Sample records for steeps inclines lokomotivfoerderung

  1. The Maximum Likelihood Solution for Inclination-only Data

    NASA Astrophysics Data System (ADS)

    Arason, P.; Levi, S.

    2006-12-01

    The arithmetic means of inclination-only data are known to introduce a shallowing bias. Several methods have been proposed to estimate unbiased means of the inclination along with measures of the precision. Most of the inclination-only methods were designed to maximize the likelihood function of the marginal Fisher distribution. However, the exact analytical form of the maximum likelihood function is fairly complicated, and all these methods require various assumptions and approximations that are inappropriate for many data sets. For some steep and dispersed data sets, the estimates provided by these methods are significantly displaced from the peak of the likelihood function to systematically shallower inclinations. The problem in locating the maximum of the likelihood function is partly due to difficulties in accurately evaluating the function for all values of interest. This is because some elements of the log-likelihood function increase exponentially as precision parameters increase, leading to numerical instabilities. In this study we succeeded in analytically cancelling exponential elements from the likelihood function, and we are now able to calculate its value for any location in the parameter space and for any inclination-only data set, with full accuracy. Furtermore, we can now calculate the partial derivatives of the likelihood function with desired accuracy. Locating the maximum likelihood without the assumptions required by previous methods is now straight forward. The information to separate the mean inclination from the precision parameter will be lost for very steep and dispersed data sets. It is worth noting that the likelihood function always has a maximum value. However, for some dispersed and steep data sets with few samples, the likelihood function takes its highest value on the boundary of the parameter space, i.e. at inclinations of +/- 90 degrees, but with relatively well defined dispersion. Our simulations indicate that this occurs quite

  2. The early history of the lunar inclination. [effect of tidal friction

    NASA Technical Reports Server (NTRS)

    Rubincam, D. P.

    1973-01-01

    The effect of tidal friction on the inclination of the lunar orbit to the earth's equator for earth-moon distances of less than 10 earth radii is examined. The results obtained bear on a conclusion drawn by Gerstenkorn and others which has been raised as a fatal objection to the fission hypothesis of lunar origin, namely, that the present nonzero inclination of the moon's orbit to the ecliptic implies a steep inclination of the moon's orbit to the earth's equatorial plane in the early history of the earth-moon system. This conclusion is shown to be valid only for particular rheological models of the earth. The earth is assumed to behave like a highly viscous fluid in response to tides raised in it by the moon. The moon is assumed to be tideless and in a circular orbit about the earth. The equations of tidal friction are integrated numerically to give inclination of the lunar orbit as a function of earth-moon distance.

  3. Maximum likelihood solution for inclination-only data in paleomagnetism

    NASA Astrophysics Data System (ADS)

    Arason, P.; Levi, S.

    2010-08-01

    We have developed a new robust maximum likelihood method for estimating the unbiased mean inclination from inclination-only data. In paleomagnetic analysis, the arithmetic mean of inclination-only data is known to introduce a shallowing bias. Several methods have been introduced to estimate the unbiased mean inclination of inclination-only data together with measures of the dispersion. Some inclination-only methods were designed to maximize the likelihood function of the marginal Fisher distribution. However, the exact analytical form of the maximum likelihood function is fairly complicated, and all the methods require various assumptions and approximations that are often inappropriate. For some steep and dispersed data sets, these methods provide estimates that are significantly displaced from the peak of the likelihood function to systematically shallower inclination. The problem locating the maximum of the likelihood function is partly due to difficulties in accurately evaluating the function for all values of interest, because some elements of the likelihood function increase exponentially as precision parameters increase, leading to numerical instabilities. In this study, we succeeded in analytically cancelling exponential elements from the log-likelihood function, and we are now able to calculate its value anywhere in the parameter space and for any inclination-only data set. Furthermore, we can now calculate the partial derivatives of the log-likelihood function with desired accuracy, and locate the maximum likelihood without the assumptions required by previous methods. To assess the reliability and accuracy of our method, we generated large numbers of random Fisher-distributed data sets, for which we calculated mean inclinations and precision parameters. The comparisons show that our new robust Arason-Levi maximum likelihood method is the most reliable, and the mean inclination estimates are the least biased towards shallow values.

  4. Impact of Incline, Sex and Level of Performance on Kinematics During a Distance Race in Classical Cross-Country Skiing

    PubMed Central

    Stöggl, Thomas; Welde, Boye; Supej, Matej; Zoppirolli, Chiara; Rolland, Carsten G.; Holmberg, Hans-Christer; Pellegrini, Barbara

    2018-01-01

    Here, female and male elite cross-country (XC) skiers were compared on varying terrain during an official 10-km (women) and 15-km (men) Norwegian championship race. On the basis of race performance, 82 skiers were classified as fast (FS) (20 women, 20 men) or slower (SS) (21, 21) skiers. All were video recorded on flat (0°), intermediate (3.5°), uphill (7.1°) and steep uphill (11°) terrain during the race at a distance of 0.8, 1.2, 2.1 and 7.1 km from the start, respectively. All skiers employed exclusively double-poling (DP) on the flat section and, except for the male winner, exclusively diagonal stride (DIA) on the uphill sections. On the intermediate section, more men than women utilized DP and fewer DIA (p = 0.001), with no difference in kick double-poling (DPK). More FS than SS utilized DPK and fewer DIA (p = 0.001), with similar usage of DP. Males skied with faster and longer cycles but lower cycle rate compared with females (p < 0.001), with largest absolute sex differences on flat terrain (p < 0.001) and largest relative differences for cycle velocity and length on intermediate and uphill terrain. External power output rose with increasing incline, being higher for men and FS (p < 0.001). Cycle velocity on flat terrain was the best predictor of mean race velocity for the men, while cycle velocity on steep uphill was the best predictor for the women (both p < 0.001). In conclusion, incline, sex and level of performance influenced cycle characteristics and power output. Greatest absolute sex gap was on flat terrain, whereas the relative difference was greatest on intermediate and steep uphill terrain. We recommend usage of more DP and/or DPK, and less DIA and fewer transitions between techniques on intermediate terrain. Predictors of race performance are sex specific with greatest potential for enhancing performance on flat terrain for men and on steep uphill terrain for women. Key points There was a main effect of sex and level of performance, with

  5. An exact solution for ideal dam-break floods on steep slopes

    USGS Publications Warehouse

    Ancey, C.; Iverson, R.M.; Rentschler, M.; Denlinger, R.P.

    2008-01-01

    The shallow-water equations are used to model the flow resulting from the sudden release of a finite volume of frictionless, incompressible fluid down a uniform slope of arbitrary inclination. The hodograph transformation and Riemann's method make it possible to transform the governing equations into a linear system and then deduce an exact analytical solution expressed in terms of readily evaluated integrals. Although the solution treats an idealized case never strictly realized in nature, it is uniquely well-suited for testing the robustness and accuracy of numerical models used to model shallow-water flows on steep slopes. Copyright 2008 by the American Geophysical Union.

  6. 2. VIEW SOUTH, INCLINE PLANE CAR, INCLINE PLANE TRACK, UPPER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VIEW SOUTH, INCLINE PLANE CAR, INCLINE PLANE TRACK, UPPER STATION. - Monongahela Incline Plane, Connecting North side of Grandview Avenue at Wyoming Street with West Carson Street near Smithfield Street, Pittsburgh, Allegheny County, PA

  7. A comparison of coronal and interplanetary current sheet inclinations

    NASA Technical Reports Server (NTRS)

    Behannon, K. W.; Burlaga, L. F.; Hundhausen, A. J.

    1983-01-01

    The HAO white light K-coronameter observations show that the inclination of the heliospheric current sheet at the base of the corona can be both large (nearly vertical with respect to the solar equator) or small during Cararington rotations 1660 - 1666 and even on a single solar rotation. Voyager 1 and 2 magnetic field observations of crossing of the heliospheric current sheet at distances from the Sun of 1.4 and 2.8 AU. Two cases are considered, one in which the corresponding coronameter data indicate a nearly vertical (north-south) current sheet and another in which a nearly horizontal, near equatorial current sheet is indicated. For the crossings of the vertical current sheet, a variance analysis based on hour averages of the magnetic field data gave a minimum variance direction consistent with a steep inclination. The horizontal current sheet was observed by Voyager as a region of mixed polarity and low speeds lasting several days, consistent with multiple crossings of a horizontal but irregular and fluctuating current sheet at 1.4 AU. However, variance analysis of individual current sheet crossings in this interval using 1.92 see averages did not give minimum variance directions consistent with a horizontal current sheet.

  8. Effect of inclination and anteversion angles on kinematics and contact mechanics of dual mobility hip implants.

    PubMed

    Gao, Yongchang; Chen, Zhenxian; Zhang, Zhifeng; Chen, Shibin; Jin, Zhongmin

    2018-06-12

    Steep inclination and excessive anteversion angles of acetabular cups could result in adverse edge-loading. This, in turn, increases contact pressure and impingement risk for traditional artificial hip joints. However, the influence of high inclination and anteversion angles on both the kinematics and contact mechanics of dual mobility hip implants has rarely been examined. This study focuses on investigating both the kinematics and contact mechanics of a dual mobility hip implant under different inclination and anteversion angles using a dynamic explicit finite element method developed in a previous study. The results showed that an inclination angle of both the back shell and liner ranging from 30° to 70° had little influence on the maximum contact pressure and the accumulated sliding distance of inner and outer surfaces of the liner under normal walking gait. The same results were obtained for an anteversion angle of the liner varying between -20° and +20°. However, when the anteversion angle of the liner was beyond this range, the contact between the femoral neck and the inner rim of the liner occurred. Consequently, this caused a relative rotation at the outer articulation. This suggests that both inclination and modest anteversion angles have little influence on the kinematics and contact mechanics of dual mobility hip implants. However, too excessive anteversion angle could result in a rotation for this kind of hip implant at both articulations. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Effect of inclination direction on recording performance of BPM with inclined anisotropy

    NASA Astrophysics Data System (ADS)

    Honda, Naoki; Yamakawa, Kiyoshi; Ouchi, Kazuhiro; Komukai, Tatsuya

    Effect of inclination direction on the recording performance of bit-patterned media with weakly inclined anisotropy was investigated by simulation. Magnetic dots with a size of 15x7.5x5 nm3 were arranged on a soft magnetic underlayer with an areal density of 2.6 Tdot/in2. Saturation magnetization of each dot was assumed to be 1000 emu/cm3. Media with three different inclination directions with an inclination angle of 30 degrees from the film normal, which were down-track inclined, cross-track inclined and cone-state, were investigated for the recording performance using a shielded planar head field. Although the three media exhibited almost the same remanence curve, obtained recording performance indicated different write shift margins. It was found that the write shift margin in the cross-track direction increased for the media with fixed inclined anisotropy axes, but the medium with the inclination direction in the cross-track direction exhibited larger shift margin than that of the down-track inclined medium when the anisotropy field dispersion was increased to 4%, while increase in the write shift margin in the downtrack direction was similar for down- and cross-track inclined media. The cause of the difference was primarily explained by the composite anisotropy of the elongated dot with the shape anisotropy in the cross-track direction.

  10. 3. INCLINE PLANE CAR INTERIOR, UPPER COMPARTMENT. Monongahela Incline ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. INCLINE PLANE CAR INTERIOR, UPPER COMPARTMENT. - Monongahela Incline Plane, Connecting North side of Grandview Avenue at Wyoming Street with West Carson Street near Smithfield Street, Pittsburgh, Allegheny County, PA

  11. Robot Would Climb Steep Terrain

    NASA Technical Reports Server (NTRS)

    Kennedy, Brett; Ganino, Anthony; Aghazarian, Hrand; Hogg, Robert; McHerny, Michael; Garrett, Michael

    2007-01-01

    This brief describes the steep terrain access robot (STAR) -- a walking robot that has been proposed for exploring steep terrain on remote planets. The STAR would be able to climb up or down on slopes as steep as vertical, and even beyond vertical to overhangs. Its system of walking mechanisms and controls would be to react forces and maintain stability. To enable the STAR to anchor itself in the terrain on steep slopes to maintain stability and react forces, it would be necessary to equip the tips of the walking legs with new ultrasonic/ sonic drill corers (USDCs) and to develop sensors and control algorithms to enable robust utilization of the USDCs.

  12. Impact of Incline, Sex and Level of Performance on Kinematics During a Distance Race in Classical Cross-Country Skiing.

    PubMed

    Stöggl, Thomas; Welde, Boye; Supej, Matej; Zoppirolli, Chiara; Rolland, Carsten G; Holmberg, Hans-Christer; Pellegrini, Barbara

    2018-03-01

    Here, female and male elite cross-country (XC) skiers were compared on varying terrain during an official 10-km (women) and 15-km (men) Norwegian championship race. On the basis of race performance, 82 skiers were classified as fast (FS) (20 women, 20 men) or slower (SS) (21, 21) skiers. All were video recorded on flat (0°), intermediate (3.5°), uphill (7.1°) and steep uphill (11°) terrain during the race at a distance of 0.8, 1.2, 2.1 and 7.1 km from the start, respectively. All skiers employed exclusively double-poling (DP) on the flat section and, except for the male winner, exclusively diagonal stride (DIA) on the uphill sections. On the intermediate section, more men than women utilized DP and fewer DIA (p = 0.001), with no difference in kick double-poling (DPK). More FS than SS utilized DPK and fewer DIA (p = 0.001), with similar usage of DP. Males skied with faster and longer cycles but lower cycle rate compared with females (p < 0.001), with largest absolute sex differences on flat terrain (p < 0.001) and largest relative differences for cycle velocity and length on intermediate and uphill terrain. External power output rose with increasing incline, being higher for men and FS (p < 0.001). Cycle velocity on flat terrain was the best predictor of mean race velocity for the men, while cycle velocity on steep uphill was the best predictor for the women (both p < 0.001). In conclusion, incline, sex and level of performance influenced cycle characteristics and power output. Greatest absolute sex gap was on flat terrain, whereas the relative difference was greatest on intermediate and steep uphill terrain. We recommend usage of more DP and/or DPK, and less DIA and fewer transitions between techniques on intermediate terrain. Predictors of race performance are sex specific with greatest potential for enhancing performance on flat terrain for men and on steep uphill terrain for women.

  13. Impact of slope inclination on salt accumulation

    NASA Astrophysics Data System (ADS)

    Nachshon, Uri

    2017-04-01

    Field measurements indicated on high variability in salt accumulation along natural and cultivated slopes, even for relatively homogeneous soil conditions. It was hypothesised that slope inclination has an impact on the location of salt accumulation along the slope. A set of laboratory experiments and numerical models were used to explore the impact of slope inclination on salt accumulation. It was shown, experimentally, that for conditions of saline water source at the lower boundary of the slope - salt accumulates in low concentrations and homogeneously along the entire slope, for moderate slopes. However, as inclination increases high salt concentrations were observed at the upper parts of the slope, leaving the lower parts of the slope relatively free of salt. The traditional flow and transport models did not predict the experimental observations as they indicated also for the moderate slopes on salt accumulation in the elevated parts of the slope, away of the saline water source. Consequently - a conceptual model was raised to explain the laboratory observations. It was suggested that the interactions between slope angle, evaporation rates, hydraulic conductivity of the medium and distribution of wetness along the slope affect the saline water flow path through the medium. This lead to preferential flow path close to the soil-atmosphere interface for the steep slopes, which leads to constant wash of the salts from the evaporation front upward towards the slope upper parts, whereas for the moderate slopes, flow path is below the soil-atmosphere interface, therefore salt that accumulates at the evaporation front is not being transported upward. Understanding of salt dynamics along slopes is important for agricultural and natural environments, as well as for civil engineering purposes. Better understanding of the salt transport processes along slopes will improve our ability to minimize and to cope with soil salinization processes. The laboratory experiments and

  14. The Steep Nekhoroshev's Theorem

    NASA Astrophysics Data System (ADS)

    Guzzo, M.; Chierchia, L.; Benettin, G.

    2016-03-01

    Revising Nekhoroshev's geometry of resonances, we provide a fully constructive and quantitative proof of Nekhoroshev's theorem for steep Hamiltonian systems proving, in particular, that the exponential stability exponent can be taken to be {1/(2nα_1\\cdotsα_{n-2}}) ({α_i}'s being Nekhoroshev's steepness indices and {n ≥ 3} the number of degrees of freedom). On the base of a heuristic argument, we conjecture that the new stability exponent is optimal.

  15. Evaporation of inclined water droplets.

    PubMed

    Kim, Jin Young; Hwang, In Gyu; Weon, Byung Mook

    2017-02-16

    When a drop is placed on a flat substrate tilted at an inclined angle, it can be deformed by gravity and its initial contact angle divides into front and rear contact angles by inclination. Here we study on evaporation dynamics of a pure water droplet on a flat solid substrate by controlling substrate inclination and measuring mass and volume changes of an evaporating droplet with time. We find that complete evaporation time of an inclined droplet becomes longer as gravitational influence by inclination becomes stronger. The gravity itself does not change the evaporation dynamics directly, whereas the gravity-induced droplet deformation increases the difference between front and rear angles, which quickens the onset of depinning and consequently reduces the contact radius. This result makes the evaporation rate of an inclined droplet to be slow. This finding would be important to improve understanding on evaporation dynamics of inclined droplets.

  16. Evaporation of inclined water droplets

    PubMed Central

    Kim, Jin Young; Hwang, In Gyu; Weon, Byung Mook

    2017-01-01

    When a drop is placed on a flat substrate tilted at an inclined angle, it can be deformed by gravity and its initial contact angle divides into front and rear contact angles by inclination. Here we study on evaporation dynamics of a pure water droplet on a flat solid substrate by controlling substrate inclination and measuring mass and volume changes of an evaporating droplet with time. We find that complete evaporation time of an inclined droplet becomes longer as gravitational influence by inclination becomes stronger. The gravity itself does not change the evaporation dynamics directly, whereas the gravity-induced droplet deformation increases the difference between front and rear angles, which quickens the onset of depinning and consequently reduces the contact radius. This result makes the evaporation rate of an inclined droplet to be slow. This finding would be important to improve understanding on evaporation dynamics of inclined droplets. PMID:28205642

  17. Bedform migration in steep channels: from local avalanches to large scale changes

    NASA Astrophysics Data System (ADS)

    Mettra, F.; Heyman, J.; Ancey, C.

    2013-12-01

    Many studies have emphasized the strength of bedload transport fluctuations in steep streams, especially at low and intermediate transport conditions (relative to the threshold of incipient motion). The origins of these fluctuations, which appear on a wide range of time scales, are still not well understood. In this study, we present the data obtained from a 2D idealized laboratory experiment with the objective of simultaneously recording the channel bed evolution and bedload transport rate at a high temporal resolution. A 3-m long by 8-cm wide transparent flume filled with well-sorted natural gravel (d50=6.5 mm) was used. An efficient technique using accelerometers has been developed to record the arrival time of every particle at the outlet of the flume for long experimental durations (up to a few days). In addition, bed elevation was monitored using cameras filming from the side of the channel, allowing the observation of global aggradation/degradation as well as bedform migration. The experimental parameters were the water discharge, the flume inclination (from 2° to 5°) and the constant feeding rate of sediments. Large-scale bed evolution showed successive aggradation and rapid degradation periods. Indeed, the measured global channel slope, i.e. mean slope over the flume length, fluctuated continuously within a range sometimes wider than 1° (experimental parameters were constant over the entire run). The analysis of these fluctuations provides evidence that steep channels behave like metastable systems, similarly to grain piles. The metastable effects increased for steeper channels and lower transport conditions. In this measurement campaign, we mainly observed upstream-migrating antidunes. For each run, various antidune heights and celerities were measured. On average, the mean antidune migration rate increased with decreasing channel slope and increasing sediment feeding rate. Relatively rare tall and fast-moving antidunes appeared more frequently at high

  18. Breakup of a liquid rivulet falling over an inclined plate: Identification of a critical Weber number

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Rajesh K.; Galvin, Janine E.; Whyatt, Greg A.

    2017-05-01

    We have numerically investigated the breakup of a rivulet falling over a smooth inclined plate using the volume of fluid method. The breakup the rivulet is a complex phenomenon that is dictated by many factors, such as solvent properties, contact angle, inertia, plate inclination, etc. An extensive simulation campaign was conducted wherein these factors were systematically investigated. Regimes for a stable rivulet and an unstable rivulet that leads to the breakup and formation of a droplet are examined in terms of a critical value of the Weber number (Wecr) that delineates these regimes. The effect of plate inclination on themore » breakup of the rivulet shows that the critical Weber number decreases with increased inclination angle () owing to higher liquid velocity. However, the effect is negligible beyond >60. The impact of solvent properties is characterized using the Kapitza number (Ka). Variation of Wecr with Ka shows two trends depending on the Ka value of the solvent. Solvents with lower Ka values, corresponding to high viscosities and/or low surface tensions, show smaller values of the critical Weber number and the variation is linear. While solvents with higher Ka values exhibit higher values of the Wecr and the variation in Wecr is steep. This behavior is more pronounced with increasing contact angle. Higher contact angles promote rivulet breakup so that inertia must be higher to the breakup. A phenomenological scaling for a critical Weber number with the Kapitza number and contact angle is presented that can offer insight into rivulet breakup.« less

  19. Why arboreal snakes should not be cylindrical: body shape, incline and surface roughness have interactive effects on locomotion.

    PubMed

    Jayne, Bruce C; Newman, Steven J; Zentkovich, Michele M; Berns, H Matthew

    2015-12-01

    Depending on animal size, shape, body plan and behaviour, variation in surface structure can affect the speed and ease of locomotion. The slope of branches and the roughness of bark both vary considerably, but their combined effects on the locomotion of arboreal animals are poorly understood. We used artificial branches with five inclines and five peg heights (≤40 mm) to test for interactive effects on the locomotion of three snake species with different body shapes. Unlike boa constrictors (Boa constrictor), corn snakes (Pantherophis guttatus) and brown tree snakes (Boiga irregularis) can both form ventrolateral keels, which are most pronounced in B. irregularis. Increasing peg height up to 10 mm elicited more of the lateral undulatory behaviour (sliding contact without gripping) rather than the concertina behaviour (periodic static gripping) and increased the speed of lateral undulation. Increased incline: (1) elicited more concertina locomotion, (2) decreased speed and (3) increased the threshold peg height that elicited lateral undulation. Boiga irregularis was the fastest species, and it used lateral undulation on the most surfaces, including a vertical cylinder with pegs only 1 mm high. Overall, B. constrictor was the slowest and used the most concertina locomotion, but this species climbed steep, smooth surfaces faster than P. guttatus. Our results illustrate how morphology and two different aspects of habitat structure can have interactive effects on organismal performance and behaviour. Notably, a sharper keel facilitated exploiting shorter protrusions to prevent slipping and provide propulsion, which became increasingly important as surface steepness increased. © 2015. Published by The Company of Biologists Ltd.

  20. PRECISE TULLY-FISHER RELATIONS WITHOUT GALAXY INCLINATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Obreschkow, D.; Meyer, M.

    2013-11-10

    Power-law relations between tracers of baryonic mass and rotational velocities of disk galaxies, so-called Tully-Fisher relations (TFRs), offer a wealth of applications in galaxy evolution and cosmology. However, measurements of rotational velocities require galaxy inclinations, which are difficult to measure, thus limiting the range of TFR studies. This work introduces a maximum likelihood estimation (MLE) method for recovering the TFR in galaxy samples with limited or no information on inclinations. The robustness and accuracy of this method is demonstrated using virtual and real galaxy samples. Intriguingly, the MLE reliably recovers the TFR of all test samples, even without using anymore » inclination measurements—that is, assuming a random sin i-distribution for galaxy inclinations. Explicitly, this 'inclination-free MLE' recovers the three TFR parameters (zero-point, slope, scatter) with statistical errors only about 1.5 times larger than the best estimates based on perfectly known galaxy inclinations with zero uncertainty. Thus, given realistic uncertainties, the inclination-free MLE is highly competitive. If inclination measurements have mean errors larger than 10°, it is better not to use any inclinations than to consider the inclination measurements to be exact. The inclination-free MLE opens interesting perspectives for future H I surveys by the Square Kilometer Array and its pathfinders.« less

  1. Cooperative Three-Robot System for Traversing Steep Slopes

    NASA Technical Reports Server (NTRS)

    Stroupe, Ashley; Huntsberger, Terrance; Aghazarian, Hrand; Younse, Paulo; Garrett, Michael

    2009-01-01

    Teamed Robots for Exploration and Science in Steep Areas (TRESSA) is a system of three autonomous mobile robots that cooperate with each other to enable scientific exploration of steep terrain (slope angles up to 90 ). Originally intended for use in exploring steep slopes on Mars that are not accessible to lone wheeled robots (Mars Exploration Rovers), TRESSA and systems like TRESSA could also be used on Earth for performing rescues on steep slopes and for exploring steep slopes that are too remote or too dangerous to be explored by humans. TRESSA is modeled on safe human climbing of steep slopes, two key features of which are teamwork and safety tethers. Two of the autonomous robots, denoted Anchorbots, remain at the top of a slope; the third robot, denoted the Cliffbot, traverses the slope. The Cliffbot drives over the cliff edge supported by tethers, which are payed out from the Anchorbots (see figure). The Anchorbots autonomously control the tension in the tethers to counter the gravitational force on the Cliffbot. The tethers are payed out and reeled in as needed, keeping the body of the Cliffbot oriented approximately parallel to the local terrain surface and preventing wheel slip by controlling the speed of descent or ascent, thereby enabling the Cliffbot to drive freely up, down, or across the slope. Due to the interactive nature of the three-robot system, the robots must be very tightly coupled. To provide for this tight coupling, the TRESSA software architecture is built on a combination of (1) the multi-robot layered behavior-coordination architecture reported in "An Architecture for Controlling Multiple Robots" (NPO-30345), NASA Tech Briefs, Vol. 28, No. 10 (October 2004), page 65, and (2) the real-time control architecture reported in "Robot Electronics Architecture" (NPO-41784), NASA Tech Briefs, Vol. 32, No. 1 (January 2008), page 28. The combination architecture makes it possible to keep the three robots synchronized and coordinated, to use data

  2. Large- and Very-Large-Scale Motions in Katabatic Flows Over Steep Slopes

    NASA Astrophysics Data System (ADS)

    Giometto, M. G.; Fang, J.; Salesky, S.; Parlange, M. B.

    2016-12-01

    Evidence of large- and very-large-scale motions populating the boundary layer in katabatic flows over steep slopes is presented via direct numerical simulations (DNSs). DNSs are performed at a modified Reynolds number (Rem = 967), considering four sloping angles (α = 60°, 70°, 80° and 90°). Large coherent structures prove to be strongly dependent on the inclination of the underlying surface. Spectra and co-spectra consistently show signatures of large-scale motions (LSMs), with streamwise extension on the order of the boundary layer thickness. A second low-wavenumber mode characterizes pre-multiplied spectra and co-spectra when the slope angle is below 70°, indicative of very-large-scale motions (VLSMs). In addition, conditional sampling and averaging shows how LSMs and VLSMs are induced by counter-rotating roll modes, in agreement with findings from canonical wall-bounded flows. VLSMs contribute to the stream-wise velocity variance and shear stress in the above-jet regions up to 30% and 45% respectively, whereas both LSMs and VLSMs are inactive in the near-wall regions.

  3. Weatherford Inclined Wellbore Construction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schulte, R.

    The Rocky Mountain Oilfield Testing Center (RMOTC) has recently completed construction of an inclined wellbore with seven (7) inch, twenty-three (23) pound casing at a total depth of 1296 feet. The inclined wellbore is near vertical to 180 feet with a build angle of approximately 4.5 degrees per hundred feet thereafter. The inclined wellbore was utilized for further proprietary testing after construction and validation. The wellbore is available to other companies requiring a cased hole environment with known deviation out to fifty degrees (50) from vertical. The wellbore may also be used by RMOTC for further deepening into the fracturedmore » shales of the Steele and Niobrara formation.« less

  4. 46 CFR 28.535 - Inclining test.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Inclining test. 28.535 Section 28.535 Shipping COAST... VESSELS Stability § 28.535 Inclining test. (a) Except as provided in paragraphs (b) and (c) of this... order to do the calculations required in this subpart must have an inclining test performed. (b) A...

  5. 46 CFR 28.535 - Inclining test.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Inclining test. 28.535 Section 28.535 Shipping COAST... VESSELS Stability § 28.535 Inclining test. (a) Except as provided in paragraphs (b) and (c) of this... order to do the calculations required in this subpart must have an inclining test performed. (b) A...

  6. Aesthetic evaluation of profile incisor inclination.

    PubMed

    Ghaleb, Nathalie; Bouserhal, Joseph; Bassil-Nassif, Nayla

    2011-06-01

    The objectives of this study were to evaluate (1) the impact of maxillary incisor inclination on the aesthetics of the profile view of a smile, (2) to determine the most aesthetic inclination in the profile view of a smile and correlate it with facial features, and (3) to determine if dentists, orthodontists, and laypeople appreciate differently incisor inclination in smile aesthetics. A smiling profile photograph of a female subject (22 years of age) who fulfilled the criteria of soft tissue normative values and a balanced smile was obtained. The photograph was manipulated to simulate six lingual and labial inclinations at 5 degree increments to a maximum of 15 degrees. The seven photographs were randomly distributed in a binder to three groups of raters (30 dentists, 30 orthodontists, and 30 laypeople) who scored the attractiveness of the photographic variations using a visual analogue scale. Comparison of the mean scores was carried out by repeated analysis of variance, univariate tests, and multiple Bonferroni comparisons. The results showed a statistically significant interaction between the rater's profession and the aesthetic preference of incisor inclination (P = 0.013). The profile smile corresponding to an increase of 5 degrees in a labial direction had the highest score among all professions and among male and female raters. Orthodontists preferred labial crown torque; dentists and laypeople did not appreciate excessive incisor inclination in either the lingual or the labial directions. The most preferred smile matched with a maxillary incisor inclined 93 degrees to the horizontal line and +7 degrees to the lower facial third.

  7. Playing with inclined circular hydraulic jumps

    NASA Astrophysics Data System (ADS)

    Lebon, Luc; Saget, Beryl; Durand, Marc; Limat, Laurent; Couder, Yves; Receveur, Mathieu

    2008-11-01

    We have investigated the structure of the circular hydraulic jump, when the jet impacts an inclined plate. At low plate slope, quasi-circular shapes, evolving towards elliptic shapes are observed. At moderate inclinations, the upper and lower jumps become markedly different, and the lower jump is even rejected to infinity when a critical inclination is reached. Above this critical inclination, the jump is coupled to an outer dewetting contact line to give a specific object (expanding impact sheet feeding a curved rim in which the liquid is flowing tangentially). In this regime, both the position and curvature of the upper jump follows unusual scalings with the flow rate that completely differ from those observed on horizontal plates. Finally we have looked to metastable drops trapped in the circular jump at very small inclinations. As reported in a previous APS, the lowest position in the jump can become unstable and the drops oscillate around the jump perimeter. We show that this behavior requires very specific conditions of surface tension and viscosity and propose simple interpretations for the instability mechanism.

  8. Breakup of a liquid rivulet falling over an inclined plate: Identification of a critical Weber number

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Rajesh K.; Galvin, Janine E.; Whyatt, Greg A.

    Here, we have numerically investigated the breakup of a rivulet falling over a smooth inclined plate using the volume of fluid method. The breakup the rivulet is a complex phenomenon that is dictated by many factors, such as solvent properties, contact angle, inertia, plate inclination, etc. An extensive simulation campaign was conducted wherein these factors were systematically investigated. Regimes for a stable rivulet and an unstable rivulet that leads to the breakup and formation of a droplet are examined in terms of a critical value of the Weber number (We cr) that delineates these regimes. The effect of plate inclinationmore » on the breakup of the rivulet shows that the critical Weber number decreases with increased inclination angle (θ) owing to higher liquid velocity. However, the effect is negligible beyond θ > 60°. The impact of solvent properties is characterized using the Kapitza number (Ka). Variation of We cr with Ka shows two trends depending on the Ka value of the solvent. Solvents with lower Ka values, corresponding to high viscosities and/or low surface tensions, show smaller values of the critical Weber number and the variation is linear. While solvents with higher Ka values exhibit higher values of the We cr and the variation in We cr is steep. This behavior is more pronounced with increasing contact angle. Higher contact angles promote rivulet breakup so that inertia must be higher to the breakup. As a result, a phenomenological scaling for a critical Weber number with the Kapitza number and contact angle is presented that can offer insight into rivulet breakup.« less

  9. Breakup of a liquid rivulet falling over an inclined plate: Identification of a critical Weber number

    DOE PAGES

    Singh, Rajesh K.; Galvin, Janine E.; Whyatt, Greg A.; ...

    2017-05-04

    Here, we have numerically investigated the breakup of a rivulet falling over a smooth inclined plate using the volume of fluid method. The breakup the rivulet is a complex phenomenon that is dictated by many factors, such as solvent properties, contact angle, inertia, plate inclination, etc. An extensive simulation campaign was conducted wherein these factors were systematically investigated. Regimes for a stable rivulet and an unstable rivulet that leads to the breakup and formation of a droplet are examined in terms of a critical value of the Weber number (We cr) that delineates these regimes. The effect of plate inclinationmore » on the breakup of the rivulet shows that the critical Weber number decreases with increased inclination angle (θ) owing to higher liquid velocity. However, the effect is negligible beyond θ > 60°. The impact of solvent properties is characterized using the Kapitza number (Ka). Variation of We cr with Ka shows two trends depending on the Ka value of the solvent. Solvents with lower Ka values, corresponding to high viscosities and/or low surface tensions, show smaller values of the critical Weber number and the variation is linear. While solvents with higher Ka values exhibit higher values of the We cr and the variation in We cr is steep. This behavior is more pronounced with increasing contact angle. Higher contact angles promote rivulet breakup so that inertia must be higher to the breakup. As a result, a phenomenological scaling for a critical Weber number with the Kapitza number and contact angle is presented that can offer insight into rivulet breakup.« less

  10. Assessing the performance of winter footwear using a new maximum achievable incline method.

    PubMed

    Hsu, Jennifer; Li, Yue; Dutta, Tilak; Fernie, Geoff

    2015-09-01

    More informative tests of winter footwear performance are required in order to identify footwear that will prevent injurious slips and falls on icy conditions. In this study, eight participants tested four styles of winter boots on smooth wet ice. The surface was progressively tilted to create increasing longitudinal and cross-slopes until participants could no longer continue standing or walking. Maximum achievable incline angles provided consistent measures of footwear slip resistance and demonstrated better resolution than mechanical tests. One footwear outsole material and tread combination outperformed the others on wet ice allowing participants to successfully walk on steep longitudinal slopes of 17.5° ± 1.9° (mean ± SD). By further exploiting the methodology to include additional surfaces and contaminants, such tests could be used to optimize tread designs and materials that are ideal for reducing the risk of slips and falls. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  11. Sensitivity Challenge of Steep Transistors

    NASA Astrophysics Data System (ADS)

    Ilatikhameneh, Hesameddin; Ameen, Tarek A.; Chen, ChinYi; Klimeck, Gerhard; Rahman, Rajib

    2018-04-01

    Steep transistors are crucial in lowering power consumption of the integrated circuits. However, the difficulties in achieving steepness beyond the Boltzmann limit experimentally have hindered the fundamental challenges in application of these devices in integrated circuits. From a sensitivity perspective, an ideal switch should have a high sensitivity to the gate voltage and lower sensitivity to the device design parameters like oxide and body thicknesses. In this work, conventional tunnel-FET (TFET) and negative capacitance FET are shown to suffer from high sensitivity to device design parameters using full-band atomistic quantum transport simulations and analytical analysis. Although Dielectric Engineered (DE-) TFETs based on 2D materials show smaller sensitivity compared with the conventional TFETs, they have leakage issue. To mitigate this challenge, a novel DE-TFET design has been proposed and studied.

  12. Superior glenoid inclination and rotator cuff tears.

    PubMed

    Chalmers, Peter N; Beck, Lindsay; Granger, Erin; Henninger, Heath; Tashjian, Robert Z

    2018-03-23

    The objectives of this study were to determine whether glenoid inclination (1) could be measured accurately on magnetic resonance imaging (MRI) using computed tomography (CT) as a gold standard, (2) could be measured reliably on MRI, and (3) whether it differed between patients with rotator cuff tears and age-matched controls without evidence of rotator cuff tears or glenohumeral osteoarthritis. In this comparative retrospective radiographic study, we measured glenoid inclination on T1 coronal MRI corrected into the plane of the scapula. We determined accuracy by comparison with CT and inter-rater reliability. We compared glenoid inclination between patients with full-thickness rotator cuff tears and patients aged >50 years without evidence of a rotator cuff tear or glenohumeral arthritis. An a priori power analysis determined adequate power to detect a 2° difference in glenoid inclination. (1) In a validation cohort of 37 patients with MRI and CT, the intraclass correlation coefficient was 0.877, with a mean difference of 0° (95% confidence interval, -1° to 1°). (2) For MRI inclination, the inter-rater intraclass correlation coefficient was 0.911. (3) Superior glenoid inclination was 2° higher (range, 1°-4°, P < .001) in the rotator cuff tear group of 192 patients than in the control cohort of 107 patients. Glenoid inclination can be accurately and reliably measured on MRI. Although superior glenoid inclination is statistically greater in those with rotator cuff tears than in patients of similar age without rotator cuff tears or glenohumeral arthritis, the difference is likely below clinical significance. Copyright © 2018 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  13. Mechanism of cassava tuber cell wall weakening by dilute sodium hydroxide steeping.

    PubMed

    Odoch, Martin; Buys, Elna M; Taylor, John R N

    2017-08-01

    Steeping of cassava root pieces in 0.75% NaOH in combination with wet milling was investigated to determine whether and how dilute NaOH modifies cassava cell walls. Gas chromatography data of cell wall constituent sugar composition and Fourier transform infrared (FTIR) data showed that NaOH steeping reduced the level of pectin in cassava cell walls. FTIR and wide-angle X-ray scattering spectroscopy also indicated that NaOH steeping combined with fine milling slightly reduced cellulose crystallinity. Scanning electron microscopy showed that NaOH steeping produced micropores in the cell walls and light microscopy revealed that NaOH steeping increased disaggregation of parenchyma cells. Steeping of ground cassava in NaOH resulted in a 12% decrease in large residue particles and approx. 4% greater starch yield with wet milling. Therefore dilute NaOH steeping can improve the effectiveness of wet milling in disintegrating cell walls through solubilisation of pectin, thereby reduced cell wall strength. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Compost for steep slope erosion.

    DOT National Transportation Integrated Search

    2008-06-01

    This study was initiated to develop guidelines for maintenance erosion control measures for steep slopes. The study focused on evaluating and monitoring KY-31 fescue germination rates using two media treatments 1) 100 percent by weight compost and 2)...

  15. Ground reaction forces on stairs: effects of stair inclination and age.

    PubMed

    Stacoff, Alex; Diezi, Christian; Luder, Gerhard; Stüssi, Edgar; Kramers-de Quervain, Inès A

    2005-01-01

    The goals of the study were to compare data of vertical ground reaction force (GRF) parameters during level walking, stair ascent and descent on three different stair inclinations and three different age groups. Twenty healthy subjects of three age groups (young 33.7 years; middle 63.6 years; old 76.5 years) were tested during the seven test conditions with 8-10 repetitions. Vertical forces were measured during two consecutive steps with force plates embedded in the walkway and the staircase. The results showed that during level walking the vertical GRF curves were very regular and repetitive, the trail-to-trial variability and left-right asymmetry of defined test parameters being around 2-5% and 3-5%. During stair ascent the vertical GRF force pattern was found to change slightly compared to level gait, but considerably compared to stair descent. On the steep stair the average vertical load increased up to 1.6 BW, and variability (5-10%) and asymmetry (5-15%) were increased significantly. The steep stair descent condition was found to be the most demanding test showing the largest variability and asymmetry and thus, the least stable gait pattern. Age was found to be a factor which should be considered, because the young age group walked faster and produced larger vertical GRF maxima during level walking and on stair ascent than the middle and old age group. Differences between the middle and old age group were found to be small. The present investigation is the first to provide normative data of GRF parameters on gait variability and symmetry of two consecutive steps during level gait and stair ambulation. It is the intention that the results of this study may be used as a basis for comparison with patient data.

  16. Ring formation on an inclined surface

    NASA Astrophysics Data System (ADS)

    Deegan, Robert; Du, Xiyu

    2015-11-01

    A drop dried on a solid surface will typically leave a narrow band of solute deposited along the contact line. We examined variations of this deposit due to the inclination of the substrate using numerical simulations of a two-dimensional drop, equivalent to a strip-like drop. An asymptotic analysis of the contact line region predicts that the upslope deposit will grow faster at early times, but the growth of this deposit ends sooner because the upper contact line depins first. From our simulations we find that the deposit can be larger at either the upper or lower contact line depending on the initial drop volume and substrate inclination. For larger drops and steeper inclinations, the early lead in deposited mass at the upper contact line is wiped out by the earlier depinning of the upper contact line and subsequent continued growth at the lower contact line. Conversely, for smaller drops and shallower inclinations, the early lead of the upper contact line is insurmountable despite its earlier termination in growth. Our results show that it is difficult to reconstruct a postiorithe inclination of the substrate based solely on the shape of the deposit. The authors thank the James S. McDonnell Foundation for support through a 21st Century Science Initiative in Studying Complex Systems Research Award, and the National Science Foundation for support under Grant No. 0932600.

  17. Operational Experiences in Planning and Reconstructing Aqua Inclination Maneuvers

    NASA Technical Reports Server (NTRS)

    Rand, David; Reilly, Jacqueline; Schiff, Conrad

    2004-01-01

    As the lead satellite in NASA's growing Earth Observing System (EOS) PM constellation, it is increasingly critical that Aqua maintain its various orbit requirements. The two of interest for this paper are maintaining an orbit inclination that provides for a consistent mean local time and a semi-major Axis (SMA) that allows for ground track repeatability. Maneuvers to adjust the orbit inclination involve several flight dynamics constraints and complexities which make planning such maneuvers challenging. In particular, coupling between the orbital and attitude degrees of freedom lead to changes in SMA when changes in inclination are effected. A long term mission mean local time trend analysis was performed in order to determine the size and placement of the required inclination maneuvers. Following this analysis, detailed modeling of each burn and its Various segments was performed to determine its effects on the immediate orbit state. Data gathered from an inclination slew test of the spacecraft and first inclination maneuver uncovered discrepancies in the modeling method that were investigated and resolved. The new modeling techniques were applied and validated during the second spacecraft inclination maneuver. These improvements should position Aqua to successfully complete a series of inclination maneuvers in the fall of 2004. The following paper presents the events and results related

  18. Gaining Momentum: Re-Creating Galileo's Inclined Plane.

    ERIC Educational Resources Information Center

    Albrecht, Bob; Firedrake, George

    1998-01-01

    Provides an excerpt of Galileo's description of his inclined plane experiment. Describes the replication of Galileo's inclined plane experiment by students at Rice University (Texas) using an Internet site called the Galileo Project; then describes the authors' replication of the Project. (AEF)

  19. Thermal convection of liquid sodium in inclined cylinders

    NASA Astrophysics Data System (ADS)

    Khalilov, Ruslan; Kolesnichenko, Ilya; Pavlinov, Alexander; Mamykin, Andrey; Shestakov, Alexander; Frick, Peter

    2018-04-01

    The effect of inclination on the low Prandtl number turbulent convection in a cylinder of unit aspect ratio was studied experimentally. The working fluid was sodium (Prandtl number Pr =0.0094 ), the measurements were performed for a fixed Rayleigh number Ra =(1.47 ±0.03 ) ×107 , and the inclination angle varied from β =0∘ (the Rayleigh-Bénard convection, the temperature gradient is vertical) up to β =90∘ (the applied temperature gradient is horizontal) with a step Δ β =10∘ . The effective axial heat flux characterized by the Nusselt number is minimal at β =0∘ and demonstrates a smooth growth with the increase of the cylinder inclination, reaching a maximum at angle β ≈70∘ and decreasing with a further increase of β . The maximal value of the normalized Nusselt number Nu (β )/Nu (0 ) was 1.21. In general, the dependence of Nu (β ) in a cylinder with unit aspect ratio is similar to what was observed in sodium convection in inclined long cylinders but is much weaker. The structure of the flow undergoes a significant transformation with inclination. Under moderate inclination (β ≲30∘ ), the fluctuations are strong and are provided by regular oscillations of large-scale circulation (LSC) and by turbulence. Under large inclination (β >60∘ ), the LSC is regular and the turbulence is weak, while in transient regimes (30∘<β <60∘ ), the LSC fluctuations are weak and the turbulence decreases with inclination. The maximum Nusselt number corresponds to the border of transient and large inclinations. We find the first evidence of strong LSC fluctuations in low Prandtl number convective flow under moderate inclination. The rms azimuthal fluctuations of LSC, about 27∘ at β =0∘ , decrease almost linearly up to β =30∘ , where they are about 9∘. The angular fluctuations in the vicinity of the end faces are much stronger (about 37∘ at β =0∘ ) and weakly decrease up to β =20∘ . The strong anticorrelation of the fluctuations in two

  20. Simple steep-axis marking technique using a corneal analyzer.

    PubMed

    Ng, Alex L K; Chan, Tommy C Y; Jhanji, Vishal; Cheng, George P M

    2017-02-01

    We describe a simple steep-axis marking technique that uses a corneal analyzer (OPD III scan) during arcuate keratotomy in femtosecond laser-assisted cataract surgery. The technique requires a single reference mark at the limbus, which does not have to be on the horizontal axis. Using the corneal analyzer, the angle between the steep axis and the reference line between the reference mark and the center of the cornea can be determined. The angle from the reference mark is used intraoperatively to locate the steep axis. This eliminates the potential error from different head positions during keratometry measurement and during traditional marking under the slitlamp. The marking technique can also be applied to toric intraocular lens implantation during cataract surgery. Copyright © 2017 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  1. Movements of a Sphere Moving Over Smooth and Rough Inclines

    NASA Astrophysics Data System (ADS)

    Jan, Chyan-Deng

    1992-01-01

    The steady movements of a sphere over a rough incline in air, and over smooth and rough inclines in a liquid were studied theoretically and experimentally. The principle of energy conservation was used to analyze the translation velocities, rolling resistances, and drag coefficients of a sphere moving over the inclines. The rolling resistance to the movement of a sphere from the rough incline was presumed to be caused by collisions and frictional slidings. A varnished wooden board was placed on the bottom of an experimental tilting flume to form a smooth incline and a layer of spheres identical to the sphere moving over them was placed on the smooth wooden board to form a rough incline. Spheres used in the experiments were glass spheres, steel spheres, and golf balls. Experiments show that a sphere moving over a rough incline with negligible fluid drag in air can reach a constant translation velocity. This constant velocity was found to be proportional to the bed inclination (between 11 ^circ and 21^circ) and the square root of the sphere's diameter, but seemingly independent of the sphere's specific gravity. Two empirical coefficients in the theoretical expression of the sphere's translation velocity were determined by experiments. The collision and friction parts of the shear stress exerted on the interface between the moving sphere and rough incline were determined. The ratio of collision to friction parts appears to increase with increase in the bed inclination. These two parts seem to be of the same order of magnitude. The rolling resistances and the relations between the drag coefficient and Reynolds number for a sphere moving over smooth and rough inclines in a liquid, such as water or salad oil, were determined by a regression analysis based on experimental data. It was found that the drag coefficient for a sphere over the rough incline is larger than that for a sphere over the smooth incline, and both of which are much larger than that for a sphere in free

  2. Possible relation between pulsar rotation and evolution of magnetic inclination

    NASA Astrophysics Data System (ADS)

    Tian, Jun

    2018-05-01

    The pulsar timing is observed to be different from predicted by a simple magnetic dipole radiation. We choose eight pulsars whose braking index was reliably determined. Assuming the smaller values of braking index are dominated by the secular evolution of the magnetic inclination, we calculate the increasing rate of the magnetic inclination for each pulsar. We find a possible relation between the rotation frequency of each pulsar and the inferred evolution of the magnetic inclination. Due to the model-dependent fit of the magnetic inclination and other effects, more observational indicators for the change rate of magnetic inclination are needed to test the relation.

  3. Airborne LIDAR point cloud tower inclination judgment

    NASA Astrophysics Data System (ADS)

    liang, Chen; zhengjun, Liu; jianguo, Qian

    2016-11-01

    Inclined transmission line towers for the safe operation of the line caused a great threat, how to effectively, quickly and accurately perform inclined judgment tower of power supply company safety and security of supply has played a key role. In recent years, with the development of unmanned aerial vehicles, unmanned aerial vehicles equipped with a laser scanner, GPS, inertial navigation is one of the high-precision 3D Remote Sensing System in the electricity sector more and more. By airborne radar scan point cloud to visually show the whole picture of the three-dimensional spatial information of the power line corridors, such as the line facilities and equipment, terrain and trees. Currently, LIDAR point cloud research in the field has not yet formed an algorithm to determine tower inclination, the paper through the existing power line corridor on the tower base extraction, through their own tower shape characteristic analysis, a vertical stratification the method of combining convex hull algorithm for point cloud tower scarce two cases using two different methods for the tower was Inclined to judge, and the results with high reliability.

  4. 4. VIEW EAST, PERSPECTIVE DOWN INCLINED PLANE FROM TOP OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VIEW EAST, PERSPECTIVE DOWN INCLINED PLANE FROM TOP OF ABUTMENT TO CONEMAUGH RIVER AND AREA OF LOWER INCLINE - Laurel Hill Quarry, Incline Plane, Both sides of State Route 56, 2.4 miles East of State Route 711, Seward, Westmoreland County, PA

  5. Deontological and utilitarian inclinations in moral decision making: a process dissociation approach.

    PubMed

    Conway, Paul; Gawronski, Bertram

    2013-02-01

    Dual-process theories of moral judgment suggest that responses to moral dilemmas are guided by two moral principles: the principle of deontology states that the morality of an action depends on the intrinsic nature of the action (e.g., harming others is wrong regardless of its consequences); the principle of utilitarianism implies that the morality of an action is determined by its consequences (e.g., harming others is acceptable if it increases the well-being of a greater number of people). Despite the proposed independence of the moral inclinations reflecting these principles, previous work has relied on operationalizations in which stronger inclinations of one kind imply weaker inclinations of the other kind. The current research applied Jacoby's (1991) process dissociation procedure to independently quantify the strength of deontological and utilitarian inclinations within individuals. Study 1 confirmed the usefulness of process dissociation for capturing individual differences in deontological and utilitarian inclinations, revealing positive correlations of both inclinations to moral identity. Moreover, deontological inclinations were uniquely related to empathic concern, perspective-taking, and religiosity, whereas utilitarian inclinations were uniquely related to need for cognition. Study 2 demonstrated that cognitive load selectively reduced utilitarian inclinations, with deontological inclinations being unaffected. In Study 3, a manipulation designed to enhance empathy increased deontological inclinations, with utilitarian inclinations being unaffected. These findings provide evidence for the independent contributions of deontological and utilitarian inclinations to moral judgments, resolving many theoretical ambiguities implied by previous research. (c) 2013 APA, all rights reserved.

  6. Locomotor Behavior of Chickens Anticipating Incline Walking

    PubMed Central

    LeBlanc, Chantal; Tobalske, Bret; Szkotnicki, Bill; Harlander-Matauschek, Alexandra

    2018-01-01

    Keel bone damage (KBD) is prevalent in hens raised for egg production, and ramps between different tiers in aviaries have potential to reduce the frequency of falls resulting in KBD. Effective use of ramps requires modulation of locomotion in anticipation of the incline. Inadequate adaptive locomotion may be one explanation why domestic layer hens (Gallus gallus domesticus) exhibit high rates of KBD. To improve understanding of the capacity of hens to modulate their locomotion in anticipation of climbing, we measured the effects of incline angle upon the mechanics of the preparatory step before ascending a ramp. Because the energetic challenge of climbing increases with slope, we predicted that as angle of incline increased, birds during foot contact with the ground before starting to climb would increase their peak force and duration of contact and reduce variation in center of pressure (COP) under their foot. We tested 20 female domestic chickens on ramp inclines at slopes of +0°, +40°, and +70° when birds were 17, 21, 26, 31, and 36 weeks of age. There were significantly higher vertical peak ground reaction forces in preparation at the steepest slope, and ground contact time increased significantly with each increase in ramp angle. Effects upon variation in COP were not apparent; likewise, effects of limb length, age, body mass were not significant. Our results reveal that domestic chickens are capable of modulating their locomotion in response to incline angle. PMID:29376060

  7. Slipping and Rolling on an Inclined Plane

    ERIC Educational Resources Information Center

    Aghamohammadi, Cina; Aghamohammadi, Amir

    2011-01-01

    In the first part of the paper, using a direct calculation two-dimensional motion of a particle sliding on an inclined plane is investigated for general values of friction coefficient ([mu]). A parametric equation for the trajectory of the particle is also obtained. In the second part of the paper, the motion of a sphere on the inclined plane is…

  8. Deriving stellar inclination of slow rotators using stellar activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dumusque, X., E-mail: xdumusque@cfa.harvard.edu

    2014-12-01

    Stellar inclination is an important parameter for many astrophysical studies. Although different techniques allow us to estimate stellar inclination for fast rotators, it becomes much more difficult when stars are rotating slower than ∼2-2.5 km s{sup –1}. By using the new activity simulation SOAP 2.0 which can reproduce the photometric and spectroscopic variations induced by stellar activity, we are able to fit observations of solar-type stars and derive their inclination. For HD 189733, we estimate the stellar inclination to be i=84{sub −20}{sup +6} deg, which implies a star-planet obliquity of ψ=4{sub −4}{sup +18} considering previous measurements of the spin-orbit angle.more » For α Cen B, we derive an inclination of i=45{sub −19}{sup +9}, which implies that the rotational spin of the star is not aligned with the orbital spin of the α Cen binary system. In addition, assuming that α Cen Bb is aligned with its host star, no transit would occur. The inclination of α Cen B can be measured using 40 radial-velocity measurements, which is remarkable given that the projected rotational velocity of the star is smaller than 1.15 km s{sup –1}.« less

  9. The weaker effects of First-order mean motion resonances in intermediate inclinations

    NASA Astrophysics Data System (ADS)

    Chen, YuanYuan; Quillen, Alice C.; Ma, Yuehua; Chinese Scholar Council, the National Natural Science Foundation of China, the Natural Science Foundation of Jiangsu Province, the Minor Planet Foundation of the Purple Mountain Observatory

    2017-10-01

    During planetary migration, a planet or planetesimal can be captured into a low-order mean motion resonance with another planet. Using a second-order expansion of the disturbing function in eccentricity and inclination, we explore the sensitivity of the capture probability of first-order mean motion resonances to orbital inclination. We find that second-order inclination contributions affect the resonance strengths, reducing them at intermediate inclinations of around 10-40° for major first-order resonances. We also integrated the Hamilton's equations with arbitrary initial arguments, and provided the varying tendencies of resonance capture probabilities versus orbital inclinations for different resonances and different particle or planetary eccentricities. Resonance-weaker ranges in inclinations generally appear at the places where resonance strengths are low, around 10-40° in general. The weaker ranges disappear with a higher particle eccentricity (≳0.05) or planetary eccentricity (≳0.05). These resonance-weaker ranges in inclinations implies that intermediate-inclination objects are less likely to be disturbed or captured into the first-order resonances, which would make them entering into the chaotic area around Neptune with a larger fraction than those with low inclinations, during the epoch of Neptune's outward migration. The privilege of high-inclination particles leave them to be more likely captured into Neptune Trojans, which might be responsible for the unexpected high fraction of high-inclination Neptune Trojans.

  10. Upper canine inclination influences the aesthetics of a smile.

    PubMed

    Bothung, C; Fischer, K; Schiffer, H; Springer, I; Wolfart, S

    2015-02-01

    This current study investigated which angle of canine inclination (angle between canine tooth axis (CA-line) and the line between the lateral canthus and the ipsilateral labial angle (EM-line)) is perceived to be most attractive in a smile. The second objective was to determine whether laymen and dental experts share the same opinion. A Q-sort assessment was performed with 48 posed smile photographs to obtain two models of neutral facial attractiveness. Two sets of images (1 male model set, 1 female model set), each containing seven images with incrementally altered canine and posterior teeth inclinations, were generated. The images were ranked for attractiveness by three groups (61 laymen, 59 orthodontists, 60 dentists). The images with 0° inclination, that is CA-line (maxillary canine axis) parallel to EM-line (the line formed by the lateral canthus and the ipsilateral corner of the mouth) (male model set: 54·4%; female model set: 38·9%), or -5° (inward) inclination (male model set: 20%; female model set: 29·4%) were perceived to be most attractive within each set. Images showing inward canine inclinations were regarded to be more attractive than those with outward inclinations. Dental experts and laymen were in accordance with the aesthetics. Smiles were perceived to be most attractive when the upper canine tooth axis was parallel to the EM-line. In reconstructive or orthodontic therapy, it is thus important to incline canines more inwardly than outwardly. © 2014 John Wiley & Sons Ltd.

  11. 30 CFR 57.11041 - Landings for inclined ladderways.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Landings for inclined ladderways. 57.11041... and Escapeways Travelways-Underground Only § 57.11041 Landings for inclined ladderways. Fixed ladders... landings at least every 30 feet or have landing gates at least every 30 feet. Escapeways—Underground Only ...

  12. 30 CFR 57.11041 - Landings for inclined ladderways.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Landings for inclined ladderways. 57.11041... and Escapeways Travelways-Underground Only § 57.11041 Landings for inclined ladderways. Fixed ladders... landings at least every 30 feet or have landing gates at least every 30 feet. Escapeways—Underground Only ...

  13. Rainfall and sheet power model for interrill erosion in steep slope

    NASA Astrophysics Data System (ADS)

    Shin, Seung Sook; Deog Park, Sand; Nam, Myeong Jun

    2015-04-01

    The two-phase process of interrill erosion consist of the splash and detachment of individual particles from soil mass by impact of raindrops and the transport by erosive running water. Most experimental results showed that the effect of interaction between rainfall impact and surface runoff increases soil erosion in low or gentle slope. Especially, the combination of rain splash and sheet flow is the dominant runoff and erosion mechanism occurring on most steep hillslopes. In this study, a rainfall simulation was conducted to evaluate interrill erosion in steep slope with cover or non-cover. The kinetic energy of raindrops of rainfall simulator was measured by disdrometer used to measure the drop size distribution and velocity of falling raindrops and showed about 0.563 rate of that calculated from empirical equation between rainfall kinetic energy and rainfall intensity. Surface and subsurface runoff and sediment yield depended on rainfall intensity, gradient of slope, and existence of cover. Sediment from steep plots under rainfall simulator is greatly reduced by existence of the strip cover that the kinetic energy of raindrop approximates to zero. Soil erosion in steep slope with non-cover was nearly 4.93 times of that measured in plots with strip cover although runoff was only 1.82 times. The equation of a rainfall and sheet power was used to evaluate sediment yields in steep slope with cover or non-cover. The power model successfully explained physical processes for interrill erosion that combination of raindrop impact and sheet flow increases greatly soil erosion in steep slope. This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education, Science and Technology(No. 2013R1A1A3011962).

  14. Enhanced photovoltaic performance of an inclined nanowire array solar cell.

    PubMed

    Wu, Yao; Yan, Xin; Zhang, Xia; Ren, Xiaomin

    2015-11-30

    An innovative solar cell based on inclined p-i-n nanowire array is designed and analyzed. The results show that the inclined geometry can sufficiently increase the conversion efficiency of solar cells by enhancing the absorption of light in the active region. By tuning the nanowire array density, nanowire diameter, nanowire length, as well as the proportion of intrinsic region of the inclined nanowire solar cell, a remarkable efficiency in excess of 16% can be obtained in GaAs. Similar results have been obtained in InP and Si nanowire solar cells, demonstrating the universality of the performance enhancement of inclined nanowire arrays.

  15. Variations in the kinematics of deformation along the Zagros inclined transpression zone, Iran: Implications for defining a curved inclined transpression zone

    NASA Astrophysics Data System (ADS)

    Sarkarinejad, Khalil; Partabian, Abdolreza; Faghih, Ali

    2013-03-01

    The combination of inclined collision and plate boundary shape can control the nature of deformation and the sense of shear along a transpression zone. The present study investigated the effects of a boundary zone with curvilinear shape along a transpression zone on the kinematics of deformation. The kinematics of the Zagros transpression zone varies with the orientation of the zone boundary. Detailed structural and microstructural studies showed sinistral sense of shear on the southeastern part of the Zagros inclined transpression zone (Fars Arc), but dextral sense of shear on the northwestern part of the zone. It is inferred that the both senses of shear were developed coevally under a bulk general shear, regional-scale deformation along a curved inclined transpression miming the shape of the Fras Arc of the Zagros and the reentrant of the Bandar Abbas Syntaxis. The Zagros transpression zone formed by inclined continental collision between the Afro-Arabian continent and Iranian microcontinent.

  16. Influence of steeping solution and storage temperature on the color change of garlic.

    PubMed

    Bae, Song Hwan; Lee, Seog-Won; Kim, Mi-Ryung; Kim, Jin Man; Suh, Hyung Joo

    2010-01-01

    The objective of this study was to investigate the browning of garlic under different steeping conditions and storage temperatures. The brown indices of steeped garlics showed lowest values (7.3 and 7) in 25% and 50% EtOH at 7 d of storage. The degree of browning of steeped garlics was lowest (10.2 in 25% EtOH and 10.4 in 50% EtOH) in the samples soaked for 8 h at 13 d of storage. As the storage temperature was increased from 10 to 40 degrees C, the brown indices of garlics revealed an increasing trend relative to storage time regardless of steeping treatment. Overall, the kinetic parameters showed relatively low R(2) and irregular reaction constants, but the k(o) values showed an increasing trend with temperature under a zero-order model. The highest polyphenol content within the garlic bulbs was seen in controls (without steeping treatment, 588.9 microg/g), than 0% EtOH (water, 392.5 microg/g), than 25% EtOH (211.3 microg/g), and finally 50% EtOH (155.6 microg/g). The polyphenol oxidase activity of garlic showed a similar trend to that of polyphenol content. However, the texture properties of garlics steeped with 25% and 50% did not change. The garlic color preferred by consumers is a creamy-white, but this is susceptible to enzymatic browning when pre-peeled and chopped. When garlic was steeped in the 25% and 50% alcohol, the browning of garlic was prevented during storage.

  17. 46 CFR 58.01-40 - Machinery, angles of inclination.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... AUXILIARY MACHINERY AND RELATED SYSTEMS General Requirements § 58.01-40 Machinery, angles of inclination. (a... angle of list up to and including 15°, and when the vessel is inclined under dynamic conditions (rolling...

  18. Does perceived steepness deter stair climbing when an alternative is available?

    PubMed

    Eves, Frank F; Thorpe, Susannah K S; Lewis, Amanda; Taylor-Covill, Guy A H

    2014-06-01

    Perception of hill slant is exaggerated in explicit awareness. Proffitt (Perspectives on Psychological Science 1:110-122, 2006) argued that explicit perception of the slant of a climb allows individuals to plan locomotion in keeping with their available locomotor resources, yet no behavioral evidence supports this contention. Pedestrians in a built environment can often avoid climbing stairs, the man-made equivalent of steep hills, by choosing an adjacent escalator. Stair climbing is avoided more by women, the old, and the overweight than by their comparators. Two studies tested perceived steepness of the stairs as a cue that promotes this avoidance. In the first study, participants estimated the steepness of a staircase in a train station (n = 269). Sex, age, height, and weight were recorded. Women, older individuals, and those who were heavier and shorter reported the staircase as steeper than did their comparison groups. In a follow-up study in a shopping mall, pedestrians were recruited from those who chose the stairs and those who avoided them, with the samples stratified for sex, age, and weight status. Participants (n = 229) estimated the steepness of a life-sized image of the stairs they had just encountered, presented on the wall of a vacant shop in the mall. Pedestrians who avoided stair climbing by choosing the escalator reported the stairs as steeper even when demographic differences were controlled. Perceived steepness may to be a contextual cue that pedestrians use to avoid stair climbing when an alternative is available.

