of the ring and a greater propagation velocity on that side. The incline angle of the ring thus decreases as it moves downstream. Behind the ring core, an impulsive wave of entrained ambient fluid flows parallel to the cylinder exit plane. Some of this fluid is wrapped into the core, while the rest is ejected outward past the long cylinder edge. The vortex ring dynamics differ significantly from those observed in jets from inclined nozzles where neighboring rings are connected by straining zones, and ring incline angles increase with downstream distance.

  18. Percent Agricultural Land Cover on Steep Slopes (Future)

    EPA Pesticide Factsheets

    Clearing land for agriculture tends to increase soil erosion. The amount of erosion is related to the steepness of the slope, farming methods used and soil type. High amounts of agriculture on steep slopes can increase the amount of soil erosion leading to increased sediment in surface water. Agricultural land cover on steep slopes (AGSL) is the percent of agriculture on slopes greater than or equal to 9%. More information about these resources, including the variables used in this study, may be found here: https://edg.epa.gov/data/Public/ORD/NERL/ReVA/ReVA_Data.zip.

  19. Channel erosion in steep gradient, gravel-paved streams

    SciTech Connect

    Lepp, L.R.; Koger, C.J.; Wheeler, J.A.

    1993-12-01

    Discharges were measured in steep gradient (> 5 percent) gravel-paved streams from 1988 to 1991 in order to empirically determine erosional thresholds based on sediment size, related to critical velocity, tractive force, and unit stream power. Results suggest that the empirical relationship between sediment size and unit stream power provides an accurate and simple methodology for determining the minimum erosion threshold discharge for steep gradient streams common in western Washington and other similar mountain terrains.

  20. Recognizing the threshold magnetic anisotropy for inclination shallowing: Implications for correcting inclination errors of sedimentary rocks

    NASA Astrophysics Data System (ADS)

    Li, Yongxiang; Wang, Shipeng; Fu, Shaoying; Jiao, Wenjun

    2014-05-01

    Post-depositional compaction is an integral part of sedimentary rock formation and thus has been reasonably deemed as a major culprit for the long-recognized inclination-shallowing problem in sedimentary rocks. Although theoretical treatment elegantly envisions magnetic anisotropy (or oblate fabrics) to correspond to the degree of compaction and the magnitude of inclination flattening, such correspondence has rarely been seen in nature quantitavely, which leaves the possibility of misidentification and/or over-correction for inclination shallowing using magnetic anisotropy. This is because the extent to which oblate magnetic fabrics are developed strongly enough for inclination to start becoming shallow is not yet known. Here, we present sedimentary paleomagnetic data from two ~6 m long gravity cores GHE24L and GHE27L from the northern slope of the South China Sea to examine the down-core changes in magnetic anisotropy and inclinations, and to explore the possible connection between the two parameters. The results show that oblate fabrics are dominantly developed at depths >~2m and the degree of anisotropy displays an overall gradual increase with depth. Inclination shallowing occurs in the > 5m segment of the relatively distal core GHE27L and the amount of shallowing largely correlates with the degree of anisotropy, suggesting a causal relation between the development of magnetic anisotropy and the degree of inclination shallowing. Examination of down-core changes in inclination and magnetic anisotropy suggests that a threshold anisotropy of PAMS~1.04 and PAAR~1.10 exists for inclination shallowing in the cores. For PAAR<1.10, over-correction is mostly negligible, but can amount >10° if particle anisotropy is <1.4. This study provides strong field evidence that complements and substantiates the theoretical model and suggests that the threshold anisotropy can be used as a first-order criterion to identify inclination errors of some sedimentary rocks.

  1. Classifying bed inclination using pressure images.

    PubMed

    Baran Pouyan, M; Ostadabbas, S; Nourani, M; Pompeo, M

    2014-01-01

    Pressure ulcer is one of the most prevalent problems for bed-bound patients in hospitals and nursing homes. Pressure ulcers are painful for patients and costly for healthcare systems. Accurate in-bed posture analysis can significantly help in preventing pressure ulcers. Specifically, bed inclination (back angle) is a factor contributing to pressure ulcer development. In this paper, an efficient methodology is proposed to classify bed inclination. Our approach uses pressure values collected from a commercial pressure mat system. Then, by applying a number of image processing and machine learning techniques, the approximate degree of bed is estimated and classified. The proposed algorithm was tested on 15 subjects with various sizes and weights. The experimental results indicate that our method predicts bed inclination in three classes with 80.3% average accuracy.

  2. Computational Study of Air Entrainment by Plunging Jets-Influence of Jet Inclination

    NASA Astrophysics Data System (ADS)

    Deshpande, Suraj; Trujillo, Mario

    2012-11-01

    The process of air entrainment by a continuous liquid jet plunging into a quiescent liquid pool is studied computationally. Our earlier study [APS2011] focused on shallow impacts and the discernible periodicity of air cavity formation. Here, we consider the effect of jet angle. For steep impacts, we see a chaotic formation of small cavities, in agreement with the literature. To explain the difference, we track evolution of the flow from initial impact to quasi-stationary state, for different jet inclinations. The initial impact always yields a large air cavity, regardless of jet angle. Difference emerges in the quasi-stationary state where shallow jets demonstrate the periodicity but the steep jets do not. We show that this is a manifestation of the air entrainment being a function of flow disturbance. For shallow jets, the disturbance originates from strong wavelike motion of the cavity which results in a total disruption of the jet. Thus, the resulting cavities are large and occur periodically. For the steep jets, entrainment happens by collapse of a thin gas film uniformly enshrouding the submerged jet. Such a thin film is very sensitive to the local flow disturbances. Thus, its collapse occurs stochastically all around the jet causing chaotic entrainment of small air pocket.

  3. Optimizing snake locomotion on an inclined plane.

    PubMed

    Wang, Xiaolin; Osborne, Matthew T; Alben, Silas

    2014-01-01

    We develop a model to study the locomotion of snakes on inclined planes. We determine numerically which snake motions are optimal for two retrograde traveling-wave body shapes, triangular and sinusoidal waves, across a wide range of frictional parameters and incline angles. In the regime of large transverse friction coefficients, we find power-law scalings for the optimal wave amplitudes and corresponding costs of locomotion. We give an asymptotic analysis to show that the optimal snake motions are traveling waves with amplitudes given by the same scaling laws found in the numerics.

  4. Moments of inclination error distribution computer program

    NASA Technical Reports Server (NTRS)

    Myler, T. R.

    1981-01-01

    A FORTRAN coded computer program is described which calculates orbital inclination error statistics using a closed-form solution. This solution uses a data base of trajectory errors from actual flights to predict the orbital inclination error statistics. The Scott flight history data base consists of orbit insertion errors in the trajectory parameters - altitude, velocity, flight path angle, flight azimuth, latitude and longitude. The methods used to generate the error statistics are of general interest since they have other applications. Program theory, user instructions, output definitions, subroutine descriptions and detailed FORTRAN coding information are included.

  5. Flow through very porous inclined screens

    NASA Technical Reports Server (NTRS)

    Muramoto, K. K.; Durbin, P. A.

    1985-01-01

    The steady, inviscid flow through and around a screen inclined at a uniform angle to the incoming flow was investigated. For a screen placed in an infinite flow field, an asymptotic analysis for small resistance coefficients was performed, and the effects of inclination were determined. The velocity at first order in the asymptotic expansion was nonuniform along the screen. This nonuniformity caused the wake behind the screen to contain distributed vorticity at second order. These effects therefore occurred at one order lower than for normal screens.

  6. Penning trap with an inclined magnetic field.

    PubMed

    Yaremko, Yurij; Przybylska, Maria; Maciejewski, Andrzej J

    2016-08-01

    A modified Penning trap with a spatially uniform magnetic field B inclined with respect to the axis of rotational symmetry of the electrodes is considered. The inclination angle can be arbitrary. Canonical transformation of phase variables transforming the Hamiltonian of the considered system into a sum of three uncoupled harmonic oscillators is found. We determine the region of stability in space of two parameters controlling the dynamics: the trapping parameter κ and the squared sine of the inclination angle ϑ0. If the angle ϑ0 is smaller than 54°, a charge occupies a finite spatial volume within the processing chamber. A rigid hierarchy of trapping frequencies is broken if B is inclined at the critical angle: the magnetron frequency reaches the modified cyclotron frequency while the axial frequency exceeds them. Apart from this resonance, we reveal the family of resonant curves in the region of stability. In the relativistic regime, the system is not linear. We show that it is not integrable in the Liouville sense. The averaging over the fast variable allows to reduce the system to two degrees of freedom. An analysis of the Poincaré cross-sections of the averaged systems shows the regions of effective stability of the trap.

  7. The Ballistic Cart on an Incline Revisited.

    ERIC Educational Resources Information Center

    Serway, Raymond A.; And Others

    1995-01-01

    Presents the theory behind the mechanics demonstration that involves projecting a ball vertically upward from a ballistic cart moving along an inclined plane. The measured overshoot is believed to be due, in part, to the presence of rolling friction and the inertial properties of the cart wheels. (JRH)

  8. Particle Sliding on a Rough Incline

    ERIC Educational Resources Information Center

    Zurcher, Ulrich

    2007-01-01

    We study a particle sliding on a rough inclined plane as an example of a mechanical problem with nonholonomic constraint. The particle is launched in an arbitrary direction so that its motion has both a horizontal and a "vertical" (i.e., up- and downhill) direction. The friction force acts along the instantaneous velocity, so that the horizontal…

  9. Airborne LIDAR point cloud tower inclination judgment

    NASA Astrophysics Data System (ADS)

    liang, Chen; zhengjun, Liu; jianguo, Qian

    2016-11-01

    Inclined transmission line towers for the safe operation of the line caused a great threat, how to effectively, quickly and accurately perform inclined judgment tower of power supply company safety and security of supply has played a key role. In recent years, with the development of unmanned aerial vehicles, unmanned aerial vehicles equipped with a laser scanner, GPS, inertial navigation is one of the high-precision 3D Remote Sensing System in the electricity sector more and more. By airborne radar scan point cloud to visually show the whole picture of the three-dimensional spatial information of the power line corridors, such as the line facilities and equipment, terrain and trees. Currently, LIDAR point cloud research in the field has not yet formed an algorithm to determine tower inclination, the paper through the existing power line corridor on the tower base extraction, through their own tower shape characteristic analysis, a vertical stratification the method of combining convex hull algorithm for point cloud tower scarce two cases using two different methods for the tower was Inclined to judge, and the results with high reliability.

  10. The Ballistic Cart on an Incline Revisited.

    ERIC Educational Resources Information Center

    Serway, Raymond A.; And Others

    1995-01-01

    Presents the theory behind the mechanics demonstration that involves projecting a ball vertically upward from a ballistic cart moving along an inclined plane. The measured overshoot is believed to be due, in part, to the presence of rolling friction and the inertial properties of the cart wheels. (JRH)

  11. 46 CFR 28.535 - Inclining test.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... section, each vessel for which the lightweight displacement and centers of gravity must be determined in... of the vessel which was inclined and the location of the longitudinal center of gravity differs less... characteristics can be made and the precise location of the position of the vessel's vertical center of gravity is...

  12. 46 CFR 28.535 - Inclining test.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... section, each vessel for which the lightweight displacement and centers of gravity must be determined in... of the vessel which was inclined and the location of the longitudinal center of gravity differs less... characteristics can be made and the precise location of the position of the vessel's vertical center of gravity is...

  13. Particle Sliding on a Rough Incline

    ERIC Educational Resources Information Center

    Zurcher, Ulrich

    2007-01-01

    We study a particle sliding on a rough inclined plane as an example of a mechanical problem with nonholonomic constraint. The particle is launched in an arbitrary direction so that its motion has both a horizontal and a "vertical" (i.e., up- and downhill) direction. The friction force acts along the instantaneous velocity, so that the horizontal…

  14. Well productivity for arbitrarily inclined well

    SciTech Connect

    Mochizuki, S.

    1995-12-31

    This work extends Peaceman`s equation to a well areally and vertically inclined at arbitrary angles with respect to grid lines in anisotropic reservoirs. The method is based on the transformation of the anisotropic flow equation to a homogeneous equation, and interpolating the effective well block radius, wellbore radius, and equivalent well length as a function of angles.

  15. Penning trap with an inclined magnetic field

    NASA Astrophysics Data System (ADS)

    Yaremko, Yurij; Przybylska, Maria; Maciejewski, Andrzej J.

    2016-08-01

    A modified Penning trap with a spatially uniform magnetic field B inclined with respect to the axis of rotational symmetry of the electrodes is considered. The inclination angle can be arbitrary. Canonical transformation of phase variables transforming the Hamiltonian of the considered system into a sum of three uncoupled harmonic oscillators is found. We determine the region of stability in space of two parameters controlling the dynamics: the trapping parameter κ and the squared sine of the inclination angle ϑ 0 . If the angle ϑ 0 is smaller than 54°, a charge occupies a finite spatial volume within the processing chamber. A rigid hierarchy of trapping frequencies is broken if B is inclined at the critical angle: the magnetron frequency reaches the modified cyclotron frequency while the axial frequency exceeds them. Apart from this resonance, we reveal the family of resonant curves in the region of stability. In the relativistic regime, the system is not linear. We show that it is not integrable in the Liouville sense. The averaging over the fast variable allows to reduce the system to two degrees of freedom. An analysis of the Poincaré cross-sections of the averaged systems shows the regions of effective stability of the trap.

  16. Correlation equation for the marine drag coefficient and wave steepness

    NASA Astrophysics Data System (ADS)

    Foreman, Richard J.; Emeis, Stefan

    2012-09-01

    This work questions, starting from dimensional considerations, the generality of the belief that the marine drag coefficient levels off with increasing wind speed. Dimensional analysis shows that the drag coefficient scales with the wave steepness as opposed to a wave-age scaling. A correlation equation is employed here that uses wave steepness scaling at low aspect ratios (inverse wave steepnesses) and a constant drag coefficient at high aspect ratios. Invoked in support of the correlation are measurements sourced from the literature and at the FINO1 platform in the North Sea. The correlation equation is then applied to measurements recorded from buoys during the passage of hurricanes Rita, Katrina (2005) and Ike (2008). Results show that the correlation equation anticipates the expected levelling off in deeper water, but a drag coefficient more consistent with a Charnock type relation is also possible in more shallower water. Some suggestions are made for proceeding with a higher-order analysis than that conducted here.

  17. Naturally inflating on steep potentials through electromagnetic dissipation

    SciTech Connect

    Anber, Mohamed M.; Sorbo, Lorenzo

    2010-02-15

    In models of natural inflation, the inflaton is an axionlike particle. Unfortunately, axion potentials in UV-complete theories appear to be too steep to drive inflation. We show that, even for a steep potential, natural inflation can occur if the coupling between axion and gauge fields is taken into account. Because of this coupling, quanta of the gauge field are produced by the rolling of the axion. If the coupling is large enough, such a dissipative effect slows down the axion, leading to inflation even for a steep potential. The spectrum of perturbations is quasiscale invariant, but in the simplest construction its amplitude is larger than 10{sup -5}. We discuss a possible way out of this problem.

  18. Calculating bed load transport in steep boulder bed channels

    NASA Astrophysics Data System (ADS)

    Yager, E. M.; Kirchner, J. W.; Dietrich, W. E.

    2007-07-01

    Steep, rough channels occupy a large fraction of the total channel length in mountainous regions. Most sediment mobilized on hillslopes must pass through these streams before reaching lower-gradient channels. Steep channels have wide grain size distributions that are composed of finer, more mobile sediment and large, rarely mobile grains. The large grains can bear a significant portion of the total shear stress and thereby reduce the stress available to move the finer sediment. Conventional bed load transport equations often overpredict the sediment flux in steep channels by several orders of magnitude. We hypothesize that sediment transport equations overpredict the sediment flux because they do not (1) account for the stress borne by rarely mobile grains, (2) differentiate between highly and rarely mobile sediment, and (3) account for the limited availability of mobile sediment. Here we modify a conventional bed load transport equation to include these three effects. We use measurements of the flow, bed properties, and sediment flux in a small, steep flume to test this equation. We supply gravel at a constant rate through fields of regularly spaced immobile spheres and measure the bed coverage by gravel and sphere protrusion (the percent of the sphere that protrudes above the gravel deposit). For a given sphere spacing, the proportion of the bed covered by gravel increases and the sphere protrusion decreases with greater sediment supply. Thus bed coverage and immobile grain protrusion may serve as proxies for sediment availability in steep, rough streams. Unlike most transport equations that we tested, our modified bed load equation predicts sediment fluxes to within an order of magnitude of the measured values. Our results demonstrate that accurately predicting bed load transport in steep, rough streams may require accounting for the effects of local sediment availability (coverage by mobile sediment) and drag due to rarely mobile particles.

  19. Distribution transformer performance when subjected to steep front impulses

    SciTech Connect

    Burrage, L.M.; Shaw, J.H. . Thomas A. Edison Technical Center); McConnell, B.W. )

    1990-04-01

    The experimental method and the results of subjecting arrester protected pole type distribution transformers to the combined stresses caused by the conducted steep front impulse and rated 60 Hz voltages are described. Comparisons are drawn between these results and those of similar experiments on unenergized distribution transformers. It is concluded that tank mounted direct connected arresters provide a high degree of protection to these transformers, tank mounted externally gapped or crossarm mounted arresters may not provide sufficient protection; internal transformer insulation system failures caused by the steep front impulse do not necessarily result in immediate catastrophic failures of the transformers.

  20. [Human frontal inclination of the skull as a trait of sexual dimorphism--terminology and quantification].

    PubMed

    Kölzer, Sarah C; Kümmell, Ines V; Kölzer, Jan T; Ramsthaler, Frank; Plenzig, Stefanie; Gehl, Axel; Verhoff, Marcel A

    2015-01-01

    The skull presents a variety of morphological traits suitable for sex discrimination due to the degree of their development. The vertical frontal inclination has been established. as another marker of sex discrimination, as a steep forehead is considered as a female and a receding frontal inclination as a male attribute. In the literature, there are many different ways to define the morphognostic term "frontal inclination" and "forehead profile" respectively. As part of the project "Digital Forensic Osteology" definitions of the frontal inclination commonly found in the literature have been tested with regard to their applicability to virtual skulls based on post-mortem CT data. The actual angle measurements were carried out automatically using software developed by the authors of this article. For the investigations, profile images of skulls generated from volume-rendered CT data were used in which anthropometric measuring points had been set manually. With the help of discriminant analysis it was tested whether sex discrimination on virtual skulls based on defined variables can be carried out with sufficient sensitivity. The measurement accuracy of the defined variables on the volume-rendered images turned out to be good. No significant sex differences regarding the tested variables were found. Using all the four selected variables the sensitivity for female skulls was only about 66%, whereas for male skulls it was not much higher than the rate of coincidence (53%). The results of this pilot study suggest that apart from extending the sample size the inclusion of additional variables based on strict consideration of validity and reliability criteria should be critically tested.

  1. Dual mobility bearings withstand loading from steeper cup-inclinations without substantial wear.

    PubMed

    Loving, LaQuawn; Herrera, Lizeth; Banerjee, Samik; Heffernan, Christopher; Nevelos, Jim; Markel, David C; Mont, Michael A

    2015-03-01

    Steep cup abduction angles with adverse joint loading may increase traditional polyethylene bearing wear in total hip arthroplasties. However, there have been few reports evaluating the effect of cup inclination on the wear of dual-mobility devices. In a hip joint simulation, we compared the short-term wear of two-sizes of modular highly cross-linked dual-mobility bearings (28 mm femoral head diameter/42 mm polyethylene insert outer diameter/54 mm acetabular shell diameter; 22.2 mm femoral head diameter/36 mm polyethylene insert outer diameter/48 mm acetabular shell diameter) at 50 and 65° of cup inclination with modular 28 mm femoral head on 54 mm cup diameter metal-on-highly cross-linked polyethylene bearings. Increasing inclination from 50-65° had no changes in volumetric wear of 28/42/54 mm (mean, 1.7 vs. 1.2 mm3 /million cycles, respectively; p = 0.50) and 22.2/36/48 mm (mean, 1.7 vs. 1.2 mm3/million cycles, respectively; p = 0.48) dual mobility bearings. At 65°, 22.2/36/48 mm dual-mobility bearings had lower volumetric loss (mean, 2.2 vs. 6.3 mm(3) ; p = 0.03) and wear rates (mean, 1.2 vs. 2.7 mm3/million cycles; p = 0.02) compared to metal-on-highly cross-linked polyethylene bearings. Modern-generation dual-mobility designs with highly cross-linked polyethylenes may potentially withstand edge-loading from steeper cup-inclinations without substantial decreases in wear.

  2. 5. VIEW WEST, PERSPECTIVE UP INCLINED PLANE FROM TOP OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VIEW WEST, PERSPECTIVE UP INCLINED PLANE FROM TOP OF ABUTMENT, FILL CONFIGURATION - Laurel Hill Quarry, Incline Plane, Both sides of State Route 56, 2.4 miles East of State Route 711, Seward, Westmoreland County, PA

  3. 2. VIEW SOUTH, PERSPECTIVE OF ABUTMENT AND INCLINED PLANE ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VIEW SOUTH, PERSPECTIVE OF ABUTMENT AND INCLINED PLANE ON WEST SIDE OF PA ROUTE 56 - Laurel Hill Quarry, Incline Plane, Both sides of State Route 56, 2.4 miles East of State Route 711, Seward, Westmoreland County, PA

  4. 3. VIEW NORTHWEST, PERSPECTIVE OF ABUTMENT AND INCLINED PLANE ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VIEW NORTHWEST, PERSPECTIVE OF ABUTMENT AND INCLINED PLANE ON WEST SIDE OF PA ROUTE 56 - Laurel Hill Quarry, Incline Plane, Both sides of State Route 56, 2.4 miles East of State Route 711, Seward, Westmoreland County, PA

  5. 6. VIEW WEST, PERSPECTIVE UP INCLINED PLANE FROM MIDSLOPE VICINITY, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. VIEW WEST, PERSPECTIVE UP INCLINED PLANE FROM MID-SLOPE VICINITY, CUT CONFIGURATION - Laurel Hill Quarry, Incline Plane, Both sides of State Route 56, 2.4 miles East of State Route 711, Seward, Westmoreland County, PA

  6. 46 CFR 58.01-40 - Machinery, angles of inclination.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... AUXILIARY MACHINERY AND RELATED SYSTEMS General Requirements § 58.01-40 Machinery, angles of inclination. (a... angle of list up to and including 15°, and when the vessel is inclined under dynamic conditions (rolling...

  7. 46 CFR 58.01-40 - Machinery, angles of inclination.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... AUXILIARY MACHINERY AND RELATED SYSTEMS General Requirements § 58.01-40 Machinery, angles of inclination. (a... angle of list up to and including 15°, and when the vessel is inclined under dynamic conditions (rolling...

  8. Evaporation dynamics of water droplets on inclined surfaces

    NASA Astrophysics Data System (ADS)

    Kim, Jin Young; Hwang, In Gyu; Weon, Byung Mook

    2016-11-01

    When a water droplet is gently placed on a flat substrate, particularly which is tilted at an inclined angle, usually there are advancing and receding angles inside the droplet formed by inclination under gravitational force. Evaporation dynamics of an nonspherical inclined droplet at inclinations would deviate from that of a spherical droplet. Here we study on evaporation dynamics rates of inclined droplets by measuring mass changes with time and their lifetimes. We find that the lifetime of an evaporating inclined droplets becomes longer as the gravitational influence becomes stronger. The lifetime depends on the pinning-depinning transitions and the depinning onset times, which are changed by the gravitational influence. This The dependence inclination-induced evaporation behavior would be useful important in understanding evaporation dynamics of inclined droplets. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2016R1D1A1B01007133).

  9. 46 CFR 58.01-40 - Machinery, angles of inclination.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... designed to operate when the vessel is upright, when the vessel is inclined under static conditions at any angle of list up to and including 15°, and when the vessel is inclined under dynamic conditions...

  10. 46 CFR 58.01-40 - Machinery, angles of inclination.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... designed to operate when the vessel is upright, when the vessel is inclined under static conditions at any angle of list up to and including 15°, and when the vessel is inclined under dynamic conditions...

  11. 46 CFR 58.01-40 - Machinery, angles of inclination.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... designed to operate when the vessel is upright, when the vessel is inclined under static conditions at any angle of list up to and including 15°, and when the vessel is inclined under dynamic conditions...

  12. Felling and bunching small timber on steep slopes.

    Treesearch

    Rodger A. Arola; Edwin S. Miyata; John A. Sturos; Helmuth M. Steinhilb

    1981-01-01

    Discusses the results of a field test of the unique Menzi Muck machine for felling and bunching small trees on steep slopes. Includes the analysis of a detailed time study to determine the productivity, costs, and economic feasibility of this unusual machine.

  13. 30 CFR 785.15 - Steep slope mining.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Steep slope mining. 785.15 Section 785.15 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION SYSTEMS UNDER REGULATORY...

  14. 30 CFR 785.15 - Steep slope mining.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Steep slope mining. 785.15 Section 785.15 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION SYSTEMS UNDER REGULATORY...

  15. 30 CFR 785.15 - Steep slope mining.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Steep slope mining. 785.15 Section 785.15 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION SYSTEMS UNDER REGULATORY...

  16. 30 CFR 785.15 - Steep slope mining.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Steep slope mining. 785.15 Section 785.15 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION SYSTEMS UNDER REGULATORY...

  17. 30 CFR 785.15 - Steep slope mining.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Steep slope mining. 785.15 Section 785.15 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION SYSTEMS UNDER REGULATORY...

  18. Improved numerical modelling of morphodynamics of rivers with steep banks

    USDA-ARS?s Scientific Manuscript database

    The flow and sediment transport processes near steep streambanks, which are commonly found in meandering, braided, and anastomosing stream systems, exhibit complex patterns. The interactions between bed and bank morphologic adjustment, and their governing processes are still not well understood. Inc...

  19. 30 CFR 816.107 - Backfilling and grading: Steep slopes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Backfilling and grading: Steep slopes. 816.107 Section 816.107 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PERMANENT PROGRAM PERFORMANCE STANDARDS PERMANENT PROGRAM PERFORMANCE STANDARDS-SURFACE MINING ACTIVITIES § 816.107 Backfilling and...

  20. 30 CFR 817.107 - Backfilling and grading: Steep slopes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Backfilling and grading: Steep slopes. 817.107 Section 817.107 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PERMANENT PROGRAM PERFORMANCE STANDARDS PERMANENT PROGRAM PERFORMANCE STANDARDS-UNDERGROUND MINING ACTIVITIES § 817.107 Backfilling an...

  1. It's time to look at yarding problems on steep slopes.

    Treesearch

    Robert H. Ruth

    1960-01-01

    In many parts of the Pacific Northwest, logging operations are moving into rugged terrain as access roads probe deeper into the back country. Because of this trend, it's time to look more carefully at steep slopes and decide on the best possible management practices consistent with maximum protection against erosion.

  2. Measurement of steep edges and undercuts in confocal microscopy.

    PubMed

    Mueller, T; Jordan, M; Schneider, T; Poesch, A; Reithmeier, E

    2016-05-01

    Confocal microscopy is widely used to measure the surface topography of specimen with a precision in the micrometer range. The measurement uncertainty and quality of the acquired data of confocal microscopy depends on various effects, such as optical aberrations, vibrations of the measurement setup and variations in the surface reflectivity. In this article, the influence of steep edges and undercuts on measurement results is examined. Steep edges on the specimen's surface lead to a reduced detector signal which influences the measurement accuracy and undercuts cause surface regions, which cannot be captured in a measurement. The article describes a method to overcome the negative effects of steep edges and undercuts by capturing several measurements of the surface with different angles between the surface and the optical axis of the objective. An algorithm is introduced which stitches different angle measurements together without knowledge of the exact position and orientation of the rotation axis. Thus, the measurement uncertainty due to steep edges and undercuts can be avoided without expensive high-precision rotation stages and time consuming adjustment of the measurement setup.

  3. Granular flow down a flexible inclined plane

    NASA Astrophysics Data System (ADS)

    Sonar, Prasad; Sharma, Ishan; Singh, Jayant

    2017-06-01

    Discrete and continuous systems are commonly studied individually, but seldom together. Indeed, granular flows are typically studied through flows over a rigid base. Here, we investigate the behaviour of granular flows over an inclined, flexible base. The flexible base is modeled as a rigid platform mounted on springs and has one degree of freedom. The base vibrations are introduced by the flow. We simulate such flows through a discrete element method and compare with experiments. We find that a flexible base increased the upper limit of the inclination up to which a steady flow is possible by at least 3 degrees. This stabilized zone may have important implications in applications such as conveyor belts and chutes.

  4. Large- and Very-Large-Scale Motions in Katabatic Flows Over Steep Slopes

    NASA Astrophysics Data System (ADS)

    Giometto, M. G.; Fang, J.; Salesky, S.; Parlange, M. B.

    2016-12-01

    Evidence of large- and very-large-scale motions populating the boundary layer in katabatic flows over steep slopes is presented via direct numerical simulations (DNSs). DNSs are performed at a modified Reynolds number (Rem = 967), considering four sloping angles (α = 60°, 70°, 80° and 90°). Large coherent structures prove to be strongly dependent on the inclination of the underlying surface. Spectra and co-spectra consistently show signatures of large-scale motions (LSMs), with streamwise extension on the order of the boundary layer thickness. A second low-wavenumber mode characterizes pre-multiplied spectra and co-spectra when the slope angle is below 70°, indicative of very-large-scale motions (VLSMs). In addition, conditional sampling and averaging shows how LSMs and VLSMs are induced by counter-rotating roll modes, in agreement with findings from canonical wall-bounded flows. VLSMs contribute to the stream-wise velocity variance and shear stress in the above-jet regions up to 30% and 45% respectively, whereas both LSMs and VLSMs are inactive in the near-wall regions.

  5. An Evaluation of Local Similarity Scaling Over a Steep Alpine Slope

    NASA Astrophysics Data System (ADS)

    Nadeau, D. F.; Oldroyd, H. J.; Pardyjak, E. R.; Higgins, C. W.; Parlange, M. B.

    2012-04-01

    In this work, we investigate the applicability of similarity scaling over a steep mountain slope (30°- 41°). The results are based on eddy correlation measurements collected in Val Ferret, a narrow valley of the Swiss Alps, in summer 2010. The turbulent fluxes of heat and momentum are found to vary significantly with height in the first few meters above the inclined surface. These variations exceed by an order of magnitude the well-accepted maximum 10% required for the validity of Monin-Obukhov similarity in the surface-layer, possibly as a result of advective fluxes. In these cases when surface-layer theory breaks down, we show that local scaling can be a useful tool. Under convective conditions and after removing the effects of self-correlation, the normalized standard deviations of vertical velocity, temperature and humidity scale relatively well with z/L, where z is the measurement height and L the local Obukhov length. However, the horizontal velocity fluctuations are not correlated with z/L, and that under all stability conditions. The non-dimensional gradients of temperature and wind velocity are also investigated. For those the local scaling appear inappropriate, particularly at night when shallow drainage flows are found and lead to negative wind speed gradients near the surface.

  6. A new inclination instability in planetary systems

    NASA Astrophysics Data System (ADS)

    Madigan, Ann-Marie

    2015-08-01

    I describe a new instability in Keplerian disks of massive particles on eccentric orbits. Gravitational torques between the orbits align their angles of pericenter and drive exponential growth in orbital inclination. This instability implies specific ratios for Kepler elements of the orbits, similar to what is seen in the inner Oort Cloud of our solar system. I also discuss implications for extra-solar planetary systems and for nuclear star clusters in the centers of galaxies.

  7. Nocturnal winds over steep terrain: Turbulence structure and modeling challenges

    NASA Astrophysics Data System (ADS)

    Oldroyd, H. J.; Pardyjak, E.; Higgins, C. W.; Parlange, M. B.

    2016-12-01

    The presence of steep terrain poses several challenges to numerical modeling of turbulent surface-atmospheric exchanges, ranging from difficulties associated with the numerical grid (e.g., insufficient resolution and overstretching) to violating key assumptions (e.g., horizontal terrain) necessary for traditional parameterizations to hold. We present observations of the turbulence structure in nocturnal slope flows over steep (35.5 degree), alpine terrain in Val Ferret, Switzerland to highlight specific modeling challenges arising from deviating from the horizontal-terrain assumption. Under clear-sky conditions, we observe two distinct flow regimes with mean winds directed down the slope: (1) buoyancy-driven, `katabatic flow', for which an elevated velocity maximum (katabatic jet peak) is observed and (2) `downslope winds', for which larger-scale forcing prevents formation of a katabatic jet. These distinct flow regimes exhibit very different vertical turbulence structures. For example, the katabatic jet strongly modulates momentum and buoyancy fluxes and can vary in sign when compared to the downslope wind regime or traditional horizontal, stable boundary layer flows. Hence, improved numerical forecasting models should seek the capabilities to accurately reproduce these varied regimes. Additional modeling challenges posed by steep-slope flows are that turbulent fluxes rarely exhibit a constant-flux-type surface layer, in violation to another key assumption for most turbulence parameterizations (e.g., Monin-Obukhov similarity based wall models and turbulence closure models). Finally, we show that the traditional (horizontal terrain) concept of atmospheric stability can become unclear for flows over steep terrain, which can further complicate stability-based numerical modeling. Hence, we additionally propose key areas for future research toward improving modeling capabilities over steep terrain.

  8. Granular avalanches down inclined and vibrated planes

    NASA Astrophysics Data System (ADS)

    Gaudel, Naïma; Kiesgen de Richter, Sébastien; Louvet, Nicolas; Jenny, Mathieu; Skali-Lami, Salaheddine

    2016-09-01

    In this article, we study granular avalanches when external mechanical vibrations are applied. We identify conditions of flow arrest and compare with the ones classically observed for nonvibrating granular flows down inclines [Phys. Fluids 11, 542 (1999), 10.1063/1.869928]. We propose an empirical law to describe the thickness of the deposits with the inclination angle and the vibration intensity. The link between the surface velocity and the depth of the flow highlights a competition between gravity and vibrations induced flows. We identify two distinct regimes: (a) gravity-driven flows at large angles where vibrations do not modify dynamical properties but the deposits (scaling laws in this regime are in agreement with the literature for nonvibrating granular flows) and (b) vibrations-driven flows at small angles where no flow is possible without applied vibrations (in this last regime, the flow behavior can be properly described by a vibration induced activated process). We show, in this study, that granular flows down inclined planes can be finely tuned by external mechanical vibrations.

  9. Granular avalanches down inclined and vibrated planes.

    PubMed

    Gaudel, Naïma; Kiesgen de Richter, Sébastien; Louvet, Nicolas; Jenny, Mathieu; Skali-Lami, Salaheddine

    2016-09-01

    In this article, we study granular avalanches when external mechanical vibrations are applied. We identify conditions of flow arrest and compare with the ones classically observed for nonvibrating granular flows down inclines [Phys. Fluids 11, 542 (1999)PHFLE61070-663110.1063/1.869928]. We propose an empirical law to describe the thickness of the deposits with the inclination angle and the vibration intensity. The link between the surface velocity and the depth of the flow highlights a competition between gravity and vibrations induced flows. We identify two distinct regimes: (a) gravity-driven flows at large angles where vibrations do not modify dynamical properties but the deposits (scaling laws in this regime are in agreement with the literature for nonvibrating granular flows) and (b) vibrations-driven flows at small angles where no flow is possible without applied vibrations (in this last regime, the flow behavior can be properly described by a vibration induced activated process). We show, in this study, that granular flows down inclined planes can be finely tuned by external mechanical vibrations.

  10. Drop impact on inclined superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Choi, Wonjae; Leclear, Sani; Leclear, Johnathon; Abhijeet, .; Park, Kyoo-Chul

    We report an empirical study and dimensional analysis on the impact patterns of water drops on inclined superhydrophobic surfaces. While the classic Weber number determines the spreading and recoiling dynamics of a water drop on a horizontal / smooth surface, for a superhydrophobic surface, the dynamics depends on two distinct Weber numbers, each calculated using the length scale of the drop or of the pores on the surface. Impact on an inclined superhydrophobic surface is even more complicated, as the velocity that determines the Weber number is not necessarily the absolute speed of the drop but the velocity components normal and tangential to the surface. We define six different Weber numbers, using three different velocities (absolute, normal and tangential velocities) and two different length scales (size of the drop and of the texture). We investigate the impact patterns on inclined superhydrophobic surfaces with three different types of surface texture: (i) posts, (ii) ridges aligned with and (iii) ridges perpendicular to the impact direction. Results suggest that all six Weber numbers matter, but affect different parts of the impact dynamics, ranging from the Cassie-Wenzel transition, maximum spreading, to anisotropic deformation. We acknowledge financial support from the Office of Naval Research (ONR) through Contract 3002453812.

  11. Tooth Wear Inclination in Great Ape Molars.

    PubMed

    Knight-Sadler, Jordan; Fiorenza, Luca

    2017-01-01

    Primate dietary diversity is reflected in their dental morphology, with differences in size and shape of teeth. In particular, the tooth wear angle can provide insight into a species' ability to break down certain foods. To examine dietary and masticatory information, digitized polygon models of dental casts provide a basis for quantitative analysis of wear associated with tooth attrition. In this study, we analyze and compare the wear patterns of Pongo pygmaeus, Gorilla gorillagorilla and Pan troglodytes schweinfurthii lower molars, focusing on the degree of inclination of specific wear facets. The variation in wear angles appears to be indicative of jaw movements and the specific stresses imposed on food during mastication, reflecting thus the ecology of these species. Orangutans exhibit flatter wear angles, more typical of a diet consisting of hard and brittle foods, while gorillas show a wear pattern with a high degree of inclination, reflecting thus their more leafy diet. Chimpanzees, on the other hand, show intermediate inclinations, a pattern that could be related to their highly variable diet. This method is demonstrated to be a powerful tool for better understanding the relationship between food, mastication and tooth wear processes in living primates, and can be potentially used to reconstruct the diet of fossil species. © 2017 S. Karger AG, Basel.

  12. Analysis of inclined showers measured with LOPES

    NASA Astrophysics Data System (ADS)

    Lopes Collaboration; Saftoiu, A.; Apel, W. D.; Arteaga, J. C.; Asch, T.; Auffenberg, J.; Badea, F.; Bähren, L.; Bekk, K.; Bertaina, M.; Biermann, P. L.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Brüggemann, M.; Buchholz, P.; Buitink, S.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; di Pierro, F.; Doll, P.; Engel, R.; Falcke, H.; Finger, M.; Fuhrmann, D.; Gemmeke, H.; Ghia, P. L.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Horneffer, A.; Huege, T.; Isar, P. G.; Kampert, K.-H.; Kang, D.; Kickelbick, D.; Kolotaev, Y.; Krömer, O.; Kuijpers, J.; Lafebre, S.; Łuczak, P.; Mathes, H. J.; Mayer, H. J.; Milke, J.; Mitrica, B.; Morello, C.; Navarra, G.; Nehls, S.; Nigl, A.; Oehlschläger, J.; Over, S.; Petcu, M.; Pierog, T.; Rautenberg, J.; Rebel, H.; Roth, M.; Schieler, H.; Schmidt, A.; Schröder, F.; Sima, O.; Singh, K.; Stümpert, M.; Toma, G.; Trinchero, G. C.; Ulrich, H.; Walkowiak, W.; Weindl, A.; Wochele, J.; Wommer, M.; Zabierowski, J.; Zensus, J. A.; LOPES Collaboration

    2009-06-01

    In the present study, we analyze the radio signal from inclined air showers recorded by LOPES-30 in coincidence with KASCADE-Grande. LOPES-30 consists of 30 East-West oriented digital antennas, which are amplitude calibrated by an external source. Radio emission from air showers is considered a geomagnetic effect. Inclined events provide a larger range of values for geomagnetic angle (angle between shower axis and geomagnetic field direction) than vertical showers and thus more information on the emission processes can be gathered. In order to have the geometry of the air shower we use the reconstruction provided by the KASCADE-Grande particle detectors array. Analyzing events observed by both LOPES and the extended part of the KASCADE array, Grande, gives the possibility to test in particular the capability and efficiency of radio detection of more distant events. The results are compared with a previous analysis of inclined events recorded by the initial 10 antenna set-up, LOPES-10, in coincidence with the Grande array.

  13. Precession of a Spinning Ball Rolling down an Inclined Plane

    ERIC Educational Resources Information Center

    Cross, Rod

    2015-01-01

    A routine problem in an introductory physics course considers a rectangular block at rest on a plane inclined at angle a to the horizontal. In order for the block not to slide down the incline, the coefficient of sliding friction, µ, must be at least tan a. The situation is similar for the case of a ball rolling down an inclined plane. In order…

  14. 4. VIEW EAST, PERSPECTIVE DOWN INCLINED PLANE FROM TOP OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VIEW EAST, PERSPECTIVE DOWN INCLINED PLANE FROM TOP OF ABUTMENT TO CONEMAUGH RIVER AND AREA OF LOWER INCLINE - Laurel Hill Quarry, Incline Plane, Both sides of State Route 56, 2.4 miles East of State Route 711, Seward, Westmoreland County, PA

  15. 30 CFR 57.19135 - Rollers in inclined shafts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Rollers in inclined shafts. 57.19135 Section 57... Hoisting Inspection and Maintenance § 57.19135 Rollers in inclined shafts. Rollers used in operating inclined shafts shall be lubricated, properly aligned, and kept in good repair....

  16. 30 CFR 56.19135 - Rollers in inclined shafts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Rollers in inclined shafts. 56.19135 Section 56.19135 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... Inspection and Maintenance § 56.19135 Rollers in inclined shafts. Rollers used in operating inclined...

  17. Precession of a Spinning Ball Rolling down an Inclined Plane

    ERIC Educational Resources Information Center

    Cross, Rod

    2015-01-01

    A routine problem in an introductory physics course considers a rectangular block at rest on a plane inclined at angle a to the horizontal. In order for the block not to slide down the incline, the coefficient of sliding friction, µ, must be at least tan a. The situation is similar for the case of a ball rolling down an inclined plane. In order…

  18. 30 CFR 56.11017 - Inclined fixed ladders.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Inclined fixed ladders. 56.11017 Section 56.11017 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL....11017 Inclined fixed ladders. Fixed ladders shall not incline backwards. ...

  19. 30 CFR 56.11017 - Inclined fixed ladders.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Inclined fixed ladders. 56.11017 Section 56.11017 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL....11017 Inclined fixed ladders. Fixed ladders shall not incline backwards. ...

  20. 30 CFR 56.11017 - Inclined fixed ladders.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Inclined fixed ladders. 56.11017 Section 56.11017 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL....11017 Inclined fixed ladders. Fixed ladders shall not incline backwards. ...

  1. 30 CFR 56.11017 - Inclined fixed ladders.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Inclined fixed ladders. 56.11017 Section 56.11017 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL....11017 Inclined fixed ladders. Fixed ladders shall not incline backwards. ...

  2. 30 CFR 56.11017 - Inclined fixed ladders.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Inclined fixed ladders. 56.11017 Section 56.11017 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL....11017 Inclined fixed ladders. Fixed ladders shall not incline backwards. ...

  3. 30 CFR 56.14113 - Inclined conveyors: backstops or brakes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Inclined conveyors: backstops or brakes. 56... Machinery and Equipment Safety Devices and Maintenance Requirements § 56.14113 Inclined conveyors: backstops or brakes. Backstops or brakes shall be installed on drive units of inclined conveyors to prevent...

  4. 30 CFR 56.14113 - Inclined conveyors: backstops or brakes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Inclined conveyors: backstops or brakes. 56... Machinery and Equipment Safety Devices and Maintenance Requirements § 56.14113 Inclined conveyors: backstops or brakes. Backstops or brakes shall be installed on drive units of inclined conveyors to prevent...

  5. 30 CFR 57.14113 - Inclined conveyors: backstops or brakes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Inclined conveyors: backstops or brakes. 57... MINES Machinery and Equipment Safety Devices and Maintenance Requirements § 57.14113 Inclined conveyors: backstops or brakes. Backstops or brakes shall be installed on drive units of inclined conveyors to...

  6. 30 CFR 57.14113 - Inclined conveyors: backstops or brakes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Inclined conveyors: backstops or brakes. 57... MINES Machinery and Equipment Safety Devices and Maintenance Requirements § 57.14113 Inclined conveyors: backstops or brakes. Backstops or brakes shall be installed on drive units of inclined conveyors to...

  7. 30 CFR 56.14113 - Inclined conveyors: backstops or brakes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Inclined conveyors: backstops or brakes. 56... Machinery and Equipment Safety Devices and Maintenance Requirements § 56.14113 Inclined conveyors: backstops or brakes. Backstops or brakes shall be installed on drive units of inclined conveyors to prevent...

  8. 30 CFR 57.14113 - Inclined conveyors: backstops or brakes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Inclined conveyors: backstops or brakes. 57... MINES Machinery and Equipment Safety Devices and Maintenance Requirements § 57.14113 Inclined conveyors: backstops or brakes. Backstops or brakes shall be installed on drive units of inclined conveyors to...

  9. 30 CFR 56.14113 - Inclined conveyors: backstops or brakes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Inclined conveyors: backstops or brakes. 56... Machinery and Equipment Safety Devices and Maintenance Requirements § 56.14113 Inclined conveyors: backstops or brakes. Backstops or brakes shall be installed on drive units of inclined conveyors to prevent...

  10. 30 CFR 56.14113 - Inclined conveyors: backstops or brakes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Inclined conveyors: backstops or brakes. 56... Machinery and Equipment Safety Devices and Maintenance Requirements § 56.14113 Inclined conveyors: backstops or brakes. Backstops or brakes shall be installed on drive units of inclined conveyors to prevent...

  11. 30 CFR 57.14113 - Inclined conveyors: backstops or brakes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Inclined conveyors: backstops or brakes. 57... MINES Machinery and Equipment Safety Devices and Maintenance Requirements § 57.14113 Inclined conveyors: backstops or brakes. Backstops or brakes shall be installed on drive units of inclined conveyors to...

  12. 30 CFR 57.14113 - Inclined conveyors: backstops or brakes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Inclined conveyors: backstops or brakes. 57... MINES Machinery and Equipment Safety Devices and Maintenance Requirements § 57.14113 Inclined conveyors: backstops or brakes. Backstops or brakes shall be installed on drive units of inclined conveyors to...

  13. Light-trapping properties of the Si inclined nanowire arrays

    NASA Astrophysics Data System (ADS)

    Xu, Zhaopeng; Huangfu, Huichao; He, Long; Wang, Jiazhuang; Yang, Dong; Guo, Jingwei; Wang, Haiyan

    2017-01-01

    The light trapping performance of Si nanowire with different inclination angles were systematically studied by COMSOL Multiphysics. The inclined nanowires with inclination angles smaller than 60° show greater light trapping ability than their counterparts of the vertical nanowires. The Si solar cell with the inclined nanowires of the optimal parameters, whose θ=30°, P=400 nm, D=140 nm, can achieve a 32.395 mA/cm2 short circuit photocurrent density and a 35.655% conversion efficiency. The study of the inclined nanowire provides an effective way for further utilization of the incoming light.

  14. Prediction of Sediment Transport in Steep Boulder-bed Channels

    NASA Astrophysics Data System (ADS)

    Yager, E.; Kirchner, J. W.; Dietrich, W. E.; Furbish, D. J.

    2002-12-01

    Most sediment in mountainous terrain must first travel through steep, rough channels before reaching lower-gradient streams. Predicting flow and sediment transport rates through steep channels is problematic. Conventional transport equations, developed for lower-gradient reaches, typically over-predict sediment flux in these streams by several orders of magnitude. We hypothesize that current transport equations do not apply in steep, rough channels because 1) they do not account for the stress borne by large, relatively immobile grains, 2) they do not differentiate between seasonally and rarely mobile sediment 3) they assume an unlimited sediment supply. We have developed and tested a transport equation that incorporates the effects of large roughness elements and variable sediment supply. Measurements of the spacing, diameter, and protrusion of immobile grains, combined with channel slope, water discharge, and mobile grain size, are used to predict transport rates in steep channels. We partition the total shear stress between that borne by the exposed immobile grains and that borne by the finer, more mobile bed. We then modify a traditional bedload transport equation to use only the stress on the mobile fraction, rather than the total stress. To account for the limited supply of mobile sediment, we scale the predicted transport rate by the proportion of the bed occupied by the mobile fraction. We tested this theory in a 15 cm wide flume set at a gradient of ten percent. For each run, 3.7 mm gravel was fed at a constant rate through a bed of regularly spaced immobile spheres (30 mm diameter). To evaluate our model over a range of conditions, we varied the sphere spacing and sediment supply between experimental runs. The proportion of the bed occupied by the mobile fraction increased with sediment supply. Thus, bed coverage by mobile sediment may serve as a proxy for sediment supply in steep, rough streams. Sediment transport rates predicted by our modified bedload

  15. PRECISE TULLY-FISHER RELATIONS WITHOUT GALAXY INCLINATIONS

    SciTech Connect

    Obreschkow, D.; Meyer, M.

    2013-11-10

    Power-law relations between tracers of baryonic mass and rotational velocities of disk galaxies, so-called Tully-Fisher relations (TFRs), offer a wealth of applications in galaxy evolution and cosmology. However, measurements of rotational velocities require galaxy inclinations, which are difficult to measure, thus limiting the range of TFR studies. This work introduces a maximum likelihood estimation (MLE) method for recovering the TFR in galaxy samples with limited or no information on inclinations. The robustness and accuracy of this method is demonstrated using virtual and real galaxy samples. Intriguingly, the MLE reliably recovers the TFR of all test samples, even without using any inclination measurements—that is, assuming a random sin i-distribution for galaxy inclinations. Explicitly, this 'inclination-free MLE' recovers the three TFR parameters (zero-point, slope, scatter) with statistical errors only about 1.5 times larger than the best estimates based on perfectly known galaxy inclinations with zero uncertainty. Thus, given realistic uncertainties, the inclination-free MLE is highly competitive. If inclination measurements have mean errors larger than 10°, it is better not to use any inclinations than to consider the inclination measurements to be exact. The inclination-free MLE opens interesting perspectives for future H I surveys by the Square Kilometer Array and its pathfinders.

  16. Flight dynamics of rotorcraft in steep high-g turns

    NASA Technical Reports Server (NTRS)

    Chen, R. T. N.

    1982-01-01

    An analyticl procedure developed to permit a systematic examination of rotorcraft flight dynamics in steep high-g turns is presented. The procedure is used in a numerical investigation of a tilt-rotor aircraft and three single-rotor helicopters that have different types of main rotor systems. The results indicate (1) that strong coupling in longitudinal and lateral-directional motions exists for these rotorcraft in high-g turns; (2) that for single-rotor helicopters, the direction of turn has a significant influence on flight dynamics; and (3) that a stability and control augmentation system that is designed on the basis of standard small-disturbance equations of motion from steady straight and level flight and that otherwise performs satisfactorily in operations near 1 g, becomes significantly degraded in steep turning flight.

  17. Damage mechanisms and influence of gradation for steep riprap

    SciTech Connect

    Rohan, K.; Belfadhel, M.B.; Lefebvre, G. ); Dascal, O. )

    1994-03-01

    Model tests in a laboratory flume were performed to verify certain hypotheses put forward to explain steep riprap behavior observed in the field at several embankment dam sites. The laboratory study has focused on riprap degradation under wave attack, and on the influence of fine blocks incorporated into riprap. Unlike flatter riprap, steep riprap is characterized by a low rate of damage until a point of acceleration, after which damage progresses rapidly. At that stage, damage is characterized by sliding and crumbling, which results in an upward propagation of damage toward the crest. The inclusion of a portion of small blocks into the riprap significantly reduces the stability of seep riprap. This detrimental effect is gradually reduced as the riprap slope becomes flatter.