  19. Formation of terrestrial planets in eccentric and inclined giant planet systems

    NASA Astrophysics Data System (ADS)

    Sotiriadis, Sotiris; Libert, Anne-Sophie; Raymond, Sean N.

    2018-06-01

    Aims: Evidence of mutually inclined planetary orbits has been reported for giant planets in recent years. Here we aim to study the impact of eccentric and inclined massive giant planets on the terrestrial planet formation process, and investigate whether it can possibly lead to the formation of inclined terrestrial planets. Methods: We performed 126 simulations of the late-stage planetary accretion in eccentric and inclined giant planet systems. The physical and orbital parameters of the giant planet systems result from n-body simulations of three giant planets in the late stage of the gas disc, under the combined action of Type II migration and planet-planet scattering. Fourteen two- and three-planet configurations were selected, with diversified masses, semi-major axes (resonant configurations or not), eccentricities, and inclinations (including coplanar systems) at the dispersal of the gas disc. We then followed the gravitational interactions of these systems with an inner disc of planetesimals and embryos (nine runs per system), studying in detail the final configurations of the formed terrestrial planets. Results: In addition to the well-known secular and resonant interactions between the giant planets and the outer part of the disc, giant planets on inclined orbits also strongly excite the planetesimals and embryos in the inner part of the disc through the combined action of nodal resonance and the Lidov-Kozai mechanism. This has deep consequences on the formation of terrestrial planets. While coplanar giant systems harbour several terrestrial planets, generally as massive as the Earth and mainly on low-eccentric and low-inclined orbits, terrestrial planets formed in systems with mutually inclined giant planets are usually fewer, less massive (<0.5 M⊕), and with higher eccentricities and inclinations. This work shows that terrestrial planets can form on stable inclined orbits through the classical accretion theory, even in coplanar giant planet systems

  20. Precession of a Spinning Ball Rolling down an Inclined Plane

    ERIC Educational Resources Information Center

    Cross, Rod

    2015-01-01

    A routine problem in an introductory physics course considers a rectangular block at rest on a plane inclined at angle a to the horizontal. In order for the block not to slide down the incline, the coefficient of sliding friction, µ, must be at least tan a. The situation is similar for the case of a ball rolling down an inclined plane. In order…

  1. Asymmetric bursting of Taylor bubble in inclined tubes

    NASA Astrophysics Data System (ADS)

    Rana, Basanta Kumar; Das, Arup Kumar; Das, Prasanta Kumar

    2016-08-01

    In the present study, experiments have been reported to explain the phenomenon of approach and collapse of an asymmetric Taylor bubble at free surface inside an inclined tube. Four different tube inclinations with horizontal (30°, 45°, 60° and 75°) and two different fluids (water and silicon oil) are considered for the experiment. Using high speed imaging, we have investigated the approach, puncture, and subsequent liquid drainage for re-establishment of the free surface. The present study covers all the aspects in the collapse of an asymmetric Taylor bubble through the generation of two films, i.e., a cap film which lies on top of the bubble and an asymmetric annular film along the tube wall. Retraction of the cap film is studied in detail and its velocity has been predicted successfully for different inclinations and fluids. Film drainage formulation considering azimuthal variation is proposed which also describes the experimental observations well. In addition, extrapolation of drainage velocity pattern beyond the experimental observation limit provides insight into the total collapse time of bubbles at different inclinations and fluids.

  2. Mission analysis data for inclined geosynchronous orbits, part 1

    NASA Technical Reports Server (NTRS)

    Graf, O. F., Jr.; Wang, K. C.

    1980-01-01

    Data needed for preliminary design of inclined geosynchronous missions are provided. The inertial and Earth fixed coordinate systems are described, as well as orbit parameters and elements. The complete family of geosynchronous orbits is discussed. It is shown that circular inclined geosynchronous orbits comprise only one set in this family. The major orbit perturbation and their separate effects on the geosynchronous orbit are discussed. Detailed information on the orbit perturbation of inclined circular geosynchronous orbits is given, with emphasis on time history data of certain orbital elements. Orbit maintenance delta velocity (V) requirements to counteract the major orbit perturbations are determined in order to provide order of magnitude estimates and to show the effects of orbit inclination on delta V. Some of the considerations in mission design for a multisatellite system, such as a halo orbit constellation, are discussed.

  3. Interrill soil erosion processes on steep slopes

    USDA-ARS?s Scientific Manuscript database

    To date interrill erosion processes and regimes are not fully understood. The objectives are to 1) identify the erosion regimes and limiting processes between detachment and transport on steep slopes, 2) characterize the interactive effects between rainfall intensity and flow depth on sediment trans...

  4. Characterization of bedload transport in steep-slope streams

    NASA Astrophysics Data System (ADS)

    Mettra, F.; Heyman, J.; Ancey, C.

    2012-04-01

    Large fluctuations in the sediment transport rate are observed in rivers, particularly in mountain streams at intermediate flow rates. These fluctuations seem to be, to some degree, correlated to the formation and migration of bedforms. Today the central question is still how to understand and account for the strong bedload variability. Recent experimental studies shed new light on the processes. The objective of this presentation is to show some of our results. To understand the behavior and the origins of sediment transport rate fluctuations in the case of steep-slope streams, we conducted laboratory experiments in a 3-m long, 8-cm wide, transparent flume. The experimental parameters are the flume inclination, flow rate and sediment input rate. Well-sorted natural gravel (8.5 mm mean diameter) were used. We focused on two-dimensional flows and incipient bedforms (i.e., for flow rates just above the threshold of incipient motion). A technique based on accelerometers was developed to record every particle passing through the flume outlet (more specifically, we measured the vibrations of a metallic slab, which was impacted by the falling particles). Analysis of bedload transport rates was then possible on all time scales. Moreover, the bed and flow were monitored using 2 cameras. We computed bed elevation, water depth and erosion/deposition at high temporal and spatial rates from camera shots (one image per second during several hours or days). In our laboratory experiments, the fluctuations of the sediment rate were large even for steady flow conditions involving well-sorted particles. Time series exhibited fluctuations at all scales and displayed long range correlations with a Hurst exponent close to 0.8. The results were compared for different input solid discharges. The main bedforms observed in our flume were anti-dunes migrating upstream. Bedform formation and propagation showed intermittency with pulses (high activity) followed by long sequences of low

  5. Hydraulic properties for interrill erosion on steep slopes using a portable rainfall simulator

    NASA Astrophysics Data System (ADS)

    Shin, Seung Sook; Hwang, Yoonhee; Deog Park, Sang; Yun, Minu; Park, Sangyeon

    2017-04-01

    The hydraulic parameters for sheet flow on steep slopes have been not frequently measured because the shallow flow depth and slow flow velocity are difficult to measure. In this study hydraulic values of sheet flow were analyzed to evaluate interrill erosion on steep slopes. A portable rainfall simulator was used to conduct interrill erosion test. The kinetic energy of rainfall simulator was obtained by disdrometer being capable of measuring the drop size distribution and velocity of falling raindrops. The sheet flow velocity was determined by the taken time for a dye transferring fixed points using video images. Surface runoff discharge and sediment yield increased with increase of rainfall intensity and kinetic energy and slope steepness. Especially sediment yield was strongly correlated with sheet flow velocity. The maximum velocity of sheet flow was 2.3cm/s under rainfall intensity of 126.8mm/h and slope steepness of 53.2%. The sheet flow was laminar and subcritical flow as the flow Reynolds number and Froude number are respectively the ranges of 10 22 and 0.05 0.25. The roughness coefficient (Manning's n) for sheet flow on steep slopes was relatively large compared to them on the gentle slope. Keywords: Sheet flow velocity; Rainfall simulator; Interrill erosion; Steep slope This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIP) (No. 2015R1C1A2A01055469).

  6. 30 CFR 785.15 - Steep slope mining.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Steep slope mining. 785.15 Section 785.15 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION SYSTEMS UNDER REGULATORY PROGRAMS...

  7. 30 CFR 785.15 - Steep slope mining.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Steep slope mining. 785.15 Section 785.15 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION SYSTEMS UNDER REGULATORY PROGRAMS...

  8. Analysis of inclined showers measured with LOPES

    NASA Astrophysics Data System (ADS)

    Lopes Collaboration; Saftoiu, A.; Apel, W. D.; Arteaga, J. C.; Asch, T.; Auffenberg, J.; Badea, F.; Bähren, L.; Bekk, K.; Bertaina, M.; Biermann, P. L.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Brüggemann, M.; Buchholz, P.; Buitink, S.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; di Pierro, F.; Doll, P.; Engel, R.; Falcke, H.; Finger, M.; Fuhrmann, D.; Gemmeke, H.; Ghia, P. L.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Horneffer, A.; Huege, T.; Isar, P. G.; Kampert, K.-H.; Kang, D.; Kickelbick, D.; Kolotaev, Y.; Krömer, O.; Kuijpers, J.; Lafebre, S.; Łuczak, P.; Mathes, H. J.; Mayer, H. J.; Milke, J.; Mitrica, B.; Morello, C.; Navarra, G.; Nehls, S.; Nigl, A.; Oehlschläger, J.; Over, S.; Petcu, M.; Pierog, T.; Rautenberg, J.; Rebel, H.; Roth, M.; Schieler, H.; Schmidt, A.; Schröder, F.; Sima, O.; Singh, K.; Stümpert, M.; Toma, G.; Trinchero, G. C.; Ulrich, H.; Walkowiak, W.; Weindl, A.; Wochele, J.; Wommer, M.; Zabierowski, J.; Zensus, J. A.; LOPES Collaboration

    2009-06-01

    In the present study, we analyze the radio signal from inclined air showers recorded by LOPES-30 in coincidence with KASCADE-Grande. LOPES-30 consists of 30 East-West oriented digital antennas, which are amplitude calibrated by an external source. Radio emission from air showers is considered a geomagnetic effect. Inclined events provide a larger range of values for geomagnetic angle (angle between shower axis and geomagnetic field direction) than vertical showers and thus more information on the emission processes can be gathered. In order to have the geometry of the air shower we use the reconstruction provided by the KASCADE-Grande particle detectors array. Analyzing events observed by both LOPES and the extended part of the KASCADE array, Grande, gives the possibility to test in particular the capability and efficiency of radio detection of more distant events. The results are compared with a previous analysis of inclined events recorded by the initial 10 antenna set-up, LOPES-10, in coincidence with the Grande array.

  9. Families Among High-Inclination Asteroids

    NASA Astrophysics Data System (ADS)

    Novakovic, B.; Cellino, A.; Knezevic, Z.

    2012-05-01

    We review briefly the most important results of the classification of high-inclination asteroids into families performed by Novakovic et al.(Icarus, 2011,216) and present some new results about a very interesting (5438) Lorre cluster.

  10. The inclination of the dwarf irregular galaxy Holmberg II

    NASA Astrophysics Data System (ADS)

    Sánchez-Salcedo, F. J.; Hidalgo-Gámez, A. M.; Martínez-García, E. E.

    2014-10-01

    We provide constraints on the inclination angle of the H I disk of the dwarf irregular galaxy Holmberg II (Ho II) from a stability analysis of the outer gaseous disk. We point out that a mean inclination angle of 27(°) and thus a flat circular velocity of ≈ 60 km s(-1) , is required to have a level of gravitational stability similar to that found in other galaxies. Adopting this inclination angle, we find that Ho II lies on the right location in the baryonic Tully-Fisher relation. Moreover, for this inclination, its rotation curve is consistent with MOND. However, the corresponding analysis of the stability under MOND indicates that this galaxy could be problematic for MOND because its outer parts are marginally unstable in this gravity theory. We urge MOND simulators to study numerically the non-linear stability of gas-rich dwarf galaxies since this may provide a new key test for MOND.

  11. Instabilities of mixed convection flows adjacent to inclined plates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abu-Mulaweh, H.I.; Armaly, B.F.; Chen, T.S.

    1987-11-01

    The measurements by Sparrow and Husar and by Lloyd and Sparrow established that the onset of instability (transition from laminar to turbulent) in free convection boundary layer flow above an inclined heated plate is predominated by the wave mode of instability for inclination angles less than 14 deg, as measured from the vertical, and by the vortex mode of instability for angles greater than 17 deg. The transition Grashof number deceased as the angle of inclination increased. The predictions of Chen and Tzuoo for this flow provide trends that are similar to measured values, but the predicted critical Grashof numbersmore » deviate significantly (three orders of magnitude smaller) from measured values. The instability of mixed convection boundary layer flow adjacent to inclined heated plates have also been treated numerically by Chen and Mucoglu for wave instability and by Chen et al. for vortex instability. Comparisons with measurements of instability in mixed convection flow adjacent to inclined plates were not available in the literature. It is anticipated, however, that these predictions will underestimate the actual onset of instability, as in the free convection case. The lack of measurements in this flow domain for this geometry has motivated the present study. The onset of instability in mixed convection flow adjacent to an isothermally heated inclined plate was determined in this study through flow visualization. The buoyancy-assisting and buoyancy-opposing flow cases were examined for the flow both above and below the heated plate. The critical Grashof-Reynolds number relationships for the onset of instability in this flow domain are reported in this paper.« less

  12. Delineation of preventative landslide buffers along steep streamside slopes in northern California

    Treesearch

    Jason S. Woodward; David W. Lamphear; Matthew R. House

    2012-01-01

    Green Diamond Resource Co (GDRCo) applies tree retention buffers to steep slopes along fish bearing (Class I) and non-fish bearing (Class II) streams that are in addition to the standard riparian management zones associated with timber harvest plans. These Steep Streamside Slope (SSS) buffers were designed to reduce the amount of sediment delivering to watercourses as...

  13. Steep cut slope composting : field trials and evaluation.

    DOT National Transportation Integrated Search

    2011-04-01

    Three different depths of compost and five compost retention techniques were tested to determine : their efficacy and cost effectiveness for increasing the establishment of native grass seedings and decreasing : erosion on steep roadside cut slopes i...

  14. Prolonged lateral steep position impairs respiratory mechanics during continuous lateral rotation therapy in respiratory failure.

    PubMed

    Schellongowski, Peter; Losert, Heidrun; Locker, Gottfried J; Laczika, Klaus; Frass, Michael; Holzinger, Ulrike; Bojic, Andja; Staudinger, Thomas

    2007-04-01

    To establish whether prolonged lateral steep position during continuous rotation therapy leads to improvement on pulmonary gas exchange, respiratory mechanics and hemodynamics. Prospective observational study. Intensive care unit of a university hospital. Twelve consecutive patients suffering from acute lung injury or adult respiratory distress syndrome undergoing continuous rotation therapy. Blood gas analysis, static lung compliance, blood pressure, cardiac index and pulmonary shunt fraction were measured in supine as well as in left and right lateral steep position at 62 degrees during continuous rotation therapy (phase I). Rotation was then stopped for 30 min with the patients in supine position, left and right lateral steep position, and the same measurements were performed every 10 min (phase II). Phase I and II revealed no significant changes in PaO(2)/FiO(2) ratio, mean arterial blood pressure, pulmonary shunt fraction, or cardiac index. Significantly lower static compliance was observed in lateral steep position than in supine position (p<0.001). Concomitantly, PaCO(2) was significantly lower in supine position than in left and right lateral steep position (p<0.01). Lateral steep positioning impairs the compliance of the respiratory system. Prolonged lateral steep position does not lead to benefits with respect to oxygenation or hemodynamics. Individual response to the different positions is unpredictable. The pauses in "extreme" positions should be as short as possible.

  15. 4. VIEW SOUTHWEST, LOWER STATION FRONT, INCLINE PLANE TRACK, UPPER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VIEW SOUTHWEST, LOWER STATION FRONT, INCLINE PLANE TRACK, UPPER STATION. - Monongahela Incline Plane, Connecting North side of Grandview Avenue at Wyoming Street with West Carson Street near Smithfield Street, Pittsburgh, Allegheny County, PA

  16. 5. VIEW SOUTHWEST, LOWER STATION FRONT, INCLINE PLANE TRACK, UPPER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VIEW SOUTHWEST, LOWER STATION FRONT, INCLINE PLANE TRACK, UPPER STATION. - Monongahela Incline Plane, Connecting North side of Grandview Avenue at Wyoming Street with West Carson Street near Smithfield Street, Pittsburgh, Allegheny County, PA

  17. Stem gravitropism and tension wood formation in Acacia mangium seedlings inclined at various angles.

    PubMed

    Nugroho, Widyanto Dwi; Nakaba, Satoshi; Yamagishi, Yusuke; Begum, Shahanara; Rahman, Md Hasnat; Kudo, Kayo; Marsoem, Sri Nugroho; Funada, Ryo

    2018-05-03

    In response to a gravitational stimulus, angiosperm trees generally form tension wood on the upper sides of leaning stems in order to reorientate the stems in the vertical direction. It is unclear whether the angle of inclination from the vertical affects tension wood formation. This study was designed to investigate negative gravitropism, tension wood formation and growth eccentricity in Acacia mangium seedlings inclined at different angles. Uniform seedlings of A. mangium were artificially inclined at 30°, 45°, 60° and 90° from the vertical and harvested, with non-inclined controls, 3 months later. We analysed the effects of the angle of inclination on the stem recovery angle, the anatomical features of tension wood and radial growth. Smaller inclination angles were associated with earlier stem recovery while stems subjected to greater inclination returned to the vertical direction after a longer delay. However, in terms of the speed of negative gravitopism towards the vertical, stems subjected to greater inclination moved more rapidly toward the vertical. There was no significant difference in terms of growth eccentricity among seedlings inclined at different angles. The 30°-inclined seedlings formed the narrowest region of tension wood but there were no significant differences among seedlings inclined at 45°, 60° and 90°. The 90°-inclined seedlings formed thicker gelatinous layers than those in 30°-, 45°- and 60°-inclined seedlings. Our results suggest that the angle of inclination of the stem influences negative gravitropism, the width of the tension wood region and the thickness of gelatinous layers. Larger amounts of gelatinous fibres and thicker gelatinous layers might generate the higher tensile stress required for the higher speed of stem-recovery movement in A. mangium seedlings.

  18. Flow characteristics of an inclined air-curtain range hood in a draft

    PubMed Central

    CHEN, Jia-Kun

    2015-01-01

    The inclined air-curtain technology was applied to build an inclined air-curtain range hood. A draft generator was applied to affect the inclined air-curtain range hood in three directions: lateral (θ=0°), oblique (θ=45°), and front (θ=90°). The three suction flow rates provided by the inclined air-curtain range hood were 10.1, 10.9, and 12.6 m3/min. The laser-assisted flow visualization technique and the tracer-gas test method were used to investigate the performance of the range hood under the influence of a draft. The results show that the inclined air-curtain range hood has a strong ability to resist the negative effect of a front draft until the draft velocity is greater than 0.5 m/s. The oblique draft affected the containment ability of the inclined air-curtain range hood when the draft velocity was larger than 0.3 m/s. When the lateral draft effect was applied, the capture efficiency of the inclined air-curtain range hood decreased quickly in the draft velocity from 0.2 m/s to 0.3 m/s. However, the capture efficiencies of the inclined air-curtain range hood under the influence of the front draft were higher than those under the influence of the oblique draft from 0.3 m/s to 0.5 m/s. PMID:25810445

  19. Flow characteristics of an inclined air-curtain range hood in a draft.

    PubMed

    Chen, Jia-Kun

    2015-01-01

    The inclined air-curtain technology was applied to build an inclined air-curtain range hood. A draft generator was applied to affect the inclined air-curtain range hood in three directions: lateral (θ=0°), oblique (θ=45°), and front (θ=90°). The three suction flow rates provided by the inclined air-curtain range hood were 10.1, 10.9, and 12.6 m(3)/min. The laser-assisted flow visualization technique and the tracer-gas test method were used to investigate the performance of the range hood under the influence of a draft. The results show that the inclined air-curtain range hood has a strong ability to resist the negative effect of a front draft until the draft velocity is greater than 0.5 m/s. The oblique draft affected the containment ability of the inclined air-curtain range hood when the draft velocity was larger than 0.3 m/s. When the lateral draft effect was applied, the capture efficiency of the inclined air-curtain range hood decreased quickly in the draft velocity from 0.2 m/s to 0.3 m/s. However, the capture efficiencies of the inclined air-curtain range hood under the influence of the front draft were higher than those under the influence of the oblique draft from 0.3 m/s to 0.5 m/s.

  20. 1. VIEW WEST SOUTHWEST, UPPER STATION. INCLINE PLANE TRACK AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW WEST SOUTHWEST, UPPER STATION. INCLINE PLANE TRACK AND LOWER STATION. - Monongahela Incline Plane, Connecting North side of Grandview Avenue at Wyoming Street with West Carson Street near Smithfield Street, Pittsburgh, Allegheny County, PA

  1. 4. INTERIOR OF THE HEADHOUSE FOR THE INCLINE RAILWAY SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. INTERIOR OF THE HEADHOUSE FOR THE INCLINE RAILWAY SHOWING CABLE AND DRUMS FOR LILY HOIST, 1989. - Skagit Power Development, Incline Railway, On Skagit River, 6.1 miles upstream from Newhalem, Newhalem, Whatcom County, WA

  2. Moments of inclination error distribution computer program

    NASA Technical Reports Server (NTRS)

    Myler, T. R.

    1981-01-01

    A FORTRAN coded computer program is described which calculates orbital inclination error statistics using a closed-form solution. This solution uses a data base of trajectory errors from actual flights to predict the orbital inclination error statistics. The Scott flight history data base consists of orbit insertion errors in the trajectory parameters - altitude, velocity, flight path angle, flight azimuth, latitude and longitude. The methods used to generate the error statistics are of general interest since they have other applications. Program theory, user instructions, output definitions, subroutine descriptions and detailed FORTRAN coding information are included.

  3. Optimizing snake locomotion on an inclined plane

    NASA Astrophysics Data System (ADS)

    Wang, Xiaolin; Osborne, Matthew T.; Alben, Silas

    2014-01-01

    We develop a model to study the locomotion of snakes on inclined planes. We determine numerically which snake motions are optimal for two retrograde traveling-wave body shapes, triangular and sinusoidal waves, across a wide range of frictional parameters and incline angles. In the regime of large transverse friction coefficients, we find power-law scalings for the optimal wave amplitudes and corresponding costs of locomotion. We give an asymptotic analysis to show that the optimal snake motions are traveling waves with amplitudes given by the same scaling laws found in the numerics.

  4. 6. VIEW WEST, PERSPECTIVE UP INCLINED PLANE FROM MIDSLOPE VICINITY, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. VIEW WEST, PERSPECTIVE UP INCLINED PLANE FROM MID-SLOPE VICINITY, CUT CONFIGURATION - Laurel Hill Quarry, Incline Plane, Both sides of State Route 56, 2.4 miles East of State Route 711, Seward, Westmoreland County, PA

  5. 10. LOWER STATION, FIRST FLOOR, INCLINE PLANE TRCK LOOKING SOUTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. LOWER STATION, FIRST FLOOR, INCLINE PLANE TRCK LOOKING SOUTH SOUTHEAST, UPPER STATION. - Monongahela Incline Plane, Connecting North side of Grandview Avenue at Wyoming Street with West Carson Street near Smithfield Street, Pittsburgh, Allegheny County, PA

  6. 5. VIEW WEST, PERSPECTIVE UP INCLINED PLANE FROM TOP OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VIEW WEST, PERSPECTIVE UP INCLINED PLANE FROM TOP OF ABUTMENT, FILL CONFIGURATION - Laurel Hill Quarry, Incline Plane, Both sides of State Route 56, 2.4 miles East of State Route 711, Seward, Westmoreland County, PA

  7. Why Is It Harder to Run on an Inclined Exercise Treadmill?

    ERIC Educational Resources Information Center

    Nave, Carla M. A. P. F.; Amoreira, Luis J. M.

    2014-01-01

    It is a known fact that it takes a greater effort to run on an exercise treadmill when it is inclined with positive slope than when it is in a horizontal position. The reason seems simple: walking on an inclined treadmill is somehow equivalent to walking up a hill with the same inclination; when we walk up a hill, our own weight does negative work…

  8. Strength Calculation of Inclined Sections of Reinforced Concrete Elements under Transverse Bending

    NASA Astrophysics Data System (ADS)

    Filatov, V. B.

    2017-11-01

    The authors propose a design model to determine the strength of inclined sections of bent reinforced concrete elements without shear reinforcement for the action of transverse force taking into account the aggregate interlock forces in the inclined crack. The calculated dependences to find out the components of forces acting in an inclined section are presented. The calculated dependences are obtained from the consideration of equilibrium conditions of the block over the inclined crack. A comparative analysis of the experimental values of the failure loads of the inclined section and the theoretical values obtained for the proposed dependencies and normative calculation methods is performed. It is shown that the proposed design model makes it possible to take into account the effect the longitudinal reinforcement percentage has on the inclined section strength, the element cross section height without the introduction of empirical coefficients which contributes to an increase in the structural safety of design solutions including the safety of high-strength concrete elements.

  9. 19. UPPER STATION, FIRST FLOOR, OPERATOR'S CABIN, DOORS TO INCLINE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. UPPER STATION, FIRST FLOOR, OPERATOR'S CABIN, DOORS TO INCLINE PLANE CARS, LOOKING WEST. - Monongahela Incline Plane, Connecting North side of Grandview Avenue at Wyoming Street with West Carson Street near Smithfield Street, Pittsburgh, Allegheny County, PA

  10. Drop impact on inclined superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Choi, Wonjae; Leclear, Sani; Leclear, Johnathon; Abhijeet, .; Park, Kyoo-Chul

    We report an empirical study and dimensional analysis on the impact patterns of water drops on inclined superhydrophobic surfaces. While the classic Weber number determines the spreading and recoiling dynamics of a water drop on a horizontal / smooth surface, for a superhydrophobic surface, the dynamics depends on two distinct Weber numbers, each calculated using the length scale of the drop or of the pores on the surface. Impact on an inclined superhydrophobic surface is even more complicated, as the velocity that determines the Weber number is not necessarily the absolute speed of the drop but the velocity components normal and tangential to the surface. We define six different Weber numbers, using three different velocities (absolute, normal and tangential velocities) and two different length scales (size of the drop and of the texture). We investigate the impact patterns on inclined superhydrophobic surfaces with three different types of surface texture: (i) posts, (ii) ridges aligned with and (iii) ridges perpendicular to the impact direction. Results suggest that all six Weber numbers matter, but affect different parts of the impact dynamics, ranging from the Cassie-Wenzel transition, maximum spreading, to anisotropic deformation. We acknowledge financial support from the Office of Naval Research (ONR) through Contract 3002453812.

  11. 8. LOWER STATION, FIRST FLOOR, EAST SIDE ACCESS TO INCLINE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. LOWER STATION, FIRST FLOOR, EAST SIDE ACCESS TO INCLINE PLANE CARS, LOOKING NORTH NORTHEAST. - Monongahela Incline Plane, Connecting North side of Grandview Avenue at Wyoming Street with West Carson Street near Smithfield Street, Pittsburgh, Allegheny County, PA

  12. Instability timescale for the inclination instability in the solar system

    NASA Astrophysics Data System (ADS)

    Zderic, Alexander; Madigan, Ann-Marie; Fleisig, Jacob

    2018-04-01

    The gravitational influence of small bodies is often neglected in the study of solar system dynamics. However, this is not always an appropriate assumption. For example, mutual secular torques between low mass particles on eccentric orbits can result in a self-gravity instability (`inclination instability'; Madigan & McCourt 2016). During the instability, inclinations increase exponentially, eccentricities decrease (detachment), and orbits cluster in argument of perihelion. In the solar system, the orbits of the most distant objects show all three of these characteristics (high inclination: Volk & Malhotra (2017), detachment: Delsanti & Jewitt (2006), and argument of perihelion clustering: Trujillo & Sheppard (2014)). The inclination instability is a natural explanation for these phenomena.Unfortunately, full N-body simulations of the solar system are unfeasible (N ≈ O(1012)), and the behavior of the instability depends on N, prohibiting the direct application of lower N simulations. Here we present the instability timescale's functional dependence on N, allowing us to extrapolate our simulation results to that appropriate for the solar system. We show that ~5 MEarth of small icy bodies in the Sedna region is sufficient for the inclination instability to occur in the outer solar system.

  13. Influence of occlusal plane inclination and mandibular deviation on esthetics

    PubMed Central

    Corte, Cristiane Cherobini Dalla; da Silveira, Bruno Lopes; Marquezan, Mariana

    2015-01-01

    Objective: The aim of this study was to assess the degree of perception of occlusal plane inclination and mandibular deviation in facial esthetics, assessed by laypeople, dentists and orthodontists. Methods: A woman with 5.88° of inclination and 5.54 mm of mandibular deviation was selected and, based on her original photograph, four new images were created correcting the deviations and creating more symmetric faces and smiles. Examiners assessed the images by means of a questionnaire. Their opinions were compared by qualitative and quantitative analyses. Results: A total of 45 laypeople, 27 dentists and 31 orthodontists filled out the questionnaires. All groups were able to perceive the asymmetry; however, orthodontists were more sensitive, identifying asymmetries as from 4.32° of occlusal plane inclination and 4.155 mm of mandibular deviation (p< 0.05). The other categories of evaluators identified asymmetries and assigned significantly lower grades, starting from 5.88° of occlusal plane inclination and 5.54 mm of mandibular deviation (p< 0.05). Conclusion: Occlusal plane inclination and mandibular deviation were perceived by all groups, but orthodontists presented higher perception of deviations. PMID:26560821

  14. Stem phototropism of trees: a possible significant factor in determining stem inclination on forest slopes.

    PubMed

    Matsuzaki, Jun; Masumori, Masaya; Tange, Takeshi

    2006-09-01

    The main stems of trees on forest slopes incline down the slope to various extents that are characteristic of the species. The inclination has been explained as an active response to a horizontally asymmetrical light environment, but the contributing physiological mechanisms are unknown. The present study tested the hypothesis that stem phototropism, gravitropism, or a combination of the two determines the inclination of tree stems on forest slopes. Cryptomeria japonica, Pinus densiflora, Quercus myrsinaefolia and Q. serrata were studied. Measurements were made of stem inclination of mature trees on forest slopes in uniform plantations of each species, and changes in stem inclination of potted seedlings in response to illumination treatments (unilateral or overhead) and inclination treatments (artificially inclined or erect). Indices of phototropic and gravitropic responsiveness were evaluated for each species, calculated from the change in stem inclination in response to artificial inclination with unilateral or overhead illumination. Stem inclination on forest slopes varied significantly among species: Q. serrata inclined most in the down-slope direction, C. japonica inclined the least, and P. densiflora and Q. myrsinaefolia were intermediate. The change in stem inclination of seedlings in each treatment varied significantly among species. One-year-old stems of Q. serrata and 2-year-old stems of Q. myrsinaefolia bent toward the light source. Interspecific variation in the change in stem inclination in response to the unilateral illumination or that in the index of phototropic responsiveness was strongly correlated with the variation in stem inclination on forest slopes. The orientation of woody stems that have finished elongation can be actively controlled by phototropism. Interspecific variation in phototropic responsiveness of trees is a possible significant determinant of interspecific variation in stem inclination on forest slopes.

  15. Stem Phototropism of Trees: A Possible Significant Factor in Determining Stem Inclination on Forest Slopes

    PubMed Central

    MATSUZAKI, JUN; MASUMORI, MASAYA; TANGE, TAKESHI

    2006-01-01

    • Background and Aims The main stems of trees on forest slopes incline down the slope to various extents that are characteristic of the species. The inclination has been explained as an active response to a horizontally asymmetrical light environment, but the contributing physiological mechanisms are unknown. The present study tested the hypothesis that stem phototropism, gravitropism, or a combination of the two determines the inclination of tree stems on forest slopes. • Methods Cryptomeria japonica, Pinus densiflora, Quercus myrsinaefolia and Q. serrata were studied. Measurements were made of stem inclination of mature trees on forest slopes in uniform plantations of each species, and changes in stem inclination of potted seedlings in response to illumination treatments (unilateral or overhead) and inclination treatments (artificially inclined or erect). Indices of phototropic and gravitropic responsiveness were evaluated for each species, calculated from the change in stem inclination in response to artificial inclination with unilateral or overhead illumination. • Key Results Stem inclination on forest slopes varied significantly among species: Q. serrata inclined most in the down-slope direction, C. japonica inclined the least, and P. densiflora and Q. myrsinaefolia were intermediate. The change in stem inclination of seedlings in each treatment varied significantly among species. One-year-old stems of Q. serrata and 2-year-old stems of Q. myrsinaefolia bent toward the light source. Interspecific variation in the change in stem inclination in response to the unilateral illumination or that in the index of phototropic responsiveness was strongly correlated with the variation in stem inclination on forest slopes. • Conclusions The orientation of woody stems that have finished elongation can be actively controlled by phototropism. Interspecific variation in phototropic responsiveness of trees is a possible significant determinant of interspecific

  16. A Water Droplet Pinning and Heat Transfer Characteristics on an Inclined Hydrophobic Surface.

    PubMed

    Al-Sharafi, Abdullah; Yilbas, Bekir Sami; Ali, Haider; AlAqeeli, N

    2018-02-15

    A water droplet pinning on inclined hydrophobic surface is considered and the droplet heat transfer characteristics are examined. Solution crystallization of polycarbonate is carried out to create hydrophobic characteristics on the surface. The pinning state of the water droplet on the extreme inclined hydrophobic surface (0° ≤ δ ≤ 180°, δ being the inclination angle) is assessed. Heat transfer from inclined hydrophobic surface to droplet is simulated for various droplet volumes and inclination angles in line with the experimental conditions. The findings revealed that the hydrophobic surface give rise to large amount of air being trapped within texture, which generates Magdeburg like forces between the droplet meniscus and the textured surface while contributing to droplet pinning at extreme inclination angles. Two counter rotating cells are developed for inclination angle in the range of 0° < δ < 20° and 135° < δ < 180°; however, a single circulation cell is formed inside the droplet for inclination angle of 25° ≤ δ ≤ 135°. The Nusselt number remains high for the range of inclination angle of 45° ≤ δ ≤ 135°. Convection and conduction heat transfer enhances when a single and large circulation cell is formed inside the droplet.

  17. Efficient light trapping in silicon inclined nanohole arrays for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Deng, Can; Tan, Xinyu; Jiang, Lihua; Tu, Yiteng; Ye, Mao; Yi, Yasha

    2018-01-01

    Structural design with high light absorption is the key challenge for thin film solar cells because of its poor absorption. In this paper, the light-trapping performance of silicon inclined nanohole arrays is systematically studied. The finite difference time domain method is used to calculate the optical absorption of different inclination angles in different periods and diameters. The results indicate that the inclined nanoholes with inclination angles between 5° and 45° demonstrate greater light-trapping ability than their counterparts of the vertical nanoholes, and they also show that by choosing the optimal parameters for the inclined nanoholes, a 31.2 mA/cm2 short circuit photocurrent density could be achieved, which is 10.25% higher than the best vertical nanohole system and 105.26% higher than bare silicon with a thickness of 2330 nm. The design principle proposed in this work gives a guideline for choosing reasonable parameters in the application of solar cells.

  18. 3. VIEW NORTHWEST, PERSPECTIVE OF ABUTMENT AND INCLINED PLANE ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VIEW NORTHWEST, PERSPECTIVE OF ABUTMENT AND INCLINED PLANE ON WEST SIDE OF PA ROUTE 56 - Laurel Hill Quarry, Incline Plane, Both sides of State Route 56, 2.4 miles East of State Route 711, Seward, Westmoreland County, PA

  19. 2. VIEW SOUTH, PERSPECTIVE OF ABUTMENT AND INCLINED PLANE ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VIEW SOUTH, PERSPECTIVE OF ABUTMENT AND INCLINED PLANE ON WEST SIDE OF PA ROUTE 56 - Laurel Hill Quarry, Incline Plane, Both sides of State Route 56, 2.4 miles East of State Route 711, Seward, Westmoreland County, PA

  20. Granular avalanches down inclined and vibrated planes

    NASA Astrophysics Data System (ADS)

    Gaudel, Naïma; Kiesgen de Richter, Sébastien; Louvet, Nicolas; Jenny, Mathieu; Skali-Lami, Salaheddine

    2016-09-01

    In this article, we study granular avalanches when external mechanical vibrations are applied. We identify conditions of flow arrest and compare with the ones classically observed for nonvibrating granular flows down inclines [Phys. Fluids 11, 542 (1999), 10.1063/1.869928]. We propose an empirical law to describe the thickness of the deposits with the inclination angle and the vibration intensity. The link between the surface velocity and the depth of the flow highlights a competition between gravity and vibrations induced flows. We identify two distinct regimes: (a) gravity-driven flows at large angles where vibrations do not modify dynamical properties but the deposits (scaling laws in this regime are in agreement with the literature for nonvibrating granular flows) and (b) vibrations-driven flows at small angles where no flow is possible without applied vibrations (in this last regime, the flow behavior can be properly described by a vibration induced activated process). We show, in this study, that granular flows down inclined planes can be finely tuned by external mechanical vibrations.

  1. Taking advantage of inclination variation in resonant remote-sensing satellite orbits

    NASA Astrophysics Data System (ADS)

    Gopinath, N. S.; Ravindrababu, T.; Rao, S. V.; Daniel, D. A.; Goel, P. S.

    2004-08-01

    The inclination of remote-sensing satellites, which are generally placed in sun-synchronous orbits, varies as a function of the nominal equatorial crossing local mean solar time selected for a given mission. The Indian Remote-Sensing satellites will have an inclination reduction of about 0.034° per year and for most of the satellites, the local time chosen was around 10:30 hours at descending node. In practice, the initial inclination is biased appropriately so that the expensive out-of-plane maneuvers could be taken up after few years of mission operations, depending on the deviations permitted in the local time for a given mission. However, the scenario differs when the mission objectives require an almost exact repeat orbit of 14 or 15 per day. In such a situation, the satellite orbit, which passes through a 14th or 15th order resonance, undergoes a nearly secular increase in orbit inclination. This paper presents a detailed analysis carried out for such an orbit, based on Cowell's approach. Long-term predictions have been carried out by considering all major forces that perturbs the satellite orbit. Observed behavior of orbit, based on the daily definitive orbit determination is also presented. The variation in inclination and the cause is clearly brought out. Further, it is demonstrated that the selection of longitude for nominal ground track pattern has an impact on the inclination variation. A proposal is made to take advantage of such expected inclination variation so that initial inclination bias can be chosen appropriately. Ground track longitude can be chosen to take advantage, subject to the mission coverage requirements. The paper contains the results of an exhaustive analysis of the actually observed orbit resonance. It is felt that the work has both theoretical and operational importance for remote-sensing missions.

  2. 7. VIEW WEST, PERSPECTIVE VIEW OF TOP OF INCLINED PLANE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. VIEW WEST, PERSPECTIVE VIEW OF TOP OF INCLINED PLANE AND EAST FACE OF CUT STONE TOWER - Laurel Hill Quarry, Incline Plane, Both sides of State Route 56, 2.4 miles East of State Route 711, Seward, Westmoreland County, PA

  3. 3. Inclined Plane 10, 1970. Track bed at left. View ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Inclined Plane 10, 1970. Track bed at left. View some what similar to that of NJ-30-2. Stone track bed is visible under cable system of NJ-30-2. - Morris Canal, Inclined Plane 10 West, Phillipsburg, Warren County, NJ

  4. Determining inclinations of active galactic nuclei via their narrow-line region kinematics

    NASA Astrophysics Data System (ADS)

    Fischer, Travis Cody

    Active Galactic Nuclei (AGN) are axisymmetric systems to first order; their observed properties are likely strong functions of inclination with respect to our line of sight. However, except for a few special cases, the specific inclinations of individual AGN are unknown. We have developed a promising technique for determining the inclinations of nearby AGN by mapping the kinematics of their narrow-line regions (NLRs), which are easily resolved with Hubble Space Telescope (HST) [O III] imaging and long-slit spectra from the Space Telescope Imaging Spectrograph (STIS). Our studies indicate that NLR kinematics dominated by radial outflow can be fit with simple biconical outflow models that can be used to determine the inclination of the bicone axis, and hence the obscuring torus, with respect to our line of sight. We present NLR analysis of 53 Seyfert galaxies and resultant inclinations from models of 17 individual AGN with clear signatures of biconical outflow. From these AGN, which we can for the first time assess the effect of inclination on other observable properties in radio-quiet AGN, including the discovery of a distinct correlation between AGN inclination and X-ray column density. INDEX WORDS: AGN, Seyfert galaxies, NLR, Outflows, Kinematics, Bicones, Unified Model Graduation.

  5. The Breakup of Temperature Inversions In Steep Valleys

    NASA Astrophysics Data System (ADS)

    Colette, A.; Street, R.

    The purpose of this research is to model and provide a better understanding of tem- perature inversions breakup in steep valleys. The Advanced Regional Prediction Sys- tem (ARPS), a three-dimensional, compressible, and non-hydrostatic modeling tool developed by the Center for Analysis and Prediction of Storms at the University of Oklahoma was used. Many field studies indicate that the evolution of the convective and inversion layers are strongly dependant on the surrounding topography. In relatively open valleys, the convective boundary layer usually grows from the bottom of the valley while in steeper cases, the upslope morning winds affects the dynamic of the mixing layer resulting in the destruction of the inversion from its bottom and its top (see Whiteman 1980). ARPS allows one to perform accurate simulation of such situations. First, written in terrain following coordinates, it handles steep topographies; then its extensive radi- ation and surface flux packages provide a good treatment of land related processes. Moreover, ARPS accounts for the incidence angle of sunrays, differencing the ex- posed and non-exposed mountain slopes. However, it neglects the topographic shade which can delay the sunrise of a hour or more in steep valleys. A new subroutine described by Colette etal. 2002 is thus used to compute the projected shade on the surrounding topography. Simulations of temperature inversion breakup for various two-dimensional valleys are presented. The time scale of evolution of the mixing layer is in good agreement with field studies and, as expected, the convective boundary layer shows an asymmetry between east and west facing slopes. The different patterns of inversion breakup doc- umented by Whiteman are also reproduced. These simulations of idealized cases give a better understanding of inversion breakup in steep valleys. Our code is now being applied to a real case: the study of a peculiar wind, la Ora del Garda, caused by the interaction between a

  6. Felling and bunching small timber on steep slopes.

    Treesearch

    Rodger A. Arola; Edwin S. Miyata; John A. Sturos; Helmuth M. Steinhilb

    1981-01-01

    Discusses the results of a field test of the unique Menzi Muck machine for felling and bunching small trees on steep slopes. Includes the analysis of a detailed time study to determine the productivity, costs, and economic feasibility of this unusual machine.

  7. Loners, Groupies, and Long-term Eccentricity (and Inclination) Behavior: Insights from Secular Theory

    NASA Astrophysics Data System (ADS)

    Van Laerhoven, Christa L.

    2015-05-01

    Considering the secular dynamics of multi-planet systems provides substantial insight into the interactions between planets in those systems. Secular interactions are those that don't involve knowing where a planet is along its orbit, and they dominate when planets are not involved in mean motion resonances. These interactions exchange angular momentum among the planets, evolving their eccentricities and inclinations. To second order in the planets' eccentricities and inclinations, the eccentricity and inclination perturbations are decoupled. Given the right variable choice, the relevant differential equations are linear and thus the eccentricity and inclination behaviors can be described as a sum of eigenmodes. Since the underlying structure of the secular eigenmodes can be calculated using only the planets' masses and semi-major axes, one can elucidate the eccentricity and inclination behavior of planets in exoplanet systems even without knowing the planets' current eccentricities and inclinations. I have calculated both the eccentricity and inclination secular eigenmodes for the population of known multi-planet systems whose planets have well determined masses and periods. Using this catalog of secular character, I will discuss the prevalence of dynamically grouped planets ('groupies') versus dynamically uncoupled planets ('loners') and how this relates to the exoplanets' long-term eccentricity and inclination behavior. I will also touch on the distribution of the secular eigenfreqiencies.

  8. Inclined, collisional sediment transport

    NASA Astrophysics Data System (ADS)

    Berzi, Diego; Fraccarollo, Luigi

    2013-10-01

    We apply the constitutive relations of kinetic theory of granular gases to the transport of cohesionless sediments driven by a gravitational liquid turbulent stream in steady uniform conditions. The sediment-laden flow forms self-equilibrated mechanisms of resistance at the bed surface, below which the sediments are at rest. This geo-physical process takes place quite often in streams at moderate slope and may be interpreted through tools common to fluid mechanics and particle physics. Taking into account the viscous dissipation of the fluctuation energy of the particles, and using approximate methods of integration of the governing differential equations, permit to obtain a set of simple formulas for predicting how depths and flow rates adjust to the angle of inclination of the bed, without requiring additional tuning parameters besides the particle and fluid properties. The agreement with laboratory experiments performed with either plastic cylinders or gravel in water is remarkable. We also provide quantitative criteria to determine the range of validity of the theory, i.e., the values of the Shields number and the angle of inclination of the bed for which the particle stresses can be mostly ascribed to collisional exchange of momentum.

  9. Simple Model of a Rolling Water-Filled Bottle on an Inclined Ramp

    ERIC Educational Resources Information Center

    Lin, Shihao; Hu, Naiwen; Yao, Tianchen; Chu, Charles; Babb, Simona; Cohen, Jenna; Sangiovanni, Giana; Watt, Summer; Weisman, Danielle; Klep, James; Walecki, Wojciech J.; Walecki, Eve S.; Walecki, Peter S.

    2015-01-01

    We investigate a water-filled bottle rolling down an incline and ask the following question: is a rolling bottle better described by a model ignoring all internal motion where the bottle is approximated by a material point sliding down an incline, or is it better described by a rigid solid cylinder rolling down the incline without skidding? The…

  10. Generalized Hill-stability criteria for hierarchical three-body systems at arbitrary inclinations

    NASA Astrophysics Data System (ADS)

    Grishin, Evgeni; Perets, Hagai B.; Zenati, Yossef; Michaely, Erez

    2017-04-01

    A fundamental aspect of the three-body problem is its stability. Most stability studies have focused on the co-planar three-body problem, deriving analytic criteria for the dynamical stability of such pro/retrograde systems. Numerical studies of inclined systems phenomenologically mapped their stability regions, but neither complement it by theoretical framework, nor provided satisfactory fit for their dependence on mutual inclinations. Here we present a novel approach to study the stability of hierarchical three-body systems at arbitrary inclinations, which accounts not only for the instantaneous stability of such systems, but also for the secular stability and evolution through Lidov-Kozai cycles and evection. We generalize the Hill-stability criteria to arbitrarily inclined triple systems, explain the existence of quasi-stable regimes and characterize the inclination dependence of their stability. We complement the analytic treatment with an extensive numerical study, to test our analytic results. We find excellent correspondence up to high inclinations (˜120°), beyond which the agreement is marginal. At such high inclinations, the stability radius is larger, the ratio between the outer and inner periods becomes comparable and our secular averaging approach is no longer strictly valid. We therefore combine our analytic results with polynomial fits to the numerical results to obtain a generalized stability formula for triple systems at arbitrary inclinations. Besides providing a generalized secular-based physical explanation for the stability of non-co-planar systems, our results have direct implications for any triple systems and, in particular, binary planets and moon/satellite systems; we briefly discuss the latter as a test case for our models.

  11. 40. CONSTRUCTION OF GALLERY NO. 3, SHOWING INCLINED PLANE USED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    40. CONSTRUCTION OF GALLERY NO. 3, SHOWING INCLINED PLANE USED TO TRANSPORT MATERIALS, ALSO SPOIL FROM TUNNEL INTERIOR. POWDER HOUSE AND TOOL SHED VISIBLE TO RIGHT OF BASE INCLINE - Zion-Mount Carmel Highway, Tunnel, Two miles east of Zion Canyon Scenic Drive, Springdale, Washington County, UT

  12. The quality of veterinary in-clinic and reference laboratory biochemical testing.

    PubMed

    Rishniw, Mark; Pion, Paul D; Maher, Tammy

    2012-03-01

    Although evaluation of biochemical analytes in blood is common in veterinary practice, studies assessing the global quality of veterinary in-clinic and reference laboratory testing have not been reported. The aim of this study was to assess the quality of biochemical testing in veterinary laboratories using results obtained from analyses of 3 levels of assayed quality control materials over 5 days. Quality was assessed by comparison of calculated total error with quality requirements, determination of sigma metrics, use of a quality goal index to determine factors contributing to poor performance, and agreement between in-clinic and reference laboratory mean results. The suitability of in-clinic and reference laboratory instruments for statistical quality control was determined using adaptations from the computerized program, EZRules3. Reference laboratories were able to achieve desirable quality requirements more frequently than in-clinic laboratories. Across all 3 materials, > 50% of in-clinic analyzers achieved a sigma metric ≥ 6.0 for measurement of 2 analytes, whereas > 50% of reference laboratory analyzers achieved a sigma metric ≥ 6.0 for measurement of 6 analytes. Expanded uncertainty of measurement and ± total allowable error resulted in the highest mean percentages of analytes demonstrating agreement between in-clinic and reference laboratories. Owing to marked variation in bias and coefficient of variation between analyzers of the same and different types, the percentages of analytes suitable for statistical quality control varied widely. These findings reflect the current state-of-the-art with regard to in-clinic and reference laboratory analyzer performance and provide a baseline for future evaluations of the quality of veterinary laboratory testing. © 2012 American Society for Veterinary Clinical Pathology.

  13. Bidispersive-inclined convection

    PubMed Central

    Mulone, Giuseppe; Straughan, Brian

    2016-01-01

    A model is presented for thermal convection in an inclined layer of porous material when the medium has a bidispersive structure. Thus, there are the usual macropores which are full of a fluid, but there are also a system of micropores full of the same fluid. The model we employ is a modification of the one proposed by Nield & Kuznetsov (2006 Int. J. Heat Mass Transf. 49, 3068–3074. (doi:10.1016/j.ijheatmasstransfer.2006.02.008)), although we consider a single temperature field only. PMID:27616934

  14. Gap formation by inclined massive planets in locally isothermal three-dimensional discs

    NASA Astrophysics Data System (ADS)

    Chametla, Raúl O.; Sánchez-Salcedo, F. J.; Masset, F. S.; Hidalgo-Gámez, A. M.

    2017-07-01

    We study gap formation in gaseous protoplanetary discs by a Jupiter mass planet. The planet's orbit is circular and inclined relative to the mid-plane of the disc. We use the impulse approximation to estimate the gravitational tidal torque between the planet and the disc, and infer the gap profile. For low-mass discs, we provide a criterion for gap opening when the orbital inclination is ≤30°. Using the fargo3d code, we simulate the disc response to an inclined massive planet. The dependence of the depth and width of the gap obtained in the simulations on the inclination of the planet is broadly consistent with the scaling laws derived in the impulse approximation. Although we mainly focus on planets kept on fixed orbits, the formalism permits to infer the temporal evolution of the gap profile in the cases where the inclination of the planet changes with time. This study may be useful to understand the migration of massive planets on inclined orbit, because the strength of the interaction with the disc depends on whether a gap is opened or not.

  15. Flow of Dense Granular Suspensions on an Inclined Plane

    NASA Astrophysics Data System (ADS)

    Bonnoit, C.; Lanuza, J.; Lindner, A.; Clément, E.

    2008-07-01

    We investigate the flow behavior of dense granular suspensions, by the use of an inclined plane. The suspensions are prepared at high packing fractions and consist of spherical non-Brownian particles density matched with the suspending fluid. On the inclined plane, we perform a systematic study of the surface velocity as a function of the layer thickness for various flow rates and tilt angles. We perform measurements on a classical rheometer (parallel-plate rheometer) that is shown to be in good agreement with existing models, up to a volume fraction of 50%. Comparing these results, we show that the flow on an inclined plane can, up to a volume fraction of 50%, indeed be described by a purely viscous model in agreement with the results from classical rheometry.

  16. Acetabular inclination and anteversion in infants using 3D MR imaging.

    PubMed

    Falliner, A; Muhle, C; Brossmann, J

    2002-03-01

    To establish if 3D MR imaging could be used for measurements of acetabular inclination and anteversion in infants specimens. 3D MR data of 3 pelvic preparations of 6-week- to 10-month-old infant specimens was gathered. MR imaging in transaxial and frontal planes was carried out to measure the acetabular inclination and anteversion: a method to determine the MR planes for measurements is described. It was oriented on anatomical landmarks of the pelvis and therefore allowed adjustment of the frontal and transaxial planes, independent of the pelvis position. The mean acetabular inclination angle was 48 degrees, and the mean acetabular anteversion was 23 degrees. Because of the low number of cases the results can only be assessed as a tendency, but MR imaging seems to be suitable for measurements of acetabular inclination and anteversion.

  17. Eccentricities and inclinations of multiplanet systems with external perturbers

    NASA Astrophysics Data System (ADS)

    Pu, Bonan; Lai, Dong

    2018-07-01

    Compact multiplanet systems containing super-Earths or sub-Neptunes, commonly found around solar-type stars, may be surrounded by external giant planet or stellar companions, which can shape the architecture and observability of the inner systems. We present a comprehensive study on the evolution of the inner planetary system subject to the gravitational influence of an eccentric, misaligned outer perturber. Analytic results are derived for the inner planet eccentricities (ei) and mutual inclination (θ12) of the `two-planet + perturber' system, calibrated with numerical secular and N-body integrations, as a function of the perturber mass mp, semimajor axis ap, and inclination angle θp. We find that the dynamics of the inner system is determined by the dimensionless parameter ɛ12, given by the ratio between the differential precession rate driven by the perturber and the mutual precession rate of the inner planets. Loosely packed systems (corresponding to ɛ12 ≫ 1) are more susceptible to eccentricity/inclination excitations by the perturber than tightly packed inner systems (with ɛ12 ≪ 1) (or singletons), although resonance may occur around ɛ12 ˜ 1, leading to large ei and θ12. Dynamical instability may set in for inner planet systems with large excited eccentricities and mutual inclinations. We present a formalism to extend our analytical results to general inner systems with N > 2 planets and apply our results to constrain possible external companions to the Kepler-11 system. Eccentricity and inclination excitation by external companions may help explain the observational trend that systems with fewer transiting planets are dynamically hotter than those with more transiting planets.

  18. Slip Potential for Commonly Used Inclined Grated Metal Walkways

    PubMed Central

    Pollard, Jonisha P.; Heberger, John R.; Dempsey, Patrick G.

    2016-01-01

    Background No specific guidelines or regulations are provided by the Mine Safety and Health Administration for the use of inclined grated metal walkways in mining plants. Mining and other companies may be using walkway materials that do not provide sufficient friction, contributing to slip and fall injuries. Purpose The purpose of this study was to determine if there are significant differences in the required friction for different grated metal walkways during walking in diverse conditions. Methods The normalized coefficients of friction were measured for 12 participants while walking up and down an instrumented walkway with different inclinations (0°, 5°, 10°, 15°, and 20°) and with and without the presence of a contaminant (glycerol). Self-reported slip events were recorded and the required coefficients of friction were calculated considering only the anterior/posterior components of the shear forces. Additionally, the available coefficients of friction for these walkway materials were measured at the 0° orientation using a tribometer, with and without the presence of the contaminant, using a boot heel as well as Neolite as the test feet. Results The number of slips increased when the inclination angle reached 10° and above. Of all materials tested, the diamond weave grating was found to have the best performance at all inclines and when contaminated or dry. A high number of slips occurred for the perforated grating and serrated bar grating at 20° when contaminated. Conclusions Results of this study suggest that the diamond weave grating provides significantly better friction compared to serrated bar and perforated gratings, especially at inclines greater than 10°. PMID:26779388

  19. Thermal convection of liquid metal in a long inclined cylinder

    NASA Astrophysics Data System (ADS)

    Teimurazov, Andrei; Frick, Peter

    2017-11-01

    The turbulent convection of low-Prandtl-number fluids (Pr=0.0083 ) in a long cylindrical cell, heated at one end face and cooled at the other, inclined to the vertical at angle β , 0 ≤β ≤π /2 with step π /20 , is studied numerically by solving the Oberbeck-Boussinesq equations with the large-eddy-simulation approach for small-scale turbulence. The cylinder length is L =5 D , where D is the diameter. The Rayleigh number, determined by the cylinder diameter, is of the order of 5 ×106 . We show that the structure of the flow strongly depends on the inclination angle. A stable large-scale circulation (LSC) slightly disturbed by small-scale turbulence exists in the horizontal cylinder. The deviation from a horizontal position provides strong amplification of both LSC and small-scale turbulence. The energy of turbulent pulsations increases monotonically with decreasing inclination angle β , matching the energy of the LSC at β ≈π /5 . The intensity of the LSC has a wide, almost flat, maximum for an inclined cylinder and slumps approaching the vertical position, in which the LSC vanishes. The dependence of the Nusselt number on the inclination angle has a maximum at β ≈7 π /20 and generally follows the dependence of the intensity of LSC on the inclination. This indicates that the total heat transport is highly determined by LSC. We examine the applicability of idealized thermal boundary conditions (BCs) for modeling a real experiment with liquid sodium flows. Therefore, the simulations are done with two types of temperature BCs: fixed face temperature and fixed heat flux. The intensity of the LSC is slightly higher in the latter case and leads to a corresponding increase of the Nusselt number and enhancement of temperature pulsations.

  20. Relationships between Migration to Urban Settings and Children's Creative Inclinations

    ERIC Educational Resources Information Center

    Shi, Baoguo; Lu, Yongli; Dai, David Yun; Lin, Chongde

    2013-01-01

    In this study, 909 5th- and 6th-grade children were recruited as participants, and questionnaires were used to investigate the relationships between migration to urban settings and children's creative inclinations. The study was broken down to 2 parts. Study 1 compared scores on measures of creative inclinations among migrant, rural, and urban…

  1. The metabolic cost of walking on an incline in the Peacock (Pavo cristatus).

    PubMed

    Wilkinson, Holly; Thavarajah, Nathan; Codd, Jonathan

    2015-01-01

    Altering speed and moving on a gradient can affect an animal's posture and gait, which in turn can change the energetic requirements of terrestrial locomotion. Here, the energetic and kinematic effects of locomoting on an incline were investigated in the Indian peacock, Pavo cristatus. The mass-specific metabolic rate of the Indian peacock was elevated on an incline, but this change was not dependent on the angle ascended and the cost of lifting remained similar between the two inclines (+5 and +7°). Interestingly, the Indian peacock had the highest efficiency when compared to any other previously studied avian biped, despite the presence of a large train. Duty factors were higher for birds moving on an incline, but there was no difference between +5 and +7°. Our results highlight the importance of investigating kinematic responses during energetic studies, as these may enable explanation of what is driving the underlying metabolic differences when moving on inclines. Further investigations are required to elucidate the underlying mechanical processes occurring during incline movement.

  2. Inclination dependence of QPO phase lags in black hole X-ray binaries

    NASA Astrophysics Data System (ADS)

    van den Eijnden, J.; Ingram, A.; Uttley, P.; Motta, S. E.; Belloni, T. M.; Gardenier, D. W.

    2017-01-01

    Quasi-periodic oscillations (QPOs) with frequencies from ˜0.05to30 Hz are a common feature in the X-ray emission of accreting black hole binaries. As the QPOs originate from the innermost accretion flow, they provide the opportunity to probe the behaviour of matter in extreme gravity. In this paper, we present a systematic analysis of the inclination dependence of phase lags associated with both type-B and type-C QPOs in a sample of 15 Galactic black hole binaries. We find that the phase lag at the type-C QPO frequency strongly depends on inclination, both in evolution with the QPO frequency and sign. Although we find that the type-B QPO soft lags are associated with high-inclination sources, the source sample is too small to confirm that this as a significant inclination dependence. These results are consistent with a geometrical origin of type-C QPOs and a different origin for type-B and type-C QPOs. We discuss the possibility that the phase lags originate from a pivoting spectral power law during each QPO cycle, while the inclination dependence arises from differences in dominant relativistic effects. We also search for energy dependences in the type-C QPO frequency. We confirm this effect in the three known sources (GRS 1915+105, H1743-322 and XTE J1550-564) and newly detect it in XTE J1859+226. Lastly, our results indicate that the unknown inclination sources XTE J1859+226 and MAXI J1543-564 are most consistent with a high inclination.

  3. Inactivation of tannins in milled sorghum grain through steeping in dilute NaOH solution.

    PubMed

    Adetunji, Adeoluwa I; Duodu, Kwaku G; Taylor, John R N

    2015-05-15

    Steeping milled sorghum in up to 0.4% NaOH was investigated as a method of tannin inactivation. NaOH steeping substantially reduced assayable total phenols and tannins in both Type III and Type II sorghums and with Type III sorghum caused a 60-80% reduction in α-amylase inhibition compared to a 20% reduction by water steeping. NaOH treatment also reduced starch liquefaction time and increased free amino nitrogen. Type II tannin sorghum did not inhibit α-amylase and consequently the NaOH treatment had no effect. HPLC and LC-MS of the tannin extracts indicated a general trend of increasing proanthocyanidin/procyanidin size with increasing NaOH concentration and steeping time, coupled with a reduction in total area of peaks resolved. These show that the NaOH treatment forms highly polymerised tannin compounds, too large to assay and to interact with the α-amylase. NaOH pre-treatment of Type III sorghums could enable their utilisation in bioethanol production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. 23. INCLINED END POST / VERTICAL / DIAGONAL / PORTAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. INCLINED END POST / VERTICAL / DIAGONAL / PORTAL BRACING DETAIL. VIEW TO SOUTHEAST. - Abraham Lincoln Memorial Bridge, Spanning Missouri River on Highway 30 between Nebraska & Iowa, Blair, Washington County, NE

  5. Hydrodynamic waves in films flowing under an inclined plane

    NASA Astrophysics Data System (ADS)

    Rohlfs, Wilko; Pischke, Philipp; Scheid, Benoit

    2017-04-01

    This study addresses the fluid dynamics of two-dimensional falling films flowing underneath an inclined plane using the weighted integral boundary layer (WIBL) model and direct numerical simulations (DNSs). Film flows under an inclined plane are subject to hydrodynamic and Rayleigh-Taylor instabilities, leading to the formation of two- and three-dimensional waves, rivulets, and eventually dripping. The latter can only occur in film flows underneath an inclined plane such that the gravitational force acts in a destabilizing manner by pulling liquid into the gaseous atmosphere. The DNSs are performed using the solver interFoam of the open-source code OpenFOAM with a gradient limiter approach that avoids artificial oversharpening of the interface. We find good agreement between the two model approaches for wave amplitude and wave speed irrespectively of the orientation of the gravitational force and before the onset of dripping. The latter cannot be modeled with the WIBL model by nature as it is a single-value model. However, for large-amplitude solitarylike waves, the WIBL model fails to predict the velocity field within the wave, which is confirmed by a balance of viscous dissipation and the change in potential energy. In the wavy film flows, different flow features can occur such as circulating waves, i.e., circulating eddies in the main wave hump, or flow reversal, i.e., rotating vortices in the capillary minima of the wave. A phase diagram for all flow features is presented based on results of the WIBL model. Regarding the transition to circulating waves, we show that a critical ratio between the maximum and substrate film thickness (approximately 2.5) is also universal for film flows underneath inclined planes (independent of wavelength, inclination, viscous dissipation, and Reynolds number).

  6. Revealing strong bias in common measures of galaxy properties using new inclination-independent structures

    NASA Astrophysics Data System (ADS)

    Devour, Brian M.; Bell, Eric F.

    2017-06-01

    Accurate measurement of galaxy structures is a prerequisite for quantitative investigation of galaxy properties or evolution. Yet, the impact of galaxy inclination and dust on commonly used metrics of galaxy structure is poorly quantified. We use infrared data sets to select inclination-independent samples of disc and flattened elliptical galaxies. These samples show strong variation in Sérsic index, concentration and half-light radii with inclination. We develop novel inclination-independent galaxy structures by collapsing the light distribution in the near-infrared on to the major axis, yielding inclination-independent 'linear' measures of size and concentration. With these new metrics we select a sample of Milky Way analogue galaxies with similar stellar masses, star formation rates, sizes and concentrations. Optical luminosities, light distributions and spectral properties are all found to vary strongly with inclination: When inclining to edge-on, r-band luminosities dim by >1 magnitude, sizes decrease by a factor of 2, 'dust-corrected' estimates of star formation rate drop threefold, metallicities decrease by 0.1 dex and edge-on galaxies are half as likely to be classified as star forming. These systematic effects should be accounted for in analyses of galaxy properties.

  7. A steep peripheral ring in irregular cornea topography, real or an instrument error?

    PubMed

    Galindo-Ferreiro, Alicia; Galvez-Ruiz, Alberto; Schellini, Silvana A; Galindo-Alonso, Julio

    2016-01-01

    To demonstrate that the steep peripheral ring (red zone) on corneal topography after myopic laser in situ keratomileusis (LASIK) could possibly due to instrument error and not always to a real increase in corneal curvature. A spherical model for the corneal surface and modifying topography software was used to analyze the cause of an error due to instrument design. This study involved modification of the software of a commercially available topographer. A small modification of the topography image results in a red zone on the corneal topography color map. Corneal modeling indicates that the red zone could be an artifact due to an instrument-induced error. The steep curvature changes after LASIK, signified by the red zone, could be also an error due to the plotting algorithms of the corneal topographer, besides a steep curvature change.

  8. 47 CFR 25.280 - Inclined orbit operations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... of the Earth and centered on the satellite's designated service area; (2) Control all electrical... inclined orbit; and (4) Continue to maintain the space station at the authorized longitude orbital location...

  9. Is metal-on-metal squeaking related to acetabular angle of inclination?

    PubMed

    Bernasek, Thomas; Fisher, David; Dalury, David; Levering, Melissa; Dimitris, Kirk

    2011-09-01

    Postoperative audible squeaking has been well documented in ceramic-on-ceramic hip prostheses, and several metal-on-metal (MOM) THA designs, specifically those used for large-head resurfacing and MOM polyethylene sandwich designs, and are attributed to different implant- and patient-specific factors. Current literature does not identify the incidence of squeaking in modular MOM THA or possible etiologic factors. Our purposes were to (1) identify the incidence of squeaking in modular MOM prostheses in THA; (2) determine whether males or females were more likely to have squeaking; and (3) determine whether the incidence of squeaking relates to acetabular inclination angle. We retrospectively reviewed the patient records and radiographs of 539 patients (542 hips) from three independent centers who underwent a MOM THA between February 2001 and December 2005. Demographic and implant factors were evaluated, including measurement of cup inclination angles. The minimum followup was 36 months (mean, 76 months; range, 36-119 months). We identified squeaking in eight of the 542 hips (1.5%); five were in women and two were in men (one patient had bilateral squeaking). The time to onset of patient-reported audible squeaking averaged 23 months (range, 6-84 months). Squeaking was more likely to occur in women (six of eight hips). No hips with 45º or less acetabular inclination squeaked (291 hips); eight of 251 hips (3.2%) with inclination angles greater than 45º squeaked. Patients who reported squeaking had higher inclination angles than those who did not report squeaking. Our observations suggest an increased frequency of squeaking in female patients and in patients with greater inclination angles with this MOM implant design.

  10. Effects of the inclination angle on the performance of flat plate solar collector

    NASA Astrophysics Data System (ADS)

    Ambarita, H.; Siregar, R. E. T.; Ronowikarto, A. D.; Setyawan, E. Y.

    2018-03-01

    Double glasses cover is typically used in a flat plate solar collector to decrease heat losses to ambient. The working principal of the cover is to allow the solar irradiation hit the plate absorber and blocks it using natural convection mechanism in the enclosure between the glasses. The performance of the enclosure to block the heat loss to the surrounding affected by the inclination angle of the collector. The objective of this study is to explore the effect of the inclination angle to the performance of the solar collector. Numerical simulation using commercial code Computational Fluid Dynamic (CFD) has been carried out to explore the fluid flow and heat transfer characteristics in the enclosure. In the result, streamline, vector velocity, and contour temperature are plotted. It was shown that the inclination angle strongly affects the performance of the collector. The average heat transfer coefficient decreases with increasing inclination angle. This fact suggests that too high inclination angle is not recommended for solar collector.

  11. Space Station Freedom assembly and operation at a 51.6 degree inclination orbit

    NASA Technical Reports Server (NTRS)

    Troutman, Patrick A.; Brewer, Laura M.; Heck, Michael L.; Kumar, Renjith R.

    1993-01-01

    This study examines the implications of assembling and operating Space Station Freedom at a 51.6 degree inclination orbit utilizing an enhanced lift Space Shuttle. Freedom assembly is currently baselined at a 220 nautical mile high, 28.5 degree inclination orbit. Some of the reasons for increasing the orbital inclination are (1) increased ground coverage for Earth observations, (2) greater accessibility from Russian and other international launch sites, and (3) increased number of Assured Crew Return Vehicle (ACRV) landing sites. Previous studies have looked at assembling Freedom at a higher inclination using both medium and heavy lift expendable launch vehicles (such as Shuttle-C and Energia). The study assumes that the shuttle is used exclusively for delivering the station to orbit and that it can gain additional payload capability from design changes such as a lighter external tank that somewhat offsets the performance decrease that occurs when the shuttle is launched to a 51.6 degree inclination orbit.

  12. The prediction of speed and incline in outdoor running in humans using accelerometry.

    PubMed

    Herren, R; Sparti, A; Aminian, K; Schutz, Y

    1999-07-01

    To explore whether triaxial accelerometric measurements can be utilized to accurately assess speed and incline of running in free-living conditions. Body accelerations during running were recorded at the lower back and at the heel by a portable data logger in 20 human subjects, 10 men, and 10 women. After parameterizing body accelerations, two neural networks were designed to recognize each running pattern and calculate speed and incline. Each subject ran 18 times on outdoor roads at various speeds and inclines; 12 runs were used to calibrate the neural networks whereas the 6 other runs were used to validate the model. A small difference between the estimated and the actual values was observed: the square root of the mean square error (RMSE) was 0.12 m x s(-1) for speed and 0.014 radiant (rad) (or 1.4% in absolute value) for incline. Multiple regression analysis allowed accurate prediction of speed (RMSE = 0.14 m x s(-1)) but not of incline (RMSE = 0.026 rad or 2.6% slope). Triaxial accelerometric measurements allows an accurate estimation of speed of running and incline of terrain (the latter with more uncertainty). This will permit the validation of the energetic results generated on the treadmill as applied to more physiological unconstrained running conditions.

  13. Vibration analyses of an inclined flat plate subjected to moving loads

    NASA Astrophysics Data System (ADS)

    Wu, Jia-Jang

    2007-01-01

    The object of this paper is to present a moving mass element so that one may easily perform the dynamic analysis of an inclined plate subjected to moving loads with the effects of inertia force, Coriolis force and centrifugal force considered. To this end, the mass, damping and stiffness matrices of the moving mass element, with respect to the local coordinate system, are derived first by using the principle of superposition and the definition of shape functions. Next, the last property matrices of the moving mass element are transformed into the global coordinate system and combined with the property matrices of the inclined plate itself to determine the effective overall property matrices and the instantaneous equations of motion of the entire vibrating system. Because the property matrices of the moving mass element have something to do with the instantaneous position of the moving load, both the property matrices of the moving mass element and the effective overall ones of the entire vibrating system are time-dependent. At any instant of time, solving the instantaneous equations of motion yields the instantaneous dynamic responses of the inclined plate. For validation, the presented technique is used to determine the dynamic responses of a horizontal pinned-pinned plate subjected to a moving load and a satisfactory agreement with the existing literature is achieved. Furthermore, extensive studies on the inclined plate subjected to moving loads reveal that the influences of moving-load speed, inclined angle of the plate and total number of the moving loads on the dynamic responses of the inclined plate are significant in most cases, and the effects of Coriolis force and centrifugal force are perceptible only in the case of higher moving-load speed.

  14. Optimizing exoplanet transit searches around low-mass stars with inclination constraints

    NASA Astrophysics Data System (ADS)

    Herrero, E.; Ribas, I.; Jordi, C.; Guinan, E. F.; Engle, S. G.

    2012-01-01

    Aims: We investigate a method to increase the efficiency of a targeted exoplanet search with the transit technique by preselecting a subset of candidates from large catalogs of stars. Assuming spin-orbit alignment, this can be achieved by considering stars that have a higher probability to be oriented nearly equator-on (inclination close to 90°). Methods: We used activity-rotation velocity relations for low-mass stars with a convective envelope to study the dependence of the position in the activity-vsini diagram on the stellar axis inclination. We composed a catalog of G-, K-, M-type main-sequence simulated stars using isochrones, an isotropic inclination distribution and empirical relations to obtain their rotation periods and activity indexes. Then the activity-vsini diagram was completed and statistics were applied to trace the areas containing the higher ratio of stars with inclinations above 80°. A similar statistics was applied to stars from real catalogs with log(R'HK) and vsini data to find their probability of being oriented equator-on. Results: We present our method to generate the simulated star catalog and the subsequent statistics to find the highly inclined stars from real catalogs using the activity-vsini diagram. Several catalogs from the literature are analyzed and a subsample of stars with the highest probability of being equator-on is presented. Conclusions: Assuming spin-orbit alignment, the efficiency of an exoplanet transit search in the resulting subsample of probably highly inclined stars is estimated to be two to three times higher than with a general search without preselection. Table 4 is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/537/A147

  15. Radio-loudness in black hole transients: evidence for an inclination effect

    NASA Astrophysics Data System (ADS)

    Motta, S. E.; Casella, P.; Fender, R.

    2018-06-01

    Accreting stellar-mass black holes appear to populate two branches in a radio:X-ray luminosity plane. We have investigated the X-ray variability properties of a large number of black hole low-mass X-ray binaries, with the aim of unveiling the physical reasons underlying the radio-loud/radio-quiet nature of these sources, in the context of the known accretion-ejection connection. A reconsideration of the available radio and X-ray data from a sample of black hole X-ray binaries confirms that being radio-quiet is the more normal mode of behaviour for black hole binaries. In the light of this we chose to test, once more, the hypothesis that radio loudness could be a consequence of the inclination of the X-ray binary. We compared the slope of the `hard-line' (an approximately linear correlation between X-ray count rate and rms variability, visible in the hard states of active black holes), the orbital inclination, and the radio-nature of the sources of our sample. We found that high-inclination objects show steeper hard-lines than low-inclination objects, and tend to display a radio-quiet nature (with the only exception of V404 Cyg), as opposed to low-inclination objects, which appear to be radio-loud(er). While in need of further confirmation, our results suggest that - contrary to what has been believed for years - the radio-loud/quiet nature of black-hole low mass X-ray binaries might be an inclination effect, rather than an intrinsic source property. This would solve an important issue in the context of the inflow-outflow connection, thus providing significant constraints to the models for the launch of hard-state compact jets.

  16. Changes in posture through the use of simple inclines with notebook computers placed on a standard desk.

    PubMed

    Asundi, Krishna; Odell, Dan; Luce, Adam; Dennerlein, Jack T

    2012-03-01

    This study evaluated the use of simple inclines as a portable peripheral for improving head and neck postures during notebook computer use on tables in portable environments such as hotel rooms, cafés, and airport lounges. A 3D motion analysis system measured head, neck and right upper extremity postures of 15 participants as they completed a 10 min computer task in six different configurations, all on a fixed height desk: no-incline, 12° incline, 25° incline, no-incline with external mouse, 25° incline with an external mouse, and a commercially available riser with external mouse and keyboard. After completion of the task, subjects rated the configuration for comfort and ease of use and indicated perceived discomfort in several body segments. Compared to the no-incline configuration, use of the 12° incline reduced forward head tilt and neck flexion while increasing wrist extension. The 25° incline further reduced head tilt and neck flexion while further increasing wrist extension. The 25° incline received the lowest comfort and ease of use ratings and the highest perceived discomfort score. For portable, temporary computing environments where internal input devices are used, users may find improved head and neck postures with acceptable wrist extension postures with the utilization of a 12° incline. Copyright © 2011 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  17. Eccentricities and Inclinations of Multi-Planet Systems with External Perturbers

    NASA Astrophysics Data System (ADS)

    Pu, Bonan; Lai, Dong

    2018-05-01

    Compact multi-planet systems containing super-Earths or sub-Neptunes, commonly found around solar-type stars, may be surrounded by external giant planet or stellar companions, which can shape the architechture and observability of the inner systems. We present a comprehensive study on the evolution of the inner planetary system subject to the gravitational influence of an eccentric, misaligned outer perturber. Analytic results are derived for the inner planet eccentricities (ei) and mutual inclination (θ12) of the "2-planet + perturber" system, calibrated with numerical secular and N-body integrations, as a function of the perturber mass mp, semi-major axis ap and inclination angle θp. We find that the dynamics of the inner system is determined by the dimensionless parameter ɛ12, given by the ratio between the differential precession rate driven by the perturber and the mutual precession rate of the inner planets. Loosely packed systems (corresponding to ɛ12 ≫ 1) are more susceptible to eccentricity/inclination excitations by the perturber than tightly packed inner systems (with ɛ12 ≪ 1) (or singletons), although resonance may occur around ɛ12 ˜ 1, leading to large ei and θ12. Dynamical instability may set in for inner planet systems with large excited eccentricities and mutual inclinations. We present a formalism to extend our analytical results to general inner systems with N > 2 planets and apply our results to constrain possible external companions to the Kepler-11 system. Eccentricity and inclination excitation by external companions may help explain the observational trend that systems with fewer transiting planets are dynamically hotter than those with more transiting planets.

  18. Formation of Close-in Super-Earths by Giant Impacts: Effects of Initial Eccentricities and Inclinations of Protoplanets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsumoto, Yuji; Kokubo, Eiichiro, E-mail: ymatsumoto@cfca.nao.ac.jp

    Recent observations have revealed the eccentricity and inclination distributions of close-in super-Earths. These distributions have the potential to constrain their formation processes. In the in situ formation scenario, the eccentricities and inclinations of planets are determined by gravitational scattering and collisions between protoplanets on the giant impact stage. We investigate the effect of the initial eccentricities and inclinations of protoplanets on the formation of close-in super-Earths. We perform N -body simulations of protoplanets in gas-free disks, changing the initial eccentricities and inclinations systematically. We find that while the eccentricities of protoplanets are well relaxed through their evolution, the inclinations aremore » not. When the initial inclinations are small, they are not generally pumped up since scattering is less effective and collisions occur immediately after orbital crossing. On the other hand, when the initial inclinations are large, they tend to be kept large since collisional damping is less effective. Not only the resultant inclinations of planets, but also their number, eccentricities, angular momentum deficit, and orbital separations are affected by the initial inclinations of protoplanets.« less

  19. Investigations of the radio signal of inclined showers with LOPES

    NASA Astrophysics Data System (ADS)

    Saftoiu, A.; Apel, W. D.; Arteaga, J. C.; Asch, T.; Bähren, L.; Bekk, K.; Bertaina, M.; Biermann, P. L.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Buchholz, P.; Buitink, S.; Cantoni, E.; Chiavassa, A.; Daumiller, K.; de Souza, V.; Doll, P.; Engel, R.; Falcke, H.; Finger, M.; Fuhrmann, D.; Gemmeke, H.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Horneffer, A.; Huber, D.; Huege, T.; Isar, P. G.; Kampert, K.-H.; Kang, D.; Krömer, O.; Kuijpers, J.; Lafebre, S.; Link, K.; Łuczak, P.; Ludwig, M.; Mathes, H. J.; Melissas, M.; Morello, C.; Nehls, S.; Oehlschläger, J.; Palmieri, N.; Pierog, T.; Rautenberg, J.; Rebel, H.; Roth, M.; Rühle, C.; Schieler, H.; Schmidt, A.; Schröder, F. G.; Sima, O.; Toma, G.; Trinchero, G. C.; Weindl, A.; Wochele, J.; Wommer, M.; Zabierowski, J.; Zensus, J. A.

    2012-01-01

    We report in this paper on an analysis of 20 months of data taken with LOPES. LOPES is radio antenna array set-up in coincidence with the Grande array, both located at the Karlsruhe Institute of Technology, Germany. The data used in this analysis were taken with an antenna configuration composed of 30 inverted V-shape dipole antennas.We have restricted the analysis to a special selection of inclined showers—with zenith angle θ>40∘. These inclined showers are of particular interest because they are the events with the largest geomagnetic angles and are therefore suitable to test emission models based on geomagnetic effects.The reconstruction procedure of the emitted radio signal in EAS uses as one ingredient the frequency-dependent antenna gain pattern which is obtained from simulations. Effects of the applied antenna model in the calibration procedure of LOPES are studied. In particular, we have focused on one component of the antenna, a metal pedestal, which generates a resonance effect, a peak in the amplification pattern where it is the most affecting high zenith angles, i.e. inclined showers.In addition, polarization characteristics of inclined showers were studied in detail and compared with the features of more vertical showers for the two cases of antenna models, with and without the pedestal.

  20. Computing nonhydrostatic shallow-water flow over steep terrain

    USGS Publications Warehouse

    Denlinger, R.P.; O'Connell, D. R. H.

    2008-01-01

    Flood and dambreak hazards are not limited to moderate terrain, yet most shallow-water models assume that flow occurs over gentle slopes. Shallow-water flow over rugged or steep terrain often generates significant nonhydrostatic pressures, violating the assumption of hydrostatic pressure made in most shallow-water codes. In this paper, we adapt a previously published nonhydrostatic granular flow model to simulate shallow-water flow, and we solve conservation equations using a finite volume approach and an Harten, Lax, Van Leer, and Einfeldt approximate Riemann solver that is modified for a sloping bed and transient wetting and drying conditions. To simulate bed friction, we use the law of the wall. We test the model by comparison with an analytical solution and with results of experiments in flumes that have steep (31??) or shallow (0.3??) slopes. The law of the wall provides an accurate prediction of the effect of bed roughness on mean flow velocity over two orders of magnitude of bed roughness. Our nonhydrostatic, law-of-the-wall flow simulation accurately reproduces flume measurements of front propagation speed, flow depth, and bed-shear stress for conditions of large bed roughness. ?? 2008 ASCE.

  1. Comprehensive evaluation of high-steep slope stability and optimal high-steep slope design by 3D physical modeling

    NASA Astrophysics Data System (ADS)

    Lai, Xing-ping; Shan, Peng-fei; Cai, Mei-feng; Ren, Fen-hua; Tan, Wen-hui

    2015-01-01

    High-steep slope stability and its optimal excavation design in Shuichang open pit iron mine were analyzed based on a large 3D physical simulation technique. An optimal excavation scheme with a relatively steeper slope angle was successfully implemented at the northwest wall between Nos. 4 and 5 exploration lines of Shuichang Iron Mine, taking into account the 3D scale effect. The physico-mechanical properties of rock materials were obtained by laboratory tests conducted on sample cores from exploration drilling directly from the iron mine. A porous rock-like composite material was formed for the model, and the mechanical parameters of the material were assessed experimentally; specifically, the effect of water on the sample was quantitatively determined. We adopted an experimental setup using stiff modular applied static loading to carry out a visual excavation of the slope at a random depth. The setup was equipped with acoustic emission (AE) sensors, and the experiments were monitored by crack optical acquirement, ground penetrating radar, and close-field photogrammetry to investigate the mechanisms of rock-mass destabilization in the high-steep slope. For the complex study area, the model results indicated a clear correlation between the model's destabilization resulting from slope excavation and the collected monitoring information. During the model simulation, the overall angle of the slope increased by 1-6 degrees in different sections. Dramatically, the modeled excavation scheme saved over 80 million tons of rock from extraction, generating enormous economic and ecological benefits.

  2. Characteristics of the Roof Behaviors and Mine Pressure Manifestations During the Mining of Steep Coal Seam

    NASA Astrophysics Data System (ADS)

    Hong-Sheng, Tu; Shi-Hao, Tu; Cun, Zhang; Lei, Zhang; Xiao-Gang, Zhang

    2017-12-01

    A steep seam similar simulation system was developed based on the geological conditions of a steep coal seam in the Xintie Coal Mine. Basing on similar simulation, together with theoretical analysis and field measurement, an in-depth study was conducted to characterize the fracture and stability of the roof of steep working face and calculate the width of the region backfilled with gangue in the goaf. The results showed that, as mining progressed, the immediate roof of the steep face fell upon the goaf and backfilled its lower part due to gravity. As a result, the roof in the lower part had higher stability than the roof in the upper part of the working face. The deformation and fracture of main roof mainly occurred in the upper part of the working face; the fractured main roof then formed a "voussoir beam" structure in the strata's dip direction, which was subjected to the slip- and deformation-induced instability. The stability analysis indicated that, when the dip angle increased, the rock masses had greater capacity to withstand slip-induced instability but smaller capacity to withstand deformation-induced instability. Finally, the field measurement of the forces exerted on the hydraulic supports proved the characteristics of the roof's behaviors during the mining of a steep seam.

  3. Seat surface inclination may affect postural stability during Boccia ball throwing in children with cerebral palsy.

    PubMed

    Tsai, Yung-Shen; Yu, Yi-Chen; Huang, Po-Chang; Cheng, Hsin-Yi Kathy

    2014-12-01

    The aim of the study was to examine how seat surface inclination affects Boccia ball throwing movement and postural stability among children with cerebral palsy (CP). Twelve children with bilateral spastic CP (3 with gross motor function classification system Level I, 5 with Level II, and 4 with Level III) participated in this study. All participants underwent pediatric reach tests and ball throwing performance analyses while seated on 15° anterior- or posterior-inclined, and horizontal surfaces. An electromagnetic motion analysis system was synchronized with a force plate to assess throwing motion and postural stability. The results of the pediatric reach test (p = 0.026), the amplitude of elbow movement (p = 0.036), peak vertical ground reaction force (PVGRF) (p < 0.001), and movement range of the center of pressure (COP) (p < 0.020) were significantly affected by seat inclination during throwing. Post hoc comparisons showed that anterior inclination allowed greater amplitude of elbow movement and PVGRF, and less COP movement range compared with the other inclines. Posterior inclination yielded less reaching distance and PVGRF, and greater COP movement range compared with the other inclines. The anterior-inclined seat yielded superior postural stability for throwing Boccia balls among children with bilateral spastic CP, whereas the posterior-inclined seat caused difficulty. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. 46 CFR 28.535 - Inclining test.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... section, each vessel for which the lightweight displacement and centers of gravity must be determined in... of the vessel which was inclined and the location of the longitudinal center of gravity differs less... characteristics can be made and the precise location of the position of the vessel's vertical center of gravity is...

  5. 46 CFR 28.535 - Inclining test.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... section, each vessel for which the lightweight displacement and centers of gravity must be determined in... of the vessel which was inclined and the location of the longitudinal center of gravity differs less... characteristics can be made and the precise location of the position of the vessel's vertical center of gravity is...

  6. 46 CFR 28.535 - Inclining test.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... section, each vessel for which the lightweight displacement and centers of gravity must be determined in... of the vessel which was inclined and the location of the longitudinal center of gravity differs less... characteristics can be made and the precise location of the position of the vessel's vertical center of gravity is...

  7. Constraining the inclination of the Low-Mass X-ray Binary Cen X-4

    NASA Astrophysics Data System (ADS)

    Hammerstein, Erica K.; Cackett, Edward M.; Reynolds, Mark T.; Miller, Jon M.

    2018-05-01

    We present the results of ellipsoidal light curve modeling of the low mass X-ray binary Cen X-4 in order to constrain the inclination of the system and mass of the neutron star. Near-IR photometric monitoring was performed in May 2008 over a period of three nights at Magellan using PANIC. We obtain J, H and K lightcurves of Cen X-4 using differential photometry. An ellipsoidal modeling code was used to fit the phase folded light curves. The lightcurve fit which makes the least assumptions about the properties of the binary system yields an inclination of 34.9^{+4.9}_{-3.6} degrees (1σ), which is consistent with previous determinations of the system's inclination but with improved statistical uncertainties. When combined with the mass function and mass ratio, this inclination yields a neutron star mass of 1.51^{+0.40}_{-0.55} M⊙. This model allows accretion disk parameters to be free in the fitting process. Fits that do not allow for an accretion disk component in the near-IR flux gives a systematically lower inclination between approximately 33 and 34 degrees, leading to a higher mass neutron star between approximately 1.7 M⊙ and 1.8 M⊙. We discuss the implications of other assumptions made during the modeling process as well as numerous free parameters and their effects on the resulting inclination.

  8. Direct measurements of flux tube inclinations in solar plages.

    NASA Astrophysics Data System (ADS)

    Bernasconi, P. N.; Keller, C. U.; Povel, H. P.; Stenflo, J. O.

    1995-10-01

    Observations of the full Stokes vector in three spectral lines indicate that flux tubes in solar plages have an average inclination in the photosphere of 14^o^ with respect to the local vertical. Most flux tubes are inclined in the eastwards direction, i.e., opposite to the solar rotation. We have recorded the Stokes vector of the FeI 5247.1A, FeI 5250.2A, and FeI 5250.7A lines in nine different plages with the polarization-free 20cm Zeiss coronagraph at the Arosa Astrophysical Observatory of ETH Zuerich. The telescope has been modified for solar disk observations. The chosen spectral lines are particularly sensitive to magnetic field strength and temperature. To determine the field strength and geometry of the flux tubes in the observed plages we use an inversion code that numerically solves the radiative transfer equations and derives the emergent Stokes profiles for one-dimensional model atmospheres consisting of a flux tube and its surrounding non-magnetic atmosphere. Our results confirm earlier indirect estimates of the inclination of the magnetic fields in plages.

  9. Numerical investigation of sliding drops on an inclined surface

    NASA Astrophysics Data System (ADS)

    Legendre, Dominique; Pedrono, Annaig; Interface Group Team

    2017-11-01

    Despite it apparent simplicity, the behavior of a drop on an inclined solid surface is far to be properly reproduced by numerical simulation. It involves static, hysteresis and dynamic contact line behaviors. Depending on the fluid properties, the hysteresis and the wall inclination, different drop shapes (rounded, corner or pearling drop) can be observed. The 3D numerical simulations of sliding droplets presented in this work are based on a Volume of Fluid (VoF) solver without any interface reconstruction developed in the JADIM code. The surface tension is solved using the classical CSF (Continuum Surface Force) model and a sub grid model is used to describe under hysteresis conditions both the shape, the dissipation of the non resolved scales of a moving contact line. Numerical simulations are compared with the experiments of. The agreement with experiments is found to be very good for both he critical angle of inclination for siding as well as for the specific shapes: rounded, corner and pearling drops. The simulations have been used to extend the range of hysteresis covered by the experiments.

  10. Magnetic inclination from Brazilian bricks and application to Archeomagnetic dating

    NASA Astrophysics Data System (ADS)

    Begnini, G. S.; Hartmann, G. A.; Trindade, R. I.

    2013-05-01

    The Earth's magnetic field (EMF) is recorded in archeological baked materials carrying a stable remanent magnetization. This magnetic record can be used for indirectly date the archeological material by comparison with "reference curves" of the EMF. In this work we present magnetic inclination data from two different sites in southeastern Brazil, an ancient and a modern one: (a) a sampling at the ancient sugarcane mill Engenho Central de Piracicaba (ECP, 1881-1974 AD), and (b) a controlled survey at the modern brickyard Olaria Schiavolin (OS). Both of them are located in the city of Piracicaba, São Paulo State, Brazil. Magnetic measurements included stepwise thermal and alternating field demagnetization, anisotropy of magnetic susceptibility (AMS) and low-field magnetic susceptibility vs. temperature. In OS, we collected 40 oriented bricks from 5 sampling points inside the brickyard oven in order to test the stability and reliability of their remanent magnetizations by comparing them with the local field (measured directly with a fluxgate magnetometer). We observed differences of +/- 3° between the local field and the IGRF. When magnetic inclinations are reported relative to the flat planes of the brick (the situation we face for real ancient bricks), the differences due to inclination of the burning plane and magnetic anomalies inside the oven never exceed 6°. These differences are averaged out by using a minimum of 6 bricks (~24 specimens) per sampling point to compute the inclination. In the ancient site ECP we collected 140 non-oriented bricks from 14 different walls; three of them were previously dated using historical records. Inclinations were defined using at least 6 bricks per wall, showing consistent average values within the same walls. When compared to the IGRF and GUFM1 models, the inclinations obtained for the dated walls agreed within the experimental error. We have then applied the same procedure to estimate the age of the remaining walls. Using

  11. Improved numerical modelling of morphodynamics of rivers with steep banks

    USDA-ARS?s Scientific Manuscript database

    The flow and sediment transport processes near steep streambanks, which are commonly found in meandering, braided, and anastomosing stream systems, exhibit complex patterns. The interactions between bed and bank morphologic adjustment, and their governing processes are still not well understood. Inc...

  12. Muscular activity of lower limb muscles associated with working on inclined surfaces

    PubMed Central

    Lu, Ming-Lun; Kincl, Laurel; Lowe, Brian; Succop, Paul; Bhattacharya, Amit

    2015-01-01

    This study investigated effects of visual cues, muscular fatigue, task performance and experience of working on inclined surfaces on activity of postural muscles in the lower limbs associated with maintaining balance on three inclined surfaces—0°, 14° and 26°. Normalized electromyographic (NEMG) data were collected on 44 professional roofers bilaterally from the rectus femoris, biceps femoris, tibialii anterior, and gastrocnemii medial muscle groups. The 50th and 95th percentile normalized EMG amplitudes were used as EMG variables. Results showed that inclination angle and task performance caused a significant increase in the NEMG amplitudes of all postural muscles. Visual cues were significantly associated with a decrease in the 95th percentile EMG amplitude for the right gastrocnemius medial and tibialis anterior. Fatigue was related to a significant decrease in the NEMG amplitude for the rectus femoris. Experience of working on inclined surfaces did not have a significant effect on the NEMG amplitude. PMID:25331562

  13. THE PHOTOMETRIC AND KINEMATIC STRUCTURE OF FACE-ON DISK GALAXIES. III. KINEMATIC INCLINATIONS FROM H{alpha} VELOCITY FIELDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andersen, David R.; Bershady, Matthew A., E-mail: david.andersen@nrc-cnrc.gc.ca, E-mail: mab@astro.wisc.edu

    2013-05-01

    Using the integral field unit DensePak on the WIYN 3.5 m telescope we have obtained H{alpha} velocity fields of 39 nearly face-on disks at echelle resolutions. High-quality, uniform kinematic data and a new modeling technique enabled us to derive accurate and precise kinematic inclinations with mean i{sub kin} = 23 Degree-Sign for 90% of these galaxies. Modeling the kinematic data as single, inclined disks in circular rotation improves upon the traditional tilted-ring method. We measure kinematic inclinations with a precision in sin i of 25% at 20 Degree-Sign and 6% at 30 Degree-Sign . Kinematic inclinations are consistent with photometricmore » and inverse Tully-Fisher inclinations when the sample is culled of galaxies with kinematic asymmetries, for which we give two specific prescriptions. Kinematic inclinations can therefore be used in statistical ''face-on'' Tully-Fisher studies. A weighted combination of multiple, independent inclination measurements yield the most precise and accurate inclination. Combining inverse Tully-Fisher inclinations with kinematic inclinations yields joint probability inclinations with a precision in sin i of 10% at 15 Degree-Sign and 5% at 30 Degree-Sign . This level of precision makes accurate mass decompositions of galaxies possible even at low inclination. We find scaling relations between rotation speed and disk-scale length identical to results from more inclined samples. We also observe the trend of more steeply rising rotation curves with increased rotation speed and light concentration. This trend appears to be uncorrelated with disk surface brightness.« less

  14. Characterization and improvement of highly inclined optical sheet microscopy

    NASA Astrophysics Data System (ADS)

    Vignolini, T.; Curcio, V.; Gardini, L.; Capitanio, M.; Pavone, F. S.

    2018-02-01

    Highly Inclined and Laminated Optical sheet (HILO) microscopy is an optical technique that employs a highly inclined laser beam to illuminate the sample with a thin sheet of light that can be scanned through the sample volume1 . HILO is an efficient illumination technique when applied to fluorescence imaging of thick samples owing to the confined illumination volume that allows high contrast imaging while retaining deep scanning capability in a wide-field configuration. The restricted illumination volume is crucial to limit background fluorescence originating from portions of the sample far from the focal plane, especially in applications such as single molecule localization and super-resolution imaging2-4. Despite its widespread use, current literature lacks comprehensive reports of the actual advantages of HILO in these kinds of microscopies. Here, we thoroughly characterize the propagation of a highly inclined beam through fluorescently labeled samples and implement appropriate beam shaping for optimal application to single molecule and super-resolution imaging. We demonstrate that, by reducing the beam size along the refracted axis only, the excitation volume is consequently reduced while maintaining a field of view suitable for single cell imaging. We quantify the enhancement in signal-tobackground ratio with respect to the standard HILO technique and apply our illumination method to dSTORM superresolution imaging of the actin and vimentin cytoskeleton. We define the conditions to achieve localization precisions comparable to state-of-the-art reports, obtain a significant improvement in the image contrast, and enhanced plane selectivity within the sample volume due to the further confinement of the inclined beam.

  15. Assurance Arguments for the Non-Graphically-Inclined: Two Approaches

    NASA Technical Reports Server (NTRS)

    Heavner, Emily; Holloway, C. Michael

    2017-01-01

    We introduce and discuss two approaches to presenting assurance arguments. One approach is based on a monograph structure, while the other is based on a tabular structure. In today's research and academic setting, assurance cases often use a graphical notation; however for people who are not graphically inclined, these notations can be difficult to read. This document proposes, outlines, explains, and presents examples of two non-graphical assurance argument notations that may be appropriate for non-graphically-inclined readers and also provide argument writers with freedom to add details and manipulate an argument in multiple ways.

  16. Neural Extrapolation of Motion for a Ball Rolling Down an Inclined Plane

    PubMed Central

    La Scaleia, Barbara; Lacquaniti, Francesco; Zago, Myrka

    2014-01-01

    It is known that humans tend to misjudge the kinematics of a target rolling down an inclined plane. Because visuomotor responses are often more accurate and less prone to perceptual illusions than cognitive judgments, we asked the question of how rolling motion is extrapolated for manual interception or drawing tasks. In three experiments a ball rolled down an incline with kinematics that differed as a function of the starting position (4 different positions) and slope (30°, 45° or 60°). In Experiment 1, participants had to punch the ball as it fell off the incline. In Experiment 2, the ball rolled down the incline but was stopped at the end; participants were asked to imagine that the ball kept moving and to punch it. In Experiment 3, the ball rolled down the incline and was stopped at the end; participants were asked to draw with the hand in air the trajectory that would be described by the ball if it kept moving. We found that performance was most accurate when motion of the ball was visible until interception and haptic feedback of hand-ball contact was available (Experiment 1). However, even when participants punched an imaginary moving ball (Experiment 2) or drew in air the imaginary trajectory (Experiment 3), they were able to extrapolate to some extent global aspects of the target motion, including its path, speed and arrival time. We argue that the path and kinematics of a ball rolling down an incline can be extrapolated surprisingly well by the brain using both visual information and internal models of target motion. PMID:24940874

  17. Neural extrapolation of motion for a ball rolling down an inclined plane.

    PubMed

    La Scaleia, Barbara; Lacquaniti, Francesco; Zago, Myrka

    2014-01-01

    It is known that humans tend to misjudge the kinematics of a target rolling down an inclined plane. Because visuomotor responses are often more accurate and less prone to perceptual illusions than cognitive judgments, we asked the question of how rolling motion is extrapolated for manual interception or drawing tasks. In three experiments a ball rolled down an incline with kinematics that differed as a function of the starting position (4 different positions) and slope (30°, 45° or 60°). In Experiment 1, participants had to punch the ball as it fell off the incline. In Experiment 2, the ball rolled down the incline but was stopped at the end; participants were asked to imagine that the ball kept moving and to punch it. In Experiment 3, the ball rolled down the incline and was stopped at the end; participants were asked to draw with the hand in air the trajectory that would be described by the ball if it kept moving. We found that performance was most accurate when motion of the ball was visible until interception and haptic feedback of hand-ball contact was available (Experiment 1). However, even when participants punched an imaginary moving ball (Experiment 2) or drew in air the imaginary trajectory (Experiment 3), they were able to extrapolate to some extent global aspects of the target motion, including its path, speed and arrival time. We argue that the path and kinematics of a ball rolling down an incline can be extrapolated surprisingly well by the brain using both visual information and internal models of target motion.

  18. Enhanced stochastic fluctuations to measure steep adhesive energy landscapes

    PubMed Central

    Haider, Ahmad; Potter, Daniel; Sulchek, Todd A.

    2016-01-01

    Free-energy landscapes govern the behavior of all interactions in the presence of thermal fluctuations in the fields of physical chemistry, materials sciences, and the biological sciences. From the energy landscape, critical information about an interaction, such as the reaction kinetic rates, bond lifetimes, and the presence of intermediate states, can be determined. Despite the importance of energy landscapes to understanding reaction mechanisms, most experiments do not directly measure energy landscapes, particularly for interactions with steep force gradients that lead to premature jump to contact of the probe and insufficient sampling of transition regions. Here we present an atomic force microscopy (AFM) approach for measuring energy landscapes that increases sampling of strongly adhesive interactions by using white-noise excitation to enhance the cantilever’s thermal fluctuations. The enhanced fluctuations enable the recording of subtle deviations from a harmonic potential to accurately reconstruct interfacial energy landscapes with steep gradients. Comparing the measured energy landscape with adhesive force measurements reveals the existence of an optimal excitation voltage that enables the cantilever fluctuations to fully sample the shape and depth of the energy surface. PMID:27911778

  19. Particle Sliding on a Rough Incline

    ERIC Educational Resources Information Center

    Zurcher, Ulrich

    2007-01-01

    We study a particle sliding on a rough inclined plane as an example of a mechanical problem with nonholonomic constraint. The particle is launched in an arbitrary direction so that its motion has both a horizontal and a "vertical" (i.e., up- and downhill) direction. The friction force acts along the instantaneous velocity, so that the horizontal…

  20. 22. INCLINED END POST / DECK / GUARDRAIL DETAIL OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. INCLINED END POST / DECK / GUARDRAIL DETAIL OF THROUGH TRUSSES. VIEW TO SOUTHEAST. - Abraham Lincoln Memorial Bridge, Spanning Missouri River on Highway 30 between Nebraska & Iowa, Blair, Washington County, NE

  1. The representation of spacetime through steep time functions

    NASA Astrophysics Data System (ADS)

    Minguzzi, Ettore

    2018-02-01

    In a recent work I showed that the family of smooth steep time functions can be used to recover the order, the topology and the (Lorentz-Finsler) distance of spacetime. In this work I present the main ideas entering the proof of the (smooth) distance formula, particularly the product trick which converts metric statements into causal ones. The paper ends with a second proof of the distance formula valid for globally hyperbolic Lorentzian spacetimes.

  2. Relativistic and the first sectorial harmonics corrections in the critical inclination

    NASA Astrophysics Data System (ADS)

    Rahoma, W. A.; Khattab, E. H.; Abd El-Salam, F. A.

    2014-05-01

    The problem of the critical inclination is treated in the Hamiltonian framework taking into consideration post-Newtonian corrections as well as the main correction term of sectorial harmonics for an earth-like planet. The Hamiltonian is expressed in terms of Delaunay canonical variables. A canonical transformation is applied to eliminate short period terms. A modified critical inclination is obtained due to relativistic and the first sectorial harmonics corrections.

  3. MECHANISM FOR EXCITING PLANETARY INCLINATION AND ECCENTRICITY THROUGH A RESIDUAL GAS DISK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Yuanyuan; Liu Huigen; Zhao Gang

    2013-05-20

    According to the theory of Kozai resonance, the initial mutual inclination between a small body and a massive planet in an outer circular orbit is as high as {approx}39. Degree-Sign 2 for pumping the eccentricity of the inner small body. Here we show that with the presence of a residual gas disk outside two planetary orbits, the inclination can be reduced to as low as a few degrees. The presence of the disk changes the nodal precession rates and directions of the planet orbits. At the place where the two planets achieve the same nodal processing rate, vertical secular resonancemore » (VSR) occurs so that the mutual inclination of the two planets will be excited, which might further trigger the Kozai resonance between the two planets. However, in order to pump an inner Jupiter-like planet, the conditions required for the disk and the outer planet are relatively strict. We develop a set of evolution equations, which can fit the N-body simulation quite well but can be integrated within a much shorter time. By scanning the parameter spaces using the evolution equations, we find that a massive planet (10 M{sub J} ) at 30 AU with an inclination of 6 Degree-Sign to a massive disk (50 M{sub J} ) can finally enter the Kozai resonance with an inner Jupiter around the snowline. An inclination of 20 Degree-Sign of the outer planet to the disk is required for flipping the inner one to a retrograde orbit. In multiple planet systems, the mechanism can happen between two nonadjacent planets or can inspire a chain reaction among more than two planets. This mechanism could be the source of the observed giant planets in moderate eccentric and inclined orbits, or hot Jupiters in close-in, retrograde orbits after tidal damping.« less

  4. Analysis of high-speed growth of silicon sheet in inclined-meniscus configuration

    NASA Technical Reports Server (NTRS)

    Thomas, P. D.; Brown, R. A.

    1985-01-01

    The study of high speed growth of silicon sheet in inclined-meniscus configurations is discussed. It was concluded that the maximum growth rates in vertical and inclined growth are set by thermal-capillary limits. Also, the melt/crystal interface was determined to be flat. And, vertical growth is qualitatively modelled by one dimensional heat transfer.

  5. Bacterial Diversity and Mycotoxin Reduction During Maize Fermentation (Steeping) for Ogi Production

    PubMed Central

    Okeke, Chiamaka A.; Ezekiel, Chibundu N.; Nwangburuka, Cyril C.; Sulyok, Michael; Ezeamagu, Cajethan O.; Adeleke, Rasheed A.; Dike, Stanley K.; Krska, Rudolf

    2015-01-01

    Bacterial diversity and community structure of two maize varieties (white and yellow) during fermentation/steeping for ogi production, and the influence of spontaneous fermentation on mycotoxin reduction in the gruel were studied. A total of 142 bacterial isolates obtained at 24–96 h intervals were preliminarily identified by conventional microbiological methods while 60 selected isolates were clustered into 39 OTUs consisting of 15 species, 10 genera, and 3 phyla by 16S rRNA sequence analysis. Lactic acid bacteria constituted about 63% of all isolated bacteria and the genus Pediococcus dominated (white maize = 84.8%; yellow maize = 74.4%). Pediococcus acidilactici and Lactobacillus paraplantarum were found at all steeping intervals of white and yellow maize, respectively, while P. claussenii was present only at the climax stage of steeping white maize. In both maize varieties, P. pentosaceus was found at 24–72 h. Mycotoxin concentrations (μg/kg) in the unsteeped grains were: white maize (aflatoxin B1 = 0.60; citrinin = 85.8; cyclopiazonic acid = 23.5; fumonisins (B1/B2/B3) = 68.4–483; zearalenone = 3.3) and yellow maize (aflatoxins (B1/B2/M1) = 22.7–513; citrinin = 16,800; cyclopiazonic acid = 247; fumonisins (B1/B2/B3) = 252–1,586; zearalenone = 205). Mycotoxins in both maize varieties were significantly (p < 0.05) reduced across steeping periods. This study reports for the first time: (a) the association of L. paraplantarum, P. acidilactici, and P. claussenii with ogi production from maize, (b) citrinin occurrence in Nigerian maize and ogi, and (c) aflatoxin M1, citrinin and cyclopiazonic acid degradation/loss due to fermentation in traditional cereal-based fermented food. PMID:26697001

  6. Possibility of heliotropical response from inclination of columnar stromatolites, Socheong island, Korea

    NASA Astrophysics Data System (ADS)

    KONG, Dal Yong; LEE, Seong Joo; Golubic, Stjepko

    2014-05-01

    Socheong island is a unique island containing Precambrian stromatolites in South Korea. Most of Socheong stromatolites are domes and columns, occurring as 10 cm to 1 meter thick stromatolite beds. Lower parts of stromatolite beds are predominantly composed of domal stromatolites, while columns increase toward the upper level of stromatolite beds. In many of stromatolite beds, inclined columns are easily identifiable, which is generally considered as a result of heliotropism. From general lithology, sedimentary structures, inclined angles and distributional pattern, and structural deformation of sedimentary rocks of Socheong island, the inclination of Socheong stromatolites could be better interpreted as a secondary structural deformation probably after formation of stromatolite columns, rather than as a result of heliotropism. However, at this moment, we do not clearly reject heliotropism interpretation for inclined columns of Socheong stromatolites. This is because the original position of stromatolite columns were also lost if structural deformation would have affected throughout the whole sedimentary rocks of Socheong island. [Acknowledgments] This research was financially supported by the National Research Institute of Cultural Heritage.

  7. A reverse KAM method to estimate unknown mutual inclinations in exoplanetary systems

    NASA Astrophysics Data System (ADS)

    Volpi, Mara; Locatelli, Ugo; Sansottera, Marco

    2018-05-01

    The inclinations of exoplanets detected via radial velocity method are essentially unknown. We aim to provide estimations of the ranges of mutual inclinations that are compatible with the long-term stability of the system. Focusing on the skeleton of an extrasolar system, i.e. considering only the two most massive planets, we study the Hamiltonian of the three-body problem after the reduction of the angular momentum. Such a Hamiltonian is expanded both in Poincaré canonical variables and in the small parameter D_2, which represents the normalised angular momentum deficit. The value of the mutual inclination is deduced from D_2 and, thanks to the use of interval arithmetic, we are able to consider open sets of initial conditions instead of single values. Looking at the convergence radius of the Kolmogorov normal form, we develop a reverse KAM approach in order to estimate the ranges of mutual inclinations that are compatible with the long-term stability in a KAM sense. Our method is successfully applied to the extrasolar systems HD 141399, HD 143761 and HD 40307.

  8. Effects of treadmill inclination on electromyographic activity and hind limb kinematics in healthy hounds at a walk.

    PubMed

    Lauer, Susanne K; Hillman, Robert B; Li, Li; Hosgood, Giselle L

    2009-05-01

    To evaluate the effect of treadmill incline on muscle activity and joint range of motion (ROM) in hind limbs of dogs. 8 purpose-bred healthy adult hounds. Activities of the hamstring (semimembranosus, semitendinosus, and biceps femoris muscles), gluteal (superficial, middle, and deep gluteal muscles), and quadriceps (femoris, vastus lateralis, vastus intermedius, and vastus medialis muscles) muscle groups and hip and stifle joint ROM were measured with surface electrogoniometric and myographic sensors in hounds walking on a treadmill at 0.54 m/s at inclines of 5%, 0%, and -5% in random order. Mean electromyographic activities and mean ROMs at each inclination were compared for swing and stance phases. Treadmill inclination did not affect duration of the stance and swing phases or the whole stride. When treadmill inclination was increased from -5% to 5%, hip joint ROM increased and the degree of stifle joint extension decreased significantly. In the beginning of the stance phase, activity of the hamstring muscle group was significantly increased when walking at a 5% incline versus a 5% decline. In the end of the stance phase, that activity was significantly increased when walking at a 5% incline versus at a 5% decline or on a flat surface. Activity of the gluteal and quadriceps muscle groups was not affected when treadmill inclination changed. Treadmill inclination affected joint kinematics only slightly. Walking on a treadmill at a 5% incline had more potential to strengthen the hamstring muscle group than walking on a treadmill with a flat or declined surface.

  9. Vibration characteristics of an inclined flip-flow screen panel in banana flip-flow screens

    NASA Astrophysics Data System (ADS)

    Xiong, Xiaoyan; Niu, Linkai; Gu, Chengxiang; Wang, Yinhua

    2017-12-01

    A banana flip-flow screen is an effective solution for the screening of high-viscosity, high-water and fine materials. As one of the key components, the vibration characteristics of the inclined flip-flow screen panel largely affects the screen performance and the processing capacity. In this paper, a mathematical model for the vibration characteristic of the inclined flip-flow screen panel is proposed based on Catenary theory. The reasonability of Catenary theory in analyzing the vibration characteristic of flip-flow screen panels is verified by a published experiment. Moreover, the effects of the rotation speed of exciters, the incline angle, the slack length and the characteristics of the screen on the vertical deflection, the vertical velocity and the vertical acceleration of the screen panel are investigated parametrically. The results show that the rotation speed of exciters, the incline angle, the slack length and the characteristics of the screen have significant effects on the vibrations of an inclined flip-flow screen panel, and these parameters should be optimized.

  10. Sound radiation from a flanged inclined duct.

    PubMed

    McAlpine, Alan; Daymond-King, Alex P; Kempton, Andrew J

    2012-12-01

    A simple method to calculate sound radiation from a flanged inclined duct is presented. An inclined annular duct is terminated by a rigid vertical plane. The duct termination is representative of a scarfed exit. The concept of a scarfed duct has been examined in turbofan aero-engines as a means to, potentially, shield a portion of the radiated sound from being transmitted directly to the ground. The sound field inside the annular duct is expressed in terms of spinning modes. Exterior to the duct, the radiated sound field owing to each mode can be expressed in terms of its directivity pattern, which is found by evaluating an appropriate form of Rayleigh's integral. The asymmetry is shown to affect the amplitude of the principal lobe of the directivity pattern, and to alter the proportion of the sound power radiated up or down. The methodology detailed in this article provides a simple engineering approach to investigate the sound radiation for a three-dimensional problem.

  11. Heat transfer enhancement induced by wall inclination in turbulent thermal convection

    NASA Astrophysics Data System (ADS)

    Kenjereš, Saša

    2015-11-01

    We present a series of numerical simulations of turbulent thermal convection of air in an intermediate range or Rayleigh numbers (106≤Ra ≤109 ) with different configurations of a thermally active lower surface. The geometry of the lower surface is designed in such a way that it represents a simplified version of a mountain slope with different inclinations (i.e., "Λ "- and "V "-shaped geometry). We find that different wall inclinations significantly affect the local heat transfer by imposing local clustering of instantaneous thermal plumes along the inclination peaks. The present results reveal that significant enhancement of the integral heat transfer can be obtained (up to 32%) when compared to a standard Rayleigh-Bénard configuration with flat horizontal walls. This is achieved through combined effects of the enlargement of the heated surface and reorganization of the large-scale flow structures.

  12. Proposal of a novel compact P-band magnetically insulated transmission line oscillator with inclined vanes

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoping; Dang, Fangchao; Li, Yangmei; Jin, Zhenxing

    2015-06-01

    In this paper, we present a novel compact P-band magnetically insulated transmission line oscillator (MILO) with specially inclined slow-wave-structure (SWS) vanes to decrease its total dimension and weight. The dispersion characteristics of the inclined SWS are investigated in detail and made comparisons with that of the traditional straight SWS. The results show that the inclined SWS is more advantageous in operating on a steady frequency in a wide voltage range and has a better asymmetric mode segregation and a relatively large band-gap between the TM00 and TM01 modes which are in favor of avoiding the asymmetric and transverse mode competition. Besides, the transverse dimension of the proposed novel inclined SWS with the same operation frequency is decreased by about 50%, and correspondingly the device volume shrinks remarkably to its 0.35 times. In particle-in-cell simulation, the electron bunching spokes are obviously formed in the inclined SWS, and a P-band high-power microwave with a power of 5.8 GW, frequency of 645 MHz, and efficiency of 17.2% is generated by the proposed device, which indicates the feasibility of the compact design with the inclined vanes at the P-band.

  13. The Occurrence of Ridge-and-Runnel Beach Morphology Associated with Deep-Water Wave Steepness on New York's Ocean Coast

    NASA Astrophysics Data System (ADS)

    Bokuniewicz, H.; Fallon, K.

    2017-12-01

    The occurrences of ridge-and-runnels were documented along the ocean shoreline of New York. These ephemeral beach morphologies represent the post-storm recovery period as sand eroded from the subaerial beach makes its way back on shore. Daily images from a camera in East Hampton, NY (40.964;-72.185) were examined to look for the occurrence and duration of ridge-and-runnel events between October 2010 to November 2012 and again from February 2014 to July 2016. Seventy-five ridge-and-runnel events were seen lasting between one to seven days, and representing about 16% of the time. Deep-water wave steepness has long been used as a parameter to determine beach erosion and accretion, because steep waves remove sand from the subaerial beach and deposit it as an offshore bar which remains until waves of low steepness return it. The time series of wave steepness (NOAA Buoy 44017) was found to be dominated by rapid increases to values of about 0.06 followed by gradual decays to about 0.012. Wave steepness is positively correlated to wind speed representing the passage of mesoscale weather systems. These cycles occurred about every five days; when ridge-and runnels occurred, they appeared, on average, 2.7 days after the peak in wave steepness.

  14. Assessment of Postural Stability using Inertial Measurement Unit on Inclined Surfaces in Healthy Adults

    PubMed Central

    Frames, Chris; Soangra, Rahul; Lockhart, Thurmon E.

    2013-01-01

    Fatal and nonfatal falls in the construction domain remain a significant issue in today’s workforce. The roofing industry in particular, annually ranks amongst the highest in all industries. Exposure to an inclined surface, such as an inclined roof surface, has been reported to have adverse effects on postural stability. The purpose of this preliminary study was to investigate the intra-individual differences in stability parameters on both inclined and level surfaces. Postural Stability (PS) and Limit of Stability (LOS) were assessed in seven healthy subjects (aged 25-35 years) on inclined and level surfaces using embedded force plates and an Inertial Measurement Unit (IMU). Four 90-second trials were collected on the inclined surface in distinctive positions: (1) Toes raised 20° above heel; (2) Heels raised 20° above toes (3); Transverse direction with dominant foot inverted at a lower height; (4) Transverse direction with non-dominant foot inverted at a lower height. Limit of Stability was evaluated by the two measurement devices in all four directions and margin of safety was quantified for each individual on both surfaces. The results reveal significant differences in postural stability between the flat surface condition and the inclined surface condition when subject was positioned perpendicular to the surface slope with one foot descended below the other; specifically, a significant increase was identified when visual support was interrupted. The findings lend support to the literature and will assist in future research regarding early detection of postural imbalance and preventative measures to reduce fall risks in professions where workers are consistently exposed to inclined surfaces. PMID:23686205

  15. Transient river response, captured by channel steepness and its concavity

    NASA Astrophysics Data System (ADS)

    Vanacker, Veerle; von Blanckenburg, Friedhelm; Govers, Gerard; Molina, Armando; Campforts, Benjamin; Kubik, Peter W.

    2015-01-01

    Mountain rivers draining tropical regions are known to be great conveyor belts carrying efficiently more than half of the global sediment flux to the oceans. Many tropical mountain areas are located in tectonically active belts where the hillslope and stream channel morphology are rapidly evolving in response to changes in base level. Here, we report basin-wide denudation rates for an east-west transect through the tropical Andes. Hillslope and channel morphology vary systematically from east to west, reflecting the transition from high relief, strongly dissected topography in the escarpment zones into relatively low relief topography in the inter-Andean valley. The spatial pattern of differential denudation rates reflects the transient adjustment of the landscape to rapid river incision following tectonic uplift and river diversion. In the inter-Andean valley, upstream of the wave of incision, slopes and river channels display a relatively smooth, concave-up morphology and denudation rates (time scale of 104-105 a) are consistently low (3 to 200 mm/ka). In contrast, slopes and river channels of rejuvenated basins draining the eastern cordillera are steep to very steep; and the studied drainage basins show a wide range of denudation rate values (60 to 400 mm/ka) that increase systematically with increasing basin mean slope gradient, channel steepness, and channel convexity. Drainage basins that are characterised by strong convexities in their river longitudinal profiles systematically have higher denudation rates. As such, this is one of the first studies that provides field-based evidence of a correlation between channel concavity and basin mean denudation rates, consistent with process-based fluvial incision models.

  16. Seismic Monitoring of Bedload Transport in a Steep Mountain Catchment

    NASA Astrophysics Data System (ADS)

    Roth, D. L.; Finnegan, N. J.; Brodsky, E. E.; Turowski, J. M.; Wyss, C. R.; Badoux, A.

    2014-12-01

    Predicting river channel evolution relies on an understanding of when and at what rate coarse sediment moves in a channel. Unfortunately, our predictive abilities are limited by the logistical challenges and potential dangers inherent in current techniques for monitoring sediment transport during flood events, especially in steep, highly active landscapes. However, the use of seismic signals near rivers shows promise as a safe, low-cost method for studying sediment transport in these settings. Seismic signals near rivers are partially generated by both water turbulence and bedload sediment particles impacting the river bed during transport. Here, we attempt to isolate the seismic signatures of discharge and bedload transport in a steep mountain channel by examining high-frequency broadband seismic data from the well-studied Erlenbach stream (local slope of ~10%) in the Swiss Prealps. The extensive monitoring infrastructure and long history of sediment transport data at this field site allow us to independently constrain discharge, precipitation, and bedload transport during flood events over a two month field campaign. We perform a general linear least squares inversion of the seismic data, exploiting times with isolated rain or discharge events, to identify the spectral signals of water turbulence, rain, and bedload sediment transport. We find that the signal generated by rain exhibits a roughly broadband spectrum, while discharge and sediment transport exhibit power primarily in lower frequency bands. Our preliminary results indicate that with only precipitation and discharge data, it is possible to isolate the seismic signal of bedload transport in steep fluvial environments. Seismic studies may therefore have the potential to revolutionize our ability to monitor and understand these environments.

  17. Deriving stellar inclination of slow rotators using stellar activity signal

    NASA Astrophysics Data System (ADS)

    Dumusque, Xavier

    2015-01-01

    Stellar inclination is an important parameter for many astrophysical studies. In the context of exoplanets, this allows us to derive the true obliquity of a system if the projected stellar spin-planetary orbit angle can measured via the Rossiter-Mclaughlin effect. Although different techniques allow us to estimate stellar inclination for fast rotators, it becomes much more difficult when stars are rotating slower than 2-2.5 km.s-1. By using the new activity simulation SOAP 2.0 that can reproduce the photometric and spectroscopic variations induced by stellar activity, we are able to fit the activity variation of solar-type stars and derive their inclination. The case of the equator-on star HD189733 will be presented, as well as the case of Alpha Centauri B, which present an inclination of 45+9-19 degrees, implying that the earth-mass orbiting planet is not transiting if aligned with its host star. Other exemples will also demonstrate the power of the technique, that can infer a stellar inclination, even for slow rotators like Alpha Centauri B, that present a projected rotational velocity smaller than 1.15 km.s-1. In addition, the SOAP 2.0 simulation can be used to correct for the effect of activity when one major active region is dominating the RV signal. This could enhance the detection of small mass exoplanets orbiting slightly active stars.This project is funded by ETAEARTH (European Union Seventh Framework Programme (FP7/2007-2013) under Grant Agreement n. 313014), a transnational collaboration between European countries and the US (the Swiss Space Office, the Harvard Origin of Life Initiative, the Scottish Universities Physics Alliance, the University of Geneva, the Smithsonian Astrophysical Observatory, the Italian National Astrophysical Institute, the University of St. Andrews, Queens University Belfast, and the University of Edinburgh) setup to optimize the synergy between space-and ground-based data whose scientific potential for the characterization of

  18. The Ballistic Cart on an Incline Revisited.

    ERIC Educational Resources Information Center

    Serway, Raymond A.; And Others

    1995-01-01

    Presents the theory behind the mechanics demonstration that involves projecting a ball vertically upward from a ballistic cart moving along an inclined plane. The measured overshoot is believed to be due, in part, to the presence of rolling friction and the inertial properties of the cart wheels. (JRH)

  19. 47 CFR 25.280 - Inclined orbit operations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... inclined orbit; and (4) Continue to maintain the space station at the authorized longitude orbital location in the geostationary satellite arc with the appropriate east-west station-keeping tolerance. [69 FR... Commission is notified by letter within 30 days after the last north-south station keeping maneuver. The...

  20. 47 CFR 25.280 - Inclined orbit operations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... inclined orbit; and (4) Continue to maintain the space station at the authorized longitude orbital location in the geostationary satellite arc with the appropriate east-west station-keeping tolerance. [69 FR... Commission is notified by letter within 30 days after the last north-south station keeping maneuver. The...

  1. 47 CFR 25.280 - Inclined orbit operations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... inclined orbit; and (4) Continue to maintain the space station at the authorized longitude orbital location in the geostationary satellite arc with the appropriate east-west station-keeping tolerance. [69 FR... Commission is notified by letter within 30 days after the last north-south station keeping maneuver. The...

  2. 47 CFR 25.280 - Inclined orbit operations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... inclined orbit; and (4) Continue to maintain the space station at the authorized longitude orbital location in the geostationary satellite arc with the appropriate east-west station-keeping tolerance. [69 FR... Commission is notified by letter within 30 days after the last north-south station keeping maneuver. The...

  3. Steep cut slope composting : field trials and evaluation : project summary report.

    DOT National Transportation Integrated Search

    2011-04-01

    This project is a continuation of earlier work performed by Montana State University (Jennings et al. 2007) evaluating compost application on, and incorporation into, soils on steep cut slopes for the Montana Department of Transportation (MDT). The e...

  4. Simulation of drop movement over an inclined surface using smoothed particle hydrodynamics.

    PubMed

    Das, Arup K; Das, Prasanta K

    2009-10-06

    Smoothed particle hydrodynamics (SPH) is used to numerically simulate the movement of drops down an inclined plane. Diffuse interfaces have been assumed for tracking the motion of the contact line. The asymmetric shape of the three-dimensional drop and the variation of contact angle along its periphery can be calculated using the simulation. During the motion of a liquid drop down an inclined plane, an internal circulation of liquid particles is observed due to gravitational pull which causes periodic change in the drop shape. The critical angle of inclination required for the inception of drop motion is also evaluated for different fluids as a function of drop volume. The numerical predictions exhibit a good agreement with the published experimental results.

  5. It's time to look at yarding problems on steep slopes.

    Treesearch

    Robert H. Ruth

    1960-01-01

    In many parts of the Pacific Northwest, logging operations are moving into rugged terrain as access roads probe deeper into the back country. Because of this trend, it's time to look more carefully at steep slopes and decide on the best possible management practices consistent with maximum protection against erosion.

  6. Effective superelevation for large trucks on sharp curves and steep grades

    DOT National Transportation Integrated Search

    2002-10-01

    This project was undertaken to identify the particular problems faced by trucks on sharp curves on steep grades, such as rebuilt switchback curves on mountainous two-lane, two-way roads and the high speed downgrade curves found on West Virginia's lim...

  7. Droplet Depinning on Inclined Surfaces at High Reynolds Numbers

    NASA Astrophysics Data System (ADS)

    White, Edward; Singh, Natasha; Lee, Sungyon

    2017-11-01

    Contact angle hysteresis enables a sessile liquid drop to adhere to a solid surface when the surface is inclined, the drop is exposed to gas-phase flow, or the drop is exposed to both forcing modalities. Previous work by Schmucker and White (2012.DFD.M4.6) identified critical depinning Weber numbers for water drops subject to gravity- and wind-dominated forcing. This work extends the Schmucker and White data and finds the critical depinning Weber number obeys a two-slope linear model. Under pure wind forcing at Reynolds numbers above 1500 and with zero surface inclination, Wecrit = 8.0 . For non-zero inclinations, α, Wecrit decreases proportionally to A Bo sinα where A is the drop aspect ratio and Bo is its Bond number. The same relationship holds for α < 0 when gravity resists depinning by wind. Above We 4 , depinning is dominated by wind forcing; at We < 4 , depinning is gravity dominated. While Wecrit depends linearly on A Bo sinα in both forcing regimes, the slopes of the the limit lines depend on the forcing regime. The difference is attributed to different drop shapes and contact angle distributions that arise depending on whether wind or gravity dominates the depinning behavior. Supported by the National Science Foundation through Grant CBET-1605947.