  18. Emplacement and composition of steep-sided domes on Venus

    NASA Astrophysics Data System (ADS)

    Stofan, Ellen R.; Anderson, Steven W.; Crown, David A.; Plaut, Jeffrey J.

    2000-11-01

    Steep-sided domes on Venus have surface characteristics that can provide information on their emplacement, including relatively smooth upper surfaces, radial and polygonal fracture patterns, and pits. These characteristics indicate that domes have surface crusts which are relatively unbroken, have mobile interiors after emplacement, and preserve fractures from only late in their history in response to endogenous growth or sagging of the dome surface. We have calculated the time necessary to form a 12-cm-thick crust for basalt and rhyolite under current terrestrial and Venusian ambient conditions. A 12-cm-thick crust will form in all cases in <10 hours. Although Venusian lava flows should develop a brittle carapace during emplacement, only late-stage brittle fractures are preserved at steep-sided domes. We favor an emplacement model where early-formed surface crusts are entrained or continually annealed as they deform to accommodate dome growth. Entrainment and annealing of fractures are not mutually exclusive processes and thus may both be at work during steep-sided dome emplacement. Our results are most consistent with basaltic compositions, as rhyolitic lavas would quickly form thick crusts which would break into large blocks that would be difficult to entrain or anneal. However, if Venus has undergone large temperature excursions in the past (producing ambient conditions of 800-1000 K [e.g., Bullock and Grinspoon, 1996, 1998]), rhyolitic lavas would be unable to form crusts at high surface temperatures and could produce domes with surface characteristics consistent with those of Venusian steep-sided domes.

  19. On the existence of smooth Cauchy steep time functions

    NASA Astrophysics Data System (ADS)

    Minguzzi, E.

    2016-06-01

    A simple proof (based on results in Chruściel et al 2015 Ann. Henri Poincaré arXiv:1301.2909) is given that every globally hyperbolic spacetime admits a smooth Cauchy steep time function. This result is useful in order to show that globally hyperbolic spacetimes can be isometrically embedded in Minkowski spacetimes and that they split as a product. The proof is based on a recent result on the differentiability of Geroch’s volume functions.

  20. Katabatic flow observations over a steep alpine slope

    NASA Astrophysics Data System (ADS)

    Oldroyd, Holly; Pardyjak, Eric; Calaf, Marc; Giometto, Marco; Huwald, Hendrik; parlange, Marc

    2013-04-01

    Katabatic flows, or downslope drainage flows, are thermally driven winds generated over sloping terrain when the surface is colder than the adjacent air and synoptic forcing is weak. This near-surface temperature inversion generates a buoyancy field such that denser, cooler air near the surface tends to sink down the slope and form the katabatic flow. Often these flows can be exploited for wind energy, and they are important in predicting pollution transport in mountainous regions and the formation of large cold air pools in valleys and basins. Mean characteristics of katabatic flows over gentle slopes are well documented. However, small-scale observations of turbulence inside the katabatic jet are less common, especially over very steep slopes in highly complex topography. Summertime measurements over a steep slope (36.5°) in a narrow alpine valley (Val Ferret, Switzerland) were taken with the aim of better understanding the near-surface turbulent fluxes that govern the local slope flows. Here, a weak katabatic jet with a height less than 1 m characterizes the mean flow. High-resolution, near-surface temperature measurements suggest a shallow internal boundary layer within the katabatic layer. Additionally, the turbulent heat flux varies significantly over the 6 m measurement layer. Hence, Monin-Obukhov Similarity theory (MOST) may be invalid for steep slopes. Turbulent statistics such as velocity and temperature variances, fluxes of momentum and heat, turbulence kinetic energy (TKE), and turbulent Prandtl number are compared to those obtained in large eddy simulations (LES) of idealized steep sloping terrain.

  1. The speed of an inclined ruck.

    PubMed

    Balmforth, N J; Craster, R V; Hewitt, I J

    2015-01-08

    Steady rucks in an elastic beam can roll at constant speed down an inclined plane. We examine the dynamics of these travelling-wave structures and argue that their speed can be dictated by a combination of the physical conditions arising in the vicinity of the 'contact points' where the beam is peeled off the underlying plane and stuck back down. We provide three detailed models for the contact dynamics: viscoelastic fracture, a thermodynamic model for bond formation and detachment and adhesion mediated by a thin liquid film. The results are compared with experiments.

  2. Braiding patterns on an inclined plane.

    PubMed

    Mertens, Keith; Putkaradze, Vakhtang; Vorobieff, Peter

    2004-07-08

    A jet of fluid flowing down a partially wetting, inclined plane usually meanders but--by maintaining a constant flow rate--meandering can be suppressed, leading to the emergence of a beautiful braided structure. Here we show that this flow pattern can be explained by the interplay between surface tension, which tends to narrow the jet, and fluid inertia, which drives the jet to widen. These observations dispel misconceptions about the relationship between braiding and meandering that have persisted for over 20 years.

  3. Circular Waveguide Slotted Antenna with Inclined Beam

    NASA Astrophysics Data System (ADS)

    Sekretarov, S. S.; Vavriv, D. M.

    2009-03-01

    The novel design of a Ku-band circular waveguide slotted antenna is proposed. In contrast to standard antennas of this type, the main beam of the developed antenna is inclined from its surface normal by the value noticeably exceeding the beam width, which is necessary e.g. to reduce the radar cross section of the antenna in the direction towards an illuminated target. The design features of such antennas are considered. The practical desing of the antenna developed is presented along with the comparison of the simulation and experimental results.

  4. The speed of an inclined ruck

    PubMed Central

    Balmforth, N. J.; Craster, R. V.; Hewitt, I. J.

    2015-01-01

    Steady rucks in an elastic beam can roll at constant speed down an inclined plane. We examine the dynamics of these travelling-wave structures and argue that their speed can be dictated by a combination of the physical conditions arising in the vicinity of the ‘contact points’ where the beam is peeled off the underlying plane and stuck back down. We provide three detailed models for the contact dynamics: viscoelastic fracture, a thermodynamic model for bond formation and detachment and adhesion mediated by a thin liquid film. The results are compared with experiments. PMID:25568622

  5. Plume impingement forces on inclined flat plates

    NASA Astrophysics Data System (ADS)

    Legge, H.

    Plume impingement from spacecraft control thrusters on vehicles in space is simulated in wind tunnel scale experiments. Pressure and shear stress are measured on flat plates inclined to the plume axis between 0 and 90 deg. In addition to a nozzle of a 0.5N thruster, a free jet from a thin plate orifice was used, by which the flow regime from nearly free molecular flow to continuum flow was covered. Simple pressure and shear stress laws are given by which the impingement pressure and shear stress can be estimated for engineering applications.

  6. Sidewall spacer optimization for steep switching junctionless transistors

    NASA Astrophysics Data System (ADS)

    Gupta, Manish; Kranti, Abhinav

    2016-06-01

    In this work, we analyze the impact of a high permittivity (high-κ) sidewall spacer and gate dielectric on the occurrence of sub-60 mV/decade subthreshold swing (S-swing) in symmetrical junctionless (JL) double gate (DG) transistors. It is shown that steep S-swing values (≤10 mV/decade) can be achieved in JL devices with a combination of a high permittivity (high-κ) gate dielectric and a narrow low permittivity (low-κ) sidewall spacer. Implementation of a wider high-κ spacer will diminish the degree of impact ionization by the influence of the fringing component of the gate electric field, and will not be useful for steep off-to-on current transition. A wider spacer with low-κ and a narrow spacer with high-κ permittivity will be useful to limit the latching effect that can occur at lower temperatures (250 K). For high temperature operation, the decrease in the impact ionization rate can be compensated by designing a JL transistor with a thicker silicon film. The work demonstrates opportunities to enhance impact ionization at sub bandgap voltages, and proposes optimal guidelines for selecting a sidewall spacer to facilitate steep switching in JL transistors.

  7. Formation mechanism of steep wave front in magnetized plasmas

    SciTech Connect

    Sasaki, M. Kasuya, N.; Itoh, S.-I.; Kobayashi, T.; Arakawa, H.; Itoh, K.; Fukunaga, K.; Yamada, T.; Yagi, M.

    2015-03-15

    Bifurcation from a streamer to a solitary drift wave is obtained in three dimensional simulation of resistive drift waves in cylindrical plasmas. The solitary drift wave is observed in the regime where the collisional transport is important as well as fluctuation induced transport. The solitary drift wave forms a steep wave front in the azimuthal direction. The phase of higher harmonic modes are locked to that of the fundamental mode, so that the steep wave front is sustained for a long time compared to the typical time scale of the drift wave oscillation. The phase entrainment between the fundamental and second harmonic modes is studied, and the azimuthal structure of the stationary solution is found to be characterized by a parameter which is determined by the deviation of the fluctuations from the Boltzmann relation. There are two solutions of the azimuthal structures, which have steep wave front facing forward and backward in the wave propagation direction, respectively. The selection criterion of these solutions is derived theoretically from the stability of the phase entrainment. The simulation result and experimental observations are found to be consistent with the theoretical prediction.

  8. Steep waves in free-surface flow past narrow topography

    NASA Astrophysics Data System (ADS)

    Wade, Stephen L.; Binder, Benjamin J.; Mattner, Trent W.; Denier, James P.

    2017-06-01

    In this work, we compute steep forced solitary wave solutions for the problem of free-surface flow over a localised topographic disturbance in an otherwise flat horizontal channel bottom. A single forced solitary wave and a double-crested forced solitary wave solution are shown to exist, both of which approach the Stokes limiting configuration of an included angle of 12 0° and a stagnation point at the wave crests. The solution space for the topographically forced problem is compared to that found in Wade et al. ["On the free-surface flow of very steep forced solitary waves," J. Fluid Mech. 739, 1-21 (2014)], who considered forcing due to a localised distribution of pressure applied to the free surface. The main feature that differentiates the two types of forcing is an additional solution that exists in the pressure-forced problem, a steep wave with a cusp at a single wave crest. Our numerical results suggest that this cusped-wave solution does not exist in the topographically forced problem.

  9. Rolling and slipping down Galileo's inclined plane: Rhythms of the spheres

    NASA Astrophysics Data System (ADS)

    Crawford, Frank S.

    1996-05-01

    tempo) to study vertical free fall as well as balls rolling down steep or gentle inclines, with or without slipping, and perhaps appreciate Galileo's dilemma.

  10. Sound radiation from a flanged inclined duct.

    PubMed

    McAlpine, Alan; Daymond-King, Alex P; Kempton, Andrew J

    2012-12-01

    A simple method to calculate sound radiation from a flanged inclined duct is presented. An inclined annular duct is terminated by a rigid vertical plane. The duct termination is representative of a scarfed exit. The concept of a scarfed duct has been examined in turbofan aero-engines as a means to, potentially, shield a portion of the radiated sound from being transmitted directly to the ground. The sound field inside the annular duct is expressed in terms of spinning modes. Exterior to the duct, the radiated sound field owing to each mode can be expressed in terms of its directivity pattern, which is found by evaluating an appropriate form of Rayleigh's integral. The asymmetry is shown to affect the amplitude of the principal lobe of the directivity pattern, and to alter the proportion of the sound power radiated up or down. The methodology detailed in this article provides a simple engineering approach to investigate the sound radiation for a three-dimensional problem.

  11. An inclined α2ω dynamo

    NASA Astrophysics Data System (ADS)

    Szeto, Anthony M. K.

    A model of the Earth's deep interior has previously been proposed (Szeto & Smylie 1984a,b) where the inner core is inclined to the rest of the Earth. That model is a mechanical one involving no MHD dynamo action. For it to be valid the fluid core must be capable of producing, or maintaining against ohmic decay, a magnetic field which is inclined to the rotation axis of the bulk of the Earth. In this paper we develop a numerical scheme for a kinematic dynamo incorporating two boundaries around the fluid core (namely the core-mantle and inner core-cuter core interfaces), differential rotation at both boundaries, and the α effect. Assumption of a spatially constant α allows a straight forward analysis in terms of spherical Bessel functions, resulting in an eigenvalue problem for the critical magnetic Reynolds number. This work represents the first effort in constructing an α2ω dynamo in a "realistic" geometry, which is an extension of a recent calculation by St Pierre (1987).

  12. Tenebrio beetles use magnetic inclination compass.

    PubMed

    Vácha, Martin; Drstková, Dana; Půzová, Tereza

    2008-08-01

    Animals that guide directions of their locomotion or their migration routes by the lines of the geomagnetic field use either polarity or inclination compasses to determine the field polarity (the north or south direction). Distinguishing the two compass types is a guideline for estimation of the molecular principle of reception and has been achieved for a number of animal groups, with the exception of insects. A standard diagnostic method to distinguish a compass type is based on reversing the vertical component of the geomagnetic field, which leads to the opposite reactions of animals with two different compass types. In the present study, adults of the mealworm beetle Tenebrio molitor were tested by means of a two-step laboratory test of magnetoreception. Beetles that were initially trained to memorize the magnetic position of the light source preferred, during the subsequent test, this same direction, pursuant geomagnetic cues only. In the following step, the vertical component was reversed between the training and the test. The beetles significantly turned their preferred direction by 180 degrees. Our results brought until then unknown original findings that insects, represented here by the T. molitor species, use-in contrast to another previously researched Arthropod, spiny lobster-the inclination compass.

  13. Nonlocal modeling of granular flows down inclines.

    PubMed

    Kamrin, Ken; Henann, David L

    2015-01-07

    Flows of granular media down a rough inclined plane demonstrate a number of nonlocal phenomena. We apply the recently proposed nonlocal granular fluidity model to this geometry and find that the model captures many of these effects. Utilizing the model's dynamical form, we obtain a formula for the critical stopping height of a layer of grains on an inclined surface. Using an existing parameter calibration for glass beads, the theoretical result compares quantitatively to existing experimental data for glass beads. This provides a stringent test of the model, whose previous validations focused on driven steady-flow problems. For layers thicker than the stopping height, the theoretical flow profiles display a thickness-dependent shape whose features are in agreement with previous discrete particle simulations. We also address the issue of the Froude number of the flows, which has been shown experimentally to collapse as a function of the ratio of layer thickness to stopping height. While the collapse is not obvious, two explanations emerge leading to a revisiting of the history of inertial rheology, which the nonlocal model references for its homogeneous flow response.

  14. Tenebrio beetles use magnetic inclination compass

    NASA Astrophysics Data System (ADS)

    Vácha, Martin; Drštková, Dana; Půžová, Tereza

    2008-08-01

    Animals that guide directions of their locomotion or their migration routes by the lines of the geomagnetic field use either polarity or inclination compasses to determine the field polarity (the north or south direction). Distinguishing the two compass types is a guideline for estimation of the molecular principle of reception and has been achieved for a number of animal groups, with the exception of insects. A standard diagnostic method to distinguish a compass type is based on reversing the vertical component of the geomagnetic field, which leads to the opposite reactions of animals with two different compass types. In the present study, adults of the mealworm beetle Tenebrio molitor were tested by means of a two-step laboratory test of magnetoreception. Beetles that were initially trained to memorize the magnetic position of the light source preferred, during the subsequent test, this same direction, pursuant geomagnetic cues only. In the following step, the vertical component was reversed between the training and the test. The beetles significantly turned their preferred direction by 180°. Our results brought until then unknown original findings that insects, represented here by the T. molitor species, use—in contrast to another previously researched Arthropod, spiny lobster—the inclination compass.

  15. Legged-locomotion on inclined granular media

    NASA Astrophysics Data System (ADS)

    Rieser, Jennifer; Qian, Feifei; Goldman, Daniel

    Animals traverse a wide variety of complex environments, including situations in which the ground beneath them can yield (e.g. dry granular media in desert dunes). Locomotion strategies that are effective on level granular media can fail when traversing a granular slope. Taking inspiration from successful legged-locomotors in sandy, uneven settings, we explore the ability of a small (15 cm long, 100 g), six-c-shaped legged robot to run uphill in a bed of 1-mm-diameter poppy seeds, using an alternating tripod gait. Our fully automated experiments reveal that locomotor performance can depend sensitively on both environmental parameters such as the inclination angle and volume fraction of the substrate, and robot morphology and control parameters like leg shape, step frequency, and the friction between the feet of the robot and the substrate. We assess performance by measuring the average speed of the robot, and we find that the robot tends to perform better at higher step frequency and lower inclination angles, and that average speed decreases more rapidly with increasing angle for higher step frequency.

  16. On wind turbine power performance measurements at inclined airflow

    NASA Astrophysics Data System (ADS)

    Pedersen, T. F.

    2004-07-01

    The average airflow inclination in complex terrain may be substantial. The airflow inclination affects wind turbine performance and also affects the cup anemometer being used in power performance measurements. In this article the overall dependence of the power curve on inclined airflow is analysed for its influence on both the wind turbine and the cup anemometer. The wind turbine performance analysis is based on results of measurements and theoretical calculations with the aeroelastic code HAWC coupled to a 3D actuator disc model for varying yaw angle. The cup anemometer analysis at inclined flow is based on an averaging of measured angular characteristics in a wind tunnel with the distribution of airflow inclination angles over time. The relative difference in annual energy production in terrain with inclined airflow compared with flat terrain is simulated for cup anemometers with theoretical optimal angular characteristics for two different definitions of wind speed, as well as for five commercial cup anemometers with measured angular characteristics. Copyright

  17. An experimental study on downward slug flow in inclined pipes

    SciTech Connect

    Roumazeilles, P.M.; Yang, J.; Sarica, C.; Chen, X.T.; Wilson, J.F.; Brill, J.P.

    1996-08-01

    The downward simultaneous flow of gas and liquid is often encountered in hilly terrain pipelines and injection wells. Most of the methods for predicting pressure drop in gas/liquid, two-phase flow in pipes have been developed for either upward vertical or upward inclined pipes. This study experimentally investigated downward cocurrent slug flow in inclined pipes. A new test facility was designed and built to acquire data for the entire range of pipe inclination angles. A series of slug flow experiments was conducted in a 2-in. diameter, 65-ft long clear PVC pipe installed on an inclinable structure. Liquid holdup and pressure drop measurements were obtained for downward inclination angles from 0{degree} to {minus}30{degree} at different flow conditions. Translational velocity and liquid-slug holdup correlations were investigated based on the acquired data for different inclination angles.

  18. A technique to determine a desired preparation axial inclination.

    PubMed

    Parker, M Harry; Ivanhoe, John R; Blalock, John S; Frazier, Kevin B; Plummer, Kevin D

    2003-10-01

    The guidelines recommended in the literature for the convergence angle of a crown preparation vary from 3 to 24 degrees. There is a lack of guidelines on techniques to achieve a specific axial inclination. The purpose of this article was to present a practical technique, with a diamond rotary cutting instrument of known axial inclination, to determine the diamond rotary cutting instrument angulations required to achieve the desired axial inclination of a preparation.

  19. Stability of steep gravity capillary solitary waves in deep water

    NASA Astrophysics Data System (ADS)

    Calvo, David C.; Akylas, T. R.

    2002-02-01

    The stability of steep gravity capillary solitary waves in deep water is numerically investigated using the full nonlinear water-wave equations with surface tension. Out of the two solution branches that bifurcate at the minimum gravity capillary phase speed, solitary waves of depression are found to be stable both in the small-amplitude limit when they are in the form of wavepackets and at finite steepness when they consist of a single trough, consistent with observations. The elevation-wave solution branch, on the other hand, is unstable close to the bifurcation point but becomes stable at finite steepness as a limit point is passed and the wave profile features two well-separated troughs. Motivated by the experiments of Longuet-Higgins & Zhang (1997), we also consider the forced problem of a localized pressure distribution applied to the free surface of a stream with speed below the minimum gravity capillary phase speed. We find that the finite-amplitude forced solitary-wave solution branch computed by Vanden-Broeck & Dias (1992) is unstable but the branch corresponding to Rayleigh’s linearized solution is stable, in agreement also with a weakly nonlinear analysis based on a forced nonlinear Schrödinger equation. The significance of viscous effects is assessed using the approach proposed by Longuet-Higgins (1997): while for free elevation waves the instability predicted on the basis of potential-flow theory is relatively weak compared with viscous damping, the opposite turns out to be the case in the forced problem when the forcing is strong. In this régime, which is relevant to the experiments of Longuet-Higgins & Zhang (1997), the effects of instability can easily dominate viscous effects, and the results of the stability analysis are used to propose a theoretical explanation for the persistent unsteadiness of the forced wave profiles observed in the experiments.

  20. Transient river response, captured by channel steepness and its concavity

    NASA Astrophysics Data System (ADS)

    Vanacker, Veerle; von Blanckenburg, Friedhelm; Govers, Gerard; Molina, Armando; Campforts, Benjamin; Kubik, Peter W.

    2015-01-01

    Mountain rivers draining tropical regions are known to be great conveyor belts carrying efficiently more than half of the global sediment flux to the oceans. Many tropical mountain areas are located in tectonically active belts where the hillslope and stream channel morphology are rapidly evolving in response to changes in base level. Here, we report basin-wide denudation rates for an east-west transect through the tropical Andes. Hillslope and channel morphology vary systematically from east to west, reflecting the transition from high relief, strongly dissected topography in the escarpment zones into relatively low relief topography in the inter-Andean valley. The spatial pattern of differential denudation rates reflects the transient adjustment of the landscape to rapid river incision following tectonic uplift and river diversion. In the inter-Andean valley, upstream of the wave of incision, slopes and river channels display a relatively smooth, concave-up morphology and denudation rates (time scale of 104-105 a) are consistently low (3 to 200 mm/ka). In contrast, slopes and river channels of rejuvenated basins draining the eastern cordillera are steep to very steep; and the studied drainage basins show a wide range of denudation rate values (60 to 400 mm/ka) that increase systematically with increasing basin mean slope gradient, channel steepness, and channel convexity. Drainage basins that are characterised by strong convexities in their river longitudinal profiles systematically have higher denudation rates. As such, this is one of the first studies that provides field-based evidence of a correlation between channel concavity and basin mean denudation rates, consistent with process-based fluvial incision models.

  1. Flow during the evening transition over steep alpine slopes

    NASA Astrophysics Data System (ADS)

    Parlange, M. B.; Nadeau, D. F.; Pardyjak, E.; Oldroyd, H. J.; Calaf Bracons, M.; Daniels, M. H.; Higgins, C. W.; Huwald, H.

    2011-12-01

    In steep alpine environments, surface heating and cooling plays an important role on the wind circulation, turbulence and flow patterns. These circulations undergo a strong diurnal cycle, with upslope winds during the day and drainage winds at night. Little is known about the transition between these two wind regimes over very steep slopes due to the difficulties involved with making field measurements. In both summers 2010 and 2011, we conducted a field campaign on a steep, west-facing slope of the Swiss Alps (Val Ferret, Valais) to study the evening transition of slope flows. Two eddy-covariance towers and two weather stations were installed on an experimental transect with slopes ranging from 20° to 45°. Large-scale valley circulations were observed with tethered balloon profiling and a wind lidar. The results show that topographic shading controls the daytime slope flow destruction and initiation of the evening transition. Following the movement of a 'shading front', the incoming shortwave radiation decreases by several hundreds of W/m2 in just a few minutes. The associated reduction in skin temperatures is substantial, and reductions on the order of 10°C in less than 10 min can be observed. This is followed by an early-evening calm period with light wind speeds and very small turbulent kinetic energy (TKE). Finally, growing from the surface upwards, a shallow, local katabatic flow (skin flow) forms. Additionally, an analysis of the TKE budget close to the surface shows that the buoyancy flux overpowers the shear production in the last hours before the local sunset, while at night shear production dominates the TKE budget.

  2. Seismic Monitoring of Bedload Transport in a Steep Mountain Catchment

    NASA Astrophysics Data System (ADS)

    Roth, D. L.; Finnegan, N. J.; Brodsky, E. E.; Turowski, J. M.; Wyss, C. R.; Badoux, A.

    2014-12-01

    Predicting river channel evolution relies on an understanding of when and at what rate coarse sediment moves in a channel. Unfortunately, our predictive abilities are limited by the logistical challenges and potential dangers inherent in current techniques for monitoring sediment transport during flood events, especially in steep, highly active landscapes. However, the use of seismic signals near rivers shows promise as a safe, low-cost method for studying sediment transport in these settings. Seismic signals near rivers are partially generated by both water turbulence and bedload sediment particles impacting the river bed during transport. Here, we attempt to isolate the seismic signatures of discharge and bedload transport in a steep mountain channel by examining high-frequency broadband seismic data from the well-studied Erlenbach stream (local slope of ~10%) in the Swiss Prealps. The extensive monitoring infrastructure and long history of sediment transport data at this field site allow us to independently constrain discharge, precipitation, and bedload transport during flood events over a two month field campaign. We perform a general linear least squares inversion of the seismic data, exploiting times with isolated rain or discharge events, to identify the spectral signals of water turbulence, rain, and bedload sediment transport. We find that the signal generated by rain exhibits a roughly broadband spectrum, while discharge and sediment transport exhibit power primarily in lower frequency bands. Our preliminary results indicate that with only precipitation and discharge data, it is possible to isolate the seismic signal of bedload transport in steep fluvial environments. Seismic studies may therefore have the potential to revolutionize our ability to monitor and understand these environments.

  3. Detection of very inclined showers with the Auger Observatory

    SciTech Connect

    Nellen, Lukas; /Mexico U., ICN

    2005-07-01

    The Pierre Auger Observatory can detect air showers with high efficiency at large zenith angles with both the fluorescence and surface detectors. Since half the available solid angle corresponds to zeniths between 60 and 90 degrees, a large number of inclined events can be expected and are indeed observed. In this paper, we characterize the inclined air showers detected by the Observatory and we present the aperture for inclined showers and an outlook of the results that can be obtained in future studies of the inclined data set.

  4. Impact of flow inclination on downwind turbine loads and power

    NASA Astrophysics Data System (ADS)

    Kress, C.; Chokani, N.; Abhari, R. S.; Hashimoto, T.; Watanabe, M.; Sano, T.; Saeki, M.

    2016-09-01

    Wind turbines frequently operate under situations of pronounced flow inclinations, such as in complex terrain. In the present work the performance and rotor thrust of downwind and upwind turbines in upward and downward flow inclinations are experimentally investigated. In an upward flow inclination of +13°, downwind turbines are shown to have a 29% larger power output than a corresponding upwind turbine, whereas the relative increase in rotor thrust is only 9%. Furthermore, it is also shown that the performance of downwind turbines is less sensitive to changes in the flow inclination, as the upstream nacelle on downwind turbines beneficially redirects and accelerates the flow around the nacelle into the rotor plane.

  5. Enhanced photovoltaic performance of an inclined nanowire array solar cell.

    PubMed

    Wu, Yao; Yan, Xin; Zhang, Xia; Ren, Xiaomin

    2015-11-30

    An innovative solar cell based on inclined p-i-n nanowire array is designed and analyzed. The results show that the inclined geometry can sufficiently increase the conversion efficiency of solar cells by enhancing the absorption of light in the active region. By tuning the nanowire array density, nanowire diameter, nanowire length, as well as the proportion of intrinsic region of the inclined nanowire solar cell, a remarkable efficiency in excess of 16% can be obtained in GaAs. Similar results have been obtained in InP and Si nanowire solar cells, demonstrating the universality of the performance enhancement of inclined nanowire arrays.

  6. The Gothic arch (needle point) tracing and condylar inclination.

    PubMed

    el-Gheriani, A S; Winstanley, R B

    1987-11-01

    The records of 11 patients referred for treatment of TMJ disorders were used to compare condylar inclination found by drawing a tangent and by using a mathematic technique. Needle point tracing angles were also measured for the same patients and were compared with the condylar inclination. It can be concluded that (1) the mathematic technique outlined records a more accurate condylar angulation, and (2) there is a great variation in condylar inclination values between patients and between left and right sides of the same patient, and (3) there is no direct relationship between condylar inclination and the needle point tracing angle.

  7. Field experiments of nonlocal sediment transport on a steep hillslope

    NASA Astrophysics Data System (ADS)

    DiBiase, R.; Booth, A. M.; Ganti, V.; Scheingross, J. S.; Lamb, M. P.

    2014-12-01

    Steep rocky hillslopes dominate the areal extent of rapidly uplifting mountain ranges, and pose a significant hazard to encroaching population centers. Existing models for hillslope sediment transport developed for soil-mantled landscapes are poorly suited to explain the evolution of steep hillslopes characterized by: (1) intermittent or patchy soil cover, (2) slopes that exceed the angle of repose, and (3) transport events that often involve long travel distances. Recently, nonlocal formulations of hillslope sediment transport laws that account for long travel distances have been proposed to overcome the limitations of traditional continuum-based models. However, their application to natural landscapes has been limited owing to few field constraints on key parameters, and computational difficulties expanding the framework to two-dimensions. To address this knowledge gap, we performed a series of field experiments on natural hillslopes to inform a simple particle-based model of hillslope sediment transport. We compiled the distribution of average velocity and transport distance for over 300 stones ranging in diameter from 2-10 cm using a video camera and laser range-finder. To characterize surface roughness, we used a tripod-based laser scanner to generate a 1 cm-resolution digital elevation model of each 30 m long hillslope. We find that hillslope travel distance follows a heavy-tailed distribution that varies systematically with the ratio of particle diameter to roughness height, in general agreement to published laboratory experiments. Mean particle velocity ranges from 1-3 m/s and scales weakly with distance traveled. Our modeling exercise reveals three key effects that should be included in any treatment of steep hillslope evolution: (1) there is a strong grain-size and surface roughness dependence on sediment transport distance, (2) sediment storage on slopes steeper than the angle of repose is possible due to vegetation or topographic roughness, and (3

  8. Wave Reflection on a Two-Slope Steep Beach

    DTIC Science & Technology

    2012-03-01

    ABSTRACT (maximum 200 words) Wave reflection of sea-swell (0.05–0.20 Hz) energy on a two-slope (1/7.6 nearshore and 1/19 offshore) steep beach with no...offshore components to determine reflection. The long data set captured a wide range of wave conditions at various tidal stages. Observations show low...amplitude long period waves produced energy reflection coefficients up to 80%, with most in the 30–50% range. There was a measured increase in the

  9. The discovery of diffuse steep spectrum sources in Abell 2256

    NASA Astrophysics Data System (ADS)

    van Weeren, R. J.; Intema, H. T.; Oonk, J. B. R.; Röttgering, H. J. A.; Clarke, T. E.

    2009-12-01

    Context: Hierarchical galaxy formation models indicate that during their lifetime galaxy clusters undergo several mergers. An example of such a merging cluster is Abell 2256. Here we report on the discovery of three diffuse radio sources in the periphery of Abell 2256, using the Giant Metrewave Radio Telescope (GMRT). Aims: The aim of the observations was to search for diffuse ultra-steep spectrum radio sources within the galaxy cluster Abell 2256. Methods: We have carried out GMRT 325 MHz radio continuum observations of Abell 2256. V, R and I band images of the cluster were taken with the 4.2 m William Herschel Telescope (WHT). Results: We have discovered three diffuse elongated radio sources located about 1 Mpc from the cluster center. Two are located to the west of the cluster center, and one to the southeast. The sources have a measured physical extent of 170, 140 and 240 kpc, respectively. The two western sources are also visible in deep low-resolution 115-165 MHz Westerbork Synthesis Radio Telescope (WSRT) images, although they are blended into a single source. For the combined emission of the blended source we find an extreme spectral index (α) of -2.05 ± 0.14 between 140 and 351 MHz. The extremely steep spectral index suggests these two sources are most likely the result of adiabatic compression of fossil radio plasma due to merger shocks. For the source to the southeast, we find that {α < -1.45} between 1369 and 325 MHz. We did not find any clear optical counterparts to the radio sources in the WHT images. Conclusions: The discovery of the steep spectrum sources implies the existence of a population of faint diffuse radio sources in (merging) clusters with such steep spectra that they have gone unnoticed in higher frequency (⪆1 GHz) observations. Simply considering the timescales related to the AGN activity, synchrotron losses, and the presence of shocks, we find that most massive clusters should possess similar sources. An exciting possibility

  10. Global dynamics for steep nonlinearities in two dimensions

    NASA Astrophysics Data System (ADS)

    Gedeon, Tomáš; Harker, Shaun; Kokubu, Hiroshi; Mischaikow, Konstantin; Oka, Hiroe

    2017-01-01

    This paper discusses a novel approach to obtaining mathematically rigorous results on the global dynamics of ordinary differential equations. We study switching models of regulatory networks. To each switching network we associate a Morse graph, a computable object that describes a Morse decomposition of the dynamics. In this paper we show that all smooth perturbations of the switching system share the same Morse graph and we compute explicit bounds on the size of the allowable perturbation. This shows that computationally tractable switching systems can be used to characterize dynamics of smooth systems with steep nonlinearities.

  11. Katabatic flows over steep alpine slopes covered with short vegetation

    NASA Astrophysics Data System (ADS)

    Oldroyd, H. J.; Katul, G. G.; Pardyjak, E.; Huwald, H.; Parlange, M. B.

    2013-12-01

    Katabatic flows are high density air flows traversing down a slope under the action of a gravitational force. These flows can be exploited for wind energy and are gaining importance in predicting scalar transport (e.g. pollutants, water vapor, CO2 drainage) within mountainous regions and in forming large cold air pools in valleys and basins. Summertime measurements over a steep slope in a narrow alpine valley (Val Ferret, Switzerland) were collected so as to explore the components of the mean longitudinal momentum balance leading to the formation of the katabatic jet. During clear-sky nights with weak synoptic forcing, observations show a strong, near-surface temperature gradient and a subsequent, weak katabatic jet with a peak velocity at less than 1 m from the surface. Two distinct log-linear layers, both in mean velocity and in temperature, characterize the katabatic jet layer (up to ~6 m) where fluxes of heat and momentum vary with height. This departure from the so-called constant-stress region typifies difficulties in modeling and predicting flows over steep topography. To circumvent some of these difficulties, a one-dimensional model for the vertical flux gradient that couples momentum and thermal balances was used to predict the mean velocity and turbulent flux profiles for katabatic flows over steep, vegetated slopes. The model predicts realistic profiles of heat and momentum fluxes in comparison with the field measurements. For example, in the case of the modeled momentum flux, the sign of the flux changes at the height of peak velocity and the higher gradient near the surface is well reproduced. It is conjectured that unsteadiness in synoptic scale conditions can be partly accommodated via a dynamic mean horizontal pressure gradient at a point. Order of magnitude calculations suggest that this term can be larger than the so-called thermal wind term when the katabatic flow is sufficiently shallow, as is the case on steep slopes. This model may serve as a

  12. Check dams effects on sediment transport in steep slope flume

    NASA Astrophysics Data System (ADS)

    Piton, Guillaume; Recking, Alain

    2014-05-01

    Depending on many influences (geology, relief, hydrology, land use, etc.) some mountainous watershed are prone to cause casualties and facilities damages. Large amounts of sediments episodically released by torrents are often the biggest problem in torrent related hazard mitigation. Series of transversal structures as check dams and ground sills are often used in the panel of risk mitigation technics. A large literature exits on check dams and it mainly concerns engineering design, e.g. toe scouring, stability stress diagram, changes in upper and lower reaches equilibrium slopes. Check dams in steep slope rivers constitute fixed points in the bed profile and prevent general bed incision. However their influence on sediment transport once they are filled is not yet clear. Two flume test campaigns, synthetize in Table 1, were performed to investigate this question: Table 1 : experiment plan Run (duration) Ref1 (50h)CD1a (30h)CD1b (30h)Ref2 (92h)CD2 (18h) Solid feeding discharge (g.s^-1) 44 44 44 60 60 Number of check dams none 1 3 none 2 A nearly 5-m-long, 10-cm-wide and 12%-steep flume was used. The water discharge was set to 0,55 l/s in all runs. A mixture of poorly sorted natural sediments with diameters between 0.8 and 40 mm was used. An open solid-discharge-feeding circuit kept the inlet sediment flux constant during all experiments. As both feeding rates did not present variation, changes in outlet solid discharge were assumed to be due to bed variations in the bed storage. We observed strong fluctuations of solid flux and slope in each reaches of all runs between: (i) steep aggradating armoured bed and (ii) less steep and finer bed releasing bedload sheets during erosion events and inducing bedload pulses. All experiments showed consistent results: transported volume associated with erosion event decreased with the length between two subsequent check dams. Solid transversal structures shorten the upstream erosion-propagation and avoid downstream change in the

  13. Unsteady granular flows down an inclined plane.

    PubMed

    Parez, Stanislav; Aharonov, Einat; Toussaint, Renaud

    2016-04-01

    The continuum description of granular flows is still a challenge despite their importance in many geophysical and industrial applications. We extend previous works, which have explored steady flow properties, by focusing on unsteady flows accelerating or decelerating down an inclined plane in the simple shear configuration. We solve the flow kinematics analytically, including predictions of evolving velocity and stress profiles and the duration of the transient stage. The solution shows why and how granular materials reach steady flow on slopes steeper than the angle of repose and how they decelerate on shallower slopes. The model might facilitate development of natural hazard assessment and may be modified in the future to explore unsteady granular flows in different configurations.

  14. Granular flow over inclined channels with constrictions

    NASA Astrophysics Data System (ADS)

    Tunuguntla, Deepak; Weinhart, Thomas; Thornton, Anthony; Bokhove, Onno

    2013-04-01

    Study of granular flows down inclined channels is essential in understanding the dynamics of natural grain flows like landslides and snow avalanches. As a stepping stone, dry granular flow over an inclined channel with a localised constriction is investigated using both continuum methods and particle simulations. Initially, depth-averaged equations of motion (Savage & Hutter 1989) containing an unknown friction law are considered. The shallow-layer model for granular flows is closed with a friction law obtained from particle simulations of steady flows (Weinhart et al. 2012) undertaken in the open source package Mercury DPM (Mercury 2010). The closed two-dimensional (2D) shallow-layer model is then width-averaged to obtain a novel one-dimensional (1D) model which is an extension of the one for water flows through contraction (Akers & Bokhove 2008). Different flow states are predicted by this novel one-dimensional theory. Flow regimes with distinct flow states are determined as a function of upstream channel Froude number, F, and channel width ratio, Bc. The latter being the ratio of the channel exit width and upstream channel width. Existence of multiple steady states is predicted in a certain regime of F - Bc parameter plane which is in agreement with experiments previously undertaken by (Akers & Bokhove 2008) and for granular flows (Vreman et al. 2007). Furthermore, the 1D model is verified by solving the 2D shallow granular equations using an open source discontinuous Galerkin finite element package hpGEM (Pesch et al. 2007). For supercritical flows i.e. F > 1 the 1D asymptotics holds although the two-dimensional oblique granular jumps largely vary across the converging channel. This computationally efficient closed 1D model is validated by comparing it to the computationally more expensiveaa three-dimensional particle simulations. Finally, we aim to present a quasi-steady particle simulation of inclined flow through two rectangular blocks separated by a gap

  15. Unsteady granular flows down an inclined plane

    NASA Astrophysics Data System (ADS)

    Parez, Stanislav; Aharonov, Einat; Toussaint, Renaud

    2016-04-01

    The continuum description of granular flows is still a challenge despite their importance in many geophysical and industrial applications. We extend previous works, which have explored steady flow properties, by focusing on unsteady flows accelerating or decelerating down an inclined plane in the simple shear configuration. We solve the flow kinematics analytically, including predictions of evolving velocity and stress profiles and the duration of the transient stage. The solution shows why and how granular materials reach steady flow on slopes steeper than the angle of repose and how they decelerate on shallower slopes. The model might facilitate development of natural hazard assessment and may be modified in the future to explore unsteady granular flows in different configurations.

  16. Transverse Bursts in Inclined Layer Convection: Experiment

    NASA Astrophysics Data System (ADS)

    Daniels, Karen; Wiener, Richard; Bodenschatz, Eberhard

    2002-03-01

    We report experimental results on inclined layer convection in a fluid of Prandtl number σ ≈ 1. A codimension-two point divides regions of buoyancy-driven convection (longitudinal rolls) at lower angles from shear-driven convection (transverse rolls) at higher angles (Daniels et al. PRL 84: 5320, 2000). In the region of buoyancy-driven convection, near the codimension-two point, we observe longitudinal rolls with intermittent, localized, subharmonic transverse bursts. The patterns are spatiotemporally chaotic. With increasing temperature difference the bursts increase in duration and number. We examine the details of the bursting process (e.g. the energy of longitudinal, transverse, and mixed modes) and compare our results to bursting processes in other systems. This work is supported by the National Science Foundation under grant DMR-0072077 and the IGERT program in nonlinear systems, grant DGE-9870631.

  17. Transient natural convection in heated inclined tubes

    SciTech Connect

    McEligot, D.M. . Oceanic Div.); Denbow, D.A. ); Murphy, H.D. )

    1990-05-01

    To simulate natural convection flow patterns in directionally drilled wellbores, experiments and analyses were conducted for a circular tube with length-to-diameter (L/D) ratio of 36 at angles of 0{degree}, 20{degree}, and 35{degree} from the vertical. The tube was heated at the bottom and cooled at the top, and the insulation was adjusted so that approximately one- to two-thirds of the power dissipated was transferred through the tube wall to the surroundings. An aqueous solution of polyvinyl alcohol was employed as the working fluid in order to obtain low Rayleigh numbers corresponding to conditions in geothermal wellbores. Results were primarily qualitative but were useful in providing insight into the phenomena occurring. Steady-state temperature distributions were measured for the three orientations and for several heating rates to demonstrate the effects of tube angle and Rayleigh number. transient measurements of the temperature distribution were obtained during cooling from a higher temperature without a heat source to calibrate the heat losses. With the electrical heat source, temporal data were taken during heating to examine the approach to steady state. Quasi-steady flow conditions were approached rapidly, but the overall time constant of the apparatus was of the order of one-third of a day. Predictions with the three-dimensional TEMPEST code were first tested by comparison with simple conduction analyses. Comparison with actual data showed good agreement of the predicted temperature levels for the maximum inclination, 35{degree}, and slightly poorer agreement for the other limit, a vertical tube. Trends of temperature level and Nusselt number with heating rate or Rayleigh number were reasonable, but the predicted variation of the end Nusselt number versus inclination was in the opposite direction from the experiment. 75 refs., 20 figs., 8 tabs.

  18. Lower incisor inclination regarding different reference planes.

    PubMed

    Zataráin, Brenda; Avila, Josué; Moyaho, Angeles; Carrasco, Rosendo; Velasco, Carmen

    2016-09-01

    The purpose of this study was to assess the degree of lower incisor inclination with respect to different reference planes. It was an observational, analytical, longitudinal, prospective study conducted on 100 lateral cephalograms which were corrected according to the photograph in natural head position in order to draw the true vertical plane (TVP). The incisor mandibular plane angle (IMPA) was compensated to eliminate the variation of the mandibular plane growth type with the formula "FMApx.- 25 (FMA) + IMPApx. = compensated IMPA (IMPACOM)". As the data followed normal distribution determined by the KolmogorovSmirnov test, parametric tests were used for the statistical analysis, Ttest, ANOVA and Pearson coefficient correlation test. Statistical analysis was performed using a statistical significance of p <0.05. There is correlation between TVP and NB line (NB) (0.8614), Frankfort mandibular incisor angle (FMIA) (0.8894), IMPA (0.6351), Apo line (Apo) (0.609), IMPACOM (0.8895) and McHorris angle (MH) (0.7769). ANOVA showed statistically significant differences between the means for the 7 variables with 95% confidence level, P=0.0001. The multiple range test showed no significant difference among means: APoNB (0.88), IMPAMH (0.36), IMPANB (0.65), FMIAIMPACOM (0.01), FMIATVP (0.18), TVPIMPACOM (0.17). There was correlation among all reference planes. There were statistically significant differences among the means of the planes measured, except for IMPACOM, FMIA and TVP. The IMPA differed significantly from the IMPACOM. The compensated IMPA and the FMIA did not differ significantly from the TVP. The true horizontal plane was mismatched with Frankfort plane in 84% of the sample with a range of 19°. The true vertical plane is adequate for measuring lower incisor inclination.

  19. The Role of a Steepness Parameter in the Exponential Stability of a Model Problem. Numerical Aspects

    NASA Astrophysics Data System (ADS)

    Todorovic, N.

    2011-06-01

    The Nekhoroshev theorem considers quasi integrable Hamiltonians providing stability of actions in exponentially long times. One of the hypothesis required by the theorem is a mathematical condition called steepness. Nekhoroshev conjectured that different steepness properties should imply numerically observable differences in the stability times. After a recent study on this problem (Guzzo et al. 2011, Todorovic et al. 2011) we show some additional numerical results on the change of resonances and the diffusion laws produced by the increasing effect of steepness. The experiments are performed on a 4-dimensional steep symplectic map designed in a way that a parameter smoothly regulates the steepness properties in the model.

  20. Computing nonhydrostatic shallow-water flow over steep terrain

    USGS Publications Warehouse

    Denlinger, R.P.; O'Connell, D. R. H.

    2008-01-01

    Flood and dambreak hazards are not limited to moderate terrain, yet most shallow-water models assume that flow occurs over gentle slopes. Shallow-water flow over rugged or steep terrain often generates significant nonhydrostatic pressures, violating the assumption of hydrostatic pressure made in most shallow-water codes. In this paper, we adapt a previously published nonhydrostatic granular flow model to simulate shallow-water flow, and we solve conservation equations using a finite volume approach and an Harten, Lax, Van Leer, and Einfeldt approximate Riemann solver that is modified for a sloping bed and transient wetting and drying conditions. To simulate bed friction, we use the law of the wall. We test the model by comparison with an analytical solution and with results of experiments in flumes that have steep (31??) or shallow (0.3??) slopes. The law of the wall provides an accurate prediction of the effect of bed roughness on mean flow velocity over two orders of magnitude of bed roughness. Our nonhydrostatic, law-of-the-wall flow simulation accurately reproduces flume measurements of front propagation speed, flow depth, and bed-shear stress for conditions of large bed roughness. ?? 2008 ASCE.

  1. Designing steep, sharp patterns on uniformly ion-bombarded surfaces

    PubMed Central

    Perkinson, Joy C.; Aziz, Michael J.; Brenner, Michael P.; Holmes-Cerfon, Miranda

    2016-01-01

    We propose and experimentally test a method to fabricate patterns of steep, sharp features on surfaces, by exploiting the nonlinear dynamics of uniformly ion-bombarded surfaces. We show via theory, simulation, and experiment that the steepest parts of the surface evolve as one-dimensional curves that move in the normal direction at constant velocity. The curves are a special solution to the nonlinear equations that arises spontaneously whenever the initial patterning on the surface contains slopes larger than a critical value; mathematically they are traveling waves (shocks) that have the special property of being undercompressive. We derive the evolution equation for the curves by considering long-wavelength perturbations to the one-dimensional traveling wave, using the unusual boundary conditions required for an undercompressive shock, and we show this equation accurately describes the evolution of shapes on surfaces, both in simulations and in experiments. Because evolving a collection of one-dimensional curves is fast, this equation gives a computationally efficient and intuitive method for solving the inverse problem of finding the initial surface so the evolution leads to a desired target pattern. We illustrate this method by solving for the initial surface that will produce a lattice of diamonds connected by steep, sharp ridges, and we experimentally demonstrate the evolution of the initial surface into the target pattern. PMID:27698147

  2. Global theory to understand toroidal drift waves in steep gradient

    NASA Astrophysics Data System (ADS)

    Xie, Hua-sheng; Li, Bo

    2016-08-01

    Toroidal drift waves with unconventional mode structures and non-ground eigenstates, which differ from a typical ballooning structure mode, are found to be important recently by large scale global gyrokinetic simulations and especially become dominant at strong gradient edge plasmas [cf. H. S. Xie and Y. Xiao, Phys. Plasmas 22, 090703 (2015)]. The global stability and mode structures of drift wave in this steep edge density and temperature gradients are examined by both direct numerical solutions of a model two-dimensional eigen equation and analytical theory employing WKB-ballooning approach. Theory agrees with numerical solutions quite well. Our results indicate that (i) non-ground eigenstates and unconventional mode structures generally exist and can be roughly described by two parameters "quantum number" l and ballooning angle ϑk , (ii) local model can overestimate the growth rate largely, say, >50 % , and (iii) the narrow steep equilibrium profile leads to twisting (triangle-like) radial mode structures. With velocity space integral, semi-local theory predicts that the critical jump gradient of the most unstable ion temperature gradient mode from ground state l = 0 to non-ground state l = 1 is LT-1R ˜50 . These features can have important consequences to turbulent transport.

  3. Enhanced stochastic fluctuations to measure steep adhesive energy landscapes.

    PubMed

    Haider, Ahmad; Potter, Daniel; Sulchek, Todd A

    2016-12-13

    Free-energy landscapes govern the behavior of all interactions in the presence of thermal fluctuations in the fields of physical chemistry, materials sciences, and the biological sciences. From the energy landscape, critical information about an interaction, such as the reaction kinetic rates, bond lifetimes, and the presence of intermediate states, can be determined. Despite the importance of energy landscapes to understanding reaction mechanisms, most experiments do not directly measure energy landscapes, particularly for interactions with steep force gradients that lead to premature jump to contact of the probe and insufficient sampling of transition regions. Here we present an atomic force microscopy (AFM) approach for measuring energy landscapes that increases sampling of strongly adhesive interactions by using white-noise excitation to enhance the cantilever's thermal fluctuations. The enhanced fluctuations enable the recording of subtle deviations from a harmonic potential to accurately reconstruct interfacial energy landscapes with steep gradients. Comparing the measured energy landscape with adhesive force measurements reveals the existence of an optimal excitation voltage that enables the cantilever fluctuations to fully sample the shape and depth of the energy surface.

  4. Enhanced stochastic fluctuations to measure steep adhesive energy landscapes

    PubMed Central

    Haider, Ahmad; Potter, Daniel; Sulchek, Todd A.

    2016-01-01

    Free-energy landscapes govern the behavior of all interactions in the presence of thermal fluctuations in the fields of physical chemistry, materials sciences, and the biological sciences. From the energy landscape, critical information about an interaction, such as the reaction kinetic rates, bond lifetimes, and the presence of intermediate states, can be determined. Despite the importance of energy landscapes to understanding reaction mechanisms, most experiments do not directly measure energy landscapes, particularly for interactions with steep force gradients that lead to premature jump to contact of the probe and insufficient sampling of transition regions. Here we present an atomic force microscopy (AFM) approach for measuring energy landscapes that increases sampling of strongly adhesive interactions by using white-noise excitation to enhance the cantilever’s thermal fluctuations. The enhanced fluctuations enable the recording of subtle deviations from a harmonic potential to accurately reconstruct interfacial energy landscapes with steep gradients. Comparing the measured energy landscape with adhesive force measurements reveals the existence of an optimal excitation voltage that enables the cantilever fluctuations to fully sample the shape and depth of the energy surface. PMID:27911778

  5. Gaining Momentum: Re-Creating Galileo's Inclined Plane.

    ERIC Educational Resources Information Center

    Albrecht, Bob; Firedrake, George

    1998-01-01

    Provides an excerpt of Galileo's description of his inclined plane experiment. Describes the replication of Galileo's inclined plane experiment by students at Rice University (Texas) using an Internet site called the Galileo Project; then describes the authors' replication of the Project. (AEF)

  6. A New Dynamics Cart on an Inclined Plane.

    ERIC Educational Resources Information Center

    Theodorsson, Pall

    1995-01-01

    Presents an experiment to study the acceleration of a cart moving up and down an inclined plane. Demonstrates how multitiming and the study of the movement in both directions allows the determination of the component of gravitational force along an inclined plane without any assumptions about friction. (JRH)

  7. 3. Inclined Plane 10, 1970. Track bed at left. View ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Inclined Plane 10, 1970. Track bed at left. View some what similar to that of NJ-30-2. Stone track bed is visible under cable system of NJ-30-2. - Morris Canal, Inclined Plane 10 West, Phillipsburg, Warren County, NJ

  8. 7. VIEW WEST, PERSPECTIVE VIEW OF TOP OF INCLINED PLANE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. VIEW WEST, PERSPECTIVE VIEW OF TOP OF INCLINED PLANE AND EAST FACE OF CUT STONE TOWER - Laurel Hill Quarry, Incline Plane, Both sides of State Route 56, 2.4 miles East of State Route 711, Seward, Westmoreland County, PA

  9. 40. CONSTRUCTION OF GALLERY NO. 3, SHOWING INCLINED PLANE USED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    40. CONSTRUCTION OF GALLERY NO. 3, SHOWING INCLINED PLANE USED TO TRANSPORT MATERIALS, ALSO SPOIL FROM TUNNEL INTERIOR. POWDER HOUSE AND TOOL SHED VISIBLE TO RIGHT OF BASE INCLINE - Zion-Mount Carmel Highway, Tunnel, Two miles east of Zion Canyon Scenic Drive, Springdale, Washington County, UT

  10. Relationships between Migration to Urban Settings and Children's Creative Inclinations

    ERIC Educational Resources Information Center

    Shi, Baoguo; Lu, Yongli; Dai, David Yun; Lin, Chongde

    2013-01-01

    In this study, 909 5th- and 6th-grade children were recruited as participants, and questionnaires were used to investigate the relationships between migration to urban settings and children's creative inclinations. The study was broken down to 2 parts. Study 1 compared scores on measures of creative inclinations among migrant, rural, and urban…

  11. 46 CFR 111.01-19 - Inclination of the vessel.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Inclination of the vessel. 111.01-19 Section 111.01-19 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS General § 111.01-19 Inclination of the vessel. (a) All electrical equipment must...

  12. Gaining Momentum: Re-Creating Galileo's Inclined Plane.

    ERIC Educational Resources Information Center

    Albrecht, Bob; Firedrake, George

    1998-01-01

    Provides an excerpt of Galileo's description of his inclined plane experiment. Describes the replication of Galileo's inclined plane experiment by students at Rice University (Texas) using an Internet site called the Galileo Project; then describes the authors' replication of the Project. (AEF)

  13. A New Dynamics Cart on an Inclined Plane.

    ERIC Educational Resources Information Center

    Theodorsson, Pall

    1995-01-01

    Presents an experiment to study the acceleration of a cart moving up and down an inclined plane. Demonstrates how multitiming and the study of the movement in both directions allows the determination of the component of gravitational force along an inclined plane without any assumptions about friction. (JRH)

  14. Operational Experiences in Planning and Reconstructing Aqua Inclination Maneuvers

    NASA Technical Reports Server (NTRS)

    Rand, David; Reilly, Jacqueline; Schiff, Conrad

    2004-01-01

    As the lead satellite in NASA's growing Earth Observing System (EOS) PM constellation, it is increasingly critical that Aqua maintain its various orbit requirements. The two of interest for this paper are maintaining an orbit inclination that provides for a consistent mean local time and a semi-major Axis (SMA) that allows for ground track repeatability. Maneuvers to adjust the orbit inclination involve several flight dynamics constraints and complexities which make planning such maneuvers challenging. In particular, coupling between the orbital and attitude degrees of freedom lead to changes in SMA when changes in inclination are effected. A long term mission mean local time trend analysis was performed in order to determine the size and placement of the required inclination maneuvers. Following this analysis, detailed modeling of each burn and its Various segments was performed to determine its effects on the immediate orbit state. Data gathered from an inclination slew test of the spacecraft and first inclination maneuver uncovered discrepancies in the modeling method that were investigated and resolved. The new modeling techniques were applied and validated during the second spacecraft inclination maneuver. These improvements should position Aqua to successfully complete a series of inclination maneuvers in the fall of 2004. The following paper presents the events and results related

  15. 30 CFR 56.11026 - Protection for inclined fixed ladders.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Protection for inclined fixed ladders. 56.11026 Section 56.11026 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... § 56.11026 Protection for inclined fixed ladders. Fixed ladders 70 degrees to 90 degrees from the...

  16. 30 CFR 57.11017 - Inclined fixed ladders.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Inclined fixed ladders. 57.11017 Section 57.11017 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... Escapeways Travelways-Surface and Underground § 57.11017 Inclined fixed ladders. Fixed ladders shall not...

  17. 30 CFR 57.11026 - Protection for inclined fixed ladders.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Protection for inclined fixed ladders. 57.11026 Section 57.11026 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... and Escapeways Travelways-Surface Only § 57.11026 Protection for inclined fixed ladders. Fixed ladders...

  18. 30 CFR 57.11026 - Protection for inclined fixed ladders.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Protection for inclined fixed ladders. 57.11026 Section 57.11026 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... and Escapeways Travelways-Surface Only § 57.11026 Protection for inclined fixed ladders. Fixed ladders...

  19. 30 CFR 57.11017 - Inclined fixed ladders.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Inclined fixed ladders. 57.11017 Section 57.11017 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... Escapeways Travelways-Surface and Underground § 57.11017 Inclined fixed ladders. Fixed ladders shall not...

  20. 30 CFR 57.11017 - Inclined fixed ladders.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Inclined fixed ladders. 57.11017 Section 57.11017 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... Escapeways Travelways-Surface and Underground § 57.11017 Inclined fixed ladders. Fixed ladders shall not...

  1. 30 CFR 57.11026 - Protection for inclined fixed ladders.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Protection for inclined fixed ladders. 57.11026 Section 57.11026 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... and Escapeways Travelways-Surface Only § 57.11026 Protection for inclined fixed ladders. Fixed ladders...

  2. 30 CFR 56.11026 - Protection for inclined fixed ladders.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Protection for inclined fixed ladders. 56.11026 Section 56.11026 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... § 56.11026 Protection for inclined fixed ladders. Fixed ladders 70 degrees to 90 degrees from the...

  3. 30 CFR 56.11026 - Protection for inclined fixed ladders.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Protection for inclined fixed ladders. 56.11026 Section 56.11026 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... § 56.11026 Protection for inclined fixed ladders. Fixed ladders 70 degrees to 90 degrees from the...

  4. 30 CFR 57.11017 - Inclined fixed ladders.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Inclined fixed ladders. 57.11017 Section 57.11017 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... Escapeways Travelways-Surface and Underground § 57.11017 Inclined fixed ladders. Fixed ladders shall not...

  5. 30 CFR 57.11017 - Inclined fixed ladders.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Inclined fixed ladders. 57.11017 Section 57.11017 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... Escapeways Travelways-Surface and Underground § 57.11017 Inclined fixed ladders. Fixed ladders shall not...

  6. 30 CFR 57.11026 - Protection for inclined fixed ladders.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Protection for inclined fixed ladders. 57.11026 Section 57.11026 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... and Escapeways Travelways-Surface Only § 57.11026 Protection for inclined fixed ladders. Fixed ladders...

  7. 30 CFR 56.11026 - Protection for inclined fixed ladders.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Protection for inclined fixed ladders. 56.11026 Section 56.11026 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... § 56.11026 Protection for inclined fixed ladders. Fixed ladders 70 degrees to 90 degrees from the...

  8. Relationships between Migration to Urban Settings and Children's Creative Inclinations

    ERIC Educational Resources Information Center

    Shi, Baoguo; Lu, Yongli; Dai, David Yun; Lin, Chongde

    2013-01-01

    In this study, 909 5th- and 6th-grade children were recruited as participants, and questionnaires were used to investigate the relationships between migration to urban settings and children's creative inclinations. The study was broken down to 2 parts. Study 1 compared scores on measures of creative inclinations among migrant, rural, and urban…

  9. Comprehensive evaluation of high-steep slope stability and optimal high-steep slope design by 3D physical modeling

    NASA Astrophysics Data System (ADS)

    Lai, Xing-ping; Shan, Peng-fei; Cai, Mei-feng; Ren, Fen-hua; Tan, Wen-hui

    2015-01-01

    High-steep slope stability and its optimal excavation design in Shuichang open pit iron mine were analyzed based on a large 3D physical simulation technique. An optimal excavation scheme with a relatively steeper slope angle was successfully implemented at the northwest wall between Nos. 4 and 5 exploration lines of Shuichang Iron Mine, taking into account the 3D scale effect. The physico-mechanical properties of rock materials were obtained by laboratory tests conducted on sample cores from exploration drilling directly from the iron mine. A porous rock-like composite material was formed for the model, and the mechanical parameters of the material were assessed experimentally; specifically, the effect of water on the sample was quantitatively determined. We adopted an experimental setup using stiff modular applied static loading to carry out a visual excavation of the slope at a random depth. The setup was equipped with acoustic emission (AE) sensors, and the experiments were monitored by crack optical acquirement, ground penetrating radar, and close-field photogrammetry to investigate the mechanisms of rock-mass destabilization in the high-steep slope. For the complex study area, the model results indicated a clear correlation between the model's destabilization resulting from slope excavation and the collected monitoring information. During the model simulation, the overall angle of the slope increased by 1-6 degrees in different sections. Dramatically, the modeled excavation scheme saved over 80 million tons of rock from extraction, generating enormous economic and ecological benefits.

  10. Capillary Penetration into Inclined Circular Glass Tubes.

    PubMed

    Trabi, Christophe L; Ouali, F Fouzia; McHale, Glen; Javed, Haadi; Morris, Robert H; Newton, Michael I

    2016-02-09

    The spontaneous penetration of a wetting liquid into a vertical tube against the force of gravity and the imbibition of the same liquid into a horizontal tube (or channel) are both driven by capillary forces and described by the same fundamental equations. However, there have been few experimental studies of the transition from one orientation to the other. We report systematic measurements of capillary penetration of polydimethylsiloxane oils of viscosities 9.6, 19.2, and 48.0 mPa·s into glass capillary tubes. We first report the effect of tube radii R between 140 and 675 μm on the dynamics of spontaneous imbibition. We show that the data can be fitted using the exact numerical solution to the governing equations and that these are similar to fits using the analytical viscogravitational approximation. However, larger diameter tubes show a rate of penetration slower than expected using an equilibrium contact angle and the known value of liquid viscosity. To account for the slowness, an increase in viscosity by a factor (η/ρ)(scaling) is needed. We show full agreement with theory requires the ratio R/κ(-1) ∼ 0.1 or less, where κ(-1) is the capillary length. In addition, we propose an experimental method that enables the determination of the dynamic contact angle during imbibition, which gives values that agree with the literature values. We then report measurements of dynamic penetration into the tubes of R = 190 and 650 μm for a range of inclination angles to the horizontal, φ, from 5 to 90°. We show that capillary penetration can still be fitted using the viscogravitational solution, rather than the Bosanquet solution which describes imbibition without gravity, even for inclination angles as low as 10°. Moreover, at these low angles, the effect of the tube radius is found to diminish and this appears to relate to an effective capillary length, κ(-1)(φ) = (γ(LV)/ρg sin φ)(1/2).

  11. Use of IQRF technology for detection of construction inclination

    NASA Astrophysics Data System (ADS)

    Martin, Pies; Radovan, Hajovsky

    2016-06-01

    This paper deals with the application of wireless measurement of inclination of objects located at mining dumps. Measurement of inclination uses a set of sensors including a gyroscope, an accelerometer and a magnetometer. Measured data is processed by AHRS algorithm that, once applied, allows getting more precise information on rotation of the object in the area compared to unprocessed data from accelerometer or gyroscope. Measurement chain consists of two parts. The first one is a wireless module reading the data from particular sensors via I2C bus and sends it consequently to a computer that performs evaluation and visualization of inclination. Communication among particular devices is ensured by IQRF technology working within ISM band of 868MHz. Application of this approach for measurement of inclination is a reasonable choice in case of measurement of inclination by inclinometers.

  12. Movement strategies for head stabilization during incline walking.

    PubMed

    Cromwell, Ronita L

    2003-06-01

    Changes in body orientation with respect to space during incline walking can alter vestibular information requiring a different solution to the problem of head stabilization. Eleven young adults walked along a level walkway, and ascended and descended an inclined surface. Head, neck and trunk angular positions in space were collected. Changes in the gravitoinertial vector imposed by the inclined surface, produced concomitant changes in body segment orientation that decreased head stability during the inclined walking tasks. Head, neck and trunk segments were least stable while ascending the incline creating the greatest challenge to head stability during this task. Movement strategies reflected adjustments of head-neck and neck-trunk patterns to accommodate changes in the gravitoinertial vector and insure balance of the head over the trunk.

  13. Steep extinction towards GRB 140506A reconciled from host galaxy observations: Evidence that steep reddening laws are local

    NASA Astrophysics Data System (ADS)

    Heintz, K. E.; Fynbo, J. P. U.; Jakobsson, P.; Krühler, T.; Christensen, L.; Watson, D.; Ledoux, C.; Noterdaeme, P.; Perley, D. A.; Rhodin, H.; Selsing, J.; Schulze, S.; Tanvir, N. R.; Møller, P.; Goldoni, P.; Xu, D.; Milvang-Jensen, B.

    2017-05-01

    We present the spectroscopic and photometric late-time follow-up of the host galaxy of the long-duration Swift γ-ray burst GRB 140506A at z = 0.889. The optical and near-infrared afterglow of this GRB had a peculiar spectral energy distribution (SED) with a strong flux-drop at 8000 Å (4000 Å rest-frame) suggesting an unusually steep extinction curve. By analysing the contribution and physical properties of the host galaxy, we here aim at providing additional information on the properties and origin of this steep, non-standard extinction. We find that the strong flux-drop in the GRB afterglow spectrum at <8000 Å and rise at <4000 Å (observers frame) is well explained by the combination of a steep extinction curve along the GRB line of sight and contamination by the host galaxy light at short wavelengths so that the scenario with an extreme 2175 Å extinction bump can be excluded. We localise the GRB to be at a projected distance of approximately 4 kpc from the centre of the host galaxy. Based on emission-line diagnostics of the four detected nebular lines, Hα, Hβ, [O ii] and [O iii], we find the host to be a modestly star forming (SFR = 1.34 ± 0.04 M⊙ yr-1) and relatively metal poor (Z=0.35+0.15-0.11 Z⊙) galaxy with a large dust content, characterised by a measured visual attenuation of AV = 1.74 ± 0.41 mag. We compare the host to other GRB hosts at similar redshifts and find that it is unexceptional in all its physical properties. We model the extinction curve of the host-corrected afterglow and show that the standard dust properties causing the reddening seen in the Local Group are inadequate in describing the steep drop. We thus conclude that the steep extinction curve seen in the afterglow towards the GRB is of exotic origin and issightline-dependent only, further confirming that this type of reddening is present only at very local scales and that it is solely a consequence of the circumburst environment. Based on observations carried out under

  14. Preferential Transport of Coarse Sediment in Steep Channels

    NASA Astrophysics Data System (ADS)

    Moody, J. A.

    2002-12-01

    Wildfires can change a source-limited system to a transport-limited system especially in steep mountainous terrain where the erosion threshold has been lowered by a wildfire. Such a situation occurred in the Buffalo and Spring Creek watersheds after the 1996 Buffalo Creek Fire, when 1 to 3 m of sediment was deposited in two relatively steep main channels (channel slope equal to 0.02 and 0.04 respectively) after an intense rainstorm of about 110 mm/hour. The bed material was a mixture of coarse grain sizes in both channels. The median size class in Buffalo Creek was 2-4 mm and in Spring Creek it was 4-8 mm. Bedload transport samples were collected in the field using a US BLH-84 sampler for discharge ranging from 0.0036 to 5.2 m3/s. The particle-size distributions for the bedload samples were analyzed to investigate sediment mobility. For each size class, a ratio was calculated equal to the percent of sediment transported divided by the percent of sediment available for transport. The percent available for transport was determined by recalculating the particle-size distribution of the bed material by excluding those sizes that did not move. The average ratio for the median-size class was 1.00 (13 samples) for Buffalo Creek and 0.94 (12 samples) for Spring Creek. In the Buffalo Creek channel, the average ratio for sizes larger than the median size (greater than 2-4 mm) was less than 1.00. Whereas in the Spring Creek channel, the data indicate a preferential transport of sizes larger than the median size with the ratio ranging from 0.86 to 2.22 and averaging 1.42 for the 8-16 mm size class and from 0.37 to 3.86 and averaging 1.28 for the 16-32 mm size class. Possible causes for the difference between Buffalo and Spring Creeks are: 1) the smaller value of the relative roughness (particle diameter/flow depth) in Buffalo Creek, 2) the less steep bed slope in Buffalo Creek, and 3) the difference in the sediment-size distribution

  15. UNBIASED INCLINATION DISTRIBUTIONS FOR OBJECTS IN THE KUIPER BELT

    SciTech Connect

    Gulbis, A. A. S.; Elliot, J. L.; Adams, E. R.; Benecchi, S. D.; Buie, M. W.; Trilling, D. E.; Wasserman, L. H. E-mail: jle@mit.ed E-mail: lhw@lowell.ed E-mail: buie@boulder.swri.ed

    2010-08-15

    Using data from the Deep Ecliptic Survey (DES), we investigate the inclination distributions of objects in the Kuiper Belt. We present a derivation for observational bias removal and use this procedure to generate unbiased inclination distributions for Kuiper Belt objects (KBOs) of different DES dynamical classes, with respect to the Kuiper Belt plane. Consistent with previous results, we find that the inclination distribution for all DES KBOs is well fit by the sum of two Gaussians, or a Gaussian plus a generalized Lorentzian, multiplied by sin i. Approximately 80% of KBOs are in the high-inclination grouping. We find that Classical object inclinations are well fit by sin i multiplied by the sum of two Gaussians, with roughly even distribution between Gaussians of widths 2.0{sup +0.6}{sub -0.5}{sup 0} and 8.1{sup +2.6}{sub -2.1}{sup 0}. Objects in different resonances exhibit different inclination distributions. The inclinations of Scattered objects are best matched by sin i multiplied by a single Gaussian that is centered at 19.1{sup +3.9}{sub -3.6}{sup 0} with a width of 6.9{sup +4.1}{sub -2.7}{sup 0}. Centaur inclinations peak just below 20{sup 0}, with one exceptionally high-inclination object near 80{sup 0}. The currently observed inclination distribution of the Centaurs is not dissimilar to that of the Scattered Extended KBOs and Jupiter-family comets, but is significantly different from the Classical and Resonant KBOs. While the sample sizes of some dynamical classes are still small, these results should begin to serve as a critical diagnostic for models of solar system evolution.

  16. Avalanche dynamics on a rough inclined plane.

    PubMed

    Börzsönyi, Tamás; Halsey, Thomas C; Ecke, Robert E

    2008-07-01

    The avalanche behavior of gravitationally forced granular layers on a rough inclined plane is investigated experimentally for different materials and for a variety of grain shapes ranging from spherical beads to highly anisotropic particles with dendritic shape. We measure the front velocity, area, and height of many avalanches and correlate the motion with the area and height. We also measure the avalanche profiles for several example cases. As the shape irregularity of the grains is increased, there is a dramatic qualitative change in avalanche properties. For rough nonspherical grains, avalanches are faster, bigger, and overturning in the sense that individual particles have down-slope speeds u p that exceed the front speed uf as compared with avalanches of spherical glass beads that are quantitatively slower and smaller and where particles always travel slower than the front speed. There is a linear increase of three quantities: (i) dimensionless avalanche height, (ii) ratio of particle to front speed, and (iii) the growth rate of avalanche speed with increasing avalanche size with increasing tan theta r where theta r is the bulk angle of repose, or with increasing beta P, the slope of the depth averaged flow rule, where both theta r and beta P reflect the grain shape irregularity. These relations provide a tool for predicting important dynamical properties of avalanches as a function of grain shape irregularity. A relatively simple depth-averaged theoretical description captures some important elements of the avalanche motion, notably the existence of two regimes of this motion.

  17. Debris dynamics under evection and inclination

    NASA Astrophysics Data System (ADS)

    Yokoyama, T.; Santos, M. T.; Celestino, C. C.; Winter, O. C.; Neto, E. V.; Cordeiro, R. R.

    The human activity in exploring the space has generated undesirable artificial debris Unfortunately the number of them is increasing so fast that a tremendous problem is arising The natural and artificial debris are distributed in a very large range of altitude and according to the semi major axis of the orbit the particle may survive for very long time For low altitude less than 200 km the life time of the particles is mostly dominated by the atmospheric drag while for more distant debris different disturbing forces should be considered and the dynamics is slight more complicated Although the maximum concentration of the debris is not at high altitude the problem at high altitudes is important since the mitigation mechanism to clean these regions is very slow Usually Poynting Robertson P-R effect and similar other forces are not efficient to remove rapidly the particles at high altitudes in opposition to human activities which are always feeding more rapidly almost any region of the space Therefore since the debris survive for very long time it is important to increase our theoretical knowledge on the dynamics of these regions In this work we show the existence of some important resonances which may give significant variations in the inclination and eccentricity of the particle In the case of the Earth they occur at about 10128 5 km and 12309 8 km and are related to a commensurability involving the mean longitude of the sun and

  18. New installation for inclined EAS investigations

    NASA Astrophysics Data System (ADS)

    Zadeba, E. A.; Ampilogov, N. V.; Barbashina, N. S.; Bogdanov, A. G.; Borisov, A. A.; Chernov, D. V.; Dushkin, L. I.; Fakhrutdinov, R. M.; Kokoulin, R. P.; Kompaniets, K. G.; Kozhin, A. S.; Ovchinnikov, V. V.; Ovechkin, A. S.; Petrukhin, A. A.; Shutenko, V. V.; Volkov, N. S.; Vorobjev, V. S.; Yashin, I. I.

    2017-06-01

    The large-scale coordinate-tracking detector TREK for registration of inclined EAS is being developed in MEPhI. The detector is based on multiwire drift chambers from the neutrino experiment at the IHEP U-70 accelerator. Their key advantages are a large effective area (1.85 m2), a good coordinate and angular resolution with a small number of measuring channels. The detector will be operated as part of the experimental complex NEVOD, in particular, jointly with a Cherenkov water detector (CWD) with a volume of 2000 cubic meters and the coordinate detector DECOR. The first part of the detector named Coordinate-Tracking Unit based on the Drift Chambers (CTUDC), representing two coordinate planes of 8 drift chambers in each, has been developed and mounted on opposite sides of the CWD. It has the same principle of joint operation with the NEVOD-DECOR triggering system and the same drift chambers alignment, so the main features of the TREK detector will be examined. Results of the CTUDC development and a joint operation with NEVOD-DECOR complex are presented.

  19. Transverse Bursts in Inclined Layer Convection: Theory

    NASA Astrophysics Data System (ADS)

    Bodenschatz, Eberhard; Brink, Jeandrew; Pesch, Werner

    2002-03-01

    We report theoretical and computational results on thermally driven inclined layer convection. For small Prandtl number fluids, experiments have reported bursting phenomena at both small angles, strong driving and high angles, weak driving (Daniels et al. PRL 84: 5320, 2000). Theoretically, the small angle, strong driving case was described by Clever and Busse (Physics of Fluids 12: 2137, 2000) and was connected to a subharmonic instability. At large angles, close to the codimension-two point, intermittent, localized, transverse subharmonic bursts occur at weak driving. Qualitatively, the bursts draw energy from the roll modes, exhaust them while growing, and die out when they are unable to find a new attractor. We investigate a connection between the small- and large-angle bursts. Using Galerkin methods and direct simulations of the underlying Boussinesq equations, we examine the extent to which they are related to a linear instability of the roll pattern. We address a possible connection to the shear flow turbulent bursts observed in Taylor-Couette flow. In addition, we present a theoretical analysis of the small Prandtl number case, for which the codimension-two point moves to zero angle. This work is supported by a Cornell Graduate Student Fellowship and by the National Science Foundation under grant DMR-0072077.

  20. A jig for measuring incisor inclination.

    PubMed

    Shah, N; Spary, D J; Rock, W P

    2005-06-01

    The aim of this study was to design and construct a jig for measuring the inclination of the upper incisors to the maxillary plane and of the lower incisors to the mandibular plane. After several prototypes had been tested, the required properties for a successful jig were identified and a simple inexpensive device was produced. Measurements obtained when using the jig on 51 subjects were compared with cephalometric values by means of regression analysis. This revealed that measurements obtained using the jig against the upper and then the lower incisor crowns could be converted to cephalometric incisor angulations with 96 per cent accuracy to 10 degrees, by adding 23 and 3 degrees, respectively. The jig was accurate to 5 degrees on 69 per cent of occasions for the upper teeth. The 5 degrees accuracy with the lower incisors was only 27 per cent, although over a 6 degree range it improved to 78 per cent. For upper and lower tooth measurements combined, the jig was accurate to within 6 degrees on 75 per cent of occasions.

  1. Migratory blackcaps can use their magnetic compass at 5 degrees inclination, but are completely random at 0 degrees inclination

    PubMed Central

    Schwarze, Susanne; Steenken, Friederike; Thiele, Nadine; Kobylkov, Dmitry; Lefeldt, Nele; Dreyer, David; Schneider, Nils-Lasse; Mouritsen, Henrik

    2016-01-01

    It is known that night-migratory songbirds use a magnetic compass measuring the magnetic inclination angle, i.e. the angle between the Earth’s surface and the magnetic field lines, but how do such birds orient at the magnetic equator? A previous study reported that birds are completely randomly oriented in a horizontal north-south magnetic field with 0° inclination angle. This seems counter-intuitive, because birds using an inclination compass should be able to separate the north-south axis from the east-west axis, so that bimodal orientation might be expected in a horizontal field. Furthermore, little is known about how shallow inclination angles migratory birds can still use for orientation. In this study, we tested the magnetic compass orientation of night-migratory Eurasian blackcaps (Sylvia atricapilla) in magnetic fields with 5° and 0° inclination. At 5° inclination, the birds oriented as well as they did in the normal 67° inclined field in Oldenburg. In contrast, they were completely randomly oriented in the horizontal field, showing no sign of bimodality. Our results indicate that the inclination limit for the magnetic compass of the blackcap is below 5° and that these birds indeed seem completely unable to use their magnetic compass for orientation in a horizontal magnetic field. PMID:27667569

  2. Migratory blackcaps can use their magnetic compass at 5 degrees inclination, but are completely random at 0 degrees inclination.

    PubMed

    Schwarze, Susanne; Steenken, Friederike; Thiele, Nadine; Kobylkov, Dmitry; Lefeldt, Nele; Dreyer, David; Schneider, Nils-Lasse; Mouritsen, Henrik

    2016-09-26

    It is known that night-migratory songbirds use a magnetic compass measuring the magnetic inclination angle, i.e. the angle between the Earth's surface and the magnetic field lines, but how do such birds orient at the magnetic equator? A previous study reported that birds are completely randomly oriented in a horizontal north-south magnetic field with 0° inclination angle. This seems counter-intuitive, because birds using an inclination compass should be able to separate the north-south axis from the east-west axis, so that bimodal orientation might be expected in a horizontal field. Furthermore, little is known about how shallow inclination angles migratory birds can still use for orientation. In this study, we tested the magnetic compass orientation of night-migratory Eurasian blackcaps (Sylvia atricapilla) in magnetic fields with 5° and 0° inclination. At 5° inclination, the birds oriented as well as they did in the normal 67° inclined field in Oldenburg. In contrast, they were completely randomly oriented in the horizontal field, showing no sign of bimodality. Our results indicate that the inclination limit for the magnetic compass of the blackcap is below 5° and that these birds indeed seem completely unable to use their magnetic compass for orientation in a horizontal magnetic field.

  3. Migratory blackcaps can use their magnetic compass at 5 degrees inclination, but are completely random at 0 degrees inclination

    NASA Astrophysics Data System (ADS)

    Schwarze, Susanne; Steenken, Friederike; Thiele, Nadine; Kobylkov, Dmitry; Lefeldt, Nele; Dreyer, David; Schneider, Nils-Lasse; Mouritsen, Henrik

    2016-09-01

    It is known that night-migratory songbirds use a magnetic compass measuring the magnetic inclination angle, i.e. the angle between the Earth’s surface and the magnetic field lines, but how do such birds orient at the magnetic equator? A previous study reported that birds are completely randomly oriented in a horizontal north-south magnetic field with 0° inclination angle. This seems counter-intuitive, because birds using an inclination compass should be able to separate the north-south axis from the east-west axis, so that bimodal orientation might be expected in a horizontal field. Furthermore, little is known about how shallow inclination angles migratory birds can still use for orientation. In this study, we tested the magnetic compass orientation of night-migratory Eurasian blackcaps (Sylvia atricapilla) in magnetic fields with 5° and 0° inclination. At 5° inclination, the birds oriented as well as they did in the normal 67° inclined field in Oldenburg. In contrast, they were completely randomly oriented in the horizontal field, showing no sign of bimodality. Our results indicate that the inclination limit for the magnetic compass of the blackcap is below 5° and that these birds indeed seem completely unable to use their magnetic compass for orientation in a horizontal magnetic field.

  4. The radio-optical correlation in steep-spectrum quasars

    NASA Astrophysics Data System (ADS)

    Serjeant, Stephen; Rawlings, Steve; Lacy, Mark; Maddox, Stephen J.; Baker, Joanne C.; Clements, Dave; Lilje, Per B.

    1998-03-01

    Using complete samples of steep-spectrum quasars, we present evidence for a correlation between radio and optical luminosity which is not caused by selection effects, nor caused by an orientation dependence (such as relativistic beaming), nor a by-product of cosmic evolution. We argue that this rules out models of jet formation in which there are no parameters in common with the production of the optical continuum. This is arguably the most direct evidence to date for a close link between accretion onto a black hole and the fuelling of relativistic jets. The correlation also provides a natural explanation for the presence of aligned optical/radio structures in only the most radio-luminous high-redshift galaxies.

  5. What controls channel form in steep mountain streams?

    NASA Astrophysics Data System (ADS)

    Palucis, M. C.; Lamb, M. P.

    2017-07-01

    Steep mountain streams have channel morphologies that transition from alternate bar to step-pool to cascade with increasing bed slope, which affect stream habitat, flow resistance, and sediment transport. Experimental and theoretical studies suggest that alternate bars form under large channel width-to-depth ratios, step-pools form in near supercritical flow or when channel width is narrow compared to bed grain size, and cascade morphology is related to debris flows. However, the connection between these process variables and bed slope—the apparent dominant variable for natural stream types—is unclear. Combining field data and theory, we find that certain bed slopes have unique channel morphologies because the process variables covary systematically with bed slope. Multiple stable states are predicted for other ranges in bed slope, suggesting that a competition of underlying processes leads to the emergence of the most stable channel form.

  6. Active Flows on Steep Slopes in Ganges Chasma

    NASA Image and Video Library

    2017-05-31

    This image from NASA's Mars Reconnaissance Orbiter covers a steep west-facing slope in southwestern Ganges Chasma, north of the larger canyons of Valles Marineris. The spot was targeted both for the bedrock exposures and to look for active slope processes. We see two distinct flow deposits: lobate flows that are relatively bright, sometimes with dark fringes, and very thin brownish lines that resemble recurring slope lineae (or 'RSL'). Both flows emanate from rocky alcoves. The RSL are superimposed on the lobate deposits (perhaps rocky debris flows), so they are younger and more active. The possible role of water in forming the debris flows and RSL are the subjects of continuing debate among scientists. We will acquire more images here to see if the candidate RSL are active. https://photojournal.jpl.nasa.gov/catalog/PIA21651

  7. De-icers derived from corn steep water.

    PubMed

    Yang, Byung Yun; Montgomery, Rex

    2003-12-01

    Corn steep water (CSW) and other byproducts derived from fermentations and sugar productions are presently forming the base of compositions for de-icing and anti-icing materials. Since the de-icing and anti-icing values are in part a colligative property, increase in the molar concentration of ionic species has been frequently necessary to decrease further the freezing point of this byproducts stream. In the present study this has been achieved by the generation of biodegradable organic acid salts in situ, without the use of chloride or other inorganic salts, by the alkaline degradation of reducing sugars added to corn steep water, which alone is not an efficient de-icer. Reducing sugars, such as glucose, react with alkali metal hydroxides to produce principally hydroxy carboxylic acids that react with the alkali metal hydroxide to form a mixture of organic acid salts. The ionic strength of the resulting solution is increased since each sugar molecule produces nearly two acid molecules upon degradation. The ionic strength necessary to achieve the desired freezing point depression is determined by the amount and concentration of the alkali metal hydroxide used, with the necessary counter anions being derived from the degradation of the reducing sugar. The amount of the sugar used is that required to result in a near to neutral final solution. The well-known anti-corrosive property of CSW is used in the de-icer preparations, either by conducting the alkaline degradation of the sugar in this medium, or by using water for the degradation of the sugar followed by dilution of the resulting solution with CSW to adjust the viscosity of the final solution to meet the requirements for spraying. The monovalent metal hydroxides are more efficient in producing de-icer solutions than the divalent metal hydroxides.

  8. Geomorphic response detection and quantification in a steep forested torrent

    NASA Astrophysics Data System (ADS)

    Bezak, Nejc; Grigillo, Dejan; Urbančič, Tilen; Mikoš, Matjaž; Petrovič, Dušan; Rusjan, Simon

    2017-08-01

    Extreme events such as flash floods and debris flows are frequent phenomena that occur in steep torrential catchments; these kinds of events can cause notable geomorphic changes. Repeated terrestrial laser scanning (TLS) surveys were performed in a steep forested catchment of the Kuzlovec torrent (drainage area 0.7 km2) in central Slovenia, where a 200-m long section of the torrent was scanned in 2013, 2014, and 2015. The main aim of this study was to perform the geomorphic response detection in the torrent due to hydro-meteorological events of different magnitudes. After applying several pre-processing steps, digital terrain models (DTMs) with a cell resolution of 5 cm were produced. The geomorphic change detection was performed using the DTM of Difference approach (DoD). Several above-average flow events occurred in the period from 2013 to 2015 (some of them can be regarded as floods). The 2014 August extreme flash flood that was initiated by the rainfall event with a return period exceeding 100 years, where maximum 1-minute rainfall intensities were up to 288 mm/h, led to erosion rates of an order of magnitude higher than average annual erosion rates. Moreover, the analysis of the geomorphic changes shows that the August 2014 flash flood caused intense sediment transport processes that resulted in the changes at the location of the main stream channel thalweg and reduced channel roughness. The unit stream power for the scanned section of the torrent was assessed to be approximately 500 W/m2 during this extreme event. This is above the thresholds that were suggested to differentiate between the situations where significant geomorphic changes can occur and the situations where geomorphic changes are not notable.

  9. An important erosion process on steep burnt hillslopes

    NASA Astrophysics Data System (ADS)

    Langhans, Christoph; Nyman, Petter; Noske, Philip; Lane, Patrick; Sheridan, Gary

    2016-04-01

    Steep forested hillslopes often display a high degree of armouring where diffusive erosion processes preferentially remove the fine fraction of the surface soil. High infiltration capacities, hydraulic resistance to overland flow and physical anchoring by cover plants and litter mean that even the most extreme rainfall events usually do not erode the armouring substantially. We argue that fire (wild or planned) is essential to the mobilization and transport of the armouring by increasing the rates of overland flow and decreasing trapping opportunities. We present evidence of the types of erosion that lead to the stripping of the surface armouring using post-event surveys and high-rate overland flow experiments. The type of erosion depends on the relative abundance of non-cohesive surface material to overland flow, but we found that a particular type of transport dominates that has no representation in current erosion models: On steep slopes overland flow can lead to incipient motion of individual stones that transfer their momentum to other stones leading to a rapid mobilization of the whole non-cohesive, armoured surface layer. Once in motion, the layer quickly separates out into a granular flow front and liquefied body, akin to debris flows in channels. Depending on the size of the event, these hillslope debris flows (HDF) either get trapped or enter into the channel, stripping the hillslope of most armouring on their way. They provide channels with the material and shear stress needed to erode into the channel bed, increasing the risk of channel debris flows. We present a simple physical model of HDF initiation, movement, and possible re-mobilization on hillslopes that was derived from debris flow theory. Understanding this process, its frequency, and magnitude are important for assessing the role of fire in landscape evolution and risk to humans through debris flow impacts.

  10. Movements of a Sphere Moving Over Smooth and Rough Inclines

    NASA Astrophysics Data System (ADS)

    Jan, Chyan-Deng

    1992-01-01

    The steady movements of a sphere over a rough incline in air, and over smooth and rough inclines in a liquid were studied theoretically and experimentally. The principle of energy conservation was used to analyze the translation velocities, rolling resistances, and drag coefficients of a sphere moving over the inclines. The rolling resistance to the movement of a sphere from the rough incline was presumed to be caused by collisions and frictional slidings. A varnished wooden board was placed on the bottom of an experimental tilting flume to form a smooth incline and a layer of spheres identical to the sphere moving over them was placed on the smooth wooden board to form a rough incline. Spheres used in the experiments were glass spheres, steel spheres, and golf balls. Experiments show that a sphere moving over a rough incline with negligible fluid drag in air can reach a constant translation velocity. This constant velocity was found to be proportional to the bed inclination (between 11 ^circ and 21^circ) and the square root of the sphere's diameter, but seemingly independent of the sphere's specific gravity. Two empirical coefficients in the theoretical expression of the sphere's translation velocity were determined by experiments. The collision and friction parts of the shear stress exerted on the interface between the moving sphere and rough incline were determined. The ratio of collision to friction parts appears to increase with increase in the bed inclination. These two parts seem to be of the same order of magnitude. The rolling resistances and the relations between the drag coefficient and Reynolds number for a sphere moving over smooth and rough inclines in a liquid, such as water or salad oil, were determined by a regression analysis based on experimental data. It was found that the drag coefficient for a sphere over the rough incline is larger than that for a sphere over the smooth incline, and both of which are much larger than that for a sphere in free

  11. Distribution of Planetary Inclinations as Inferred from Kepler Observations

    NASA Astrophysics Data System (ADS)

    Ragozzine, Darin; Kepler Team

    2011-05-01

    The true mutual inclination between orbits in a planetary system is a key indicator of dominant planet formation mechanisms. It is, therefore, unfortunate that the vast majority of current exoplanet observations are only sensitive to line-of-sight inclinations, at best. Even in systems with multiple transiting planets, arguably the best observational case, the line-of-sight inclinations are a weak constraint on the mutual inclination between planetary orbits. However, the large and homogeneous observations from the Kepler Space Telescope provide a population that can be assessed statistically in order to estimate the typical mutual inclination of exoplanetary systems. Lissauer et al. 2011b use the Quarter 0-2 Kepler observations presented in Borucki et al. 2011 to show that there is a population of planetary systems with multiple, small (radii between 1.5 and 6 Earth radii), short-period planets and that the typical mutual inclination in these systems is only a few degrees. Based on these new Kepler results and other observations, I will present the current best understanding of the inclination distribution of planetary systems and prospects for future progress. Kepler was competitively selected as the tenth Discovery mission. Funding for this mission is provided by NASA's Science Mission Directorate.

  12. Upper canine inclination influences the aesthetics of a smile.

    PubMed

    Bothung, C; Fischer, K; Schiffer, H; Springer, I; Wolfart, S

    2015-02-01

    This current study investigated which angle of canine inclination (angle between canine tooth axis (CA-line) and the line between the lateral canthus and the ipsilateral labial angle (EM-line)) is perceived to be most attractive in a smile. The second objective was to determine whether laymen and dental experts share the same opinion. A Q-sort assessment was performed with 48 posed smile photographs to obtain two models of neutral facial attractiveness. Two sets of images (1 male model set, 1 female model set), each containing seven images with incrementally altered canine and posterior teeth inclinations, were generated. The images were ranked for attractiveness by three groups (61 laymen, 59 orthodontists, 60 dentists). The images with 0° inclination, that is CA-line (maxillary canine axis) parallel to EM-line (the line formed by the lateral canthus and the ipsilateral corner of the mouth) (male model set: 54·4%; female model set: 38·9%), or -5° (inward) inclination (male model set: 20%; female model set: 29·4%) were perceived to be most attractive within each set. Images showing inward canine inclinations were regarded to be more attractive than those with outward inclinations. Dental experts and laymen were in accordance with the aesthetics. Smiles were perceived to be most attractive when the upper canine tooth axis was parallel to the EM-line. In reconstructive or orthodontic therapy, it is thus important to incline canines more inwardly than outwardly. © 2014 John Wiley & Sons Ltd.

  13. Oscillations of relative inclination angles in compact extrasolar planetary systems

    NASA Astrophysics Data System (ADS)

    Becker, Juliette C.; Adams, Fred C.

    2016-01-01

    The Kepler mission has detected dozens of compact planetary systems with more than four transiting planets. This sample provides a collection of close-packed planetary systems with relatively little spread in the inclination angles of the inferred orbits. A large fraction of the observational sample contains limited multiplicity, begging the question whether there is a true diversity of multitransiting systems, or if some systems merely possess high mutual inclinations, allowing them to appear as single-transiting systems in a transit-based survey. This paper begins an exploration of the effectiveness of dynamical mechanisms in exciting orbital inclination within exoplanetary systems of this class. For these tightly packed systems, we determine that the orbital inclination angles are not spread out appreciably through self-excitation. In contrast, the two Kepler multiplanet systems with additional non-transiting planets are susceptible to oscillations of their inclination angles, which means their currently observed configurations could be due to planet-planet interactions alone. We also provide constraints and predictions for the expected transit duration variations for each planet. In these multiplanet compact Kepler systems, oscillations of their inclination angles are remarkably hard to excite; as a result, they tend to remain continually mutually transiting (CMT-stable). We study this issue further by augmenting the planet masses and determining the enhancement factor required for oscillations to move the systems out of transit. The oscillations of inclination found here inform the recently suggested dichotomy in the sample of Solar systems observed by Kepler.

  14. Inclinations of the facial profile: art versus reality.

    PubMed

    Farkas, L G; Sohm, P; Kolar, J C; Katic, M J; Munro, I R

    1985-04-01

    The average inclinations of five basic facial profile lines and five individual facial profile segments were determined by direct anthropometry in a total group of 232 healthy young adults, all North American Caucasians. Significant sex-related differences were found only in the inclination of the forehead, the lower face, and the lower third of the face, with greater inclinations in males. These results were compared with data obtained from 49 art works produced by ancient, Renaissance, post-Renaissance, and contemporary artists and drawings of the face in scientific papers published by anthropologists, orthodontists, anatomists, and plastic surgeons. In the population study the average inclination of the general and the aesthetic profile lines, the lower face, the forehead, and the lower lip show a receding trend. The upper face is slightly protruded in the males and close to vertical in the females. The chin and the nose are equally prominent in both sexes. The only significant difference is in the greater recession of the lower face in males. The average female population values are reminiscent of those of the Renaissance. The average male inclinations come closest to the findings in the statues of antiquity. The population sample and the contemporary artists showed similar inclinations of the nasal bridge and the lower lip. Generally, the average inclination of the chin in the population is smaller than in any artistic style.

  15. On the mechanical stability of inclined wellbores

    SciTech Connect

    Zhou, S.; Hillis, R.R.; Sandiford, M.

    1996-06-01

    Consideration of the stress field around an arbitrarily oriented borehole shows that in an extensional stress regime ({sigma}{sub v} > {sigma}{sub H} > {sigma}{sub h}), wellbores parallel to the direction of minimum horizontal principal stress are the least prone to compressive shear failure (breakout). The most stable deviation angle (from the vertical) depends on the ratio of the horizontal principal stresses to the vertical stresses, and the higher the ratio {sigma}{sub H}/{sigma}{sub v}, the higher the deviation angle for minimizing breakout. In a strike-slip stress regime ({sigma}{sub H} > {sigma}{sub v} > {sigma}{sub h}), horizontal wells are the least prone to breakout, and the higher the ratio {sigma}{sub H}/{sigma}{sub v}, the closer the drilling direction should be to the azimuth of {sigma}{sub H}. A new compressive shear failure criterion, which is a combination of the effective strength concept and the Drucker-Prager criterion, is proposed for quantifying the stresses at which borehole breakout occurs. The lowest mud weight, at and below which breakout will occur, can be predicted by combining this criterion with the stress field around an arbitrarily oriented borehole. The highest mud weight at and above which a tensional or hydraulic fracture is induced can be predicted by combining the tensile strength of the rocks of the wellbore wall with the stress field around an arbitrarily oriented borehole. For the in-situ stress environments considered, the optimally oriented inclined wellbore is less prone to breakout (i.e., allows a lower mud weight) and tensional or hydraulic fracture (i.e., supports a higher mud weight) than a vertical well.

  16. Mathematical modeling of wave impacts on inclined seawall

    NASA Astrophysics Data System (ADS)

    Ramli, Mohd Shahridwan; Ghani, Fadhlyya Arawaney Abdul; Noar, Nor Aida Zuraimi Md; Salleh, Mohd Zuki; Greenhow, Martin

    2017-05-01

    This paper discusses a mathematical model of the large, short-lived pressure by waves breaking against inclined coastal structures. The theory of pressure impulse, P proposed by Cooker which simplify the highly time-dependent and very nonlinear problem by considering the time integral of the pressure over the duration of the impact pressure-impulse is used in this study. P satisfies Laplace's equation and perturbation theory is applied to this model and is solved analytically using MATLAB. The correlation between the pressure impulse and the inclination angle of a wall is investigated theoretically. It is found that as angle of inclination seawall increases, the pressure impulse also increases.

  17. Trajectory of a projectile on a frictional inclined plane

    NASA Astrophysics Data System (ADS)

    Wang, Xiaosun

    2014-08-01

    A closed form solution is given for the trajectory of a particle sliding on an inclined plane with Coulomb-type friction. If the inclination of the plane is less than the friction angle, the particle eventually comes to rest and expressions for the location of this point and the duration of the motion are given. If the initial launch is inclined at a small angle with respect to the upward line of greatest slope, the direction of the velocity changes rapidly during the last instants of motion.

  18. Electromagnetic Fields Produced by Inclined Return Stroke Channel

    NASA Astrophysics Data System (ADS)

    Nemamcha, Abdelmalek; Houabes, Mourad

    2014-05-01

    In this paper further theoretical investigations to understand and elucidate recently raised questions on the characteristics of lightning return-strokes curried out. Using Antenna Theory (AT) model, which is extended to take into account the channel inclination, the electromagnetic fields expressions for vertical dipole are completed, and an inclined channel is properly modeled, vertical electric and azimuthally magnetic fields are computed at different distances (close, intermediate and far distance ranges). The computations show that amplitudes and wave forms of the electromagnetic fields at close and intermediate lightning environment are considerably affected by the channel inclination.

  19. Evolution of inclined planets in three-dimensional radiative discs

    NASA Astrophysics Data System (ADS)

    Bitsch, B.; Kley, W.

    2011-06-01

    Context. While planets in the solar system only have a low inclination with respect to the ecliptic there is mounting evidence that in extrasolar systems the inclination can be very high, at least for close-in planets. One process to alter the inclination of a planet is through planet-disc interactions. Recent simulations considering radiative transport have shown that the evolution of migration and eccentricity can strongly depend on the thermodynamic state of the disc. So far, this process has only been studied for a few selected planet masses using isothermal discs. Aims: We extend previous studies to investigate the planet-disc interactions of fixed and moving planets on inclined and eccentric orbits. We also analyse the effect of the disc's thermodynamic properties on the orbital evolution of embedded planets in detail. Methods: The protoplanetary disc is modelled as a viscous gas where the internally produced dissipation is transported by radiation. To solve the equations we use an explicit three-dimensional (3D) hydrodynamical code NIRVANA that includes full tensor viscosity, as well as implicit radiation transport in the flux-limited diffusion approximation. To speed up the simulations we apply the FARGO-algorithm in a 3D context. Results: For locally isothermal discs, we confirm previous results and find inclination damping and inward migration for planetary cores. For low inclinations (i ≲ 2H/r), the damping is exponential, while it follows di/dt ∝ i-2 for larger i. For radiative discs, the planetary migration is very limited, as long as their inclination exceeds a certain threshold. If the inclination is damped below this threshold, planetary cores with a mass up to ≈33 MEarth start to migrate outwards, while larger cores migrate inwards right from the start. The inclination is damped for all analysed planet masses. Conclusions: In a viscous disc an initial inclination of embedded planets will be damped for all planet masses. This damping occurs on

  20. Relative roughness controls on incipient sediment motion in steep channels

    NASA Astrophysics Data System (ADS)

    Prancevic, J.; Lamb, M. P.; Fuller, B. M.

    2012-12-01

    For over eight decades, researchers have noted an appreciable increase in the nondimensional shear stress (Shields number) at initiation of fluvial bedload transport with increasing bed slope. The precise cause of the trend, however, is obscured by the covariance of several factors with increased slope: a greater downstream component of the gravity acting on the grains and fluid, changes in bed morphology, increased grainsize relative to the channel width that may lead to grain bridging, and increased grainsize relative to flow depth (relative roughness) that may change flow hydraulics and particle buoyancy. Here, we report on ongoing laboratory experiments spanning a wide range of bed slopes (2% to 67%) designed to isolate these variables and determine the true cause of heightened critical Shields numbers on steep slopes. First, we eliminated bed morphology as a factor by using only planar beds. To investigate the effect of grain bridging, we used two different channel widths, representing width-to-grainsize ratios of 23:1 and 9:1. Finally, to separate the effects of slope from relative roughness, we compared incipient motion conditions for acrylic particles (submerged specific gravity of 0.15) to natural siliciclastic gravel (submerged specific gravity of 1.65). Different particle densities allowed us to explore incipient motion as a function of relative roughness, independent of channel slope, because lighter particles move at shallower flow depths than heavier ones of the same size. Results show that both materials exhibit a positive trend between bed slope and critical Shields number despite the existence of planar beds for all slopes. Furthermore, changing the grainsize-to-width ratio had a negligible effect on this trend. For all slopes, the critical Shields number for bedload transport was higher for the acrylic particles than for gravel, indicating that relative roughness has a strong control on incipient sediment motion independent of channel slope. These

  1. The Asymmetrical "Sticking" Behavior of Two Balls on an Incline.

    ERIC Educational Resources Information Center

    Mallinckrodt, A. John

    1999-01-01

    Offers a relatively simple analysis of the asymmetrical "sticking" and rolling behavior of two balls, one steel and one rubber, on an incline. Describes an Interactive Physics (TM) simulation designed to study the problem and gives rough experimental results. (WRM)

  2. Students as Researchers: An Inclined-Plane Activity.

    ERIC Educational Resources Information Center

    Edwards, Thomas G.