  8. Proposal of a novel compact P-band magnetically insulated transmission line oscillator with inclined vanes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xiaoping, E-mail: zhangxiaoping@nudt.edu.cn; Dang, Fangchao; Li, Yangmei

    2015-06-15

    In this paper, we present a novel compact P-band magnetically insulated transmission line oscillator (MILO) with specially inclined slow-wave-structure (SWS) vanes to decrease its total dimension and weight. The dispersion characteristics of the inclined SWS are investigated in detail and made comparisons with that of the traditional straight SWS. The results show that the inclined SWS is more advantageous in operating on a steady frequency in a wide voltage range and has a better asymmetric mode segregation and a relatively large band-gap between the TM{sub 00} and TM{sub 01} modes which are in favor of avoiding the asymmetric and transversemore » mode competition. Besides, the transverse dimension of the proposed novel inclined SWS with the same operation frequency is decreased by about 50%, and correspondingly the device volume shrinks remarkably to its 0.35 times. In particle-in-cell simulation, the electron bunching spokes are obviously formed in the inclined SWS, and a P-band high-power microwave with a power of 5.8 GW, frequency of 645 MHz, and efficiency of 17.2% is generated by the proposed device, which indicates the feasibility of the compact design with the inclined vanes at the P-band.« less

  9. Modelling approaches for pipe inclination effect on deposition limit velocity of settling slurry flow

    NASA Astrophysics Data System (ADS)

    Matoušek, Václav; Kesely, Mikoláš; Vlasák, Pavel

    2018-06-01

    The deposition velocity is an important operation parameter in hydraulic transport of solid particles in pipelines. It represents flow velocity at which transported particles start to settle out at the bottom of the pipe and are no longer transported. A number of predictive models has been developed to determine this threshold velocity for slurry flows of different solids fractions (fractions of different grain size and density). Most of the models consider flow in a horizontal pipe only, modelling approaches for inclined flows are extremely scarce due partially to a lack of experimental information about the effect of pipe inclination on the slurry flow pattern and behaviour. We survey different approaches to modelling of particle deposition in flowing slurry and discuss mechanisms on which deposition-limit models are based. Furthermore, we analyse possibilities to incorporate the effect of flow inclination into the predictive models and select the most appropriate ones based on their ability to modify the modelled deposition mechanisms to conditions associated with the flow inclination. A usefulness of the selected modelling approaches and their modifications are demonstrated by comparing model predictions with experimental results for inclined slurry flows from our own laboratory and from the literature.

  10. Geomagnetic field variations during the last 400 kyr in the western equatorial Pacific: Paleointensity-inclination correlation revisited

    NASA Astrophysics Data System (ADS)

    Yamazaki, T.; Kanamatsu, T.; Mizuno, S.; Hokanishi, N.; Gaffar, E. Z.

    2008-12-01

    A paleomagnetic study was conducted on four piston cores newly obtained from the West Caroline Basin in the western equatorial Pacific in order to investigate variations in paleointensity and inclination during the last 400 kyr. An inclination-intensity correlation was previously reported in this region using giant piston cores, but the quality of the paleomagnetic data of the younger end, the last ca. 300 kyr, was needed to be checked because the upper part of the giant piston cores could suffer from perturbation by oversampling. Age control is based on the oxygen-isotope ratios for one core and inter-core correlation using relative paleointensity for other cores. The mean inclinations of the four cores show negative inclination anomalies ranging from -5.2 to -11.2 degree. The western equatorial Pacific is documented as a region of a large negative inclination anomalies, and the observed values are comparable to those expected from the time-averaged field (TAF) models [Johnson and Constable, 1997; Hatakeyama and Kono, 2002]. Stacked curves of paleointensity and inclination were constructed from the four cores. It was confirmed that geomagnetic variations on the order of 10 to 100 kyrs occur in inclination as well as paleointensity. A cross-correlation analysis showed that significant in-phase correlation occurs between intensity and inclination for periods longer than about 25 kyr, and power spectra of both paleointensity and inclination variations have peaks at ~100 kyr periods. The regional paleointensity stack with higher resolution than the Sint-800 stack [Guyodo and Valet, 1999] should be useful for paleointensity-assisted chronostratigraphy.

  11. Contact of dual mobility implants: effects of cup wear and inclination.

    PubMed

    Uddin, M S

    2015-01-01

    Cup wear and inclination on the pelvic bone are significant factors, which change the contact of the articulating surfaces, thus, impacting the long-term performance of hip implants. This paper presents a finite element (FE) analysis of the contact of the dual mobility implants under the influence of cup wear and inclination. A 3D FE model of the implant was developed with the application of equivalent physiological loading and boundary conditions. Effects of cup inclination angle ranging from 45° to 60° and the wear depth ranging from 0 to 2.46 mm equivalent to up to 30 years of the implant's life on the contact pressure and von Mises stress were investigated. Simulation results show that the contact pressure and von Mises stress decrease significantly with a modest wear depth and remains quite in-sensitive to the cup inclination angle and wear depth up to 1.64 mm. With wear depth further up to 2.46 mm, the cup thickness (i.e. cup thinning on worn region) may be more predominant than increasing of contact area between the cup and the head. The wear on the inner surface of the cup is found to rule out the overall contact pressure and stress in the implant. Furthermore, individual and combined effects of both important parameters are analysed and discussed with respect to available clinical/laboratory studies.

  12. Egalitarian despots: hierarchy steepness, reciprocity and the grooming-trade model in wild chimpanzees, Pan troglodytes.

    PubMed

    Kaburu, Stefano S K; Newton-Fisher, Nicholas E

    2015-01-01

    Biological market theory models the action of natural selection as a marketplace in which animals are viewed as traders with commodities to offer and exchange. Studies of female Old World monkeys have suggested that grooming might be employed as a commodity to be reciprocated or traded for alternative services, yet previous tests of this grooming-trade model in wild adult male chimpanzees have yielded mixed results. Here we provide the strongest test of the model to date for male chimpanzees: we use data drawn from two social groups (communities) of chimpanzees from different populations and give explicit consideration to variation in dominance hierarchy steepness, as such variation results in differing conditions for biological markets. First, analysis of data from published accounts of other chimpanzee communities, together with our own data, showed that hierarchy steepness varied considerably within and across communities and that the number of adult males in a community aged 20-30 years predicted hierarchy steepness. The two communities in which we tested predictions of the grooming-trade model lay at opposite extremes of this distribution. Second, in accord with the grooming-trade model, we found evidence that male chimpanzees trade grooming for agonistic support where hierarchies are steep (despotic) and consequent effective support is a rank-related commodity, but not where hierarchies are shallow (egalitarian). However, we also found that grooming was reciprocated regardless of hierarchy steepness. Our findings also hint at the possibility of agonistic competition, or at least exclusion, in relation to grooming opportunities compromising the free market envisioned by biological market theory. Our results build on previous findings across chimpanzee communities to emphasize the importance of reciprocal grooming exchanges among adult male chimpanzees, which can be understood in a biological markets framework if grooming by or with particular individuals is a

  13. Egalitarian despots: hierarchy steepness, reciprocity and the grooming-trade model in wild chimpanzees, Pan troglodytes

    PubMed Central

    Kaburu, Stefano S. K.; Newton-Fisher, Nicholas E.

    2014-01-01

    Biological market theory models the action of natural selection as a marketplace in which animals are viewed as traders with commodities to offer and exchange. Studies of female Old World monkeys have suggested that grooming might be employed as a commodity to be reciprocated or traded for alternative services, yet previous tests of this grooming-trade model in wild adult male chimpanzees have yielded mixed results. Here we provide the strongest test of the model to date for male chimpanzees: we use data drawn from two social groups (communities) of chimpanzees from different populations and give explicit consideration to variation in dominance hierarchy steepness, as such variation results in differing conditions for biological markets. First, analysis of data from published accounts of other chimpanzee communities, together with our own data, showed that hierarchy steepness varied considerably within and across communities and that the number of adult males in a community aged 20–30 years predicted hierarchy steepness. The two communities in which we tested predictions of the grooming-trade model lay at opposite extremes of this distribution. Second, in accord with the grooming-trade model, we found evidence that male chimpanzees trade grooming for agonistic support where hierarchies are steep (despotic) and consequent effective support is a rank-related commodity, but not where hierarchies are shallow (egalitarian). However, we also found that grooming was reciprocated regardless of hierarchy steepness. Our findings also hint at the possibility of agonistic competition, or at least exclusion, in relation to grooming opportunities compromising the free market envisioned by biological market theory. Our results build on previous findings across chimpanzee communities to emphasize the importance of reciprocal grooming exchanges among adult male chimpanzees, which can be understood in a biological markets framework if grooming by or with particular individuals is

  14. Spatiotemporal Variability of Hillslope Soil Moisture Across Steep, Highly Dissected Topography

    NASA Astrophysics Data System (ADS)

    Jarecke, K. M.; Wondzell, S. M.; Bladon, K. D.

    2016-12-01

    Hillslope ecohydrological processes, including subsurface water flow and plant water uptake, are strongly influenced by soil moisture. However, the factors controlling spatial and temporal variability of soil moisture in steep, mountainous terrain are poorly understood. We asked: How do topography and soils interact to control the spatial and temporal variability of soil moisture in steep, Douglas-fir dominated hillslopes in the western Cascades? We will present a preliminary analysis of bimonthly soil moisture variability from July-November 2016 at 0-30 and 0-60 cm depth across spatially extensive convergent and divergent topographic positions in Watershed 1 of the H.J. Andrews Experimental Forest in central Oregon. Soil moisture monitoring locations were selected following a 5 m LIDAR analysis of topographic position, aspect, and slope. Topographic position index (TPI) was calculated as the difference in elevation to the mean elevation within a 30 m radius. Convergent (negative TPI values) and divergent (positive TPI values) monitoring locations were established along northwest to northeast-facing aspects and within 25-55 degree slopes. We hypothesized that topographic position (convergent vs. divergent), as well as soil physical properties (e.g., texture, bulk density), control variation in hillslope soil moisture at the sub-watershed scale. In addition, we expected the relative importance of hillslope topography to the spatial variability in soil moisture to differ seasonally. By comparing the spatiotemporal variability of hillslope soil moisture across topographic positions, our research provides a foundation for additional understanding of subsurface flow processes and plant-available soil-water in forests with steep, highly dissected terrain.

  15. 6. VIEW NORTH, LOWER STATION EAST SIDE. Monongahela Incline ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. VIEW NORTH, LOWER STATION EAST SIDE. - Monongahela Incline Plane, Connecting North side of Grandview Avenue at Wyoming Street with West Carson Street near Smithfield Street, Pittsburgh, Allegheny County, PA

  16. 26. UPPER STATION, LOWER FLOOR, BULL WHEEL. Monongahela Incline ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. UPPER STATION, LOWER FLOOR, BULL WHEEL. - Monongahela Incline Plane, Connecting North side of Grandview Avenue at Wyoming Street with West Carson Street near Smithfield Street, Pittsburgh, Allegheny County, PA

  17. A highly accurate dynamic contact angle algorithm for drops on inclined surface based on ellipse-fitting.

    PubMed

    Xu, Z N; Wang, S Y

    2015-02-01

    To improve the accuracy in the calculation of dynamic contact angle for drops on the inclined surface, a significant number of numerical drop profiles on the inclined surface with different inclination angles, drop volumes, and contact angles are generated based on the finite difference method, a least-squares ellipse-fitting algorithm is used to calculate the dynamic contact angle. The influences of the above three factors are systematically investigated. The results reveal that the dynamic contact angle errors, including the errors of the left and right contact angles, evaluated by the ellipse-fitting algorithm tend to increase with inclination angle/drop volume/contact angle. If the drop volume and the solid substrate are fixed, the errors of the left and right contact angles increase with inclination angle. After performing a tremendous amount of computation, the critical dimensionless drop volumes corresponding to the critical contact angle error are obtained. Based on the values of the critical volumes, a highly accurate dynamic contact angle algorithm is proposed and fully validated. Within nearly the whole hydrophobicity range, it can decrease the dynamic contact angle error in the inclined plane method to less than a certain value even for different types of liquids.

  18. Tenebrio beetles use magnetic inclination compass

    NASA Astrophysics Data System (ADS)

    Vácha, Martin; Drštková, Dana; Půžová, Tereza

    2008-08-01

    Animals that guide directions of their locomotion or their migration routes by the lines of the geomagnetic field use either polarity or inclination compasses to determine the field polarity (the north or south direction). Distinguishing the two compass types is a guideline for estimation of the molecular principle of reception and has been achieved for a number of animal groups, with the exception of insects. A standard diagnostic method to distinguish a compass type is based on reversing the vertical component of the geomagnetic field, which leads to the opposite reactions of animals with two different compass types. In the present study, adults of the mealworm beetle Tenebrio molitor were tested by means of a two-step laboratory test of magnetoreception. Beetles that were initially trained to memorize the magnetic position of the light source preferred, during the subsequent test, this same direction, pursuant geomagnetic cues only. In the following step, the vertical component was reversed between the training and the test. The beetles significantly turned their preferred direction by 180°. Our results brought until then unknown original findings that insects, represented here by the T. molitor species, use—in contrast to another previously researched Arthropod, spiny lobster—the inclination compass.

  19. Evaluation of organic matter addition and incorporation on steep cut slopes : phase II, test plot construction and performance monitoring.

    DOT National Transportation Integrated Search

    2007-04-01

    Erosion of steep highway cut slopes in Montana is often times the consequence of poor vegetation development : in nutrient-poor growth media resulting from highway construction where topsoil cannot physically be replaced : due to slope steepness. Top...

  20. Long-term motion of resonant satellites with arbitrary eccentricity and inclination

    NASA Technical Reports Server (NTRS)

    Nacozy, P. E.; Diehl, R. E.

    1982-01-01

    A first-order, semi-analytical method for the long-term motion of resonant satellites is introduced. The method provides long-term solutions, valid for nearly all eccentricities and inclinations, and for all commensurability ratios. The method allows the inclusion of all zonal and tesseral harmonics of a nonspherical planet. We present here an application of the method to a synchronous satellite including J2 and J22 harmonics. Global, long-term solutions for this problem are given for arbitrary values of eccentricity, argument of perigee and inclination.

  1. An inclined plane system with microcontroller to determine limb motor function of laboratory animals.

    PubMed

    Chang, Ming-Wen; Young, Ming-Shing; Lin, Mao-Tsun

    2008-02-15

    This study describes a high-accuracy inclined plane test system for quantitative measurement of the limb motor function of laboratory rats. The system is built around a microcontroller and uses a stepping motor to drive a ball screw, which changes the angle of the inclined plane. Any of the seven inclination speeds can be selected by the user. Two infrared (IR) LED/detector pairs function as interrupt sensors for objective determination of the moment that the rat loses its grip on the textured flooring of the starting area and slips down the plane. Inclination angle at the moment of IR interrupt (i.e. rat slip) is recorded. A liquid crystal display module shows the inclination speed and the inclination angle. The system can function as a stand alone device but a RS232 port allows connection to a personal computer (PC), so data can be sent directly to hard disk for storage and analysis. Experiments can be controlled by a local keypad or by the connected PC. Advantages of the presented system include easy operation, high accuracy, non-dependence on human observation for determination of slip angle, stand-alone capability, low cost and easy modification of the controlling software for different types of experiments. A fully functional prototype of the system is described. The prototype was used experimentally by a hospital group testing traumatic brain injury experiments, and some of their results are presented for system verification. It is found that the system is stable, accurate and easily used by investigators.

  2. Alcohol-Approach Inclinations and Drinking Identity as Predictors of Behavioral Economic Demand for Alcohol

    PubMed Central

    Ramirez, Jason J.; Dennhardt, Ashley A.; Baldwin, Scott A.; Murphy, James G.; Lindgren, Kristen P.

    2016-01-01

    Behavioral economic demand curve indices of alcohol consumption reflect decisions to consume alcohol at varying costs. Although these indices predict alcohol-related problems beyond established predictors, little is known about the determinants of elevated demand. Two cognitive constructs that may underlie alcohol demand are alcohol-approach inclinations and drinking identity. The aim of this study was to evaluate implicit and explicit measures of these constructs as predictors of alcohol demand curve indices. College student drinkers (N = 223, 59% female) completed implicit and explicit measures of drinking identity and alcohol-approach inclinations at three timepoints separated by three-month intervals, and completed the Alcohol Purchase Task to assess demand at Time 3. Given no change in our alcohol-approach inclinations and drinking identity measures over time, random intercept-only models were used to predict two demand indices: Amplitude, which represents maximum hypothetical alcohol consumption and expenditures, and Persistence, which represents sensitivity to increasing prices. When modeled separately, implicit and explicit measures of drinking identity and alcohol-approach inclinations positively predicted demand indices. When implicit and explicit measures were included in the same model, both measures of drinking identity predicted Amplitude, but only explicit drinking identity predicted Persistence. In contrast, explicit measures of alcohol-approach inclinations, but not implicit measures, predicted both demand indices. Therefore, there was more support for explicit, versus implicit, measures as unique predictors of alcohol demand. Overall, drinking identity and alcohol-approach inclinations both exhibit positive associations with alcohol demand and represent potentially modifiable cognitive constructs that may underlie elevated demand in college student drinkers. PMID:27379444

  3. Variation of the Friction Coefficient for a Cylinder Rolling down an Inclined Board

    ERIC Educational Resources Information Center

    Yan, Zixiang; Xia, Heming; Lan, Yueheng; Xiao, Jinghua

    2018-01-01

    A cylinder rolling down an inclined board is a commonly seen and interesting object to study and it is also easy to experiment with and model. Following what has become a popular practice, we use smartphones to measure the angular acceleration of a cylinder rolling down a plane of different inclining angles. The friction force deviates from the…

  4. Effects of low frequency ultrasonic treatment on the maturation of steeped greengage wine.

    PubMed

    Zheng, Xinhua; Zhang, Min; Fang, Zhongxiang; Liu, Yaping

    2014-11-01

    To accelerate wine maturation, low frequency ultrasonic waves of 28 kHz and 45 kHz were used to treat the steeped greengage wine. The contents of total acid, total ester, fusel oils and the wine chromaticity were determined before and after the ultrasonic treatment. The volatile compounds were analysed by GC-MS method, and the sensory quality was evaluated by panelist. The results indicated that ultrasonic treatment of the steeped greengage wine at 45 kHz 360 W for 30 min was effective to accelerate the aging process, where the fusel oils and alcohol compounds were significantly reduced and acid and ester compounds were significantly increased. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. On motions of a carrier with a mobile load along a rough inclined plane

    NASA Astrophysics Data System (ADS)

    Bilchenko, Grigory; Bilchenko, Grigory; Bilchenko, Nataly

    2018-05-01

    A mechanical system consisting of a carrier and a load is considered. The load can move respectively to the carrier according to a predetermined motion law. The carrier can move translationally along a rectilinear trajectory on a rough inclined plane. The trajectory is the line of the greatest descent. The axis of the rectilinear channel, along which the load moves, is located in a vertical plane passing through the trajectory of the carrier. The Coulomb dry friction model is applied for simulation the forces of resistance to the motion of the carrier from the side of the underlying inclined plane. The extreme value of plane inclination angle at which the carrier is at rest, when the load is stationary, is obtained by taking into account the frictional forces of sliding at rest. Differential equations of motion of a carrier with a load moving with respect to the carrier are obtained taking into account the requirement of motion of the carrier along an inclined plane without detachment. The determining relationships are given which made it possible to classify the types of carrier motion when the channel setting angle and the plane inclination angle are related by a certain inequality. The results of computational experiments are presented.

  6. Contour Planting: A Strategy to Reduce Soil Erosion on Steep Slopes

    USDA-ARS?s Scientific Manuscript database

    Practices that combine GPS-based guidance for terrain contouring and tillage for runoff detention have potential to increase water infiltration and reduce runoff. The objective of this study was to investigate contour planting as a means to reduce soil erosion on steep slopes of the Columbia Platea...

  7. Rapid granular flows on a rough incline: phase diagram, gas transition, and effects of air drag.

    PubMed

    Börzsönyi, Tamás; Ecke, Robert E

    2006-12-01

    We report experiments on the overall phase diagram of granular flows on an incline with emphasis on high inclination angles where the mean layer velocity approaches the terminal velocity of a single particle free falling in air. The granular flow was characterized by measurements of the surface velocity, the average layer height, and the mean density of the layer as functions of the hopper opening, the plane inclination angle, and the downstream distance x of the flow. At high inclination angles the flow does not reach an x -invariant steady state over the length of the inclined plane. For low volume flow rates, a transition was detected between dense and very dilute (gas) flow regimes. We show using a vacuum flow channel that air did not qualitatively change the phase diagram and did not quantitatively modify mean flow velocities of the granular layer except for small changes in the very dilute gaslike phase.

  8. Unit 5, upstream toward incline bridge Johnstown Local Flood ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Unit 5, upstream toward incline bridge - Johnstown Local Flood Protection Project, Beginning on Conemaugh River approx 3.8 miles downstream from confluence of Little Conemaugh & Stony Creek Rivers at Johnstown, Johnstown, Cambria County, PA

  9. Elevated view of city from incline Johnstown Local Flood ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Elevated view of city from incline - Johnstown Local Flood Protection Project, Beginning on Conemaugh River approx 3.8 miles downstream from confluence of Little Conemaugh & Stony Creek Rivers at Johnstown, Johnstown, Cambria County, PA

  10. Advanced Communications Technology Satellite (ACTS) Used for Inclined Orbit Operations

    NASA Technical Reports Server (NTRS)

    Bauer, Robert A.

    2000-01-01

    The Advanced Communications Technology Satellite (ACTS) is operated by the NASA Glenn Research Center at Lewis Field 24 hours a day, 7 days a week. ACTS, which was launched in September 1993, is in its 7th year of operations, far exceeding the system s planned 2 years of operations and 4 years of designed mission life. After 5 successful years of operating as a geostationary satellite, the spacecraft s North-South stationkeeping was discontinued in August 1998. The system is now operating in an inclined orbit that increases at a rate of 0.8 /yr. With only scarce fuel remaining, operating in this mode extends the usage of the still totally functional payload. Although tracking systems are now needed on the experimenter Earth stations, experiment operations have continued with very little disruption. This is the only known geosynchronous Ka-band (30/20 GHz) spot-beam satellite operating in an inclined orbit. The project began its transition from geostationary operations to inclined operations in August 1998. This did not interrupt operations and was transparent to the experimenters on the system. For the space segment, new daily procedures were implemented to maintain the pointing of the system s narrow 0.3 spot beams while the spacecraft drifts in the North-South direction. For the ground segment, modifications were designed, developed, and fielded for the three classes of experimenter Earth stations. With the next generation of commercial satellite systems still being developed, ACTS remains the only operational testbed for Ka-band geosynchronous satellite communications over the Western hemisphere. Since inclined orbit operations began, the ACTS experiments program has supported 43 investigations by industry, Government, and academic organizations, as well as four demonstrations. The project s goals for inclined-orbit operations now reflect a narrower focus in the types of experiments that will be done. In these days of "faster, better, cheaper," NASA is seeking

  11. Installation of a flow control device in an inclined air-curtain fume hood to control wake-induced exposure.

    PubMed

    Chen, Jia-Kun

    2016-08-01

    An inclined plate for flow control was installed at the lower edge of the sash of an inclined air-curtain fume hood to reduce the effects of the wake around a worker standing in front of the fume hood. Flow inside the fume hood is controlled by the inclined air-curtain and deflection plates, thereby forming a quad-vortex flow structure. Controlling the face velocity of the fume hood resulted in convex, straight, concave, and attachment flow profiles in the inclined air-curtain. We used the flow visualization and conducted a tracer gas test with a mannequin to determine the performance of two sash geometries, namely, the half-cylinder and inclined plate designs. When the half-cylinder design was used, the tracer gas test registered a high leakage concentration at Vf ≦ 57.1 fpm or less. This concentration occurred at the top of the sash opening, which was close to the breathing zone of the mannequin placed in front of the fume hood. When the inclined plate design was used, the containment was good, with concentrations of 0.002-0.004 ppm, at Vf ≦ 63.0 fpm. Results indicate that an inclined plate effectively reduces the leakage concentration induced by recirculation flow structures that form in the wake of a worker standing in front of an inclined air-curtain fume hood.

  12. Joint torques and joint reaction forces during squatting with a forward or backward inclined Smith machine.

    PubMed

    Biscarini, Andrea; Botti, Fabio M; Pettorossi, Vito E

    2013-02-01

    We developed a biomechanical model to determine the joint torques and loadings during squatting with a backward/forward-inclined Smith machine. The Smith squat allows a large variety of body positioning (trunk tilt, foot placement, combinations of joint angles) and easy control of weight distribution between forefoot and heel. These distinctive aspects of the exercise can be managed concurrently with the equipment inclination selected to unload specific joint structures while activating specific muscle groups. A backward (forward) equipment inclination decreases (increases) knee torque, and compressive tibiofemoral and patellofemoral forces, while enhances (depresses) hip and lumbosacral torques. For small knee flexion angles, the strain-force on the posterior cruciate ligament increases (decreases) with a backward (forward) equipment inclination, whereas for large knee flexion angles, this behavior is reversed. In the 0 to 60 degree range of knee flexion angles, loads on both cruciate ligaments may be simultaneously suppressed by a 30 degree backward equipment inclination and selecting, for each value of the knee angle, specific pairs of ankle and hip angles. The anterior cruciate ligament is safely maintained unloaded by squatting with backward equipment inclination and uniform/forward foot weight distribution. The conditions for the development of anterior cruciate ligament strain forces are clearly explained.

  13. Use of corn steep liquor as an economical nitrogen source for biosuccinic acid production by Actinobacillus succinogenes

    NASA Astrophysics Data System (ADS)

    Tan, J. P.; Jahim, J. M.; Wu, T. Y.; Harun, S.; Mumtaz, T.

    2016-06-01

    Expensive raw materials are the driving force that leads to the shifting of the petroleum-based succinic acid production into bio-based succinic acid production by microorganisms. Cost of fermentation medium is among the main factors contributing to the total production cost of bio-succinic acid. After carbon source, nitrogen source is the second largest component of the fermentation medium, the cost of which has been overlooked for the past years. The current study aimed at replacing yeast extract- a costly nitrogen source with corn steep liquor for economical production of bio-succinic acid by Actinobacillus succinogenes 130Z. In this study, a final succinic acid concentration of 20.6 g/L was obtained from the use of corn steep liquor as the nitrogen source, which was comparable with the use of yeast extract as the nitrogen source that had a final succinate concentration of 21.4 g/l. In terms of economical wise, corn steep liquor was priced at 200 /ton, which was one fifth of the cost of yeast extract at 1000 /ton. Therefore, corn steep liquor can be considered as a potential nitrogen source in biochemical industries instead of the costly yeast extract.

  14. LONG-LIVED CHAOTIC ORBITAL EVOLUTION OF EXOPLANETS IN MEAN MOTION RESONANCES WITH MUTUAL INCLINATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnes, Rory; Deitrick, Russell; Quinn, Thomas R.

    2015-03-10

    We present N-body simulations of resonant planets with inclined orbits that show chaotically evolving eccentricities and inclinations that can persist for at least 10 Gyr. A wide range of behavior is possible, from fast, low amplitude variations to systems in which eccentricities reach 0.9999 and inclinations 179.°9. While the orbital elements evolve chaotically, at least one resonant argument always librates. We show that the HD 73526, HD 45364, and HD 60532 systems may be in chaotically evolving resonances. Chaotic evolution is apparent in the 2:1, 3:1, and 3:2 resonances, and for planetary masses from lunar- to Jupiter-mass. In some cases, orbital disruption occurs aftermore » several gigayears, implying the mechanism is not rigorously stable, just long-lived relative to the main sequence lifetimes of solar-type stars. Planet-planet scattering appears to yield planets in inclined resonances that evolve chaotically in about 0.5% of cases. These results suggest that (1) approximate methods for identifying unstable orbital architectures may have limited applicability, (2) the observed close-in exoplanets may be produced during epochs of high eccentricit induced by inclined resonances, (3) those exoplanets' orbital planes may be misaligned with the host star's spin axis, (4) systems with resonances may be systematically younger than those without, (5) the distribution of period ratios of adjacent planets detected via transit may be skewed due to inclined resonances, and (6) potentially habitable planets may have dramatically different climatic evolution than Earth. The Gaia spacecraft is capable of discovering giant planets in these types of orbits.« less

  15. Transcriptional and computational study of expansins differentially expressed in response to inclination in radiata pine.

    PubMed

    Mateluna, Patricio; Valenzuela-Riffo, Felipe; Morales-Quintana, Luis; Herrera, Raúl; Ramos, Patricio

    2017-06-01

    Plants have the ability to reorient their vertical growth when exposed to inclination. This response can be as quick as 2 h in inclined young pine (Pinus radiata D. Don) seedlings, with over accumulation of lignin observed after 9 days s. Several studies have identified expansins involved in cell expansion among other developmental processes in plants. Six putative expansin genes were identified in cDNA libraries isolated from inclined pine stems. A differential transcript abundance was observed by qPCR analysis over a time course of inclination. Five genes changed their transcript accumulation in both stem sides in a spatial and temporal manner compared with non-inclined stem. To compare these expansin genes, and to suggest a possible mechanism of action at molecular level, the structures of the predicted proteins were built by comparative modeling methodology. An open groove on the surface of the proteins composed of conserved zresidues was observed. Using a cellulose polymer as ligand the protein-ligand interaction was evaluated, with the results showing differences in the protein-ligand interaction mode. Differences in the binding energy interaction can be explained by changes in some residues that generate differences in electrostatic surface in the open groove region, supporting the participation of six members of multifamily proteins in this specific process. The data suggests participation of different expansin proteins in the dissembling and remodeling of the complex cell wall matrix during the reorientation response to inclination. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  16. Hydrodynamic and thermal mechanisms of filtration combustion inclinational instability based on non-uniform distribution of initial preheating temperature

    NASA Astrophysics Data System (ADS)

    Xia, Yongfang; Shi, Junrui; Xu, Youning; Ma, Rui

    2018-03-01

    Filtration combustion (FC) is one style of porous media combustion with inert matrix, in which the combustion wave front propagates, only downstream or reciprocally. In this paper, we investigate the FC flame front inclinational instability of lean methane/air mixtures flowing through a packed bed as a combustion wave front perturbation of the initial preheating temperature non-uniformity is assumed. The predicted results show that the growth rate of the flame front inclinational angle is proportional to the magnitude of the initial preheating temperature difference. Additionally, depending on gas inlet gas velocity and equivalence ratio, it is demonstrated that increase of gas inlet gas velocity accelerates the FC wave front deformation, and the inclinational instability evolves faster at lower equivalence ratio. The development of the flame front inclinational angle may be regarded as a two-staged evolution, which includes rapid increase, and approaching maximum value of inclinational angle due to the quasi-steady condition of the combustion system. The hydrodynamic and thermal mechanisms of the FC inclinational instability are analyzed. Consequently, the local propagation velocity of the FC wave front is non-uniform to result in the development of inclinational angle at the first stage of rapid increase.

  17. Microwave inversion of leaf area and inclination angle distributions from backscattered data

    NASA Technical Reports Server (NTRS)

    Lang, R. H.; Saleh, H. A.

    1985-01-01

    The backscattering coefficient from a slab of thin randomly oriented dielectric disks over a flat lossy ground is used to reconstruct the inclination angle and area distributions of the disks. The disks are employed to model a leafy agricultural crop, such as soybeans, in the L-band microwave region of the spectrum. The distorted Born approximation, along with a thin disk approximation, is used to obtain a relationship between the horizontal-like polarized backscattering coefficient and the joint probability density of disk inclination angle and disk radius. Assuming large skin depth reduces the relationship to a linear Fredholm integral equation of the first kind. Due to the ill-posed nature of this equation, a Phillips-Twomey regularization method with a second difference smoothing condition is used to find the inversion. Results are obtained in the presence of 1 and 10 percent noise for both leaf inclination angle and leaf radius densities.

  18. Assessment of postural stability using inertial measurement unit on inclined surfaces in healthy adults - biomed 2013.

    PubMed

    Frames, Chris; Soangra, Rahul; Lockhart, Thurmon E

    2013-01-01

    Fatal and nonfatal falls in the construction domain remain a significant issue in today’s workforce. The roofing industry in particular, annually ranks amongst the highest in all industries. Exposure to an inclined surface, such as an inclined roof surface, has been reported to have adverse effects on postural stability. The purpose of this preliminary study was to investigate the intra-individual differences in stability parameters on both inclined and level surfaces. Postural Stability (PS) and Limit of Stability (LOS) were assessed in seven healthy subjects (aged 25-35 years) on inclined and level surfaces using embedded force plates and an Inertial Measurement Unit (IMU). Four 90-second trials were collected on the inclined surface in distinctive positions: (1) Toes raised 20o above heel; (2) Heels raised 20o above toes (3); Transverse direction with dominant foot inverted at a lower height; (4) Transverse direction with non-dominant foot inverted at a lower height. Limit of Stability was evaluated by the two measurement devices in all four directions and margin of safety was quantified for each individual on both surfaces. The results reveal significant differences in postural stability between the flat surface condition and the inclined surface condition when subject was positioned perpendicular to the surface slope with one foot descended below the other; specifically, a significant increase was identified when visual support was interrupted. The findings lend support to the literature and will assist in future research regarding early detection of postural imbalance and preventative measures to reduce fall risks in professions where workers are consistently exposed to inclined surfaces.

  19. Transition to turbulence in stratified shear flow: experiments in an inclined square duct

    NASA Astrophysics Data System (ADS)

    Meyer, Colin; Linden, Paul

    2013-11-01

    We describe laboratory experiments of countercurrent stratified shear flow in an inclined square duct. To achieve this, a long water tank was partitioned into regions of higher and lower density saltwater that are connected by an inclined square duct. The flow regime was characterized to be turbulent, intermittent, Holmboe or laminar as a function of the duct inclination, θ, and the density difference, Δρ , between the two reservoirs. The density difference and duct angle were systematically varied and a phase plane of flow regime was developed. The transition between the interrmittent regime and turbulence was experimentally determined to occur at θΔρ ~= 20 [degrees kg m-3]. This critical combination of parameters fits into the buoyancy-compensated Reynolds number scaling proposed by Brethouwer et al. (J. Fluid Mech., 2007). The turbulent interfacial thickness was found to be a function of the inclination angle, which can be predicted using the buoyancy lengthscale from Waite and Bartello (J. Fluid Mech., 2004) and others. Furthermore, we measured the density profiles at multiple points along the duct, and using these profiles, we modeled the entrainment at the interface. Support provided by the Winston Churchill Foundation of the United States.

  20. Green infrastructure in high-rise residential development on steep slopes in city of Vladivostok

    NASA Astrophysics Data System (ADS)

    Kopeva, Alla; Ivanova, Olga; Khrapko, Olga

    2018-03-01

    The purpose of this study is to identify the facilities of green infrastructure that are able to improve living conditions in an urban environment in high-rise residential apartments buildings on steep slopes in the city of Vladivostok. Based on the analysis of theoretical sources and practices that can be observed in the world, green infrastructure facilities have been identified. These facilities meet the criteria of the sustainable development concept, and can be used in the city of Vladivostok. They include green roofs, green walls, and greening of disturbed slopes. All the existing high-rise apartments buildings situated on steep slopes in the city of Vladivostok, have been studied. It is concluded that green infrastructure is necessary to be used in new projects connected with designing and constructing of residential apartments buildings on steep slopes, as well as when upgrading the projects that have already been implemented. That will help to regulate the ecological characteristics of the sites. The results of the research can become a basis for increasing the sustainability of the habitat, and will facilitate the adoption of decisions in the field of urban design and planning.

  1. Hydrogen segregation to inclined Σ3 < 110 >twin grain boundaries in nickel

    DOE PAGES

    O’Brien, Christopher J.; Foiles, Stephen M.

    2016-08-04

    Low-mobility twin grain boundaries dominate the microstructure of grain boundary-engineered materials and are critical to understanding their plastic deformation behaviour. The presence of solutes, such as hydrogen, has a profound effect on the thermodynamic stability of the grain boundaries. This work examines the case of a Σ3 grain boundary at inclinations from 0° ≤ Φ ≤ 90°. The angle Φ corresponds to the rotation of the Σ3 (1 1 1) < 1 1 0 > (coherent) into the Σ3 (1 1 2) < 1 1 0 > (lateral) twin boundary. To this end, atomistic models of inclined grain boundaries, utilisingmore » empirical potentials, are used to elucidate the finite-temperature boundary structure while grand canonical Monte Carlo models are applied to determine the degree of hydrogen segregation. In order to understand the boundary structure and segregation behaviour of hydrogen, the structural unit description of inclined twin grain boundaries is found to provide insight into explaining the observed variation of excess enthalpy and excess hydrogen concentration on inclination angle, but the explanatory power is limited by how the enthalpy of segregation is affected by hydrogen concentration. At higher concentrations, the grain boundaries undergo a defaceting transition. In order to develop a more complete mesoscale model of the interfacial behaviour, an analytical model of boundary energy and hydrogen segregation that relies on modelling the boundary as arrays of discrete 1/3 < 1 1 1 > disconnections is constructed. Lastly, the complex interaction of boundary reconstruction and concentration-dependent segregation behaviour exhibited by inclined twin grain boundaries limits the range of applicability of such an analytical model and illustrates the fundamental limitations for a structural unit model description of segregation in lower stacking fault energy materials.« less

  2. Numerical simulation of a sphere moving down an incline with identical spheres placed equally apart

    USGS Publications Warehouse

    Ling, Chi-Hai; Jan, Chyan-Deng; Chen, Cheng-lung; Shen, Hsieh Wen

    1992-01-01

    This paper describes a numerical study of an elastic sphere moving down an incline with a string of identical spheres placed equally apart. Two momentum equations and a moment equation formulated for the moving sphere are solved numerically for the instantaneous velocity of the moving sphere on an incline with different angles of inclination. Input parameters for numerical simulation include the properties of the sphere (the radius, density, Poison's ratio, and Young's Modulus of elasticity), the coefficient of friction between the spheres, and a damping coefficient of the spheres during collision.

  3. Safety Case Notations: Alternatives for the Non-Graphically Inclined?

    NASA Technical Reports Server (NTRS)

    Holloway, C. M.

    2008-01-01

    This working paper presents preliminary ideas of five possible text-based notations for representing safety cases, which may be easier for non-graphically inclined people to use and understand than the currently popular graphics-based representations.

  4. Role of Inclined Magnetic Field and Copper Nanoparticles on Peristaltic Flow of Nanofluid through Inclined Annulus: Application of the Clot Model

    NASA Astrophysics Data System (ADS)

    Shahzadi, Iqra; Nadeem, S.

    2017-06-01

    A genuine neurotic condition is experienced when some blood constituents accumulate on the wall of the artery get withdrew from the wall, again join the circulatory system and coagulation occur. Role of copper nanoparticles and inclined magnetic field on the peristaltic flow of a nanofluid in an annular region of inclined annulus is investigated. We represent the clot model by considering the small artery as an annulus whose outer tube has a wave of sinusoidal nature and inner tube has a clot on its walls. Lubrication approach is used to simplify the problem. Close form solutions are determined for temperature and velocity profile. Impact of related parameters on pressure rise, pressure gradient, velocity and streamlines are interpreted graphically. Comparison among the pure blood and copper blood is presented and analyzed. One main finding of the considered analysis is that the inclusion of copper nanoparticles enlarges the amplitude of the velocity. Therefore, the considered study plays a dominant role in biomedical applications.

  5. Evaluation of organic matter addition and incorporation on steep cut slopes : phase I, literature review and potential applicable equipment evaluation.

    DOT National Transportation Integrated Search

    2003-08-01

    Erosion of steep highway cut slopes in Montana is the consequence of poor vegetation development in : nutrient-poor growth media resulting from highway construction where topsoil cannot physically be : replaced due to slope steepness. A literature re...

  6. Evaluation of organic matter compost addition and incorporation on steep cut slopes. Phase II : test plot construction and performance monitoring

    DOT National Transportation Integrated Search

    2007-04-01

    Erosion of steep highway cut slopes in Montana is often times the consequence of poor vegetation development in nutrient-poor growth media resulting from highway construction where topsoil cannot physically be replaced due to slope steepness. Topsoil...

  7. Experimental and theoretical analysis on the effect of inclination on metal powder sintered heat pipe radiator with natural convection cooling

    NASA Astrophysics Data System (ADS)

    Cong, Li; Qifei, Jian; Wu, Shifeng

    2017-02-01

    An experimental study and theoretical analysis of heat transfer performance of a sintered heat pipe radiator that implemented in a 50 L domestic semiconductor refrigerator have been conducted to examine the effect of inclination angle, combined with a minimum entropy generation analysis. The experiment results suggest that inclination angle has influences on both the evaporator and condenser section, and the performance of the heat pipe radiator is more sensitive to the inclination change in negative inclined than in positive inclined position. When the heat pipe radiator is in negative inclination angle position, large amplitude of variation on the thermal resistance of this heat pipe radiator is observed. As the thermal load is below 58.89 W, the influence of inclination angle on the overall thermal resistance is not that apparent as compared to the other three thermal loads. Thermal resistance of heat pipe radiator decreases by 82.86 % in inclination of 60° at the set of 138.46 W, compared to horizontal position. Based on the analysis results in this paper, in order to achieve a better heat transfer performance of the heat pipe radiator, it is recommended that the heat pipe radiator be mounted in positive inclination angle positions (30°-90°), where the condenser is above the evaporator.

  8. Slope, Rate of Change, and Steepness: Do Students Understand These Concepts?

    ERIC Educational Resources Information Center

    Teuscher, Dawn; Reys, Robert E.

    2010-01-01

    How do mathematics teachers introduce the concepts of slope, rate of change, and steepness in their classrooms? Do students understand these concepts as interchangeable or regard them as three different ideas? In this article, the authors report the results of a study of high school Advanced Placement (AP) Calculus students who displayed…

  9. Inclination towards research and the pursuit of a research career among medical students: an international cohort study.

    PubMed

    Ha, Tam Cam; Ng, Sheryl; Chen, Cynthia; Yong, Sook Kwin; Koh, Gerald C H; Tan, Say Beng; Malhotra, Rahul; Altermatt, Fernando; Seim, Arnfinn; Biderman, Aya; Woolley, Torres; Østbye, Truls

    2018-05-02

    Involvement of clinicians in biomedical research is imperative for the future of healthcare. Several factors influence clinicians' inclination towards research: the medical school experience, exposure to research article reading and writing, and knowledge of research. This cohort study follows up medical students at time of graduation to explore changes in their inclination towards research and pursuing a research career compared to their inclination at time of entry into medical school. Students from medical schools in six different countries were enrolled in their first year of school and followed-up upon graduation in their final year. Students answered the same self-administered questionnaire at both time points. Changes in inclination towards research and pursuing a research career were assessed. Factors correlated with these changes were analysed. Of the 777 medical students who responded to the study questionnaire at entry into medical school, 332 (42.7%) completed the follow-up survey. Among these 332 students, there was no significant increase in inclination towards research or pursuing a research career over the course of their medical schooling. Students from a United States based school, in contrast to those from schools other countries, were more likely to report having research role models to guide them (51.5% vs. 0%-26.4%) and to have published in a peer-reviewed journal (75.7% vs. 8.9%-45%). Absence of a role model was significantly associated with a decrease in inclination towards research, while an increased desire to learn more about statistics was significantly associated with an increase in inclination towards pursuing a research career. Most medical students did not experience changes in their inclination towards research or pursuing a research career over the course of their medical schooling. Factors that increased their inclination to undertaking research or pursuing a research career were availability of a good role model, and a good

  10. Simulations of Seasonal and Latitudinal Variations in Leaf Inclination Angle Distribution: Implications for Remote Sensing

    NASA Technical Reports Server (NTRS)

    Huemmrich, Karl F.

    2013-01-01

    The leaf inclination angle distribution (LAD) is an important characteristic of vegetation canopy structure affecting light interception within the canopy. However, LADs are difficult and time consuming to measure. To examine possible global patterns of LAD and their implications in remote sensing, a model was developed to predict leaf angles within canopies. Canopies were simulated using the SAIL radiative transfer model combined with a simple photosynthesis model. This model calculated leaf inclination angles for horizontal layers of leaves within the canopy by choosing the leaf inclination angle that maximized production over a day in each layer. LADs were calculated for five latitude bands for spring and summer solar declinations. Three distinct LAD types emerged: tropical, boreal, and an intermediate temperate distribution. In tropical LAD, the upper layers have a leaf angle around 35 with the lower layers having horizontal inclination angles. While the boreal LAD has vertical leaf inclination angles throughout the canopy. The latitude bands where each LAD type occurred changed with the seasons. The different LADs affected the fraction of absorbed photosynthetically active radiation (fAPAR) and Normalized Difference Vegetation Index (NDVI) with similar relationships between fAPAR and leaf area index (LAI), but different relationships between NDVI and LAI for the different LAD types. These differences resulted in significantly different relationships between NDVI and fAPAR for each LAD type. Since leaf inclination angles affect light interception, variations in LAD also affect the estimation of leaf area based on transmittance of light or lidar returns.

  11. The stratigraphy of the Steep Rock Group, N.W. Ontario, with evidence of a major unconformity

    NASA Technical Reports Server (NTRS)

    Wilks, M. E.; Nisbet, E. G.

    1986-01-01

    The Steep Rock Group is exposed 6 km north of Atikokan, 200 km west of Thunder Bay. It is situated on the southern margin of the Wabigoon Belt of the Archaean Superior Province, N. W. Ontario. Reinvestigation of the geology of the Group has shown that the Group lies unconformably on the Tonalite Complex to the east. This unconformity has been previously suspected, from regional and ine mapping but no conclusive outcrop evidence for its existence has as yet been published. The strike of the group, comprised of Basal Conglomerate, Carbonate Member, Ore Zone and Ashrock is generally north-northwest dipping steeply to the southwest. Of the 7 contacts between the Steep Rock Group and the Tonalite Complex, 3 expose the unconformity (The Headland, S. Roberts Pit, Trueman Point), and 4 are faulted. These three outcrops demonstrate unequivocally that the Steep Rock group was laid down unconformably on the underlying Tonalite Complex, which is circa 3 Ga old.

  12. Large sized non-uniform sediment transport at high capacity on steep slopes

    NASA Astrophysics Data System (ADS)

    Fu, X.; Zhang, L.; Duan, J. G.

    2015-12-01

    Transport of large-sized particles such as cobbles in steep streams still remains poorly understood in spite of its importance in mountain stream morphdynamics. Here we explored the law of cobble transport and the effect of cobble existence on gravel bed material transport, using flume experiments with a steep slope (4.9%) and water and sediment constantly supplying. The experiments were conducted in an 8 m long and 0.6 m wide circulating flume with the maximal size up to 90 mm and cobble concentrations in the sediment bed ranging from 22 percent to 6 percent. The sediment transport rate is on the order of 1000 g/m/s, which could be taken as high rate transport compared with existing researches. Bed load transport rate and flow variables were measured after the flume reached an equilibrium state. Bed surface topography was also measured by applying Kinect range camera before and after each run in order to analyze the fractal characteristics of the bed surface under different flow conditions. Critical shear stress of each size friction was estimated from the reference transport method (RTM) and a new hiding function was recommended. Preliminary results show that the bed was nearly in an equal mobility transport regime. We then plot dimensionless fractional transport rate versus dimensionless shear stress and assess the existing bed load transport formulas of non-uniform sediments for their applicability at high sediment transport capacity. This study contributes to the comprehension of high rate sediment transport on steep slopes.

  13. The effects of floor incline on lower extremity biomechanics during unilateral landing from a jump in dancers.

    PubMed

    Pappas, Evangelos; Orishimo, Karl F; Kremenic, Ian; Liederbach, Marijeanne; Hagins, Marshall

    2012-05-01

    Retrospective studies have suggested that dancers performing on inclined ("raked") stages have increased injury risk. One study suggests that biomechanical differences exist between flat and inclined surfaces during bilateral landings; however, no studies have examined whether such differences exist during unilateral landings. In addition, little is known regarding potential gender differences in landing mechanics of dancers. Professional dancers (N = 41; 14 male, 27 female) performed unilateral drop jumps from a 30 cm platform onto flat and inclined surfaces while extremity joint angles and moments were identified and analyzed. There were significant joint angle and moment effects due to the inclined flooring. Women had significantly decreased peak ankle dorsiflexion and hip adduction moment compared with men. Findings of the current study suggest that unilateral landings on inclined stages create measurable changes in lower extremity biomechanical variables. These findings provide a preliminary biomechanical rationale for differences in injury rates found in observational studies of raked stages.

  14. The influence of increased distal loading on metabolic cost, efficiency, and kinematics of roller ski skating.

    PubMed

    Bolger, Conor M; Bessone, Veronica; Federolf, Peter; Ettema, Gertjan; Sandbakk, Øyvind

    2018-01-01

    The purpose of the present study was to examine the influence of increased loading of the roller ski on metabolic cost, gross efficiency, and kinematics of roller ski skating in steep and moderate terrain, while employing two incline-specific techniques. Ten nationally ranked male cross-country skiers were subjected to four 7-minute submaximal intervals, with 0, 0.5, 1.0, and 1.5 kg added beneath the roller-ski in a randomized order. This was done on two separate days, with the G2 skating at 12% incline and 7 km/h speed and G3 skating at 5% incline and 14 km/h speed, respectively. At 12% incline, there was a significant increase in metabolic rate and a decrease in gross efficiency with added weight (P<0.001 and P = 0.002). At 5% incline, no change in metabolic rate or gross efficiency was found (P = 0.89 and P = 0.11). Rating of perceived exertion (RPE) increased gradually with added weight at both inclines (P>0.05). No changes in cycle characteristics were observed between the different ski loadings at either incline, although the lateral and vertical displacements of the foot/skis were slightly altered at 12% incline with added weight. In conclusion, the present study demonstrates that increased loading of the ski increases the metabolic cost and reduces gross efficiency during steep uphill roller skiing in G2 skating, whereas no significant effect was revealed when skating on relatively flat terrain in G3. Cycle characteristics remained unchanged across conditions at both inclines, whereas small adjustments in the displacement of the foot coincided with the efficiency changes in uphill terrain. The increased RPE values with added ski-weight at both inclines indicates that other factors than those measured here could have influenced effort and/or fatigue when lifting a heavier ski.

  15. Mixed Convection Flow of Nanofluid in Presence of an Inclined Magnetic Field

    PubMed Central

    Noreen, Saima; Ahmed, Bashir; Hayat, Tasawar

    2013-01-01

    This research is concerned with the mixed convection peristaltic flow of nanofluid in an inclined asymmetric channel. The fluid is conducting in the presence of inclined magnetic field. The governing equations are modelled. Mathematical formulation is completed through long wavelength and low Reynolds number approach. Numerical solution to the nonlinear analysis is made by shooting technique. Attention is mainly focused to the effects of Brownian motion and thermophoretic diffusion of nanoparticle. Results for velocity, temperature, concentration, pumping and trapping are obtained and analyzed in detail. PMID:24086276

  16. Solutions of the motion of synchronous satellites with arbitrary eccentricity and inclination

    NASA Technical Reports Server (NTRS)

    Nacozy, P. E.; Diehl, R. E.

    1975-01-01

    A first order, semianalytical theory for the long term motion of resonant satellites is presented. The theory is valid for all eccentricities and inclinations and for all commensurability ratios. The method allows the inclusion of all the zonal and tesseral harmonics as well as luni solar perturbations and radiation pressure. The method is applied to a synchronous satellite including only the J sub 2 and J sub 22 harmonics. Global, long term solutions for this problem, eccentricity, argument of perigee, and inclination are obtained.

  17. Esthetic evaluation of incisor inclination in smiling profiles with respect to mandibular position.

    PubMed

    Zarif Najafi, Hooman; Oshagh, Morteza; Khalili, Mohammad Hassan; Torkan, Sepideh

    2015-09-01

    The smile is a key facial expression, and a careful assessment of the facial profile in smiling is an essential part of a complete orthodontic diagnosis. The aim of this study was to determine the preferred maxillary incisor inclination in the smile profile with regard to different mandibular positions. A smiling profile photograph of a man with normal facial profile features was altered digitally to obtain 3 different mandibular sagittal positions in 4-mm decrements or increments from -4 to +4 mm. In each mandibular position, the inclination of the maxillary incisors was changed from -10° to +10° in 5° increments. A total of 234 raters (72 senior dental students, 24 orthodontists, 21 maxillofacial surgeons, 25 prosthodontists, and 92 laypeople) were asked to score each photograph using a Likert-type rating scale. Mann-Whitney, Kruskal-Wallis, and intraclass correlation coefficient tests were used to analyze the data. In retruded and protruded mandibles, normal incisor inclination and the most retroclined incisors were selected as the most and the least attractive images, respectively, by almost all groups. With an orthognathic mandible, the image with the most retroclined incisors was selected as the least attractive, but the raters were not unanimous regarding the most attractive image. The intraclass correlation coefficient was 0.82 (high level of agreement). Also, the sex of the raters had no effect on the rating of the photographs. It is crucial to establish a normal incisor inclination, especially in patients with a mandibular deficiency or excess. An excessive maxillary incisor lingual inclination should be avoided regardless of the mandibular position. Copyright © 2015 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  18. 58. VIEW OF CABLE INCLINE, LOCATED ON THE HILLSIDE BELOW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    58. VIEW OF CABLE INCLINE, LOCATED ON THE HILLSIDE BELOW THE FOREBAY (NORTHWEST OF FOREBAY), Print No. 156, August 1903 - Electron Hydroelectric Project, Along Puyallup River, Electron, Pierce County, WA

  19. Detail of inside of inclined end post, with portal cross ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of inside of inclined end post, with portal cross bar member. - Phoenix Iron Company, French Creek Bridge, Spanning French Creek between Gay Street & Main Street, Phoenixville, Chester County, PA

  20. Construct validity of posture as a measure of physical function in elderly individuals: Use of a digitalized inclinometer to assess trunk inclination.

    PubMed

    Suzuki, Yoshikazu; Kawai, Hisashi; Kojima, Motonaga; Shiba, Yoshitaka; Yoshida, Hideyo; Hirano, Hirohiko; Fujiwara, Yoshinori; Ihara, Kazushige; Obuchi, Shuichi

    2016-09-01

    The first aim of the present study was to determine the construct validity of evaluating posture as a measure of physical function in elderly individuals. The second aim was to determine reference values for sternum inclination in elderly individuals when measured using a digitalized inclinometer. We included 834 community-dwelling elderly individuals (350 men and 484 women) in this study. We used a digital inclinometer for measuring sternum inclination angle. We evaluated physical functions, including muscle strength, static balance, gait ability and the functional mobility of our study participants. To assess the construct validity of sternum inclination in elderly people, Pearson's correlation coefficient between sternum inclination and participant characteristics was calculated. To determine a reference value of sternum inclination by age, P for trend was calculated. In men, the sternum inclination angle and sternum inclination index were significantly associated with all anthropometric measures, except static balance. In women, the sternum inclination index was significantly associated with all measures, whereas the sternum inclination angle was associated with all measures except for balance and the Timed Up and Go test. Trend of sternum inclination index by age was significant. Our results show that the sternum inclination as a measure of physical function in elderly men and women has construct validity. We determined reference values for sternum inclination of which trend by age was considered. Geriatr Gerontol Int 2016; 16: 1068-1073. © 2015 Japan Geriatrics Society.

  1. Spectrum of 100-kyr glacial cycle: Orbital inclination, not eccentricity

    PubMed Central

    Muller, Richard A.; MacDonald, Gordon J.

    1997-01-01

    Spectral analysis of climate data shows a strong narrow peak with period ≈100 kyr, attributed by the Milankovitch theory to changes in the eccentricity of the earth’s orbit. The narrowness of the peak does suggest an astronomical origin; however the shape of the peak is incompatible with both linear and nonlinear models that attribute the cycle to eccentricity or (equivalently) to the envelope of the precession. In contrast, the orbital inclination parameter gives a good match to both the spectrum and bispectrum of the climate data. Extraterrestrial accretion from meteoroids or interplanetary dust is proposed as a mechanism that could link inclination to climate, and experimental tests are described that could prove or disprove this hypothesis. PMID:11607741

  2. An Inclination-Dependent IRX-beta Relation for Galaxies at z~1.5

    NASA Astrophysics Data System (ADS)

    Wang, Weichen; Kassin, Susan A.; Pacifici, Camilla; de la Vega, Alexander; Simons, Raymond C.; Barro, Guillermo; Gordon, Karl D.; Snyder, Gregory

    2018-01-01

    Star-forming galaxies near cosmic noon are substantially obscured by dust. Therefore, to measure galaxy star-formation rates (SFRs), it is crucial to accurately account for dust obscuration. This is usually done by measuring the slopes of spectra in the rest-frame ultraviolet (i.e., β). Another independent method is to measure the infrared excess IRX, defined as the ratio between infrared and ultraviolet luminosity. In this work, we present the discovery that the relation between IRX and β varies systematically with galaxy inclination at z~1.5. Edge-on galaxies are on average ~0.5 dex higher in IRX than face-on galaxies at fixed β. Furthermore, we find that the difference between SFR(UV+IR) and β-corrected SFR(UV) is correlated with inclination. Our finding is consistent with the study of local galaxies (Wild et al. 2011), where the dust attenuation curve is found to flatten with increasing inclination. We interpret our results using a picture where dust and young stars are spatially mixed. In this case, β is more sensitive to the optically-thin regions near the surface of galaxy disks. Therefore, compared to the case of face-on galaxies, β measures a smaller fraction of the total dust optical depth for the edge-on galaxies, whereas IRX always probes the total optical depth. We conclude that inclination must be taken into account when evaluating dust attenuation with β at high redshift.

  3. Robust model predictive control for satellite formation keeping with eccentricity/inclination vector separation

    NASA Astrophysics Data System (ADS)

    Lim, Yeerang; Jung, Youeyun; Bang, Hyochoong

    2018-05-01

    This study presents model predictive formation control based on an eccentricity/inclination vector separation strategy. Alternative collision avoidance can be accomplished by using eccentricity/inclination vectors and adding a simple goal function term for optimization process. Real-time control is also achievable with model predictive controller based on convex formulation. Constraint-tightening approach is address as well improve robustness of the controller, and simulation results are presented to verify performance enhancement for the proposed approach.

  4. Detail of inclined end post, diagonal tension rods, and vertical ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of inclined end post, diagonal tension rods, and vertical members with concrete encased lower chord. - Mowersville Road Bridge, Mowersville Road (Township Route 644) spanning Paxton Run, Mowersville, Franklin County, PA

  5. Statistics of peak overpressure and shock steepness for linear and nonlinear N-wave propagation in a kinematic turbulence.

    PubMed

    Yuldashev, Petr V; Ollivier, Sébastien; Karzova, Maria M; Khokhlova, Vera A; Blanc-Benon, Philippe

    2017-12-01

    Linear and nonlinear propagation of high amplitude acoustic pulses through a turbulent layer in air is investigated using a two-dimensional KZK-type (Khokhlov-Zabolotskaya-Kuznetsov) equation. Initial waves are symmetrical N-waves with shock fronts of finite width. A modified von Kármán spectrum model is used to generate random wind velocity fluctuations associated with the turbulence. Physical parameters in simulations correspond to previous laboratory scale experiments where N-waves with 1.4 cm wavelength propagated through a turbulence layer with the outer scale of about 16 cm. Mean value and standard deviation of peak overpressure and shock steepness, as well as cumulative probabilities to observe amplified peak overpressure and shock steepness, are analyzed. Nonlinear propagation effects are shown to enhance pressure level in random foci for moderate initial amplitudes of N-waves thus increasing the probability to observe highly peaked waveforms. Saturation of the pressure level is observed for stronger nonlinear effects. It is shown that in the linear propagation regime, the turbulence mainly leads to the smearing of shock fronts, thus decreasing the probability to observe high values of steepness, whereas nonlinear effects dramatically increase the probability to observe steep shocks.

  6. Is drop impact the same for both moving and inclined surfaces?

    NASA Astrophysics Data System (ADS)

    Buksh, Salman; Marengo, Marco; Amirfazli, Alidad; -Team

    2017-11-01

    Drop impact is an important phenomenon in a wide variety of applications. Researchers have largely examined drop impact onto a moving surface, and an inclined surface separately. Given that in both systems the impact phenomenon is influenced by tangential and normal velocity components, the question remains, if these two systems are essentially equivalent or gravity and boundary layer effects are such that the outcomes will be different. Experiments have been performed by varying liquid surface tension, viscosity and both normal and tangential velocities (0.3 to 2.9 m/s). The desired velocity components were achieved by changing the height where drop is released, the surface inclination angle for inclined system, and the horizontal velocity for the moving surface. To compare the systems, spreading was analyzed by measuring the width and length of the lamella at various time intervals; for splashing, top view images were compared to see the extent of splashing at initial stage. The data suggests that, for the given velocity, neither the boundary layer differences between the two systems nor the gravity play a role on spreading and splashing of the drop, as such one system can replace the other for future studies.

  7. Students’ understanding of forces: Force diagrams on horizontal and inclined plane

    NASA Astrophysics Data System (ADS)

    Sirait, J.; Hamdani; Mursyid, S.

    2018-03-01

    This study aims to analyse students’ difficulties in understanding force diagrams on horizontal surfaces and inclined planes. Physics education students (pre-service physics teachers) of Tanjungpura University, who had completed a Basic Physics course, took a Force concept test which has six questions covering three concepts: an object at rest, an object moving at constant speed, and an object moving at constant acceleration both on a horizontal surface and on an inclined plane. The test is in a multiple-choice format. It examines the ability of students to select appropriate force diagrams depending on the context. The results show that 44% of students have difficulties in solving the test (these students only could solve one or two items out of six items). About 50% of students faced difficulties finding the correct diagram of an object when it has constant speed and acceleration in both contexts. In general, students could only correctly identify 48% of the force diagrams on the test. The most difficult task for the students in terms was identifying the force diagram representing forces exerted on an object on in an inclined plane.

  8. A sediment transport model for incision of gullies on steep topography

    Treesearch

    Erkan Istanbulluoglu; David G. Tarboton; Robert T. Pack; Charles H. Luce

    2003-01-01

    We have conducted surveys of gullies that developed in a small, steep watershed in the Idaho Batholith after a severe wildfire followed by intense precipitation. We measured gully length and cross sections to estimate the volumes of sediment loss due to gully formation. These volume estimates are assumed to provide an estimate of sediment transport capacity at each...

  9. Fast Back-Propagation Learning Using Steep Activation Functions and Automatic Weight

    Treesearch

    Tai-Hoon Cho; Richard W. Conners; Philip A. Araman

    1992-01-01

    In this paper, several back-propagation (BP) learning speed-up algorithms that employ the ãgainä parameter, i.e., steepness of the activation function, are examined. Simulations will show that increasing the gain seemingly increases the speed of convergence and that these algorithms can converge faster than the standard BP learning algorithm on some problems. However,...

  10. Reconstruction of Galileo Galilei's Experiment: The Inclined Plane

    ERIC Educational Resources Information Center

    Straulino, S.

    2008-01-01

    In the "Third Day" of the "Discourses and Mathematical Demonstrations Concerning Two New Sciences" Galileo Galilei describes the famous experiment of the inclined plane and uses it to bring an experimental confirmation to the laws of uniformly accelerated motion. We describe a reconstruction of the experiment and how the results can be used for…

  11. Effects of the inclined femto laser incidence at the phase mask on FBG carving

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Wu, Shengli; Zhang, Jintao; Ren, Wenyi

    2015-12-01

    The inclined incidence of the femto laser on the phase mask in fiber Bragg grating (FBG) carving has a significant effect on the quality of FBG fabrication. Based on that the infrared femto laser has highly spatial coherence and the order walk-off will happen behind the phase mask, the interferogram generated at the fiber core by the inclined femto laser beam has been analyzed using the multi-beam interference principle. The influence of beam inclination on the coherence of the 0th and ± 1st orders diffraction with different exposure distance, the visibility of interferogram and the frequency component of the transverse interferogram intensity has also been analyzed. It is meaningful for the FBG fabricating with the femto laser.

  12. Kinetic potential influences visual and remote haptic perception of affordances for standing on an inclined surface.

    PubMed

    Malek, Eric A; Wagman, Jeffrey B

    2008-01-01

    The ability of a perceiver-actor to perform a particular behaviour depends on their ability to generate and control the muscular forces required to perform that behaviour. If an intended behaviour is to be successful, perception must be relative to this ability. We investigated whether perceiver-actors were sensitive to how changes in their mass distribution influenced their ability to stand on an inclined surface. Participants reported whether they would be able to stand on an inclined surface while wearing a weighted backpack on their back, while wearing a weighted backpack on their front, and while not wearing a weighted backpack. In addition, participants performed this task by either viewing the surface or exploring it with a hand-held rod (while blindfolded). The results showed that perception of affordances for standing on the inclined surface depended on how the backpack influenced the ability of the participant to stand on the surface. Specifically, perceptual boundaries occurred at steeper inclinations when participants wore the backpack on their front than when they wore it on their back. Moreover, this pattern occurred regardless of the perceptual modality by which the participants explored the inclined surface.