    1995-01-01

    Describes an inquiry activity in which students explore the variables that influence the amount of time it takes a ball to roll down an inclined plane. Relates features of the activity to recommendations in the NCTM Standards. (MKR)

  3. 58. VIEW OF CABLE INCLINE, LOCATED ON THE HILLSIDE BELOW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    58. VIEW OF CABLE INCLINE, LOCATED ON THE HILLSIDE BELOW THE FOREBAY (NORTHWEST OF FOREBAY), Print No. 156, August 1903 - Electron Hydroelectric Project, Along Puyallup River, Electron, Pierce County, WA

  4. The inclination of the dwarf irregular galaxy Holmberg II

    NASA Astrophysics Data System (ADS)

    Sánchez-Salcedo, F. J.; Hidalgo-Gámez, A. M.; Martínez-García, E. E.

    2014-10-01

    We provide constraints on the inclination angle of the H I disk of the dwarf irregular galaxy Holmberg II (Ho II) from a stability analysis of the outer gaseous disk. We point out that a mean inclination angle of 27(°) and thus a flat circular velocity of ≈ 60 km s(-1) , is required to have a level of gravitational stability similar to that found in other galaxies. Adopting this inclination angle, we find that Ho II lies on the right location in the baryonic Tully-Fisher relation. Moreover, for this inclination, its rotation curve is consistent with MOND. However, the corresponding analysis of the stability under MOND indicates that this galaxy could be problematic for MOND because its outer parts are marginally unstable in this gravity theory. We urge MOND simulators to study numerically the non-linear stability of gas-rich dwarf galaxies since this may provide a new key test for MOND.

  5. Mission analysis data for inclined geosynchronous orbits, part 1

    NASA Technical Reports Server (NTRS)

    Graf, O. F., Jr.; Wang, K. C.

    1980-01-01

    Data needed for preliminary design of inclined geosynchronous missions are provided. The inertial and Earth fixed coordinate systems are described, as well as orbit parameters and elements. The complete family of geosynchronous orbits is discussed. It is shown that circular inclined geosynchronous orbits comprise only one set in this family. The major orbit perturbation and their separate effects on the geosynchronous orbit are discussed. Detailed information on the orbit perturbation of inclined circular geosynchronous orbits is given, with emphasis on time history data of certain orbital elements. Orbit maintenance delta velocity (V) requirements to counteract the major orbit perturbations are determined in order to provide order of magnitude estimates and to show the effects of orbit inclination on delta V. Some of the considerations in mission design for a multisatellite system, such as a halo orbit constellation, are discussed.

  6. 3. DETAIL OF TRUSS PANELS AND INCLINED PORTAL MEMBER AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. DETAIL OF TRUSS PANELS AND INCLINED PORTAL MEMBER AT THE SOUTHEAST ENTRANCE TO THE BRIDGE, LOOKING WEST. - Chicago, Madison & Northern Railroad, Sanitary & Ship Canal Bridge, Spanning Sanitary & Ship Canal, east of Kedzie Avenue, Chicago, Cook County, IL

  7. 7. VIEW OF INCLINED OUTLET GATE WHEEL AND STEM, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. VIEW OF INCLINED OUTLET GATE WHEEL AND STEM, LOOKING NORTH - High Mountain Dams in Upalco Unit, Kidney Lake Dam, Ashley National Forest, 4.7 miles North of Miners Gulch Campground, Mountain Home, Duchesne County, UT

  8. 8. DETAIL VIEW OF INCLINED OUTLET GATE WHEEL, LOOKING EAST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. DETAIL VIEW OF INCLINED OUTLET GATE WHEEL, LOOKING EAST - High Mountain Dams in Upalco Unit, Kidney Lake Dam, Ashley National Forest, 4.7 miles North of Miners Gulch Campground, Mountain Home, Duchesne County, UT

  9. The Asymmetrical "Sticking" Behavior of Two Balls on an Incline.

    ERIC Educational Resources Information Center

    Mallinckrodt, A. John

    1999-01-01

    Offers a relatively simple analysis of the asymmetrical "sticking" and rolling behavior of two balls, one steel and one rubber, on an incline. Describes an Interactive Physics (TM) simulation designed to study the problem and gives rough experimental results. (WRM)

  10. 12. DETAIL VIEW OF NORTHEAST CORNER, SHOWING HIP VERTICAL, INCLINED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. DETAIL VIEW OF NORTHEAST CORNER, SHOWING HIP VERTICAL, INCLINED END POST, AND UPPER CHORD - Kennan-Jump River Bridge, Spanning South fork of Jump River on County Highway "N", Kennan, Price County, WI

  11. 22. INCLINED END POST / DECK / GUARDRAIL DETAIL OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. INCLINED END POST / DECK / GUARDRAIL DETAIL OF THROUGH TRUSSES. VIEW TO SOUTHEAST. - Abraham Lincoln Memorial Bridge, Spanning Missouri River on Highway 30 between Nebraska & Iowa, Blair, Washington County, NE

  12. 20. VIEW LOOKING SOUTHWEST OF NORTH PONY TRUSS; SHOWING INCLINED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. VIEW LOOKING SOUTHWEST OF NORTH PONY TRUSS; SHOWING INCLINED END POST, HIP VERTICAL, VERTICAL POSTS, DIAGONALS, AND COUNTER BRACING - Boyleston Bridge, Spanning Skunk River, Lowell, Henry County, IA

  13. Students as Researchers: An Inclined-Plane Activity.

    ERIC Educational Resources Information Center

    Edwards, Thomas G.

    1995-01-01

    Describes an inquiry activity in which students explore the variables that influence the amount of time it takes a ball to roll down an inclined plane. Relates features of the activity to recommendations in the NCTM Standards. (MKR)

  14. 26. UPPER STATION, LOWER FLOOR, BULL WHEEL. Monongahela Incline ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. UPPER STATION, LOWER FLOOR, BULL WHEEL. - Monongahela Incline Plane, Connecting North side of Grandview Avenue at Wyoming Street with West Carson Street near Smithfield Street, Pittsburgh, Allegheny County, PA

  15. Unit 5, upstream toward incline bridge Johnstown Local Flood ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Unit 5, upstream toward incline bridge - Johnstown Local Flood Protection Project, Beginning on Conemaugh River approx 3.8 miles downstream from confluence of Little Conemaugh & Stony Creek Rivers at Johnstown, Johnstown, Cambria County, PA

  16. Elevated view of city from incline Johnstown Local Flood ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Elevated view of city from incline - Johnstown Local Flood Protection Project, Beginning on Conemaugh River approx 3.8 miles downstream from confluence of Little Conemaugh & Stony Creek Rivers at Johnstown, Johnstown, Cambria County, PA

  17. 12. DETAIL VIEW SHOWING HIP VERTICAL, INCLINED ENDPOST, PORTAL BRACING, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. DETAIL VIEW SHOWING HIP VERTICAL, INCLINED ENDPOST, PORTAL BRACING, TOP CHORD, SOUTHWEST CORNER OF SOUTH TRUSS (RIVETED CONNECTION) - Marathon City Bridge, Spanning Big Rib River, on state Trunk Highway 107, Marathon, Marathon County, WI

  18. 47 CFR 25.280 - Inclined orbit operations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...-of-life of the satellite accounting for inclined orbit operation, and the maneuvers specified under... of the Earth and centered on the satellite's designated service area; (2) Control all electrical...

  19. 47 CFR 25.280 - Inclined orbit operations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...-of-life of the satellite accounting for inclined orbit operation, and the maneuvers specified under... of the Earth and centered on the satellite's designated service area; (2) Control all electrical...

  20. 47 CFR 25.280 - Inclined orbit operations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...-of-life of the satellite accounting for inclined orbit operation, and the maneuvers specified under... of the Earth and centered on the satellite's designated service area; (2) Control all electrical...

  1. 47 CFR 25.280 - Inclined orbit operations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...-of-life of the satellite accounting for inclined orbit operation, and the maneuvers specified under... of the Earth and centered on the satellite's designated service area; (2) Control all electrical...

  2. 47 CFR 25.280 - Inclined orbit operations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...-of-life of the satellite accounting for inclined orbit operation, and the maneuvers specified under... of the Earth and centered on the satellite's designated service area; (2) Control all electrical...

  3. 12. WESTWARD VIEW OF INCLINE HOIST BUCKET BRIDGE AND NEELAND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. WESTWARD VIEW OF INCLINE HOIST BUCKET BRIDGE AND NEELAND CHARGING BUCKET FOR BLAST FURNACE No. 1. (Jet Lowe) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  4. Builder's plate and pin connection detail at junction of inclined ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Builder's plate and pin connection detail at junction of inclined end post and top chord. Plate reads "Nelson and Buchanan agents Chambersburg, PA." - Yeakle Mill Bridge, State Route 3026 (Mill Road) spanning Little Cove Creek, Sylvan, Franklin County, PA

  5. 1. EXTERIORANGLED AND INCLINED TO AUTOMATIC PLOTTING AND ORTHOPRINTING LIMITS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. EXTERIOR--ANGLED AND INCLINED TO AUTOMATIC PLOTTING AND ORTHOPRINTING LIMITS Copy photograph of photogrammetric plate LC-HABS-GS05-T-4950-101L. - Lemon Building, 1729 New York Avenue, Northwest, Washington, District of Columbia, DC

  6. 7. DETAIL VIEW OF ROCKER ARM, SHOWING POCKETS, LUGS, INCLINED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. DETAIL VIEW OF ROCKER ARM, SHOWING POCKETS, LUGS, INCLINED STOPPING BLOCK AT SHOREWARD END OF TRACK GIRDER - Seddon Island Scherzer Rolling Lift Bridge, Spanning Garrison Channel from Tampa to Seddon Island, Tampa, Hillsborough County, FL

  7. Detail of inside of inclined end post, with portal cross ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of inside of inclined end post, with portal cross bar member. - Phoenix Iron Company, French Creek Bridge, Spanning French Creek between Gay Street & Main Street, Phoenixville, Chester County, PA

  8. 2. FULL VIEW OF BRIDGE, SHOWING INCLINED END POST (HATTER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. FULL VIEW OF BRIDGE, SHOWING INCLINED END POST (HATTER POST), PORTAL BRACING, AND PORTAL STRUT AT EAST PORTAL, LOOKING WEST - Chester Bridge, Spanning Rock River on Old Marsh Road, East Waupun, Dodge County, WI

  9. Mathematical modelling of wave impacts on seaward-inclined seawall

    NASA Astrophysics Data System (ADS)

    Shahridwan Ramli, Mohd; Ghani, Fadhlyya Arawaney Abdul; Noar, Nor Aida Zuraimi Md; Zuki Salleh, Mohd; Greenhow, Martin

    2017-09-01

    In this study, the numerical investigation of a mathematical model of wave impacts on an inclined seawall is considered, using an extension of Cooker’s model for vertical seawalls due to Greenhow, who considered a perturbation model to study the effect of small wall inclinations from the vertical. Cooker used pressure impulse theory to simplify the highly time-dependent and very nonlinear boundary-value problem (bvp) by considering the time integral of the pressure during the duration of the impact pressure-impulse. The solution to this bvp is found by solving Laplace’s Equation for simplified boundary conditions. The perturbation theory gives a series of bvps which are solved analytically by MATLAB. The relation between the pressure impulse and the inclination angle of a wall is investigated. We find that as the seaward or landward inclination of the seawall increases, the pressure impulse increases.

  10. 6. VIEW SHOWING INCLINED OUTLET GATE WHEEL, STEM AND STEM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. VIEW SHOWING INCLINED OUTLET GATE WHEEL, STEM AND STEM GUIDE (18' HARDESTY GATE), LOOKING SOUTHEAST - High Mountain Dams in Bonneville Unit, Long Lake Dam, Wasatch National Forest, Kamas, Summit County, UT

  11. 5. VIEW SHOWING INCLINED OUTLET GATE WHEEL, STEM AND STEM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VIEW SHOWING INCLINED OUTLET GATE WHEEL, STEM AND STEM GUIDE (28' WIDE HARDESTY CAST IRON SLIDE HEADGATE), LOOKING NORTHEAST - High Mountain Dams in Bonneville Unit, Duck Lake Dam, Wasatch National Forest, Kamas, Summit County, UT

  12. 4. VIEW OF INCLINED OUTLET GATE WHEEL AND STEM, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VIEW OF INCLINED OUTLET GATE WHEEL AND STEM, LOOKING NORTHWEST - High Mountain Dams in Upalco Unit, Brown Duck Lake Dam, Ashley National Forest, 4.4 miles North of Miners Gulch Campground, Mountain Home, Duchesne County, UT

  13. 4. VIEW OF INCLINED OUTLET GATE, STEM, STEM GUIDE AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VIEW OF INCLINED OUTLET GATE, STEM, STEM GUIDE AND WHEEL (10' HARDESTY VERTICAL LIFT GATE), LOOKING NORTHWEST - High Mountain Dams in Bonneville Unit, Pot Lake Dam, Wasatch National Forest, Kamas, Summit County, UT

  14. 7. VIEW OF INCLINED OUTLET GATE WHEEL, STEM AND STEM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. VIEW OF INCLINED OUTLET GATE WHEEL, STEM AND STEM GUIDE (15' HARDESTY MODEL 115 GATE), LOOKING NORTHWEST - High Mountain Dams in Bonneville Unit, Marjorie Lake Dam, Wasatch National Forest, Kamas, Summit County, UT

  15. 5. VIEW OF INCLINED OUTLET GATE WHEEL, STEM AND STEM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VIEW OF INCLINED OUTLET GATE WHEEL, STEM AND STEM GUIDE, (12' DIAMETER HARDESTY MODEL 112 CIRCULAR GATE), LOOKING NORTHEAST - High Mountain Dams in Bonneville Unit, Island Lake Dam, Wasatch National Forest, Kamas, Summit County, UT

  16. 9. DETAIL VIEW OF PIN CONNECTION, SHOWING INCLINED END POSTS, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. DETAIL VIEW OF PIN CONNECTION, SHOWING INCLINED END POSTS, PORTAL BRACING, HIP VERTICALS, LATTICE BRACING AND EYEBARS, LOOKING NORTHEAST - Nepesta Bridge, Spanning Arkansas River on County Road 613, Boone, Pueblo County, CO

  17. 8. Detail of northeast inclined endpost, hip vertical, upper chord, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Detail of northeast inclined endpost, hip vertical, upper chord, and portal bracing; looking north/northeast - Brosseau Road Bridge, County Road 694 spanning Cloquet at River, Burnett, St. Louis County, MN

  18. Safety Case Notations: Alternatives for the Non-Graphically Inclined?

    NASA Technical Reports Server (NTRS)

    Holloway, C. M.

    2008-01-01

    This working paper presents preliminary ideas of five possible text-based notations for representing safety cases, which may be easier for non-graphically inclined people to use and understand than the currently popular graphics-based representations.

  19. 11. A DETAIL VIEW, LOOKING NORTH, OF THE WEST INCLINED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. A DETAIL VIEW, LOOKING NORTH, OF THE WEST INCLINED END POST, AND OF THE PIN CONNECTION OF THE SOUTHWESTERN VERTICAL MEMBER. - Wells County Bridge No. 74, Spanning Rock Creek Ditch at County Road 400, Bluffton, Wells County, IN

  20. Aqua/Aura Spring 2017 Inclination Adjust Maneuver Series

    NASA Technical Reports Server (NTRS)

    Noyes, Thomas; Stezelberger, Shane

    2017-01-01

    This will be presented at the International Earth Science Constellation Mission Operations Working Group meeting June 13-15, 2017 to discuss the AquaAura Spring 2017 Inclination Adjust Maneuver series.

  1. Two scenarios for avalanche dynamics in inclined granular layers.

    PubMed

    Börzsönyi, Tamás; Halsey, Thomas C; Ecke, Robert E

    2005-05-27

    We report experimental measurements of avalanche behavior of thin granular layers on an inclined plane for low volume flow rate. The dynamical properties of avalanches were quantitatively and qualitatively different for smooth glass beads compared to irregular granular materials such as sand. Two scenarios for granular avalanches on an incline are identified, and a theoretical explanation for these different scenarios is developed based on a depth-averaged approach that takes into account the differing rheologies of the granular materials.

  2. RANS Calculations of the Flow Past Inclined Propellers

    DTIC Science & Technology

    2010-05-01

    Defence R&D Canada – Atlantic DEFENCE DÉFENSE & RANS calculations of the flow past inclined propellers Paul-Edouard Leras ENSIETA, Brest, France...développement pour la défense Canada This page intentionally left blank. RANS calculations of the flow past inclined propellers Paul-Edouard Leras ...Original signed by David Hally David Hally Approved by Original signed by D. Hopkin D. Hopkin Head/Maritime Asset Protection Approved for release by C

  3. Radar scattering properties of steep-sided domes on Venus

    NASA Technical Reports Server (NTRS)

    Ford, Peter G.

    1994-01-01

    More than 100 quasi-circular steep-sided volcanic domes, with diameters ranging from 6 to 60 km, have been observed on the surface of Venus by the Magellan radar mapper. Assuming that they have the shape of a solidified high-viscosity Newtonian fluid, their radar scattering properties can be studied in detail from Magellan images, since a typical radar swath resolves each dome into several tens of thousands of measurements of radar cross section at incidence angles varying fom 15 deg to 55 deg. Through examination of 20 domes in detail, it appears that many of those situated on lava plains scatter radar in a manner that is indistinguishable from that of the surrounding material, suggesting that either (1) they were formed of a relatively high-density high-viscosity material, e.g., andesite, rather than a lower-density one, e.g., rhyolite or dacite; or (2) that their surfaces share a common origin with those of their surroundings, e.g., through in situ weathering or aeolian deposition.

  4. Steep gravity-capillary waves within the internal resonance regime

    NASA Astrophysics Data System (ADS)

    Perlin, Marc; Ting, Chao-lung

    1992-11-01

    Steep gravity-capillary waves are studied experimentally in a channel. The range of cyclic frequencies investigated is 6.94-9.80 Hz; namely, the high-frequency portion of the regime of internal resonances according to the weakly nonlinear theory (Wilton's ripples). These wave trains are stable according to the nonlinear Schrödinger equation. The experimental wave trains are generated by large, sinusoidal oscillations of the wavemaker. A comparison is made between the measured wave fields and the (symmetric) numerical solutions of Schwartz and Vanden-Broeck [J. Fluid Mech. 95, 119 (1979)], Chen and Saffman [Stud. Appl. Math. 60, 183 (1979); 62, 95 (1980)], and Huh (Ph.D. dissertation, University of Michigan, 1991). The waves are shown to be of slightly varying asymmetry as they propagate downstream. Their symmetric parts, isolated by determining the phase which provides the smallest mean-square antisymmetric part, compare favorably with the ``gravity-type'' wave solutions determined by numerical computations. The antisymmetric part of the wave profile is always less than 30% of the peak-to-peak height of the symmetric part. As nonlinearity is increased, the amplitudes of the short-wave undulations in the trough of the primary wave increase; however, there are no significant changes in these short-wave frequencies. The lowest frequency primary-wave experiments, which generate the highest frequency short-wave undulations, exhibit more rapid viscous decay of these high-frequency waves than do the higher-frequency primary wave experiments.

  5. Geotechnical properties of cemented sands in steep slopes

    USGS Publications Warehouse

    Collins, B.D.; Sitar, N.

    2009-01-01

    An investigation into the geotechnical properties specific to assessing the stability of weakly and moderately cemented sand cliffs is presented. A case study from eroding coastal cliffs located in central California provides both the data and impetus for this study. Herein, weakly cemented sand is defined as having an unconfined compressive strength (UCS) of less than 100 kPa, and moderately cemented sand is defined as having UCS between 100 and 400 kPa. Testing shows that both materials fail in a brittle fashion and can be modeled effectively using linear Mohr-Coulomb strength parameters, although for weakly cemented sands, curvature of the failure envelope is more evident with decreasing friction and increasing cohesion at higher confinement. Triaxial tests performed to simulate the evolving stress state of an eroding cliff, using a reduction in confinement-type stress path, result in an order of magnitude decrease in strain at failure and a more brittle response. Tests aimed at examining the influence of wetting on steep slopes show that a 60% decrease in UCS, a 50% drop in cohesion, and 80% decrease in the tensile strength occurs in moderately cemented sand upon introduction to water. In weakly cemented sands, all compressive, cohesive, and tensile strength is lost upon wetting and saturation. The results indicate that particular attention must be given to the relative level of cementation, the effects of groundwater or surficial seepage, and the small-scale strain response when performing geotechnical slope stability analyses on these materials. ?? 2009 ASCE.

  6. Improved numerical modeling of morphodynamics of rivers with steep banks

    NASA Astrophysics Data System (ADS)

    Langendoen, Eddy J.; Mendoza, Alejandro; Abad, Jorge D.; Tassi, Pablo; Wang, Dongchen; Ata, Riadh; El kadi Abderrezzak, Kamal; Hervouet, Jean-Michel

    2016-07-01

    The flow and sediment transport processes near steep streambanks, which are commonly found in meandering, braided, and anastomosing stream systems, exhibit complex patterns that produce intricate interactions between bed and bank morphologic adjustment. Increasingly, multi-dimensional computer models of riverine morphodynamics are used to aid in the study of these processes. A number of depth-averaged two-dimensional models are available to simulate morphologic adjustment of both bed and banks. Unfortunately, these models use overly simplified conceptual models of riverbank erosion, are limited by inflexible structured mesh systems, or are unable to accurately account for the flow and sediment transport adjacent to streambanks of arbitrary geometry. A new, nonlinear model is introduced that resolves these limitations. The model combines the river morphodynamics computer models TELEMAC-2D and SISYPHE of the open source TELEMAC-MASCARET suite of solvers with the bank erosion modules of the CONCEPTS channel evolution computer model. The performance of the new model is evaluated for meander-planform initiation and development. The most important findings are: (1) the model is able to simulate a much greater variety and complexity in meander wavelengths; (2) simulated meander development agrees closely with the unified bar-bend theory of Tubino and Seminara (1990); and (3) the rate of meander planform adjustment is greatly reduced if the wavelength of alternate bars is similar to that of meanders.

  7. New candidate GHz peaked spectrum and compact steep spectrum sources

    NASA Astrophysics Data System (ADS)

    Edwards, P. G.; Tingay, S. J.

    2004-09-01

    Data from a recent Australia Telescope Compact Array (ATCA) program of multi-frequency, multi-epoch monitoring of 202 active galactic nuclei with declinations <+10o have been searched for GHz Peaked Spectrum (GPS) and Compact Steep Spectrum (CSS) radio sources. Supplementary data at higher and lower frequencies, where available, have been used to further examine the spectral properties of previously reported and new candidate GPS and CSS sources. The ATCA monitoring program has allowed the variability and polarization properties of sources previously reported as GPS and CSS sources, and the majority of new GPS and CSS candidates, to be investigated, confirming that these are useful diagnostics in discriminating genuine GPS and CSS sources from variable sources that display similar spectra only temporarily. GPS sources are confirmed to be generally more compact, and less polarized, than CSS sources, although CSS sources show evidence for being somewhat less variable than GPS sources at 1.4 and 2.5 GHz. In addition, the widths of GPS spectra are examined, and a significant difference is found in the GPS sample of Snellen et al. (2000) between sources with compact double (CD) or compact symmetric object (CSO) morphologies and sources with other morphologies, in that CD and CSO sources have generally narrower spectra. Possible reasons for this difference are considered.

  8. How Phytoplankton Membranes Cope With Steep Ionic Strength (Salinity) Gradient?

    NASA Astrophysics Data System (ADS)

    Gasparovic, B.; Sesar, T.; Cankovic, M.; Ljubešić, Z.; Hrustić, E.; Zhu, Z.; Zhang, R.; Du, J.

    2016-02-01

    We report on phytoplankton accommodation on stressful conditions being steep ionic strength, i.e. salinity, changes, the conditions regularly found in the estuaries. We aimed defining how lipid composition of phytoplankton membrane structure is accommodated to prevent spontaneous osmosis. Salinity-dependent lipid profiles for particulate lipid extracts from blooming periods of the two opposing estuaries: eutrophic and polluted Wenchang River Estuary and pristine oligotrophic/mesotrophic Krka River Estuary were characterized by thin layer chromatography (TLC). The composition of phytoplankton pigments which was analyzed by high performance liquid chromatography. Domination of pigment Fucoxanthin in both estuaries indicates diatoms were major blooming group. While total particulate lipid concentration was almost an order of magnitude higher in the Wenchang River estuary (on average 238 µg/L) than in the Krka River Estuary (on average 36 µg/L), the lipid composition was similar. This implies that salinity stress is the main influential factor on phytoplankton lipid composition rather than availability of nutrients. Details on the lipid composition that follow salinity changes will be discussed.

  9. Antioxidative properties of phenolic antioxidants isolated from corn steep liquor.

    PubMed

    Niwa, T; Doi, U; Kato, Y; Osawa, T

    2001-01-01

    With the immersion of corn into dilute sulfur oxide during starch-manufacturing processes, corn steep liquor (CSL) remains as leftover material. CSL is often used for fermentation, but its components are not fully understood. To determine the properties of CSL, 12 p-coumaric acid-related compounds were isolated from an ethyl acetate extract of CSL with the guidance of antioxidative activity on the rabbit erythrocyte membrane ghost system. The activity of these compounds was compared against oxidative damages, and it was elucidated that the activity of p-coumaric acid derivatives was mainly affected by their functional groups at the 3-position and less by the conjugated side chain. Moreover, p-coumaric acid derivatives exhibited inhibitory activity stronger than that of tocopherols and ascorbic acid on peroxynitrite-mediated lipoprotein nitration. These findings that p-coumaric acid derivatives, which might play a beneficial role against oxidative damage, exist in CSL suggest this byproduct might be a useful resource of phenolic antioxidants.

  10. Why arboreal snakes should not be cylindrical: body shape, incline and surface roughness have interactive effects on locomotion.

    PubMed

    Jayne, Bruce C; Newman, Steven J; Zentkovich, Michele M; Berns, H Matthew

    2015-12-01

    Depending on animal size, shape, body plan and behaviour, variation in surface structure can affect the speed and ease of locomotion. The slope of branches and the roughness of bark both vary considerably, but their combined effects on the locomotion of arboreal animals are poorly understood. We used artificial branches with five inclines and five peg heights (≤40 mm) to test for interactive effects on the locomotion of three snake species with different body shapes. Unlike boa constrictors (Boa constrictor), corn snakes (Pantherophis guttatus) and brown tree snakes (Boiga irregularis) can both form ventrolateral keels, which are most pronounced in B. irregularis. Increasing peg height up to 10 mm elicited more of the lateral undulatory behaviour (sliding contact without gripping) rather than the concertina behaviour (periodic static gripping) and increased the speed of lateral undulation. Increased incline: (1) elicited more concertina locomotion, (2) decreased speed and (3) increased the threshold peg height that elicited lateral undulation. Boiga irregularis was the fastest species, and it used lateral undulation on the most surfaces, including a vertical cylinder with pegs only 1 mm high. Overall, B. constrictor was the slowest and used the most concertina locomotion, but this species climbed steep, smooth surfaces faster than P. guttatus. Our results illustrate how morphology and two different aspects of habitat structure can have interactive effects on organismal performance and behaviour. Notably, a sharper keel facilitated exploiting shorter protrusions to prevent slipping and provide propulsion, which became increasingly important as surface steepness increased. © 2015. Published by The Company of Biologists Ltd.

  11. Buckling and lockup of tubulars in inclined wellbores

    SciTech Connect

    Wu, J.; Juvkam-Wold, H.C.

    1994-12-31

    This paper describes sinusoidal and helical buckling of tubulars in inclined wellbores and the ``lockup`` of tubulars due to buckling. The results show that tubular buckling starts from the tubular bottom in low-inclination wellbores, where axial compressive load is largest due to tubular weight. In high inclination wellbores it may start from the top portion of the tubular, where axial compressive load is largest due to frictional drag. This clarifies the confusion about whether or not tubulars buckle all at once, in the entire inclined wellbore. New sinusoidal and helical buckling load equations are presented to give better tubular buckling prediction in inclined wellbores (0--90 degrees). They show that the lower the wellbore inclination angle, the smaller the axial compressive load to initiate tubular buckling. But a certain non-zero axial compressive load is still needed to buckle the tubulars in vertical wellbores. When tubulars buckle helically, a large wall contact force will be generated. The `slack-off` weight at the surface will not be fully transmitted to the bottom of the tubulars due to the large resultant frictional drag. The ``lockup`` of tubulars, where the bottom load (bit weight) cannot be increased by slacking-off weight at the surface, usually is approached when a large portion of the tubular buckles helically in the wellbore.

  12. Buckling and lockup of tubulars in inclined wellbores

    SciTech Connect

    Wu, J.; Juvkam-Wold, H.C.

    1995-09-01

    This paper studies sinusoidal and helical buckling of tubulars in inclined wellbores and the ``lockup`` of tubulars due to buckling. The results show that tubular buckling starts from the tubular bottom in low-inclination wellbores, where the axial compressive load is largest due to tubular weight. In high-inclination wellbores it may start from the top portion of the tubular, where the axial compressive load is largest due to frictional drag. This clarifies the confusion on whether or not the tubular buckles at once on it entire length in inclined wellbores. New sinusoidal and helical buckling load equations are presented to better predict tubular buckling in inclined wellbores (0--90 deg). The lower the wellbore inclination angle, the smaller the axial compressive load required to initiate tubular buckling. However, a certain nonzero axial compressive load is still needed to buckle the tubulars in vertical wellbores. When tubulars buckle helically, a large wall contact force will be generated, and the ``slack-off`` weight at the surface will not be fully transmitted to the tubular bottom due to large resultant frictional drag. The ``lockup`` of tubulars may even occur, where the tubular bottom load cannot be increased by slacking-off weight at the surface.

  13. Spreading dynamics of droplet on an inclined surface

    NASA Astrophysics Data System (ADS)

    Shen, Chaoqun; Yu, Cheng; Chen, Yongping

    2016-06-01

    A three-dimensional unsteady theoretical model of droplet spreading process on an inclined surface is developed and numerically analyzed to investigate the droplet spreading dynamics via the lattice Boltzmann simulation. The contact line motion and morphology evolution for the droplet spreading on an inclined surface, which are, respectively, represented by the advancing/receding spreading factor and droplet wetted length, are evaluated and analyzed. The effects of surface wettability and inclination on the droplet spreading behaviors are examined. The results indicate that, dominated by gravity and capillarity, the droplet experiences a complex asymmetric deformation and sliding motion after the droplet comes into contact with the inclined surfaces. The droplet firstly deforms near the solid surface and mainly exhibits a radial expansion flow in the start-up stage. An evident sliding-down motion along the inclination is observed in the middle stage. And the surface-tension-driven retraction occurs during the retract stage. Increases in inclination angle and equilibrium contact angle lead to a faster droplet motion and a smaller wetted area. In addition, increases in equilibrium contact angle lead to a shorter duration time of the middle stage and an earlier entry into the retract stage.

  14. Deriving stellar inclination of slow rotators using stellar activity

    SciTech Connect

    Dumusque, X.

    2014-12-01

    Stellar inclination is an important parameter for many astrophysical studies. Although different techniques allow us to estimate stellar inclination for fast rotators, it becomes much more difficult when stars are rotating slower than ∼2-2.5 km s{sup –1}. By using the new activity simulation SOAP 2.0 which can reproduce the photometric and spectroscopic variations induced by stellar activity, we are able to fit observations of solar-type stars and derive their inclination. For HD 189733, we estimate the stellar inclination to be i=84{sub −20}{sup +6} deg, which implies a star-planet obliquity of ψ=4{sub −4}{sup +18} considering previous measurements of the spin-orbit angle. For α Cen B, we derive an inclination of i=45{sub −19}{sup +9}, which implies that the rotational spin of the star is not aligned with the orbital spin of the α Cen binary system. In addition, assuming that α Cen Bb is aligned with its host star, no transit would occur. The inclination of α Cen B can be measured using 40 radial-velocity measurements, which is remarkable given that the projected rotational velocity of the star is smaller than 1.15 km s{sup –1}.

  15. Heliospheric current sheet inclinations predicted from source surface maps

    NASA Technical Reports Server (NTRS)

    Shodhan, S.; Crooker, N. U.; Hughes, W. J.; Siscoe, G. L.

    1994-01-01

    The inclinations of the neutral line at the ecliptic plane derived from source surface model maps of coronal fields are measured for the interval from June 1976 to March 1992. The mean and median values of 53 deg and 57 deg are close to the average inclinations determined earlier from minimum variance analyses of solar wind measurements at sector boundaries, but the mode falls in the 80 deg - 90 deg bin. This result, which is based on the model assumptions implicit in deriving the source surface maps, predicts that the heliospheric current sheet typically intersects the ecliptic plane nearly at right angles, even without steepening by stream interaction regions. High inclinations dominate the solar cycle for about 7 years around solar maximum. Dips to lower inclination occur near solar minimum, but high variance admits a wide range of inclinations throughout the cycle. Compared to the smooth solar cycle variation of the maximum latitudinal excursion of the neutral line, often treated as the tilt angle of a flat heliospheric current sheet, the noisy variation of the inclinations reflects the degree to which the neutral line deviates from a sine wave, implying warps and corrugations in the current sheet. About a third of the time the neutral line so deviates that it doubles back in longitude.

  16. An Explanation for the High Inclinations of Amalthea and Thebe

    NASA Astrophysics Data System (ADS)

    Proctor, Amanda; Hamilton, Douglas; Rauch, Kevin

    2002-04-01

    We propose that the anomalously large inclinations of the inner moons Amalthea (I=0.33^circ) and Thebe (I=1.09^circ) result from kicks imparted by Io's strong resonances as those resonances scan across the location of the moons. Both the eccentricities and inclinations of the moons are excited during resonant passages. But while the eccentricities decay rapidly due to the large satellite tides raised by the planet, the inclinations are basically preserved since they decay slowly due to the tiny planetary tides raised by the satellite. Through analysis of our numerical simulations we were able to limit Io's formation distance from Jupiter to between 4.02 and 4.92 Jovian Radii. Io's 3:1 resonances can impart an inclination of ~ 0.3^circ to Amalthea, while the 4:2 resonance gives too large a kick. We find that either the 4:2 resonance acting alone, or in combination with the 5:3 and the 6:4, causes Thebe's inclination to rise to about 1 degree. Our theory naturally explains the high inclinations of these two small satellites.

  17. Heliospheric current sheet inclinations predicted from source surface maps

    NASA Technical Reports Server (NTRS)

    Shodhan, S.; Crooker, N. U.; Hughes, W. J.; Siscoe, G. L.

    1994-01-01

    The inclinations of the neutral line at the ecliptic plane derived from source surface model maps of coronal fields are measured for the interval from June 1976 to March 1992. The mean and median values of 53 deg and 57 deg are close to the average inclinations determined earlier from minimum variance analyses of solar wind measurements at sector boundaries, but the mode falls in the 80 deg - 90 deg bin. This result, which is based on the model assumptions implicit in deriving the source surface maps, predicts that the heliospheric current sheet typically intersects the ecliptic plane nearly at right angles, even without steepening by stream interaction regions. High inclinations dominate the solar cycle for about 7 years around solar maximum. Dips to lower inclination occur near solar minimum, but high variance admits a wide range of inclinations throughout the cycle. Compared to the smooth solar cycle variation of the maximum latitudinal excursion of the neutral line, often treated as the tilt angle of a flat heliospheric current sheet, the noisy variation of the inclinations reflects the degree to which the neutral line deviates from a sine wave, implying warps and corrugations in the current sheet. About a third of the time the neutral line so deviates that it doubles back in longitude.

  18. Delineation of preventative landslide buffers along steep streamside slopes in northern California

    Treesearch

    Jason S. Woodward; David W. Lamphear; Matthew R. House

    2012-01-01

    Green Diamond Resource Co (GDRCo) applies tree retention buffers to steep slopes along fish bearing (Class I) and non-fish bearing (Class II) streams that are in addition to the standard riparian management zones associated with timber harvest plans. These Steep Streamside Slope (SSS) buffers were designed to reduce the amount of sediment delivering to watercourses as...

  19. Routing Bedload Sediment Through River Networks Draining Steep Uplands

    NASA Astrophysics Data System (ADS)

    Cui, Y.; Dietrich, W. E.; Parker, G.

    2001-12-01

    River networks draining mountainous landscapes receive episodic and spatially variable sediment supply. The network structure itself imposes a distinct sediment loading structure in which steep, coarse bedded tributaries deliver significant point loads to less steep main stems. Landslides that fail directly into the main stem also introduce large local loads. These sediment pulses then become attenuated during downstream transport due to storage and particle breakdown. For both theoretical and practical reasons (e.g. dam removal, polluted sediment management, hillslope erosion management, and stream restoration) we need to be able to predict the downstream transit time of particles and quantify the controls on rates of signal attenuation downstream. Here we report a new, mechanistic numerical model for bedload routing that accounts for vertical storage, particle attrition, and stochastic sediment input and flow regime. The model uses observed channel slopes and channel widths. Flow is estimated through the network using drainage-area scaled annual flow duration. Sediment input varies around long-term average value by factors of a random number that co-varies with the randomly chosen flow duration curves and an independently selected random number, and input occurs along the channel banks and channel head. Debris flow transport is not considered. Simulations reported here were performed with data from the Noyo River, California as the prototype. Sample runs of the models revealed several important phenomena, many of which are fundamentally important in guiding future model development in mountain watersheds: a) in landscapes underlain by mechanically weak bedrock, particle attrition is probably the most important mechanism with which the bedload sediment is transported out of the system; b) due to particle attrition, bedload transport flux may decrease in the downstream direction even with the increased drainage area from tributary contributions, indicating the

  20. Sediment transport dynamics in steep, tropical volcanic catchments

    NASA Astrophysics Data System (ADS)

    Birkel, Christian; Solano Rivera, Vanessa; Granados Bolaños, Sebastian; Brenes Cambronero, Liz; Sánchez Murillo, Ricardo; Geris, Josie

    2017-04-01

    How volcanic landforms in tropical mountainous regions are eroded, and how eroded materials move through these mostly steep landscapes from the headwaters to affect sediment fluxes are critical to water resources management in their downstream rivers. Volcanic landscapes are of particular importance because of the short timescales (< years) over which they transform. Owing to volcanism and seismic activity, landslides and other mass movements frequently occur. These processes are amplified by high intensity precipitation inputs resulting in significant, but natural runoff, erosion and sediment fluxes. Sediment transport is also directly linked to carbon and solute export. However, knowledge on the sediment sources and transport dynamics in the humid tropics remains limited and their fluxes largely unquantified. In order to increase our understanding of the dominant erosion and sediment transport dynamics in humid tropical volcanic landscapes, we conducted an extensive monitoring effort in a pristine and protected (biological reserve Alberto Manuel Brenes, ReBAMB) tropical forest catchment (3.2 km2), located in the Central Volcanic Cordillera of Costa Rica (Figure 1A). Typical for tropical volcanic and montane regions, deeply incised V-form headwaters (Figure 1B) deliver the majority of water (>70%) and sediments to downstream rivers. At the catchment outlet (Figure 1C) of the San Lorencito stream, we established high temporal resolution (5min) water quantity and sediment monitoring (turbidity). We also surveyed the river network on various occasions to characterize fluvial geomorphology including material properties. We could show that the rainfall-runoff-sediment relationships and their characteristic hysteresis patterns are directly linked to variations in the climatic input (storm intensity and duration) and the size, form and mineralogy of the transported material. Such a relationship allowed us to gain the following insights: (i) periodic landslides contribute

  1. Evaluating survey instruments and methods in a steep channel

    NASA Astrophysics Data System (ADS)

    Scott, Daniel N.; Brogan, Daniel J.; Lininger, Katherine B.; Schook, Derek M.; Daugherty, Ellen E.; Sparacino, Matthew S.; Patton, Annette I.

    2016-11-01

    Methods for surveying and analyzing channel bed topography commonly lack a rigorous characterization of their appropriateness for project objectives. We compare four survey methods: a hand level, two different methods of surveying with a laser rangefinder, and a real-time kinematic GNSS (RTK-GNSS) to explore their accuracy in determining channel bed slope and roughness for a study reach in a small, dry, steep channel. Additionally, we evaluate the variability among four operators for each survey technique. Two methods of calculating reach slope were computed: a regression on the channel profile and a calculation using only survey endpoints. Using data from the RTK-GNSS as our accuracy reference, the hand level and two-person laser rangefinder surveying systems performed with high accuracy (< 5% error in estimating slope, < 10% error in estimating roughness), while the one-person laser rangefinder survey system performed with considerably lower accuracy (up to 54% error in roughness and slope). Variability between operators was found to be very low (coefficients of variation ranged from 0.001 to 0.046) for all survey systems except the one-person laser rangefinder system, suggesting that survey data collected by different operators can be validly compared. Due to reach-scale concavity, calculating slope using a regression produced significantly different values than those obtained by using only survey endpoints, suggesting that caution must be taken in choosing the most appropriate method of calculating slope for a given project objective. We present recommendations for choosing appropriate survey and analysis methods to accomplish various surveying objectives.

  2. Sediment yields from small, steep coastal watersheds of California

    USGS Publications Warehouse

    Warrick, Jonathan A.; Melack, John M.; Goodridge, Blair M.

    2015-01-01

    Global inventories of sediment discharge to the ocean highlight the importance of small, steep watersheds (i.e., those having drainage areas less than 100,000 km2 and over 1000 m of relief) that collectively provide a dominant flux of sediment. The smallest of these coastal watersheds (e.g., those that have drainage areas less than 1000 km2) can represent a large portion of the drainage areas of active margin coasts, such as California’s coast, but remain almost universally unmonitored. Here we report on the suspended-sediment discharge of several small coastal watersheds (10-56 km2) of the Santa Ynez Mountains, California, that were found to have ephemeral discharge and suspended-sediment concentrations ranging between 1 and over 200,000 mgL-1. Sediment concentrations were weakly correlated with discharge (r2 = 0.10–0.25), and all types of hysteresis patterns were observed during high flows (clockwise, counterclockwise, no hysteresis, and complex). Sediment discharge varied strongly with time and was measurably elevated in one watershed following a wildfire. Although sediment yields varied by over 100-fold across the watersheds (e.g., 15 – 2100 tkm-2 yr -1during the relatively wet 2005 water year), the majority of sediment discharge (65-80%) occurred during only 1% of the time for all watersheds. Furthermore, sampling of dozens of high flow events provides evidence that sediment yields were generally related to peak discharge yields, although these relationships were not consistent across the watersheds. These results suggest that small watersheds of active margins can provide large fluxes of sediment to the coast, but that the rates and timing of this sediment discharge is more irregular in time – and thus more difficult to characterize – than the better monitored and studied watersheds that are 1000-100,000 km2.

  3. Evaluation of performance of veterinary in-clinic hematology analyzers.

    PubMed

    Rishniw, Mark; Pion, Paul D

    2016-12-01

    A previous study provided information regarding the quality of in-clinic veterinary biochemistry testing. However, no similar studies for in-clinic veterinary hematology testing have been conducted. The objective of this study was to assess the quality of hematology testing in veterinary in-clinic laboratories using results obtained from testing 3 levels of canine EDTA blood samples. Clinicians prepared blood samples to achieve measurand concentrations within, below, and above their RIs and evaluated the samples in triplicate using their in-clinic analyzers. Quality was assessed by comparison of calculated total error with quality requirements, determination of sigma metrics, use of a quality goal index, and agreement between in-clinic and reference laboratory instruments. Suitability for statistical quality control was determined using adaptations from the computerized program, EZRules3. Evaluation of 10 veterinary in-clinic hematology analyzers showed that these instruments often fail to meet quality requirements. At least 60% of analyzers reasonably determined RBC, WBC, HCT, and HGB, when assessed by most quality goal criteria; platelets were less reliably measured, with 80% deemed suitable for low platelet counts, but only 30% for high platelet counts, and automated differential leukocyte counts were generally considered unsuitable for clinical use with fewer than 40% of analyzers meeting the least stringent quality goal requirements. Fewer than 50% of analyzers were able to meet requirements for statistical quality control for any measurand. These findings reflect the current status of in-clinic hematology analyzer performance and provide a basis for future evaluations of the quality of veterinary laboratory testing. © 2016 American Society for Veterinary Clinical Pathology.

  4. Inclination flattening and the geocentric axial dipole hypothesis [rapid communication

    NASA Astrophysics Data System (ADS)

    Tauxe, Lisa

    2005-05-01

    William Gilbert first articulated what has come to be known as the geocentric axial dipole hypothesis. The GAD hypothesis is the principle on which paleogeographic reconstructions rely to constrain paleolatitude. For decades, there have been calls for permanent non-dipole contributions to the time-averaged field. Recently, these have demanded large contributions of the axial octupole, which, if valid, would call into question the general utility of the GAD hypothesis. In the process of geological recording of the geomagnetic field, "Earth filters" distort the directions. Many processes, for example, sedimentary inclination flattening and random tilting, can lead to a net shallowing of the observed direction. Therefore, inclinations that are shallower than expected from GAD can be explained by recording biases, northward transport, or non-dipole geomagnetic fields. Using paleomagnetic data from the last 5 million years from well-constrained lava flow data allows the construction of a statistical geomagnetic field model. Such a model can predict not only the average expected direction for a given latitude, but also the shape of the distribution of directions produced by secular variation. The elongation of predicted directions varies as a function of latitude (from significantly elongate in the up/down direction at the equator to circularly symmetric at the poles). Sedimentary inclination flattening also works in a predictable manner producing elongations that are stretched side to side and the degree of flattening depending on the inclination of the applied field and a "flattening factor" f. The twin tools of the predicted elongation/inclination relationship characteristic of the geomagnetic field for the past 5 million years and the distortion of the directions predicted from sedimentary inclination flattening allows us to find the flattening factor that yields corrected directions with an elongation and average inclination consistent with the statistical field

  5. Postural Control of Elderly Adults on Inclined Surfaces.

    PubMed

    da Costa Barbosa, Renata; Vieira, Marcus Fraga

    2017-03-01

    This study analyzed the postural control of older adults on inclined surfaces, and was conducted in 17 elderly adults and 18 young adults of both genders. Ground reaction forces and moments were collected using two AMTI force platforms, one of which was in a horizontal position (HOR), while the other was inclined 14° in relation to the horizontal plane. Each participant executed three 70 s-trials of bipedal standing with their eyes open and eyes closed in three inclination conditions: the HOR, the inclined position at ankle dorsi-flexion (UP), and the inclined position at ankle plantar-flexion (DOWN). Spectral analysis, global (mean velocity-Velm, ellipse area-Area and F80), and structural stabilometric descriptors (sway density curve-SDC, detrended fluctuation analysis-DFA, sample entropy-SEn) were employed to assess the center of pressure sway. Velm and F80 were greater for the elderly, whereas SDC, DFA, and SEn were smaller for this group. Global, SDC and DFA variables were sensitive to visual deprivation, however the relative difference from the EO to EC condition was higher in young than in elderly. The DOWN condition was more stable than the UP condition for both young and older adults. With regard to the UP condition, the challenge observed is essentially associated with the corresponding biomechanical constraints. In conclusion, the elderly showed significant differences compared to the young, but age per se may not necessarily result in compromised postural control.

  6. Origin of the Moon's orbital inclination from resonant disk interactions

    PubMed

    Ward; Canup

    2000-02-17

    The Moon is generally believed to have formed from the debris disk created by a large body colliding with the early Earth. Recent models of this process predict that the orbit of the newly formed Moon should be in, or very near, the Earth's equatorial plane. This prediction, however, is at odds with the known history of the lunar orbit: the orbit is currently expanding, but can be traced back in time to reveal that, when the Moon formed, its orbital inclination relative to the Earth's equator was I approximately = 10 degrees. The cause of this initial inclination has been a mystery for over 30 years, as most dynamical processes (such as those that act to flatten Saturn's rings) will tend to decrease orbital inclinations. Here we show that the Moon's substantial orbital inclination is probably a natural result of its formation from an impact-generated disk. The mechanism involves a gravitational resonance between the Moon and accretion-disk material, which can increase orbital inclinations up to approximately 15 degrees.

  7. TRANSIT PROBABILITIES FOR STARS WITH STELLAR INCLINATION CONSTRAINTS

    SciTech Connect

    Beatty, Thomas G.; Seager, Sara

    2010-04-01

    The probability that an exoplanet transits its host star is high for planets in close orbits, but drops off rapidly for increasing semimajor axes. This makes transit surveys for planets with large semimajor axes orbiting bright stars impractical, since one would need to continuously observe hundreds of stars that are spread out over the entire sky. One way to make such a survey tractable is to constrain the inclination of the stellar rotation axes in advance, and thereby enhance the transit probabilities. We derive transit probabilities for stars with stellar inclination constraints, considering a reasonable range of planetary system inclinations. We find that stellar inclination constraints can improve the transit probability by almost an order of magnitude for habitable-zone planets. When applied to an ensemble of stars, such constraints dramatically lower the number of stars that need to be observed in a targeted transit survey. We also consider multiplanet systems where only one planet has an identified transit and derive the transit probabilities for the second planet assuming a range of mutual planetary inclinations.

  8. Evolution of magnetic field inclination in a forming penumbra

    NASA Astrophysics Data System (ADS)

    Jurčák, Jan; Bello González, Nazaret; Schlichenmaier, Rolf; Rezaei, Reza

    2014-12-01

    As a sunspot penumbra forms, the magnetic field vector at the outer boundary of the protospot undergoes a transformation. We study the changes of the magnetic field vector at this boundary as a penumbral segment forms. We analyze a set of spectropolarimetric maps covering 2 hr during the formation of a sunspot in NOAA 11024. The data were recorded with the GFPI instrument attached to the German VTT. We observe a stationary umbra/quiet Sun boundary, where the magnetic field becomes more horizontal with time. The magnetic field inclination increases by 5°, reaching a maximum value of about 59°. The maximum inclination coincides with the onset of filament formation. In time, the penumbra filaments become longer and the penumbral bright grains protrude into the umbra, where the magnetic field is stronger and more vertical. Consequently, we observe a decrease in the magnetic field inclination at the boundary as the penumbra grows. In summary, in order to initiate the formation of the penumbra, the magnetic field at the umbral (protospot) boundary becomes more inclined. As the penumbra grows, the umbra/penumbra boundary migrates inwards, and at this boundary the magnetic field turns more vertical again, while it remains inclined in the outer penumbra.

  9. Flood and Debris Flow Hazard Predictions in Steep, Burned Landscapes

    NASA Astrophysics Data System (ADS)

    Rengers, Francis; McGuire, Luke; Kean, Jason; Staley, Dennis

    2016-04-01

    scale. The calibrated effective watershed hydraulic conductivity was low for both models, even for storms occurring several months after the fire, consistent with wildfire-induced water-repellency being retained throughout that time. Both models captured the timing of flow peaks, although neither model correctly simulated the flow depth. This study suggests that a kinematic wave model, which is simpler and more computationally efficient, is a justifiable approach for predicting flood and debris flow timing in steep, burned watersheds. By demonstrating the applicability of these models, this study takes an important step towards the development of process-based methods to assess post-wildfire flood and debris flow hazards.

  10. Effect of Wildfire on Sediment Sorting in a Steep Channel

    NASA Astrophysics Data System (ADS)

    Florsheim, J. L.; Chin, A.; O'Hirok, L.; Storesund, R.

    2014-12-01

    Wildfire is an external forcing factor in the landscape. In chaparral environments, wildfire initiates transport of well-sorted fine sediment through dry-ravel processes on hillslopes and facilitates delivery of sediment to stream channels. In turn, this periodic post-fire sediment influx governs sorting of channel-bed material during subsequent floods that mobilize and transport the sediment downstream. We investigated the effects of the May 2013 Springs Wildfire in the Santa Monica Mountains in semi-arid southern California with field measurements and terrestrial LiDAR scanning. Before the fire, sediment sorting within the heterogeneous bed material present in Big Sycamore Creek was controlled by organized step-pool bedforms. Boulders formed steps with relatively finer cobbles, gravel, and sand filling the pools. Before the fire, the grain size distribution present in the substrate between boulder steps was relatively coarse (D84 = 250 mm), in contrast to that in the influx of sediment contributed by post-fire dry-ravel processes deposited at channel margins (D84 = 8 mm). Flow shear stress during one small flood in 2014 (post-fire) was adequate to mobilize fine dry ravel- related sediment. Transport capacity was sufficient to mobilize and transport this sediment within a study reach; however, it was not adequate to flush the fine material downstream. Shear stress required to mobilize sediment contributed by dry ravel was substantially less than that required to transport the substrate material present before the wildfire. The small flood deposited fine sediment (D84 = 16 mm) as flow lost capacity. Resulting deposition buried bedforms, changing the step-pool profile to a plane bed. The relatively poorly sorted, coarse, rough bed changed to a well sorted, fine, smooth, bed. These changes have implications for sediment transport dynamics and aquatic ecology. In steep, semi-arid, chaparral fluvial systems, sediment derived from dry-ravel processes influences the

  11. On the inclination and habitability of the HD 10180 system

    SciTech Connect

    Kane, Stephen R.; Gelino, Dawn M.

    2014-09-10

    There are numerous multi-planet systems that have now been detected via a variety of techniques. These systems exhibit a range of both planetary properties and orbital configurations. For those systems without detected planetary transits, a significant unknown factor is the orbital inclination. This produces an uncertainty in the mass of the planets and their related properties, such as atmospheric scale height. Here we investigate the HD 10180 system, which was discovered using the radial velocity technique. We provide a new orbital solution for the system which allows for eccentric orbits for all planets. We show how the inclination of the system affects the mass/radius properties of the planets and how the detection of phase signatures may resolve the inclination ambiguity. We finally evaluate the Habitable Zone properties of the system and show that the g planet spends 100% of an eccentric orbit within the Habitable Zone.

  12. Interplay between geometry and temperature for inclined Casimir plates

    SciTech Connect

    Weber, Alexej; Gies, Holger

    2009-09-15

    We provide further evidence for the nontrivial interplay between geometry and temperature in the Casimir effect. We investigate the temperature dependence of the Casimir force between an inclined semi-infinite plate above an infinite plate in D dimensions using the worldline formalism. Whereas the high-temperature behavior is always found to be linear in T in accordance with dimensional-reduction arguments, different power-law behaviors at small temperatures emerge. Unlike the case of infinite parallel plates, which shows the well-known T{sup D} behavior of the force, we find a T{sup D-1} behavior for inclined plates, and a {approx}T{sup D-0.3} behavior for the edge effect in the limit where the plates become parallel. The strongest temperature dependence {approx}T{sup D-2} occurs for the Casimir torque of inclined plates. Numerical as well as analytical worldline results are presented.

  13. High speed confined granular flows down inclined: numerical simulations

    NASA Astrophysics Data System (ADS)

    Ralaiarisoa, Velotiana Jean-Luc; Valance, Alexandre; Brodu, Nicolas; Delannay, Renaud

    2017-06-01

    New regimes in high-speed confined granular flows down inclined have recently been obtained in numerical simulations [1]. Increasing the angle of inclination reveals the destabilization of the well known unidirectional flows. Longitudinal rolls first appear. Upon further increase of the angle, a new regime, called supported, is observed. It is characterized by a dense core surrounded by granular gas. These numerical simulations have been performed for a fixed confinement width, W = 68D, where D is the size of the grains. Here, we perform numerical simulations with a smaller value of the confinement width: W = 34D. In spite of this strong confinement, we observe the transitions to the same regimes (rolls and then supported) by increasing the inclination angle. We characterize these transitions and highlight the robustness of the mass flow rate scaling law discovered in [1].

  14. Drop motion due to oscillations of an inclined substrate

    NASA Astrophysics Data System (ADS)

    Xia, Yi; Chang, Chun-Ti; Daniel, Susan; Steen, Paul

    2014-11-01

    A sessile drop on a stationary inclined substrate remains pinned unless the angle of inclination is greater than some critical value. Alternatively, when shaken at even small angles of inclination, the drop undergoes shape deflections which may lead to drop translation. Translation occurs when large contact angle fluctuations, favored by oscillations at resonance, overcome contact angle hysteresis. In this study, resonance is triggered by substrate-normal oscillations. The drop translation is typically observed to be of constant speed for a given set of parameters. The speed is measured experimentally as a function of resonance mode, driving amplitude and drop volume. This technique of activating the motion of drops having a particular volume can be utilized for applications of droplet selection and transport.

  15. Synchrotron radiation computed laminography using an inclined detector.

    PubMed

    Zhang, Jie; Li, Gang; Yi, Qiru; Chen, Yu; Gao, Zhenhua; Jiang, Xiaoming

    2015-01-01

    Synchrotron radiation computed laminography (SR-CL) has been in use in three-dimensional non-destructive imaging of flat objects for several years. A new set-up is proposed based on the traditional SR-CL method but with the detector inclined at the same angle as the sample inclination to collect projections. The results of computer simulations and real-sample experiments demonstrate that reconstructions acquired using an inclined detector are of better quality compared with those acquired using ordinary detecting methods, especially for the situation of few projections and small difference of attenuation ratio of the sample. This method could be applied to obtain high-quality images of weak-contrast samples with short measurement time and mild radiation damage.

  16. TRANSIT TIMING VARIATIONS FOR INCLINED AND RETROGRADE EXOPLANETARY SYSTEMS

    SciTech Connect

    Payne, Matthew J.; Ford, Eric B.; Veras, Dimitri

    2010-03-20

    We perform numerical calculations of the expected transit timing variations (TTVs) induced on a hot-Jupiter by an Earth-mass perturber. Motivated by the recent discoveries of retrograde transiting planets, we concentrate on an investigation of the effect of varying relative planetary inclinations, up to and including completely retrograde systems. We find that planets in low-order (e.g., 2:1) mean-motion resonances (MMRs) retain approximately constant TTV amplitudes for 0 deg. < i < 170 deg., only reducing in amplitude for i>170 deg. Systems in higher order MMRs (e.g., 5:1) increase in TTV amplitude as inclinations increase toward 45 deg., becoming approximately constant for 45 deg. < i < 135 deg., and then declining for i>135 deg. Planets away from resonance slowly decrease in TTV amplitude as inclinations increase from 0 deg. to 180 deg., whereas planets adjacent to resonances can exhibit a huge range of variability in TTV amplitude as a function of both eccentricity and inclination. For highly retrograde systems (135 deg. < i {<=} 180 deg.), TTV signals will be undetectable across almost the entirety of parameter space, with the exceptions occurring when the perturber has high eccentricity or is very close to an MMR. This high inclination decrease in TTV amplitude (on and away from resonance) is important for the analysis of the known retrograde and multi-planet transiting systems, as inclination effects need to be considered if TTVs are to be used to exclude the presence of any putative planetary companions: absence of evidence is not evidence of absence.

  17. Excitation of the orbital inclination of Iapetus during planetary encounters

    SciTech Connect

    Nesvorný, David; Vokrouhlický, David; Deienno, Rogerio; Walsh, Kevin J.

    2014-09-01

    Saturn's moon, Iapetus, has an orbit in a transition region where the Laplace surface is bending from the equator to the orbital plane of Saturn. The orbital inclination of Iapetus to the local Laplace plane is ≅ 8°, which is unexpected because the inclination should be ≅ 0 if Iapetus formed from a circumplanetary disk on the Laplace surface. It thus appears that some process has pumped up Iapetus's inclination while leaving its eccentricity near zero (e ≅ 0.03 at present). Here, we examined the possibility that Iapetus's inclination was excited during the early solar system instability when encounters between Saturn and ice giants occurred. We found that the dynamical effects of planetary encounters on Iapetus's orbit sensitively depend on the distance of the few closest encounters. In 4 out of 10 instability cases studied here, the orbital perturbations were too large to be plausible. In one case, Iapetus's orbit was practically unaffected. In the remaining five cases, the perturbations of Iapetus's inclination were adequate to explain its present value. In three of these cases, however, Iapetus's eccentricity was excited to >0.1-0.25, and it is not clear whether it could have been damped to its present value (≅ 0.03) by a subsequent process (e.g., tides and dynamical friction from captured irregular satellites do not seem to be strong enough). Our results therefore imply that only 2 out of 10 instability cases (∼20%) can excite Iapetus's inclination to its current value (∼30% of trials lead to >5°) while leaving its orbital eccentricity low.

  18. A study of intermittent flow in downward inclined pipes

    SciTech Connect

    Yang, J.; Sarica, C.; Chen, X.; Brill, J.P.

    1996-12-31

    The downward simultaneous flow of gas and liquid is often encountered in hilly terrain pipelines and steam injection wells. Most of the available methods for predicting the behavior of gas-liquid flow in pipes have been developed for horizontal and upward inclined pipes. In this study, co-current steady state slug flow in downward inclined pipes is investigated, experimentally and theoretically. A series of slug flow experiments are conducted with an air-kerosene system in a 2-in. diameter, 75-ft long pipe installed on an inclinable structure. Liquid holdup and pressure drop measurements are obtained for downward inclination angles from 0{degree} to {minus}90{degree} at different flow conditions. Correlations for slug flow characteristics are obtained based on the experimental data. A mechanistic model based on a unit cell approach has been proposed for the prediction of the detailed slug structure, and subsequently the pressure gradient. Fully developed slug flow could not be observed from {minus}50{degree} to {minus}90{degree}. A correlation was obtained for slug liquid holdup, and an analytical model and a correlation were developed for slug translational velocity. The lognormal distribution was found to best fit all the experimental slug length data. Equations for mean and design slug length were derived from the lognormal distribution function for inclination angles ranging from 0{degree} to {minus}30{degree}. A slug frequency correlation was also developed. The model can be used to predict intermittent flow behavior in downward inclined pipes. The correlations for slug liquid holdup, slug translational velocity, and slug length and frequency are closure relationships applicable to any model. Slug frequency information is also imperative for erosion and corrosion rate predictions.

  19. Inclined heterolithic stratification—Terminology, description, interpretation and significance

    NASA Astrophysics Data System (ADS)

    Thomas, Richard G.; Smith, Derald G.; Wood, James M.; Visser, John; Calverley-Range, E. Anne; Koster, Emlyn H.

    1987-06-01

    Parallel to sub-parallel strata possessing original (depositional) dips occur within both lithologically "homogeneous" and "heterogeneous" units of water-lain, siliciclastic sedimentary sequences. Most such inclined strata form as a result of the lateral growth of "active", large-scale "bedforms" such as point bars or Gilbert-type deltas. The confusing diversity of terms previously used to describe inclined stratified deposits is reviewed. Virtually all these terms, including epsilon-cross-stratification and its derivatives are unsatisfactory because they are non-descriptive and/or communicate an overt genetic bias. The names Inclined Heterolithic Stratification (IHS) and Inclined Stratification (IS) are proposed as replacements. To facilitate comparison of IHS deposits a "standard" descriptive nomenclature is also proposed. IHS may occur as solitary sets or show vertical or lateral stacking forming cosets. Co-directional laterally stacked sets constitute an imbricate coset. Composite sets are those in which IHS sequences gradationally overlie inclined-stratified lithofacies units (typically sandstones). Individual inclined units comprising IHS sets may be either normally graded or (more commonly) consist of two distinct lithological members ar anged as a coarse-to-fine couplet. Inclined units are separated by inclined surfaces indicative of non-deposition or erosion. Published examples of modern and ancient IHS deposits are known or inferred to occur in a variety of environments, but the overwhelming majority are products of point-bar lateral accretion within meandering channels of freshwater rivers, tidally influenced rivers and creeks draining intertidal mudflats. Descriptions are given of the most characteristic and important (from an interpretation standpoint) physical features of point-bar IHS deposits and their probable modes of origin. Deposits predominantly composed of sand and mud layers arranged as coarse-to-fine couplets are emphasized. Factors thought

  20. Assurance Arguments for the Non-Graphically-Inclined: Two Approaches

    NASA Technical Reports Server (NTRS)

    Heavner, Emily; Holloway, C. Michael

    2017-01-01

    We introduce and discuss two approaches to presenting assurance arguments. One approach is based on a monograph structure, while the other is based on a tabular structure. In today's research and academic setting, assurance cases often use a graphical notation; however for people who are not graphically inclined, these notations can be difficult to read. This document proposes, outlines, explains, and presents examples of two non-graphical assurance argument notations that may be appropriate for non-graphically-inclined readers and also provide argument writers with freedom to add details and manipulate an argument in multiple ways.

  1. Boxy/Peanut/X-Shaped Bulges: Steep Inner Rotation Curve Leads to Barlens Face-on Morphology

    NASA Astrophysics Data System (ADS)

    Salo, H.; Laurikainen, E.

    2017-02-01

    We use stellar dynamical bulge/disk/halo simulations to study whether barlenses (lens-like structures embedded in the narrow bar component) are only the face-on counterparts of Boxy/Peanut/X-shapes (B/P/X) seen in edge-on bars, or if some additional physical parameter affects that morphology. A range of bulge-to-disk mass and size ratios are explored: our nominal parameters (B/D=0.08, {r}{eff}/{h}r=0.07, disk comprising two-thirds of total force at 2.2{h}r) correspond to typical Milky Way mass galaxies. In all models, a bar with pronounced B/P/X forms in a few Gyr, visible in the edge-on view. However, the pure barlens morphology forms only in models with sufficiently steep inner rotation curves, {{dV}}{cir}/{dr}≳ 5{V}\\max /{h}r, achieved when including a small classical bulge with B/D≳ 0.02 and {r}{eff}/{h}r≲ 0.1. For shallower slopes, the central structure still resembles a barlens, but shows a clear X signature even in low inclinations. A similar result holds for bulge-less simulations, where the central slope is modified by changing the halo concentration. The predicted sensitivity on the inner rotation curve is consistent with the slopes that are estimated from gravitational potentials calculated from the 3.6 μm images, for the observed barlens and X-shaped galaxies in the Spitzer Survey of Stellar Structure in Galaxies (S4G). For inclinations <60° the galaxies with barlenses have on average twice steeper inner rotation curves than galaxies with X shapes: the limiting slope is ˜250 km s-1 kpc-1. Among barred galaxies, those with barlenses have both the strongest bars and the largest relative excess of inner surface density, both in barlens regions (≲ 0.5{h}r) and near the center (≲ 0.1{h}r); this provides evidence for bar-driven secular evolution in galaxies.

  2. Critical Shields Values in Coarse-Bedded Steep Streams

    NASA Astrophysics Data System (ADS)

    Bunte, K.; Abt, S. R.; Swingle, K. W.; Cenderelli, D. A.; Schneider, J. M.

    2013-12-01

    Critical Shields values for poorly mobile, semi-alluvial mountain streams are not provided by the original Shields diagram and are still debated. This empirical study uses gravel bedload samples collected with unbiasing samplers at 22 stream sites and establishes a relation between instantaneous discharge and the largest sampled bedload particle size for each site. Using relations between flow depth and discharge, critical Shields values for particle sizes corresponding to the bed surface D50, D16, D84, and D50s sizes at each site can be backcomputed from the established critical flow or flow competence relations. Critical Shields values for all bed material particle size percentiles increase with stream gradient Sx and are stratifiable by relative flow depth d/D50 and relative roughness (D84/d) which improves prediction. Critical Shields values for the bed D16 sizes (τ*c16) are approximately three times larger than those for the D50 size (τ*c50), while those for the D84 size (τ*c84) are approximately half of τ*c50. It remains unclear to what extent physical processes or numerical artifacts contribute to determining critical Shields values. Specific critical Shields values are needed to predict the average largest particle size mobile at bankfull flow (DBmax,bf). So far, no Shields values are available for this common task, especially not in poorly mobile semi-alluvial streams. Critical bankfull Shields values (τ*cbf) backcomputed from the largest particles transported at bankfull flow approach τ*c16 at steep gradient streams and τ*c84 at low gradients and therefore increase very steeply with Sx. The relation τ*cbf = f(Sx) is stratified by bed mobility D50/DBmax,bf and predictable if bed mobility can be categorized in the field. Non-critical Shields values (τ*bf50) computed from bankfull flow depth and the bed surface D50 size differ from τ*c50 and from critical bankfull Shields values τ*cbf. Only in bankfull mobile streams where D50/DBmax,bf = 1 can

  3. Numerical verification of the steepness of three and four degrees of freedom Hamiltonian systems

    NASA Astrophysics Data System (ADS)

    Schirinzi, Gabriella; Guzzo, Massimiliano

    2015-01-01

    We describe a new algorithm for the numerical verification of steepness, a necessary property for the application of Nekhoroshev's theorem, of functions of three and four variables. Specifically, by analyzing the Taylor expansion of order four, the algorithm analyzes the steepness of functions whose Taylor expansion of order three is not steep. In this way, we provide numerical evidence of steepness of the Birkhoff normal form around the Lagrangian equilibrium points L4-L5 of the spatial restricted three-body problem (for the only value of the reduced mass for which the Nekhoroshev stability was still unknown), and of the four-degrees-of-freedom Hamiltonian system obtained from the Fermi-Pasta-Ulam problem by setting the number of particles equal to four.

  4. Inclined Planes and Motion Detectors: A Study of Acceleration.

    ERIC Educational Resources Information Center

    Tracy, Dyanne M.

    2001-01-01

    Presents an activity in which students work in cooperative groups and roll balls down inclined planes, collect data with the help of an electronic motion detector, and represent data with a graphing calculator to explore concepts such as mass, gravity, velocity, and acceleration. (Contains 12 references.) (Author/ASK)

  5. Motion on an Inclined Plane and the Nature of Science

    ERIC Educational Resources Information Center

    Pendrill, Ann-Marie; Ekström, Peter; Hansson, Lena; Mars, Patrik; Ouattara, Lassana; Ryan, Ulrika

    2014-01-01

    Friction is an important phenomenon in everyday life. All children are familiar with playground slides, which may thus be a good starting point for investigating friction. Motion on an inclined plane is a standard physics example. This paper presents an investigation of friction by a group of 11-year olds. How did they plan their investigations?…

  6. 85. INCLINED PLANE 7 EAST. FLUME AND STONE POWER HOUSE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    85. INCLINED PLANE 7 EAST. FLUME AND STONE POWER HOUSE ARE ON RIGHT SIDE OF PHOTOGRAPH. NOTE THE CABLE LEAVING THE POWER HOUSE. THIS CABLE IS ATTATCHED TO A DRUM ON THE INSIDE THE POWER HOUSE WHICH IS TURNED BY MEANS OF A WATER POWERED TURBINE. - Morris Canal, Phillipsburg, Warren County, NJ

  7. Reconstruction of Galileo Galilei's Experiment: The Inclined Plane

    ERIC Educational Resources Information Center

    Straulino, S.

    2008-01-01

    In the "Third Day" of the "Discourses and Mathematical Demonstrations Concerning Two New Sciences" Galileo Galilei describes the famous experiment of the inclined plane and uses it to bring an experimental confirmation to the laws of uniformly accelerated motion. We describe a reconstruction of the experiment and how the results can be used for…

  8. TRANSIT TIMING VARIATIONS FOR ECCENTRIC AND INCLINED EXOPLANETS

    SciTech Connect

    Nesvorny, David

    2009-08-20

    The Transit Timing Variation (TTV) method relies on monitoring changes in timing of transits of known exoplanets. Nontransiting planets in the system can be inferred from TTVs by their gravitational interactions with the transiting planet. The TTV method is sensitive to low-mass planets that cannot be detected by other means. Inferring the orbital elements and mass of the nontransiting planets from TTVs, however, is more challenging than for other planet detection schemes. It is a difficult inverse problem. Here, we extended the new inversion method proposed by Nesvorny and Morbidelli to eccentric transiting planets and inclined orbits. We found that the TTV signal can be significantly amplified for hierarchical planetary systems with substantial orbital inclinations and/or for an eccentric transiting planet with anti-aligned orbit of the planetary companion. Thus, a fortuitous orbital setup of an exoplanetary system may significantly enhance our chances of TTV detection. We also showed that the detailed shape of the TTV signal is sensitive to the orbital inclination of the nontransiting planetary companion. The TTV detection method may thus provide important constraints on the orbital inclination of exoplanets and be used to test theories of planetary formation and evolution.

  9. Analysis of aerodynamic noise generated from inclined circular cylinder

    NASA Astrophysics Data System (ADS)

    Haramoto, Yasutake; Yasuda, Shouji; Matsuzaki, Kazuyoshi; Munekata, Mizue; Ohba, Hideki

    2000-06-01

    Making clear the generation mechanism of fluid dynamic noise is essential to reduce noise deriving from turbomachinery. The analysis of the aerodynamic noise generated from circular cylinder is carried out numerically and experimentally in a low noise wind tunnel. In this study, aerodynamic sound radiated from a circular cylinder in uniform flow is predicted numerically by the following two step method. First, the three-dimensional unsteady incompressible Navier-Stokes equation is solved using the high order accurate upwind scheme. Next, the sound pressure level at the observed point is calculated from the fluctuating surface pressure on the cylinder, based on modified Lighthill-Curl’s equation. It is worth to note that the noise generated from the model is reduced rapidly when it is inclined against the mean flow. In other words, the peak level of the radiated noise decreases rapidly with inclination of the circular cylinder. The simulated SPL for the inclined circular cylinder is compared with the measured value, and good agreement is obtained for the peak spectrum frequency of the sound pressure level and tendency of noise reduction. So we expect that the change of flow structures makes reduction of the aerodynamic noise from the inclined models.

  10. 46 CFR 111.01-19 - Inclination of the vessel.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS General § 111.01-19 Inclination of the vessel. (a) All electrical equipment must be.... Additionally, electrical equipment necessary for the maneuvering, navigation, and safety of the vessel or its...

  11. Motion on an Inclined Plane and the Nature of Science

    ERIC Educational Resources Information Center

    Pendrill, Ann-Marie; Ekström, Peter; Hansson, Lena; Mars, Patrik; Ouattara, Lassana; Ryan, Ulrika

    2014-01-01

    Friction is an important phenomenon in everyday life. All children are familiar with playground slides, which may thus be a good starting point for investigating friction. Motion on an inclined plane is a standard physics example. This paper presents an investigation of friction by a group of 11-year olds. How did they plan their investigations?…

  12. 46 CFR 111.01-19 - Inclination of the vessel.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS General § 111.01-19 Inclination of the vessel. (a) All electrical equipment must be.... Additionally, electrical equipment necessary for the maneuvering, navigation, and safety of the vessel or...

  13. 46 CFR 111.01-19 - Inclination of the vessel.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS General § 111.01-19 Inclination of the vessel. (a) All electrical equipment must be.... Additionally, electrical equipment necessary for the maneuvering, navigation, and safety of the vessel or...

  14. 46 CFR 111.01-19 - Inclination of the vessel.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS General § 111.01-19 Inclination of the vessel. (a) All electrical equipment must be.... Additionally, electrical equipment necessary for the maneuvering, navigation, and safety of the vessel or...

  15. 1. SAND DRAINING & DRYING BUILDING (RIGHT), COVERED INCLINE CONVEYOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. SAND DRAINING & DRYING BUILDING (RIGHT), COVERED INCLINE CONVEYOR (LOWER RIGHT) THAT EXTENDS TO THE SAND-SORTING BUILDING, AND REMAINS OF ORIGINAL (1917) WASHING, DRAINING & DRYING BUILDING (LEFT), VIEW LOOKING WEST FROM TOP OF SAND-SORTING BUILDING - Mill "C" Complex, Sand Draining & Drying Building, South of Dee Bennet Road, near Illinois River, Ottawa, La Salle County, IL

  16. Experimental free convection heat transfer from inclined square cylinders

    NASA Astrophysics Data System (ADS)

    Ali, Mohamed

    2016-10-01

    Natural convection from axisymmetric objects such as vertical or horizontal cylinders and spheres are two dimensional. However, for inclined circular or noncircular cylinders the flow and heat transfer is three dimensional and hence more complex and needs more attention. This study investigates the steady state mechanism of natural convection from inclined square cylinders in air. Five different cylinders of 1 m length, 8 × 8, 7 × 7, 6 × 6, 4 × 4 and 2.5 × 2.5 cm2 cross sections are used. The cylinders are heated using inserted heating element of 6 mm in diameter. Self-adhesive thermocouples are used at the upper, bottom and at one side of the cylinders for temperature measurement. Three inclination angles to the horizontal 30, 45 and 60o are used for each cylinder with uniform heat flux boundary conditions. For each cylinder, about ten heat fluxes are used to generate the heat transfer data. Local and average heat transfer coefficient is determined for each cylinder at each inclination angle for each uniform heat flux. Laminar and transition to turbulent regimes are obtained and characterized. Local critical axial distance where heat transfer coefficient changes the mode is obtained for each heat flux. Local and averaged Nusselt numbers are correlated with the modified Rayleigh numbers for all angles.

  17. Inclined Planes and Motion Detectors: A Study of Acceleration.

    ERIC Educational Resources Information Center

    Tracy, Dyanne M.

    2001-01-01

    Presents an activity in which students work in cooperative groups and roll balls down inclined planes, collect data with the help of an electronic motion detector, and represent data with a graphing calculator to explore concepts such as mass, gravity, velocity, and acceleration. (Contains 12 references.) (Author/ASK)

  18. Transit Timing Variations for Eccentric and Inclined Exoplanets

    NASA Astrophysics Data System (ADS)

    Nesvorný, David

    2009-08-01

    The Transit Timing Variation (TTV) method relies on monitoring changes in timing of transits of known exoplanets. Nontransiting planets in the system can be inferred from TTVs by their gravitational interactions with the transiting planet. The TTV method is sensitive to low-mass planets that cannot be detected by other means. Inferring the orbital elements and mass of the nontransiting planets from TTVs, however, is more challenging than for other planet detection schemes. It is a difficult inverse problem. Here, we extended the new inversion method proposed by Nesvorný & Morbidelli to eccentric transiting planets and inclined orbits. We found that the TTV signal can be significantly amplified for hierarchical planetary systems with substantial orbital inclinations and/or for an eccentric transiting planet with anti-aligned orbit of the planetary companion. Thus, a fortuitous orbital setup of an exoplanetary system may significantly enhance our chances of TTV detection. We also showed that the detailed shape of the TTV signal is sensitive to the orbital inclination of the nontransiting planetary companion. The TTV detection method may thus provide important constraints on the orbital inclination of exoplanets and be used to test theories of planetary formation and evolution.

  19. Density-Driven Convection with an Inclined Boundary

    NASA Astrophysics Data System (ADS)

    Tsai, Peichun; Al-Housseiny, Talal; Zheng, Zhong; Stone, Howard

    2011-11-01

    We experimentally investigate convective instability and transport in a Hele-Shaw geometry and in a porous medium with inclined boundaries. The initial fluid configuration is buoyantly stable: a lighter liquid is placed above a dense one. The convection is generated by the dissolution of the two liquids which results in a heavier fluid layer at the interface, advecting into the underlaid, lighter fluid. Phenomenologically, in a vertical cell, heavier, mushroom-like plumes mostly travel downward and then partially merge. In contrast, in an inclined cell, the dense fingerings initially transport vertically downward and subsequently tilt and move laterally due to the inclined boundaries. We examine the width, wavelength, and dynamics of the dense plumes. We find that the tilting angle of the inclined boundary profoundly affects the dynamics of the density-driven plumes. In addition, the permeability of the porous media strongly changes the convective rate. These findings show key implications for geological carbon dioxide (CO2) storage in a silane aquifer when the dissolved CO2 into brine produces a heavier mixture with an enhancement of the mass transfer by convection.

  20. Shade avoidance and the regulation of leaf inclination in Arabidopsis.

    PubMed

    Mullen, Jack L; Weinig, Cynthia; Hangarter, Roger P

    2006-06-01

    As a rosette plant, Arabidopsis thaliana forms leaves near to the ground, which causes the plant to be vulnerable to shading by neighbours. One mechanism to avoid such shading is the regulation of leaf inclination, such that leaves can be raised to more vertical orientations to prevent neighbouring leaves from overtopping them. Throughout Arabidopsis rosette development, rosette leaves move to more vertical orientations when shaded by neighbouring leaves, exposed to low light levels or placed in the dark. After dark-induced reorientation of leaves, returning them to white light causes the leaves to reorient to more horizontal inclinations. These light-dependent leaf movements are more robust than, and distinct from, the diurnal movements of rosette leaves. However, the movements are gated by the circadian clock. The light-dependent leaf orientation response is mediated primarily through phytochromes A, B and E, with the orientation varying with the ratio of red light to far-red light, consistent with other shade-avoidance responses. However, even plants lacking these phytochromes were able to alter leaf inclination in response to white light, suggesting a role for other photoreceptors. In particular, we found significant changes in leaf inclination for plants exposed to green light. This green light response may be caused, in part, by light-dependent regulation of abscisic acid (ABA) biosynthesis.

  1. DETAIL VIEW LOOKING EAST. VIEW SHOWS AN INCLINED SEGMENT OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW LOOKING EAST. VIEW SHOWS AN INCLINED SEGMENT OF THE TOW PATH RUNNING PARALLEL TO LOCK 67. THE BOAT ON DISPLAY IS THE CANAL INSPECTION BOAT LOCKPORT. - New York State Barge Canal, Lockport Locks, Richmond Avenue, Lockport, Niagara County, NY

  2. Ethical Inclinations of Tomorrow's Managers: One More Time.

    ERIC Educational Resources Information Center

    Stevens, George E.

    1985-01-01

    This article reports comparison of the results of the ethical inclinations of present and future managers. Three hundred and six undergraduate business majors completed the survey. Results and implications are presented, along with a discussion of the ethics of future executives. (CT)

  3. South portal and deck view from south, showing inclined endposts, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    South portal and deck view from south, showing inclined endposts, Pratt through trusses, south portal strut, overhead bracing, pipe rails and posts, and concrete deck with bituminous wearing surface - Castle Garden Bridge, Township Route 343 over Bennetts Branch of Sinnemahoning Creek, Driftwood, Cameron County, PA

  4. North portal and deck view, from north, showing inclined endposts, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    North portal and deck view, from north, showing inclined endposts, Pratt through trusses, north portal strut, overhead bracing, pipe rails and posts, and concrete deck with bituminous wearing surface - Castle Garden Bridge, Township Route 343 over Bennetts Branch of Sinnemahoning Creek, Driftwood, Cameron County, PA

  5. 11. VIEW SOUTHEAST, DETAIL OF INCLINED END POST, SHOWING CASTIRON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. VIEW SOUTHEAST, DETAIL OF INCLINED END POST, SHOWING CAST-IRON WEDGE SET INTO LOWER CHORD; FLOOR-BEAM HANGER BLOCKS TO LEFT - Meeting House Bridge, Spanning Boston & Maine Railroad 0.1 mile east of Biddleford Road, Arundel, York County, ME

  6. Numerical model for unsteady airflow in inclined human trachea

    NASA Astrophysics Data System (ADS)

    Alnussairy, Esam A.; Bakheet, Ahmed; Mustapha, Norzieha; Amin, Norsarahaida

    2017-04-01

    Achieving an accurate and efficient model for inclined bed therapy is ever-demanding. A new mathematical model for simulating airflow inside human trachea under resting and normal breathing scenario, where the influence of inclination angle on the unsteady flow is determined. The governing equations of motion consisting of unsteady, nonlinear, non-homogenous, Navier-Stokes equations are derived and numerically solved using the Marker and Cell method in Matlab code. Two-dimensional cylindrical coordinate system with appropriate initial and boundary conditions are used. The discretization is performed on uniform staggered grids. The pressure is calculated iteratively using the Successive-Over-Relaxation method. Quantities including the wall pressure, pressure drop, axial and radial velocity, volumetric flow rate, flow resistance and streamlines of airflow patterns are computed. The computed axial velocities for the horizontal position are agreed when compared with other experimental and numerical findings. An increase in the inclination angle is found to diminish the pressure drop inside the trachea. Thus, it generated a higher negative pressure in the lungs. Simulation results are demonstrated to be accurate when compared with the real situation. Excellent features of the results suggest that the proposed model based simulation procedure may contribute towards the development of precise and effective inclined bed therapy.

  7. Students' Entrepreneurial Inclination at a Malaysian Polytechnic: A Preliminary Investigation

    ERIC Educational Resources Information Center

    Yasin, Ahmad Yasruddin Md; Mahmood, Nik Abdul Aziz Nik; Jaafar, Nik Azyyati Nik

    2011-01-01

    This paper reports preliminary results of an ongoing project to examine students' inclination towards entrepreneurship at a Malaysian polytechnic. The study used a self-administered questionnaire to explore the influence of entrepreneurial intent, perceived behavioral control, self-efficacy, perceived barriers, perceived support factors and…

  8. 46 CFR 108.159 - Stairways and exterior inclined ladders.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Stairways and exterior inclined ladders. 108.159 Section 108.159 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Construction and Arrangement Means of Escape § 108.159 Stairways and...

  9. 46 CFR 108.159 - Stairways and exterior inclined ladders.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Stairways and exterior inclined ladders. 108.159 Section 108.159 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Construction and Arrangement Means of Escape § 108.159 Stairways and...

  10. Experimental free convection heat transfer from inclined square cylinders

    NASA Astrophysics Data System (ADS)

    Ali, Mohamed

    2017-05-01

    Natural convection from axisymmetric objects such as vertical or horizontal cylinders and spheres are two dimensional. However, for inclined circular or noncircular cylinders the flow and heat transfer is three dimensional and hence more complex and needs more attention. This study investigates the steady state mechanism of natural convection from inclined square cylinders in air. Five different cylinders of 1 m length, 8 × 8, 7 × 7, 6 × 6, 4 × 4 and 2.5 × 2.5 cm2 cross sections are used. The cylinders are heated using inserted heating element of 6 mm in diameter. Self-adhesive thermocouples are used at the upper, bottom and at one side of the cylinders for temperature measurement. Three inclination angles to the horizontal 30, 45 and 60o are used for each cylinder with uniform heat flux boundary conditions. For each cylinder, about ten heat fluxes are used to generate the heat transfer data. Local and average heat transfer coefficient is determined for each cylinder at each inclination angle for each uniform heat flux. Laminar and transition to turbulent regimes are obtained and characterized. Local critical axial distance where heat transfer coefficient changes the mode is obtained for each heat flux. Local and averaged Nusselt numbers are correlated with the modified Rayleigh numbers for all angles.

  11. Investigations of the radio signal of inclined showers with LOPES

    NASA Astrophysics Data System (ADS)

    Saftoiu, A.; Apel, W. D.; Arteaga, J. C.; Asch, T.; Bähren, L.; Bekk, K.; Bertaina, M.; Biermann, P. L.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Buchholz, P.; Buitink, S.; Cantoni, E.; Chiavassa, A.; Daumiller, K.; de Souza, V.; Doll, P.; Engel, R.; Falcke, H.; Finger, M.; Fuhrmann, D.; Gemmeke, H.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Horneffer, A.; Huber, D.; Huege, T.; Isar, P. G.; Kampert, K.-H.; Kang, D.; Krömer, O.; Kuijpers, J.; Lafebre, S.; Link, K.; Łuczak, P.; Ludwig, M.; Mathes, H. J.; Melissas, M.; Morello, C.; Nehls, S.; Oehlschläger, J.; Palmieri, N.; Pierog, T.; Rautenberg, J.; Rebel, H.; Roth, M.; Rühle, C.; Schieler, H.; Schmidt, A.; Schröder, F. G.; Sima, O.; Toma, G.; Trinchero, G. C.; Weindl, A.; Wochele, J.; Wommer, M.; Zabierowski, J.; Zensus, J. A.

    2012-01-01

    We report in this paper on an analysis of 20 months of data taken with LOPES. LOPES is radio antenna array set-up in coincidence with the Grande array, both located at the Karlsruhe Institute of Technology, Germany. The data used in this analysis were taken with an antenna configuration composed of 30 inverted V-shape dipole antennas.We have restricted the analysis to a special selection of inclined showers—with zenith angle θ>40∘. These inclined showers are of particular interest because they are the events with the largest geomagnetic angles and are therefore suitable to test emission models based on geomagnetic effects.The reconstruction procedure of the emitted radio signal in EAS uses as one ingredient the frequency-dependent antenna gain pattern which is obtained from simulations. Effects of the applied antenna model in the calibration procedure of LOPES are studied. In particular, we have focused on one component of the antenna, a metal pedestal, which generates a resonance effect, a peak in the amplification pattern where it is the most affecting high zenith angles, i.e. inclined showers.In addition, polarization characteristics of inclined showers were studied in detail and compared with the features of more vertical showers for the two cases of antenna models, with and without the pedestal.

  12. Reconstruction of Galileo Galilei's Experiment: The Inclined Plane

    ERIC Educational Resources Information Center

    Straulino, S.

    2008-01-01

    In the "Third Day" of the "Discourses and Mathematical Demonstrations Concerning Two New Sciences" Galileo Galilei describes the famous experiment of the inclined plane and uses it to bring an experimental confirmation to the laws of uniformly accelerated motion. We describe a reconstruction of the experiment and how the results can be used for…

  13. The electrical breakdown characteristics of oil-paper insulation under steep front impulse voltages

    SciTech Connect

    Vandermaar, A.J.; Wang, M.; Neilson, J.B. ); Srivastava, K.D. )

    1994-10-01

    Disconnecting switch operations in gas insulated equipment cause transient voltages with rise times as steep as 5 to 20 nanoseconds and magnitudes as high as 2.5 pu. There is very little information on the effect of these transients on oil-paper insulated equipment. There have been reports, however of transformer and bushing failures caused by these transients. The electrical breakdown characteristics of oil-paper insulation under steep front impulse were studied in this project, which was co-sponsored by the Canadian Electrical Association and B.C. Hydro. V[sub 50] (50% breakdown probability voltage) breakdown data was obtained with steep front (10 ns/2500 [mu]s), lightning and switching impulse waveforms. Insulation breakdown voltage vs breakdown time (V-t) data and multiple impulse breakdown data were obtained with the steep front impulse waveform. The V[sub 50] results showed that the breakdown strengths were lower for steep front impulses than for lightning impulses. The multiple impulse breakdown results showed that oil-paper insulation breakdown strength can be lower than 100 kV/mm. These results are alarming, since they suggest that oil-paper insulated equipment subjected to steep front transients will fail at voltages below the lightning impulse design level (BIL). The Volt-time data had a discontinuity. The breakdown process at risetime below about 50 ns was different from the breakdown process at rise times above 50 ns.

  14. Slip Potential for Commonly Used Inclined Grated Metal Walkways

    PubMed Central

    Pollard, Jonisha P.; Heberger, John R.; Dempsey, Patrick G.

    2016-01-01

    Background No specific guidelines or regulations are provided by the Mine Safety and Health Administration for the use of inclined grated metal walkways in mining plants. Mining and other companies may be using walkway materials that do not provide sufficient friction, contributing to slip and fall injuries. Purpose The purpose of this study was to determine if there are significant differences in the required friction for different grated metal walkways during walking in diverse conditions. Methods The normalized coefficients of friction were measured for 12 participants while walking up and down an instrumented walkway with different inclinations (0°, 5°, 10°, 15°, and 20°) and with and without the presence of a contaminant (glycerol). Self-reported slip events were recorded and the required coefficients of friction were calculated considering only the anterior/posterior components of the shear forces. Additionally, the available coefficients of friction for these walkway materials were measured at the 0° orientation using a tribometer, with and without the presence of the contaminant, using a boot heel as well as Neolite as the test feet. Results The number of slips increased when the inclination angle reached 10° and above. Of all materials tested, the diamond weave grating was found to have the best performance at all inclines and when contaminated or dry. A high number of slips occurred for the perforated grating and serrated bar grating at 20° when contaminated. Conclusions Results of this study suggest that the diamond weave grating provides significantly better friction compared to serrated bar and perforated gratings, especially at inclines greater than 10°. PMID:26779388

  15. Stability of stratified two-phase flows in inclined channels

    NASA Astrophysics Data System (ADS)

    Barmak, I.; Gelfgat, A. Yu.; Ullmann, A.; Brauner, N.

    2016-08-01

    Linear stability of the stratified gas-liquid and liquid-liquid plane-parallel flows in the inclined channels is studied with respect to all wavenumber perturbations. The main objective is to predict the parameter regions in which the stable stratified configuration in inclined channels exists. Up to three distinct base states with different holdups exist in the inclined flows, so that the stability analysis has to be carried out for each branch separately. Special attention is paid to the multiple solution regions to reveal the feasibility of the non-unique stable stratified configurations in inclined channels. The stability boundaries of each branch of the steady state solutions are presented on the flow pattern map and are accompanied by the critical wavenumbers and the spatial profiles of the most unstable perturbations. Instabilities of different nature are visualized by the streamlines of the neutrally stable perturbed flows, consisting of the critical perturbation superimposed on the base flow. The present analysis confirms the existence of two stable stratified flow configurations in a region of low flow rates in the countercurrent liquid-liquid flows. These configurations become unstable with respect to the shear mode of instability. It was revealed that in slightly upward inclined flows the lower and middle solutions for the holdup are stable in the part of the triple solution region, while the upper solution is always unstable. In the case of downward flows, in the triple solution region, none of the solutions are stable with respect to the short-wave perturbations. These flows are stable only in the single solution region at low flow rates of the heavy phase, and the long-wave perturbations are the most unstable ones.

  16. Hydrodynamic waves in films flowing under an inclined plane

    NASA Astrophysics Data System (ADS)

    Rohlfs, Wilko; Pischke, Philipp; Scheid, Benoit

    2017-04-01

    This study addresses the fluid dynamics of two-dimensional falling films flowing underneath an inclined plane using the weighted integral boundary layer (WIBL) model and direct numerical simulations (DNSs). Film flows under an inclined plane are subject to hydrodynamic and Rayleigh-Taylor instabilities, leading to the formation of two- and three-dimensional waves, rivulets, and eventually dripping. The latter can only occur in film flows underneath an inclined plane such that the gravitational force acts in a destabilizing manner by pulling liquid into the gaseous atmosphere. The DNSs are performed using the solver interFoam of the open-source code OpenFOAM with a gradient limiter approach that avoids artificial oversharpening of the interface. We find good agreement between the two model approaches for wave amplitude and wave speed irrespectively of the orientation of the gravitational force and before the onset of dripping. The latter cannot be modeled with the WIBL model by nature as it is a single-value model. However, for large-amplitude solitarylike waves, the WIBL model fails to predict the velocity field within the wave, which is confirmed by a balance of viscous dissipation and the change in potential energy. In the wavy film flows, different flow features can occur such as circulating waves, i.e., circulating eddies in the main wave hump, or flow reversal, i.e., rotating vortices in the capillary minima of the wave. A phase diagram for all flow features is presented based on results of the WIBL model. Regarding the transition to circulating waves, we show that a critical ratio between the maximum and substrate film thickness (approximately 2.5) is also universal for film flows underneath inclined planes (independent of wavelength, inclination, viscous dissipation, and Reynolds number).

  17. Granular flow down an inclined plane: Bagnold scaling and rheology.

    PubMed

    Silbert, L E; Ertaş, D; Grest, G S; Halsey, T C; Levine, D; Plimpton, S J

    2001-11-01

    We have performed a systematic, large-scale simulation study of granular media in two and three dimensions, investigating the rheology of cohesionless granular particles in inclined plane geometries, i.e., chute flows. We find that over a wide range of parameter space of interaction coefficients and inclination angles, a steady-state flow regime exists in which the energy input from gravity balances that dissipated from friction and inelastic collisions. In this regime, the bulk packing fraction (away from the top free surface and the bottom plate boundary) remains constant as a function of depth z, of the pile. The velocity profile in the direction of flow vx(z) scales with height of the pile H, according to vx(z) proportional to H(alpha), with alpha=1.52+/-0.05. However, the behavior of the normal stresses indicates that existing simple theories of granular flow do not capture all of the features evidenced in the simulations.

  18. Control system for inclined impact-type surface seismic source

    SciTech Connect

    Karner, G.M.

    1987-07-28

    A system is described for controlling the azimuths and inclinations of the respective shooting paths of separate vehicle-transported surface seismic sources. Each source has an impact mass, means for propelling the mass along the shooting path to strike an earth contacting base plate, and means for adjusting each shooting path by rotation thereof about two mutually perpendicular gimbal axes oriented in predetermined relation to the heading of the associated vehicle. The system consists of: (a) means for determining each such vehicle heading; (b) means dependent upon each vehicle heading for calculating the angular positions of each shooting path with respect to the gimbal axes which align the shooting path with desired values of azimuth and inclination; and (c) means responsive to the calculation means for actuating each shooting path adjustment means to effect such alignment.

  19. Kepler-108: A Mutually Inclined Giant Planet System

    NASA Astrophysics Data System (ADS)

    Mills, Sean M.; Fabrycky, Daniel C.

    2017-01-01

    The vast majority of well studied giant-planet systems, including the solar system, are nearly coplanar, which implies dissipation within a primordial gas disk. However, intrinsic instability may lead to planet-planet scattering, which often produces non-coplanar, eccentric orbits. Planet scattering theories have been developed to explain observed high-eccentricity systems and also hot Jupiters; thus far their predictions for mutual inclination (I) have barely been tested. Here we characterize a highly mutually inclined (I={24}-8+11°), moderately eccentric (e≳ 0.1) giant planet system: Kepler-108. This system consists of two approximately Saturn-mass planets with periods of approximately 49 and 190 days around a star with a wide (˜300 au) binary companion in an orbital configuration inconsistent with a purely disk migration origin.

  20. Kepler-108: A Mutually Inclined Giant Planet System

    NASA Astrophysics Data System (ADS)

    Mills, Sean M.; Fabrycky, Daniel

    2016-06-01

    The vast majority of well studied giant-planet systems, including the Solar System, are nearly coplanar which implies dissipation within a primordial gas disk. However, intrinsic instability may lead to planet-planet scattering, which often produces non-coplanar, eccentric orbits. Planet scattering theories have been developed to explain observed high eccentricity systems and possibly hot Jupiters; thus far their predictions for mutual inclination (I) have barely been tested. Here we characterize a highly mutually-inclined (I ~ 15-60 degrees), moderately eccentric (e > 0.1) giant planet system: Kepler-108. This system consists of two Saturn mass planets with periods of ~49 and ~190 days around a star with a wide (~300 AU) binary companion in an orbital configuration inconsistent with a purely disk migration origin.

  1. Spectrum of 100-kyr glacial cycle: orbital inclination, not eccentricity.

    PubMed

    Muller, R A; MacDonald, G J

    1997-08-05

    Spectral analysis of climate data shows a strong narrow peak with period approximately 100 kyr, attributed by the Milankovitch theory to changes in the eccentricity of the earth's orbit. The narrowness of the peak does suggest an astronomical origin; however the shape of the peak is incompatible with both linear and nonlinear models that attribute the cycle to eccentricity or (equivalently) to the envelope of the precession. In contrast, the orbital inclination parameter gives a good match to both the spectrum and bispectrum of the climate data. Extraterrestrial accretion from meteoroids or interplanetary dust is proposed as a mechanism that could link inclination to climate, and experimental tests are described that could prove or disprove this hypothesis.

  2. Inclination not force is sensed by plants during shoot gravitropism.

    PubMed

    Chauvet, Hugo; Pouliquen, Olivier; Forterre, Yoël; Legué, Valérie; Moulia, Bruno

    2016-10-14

    Gravity perception plays a key role in how plants develop and adapt to environmental changes. However, more than a century after the pioneering work of Darwin, little is known on the sensing mechanism. Using a centrifugal device combined with growth kinematics imaging, we show that shoot gravitropic responses to steady levels of gravity in four representative angiosperm species is independent of gravity intensity. All gravitropic responses tested are dependent only on the angle of inclination from the direction of gravity. We thus demonstrate that shoot gravitropism is stimulated by sensing inclination not gravitational force or acceleration as previously believed. This contrasts with the otolith system in the internal ear of vertebrates and explains the robustness of the control of growth direction by plants despite perturbations like wind shaking. Our results will help retarget the search for the molecular mechanism linking shifting statoliths to signal transduction.

  3. Inclination not force is sensed by plants during shoot gravitropism

    PubMed Central

    Chauvet, Hugo; Pouliquen, Olivier; Forterre, Yoël; Legué, Valérie; Moulia, Bruno

    2016-01-01

    Gravity perception plays a key role in how plants develop and adapt to environmental changes. However, more than a century after the pioneering work of Darwin, little is known on the sensing mechanism. Using a centrifugal device combined with growth kinematics imaging, we show that shoot gravitropic responses to steady levels of gravity in four representative angiosperm species is independent of gravity intensity. All gravitropic responses tested are dependent only on the angle of inclination from the direction of gravity. We thus demonstrate that shoot gravitropism is stimulated by sensing inclination not gravitational force or acceleration as previously believed. This contrasts with the otolith system in the internal ear of vertebrates and explains the robustness of the control of growth direction by plants despite perturbations like wind shaking. Our results will help retarget the search for the molecular mechanism linking shifting statoliths to signal transduction. PMID:27739470

  4. Crown angulation and inclination of Northern Thais with good occlusion.

    PubMed

    Jotikasthira, Dhirawat; Sheffield, Peter; Kalha, Anmol; Syed, Zameer

    2010-01-01

    When patients of differing ethnicities are treated with one bracket system, negative consequences for the occlusion can result. This study investigated the crown angulation and inclination on study casts of 60 Northern Thais (30 males and 30 females) with a good occlusion. In all study casts, each tooth (except the third molars) was evaluated with the orthodontic Torque Angulation Device (TAD) twice on the right side; this was also performed twice on the left side. The mean of the two evaluations was used for the statistical analysis. The means of the males and females were compared with the independent Student t test. The results were that the crown angulation of the mandibular first and second molars was significantly higher in females (P<.01) and that the crown inclination of all teeth did not differ between the two sexes.

  5. Wind and gravity mechanical effects on leaf inclination angles.

    PubMed

    Tadrist, Loïc; Saudreau, Marc; de Langre, Emmanuel

    2014-01-21

    In a tree, the distribution of leaf inclination angles plays an important role in photosynthesis and water interception. We investigate here the effect of mechanical deformations of leaves due to wind or their own weight on this distribution. First, the specific role of the geometry of the tree is identified and shown to be weak, using models of idealized tree and tools of statistical mechanics. Then the deformation of individual leaves under gravity or wind is quantified experimentally. New dimensionless parameters are proposed, and used in simple models of these deformations. By combining models of tree geometry and models of leaf deformation, we explore the role of all mechanical parameters on the Leaf Inclination Angle Distributions. These are found to have a significant influence, which is exemplified finally in computations of direct light interception by idealized trees.