  13. 6. VIEW SHOWING INCLINED OUTLET GATE WHEEL, STEM AND STEM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. VIEW SHOWING INCLINED OUTLET GATE WHEEL, STEM AND STEM GUIDE (18' HARDESTY GATE), LOOKING SOUTHEAST - High Mountain Dams in Bonneville Unit, Long Lake Dam, Wasatch National Forest, Kamas, Summit County, UT

  14. Inclination shallowing in Eocene Linzizong sedimentary rocks from Southern Tibet: correction, possible causes and implications for reconstructing the India-Asia collision

    NASA Astrophysics Data System (ADS)

    Huang, Wentao; Dupont-Nivet, Guillaume; Lippert, Peter C.; van Hinsbergen, Douwe J. J.; Hallot, Erwan

    2013-09-01

    A systematic bias towards low palaeomagnetic inclination recorded in clastic sediments, that is, inclination shallowing, has been recognized and studied for decades. Identification, understanding and correction of this inclination shallowing are critical for palaeogeographic reconstructions, particularly those used in climate models and to date collisional events in convergent orogenic systems, such as those surrounding the Neotethys. Here we report palaeomagnetic inclinations from the sedimentary Eocene upper Linzizong Group of Southern Tibet that are ˜20° lower than conformable underlying volcanic units. At face value, the palaeomagnetic results from these sedimentary rocks suggest the southern margin of Asia was located ˜10°N, which is inconsistent with recent reviews of the palaeolatitude of Southern Tibet. We apply two different correction methods to estimate the magnitude of inclination shallowing independently from the volcanics. The mean inclination is corrected from 20.5° to 40.0° within 95 per cent confidence limits between 33.1° and 49.5° by the elongation/inclination (E/I) correction method; an anisotropy-based inclination correction method steepens the mean inclination to 41.3 ± 3.3° after a curve fitting- determined particle anisotropy of 1.39 is applied. These corrected inclinations are statistically indistinguishable from the well-determined 40.3 ± 4.5º mean inclination of the underlying volcanic rocks that provides an independent check on the validity of these correction methods. Our results show that inclination shallowing in sedimentary rocks can be corrected. Careful inspection of stratigraphic variations of rock magnetic properties and remanence anisotropy suggests shallowing was caused mainly by a combination of syn- and post-depositional processes such as particle imbrication and sedimentary compaction that vary in importance throughout the section. Palaeolatitudes calculated from palaeomagnetic directions from Eocene sedimentary

  15. On the highly inclined vW leptokurtic asteroid families

    NASA Astrophysics Data System (ADS)

    Carruba, V.; Domingos, R. C.; Aljbaae, S.; Huaman, M.

    2016-11-01

    vW leptokurtic asteroid families are families for which the distribution of the normal component of the terminal ejection velocity field vW is characterized by a positive value of the γ2 Pearson kurtosis, I.e. they have a distribution with a more concentrated peak and larger tails than the Gaussian one. Currently, eight families are known to have γ2(vW) > 0.25. Among these, three are highly inclined asteroid families, the Hansa, Barcelona, and Gallia families. As observed for the case of the Astrid family, the leptokurtic inclination distribution seems to be caused by the interaction of these families with node secular resonances. In particular, the Hansa and Gallia family are crossed by the s - sV resonance with Vesta, that significantly alters the inclination of some of their members. In this work we use the time evolution of γ2(vW) for simulated families under the gravitational influence of all planets and the three most massive bodies in the main belt to assess the dynamical importance (or lack of) node secular resonances with Ceres, Vesta, and Pallas for the considered families, and to obtain independent constraints on the family ages. While secular resonances with massive bodies in the main belt do not significantly affect the dynamical evolution of the Barcelona family, they significantly increase the γ2(vW) values of the simulated Hansa and Gallia families. Current values of the γ2(vW) for the Gallia family are reached over the estimated family age only if secular resonances with Vesta are accounted for.

  16. The Effects of Boundary Conditions and Friction on the Helical Buckling of Coiled Tubing in an Inclined Wellbore

    PubMed Central

    Ai, Zhijiu; Sun, Xu; Fu, Biwei

    2016-01-01

    Analytical buckling models are important for down-hole operations to ensure the structural integrity of the drill string. A literature survey shows that most published analytical buckling models do not address the effects of inclination angle, boundary conditions or friction. The objective of this paper is to study the effects of boundary conditions, friction and angular inclination on the helical buckling of coiled tubing in an inclined wellbore. In this paper, a new theoretical model is established to describe the buckling behavior of coiled tubing. The buckling equations are derived by applying the principles of virtual work and minimum potential energy. The proper solution for the post-buckling configuration is determined based on geometric and natural boundary conditions. The effects of angular inclination and boundary conditions on the helical buckling of coiled tubing are considered. Many significant conclusions are obtained from this study. When the dimensionless length of the coiled tubing is greater than 40, the effects of the boundary conditions can be ignored. The critical load required for helical buckling increases as the angle of inclination and the friction coefficient increase. The post-buckling behavior of coiled tubing in different configurations and for different axial loads is determined using the proposed analytical method. Practical examples are provided that illustrate the influence of the angular inclination on the axial force. The rate of change of the axial force decreases with increasing angular inclination. Moreover, the total axial friction also decreases with an increasing inclination angle. These results will help researchers to better understand helical buckling in coiled tubing. Using this knowledge, measures can be taken to prevent buckling in coiled tubing during down-hole operations. PMID:27649535

  17. The Effects of Boundary Conditions and Friction on the Helical Buckling of Coiled Tubing in an Inclined Wellbore.

    PubMed

    Gong, Yinchun; Ai, Zhijiu; Sun, Xu; Fu, Biwei

    2016-01-01

    Analytical buckling models are important for down-hole operations to ensure the structural integrity of the drill string. A literature survey shows that most published analytical buckling models do not address the effects of inclination angle, boundary conditions or friction. The objective of this paper is to study the effects of boundary conditions, friction and angular inclination on the helical buckling of coiled tubing in an inclined wellbore. In this paper, a new theoretical model is established to describe the buckling behavior of coiled tubing. The buckling equations are derived by applying the principles of virtual work and minimum potential energy. The proper solution for the post-buckling configuration is determined based on geometric and natural boundary conditions. The effects of angular inclination and boundary conditions on the helical buckling of coiled tubing are considered. Many significant conclusions are obtained from this study. When the dimensionless length of the coiled tubing is greater than 40, the effects of the boundary conditions can be ignored. The critical load required for helical buckling increases as the angle of inclination and the friction coefficient increase. The post-buckling behavior of coiled tubing in different configurations and for different axial loads is determined using the proposed analytical method. Practical examples are provided that illustrate the influence of the angular inclination on the axial force. The rate of change of the axial force decreases with increasing angular inclination. Moreover, the total axial friction also decreases with an increasing inclination angle. These results will help researchers to better understand helical buckling in coiled tubing. Using this knowledge, measures can be taken to prevent buckling in coiled tubing during down-hole operations.

  18. Effect of disjoining pressure on terminal velocity of a bubble sliding along an inclined wall.

    PubMed

    Del Castillo, Lorena A; Ohnishi, Satomi; White, Lee R; Carnie, Steven L; Horn, Roger G

    2011-12-15

    The influence of salt concentration on the terminal velocities of gravity-driven single bubbles sliding along an inclined glass wall has been investigated, in an effort to establish whether surface forces acting between the wall and the bubble influence the latter's mobility. A simple sliding bubble apparatus was employed to measure the terminal velocities of air bubbles with radii ranging from 0.3 to 1.5 mm sliding along the interior wall of an inclined Pyrex glass cylinder with inclination angles between 0.6 and 40.1°. Experiments were performed in pure water, 10 mM and 100 mM KCl solutions. We compared our experimental results with a theory by Hodges et al. which considers hydrodynamic forces only, and with a theory developed by two of us which considers surface forces to play a significant role. Our experimental results demonstrate that the terminal velocity of the bubble not only varies with the angle of inclination and the bubble size but also with the salt concentration, particularly at low inclination angles of ∼1-5°, indicating that double-layer forces between the bubble and the wall influence the sliding behavior. This is the first demonstration that terminal velocities of sliding bubbles are affected by disjoining pressure. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Effect of disjoining pressure on terminal velocity of a bubble sliding along an inclined wall

    PubMed Central

    Del Castillo, Lorena A.; Ohnishi, Satomi; White, Lee R.; Carnie, Steven L.; Horn, Roger G.

    2011-01-01

    The influence of salt concentration on the terminal velocities of gravity-driven single bubbles sliding along an inclined glass wall has been investigated, in an effort to establish whether surface forces acting between the wall and the bubble influence the latter’s mobility. A simple sliding bubble apparatus was employed to measure the terminal velocities of air bubbles with radii ranging from 0.3 to 1.5 mm sliding along the interior wall of an inclined Pyrex glass cylinder with inclination angles between 0.6 and 40.1°. Experiments were performed in pure water, 10 mM and 100 mM KCl solutions. We compared our experimental results with a theory by Hodges et al. [1] which considers hydrodynamic forces only, and with a theory developed by two of us [2] which considers surface forces to play a significant role. Our experimental results demonstrate that the terminal velocity of the bubble not only varies with the angle of inclination and the bubble size but also with the salt concentration, particularly at low inclination angles of ∼1–5°, indicating that double-layer forces between the bubble and the wall influence the sliding behavior. This is the first demonstration that terminal velocities of sliding bubbles are affected by disjoining pressure. PMID:21924429

  20. 46 CFR 111.01-19 - Inclination of the vessel.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS General § 111.01-19 Inclination of the vessel. (a) All electrical equipment must be.... Additionally, electrical equipment necessary for the maneuvering, navigation, and safety of the vessel or its...

  1. 46 CFR 111.01-19 - Inclination of the vessel.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS General § 111.01-19 Inclination of the vessel. (a) All electrical equipment must be.... Additionally, electrical equipment necessary for the maneuvering, navigation, and safety of the vessel or its...

  2. 46 CFR 111.01-19 - Inclination of the vessel.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS General § 111.01-19 Inclination of the vessel. (a) All electrical equipment must be.... Additionally, electrical equipment necessary for the maneuvering, navigation, and safety of the vessel or its...

  3. 46 CFR 111.01-19 - Inclination of the vessel.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS General § 111.01-19 Inclination of the vessel. (a) All electrical equipment must be.... Additionally, electrical equipment necessary for the maneuvering, navigation, and safety of the vessel or its...

  4. Measuring relative-story displacement and local inclination angle using multiple position-sensitive detectors.

    PubMed

    Matsuya, Iwao; Katamura, Ryuta; Sato, Maya; Iba, Miroku; Kondo, Hideaki; Kanekawa, Kiyoshi; Takahashi, Motoichi; Hatada, Tomohiko; Nitta, Yoshihiro; Tanii, Takashi; Shoji, Shuichi; Nishitani, Akira; Ohdomari, Iwao

    2010-01-01

    We propose a novel sensor system for monitoring the structural health of a building. The system optically measures the relative-story displacement during earthquakes for detecting any deformations of building elements. The sensor unit is composed of three position sensitive detectors (PSDs) and lenses capable of measuring the relative-story displacement precisely, even if the PSD unit was inclined in response to the seismic vibration. For verification, laboratory tests were carried out using an Xθ-stage and a shaking table. The static experiment verified that the sensor could measure the local inclination angle as well as the lateral displacement. The dynamic experiment revealed that the accuracy of the sensor was 150 μm in the relative-displacement measurement and 100 μrad in the inclination angle measurement. These results indicate that the proposed sensor system has sufficient accuracy for the measurement of relative-story displacement in response to the seismic vibration.

  5. Does WEPP meet the specificity of soil erosion in steep mountain regions?

    USDA-ARS?s Scientific Manuscript database

    We chose the USDA-ARS-WEPP model (Water Erosion Prediction Project) to describe the soil erosion in the Urseren valley (Central Switzerland) as it seems to be one of the most promising models for steep mountain environments. Crucial model parameters were determined in the field (slope, plant species...

  6. Riparian hydraulic gradient and stream-groundwater exchange dynamics in steep headwater valleys

    Treesearch

    T.J. Voltz; M.N. Gooseff; A.S. Ward; K. Singha; M. Fitzgerald; T. Wagener

    2013-01-01

    Patterns of riparian hydraulic gradients and stream-groundwater exchange in headwater catchments provide the hydrologic context for important ecological processes. Although the controls are relatively well understood, their dynamics during periods of hydrologic change is not. We investigate riparian hydraulic gradients over three different time scales in two steep,...

  7. 7. VIEW OF INCLINED OUTLET GATE WHEEL, STEM AND STEM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. VIEW OF INCLINED OUTLET GATE WHEEL, STEM AND STEM GUIDE (15' HARDESTY MODEL 115 GATE), LOOKING NORTHWEST - High Mountain Dams in Bonneville Unit, Marjorie Lake Dam, Wasatch National Forest, Kamas, Summit County, UT

  8. 4. VIEW OF INCLINED OUTLET GATE, STEM, STEM GUIDE AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VIEW OF INCLINED OUTLET GATE, STEM, STEM GUIDE AND WHEEL (10' HARDESTY VERTICAL LIFT GATE), LOOKING NORTHWEST - High Mountain Dams in Bonneville Unit, Pot Lake Dam, Wasatch National Forest, Kamas, Summit County, UT

  9. Inclined edge crack in two bonded elastic quarter planes under out-of-plane loading

    NASA Astrophysics Data System (ADS)

    Hwang, E. H.; Choi, S. R.; Earmme, Y. Y.

    1992-08-01

    The problem of the interfacial edge crack in which the crack-inclination angle = zero is solved analytically by means of the Wiener-Hopf technique with the Mellin transform. The results are found to confirm the result by Bassani and Erdogan (1979) showing that there is no stress singularity for the interface perpendicular to the free boundary at the junction with a straight inclined interface with no crack.

  10. Inclined monochromator for high heat-load synchrotron x-ray radiation

    DOEpatents

    Khounsary, Ali M.

    1994-01-01

    A double crystal monochromator including two identical, parallel crystals, each of which is cut such that the normal to the diffraction planes of interest makes an angle less than 90 degrees with the surface normal. Diffraction is symmetric, regardless of whether the crystals are symmetrically or asymmetrically cut, enabling operation of the monochromator with a fixed plane of diffraction. As a result of the inclination of the crystal surface, an incident beam has a footprint area which is elongated both vertically and horizontally when compared to that of the conventional monochromator, reducing the heat flux of the incident beam and enabling more efficient surface cooling. Because after inclination of the crystal only a fraction of thermal distortion lies in the diffraction plane, slope errors and the resultant misorientation of the diffracted beam are reduced.

  11. 8. DETAIL VIEW OF INCLINED OUTLET GATE WHEEL, LOOKING EAST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. DETAIL VIEW OF INCLINED OUTLET GATE WHEEL, LOOKING EAST - High Mountain Dams in Upalco Unit, Kidney Lake Dam, Ashley National Forest, 4.7 miles North of Miners Gulch Campground, Mountain Home, Duchesne County, UT

  12. Inclination Angles of Black Hole X-Ray Binaries Manifest Strong Gravity around Black Holes

    NASA Technical Reports Server (NTRS)

    Zhang, S. N.; Zhang, Xiao-Ling; Yao, Yangsen

    2002-01-01

    System inclination angles have been determined for about 15 X-ray binaries, in which stellar mass black holes are considered to exist. These inclination angles range between 25 degrees and 80 degrees, but peaked between 60-70 degrees. This peak is not explained in the frame work of Newtonian gravity. However, this peak is reproduced naturally if we model the observed X-ray radiations as being produced in the accretion disks very close to the black hole horizons, where the extremely strong general and special relativistic effects, caused by the extremely strong gravity near the black hole horizons, modify the local radiation significantly as the X-rays propagate to the remote observer. Therefore the peak of the inclination angle distribution provides evidence or strong gravity around stellar mass black holes.

  13. Investigating the magnetic inclination angle distribution of γ-ray-loud radio pulsars

    NASA Astrophysics Data System (ADS)

    Rookyard, S. C.; Weltevrede, P.; Johnston, S.

    2015-02-01

    Several studies have shown the distribution of pulsars' magnetic inclination angles to be skewed towards low values compared with the distribution expected if the rotation and magnetic axes are placed randomly on the star. Here, we focus on a sample of 28 γ-ray-detected pulsars using data taken as part of the Parkes telescope's FERMI timing program. In doing so, we find a preference in the sample for low magnetic inclination angles, α, in stark contrast to both the expectation that the magnetic and rotation axes are orientated randomly at the birth of the pulsar and to γ-ray-emission-model-based expected biases. In this paper, after exploring potential explanations, we conclude that there are two possible causes of this preference, namely that low α values are intrinsic to the sample, or that the emission regions extend outside what is traditionally thought to be the open-field-line region in a way which is dependent on the magnetic inclination. Each possibility is expected to have important consequences, ranging from supernova physics to population studies of pulsars and considerations of the radio beaming fraction. We also present a simple conversion scheme between the observed and intrinsic magnetic inclinations which is valid under the assumption that the observed skew is not intrinsic and which can be applied to all existing measurements. We argue that extending the active-field-line region will help to resolve the existing tension between emission geometries derived from radio polarization measurements and those required to model γ-ray light curves.

  14. Recovery considerations for possible high inclination long duration earth orbital missions

    NASA Technical Reports Server (NTRS)

    Obriant, T. E.; Ferguson, J. E.

    1969-01-01

    Problem areas are discussed and various solutions proposed. One of the major recovery problems encountered with missions having higher orbital inclinations than previous missions is the greater likelihood of severe weather conditions in the landing zones, especially if landing zones are optimized for orbital coverage considerations. Restricting the reentry window and increasing in-orbit wait times can partially eliminate the weather problem, but the possibility of emergency landings at higher latitudes still exists. It can be expected that the increased confidence level in spacecraft reliability that will exist by the time the high-inclination missions are flown will reduce the probabilities of an emergency landing in an unfavorable recovery location to a very low level.

  15. Using Composite Resin Inclined Plane for the Repositioning of a Laterally Luxated Primary Incisor: A Case Report

    PubMed Central

    Arikan, Volkan; Sari, Saziye

    2011-01-01

    This case report describes the repositioning of a laterally luxated primary central incisor with occlusal interference, using a composite inclined plane. The patient was a 4-year-old girl who applied to our clinic three days after the injury. Because of the time delay between injury and presentation, it was not possible to reposition the tooth with pressure. Following a root-canal treatment, an inclined plane was prepared on the lower primary incisors, using composite resin. The tooth was repositioned in two weeks, and the inclined plane was then removed. After 1 year of follow-up, the treatment was found to be successful, both clinically and radiographically. The use of a composite inclined plane, accompanied by careful follow-up, is an effective alternative to extraction for laterally luxated primary incisors with occlusal interference. PMID:21228962

  16. 7. VIEW OF INCLINED OUTLET GATE WHEEL AND STEM, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. VIEW OF INCLINED OUTLET GATE WHEEL AND STEM, LOOKING NORTH - High Mountain Dams in Upalco Unit, Kidney Lake Dam, Ashley National Forest, 4.7 miles North of Miners Gulch Campground, Mountain Home, Duchesne County, UT

  17. 5. VIEW OF INCLINED OUTLET GATE WHEEL, STEM AND STEM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VIEW OF INCLINED OUTLET GATE WHEEL, STEM AND STEM GUIDE, (12' DIAMETER HARDESTY MODEL 112 CIRCULAR GATE), LOOKING NORTHEAST - High Mountain Dams in Bonneville Unit, Island Lake Dam, Wasatch National Forest, Kamas, Summit County, UT

  18. 5. VIEW SHOWING INCLINED OUTLET GATE WHEEL, STEM AND STEM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VIEW SHOWING INCLINED OUTLET GATE WHEEL, STEM AND STEM GUIDE (28' WIDE HARDESTY CAST IRON SLIDE HEADGATE), LOOKING NORTHEAST - High Mountain Dams in Bonneville Unit, Duck Lake Dam, Wasatch National Forest, Kamas, Summit County, UT

  19. 7. DETAIL VIEW OF ROCKER ARM, SHOWING POCKETS, LUGS, INCLINED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. DETAIL VIEW OF ROCKER ARM, SHOWING POCKETS, LUGS, INCLINED STOPPING BLOCK AT SHOREWARD END OF TRACK GIRDER - Seddon Island Scherzer Rolling Lift Bridge, Spanning Garrison Channel from Tampa to Seddon Island, Tampa, Hillsborough County, FL

  20. When what we need influences what we see: choice of energetic replenishment is linked with perceived steepness.

    PubMed

    Taylor-Covill, Guy A H; Eves, Frank F

    2014-06-01

    The apparent steepness of the locomotor challenge presented by hills and staircases is overestimated in explicit awareness. Experimental evidence suggests the visual system may rescale our conscious experience of steepness in line with available energy resources. Skeptics of this "embodied" view argue that such findings reflect experimental demand. This article tested whether perceived steepness was related to resource choices in the built environment. Travelers in a station estimated the slant angle of a 6.45 m staircase (23.4°) either before (N = 302) or after (N = 109) choosing from a selection of consumable items containing differing levels of energetic resources. Participants unknowingly allocated themselves to a quasi-experimental group based on the energetic resources provided by the item they chose. Consistent with a resource based model, individuals that chose items with a greater energy density, or more rapidly available energy, estimated the staircase as steeper than those opting for items that provided less energetic resources. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  1. Changes in the Relative Balance of Approach and Avoidance Inclinations to Use Alcohol Following Cue Exposure Vary in Low and High Risk Drinkers

    PubMed Central

    Hollett, Ross C.; Stritzke, Werner G. K.; Edgeworth, Phoebe; Weinborn, Michael

    2017-01-01

    According to the ambivalence model of craving, alcohol craving involves the dynamic interplay of separate approach and avoidance inclinations. Cue-elicited increases in approach inclinations are posited to be more likely to result in alcohol consumption and risky drinking behaviors only if unimpeded by restraint inclinations. Current study aims were (1) to test if changes in the net balance between approach and avoidance inclinations following alcohol cue exposure differentiate between low and high risk drinkers, and (2) if this balance is associated with alcohol consumption on a subsequent taste test. In two experiments (N = 60; N = 79), low and high risk social drinkers were exposed to alcohol cues, and pre- and post- approach and avoidance inclinations measured. An ad libitum alcohol consumption paradigm and a non-alcohol exposure condition were also included in Study 2. Cue-elicited craving was characterized by a predominant approach inclination only in the high risk drinkers. Conversely, approach inclinations were adaptively balanced by equally strong avoidance inclinations when cue-elicited craving was induced in low risk drinkers. For these low risk drinkers with the balanced craving profile, neither approach or avoidance inclinations predicted subsequent alcohol consumption levels during the taste test. Conversely, for high risk drinkers, where the approach inclination predominated, each inclination synergistically predicted subsequent drinking levels during the taste test. In conclusion, results support the importance of assessing both approach and avoidance inclinations, and their relative balance following alcohol cue exposure. Specifically, this more comprehensive assessment reveals changes in craving profiles that are not apparent from examining changes in approach inclinations alone, and it is this shift in the net balance that distinguishes high from low risk drinkers. PMID:28533759

  2. Bedload fluctuations in a steep macro-rough channel

    NASA Astrophysics Data System (ADS)

    Ghilardi, Tamara; Franca, Mário J.; Schleiss, Anton J.

    2014-05-01

    It is known that bedload fluctuates over time in steep rivers with wide grain size distributions, even when conditions of constant sediment feed and water discharge are met. Bedload fluctuations are periodic and related to fluctuations in the flow velocity and channel bed morphology. In cascade morphologies, the presence of large relatively immobile boulders has a strong impact on flow conditions and sediment transport; their influence on bedload fluctuations is considered in this research. Sediment transport fluctuations were investigated in a set of 38 laboratory experiments carried out on a steep tilting flume, under several conditions of constant sediment and water discharge, for three different slopes (S=6.7%, 9.9%, and 13%). The impact of the diameter and spatial density of randomly placed boulders was studied for several flow conditions. Along with the sediment transport and bulk mean flow velocity, the boulder protrusion, boulder surface, and number of hydraulic jumps, which are indicators of the channel morphology, were measured regularly during the experiments. Periodic bedload pulses are clearly visible in the data collected during the experiments, along with well correlated fluctuations in the flow velocity and bed morphology parameters. Well-behaved cyclic oscillations in the auto-correlation and cross-correlation functions confirm the periodicity of the observed fluctuations and show that the durations of these cycles are similar, although not necessarily in phase. A detailed analysis of data time series and image acquired during the tests show a link between bedload pulses and different bed states, boulder protrusion, and surface grain size distributions. A feedback system exists among channel morphology, flow kinematics and sediment transport. A phase analysis for the observed variables, based on the identification of bedload cycles in the instantaneous signal, is performed. The link between the phases of bedload and each of the morphological

  3. Motion of a carrier with a mobile load along a rough inclined plane

    NASA Astrophysics Data System (ADS)

    Bilchenko, G. G.

    2018-03-01

    The mechanical system consisting of a carrier and a load is considered. The load can move respectively the carrier according to the preset given motion law. The carrier motion from rest caused the load motion is investigated. The carrier can move translationally along rectilinear trajectory along rough inclined plane. The trajectory is the line of the greatest descent. The axis of rectilinear channel along which the load moves is situated in vertical plane containing the carrier trajectory. The Coulomb model is taken to describe the friction forces on sloped plane. Differential equations of motion of carrier with load are obtained. The sufficient condition of the carrier motion without detachment from inclined plane is given. For two special cases of the channel installation angle and the plane inclination angle combination the motion types are described. The computation experiments results are presented: the carrier motions in the special cases are illustrated, the phase portraits for some types of motions are constructed.

  4. 4. VIEW OF INCLINED OUTLET GATE WHEEL AND STEM, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VIEW OF INCLINED OUTLET GATE WHEEL AND STEM, LOOKING NORTHWEST - High Mountain Dams in Upalco Unit, Brown Duck Lake Dam, Ashley National Forest, 4.4 miles North of Miners Gulch Campground, Mountain Home, Duchesne County, UT

  5. Aqua/Aura Inclination Adjust Maneuver Series Spring 2018 Planning

    NASA Technical Reports Server (NTRS)

    Trenholme, Elena; Boone, Spencer

    2017-01-01

    This will be presented at the International Earth Science Constellation Mission Operations Working Group meeting on December 6-8, 2017 to discuss the Aqua/Aura Spring 2018 Inclination Adjust Maneuver series planning. Presentation has been reviewed and approved by Eric Moyer, ESMO (Earth Science Mission Operations) Deputy Project Manager.

  6. Hardwood silviculture and skyline yarding on steep slopes: economic and environmental impacts

    Treesearch

    John E. Baumgras; Chris B. LeDoux

    1995-01-01

    Ameliorating the visual and environmental impact associated with harvesting hardwoods on steep slopes will require the efficient use of skyline yarding along with silvicultural alternatives to clearcutting. In evaluating the effects of these alternatives on harvesting revenue, results of field studies and computer simulations were used to estimate costs and revenue for...

  7. Collisionless encounters and the origin of the lunar inclination.

    PubMed

    Pahlevan, Kaveh; Morbidelli, Alessandro

    2015-11-26

    The Moon is generally thought to have formed from the debris ejected by the impact of a planet-sized object with the proto-Earth towards the end of planetary accretion. Models of the impact process predict that the lunar material was disaggregated into a circumplanetary disk and that lunar accretion subsequently placed the Moon in a near-equatorial orbit. Forward integration of the lunar orbit from this initial state predicts a modern inclination at least an order of magnitude smaller than the lunar value--a long-standing discrepancy known as the lunar inclination problem. Here we show that the modern lunar orbit provides a sensitive record of gravitational interactions with Earth-crossing planetesimals that were not yet accreted at the time of the Moon-forming event. The currently observed lunar orbit can naturally be reproduced via interaction with a small quantity of mass (corresponding to 0.0075-0.015 Earth masses eventually accreted to the Earth) carried by a few bodies, consistent with the constraints and models of late accretion. Although the encounter process has a stochastic element, the observed value of the lunar inclination is among the most likely outcomes for a wide range of parameters. The excitation of the lunar orbit is most readily reproduced via collisionless encounters of planetesimals with the Earth-Moon system with strong dissipation of tidal energy on the early Earth. This mechanism obviates the need for previously proposed (but idealized) excitation mechanisms, places the Moon-forming event in the context of the formation of Earth, and constrains the pristineness of the dynamical state of the Earth-Moon system.

  8. Inclined Fiber Pullout from a Cementitious Matrix: A Numerical Study

    PubMed Central

    Zhang, Hui; Yu, Rena C.

    2016-01-01

    It is well known that fibers improve the performance of cementitious composites by acting as bridging ligaments in cracks. Such bridging behavior is often studied through fiber pullout tests. The relation between the pullout force vs. slip end displacement is characteristic of the fiber-matrix interface. However, such a relation varies significantly with the fiber inclination angle. In the current work, we establish a numerical model to simulate the entire pullout process by explicitly representing the fiber, matrix and the interface for arbitrary fiber orientations. Cohesive elements endorsed with mixed-mode fracture capacities are implemented to represent the bond-slip behavior at the interface. Contact elements with Coulomb’s friction are placed at the interface to simulate frictional contact. The bond-slip behavior is first calibrated through pull-out curves for fibers aligned with the loading direction, then validated against experimental results for steel fibers oriented at 30∘ and 60∘. Parametric studies are then performed to explore the influences of both material properties (fiber yield strength, matrix tensile strength, interfacial bond) and geometric factors (fiber diameter, embedment length and inclination angle) on the overall pullout behavior, in particular on the maximum pullout load. The proposed methodology provides the necessary pull-out curves for a fiber oriented at a given angle for multi-scale models to study fracture in fiber-reinforced cementitious materials. The novelty lies in its capacity to capture the entire pullout process for a fiber with an arbitrary inclination angle. PMID:28773921

  9. Inclined Fiber Pullout from a Cementitious Matrix: A Numerical Study.

    PubMed

    Zhang, Hui; Yu, Rena C

    2016-09-26

    It is well known that fibers improve the performance of cementitious composites by acting as bridging ligaments in cracks. Such bridging behavior is often studied through fiber pullout tests. The relation between the pullout force vs. slip end displacement is characteristic of the fiber-matrix interface. However, such a relation varies significantly with the fiber inclination angle. In the current work, we establish a numerical model to simulate the entire pullout process by explicitly representing the fiber, matrix and the interface for arbitrary fiber orientations. Cohesive elements endorsed with mixed-mode fracture capacities are implemented to represent the bond-slip behavior at the interface. Contact elements with Coulomb's friction are placed at the interface to simulate frictional contact. The bond-slip behavior is first calibrated through pull-out curves for fibers aligned with the loading direction, then validated against experimental results for steel fibers oriented at 30 ∘ and 60 ∘ . Parametric studies are then performed to explore the influences of both material properties (fiber yield strength, matrix tensile strength, interfacial bond) and geometric factors (fiber diameter, embedment length and inclination angle) on the overall pullout behavior, in particular on the maximum pullout load. The proposed methodology provides the necessary pull-out curves for a fiber oriented at a given angle for multi-scale models to study fracture in fiber-reinforced cementitious materials. The novelty lies in its capacity to capture the entire pullout process for a fiber with an arbitrary inclination angle.

  10. The angle of inclination of the native ACL in the coronal and sagittal planes.

    PubMed

    Reid, Jonathan C; Yonke, Bret; Tompkins, Marc

    2017-04-01

    The purpose of this cross-sectional study was to evaluate the angle of inclination of the native anterior cruciate ligament (ACL) in both the sagittal and coronal planes and to evaluate these findings based on sex, height, BMI, and skeletal maturity. Inclusion criteria for the study included patients undergoing routine magnetic resonance imaging (MRI) of the knee at a single outpatient orthopedic center who had an intact ACL on MRI. Measurements of the angle of inclination were made on MRIs in both the sagittal and coronal planes. Patients were compared based on sex, height, BMI, and skeletal maturity. One-hundred and eighty-eight patients were included (36 skeletally immature/152 skeletally mature; 98 male/90 female). The overall angle of inclination was 74.3° ± 4.8° in the coronal plane and 46.9° ± 4.9° in the sagittal plane. Skeletally immature patients (coronal: 71.8° ± 6.1°; sagittal: 44.7° ± 5.5°) were significantly different in both coronal and sagittal planes (P = 0.04 and 0.01, respectively) from skeletally mature patients (coronal: 75.3° ± 4.7°; sagittal: 47.4° ± 4.7°). There were no differences based on sex, height, or BMI. There are differences between the angle of inclination findings in this study and other studies, which could be due to MRI and measurement techniques. Clinically, skeletal maturity may be important to account for when using the ACL angle of inclination to evaluate anatomic ACL reconstruction. Prognostic retrospective study, Level of evidence III.

  11. 3. DETAIL OF TRUSS PANELS AND INCLINED PORTAL MEMBER AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. DETAIL OF TRUSS PANELS AND INCLINED PORTAL MEMBER AT THE SOUTHEAST ENTRANCE TO THE BRIDGE, LOOKING WEST. - Chicago, Madison & Northern Railroad, Sanitary & Ship Canal Bridge, Spanning Sanitary & Ship Canal, east of Kedzie Avenue, Chicago, Cook County, IL

  12. The role of incline, performance level, and gender on the gross mechanical efficiency of roller ski skating

    PubMed Central

    Sandbakk, Øyvind; Hegge, Ann Magdalen; Ettema, Gertjan

    2013-01-01

    The ability to efficiently utilize metabolic energy to produce work is a key factor for endurance performance. The present study investigated the effects of incline, performance level, and gender on the gross mechanical efficiency during roller ski skating. Thirty-one male and nineteen female elite cross-country skiers performed a 5-min submaximal session at approximately 75% of VO2peak on a 5% inclined treadmill using the G3 skating technique. Thereafter, a 5-min session on a 12% incline using the G2 skating technique was performed at a similar work rate. Gross efficiency was calculated as the external work rate against rolling friction and gravity divided by the metabolic rate using gas exchange. Performance level was determined by the amount of skating FIS points [the Federation of International Skiing (FIS) approved scoring system for ski racing] where fewer points indicate a higher performance level. Strong significant correlations between work rate and metabolic rate within both inclines and gender were revealed (r = −0.89 to 0.98 and P < 0.05 in all cases). Gross efficiency was higher at the steeper incline, both for men (17.1 ± 0.4 vs. 15.8 ± 0.5%, P < 0.05) and women (16.9 ± 0.5 vs. 15.7 ± 0.4%, P < 0.05), but without any gender differences being apparent. Significant correlations between gross efficiency and performance level were found for both inclines and genders (r = −0.65 to 0.81 and P < 0.05 in all cases). The current study demonstrated that cross-country skiers of both genders used less metabolic energy to perform the same amount of work at steeper inclines, and that the better ranked elite male and female skiers skied more efficiently. PMID:24155722

  13. The role of incline, performance level, and gender on the gross mechanical efficiency of roller ski skating.

    PubMed

    Sandbakk, Oyvind; Hegge, Ann Magdalen; Ettema, Gertjan

    2013-01-01

    The ability to efficiently utilize metabolic energy to produce work is a key factor for endurance performance. The present study investigated the effects of incline, performance level, and gender on the gross mechanical efficiency during roller ski skating. Thirty-one male and nineteen female elite cross-country skiers performed a 5-min submaximal session at approximately 75% of VO2peak on a 5% inclined treadmill using the G3 skating technique. Thereafter, a 5-min session on a 12% incline using the G2 skating technique was performed at a similar work rate. Gross efficiency was calculated as the external work rate against rolling friction and gravity divided by the metabolic rate using gas exchange. Performance level was determined by the amount of skating FIS points [the Federation of International Skiing (FIS) approved scoring system for ski racing] where fewer points indicate a higher performance level. Strong significant correlations between work rate and metabolic rate within both inclines and gender were revealed (r = -0.89 to 0.98 and P < 0.05 in all cases). Gross efficiency was higher at the steeper incline, both for men (17.1 ± 0.4 vs. 15.8 ± 0.5%, P < 0.05) and women (16.9 ± 0.5 vs. 15.7 ± 0.4%, P < 0.05), but without any gender differences being apparent. Significant correlations between gross efficiency and performance level were found for both inclines and genders (r = -0.65 to 0.81 and P < 0.05 in all cases). The current study demonstrated that cross-country skiers of both genders used less metabolic energy to perform the same amount of work at steeper inclines, and that the better ranked elite male and female skiers skied more efficiently.

  14. Inclined monochromator for high heat-load synchrotron x-ray radiation

    DOEpatents

    Khounsary, A.M.

    1994-02-15

    A double crystal monochromator is described including two identical, parallel crystals, each of which is cut such that the normal to the diffraction planes of interest makes an angle less than 90 degrees with the surface normal. Diffraction is symmetric, regardless of whether the crystals are symmetrically or asymmetrically cut, enabling operation of the monochromator with a fixed plane of diffraction. As a result of the inclination of the crystal surface, an incident beam has a footprint area which is elongated both vertically and horizontally when compared to that of the conventional monochromator, reducing the heat flux of the incident beam and enabling more efficient surface cooling. Because after inclination of the crystal only a fraction of thermal distortion lies in the diffraction plane, slope errors and the resultant misorientation of the diffracted beam are reduced. 11 figures.

  15. An important erosion process on steep burnt hillslopes

    NASA Astrophysics Data System (ADS)

    Langhans, Christoph; Nyman, Petter; Noske, Philip; Lane, Patrick; Sheridan, Gary

    2016-04-01

    Steep forested hillslopes often display a high degree of armouring where diffusive erosion processes preferentially remove the fine fraction of the surface soil. High infiltration capacities, hydraulic resistance to overland flow and physical anchoring by cover plants and litter mean that even the most extreme rainfall events usually do not erode the armouring substantially. We argue that fire (wild or planned) is essential to the mobilization and transport of the armouring by increasing the rates of overland flow and decreasing trapping opportunities. We present evidence of the types of erosion that lead to the stripping of the surface armouring using post-event surveys and high-rate overland flow experiments. The type of erosion depends on the relative abundance of non-cohesive surface material to overland flow, but we found that a particular type of transport dominates that has no representation in current erosion models: On steep slopes overland flow can lead to incipient motion of individual stones that transfer their momentum to other stones leading to a rapid mobilization of the whole non-cohesive, armoured surface layer. Once in motion, the layer quickly separates out into a granular flow front and liquefied body, akin to debris flows in channels. Depending on the size of the event, these hillslope debris flows (HDF) either get trapped or enter into the channel, stripping the hillslope of most armouring on their way. They provide channels with the material and shear stress needed to erode into the channel bed, increasing the risk of channel debris flows. We present a simple physical model of HDF initiation, movement, and possible re-mobilization on hillslopes that was derived from debris flow theory. Understanding this process, its frequency, and magnitude are important for assessing the role of fire in landscape evolution and risk to humans through debris flow impacts.

  16. Narrow bandpass steep edge optical filter for the JAST/T80 telescope instrumentation

    NASA Astrophysics Data System (ADS)

    Reichel, S.; Brauneck, U.; Bourquin, S.; Marín-Franch, A.

    2013-09-01

    The Observatorio Astrofisico de Javalambre in Spain observes with its JAST/T80 telescope galaxies in the Local Universe in a systematic study. This is accomplished with a multi-band photometric all sky survey called Javalambre Photometric Local Universe Survey (J-PLUS). A wide field camera receives the signals from universe via optical filters. In this presentation the development and design of a narrow bandpass steep edge filter with wide suppression will be shown. The filter has a full width half maximum in the range of 13-15 nm (with <1 nm tolerance) with central wavelengths in the range 350-860nm and an average transmission larger than 90% in the passband. Signals beyond the passband (blocking range) have to be suppressed down to 250nm and up to 1050nm (spectral regime), where a blocking of OD 5 (transmission < 10-5) is required. The edges have to be steep for a small transition width from 5% to 80%. The spectral requirements result in a large number of layers which are deposited with magnetron sputtering. The transmitted wavefront error of the optical filter must be less than lambda/2 over the 100mm aperture and the central wavelength uniformity must be better than +/- 0.4% over the clear aperture. The filter consists of optical filter glass and a coated substrate in order to reach the spectral requirements. The substrate is coated with more than 120 layers. The total filter thickness was specified to be 8.0mm. Results of steep edge narrow bandpass filters will be demonstrated fulfilling all these demanding requirements.

  17. Analytical calculation on the determination of steep side wall angles from far field measurements

    NASA Astrophysics Data System (ADS)

    Cisotto, Luca; Pereira, Silvania F.; Urbach, H. Paul

    2018-06-01

    In the semiconductor industry, the performance and capabilities of the lithographic process are evaluated by measuring specific structures. These structures are often gratings of which the shape is described by a few parameters such as period, middle critical dimension, height, and side wall angle (SWA). Upon direct measurement or retrieval of these parameters, the determination of the SWA suffers from considerable inaccuracies. Although the scattering effects that steep SWAs have on the illumination can be obtained with rigorous numerical simulations, analytical models constitute a very useful tool to get insights into the problem we are treating. In this paper, we develop an approach based on analytical calculations to describe the scattering of a cliff and a ridge with steep SWAs. We also propose a detection system to determine the SWAs of the structures.

  18. 11. A DETAIL VIEW, LOOKING NORTH, OF THE WEST INCLINED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. A DETAIL VIEW, LOOKING NORTH, OF THE WEST INCLINED END POST, AND OF THE PIN CONNECTION OF THE SOUTHWESTERN VERTICAL MEMBER. - Wells County Bridge No. 74, Spanning Rock Creek Ditch at County Road 400, Bluffton, Wells County, IN

  19. How to Detect Inclined Water Maser Disks (and Possibly Measure Black Hole Masses)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darling, Jeremy, E-mail: jdarling@colorado.edu

    We describe a method for identifying inclined water maser disks orbiting massive black holes and for potentially using them to measure black hole masses. Owing to the geometry of maser amplification pathways, the minority of water maser disks are observable: only those viewed nearly edge-on have been identified, suggesting that an order of magnitude additional maser disks exist. We suggest that inward-propagating masers are gravitationally deflected by the central black hole, thereby scattering water maser emission out of the disk plane and enabling detection. The signature of an inclined water maser disk would be narrow masers near the systemic velocitymore » that appear to emit from the black hole position, as identified by the radio continuum core. To explore this possibility, we present high-resolution (0.″07–0.″17) Very Large Array line and continuum observations of 13 galaxies with narrow water maser emission and show that three are good inclined-disk candidates (five remain ambiguous). For the best case, CGCG 120−039, we show that the maser and continuum emission are coincident to within 3.5 ± 1.4 pc (6.7 ± 2.7 mas). Subsequent very long baseline interferometric maps can confirm candidate inclined disks and have the potential to show maser rings or arcs that provide a direct measurement of black hole mass, although the mass precision will rely on knowledge of the size of the maser disk.« less

  20. Methodology for the passive control of orbital inclination and mean local time to meet sun-synchronous orbit requirements

    NASA Technical Reports Server (NTRS)

    Folta, David; Kraft, Lauri

    1992-01-01

    The mean local time (MLT) of equatorial crossing of a sun-synchronous Earth-observing spacecraft orbit drifts with inclination; therefore, in order to maintain the MLT, the inclination must be controlled. Inclination may be maintained actively by costly out-of-plane maneuvers or passively by using the perturbing forces due to the sun and moon. This paper examines the passive control approach using the Earth Observing System (EOS) as a basis for the discussion. Applications to Landsat and National Oceanic and Atmospheric Administration (NOAA) spacecraft are presented for comparison. This technique is especially beneficial to spacecraft lacking propulsion systems. The results indicate that passive inclination control appears to be the preferable maintenance method when spacecraft weight restrictions, operational considerations, and scientific requirements apply.

  1. Inclined cross-stream stereo particle image velocimetry measurements in turbulent boundary layers

    NASA Astrophysics Data System (ADS)

    Hutchins, N.; Hambleton, W. T.; Marusic, Ivan

    2005-10-01

    This work can be viewed as a reprise of Head & Bandyopadhyay's (J. Fluid Mech. vol. 107, p. 297) original boundary-layer visualization study although in this instance we make use of stereo particle image velocimetry (PIV), techniques to obtain a quantitative view of the turbulent structure. By arranging the laser light-sheet and image plane of a stereo PIV system in inclined spanwise/wall-normal planes (inclined at both 45(°) and 135(°) to the streamwise axis) a unique quantitative view of the turbulent boundary layer is obtained. Experiments are repeated across a range of Reynolds numbers, Re_{tau} {≈} 690-2800. Despite numerous experimental challenges (due to the large out-of-plane velocity components), mean flow and Reynolds stress profiles indicate that the salient features of the turbulent flow have been well resolved. The data are analysed with specific attention to a proposed hairpin eddy model. In-plane two-dimensional swirl is used to identify vortical eddy structures piercing the inclined planes. The vast majority of this activity occurs in the 135(°) plane, indicating an inclined eddy structure, and Biot-Savart law calculations are carried out to aid in the discussion. Conditional averaging and linear stochastic estimation results also support the presence of inclined eddies, arranged about low-speed regions. In the 135(°) plane, instantaneous swirl patterns exhibit a predisposition for counter-rotating vortex pairs (arranged with an ejection at their confluence). Such arrangements are consistent with the hairpin packet model. Correlation and scaling results show outer-scaling to be the correct way to quantify the characteristic spanwise length scale across the log and wake regions of the boundary layers (for the range of Reynolds numbers tested). A closer investigation of two-point velocity correlation contours indicates the occurrence of a distinct two-regime behaviour, in which contours (and hence streamwise velocity fluctuations) either appear

  2. On the relevance of "ideal" occlusion concepts for incisor inclination target definition.

    PubMed

    Knösel, Michael; Jung, Klaus

    2011-11-01

    The concept of "ideal" occlusion in harmony with craniofacial structures is often proposed as an ultimate goal of orthodontic treatment. The aim of this study was to assess the impact of slight variations in posterior occlusion and the history of straight-wire orthodontic treatment on the predictability of incisor inclination and third-order angles. Axial incisor inclinations, third-order angles, and craniofacial relationships were assessed on lateral headfilms and corresponding dental casts of 75 healthy white subjects, 16 to 26 years old, selected by the general inclusion criterion of a good interincisal relationship. Four groups were formed: group A (n = 17), Angle Class I occlusion subjects with no orthodontic treatment; group B (n = 20), Angle Class I occlusion subjects treated with standardized straight-wire orthodontics; group C (n = 20), up to a half-cusp distal occlusion after straight-wire treatment; and group D (n = 18), up to a half-cusp distal occlusion and no orthodontic treatment. Regression analysis was used to insert predictor angles into selected regression equations of the subjects with "ideal" occlusion, and the absolute differences between predicted and observed response angles were determined. Small differences in incisor inclination were found between subjects with "ideal" occlusion and those who slightly deviated from "ideal" with a mild occlusion of the Angle Class II category. Posterior occlusion was not relevant to the validity of the vast majority of predictor-response pairs. Straight-wire treatment produced incisor inclination that was slightly protruded compared with subjects who had good natural occlusion. The "ideal" posterior occlusion concepts as a general orthodontic treatment goal should be reconsidered. Copyright © 2011 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  3. Coordinating bracket torque and incisor inclination : Part 3: Validity of bracket torque values in achieving norm inclinations.

    PubMed

    Zimmer, Bernd; Sino, Hiba

    2018-03-19

    To analyze common values of bracket torque (Andrews, Roth, MBT, Ricketts) for their validity in achieving incisor inclinations that are considered normal by different cephalometric standards. Using the equations developed in part 1 (eU1 (BOP) = 90° - BT (U1) - TCA (U1) + α 1 - α 2 and eL1 (BOP) = 90° - BT (L1) - TCA (L1) + β 1 - β 2 ) (abbreviations see part 1) and the mean values (± SD) obtained as statistical measures in parts 1 and 2 of the study (α 1 and β 1 [1.7° ± 0.7°], α 2 [3.6° ± 0.3°], β 2 [3.2° ± 0.4°], TCA (U1) [24.6° ± 3.6°] and TCA (L1) [22.9° ± 4.3°]) expected (= theoretically anticipated) values were calculated for upper and lower incisors (U1 and L1) and compared to targeted (= cephalometric norm) values. For U1, there was no overlapping between the ranges of expected and targeted values, as the lowest targeted value of (58.3°; Ricketts) was higher than the highest expected value (56.5°; Andrews) relative to the bisected occlusal plane (BOP). Thus all of these torque systems will aim for flatter inclinations than prescribed by any of the norm values. Depending on target values, the various bracket systems fell short by 1.8-5.5° (Andrews), 6.8-10.5° (Roth), 11.8-15.5° (MBT), or 16.8-20.5° (Ricketts). For L1, there was good agreement of the MBT system with the Ricketts and Björk target values (Δ0.1° and Δ-0.8°, respectively), and both the Roth and Ricketts systems came close to the Bergen target value (both Δ2.3°). Depending on target values, the ranges of deviation for L1 were 6.3-13.2° for Andrews (Class II prescription), 2.3°-9.2° for Roth, -3.7 to -3.2° for MBT, and 2.3-9.2° for Ricketts. Common values of upper incisor bracket torque do not have acceptable validity in achieving normal incisor inclinations. A careful selection of lower bracket torque may provide satisfactory matching with some of the targeted norm values.

  4. Reconstruction of inclined air showers detected with the Pierre Auger Observatory

    NASA Astrophysics Data System (ADS)

    Pierre Auger Collaboration; Aab, A.; Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Samarai, I. Al; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Aramo, C.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Badescu, A. M.; Barber, K. B.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Criss, A.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; D\\'\\iaz Castro, M. L.; Diep, P. N.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; Dorosti Hasankiadeh, Q.; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fernandes, M.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fox, B. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Fuji, T.; Gaior, R.; Garc\\'\\ia, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gate, F.; Gemmeke, H.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Glaser, C.; Glass, H.; Gomez Albarracin, F.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, J. G.; Gookin, B.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Islo, K.; Jandt, I.; Jansen, S.; Jarne, C.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kunka, N.; La Rosa, G.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agëra, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Malacari, M.; Maldera, S.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Mart\\'\\inez Bravo, O.; Martraire, D.; Mas\\'\\ias Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, A. J.; Matthews, J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Messina, S.; Meyhandan, R.; Mićanović, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morello, C.; Moreno, J. C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Newton, D.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, L.; Ochilo, L.; Olinto, A.; Oliveira, M.; Olmos-Gilbaja, V. M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Papenbreer, P.; Parente, G.; Parra, A.; Pastor, S.; Paul, T.; Pech, M.; Pȩkala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Peters, C.; Petrera, S.; Petrolini, A.; Petrov, Y.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porcelli, A.; Porowski, C.; Privitera, P.; Prouza, M.; Purrello, V.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez Cabo, I.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Rodr\\'\\iguez-Fr\\'\\ias, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Roulet, E.; Rovero, A. C.; Rühle, C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schulz, A.; Schulz, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Śmiał kowski, A.; Šm\\'\\ida, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Squartini, R.; Srivastava, Y. N.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Taborda, O. A.; Tapia, A.; Tartare, M.; Thao, N. T.; Theodoro, V. M.; Tiffenberg, J.; Timmermans, C.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Vlcek, B.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Whelan, B. J.; Widom, A.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.

    2014-08-01

    We describe the method devised to reconstruct inclined cosmic-ray air showers with zenith angles greater than 60° detected with the surface array of the Pierre Auger Observatory. The measured signals at the ground level are fitted to muon density distributions predicted with atmospheric cascade models to obtain the relative shower size as an overall normalization parameter. The method is evaluated using simulated showers to test its performance. The energy of the cosmic rays is calibrated using a sub-sample of events reconstructed with both the fluorescence and surface array techniques. The reconstruction method described here provides the basis of complementary analyses including an independent measurement of the energy spectrum of ultra-high energy cosmic rays using very inclined events collected by the Pierre Auger Observatory.

  5. Evolution of asteroidal orbits with high inclinations

    NASA Astrophysics Data System (ADS)

    Solovaya, Nina A.; Pittich, Eduard M.

    1993-10-01

    The 20,000 years orbital evolution of massless fictitious asteroid located at a border of the Hill's gravitational sphere has been investigated. The eleven orbits with the eccentricities from 0.0 to 0.4 in five groups of inclinations from 40 deg to 80 deg were numerically integrated with planetary perturbations of six major planets, using the numerical integration n-body program with the Everhart's integrator RA 15. For each group time evolution of orbital elements of the asteroids is presented.

  6. 46 CFR 111.01-19 - Inclination of the vessel.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Inclination of the vessel. 111.01-19 Section 111.01-19 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS...) 15 degrees static list, 22.5 degrees dynamic roll; and (2) 7.5 degrees static trim. (b) All emergency...

  7. Fiber optic inclination detector system having a weighted sphere with reference points

    DOEpatents

    Cwalinski, Jeffrey P.

    1995-01-01

    A fiber optic inclination detector system for determining the angular displacement of an object from a reference surface includes a simple mechanical transducer which requires a minimum number of parts and no electrical components. The system employs a single light beam which is split into two light beams and provided to the transducer. Each light beam is amplitude modulated upon reflecting off the transducer to detect inclination. The power values associated with each of the reflected light beams are converted by a pair of photodetectors into voltage signals, and a microprocessor manipulates the voltage signals to provide a measure of the angular displacement between the object and the reference surface.

  8. Alcohol craving in patients diagnosed with a severe mental illness and alcohol use disorder: bidirectional relationships between approach and avoidance inclinations and drinking.

    PubMed

    Schlauch, Robert C; Levitt, Ash; Bradizza, Clara M; Stasiewicz, Paul R; Lucke, Joseph F; Maisto, Stephen A; Zhuo, Yue; Connors, Gerard J

    2013-12-01

    The current study was undertaken to better understand the craving-drinking relationship among individuals dually diagnosed with a severe mental illness (SMI) and an alcohol use disorder (AUD). Using an ambivalence conceptualization of craving (Breiner, Stritzke, & Lang, 1999), we investigated the bidirectional relationships between desires and behavioral intentions to use (approach inclinations) and not use (avoidance inclinations) alcohol and drinking outcomes in patients diagnosed with an SMI-AUD. Patients (N = 278) seeking outpatient dual diagnosis treatment from a community mental health center were followed longitudinally over the course of 6 months. Assessments at baseline, 2-month, 4-month, and 6-month intervals included approach and avoidance inclinations, alcohol urges, readiness to change, and drinking outcomes. Time-lagged multilevel growth curve modeling found that avoidance inclinations moderated the effect of approach inclinations on subsequent drinking outcomes differentially over time. Specifically, avoidance inclinations attenuated the effect of approach on subsequent heavier drinking levels, and high avoidance/low approach demonstrated significant decreases on levels of drinking over time. Results also indicated that number of drinks consumed and heavy drinking days predicted subsequent approach inclinations differentially over time, such that lower levels of drinking predicted decreases in approach inclinations. Decreases in drinking also predicted higher subsequent avoidance inclinations, which were maintained over time. These findings highlight the complexity of subjective craving responses and the importance of measuring both approach and avoidance inclinations. Among those diagnosed with SMI-AUDs, treatment strategies that increase avoidance inclinations may increase abstinence rates in this difficult-to-treat population.

  9. Affect and Craving: Positive and Negative Affect are Differentially Associated with Approach and Avoidance Inclinations

    PubMed Central

    Schlauch, Robert C.; Gwynn-Shapiro, Daniel; Stasiewicz, Paul R.; Molnar, Danielle S.; Lang, Alan R.

    2012-01-01

    Background Research on reactivity to alcohol and drug cues has either ignored affective state altogether or has focused rather narrowly on the role of negative affect in craving. Moreover, until recently, the relevant analyses of affect and craving have rarely addressed the ambivalence often associated with craving itself. The current study investigated how both negative and positive affect moderate approach and avoidance inclinations associated with cue-elicited craving in a clinical sample diagnosed with substance use disorders. Methods One hundred forty-four patients (age range 18–65, mean 42.0; n = 92 male) were recruited from an inpatient detoxification unit for substance abuse. Participants completed a baseline assessment of both positive and negative affect prior to completing a cue-reactivity paradigm for which they provided self-report ratings of inclinations to approach (use) and avoid (not use) alcohol, cigarettes, and non-psychoactive control substances (food and beverages). Results Participants with elevated negative affect reported significantly higher approach ratings for cigarette and alcohol cues, whereas those high in positive affect showed significantly higher levels of avoidance inclinations for both alcohol and cigarette cues and also significantly lower approach ratings for alcohol cues, all relative to control cues. Conclusions Results for negative affect are consistent with previous cue reactivity research, whereas results for positive affect are unique and call attention to its clinical potential for attenuating approach inclinations to substance use cues. Further, positive affect was related to both approach and avoidance inclinations, underscoring the utility of a multidimensional conceptualization of craving in the analysis. PMID:23380493

  10. Affect and craving: positive and negative affect are differentially associated with approach and avoidance inclinations.

    PubMed

    Schlauch, Robert C; Gwynn-Shapiro, Daniel; Stasiewicz, Paul R; Molnar, Danielle S; Lang, Alan R

    2013-04-01

    Research on reactivity to alcohol and drug cues has either ignored affective state altogether or has focused rather narrowly on the role of negative affect in craving. Moreover, until recently, the relevant analyses of affect and craving have rarely addressed the ambivalence often associated with craving itself. The current study investigated how both negative and positive affect moderate approach and avoidance inclinations associated with cue-elicited craving in a clinical sample diagnosed with substance use disorders. One hundred forty-four patients (age range of 18-65, mean 42.0; n=92 males) were recruited from an inpatient detoxification unit for substance abuse. Participants completed a baseline assessment of both positive and negative affect prior to completing a cue-reactivity paradigm for which they provided self-report ratings of inclinations to approach (use) and avoid (not use) alcohol, cigarettes, and non-psychoactive control substances (food and beverages). Participants with elevated negative affect reported significantly higher approach ratings for cigarette and alcohol cues, whereas those high in positive affect showed significantly higher levels of avoidance inclinations for both alcohol and cigarette cues and also significantly lower approach ratings for alcohol cues, all relative to control cues. Results for negative affect are consistent with previous cue reactivity research, whereas results for positive affect are unique and call attention to its clinical potential for attenuating approach inclinations to substance use cues. Further, positive affect was related to both approach and avoidance inclinations, underscoring the utility of a multidimensional conceptualization of craving in the analysis. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Influence of thread shape and inclination on the biomechanical behaviour of plateau implant systems.

    PubMed

    Calì, Michele; Zanetti, Elisabetta Maria; Oliveri, Salvatore Massimo; Asero, Riccardo; Ciaramella, Stefano; Martorelli, Massimo; Bignardi, Cristina

    2018-03-01

    To assess the influence of implant thread shape and inclination on the mechanical behaviour of bone-implant systems. The study assesses which factors influence the initial and full osseointegration stages. Point clouds of the original implant were created using a non-contact reverse engineering technique. A 3D tessellated surface was created using Geomagic Studio ® software. From cross-section curves, generated by intersecting the tessellated model and cutting-planes, a 3D parametric CAD model was created using SolidWorks ® 2017. By the permutation of three thread shapes (rectangular, 30° trapezoidal, 45° trapezoidal) and three thread inclinations (0°, 3° or 6°), nine geometric configurations were obtained. Two different osseointegration stages were analysed: the initial osseointegration and a full osseointegration. In total, 18 different FE models were analysed and two load conditions were applied to each model. The mechanical behaviour of the models was analysed by Finite Element (FE) Analysis using ANSYS ® v. 17.0. Static linear analyses were also carried out. ANOVA was used to assess the influence of each factor. Models with a rectangular thread and 6° inclination provided the best results and reduced displacement in the initial osseointegration stages up to 4.58%. This configuration also reduced equivalent VM stress peaks up to 54%. The same effect was confirmed for the full osseointegration stage, where 6° inclination reduced stress peaks by up to 62%. The FE analysis confirmed the beneficial effect of thread inclination, reducing the displacement in immediate post-operative conditions and equivalent VM stress peaks. Thread shape does not significantly influence the mechanical behaviour of bone-implant systems but contributes to reducing stress peaks in the trabecular bone in both the initial and full osseointegration stages. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  12. THE EFFECTS OF DIFFERENT TRUNK INCLINATIONS ON BILATERAL TRUNK MUSCULAR ACTIVITIES, CENTRE OF PRESSURE AND FORCE EXERTIONS IN STATIC PUSHING POSTURES.

    PubMed

    Sanjaya, Kadek Heri; Lee, Soomin; Sriwarno, Andar Bagus; Shimomura, Yoshihito; Katsuura, Tetsuo

    2014-06-01

    In order to reconcile contradictory results from previous studies on manual pushing, a study was conducted to examine the effect of trunk inclination on muscular activities, centre of pressure (COP) and force exertion during static pushing. Ten subjects pushed at 0 degrees, 15 degrees, 30 degrees, and 45 degrees body inclinations in parallel and staggered feet stances. Wall and ground force plates measured pushing force, wall COP, vertical ground reaction force (GRF) and ground COP. Electromyogram data were recorded at 10 trunk muscle sites. Pushing force was found to increase with body inclination. GRF peaked at 15 degrees and reached its lowest level at the 45 degrees inclination. The lowest wall force plate standard deviation of COP displacement was found at the 30 degrees inclination. The lowest low back muscular activity was found at the 15 degrees and 30 degrees inclinations. Based on force exertion, muscular load, and stability, the 30 degrees body inclination was found to be the best posture for static pushing. This study also showed asymmetry in muscular activity and force exertion which has been received less attention in manual pushing studies. These findings will require further study.

  13. A Method of Efficient Inclination Changes for Low-thrust Spacecraft

    NASA Technical Reports Server (NTRS)

    Falck, Robert; Gefert, Leon

    2002-01-01

    The evolution of low-thrust propulsion technologies has reached a point where such systems have become an economical option for many space missions. The development of efficient, low trip time control laws has received an increasing amount of attention in recent years, though few studies have examined the subject of inclination changing maneuvers in detail. A method for performing economical inclination changes through the use of an efficiency factor is derived front Lagrange's planetary equations. The efficiency factor can be used to regulate propellant expenditure at the expense of trip time. Such a method can be used for discontinuous-thrust transfers that offer reduced propellant masses and trip-times in comparison to continuous thrust transfers, while utilizing thrusters that operate at a lower specific impulse. Performance comparisons of transfers utilizing this approach with continuous-thrust transfers are generated through trajectory simulation and are presented in this paper.

  14. Inclination not force is sensed by plants during shoot gravitropism.

    PubMed

    Chauvet, Hugo; Pouliquen, Olivier; Forterre, Yoël; Legué, Valérie; Moulia, Bruno

    2016-10-14

    Gravity perception plays a key role in how plants develop and adapt to environmental changes. However, more than a century after the pioneering work of Darwin, little is known on the sensing mechanism. Using a centrifugal device combined with growth kinematics imaging, we show that shoot gravitropic responses to steady levels of gravity in four representative angiosperm species is independent of gravity intensity. All gravitropic responses tested are dependent only on the angle of inclination from the direction of gravity. We thus demonstrate that shoot gravitropism is stimulated by sensing inclination not gravitational force or acceleration as previously believed. This contrasts with the otolith system in the internal ear of vertebrates and explains the robustness of the control of growth direction by plants despite perturbations like wind shaking. Our results will help retarget the search for the molecular mechanism linking shifting statoliths to signal transduction.

  15. Inclination not force is sensed by plants during shoot gravitropism

    NASA Astrophysics Data System (ADS)

    Chauvet, Hugo; Pouliquen, Olivier; Forterre, Yoël; Legué, Valérie; Moulia, Bruno

    2016-10-01

    Gravity perception plays a key role in how plants develop and adapt to environmental changes. However, more than a century after the pioneering work of Darwin, little is known on the sensing mechanism. Using a centrifugal device combined with growth kinematics imaging, we show that shoot gravitropic responses to steady levels of gravity in four representative angiosperm species is independent of gravity intensity. All gravitropic responses tested are dependent only on the angle of inclination from the direction of gravity. We thus demonstrate that shoot gravitropism is stimulated by sensing inclination not gravitational force or acceleration as previously believed. This contrasts with the otolith system in the internal ear of vertebrates and explains the robustness of the control of growth direction by plants despite perturbations like wind shaking. Our results will help retarget the search for the molecular mechanism linking shifting statoliths to signal transduction.