  6. Inclination not force is sensed by plants during shoot gravitropism

    NASA Astrophysics Data System (ADS)

    Chauvet, Hugo; Pouliquen, Olivier; Forterre, Yoël; Legué, Valérie; Moulia, Bruno

    2016-10-01

    Gravity perception plays a key role in how plants develop and adapt to environmental changes. However, more than a century after the pioneering work of Darwin, little is known on the sensing mechanism. Using a centrifugal device combined with growth kinematics imaging, we show that shoot gravitropic responses to steady levels of gravity in four representative angiosperm species is independent of gravity intensity. All gravitropic responses tested are dependent only on the angle of inclination from the direction of gravity. We thus demonstrate that shoot gravitropism is stimulated by sensing inclination not gravitational force or acceleration as previously believed. This contrasts with the otolith system in the internal ear of vertebrates and explains the robustness of the control of growth direction by plants despite perturbations like wind shaking. Our results will help retarget the search for the molecular mechanism linking shifting statoliths to signal transduction.

  7. Stem phototropism of trees: a possible significant factor in determining stem inclination on forest slopes.

    PubMed

    Matsuzaki, Jun; Masumori, Masaya; Tange, Takeshi

    2006-09-01

    The main stems of trees on forest slopes incline down the slope to various extents that are characteristic of the species. The inclination has been explained as an active response to a horizontally asymmetrical light environment, but the contributing physiological mechanisms are unknown. The present study tested the hypothesis that stem phototropism, gravitropism, or a combination of the two determines the inclination of tree stems on forest slopes. Cryptomeria japonica, Pinus densiflora, Quercus myrsinaefolia and Q. serrata were studied. Measurements were made of stem inclination of mature trees on forest slopes in uniform plantations of each species, and changes in stem inclination of potted seedlings in response to illumination treatments (unilateral or overhead) and inclination treatments (artificially inclined or erect). Indices of phototropic and gravitropic responsiveness were evaluated for each species, calculated from the change in stem inclination in response to artificial inclination with unilateral or overhead illumination. Stem inclination on forest slopes varied significantly among species: Q. serrata inclined most in the down-slope direction, C. japonica inclined the least, and P. densiflora and Q. myrsinaefolia were intermediate. The change in stem inclination of seedlings in each treatment varied significantly among species. One-year-old stems of Q. serrata and 2-year-old stems of Q. myrsinaefolia bent toward the light source. Interspecific variation in the change in stem inclination in response to the unilateral illumination or that in the index of phototropic responsiveness was strongly correlated with the variation in stem inclination on forest slopes. The orientation of woody stems that have finished elongation can be actively controlled by phototropism. Interspecific variation in phototropic responsiveness of trees is a possible significant determinant of interspecific variation in stem inclination on forest slopes.

  8. Stem Phototropism of Trees: A Possible Significant Factor in Determining Stem Inclination on Forest Slopes

    PubMed Central

    MATSUZAKI, JUN; MASUMORI, MASAYA; TANGE, TAKESHI

    2006-01-01

    • Background and Aims The main stems of trees on forest slopes incline down the slope to various extents that are characteristic of the species. The inclination has been explained as an active response to a horizontally asymmetrical light environment, but the contributing physiological mechanisms are unknown. The present study tested the hypothesis that stem phototropism, gravitropism, or a combination of the two determines the inclination of tree stems on forest slopes. • Methods Cryptomeria japonica, Pinus densiflora, Quercus myrsinaefolia and Q. serrata were studied. Measurements were made of stem inclination of mature trees on forest slopes in uniform plantations of each species, and changes in stem inclination of potted seedlings in response to illumination treatments (unilateral or overhead) and inclination treatments (artificially inclined or erect). Indices of phototropic and gravitropic responsiveness were evaluated for each species, calculated from the change in stem inclination in response to artificial inclination with unilateral or overhead illumination. • Key Results Stem inclination on forest slopes varied significantly among species: Q. serrata inclined most in the down-slope direction, C. japonica inclined the least, and P. densiflora and Q. myrsinaefolia were intermediate. The change in stem inclination of seedlings in each treatment varied significantly among species. One-year-old stems of Q. serrata and 2-year-old stems of Q. myrsinaefolia bent toward the light source. Interspecific variation in the change in stem inclination in response to the unilateral illumination or that in the index of phototropic responsiveness was strongly correlated with the variation in stem inclination on forest slopes. • Conclusions The orientation of woody stems that have finished elongation can be actively controlled by phototropism. Interspecific variation in phototropic responsiveness of trees is a possible significant determinant of interspecific

  9. Graphs and matroids weighted in a bounded incline algebra.

    PubMed

    Lu, Ling-Xia; Zhang, Bei

    2014-01-01

    Firstly, for a graph weighted in a bounded incline algebra (or called a dioid), a longest path problem (LPP, for short) is presented, which can be considered the uniform approach to the famous shortest path problem, the widest path problem, and the most reliable path problem. The solutions for LPP and related algorithms are given. Secondly, for a matroid weighted in a linear matroid, the maximum independent set problem is studied.

  10. Incline plyometrics-induced improvement of jumping performance.

    PubMed

    Kannas, Theodoros M; Kellis, Eleftherios; Amiridis, Ioannis G

    2012-06-01

    The aim of this study was to examine the effects of incline plyometrics training on muscle activation and architecture during vertical jumping and maximum strength. Twenty male participants were divided in two training groups which followed after a 4 week training program. The incline plyometrics group (n = 10) trained by performing consecutive jumps on an inclined surface (15°) while the plane plyometrics (PP) group (n = 10) performed the same jumps on a plane surface. Both groups trained four times per week and performed 8 sets of 10 jumps in each session. Subjects performed squat jumps, counter movement jumps and drop jumps (DJ) prior to and immediately after the training period, while the electromyographic activity of the medial gastrocnemius (MGAS) and tibialis anterior muscles and the architecture of MGAS were recorded. Maximal isokinetic and isometric strength of the plantar flexors were performed. Analysis of variance showed that only the IP group improved fast DJ height performance by 17.4 and 14.4% (20 and 40 cm, p < 0.05). This was accompanied by a significantly higher MGAS activity during the propulsion phase (24% from 20 cm and 50% from 40 cm, p < 0.05) of the DJ and a longer working fascicle length (5.08%, p < 0.05) compared with the PP group. There were no significant changes in isokinetic and isometric strength of the plantar flexors after training for both groups. The increase of jumping performance, after incline plyometrics should be taken into consideration by coaches, when they apply hopping exercise to improve explosiveness of the plantar flexors.

  11. Drop impact and rebound dynamics on an inclined superhydrophobic surface.

    PubMed

    Yeong, Yong Han; Burton, James; Loth, Eric; Bayer, Ilker S

    2014-10-14

    Due to its potential in water-repelling applications, the impact and rebound dynamics of a water drop impinging perpendicular to a horizontal superhydrophobic surface have undergone extensive study. However, drops tend to strike a surface at an angle in applications. In such cases, the physics governing the effects of oblique impact are not well studied or understood. Therefore, the objective of this study was to conduct an experiment to investigate the impact and rebound dynamics of a drop at various liquid viscosities, in an isothermal environment, and on a nanocomposite superhydrophobic surface at normal and oblique impact conditions (tilted at 15°, 30°, 45°, and 60°). This study considered drops falling from various heights to create normal impact Weber numbers ranging from 6 to 110. In addition, drop viscosity was varied by decreasing the temperature for water drops and by utilizing water-glycerol mixtures, which have similar surface tension to water but higher viscosities. Results revealed that oblique and normal drop impact behaved similarly (in terms of maximum drop spread as well as rebound dynamics) at low normal Weber numbers. However, at higher Weber numbers, normal and oblique impact results diverged in terms of maximum spread, which could be related to asymmetry and more complex outcomes. These asymmetry effects became more pronounced as the inclination angle increased, to the point where they dominated the drop impact and rebound characteristics when the surface was inclined at 60°. The drop rebound characteristics on inclined surfaces could be classified into eight different outcomes driven primarily by normal Weber number and drop Ohnesorge numbers. However, it was found that these outcomes were also a function of the receding contact angle, whereby reduced receding angles yielded tail-like structures. Nevertheless, the contact times of the drops with the coating were found to be generally independent of surface inclination.

  12. Graphs and Matroids Weighted in a Bounded Incline Algebra

    PubMed Central

    Lu, Ling-Xia; Zhang, Bei

    2014-01-01

    Firstly, for a graph weighted in a bounded incline algebra (or called a dioid), a longest path problem (LPP, for short) is presented, which can be considered the uniform approach to the famous shortest path problem, the widest path problem, and the most reliable path problem. The solutions for LPP and related algorithms are given. Secondly, for a matroid weighted in a linear matroid, the maximum independent set problem is studied. PMID:25126607

  13. The gravitational interaction between inclined, elliptical rings. [Uranus rings

    NASA Technical Reports Server (NTRS)

    Yoder, C. F.

    1982-01-01

    An expression for the potential for two elliptical, inclined rings is derived from a model in which the gravitational torque between two wide rings or within a ring of finite width can prevent differential precession caused by planetary oblateness. The model was proposed to explain the observed eccentricity and width variations of the Uranian epsilon ring. The stationary solutions and stability of this system are examined.

  14. Inclined fluidized bed system for drying fine coal

    DOEpatents

    Cha, Chang Y.; Merriam, Norman W.; Boysen, John E.

    1992-02-11

    Coal is processed in an inclined fluidized bed dryer operated in a plug-flow manner with zonal temperature and composition control, and an inert fluidizing gas, such as carbon dioxide or combustion gas. Recycled carbon dioxide, which is used for drying, pyrolysis, quenching, and cooling, is produced by partial decarboxylation of the coal. The coal is heated sufficiently to mobilize coal tar by further pyrolysis, which seals micropores upon quenching. Further cooling with carbon dioxide enhances stabilization.

  15. On 3D flow-structures behind an inclined plate

    NASA Astrophysics Data System (ADS)

    Uruba, Václav; Pavlík, David; Procházka, Pavel; Skála, Vladislav; Kopecký, Václav

    Stereo PIV measurements has been performed behind the inclined plate, angle of attack 5 and 10 deg. Occurrence and dynamics of streamwise structures behind the plate trailing edge have been studied in details using POD method. The streamwise structures are represented by vortices and low- and highvelocity regions, probably streaks. The obtained results support the hypothesis of an airfoil-flow force interaction by Hoffman and Johnson [1,2].

  16. Improvement of Rainfall Simulation on the Steep Edge of the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Li, J.; Yu, R.; Zhang, Y.; Chen, H.

    2016-12-01

    Overestimation of precipitation over steep mountains has been a long-lasting bias in many climate models. After replacing the semi-Lagrangian method with a finite-difference approach for trace transport algorithm (the two-step shape preserving scheme, TSPAS), the modified NCAR CAM5 (M-CAM5) with high horizontal resolution results in a significant improvement of simulation in precipitation over the steep edge of the Tibetan Plateau. The M-CAM5 restrains the "overshoot" of water vapor to the high-altitude region of the windward slopes and significantly reduces the overestimation of precipitation in areas above 2000 m along the southern edge of the Tibetan Plateau. More moisture are left in the low-altitude region on the slope where used to present dry biases in CAM5. The excessive (insufficient) amount of precipitation over the higher (lower) part of the steep slope is partially caused by the multi-grid water vapor transport in CAM5, which leads to spurious accumulation of water vapor at cold and high-altitude grids. Benefited from calculation of transport grid by grid in TSPAS and detailed description of steep mountains by the high-resolution model, M-CAM5 moves water vapor and precipitation downward over windward slopes and presents a more realistic simulation. Results in this study indicate that in addition to the development of physical parameterization schemes, the dynamical process should also be reconsidered in order to improve the climate simulation over steep mountains.

  17. Flow, Sediment Transport, and Erosion in Steep Mountain Channels: an Alpine Symphony

    NASA Astrophysics Data System (ADS)

    Kirchner, J. W.; Beer, A. R.; Heimann, F.; Rickenmann, D.; Schneider, J. M.; von Boetticher, A.; Turowski, J. M.

    2015-12-01

    Steep headwater channels comprise a large fraction of the total channel length in mountainous regions. They control the transport of water, solutes, and sediments to larger rivers downstream, and regulate the erosional development of many mountain landscapes. Flow and transport processes in these steep channels contrast with those in their lower-gradient counterparts. Steep streams have complex bed morphology, with large roughness relative to the flow depth, and the flow is likewise complex, often comprising a variable mixture of air and water. Here we present several examples from Switzerland highlighting recent research into hydraulics, sediment transport, and bedrock erosion in steep Alpine channels. The Riedbach presents a striking natural experiment, in which the channel gradient steepens from roughly 3% to more than 40% in less than 1km, while the discharge, flow width, and sediment transport rates remain roughly constant. Measurements at the Riedbach illustrate the self-adjustment of flow velocity and bed roughness in steep mountain channels. Data from the Erlenbach, an intensively instrumented stream in the Alpine foothills, illustrate how the bed configuration of such streams regulates the relationship between flow and sediment transport. Field studies at the Gornera illustrate how flow patterns control the spatial distribution of bedrock erosion in this glacier-fed stream in the shadow of the Matterhorn. We present an overview of these studies and discuss their implications.

  18. Does perceived steepness deter stair climbing when an alternative is available?

    PubMed

    Eves, Frank F; Thorpe, Susannah K S; Lewis, Amanda; Taylor-Covill, Guy A H

    2014-06-01

    Perception of hill slant is exaggerated in explicit awareness. Proffitt (Perspectives on Psychological Science 1:110-122, 2006) argued that explicit perception of the slant of a climb allows individuals to plan locomotion in keeping with their available locomotor resources, yet no behavioral evidence supports this contention. Pedestrians in a built environment can often avoid climbing stairs, the man-made equivalent of steep hills, by choosing an adjacent escalator. Stair climbing is avoided more by women, the old, and the overweight than by their comparators. Two studies tested perceived steepness of the stairs as a cue that promotes this avoidance. In the first study, participants estimated the steepness of a staircase in a train station (n = 269). Sex, age, height, and weight were recorded. Women, older individuals, and those who were heavier and shorter reported the staircase as steeper than did their comparison groups. In a follow-up study in a shopping mall, pedestrians were recruited from those who chose the stairs and those who avoided them, with the samples stratified for sex, age, and weight status. Participants (n = 229) estimated the steepness of a life-sized image of the stairs they had just encountered, presented on the wall of a vacant shop in the mall. Pedestrians who avoided stair climbing by choosing the escalator reported the stairs as steeper even when demographic differences were controlled. Perceived steepness may to be a contextual cue that pedestrians use to avoid stair climbing when an alternative is available.

  19. Technical note: Common characteristics of directional spreading-steepness joint distribution in freak wave events

    NASA Astrophysics Data System (ADS)

    Liu, Shouhua; Li, Yizhen; Yue, Xinyang

    2016-06-01

    Seven freak wave incidents previously documented in the real ocean in combination with model hindcast simulations are used to study the variations associated with freak-wave-related parameters, such as wave steepness, directional spreading, and frequency bandwidth. Unlike the strong correlations between the freak wave parameters and freak waves' occurrence which were obtained in experimental and physical research, the correlations are not clear in the freak waves occurring in the real ocean. Wave directional spreading-steepness joint distribution is introduced and common visual features were found in the joint distribution when freak waves occur among seven "freakish" sea states. The visual features show that freak wave incidents occur when the steepness is large and directional spreading is small. Besides large steepness and small directional spreading, a long-duration, relatively rough sea state is also necessary for the freak wave generation. The joint distribution is more informative than any single statistical wave parameter. The continuous sea states of local large steepness and small directional spreading are supposed to generate freak waves, and two-dimensional distribution visualization is found to be a useful tool for freak waves' forecast. The common visual features of joint distributions supply an important cue for the theoretical and experimental research.

  20. Shapes of standing jumps formed in granular flows down inclines: implications for the design of snow avalanche protection dams

    NASA Astrophysics Data System (ADS)

    Faug, Thierry; Childs, Philippa; Wyburn, Edward; Castro, Luiza Cardoso Ribas e.; Einav, Itai

    2015-04-01

    The European guidelines for the design of avalanche protection dams mainly rely on a couple of criteria based on the formation of granular jumps upstream of obstacles. The equations proposed to describe granular jumps are strictly valid for incompressible and frictionless fluids but generally hold for rapid granular flows mimicking snow avalanches. We have conducted a series of tests on a newly established granular chute to investigate in detail the shape of the steady jumps by varying both the slope angle and the mass discharge. Our laboratory tests confirm that the traditional shallow-water shock equation works well for the steep jumps formed in rapid and dense flows (characterized by a Froude number in the range 4-7 at high inclination and high mass discharge) but the equation fails for either low slope angles or low mass discharges. At low slope angles and high mass discharges, the jumps are very diffuse and elongated. The traditional shock equation underestimates the jump height. At low mass discharges, the incoming flows become dilute and produce compressible jumps for which the density variation across the jump cannot be neglected. A full jump equation accounting for the source terms (weight of the jump itself minus its effective friction) and the density variation as well is proposed. Approximate solutions are discussed to describe the transition between steep and diffuse jumps on the one side and the transition from incompressible to compressible jumps on the other side. Our study clearly reveals the limits of the current European guidelines for the design of avalanche protection dams when the incoming flows are relatively slow (Froude number about 1-3 in our tests). The latter avalanche flow-regime is relevant for many situations in avalanche run-out zones where protection dams are generally settled.

  1. ARTICULATOR-RELATED REGISTRATION AND ANALYSIS OF SAGITTAL CONDYLAR INCLINATION.

    PubMed

    Cimić, Samir; Simunković, Sonja Kraljević; Suncana Simonić Kocijan; Matijević, Jurica; Dulcić, Niksa; Catić, Amir

    2015-12-01

    The purpose of this investigation was to study sagittal condylar inclination values within a uniform sample (Angle class I occlusion) using 'articulator-related registration' and Camper's plane as a reference plane. The study was performed on a sample of 58 Angle class I subjects (mean age 25.1, SD 3.1). Measurements were performed with an ultrasonic jaw tracking device with six degrees of freedom. After a paraocclusal tray was fixed in the mouth, each subject had to make three protrusive movements and three right and left laterotrusive movements. From protrusive movements the software of the device automatically calculated the left and the right sagittal condylar inclination values used for setting of the articulator. The mean sagittal condylar inclinationvalue was 41.0° (SD 10.5) for the right joint and 40.7° (SD 9.8) for the left joint. The maximum value was 65.0° for the right and 68.6° for the left joint, and the minimum value was 13.7° for the right and 21.7° for the left joint. The results of this study suggested the average articulator setting for sagittal condylar inclination for fully dentate adult subjects to be 40° in relation to Camper's plane. This is especially important for the articulators that are set up in relation to Camper's plane.

  2. Applicability of the polysulphone horizontal calibration to differently inclined dosimeters.

    PubMed

    Casale, Giuseppe R; Siani, Anna Maria; Diémoz, Henri; Kimlin, Michael G; Colosimo, Alfredo

    2012-01-01

    Polysulphone (PS) dosimetry has been a widely used technique for more than 30 years to quantify the erythemally effective UV dose received by anatomic sites (personal exposure). The calibration of PS dosimeters is an important issue as their spectral response is different from the erythemal action spectrum. It is performed exposing a set of PS dosimeters on a horizontal plane and measuring the UV doses received by dosimeters using calibrated spectroradiometers or radiometers. In this study, data collected during PS field campaigns (from 2004 to 2006), using horizontal and differently inclined dosimeters, were analyzed to provide some considerations on the transfer of the horizontal calibration to differently inclined dosimeters, as anatomic sites usually are. The role of sky conditions, of the angle of incidence between the sun and the normal to the slope, and of the type of surrounding surface on the calibration were investigated. It was concluded that PS horizontal calibrations apply to differently inclined dosimeters for incidence angles up to approximately 70° and for surfaces excluding ones with high albedo. Caution should be used in the application of horizontal calibrations for cases of high-incidence angle and/or high albedo surfaces.

  3. a Study of Ricochet Phenomenon for Inclined Impact of Projectile

    NASA Astrophysics Data System (ADS)

    Jo, Jong-Hyun; Lee, Young-Shin

    In this study, the numerical simulation using AUTODYN-3D program was investigated for trajectory prediction for inclined impacts of projectiles. The penetration and perforation of polycarbonate(PC) plate by 7.62 mm projectile was investigated numerically. The characteristic structure of the projectile's trajectory in the PC plates was studied. Two combined failure criteria were used in the target plate, and the target plate was modeled with the properties of polycarbonate for simulating the ricochet phenomenon. The numerical analyses were used to study the effect of the angle of inclination on the trajectory and kinetic energy of the projectile. The dynamic deformation behaviors tests of PC were compared with numerical simulation results which can be used for predictive purpose. Ricochet phenomenon for angles of inclination of 0° ≤ θ ≤ 20° in the analysis. The projectile perforated the plate for θ > 30°, thus defined a failure envelope for numerical configuration. The numerical analyses was used to study the effect under the projectile impact velocity on the depth of penetration(DOP).

  4. On the Orbital Inclination of Proxima Centauri b

    NASA Astrophysics Data System (ADS)

    Kane, Stephen R.; Gelino, Dawn M.; Turnbull, Margaret C.

    2017-02-01

    The field of exoplanetary science has seen discovery rates increase dramatically over recent years, due largely to the data from the Kepler mission. Even so, individual discoveries of planets orbiting nearby stars are very important for studies of characterization and near-term follow-up prospects. The recent discovery of a terrestrial planet candidate orbiting Proxima Centauri presents numerous opportunities for studying a super-Earth within our own stellar backyard. One of the remaining ambiguities of the discovery is the true mass of the planet since the discovery signature was obtained via radial velocities. Here, we describe the effect of orbital inclination on the Proxima Centauri planet, in terms of mass, radius, atmosphere, and albedo. We calculate the astrometric, angular separation, and reflected light properties of the planet including the effects of orbital eccentricity. We further provide dynamical simulations that show how the presence of additional terrestrial planets within the Habitable Zone varies as a function of inclination. Finally, we discuss these effects in the context of future space-based photometry and imaging missions that could potentially detect the planetary signature and resolve the inclination and mass ambiguity of the planet.

  5. Inclined Fiber Pullout from a Cementitious Matrix: A Numerical Study.

    PubMed

    Zhang, Hui; Yu, Rena C

    2016-09-26

    It is well known that fibers improve the performance of cementitious composites by acting as bridging ligaments in cracks. Such bridging behavior is often studied through fiber pullout tests. The relation between the pullout force vs. slip end displacement is characteristic of the fiber-matrix interface. However, such a relation varies significantly with the fiber inclination angle. In the current work, we establish a numerical model to simulate the entire pullout process by explicitly representing the fiber, matrix and the interface for arbitrary fiber orientations. Cohesive elements endorsed with mixed-mode fracture capacities are implemented to represent the bond-slip behavior at the interface. Contact elements with Coulomb's friction are placed at the interface to simulate frictional contact. The bond-slip behavior is first calibrated through pull-out curves for fibers aligned with the loading direction, then validated against experimental results for steel fibers oriented at 30 ∘ and 60 ∘ . Parametric studies are then performed to explore the influences of both material properties (fiber yield strength, matrix tensile strength, interfacial bond) and geometric factors (fiber diameter, embedment length and inclination angle) on the overall pullout behavior, in particular on the maximum pullout load. The proposed methodology provides the necessary pull-out curves for a fiber oriented at a given angle for multi-scale models to study fracture in fiber-reinforced cementitious materials. The novelty lies in its capacity to capture the entire pullout process for a fiber with an arbitrary inclination angle.

  6. ASSEMBLY OF PROTOPLANETARY DISKS AND INCLINATIONS OF CIRCUMBINARY PLANETS

    SciTech Connect

    Foucart, Francois; Lai, Dong

    2013-02-10

    The Kepler satellite has discovered a number of transiting planets around close binary stars. These circumbinary systems have highly aligned planetary and binary orbits. In this paper, we explore how the mutual inclination between the planetary and binary orbits may reflect the physical conditions of the assembly of protoplanetary disks and the interaction between protostellar binaries and circumbinary disks. Given the turbulent nature of star-forming molecular clouds, it is possible that the gas falling onto the outer region of a circumbinary disk and the central protostellar binary have different axes of rotation. Thus, the newly assembled circumbinary disk can be misaligned with respect to the binary. However, the gravitational torque from the binary produces a warp and twist in the disk, and the back-reaction torque tends to align the disk and the binary orbital plane. We present a new, analytic calculation of this alignment torque and show that the binary-disk inclination angle can be reduced appreciably after the binary accretes a few percent of its mass from the disk. Our calculation suggests that in the absence of other disturbances, circumbinary disks and planets around close (sub-AU) stellar binaries, for which mass accretion onto the proto-binary is very likely to have occurred, are expected to be highly aligned with the binary orbits, while disks and planets around wide binaries can be misaligned. Measurements of the mutual inclinations of circumbinary planetary systems can provide a clue to the birth environments of such systems.

  7. Breakup of rivulet falling over an inclined plate

    NASA Astrophysics Data System (ADS)

    Singh, Rajesh; Galvin, Janine

    2016-11-01

    The multiscale modeling of solvent absorption in a structured packing is a complex problem. The local hydrodynamics in the packing, specifically existing flow regimes, is a key factor for overall efficiency. A single packing unit is made of corrugated sheets arranged perpendicularly to each other. In this effort, breakup of rivulet over an inclined plate is examined, which might be helpful to explain some fundamental aspects of this system. Rivulet breakup is a complex phenomenon dictated by many factors such as solvent physical properties, contact angle (γ) , inertia, plate inclination angle (θ) , etc. The multiphase flow simulations using the volume of fluid method were conducted considering these factors. Decreasing solvent flow rate results in the transition of flow regimes from a film to a rivulet and then to a droplet. Demarcation between a stable and an unstable flow regime that leads to breakup is presented in terms of the critical Weber number (Wecr) . Values of Weber number below Wecr correspond to breakup behavior and above to a stable rivulet. The impact of solvent properties is presented by the Kapitza number (Ka), which only depends on fluid properties. Variation of Wecr with Ka shows two trends depending on the Ka value of the solvent. Solvents with low Ka show a linear variation of Wecr with Ka whereas those with high Ka show a quadratic variation. The effect of plate inclination on the rivulet breakup reveals that Wecr decreases with increased θ value. In addition, higher values of γ promote breakup.

  8. Modular control during incline and level walking in humans.

    PubMed

    Janshen, Lars; Santuz, Alessandro; Ekizos, Antonis; Arampatzis, Adamantios

    2017-03-01

    The neuromuscular control of human movement can be described by a set of muscle synergies factorized from myoelectric signals. There is some evidence that the selection, activation and flexible combination of these basic activation patterns are of a neural origin. We investigated the muscle synergies during incline and level walking to evaluate changes in the modular organization of neuromuscular control related to changes in the mechanical demands. Our results revealed five fundamental (not further factorizable) synergies for both walking conditions but with different frequencies of appearance of the respective synergies during incline compared with level walking. Low similarities across conditions were observed in the timing of the activation patterns (motor primitives) and the weightings of the muscles within the respective elements (motor modules) for the synergies associated with the touchdown, mid-stance and early push-off phase. The changes in neuromuscular control could be attributed to changes in the mechanical demands in support, propulsion and medio-lateral stabilization of the body during incline compared with level walking. Our findings provide further evidence that the central nervous system flexibly uses a consistent set of neural control elements with a flexible temporal recruitment and modifications of the relative muscle weightings within each element to provide stable locomotion under varying mechanical demands during walking.

  9. Instability of a transverse liquid rivulet on an inclined plane

    NASA Astrophysics Data System (ADS)

    Diez, Javier A.; González, Alejandro G.; Kondic, Lou

    2012-03-01

    This work concentrates on the stability of a viscous liquid rivulet positioned across an inclined plane under partial wetting conditions. The study is performed within the framework of lubrication approximation by employing a slip model. Both normal and parallel components of gravity are considered. We find the stability regions for given area of the cross section of the rivulet, A, plane inclination angle, α, and static contact angle, θ0, characterizing the wettability of the substrate. For α's smaller than some critical angle, α*, a static solution exists. This solution is characterized by rear/front contact angles given by θ0 ± δ. The linear stability analysis of this solution is performed using an efficient pseudo-spectral Chebyshev method. We analyze the effects of A, θ0, and α on the predictions of the model, such as the dominant wavelength, the maximum growth rate, and the behavior of the most unstable perturbation mode. To verify them, we also carry out experiments with silicone oils spreading on a coated glass substrate for several different fluid volumes and inclination angles. We find very good agreement between the wavelength of maximum growth rate given by the theory and the average distance between the drops after rivulet breakup. An analysis of finite size effects shows that the inclusion of normal gravity effects leads to a better agreement between theoretical and experimental results.

  10. Simple Model of a Rolling Water-Filled Bottle on an Inclined Ramp

    ERIC Educational Resources Information Center

    Lin, Shihao; Hu, Naiwen; Yao, Tianchen; Chu, Charles; Babb, Simona; Cohen, Jenna; Sangiovanni, Giana; Watt, Summer; Weisman, Danielle; Klep, James; Walecki, Wojciech J.; Walecki, Eve S.; Walecki, Peter S.

    2015-01-01

    We investigate a water-filled bottle rolling down an incline and ask the following question: is a rolling bottle better described by a model ignoring all internal motion where the bottle is approximated by a material point sliding down an incline, or is it better described by a rigid solid cylinder rolling down the incline without skidding? The…

  11. Simple Model of a Rolling Water-Filled Bottle on an Inclined Ramp

    ERIC Educational Resources Information Center

    Lin, Shihao; Hu, Naiwen; Yao, Tianchen; Chu, Charles; Babb, Simona; Cohen, Jenna; Sangiovanni, Giana; Watt, Summer; Weisman, Danielle; Klep, James; Walecki, Wojciech J.; Walecki, Eve S.; Walecki, Peter S.

    2015-01-01

    We investigate a water-filled bottle rolling down an incline and ask the following question: is a rolling bottle better described by a model ignoring all internal motion where the bottle is approximated by a material point sliding down an incline, or is it better described by a rigid solid cylinder rolling down the incline without skidding? The…

  12. Compact steep-spectrum sources as the parent population of flat-spectrum radio-loud narrow-line Seyfert 1 galaxies

    NASA Astrophysics Data System (ADS)

    Berton, M.; Caccianiga, A.; Foschini, L.; Peterson, B. M.; Mathur, S.; Terreran, G.; Ciroi, S.; Congiu, E.; Cracco, V.; Frezzato, M.; La Mura, G.; Rafanelli, P.

    2016-06-01

    Narrow-line Seyfert 1 galaxies (NLS1s) are an interesting subclass of active galactic nuclei (AGN), which tipically does not exhibit any strong radio emission. Seven percent of them, though, are radio-loud and often show a flat radio-spectrum (F-NLS1s). This, along to the detection of γ-ray emission coming from them, is usually interpreted as a sign of a relativistic beamed jet oriented along the line of sight. An important aspect of these AGN that must be understood is the nature of their parent population, in other words how do they appear when observed under different angles. In the recent literature it has been proposed that a specific class of radio-galaxies, compact-steep sources (CSS) classified as high excitation radio galaxies (HERG), can represent the parent population of F-NLS1s. To test this hypothesis in a quantitative way,in this paper we analyzed the only two statistically complete samples of CSS/HERGs and F-NLS1s available in the literature. We derived the black hole mass and Eddington ratio distributions, and we built for the first time the radio luminosity function of F-NLS1s. Finally, we applied a relativistic beaming model to the luminosity function of CSS/HERGs, and compared the result with the observed function of F-NLS1s. We found that compact steep-spectrum sources are valid parent candidates and that F-NLS1s, when observed with a different inclination, might actually appear as CSS/HERGs.

  13. Inclination of magnetic fields and flows in sunspot penumbrae

    NASA Astrophysics Data System (ADS)

    Langhans, K.; Scharmer, G. B.; Kiselman, D.; Löfdahl, M. G.; Berger, T. E.

    2005-06-01

    An observational study of the inclination of magnetic fields and flows in sunspot penumbrae at a spatial resolution of 0.2 arcsec is presented. The analysis is based on longitudinal magnetograms and Dopplergrams obtained with the Swedish 1-m Solar Telescope on La Palma using the Lockheed Solar Optical Universal Polarimeter birefringent filter. Data from two sunspots observed at several heliocentric angles between 12 ° and 39 ° were analyzed. We find that the magnetic field at the level of the formation of the Fe i-line wing (630.25 nm) is in the form of coherent structures that extend radially over nearly the entire penumbra giving the impression of vertical sheet-like structures. The inclination of the field varies up to 45 ° over azimuthal distances close to the resolution limit of the magnetograms. Dark penumbral cores, and their extensions into the outer penumbra, are prominent features associated with the more horizontal component of the magnetic field. The inclination of this dark penumbral component - designated B - increases outwards from approximately 40 ° in the inner penumbra such that the field lines are nearly horizontal or even return to the solar surface already in the middle penumbra. The bright component of filaments - designated A - is associated with the more vertical component of the magnetic field and has an inclination with respect to the normal of about 35 ° in the inner penumbra, increasing to about 60 ° towards the outer boundary. The magnetogram signal is lower in the dark component B regions than in the bright component A regions of the penumbral filaments. The measured rapid azimuthal variation of the magnetogram signal is interpreted as being caused by combined fluctuations of inclination and magnetic field strength. The Dopplergrams show that the velocity field associated with penumbral component B is roughly aligned with the magnetic field while component A flows are more horizontal than the magnetic field. The observations give

  14. Deriving stellar inclination of slow rotators using stellar activity signal

    NASA Astrophysics Data System (ADS)

    Dumusque, Xavier

    2015-01-01

    Stellar inclination is an important parameter for many astrophysical studies. In the context of exoplanets, this allows us to derive the true obliquity of a system if the projected stellar spin-planetary orbit angle can measured via the Rossiter-Mclaughlin effect. Although different techniques allow us to estimate stellar inclination for fast rotators, it becomes much more difficult when stars are rotating slower than 2-2.5 km.s-1. By using the new activity simulation SOAP 2.0 that can reproduce the photometric and spectroscopic variations induced by stellar activity, we are able to fit the activity variation of solar-type stars and derive their inclination. The case of the equator-on star HD189733 will be presented, as well as the case of Alpha Centauri B, which present an inclination of 45+9-19 degrees, implying that the earth-mass orbiting planet is not transiting if aligned with its host star. Other exemples will also demonstrate the power of the technique, that can infer a stellar inclination, even for slow rotators like Alpha Centauri B, that present a projected rotational velocity smaller than 1.15 km.s-1. In addition, the SOAP 2.0 simulation can be used to correct for the effect of activity when one major active region is dominating the RV signal. This could enhance the detection of small mass exoplanets orbiting slightly active stars.This project is funded by ETAEARTH (European Union Seventh Framework Programme (FP7/2007-2013) under Grant Agreement n. 313014), a transnational collaboration between European countries and the US (the Swiss Space Office, the Harvard Origin of Life Initiative, the Scottish Universities Physics Alliance, the University of Geneva, the Smithsonian Astrophysical Observatory, the Italian National Astrophysical Institute, the University of St. Andrews, Queens University Belfast, and the University of Edinburgh) setup to optimize the synergy between space-and ground-based data whose scientific potential for the characterization of

  15. A steep peripheral ring in irregular cornea topography, real or an instrument error?

    PubMed

    Galindo-Ferreiro, Alicia; Galvez-Ruiz, Alberto; Schellini, Silvana A; Galindo-Alonso, Julio

    2016-01-01

    To demonstrate that the steep peripheral ring (red zone) on corneal topography after myopic laser in situ keratomileusis (LASIK) could possibly due to instrument error and not always to a real increase in corneal curvature. A spherical model for the corneal surface and modifying topography software was used to analyze the cause of an error due to instrument design. This study involved modification of the software of a commercially available topographer. A small modification of the topography image results in a red zone on the corneal topography color map. Corneal modeling indicates that the red zone could be an artifact due to an instrument-induced error. The steep curvature changes after LASIK, signified by the red zone, could be also an error due to the plotting algorithms of the corneal topographer, besides a steep curvature change.

  16. Bed load transport in a very steep mountain stream (Riedbach, Switzerland): Measurement and prediction

    NASA Astrophysics Data System (ADS)

    Schneider, Johannes M.; Rickenmann, Dieter; Turowski, Jens M.; Schmid, Bastian; Kirchner, James W.

    2016-12-01

    Compared to lower-gradient channels, steep mountain streams typically have rougher beds and shallower flow depths, making macro-scale flow resistance (due to, e.g., immobile boulders and irregular bedforms) more important as controls on sediment transport. The marked differences in hydraulics, flow resistance, and grain mobility between steep and lower-gradient streams raise the question of whether the same equations can predict bed load transport rates across wide ranges of channel gradients. We studied a steep, glacier-fed mountain stream (Riedbach, Ct. Valais, Switzerland) that provides a natural experiment for exploring how stream gradients affect bed load transport rates. The streambed gradient increases over a 1 km stream reach by roughly one order of magnitude (from 3% to 38%), while flow discharge and width remain approximately constant. Sediment transport rates were determined in the 3% reach using Bunte bed load traps and in the 38% reach using the Swiss plate geophone system. Despite a ten-fold increase in bed gradient, bed load transport rates did not increase substantially. Observed transport rates for these two very different bed gradients could be predicted reasonably well by using a flow resistance partitioning approach to account for increasing bed roughness (D84 changes from 0.17 m to 0.91 m) within a fractional bed load transport equation. This suggests that sediment transport behavior across this large range of steep slopes agrees with patterns established in previous studies for both lower-gradient and steep reaches, and confirms the applicability of the flow resistance and bed load transport equations at very steep slopes.

  17. Rainfall and sheet power model for interrill erosion in steep slope

    NASA Astrophysics Data System (ADS)

    Shin, Seung Sook; Deog Park, Sand; Nam, Myeong Jun

    2015-04-01

    The two-phase process of interrill erosion consist of the splash and detachment of individual particles from soil mass by impact of raindrops and the transport by erosive running water. Most experimental results showed that the effect of interaction between rainfall impact and surface runoff increases soil erosion in low or gentle slope. Especially, the combination of rain splash and sheet flow is the dominant runoff and erosion mechanism occurring on most steep hillslopes. In this study, a rainfall simulation was conducted to evaluate interrill erosion in steep slope with cover or non-cover. The kinetic energy of raindrops of rainfall simulator was measured by disdrometer used to measure the drop size distribution and velocity of falling raindrops and showed about 0.563 rate of that calculated from empirical equation between rainfall kinetic energy and rainfall intensity. Surface and subsurface runoff and sediment yield depended on rainfall intensity, gradient of slope, and existence of cover. Sediment from steep plots under rainfall simulator is greatly reduced by existence of the strip cover that the kinetic energy of raindrop approximates to zero. Soil erosion in steep slope with non-cover was nearly 4.93 times of that measured in plots with strip cover although runoff was only 1.82 times. The equation of a rainfall and sheet power was used to evaluate sediment yields in steep slope with cover or non-cover. The power model successfully explained physical processes for interrill erosion that combination of raindrop impact and sheet flow increases greatly soil erosion in steep slope. This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education, Science and Technology(No. 2013R1A1A3011962).

  18. Effects of low frequency ultrasonic treatment on the maturation of steeped greengage wine.

    PubMed

    Zheng, Xinhua; Zhang, Min; Fang, Zhongxiang; Liu, Yaping

    2014-11-01

    To accelerate wine maturation, low frequency ultrasonic waves of 28 kHz and 45 kHz were used to treat the steeped greengage wine. The contents of total acid, total ester, fusel oils and the wine chromaticity were determined before and after the ultrasonic treatment. The volatile compounds were analysed by GC-MS method, and the sensory quality was evaluated by panelist. The results indicated that ultrasonic treatment of the steeped greengage wine at 45 kHz 360 W for 30 min was effective to accelerate the aging process, where the fusel oils and alcohol compounds were significantly reduced and acid and ester compounds were significantly increased.

  19. Inclined layer convection in a colloidal suspension with negative Soret coefficient at large solutal Rayleigh numbers.

    PubMed

    Italia, Matteo; Croccolo, Fabrizio; Scheffold, Frank; Vailati, Alberto

    2014-10-01

    Convection in an inclined layer of fluid is affected by the presence of a component of the acceleration of gravity perpendicular to the density gradient that drives the convective motion. In this work we investigate the solutal convection of a colloidal suspension characterized by a negative Soret coefficient. Convection is induced by heating the suspension from above, and at large solutal Rayleigh numbers (of the order of 10(7)-10(8)) convective spoke patterns form. We show that in the presence of a marginal inclination of the cell as small as 19 mrad the isotropy of the spoke pattern is broken and the convective patterns tend to align in the direction of the inclination. At intermediate inclinations of the order of 33 mrad ordered square patterns are obtained, while at inclination of the order of 67 mrad the strong shear flow determined by the inclination gives rise to ascending and descending sheets of fluid aligned parallel to the direction of inclination.

  20. Advanced Communications Technology Satellite (ACTS) Used for Inclined Orbit Operations

    NASA Technical Reports Server (NTRS)

    Bauer, Robert A.

    2000-01-01

    The Advanced Communications Technology Satellite (ACTS) is operated by the NASA Glenn Research Center at Lewis Field 24 hours a day, 7 days a week. ACTS, which was launched in September 1993, is in its 7th year of operations, far exceeding the system s planned 2 years of operations and 4 years of designed mission life. After 5 successful years of operating as a geostationary satellite, the spacecraft s North-South stationkeeping was discontinued in August 1998. The system is now operating in an inclined orbit that increases at a rate of 0.8 /yr. With only scarce fuel remaining, operating in this mode extends the usage of the still totally functional payload. Although tracking systems are now needed on the experimenter Earth stations, experiment operations have continued with very little disruption. This is the only known geosynchronous Ka-band (30/20 GHz) spot-beam satellite operating in an inclined orbit. The project began its transition from geostationary operations to inclined operations in August 1998. This did not interrupt operations and was transparent to the experimenters on the system. For the space segment, new daily procedures were implemented to maintain the pointing of the system s narrow 0.3 spot beams while the spacecraft drifts in the North-South direction. For the ground segment, modifications were designed, developed, and fielded for the three classes of experimenter Earth stations. With the next generation of commercial satellite systems still being developed, ACTS remains the only operational testbed for Ka-band geosynchronous satellite communications over the Western hemisphere. Since inclined orbit operations began, the ACTS experiments program has supported 43 investigations by industry, Government, and academic organizations, as well as four demonstrations. The project s goals for inclined-orbit operations now reflect a narrower focus in the types of experiments that will be done. In these days of "faster, better, cheaper," NASA is seeking

  1. MEASUREMENTS OF STELLAR INCLINATIONS FOR KEPLER PLANET CANDIDATES

    SciTech Connect

    Hirano, Teruyuki; Taruya, Atsushi; Suto, Yasushi; Sanchis-Ojeda, Roberto; Winn, Joshua N.; Takeda, Yoichi; Narita, Norio

    2012-09-01

    We present an investigation of spin-orbit angles for planetary system candidates reported by Kepler. By combining the rotational period P{sub s} inferred from the flux variation due to starspots and the projected rotational velocity Vsin I{sub s} and stellar radius obtained by a high-resolution spectroscopy, we attempt to estimate the inclination I{sub s} of the stellar spin axis with respect to the line of sight. For transiting planetary systems, in which planetary orbits are edge-on seen from us, the stellar inclination I{sub s} can be a useful indicator of a spin-orbit alignment/misalignment. We newly conducted spectroscopic observations with Subaru/HDS for 15 Kepler Object of Interest (KOI) systems, whose light curves show periodic flux variations. Detailed analyses of their light curves and spectra revealed that some of them are binaries, or the flux variations are too coherent to be caused by starspots, and consequently we could constrain stellar inclinations I{sub s} for eight systems. Among them, KOI-262 and 280 are in good agreement with I{sub s} 90 Degree-Sign suggesting a spin-orbit alignment, while at least one system, KOI-261, shows a possible spin-orbit misalignment. We also obtain a small I{sub s} for KOI-1463, but the transiting companion seems to be a star rather than a planet. The results for KOI-257, 269, 367, and 974 are ambiguous and can be explained with either misalignments or moderate differential rotation. Since our method can be applied to any system having starspots regardless of the planet size, future observations will allow for the expansion of the parameter space in which the spin-orbit relations are investigated.

  2. How the inclination of Earth's orbit affects incoming solar irradiance

    NASA Astrophysics Data System (ADS)

    Vieira, L. E. A.; Norton, A.; Dudok de Wit, T.; Kretzschmar, M.; Schmidt, G. A.; Cheung, M. C. M.

    2012-08-01

    The variability in solar irradiance, the main external energy source of the Earth's system, must be critically studied in order to place the effects of human-driven climate change into perspective and allow plausible predictions of the evolution of climate. Accurate measurements of total solar irradiance (TSI) variability by instruments onboard space platforms during the last three solar cycles indicate changes of approximately 0.1% over the sunspot cycle. Physics-based models also suggest variations of the same magnitude on centennial to millennia time-scales. Additionally, long-term changes in Earth's orbit modulate the solar irradiance reaching the top of the atmosphere. Variations of orbital inclination in relation to the Sun's equator could potentially impact incoming solar irradiance as a result of the anisotropy of the distribution of active regions. Due to a lack of quantitative estimates, this effect has never been assessed. Here, we show that although observers with different orbital inclinations experience various levels of irradiance, modulations in TSI are not sufficient to drive observed 100 kyr climate variations. Based on our model we find that, due to orbital inclination alone, the maximum change in the average TSI over timescales of kyrs is ˜0.003 Wm-2, much smaller than the ˜1.5 Wm-2 annually integrated change related to orbital eccentricity variations, or the 1-8 Wm-2 variability due to solar magnetic activity. Here, we stress that out-of-ecliptic measurements are needed in order to constrain models for the long-term evolution of TSI and its impact on climate.

  3. Collisionless encounters and the origin of the lunar inclination.

    PubMed

    Pahlevan, Kaveh; Morbidelli, Alessandro

    2015-11-26

    The Moon is generally thought to have formed from the debris ejected by the impact of a planet-sized object with the proto-Earth towards the end of planetary accretion. Models of the impact process predict that the lunar material was disaggregated into a circumplanetary disk and that lunar accretion subsequently placed the Moon in a near-equatorial orbit. Forward integration of the lunar orbit from this initial state predicts a modern inclination at least an order of magnitude smaller than the lunar value--a long-standing discrepancy known as the lunar inclination problem. Here we show that the modern lunar orbit provides a sensitive record of gravitational interactions with Earth-crossing planetesimals that were not yet accreted at the time of the Moon-forming event. The currently observed lunar orbit can naturally be reproduced via interaction with a small quantity of mass (corresponding to 0.0075-0.015 Earth masses eventually accreted to the Earth) carried by a few bodies, consistent with the constraints and models of late accretion. Although the encounter process has a stochastic element, the observed value of the lunar inclination is among the most likely outcomes for a wide range of parameters. The excitation of the lunar orbit is most readily reproduced via collisionless encounters of planetesimals with the Earth-Moon system with strong dissipation of tidal energy on the early Earth. This mechanism obviates the need for previously proposed (but idealized) excitation mechanisms, places the Moon-forming event in the context of the formation of Earth, and constrains the pristineness of the dynamical state of the Earth-Moon system.

  4. On the highly inclined vW leptokurtic asteroid families

    NASA Astrophysics Data System (ADS)

    Carruba, V.; Domingos, R. C.; Aljbaae, S.; Huaman, M.

    2016-11-01

    vW leptokurtic asteroid families are families for which the distribution of the normal component of the terminal ejection velocity field vW is characterized by a positive value of the γ2 Pearson kurtosis, i.e. they have a distribution with a more concentrated peak and larger tails than the Gaussian one. Currently, eight families are known to have γ2(vW) > 0.25. Among these, three are highly inclined asteroid families, the Hansa, Barcelona, and Gallia families. As observed for the case of the Astrid family, the leptokurtic inclination distribution seems to be caused by the interaction of these families with node secular resonances. In particular, the Hansa and Gallia family are crossed by the s - sV resonance with Vesta, that significantly alters the inclination of some of their members. In this work we use the time evolution of γ2(vW) for simulated families under the gravitational influence of all planets and the three most massive bodies in the main belt to assess the dynamical importance (or lack of) node secular resonances with Ceres, Vesta, and Pallas for the considered families, and to obtain independent constraints on the family ages. While secular resonances with massive bodies in the main belt do not significantly affect the dynamical evolution of the Barcelona family, they significantly increase the γ2(vW) values of the simulated Hansa and Gallia families. Current values of the γ2(vW) for the Gallia family are reached over the estimated family age only if secular resonances with Vesta are accounted for.

  5. Critical Heat Flux in Inclined Rectangular Narrow Gaps

    SciTech Connect

    Jeong J. Kim; Yong H. Kim; Seong J. Kim; Sang W. Noh; Kune Y. Suh; Joy L. Rempe; Fan-Bill Cheung; Sang B. Kim

    2004-06-01

    In light of the TMI-2 accident, in which the reactor vessel lower head survived the attack by molten core material, the in-vessel retention strategy was suggested to benefit from cooling the debris through a gap between the lower head and the core material. The GAMMA 1D (Gap Apparatus Mitigating Melt Attack One Dimensional) tests were conducted to investigate the critical heat flux (CHF) in narrow gaps with varying surface orientations. The CHF in an inclined gap, especially in case of the downward-facing narrow gap, is dictated by bubble behavior because the departing bubbles are squeezed. The orientation angle affects the bubble layer and escape of the bubbles from the narrow gap. The test parameters include gap sizes of 1, 2, 5 and 10 mm and the open periphery, and the orientation angles range from the fully downward-facing (180o) to the vertical (90o) position. The 15 ×35 mm copper test section was electrically heated by the thin film resistor on the back. The heater assembly was installed to the tip of the rotating arm in the heated water pool at the atmospheric pressure. The bubble behavior was photographed utilizing a high-speed camera through the Pyrex glass spacer. It was observed that the CHF decreased as the surface inclination angle increased and as the gap size decreased in most of the cases. However, the opposing results were obtained at certain surface orientations and gap sizes. Transition angles, at which the CHF changed in a rapid slope, were also detected, which is consistent with the existing literature. A semi-empirical CHF correlation was developed for the inclined narrow rectangular channels through dimensional analysis. The correlation provides with best-estimate CHF values for realistically assessing the thermal margin to failure of the lower head during a severe accident involving relocation of the core material.

  6. Measurements of Stellar Inclinations for Kepler Planet Candidates

    NASA Astrophysics Data System (ADS)

    Hirano, Teruyuki; Sanchis-Ojeda, Roberto; Takeda, Yoichi; Narita, Norio; Winn, Joshua N.; Taruya, Atsushi; Suto, Yasushi

    2012-09-01

    We present an investigation of spin-orbit angles for planetary system candidates reported by Kepler. By combining the rotational period Ps inferred from the flux variation due to starspots and the projected rotational velocity Vsin Is and stellar radius obtained by a high-resolution spectroscopy, we attempt to estimate the inclination Is of the stellar spin axis with respect to the line of sight. For transiting planetary systems, in which planetary orbits are edge-on seen from us, the stellar inclination Is can be a useful indicator of a spin-orbit alignment/misalignment. We newly conducted spectroscopic observations with Subaru/HDS for 15 Kepler Object of Interest (KOI) systems, whose light curves show periodic flux variations. Detailed analyses of their light curves and spectra revealed that some of them are binaries, or the flux variations are too coherent to be caused by starspots, and consequently we could constrain stellar inclinations Is for eight systems. Among them, KOI-262 and 280 are in good agreement with Is = 90° suggesting a spin-orbit alignment, while at least one system, KOI-261, shows a possible spin-orbit misalignment. We also obtain a small Is for KOI-1463, but the transiting companion seems to be a star rather than a planet. The results for KOI-257, 269, 367, and 974 are ambiguous and can be explained with either misalignments or moderate differential rotation. Since our method can be applied to any system having starspots regardless of the planet size, future observations will allow for the expansion of the parameter space in which the spin-orbit relations are investigated.

  7. Intermediate inclinations of type 2 Coronal-Line Forest AGN

    NASA Astrophysics Data System (ADS)

    Rose, Marvin; Elvis, Martin; Crenshaw, Michael; Glidden, Ana

    2015-07-01

    Coronal-Line Forest Active Galactic Nuclei (CLiF AGN) are remarkable in the sense that they have a rich spectrum of dozens of coronal emission lines (e.g. [Fe VII], [Fe X] and [Ne V]) in their spectra. Rose, Elvis & Tadhunter suggest that the inner obscuring torus wall is the most likely location of the coronal line region in CLiF AGN, and the unusual strength of the forbidden high-ionization lines is due to a specific AGN-torus inclination angle. Here, we test this suggestion using mid-IR colours (4.6-22 μm) from the Wide-Field Infrared Survey Explorer for the CLiF AGN. We use the Fischer et al. result that showed that as the AGN-torus inclination becomes more face on, the Spitzer 5.5-30 μm colours become bluer. We show that the [W2-W4] colours for the CLiF AGN (<[W2-W4]> = 5.92 ± 0.12) are intermediate between Sloan Digital Sky Survey (SDSS) type 1 (<[W2-W4]> = 5.22 ± 0.01) and type 2 AGN (<[W2-W4]> = 6.35 ± 0.03). This implies that the AGN-torus inclinations for the CLiF AGN are indeed intermediate, supporting the work of Rose, Elvis & Tadhunter. The confirmed relation between CLiF AGN and their viewing angle shows that CLiF AGN may be useful for our understanding of AGN unification.

  8. Nonlocal effects in sand flows on an inclined plane.

    PubMed

    Malloggi, F; Andreotti, B; Clément, E

    2015-05-01

    The flow of sand on a rough inclined plane is investigated experimentally. We directly show that a jammed layer of grains spontaneously forms below the avalanche. Its properties and its relation with the rheology of the flowing layer of grains are presented and discussed. In a second part, we study the dynamics of erosion and deposition solitary waves in the domain where they are transversally stable. We characterize their shapes and velocity profiles. We relate their translational velocity to the stopping height and to the mass trapped in the avalanche. Finally, we use the velocity profile to get insight into the rheology very close to the jamming limit.

  9. Fringes of equal tangential inclination by curvature-induced birefringence

    NASA Astrophysics Data System (ADS)

    Medhat, M.; Hendawy, N. I.; Zaki, A. A.

    2003-02-01

    A new kind of interference fringes, fringes of equal tangential inclination by curvature-induced birefringence, is presented. These are two-beam interference fringes produced by bending a thin sheet of birefringent material into a part of an exact cylinder such that the curvature is constant. Due to this curvature there is a uniform birefringence being induced. The change in birefringence induced by applying different radii of curvatures to a Fortepan sheet is measured. The stored (fixed) or natural birefringence of this sheet is deduced.

  10. The static response of a bowed inclined hot wire

    NASA Technical Reports Server (NTRS)

    Smits, A. J.

    1984-01-01

    The directional sensitivity of a bowed, inclined hot wire is investigated using a simple model for the convective heat transfer. The static response is analyzed for subsonic and supersonic flows. It is shown that the effects of both end conduction and wire bowing are greater in supersonic flow. Regardless of the Mach number, however, these two phenomena have distinctly different effects; end conduction appears to be responsible for reducing the nonlinearity of the response, whereas bowing increases the directional sensitivity. Comparison with the available data suggests that the analysis is useful for interpreting the experimental results.

  11. Motion on an inclined plane and the nature of science

    NASA Astrophysics Data System (ADS)

    Pendrill, Ann-Marie; Ekström, Peter; Hansson, Lena; Mars, Patrik; Ouattara, Lassana; Ryan, Ulrika

    2014-03-01

    Friction is an important phenomenon in everyday life. All children are familiar with playground slides, which may thus be a good starting point for investigating friction. Motion on an inclined plane is a standard physics example. This paper presents an investigation of friction by a group of 11-year olds. How did they plan their investigations? What aspects of friction could they discern? What understanding of the nature of science was revealed—and developed—during their investigation and subsequent discussion with the teacher?

  12. Numerical simulation of inclination vibration in magnetic induction micromachines

    NASA Astrophysics Data System (ADS)

    Chen, J.-Y.; Zhou, J.-B.; Zhang, W.-M.; Meng, G.

    2008-02-01

    This paper studies the inclination vibration of an axial-flux magnetic induction micromachine which is supported by hydrostatic thrust bearings. A mechanical model for the rotor and the corresponding fluid-film bearing is combined with an electromagnetic force model to study the linear and nonlinear rotordynamics of the system. Results obtained for the stability show that magnetic induction micromachine would encounter severe instability problem at high speed operations. The model developed here could serve as a useful reference for design optimization and operation scheme.

  13. Channel Steepness and Longitudinal Profile Evaluation Along the Northern California Coast

    NASA Astrophysics Data System (ADS)

    Fisher, A. C. N.; Belmont, P.; MacDonald, L. H.

    2016-12-01

    Rivers along the northern California coast have been subjected to high levels of tectonic activity (uplift and subsidence) as well as a century and a half of timber harvest, both of which can increase sediment loads in rivers. Excessive sedimentation has caused many of these rivers to be listed as impaired under the Clean Water Act. Discerning natural versus anthropogenic sources of sediment is essential for informing future policy and management decisions. The purpose of this study is to quantify regional trends in river channel steepness and concavity as well as identify reach-scale discontinuities (i.e., anomalous increases or decreases in slope) in river longitudinal profiles. We extracted longitudinal elevation profiles for 14 coastal rivers from Eureka to Crescent City in order to locate knickpoints (anomalous changes in slope that may indicate significant transitions in sediment transport processes and/or tectonic boundaries). Further, we computed the normalized steepness index (Ksn) throughout the river networks. Results indicate generally higher steepness in the northern portion of the study area, suggesting higher rates of tectonic uplift. Most coastal rivers exhibit anomalously low steepness proximate to the coast, with a few key exceptions.

  14. Contour Planting: A Strategy to Reduce Soil Erosion on Steep Slopes

    USDA-ARS?s Scientific Manuscript database

    Practices that combine GPS-based guidance for terrain contouring and tillage for runoff detention have potential to increase water infiltration and reduce runoff. The objective of this study was to investigate contour planting as a means to reduce soil erosion on steep slopes of the Columbia Platea...

  15. Does WEPP meet the specificity of soil erosion in steep mountain regions?

    USDA-ARS?s Scientific Manuscript database

    We chose the USDA-ARS-WEPP model (Water Erosion Prediction Project) to describe the soil erosion in the Urseren valley (Central Switzerland) as it seems to be one of the most promising models for steep mountain environments. Crucial model parameters were determined in the field (slope, plant species...

  16. Riparian hydraulic gradient and stream-groundwater exchange dynamics in steep headwater valleys

    Treesearch

    T.J. Voltz; M.N. Gooseff; A.S. Ward; K. Singha; M. Fitzgerald; T. Wagener

    2013-01-01

    Patterns of riparian hydraulic gradients and stream-groundwater exchange in headwater catchments provide the hydrologic context for important ecological processes. Although the controls are relatively well understood, their dynamics during periods of hydrologic change is not. We investigate riparian hydraulic gradients over three different time scales in two steep,...

  17. X-ray refraction effect and density determination of steep-gradient, high-density plasma

    NASA Astrophysics Data System (ADS)

    Miyanaga, N.; Kato, Y.; Yamanaka, C.

    1982-12-01

    X-ray defraction due to the steep density gradient of a laser-produced plasma has been observed. Distribution of the density gradient was determined from the measured refraction angle. Estimation of the radial density profile and the density scale length in the high-density region near the ablation surface are presented.

  18. Inactivation of tannins in milled sorghum grain through steeping in dilute NaOH solution.

    PubMed

    Adetunji, Adeoluwa I; Duodu, Kwaku G; Taylor, John R N

    2015-05-15

    Steeping milled sorghum in up to 0.4% NaOH was investigated as a method of tannin inactivation. NaOH steeping substantially reduced assayable total phenols and tannins in both Type III and Type II sorghums and with Type III sorghum caused a 60-80% reduction in α-amylase inhibition compared to a 20% reduction by water steeping. NaOH treatment also reduced starch liquefaction time and increased free amino nitrogen. Type II tannin sorghum did not inhibit α-amylase and consequently the NaOH treatment had no effect. HPLC and LC-MS of the tannin extracts indicated a general trend of increasing proanthocyanidin/procyanidin size with increasing NaOH concentration and steeping time, coupled with a reduction in total area of peaks resolved. These show that the NaOH treatment forms highly polymerised tannin compounds, too large to assay and to interact with the α-amylase. NaOH pre-treatment of Type III sorghums could enable their utilisation in bioethanol production.

  19. Hardwood silviculture and skyline yarding on steep slopes: economic and environmental impacts

    Treesearch

    John E. Baumgras; Chris B. LeDoux

    1995-01-01

    Ameliorating the visual and environmental impact associated with harvesting hardwoods on steep slopes will require the efficient use of skyline yarding along with silvicultural alternatives to clearcutting. In evaluating the effects of these alternatives on harvesting revenue, results of field studies and computer simulations were used to estimate costs and revenue for...

  20. Erosion risk assessment of controlled burning of grasses established on steep slopes

    NASA Astrophysics Data System (ADS)

    Gyasi-Agyei, Yeboah

    2006-02-01

    It is a standard practice to establish grasses on steep slopes (batters) of embankments and cuttings to minimise erosion problems. However, the increase in grass density (high biomass) on the steep slopes poses a greater risk of fire. Controlled burning is a common fuel hazard reduction program employed to minimise the fire risks. The increased risk of erosion on the steep slopes after controlled burning has received little attention if any. This paper assesses the erosion risks associated with controlled burning of grasses established on steep slopes. Grasses, with and without the aid of waste ballast rock mulch, were established on 10 m wide railway embankment batter experiment plots. Two-and-a-half years after the grass establishment, selected plots were controlled burned. Runoff and soil loss from the experimental plots were monitored throughout the 3½-year period of the experiment. After one year the grass cover on the burned plots has hardly exceeded 60%, far below the average pre-burn levels of about 80%. All treatments achieved an incredible soil loss reduction of over 95% (compared with the bare scenario) without controlled burning at the end of the 3½-year period. This percentage value was decreased numerically by 14 where controlled burning was implemented. Compared with the 100% grass cover treatment, runoff rates tripled while erosion rates increased by nine-fold for the waste ballast treatment, and 17-fold for the non-waste ballast treatment, during the first year following controlled burning.

  1. Influence of starch steeping period on dimensionless disintegration values of a paracetamol tablet formulation.

    PubMed

    Alebiowu, Gbenga; Adeyemi, Ayoade O

    2009-01-01

    In this study, tapioca starches obtained after different steeping periods, i.e. TS 24, TS 48 and TS 72, were used as disintegrants with corn starch BP as the standard disintegrant in a paracetamol tablet formulation. Two dimensionless disintegration quantities, T(N) and T(C) were used in the determination of the influence that steeping period of starch disintegrant would have on the crushing strength friability-disintegration time ratio (CSFR/DT). These quantities were used to assess the influence of steeping period, relative density and disintegrant concentration on CSFR/DT as well as to compare disintegrant efficiency. The results suggest that the CSFR/DT is more dependent on the disintegrant concentration than on steeping period and relative density. The study further showed that TS 72 is a more reliable disintegrant because its activity would not be influenced by changes in relative density of tablets. This work concludes that the T(N) would be more useful for quantitative assessment while T(C) is more relevant for qualitative assessment.

  2. Slope, Rate of Change, and Steepness: Do Students Understand These Concepts?

    ERIC Educational Resources Information Center

    Teuscher, Dawn; Reys, Robert E.

    2010-01-01

    How do mathematics teachers introduce the concepts of slope, rate of change, and steepness in their classrooms? Do students understand these concepts as interchangeable or regard them as three different ideas? In this article, the authors report the results of a study of high school Advanced Placement (AP) Calculus students who displayed…

  3. Vorticity Dynamics of Cross-isobath Geostrophic Transport in the Stratified Steep and Concave Shelves

    NASA Astrophysics Data System (ADS)

    Jianping, G.; Hui, C. W.

    2016-02-01

    We investigated the variability and the physics of cross-isobath transport that lead to the formation of prominent upwelling centers in the steep shelf to the east of Hainan Island (EHI) and in the ambient shallow Gulf of Zhanjiang (GOZ). In situ measurements and a three-dimensional modeling showed that strengthened upslope transport of cold deep waters occurred in these two shelves, which are characterized by steep slope and concaving isobaths, respectively. The major driving force for these shoreward cross-isobath transports were not from the bottom frictional dynamics, but from the along-isobath pressure gradient force (PGF) as a result of the flow response to the variable shelf topography. The physical origins of the PGF of these prominent upwelling centers, however, were dynamically different. We found that the sources of the PGF were the Modified Joint Effect Baroclinicity and Relief (MJEBAR) due to importance of baroclinicity in the steep EHI and the net water-column stress curl in the concaving GOZ. The along-shelf geostrophic current that maintains the flow-topography interaction for the formation of the PGF was determined by the competing slope and baroclinic effects in EHI and by the cross-isobath changing bottom pressure in GOZ. Based on depth-integrated vorticity dynamics for a stratified and free-surface sea, this study illustrates the contrasting forcing functions of the three-dimensional circulation over the steep and shallow concaving shelves.

  4. Slope, Rate of Change, and Steepness: Do Students Understand These Concepts?

    ERIC Educational Resources Information Center

    Teuscher, Dawn; Reys, Robert E.

    2010-01-01

    How do mathematics teachers introduce the concepts of slope, rate of change, and steepness in their classrooms? Do students understand these concepts as interchangeable or regard them as three different ideas? In this article, the authors report the results of a study of high school Advanced Placement (AP) Calculus students who displayed…

  5. Fast Back-Propagation Learning Using Steep Activation Functions and Automatic Weight

    Treesearch

    Tai-Hoon Cho; Richard W. Conners; Philip A. Araman

    1992-01-01

    In this paper, several back-propagation (BP) learning speed-up algorithms that employ the ãgainä parameter, i.e., steepness of the activation function, are examined. Simulations will show that increasing the gain seemingly increases the speed of convergence and that these algorithms can converge faster than the standard BP learning algorithm on some problems. However,...

  6. A sediment transport model for incision of gullies on steep topography

    Treesearch

    Erkan Istanbulluoglu; David G. Tarboton; Robert T. Pack; Charles H. Luce

    2003-01-01

    We have conducted surveys of gullies that developed in a small, steep watershed in the Idaho Batholith after a severe wildfire followed by intense precipitation. We measured gully length and cross sections to estimate the volumes of sediment loss due to gully formation. These volume estimates are assumed to provide an estimate of sediment transport capacity at each...

  7. Haemodynamics and cardiac function during robotic-assisted laparoscopic prostatectomy in steep Trendelenburg position.

    PubMed

    Haas, Sebastian; Haese, Alexander; Goetz, Alwin E; Kubitz, Jens C

    2011-12-01

    Robotic-assisted laparoscopic prostatectomy (RALP) is usually performed in steep Trendelenburg position, which can be associated with cardiac impairment due to positioning and capnoperitoneum. This study investigated haemodynamic consequences and cardiac function in this type of surgery and evaluated the hypothesis that steep Trendelenburg position and capnoperitoneum results in haemodynamic and ventricular impairment. 10 patients (ASA I-III) scheduled for RALP in steep Trendelenburg position with capnoperitoneum were prospectively studied. Heart rate (HR), mean arterial pressure (MAP) and central venous pressure (CVP) were recorded. Stroke volume variation (SVV) and cardiac output (CO) were measured using pulse-contour analysis. Further, cardiac function was assessed using trans-oesophageal echocardiography before positioning (T1) and 10 min (T2) and 60 min (T3) after implementation of steep Trendelenburg position and capnoperitoneum. HR did not change statistically. MAP (T1, 69.7 ± 1.55; T2, 82.9 ± 3.05; T3, 79.4 ± 2.18 mmHg), CVP (T1, 7.7 ± 1.3; T2, 17.3 ± 2.01; T3, 16.9 ± 1.66 mmHg) and CO (T1, 4.0 ± 0.15; T2, 4.9 ± 0.26; T3, 4.9 ± 0.36 l/min) increased significantly at T2 and T3. Echocardiography showed no deterioration of left or right ventricular function. In one patient with pre-existing mitral valve insufficiency (I°) an aggravation of the insufficiency (III°) was observed. No other valve dysfunctions were observed. The steep Trendelenburg position may improve haemodynamic function and does not deteriorate left or right ventricular function during RALP. However, mitral valve insufficiency may be aggravated by positioning and capnoperitoneum. Copyright © 2011 John Wiley & Sons, Ltd.

  8. Prevalence and Associations of Steep Cornea/Keratoconus in Greater Beijing. The Beijing Eye Study

    PubMed Central

    Xu, Liang; Wang, Ya Xing; Guo, Yin; You, Qi Sheng; Jonas, Jost B.

    2012-01-01

    Purpose To evaluate the prevalence and associated factors of steep cornea/keratoconus in the adult Chinese population. Methods The population-based Beijing Eye Study 2011 included 3468 individuals with a mean age of 64.6±9.8 years (range: 50–93 years). A detailed ophthalmic examination was performed including optical low-coherence reflectometry. Steep cornea/keratoconus were defined as an anterior corneal refractive power exceeding 48 diopters. Results Mean refractive power of the cornea was 43.16±1.45 diopters (range: 36.51 to 48.46 diopters; flattest meridian) and 43.98±1.52 diopters (range: 37.00 to 52.88 diopters; steepest meridian). A steep cornea/keratoconus defined as corneal refractive power of ≥48 diopters and ≥49 diopters was detected in 27 subjects (prevalence rate: 0.9±0.2%) and 6 (0.2± 0.1%) subjects, respectively. Presence of steep cornea/keratoconus was associated with shorter axial length (P<0.001), smaller interpupillary distance (P = 0.038), lower best corrected visual acuity (P = 0.021), higher cylindrical refractive error (P<0.001) and more myopic refractive error (P<0.001). It was not significantly associated with gender, body height, psychic depression, cognitive function, blood concentrations of glucose, lipids, creatinine and C-reactive protein, blood pressure and quality of life score, nor with intraocular pressure, dry eye feeling, and lens thickness. Conclusions A steep cornea/keratoconus defined as corneal refractive power of 48+ diopters has a prevalence of 0.9±0.2% among Chinese aged 50 years and above. Its prevalence was significantly associated with the ocular parameters of shorter axial length, smaller interpupillary distance, higher cylindrical and myopic refractive error and lower best corrected visual acuity, however, with none of the systemic parameters tested. PMID:22792169

  9. Pseudo 3-D P wave refraction seismic monitoring of permafrost in steep unstable bedrock

    NASA Astrophysics Data System (ADS)

    Krautblatter, Michael; Draebing, Daniel

    2014-02-01

    permafrost in steep rock walls can cause hazardous rock creep and rock slope failure. Spatial and temporal patterns of permafrost degradation that operate at the scale of instability are complex and poorly understood. For the first time, we used P wave seismic refraction tomography (SRT) to monitor the degradation of permafrost in steep rock walls. A 2.5-D survey with five 80 m long parallel transects was installed across an unstable steep NE-SW facing crestline in the Matter Valley, Switzerland. P wave velocity was calibrated in the laboratory for water-saturated low-porosity paragneiss samples between 20°C and -5°C and increases significantly along and perpendicular to the cleavage by 0.55-0.66 km/s (10-13%) and 2.4-2.7 km/s (>100%), respectively, when freezing. Seismic refraction is, thus, technically feasible to detect permafrost in low-porosity rocks that constitute steep rock walls. Ray densities up to 100 and more delimit the boundary between unfrozen and frozen bedrock and facilitate accurate active layer positioning. SRT shows monthly (August and September 2006) and annual active layer dynamics (August 2006 and 2007) and reveals a contiguous permafrost body below the NE face with annual changes of active layer depth from 2 to 10 m. Large ice-filled fractures, lateral onfreezing of glacierets, and a persistent snow cornice cause previously unreported permafrost patterns close to the surface and along the crestline which correspond to active seasonal rock displacements up to several mm/a. SRT provides a geometrically highly resolved subsurface monitoring of active layer dynamics in steep permafrost rocks at the scale of instability.

  10. Egalitarian despots: hierarchy steepness, reciprocity and the grooming-trade model in wild chimpanzees, Pan troglodytes

    PubMed Central

    Kaburu, Stefano S. K.; Newton-Fisher, Nicholas E.

    2014-01-01

    Biological market theory models the action of natural selection as a marketplace in which animals are viewed as traders with commodities to offer and exchange. Studies of female Old World monkeys have suggested that grooming might be employed as a commodity to be reciprocated or traded for alternative services, yet previous tests of this grooming-trade model in wild adult male chimpanzees have yielded mixed results. Here we provide the strongest test of the model to date for male chimpanzees: we use data drawn from two social groups (communities) of chimpanzees from different populations and give explicit consideration to variation in dominance hierarchy steepness, as such variation results in differing conditions for biological markets. First, analysis of data from published accounts of other chimpanzee communities, together with our own data, showed that hierarchy steepness varied considerably within and across communities and that the number of adult males in a community aged 20–30 years predicted hierarchy steepness. The two communities in which we tested predictions of the grooming-trade model lay at opposite extremes of this distribution. Second, in accord with the grooming-trade model, we found evidence that male chimpanzees trade grooming for agonistic support where hierarchies are steep (despotic) and consequent effective support is a rank-related commodity, but not where hierarchies are shallow (egalitarian). However, we also found that grooming was reciprocated regardless of hierarchy steepness. Our findings also hint at the possibility of agonistic competition, or at least exclusion, in relation to grooming opportunities compromising the free market envisioned by biological market theory. Our results build on previous findings across chimpanzee communities to emphasize the importance of reciprocal grooming exchanges among adult male chimpanzees, which can be understood in a biological markets framework if grooming by or with particular individuals is

  11. Steep Decay Phase Shaped by the Curvature Effect. I. Flux Evolution

    NASA Astrophysics Data System (ADS)

    Lin, Da-Bin; Mu, Hui-Jun; Lu, Rui-Jing; Liu, Tong; Gu, Wei-Min; Liang, Yun-Feng; Wang, Xiang-Gao; Liang, En-Wei

    2017-05-01

    The curvature effect may be responsible for the steep decay phase observed in gamma-ray bursts. To test the curvature effect with observations, the zero time point t 0 adopted to plot the observer time and flux on a logarithmic scale should be appropriately selected. In practice, however, the true t 0 cannot be directly constrained from the data. Thus, we move t 0 to a certain time in the steep decay phase, which can be easily identified. In this situation, we derive an analytical formula to describe the flux evolution of the steep decay phase. The analytical formula reads as {F}ν \\propto {(1+{\\tilde{t}}{obs}/{\\tilde{t}}c)}-α , with α ({\\tilde{t}}{obs})=2+{\\int }0{log(1+{\\tilde{t}}{obs}/{\\tilde{t}}c)} β (τ )d[{log}(1+τ /{\\tilde{t}}c)]/{log}(1+{\\tilde{t}}{obs}/{\\tilde{t}}c), where F ν is the flux observed at frequency ν, {\\tilde{t}}{obs} is the observer time by setting t 0 at a certain time in the steep decay phase, β is the spectral index estimated around ν, and {\\tilde{t}}c is the decay timescale of the phase with {\\tilde{t}}{obs}≥slant 0. We test the analytical formula with the data from numerical calculations. It is found that the analytical formula presents a good estimate of the evolution of the flux shaped by the curvature effect. Our analytical formula can be used to confront the curvature effect with observations and estimate the decay timescale of the steep decay phase.

  12. Egalitarian despots: hierarchy steepness, reciprocity and the grooming-trade model in wild chimpanzees, Pan troglodytes.

    PubMed

    Kaburu, Stefano S K; Newton-Fisher, Nicholas E

    2015-01-01

    Biological market theory models the action of natural selection as a marketplace in which animals are viewed as traders with commodities to offer and exchange. Studies of female Old World monkeys have suggested that grooming might be employed as a commodity to be reciprocated or traded for alternative services, yet previous tests of this grooming-trade model in wild adult male chimpanzees have yielded mixed results. Here we provide the strongest test of the model to date for male chimpanzees: we use data drawn from two social groups (communities) of chimpanzees from different populations and give explicit consideration to variation in dominance hierarchy steepness, as such variation results in differing conditions for biological markets. First, analysis of data from published accounts of other chimpanzee communities, together with our own data, showed that hierarchy steepness varied considerably within and across communities and that the number of adult males in a community aged 20-30 years predicted hierarchy steepness. The two communities in which we tested predictions of the grooming-trade model lay at opposite extremes of this distribution. Second, in accord with the grooming-trade model, we found evidence that male chimpanzees trade grooming for agonistic support where hierarchies are steep (despotic) and consequent effective support is a rank-related commodity, but not where hierarchies are shallow (egalitarian). However, we also found that grooming was reciprocated regardless of hierarchy steepness. Our findings also hint at the possibility of agonistic competition, or at least exclusion, in relation to grooming opportunities compromising the free market envisioned by biological market theory. Our results build on previous findings across chimpanzee communities to emphasize the importance of reciprocal grooming exchanges among adult male chimpanzees, which can be understood in a biological markets framework if grooming by or with particular individuals is a

  13. On the high inclination KBOs common dynamical formation

    NASA Astrophysics Data System (ADS)

    De Oliveira Brasil, Pedro Ivo I.; Gomes, Rodney S.; Nesvorny, David

    2014-11-01

    The Kuiper belt is a dynamically intriguing region. Different "classes" of objects can be defined, according to their orbital properties. These are: the classic belt (with the subclasses of cold & hot objects), resonant objects, scattered disk and extended scattered disk. In this work, we seek to investigate possible common origins, during the orbital conformation of the giant planets, for the formation of classes of objects with moderate or high inclination. Interesting results were obtained for the hot objects of the Kuiper belt and the objects belonging to the extended scattered disk. The general mechanism found for the formation of these objects can be summarized as: (i) scattering phase due to the interaction with the giant planets, during the LHB; (ii) capture into mean motion resonances (MMR) with Neptune; (iii) capture into Kozai resonance/mode; (iv) escape FROM both resonances into a mode known as "hibernation mode", in which the object has low eccentricity and high inclination; (v) fossilization in an orbit outside the resonant semi-major axis due to residual migration of Neptune. The results show good consistency between known objects with the model of dynamical formation.

  14. Predictive Simulation Generates Human Adaptations during Loaded and Inclined Walking

    PubMed Central

    Hicks, Jennifer L.; Delp, Scott L.

    2015-01-01

    Predictive simulation is a powerful approach for analyzing human locomotion. Unlike techniques that track experimental data, predictive simulations synthesize gaits by minimizing a high-level objective such as metabolic energy expenditure while satisfying task requirements like achieving a target velocity. The fidelity of predictive gait simulations has only been systematically evaluated for locomotion data on flat ground. In this study, we construct a predictive simulation framework based on energy minimization and use it to generate normal walking, along with walking with a range of carried loads and up a range of inclines. The simulation is muscle-driven and includes controllers based on muscle force and stretch reflexes and contact state of the legs. We demonstrate how human-like locomotor strategies emerge from adapting the model to a range of environmental changes. Our simulation dynamics not only show good agreement with experimental data for normal walking on flat ground (92% of joint angle trajectories and 78% of joint torque trajectories lie within 1 standard deviation of experimental data), but also reproduce many of the salient changes in joint angles, joint moments, muscle coordination, and metabolic energy expenditure observed in experimental studies of loaded and inclined walking. PMID:25830913

  15. Exhumation by gravitational sliding up an inclined plane

    NASA Astrophysics Data System (ADS)

    Podladchikov, Yury; Schmalholz, Stefan; Burg, Jean-Pierre

    2015-04-01

    Gravity causes sliding down an inclined plane if pressure is near lithostatic. If metamorphic pressures are lithostatic pressures, the approximation is inconsistent with pressure-temperature exhumation histories of thrust nappes stacked during compression to form the thickened crust of mountain belts. Overthickened mountain roots and foreland basin-type sedimentation accompanying the downward movement component of the Moho require significant non-lithostatic pressure perturbations within the mountain belts. Relaxation of the subsequent pressure gradients can be achieved by nappe-like thrusting up an inclined plane recording near isothermal decompression and carrying young sediments to high altitudes. We present results of fully dynamic numerical modelling documenting feasibility of this process. Neither thrusting, nor large weakness zones nor S-point-type boundary conditions are kinematically prescribed in our models. Thrusting emerges spontaneously as an instability, strain localization process that may follow preexisting lithological layering or thermal gradients and able to form new zones of weakness by shear heating mechanism. The non-prescribed nature of our modeled deformation modes makes them feasible, even probable as a leading response to continental shortening. In that case, non lithostatic pressure 'cycle' is an alternative or a complement to the classical Wilson cycle invoked alone to explain elevated occurrences of deep-water sediments.

  16. Online measurement system for the surface inclination of metal workpieces

    NASA Astrophysics Data System (ADS)

    Yin, Peng; Sun, Changku; Wang, Peng; Yang, Qian

    2013-12-01

    The online measurement of the metal surfaces' parameters plays an important role in many industrial fields. Because the surfaces of the machined metal pieces have the characteristics of strong reflection and high possibilities of scattered disturbing irradiation points, this paper designs an online measurement system based on the measurement principles of linear structured light to detect whether the parameters of the machined metal surfaces' height difference and inclination fulfill the compliance requirements, in which the grayscale gravity algorithm is applied to extract the sub-pixel coordinates of the center of laser, the least squares method is employed to fit the data and the Pauta criterion is utilized to remove the spurious points. The repeat accuracy of this system has been tested. The experimental results prove that the precision of inclination is 0.046° RMS under the speed of 40mm/sec, and the precision of height difference is 0.072mm RMS, which meets the design expectations. Hence, this system can be applied to online industrial detection of high speed and high precision.

  17. Whole-body angular momentum in incline and decline walking.

    PubMed

    Silverman, Anne K; Wilken, Jason M; Sinitski, Emily H; Neptune, Richard R

    2012-04-05

    Angular momentum is highly regulated over the gait cycle and is important for maintaining dynamic stability and control of movement. However, little is known regarding how angular momentum is regulated on irregular surfaces, such as slopes, when the risk of falling is higher. This study examined the three-dimensional whole-body angular momentum patterns of 30 healthy subjects walking over a range of incline and decline angles. The range of angular momentum was either similar or reduced on decline surfaces and increased on incline surfaces relative to level ground, with the greatest differences occurring in the frontal and sagittal planes. These results suggest that angular momentum is more tightly controlled during decline walking when the risk of falling is greater. In the frontal plane, the range of angular momentum was strongly correlated with the peak hip and knee abduction moments in early stance. In the transverse plane, the strongest correlation occurred with the knee external rotation peak in late stance. In the sagittal plane, all external moment peaks were correlated with the range of angular momentum. The peak ankle plantarflexion, knee flexion and hip extension moments were also strongly correlated with the sagittal-plane angular momentum. These results highlight how able-bodied subjects control angular momentum differently on sloped surfaces relative to level walking and provide a baseline for comparison with pathological populations that are more susceptible to falling.

  18. Breakdown of air pockets in downwardly inclined sewerage pressure mains.

    PubMed

    Lubbers, C L; Clemens, F H L R

    2006-01-01

    In the Netherlands, wastewater is collected in municipal areas and transported to centralised WWTPs by an extensive system of pressure mains. Over the last decades these pressure mains did not receive much attention in terms of monitoring of performance or maintenance. A recent inventory showed that half of the pressure mains show an increased pressure loss for no directly obvious reason. One of the many causes that account for the reduction of the flow capacity is the occurrence of free gas in the pipeline. During dry weather periods with low flow velocities, gas may accumulate at high points in the system. Once the velocity increases during storm weather flow, the air pockets may be broken down and transported to the end of the system. A research study is started focussing on the description of the gas-water phenomena in wastewater pressure mains with respect to transportation of gas. An experimental facility is constructed for the study of multi-phase flow. This paper describes the preliminary results of experiments on breakdown rates of gas pockets as a function of inclination angle and water flow rate. The results show an increasing breakdown rate with increasing inclination angle.

  19. Advanced Communications Technology Satellite Now Operating in an Inclined Orbit

    NASA Technical Reports Server (NTRS)

    Bauer, Robert A.

    1999-01-01

    The Advanced Communications Technology Satellite (ACTS) system has been modified to support operation in an inclined orbit that is virtually transparent to users, and plans are to continue this final phase of its operation through September 2000. The next 2 years of ACTS will provide a new opportunity for using the technologies that this system brought online over 5 years ago and that are still being used to resolve the technical issues that face NASA and the satellite industry in the area of seamless networking and interoperability with terrestrial systems. New goals for ACTS have been defined that align the program with recent changes in NASA and industry. ACTS will be used as a testbed to: Show how NASA and other Government agencies can use commercial systems for 1. future support of their operations Test, characterize, and resolve technical issues in using advanced communications 2. protocols such as asynchronous transfer mode (ATM) and transmission control protocol/Internet protocol (TCP/IP) over long latency links as found when interoperating satellites with terrestrial systems Evaluate narrow-spot-beam Ka-band satellite operation in an inclined orbit 3. Verify Ka-band satellite technologies since no other Ka-band system is yet 4. available in the United States

  20. Do liquid drops roll or slide on inclined surfaces?

    PubMed

    Thampi, Sumesh P; Adhikari, Ronojoy; Govindarajan, Rama

    2013-03-12

    We study the motion of a two-dimensional droplet on an inclined surface, under the action of gravity, using a diffuse interface model which allows for arbitrary equilibrium contact angles. The kinematics of motion is analyzed by decomposing the gradient of the velocity inside the droplet into a shear and a residual flow. This decomposition helps in distinguishing sliding versus rolling motion of the drop. Our detailed study confirms intuition, in that rolling motion dominates as the droplet shape approaches a circle, and the viscosity contrast between the droplet and the ambient fluid becomes large. As a consequence of kinematics, the amount of rotation in a general droplet shape follows a universal curve characterized by geometry, and independent of Bond number, surface inclination and equilibrium contact angle, but determined by the slip length and viscosity contrast. Our results open the way toward a rational design of droplet-surface properties, both when rolling motion is desirable (as in self-cleaning hydrophobic droplets) and when it must be prevented (as in insecticide sprays on leaves).

  1. Experimental study of shock-accelerated inclined heavy gas cylinder

    DOE PAGES

    Olmstead, Dell; Wayne, Patrick; Yoo, Jae-Hwun; ...

    2017-05-23

    An experimental study examines shock acceleration with an initially diffuse cylindrical column of sulfur hexafluoride surrounded by air and inclined with respect to the shock front. Three-dimensional vorticity deposition produces flow patterns whose evolution is captured with planar laser-induced fluorescence in two planes. Both planes are thus parallel to the direction of the shock propagation. The first plane is vertical and passes through the axis of the column. The second visualization plane is normal to the first plane and passes through the centerline of the shock tube. Vortex formation in the vertical and centerline planes is initially characterized by differentmore » rates and morphologies due to differences in initial vorticity deposition. In the vertical plane, the vortex structure manifests a periodicity that varies with Mach number. The dominant wavelength in the vertical plane can be related to the geometry and compressibility of the initial conditions. At later times, the vortex interaction produces a complex and irregular three-dimensional pattern suggesting transition to turbulence. We present highly repeatable experimental data for Mach numbers 1.13, 1.4, 1.7, and 2.0 at column incline angles of 0, 20, and 30 degrees for about 50 nominal cylinder diameters (30 cm) of downstream travel.« less

  2. Experimental Investigations of an Inclined Lap-Type Bolted Joint

    SciTech Connect

    GREGORY, DANNY LYNN; RESOR, BRIAN R.; COLEMAN, RONALD G.; SMALLWOOD, DAVID ORA

    2003-04-01

    The dynamic response of critical aerospace components is often strongly dependent upon the dynamic behavior of bolted connections that attach the component to the surrounding structure. These bolted connections often provide the only structural load paths to the component. The bolted joint investigated in this report is an inclined lap-type joint with the interface inclined with respect to the line of action of the force acting on the joint. The accurate analytical modeling of these bolted connections is critical to the prediction of the response of the component to normal and high-level shock environmental loadings. In particular, it is necessary to understand and correctly model the energy dissipation (damping) of the bolted joint that is a nonlinear function of the forces acting on the joint. Experiments were designed and performed to isolate the dynamics of a single bolted connection of the component. Steady state sinusoidal and transient experiments were used to derive energy dissipation curves as a function of input force. Multiple assemblies of the bolted connection were also observed to evaluate the variability of the energy dissipation of the connection. These experiments provide insight into the complex behavior of this bolted joint to assist in the postulation and development of reduced order joint models to capture the important physics of the joint including stiffness and damping. The experiments are described and results presented that provide a basis for candidate joint model calibration and comparison.

  3. a Modified Method for Image Triangulation Using Inclined Angles

    NASA Astrophysics Data System (ADS)

    Alsadik, Bashar

    2016-06-01

    The ongoing technical improvements in photogrammetry, Geomatics, computer vision (CV), and robotics offer new possibilities for many applications requiring efficient acquisition of three-dimensional data. Image orientation is one of these important techniques in many applications like mapping, precise measurements, 3D modeling and navigation. Image orientation comprises three main techniques of resection, intersection (triangulation) and relative orientation, which are conventionally solved by collinearity equations or by using projection and fundamental matrices. However, different problems still exist in the state - of -the -art of image orientation because of the nonlinearity and the sensitivity to proper initialization and spatial distribution of the points. In this research, a modified method is presented to solve the triangulation problem using inclined angles derived from the measured image coordinates and based on spherical trigonometry rules and vector geometry. The developed procedure shows promising results compared to collinearity approach and to converge to the global minimum even when starting from far approximations. This is based on the strong geometric constraint offered by the inclined angles that are enclosed between the object points and the camera stations. Numerical evaluations with perspective and panoramic images are presented and compared with the conventional solution of collinearity equations. The results show the efficiency of the developed model and the convergence of the solution to global minimum even with improper starting values.

  4. Non-spherical granular flows down inclined chutes

    NASA Astrophysics Data System (ADS)

    Hidalgo, R. C.; Rubio-Largo, S. M.; Alonso-Marroquin, F.; Weinhart, T.

    2017-06-01

    In this work, we numerically examine the steady-state granular flow of 3D non-spherical particles down an inclined plane. We use a hybrid CPU/GPU implementation of the discrete element method of nonspherical elongated particles. Thus, a systematic study of the system response is performed varying the particle aspect ratio and the plane inclination. Similarly to the case of spheres, we observe three well-defined regimes: arresting flows, steady uniform flows and accelerating flows. Both steady and dynamic macroscopic fields are derived from microscopic data, by time-averaging and spatial smoothing (coarse-graining), including density, velocity, as well as the kinetic and contact stress tensors. The internal morphology of the flow was quantified exploring the solid fraction profiles and the particle orientation distribution. Furthermore, the system's characteristic time and length scales are investigated in detail. Our aim is to achieve a continuum mechanical description of granular flows composed of non-spherical particles based on the micromechanical details. Thus, to evaluate the influence of particle shape on the constitutive response in granular of those systems. However, to meet the proceeding's page restrictions here we will only discuss the dependence of some terms of the continuum averaged equations on the coarse-graining scale, specifically the case of the kinetic part of the stress tensor.

  5. Experimental study of shock-accelerated inclined heavy gas cylinder

    NASA Astrophysics Data System (ADS)

    Olmstead, Dell; Wayne, Patrick; Yoo, Jae-Hwun; Kumar, Sanjay; Truman, C. Randall; Vorobieff, Peter

    2017-06-01

    An experimental study examines shock acceleration with an initially diffuse cylindrical column of sulfur hexafluoride surrounded by air and inclined with respect to the shock front. Three-dimensional vorticity deposition produces flow patterns whose evolution is captured with planar laser-induced fluorescence in two planes. Both planes are parallel to the direction of the shock propagation. The first plane is vertical and passes through the axis of the column. The second visualization plane is normal to the first plane and passes through the centerline of the shock tube. Vortex formation in the vertical and centerline planes is initially characterized by different rates and morphologies due to differences in initial vorticity deposition. In the vertical plane, the vortex structure manifests a periodicity that varies with Mach number. The dominant wavelength in the vertical plane can be related to the geometry and compressibility of the initial conditions. At later times, the vortex interaction produces a complex and irregular three-dimensional pattern suggesting transition to turbulence. Highly repeatable experimental data are presented for Mach numbers 1.13, 1.4, 1.7, and 2.0 at column incline angles of 0°, 20°, and 30° for about 50 nominal cylinder diameters (30 cm) of downstream travel.

  6. Inclined orbits in the habitable zone of multiplanetary systems

    NASA Astrophysics Data System (ADS)

    Funk, Barbara

    2011-06-01

    Fifteen years after the first discovery of an extrasolar planet more than 450 are known. Most of them are massive gas giants like Jupiter due to the detection methods. Nevertheless more and more low-mass planets (Super-Earth) orbiting other stars were found with the help of various ground based and space missions (e.g. MOST, CoRoT, Kepler). The main goal of this work was an investigation of the dynamical stability of potential additional massless planets in nine nearby extrasolar multiplanetary systems. Although there exists many global stability studies, as well as detailed studies for some specific systems, up to now the influence of the inclination was not investigated in detail. All these investigations need extensive numerical integrations as well as sophisticated methods of analysis to study the stability of the orbits. The final output is a list of all systems indicating in which systems additional planets may be dynamically stable within the borders of the habitable zone. As well as a detailed description about the influence of highly inclined orbits on the dynamically stability.

  7. Vortex Formation Behind an Inclined 2-Dimensional Thin Flat Plate

    NASA Astrophysics Data System (ADS)

    Mohebi, Meraj; Wood, David H.; Martinuzzi, Robert J.

    2014-11-01

    Stereo Particle Image Velocimetry was used to measure the turbulent wake of a 2D flat plate inclined relative to a uniform stream as a heuristic model for airfoils and wind turbine blades at high incidence. Phase Averaging was performed to study the vortex dynamics and relate these to the force characteristics. Below 90°, immediately behind the plate, rounder and more organized trailing edge vortices form which possess higher circulation and are associated with higher Reynolds stresses than the counter-rotating, weaker and elongated leading edge vortices. The quasi-periodically shed vortices on the sides of the wake decay in strength at different rates to reach a circulation ratio of -1 within a distance less than 5 chords downstream of the plate for all angles. This equalization of vortex strength is related to an increase in turbulence diffusion, due to mostly-incoherent 3-dimensionality which progressively increases as the inclination angle is reduced, and convective transfer of vorticity between counter-rotating vortices. The wake experiences a sudden change in vortex formation mechanism at around 40°. At this angle, the frequency analysis on the signals of a pair of micro-pressure transducers in the wake also shows a discontinuity in the trends. This work was supported by NSERC Discovery grants to R. J. Martinuzzi and D. H. Wood.

  8. Collapse of granular-liquid mixtures over rigid, inclined beds.

    PubMed

    Berzi, D; Bossi, F C; Larcan, E

    2012-05-01

    This work deals with the propagation of granular-liquid waves over rigid beds, originated by the sudden removal of a sluice gate in a rectangular, inclined flume. In particular, we experimentally investigate the role of the initial volume ratio of granular material-monodispersed plastic cylinders-to water, the flume width, and the bed roughness on the time evolution of the granular front. Due to the presence of the interstitial liquid, we observed previously unreported types of collapse: (i) discontinuous flows, where the granular material stops after an initial spreading, and then flows again when the liquid, initially slower than the particles, reaches the front and remobilizes it; (ii) flows evolving into uniformly progressive waves at an angle of inclination of the flume well below the angle of repose of the dry granular material. We also noticed an unusual influence of the lateral confinement on the wave propagation. Indeed, the constant front velocity in the uniformly progressive state decreases when the channel width increases. We claim that the latter observation and the presence of discontinuous flows, strongly support the idea that only two-phase, stratified mathematical models can predict the behavior of unsteady, granular-liquid mixtures at high concentration, such as debris flows.

  9. RESOLVING VEGA AND THE INCLINATION CONTROVERSY WITH CHARA/MIRC

    SciTech Connect

    Monnier, J. D.; Che Xiao; Baron, F.; Kraus, S.; Zhao Ming; Ekstroem, S.; Maestro, V.; Tuthill, P. G.; Aufdenberg, Jason; Georgy, C.; McAlister, H.; Sturmann, J.; Sturmann, L.; Ten Brummelaar, T.; Turner, N.; Pedretti, E.; Ridgway, S.; Thureau, N.

    2012-12-10

    Optical and infrared interferometers definitively established that the photometric standard Vega (={alpha} Lyrae) is a rapidly rotating star viewed nearly pole-on. Recent independent spectroscopic analyses could not reconcile the inferred inclination angle with the observed line profiles, preferring a larger inclination. In order to resolve this controversy, we observed Vega using the six-beam Michigan Infrared Combiner on the Center for High Angular Resolution Astronomy Array. With our greater angular resolution and dense (u, v)-coverage, we find that Vega is rotating less rapidly and with a smaller gravity darkening coefficient than previous interferometric results. Our models are compatible with low photospheric macroturbulence and are also consistent with the possible rotational period of {approx}0.71 days recently reported based on magnetic field observations. Our updated evolutionary analysis explicitly incorporates rapid rotation, finding Vega to have a mass of 2.15{sup +0.10}{sub -0.15} M{sub Sun} and an age 700{sup -75}{sub +150} Myr, substantially older than previous estimates with errors dominated by lingering metallicity uncertainties (Z = 0.006{sup +0.003}{sub -0.002}).

  10. Evaluating the conditions of spread of endogenous fires in steep seams

    SciTech Connect

    Vylegzhanin, V.N.

    1987-09-01

    This article correlates the collapse behavior and rock mechanics of an inclined coal seam with its combustibility and the projected spread of a mine fire along the shaft or roadway in an extensive mathematical model which takes into account such variables as coal porosity, deformation, displacement, and gas composition and which can be used to forecast and prevent possible fire hazards.

  11. Experimental investigation of high speed granular flows down inclines

    NASA Astrophysics Data System (ADS)

    Heyman, Joris; Boltenhagen, Philippe; Delannay, Renaud; Valance, Alexandre

    2017-06-01

    We report on laterally confined granular flow experiments on steep slopes. We provide evidences for the existence of di_erent flow regimes with secondary flows. At moderate mass flow, we observe a first flow regime with a pair of longitudinal vortices which are localized close to the lateral walls and span progressively over the whole flow width with increasing flow rate. They are counter-rotative and induce a vertical upward motion of the grains at the wall. Upon a further increase of the mass flow rate, a transition is evidenced by a reversal of the rotation direction of the vortices which trigger in contrast a downward motion of the grains close to the lateral walls and an upward motion at the center of the channel. We argue that these flows bear some resemblance with the flow regimes reported recently in discrete element simulations.

  12. Planet 9 and the Inclination of the Solar Equator

    NASA Astrophysics Data System (ADS)

    Deienno, Rogerio; Gomes, Rodney S.; Morbidelli, Alessandro

    2016-10-01

    It has been recently proposed (Batygin and Brown, 2016; Brown and Batygin, 2016) that the existence of a distant 10-Earth mass planet in the outer Solar System, commonly known as Planet 9, could explain the orbital quasi-alignment of the six objects with the largest semimajor axis in the Kuiper Belt. This putative distant planet should have an orbit with semimajor axis between 300 and 900 AU, perihelion distance between 200 and 350 AU, and orbital inclination of about 30 degrees to the ecliptic plane. Here we evaluate the effects of Planet 9 on the dynamics of the "inner" giant planets of the Solar System: Jupiter, Saturn, Uranus, and Neptune. We find that, given the large distance of Planet 9, the dynamics of the inner giant planets can be decomposed into a classic Lagrange-Laplace dynamics relative to their own invariant plane (the plane orthogonal to their total angular momentum vector) and a slow precession of said plane relative to the total angular momentum vector of the Solar System, including Planet 9. Under some specific configurations for Planet 9, this precession can explain the current tilt between the invariant plane of the inner giant planets and the solar equator. Given that the planes of the proto-planetary disk and of the solar equator should have coincided, the current tilt of ~6 degrees is surprising and was so far unexplained. An analytical model is developed to map the evolution of the inclination of the inner giant planets' invariable plane as a function of the Planet 9's mass, inclination, eccentricity and semimajor axis, and some numerical simulations of the equations of motion of the giant planets and Planet 9 are performed to validade our analytical approach. Some of the Planet 9 configurations that allow explaining the current solar tilt are compatible with those proposed to explain the orbital confinement of the most distant Kuiper belt objects. Thus, this work on the one hand gives an elegant explanation for the current tilt between the

  13. Why Is It Harder to Run on an Inclined Exercise Treadmill?

    ERIC Educational Resources Information Center

    Nave, Carla M. A. P. F.; Amoreira, Luis J. M.

    2014-01-01

    It is a known fact that it takes a greater effort to run on an exercise treadmill when it is inclined with positive slope than when it is in a horizontal position. The reason seems simple: walking on an inclined treadmill is somehow equivalent to walking up a hill with the same inclination; when we walk up a hill, our own weight does negative work…

  14. Why Is It Harder to Run on an Inclined Exercise Treadmill?

    ERIC Educational Resources Information Center

    Nave, Carla M. A. P. F.; Amoreira, Luis J. M.

    2014-01-01

    It is a known fact that it takes a greater effort to run on an exercise treadmill when it is inclined with positive slope than when it is in a horizontal position. The reason seems simple: walking on an inclined treadmill is somehow equivalent to walking up a hill with the same inclination; when we walk up a hill, our own weight does negative work…

  15. Effects of lumbar extensor fatigue and surface inclination on postural control during quiet stance.

    PubMed

    Lin, Dingding; Nussbaum, Maury A

    2012-11-01

    A number of work environments require workers to perform tasks on inclined surfaces. Such tasks, along with muscle fatigue, can impair postural control and increase falling risks. The objective of this study was to determine the effects of surface inclination angle, standing direction, and lumbar extensor fatigue on postural control during quiet standing. A group of 16 young, healthy participants were tested while standing on inclined surfaces before and after lumbar extensor fatigue (induced by repetitive isotonic exercise). Three inclination angles (0°, 18° and 26°) and three standing directions (uphill, downhill, and lateral facing) were examined. Postural control was assessed using several measures derived from center-of-pressure time series and subjectively perceived stability. Significant main and interactive effects of inclination angle and standing direction were found for all dependent measures. The adverse effects of standing on inclined surfaces were found to differ between the three standing directions. In general, dose-response relationships with inclination angle were evident, particularly in the lateral-facing direction. Fatigue-related effects differed between conditions, suggesting that the adverse effect of lumbar extensor fatigue on postural control depend on inclination angle and standing direction. These findings may facilitate the development of fall prevention interventions for work involving inclined surfaces.

  16. A Definite Integration Method for Calculating Inclination Function and Its Derivative

    NASA Astrophysics Data System (ADS)

    Wu, Lian-Da; Wang, Hong-Bo

    2012-07-01

    This paper gives a definite integration method for calculating the inclination function and its derivative, which has a very simple expression, and the accuracies as high as 10-15 for the inclination function, and 10-13 for its derivative, comparable with the accuracy of Gooding's method. By through a lot of numerical simulations, it is proved that this method has a good stability and an wide applicable range of inclinations, hence it can be used to calculate the inclination function to the maximum order of Lmax ≤ 50.