  16. The Relationship Between KBO Colors and Kuiper-belt Plane Inclination

    NASA Astrophysics Data System (ADS)

    Kane, J. F.; Gulbis, A. A. S.; Elliot, J. L.

    2005-08-01

    The colors of Kuiper belt objects (KBOs) can indicate different compositions, environmental conditions, or formation characteristics within the Kuiper belt. Photometric color observations of these objects, combined with dynamical information, can provide insight into their composition, the extent to which space-weathering or impact gardening have played a role in surface modification, and the processes at work during the formation of our solar system. Data from the Deep Ecliptic Survey (DES; Millis et al., 2002, AJ, 123, 2083) have been used to determine the plane of the Kuiper belt, identifying "core" and "halo" populations with respect to this plane (Elliot et al. 2005, AJ, 129, 1117). Gulbis et al. (2005, Icarus, submitted) found the colors of the core KBOs, those having inclinations within approximately 4.6 degrees of the Kuiper-belt plane, to be primarily red, unlike the halo objects. We have combined newly obtained Sloan g', r', and i' observations from the 6.5-m Clay telescope at Las Campanas Observatory of 12 KBOs with previously published data to examine the transition between these populations as a function of color. By comparing the colors of objects as a function of inclination, we can establish trends distinguishing the core and halo populations. For inclination bins containing equal numbers of KBOs, we find that the percentage of red objects (B-R > median B-R of the sample) decreases in a smooth, but nonlinear fashion. This research is partially supported by an MIT fellowship, an NSF GSRF and NSF grant AST0406493.

  17. Model tests and numerical analyses on horizontal impedance functions of inclined single piles embedded in cohesionless soil

    NASA Astrophysics Data System (ADS)

    Goit, Chandra Shekhar; Saitoh, Masato

    2013-03-01

    Horizontal impedance functions of inclined single piles are measured experimentally for model soil-pile systems with both the effects of local soil nonlinearity and resonant characteristics. Two practical pile inclinations of 5° and 10° in addition to a vertical pile embedded in cohesionless soil and subjected to lateral harmonic pile head loadings for a wide range of frequencies are considered. Results obtained with low-to-high amplitude of lateral loadings on model soil-pile systems encased in a laminar shear box show that the local nonlinearities have a profound impact on the horizontal impedance functions of piles. Horizontal impedance functions of inclined piles are found to be smaller than the vertical pile and the values decrease as the angle of pile inclination increases. Distinct values of horizontal impedance functions are obtained for the `positive' and `negative' cycles of harmonic loadings, leading to asymmetric force-displacement relationships for the inclined piles. Validation of these experimental results is carried out through three-dimensional nonlinear finite element analyses, and the results from the numerical models are in good agreement with the experimental data. Sensitivity analyses conducted on the numerical models suggest that the consideration of local nonlinearity at the vicinity of the soil-pile interface influence the response of the soil-pile systems.

  18. Enhanced stability of steep channel beds to mass failure and debris flow initiation

    NASA Astrophysics Data System (ADS)

    Prancevic, J.; Lamb, M. P.; Ayoub, F.; Venditti, J. G.

    2015-12-01

    Debris flows dominate bedrock erosion and sediment transport in very steep mountain channels, and are often initiated from failure of channel-bed alluvium during storms. While several theoretical models exist to predict mass failures, few have been tested because observations of in-channel bed failures are extremely limited. To fill this gap in our understanding, we performed laboratory flume experiments to identify the conditions necessary to initiate bed failures in non-cohesive sediment of different sizes (D = 0.7 mm to 15 mm) on steep channel-bed slopes (S = 0.45 to 0.93) and in the presence of water flow. In beds composed of sand, failures occurred under sub-saturated conditions on steep bed slopes (S > 0.5) and under super-saturated conditions at lower slopes. In beds of gravel, however, failures occurred only under super-saturated conditions at all tested slopes, even those approaching the dry angle of repose. Consistent with theoretical models, mass failures under super-saturated conditions initiated along a failure plane approximately one grain-diameter below the bed surface, whereas the failure plane was located near the base of the bed under sub-saturated conditions. However, all experimental beds were more stable than predicted by 1-D infinite-slope stability models. In partially saturated sand, enhanced stability appears to result from suction stress. Enhanced stability in gravel may result from turbulent energy losses in pores or increased granular friction for failures that are shallow with respect to grain size. These grain-size dependent effects are not currently included in stability models for non-cohesive sediment, and they may help to explain better the timing and location of debris flow occurrence.

  19. Students' Entrepreneurial Inclination at a Malaysian Polytechnic: A Preliminary Investigation

    ERIC Educational Resources Information Center

    Yasin, Ahmad Yasruddin Md; Mahmood, Nik Abdul Aziz Nik; Jaafar, Nik Azyyati Nik

    2011-01-01

    This paper reports preliminary results of an ongoing project to examine students' inclination towards entrepreneurship at a Malaysian polytechnic. The study used a self-administered questionnaire to explore the influence of entrepreneurial intent, perceived behavioral control, self-efficacy, perceived barriers, perceived support factors and…

  20. Reconstruction of inclined air showers detected with the Pierre Auger Observatory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collaboration: Pierre Auger Collaboration

    2014-08-01

    We describe the method devised to reconstruct inclined cosmic-ray air showers with zenith angles greater than 60° detected with the surface array of the Pierre Auger Observatory. The measured signals at the ground level are fitted to muon density distributions predicted with atmospheric cascade models to obtain the relative shower size as an overall normalization parameter. The method is evaluated using simulated showers to test its performance. The energy of the cosmic rays is calibrated using a sub-sample of events reconstructed with both the fluorescence and surface array techniques. The reconstruction method described here provides the basis of complementary analysesmore » including an independent measurement of the energy spectrum of ultra-high energy cosmic rays using very inclined events collected by the Pierre Auger Observatory.« less

  1. Energy estimation of inclined air showers with help of detector responses

    NASA Astrophysics Data System (ADS)

    Dedenko, L. G.; Fedorova, G. F.; Fedunin, E. Yu.; Glushkov, A. V.; Kolosov, V. A.; Podgrudkov, D. A.; Pravdin, M. I.; Roganova, T. M.; Sleptsov, I. E.

    2004-11-01

    The method of groups of muons have been suggested to estimate the detector responses for the inclined giant air shower in terms of quark-gluon string model with the geomagnetic field taken into account. Groups are average numbers of muons of positive or negative sign in small intervals of energy, height production and direction of motion in the atmosphere estimated with help of transport equations. For every group a relativistic equation of motion has been solved with geomagnetic field and ionization losses taken into account. The response of a detector and arrival time for every group which strike a detector has been estimated. The energy of the inclined giant air shower estimated with help of calculated responses and the data observed at the Yakutsk array happens to be above 10 20 eV.

  2. Film flow and heat transfer during condensation of steam on inclined and vertical nonround tubes

    NASA Astrophysics Data System (ADS)

    Nikitin, N. N.; Semenov, V. P.

    2008-03-01

    We describe a mathematical model for calculating heat transfer during film condensation of stagnant steam on inclined and vertical smooth tubes with cross sections of arbitrary shape that takes into account the action of surface tension forces. The heat-transfer coefficients are calculated, and the hydrodynamic pattern is presented in which a condensate film flows over the surface of nonround inclined and vertical tubes with cross-section of different shapes.

  3. Eccentricity and inclination of Miranda's orbit

    NASA Technical Reports Server (NTRS)

    Whitaker, E.; Greenberg, R.

    1973-01-01

    Careful re-measurement of all available plates showing Uranus V (Miranda), supplemented by some recently obtained images, shows that this satellite has both a pronounced orbital eccentricity and inclination (to the plane of the other satellites). Observations are sufficient in number and distribution to allow determinations of the precession rates of both pericenter and node, with implications for the dynamical oblateness of Uranus and the gravitational interaction of the satellites. An improved value for the revolution period is a byproduct of the investigation. The success of the study is due to the improved precision of the measures resulting from the adoption of a very simple, direct method of measurement.

  4. Eccentricity and inclination of Miranda's orbit

    NASA Technical Reports Server (NTRS)

    Whitaker, E.; Greenberg, R.

    1973-01-01

    Careful re-measurement of all available plates showing Uranus V (Miranda), supplemented by some recently obtained images, shows that this satellite has both a pronounced orbital eccentricity and inclination (to the plane of the other satellites). Observations are sufficient in number and distribution to allow determinations of the precession rates of both pericenter and node, with implications for the dynamical oblateness of Uranus and the gravitational interaction of the satellites. An improved value for the revolution period is a by-product of the investigation. The success of this study is due to the improved precision of the measures resulting from the adoption of a very simple, direct method of measurement.

  5. How do ants make sense of gravity? A Boltzmann Walker analysis of Lasius niger trajectories on various inclines.

    PubMed

    Khuong, Anaïs; Lecheval, Valentin; Fournier, Richard; Blanco, Stéphane; Weitz, Sébastian; Bezian, Jean-Jacques; Gautrais, Jacques

    2013-01-01

    The goal of this study is to describe accurately how the directional information given by support inclinations affects the ant Lasius niger motion in terms of a behavioral decision. To this end, we have tracked the spontaneous motion of 345 ants walking on a 0.5×0.5 m plane canvas, which was tilted with 5 various inclinations by [Formula: see text] rad ([Formula: see text] data points). At the population scale, support inclination favors dispersal along uphill and downhill directions. An ant's decision making process is modeled using a version of the Boltzmann Walker model, which describes an ant's random walk as a series of straight segments separated by reorientation events, and was extended to take directional influence into account. From the data segmented accordingly ([Formula: see text] segments), this extension allows us to test separately how average speed, segments lengths and reorientation decisions are affected by support inclination and current walking direction of the ant. We found that support inclination had a major effect on average speed, which appeared approximately three times slower on the [Formula: see text] incline. However, we found no effect of the walking direction on speed. Contrastingly, we found that ants tend to walk longer in the same direction when they move uphill or downhill, and also that they preferentially adopt new uphill or downhill headings at turning points. We conclude that ants continuously adapt their decision making about where to go, and how long to persist in the same direction, depending on how they are aligned with the line of maximum declivity gradient. Hence, their behavioral decision process appears to combine klinokinesis with geomenotaxis. The extended Boltzmann Walker model parameterized by these effects gives a fair account of the directional dispersal of ants on inclines.

  6. How Do Ants Make Sense of Gravity? A Boltzmann Walker Analysis of Lasius niger Trajectories on Various Inclines

    PubMed Central

    Khuong, Anaïs; Lecheval, Valentin; Fournier, Richard; Blanco, Stéphane; Weitz, Sébastian; Bezian, Jean-Jacques; Gautrais, Jacques

    2013-01-01

    The goal of this study is to describe accurately how the directional information given by support inclinations affects the ant Lasius niger motion in terms of a behavioral decision. To this end, we have tracked the spontaneous motion of 345 ants walking on a 0.5×0.5 m plane canvas, which was tilted with 5 various inclinations by rad ( data points). At the population scale, support inclination favors dispersal along uphill and downhill directions. An ant's decision making process is modeled using a version of the Boltzmann Walker model, which describes an ant's random walk as a series of straight segments separated by reorientation events, and was extended to take directional influence into account. From the data segmented accordingly ( segments), this extension allows us to test separately how average speed, segments lengths and reorientation decisions are affected by support inclination and current walking direction of the ant. We found that support inclination had a major effect on average speed, which appeared approximately three times slower on the incline. However, we found no effect of the walking direction on speed. Contrastingly, we found that ants tend to walk longer in the same direction when they move uphill or downhill, and also that they preferentially adopt new uphill or downhill headings at turning points. We conclude that ants continuously adapt their decision making about where to go, and how long to persist in the same direction, depending on how they are aligned with the line of maximum declivity gradient. Hence, their behavioral decision process appears to combine klinokinesis with geomenotaxis. The extended Boltzmann Walker model parameterized by these effects gives a fair account of the directional dispersal of ants on inclines. PMID:24204636

  7. A highly precise frequency-based method for estimating the tension of an inclined cable with unknown boundary conditions

    NASA Astrophysics Data System (ADS)

    Ma, Lin

    2017-11-01

    This paper develops a method for precisely determining the tension of an inclined cable with unknown boundary conditions. First, the nonlinear motion equation of an inclined cable is derived, and a numerical model of the motion of the cable is proposed using the finite difference method. The proposed numerical model includes the sag-extensibility, flexural stiffness, inclination angle and rotational stiffness at two ends of the cable. Second, the influence of the dynamic parameters of the cable on its frequencies is discussed in detail, and a method for precisely determining the tension of an inclined cable is proposed based on the derivatives of the eigenvalues of the matrices. Finally, a multiparameter identification method is developed that can simultaneously identify multiple parameters, including the rotational stiffness at two ends. This scheme is applicable to inclined cables with varying sag, varying flexural stiffness and unknown boundary conditions. Numerical examples indicate that the method provides good precision. Because the parameters of cables other than tension (e.g., the flexural stiffness and rotational stiffness at the ends) are not accurately known in practical engineering, the multiparameter identification method could further improve the accuracy of cable tension measurements.

  8. Determination of the optimal conditions for inclination maneuvers using a Swing-by

    NASA Astrophysics Data System (ADS)

    Moura, O.; Celestino, C. C.; Prado, A. F. B. A.

    2018-05-01

    The search for methods to reduce the fuel consumption in orbital transfers is something relevant and always current in astrodynamics. Therefore, the maneuvers assisted by the gravity, also called Swing-by maneuvers, can be an advantageous option to save fuel. The proposal of the present research is to explore the influence of some parameters in a Swing-by of an artificial satellite orbiting a planet with one of the moons of this mother planet, with the goal of changing the inclination of the artificial satellite around the main body of the system. The fuel consumption of this maneuver is compared with the required consumption to perform the same change of inclination using the classical approach of impulsive maneuvers.

  9. On the dependence on inclination of capture probability of short-period comets

    NASA Astrophysics Data System (ADS)

    Yabushita, S.; Tsujii, T.

    1990-06-01

    Calculation is made of probability of capture whereby a nearly parabolic comet with perihelion near the Jovian orbit comes to have a perihelion distance less than 2.5 AU and a period less than 200 yr. The probability is found to depend strongly on the inclination, in accordance with earlier results of Everhart and of Stagg and Bailey. It is large for orbits close to the ecliptic but decreases drastically for large inclinations. The overall probability of capture from randomly distributed orbits is 0.00044, which shows that either the presently observed short-period comets are not in a steady state or the source flux may be in the Uranus-Neptune zone.

  10. Thermal circulation patterns and turbulent fluxes along steep mountain slopes

    NASA Astrophysics Data System (ADS)

    Nadeau, D. F.; Pardyjak, E.; Higgins, C. W.; Huwald, H.; Baerenbold, F.; Parlange, M. B.

    2010-12-01

    In hydrology, it is crucial to understand the atmospheric flow dynamics in mountainous terrain to predict turbulent exchanges of heat and moisture accurately at the regional scale. Under clear sky and weak synoptic conditions, these land-atmosphere interactions are driven by thermal circulations that take place over a strong diurnal cycle. During the day, winds travel up the mountain slopes and at night, they travel down toward to the bottom of the valley. Little is known about how the transition between these two regimes takes place over steep slopes. The Slope Experiment at La Fouly (SELF) in the Swiss Alps was designed to investigate these transition periods throughout summer 2010. In this paper, we will present the first results obtained from this field campaign. Data from a network of 16 wireless surface stations is used to define catchment wide micrometeorological processes such as slope and valley wind system development, while detailed measurements of the turbulent processes on a steep idealized slope (20 to 45 degrees) were also made. The slope was instrumented along a transect with four towers (including a surface energy budget station and 10 m tower with sonic anemometers), 13 surface temperature measurement stations and a tethered balloon system to capture the complex interplay between surface and atmosphere. Initial data presented will include basic circulation pattern development and measurements of the turbulent fluxes of water vapor, heat and momentum on the slope.

  11. Reliability of stellar inclination estimated from asteroseismology: analytical criteria, mock simulations and Kepler data analysis

    NASA Astrophysics Data System (ADS)

    Kamiaka, Shoya; Benomar, Othman; Suto, Yasushi

    2018-05-01

    Advances in asteroseismology of solar-like stars, now provide a unique method to estimate the stellar inclination i⋆. This enables to evaluate the spin-orbit angle of transiting planetary systems, in a complementary fashion to the Rossiter-McLaughlineffect, a well-established method to estimate the projected spin-orbit angle λ. Although the asteroseismic method has been broadly applied to the Kepler data, its reliability has yet to be assessed intensively. In this work, we evaluate the accuracy of i⋆ from asteroseismology of solar-like stars using 3000 simulated power spectra. We find that the low signal-to-noise ratio of the power spectra induces a systematic under-estimate (over-estimate) bias for stars with high (low) inclinations. We derive analytical criteria for the reliable asteroseismic estimate, which indicates that reliable measurements are possible in the range of 20° ≲ i⋆ ≲ 80° only for stars with high signal-to-noise ratio. We also analyse and measure the stellar inclination of 94 Kepler main-sequence solar-like stars, among which 33 are planetary hosts. According to our reliability criteria, a third of them (9 with planets, 22 without) have accurate stellar inclination. Comparison of our asteroseismic estimate of vsin i⋆ against spectroscopic measurements indicates that the latter suffers from a large uncertainty possibly due to the modeling of macro-turbulence, especially for stars with projected rotation speed vsin i⋆ ≲ 5km/s. This reinforces earlier claims, and the stellar inclination estimated from the combination of measurements from spectroscopy and photometric variation for slowly rotating stars needs to be interpreted with caution.

  12. Effect of corn bran and steep inclusion in finishing diets on diet digestibility, cattle performance, and nutrient mass balance.

    PubMed

    Sayer, K M; Buckner, C D; Erickson, G E; Klopfenstein, T J; Macken, C N; Loy, T W

    2013-08-01

    One metabolism trial and 2 finishing trials were conducted to evaluate the effects of adding corn bran and steep liquor (steep) in replacement of dry-rolled corn (DRC) on diet digestibility, cattle performance, and nutrient mass balance in open feedlot pens. The metabolism trial (Exp. 1) used 8 ruminally cannulated heifers in a 4 × 4 Latin square design and the 2 finishing trials used 128 steer calves fed for 167 d (Exp. 2) and 256 yearling steers fed for 126 d (Exp. 3). Dietary treatments for all trials included a DRC-based control (CON), 30% corn bran (30/0), 30% corn bran plus 15% steep (30/15), and 45% corn bran plus 15% steep (45/15), in which by-products replaced DRC and molasses in the diet (DM basis). Diets were not isonitrogenous or isoenergetic. In the metabolism trial, feeding the by-product diets produced greater rumen pH (5.95) than CON (5.76; P < 0.01). Total tract DM and OM digestibility were greater for heifers fed CON than the by-product diets (P < 0.01). Dry matter and NDF ruminal disappearance (%/h) of corn bran were numerically less for cattle fed the CON diet than the by-product diets (2.36 vs. 2.84 and 0.72 vs. 1.66, respectively). In the performance trials, steers fed the by-product diets consumed more DM (P = 0.06) and G:F was either similar for all diets in Exp. 2 (P = 0.56) or less for cattle fed 30/0 than the other diets in Exp. 3 (P = 0.05). Percent N loss was reduced in Exp. 2 by including corn bran in diets compared with CON (P < 0.01). However, in Exp. 3, no differences in percent N loss were detected among treatments (P = 0.16), but more N was removed in the manure from pens where steers were fed by-products (P = 0.01). Although steep did not improve diet digestibility, it was beneficial in maintaining cattle performance in the feedlot studies. Feeding corn bran in combination with steep increased manure N removed and N in compost, but decreased percent N lost during the winter months only.

  13. Droplet sliding on inclined superhydrophobic surfaces: the effect of anisotropic contact line

    NASA Astrophysics Data System (ADS)

    Jiang, Youhua; Cao, Lile; Guo, Zongqi; Choi, Chang-Hwan

    2017-11-01

    Although the effects of solid structures on droplet retention on superhydrophobic surfaces have been studied extensively, the investigation has been restricted to the sessile droplets on horizontal surfaces where the contact line motions are axisymmetric or isotropic (either advancing or receding). In the droplet retention on inclined surfaces, the contact line motions are asymmetric or anisotropic; the advancing and receding motions coexist. In this study, we investigate the correlation between the droplet boundary pinning and the surface morphology on inclined superhydrophobic surfaces. The evolution of the droplet contact angle and width show contrary behaviors between pillar- and pore-structured surfaces due to the distinctive microscopic contact line motions. Therefore, the visualizations of the contact line motions at different locations of the boundary on inclined superhydrophobic surfaces are performed and the averaged contact line density of the boundary is quantified. The result shows that the droplet retentive force monotonously increase with the increase in contact line density, regardless of the surface morphological types, dimensions, or the direction of contact line motion (advancing, receding, or both). The result indicates that the droplet retentive force on superhydrophobic surfaces is mainly determined by the contact line density, regardless of the isotropy of the contact line.

  14. Droplet Impact Onto A Flat Plate: Inclined Verses Moving Surfaces

    NASA Astrophysics Data System (ADS)

    Tsai, Scott; Bird, James C.; Stone, Howard A.

    2008-11-01

    Much research has been conducted on the impact of droplets normal to flat surfaces. However, very little research has been carried out on oblique impacts, even though they occur frequently in nature and industry. We experiment with the effects of tangential and normal impact velocities on the behavior of a droplet as it impacts a flat plate. The plate is inclined in the first case, and in the second case the plate is rotated via an electric motor. The asymmetric nature of the impact causes asymmetric splashing, such that under certain conditions only part of the rim splashes. Using a high-speed camera, we demonstrate that the splash threshold of inclined and moving surfaces are quantitatively similar, with only small differences. We also develop a phase diagram of splashing showing which phase occurs given a tangential and normal impact velocity. Such a phase diagram is useful for both engineering design and for the evaluation of splash-prediction models.

  15. H i Absorption in the Steep-Spectrum Superluminal Quasar 3C 216.

    PubMed

    Pihlström; Vermeulen; Taylor; Conway

    1999-11-01

    The search for H i absorption in strong compact steep-spectrum sources is a natural way to probe the neutral gas contents in young radio sources. In turn, this may provide information about the evolution of powerful radio sources. The recently improved capabilities of the Westerbork Synthesis Radio Telescope have made it possible to detect a 0.31% (19 mJy) deep neutral atomic hydrogen absorption line associated with the steep-spectrum superluminal quasar 3C 216. The redshift (z=0.67) of the source shifts the frequency of the 21 cm line down to the ultra-high-frequency (UHF) band (850 MHz). The exact location of the H i-absorbing gas remains to be determined by spectral line VLBI observations at 850 MHz. We cannot exclude that the gas might be extended on galactic scales, but we think it is more likely to be located in the central kiloparsec. Constraints from the lack of X-ray absorption probably rule out obscuration of the core region, and we argue that the most plausible site for the H i absorption is in the jet-cloud interaction observed in this source.

  16. Time to stability differences between male and female dancers after landing from a jump on flat and inclined floors.

    PubMed

    Pappas, Evangelos; Kremenic, Ian; Liederbach, Marijeanne; Orishimo, Karl F; Hagins, Marshall

    2011-07-01

    To determine the effect of gender and inclined floor on time to stability (TTS) after landing from a vertical jump. This study used a repeated measures design with male and female professional dancers landing on a flat and 4 inclined floors. A repeated measures univariate analysis of variance (gender × floor) was performed on TTS in the anterior-posterior and medial-lateral directions. Biomechanics laboratory. Twenty-three female and 13 male professional dancers. Gender and floor inclination (flat, posterior, anterior, lateral, and medial). Time to stability in the anterior-posterior and medial-lateral directions after landing from a vertical jump. Female dancers exhibited longer TTS in both directions (P ≤ 0.05). Floor inclination or the interaction of gender × floor did not have an effect on TTS (P > 0.3). Female dancers exhibited longer TTS after landing from a vertical jump compared with their male counterparts. This balance difference may be a factor related to the higher rate of ankle sprain among female dancers. Additionally, professional dancers exhibited similar TTS when landing on flat and inclined floors.

  17. Tunnel field-effect transistor charge-trapping memory with steep subthreshold slope and large memory window

    NASA Astrophysics Data System (ADS)

    Kino, Hisashi; Fukushima, Takafumi; Tanaka, Tetsu

    2018-04-01

    Charge-trapping memory requires the increase of bit density per cell and a larger memory window for lower-power operation. A tunnel field-effect transistor (TFET) can achieve to increase the bit density per cell owing to its steep subthreshold slope. In addition, a TFET structure has an asymmetric structure, which is promising for achieving a larger memory window. A TFET with the N-type gate shows a higher electric field between the P-type source and the N-type gate edge than the conventional FET structure. This high electric field enables large amounts of charges to be injected into the charge storage layer. In this study, we fabricated silicon-oxide-nitride-oxide-semiconductor (SONOS) memory devices with the TFET structure and observed a steep subthreshold slope and a larger memory window.

  18. Steep, Transient Density Gradients in the Martian Ionosphere Similar to the Ionopause at Venus

    NASA Astrophysics Data System (ADS)

    Duru, Firdevs; Gurnett, Donald; Frahm, Rudy; Winningham, D. L.; Morgan, David; Howes, Gregory

    Using Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) on the Mars Express (MEX) spacecraft, the electron density can be measured by two methods: from the excitation of local plasma oscillations and from remote sounding. A study of the local electron density versus time for 1664 orbits revealed that in 132 orbits very sharp gradients in the electron density occurred that are similar to the ionopause boundary commonly observed at Venus. In 40 of these cases, remote sounding data have also confirmed identical locations of steep ionopause-like density gradients. Measurements from the Analyzer of Space Plasma and Energetic Atoms (ASPERA-3) Electron Spectrometer (ELS) and Ion Mass Analyzer (IMA) instruments (also on Mars Express) verify that these sharp decreases in the electron density occur somewhere between the end of the region where ionospheric photoelectrons are dominant and the magnetosheath. Combined studies of the two experiments reveal that the steep density gradients define a boundary where the magnetic fields change from open to closed. This study shows that, although the individual cases are from a wide range of altitudes, the average altitude of the boundary as a function of solar zenith angle is almost constant. The average altitude is approximately 500 km up to solar zenith angles of 60o, after which it shows a slight increase. The average thickness of the boundary is about 22 km according to remote sounding measurements. The altitude of the steep gradients shows an increase at locations with strong crustal magnetic fields.

  19. Aqua/Aura Updated Inclination Adjust Maneuver Performance Prediction Model

    NASA Technical Reports Server (NTRS)

    Boone, Spencer

    2017-01-01

    This presentation will discuss the updated Inclination Adjust Maneuver (IAM) performance prediction model that was developed for Aqua and Aura following the 2017 IAM series. This updated model uses statistical regression methods to identify potential long-term trends in maneuver parameters, yielding improved predictions when re-planning past maneuvers. The presentation has been reviewed and approved by Eric Moyer, ESMO Deputy Project Manager.

  20. Valuation of coefficient of rolling friction by the inclined plane method

    NASA Astrophysics Data System (ADS)

    Ciornei, F. C.; Alaci, S.; Ciogole, V. I.; Ciornei, M. C.

    2017-05-01

    A major objective of tribological researches is characterisation of rolling friction, due to various cases encountered in classical engineering applications, like gear transmissions and cam mechanisms or more recent examples met in bioengineering and biomedical devices. A characteristic of these examples consists in reduced dimensions of the contact zones, theoretically zero, the relative motion occurring between the contact points being either sliding or rolling. A characteristic parameter for the rolling motion is the coefficient of rolling friction. The paper proposes a method for estimation of coefficient of rolling friction by studying the motion of a body of revolution on an inclined plane. Assuming the hypothesis that moment of rolling friction is proportional to the normal reaction force, the law of motion for the body on the inclined plane is found under the premise of pure rolling. It is reached the conclusion that there is an uniformly accelerated motion, and thus for a known plane slope, it is sufficient to find the time during which the body runs a certain distance, starting from motionless situation. To obtain accurate results assumes finding precisely the time of motion. The coefficient of rolling friction was estimated for several slopes of the inclined plane and it is concluded that with increased slope, the values of coefficient of rolling friction increase, fact that suggest that the proportionality between the rolling torque and normal load is valid only for domains of limited variations of normal load.

  1. Kinematic control of aerodynamic forces on an inclined flapping wing with asymmetric strokes.

    PubMed

    Park, Hyungmin; Choi, Haecheon

    2012-03-01

    In the present study, we conduct an experiment using a one-paired dynamically scaled model of an insect wing, to investigate how asymmetric strokes with different wing kinematic parameters are used to control the aerodynamics of a dragonfly-like inclined flapping wing in still fluid. The kinematic parameters considered are the angles of attack during the mid-downstroke (α(md)) and mid-upstroke (α(mu)), and the duration (Δτ) and time of initiation (τ(p)) of the pitching rotation. The present dragonfly-like inclined flapping wing has the aerodynamic mechanism of unsteady force generation similar to those of other insect wings in a horizontal stroke plane, but the detailed effect of the wing kinematics on the force control is different due to the asymmetric use of the angle of attack during the up- and downstrokes. For example, high α(md) and low α(mu) produces larger vertical force with less aerodynamic power, and low α(md) and high α(mu) is recommended for horizontal force (thrust) production. The pitching rotation also affects the aerodynamics of a flapping wing, but its dynamic rotational effect is much weaker than the effect from the kinematic change in the angle of attack caused by the pitching rotation. Thus, the influences of the duration and timing of pitching rotation for the present inclined flapping wing are found to be very different from those for a horizontal flapping wing. That is, for the inclined flapping motion, the advanced and delayed rotations produce smaller vertical forces than the symmetric one and the effect of pitching duration is very small. On the other hand, for a specific range of pitching rotation timing, delayed rotation requires less aerodynamic power than the symmetric rotation. As for the horizontal force, delayed rotation with low α(md) and high α(mu) is recommended for long-duration flight owing to its high efficiency, and advanced rotation should be employed for hovering flight for nearly zero horizontal force. The

  2. Spatiotemporal Parameters are not Substantially Influenced by Load Carriage or Inclination During Treadmill and Overground Walking

    PubMed Central

    Seay, Joseph F.; Gregorczyk, Karen N.; Hasselquist, Leif

    2016-01-01

    Abstract Influences of load carriage and inclination on spatiotemporal parameters were examined during treadmill and overground walking. Ten soldiers walked on a treadmill and overground with three load conditions (00 kg, 20 kg, 40 kg) during level, uphill (6% grade) and downhill (-6% grade) inclinations at self-selected speed, which was constant across conditions. Mean values and standard deviations for double support percentage, stride length and a step rate were compared across conditions. Double support percentage increased with load and inclination change from uphill to level walking, with a 0.4% stance greater increase at the 20 kg condition compared to 00 kg. As inclination changed from uphill to downhill, the step rate increased more overground (4.3 ± 3.5 steps/min) than during treadmill walking (1.7 ± 2.3 steps/min). For the 40 kg condition, the standard deviations were larger than the 00 kg condition for both the step rate and double support percentage. There was no change between modes for step rate standard deviation. For overground compared to treadmill walking, standard deviation for stride length and double support percentage increased and decreased, respectively. Changes in the load of up to 40 kg, inclination of 6% grade away from the level (i.e., uphill or downhill) and mode (treadmill and overground) produced small, yet statistically significant changes in spatiotemporal parameters. Variability, as assessed by standard deviation, was not systematically lower during treadmill walking compared to overground walking. Due to the small magnitude of changes, treadmill walking appears to replicate the spatiotemporal parameters of overground walking. PMID:28149338

  3. Simulation on Natural Convection of a Nanofluid along an Isothermal Inclined Plate

    NASA Astrophysics Data System (ADS)

    Mitra, Asish

    2017-08-01

    A numerical algorithm is presented for studying laminar natural convection flow of a nanofluid along an isothermal inclined plate. By means of similarity transformation, the original nonlinear partial differential equations of flow are transformed to a set of nonlinear ordinary differential equations. Subsequently they are reduced to a first order system and integrated using Newton Raphson and adaptive Runge-Kutta methods. The computer codes are developed for this numerical analysis in Matlab environment. Dimensionless velocity, temperature profiles and nanoparticle concentration for various angles of inclination are illustrated graphically. The effects of Prandtl number, Brownian motion parameter and thermophoresis parameter on Nusselt number are also discussed. The results of the present simulation are then compared with previous one available in literature with good agreement.

  4. Inclined fluidized bed system for drying fine coal

    DOEpatents

    Cha, Chang Y.; Merriam, Norman W.; Boysen, John E.

    1992-02-11

    Coal is processed in an inclined fluidized bed dryer operated in a plug-flow manner with zonal temperature and composition control, and an inert fluidizing gas, such as carbon dioxide or combustion gas. Recycled carbon dioxide, which is used for drying, pyrolysis, quenching, and cooling, is produced by partial decarboxylation of the coal. The coal is heated sufficiently to mobilize coal tar by further pyrolysis, which seals micropores upon quenching. Further cooling with carbon dioxide enhances stabilization.

  5. Comparison of two commercial rapid in-clinic serological tests for detection of antibodies against Leishmania spp. in dogs.

    PubMed

    Athanasiou, Labrini V; Petanides, Theodoros A; Chatzis, Manolis K; Kasabalis, Dimitrios; Apostolidis, Kosmas N; Saridomichelakis, Manolis N

    2014-03-01

    Antibodies against Leishmania spp. are detected in most dogs with clinical signs of leishmaniasis due to Leishmania infantum. Accurate, rapid in-clinic serological tests may permit immediate confirmation of the diagnosis and implementation of therapeutic measures. The aim of the current study was to evaluate the diagnostic accuracy of 2 commercial, rapid in-clinic serological tests for the detection of anti-Leishmania antibodies in sera of dogs, the Snap Canine Leishmania Antibody Test kit (IDEXX Laboratories Inc., Westbrook, Maine) and the ImmunoRun Antibody Detection kit (Biogal Galed Labs, Kibbutz Galed, Israel), using indirect fluorescent antibody test (IFAT) as the reference method. A total of 109 sera collected from 65 seropositive and 44 seronegative dogs were used. The sensitivities of the Snap and ImmunoRun kits were 89.23% (95% confidence interval: 79.05-95.54%) and 86.15% (95% confidence interval: 75.33-93.45%), respectively, and the specificity of both tests was 100%. A good agreement between each of the rapid in-clinic serological tests and IFAT and between the 2 rapid in-clinic serological tests was witnessed. Both rapid in-clinic serological tests showed an adequate diagnostic accuracy and can be used for the fast detection of antibodies against L. infantum in dogs.

  6. Rehabilitation and Flood Management Planning in a Steep, Boulder-Bedded Stream

    NASA Astrophysics Data System (ADS)

    Caruso, Brian S.; Downs, Peter W.

    2007-08-01

    This study demonstrates the integration of rehabilitation and flood management planning in a steep, boulder-bedded stream in a coastal urban catchment on the South Island of New Zealand. The Water of Leith, the primary stream flowing through the city of Dunedin, is used as a case study. The catchment is steep, with a short time of concentration and rapid hydrologic response, and the lower stream reaches are highly channelized with floodplain encroachment, a high potential for debris flows, significant flood risks, and severely degraded aquatic habitat. Because the objectives for rehabilitation and flood management in urban catchments are often conflicting, a number of types of analyses at both the catchment and the reach scales and careful planning with stakeholder consultation were needed for successful rehabilitation efforts. This included modeling and analysis of catchment hydrology, fluvial geomorphologic assessment, analysis of water quality and aquatic ecology, hydraulic modeling and flood risk evaluation, detailed feasibility studies, and preliminary design to optimize multiple rehabilitation and flood management objectives. The study showed that all of these analyses were needed for integrated rehabilitation and flood management and that some incremental improvements in stream ecological health, aesthetics, and public recreational opportunities could be achieved in this challenging environment. These methods should be considered in a range of types of stream rehabilitation projects.

  7. Why People with More Emotion Regulation Difficulties Made a More Deontological Judgment: The Role of Deontological Inclinations

    PubMed Central

    Zhang, Lisong; Li, Zhongquan; Wu, Xiaoyuan; Zhang, Ziyuan

    2017-01-01

    Previous studies have demonstrated the key role of emotion in moral judgment, and explored the relationship between emotion regulation and moral judgment. The present study investigated the influence of individual differences in emotion regulation difficulties on moral judgment. Study 1 examined whether individuals with high emotion regulation difficulties made a more deontological judgment. Study 2 explored the underlying mechanism using a process-dissociation approach, examining whether deontological inclinations and utilitarian inclinations separately or jointly accounted for the association. The results indicated that individuals with high emotion regulation difficulties rated the utilitarian actions less morally appropriate, and one’s deontological inclinations mediated the association between emotion regulation difficulties and moral judgment. PMID:29234299

  8. Assessing rockfall susceptibility in steep and overhanging slopes using three-dimensional analysis of failure mechanisms

    USGS Publications Warehouse

    Matasci, Battista; Stock, Greg M.; Jaboyedoff, Michael; Carrea, Dario; Collins, Brian D.; Guérin, Antoine; Matasci, G.; Ravanel, L.

    2018-01-01

    Rockfalls strongly influence the evolution of steep rocky landscapes and represent a significant hazard in mountainous areas. Defining the most probable future rockfall source areas is of primary importance for both geomorphological investigations and hazard assessment. Thus, a need exists to understand which areas of a steep cliff are more likely to be affected by a rockfall. An important analytical gap exists between regional rockfall susceptibility studies and block-specific geomechanical calculations. Here we present methods for quantifying rockfall susceptibility at the cliff scale, which is suitable for sub-regional hazard assessment (hundreds to thousands of square meters). Our methods use three-dimensional point clouds acquired by terrestrial laser scanning to quantify the fracture patterns and compute failure mechanisms for planar, wedge, and toppling failures on vertical and overhanging rock walls. As a part of this work, we developed a rockfall susceptibility index for each type of failure mechanism according to the interaction between the discontinuities and the local cliff orientation. The susceptibility for slope parallel exfoliation-type failures, which are generally hard to identify, is partly captured by planar and toppling susceptibility indexes. We tested the methods for detecting the most susceptible rockfall source areas on two famously steep landscapes, Yosemite Valley (California, USA) and the Drus in the Mont-Blanc massif (France). Our rockfall susceptibility models show good correspondence with active rockfall sources. The methods offer new tools for investigating rockfall hazard and improving our understanding of rockfall processes.

  9. Relativistic jet feedback - II. Relationship to gigahertz peak spectrum and compact steep spectrum radio galaxies

    NASA Astrophysics Data System (ADS)

    Bicknell, Geoffrey V.; Mukherjee, Dipanjan; Wagner, Alexander Y.; Sutherland, Ralph S.; Nesvadba, Nicole P. H.

    2018-04-01

    We propose that Gigahertz Peak Spectrum (GPS) and Compact Steep Spectrum (CSS) radio sources are the signposts of relativistic jet feedback in evolving galaxies. Our simulations of relativistic jets interacting with a warm, inhomogeneous medium, utilizing cloud densities and velocity dispersions in the range derived from optical observations, show that free-free absorption can account for the ˜ GHz peak frequencies and low-frequency power laws inferred from the radio observations. These new computational models replace a power-law model for the free-free optical depth a more fundamental model involving disrupted log-normal distributions of warm gas. One feature of our new models is that at early stages, the low-frequency spectrum is steep but progressively flattens as a result of a broader distribution of optical depths, suggesting that the steep low-frequency spectra discovered by Callingham et al. may possibly be attributed to young sources. We also investigate the inverse correlation between peak frequency and size and find that the initial location on this correlation is determined by the average density of the warm ISM. The simulated sources track this correlation initially but eventually fall below it, indicating the need for a more extended ISM than presently modelled. GPS and CSS sources can potentially provide new insights into the phenomenon of AGN feedback since their peak frequencies and spectra are indicative of the density, turbulent structure, and distribution of gas in the host galaxy.

  10. Research on fast ecological restoration technology of high and steep rocky slope of highway

    NASA Astrophysics Data System (ADS)

    Qin, Xin

    2017-08-01

    Along with the development of the western region, the traffic construction in mountainous areas is booming. In the infrastructure, it produced a large number of secondary bare land. Soil erosion is serious. Based on the literature search and analysis of the domestic and international slope ecological restoration technology, this paper proposes a fast and efficient adaptive highway high steep rock slope ecological restoration technology (it has been authorized by the national patent). And it states the systemic structure, working principle and key construction technology. The ecological restoration technique combines the growth characteristics of the vegetation and the characteristics of the rock mass, which not only improves the survival rate of plants, but also stable slope. The results of this study make up for the shortcomings of the existing ecological restoration technology of slope. Compared with the prior art, which have obvious advantages and suitable for the ecological restoration of high steep rock slope.

  11. Ion beam figuring of highly steep mirrors with a 5-axis hybrid machine tool

    NASA Astrophysics Data System (ADS)

    Yin, Xiaolin; Tang, Wa; Hu, Haixiang; Zeng, Xuefeng; Wang, Dekang; Xue, Donglin; Zhang, Feng; Deng, Weijie; Zhang, Xuejun

    2018-02-01

    Ion beam figuring (IBF) is an advanced and deterministic method for optical mirror surface processing. The removal function of IBF varies with the different incident angles of ion beam. Therefore, for the curved surface especially the highly steep one, the Ion Beam Source (IBS) should be equipped with 5-axis machining capability to remove the material along the normal direction of the mirror surface, so as to ensure the stability of the removal function. Based on the 3-RPS parallel mechanism and two dimensional displacement platform, a new type of 5-axis hybrid machine tool for IBF is presented. With the hybrid machine tool, the figuring process of a highly steep fused silica spherical mirror is introduced. The R/# of the mirror is 0.96 and the aperture is 104mm. The figuring result shows that, PV value of the mirror surface error is converged from 121.1nm to32.3nm, and RMS value 23.6nm to 3.4nm.

  12. Geosynchronous inclined orbits for high-latitude communications

    NASA Astrophysics Data System (ADS)

    Fantino, E.; Flores, R. M.; Di Carlo, M.; Di Salvo, A.; Cabot, E.

    2017-11-01

    We present and discuss a solution to the growing demand for satellite telecommunication coverage in the high-latitude geographical regions (beyond 55°N), where the signal from geostationary satellites is limited or unavailable. We focus on the dynamical issues associated to the design, the coverage, the maintenance and the disposal of a set of orbits selected for the purpose. Specifically, we identify a group of highly inclined, moderately eccentric geosynchronous orbits derived from the Tundra orbit (geosynchronous, eccentric and critically inclined). Continuous coverage can be guaranteed by a constellation of three satellites in equally spaced planes and suitably phased. By means of a high-precision model of the terrestrial gravity field and the relevant environmental perturbations, we study the evolution of these orbits. The effects of the different perturbations on the ground track (which is more important for coverage than the orbital elements themselves) are isolated and analyzed. The physical model and the numerical setup are optimized with respect to computing time and accuracy. We show that, in order to maintain the ground track unchanged, the key parameters are the orbital period and the argument of perigee. Furthermore, corrections to the right ascension of the ascending node are needed in order to preserve the relative orientation of the orbital planes. A station-keeping strategy that minimizes propellant consumption is then devised, and comparisons are made between the cost of a solution based on impulsive maneuvers and one with continuous thrust. Finally, the issue of end-of-life disposal is discussed.

  13. 85. INCLINED PLANE 7 EAST. FLUME AND STONE POWER HOUSE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    85. INCLINED PLANE 7 EAST. FLUME AND STONE POWER HOUSE ARE ON RIGHT SIDE OF PHOTOGRAPH. NOTE THE CABLE LEAVING THE POWER HOUSE. THIS CABLE IS ATTATCHED TO A DRUM ON THE INSIDE THE POWER HOUSE WHICH IS TURNED BY MEANS OF A WATER POWERED TURBINE. - Morris Canal, Phillipsburg, Warren County, NJ

  14. Extracting the inclination angle of nerve fibers within the human brain with 3D-PLI independent of system properties

    NASA Astrophysics Data System (ADS)

    Reckfort, Julia; Wiese, Hendrik; Dohmen, Melanie; Grässel, David; Pietrzyk, Uwe; Zilles, Karl; Amunts, Katrin; Axer, Markus

    2013-09-01

    The neuroimaging technique 3D-polarized light imaging (3D-PLI) has opened up new avenues to study the complex nerve fiber architecture of the human brain at sub-millimeter spatial resolution. This polarimetry technique is applicable to histological sections of postmortem brains utilizing the birefringence of nerve fibers caused by the regular arrangement of lipids and proteins in the myelin sheaths surrounding axons. 3D-PLI provides a three-dimensional description of the anatomical wiring scheme defined by the in-section direction angle and the out-of-section inclination angle. To date, 3D-PLI is the only available method that allows bridging the microscopic and the macroscopic description of the fiber architecture of the human brain. Here we introduce a new approach to retrieve the inclination angle of the fibers independently of the properties of the used polarimeters. This is relevant because the image resolution and the signal transmission inuence the measured birefringent signal (retardation) significantly. The image resolution was determined using the USAF- 1951 testchart applying the Rayleigh criterion. The signal transmission was measured by elliptical polarizers applying the Michelson contrast and histological slices of the optic tract of a postmortem brain. Based on these results, a modified retardation-inclination transfer function was proposed to extract the fiber inclination. The comparison of the actual and the inclination angles calculated with the theoretically proposed and the modified transfer function revealed a significant improvement in the extraction of the fiber inclinations.

  15. GAPS IN PROTOPLANETARY DISKS AS SIGNATURES OF PLANETS. II. INCLINED DISKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jang-Condell, Hannah; Turner, Neal J.

    2013-07-20

    We examine the observational appearance of partial gaps being opened by planets in protoplanetary disks, considering the effects of the inclination relative to the line of sight. We model the disks with static {alpha}-models with detailed radiative transfer, parameterizing the shape and size of the partially cleared gaps based on the results of hydrodynamic simulations. As in previous work, starlight falling across the gap leads to high surface brightness contrasts. The gap's trough is darkened by both shadowing and cooling, relative to the uninterrupted disk. The gap's outer wall is brightened by direct illumination and also by heating, which puffsmore » it up so that it intercepts more starlight. In this paper, we examine the effects of inclination on resolved images of disks with and without gaps at a wide range of wavelengths. The scattering surface's offset from the disk midplane creates a brightness asymmetry along the axis of inclination, making the disk's near side appear brighter than the far side in scattered light. Finite disk thickness also causes the projected distances of equidistant points on the disk surface to be smaller on the near side of the disk as compared to the far side. Consequently, the gap shoulder on the near side of the disk should appear brighter and closer to the star than on the far side. However, if the angular resolution of the observation is coarser than the width of the brightened gap shoulder, then the gap shoulder on the far side may appear brighter because of its larger apparent size. We present a formula to recover the scale height and inclination angle of an imaged disk using simple geometric arguments and measuring disk asymmetries. Resolved images of circumstellar disks have revealed clearings and gaps, such as the transitional disk in LkCa 15. Models created using our synthetic imaging attempting to match the morphology of observed scattered light images of LkCa 15 indicate that the H-band flux deficit in the inner

  16. A test of source-surface model predictions of heliospheric current sheet inclination

    NASA Technical Reports Server (NTRS)

    Burton, M. E.; Crooker, N. U.; Siscoe, G. L.; Smith, E. J.

    1994-01-01

    The orientation of the heliospheric current sheet predicted from a source surface model is compared with the orientation determined from minimum-variance analysis of International Sun-Earth Explorer (ISEE) 3 magnetic field data at 1 AU near solar maximum. Of the 37 cases analyzed, 28 have minimum variance normals that lie orthogonal to the predicted Parker spiral direction. For these cases, the correlation coefficient between the predicted and measured inclinations is 0.6. However, for the subset of 14 cases for which transient signatures (either interplanetary shocks or bidirectional electrons) are absent, the agreement in inclinations improves dramatically, with a correlation coefficient of 0.96. These results validate not only the use of the source surface model as a predictor but also the previously questioned usefulness of minimum variance analysis across complex sector boundaries. In addition, the results imply that interplanetary dynamics have little effect on current sheet inclination at 1 AU. The dependence of the correlation on transient occurrence suggests that the leading edge of a coronal mass ejection (CME), where transient signatures are detected, disrupts the heliospheric current sheet but that the sheet re-forms between the trailing legs of the CME. In this way the global structure of the heliosphere, reflected both in the source surface maps and in the interplanetary sector structure, can be maintained even when the CME occurrence rate is high.

  17. Diffusion Profiles of Health Beneficial Components from Goji Berry (Lyceum barbarum) Marinated in Alcohol and Their Antioxidant Capacities as Affected by Alcohol Concentration and Steeping Time

    PubMed Central

    Song, Yang; Xu, Baojun

    2013-01-01

    The fruit (goji berry) of Lycium barbarum, a traditional Chinese medicine, has been widely used in health diets due to its potential role in the prevention of chronic diseases. One of the most popular applications of goji berry is to make goji wine in China by steeping goji berry in grain liquor. However, how the steeping process affects antioxidant capacities and phytochemicals of goji berry is not yet fully understood. Therefore, to provide scientific data for the utilization of goji berry in the nutraceutical industry, the diffusion rate of betaine, β-carotene, phenolic compounds in goji berry and their antioxidant capacities affected by alcohol concentration and steeping time were determined by UV-Visible spectrophotometer. The results showed that low alcohol concentration (15% or 25%) would promote the diffusion of betaine and increase antioxidant activity, while high concentration (55% or 65%) would generally increase the diffusion of flavonoids and reduce antioxidant activity. The steeping time had no significant effect on the diffusion of phenolic compounds and antioxidant activities. However, all goji berry wine steeped for 14 days with different alcohol concentrations exhibited the highest betaine concentration. Current findings provide useful information for the nutraceutical industries to choose proper steeping time and alcohol concentration to yield desired health promotion components from goji. PMID:28239094

  18. Gas-liquid flow splitting in T-junction with inclined lateral arm

    NASA Astrophysics Data System (ADS)

    Yang, Le-le; Liu, Shuo; Li, Hua; Zhang, Jian; Wu, Ying-xiang; Xu, Jing-yu

    2018-02-01

    This paper studies the gas-liquid flow splitting in T-junction with inclined lateral arm. The separation mechanism of the T-junction is related to the pressure distribution in the T-junction. It is shown that the separation efficiency strongly depends on the inclination angle, when the angle ranges from 0° to 30°, while not so strongly for angles in the range from 30° to 90° Increasing the number of connecting tubes is helpful for the gas-liquid separation, and under the present test conditions, with four connecting tubes, a good separation performance can be achieved. Accordingly, a multi-tube Y-junction separator with four connecting tubes is designed for the experimental investigation. A good agreement between the simulated and measured data shows that there is an optimal split ratio to achieve the best performance for the multi-tube Y-junction separator.

  19. Influence of implant inclination associated with mandibular class I removable partial denture.

    PubMed

    de Freitas Santos, Ciandrus Moraes; Pellizzer, Eduardo Piza; Verri, Fellippo Ramos; de Moraes, Sandra Lúcia Dantas; Falcón-Antenucci, Rosse Mary

    2011-03-01

    The aim of this study was to use two-dimensional finite element method to evaluate the displacement and stress distribution transmitted by a distal extension removable partial denture (DERPD) associated with an implant placed at different inclinations (0, 5, 15, and 30 degrees) in the second molar region of the edentulous mandible ridge. Six hemimandibular models were created: model A, only with the presence of the natural tooth 33; model B, similar to model A, with the presence of a conventional DERPD replacing the missing teeth; model C, similar to the previous model, with a straight implant (0 degrees) in the distal region of the ridge, under the denture base; model D, similar to model C, with the implant angled at 5 degrees in the mesial direction; model E, similar to model C, with the implant angled at 15 degrees in the mesial direction; and model F, similar to ME, with the implant angled at 30 degrees in the mesial direction. The models were created with the use of the AutoCAD 2000 program (Autodesk, Inc, San Rafael, CA) and processed for finite element analysis by the ANSYS 8.0 program (Swanson Analysis Systems, Houston, PA). The force applied was vertical of 50 N on each cusp tip. The results showed that the introduction of the RPD overloaded the supporting structures of the RPD and that the introduction of the implant helped to relieve the stresses of the mucosa alveolar, cortical bone, and trabecular bone. The best stress distribution occurred in model D with the implant angled at 5 degrees. The use of an implant as a support decreased the displacement of alveolar mucosa for all inclinations simulated. The stress distribution transmitted by the DERPD to the supporting structures was improved by the use of straight or slightly inclined implants. According to the displacement analysis and von Mises stress, it could be expected that straight or slightly inclined implants do not represent biomechanical risks to use.

  20. Peristaltic transport of a fractional Burgers' fluid with variable viscosity through an inclined tube

    NASA Astrophysics Data System (ADS)

    Rachid, Hassan

    2015-12-01

    In the present study,we investigate the unsteady peristaltic transport of a viscoelastic fluid with fractional Burgers' model in an inclined tube. We suppose that the viscosity is variable in the radial direction. This analysis has been carried out under low Reynolds number and long-wavelength approximations. An analytical solution to the problem is obtained using a fractional calculus approach. Figures are plotted to show the effects of angle of inclination, Reynolds number, Froude number, material constants, fractional parameters, parameter of viscosity and amplitude ratio on the pressure gradient, pressure rise, friction force, axial velocity and on the mechanical efficiency.

  1. A descriptive study of potential effect of anterior tibial translation, femoral tunnel and anterior cruciate ligament graft inclination on clinical outcome and degenerative changes.

    PubMed

    Snoj, Žiga; Zupanc, Oskar; Stražar, Klemen; Salapura, Vladka

    2017-04-01

    There is no evidence that anatomically correct anterior cruciate ligament reconstruction (ACLR) offers lower rate of degenerative changes development or that it would lead to a better outcome. The significance and understanding of the abnormal anterior tibial translation (ATT) in ACLR patients is yet to be established. Sixty subjects (40 patients at 5.9 years after ACLR, 20 healthy controls) underwent 3 T MRI. Quantitative cartilage T2 mapping and morphological whole organ magnetic resonance imaging score (WORMS) evaluation was performed. Self-reported questionnaires were used for subjective clinical evaluation. Correlations were calculated with the following MRI measurements; femoral tunnel inclination, ACL graft inclination, lateral and medial compartment ATT. In the ACLR group positive correlation was found between the patellar cartilage T2 values and sagittal ACL graft inclination. In the ACLR group lateral compartment ATT showed negative correlation with ACL graft inclination and subjective clinical evaluation, and positive correlation with morphological degenerative changes. Femoral tunnel showed positive correlation with ACL graft inclination in the same plane. Increased ATT offers worse clinical outcome and increased rate of degenerative changes. Furthermore, ATT is affected by the ACL inclination. Inclination of the drilling tunnel affects ACL graft inclination; thereby independent drilling techniques provide superior results of anatomical ACL graft positioning.

  2. What controls channel form in steep mountain streams?

    NASA Astrophysics Data System (ADS)

    Palucis, M. C.; Lamb, M. P.

    2017-07-01

    Steep mountain streams have channel morphologies that transition from alternate bar to step-pool to cascade with increasing bed slope, which affect stream habitat, flow resistance, and sediment transport. Experimental and theoretical studies suggest that alternate bars form under large channel width-to-depth ratios, step-pools form in near supercritical flow or when channel width is narrow compared to bed grain size, and cascade morphology is related to debris flows. However, the connection between these process variables and bed slope—the apparent dominant variable for natural stream types—is unclear. Combining field data and theory, we find that certain bed slopes have unique channel morphologies because the process variables covary systematically with bed slope. Multiple stable states are predicted for other ranges in bed slope, suggesting that a competition of underlying processes leads to the emergence of the most stable channel form.

  3. On 3D flow-structures behind an inclined plate

    NASA Astrophysics Data System (ADS)

    Uruba, Václav; Pavlík, David; Procházka, Pavel; Skála, Vladislav; Kopecký, Václav

    Stereo PIV measurements has been performed behind the inclined plate, angle of attack 5 and 10 deg. Occurrence and dynamics of streamwise structures behind the plate trailing edge have been studied in details using POD method. The streamwise structures are represented by vortices and low- and highvelocity regions, probably streaks. The obtained results support the hypothesis of an airfoil-flow force interaction by Hoffman and Johnson [1,2].

  4. Graphs and matroids weighted in a bounded incline algebra.

    PubMed

    Lu, Ling-Xia; Zhang, Bei

    2014-01-01

    Firstly, for a graph weighted in a bounded incline algebra (or called a dioid), a longest path problem (LPP, for short) is presented, which can be considered the uniform approach to the famous shortest path problem, the widest path problem, and the most reliable path problem. The solutions for LPP and related algorithms are given. Secondly, for a matroid weighted in a linear matroid, the maximum independent set problem is studied.

  5. Motion on an Inclined Plane and the Nature of Science

    ERIC Educational Resources Information Center

    Pendrill, Ann-Marie; Ekström, Peter; Hansson, Lena; Mars, Patrik; Ouattara, Lassana; Ryan, Ulrika

    2014-01-01

    Friction is an important phenomenon in everyday life. All children are familiar with playground slides, which may thus be a good starting point for investigating friction. Motion on an inclined plane is a standard physics example. This paper presents an investigation of friction by a group of 11-year olds. How did they plan their investigations?…

  6. ON THE APPARENT ORBITAL INCLINATION CHANGE OF THE EXTRASOLAR TRANSITING PLANET TrES-2b

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scuderi, Louis J.; Dittmann, Jason A.; Males, Jared R.

    2010-05-01

    On 2009 June 15 UT the transit of TrES-2b was detected using the University of Arizona's 1.55 m Kuiper Telescope with 2.0-2.5 millimag rms accuracy in the I band. We find a central transit time of T{sub c} = 2454997.76286 {+-} 0.00035 HJD, an orbital period of P = 2.4706127 {+-} 0.0000009 days, and an inclination angle of i = 83.{sup 0}92 {+-} 0{sup 0}.05, which is consistent with our re-fit of the original I-band light curve of O'Donovan et al. where we find i = 83.{sup 0}84 {+-} 0{sup 0}.05. We calculate an insignificant inclination change of {Delta}i =more » -0.{sup 0}08 {+-} 0{sup 0}.07 over the last three years, and as such, our observations rule out, at the {approx}11{sigma} level, the apparent change of orbital inclination to i{sub predicted} = 83.{sup 0}35 {+-} 0{sup 0}.1 as predicted by Mislis and Schmitt and Mislis et al. for our epoch. Moreover, our analysis of a recently published Kepler Space Telescope light curve for TrES-2b finds an inclination of i = 83.{sup 0}91 {+-} 0.{sup 0}03 for a similar epoch. These Kepler results definitively rule out change in i as a function of time. Indeed, we detect no significant changes in any of the orbital parameters of TrES-2b.« less

  7. Correlation of Cup Inclination Angle with Liner Wear for Metal-on-polyethylene in Hip Primary Arthroplasty.

    PubMed

    Tian, Jia-Liang; Sun, Li; Hu, Rui-Yin; Han, Wei; Tian, Xiao-Bin

    2017-05-01

    The relationship between cup inclination angle and liner wear is controversial. Most authors in the published literature agree that the ideal cup inclination is associated with lower inner wear; however, some disagree. All previous studies did not control for femoral head diameter and inclination, so it is difficult to assess the relative or synergistic effects of cup angle on outcomes. We retrospectively reviewed 154 patients (171 hips) with primary total hip arthroplasties performed from 2001 to 2004. All surgeries had been performed by the same physician team. A posterior approach was applied in all patients. All prostheses were non-cemented cups with a 28-mm metal head. Inclusion criteria included that the radiographic material was not completed or lost for primary or last follow up. Patients were divided into four groups according to different cup inclination angle. There were 108 hips with inclination angles below 50°; 35 hips with angles between 50° and 55°; 17 hips with angles between 55° and 60°; and 11 hips with angles greater than 60°. An immediate postoperative radiograph was compared with a follow-up radiograph. Clinical and radiographic data were collected on standardized hip evaluation forms preoperatively, 6 months after surgery and at yearly follow-up visits. Radiographs were digitized and enlarged 100%. After the radiographs were digitized, polyethylene wear rates and acetabular cup abduction were measured on all patients with Cavas 15.0 software. The results were analyzed using Student's two-tailed paired t-test with SPSS 11.5. The preoperative mean Harris hip score improved from 45.36 to 93.5 points 10 years after surgery. No acetabular component was revised for aseptic loosening. Three patients (three hips) had to undergo bone grafting and a lined arthroplasty for severe osteolysis around the acetabular component. The rate of implant survival at 10 years with respect to loosening was 100%. The mean liner wear rate was 0.135 mm/year in

  8. Using Technology in Teacher Preparation: Two Mature Teacher Educators Negotiate the Steep Learning Curve

    ERIC Educational Resources Information Center

    Monroe, Eula; Tolman, Marvin

    2004-01-01

    This paper chronicles the ventures of two mature faculty members who continue to negotiate their own steep learning curves in helping teacher education students use current technology. It describes the scaffolding provided within the university setting for the faculty members' growth. Included are elements supported by a PT3 grant that have…

  9. The influence of incline and speed on work rate, gross efficiency and kinematics of roller ski skating.

    PubMed

    Sandbakk, Øyvind; Ettema, Gertjan; Holmberg, Hans-Christer

    2012-08-01

    During competitions, elite cross-country skiers produce higher external work rates on uphill than on flat terrain. However, it is not presently known whether this reflects solely higher energy expenditure. Furthermore, the kinematic factors associated with these higher rates of uphill work have not yet been examined. Therefore, in the present investigation the work rate and associated kinematic parameters at similar metabolic rates during roller ski skating on flat and uphill terrains have been compared. Seven elite male skiers performed six 5-min sub-maximal exercise bouts at the same low, moderate and high metabolic rates on 2 and 8% inclines, while roller skiing on a treadmill employing the G3 skating technique. The work rate was calculated as work against gravity and friction, whereas the energetic equivalent of VO(2) was taken as the metabolic rate. Gross efficiency was defined as work rate divided by metabolic rate. Kinematic parameters were analyzed in three dimensions. At the same metabolic rate, the work rate, cycle rate, work per cycle and relative duration of propulsive phases during a cycle of movement were all higher on the 8% than on the 2% incline at all speeds (all P < 0.05). At similar work rates, gross efficiency was greater on the 8% incline (P < 0.05). In conclusion, these elite skiers consistently demonstrated higher work rates on the 8% incline. To achieve the higher work rates on the steeper incline, these elite skiers employed higher cycle rates and performed more work per cycle, in association with a longer relative propulsive phase.

  10. Effect of Seat Surface Inclination on Postural Stability and forward Reaching Efficiency in Children with Spastic Cerebral Palsy

    ERIC Educational Resources Information Center

    Cherng, Rong-Ju; Lin, Hui-Chen; Ju, Yun-Huei; Ho, Chin-Shan

    2009-01-01

    The purpose of this study was to examine the effect of seat surface inclination on postural stability and forward reaching efficiency in 10 children with spastic cerebral palsy (CP) and 16 typically developing (TD) children. The children performed a static sitting and a forward reaching task while sitting on a height- and inclination-adjustable…

  11. Effect of steeping temperature on antioxidant and inhibitory activities of green tea extracts against α-amylase, α-glucosidase and intestinal glucose uptake.

    PubMed

    Liu, Shuyuan; Ai, Zeyi; Qu, Fengfeng; Chen, Yuqiong; Ni, Dejiang

    2017-11-01

    The objective of the present study was to evaluate the effect of steeping temperature on the biological activities of green tea, including the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging capacity, α-glucosidase and α-amylase inhibitory activities, and glucose uptake inhibitory activity in Caco-2 cells. Results showed that, with increasing extraction temperature, the polyphenol content increased, which contributed to enhance antioxidant activity and inhibitory effects on α-glucosidase and α-amylase. Green tea steeped at 100°C showed the highest DPPH radical-scavenging activity and inhibitory effects on α-glucosidase and α-amylase activities with EC 50 or IC 50 values of 6.15μg/mL, 0.09mg/mL, and 6.31mg/mL, respectively. However, the inhibitory potential on glucose uptake did not show an upward trend with increasing extraction temperature. Green tea steeped at 60°C had significantly stronger glucose uptake inhibitory activity (p<0.05). The integrated data suggested that steeping temperature should be considered when evaluating the biological activities of green tea. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Self-assembled growth and structural analysis of inclined GaN nanorods on nanoimprinted m-sapphire using catalyst-free metal-organic chemical vapor deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Kyuseung; Chae, Sooryong; Jang, Jongjin

    2016-04-15

    In this study, self-assembled inclined (1-10-3)-oriented GaN nanorods (NRs) were grown on nanoimprinted (10-10) m-sapphire substrates using catalyst-free metal-organic chemical vapor deposition. According to X-ray phi-scans, the inclined GaN NRs were tilted at an angle of ∼57.5° to the [10-10]{sub sapp} direction. Specifically, the GaN NRs grew in a single inclined direction to the [11-20]{sub sapp}. Uni-directionally inclined NRs were formed through the one-sided (10-11)-faceted growth of the interfacial a-GaN plane layer. It was confirmed that a thin layer of a-GaN was formed on r-facet nanogrooves of the m-sapphire substrate by nitridation. The interfacial a-GaN nucleation affected both the inclinedmore » angle and the growth direction of the inclined GaN NRs. Using X-ray diffraction and selective area electron diffraction, the epitaxial relationship between the inclined (1-10-3) GaN NRs and interfacial a-GaN layer on m-sapphire substrates was systematically investigated. Moreover, the inclined GaN NRs were observed to be mostly free of stacking fault-related defects using high-resolution transmission electron microscopy.« less

  13. Experimental study of shock-accelerated inclined heavy gas cylinder

    DOE PAGES

    Olmstead, Dell; Wayne, Patrick; Yoo, Jae-Hwun; ...

    2017-05-23

    An experimental study examines shock acceleration with an initially diffuse cylindrical column of sulfur hexafluoride surrounded by air and inclined with respect to the shock front. Three-dimensional vorticity deposition produces flow patterns whose evolution is captured with planar laser-induced fluorescence in two planes. Both planes are thus parallel to the direction of the shock propagation. The first plane is vertical and passes through the axis of the column. The second visualization plane is normal to the first plane and passes through the centerline of the shock tube. Vortex formation in the vertical and centerline planes is initially characterized by differentmore » rates and morphologies due to differences in initial vorticity deposition. In the vertical plane, the vortex structure manifests a periodicity that varies with Mach number. The dominant wavelength in the vertical plane can be related to the geometry and compressibility of the initial conditions. At later times, the vortex interaction produces a complex and irregular three-dimensional pattern suggesting transition to turbulence. We present highly repeatable experimental data for Mach numbers 1.13, 1.4, 1.7, and 2.0 at column incline angles of 0, 20, and 30 degrees for about 50 nominal cylinder diameters (30 cm) of downstream travel.« less

  14. Rainfall-Runoff and Slope Failure in a Steep, Tropical Landscape

    NASA Astrophysics Data System (ADS)

    Deane, J.; Freyberg, D. L.

    2016-12-01

    Tropical forests are often located on short, steep slopes with pronounced heterogeneity in vegetation over small distances. Further, they are distinguished from their temperate counterparts by a thinner organic horizon, and large interannual and subseasonal variability in precipitation. However, hydrologic processes in tropical watersheds are difficult to quantify and study because of data scarcity, accessibility difficulties and complex topography. As a result, there has been little work on disentangling the effects of spatial and temporal heterogeneity on flow generation and slope failure on tropical hillslopes. In this work we analyze the connections between terrain properties, subsurface formation, land cover, and precipitation variability in changing water table dynamics at the interface between a thin soil mantle and underlying bedrock. We have developed a fully distributed integrated hydrologic model at two different scales: 1) a 100 m idealized hillslope (1 m model grid size) representative of physiographic regions on tropical islands and 2) a 48 sq. km tropical island watershed in Trinidad and Tobago (30 m model grid size) using ParFlow.CLM. Additionally, we couple Parflow to an infinite slope stability module to investigate the initiation of rainfall induced landslides under different precipitation scenarios. The characteristic hillslopes are used to used to generalize the near subsurface response of a soil-saprolite aquifer to a range of landscape properties. In particular, we investigate the role of mean slope, soil properties and road cuts in altering the partitioning of runoff and infiltration, and increasing slope stability. Moving from the idealized models to the steep tropical watershed, we evaluate the effects of different land cover and precipitation scenarios—consistent with climate change projections—on flooding and hillslope failure incidence.

  15. Hydraulic shock waves in an inclined chute contraction

    NASA Astrophysics Data System (ADS)

    Jan, C.-D.; Chang, C.-J.

    2009-04-01

    A chute contraction is a common structure used in hydraulic engineering for typical reasons such as increase of bottom slope, transition from side channel intakes to tunnel spillways, reduction of chute width due to bridges, transition structures in flood diversion works, among others. One of the significant chute contractions in Taiwan is that used in the Yuanshantzu Flood Diversion Project of Keelung River. The diversion project is designed to divert flood water from upper Keelung River into East Sea with a capasity of 1,310 cubic meters per second for mitigating the flood damage of lower part of Keelung River basin in Northern Taiwan. An inclined chute contraction is used to connect Keelung River and a diversion turnel. The inlet and outlet works of the diversion project is located at Ruifang in the Taipei County of north Taiwan. The diameter of diversion tunnel is 12 meters and the total length of tunnel is 2,484 meters. The diversion project has been completed and successfully executed many times since 2004 to lower the water level of Keelung River in typhoon seasons for avioding flooding problems in the lower part of Keelung River basin. Flow in a chute contraction has complicated flow pattern due to the existence of shock waves in it. A simple and useful calculation procedure for the maximum height and its position of shock waves is essentially needed for the preliminary design stage of a chute contraction. Hydraulic shock waves in an inclined chute contraction were experimentally and numerically investigated in this study with the consideration of the effects of sidewall deflection angle, bottom inclination angle and Froude number of approaching flow. The flow pattern of hydraulic shock waves in a chute contraction was observed. The main issue of designing chute contraction is to estimate the height and position of maximum shock wave for the consideration of freeboards. Achieving this aim, the experimental data are adopted and analyzed for the shock angle

  16. Correcting Velocity Dispersion Measurements for Inclination and Implications for the M-Sigma Relation

    NASA Astrophysics Data System (ADS)

    Bellovary, Jillian M.; Holley-Bockelmann, Kelly; Gultekin, Kayhan; Christensen, Charlotte; Governato, Fabio

    2015-01-01

    The relation between central black hole mass and stellar spheroid velocity dispersion (the M-Sigma relation) is one of the best-known correlations linking black holes and their host galaxies. However, there is a large amount of scatter at the low-mass end, indicating that the processes that relate black holes to lower-mass hosts are not straightforward. Some of this scatter can be explained by inclination effects; contamination from disk stars along the line of sight can artificially boost velocity dispersion measurements by 30%. Using state of the art simulations, we have developed a correction factor for inclination effects based on purely observational quantities. We present the results of applying these factors to observed samples of galaxies and discuss the effects on the M-Sigma relation.

  17. Inclined Buildings - Some Reasons and Solutions

    NASA Astrophysics Data System (ADS)

    Kijanka, Małgorzata; Kowalska, Magdalena

    2017-10-01

    To straighten a leaning building is never easy. There are no standard solutions. On the other hand, there are several, usually historical, leaning structures which have not been rectified, mostly because in the current shape they are a touristic attraction - the best example being the famous Leaning Tower of Pisa. This does not mean however that inclination of load bearing walls can be ignored. Even though in some cases the problem can be treated in terms of serviceability limit states (the deformation is only decreasing the comfort of ‘normal use’ of the building), in the other - it may be a signal of the forthcoming structural failure. The situation must always be treated individually - if the problem concerns a residential building, then cracks on the walls, not-opening doors or tilted ceilings, which often coincide with the leaning of the external walls, are always the reason of worry and such a building needs to be straightened. The reasons of the problem lie usually in uneven settlement of the ground, which in turn, may be caused by various problems, such as the presence of too soft, too weak, unconsolidated or expansive soils under the building, varying groundwater table, mining activity etc. Solving of the problem by just straightening the building is often not enough. To prevent further deformations a detailed analysis of the possible causes is necessary. Sometimes it may be helpful to review similar cases. The paper contains a general overview of selected inclined buildings: starting with the well-known historical examples and ending with individual houses from the Region of Silesia. Since the problem of instability mostly affects structures with critical height to width ratio, tall and narrow structures (towers) are dominating in the work. The aim of the study was to describe the reasons of the problems and present solutions that have been successfully applied and can be also useful to engineers and designers to prevent similar situations.

  18. Improved determination of dynamic balance using the centre of mass and centre of pressure inclination variables in a complete golf swing cycle.

    PubMed

    Choi, Ahnryul; Sim, Taeyong; Mun, Joung Hwan

    2016-01-01

    Golf requires proper dynamic balance to accurately control the club head through a harmonious coordination of each human segment and joint. In this study, we evaluated the ability for dynamic balance during a golf swing by using the centre of mass (COM)-centre of pressure (COP) inclination variables. Twelve professional, 13 amateur and 10 novice golfers participated in this study. Six infrared cameras, two force platforms and SB-Clinic software were used to measure the net COM and COP trajectories. In order to evaluate dynamic balance ability, the COM-COP inclination angle, COM-COP inclination angular velocity and normalised COM-COP inclination angular jerk were used. Professional golfer group revealed a smaller COM-COP inclination angle and angular velocity than novice golfer group in the lead/trail direction (P < 0.01). In the normalised COM-COP inclination angular jerk, the professional golfer group showed a lower value than the other two groups in all directions. Professional golfers tend to exhibit improved dynamic balance, and this can be attributed to the neuromusculoskeletal system that maintains balance with proper postural control. This study has the potential to allow for an evaluation of the dynamic balance mechanism and will provide useful basic information for swing training and prevention of golf injuries.

  19. Changes in anteroposterior position and inclination of the maxillary incisors after surgical-orthodontic treatment of skeletal class III malocclusions.

    PubMed

    Zou, Bingshuang; Zhou, Yang; Lowe, Alan A; Li, Huiqi; Pliska, Benjamin

    2015-12-01

    The purpose of this study was to evaluate and compare the anteroposterior (AP) position and inclination of the maxillary incisors in subjects with class I normal occlusion and a harmonious profile with patients with skeletal class III malocclusions, and to investigate the changes in maxillary incisor inclination and AP position after surgical-orthodontic treatment in class III patients. Sixty-five subjects (35 female and 30 male; mean age: 21.8 ± 3.89 years) with normal profiles and class I skeletal and dental patterns were selected as a control sample. Sixty-seven patients (38 female and 29 male; mean age: 21.3 ± 3.31 years) with skeletal and dental class III malocclusions who sought surgical-orthodontic treatment were used as the study sample. Subjects were asked to smile and profile photographs were taken with the head in a natural position and the maxillary central incisors and the forehead in full view; cephalograms were taken and superimposed on the profile pictures according to the outline of the forehead and nose. Forehead inclination, maxillary incisor facial inclination and the AP position of the maxillary central incisor relative to the forehead (FAFFA) were measured on the integrated images and statistical analyses were performed. In both groups, there were no significant male/female differences in either the maxillary central incisor inclination or AP position. Female subjects had a significantly steeper forehead inclination compared with males (P < 0.001) in both groups. After combined surgical-orthodontic treatment, the significant labial inclination (P < 0.001) and posterior positioning (P < 0.001) of the maxillary central incisors had been corrected to close to normal range (P > 0.05). In the control group, 84.6% had the facial axial point (FA) of their maxillary central incisors positioned between lines through the forehead facial axis (FFA) point and the glabella. In the study group, however, 79.1% had the maxillary central incisors positioned

  20. AGN Space Telescope and Optical Reverberation Mapping Project V. Continuum Time Delays and Disk Inclinations

    NASA Astrophysics Data System (ADS)

    Starkey, David; Agn Storm Team

    2015-01-01

    Reverberation mapping is a proven method for obtaining black hole mass estimates and constraining the size of the BLR. We analyze multi-wavelength continuum light curves from the 7 month AGN STORM monitoring of NGC 5548 and use reverberation mapping to model the accretion disk time delays. The model fits the light curves at UV to IR wavelengths assuming reprocessing on a flat, steady-state blackbody accretion disk. We calculate the inclination-dependent transfer function and investigate to what extent our model can determine the disk inclination, black hole MMdot and power law index of the disc temperature-radius relation.

  1. Inclined Zenith Aurora over Kyoto on 17 September 1770: Graphical Evidence of Extreme Magnetic Storm

    NASA Astrophysics Data System (ADS)

    Kataoka, Ryuho; Iwahashi, Kiyomi

    2017-10-01

    Red auroras were observed in Japan during an extreme magnetic storm that occurred on 17 September 1770. We show new evidence that the red aurora extended toward the zenith of Kyoto around midnight. The basic appearance of the historical painting of the red aurora is geometrically reproduced based on the inclination of the local magnetic field and a detailed description in a newly discovered diary. The presence of the inclined zenith aurora over Kyoto suggests that the intensity of the September 1770 magnetic storm is comparable to, or slightly larger than that of the September 1859 Carrington storm.

  2. Monte Carlo calculation model for heat radiation of inclined cylindrical flames and its application

    NASA Astrophysics Data System (ADS)

    Chang, Zhangyu; Ji, Jingwei; Huang, Yuankai; Wang, Zhiyi; Li, Qingjie

    2017-07-01

    Based on Monte Carlo method, a calculation model and its C++ calculating program for radiant heat transfer from an inclined cylindrical flame are proposed. In this model, the total radiation energy of the inclined cylindrical flame is distributed equally among a certain number of energy beams, which are emitted randomly from the flame surface. The incident heat flux on a surface is calculated by counting the number of energy beams which could reach the surface. The paper mainly studies the geometrical evaluation criterion for validity of energy beams emitted by inclined cylindrical flames and received by other surfaces. Compared to Mudan's formula results for a straight cylinder or a cylinder with 30° tilt angle, the calculated view factors range from 0.0043 to 0.2742 and the predicted view factors agree well with Mudan's results. The changing trend and values of incident heat fluxes computed by the model is consistent with experimental data measured by Rangwala et al. As a case study, incident heat fluxes on a gasoline tank, both the side and the top surface are calculated by the model. The heat radiation is from an inclined cylindrical flame generated by another 1000 m3 gasoline tank 4.6 m away from it. The cone angle of the flame to the adjacent oil tank is 45° and the polar angle is 0°. The top surface and the side surface of the tank are divided into 960 and 5760 grids during the calculation, respectively. The maximum incident heat flux on the side surface is 39.64 and 51.31 kW/m2 on the top surface. Distributions of the incident heat flux on the surface of the oil tank and on the ground around the fire tank are obtained, too.

  3. Lower incisor inclination regarding different reference planes.

    PubMed

    Zataráin, Brenda; Avila, Josué; Moyaho, Angeles; Carrasco, Rosendo; Velasco, Carmen

    2016-09-01

    The purpose of this study was to assess the degree of lower incisor inclination with respect to different reference planes. It was an observational, analytical, longitudinal, prospective study conducted on 100 lateral cephalograms which were corrected according to the photograph in natural head position in order to draw the true vertical plane (TVP). The incisor mandibular plane angle (IMPA) was compensated to eliminate the variation of the mandibular plane growth type with the formula "FMApx.- 25 (FMA) + IMPApx. = compensated IMPA (IMPACOM)". As the data followed normal distribution determined by the KolmogorovSmirnov test, parametric tests were used for the statistical analysis, Ttest, ANOVA and Pearson coefficient correlation test. Statistical analysis was performed using a statistical significance of p <0.05. There is correlation between TVP and NB line (NB) (0.8614), Frankfort mandibular incisor angle (FMIA) (0.8894), IMPA (0.6351), Apo line (Apo) (0.609), IMPACOM (0.8895) and McHorris angle (MH) (0.7769). ANOVA showed statistically significant differences between the means for the 7 variables with 95% confidence level, P=0.0001. The multiple range test showed no significant difference among means: APoNB (0.88), IMPAMH (0.36), IMPANB (0.65), FMIAIMPACOM (0.01), FMIATVP (0.18), TVPIMPACOM (0.17). There was correlation among all reference planes. There were statistically significant differences among the means of the planes measured, except for IMPACOM, FMIA and TVP. The IMPA differed significantly from the IMPACOM. The compensated IMPA and the FMIA did not differ significantly from the TVP. The true horizontal plane was mismatched with Frankfort plane in 84% of the sample with a range of 19°. The true vertical plane is adequate for measuring lower incisor inclination. Sociedad Argentina de Investigación Odontológica.

  4. Tachyon inflation with steep potentials

    NASA Astrophysics Data System (ADS)

    Rezazadeh, K.; Karami, K.; Hashemi, S.

    2017-05-01

    Within the framework of tachyon inflation, we consider different steep potentials and check their viability in light of the Planck 2015 data. We see that in this scenario, the inverse power-law potential V (ϕ )=V0(ϕ /ϕ0)-n with n =2 leads to the power-law inflation with the scale factor a (t )∝tq where q >1 , while with n <2 , it gives rise to the intermediate inflation with the scale factor a (t )∝exp (A tf) where A >0 and 0 2 can be compatible with the 95% CL region of Planck 2015 TT, TE, EE +lowP data. We further conclude that the exponential potential V (ϕ )=V0e-ϕ /ϕ0, the inverse cosh potential V (ϕ )=V0/cosh (ϕ /ϕ0), and the mutated exponential potential V (ϕ )=V0[1 +(n -1 )-(n -1 )(ϕ /ϕ0)n] e-ϕ /ϕ0 with n =4 , can be consistent with the 95% CL region of Planck 2015 TT, TE, EE +lowP data. Moreover, using the r -ns constraints on the model parameters, we also estimate the running of the scalar spectral index d ns/d ln k and the local non-Gaussianity parameter fNLlocal. We find that the lower and upper bounds evaluated for these observables are compatible with the Planck 2015 results.

  5. Extraction of maxillary first molars improves second and third molar inclinations in Class II Division 1 malocclusion.

    PubMed

    Livas, Christos; Halazonetis, Demetrios J; Booij, Johan Willem; Katsaros, Christos

    2011-09-01

    The aim of this study was to assess the changes in inclination of the maxillary second (M2) and third (M3) molars after orthodontic treatment of Class II Division 1 malocclusion with extraction of maxillary first molars. Two groups of subjects were studied. The experimental group consisted of 37 subjects, 18 boys and 19 girls (mean age, 13.2 ± 1.62 years). The inclusion criteria were white origin, Class II Division 1 malocclusion, overjet ≥4 mm, no missing teeth or agenesis, and maxillary M3 present. All patients were treated with extraction of the maxillary first molars and the Begg technique. Standardized lateral cephalometric radiographs were taken at the start of active treatment (T1) and at least 3.7 years posttreatment (T2). The control group was drawn from the archives of the Nittedal Growth Material (Oslo University, Oslo, Norway) and included 54 untreated Class I and Class II subjects,18 boys and 36 girls (mean age, 13.4 ± 1.99 years) followed up for a minimum of 3.6 years. M2 and M3 inclinations relative to the palatal plane (PP) and functional occlusal plane (FOP) were measured and compared between groups and time periods. M2 to PP inclination improved significantly in both the control group (M2-PP at T1, 17.7° ± 5.81°, and at T2, 11.9° ± 4.61°) and the experimental group (M2-PP at T1, 26.7° ± 5.75°, and at T2, 6.9° ± 6.76°). There were also significant increases of the mesial inclination of M3 in the control group (M3-PP at T1, 30.1° ± 8.54°, and at T2, 19.6° ± 9.01°) and extraction group (M3-PP at T1, 32.2° ± 7.90°, and at T2, 12.8° ± 7.36°). By using the FOP as the reference system, no significant change in the inclination of M2 was observed in the control group, whereas, in the extraction group, although more distally inclined at T1, M2 ended up mesially inclined at T2 (M2-FOP at T1, 14.2° ± 4.62°, and at T2, -6.2° ± 6.10°; P <0.0001). M3 inclinations were similar between the groups at T1 (M3-FOP control, 17.3°

  6. Using repeat lidar to estimate sediment transport in a steep stream

    NASA Astrophysics Data System (ADS)

    Anderson, Scott; Pitlick, John

    2014-03-01

    Sediment fluxes in steep mountain streams remain difficult to quantify, despite their importance in geomorphology, ecology, and hazard analysis. In this work, aerial lidar surveys, acquired in 2002, 2008, and 2012, are used to quantify such fluxes in Tahoma Creek, a proglacial stream on Mount Rainier, Washington. As these surveys encompass all coarse sediment sources in the basin, we are able to translate geomorphic change into total bed material transport volumes for the time steps between surveys. By assuming that the relationship between daily sediment transport and daily mean discharge is of the form Qs=a(Q-Qc)b, our two observed total loads and estimates of daily mean discharge allow us to numerically solve for values of a and b to create a bed material sediment rating curve. Comparisons of our transport estimates with sediment deposition in a downstream reservoir indicate that our transport estimates and derived rating curve are reasonable. The method we present thus represents a plausible means of estimating transport rates in energetic settings or during extreme events, applicable whenever at least two cumulative sediment loads and the driving hydrology are known. We use these results to assess the performance of several bed load transport equations. The equations generally overpredict transport at low to moderate flows but significantly underpredict transport rates during an extreme event. Using a critical shear stress value appropriate for steep streams improves agreement at lower flows, whereas a shear-partitioning technique accounting for form drag losses significantly underpredicts transport at all flows.

  7. Tracing the Origins of Coarse Sediment in Steep Mountain Catchments

    NASA Astrophysics Data System (ADS)

    Lukens, C. E.; Riebe, C. S.; Shuster, D. L.; Sklar, L. S.; Beyeler, J. D.

    2011-12-01

    Where does coarse sediment come from? How long does it persist in channels? What can the origins of sediment tell us about erosional processes and particle comminution in hillslope soils and mountain streams? To address these questions, we present new apatite-helium (AHe) ages from coarse sediment in steep streams of the Sierra Nevada, California. The evolution of grain size in sediment reflects both the physical and chemical breakdown of particles as they travel downstream. It also should reflect the dominant mechanisms of landscape evolution within a watershed. Previous studies have exploited detrital thermochronology in tracing the origins of sand-sized particles; the approach uses AHe age distributions in the sand as a geochemical fingerprint that can be compared with age-elevation relationships in bedrock as an indicator of provenance. In steep catchments, however, sand-sized particles comprise only a fraction of the sediment on the bed, and therefore tell only part of the erosional story. Much can be learned by examining age distributions of coarser grain sizes. Source elevations of coarse particles, for instance, may help reveal the relative importance of erosional mechanisms. For example, if boulders are sourced at high elevations, rock fall and debris flows likely dominate their transport. Conversely, if boulders are sourced only at lower elevations (nearer the sample location), they are more likely produced locally, and thus break down in place. We show how hypotheses such as these can be tested using detrital thermochronology on coarse sediment. We show how our analysis of detrital apatite can be coupled with a numerical model of the evolution of grain-size distributions by particle breakdown and input from slopes. We elaborate on how this approach can shed new quantitative light on processes of sediment production, transport, and breakdown in mountainous settings.

  8. Disturbance of the inclined inserting-type sand fence to wind-sand flow fields and its sand control characteristics

    NASA Astrophysics Data System (ADS)

    Cheng, Jian-jun; Lei, Jia-qiang; Li, Sheng-yu; Wang, Hai-feng

    2016-06-01

    The inclined inserting-type sand fence is a novel sand retaining wall adopted along the Lanxin High-Speed Railway II in Xinjiang for controlling and blocking sand movement. To verify the effectiveness of the new fence structure for sand prevention, a wind tunnel test was used for flow field test simulation of the sand fence. The results indicate that the inclined inserting-type sand fence was able to deflect the flow of the sand and was able to easily form an upward slant acceleration zone on the leeward side of the sand fence. As shown by the percentage change in sand collection rates on the windward side and the leeward side of the sand fence, the sand flux per unit area at 4 m height in the slant upward direction increased on the leeward side of the inclined inserting-type sand fence. By comparing the flow fields, this site is an acceleration zone, which also reaffirms the correspondence of wind-sand flow fields with the spatial distribution characteristic of the wind-carried sand motion. The field sand collection data indicates that under the effects of the inclined inserting-type sand fence, the sandy air currents passing in front and behind the sand fence not only changed in quality, but the grain composition and particle size also significantly changed, suggesting that the inclined inserting-type sand fence has a sorting and filtering effect on the sandy air currents that passed through. The fence retained coarse particulates on the windward side and fine particulates within the shade of the wind on the leeward side.

  9. Distinguishing between tectonic and lithologic controls on bedrock channel longitudinal profiles using cosmogenic 10Be erosion rates and channel steepness index

    USGS Publications Warehouse

    Cyr, Andrew J.; Granger, Darryl E.; Olivetti, Valerio; Molin, Paola

    2014-01-01

    Knickpoints in fluvial channel longitudinal profiles and channel steepness index values derived from digital elevation data can be used to detect tectonic structures and infer spatial patterns of uplift. However, changes in lithologic resistance to channel incision can also influence the morphology of longitudinal profiles. We compare the spatial patterns of both channel steepness index and cosmogenic 10Be-determined erosion rates from four landscapes in Italy, where the geology and tectonics are well constrained, to four theoretical predictions of channel morphologies, which can be interpreted as the result of primarily tectonic or lithologic controls. These data indicate that longitudinal profile forms controlled by unsteady or nonuniform tectonics can be distinguished from those controlled by nonuniform lithologic resistance. In each landscape the distribution of channel steepness index and erosion rates is consistent with model predictions and demonstrates that cosmogenic nuclide methods can be applied to distinguish between these two controlling factors.

  10. Geometrical effects of conventional and digital prosthodontic planning wax-ups on lateral occlusal contact number, contact area, and steepness.

    PubMed

    Abduo, Jaafar

    2017-01-01

    This study evaluated and compared the effect of conventional and digital wax-ups on three lateral occlusion variables: contact number, contact area, and steepness. Dental casts of 10 patients with Angle Class I relationship were included in the study. All patients required fixed prosthodontic treatment that would affect lateral occlusion. The casts of all patients received conventional and digital wax-ups. For pretreatment, conventional wax-up, and digital wax-up casts, contact number, contact area, and occlusion steepness were measured at four lateral positions, that is, at excursions of 0.5, 1.0, 2.0, and 3.0 mm from maximal intercuspation. Lateral occlusion scheme variables were affected by use of diagnostic wax-ups. For all types of casts, contact number decreased as excursion increased. The two types of wax-ups had similar contact number patterns, and contact number was significantly greater for these casts than for pretreatment casts in the earlier stages of excursion. Similarly, contact area gradually decreased with increasing excursion in the pretreatment and conventional and digital wax-up casts. There was only a minimal decrease in occlusion steepness as excursion increased. However, lateral occlusion was generally steeper for digital wax-up casts.

  11. Maxillary sinus floor extension and posterior tooth inclination in adolescent patients with Class II Division 1 malocclusion treated with maxillary first molar extractions.

    PubMed

    Livas, Christos; Halazonetis, Demetrios J; Booij, Johan Willem; Pandis, Nikolaos; Tu, Yu-Kang; Katsaros, Christos

    2013-04-01

    Our objective was to investigate potential associations between maxillary sinus floor extension and inclination of maxillary second premolars and second molars in patients with Class II Division 1 malocclusion whose orthodontic treatment included maxillary first molar extractions. The records of 37 patients (18 boys, 19 girls; mean age, 13.2 years; SD, 1.62 years) treated between 1998 and 2004 by 1 orthodontist with full Begg appliances were used in this study. Inclusion criteria were white patients with Class II Division 1 malocclusion, sagittal overjet of ≥4 mm, treatment plan including extraction of the maxillary first permanent molars, no missing teeth, and no agenesis. Maxillary posterior tooth inclination and lower maxillary sinus area in relation to the palatal plane were measured on lateral cephalograms at 3 time points: at the start and end of treatment, and on average 2.5 years posttreatment. Data were analyzed for the second premolar and second molar inclinations by using mixed linear models. The analysis showed that the second molar inclination angle decreased by 7° after orthodontic treatment, compared with pretreatment values, and by 11.5° at the latest follow-up, compared with pretreatment. There was evidence that maxillary sinus volume was negatively correlated with second molar inclination angle; the greater the volume, the smaller the inclination angle. For premolars, inclination increased by 15.4° after orthodontic treatment compared with pretreatment, and by 8.1° at the latest follow-up compared with baseline. The volume of the maxillary sinus was not associated with premolar inclination. We found evidence of an association between maxillary second molar inclination and surface area of the lower sinus in patients treated with maxillary first molar extractions. Clinicians who undertake such an extraction scheme in Class II patients should be aware of this potential association and consider appropriate biomechanics to control root

  12. Lateral forces exerted through ball or bar attachments in relation to the inclination of mini-implant underneath overdentures: in vitro study.

    PubMed

    Takagaki, Kyozo; Gonda, Tomoya; Maeda, Yoshinobu

    2015-09-01

    Lateral force to mini-implants should be avoided because mini-implants are weak mechanically because of its small diameter. Overdentures retained by mini-implants are usually formed using ball attachments. However, bar attachments can offer the advantage of splinting the mini-implants. This study examined the effect of attachments in withstanding these lateral forces in tilted mini-implants of overdentures. Strain gauges were attached to the mini-implants (2.5 × 18 mm) embedded in an acrylic resin block. Two mini-implants were inserted vertically (Control) or with one mini-implant inclined at 10° or 20° (10-inclined and 20-inclined, respectively). The female portions of the attachments were secured to the denture base. A prefabricated ball attachment and CAD/CAM-fabricated bar attachment were compared. A vertical load of 49 N was applied to the occlusal surface at a distance 10 mm away from the center of two mini-implants. The lateral force borne by the mini-implants was measured via the attached strain gauge. Mann-Whitney U-test and an analysis of Bonferroni correction were used to compare differences between the two attachments and among the three models (P < 0.05). The lateral force exerted to the inclined mini-implant was significantly greater than that borne by a vertical mini-implant for both attachment types. The lateral force on the 20° inclined mini-implants with bar attachments was smaller than that on mini-implants with ball attachments. Inclined mini-implants are subjected to greater stresses than vertical ones, and a bar attachment can reduce the lateral forces borne by the mini-implant when one mini-implant inclined at 20°. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Influence of inclination angles on intra- and inter-limb load-sharing during uphill walking.

    PubMed

    Hong, Shih-Wun; Leu, Tsai-Hsueh; Li, Jia-Da; Wang, Ting-Ming; Ho, Wei-Ping; Lu, Tung-Wu

    2014-01-01

    Uphill walking is an inevitable part of daily living, placing more challenges on the locomotor system with greater risk of falls than level walking does. The current study aimed to investigate the effects of inclination angles on the inter-joint and inter-limb load-sharing during uphill walking in terms of total support moment and contributions of individual joint moments to the total support moment. Fifteen young adults walked up walkways with 0°, 5°, 10° and 15° of slope while kinematic and kinetic data were collected and analyzed. With increasing inclination angles, the first peak of the total support moment was increased with unaltered individual joint contributions, suggesting an unaltered inter-joint control pattern in the leading limb to meet the increased demands. The second peak of the total support moment remained unchanged with increasing inclination angles primarily through a compensatory redistribution of the hip and knee moments. During DLS, the leading limb shared the majority of the whole body support moments. The current results reveal basic intra- and inter-limb load-sharing patterns of uphill walking, which will be helpful for a better understanding of the control strategies adopted and for subsequent clinical applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. DEM simulation of flow of dumbbells on a rough inclined plane

    NASA Astrophysics Data System (ADS)

    Mandal, Sandip; Khakhar, Devang

    2015-11-01

    The rheology of non-spherical granular materials such as food grains, sugar cubes, sand, pharmaceutical pills, among others, is not understood well. We study the flow of non-spherical dumbbells of different aspect ratios on a rough inclined plane by using soft sphere DEM simulations. The dumbbells are generated by fusing two spheres together and a linear spring dashpot model along with Coulombic friction is employed to calculate inter-particle forces. At steady state, a uni-directional shear flow is obtained which allows for a detailed study of the rheology. The effect of aspect ratio and inclination angle on mean velocity, volume fraction, shear rate, shear stress, pressure and viscosity profiles is examined. The effect of aspect ratio on probability distribution of angles, made by the major axes of the dumbbells with the flow direction, average angle and order parameter is analyzed. The dense flow rheology is well explained by Bagnold's law and the constitutive laws of JFP model. The dependencies of first and second normal stress differences on aspect ratio are studied. The probability distributions of translational and rotational velocity are analyzed.

  15. Measurement of Interfacial Profiles of Wavy Film Flow on Inclined Wall

    NASA Astrophysics Data System (ADS)

    Rosli, N.; Amagai, K.

    2016-02-01

    Falling liquid films on inclined wall present in many industrial processes such as in food processing, seawater desalination and electronic devices manufacturing industries. In order to ensure an optimal efficiency of the operation in these industries, a fundamental study on the interfacial flow profiles of the liquid film is of great importance. However, it is generally difficult to experimentally predict the interfacial profiles of liquid film flow on inclined wall due to the instable wavy flow that usually formed on the liquid film surface. In this paper, the liquid film surface velocity was measured by using a non-intrusive technique called as photochromic dye marking method. This technique utilizes the color change of liquid containing the photochromic dye when exposed to the UV light source. The movement of liquid film surface marked by the UV light was analyzed together with the wave passing over the liquid. As a result, the liquid film surface was found to slightly shrink its gradual movement when approached by the wave before gradually move again after the intersection with the wave.

  16. Laboratory investigation and direct numerical simulation of wind effect on steep surface waves

    NASA Astrophysics Data System (ADS)

    Troitskaya, Yuliya; Sergeev, Daniil; Druzhinin, Oleg; Ermakova, Olga

    2015-04-01

    The small scale ocean-atmosphere interaction at the water-air interface is one of the most important factors determining the processes of heat, mass, and energy exchange in the boundary layers of both geospheres. Another important aspect of the air-sea interaction is excitation of surface waves. One of the most debated open questions of wave modeling is concerned with the wind input in the wave field, especially for the case of steep and breaking waves. Two physical mechanisms are suggested to describe the excitation of finite amplitude waves. The first one is based on the treatment of the wind-wave interaction in quasi-linear approximation in the frameworks of semi-empirical models of turbulence of the low atmospheric boundary layer. An alternative mechanism is associated with separation of wind flow at the crests of the surface waves. The "separating" and "non-separating" mechanisms of wave generation lead to different dependences of the wind growth rate on the wave steepness: the latter predicts a decrease in the increment with wave steepness, and the former - an increase. In this paper the mechanism of the wind-wave interaction is investigated basing on physical and numerical experiments. In the physical experiment, turbulent airflow over waves was studied using the video-PIV method, based on the application of high-speed video photography. Alternatively to the classical PIV technique this approach provides the statistical ensembles of realizations of instantaneous velocity fields. Experiments were performed in a round wind-wave channel at Institute of Applied Physics, Russian Academy of Sciences. A fan generated the airflow with the centerline velocity 4 m/s. The surface waves were generated by a programmed wave-maker at the frequency of 2.5 Hz with the amplitudes of 0.65 cm, 1.4 cm, and 2 cm. The working area (27.4 × 10.7 cm2) was at a distance of 3 m from the fan. To perform the measurements of the instantaneous velocity fields, spherical polyamide

  17. Finding the Acceleration and Speed of a Light-Emitting Object on an Inclined Plane with a Smartphone Light Sensor

    ERIC Educational Resources Information Center

    Kapucu, Serkan

    2017-01-01

    This study investigates how the acceleration and speed of a light-emitting object on an inclined plane may be determined using a smartphone's light sensor. A light-emitting object was released from the top of an inclined plane and its illuminance values were detected by a smartphone's light sensor during its subsequent motion down the plane. Using…

  18. Effects of Inclined Treadmill Walking on Pelvic Anterior Tilt Angle, Hamstring Muscle Length, and Trunk Muscle Endurance of Seated Workers with Flat-back Syndrome.

    PubMed

    Kim, Min-Hee; Yoo, Won-Gyu

    2014-06-01

    [Purpose] This study investigated the effects of inclined treadmill walking on pelvic anterior tilt angle, hamstring muscle length, and back muscle endurance of seated workers with flat-back syndrome. [Subjects] Eight seated workers with flat-back syndrome who complained of low-back pain in the L3-5 region participated in this study. [Methods] The subjects performed a walking exercise on a 30° inclined treadmill. We measured the pelvic anterior tilt angle, hamstring muscle length, and back muscle endurance before and after inclined treadmill walking. [Results] Anterior pelvic tilt angle and active knee extension angle significantly increased after inclined treadmill walking. Trunk extensor and flexor muscle endurance times were also significantly increased compared to the baseline. [Conclusion] Inclined treadmill walking may be an effective approach for the prevention or treatment of low-back pain in flat-back syndrome.

  19. Projectile Motion on an Inclined Misty Surface: II. Scoring a Goal

    ERIC Educational Resources Information Center

    Foong, S. K.; Lim, C. C.; Kuppan, L.

    2009-01-01

    Feedback on part I of this series (Ho "et al" 2009 "Phys. Educ." 44 253) motivated us to make hitting the target more interesting with a simple innovation: changing the target to a ring shaped hoop or goalpost and shooting for it in the "air", as if playing basketball on the inclined plane. We discuss in detail the…

  20. The new Permian-Triassic paleomagnetic pole for the East European Platform corrected for inclination shallowing

    NASA Astrophysics Data System (ADS)

    Fetisova, A. M.; Veselovskiy, R. V.; Scholze, F.; Balabanov, Yu. P.

    2018-01-01

    The results of detailed paleomagnetic studies in seven Upper Permian and Lower Triassic reference sections of East Europe (Middle Volga and Orenburg region) and Central Germany are presented. For each section, the coefficient of inclination shallowing f (King, 1955) is estimated by the Elongation-Inclination (E-I) method (Tauxe and Kent, 2004) and is found to vary from 0.4 to 0.9. The paleomagnetic directions, corrected for the inclination shallowing, are used to calculate the new Late Permian-Early Triassic paleomagnetic pole for the East European Platform (N = 7, PLat = 52.1°, PLong = 155.8°, A95 = 6.6°). Based on this pole, the geocentric axial dipole hypothesis close to the Paleozoic/Mesozoic boundary is tested by the single plate method. The absence of the statistically significant distinction between the obtained pole and the average Permian-Triassic (P-Tr) paleomagnetic pole of the Siberian Platform and the coeval pole of the North American Platform corrected for the opening of the Atlantic (Shatsillo et al., 2006) is interpreted by us as evidence that 250 Ma the configuration of the magnetic field of the Earth was predominantly dipolar; i.e., the contribution of nondipole components was at most 10% of the main magnetic field. In our opinion, the hypothesis of the nondipolity of the geomagnetic field at the P-Tr boundary, which has been repeatedly discussed in recent decades (Van der Voo and Torsvik, 2001; Bazhenov and Shatsillo, 2010; Veselovskiy and Pavlov, 2006), resulted from disregarding the effect of inclination shallowing in the paleomagnetic determinations from sedimentary rocks of "stable" Europe (the East European platform and West European plate).

  1. Tisserand's polynomials and inclination functions in the theory of artificial earth satellites

    NASA Astrophysics Data System (ADS)

    Aksenov, E. P.

    1986-03-01

    The connection between Tisserand's polynomials and inclination functions in the theory of motion of artificial earth satellites is established in the paper. The most important properties of these special functions of celestial mechanics are presented. The problem of expanding the perturbation function in satellite problems is discussed.

  2. Anomalously shallow inclination in middle-northern part of the South China block: palaeomagnetic study of Late Cretaceous red beds from Yichang area

    NASA Astrophysics Data System (ADS)

    Narumoto, Kazutoshi; Yang, Zhenyu; Takemoto, Kazuhiro; Zaman, Haider; Morinaga, Hayao; Otofuji, Yo-ichiro

    2006-02-01

    We present new palaeomagnetic results from Late Cretaceous red beds of the Paomagang Formation collected at 42 sites in the Yichang area (30.7°N, 111.7°E), middle-northern part of the South China Block. A high unblocking temperature component around 680°C was isolated from 26 sites by stepwise thermal demagnetization. Fold tests are positive at the 95 per cent confidence limit for 14 and 11 sites of the Paomagang and Wangdian areas, respectively. Normal and reversed polarity sequence found in the Wangdian area passed a reversal test at the 95 per cent confidence limit. The tilt-corrected mean direction for Yichang area is D= 3.8°, I= 23.3° (α95= 5.1°,N= 26), corresponding to a palaeopole at 71.5°N, 280.0°E with A95= 4.3°. Comparison with the expected inclination from the 80 Ma Eurasian APWP pole indicates a inclination flattening of 26.3°+/- 6.4°. Middle Cretaceous to Cenozoic NW-SE extension tectonics within the SCB contributes only 2.0° to the inclination flattening. While the massive samples of the Paomagang Formation show a moderate degree of anisotropy (1.017 < Pj < 1.086) and steeper inclination (I= 29.3°), the laminated samples, which form more than 75 per cent of the studied samples, show a higher degree of anisotropy (1.052 < Pj < 1.227) and shallower inclination value (I= 22.7°). A good correlation between remanence inclination and facies types indicates that depositional processes produced the observed shallow inclination in the Yichang area.

  3. Effects of Sediment Patches on Sediment Transport Predictions in Steep Mountain Channels

    NASA Astrophysics Data System (ADS)

    Monsalve Sepulveda, A.; Yager, E.

    2013-12-01

    Bed surface patches occur in most gravel-bedded rivers and in steep streams can be divided between relatively immobile boulders and more mobile patches of cobbles and gravel. This spatial variability in grain size, roughness and sorting impact bed load transport by altering the relative local mobility of different grain sizes and creating complex local flow fields. Large boulders also bear a significant part of the total shear stress and we hypothesize that the remaining shear stress on a given mobile patch is a distribution of values that depend on the local topography, patch type and location relative to the large roughness elements and thalweg. Current sediment transport equations do not account for the variation in roughness, local flow and grain size distributions on and between patches and often use an area-weighted approach to obtain a representative grain size distribution and reach-averaged shear stress. Such equations also do not distinguish between active (patches where at least one grain size is in motion) and inactive patches or include the difference in mobility between patch classes as result of spatial shear stress distributions. To understand the effects of sediment patches on sediment transport in steep channels, we calculated the shear stress distributions over a range of patch classes in a 10% gradient step-pool stream. We surveyed the bed with a high density resolution (every 5 cm in horizontal and vertical directions over a 40 m long reach) using a total station and terrestrial LiDAR, mapped and classified patches by their grain size distributions, and measured water surface elevations and mean velocities for low to moderate flow events. Using these data we calibrated a quasi-three dimensional model (FaSTMECH) to obtain shear stress distributions over each patch for a range of flow discharges. We modified Parker's (1990) equations to use the calculated shear stress distribution, measured grain sizes, and a specific hiding function for each

  4. Test of the Angle Detecting Inclined Sensor (ADIS) Technique for Measuring Space Radiation

    NASA Astrophysics Data System (ADS)

    Connell, J. J.; Lopate, C.; McLaughlin, K. R.

    2008-12-01

    In February 2008 we exposed an Angle Detecting Inclined Sensor (ADIS) prototype to beams of 150 MeV/u 78Kr and fragments at the National Superconducting Cyclotron Laboratory's (NSCL) Coupled Cyclotron Facility (CCF). ADIS is a highly innovative and uniquely simple detector configuration used to determine the angles of incidence of heavy ions in energetic charged particle instruments. Corrections for angle of incidence are required for good charge and mass separation. An ADIS instrument is under development to fly on the GOES-R series of weather satellites. The prototype tested consisted of three ADIS detectors, two of which were inclined at an angle to the telescope axis, forming the initial detectors in a five-detector telescope stack. By comparing the signals from the ADIS detectors, the angle of incidence may be determined and a pathlength correction applied to charge and mass determinations. Thus, ADIS replaces complex position sensing detectors with a system of simple, reliable and robust Si detectors. Accelerator data were taken at multiple angles to both primary and secondary beams with a spread of energies. This test instrument represents an improvement over the previous ADIS prototype in that it used oval inclined detectors and a much lower-mass support structure, thus reducing the number of events passing through dead material. We will present the results of this test. The ADIS instrument development project was partially funded by NASA under the Living With a Star (LWS) Targeted Research and Technology program (grant NAG5-12493).

  5. 3D Finite Element Analysis of Yixing CFRD Built on Inclined Mountain Slope

    NASA Astrophysics Data System (ADS)

    Sun, Da Wei; Zhang, Liang; Qing Yao, Hui; Wang, Kang Ping

    2018-05-01

    There are few CFRDs built on steep slope with dam height more than 50 m. So does the relative design and construction experience. The 75 m-high Yixing CFRD was built on steep mountain slope and the 45.9m-high gravity retaining wall was used to against dam sliding. Since the excessive deformation of dam body and perimetric joints would lead to failure of seal materials and cause water leakage, 3D nonlinear finite element stress-deformation analysis was carried out. 3D finite element mesh with 63875 elements including retaining wall and surrounding mountain was established by use of advanced grid discreteness technique. Large scales of equations solving method were adopted in the computer procedure and the calculation time was greatly reduced from former 40 hours to now 45 minutes. Therefore the behavior of the dam, retaining wall and the joint was obtained in a short time, and the results would be helpful to the design and construction of Yixing dam.

  6. A generalized analytical solution for an inclined well in a vertically and horizontally anisotropic confined aquifer and comparisons with MODFLOW

    NASA Astrophysics Data System (ADS)

    Batu, Vedat

    2015-01-01

    In this paper, a new generalized three-dimensional complete analytical solution is presented for any well screen shape in a vertically and horizontally anisotropic confined aquifer in x-y-z Cartesian coordinates system for drawdown by taking into account the three principal hydraulic conductivities (Kx, Ky, and Kz) along the x-y-z coordinate directions. The special solution covers a partially-penetrating inclined parallelepiped as well as an inclined line source well. It has been showed that the rectangular parallelepiped screen case solution of Batu (2012) is a special case of this general solution. Like Batu (2012), the horizontal well case is a special case of this solution as well. The solution takes into account both the vertical anisotropy (azx = Kz/Kx) as well as the horizontal anisotropy (ayx = Ky/Kx) and has potential application areas to analyze pumping test drawdown data from partially-penetrating inclined wells by representing them as tiny parallelepiped as well as line sources. Apart from other verifications, the inclined well solution results have also been compared with the results of MODFLOW with very good agreement. The solution has also potential application areas for a partially-penetrating inclined parallelepiped fracture. With this new solution, both the horizontal anisotropy (ayx = Ky/Kx) as well as the vertical anisotropy (azx = Kz/Kx) can also be determined using observed drawdown data.

  7. Experimental Investigation of Two-Phase Oil (D130)-Water Flow in 4″ Pipe for Different Inclination Angles

    NASA Astrophysics Data System (ADS)

    Shaahid, S. M.; Basha, Mehaboob; Al-Hems, Luai M.

    2018-03-01

    Oil and water are often produced and transported together in pipelines that have various degrees of inclination from the horizontal. The flow of two immiscible liquids oil and water in pipes has been a research topic since several decades. In oil and chemical industries, knowledge of the frictional pressure loss in oil-water flows in pipes is necessary to specify the size of the pump required to pump the emulsions. An experimental investigation has been carried out for measurement of pressure drop of oil (D130)-water two-phase flows in 4 inch diameter inclined stainless steel pipe at different flow conditions. Experiments were conducted for different inclination angles including; 0°, 15°, 30° (for water cuts “WC” 0 - 100%). The flow rates at the inlet were varied from 4000 to 8000 barrels-per-day (BPD). For a given flow rate the frictional pressure drop has been found to increase (for all angles) from WC = 0 - 60%, and thereafter friction pressure drop decreases, this could be due phase inversion. For a given WC 40%, the frictional pressure drop has been found to increase with angle and flow rate. It has been noticed that inclination angle has appreciable effect on frictional pressure drop.

  8. Demographic Factors, Personality and Entrepreneurial Inclination: A Study among Indian University Students

    ERIC Educational Resources Information Center

    Chaudhary, Richa

    2017-01-01

    Purpose: The purpose of this paper is to investigate the influence of demographic, social and personal dispositional factors on determining the entrepreneurial inclination. Specifically, the author examined the role of gender, age, stream of study, family business background and six psychological traits of locus of control, tolerance for…

  9. Advanced Communications Technology Satellite Now Operating in an Inclined Orbit

    NASA Technical Reports Server (NTRS)

    Bauer, Robert A.

    1999-01-01

    The Advanced Communications Technology Satellite (ACTS) system has been modified to support operation in an inclined orbit that is virtually transparent to users, and plans are to continue this final phase of its operation through September 2000. The next 2 years of ACTS will provide a new opportunity for using the technologies that this system brought online over 5 years ago and that are still being used to resolve the technical issues that face NASA and the satellite industry in the area of seamless networking and interoperability with terrestrial systems. New goals for ACTS have been defined that align the program with recent changes in NASA and industry. ACTS will be used as a testbed to: Show how NASA and other Government agencies can use commercial systems for 1. future support of their operations Test, characterize, and resolve technical issues in using advanced communications 2. protocols such as asynchronous transfer mode (ATM) and transmission control protocol/Internet protocol (TCP/IP) over long latency links as found when interoperating satellites with terrestrial systems Evaluate narrow-spot-beam Ka-band satellite operation in an inclined orbit 3. Verify Ka-band satellite technologies since no other Ka-band system is yet 4. available in the United States

  10. Computational parametric study of a Richtmyer-Meshkov instability for an inclined interface.

    PubMed

    McFarland, Jacob A; Greenough, Jeffrey A; Ranjan, Devesh

    2011-08-01

    A computational study of the Richtmyer-Meshkov instability for an inclined interface is presented. The study covers experiments to be performed in the Texas A&M University inclined shock tube facility. Incident shock wave Mach numbers from 1.2 to 2.5, inclination angles from 30° to 60°, and gas pair Atwood numbers of ∼0.67 and ∼0.95 are used in this parametric study containing 15 unique combinations of these parameters. Qualitative results are examined through a time series of density plots for multiple combinations of these parameters, and the qualitative effects of each of the parameters are discussed. Pressure, density, and vorticity fields are presented in animations available online to supplement the discussion of the qualitative results. These density plots show the evolution of two main regions in the flow field: a mixing region containing driver and test gas that is dominated by large vortical structures, and a more homogeneous region of unmixed fluid which can separate away from the mixing region in some cases. The interface mixing width is determined for various combinations of the parameters listed at the beginning of the Abstract. A scaling method for the mixing width is proposed using the interface geometry and wave velocities calculated using one-dimensional gas dynamic equations. This model uses the transmitted wave velocity for the characteristic velocity and an initial offset time based on the travel time of strong reflected waves. It is compared to an adapted Richtmyer impulsive model scaling and shown to scale the initial mixing width growth rate more effectively for fixed Atwood number.

  11. Ductile cutting of silicon microstructures with surface inclination measurement and compensation by using a force sensor integrated single point diamond tool

    NASA Astrophysics Data System (ADS)

    Chen, Yuan-Liu; Cai, Yindi; Shimizu, Yuki; Ito, So; Gao, Wei; Ju, Bing-Feng

    2016-02-01

    This paper presents a measurement and compensation method of surface inclination for ductile cutting of silicon microstructures by using a diamond tool with a force sensor based on a four-axis ultra-precision lathe. The X- and Y-directional inclinations of a single crystal silicon workpiece with respect to the X- and Y-motion axes of the lathe slides were measured respectively by employing the diamond tool as a touch-trigger probe, in which the tool-workpiece contact is sensitively detected by monitoring the force sensor output. Based on the measurement results, fabrication of silicon microstructures can be thus carried out directly along the tilted silicon workpiece by compensating the cutting motion axis to be parallel to the silicon surface without time-consuming pre-adjustment of the surface inclination or turning of a flat surface. A diamond tool with a negative rake angle was used in the experiment for superior ductile cutting performance. The measurement precision by using the diamond tool as a touch-trigger probe was investigated. Experiments of surface inclination measurement and ultra-precision ductile cutting of a micro-pillar array and a micro-pyramid array with inclination compensation were carried out respectively to demonstrate the feasibility of the proposed method.

  12. Identification of families among highly inclined asteroids

    NASA Astrophysics Data System (ADS)

    Gil-Hutton, R.

    2006-07-01

    A dataset of 3652 high-inclination numbered asteroids was analyzed to search for dynamical families. A fully automated multivariate data analysis technique was applied to identify the groupings. Thirteen dynamical families and twenty-two clumps were found. When taxonomic information is available, the families show cosmochemical consistency and support an interpretation based on a common origin from a single parent body. Four families and three clumps found in this work show a size distribution which is compatible with a formation due to a cratering event on the largest member of the family, and also three families have B- or related taxonomic types members, which represents a 14% of the B-types classified by Bus and Binzel [2002. Icarus 158, 146-177].

  13. The Influence of Backrest Inclination on Buttock Pressure

    PubMed Central

    Park, Un Jin

    2011-01-01

    Objective To assess the effects of backrest inclination of a wheelchair on buttock pressures in spinal cord injured (SCI) patients and normal subjects. Method The participants were 22 healthy subjects and 22 SCI patients. Buttock pressures of the participants were measured by a Tekscan® pressure sensing mat and software while they were sitting in a reclining wheelchair. Buttock pressures were recorded for 90°, 100°, 110°, 120° and 130° seat-to-back angles at the ischial tuberosity (IT) and sacrococcygeal (SC) areas. Recordings were made at each angle over four seconds at a sampling rate of 10 Hz. Results The side-to-side buttock pressure differences in the IT area for the SCI patients was significantly greater than for the normal subjects. There was no significant difference between the SCI patients and the normal subjects in the buttock pressure change pattern of the IT area. Significant increases in pressure on the SC area were found as backrest inclination angle was changed to 90°, 100° and 110° in the normal subjects, but no significant differences were found in the SCI patients. Conclusion Most of the SCI patients have freeform posture in wheelchairs, and this leads to an uneven distribution of buttock pressure. In the SCI patients, the peak pressure in the IT area reduced as the backrest angle was increased, but peak pressure at the SC area remained relatively unchanged. To reduce buttock pressure and prevent pressure ulcers and enhance ulcer healing, it can be helpful for tetraplegic patients, to have wheelchair seat-to-back angles above 120°. PMID:22506220

  14. EGRET/COMPTEL Observations of an Unusual, Steep-Spectrum Gamma-Ray Source

    NASA Technical Reports Server (NTRS)

    Thompson, D. J.; Bertsch, D. L.; Hartman, R. C.; Collmar, W.; Johnson, W. N.

    1999-01-01

    During analysis of sources below the threshold of the third EGRET catalog, we have discovered a source, named GRO J1400-3956 based on the best position, with a remarkably steep spectrum. Archival analysis of COMPTEL data shows that the spectrum must have a strong turn-over in the energy range between COMPTEL and EGRET. The EGRET data show some evidence of time variability, suggesting an AGN, but the spectral change of slope is larger than that seen for most gamma-ray blazars. The sharp cutoff resembles the high-energy spectral breaks seen in some gamma-ray pulsars. There have as yet been no OSSE observations of this source.

  15. The Valgus Inclination of the Tibial Component Increases the Risk of Medial Tibial Condylar Fractures in Unicompartmental Knee Arthroplasty.

    PubMed

    Inoue, Shinji; Akagi, Masao; Asada, Shigeki; Mori, Shigeshi; Zaima, Hironori; Hashida, Masahiko

    2016-09-01

    Medial tibial condylar fractures (MTCFs) are a rare but serious complication after unicompartmental knee arthroplasty. Although some surgical pitfalls have been reported for MTCFs, it is not clear whether the varus/valgus tibial inclination contributes to the risk of MTCFs. We constructed a 3-dimensional finite elemental method model of the tibia with a medial component and assessed stress concentrations by changing the inclination from 6° varus to 6° valgus. Subsequently, we repeated the same procedure adding extended sagittal bone cuts of 2° and 10° in the posterior tibial cortex. Furthermore, we calculated the bone volume that supported the tibial component, which is considered to affect stress distribution in the medial tibial condyle. Stress concentrations were observed on the medial tibial metaphyseal cortices and on the anterior and posterior tibial cortices in the corner of cut surfaces in all models; moreover, the maximum principal stresses on the posterior cortex were larger than those on the anterior cortex. The extended sagittal bone cuts in the posterior tibial cortex increased the stresses further at these 3 sites. In the models with a 10° extended sagittal bone cut, the maximum principal stress on the posterior cortex increased as the tibial inclination changed from 6° varus to 6° valgus. The bone volume decreased as the inclination changed from varus to valgus. In this finite element method, the risk of MTCFs increases with increasing valgus inclination of the tibial component and with increased extension of the sagittal cut in the posterior tibial cortex. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Dynamic interaction of monowheel inclined vehicle-vibration platform coupled system with quadratic and cubic nonlinearities

    NASA Astrophysics Data System (ADS)

    Zhou, Shihua; Song, Guiqiu; Sun, Maojun; Ren, Zhaohui; Wen, Bangchun

    2018-01-01

    In order to analyze the nonlinear dynamics and stability of a novel design for the monowheel inclined vehicle-vibration platform coupled system (MIV-VPCS) with intermediate nonlinearity support subjected to a harmonic excitation, a multi-degree of freedom lumped parameter dynamic model taking into account the dynamic interaction of the MIV-VPCS with quadratic and cubic nonlinearities is presented. The dynamical equations of the coupled system are derived by applying the displacement relationship, interaction force relationship at the contact position and Lagrange's equation, which are further discretized into a set of nonlinear ordinary differential equations with coupled terms by Galerkin's truncation. Based on the mathematical model, the coupled multi-body nonlinear dynamics of the vibration system is investigated by numerical method, and the parameters influences of excitation amplitude, mass ratio and inclined angle on the dynamic characteristics are precisely analyzed and discussed by bifurcation diagram, Largest Lyapunov exponent and 3-D frequency spectrum. Depending on different ranges of system parameters, the results show that the different motions and jump discontinuity appear, and the coupled system enters into chaotic behavior through different routes (period-doubling bifurcation, inverse period-doubling bifurcation, saddle-node bifurcation and Hopf bifurcation), which are strongly attributed to the dynamic interaction of the MIV-VPCS. The decreasing excitation amplitude and inclined angle could reduce the higher order bifurcations, and effectively control the complicated nonlinear dynamic behaviors under the perturbation of low rotational speed. The first bifurcation and chaotic motion occur at lower value of inclined angle, and the chaotic behavior lasts for larger intervals with higher rotational speed. The investigation results could provide a better understanding of the nonlinear dynamic behaviors for the dynamic interaction of the MIV-VPCS.

  17. Detailed statistical contact angle analyses; "slow moving" drops on inclining silicon-oxide surfaces.

    PubMed

    Schmitt, M; Groß, K; Grub, J; Heib, F

    2015-06-01

    Contact angle determination by sessile drop technique is essential to characterise surface properties in science and in industry. Different specific angles can be observed on every solid which are correlated with the advancing or the receding of the triple line. Different procedures and definitions for the determination of specific angles exist which are often not comprehensible or reproducible. Therefore one of the most important things in this area is to build standard, reproducible and valid methods for determining advancing/receding contact angles. This contribution introduces novel techniques to analyse dynamic contact angle measurements (sessile drop) in detail which are applicable for axisymmetric and non-axisymmetric drops. Not only the recently presented fit solution by sigmoid function and the independent analysis of the different parameters (inclination, contact angle, velocity of the triple point) but also the dependent analysis will be firstly explained in detail. These approaches lead to contact angle data and different access on specific contact angles which are independent from "user-skills" and subjectivity of the operator. As example the motion behaviour of droplets on flat silicon-oxide surfaces after different surface treatments is dynamically measured by sessile drop technique when inclining the sample plate. The triple points, the inclination angles, the downhill (advancing motion) and the uphill angles (receding motion) obtained by high-precision drop shape analysis are independently and dependently statistically analysed. Due to the small covered distance for the dependent analysis (<0.4mm) and the dominance of counted events with small velocity the measurements are less influenced by motion dynamics and the procedure can be called "slow moving" analysis. The presented procedures as performed are especially sensitive to the range which reaches from the static to the "slow moving" dynamic contact angle determination. They are characterised by

  18. Inclined indentation of smooth wedge in rock mass

    NASA Astrophysics Data System (ADS)

    Chanyshev, AI; Podyminogin, GM; Lukyashko, OA

    2018-03-01

    The article focuses on the inclined rigid wedge indentation into a rigid-plastic half-plane of rocks with the Mohr–Coulomb-Mohr plasticity. The limiting loads on different sides of the wedge are determined versus the internal friction angle, cohesion and wedge angle. It is shown that when the force is applied along the symmetry axis of the wedge, the zone of plasticity is formed only on one wedge side. In order to form the plasticity zone on both sides of the wedge, it is necessary to apply the force asymmetrically relative to the wedge symmetry axis. An engineering solution for the asymmetrical case implementation is suggested.

  19. Wiimote Experiments: 3-D Inclined Plane Problem for Reinforcing the Vector Concept

    ERIC Educational Resources Information Center

    Kawam, Alae; Kouh, Minjoon

    2011-01-01

    In an introductory physics course where students first learn about vectors, they oftentimes struggle with the concept of vector addition and decomposition. For example, the classic physics problem involving a mass on an inclined plane requires the decomposition of the force of gravity into two directions that are parallel and perpendicular to the…

  20. Influence of Initial Inclined Surface Crack on Estimated Residual Fatigue Lifetime of Railway Axle

    NASA Astrophysics Data System (ADS)

    Náhlík, Luboš; Pokorný, Pavel; Ševčík, Martin; Hutař, Pavel

    2016-11-01

    Railway axles are subjected to cyclic loading which can lead to fatigue failure. For safe operation of railway axles a damage tolerance approach taking into account a possible defect on railway axle surface is often required. The contribution deals with an estimation of residual fatigue lifetime of railway axle with initial inclined surface crack. 3D numerical model of inclined semi-elliptical surface crack in railway axle was developed and its curved propagation through the axle was simulated by finite element method. Presence of press-fitted wheel in the vicinity of initial crack was taken into account. A typical loading spectrum of railway axle was considered and residual fatigue lifetime was estimated by NASGRO approach. Material properties of typical axle steel EA4T were considered in numerical calculations and lifetime estimation.

  1. Robotic complex for the development of thick steeply-inclined coal seams and ore deposits

    NASA Astrophysics Data System (ADS)

    Nikitenko, M. S.; Malakhov, Yu V.; Neogi, Biswarup; Chakraborty, Pritam; Banerjee, Dipesu

    2017-09-01

    Proposal for the formulation of robotic complexes for steeply inclined coal seams as a basis of the supportive-enclosing walking module and power support with a controlled outlet for mining industry has been represented in this literature. In mining industry, the available resource base reserves and mineral deposits are concentrated deep down the earth crust leading towards a complicated geological condition i.e. abrupt ore bedding and steeply inclined strata with the high gas content and fire hazard of thick coal stratum, heading against an unfavorable and sometimes human labor life risk during subversive mining. Prevailing towards the development of effective robotic complexes based on the means of “unmanned technologies” for extraction of minerals from hard-to-reach deposits and make sure the safety of underground staff during sublevel mining technology.

  2. Correction of antebrachial angulation-rotation deformities in dogs with oblique plane inclined osteotomies.

    PubMed

    Franklin, Samuel P; Dover, Ryan K; Andrade, Natalia; Rosselli, Desiree; M Clarke, Kevin

    2017-11-01

    To describe oblique plane inclined osteotomies and report preliminary data on outcomes in dogs treated for antebrachial angulation-rotation deformities. Retrospective clinical study. Six antebrachii from 5 dogs. Records of dogs with antebrachial angulation-rotation deformities treated with oblique plane inclined osteotomies were reviewed. Postoperative frontal, sagittal, and transverse plane alignments were assessed subjectively, and alignment in the frontal and sagittal planes was quantified on radiographs. Outcomes were classified based on owner's and veterinarian's evaluation as full, acceptable, and unacceptable function. Complications were classified as minor, major, or catastrophic. Limb alignment was subjectively considered excellent in 1 case, good in 3 cases, and fair in 2 cases. Osseous union was achieved in all cases (mean 10.5 weeks; range, 6-13 weeks). Outcomes were assessed by the veterinarian as return to full function in 5 cases and acceptable function in 1 case at the final in-hospital follow-up (mean 44 weeks; range, 6-124 weeks). All owners classified their dogs as returning to full function at the final phone/email interview (mean 107 weeks; range, 72-153 weeks). Implants were removed due to infection or irritation in 3/6 limbs, while the other 3 limbs had minor dermatitis secondary to postoperative external coaptation. No catastrophic complications occurred. Oblique plane inclined osteotomies led to a successful outcome in all 6 limbs, but the technique can be challenging and does not always lead to optimal alignment. Future refinement of this technique could focus on the development of patient-specific osteotomy guides to improve accuracy and precision. © 2017 The American College of Veterinary Surgeons.