  17. Evolution of eccentricity and inclination of hot protoplanets embedded in radiative discs

    NASA Astrophysics Data System (ADS)

    Eklund, Henrik; Masset, Frédéric S.

    2017-07-01

    We study the evolution of the eccentricity and inclination of protoplanetary embryos and low-mass protoplanets (from a fraction of an Earth mass to a few Earth masses) embedded in a protoplanetary disc, by means of three-dimensional hydrodynamics calculations with radiative transfer in the diffusion limit. When the protoplanets radiate in the surrounding disc the energy released by the accretion of solids, their eccentricity and inclination experience a growth towards values that depend on the luminosity-to-mass ratio of the planet, which are comparable to the disc's aspect ratio and which are reached over time-scales of a few thousand years. This growth is triggered by the appearance of a hot, underdense region in the vicinity of the planet. The growth rate of the eccentricity is typically three times larger than that of the inclination. In long-term calculations, we find that the excitation of eccentricity and the excitation of inclination are not independent. In the particular case in which a planet has initially a very small eccentricity and inclination, the eccentricity largely overruns the inclination. When the eccentricity reaches its asymptotic value, the growth of inclination is quenched, yielding an eccentric orbit with a very low inclination. As a side result, we find that the eccentricity and inclination of non-luminous planets are damped more vigorously in radiative discs than in isothermal discs.

  18. Seat surface inclination may affect postural stability during Boccia ball throwing in children with cerebral palsy.

    PubMed

    Tsai, Yung-Shen; Yu, Yi-Chen; Huang, Po-Chang; Cheng, Hsin-Yi Kathy

    2014-12-01

    The aim of the study was to examine how seat surface inclination affects Boccia ball throwing movement and postural stability among children with cerebral palsy (CP). Twelve children with bilateral spastic CP (3 with gross motor function classification system Level I, 5 with Level II, and 4 with Level III) participated in this study. All participants underwent pediatric reach tests and ball throwing performance analyses while seated on 15° anterior- or posterior-inclined, and horizontal surfaces. An electromagnetic motion analysis system was synchronized with a force plate to assess throwing motion and postural stability. The results of the pediatric reach test (p = 0.026), the amplitude of elbow movement (p = 0.036), peak vertical ground reaction force (PVGRF) (p < 0.001), and movement range of the center of pressure (COP) (p < 0.020) were significantly affected by seat inclination during throwing. Post hoc comparisons showed that anterior inclination allowed greater amplitude of elbow movement and PVGRF, and less COP movement range compared with the other inclines. Posterior inclination yielded less reaching distance and PVGRF, and greater COP movement range compared with the other inclines. The anterior-inclined seat yielded superior postural stability for throwing Boccia balls among children with bilateral spastic CP, whereas the posterior-inclined seat caused difficulty.

  19. Steep subthreshold slope characteristics of body tied to gate NMOSFET in partially depleted SOI

    NASA Astrophysics Data System (ADS)

    Song, Lei; Hu, Zhiyuan; Liu, Zhangli; Xin, Haiwei; Zhang, Zhengxuan; Zou, Shichang

    2017-04-01

    A new body tied to gate (BTG) n-channel metal-oxide-semiconductor field-effect-transistor (NMOSFET) with a diode in partially depleted SOI (PD SOI) is proposed and investigated. We first compare the transfer and output characteristics between the regular and BTG NMOSFETs with grounded body and floating body. The steep subthreshold slope (<6 mV/dec) and low OFF current (∼0.01 pA/μm) of the BTG NMOSFET with floating body are observed at VD = 3.3 V. Mechanisms of the floating body effect (FBE) and the diode are analyzed to explain the outstanding performance. The hysteresis characteristics of BTG NMOSFETs are also presented in comparison to regular ones. Finally, the steep subthreshold characteristics of the BTG NMOSFET with floating body at low drain voltage are studied for ultralow power application.

  20. Research on fast ecological restoration technology of high and steep rocky slope of highway

    NASA Astrophysics Data System (ADS)

    Qin, Xin

    2017-08-01

    Along with the development of the western region, the traffic construction in mountainous areas is booming. In the infrastructure, it produced a large number of secondary bare land. Soil erosion is serious. Based on the literature search and analysis of the domestic and international slope ecological restoration technology, this paper proposes a fast and efficient adaptive highway high steep rock slope ecological restoration technology (it has been authorized by the national patent). And it states the systemic structure, working principle and key construction technology. The ecological restoration technique combines the growth characteristics of the vegetation and the characteristics of the rock mass, which not only improves the survival rate of plants, but also stable slope. The results of this study make up for the shortcomings of the existing ecological restoration technology of slope. Compared with the prior art, which have obvious advantages and suitable for the ecological restoration of high steep rock slope.

  1. Conversion of Impulse Voltage Generator Into Steep Wave Impulse Test-Equipment

    NASA Astrophysics Data System (ADS)

    Khan, Mohammed Zaid; Tanwar, Surender Singh; Dayama, Ravindra; Choudhary, Rahul Raj; Mangal, Ravindra

    This paper demonstrates the alternative measures to generate the Steep wave impulse by using Impulse Voltage Generator (IVG) for high voltage testing of porcelain insulators. The modification of IVG by incorporating compensation of resistor, inductor, and capacitor has been achieved and further performance of the modified system has been analyzed by applying the generated lightning impulse and analyzing the electrical characteristics of impulse waves under standard lightning and fast rise multiple lightning waveform to determine the effect to improve rise time. The advantageous results have been received and being reported such as increase in overshoot compensation, increase in capacitive and inductive load ranges. Such further reduces the duration of oscillations of standard impulse voltages. The reduction in oscillation duration of steep front impulse voltages may be utilized in up gradation of Impulse Voltage Generator System. Stray capacitance could further be added in order to get the minimized difference of measurement between simulation and the field establishment.

  2. Design and manufacture of a bandpass filter with high transmittance and steep edge on both sides

    NASA Astrophysics Data System (ADS)

    Wang, Ruisheng; Lü, Shaobo; Yin, Xiaojun; Zhao, Shuaifeng; Sun, Yan

    2016-01-01

    By using Nb2O5 and SiO2 as the coating material, a 152 layers (12 cavities) bandpass film stack with steep edge on both sides was designed. Multiple thickness control methods, including direct optical monitoring control and time control were used in coating strategy. To confirm the feasibility of this coating strategy, a process simulation was performed using Simulator software, and the simulation result indicated that relative thickness errors for all layers were less than ±0.1%. A bandpass filter with this film stack on one side was manufactured by using a plasma assisted reactive magnetic sputtering coating machine. The measuring result shows that the peak transmittance of the filter (without AR on backside) is up to 95.4%, and the steepness of both blocking slope are less than λ/100.

  3. Topographic optical profilometry of steep slope micro-optical transparent surfaces.

    PubMed

    Antón, Juan Carlos Martínez; Alonso, Jose; Pedrero, Jose Antonio Gómez

    2015-04-06

    Optical profilometers based on light reflection may fail at surfaces presenting steep slopes and highly curved features. Missed light, interference and diffraction at steps, peaks and valleys are some of the reasons. Consequently, blind areas or profile artifacts may be observed when using common reflection micro-optical profilometers (confocal, scanning interferometers, etc…). The Topographic Optical Profilometry by Absorption in Fluids (TOPAF) essentially avoids these limitations. In this technique an absorbing fluid fills the gap between a reference surface and the surface to profile. By comparing transmission images at two different spectral bands we obtain a reliable topographic map of the surface. In this contribution we develop a model to obtain the profile under micro-optical observation, where high numerical aperture (NA) objectives are mandatory. We present several analytical and experimental results, validating the technique's capabilities for profiling steep slopes and highly curved micro-optical surfaces with nanometric height resolution.

  4. Leveling Mountains: Purpose Attenuates Links Between Perceptions of Effort and Steepness.

    PubMed

    Burrow, Anthony L; Hill, Patrick L; Sumner, Rachel

    2016-01-01

    People tend to overestimate the steepness of slopes, especially when they appraise the effort necessary to ascend them as greater. Recent studies, however, suggest the way individuals perceive visual stimuli may rely heavily on their personal motivations. In four studies (N = 517), purpose in life was tested as a motivational framework influencing how appraised effort relates to slope perception. Studies 1 and 2 found the amount of effort participants appraised necessary to ascend several virtual slopes was related to greater overestimation of their steepness. Yet, this relationship was attenuated by purpose assessed both as a disposition and experimental manipulation. Studies 3 and 4 replicated these findings using actual hills, again showing links between the amount of effort thought required to ascend them and their perceived angle were diminished by greater purpose. The discussion addresses implications of purpose as a broad motivational framework that shapes how individuals see their environment.

  5. Fresnel diffraction in the case of an inclined image plane.

    PubMed

    Modregger, Peter; Lübbert, Daniel; Schäfer, Peter; Köhler, Rolf; Weitkamp, Timm; Hanke, Michael; Baumbach, Tilo

    2008-03-31

    An extension of the theoretical formalism of Fresnel diffraction to the case of an inclined image plane is proposed. The resulting numerical algorithm speeds up computation times by typically three orders of magnitude, thus opening the possibility of utilizing previously inapplicable image analysis algorithms for this special type of a non shift-invariant imaging system. This is exemplified by adapting an iterative phase retrieval algorithm developed for electron microscopy to the case of hard x-ray imaging with asymmetric Bragg reflection (the so-called "Bragg Magnifier"). Numerical simulations demonstrate the convergence and feasibility of the iterative phase retrieval algorithm for the case of x-ray imaging with the Bragg Magnifier.

  6. Turbulent and inertial roll waves in inclined film flow

    NASA Astrophysics Data System (ADS)

    Hwang, Shyh-Hong; Chang, Hsueh-Chia

    1987-05-01

    Conditions for the onset of high Reynolds number roll waves on inclined interfaces are sought. The model equations of Dressler [Commun. Pure Appl. Math. 2, 149 (1949)] and Needham and Merkin [Proc. R. Soc. London Ser. A 394, 259 (1984)] are analyzed using dynamic singularity theory (normal form techniques) and numerical methods. A new family of roll-wave solutions is discovered. They provide bounds and averages of the velocities of all roll waves at a given Froude number. These are favorably compared to the data of Brock [Proc. Am. Soc. Civ. Eng. 12, 2565 (1970)] and Brauner and Maron [Int. J. Heat Mass Transfer 25, 99 (1982)]. The average wave velocity is demonstrated to be approximately 1.5 times the average fluid velocity.

  7. Inclination Dependence of Estimated Galaxy Masses and Star Formation Rates

    NASA Astrophysics Data System (ADS)

    Hernandez, Betsy; Maller, Ariyeh; McKernan, Barry; Ford, Saavik

    2016-01-01

    We examine the inclination dependence of inferred star formation rates and galaxy mass estimates in the Sloan Digital Sky Survey by combining the disk/bulge de-convolved catalog of Simard et al 2011 with stellar mass estimates catalog of Mendel et al 2014 and star formation rates measured from spectra by Brinchmann et al 2004. We know that optical star formation indicators are reddened by dust, but calculated star formation rates and stellar mass estimates should account for this. However, we find that face-on galaxies have a higher calculated average star formation rates than edge-on galaxies. We also find edge-on galaxies have ,on average, slightly smaller but similar estimated masses to face-on galaxies, suggesting that there are issues with the applied dust corrections for both models.

  8. Oil spill fluorosensing lidar for inclined onshore or shipboard operation.

    PubMed

    Karpicz, Renata; Dementjev, Andrej; Kuprionis, Zenonas; Pakalnis, Saulius; Westphal, Rainer; Reuter, Rainer; Gulbinas, Vidmantas

    2006-09-01

    An oil spill detection fluorosensing lidar for onshore or shipboard operation is described. Some difficulties for its operation arise from the inclined path of rays. This is due to the increased reflection of the laser beam at the air-water interface, the decreased fluorescence signal, and the increased background light when compared with other instruments having a close-to-nadir measuring geometry. The analysis of these problems shows that they significantly reduce the detection distance in the presence of a flat water surface. However, waves on the water surface weaken the influence of the laser beam reflections but at the same time cause a variable fluorescence signal, which makes specific signal processing necessary for increased detection ranges. A fluorescence data processing method is proposed that efficiently eliminates the background water column fluorescence from signals such as yellow substance. This enables oil fluorescence to be distinguished from variable natural water fluorescence.

  9. Oil spill fluorosensing lidar for inclined onshore or shipboard operation

    NASA Astrophysics Data System (ADS)

    Karpicz, Renata; Dementjev, Andrej; Kuprionis, Zenonas; Pakalnis, Saulius; Westphal, Rainer; Reuter, Rainer; Gulbinas, Vidmantas

    2006-09-01

    An oil spill detection fluorosensing lidar for onshore or shipboard operation is described. Some difficulties for its operation arise from the inclined path of rays. This is due to the increased reflection of the laser beam at the air-water interface, the decreased fluorescence signal, and the increased background light when compared with other instruments having a close-to-nadir measuring geometry. The analysis of these problems shows that they significantly reduce the detection distance in the presence of a flat water surface. However, waves on the water surface weaken the influence of the laser beam reflections but at the same time cause a variable fluorescence signal, which makes specific signal processing necessary for increased detection ranges. A fluorescence data processing method is proposed that efficiently eliminates the background water column fluorescence from signals such as yellow substance. This enables oil fluorescence to be distinguished from variable natural water fluorescence.

  10. Drops transformed from a continuous flow on a superhydrophobic incline

    NASA Astrophysics Data System (ADS)

    Katariya, Mayur; Ng, Tuck Wah

    2013-08-01

    Biochemical analysis with discrete drops on superhydrophobic surfaces will benefit from low loss, low contamination and open access features, but is challenged by the ability to generate them. A simple approach for delivering the drops from a continuous flow through an inclined superhydrophobic surface here showed the rear pinning contact line to be strongly influential in retention, providing potential for volume control, yet without any lossy daughter droplet formation. At a high flowrate regime prior to jetting, the liquid body was found to develop a grown out section that was able to flip up and down to be airborne, depending on the gravitational effect. While the section was airborne, the drop was able to increase its volume without the action of the three-phase mechanics dictating detachment.

  11. Evolution of the magnetic field inclination in a forming penumbra

    SciTech Connect

    Romano, P.; Guglielmino, S. L.; Cristaldi, A.; Falco, M.; Zuccarello, F.; Ermolli, I.

    2014-03-20

    We describe the evolution of the magnetic and velocity fields in the annular zone around a pore a few hours before the formation of its penumbra. We detected the presence of several patches at the edge of the annular zone, with a typical size of about 1''. These patches are characterized by a rather vertical magnetic field with polarity opposite to that of the pore. They correspond to regions of plasma upflow up to 2.5 km s{sup –1} and are characterized by radially outward displacements with horizontal velocities up to 2 km s{sup –1}. We interpret these features as portions of the pore magnetic field lines returning beneath the photosphere being progressively stretched and pushed down by the overlying magnetic fields. Our results confirm that the penumbra formation results from changes in the inclination of the field lines in the magnetic canopy overlying the pore, until they reach the photosphere.

  12. Horizontal penetration of inclined thermal buoyant water jets

    SciTech Connect

    Pantokratoras, A.

    1998-05-01

    Submerged buoyant jets occur in the discharge from thermal power plants and in the operation of pumped storage hydroelectric plants. Accurate prediction of the jet trajectory and temperature dilution are necessary if discharge structures are to be designed to meet the appropriate standards. A modified version of the integral Fan-Brooks model has been used to calculate the horizontal penetration of inclined thermal buoyant water jets. The classical densimetric Froude number F{sub 0} is substituted by a Froude number F{sub a} based on the thermal expansion coefficient of water. Using the above model, a new equation is derived which can predict the horizontal penetration of the thermal jet at a given Froude number F{sub a} and discharge angle.

  13. Convective flows of colloidal suspension in an inclined closed cell

    NASA Astrophysics Data System (ADS)

    Smorodin, Boris; Cherepanov, Ivan; Ishutov, Sergey

    2016-12-01

    The nonlinear spatiotemporal evolution of convective flows is numerically investigated in the case of colloidal suspension filling an inclined closed cell heated from below. The bifurcation diagram (the dependency of the Nusselt number on the Rayleigh number) is obtained. The characteristics of the wave and steady patterns are investigated depending on heat intensity. The travelling wave changing travel direction and the non-regular oscillatory flow are found to be stable solutions within a certain interval of the Rayleigh number. Temporal Fourier decomposition is used together with other diagnostic tools to analyse the complex bifurcation and spatiotemporal properties caused by the interplay of the gravity-induced gradient of concentration and convective mixing of the fluid. It is shown that a more complex flow structure exists at a lower heating intensity (Rayleigh number).

  14. Flow of granular materials down an inclined plane

    SciTech Connect

    Gudhe, R.; Rajagopal, K.R.; Massoudi, M.; Chi, R.

    1993-05-01

    The mechanics of flowing granular materials such as coal, sand, fossil-fuel energy recovery, metal ores, etc., and their flow characteristics have received considerable attention in recent years because it has relevance to several technological problems. In a number of instances these materials are also heated prior to processing, or cooled after processing. The governing equations for the flow of granular materials taking into account the heat transfer mechanism are derived using the continuum model proposed by Rajagopal and Massoudi (1990). For a fully developed flow of granular materials down an inclined plane, these equations reduce to a system of coupled ordinary differential equations. The resulting boundary value problem is solved numerically and the results are presented. For a special case, it is possible to obtain an analytic solution; this is given in the Appendix A of this report.

  15. Dipper discs not inclined towards edge-on orbits

    NASA Astrophysics Data System (ADS)

    Ansdell, M.; Gaidos, E.; Williams, J. P.; Kennedy, G.; Wyatt, M. C.; LaCourse, D. M.; Jacobs, T. L.; Mann, A. W.

    2016-10-01

    The so-called dipper stars host circumstellar discs and have optical and infrared light curves that exhibit quasi-periodic or aperiodic dimming events consistent with extinction by transiting dusty structures orbiting in the inner disc. Most of the proposed mechanisms explaining the dips - i.e. occulting disc warps, vortices, and forming planetesimals - assume nearly edge-on viewing geometries. However, our analysis of the three known dippers with publicly available resolved sub-mm data reveals discs with a range of inclinations, most notably the face-on transition disc J1604-2130 (EPIC 204638512). This suggests that nearly edge-on viewing geometries are not a defining characteristic of the dippers and that additional models should be explored. If confirmed by further observations of more dippers, this would point to inner disc processes that regularly produce dusty structures far above the outer disc mid-plane in regions relevant to planet formation.

  16. Shaping planetary nebulae with jets in inclined triple stellar systems

    NASA Astrophysics Data System (ADS)

    Akashi, Muhammad; Soker, Noam

    2017-08-01

    We conduct three-dimensional hydrodynamical simulations of two opposite jets launched obliquely to the orbital plane around an asymptotic giant branch (AGB) star and within its dense wind, and demonstrate the formation of a 'messy' planetary nebula (PN), namely a PN lacking any type of symmetry (i.e. highly irregular). In building the initial conditions, we assume that a tight binary system orbits the AGB star and that the orbital plane of the tight binary system is inclined to the orbital plane of the binary system and the AGB star (the triple system plane). We further assume that the accreted mass on to the tight binary system forms an accretion disc around one of the stars and that the plane of the disc is tilted to the orbital plane of the triple system. The highly asymmetrical and filamentary structures that we obtain support the notion that messy PNe might be shaped by triple stellar systems.

  17. Axial inclination and differential rotation for 19 rapidly rotating stars

    NASA Astrophysics Data System (ADS)

    Stoeckley, Thomas R.; Buscombe, William

    1987-08-01

    The widths and shapes of He I 4471 and Mg II 4481 absorption lines in spectra of 19 rapidly rotating B-type main-sequence stars were analyzed to estimate the axial inclination and the presence or absence of differential rotation. The data are multiple, superimposed photographic coude spectra. The calculations use non-LTE intensity profiles summed over the disk of a gravity darkened Roche model star. Results show a scatter of aspects from equator-on to pole-on, and a strong indication of a negative differential rotation parameter, suggesting that the angular velocity increases toward the poles. Error bars in the data are used to determine uncertainties in the derived parameters. Opportunities for further work are presented.

  18. An ultrasonically enhanced inclined settler for microalgae harvesting.

    PubMed

    Hincapié Gómez, Esteban; Marchese, Anthony J

    2015-01-01

    Microalgae have vast potential as a sustainable and scalable source of biofuels and bioproducts. However, algae dewatering is a critical challenge that must be addressed. Ultrasonic settling has already been exploited for concentrating various biological cells at relatively small batch volumes and/or low throughput. Typically, these designs are operated in batch or semicontinuous mode, wherein the flow is interrupted and the cells are subsequently harvested. These batch techniques are not well suited for scaleup to the throughput levels required for harvesting microalgae from the large-scale cultivation operations necessary for a viable algal biofuel industry. This article introduces a novel device for the acoustic harvesting of microalgae. The design is based on the coupling of the acoustophoretic force, acoustic transparent materials, and inclined settling. A filtration efficiency of 70 ± 5% and a concentration factor of 11.6 ± 2.2 were achieved at a flow rate of 25 mL·min(-1) and an energy consumption of 3.6 ± 0.9 kWh·m(-3) . The effects of the applied power, flow rate, inlet cell concentration, and inclination were explored. It was found that the filtration efficiency of the device is proportional to the power applied. However, the filtration efficiency experienced a plateau at 100 W L(-1) of power density applied. The filtration efficiency also increased with increasing inlet cell concentration and was inversely proportional to the flow rate. It was also found that the optimum settling angle for maximum concentration factor occurred at an angle of 50 ± 5°. At these optimum conditions, the device had higher filtration efficiency in comparison to other similar devices reported in the previous literature.

  19. Inclined transpression in the Neka Valley, eastern Alborz, Iran

    NASA Astrophysics Data System (ADS)

    Nabavi, Seyed Tohid; Díaz-Azpiroz, Manuel; Talbot, Christopher J.

    2016-09-01

    Three major nappes in the Neka Valley in the eastern Alborz Mountains of Iran allow the Cimmerian to present convergence following the oblique collision between Iran and the southern margin of Eurasia. This work reports the identification of an inclined transpression zone recognized by field investigations and strain analyses of the geometries of formations and detailed mesoscopic structural analyses of multiple faults, folds and a cleavage. The main structures encountered include refolded recumbent asymmetric fold nappes, highly curved fold hinges, in a transpression zone that dips 37° to the NW between boundaries thrusts striking from N050° to N060°. The β angle (the angle between the zone boundary and direction of horizontal far-field shortening) is about 80°. The north-west and south-east boundaries of this zone coincide with the Haji-abad thrust and the Shah-Kuh thrust, respectively. Fold axes generally trend NE-SW and step to both right and left as a result of strike-slip components of fault displacements. Strain analyses using Fry's method on macroscopic ooids and fusulina deformed into oblate ellipsoids indicate that the natural strain varies between 2.1 and 3.14. The estimated angle between the maximum instantaneous strain axis (ISAmax) and the transpression zone boundary (θ') is between 6° and 20°. The estimated oblique convergence angle (α), therefore, ranges between 31° and 43°. The average kinematic vorticity number (W k ) is 0.6, in a zone of sinistral pure shear-dominated inclined triclinic transpression. These results support the applicability of kinematic models of triclinic transpression to natural brittle-ductile shear zones.

  20. Inclined transpression in the Neka Valley, eastern Alborz, Iran

    NASA Astrophysics Data System (ADS)

    Nabavi, Seyed Tohid; Díaz-Azpiroz, Manuel; Talbot, Christopher J.

    2017-07-01

    Three major nappes in the Neka Valley in the eastern Alborz Mountains of Iran allow the Cimmerian to present convergence following the oblique collision between Iran and the southern margin of Eurasia. This work reports the identification of an inclined transpression zone recognized by field investigations and strain analyses of the geometries of formations and detailed mesoscopic structural analyses of multiple faults, folds and a cleavage. The main structures encountered include refolded recumbent asymmetric fold nappes, highly curved fold hinges, in a transpression zone that dips 37° to the NW between boundaries thrusts striking from N050° to N060°. The β angle (the angle between the zone boundary and direction of horizontal far-field shortening) is about 80°. The north-west and south-east boundaries of this zone coincide with the Haji-abad thrust and the Shah-Kuh thrust, respectively. Fold axes generally trend NE-SW and step to both right and left as a result of strike-slip components of fault displacements. Strain analyses using Fry's method on macroscopic ooids and fusulina deformed into oblate ellipsoids indicate that the natural strain varies between 2.1 and 3.14. The estimated angle between the maximum instantaneous strain axis (ISAmax) and the transpression zone boundary ( θ') is between 6° and 20°. The estimated oblique convergence angle ( α), therefore, ranges between 31° and 43°. The average kinematic vorticity number ( W k ) is 0.6, in a zone of sinistral pure shear-dominated inclined triclinic transpression. These results support the applicability of kinematic models of triclinic transpression to natural brittle-ductile shear zones.

  1. Bacterial Diversity and Mycotoxin Reduction During Maize Fermentation (Steeping) for Ogi Production

    PubMed Central

    Okeke, Chiamaka A.; Ezekiel, Chibundu N.; Nwangburuka, Cyril C.; Sulyok, Michael; Ezeamagu, Cajethan O.; Adeleke, Rasheed A.; Dike, Stanley K.; Krska, Rudolf

    2015-01-01

    Bacterial diversity and community structure of two maize varieties (white and yellow) during fermentation/steeping for ogi production, and the influence of spontaneous fermentation on mycotoxin reduction in the gruel were studied. A total of 142 bacterial isolates obtained at 24–96 h intervals were preliminarily identified by conventional microbiological methods while 60 selected isolates were clustered into 39 OTUs consisting of 15 species, 10 genera, and 3 phyla by 16S rRNA sequence analysis. Lactic acid bacteria constituted about 63% of all isolated bacteria and the genus Pediococcus dominated (white maize = 84.8%; yellow maize = 74.4%). Pediococcus acidilactici and Lactobacillus paraplantarum were found at all steeping intervals of white and yellow maize, respectively, while P. claussenii was present only at the climax stage of steeping white maize. In both maize varieties, P. pentosaceus was found at 24–72 h. Mycotoxin concentrations (μg/kg) in the unsteeped grains were: white maize (aflatoxin B1 = 0.60; citrinin = 85.8; cyclopiazonic acid = 23.5; fumonisins (B1/B2/B3) = 68.4–483; zearalenone = 3.3) and yellow maize (aflatoxins (B1/B2/M1) = 22.7–513; citrinin = 16,800; cyclopiazonic acid = 247; fumonisins (B1/B2/B3) = 252–1,586; zearalenone = 205). Mycotoxins in both maize varieties were significantly (p < 0.05) reduced across steeping periods. This study reports for the first time: (a) the association of L. paraplantarum, P. acidilactici, and P. claussenii with ogi production from maize, (b) citrinin occurrence in Nigerian maize and ogi, and (c) aflatoxin M1, citrinin and cyclopiazonic acid degradation/loss due to fermentation in traditional cereal-based fermented food. PMID:26697001

  2. Numerical errors in the presence of steep topography: analysis and alternatives

    SciTech Connect

    Lundquist, K A; Chow, F K; Lundquist, J K

    2010-04-15

    It is well known in computational fluid dynamics that grid quality affects the accuracy of numerical solutions. When assessing grid quality, properties such as aspect ratio, orthogonality of coordinate surfaces, and cell volume are considered. Mesoscale atmospheric models generally use terrain-following coordinates with large aspect ratios near the surface. As high resolution numerical simulations are increasingly used to study topographically forced flows, a high degree of non-orthogonality is introduced, especially in the vicinity of steep terrain slopes. Numerical errors associated with the use of terrainfollowing coordinates can adversely effect the accuracy of the solution in steep terrain. Inaccuracies from the coordinate transformation are present in each spatially discretized term of the Navier-Stokes equations, as well as in the conservation equations for scalars. In particular, errors in the computation of horizontal pressure gradients, diffusion, and horizontal advection terms have been noted in the presence of sloping coordinate surfaces and steep topography. In this work we study the effects of these spatial discretization errors on the flow solution for three canonical cases: scalar advection over a mountain, an atmosphere at rest over a hill, and forced advection over a hill. This study is completed using the Weather Research and Forecasting (WRF) model. Simulations with terrain-following coordinates are compared to those using a flat coordinate, where terrain is represented with the immersed boundary method. The immersed boundary method is used as a tool which allows us to eliminate the terrain-following coordinate transformation, and quantify numerical errors through a direct comparison of the two solutions. Additionally, the effects of related issues such as the steepness of terrain slope and grid aspect ratio are studied in an effort to gain an understanding of numerical domains where terrain-following coordinates can successfully be used and

  3. Steep-sided domes on Venus - Characteristics, geologic setting, and eruption conditions from Magellan data

    NASA Technical Reports Server (NTRS)

    Pavri, Betina; Head, James W., III; Klose, K. B.; Wilson, Lionel

    1992-01-01

    A survey of more than 95 percent of the Venus surface reveals 145 steep-sided domes which can be subdivided into a variety of morphologic forms, the most common being shaped like inverted bowls or flat-topped domes. Results of a preliminary analysis of the distribution and geologic setting of the domes are presented. The relation of the domes to analogous terrestrial features is examined, and possible models for their mode of emplacement are outlined.

  4. The steep red spectrum of 1992 AD - An asteroid covered with organic material?

    NASA Technical Reports Server (NTRS)

    Fink, Uwe; Hoffmann, Martin; Grundy, William; Hicks, Michael; Sears, William

    1992-01-01

    The CCD spectrometer reflection spectrum of 1992 AD is characterized by a very steep and constant red slope between 0.5 and 1.0 micron, without absorption or emission features; this slope is steeper than any currently known solar-system object, and cannot be readily matched with conventional silicate or meteoritic materials. Mixtures of tholins, or residues of organic molecules' bombardment by energetic radiation, are suggested as a match for this spectrum.

  5. Steep front short duration low voltage impulse performance of distribution transformers

    SciTech Connect

    Burrage, L.M.; Veverka, E.F.; McConnell, B.W.

    1987-01-01

    An extensive literature search of steep front short duration (SFSD) impulse sources, their characteristics and effect on power system equipment has led to the specification of a test program to evaluate key apparatus and insulations. Distribution transformers, although not overly susceptible to impulse damage, have been selected as one of the candidate apparatus for low and high voltage SFSD impulse tests. This paper covers the low voltage SFSD impulse response of conventional oil insulated shell form and core form distribution transformers.

  6. Satellites and Steep Slopes - the challenge of topography in the Himalaya - Karakorum for cryosphere models

    NASA Astrophysics Data System (ADS)

    Steiner, J. F.; Buri, P.; Miles, E. S.; Immerzeel, W.

    2016-12-01

    The topography in glaciated catchments in the Himalaya - Karakoram range are extreme in a number of aspects that proof to be a challenge for distributed modelling. High altitude regions, where accumulation areas of glaciers are generally located, can at times be very steep, covered in hanging ice and seasonal snow. On the other hand, lower areas, where ablation zones on glacier tongues are located, tend to be very shallow. This has consequences for obtaining glacier areas from satellite derived glacier inventories (e.g. RGI, ICIMOD). As they are taken perpendicular to the center of the earth, these inventories will underestimate the area of steep regions, sometimes quite considerably (Figure 1). This can have consequences for a number of statistics in glaciological modeling, especially when it comes to the relative comparison of accumulation and ablation and hence overall melt from a glacier. Additionally, these steep head walls cause topographic shading. Depending on the exposition of the valley this can result in very divergent amounts of direct solar radiation reaching the glacier surface from valley to valley. Comparisons of melt between different regions and even glaciers have to be taken with considerable caution. Finally, these shallow glacier tongues are increasingly covered in debris. Such glacier surfaces with a debris cover ranging in grain size from sand to boulders several meters in diameter are very hummocky rather than flat bare ice glacier surfaces. This in turn increases local shading but also increases the overall glacier surface. Using high resolution satellite imagery and DEMs ( 5m) from our field site we investigate the effects of areal misrepresentations on the local scale. Decreasing resolution we then take this analysis to the mountain range scale and can identify to what degree these factors are significant and considering literature values determine the quantitative impact for energy and mass balance studies. Figure 1: A schematic

  7. The Role of Prospection in Steep Temporal Reward Discounting in Gambling Addiction.

    PubMed

    Wiehler, Antonius; Bromberg, Uli; Peters, Jan

    2015-01-01

    Addiction and pathological gambling (PG) have been consistently associated with high impulsivity and a steep devaluation of delayed rewards, a process that is known as temporal discounting (TD). Recent studies indicated that enhanced episodic future thinking (EFT) results in less impulsive TD in healthy controls (HCs). In a separate line of research, it has been suggested that non-linearities in time perception might contribute to reward devaluation during inter-temporal choice. Therefore, in addition to deficits in valuation processes and executive control, impairments in EFT and non-linearities in time perception have been hypothesized to contribute to steep TD in addiction. In this study, we explore such a potential association of impairments in EFT and time perception with steep TD in PG. We investigated 20 PGs and 20 matched HCs. TD was assessed via a standard computerized binary choice task. EFT was measured using a variation of the Autobiographical Memory Interview by Levine et al. (1). Time perception was assessed with a novel task, utilizing a non-linear rating procedure via circle-size adjustments. Groups did not differ in baseline EFT. In both groups, a power law accounted time perception best, and the degree of non-linearity in time perception correlated with discounting across groups. A multiple regression analysis across all predictors and covariates revealed that only group status (PG/HC) and depression were significantly associated with discounting behavior such that PG increased TD and depression attenuated TD. Our findings speak against the idea that steep TD in PG is due to a skewed perception of time or impairments in EFT, at least under the present task conditions. The lack of overall group differences in EFT does not rule out the possibility of more complex interactions of EFT and decision-making. These interactions might be diminished in pathological gambling or addiction more generally, when other task configurations are used.

  8. A plethora of diffuse steep spectrum radio sources in Abell 2034 revealed by LOFAR

    NASA Astrophysics Data System (ADS)

    Shimwell, T. W.; Luckin, J.; Brüggen, M.; Brunetti, G.; Intema, H. T.; Owers, M. S.; Röttgering, H. J. A.; Stroe, A.; van Weeren, R. J.; Williams, W. L.; Cassano, R.; de Gasperin, F.; Heald, G. H.; Hoang, D. N.; Hardcastle, M. J.; Sridhar, S. S.; Sabater, J.; Best, P. N.; Bonafede, A.; Chyży, K. T.; Enßlin, T. A.; Ferrari, C.; Haverkorn, M.; Hoeft, M.; Horellou, C.; McKean, J. P.; Morabito, L. K.; Orrù, E.; Pizzo, R.; Retana-Montenegro, E.; White, G. J.

    2016-06-01

    With Low-Frequency Array (LOFAR) observations, we have discovered a diverse assembly of steep spectrum emission that is apparently associated with the intracluster medium (ICM) of the merging galaxy cluster Abell 2034. Such a rich variety of complex emission associated with the ICM has been observed in few other clusters. This not only indicates that Abell 2034 is a more interesting and complex system than previously thought but it also demonstrates the importance of sensitive and high-resolution, low-frequency observations. These observations can reveal emission from relativistic particles which have been accelerated to sufficient energy to produce observable emission or have had their high energy maintained by mechanisms in the ICM. The most prominent feature in our maps is a bright bulb of emission connected to two steep spectrum filamentary structures, the longest of which extends perpendicular to the merger axis for 0.5 Mpc across the south of the cluster. The origin of these objects is unclear, with no shock detected in the X-ray images and no obvious connection with cluster galaxies or AGNs. We also find that the X-ray bright region of the cluster coincides with a giant radio halo with an irregular morphology and a very steep spectrum. In addition, the cluster hosts up to three possible radio relics, which are misaligned with the cluster X-ray emission. Finally, we have identified multiple regions of emission with a very steep spectral index that seem to be associated with either tailed radio galaxies or a shock.

  9. Large sized non-uniform sediment transport at high capacity on steep slopes

    NASA Astrophysics Data System (ADS)

    Fu, X.; Zhang, L.; Duan, J. G.

    2015-12-01

    Transport of large-sized particles such as cobbles in steep streams still remains poorly understood in spite of its importance in mountain stream morphdynamics. Here we explored the law of cobble transport and the effect of cobble existence on gravel bed material transport, using flume experiments with a steep slope (4.9%) and water and sediment constantly supplying. The experiments were conducted in an 8 m long and 0.6 m wide circulating flume with the maximal size up to 90 mm and cobble concentrations in the sediment bed ranging from 22 percent to 6 percent. The sediment transport rate is on the order of 1000 g/m/s, which could be taken as high rate transport compared with existing researches. Bed load transport rate and flow variables were measured after the flume reached an equilibrium state. Bed surface topography was also measured by applying Kinect range camera before and after each run in order to analyze the fractal characteristics of the bed surface under different flow conditions. Critical shear stress of each size friction was estimated from the reference transport method (RTM) and a new hiding function was recommended. Preliminary results show that the bed was nearly in an equal mobility transport regime. We then plot dimensionless fractional transport rate versus dimensionless shear stress and assess the existing bed load transport formulas of non-uniform sediments for their applicability at high sediment transport capacity. This study contributes to the comprehension of high rate sediment transport on steep slopes.

  10. Slope, grain size, and roughness controls on dry sediment transport and storage on steep hillslopes

    NASA Astrophysics Data System (ADS)

    DiBiase, Roman A.; Lamb, Michael P.; Ganti, Vamsi; Booth, Adam M.

    2017-04-01

    Existing hillslope sediment transport models developed for low-relief, soil-mantled landscapes are poorly suited to explain the coupling between steep rocky hillslopes and headwater channels. Here we address this knowledge gap using a series of field and numerical experiments to inform a particle-based model of sediment transport by dry ravel—a mechanism of granular transport characteristic of steep hillslopes. We find that particle travel distance increases as a function of the ratio of particle diameter to fine-scale (<1 m) topographic roughness, in agreement with prior laboratory and field experiments. Contrary to models that assume a fixed critical slope, the particle-based model predicts a broad transition as hillslopes steepen from grain-scale to hillslope-scale mean particle travel distances due to the trapping of sediment on slopes more than threefold steeper than the average friction slope. This transition is further broadened by higher macroscale (>1 m) topographic variability associated with rocky landscapes. Applying a 2-D dry-ravel-routing model to lidar-derived surface topography, we show how spatial patterns of local and nonlocal transport control connectivity between hillslopes and steep headwater channels that generate debris flows through failure of ravel-filled channels following wildfire. Our results corroborate field observations of a patchy transition from soil-mantled to bedrock landscapes and suggest that there is a dynamic interplay between sediment storage, roughness, grain sorting, and transport even on hillslopes that well exceed the angle of repose.

  11. Process analysis, quantification and modelling of erosion on steep unvegetated hillslopes:

    NASA Astrophysics Data System (ADS)

    Neugirg, Fabian; Kaiser, Andreas; Schindewolf, Marcus; Schmidt, Jürgen; Becht, Michael; Haas, Florian

    2016-04-01

    Soil erosion is a problem in many parts of the world. While in agricultural environments the geomorphological drivers of soil erosion are well known, the process understanding in steep alpine environments is still lacking. Steep hillslopes in different climatic settings distributed in Germany and Italy were monitored for at least three years in order to gain better knowledge in the evolution of the unvegetated slopes. The monitoring setup was mainly based on terrestrial laserscanning (TLS) and was expanded with other monitoring methods, like aerial- and terrestrial-based structure from motion, aerial images and airborne laser scanning data. TLS data were mainly used to analyse processes on plot or hillslope scale. In order to regionalize these values, we used two different modelling approaches: a rule-based statistical and the physical-based model Erosion 3D. The latter one had to be adopted from flat agricaltural areas to steep slopes. Parameters for modeling purposes were acquired by field work. Therefore an established rainfall simulator was customized for the application in alpine terrain. The results showed clear differences in the seasonal behaviour of the acting geomorphological processes in nearly all study areas. Furthermore a quantification was possible for each process involved in hillslope development. Additionally, both models showed that an adaptation to the hillslopes was possible and provided satisfying results in all research areas. This presentation aims at summarizing the findings and key results of the three year study period.

  12. ANOMALOUSLY STEEP REDDENING LAW IN QUASARS: AN EXCEPTIONAL EXAMPLE OBSERVED IN IRAS 14026+4341

    SciTech Connect

    Jiang Peng; Zhou Hongyan; Ji Tuo; Shu Xinwen; Liu Wenjuan; Dong Xiaobo; Wang Huiyuan; Wang Tinggui; Wang Jianguo

    2013-06-15

    A fraction of the heavily reddened quasars require a reddening curve that is even steeper than that of the Small Magellanic Cloud. In this paper, we thoroughly characterize the anomalously steep reddening law in quasars via an exceptional example observed in IRAS 14026+4341. By comparing the observed spectrum to the quasar composite spectrum, we derive a reddening curve in the rest-frame wavelength range of 1200-10000 A. It has a steep rise at wavelengths shorter than 3000 A, but no significant reddening at longer wavelengths. The absence of dust reddening in the optical continuum is confirmed by the normal broad-line Balmer decrement (the H{alpha}/H{beta} ratio) in IRAS 14026+4341. The anomalous reddening curve can be satisfactorily reproduced with a dust model containing silicate grains in a power-law size distribution, dn(a)/da{proportional_to}a {sup -1.4}, truncated at a maximum size of a{sub max} = 70 nm. The unusual size distribution may be caused by the destruction of large 'stardust' grains by quasar activities or a different dust formation mechanism (i.e., the in situ formation of dust grains in quasar outflows). It is also possible that the analogies of the dust grains observed near the Galactic center are responsible for the steep reddening curve. In addition, we find that IRAS 14026+4341 is a weak emission-line quasar (i.e., PHL 1811 analogies) with heavy dust reddening and blueshifted broad absorption lines.

  13. Experimental investigation of steep-front short duration (SFSD) surge effects on power systems components

    SciTech Connect

    Miller, D.B. . Dept. of Electrical and Computer Engineering)

    1992-05-01

    Results are reported from experiments in which steep-front, short- duration (SFSD) voltage impulses were imposed on various electrical distribution components. These pulses were generated by switching a section of charged, high voltage coaxial cable across the component under study. Components included underground distribution cable, terminators, insulators and arresters. SFSD voltage needed to flashover 15 kV polyethylene cable with a single pulse is approximately 625 kV peak. Strength of polyethylene cable decreases with increasing number of SFSD pulses, indicating cumulative degradation of the polymer. For 15 kV and 25 kV cable terminators, the SFSD CFO was over twice the rated standard lightning BIL for the same units. Similarly, porcelain suspension insulators required more than a doubling of voltage to decrease time to flashover from 1 microsecond to .1 microsecond. Arresters were found to respond rapidly to steep-front current pulses, but the arrester material itself was found to result in a higher discharge voltage for SFSD pulses. Arresters also showed a delay in turn-on of current following the arrival of a steep-front voltage surge.

  14. Experimental investigation of steep-front short duration (SFSD) surge effects on power systems components

    SciTech Connect

    Miller, D.B.

    1992-05-01

    Results are reported from experiments in which steep-front, short- duration (SFSD) voltage impulses were imposed on various electrical distribution components. These pulses were generated by switching a section of charged, high voltage coaxial cable across the component under study. Components included underground distribution cable, terminators, insulators and arresters. SFSD voltage needed to flashover 15 kV polyethylene cable with a single pulse is approximately 625 kV peak. Strength of polyethylene cable decreases with increasing number of SFSD pulses, indicating cumulative degradation of the polymer. For 15 kV and 25 kV cable terminators, the SFSD CFO was over twice the rated standard lightning BIL for the same units. Similarly, porcelain suspension insulators required more than a doubling of voltage to decrease time to flashover from 1 microsecond to .1 microsecond. Arresters were found to respond rapidly to steep-front current pulses, but the arrester material itself was found to result in a higher discharge voltage for SFSD pulses. Arresters also showed a delay in turn-on of current following the arrival of a steep-front voltage surge.

  15. Temperature and Time of Steeping Affect the Antioxidant Properties of White, Green, and Black Tea Infusions.

    PubMed

    Hajiaghaalipour, Fatemeh; Sanusi, Junedah; Kanthimathi, M S

    2016-01-01

    Tea (Camellia sinensis) is the most highly consumed beverage in the world next to water. The common way of preparation is steeping in hot water which is varying for different type of tea. We investigated the antioxidant properties of 6 type of tea leaves under different time and temperatures of extraction method used. In general, all samples tested in this study demonstrated high levels of antioxidant capacity and antioxidant activity. The results indicate that the antioxidants activity is significantly affected by time and temperature of steeping and the highest was depending on the variety. White state values, green and black teas showed different levels of antioxidants under different extraction conditions. Overall, the highest activity for white tea was in prolonged hot and in some assays prolonged hot and cold extracts, whereas for green tea the highest activity observed in prolonged cold steeping while, for black tea was in short hot water infusion. The results of this study showed the antioxidant capacity of white and green tea was greater than black tea.

  16. Evaluation of sediment transport in steep channels combining sediment impact sensors, tracer stones and TLS

    NASA Astrophysics Data System (ADS)

    Harb, Gabriele; Schneider, Josef; Sass, Oliver; Stangl, Johannes

    2016-04-01

    Torrential floods combined with sediment transport presents major hazards to human life and infrastructure in alpine catchments. Despite the importance of sediment transport due to the large damage caused in case of flood events, we lack data on sediment movement and sediment transport rates in steep channels and torrents to improve the understanding of sediment transport processes in this areas. This paper presents an improved application of sediment impact sensors (SIS) integrated in a unique measurement system in an Alpine catchment in Austria consisting of meteorological stations, runoff gauges and tracer stones. In addition sediment availability, mobilization and accumulation have been mapped and quantified by means of terrestrial laser scanning (TLS) and structure from motion using unmanned aerial vehicles (UAVs). Additionally a numerical model was used to simulate the bed load transport rates in the torrent. This contribution focuses on field measurements of bed load transport rates in steep channels based on SIS data, tracer stone data, bed load measurements, precipitation and discharge data. The measurement data was compared to several sediment transport formulae for steep slopes and validated with the observed deposited amount of sediment in the sediment retention basin at the outlet of the catchment.

  17. The effect of steepness of temporal resource gradients on spatial root allocation

    PubMed Central

    Novoplansky, Ariel; Ovadia, Ofer

    2011-01-01

    Plants are able to discriminately allocate greater biomass to organs that grow under higher resource levels. Recent evidence demonstrates that split-root plants also discriminately allocate more resources to roots that grow under dynamically improving nutrient levels, even when their other roots grow in richer patches. Here, we further tested whether, besides their responsiveness to the direction of resource gradients, plants are also sensitive to the steepness of environmental trajectories. Split-root Pisum sativum plants were grown so that one of their roots developed under constantly-high nutrient levels and the other root was subjected to dynamically improving nutrient levels of variable steepness. As expected, plants usually allocated a greater proportion of their biomass to roots that developed under constantly high resource availability; however, when given a choice, they allocated greater biomass to roots that initially experienced relatively low but steeply improving nutrient availabilities than to roots that developed under continuously-high nutrient availability. Such discrimination was not observed when the roots in the poor patch experienced only gentler improvements in nutrient availability. The results are compatible with the notion that responsiveness to the direction and steepness of environmental gradients could assist annual plants to increase their performance by anticipating resource availabilities foreseeable before the end of the growing season. The results exemplify the ability of plants to integrate and utilize environmental information and execute adaptive behaviors which, until recently, were attributed only to animals with central nervous systems. PMID:22019637

  18. Self-adjustment of stream bed roughness and flow velocity in a steep mountain channel

    NASA Astrophysics Data System (ADS)

    Schneider, Johannes M.; Rickenmann, Dieter; Turowski, Jens M.; Kirchner, James W.

    2015-10-01

    Understanding how channel bed morphology affects flow conditions (and vice versa) is important for a wide range of fluvial processes and practical applications. We investigated interactions between bed roughness and flow velocity in a steep, glacier-fed mountain stream (Riedbach, Ct. Valais, Switzerland) with almost flume-like boundary conditions. Bed gradient increases along the 1 km study reach by roughly 1 order of magnitude (S = 3-41%), with a corresponding increase in streambed roughness, while flow discharge and width remain approximately constant due to the glacial runoff regime. Streambed roughness was characterized by semivariograms and standard deviations of point clouds derived from terrestrial laser scanning. Reach-averaged flow velocity was derived from dye tracer breakthrough curves measured by 10 fluorometers installed along the channel. Commonly used flow resistance approaches (Darcy-Weisbach equation and dimensionless hydraulic geometry) were used to relate the measured bulk velocity to bed characteristics. As a roughness measure, D84 yielded comparable results to more laborious measures derived from point clouds. Flow resistance behavior across this large range of steep slopes agreed with patterns established in previous studies for both lower-gradient and steep reaches, regardless of which roughness measures were used. We linked empirical critical shear stress approaches to the variable power equation for flow resistance to investigate the change of bed roughness with channel slope. The predicted increase in D84 with increasing channel slope was in good agreement with field observations.

  19. Variations in the kinematics of deformation along the Zagros inclined transpression zone, Iran: Implications for defining a curved inclined transpression zone

    NASA Astrophysics Data System (ADS)

    Sarkarinejad, Khalil; Partabian, Abdolreza; Faghih, Ali

    2013-03-01

    The combination of inclined collision and plate boundary shape can control the nature of deformation and the sense of shear along a transpression zone. The present study investigated the effects of a boundary zone with curvilinear shape along a transpression zone on the kinematics of deformation. The kinematics of the Zagros transpression zone varies with the orientation of the zone boundary. Detailed structural and microstructural studies showed sinistral sense of shear on the southeastern part of the Zagros inclined transpression zone (Fars Arc), but dextral sense of shear on the northwestern part of the zone. It is inferred that the both senses of shear were developed coevally under a bulk general shear, regional-scale deformation along a curved inclined transpression miming the shape of the Fras Arc of the Zagros and the reentrant of the Bandar Abbas Syntaxis. The Zagros transpression zone formed by inclined continental collision between the Afro-Arabian continent and Iranian microcontinent.

  20. Carrying a biological "backpack": Quasi-experimental effects of weight status and body fat change on perceived steepness.

    PubMed

    Taylor-Covill, Guy A H; Eves, Frank F

    2016-03-01

    The apparent steepness of hills and stairs is overestimated in explicit perception. These overestimations are malleable in that when physiological resources are compromised, apparent steepness is further overestimated. An alternative explanation of these experimental findings attributes them to demand characteristics. This article tests the relationship between estimated steepness and naturally occurring differences in body composition. A quasi-experimental field study revealed more exaggerated reports of staircase steepness in overweight than in healthy-weight participants in a situation where experimental demand would be an implausible explanation for any differences. A longitudinal follow-up study used dual X-ray absorptiometry to objectively measure participants' body composition at the beginning and end of a weight-loss program (N = 52). At baseline, higher levels of body fat were associated with steeper explicit estimates of staircase steepness. At follow-up, changes in body fat were associated with changes in estimated steepness such that a loss of fat mass co-occurred with shallower estimates. Discussion focuses on the malleability of perceived steepness at an individual level and the implication of these findings for the debate surrounding "embodied" models of perception. (PsycINFO Database Record (c) 2016 APA, all rights reserved).