  3. Motor unit recruitment patterns 1: responses to changes in locomotor velocity and incline.

    PubMed

    Hodson-Tole, Emma F; Wakeling, James M

    2008-06-01

    Mammalian skeletal muscles are composed of a mixture of motor unit types, which contribute a range of mechanical and physiological properties to the muscle. For a muscle to effectively contribute to smooth, co-ordinated movement it must activate an appropriate number and combination of motor units to generate the required force over a suitable time period. Much evidence exists indicating that motor units are activated in an orderly fashion, from the slowest through to the fastest. A growing body of evidence, however, indicates that such a recruitment strategy does not always hold true. Here we investigate how motor unit recruitment patterns were influenced by changes in locomotor velocity and incline. Kinematics data and myoelectric signals were collected from three rat ankle extensor muscles during running on a treadmill at nine velocity and incline combinations. Wavelet and principal component analysis were used to simultaneously decompose the signals into time and frequency space. The relative frequency components of the signals were quantified during 20 time windows of a stride from each locomotor condition. Differences in signal frequency components existed between muscles and locomotor conditions. Faster locomotor velocities led to a relative increase in high frequency components, whereas greater inclines led to a relative increase in the low frequency components. These data were interpreted as representing changes in motor unit recruitment patterns in response to changes in the locomotor demand. Motor units were not always recruited in an orderly manner, indicating that recruitment is a multi-factorial phenomenon that is not yet fully understood.

  4. Impinging Water Droplets on Inclined Glass Surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armijo, Kenneth Miguel; Lance, Blake; Ho, Clifford K.

    Multiphase computational models and tests of falling water droplets on inclined glass surfaces were developed to investigate the physics of impingement and potential of these droplets to self-clean glass surfaces for photovoltaic modules and heliostats. A multiphase volume-of-fluid model was developed in ANSYS Fluent to simulate the impinging droplets. The simulations considered different droplet sizes (1 mm and 3 mm), tilt angles (0°, 10°, and 45°), droplet velocities (1 m/s and 3 m/s), and wetting characteristics (wetting=47° contact angle and non-wetting = 93° contact angle). Results showed that the spread factor (maximum droplet diameter during impact divided by the initialmore » droplet diameter) decreased with increasing inclination angle due to the reduced normal force on the surface. The hydrophilic surface yielded greater spread factors than the hydrophobic surface in all cases. With regard to impact forces, the greater surface tilt angles yielded lower normal forces, but higher shear forces. Experiments showed that the experimentally observed spread factor (maximum droplet diameter during impact divided by the initial droplet diameter) was significantly larger than the simulated spread factor. Observed spread factors were on the order of 5 - 6 for droplet velocities of ~3 m/s, whereas the simulated spread factors were on the order of 2. Droplets were observed to be mobile following impact only for the cases with 45° tilt angle, which matched the simulations. An interesting phenomenon that was observed was that shortly after being released from the nozzle, the water droplet oscillated (like a trampoline) due to the "snapback" caused by the surface tension of the water droplet being released from the nozzle. This oscillation impacted the velocity immediately after the release. Future work should evaluate the impact of parameters such as tilt angle and surface wettability on the impact of particle/soiling uptake and removal to investigate ways that

  5. Paleomagnetic field variation with strong negative inclination during the Brunhes chron at the Banda Sea, equatorial southwestern Pacific

    NASA Astrophysics Data System (ADS)

    Huang, Yin-Sheng; Lee, Teh-Quei; Hsu, Shu-Kun; Yang, Tein-Nan

    2009-03-01

    We reconstruct the earth magnetic field in the Brunhes epoch at the Banda Sea by studying the paleomagnetic data from core MD012380, collected during the International Marine Global Change Study (IMAGES) VII Cruise in 2001. Magnetic analysis is carried out for whole core with a sampling spacing of 1 cm by using u-channel. Magnetic susceptibility (χ), nature remanent magnetization (NRM), anhysteretic remanent magnetization (ARM), and isothermal remanent magnetization (IRM) are measured in our paleomagnetic experiment. Results show the low latitude geomagnetic field variation at the Banda Sea during the last ∼820 kyr. Except for the Brunhes/Matuyama boundary (BMB), there is no clear signal of reverse events in paleo- inclination and paleo-declination patterns. However, the synthetic paleointensity curve displays the asymmetrical saw-tooth pattern that can be used for determining reverse events, and shows a maximum intensity drop at the BMB. The characteristics of paleointensity provide a useful tool to identify reverse signals and improve the difficulties from only using inclination and declination patterns, especially at low latitude. With the help of paleointensity, inclination and declination, we have identified five reverse events. Furthermore if we consider the secular variation effect, we think that the strong negative inclination observed in our study may be the zonal time-averaged field with paleo secular variation, rather than non-dipole effect within the Brunhes epoch.

  6. Distinguishable circumferential inclined direction tilt sensor based on fiber Bragg grating with wide measuring range and high accuracy

    NASA Astrophysics Data System (ADS)

    Jiang, Shanchao; Wang, Jing; Sui, Qingmei

    2015-11-01

    One novel distinguishable circumferential inclined direction tilt sensor is demonstrated by incorporating two strain sensitivity fiber Bragg gratings (FBGs) with two orthogonal triangular cantilever beam and using one fiber Bragg grating (FBG) as temperature compensation element. According to spatial vector and space geometry, theory calculation model of the proposed FBG tilt sensor which can be used to obtain the azimuth and tile angle of the inclined direction is established. To obtain its measuring characteristics, calibration experiment on one prototype of the proposed FBG tilt sensor is carried out. After temperature sensitivity experiment data analysis, the proposed FBG tilt sensor exhibits excellent temperature compensation characteristics. In 2-D tilt angle experiment, tilt measurement sensitivities of these two strain sensitivity FBGs are 140.85°/nm and 101.01°/nm over a wide range of 60º. Further, azimuth and tile angle of the inclined direction can be obtained by the proposed FBG tilt sensor which is verified in circumferential angle experiment. Experiment data show that relative errors of azimuth are 0.55% (positive direction) and 1.14% (negative direction), respectively, and relative errors of tilt angle are all less than 3%. Experiment results confirm that the proposed distinguishable circumferential inclined direction tilt sensor based on FBG can achieve azimuth and tile angle measurement with wide measuring range and high accuracy.

  7. Association of objectively measured arm inclination with shoulder pain: A 6-month follow-up prospective study of construction and health care workers.

    PubMed

    Koch, Markus; Lunde, Lars-Kristian; Veiersted, Kaj Bo; Knardahl, Stein

    2017-01-01

    The aim was to determine the association of occupational arm inclination with shoulder pain in construction and health care workers. Arm inclination relative to the vertical was measured with an accelerometer placed on the dominant upper arm for up to four full days at baseline in 62 construction workers and 63 health care workers. The pain intensity in the shoulder and mechanical and psychosocial work factors were measured by self-reports at baseline and prospectively after 6 months. The associations between exposures and shoulder pain were analyzed with multilevel mixed-effects linear regressions. For the total study population working with the dominant arm at inclinations > 30° and >120° was associated with lower levels of shoulder pain both cross-sectionally and after 6 months. Associations were attenuated when adjusting for individual and social factors, psychological state, and exposure during leisure time, especially for the high inclination levels. Analyses, only including subjects with no pain at baseline revealed no significant associations. While stratified analysis showed negative associations in the construction worker group, there were no significant association in health care workers. Compared to the number of hypotheses tested, the number of significant findings was low. Adjustment by Bonferroni-correction made almost all findings insignificant. All analyses reflected a negative association between arm inclination and shoulder pain, but few analyses showed these associations to be statistically significant. If there is a relationship between arm inclination and shoulder pain, these findings could indicate that pain-avoidance may modify how workers perform their tasks.

  8. Association of objectively measured arm inclination with shoulder pain: A 6-month follow-up prospective study of construction and health care workers

    PubMed Central

    Koch, Markus; Lunde, Lars-Kristian; Veiersted, Kaj Bo; Knardahl, Stein

    2017-01-01

    Objectives The aim was to determine the association of occupational arm inclination with shoulder pain in construction and health care workers. Methods Arm inclination relative to the vertical was measured with an accelerometer placed on the dominant upper arm for up to four full days at baseline in 62 construction workers and 63 health care workers. The pain intensity in the shoulder and mechanical and psychosocial work factors were measured by self-reports at baseline and prospectively after 6 months. The associations between exposures and shoulder pain were analyzed with multilevel mixed-effects linear regressions. Results For the total study population working with the dominant arm at inclinations > 30° and >120° was associated with lower levels of shoulder pain both cross-sectionally and after 6 months. Associations were attenuated when adjusting for individual and social factors, psychological state, and exposure during leisure time, especially for the high inclination levels. Analyses, only including subjects with no pain at baseline revealed no significant associations. While stratified analysis showed negative associations in the construction worker group, there were no significant association in health care workers. Compared to the number of hypotheses tested, the number of significant findings was low. Adjustment by Bonferroni-correction made almost all findings insignificant. Conclusions All analyses reflected a negative association between arm inclination and shoulder pain, but few analyses showed these associations to be statistically significant. If there is a relationship between arm inclination and shoulder pain, these findings could indicate that pain-avoidance may modify how workers perform their tasks. PMID:29176761

  9. Performance of Infinitely Wide Parabolic and Inclined Slider Bearings Lubricated with Couple Stress or Magnetic Fluids

    NASA Astrophysics Data System (ADS)

    Oladeinde, Mobolaji Humphrey; Akpobi, John Ajokpaoghene

    2011-10-01

    The hydrodynamic and magnetohydrodynamic (MHD) lubrication problem of infinitely wide inclined and parabolic slider bearings is solved numerically using the finite element method. The bearing configurations are discretized into three-node isoparametric quadratic elements. Stiffness integrals obtained from the weak form of the governing equations are solved using Gauss quadrature to obtain a finite number of stiffness matrices. The global system of equations obtained from enforcing nodal continuity of pressure for the bearings are solved using the Gauss-Seidel iterative scheme with a convergence criterion of 10-10. Numerical computations reveal that, when compared for similar profile and couple stress parameters, greater pressure builds up in a parabolic slider compared to an inclined slider, indicating a greater wedge effect in the parabolic slider. The parabolic slider bearing is also shown to develop a greater load capacity when lubricated with magnetic fluids. The superior performance of parabolic slider bearing is more pronounced at greater Hartmann numbers for identical bearing structural parameters. It is also shown that when load carrying capacity is the yardstick for comparison, the parabolic slider bearings are superior to the inclined bearings when lubricated with couple stress or magnetic lubricants.

  10. The Role of Power Fluctuations in the Preference of Diagonal vs. Double Poling Sub-Technique at Different Incline-Speed Combinations in Elite Cross-Country Skiers

    PubMed Central

    Dahl, Christine; Sandbakk, Øyvind; Danielsen, Jørgen; Ettema, Gertjan

    2017-01-01

    In classical cross-country skiing, diagonal stride (DIA) is the major uphill sub-technique, while double poling (DP) is used on relatively flat terrain. Although, the dependence of incline and speed on the preference of either sub-technique seems clearly established, the mechanisms behind these preferences are not clear. Therefore, the purpose of this study was to compare kinetics and energy consumption in DP and DIA at the same submaximal workload in cross-country skiing under two different incline-speed combinations. We compared kinetics and physiological responses in DP and DIA at the same submaximal workload (≈200 W) under two different incline-speed conditions, (5%—12.5 km h−1 vs. 12%—6.5 km h−1) where DP and DIA were expected to be preferred, respectively. Fifteen elite male cross-country skiers performed four separate 6.5-min roller skiing sessions on a treadmill at these two conditions using DP and DIA during which physiological variables, rate of perceived exertion (RPE) and kinetics, including power fluctuations, were recorded. At 12% incline, DIA resulted in lower physiological response (e.g., heart rate) and RPE, and higher gross efficiency than DP, whereas at 5% incline these variables favored DP (P < 0.05). The skiers' preference for sub-technique (13 preferred DIA at 12% incline; all 15 preferred DP at 5% incline) was in accordance with these results. Fluctuation in instantaneous power was lowest in the preferred sub-technique at each condition (P < 0.05). Preference for DP at 5% incline (high speed) is most likely because the speed is too high for effective ski thrust in DIA, which is reflected in high power fluctuations. The mechanism for preference of DIA at 12% incline is not indicated directly by the current data set showing only small differences in power fluctuations between DIA and DP. Apart from the low speed allowing ski thrust, we suggest that restricted ability to utilize the body's mechanical energy as well as the use of arms

  11. The Role of Power Fluctuations in the Preference of Diagonal vs. Double Poling Sub-Technique at Different Incline-Speed Combinations in Elite Cross-Country Skiers.

    PubMed

    Dahl, Christine; Sandbakk, Øyvind; Danielsen, Jørgen; Ettema, Gertjan

    2017-01-01

    In classical cross-country skiing, diagonal stride (DIA) is the major uphill sub-technique, while double poling (DP) is used on relatively flat terrain. Although, the dependence of incline and speed on the preference of either sub-technique seems clearly established, the mechanisms behind these preferences are not clear. Therefore, the purpose of this study was to compare kinetics and energy consumption in DP and DIA at the same submaximal workload in cross-country skiing under two different incline-speed combinations. We compared kinetics and physiological responses in DP and DIA at the same submaximal workload (≈200 W) under two different incline-speed conditions, (5%-12.5 km h -1 vs. 12%-6.5 km h -1 ) where DP and DIA were expected to be preferred, respectively. Fifteen elite male cross-country skiers performed four separate 6.5-min roller skiing sessions on a treadmill at these two conditions using DP and DIA during which physiological variables, rate of perceived exertion ( RPE ) and kinetics, including power fluctuations, were recorded. At 12% incline, DIA resulted in lower physiological response (e.g., heart rate) and RPE , and higher gross efficiency than DP, whereas at 5% incline these variables favored DP ( P < 0.05). The skiers' preference for sub-technique (13 preferred DIA at 12% incline; all 15 preferred DP at 5% incline) was in accordance with these results. Fluctuation in instantaneous power was lowest in the preferred sub-technique at each condition ( P < 0.05). Preference for DP at 5% incline (high speed) is most likely because the speed is too high for effective ski thrust in DIA, which is reflected in high power fluctuations. The mechanism for preference of DIA at 12% incline is not indicated directly by the current data set showing only small differences in power fluctuations between DIA and DP. Apart from the low speed allowing ski thrust, we suggest that restricted ability to utilize the body's mechanical energy as well as the use of arms

  12. Quantifying irreversible movement in steep, fractured bedrock permafrost on Matterhorn (CH)

    NASA Astrophysics Data System (ADS)

    Weber, Samuel; Beutel, Jan; Faillettaz, Jérome; Hasler, Andreas; Krautblatter, Michael; Vieli, Andreas

    2017-02-01

    Understanding rock slope kinematics in steep, fractured bedrock permafrost is a challenging task. Recent laboratory studies have provided enhanced understanding of rock fatigue and fracturing in cold environments but were not successfully confirmed by field studies. This study presents a unique time series of fracture kinematics, rock temperatures and environmental conditions at 3500 m a. s. l. on the steep, strongly fractured Hörnligrat of the Matterhorn (Swiss Alps). Thanks to 8 years of continuous data, the longer-term evolution of fracture kinematics in permafrost can be analyzed with an unprecedented level of detail. Evidence for common trends in spatiotemporal pattern of fracture kinematics could be found: a partly reversible seasonal movement can be observed at all locations, with variable amplitudes. In the wider context of rock slope stability assessment, we propose separating reversible (elastic) components of fracture kinematics, caused by thermoelastic strains, from the irreversible (plastic) component due to other processes. A regression analysis between temperature and fracture displacement shows that all instrumented fractures exhibit reversible displacements that dominate fracture kinematics in winter. Furthermore, removing this reversible component from the observed displacement enables us to quantify the irreversible component. From this, a new metric - termed index of irreversibility - is proposed to quantify relative irreversibility of fracture kinematics. This new index can identify periods when fracture displacements are dominated by irreversible processes. For many sensors, irreversible enhanced fracture displacement is observed in summer and its initiation coincides with the onset of positive rock temperatures. This likely indicates thawing-related processes, such as meltwater percolation into fractures, as a forcing mechanism for irreversible displacements. For a few instrumented fractures, irreversible displacements were found at the

  13. The migration law of overlay rock and coal in deeply inclined coal seam with fully mechanized top coal caving.

    PubMed

    Liu, Jian; Chen, Shan-Le; Wang, Hua-Jun; Li, Yu-Cheng; Geng, Xiaowei

    2015-07-01

    In a mine area, some environment geotechnics problems always occure, induced by mined-out region such as the subsidence and cracks at ground level, deformation and destruction of buildings, landslides destruction of water resources and the ecological environment. In order to research the migration of surrounding rock and coal in steeply inclined super high seams which used fully mechanized top coal caving, a working face of a certain mine was made as an example, analyzed the migration law of the overlay rock and coal under different caving ratio of fully mechanized top coal caving with numerical simulation analysis. The results suggest that the laws of overlay rock deformation caused by deeply inclined coal seam were different from horizontal coal seam. On the inclined direction, with an increase of dip angle and caving ratio, the vertical displacement of overlay rock and coal became greater, the asymmetric phenomenon of vertical displacement became obvious. On the trend direction, active region and transition region in goaf became smaller along with the increase of mining and caving ratio. On the contrary, the stable region area became greater. Therefore, there was an essential difference between the mechanism of surface movement deformation with deeply inclined coal seam and that with horizontal coal seam.

  14. Clinically acceptable agreement between the ViMove wireless motion sensor system and the Vicon motion capture system when measuring lumbar region inclination motion in the sagittal and coronal planes.

    PubMed

    Mjøsund, Hanne Leirbekk; Boyle, Eleanor; Kjaer, Per; Mieritz, Rune Mygind; Skallgård, Tue; Kent, Peter

    2017-03-21

    Wireless, wearable, inertial motion sensor technology introduces new possibilities for monitoring spinal motion and pain in people during their daily activities of work, rest and play. There are many types of these wireless devices currently available but the precision in measurement and the magnitude of measurement error from such devices is often unknown. This study investigated the concurrent validity of one inertial motion sensor system (ViMove) for its ability to measure lumbar inclination motion, compared with the Vicon motion capture system. To mimic the variability of movement patterns in a clinical population, a sample of 34 people were included - 18 with low back pain and 16 without low back pain. ViMove sensors were attached to each participant's skin at spinal levels T12 and S2, and Vicon surface markers were attached to the ViMove sensors. Three repetitions of end-range flexion inclination, extension inclination and lateral flexion inclination to both sides while standing were measured by both systems concurrently with short rest periods in between. Measurement agreement through the whole movement range was analysed using a multilevel mixed-effects regression model to calculate the root mean squared errors and the limits of agreement were calculated using the Bland Altman method. We calculated root mean squared errors (standard deviation) of 1.82° (±1.00°) in flexion inclination, 0.71° (±0.34°) in extension inclination, 0.77° (±0.24°) in right lateral flexion inclination and 0.98° (±0.69°) in left lateral flexion inclination. 95% limits of agreement ranged between -3.86° and 4.69° in flexion inclination, -2.15° and 1.91° in extension inclination, -2.37° and 2.05° in right lateral flexion inclination and -3.11° and 2.96° in left lateral flexion inclination. We found a clinically acceptable level of agreement between these two methods for measuring standing lumbar inclination motion in these two cardinal movement planes. Further

  15. Steepness of Slopes at the Luna-Glob Landing Sites: Estimating by the Shaded Area Percentage in the LROC NAC Images

    NASA Astrophysics Data System (ADS)

    Krasilnikov, S. S.; Basilevsky, A. T.; Ivanov, M. A.; Abdrakhimov, A. M.; Kokhanov, A. A.

    2018-03-01

    The paper presents estimates of the occurrence probability of slopes, whose steep surfaces could be dangerous for the landing of the Luna-Glob descent probe ( Luna-25) given the baseline of the span between the landing pads ( 3.5 m), for five potential landing ellipses. As a rule, digital terrain models built from stereo pairs of high-resolution images (here, the images taken by the Narrow Angle Camera onboard the Lunar Reconnaissance Orbiter (LROC NAC)) are used in such cases. However, the planned landing sites are at high latitudes (67°-74° S), which makes it impossible to build digital terrain models, since the difference in the observation angle of the overlapping images is insufficient at these latitudes. Because of this, to estimate the steepness of slopes, we considered the interrelation between the shaded area percentage in the image and the Sun angle over horizon at the moment of imaging. For five proposed landing ellipses, the LROC NAC images (175 images in total) with a resolution from 0.4 to 1.2 m/pixel were analyzed. From the results of the measurements in each of the ellipses, the dependence of the shaded area percentage on the solar angle were built, which was converted to the occurrence probability of slopes. For this, the data on the Apollo 16 landing region ware used, which is covered by both the LROC NAC images and the digital terrain model with high resolution. As a result, the occurrence probability of slopes with different steepness has been estimated on the baseline of 3.5 m for five landing ellipses according to the steepness categories of <7°, 7°-10°, 10°-15°, 15°-20°, and >20°.

  16. The risk of sacrificing the PCL in cruciate retaining total knee arthroplasty and the relationship to the sagittal inclination of the tibial plateau.

    PubMed

    Sessa, Pasquale; Fioravanti, Giulio; Giannicola, Giuseppe; Cinotti, Gianluca

    2015-01-01

    In cruciate retaining total knee arthroplasty (TKA), a partial avulsion of PCL may occur when en-bloc tibial osteotomy is performed. We evaluated the effects of a tibial cut performed with different degrees of posterior slope on PCL insertion and whether the results are affected by the sagittal inclination of the patient's tibial plateau. We selected 83 MRIs of knees showing mild or no degenerative changes. The effects of a simulated tibial cut performed with a posterior slope of 0°, 3°, 5° and parallel to the patient's tibial plateau inclination on PCL insertion in the proximal tibia were investigated. The results were correlated with the degree of posterior inclination of the tibial plateau. Every angle we used for the tibial cut caused a PCL avulsion greater than 50%. The percentage of PCL avulsion significantly increased with increasing the posterior slope of the tibial cut. Patients with sagittal tibial plateau inclination <5° showed greater PCL avulsion than those with sagittal inclination >8°. Most of the PCL insertion is likely to be sacrificed when resection of the proximal tibia is performed en-block. The risk of PCL avulsion is reduced in patients showing a marked posterior inclination of the tibial plateau, but even in this group of patients a surgical technique aimed at sparing most of the PCL insertion is necessary. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. The Effects of Teacher Behaviors on Students' Inclination to Inquire and Lifelong Learning

    ERIC Educational Resources Information Center

    Loes, Chad N.; Saichaie, Kem; Padget, Ryan D.; Pascarella, Ernest T.

    2012-01-01

    This study estimated the effects of teacher organization, clarity, classroom challenge and faculty expectations, support, and prompt feedback on students' inclination to inquire and lifelong learning during the first year of college. Controlling for a battery of potential confounding influences, teacher organization was positively associated with…

  18. Productivity and cost estimators for conventional ground-based skidding on steep terrain using preplanned skid roads

    Treesearch

    Michael D. Erickson; Curt C. Hassler; Chris B. LeDoux

    1991-01-01

    Continuous time and motion study techniques were used to develop productivity and cost estimators for the skidding component of ground-based logging systems, operating on steep terrain using preplanned skid roads. Comparisons of productivity and costs were analyzed for an overland random access skidding method, verses a skidding method utilizing a network of preplanned...

  19. Analogue modelling of inclined, brittle-ductile transpression: Testing analytical models through natural shear zones (external Betics)

    NASA Astrophysics Data System (ADS)

    Barcos, L.; Díaz-Azpiroz, M.; Balanyá, J. C.; Expósito, I.; Jiménez-Bonilla, A.; Faccenna, C.

    2016-07-01

    The combination of analytical and analogue models gives new opportunities to better understand the kinematic parameters controlling the evolution of transpression zones. In this work, we carried out a set of analogue models using the kinematic parameters of transpressional deformation obtained by applying a general triclinic transpression analytical model to a tabular-shaped shear zone in the external Betic Chain (Torcal de Antequera massif). According to the results of the analytical model, we used two oblique convergence angles to reproduce the main structural and kinematic features of structural domains observed within the Torcal de Antequera massif (α = 15° for the outer domains and α = 30° for the inner domain). Two parallel inclined backstops (one fixed and the other mobile) reproduce the geometry of the shear zone walls of the natural case. Additionally, we applied digital particle image velocimetry (PIV) method to calculate the velocity field of the incremental deformation. Our results suggest that the spatial distribution of the main structures observed in the Torcal de Antequera massif reflects different modes of strain partitioning and strain localization between two domain types, which are related to the variation in the oblique convergence angle and the presence of steep planar velocity - and rheological - discontinuities (the shear zone walls in the natural case). In the 15° model, strain partitioning is simple and strain localization is high: a single narrow shear zone is developed close and parallel to the fixed backstop, bounded by strike-slip faults and internally deformed by R and P shears. In the 30° model, strain partitioning is strong, generating regularly spaced oblique-to-the backstops thrusts and strike-slip faults. At final stages of the 30° experiment, deformation affects the entire model box. Our results show that the application of analytical modelling to natural transpressive zones related to upper crustal deformation

  20. Motion on an inclined plane and the nature of science

    NASA Astrophysics Data System (ADS)

    Pendrill, Ann-Marie; Ekström, Peter; Hansson, Lena; Mars, Patrik; Ouattara, Lassana; Ryan, Ulrika

    2014-03-01

    Friction is an important phenomenon in everyday life. All children are familiar with playground slides, which may thus be a good starting point for investigating friction. Motion on an inclined plane is a standard physics example. This paper presents an investigation of friction by a group of 11-year olds. How did they plan their investigations? What aspects of friction could they discern? What understanding of the nature of science was revealed—and developed—during their investigation and subsequent discussion with the teacher?

  1. First evidence of diffuse ultra-steep-spectrum radio emission surrounding the cool core of a cluster

    NASA Astrophysics Data System (ADS)

    Savini, F.; Bonafede, A.; Brüggen, M.; van Weeren, R.; Brunetti, G.; Intema, H.; Botteon, A.; Shimwell, T.; Wilber, A.; Rafferty, D.; Giacintucci, S.; Cassano, R.; Cuciti, V.; de Gasperin, F.; Röttgering, H.; Hoeft, M.; White, G.

    2018-05-01

    Diffuse synchrotron radio emission from cosmic-ray electrons is observed at the center of a number of galaxy clusters. These sources can be classified either as giant radio halos, which occur in merging clusters, or as mini halos, which are found only in cool-core clusters. In this paper, we present the first discovery of a cool-core cluster with an associated mini halo that also shows ultra-steep-spectrum emission extending well beyond the core that resembles radio halo emission. The large-scale component is discovered thanks to LOFAR observations at 144 MHz. We also analyse GMRT observations at 610 MHz to characterise the spectrum of the radio emission. An X-ray analysis reveals that the cluster is slightly disturbed, and we suggest that the steep-spectrum radio emission outside the core could be produced by a minor merger that powers electron re-acceleration without disrupting the cool core. This discovery suggests that, under particular circumstances, both a mini and giant halo could co-exist in a single cluster, opening new perspectives for particle acceleration mechanisms in galaxy clusters.

  2. The lone gamer: Social exclusion predicts violent video game preferences and fuels aggressive inclinations in adolescent players.

    PubMed

    Gabbiadini, Alessandro; Riva, Paolo

    2018-03-01

    Violent video game playing has been linked to a wide range of negative outcomes, especially in adolescents. In the present research, we focused on a potential determinant of adolescents' willingness to play violent video games: social exclusion. We also tested whether exclusion can predict increased aggressiveness following violent video game playing. In two experiments, we predicted that exclusion could increase adolescents' preferences for violent video games and interact with violent game playing fostering adolescents' aggressive inclinations. In Study 1, 121 adolescents (aged 10-18 years) were randomly assigned to a manipulation of social exclusion. Then, they evaluated the violent content of nine different video games (violent, nonviolent, or prosocial) and reported their willingness to play each presented video game. The results showed that excluded participants expressed a greater willingness to play violent games than nonviolent or prosocial games. No such effect was found for included participants. In Study 2, both inclusionary status and video game contents were manipulated. After a manipulation of inclusionary status, 113 adolescents (aged 11-16 years) were randomly assigned to play either a violent or a nonviolent video game. Then, they were given an opportunity to express their aggressive inclinations toward the excluders. Results showed that excluded participants who played a violent game displayed the highest level of aggressive inclinations than participants who were assigned to the other experimental conditions. Overall, these findings suggest that exclusion increases preferences for violent games and that the combination of exclusion and violent game playing fuels aggressive inclinations. © 2017 Wiley Periodicals, Inc.

  3. Diffuse ultraviolet erythemal irradiance on inclined planes: a comparison of experimental and modeled data.

    PubMed

    Utrillas, María P; Marín, María J; Esteve, Anna R; Estellés, Victor; Tena, Fernando; Cañada, Javier; Martínez-Lozano, José A

    2009-01-01

    Values of measured and modeled diffuse UV erythemal irradiance (UVER) for all sky conditions are compared on planes inclined at 40 degrees and oriented north, south, east and west. The models used for simulating diffuse UVER are of the geometric-type, mainly the Isotropic, Klucher, Hay, Muneer, Reindl and Schauberger models. To analyze the precision of the models, some statistical estimators were used such as root mean square deviation, mean absolute deviation and mean bias deviation. It was seen that all the analyzed models reproduce adequately the diffuse UVER on the south-facing plane, with greater discrepancies for the other inclined planes. When the models are applied to cloud-free conditions, the errors obtained are higher because the anisotropy of the sky dome acquires more importance and the models do not provide the estimation of diffuse UVER accurately.

  4. Topographic steep central islands following excimer laser photorefractive keratectomy

    NASA Astrophysics Data System (ADS)

    Krueger, Ronald R.; McDonnell, Peter J.

    1994-06-01

    The purpose of this study is to demonstrate that topographic irregularities in the form of central islands of higher refractive power can be seen following excimer laser refractive surgery. We reviewed the computerized corneal topographic maps of 35 patients undergoing excimer laser PRK for compound myopic astigmatism or anisometropia from 8/91 to 8/93 at the USC/Doheny Eye Institute. The topographic maps were generated by the Computed Anatomy Corneal Modeling System, and central islands were defined as topographic areas of steepening of at least 3 diopters and 3 mm in diameter. A grading system was developed based on the presence of central islands during the postoperative period. Visually significant topographic steep central islands may be seen in over 50% of patients at 1 month following excimer laser PRK, and persist at 3 months in up to 24% of patients without nitrogen gas blowing. Loss of best corrected visual acuity or ghosting is associated with island formation, and may prolong visual rehabilitation after excimer laser PRK.

  5. The effect of inclined soil layers on surface vibration from underground railways using a semi-analytical approach

    NASA Astrophysics Data System (ADS)

    Jones, S.; Hunt, H.

    2009-08-01

    Ground vibration due to underground railways is a significant source of disturbance for people living or working near the subways. The numerical models used to predict vibration levels have inherent uncertainty which must be understood to give confidence in the predictions. A semi-analytical approach is developed herein to investigate the effect of soil layering on the surface vibration of a halfspace where both soil properties and layer inclination angles are varied. The study suggests that both material properties and inclination angle of the layers have significant effect (± 10dB) on the surface vibration response.

  6. The static response of a bowed inclined hot wire

    NASA Technical Reports Server (NTRS)

    Smits, A. J.

    1984-01-01

    The directional sensitivity of a bowed, inclined hot wire is investigated using a simple model for the convective heat transfer. The static response is analyzed for subsonic and supersonic flows. It is shown that the effects of both end conduction and wire bowing are greater in supersonic flow. Regardless of the Mach number, however, these two phenomena have distinctly different effects; end conduction appears to be responsible for reducing the nonlinearity of the response, whereas bowing increases the directional sensitivity. Comparison with the available data suggests that the analysis is useful for interpreting the experimental results.

  7. 30 CFR 250.461 - What are the requirements for directional and inclination surveys?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false What are the requirements for directional and inclination surveys? 250.461 Section 250.461 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION...-north after making the magnetic-to-true-north correction. Surveys must show the magnetic and grid...

  8. Correction of Excessive Precipitation over Steep Mountains in a General Circulation Model (GCM)

    NASA Technical Reports Server (NTRS)

    Chao, Winston C.

    2012-01-01

    Excessive precipitation over steep and high mountains (EPSM) is a well-known problem in GCMs and regional climate models even at a resolution as high as 19km. The affected regions include the Andes, the Himalayas, Sierra Madre, New Guinea and others. This problem also shows up in some data assimilation products. Among the possible causes investigated in this study, we found that the most important one, by far, is a missing upward transport of heat out of the boundary layer due to the vertical circulations forced by the daytime subgrid-scale upslope winds, which in turn is forced by heated boundary layer on the slopes. These upslope winds are associated with large subgrid-scale topographic variance, which is found over steep mountains. Without such subgrid-scale heat ventilation, the resolvable-scale upslope flow in the boundary layer generated by surface sensible heat flux along the mountain slopes is excessive. Such an excessive resolvable-scale upslope flow in the boundary layer combined with the high moisture content in the boundary layer results in excessive moisture transport toward mountaintops, which in turn gives rise to excessive precipitation over the affected regions. We have parameterized the effects of subgrid-scale heated-slope-induced vertical circulation (SHVC) by removing heat from the boundary layer and depositing it in the layers higher up when topographic variance exceeds a critical value. Test results using NASA/Goddard's GEOS-5 GCM have shown that the EPSM problem is largely solved.

  9. Test of the Angle Detecting Inclined Sensor (ADIS) Technique for Measuring Space Radiation

    NASA Astrophysics Data System (ADS)

    Connell, J. J.; Lopate, C.; McLaughlin, K. R.

    2009-12-01

    In February 2008 we exposed an Angle Detecting Inclined Sensor (ADIS) prototype to beams of 150 MeV/u 78Kr and fragments at the National Superconducting Cyclotron Laboratory's (NSCL) Coupled Cyclotron Facility (CCF). ADIS is a highly innovative and uniquely simple detector configuration used to determine the angles of incidence of heavy ions in energetic charged particle instruments. Corrections for angle of incidence are required for good charge and mass separation. An ADIS instrument is under development to fly on the GOES-R series of weather satellites. The prototype tested consisted of three ADIS detectors, two of which were inclined at an angle to the telescope axis, forming the initial detectors in a five-detector telescope stack. By comparing the signals from the ADIS detectors, the angle of incidence may be determined and a pathlength correction applied to charge and mass determinations. Thus, ADIS replaces complex position sensing detectors with a system of simple, reliable and robust Si detectors. Accelerator data were taken at multiple angles to both primary and secondary beams with a spread of energies. This test instrument represents an improvement over the previous ADIS prototype in that it used oval inclined detectors and a much lower-mass support structure, thus reducing the number of events passing through dead material. These data show a charge peak resolution of 0.18 ± 0.01 e at Br (Z = 35), excellent for such a simple instrument. We will present the results of this test. The ADIS instrument development project was partially funded by NASA under the Living With a Star (LWS) Targeted Research and Technology program (grant NAG5-12493).

  10. Planet Formation in Disks with Inclined Binary Companions: Can Primordial Spin-Orbit Misalignment be Produced?

    NASA Astrophysics Data System (ADS)

    Zanazzi, J. J.; Lai, Dong

    2018-04-01

    Many hot Jupiter (HJ) systems have been observed to have their stellar spin axis misaligned with the planet's orbital angular momentum axis. The origin of this spin-orbit misalignment and the formation mechanism of HJs remain poorly understood. A number of recent works have suggested that gravitational interactions between host stars, protoplanetary disks, and inclined binary companions may tilt the stellar spin axis with respect to the disk's angular angular momentum axis, producing planetary systems with misaligned orbits. These previous works considered idealized disk evolution models and neglected the gravitational influence of newly formed planets. In this paper, we explore how disk photoevaporation and planet formation and migration affect the inclination evolution of planet-star-disk-binary systems. We take into account planet-disk interactions and the gravitational spin-orbit coupling between the host star and the planet. We find that the rapid depletion of the inner disk via photoevaporation reduces the excitation of stellar obliquities. Depending on the formation and migration history of HJs, the spin-orbit coupling between the star and the planet may reduces and even completely suppress the excitation of stellar obliquities. Our work constrains the formation/migration history of HJs. On the other hand, planetary systems with "cold" Jupiters or close-in super-earths may experience excitation of stellar obliquities in the presence of distant inclined companions.

  11. Planet formation in discs with inclined binary companions: can primordial spin-orbit misalignment be produced?

    NASA Astrophysics Data System (ADS)

    Zanazzi, J. J.; Lai, Dong

    2018-07-01

    Many hot Jupiter (HJ) systems have been observed to have their stellar spin axis misaligned with the planet's orbital angular momentum axis. The origin of this spin-orbit misalignment and the formation mechanism of HJs remain poorly understood. A number of recent works have suggested that gravitational interactions between host stars, protoplanetary discs, and inclined binary companions may tilt the stellar spin axis with respect to the disc's angular angular momentum axis, producing planetary systems with misaligned orbits. These previous works considered idealized disc evolution models and neglected the gravitational influence of newly formed planets. In this paper, we explore how disc photoevaporation and planet formation and migration affect the inclination evolution of planet-star-disc-binary systems. We take into account planet-disc interactions and the gravitational spin-orbit coupling between the host star and the planet. We find that the rapid depletion of the inner disc via photoevaporation reduces the excitation of stellar obliquities. Depending on the formation and migration history of HJs, the spin-orbit coupling between the star and the planet may reduces and even completely suppress the excitation of stellar obliquities. Our work constrains the formation/migration history of HJs. On the other hand, planetary systems with `cold' Jupiters or close-in super-earths may experience excitation of stellar obliquities in the presence of distant inclined companions.

  12. Lower limb joint work and joint work contribution during downhill and uphill walking at different inclinations.

    PubMed

    Alexander, Nathalie; Strutzenberger, Gerda; Ameshofer, Lisa Maria; Schwameder, Hermann

    2017-08-16

    Work performance and individual joint contribution to total work are important information for creating training protocols, but were not assessed so far for sloped walking. Therefore, the purpose of this study was to analyze lower limb joint work and joint contribution of the hip, knee and ankle to total lower limb work during sloped walking in a healthy population. Eighteen male participants (27.0±4.7yrs, 1.80±0.05m, 74.5±8.2kg) walked on an instrumented ramp at inclination angles of 0°, ±6°, ±12° and ±18° at 1.1m/s. Kinematic and kinetic data were captured using a motion-capture system (Vicon) and two force plates (AMTI). Joint power curves, joint work (positive, negative, absolute) and each joint's contribution to total lower limb work were analyzed throughout the stance phase using an ANOVA with repeated measures. With increasing inclination positive joint work increased for the ankle and hip joint and in total during uphill walking. Negative joint work increased for each joint and in total work during downhill walking. Absolute work was increased during both uphill (all joints) and downhill (ankle & knee) walking. Knee joint contribution to total negative and absolute work increased during downhill walking while hip and ankle contributions decreased. This study identified, that, when switching from level to a 6° and from 6° to a 12° inclination the gain of individual joint work is more pronounced compared to switching from 12° to an 18° inclination. The results might be used for training recommendations and specific training intervention with respect to sloped walking. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Over-focused? The relation between patients' inclination for conscious control and single- and dual-task motor performance after stroke.

    PubMed

    Denneman, R P M; Kal, E C; Houdijk, H; Kamp, J van der

    2018-05-01

    Many stroke patients are inclined to consciously control their movements. This is thought to negatively affect patients' motor performance, as it disrupts movement automaticity. However, it has also been argued that conscious control may sometimes benefit motor performance, depending on the task or patientś motor or cognitive capacity. To assess whether stroke patients' inclination for conscious control is associated with motor performance, and explore whether the putative association differs as a function of task (single- vs dual) or patientś motor and cognitive capacity. Univariate and multivariate linear regression analysis were used to assess associations between patients' disposition to conscious control (i.e., Conscious Motor Processing subscale of Movement-Specific Reinvestment Scale; MSRS-CMP) and single-task (Timed-up-and-go test; TuG) and motor dual-task costs (TuG while tone counting; motor DTC%). We determined whether these associations were influenced by patients' walking speed (i.e., 10-m-walk test) and cognitive capacity (i.e., working memory, attention, executive function). Seventy-eight clinical stroke patients (<6 months post-stroke) participated. Patients' conscious control inclination was not associated with single-task TuG performance. However, patients with a strong inclination for conscious control showed higher motor DTC%. These associations were irrespective of patients' motor and cognitive abilities. Patients' disposition for conscious control was not associated with single task motor performance, but was associated with higher motor dual task costs, regardless of patients' motor or cognitive abilities. Therapists should be aware that patients' conscious control inclination can influence their dual-task performance while moving. Longitudinal studies are required to test whether reducing patients' disposition for conscious control would improve dual-tasking post-stroke. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Self-other resonance, its control and prosocial inclinations: Brain-behavior relationships.

    PubMed

    Christov-Moore, Leonardo; Iacoboni, Marco

    2016-04-01

    Humans seem to place a positive reward value on prosocial behavior. Evidence suggests that this prosocial inclination is driven by our reflexive tendency to share in the observed sensations, emotions and behavior of others, or "self-other resonance". In this study, we examine how neural correlates of self-other resonance relate to prosocial decision-making. Subjects performed two tasks while undergoing fMRI: observation of a human hand pierced by a needle, and observation and imitation of emotional facial expressions. Outside the scanner, subjects played the Dictator Game with players of low or high income (represented by neutral-expression headshots). Subjects' offers in the Dictator Game were correlated with activity in neural systems associated with self-other resonance and anticorrelated with activity in systems implicated in the control of pain, affect, and imitation. Functional connectivity between areas involved in self-other resonance and top-down control was negatively correlated with subjects' offers. This study suggests that the interaction between self-other resonance and top-down control processes are an important component of prosocial inclinations towards others, even when biological stimuli associated with self-other resonance are limited. These findings support a view of prosocial decision-making grounded in embodied cognition. © 2016 Wiley Periodicals, Inc.

  15. 30 CFR 250.461 - What are the requirements for directional and inclination surveys?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Other Drilling Requirements § 250.461 What are the requirements for directional and inclination... exceed 1,000 feet during the normal course of drilling; (2) You must also conduct a directional survey...

  16. A Peculiar Class of Debris Disks from Herschel/DUNES: A Steep Fall Off in the Far Infrared

    NASA Technical Reports Server (NTRS)

    Ertel, S.; Wolf, S.; Marshall, J. P.; Eiroa, C.; Augereau, J. C.; Krivov, A. V.; Lohne, T.; Absil, O.; Ardila, D.; Arevalo, M.; hide

    2012-01-01

    Context. The existence of debris disks around old main sequence stars is usually explained by continuous replenishment of small dust grains through collisions from a reservoir of larger objects. Aims. We present photometric data of debris disks around HIP 103389 (HD199260), HIP 100350 (HN Peg, HD206860), and HIP 114948 (HD 219482), obtained in the context of our Herschel Open TIme Key Program DUNES (DUst around NEarby Stars). Methods. We used Herschel/PACS to detect the thermal emission of the three debris disks with a 30 sigma sensitivity of a few mJy at l00 micron and 160 micron. In addition, we obtained Herschel/PACS photometric data at 70 micron for HIP 103389. These observations are complemented by a large variety of optical to far-infrared photometric data. Two different approaches are applied to reduce the Herschel data to investigate the impact of data reduction on the photometry. We fit analytical models to the available spectral energy distribution (SED) data using the fitting method of simulated therma1 annealing as well as a classical grid search method. Results. The SEDs of the three disks potentially exhibit an unusually steep decrease at wavelengths >= 70 micron. We investigate the significance of the peculiar shape of these SEDs and the impact on models of the disks provided it is real. Using grain compositions that have been applied successfully for modeling of many other debris disks, our modeling reveals that such a steep decrease of the SEDs in the long wavelength regime is inconsistent with a power-law exponent of the grain size distribution -3.5 expected from a standard equilibrium collisional cascade. In contrast, a steep grain size distribution or, alternatively an upper grain size in the range of few tens of micrometers are implied. This suggests that a very distinct range of grain sizes would dominate the thermal. emission of such disks. However, we demonstrate that the understanding of the data of faint sources obtained with Herschel is

  17. Post-fire geomorphic response in steep, forested landscapes: Oregon Coast Range, USA

    NASA Astrophysics Data System (ADS)

    Jackson, Molly; Roering, Joshua J.

    2009-06-01

    The role of fire in shaping steep, forested landscapes depends on a suite of hydrologic, biologic, and geological characteristics, including the propensity for hydrophobic soil layers to promote runoff erosion during subsequent rainfall events. In the Oregon Coast Range, several studies postulate that fire primarily modulates sediment production via root reinforcement and shallow landslide susceptibility, although few studies have documented post-fire geomorphic response. Here, we describe field observations and topographic analyses for three sites in the central Oregon Coast Range that burned in 1999, 2002, and 2003. The fires generated strongly hydrophobic soil layers that did not promote runoff erosion because the continuity of the layers was interrupted by pervasive discontinuities that facilitated rapid infiltration. At each of our sites, fire generated significant colluvial transport via dry ravel, consistent with other field-based studies in the western United States. Fire-driven dry ravel accumulation in low-order valleys of our Sulphur Creek site equated to a slope-averaged landscape lowering of 2.5 mm. Given Holocene estimates of fire frequency, these results suggest that fire may contribute 10-20% of total denudation across steep, dissected portions of the Oregon Coast Range. In addition, we documented more rapid decline of root strength at our sites than has been observed after timber harvest, suggesting that root strength was compromised prior to fire or that intense heat damaged roots in the shallow subsurface. Given that fire frequencies in the Pacific Northwest are predicted to increase with continued climate change, our findings highlight the importance of fire-induced dry ravel and post-fire debris flow activity in controlling sediment delivery to channels.

  18. Rolling and slipping down Galileo{close_quote}s inclined plane: Rhythms of the spheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, F.S.

    In ``Two New Sciences`` (TNS) Galileo presents a number of theorems and propositions for smooth solid spheres released from rest and rolling a distance {ital d} in time {ital t} down an incline of height {ital H} and length {ital L}. We collect and summarize his results in a single grand proportionality {ital P}: {ital d}{sub 1}/{ital d}{sub 2}=({ital t}{sup 2}{sub 1}/{ital t}{sup 2}{sub 2})({ital H}/{ital L}){sub 1}/({ital H}/{ital L}){sub 2}. ({ital P}) From TNS it is clear that what we call {ital P} is assumed by Galileo to hold for all inclinations including vertical free fall with {ital H}/{italmore » L}=1. But in TNS he describes only experiments with gentle inclinations {ital H}/{ital L}{lt}1/2. Indeed he cannot have performed the vertical free fall ({ital H}={ital L}) experiment, because we (moderns) know that as we increase {ital H}/{ital L}, {ital P} starts to break down when {ital H}/{ital L} exceeds about 0.5, because the sphere, which rolls without slipping for small {ital H}/{ital L}, starts to slip, whence {ital d} starts to exceed the predictions of {ital P}, becoming too large by a factor of 7/5 for vertical free fall at {ital H}/{ital L}=1. In 1973 Drake and in 1975 Drake and MacLachlan published their analysis of a previously unpublished experiment that Galileo performed that (without his realizing it) directly compared rolling without slipping to free fall. In the experiment, a sphere that has gained speed {ital v}{sub 1} while rolling down a gentle incline is deflected so as to be launched horizontally with speed {ital v}{sub 1} into a free fall orbit discovered by Galileo to be a parabola. The measured horizontal distance {ital X}{sub 2} traveled in this parabolic orbit (for a given vertical distance fallen to the floor) was smaller than he expected, by a factor 0.84. But that is exactly what we (moderns) expect, since we know that Galileo did not appreciate the difference between rolling without slipping, and slipping on a frictionless

  19. Experimental examination of the effects of televised motor vehicle commercials on risk-positive attitudes, emotions and risky driving inclinations.

    PubMed

    Vingilis, Evelyn; Roseborough, James E W; Wiesenthal, David L; Vingilis-Jaremko, Larissa; Nuzzo, Valentina; Fischer, Peter; Mann, Robert E

    2015-02-01

    This study examined the short-term effects of risky driving motor vehicle television commercials on risk-positive attitudes, emotions and risky driving inclinations in video-simulated critical road traffic situations among males and females, within an experimental design. Participants were randomly assigned to one of three televised commercial advertising conditions embedded in a television show: a risky driving motor vehicle commercial condition, a non-risky driving motor vehicle commercial condition and a control non-motor vehicle commercial condition. Participants subsequently completed the Implicit Attitude Test (IAT) to measure risk-positive attitudes, Driver Thrill Seeking Scale (DTSS) to measure risk-positive emotions and the Vienna Risk-Taking Test - Traffic (WRBTV) to measure risky driving inclinations. ANOVA analyses indicated that type of commercial participants watched did not affect their performance on the IAT, DTSS or WRBTV. However, a main effect of heightened risk-positive emotions and risky driving inclinations was found for males. Despite public and governmental concern that risky driving motor vehicle commercials may increase the likelihood that people exposed to these commercials engage in risky driving, this experimental study found no immediate effect of brief exposure to a risky driving motor vehicle commercial on risk-positive attitudes, emotions or risky driving inclinations. Subsequent research should examine the effects of cumulative exposure to risky driving motor vehicle television commercials and print advertisements. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. A Numerical Simulation of Transport Phenomena During the Horizontal Single Belt Casting Process Using an Inclined Feeding System

    NASA Astrophysics Data System (ADS)

    Xu, Mianguang; Isac, Mihaiela; Guthrie, Roderick I. L.

    2018-03-01

    Horizontal single belt casting (HSBC) has great potential to replace current conventional continuous casting (CCC) processes for sheet metal production, by directly casting 3 to 1 mm sheet for the automobile industry. In the present paper, two-dimensional mathematical models were developed to study transport phenomena, for the case of an inclined wall feeding system for a liquid aluminum wrought alloy (AA6111). Based on the commercial software ANSYS FLUENT 14.5 and user-defined functions, a two-layer turbulence model was used to examine the fluid flow emanating from a slot nozzle set above a water-cooled, high-speed, steel belt. The Volume of Fluid (VOF) method was used to predict the shape of the melt-air interface. A transformed coordinate system (x', y') was established in order to analyze the fluid flow on the inclined wall of the feeding system. The total pressure gauge gradient (∂p total/∂x) was used to describe the behavior of the melt film inside the slot nozzle of the head box. The modeling results show that during the melt film falling process, the total gauge pressure varies within the slot nozzle, which can decrease the stability of the falling film. The first impingement between the falling film and the inclined refractory wall of the feeding system gives rise to a local oscillation, and this influences the stability of the melt film moving downwards. At the rear meniscus position between the inclined wall and the moving belt, there is a clear vibration of the air-melt interface, together with a recirculation zone. The weak vibration of the air-melt interface could be induced by the periodic variation of the melt-air interface. Moreover, the formation of tiny air pockets is predicted. Finally, on the inclined wall of the feeding system, a suitable length of the transition area is needed to avoid over-acceleration of the melt film due to the force of gravity.

  1. A Numerical Simulation of Transport Phenomena During the Horizontal Single Belt Casting Process Using an Inclined Feeding System

    NASA Astrophysics Data System (ADS)

    Xu, Mianguang; Isac, Mihaiela; Guthrie, Roderick I. L.

    2018-06-01

    Horizontal single belt casting (HSBC) has great potential to replace current conventional continuous casting (CCC) processes for sheet metal production, by directly casting 3 to 1 mm sheet for the automobile industry. In the present paper, two-dimensional mathematical models were developed to study transport phenomena, for the case of an inclined wall feeding system for a liquid aluminum wrought alloy (AA6111). Based on the commercial software ANSYS FLUENT 14.5 and user-defined functions, a two-layer turbulence model was used to examine the fluid flow emanating from a slot nozzle set above a water-cooled, high-speed, steel belt. The Volume of Fluid (VOF) method was used to predict the shape of the melt-air interface. A transformed coordinate system ( x', y') was established in order to analyze the fluid flow on the inclined wall of the feeding system. The total pressure gauge gradient ( ∂p total/ ∂x) was used to describe the behavior of the melt film inside the slot nozzle of the head box. The modeling results show that during the melt film falling process, the total gauge pressure varies within the slot nozzle, which can decrease the stability of the falling film. The first impingement between the falling film and the inclined refractory wall of the feeding system gives rise to a local oscillation, and this influences the stability of the melt film moving downwards. At the rear meniscus position between the inclined wall and the moving belt, there is a clear vibration of the air-melt interface, together with a recirculation zone. The weak vibration of the air-melt interface could be induced by the periodic variation of the melt-air interface. Moreover, the formation of tiny air pockets is predicted. Finally, on the inclined wall of the feeding system, a suitable length of the transition area is needed to avoid over-acceleration of the melt film due to the force of gravity.

  2. Reduction of Secondary Flow in Inclined Orifice Pulse Tubes by Addition of DC Flow

    NASA Astrophysics Data System (ADS)

    Shiraishi, M.; Fujisawa, Y.; Murakami, M.; Nanako, A.

    2004-06-01

    The effect of using a second orifice valve to reduce convective losses caused by gravity-driven convective secondary flow in inclined orifice pulse tube refrigerators was investigated. The second orifice valve was installed between a reservoir and a low-pressure line of a compressor. When the valve was open, an additional DC flow directed to the hot end of the refrigerator was generated to counterbalance the convective secondary flow in the core region by opening the valve. Experimental results indicated that with increasing additional DC flow to an optimum level, the convective secondary flow decreased and the cooling performance improved, although further increase of the DC flow over the level caused the cooling performance to degrade. In summary, the second orifice valve was effective in reducing both the convective losses without affecting the cooling performance at an inclination angle < 70° where convective losses were negligibly small.

  3. Buoyancy effects in steeply inclined air-water bubbly shear flow in a rectangular channel

    NASA Astrophysics Data System (ADS)

    Sanaullah, K.; Arshad, M.; Khan, A.; Chughtai, I. R.

    2015-07-01

    We report measurements of two-dimensional ( B/ D = 5) fully turbulent and developed duct flows (overall length/depth, L/ D = 60; D-based Reynolds number Re > 104) for inclinations to 30° from vertical at low voidages (< 5 % sectional average) representative of disperse regime using tap water bubbles (4-6 mm) and smaller bubbles (2 mm) stabilised in ionic solution. Pitot and static probe instrumentation, primitive but validated, provided adequate (10 % local value) discrimination of main aspects of the mean velocity and voidage profiles at representative streamwise station i.e L/ D = 40. Our results can be divided into three categories of behaviour. For vertical flow (0°) the evidence is inconclusive as to whether bubbles are preferentially trapped within the wall-layer as found in some, may be most earlier experimental works. Thus, the 4-mm bubbles showed indication of voidage retention but the 2-mm bubbles did not. For nearly vertical flow (5°) there was pronounced profiling of voidage especially with 4-mm bubbles but the transverse transport was not suppressed sufficiently to induce any obvious layering. In this context, we also refer to similarities with previous work on one-phase vertical and nearly vertical mixed convection flows displaying buoyancy inhibited mean shear turbulence. However, with inclined flow (10+ degrees) a distinctively layered pattern was invariably manifested in which voidage confinement increased with increasing inclination. In this paper we address flow behavior at near vertical conditions. Eulerian, mixed and VOF models were used to compute voidage and mean velocity profiles.

  4. The effect of a backrest and seatpan inclination on sitting discomfort and trunk muscle activation in subjects with extension-related low back pain.

    PubMed

    Curran, Máire; Dankaerts, Wim; O'Sullivan, Peter; O'Sullivan, Leonard; O'Sullivan, Kieran

    2014-01-01

    Few studies have demonstrated that seating modifications reduce low back pain (LBP). One recent study found that a forward-inclined seatpan reduced low back discomfort (LBD), however this was only examined in people with flexion-related LBP. No study has yet investigated its effectiveness among people with extension-related LBP. This crossover study examined 12 subjects with extension-related LBP. Sitting discomfort and surface electromyography of three trunk muscles were recorded during a 10-minute typing task while sitting with two different seatpan inclinations, both with and without a backrest. LBD (p < 0.001) and overall body discomfort (OBD) (p = 0.016) were significantly greater on the forward-inclined seatpan. The backrest did not alter trunk muscle activation or sitting discomfort. The results demonstrate that in a specific subgroup of people with extension-related LBP, increasing forward seatpan inclination significantly increased LBD and OBD. Future research should consider matching ergonomics prescriptions according to the individual presentation of people with LBP.

  5. Anisotropic scattering effect of the inclined misfit dislocation on the two-dimensional electron gas in Al(In)GaN/GaN heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Dong-Dong; Department of Physics, Tsinghua University, Beijing 100084; Wang, Lian-shan, E-mail: ls-wang@semi.ac.cn

    In this paper, a theory is developed to study the anisotropic scattering effect of the inclined misfit dislocation on the two-dimensional electron gas in Al(In)GaN/GaN heterostructures. The inclined misfit dislocation, which differs from the well-known vertical threading dislocation, has a remarkable tilt angle from the vertical. The predicted electron mobility shows a remarkable anisotropy. It has a maximum mobility value along the direction perpendicular to the projection of the inclined dislocation line, and a minimum mobility value along the direction parallel to the projection. The degree of the anisotropic scattering effect will be even greater with the increase of themore » tilt angle.« less

  6. Characterization of Course and Terrain and Their Effect on Skier Speed in World Cup Alpine Ski Racing

    PubMed Central

    Gilgien, Matthias; Crivelli, Philip; Spörri, Jörg; Kröll, Josef; Müller, Erich

    2015-01-01

    World Cup (WC) alpine ski racing consists of four main competition disciplines (slalom, giant slalom, super-G and downhill), each with specific course and terrain characteristics. The International Ski Federation (FIS) has regulated course length, altitude drop from start to finish and course setting in order to specify the characteristics of the respective competition disciplines and to control performance and injury-related aspects. However to date, no detailed data on course setting and its adaptation to terrain is available. It is also unknown how course and terrain characteristics influence skier speed. Therefore, the aim of the study was to characterize course setting, terrain geomorphology and their relationship to speed in male WC giant slalom, super-G and downhill. The study revealed that terrain was flatter in downhill compared to the other disciplines. In all disciplines, variability in horizontal gate distance (gate offset) was larger than in gate distance (linear distance from gate to gate). In giant slalom the horizontal gate distance increased with terrain inclination, while super-G and downhill did not show such a connection. In giant slalom and super-G, there was a slight trend towards shorter gate distances as the steepness of the terrain increased. Gates were usually set close to terrain transitions in all three disciplines. Downhill had a larger proportion of extreme terrain inclination changes along the skier trajectory per unit time skiing than the other disciplines. Skier speed decreased with increasing steepness of terrain in all disciplines except for downhill. In steep terrain, speed was found to be controllable by increased horizontal gate distances in giant slalom and by shorter gate distances in giant slalom and super-G. Across the disciplines skier speed was largely explained by course setting and terrain inclination in a multiple linear model. PMID:25760039

  7. New installation for inclined EAS investigations

    NASA Astrophysics Data System (ADS)

    Zadeba, E. A.; Ampilogov, N. V.; Barbashina, N. S.; Bogdanov, A. G.; Borisov, A. A.; Chernov, D. V.; Dushkin, L. I.; Fakhrutdinov, R. M.; Kokoulin, R. P.; Kompaniets, K. G.; Kozhin, A. S.; Ovchinnikov, V. V.; Ovechkin, A. S.; Petrukhin, A. A.; Shutenko, V. V.; Volkov, N. S.; Vorobjev, V. S.; Yashin, I. I.

    2017-06-01

    The large-scale coordinate-tracking detector TREK for registration of inclined EAS is being developed in MEPhI. The detector is based on multiwire drift chambers from the neutrino experiment at the IHEP U-70 accelerator. Their key advantages are a large effective area (1.85 m2), a good coordinate and angular resolution with a small number of measuring channels. The detector will be operated as part of the experimental complex NEVOD, in particular, jointly with a Cherenkov water detector (CWD) with a volume of 2000 cubic meters and the coordinate detector DECOR. The first part of the detector named Coordinate-Tracking Unit based on the Drift Chambers (CTUDC), representing two coordinate planes of 8 drift chambers in each, has been developed and mounted on opposite sides of the CWD. It has the same principle of joint operation with the NEVOD-DECOR triggering system and the same drift chambers alignment, so the main features of the TREK detector will be examined. Results of the CTUDC development and a joint operation with NEVOD-DECOR complex are presented.

  8. PLANETARY MIGRATION AND ECCENTRICITY AND INCLINATION RESONANCES IN EXTRASOLAR PLANETARY SYSTEMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Man Hoi; Thommes, Edward W.

    2009-09-10

    The differential migration of two planets due to planet-disk interaction can result in capture into the 2:1 eccentricity-type mean-motion resonances. Both the sequence of 2:1 eccentricity resonances that the system is driven through by continued migration and the possibility of a subsequent capture into the 4:2 inclination resonances are sensitive to the migration rate within the range expected for type II migration due to planet-disk interaction. If the migration rate is fast, the resonant pair can evolve into a family of 2:1 eccentricity resonances different from those found by Lee. This new family has outer orbital eccentricity e {sub 2}more » {approx}> 0.4-0.5, asymmetric librations of both eccentricity resonance variables, and orbits that intersect if they are exactly coplanar. Although this family exists for an inner-to-outer planet mass ratio m {sub 1}/m {sub 2} {approx}> 0.2, it is possible to evolve into this family by fast migration only for m {sub 1}/m {sub 2} {approx}> 2. Thommes and Lissauer have found that a capture into the 4:2 inclination resonances is possible only for m {sub 1}/m {sub 2} {approx}< 2. We show that this capture is also possible for m {sub 1}/m {sub 2} {approx}> 2 if the migration rate is slightly slower than that adopted by Thommes and Lissauer. There is significant theoretical uncertainty in both the sign and the magnitude of the net effect of planet-disk interaction on the orbital eccentricity of a planet. If the eccentricity is damped on a timescale comparable to or shorter than the migration timescale, e {sub 2} may not be able to reach the values needed to enter either the new 2:1 eccentricity resonances or the 4:2 inclination resonances. Thus, if future observations of extrasolar planetary systems were to reveal certain combinations of mass ratio and resonant configuration, they would place a constraint on the strength of eccentricity damping during migration, as well as on the rate of the migration itself.« less

  9. Magnetic Inclination E Ects In Star-Planet Magnetic Interactions

    NASA Astrophysics Data System (ADS)

    Strugarek, Antoine

    2017-10-01

    A large fraction of the exoplanets discovered today are in a close-in orbit around their host star. This proximity allows them to be magnetically connected to their host, which lead to e cient energy and angular momentum exchanges between the star and the planet. We carry out three-dimensional magneto-hydrodynamic simulations of close-in star-planet systems to characterize the e ect of the inclination of the planetary magnetic eld on the star-planet magnetic interaction. We parametrize this e ect in scaling laws depending on the star, planet, and stellar wind properties that can be applied to any exoplanetary systems around cool stars.

  10. Calculation of induced voltages on overhead lines caused by inclined lightning strokes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakakibara, A.

    1989-01-01

    Equations to calculate the inducing scalar and vector potentials produced by inclined return strokes are shown. Equations are also shown for calculating the induced voltages on overhead lines where horizontal components of inducing vector potential exist. The adequacy of the calculation method is demonstrated by field experiments. Using these equations, induced voltages on overhead lines are calculated for a variety of directions of return strokes.

  11. Ferroelectric HfZrOx-based MoS2 negative capacitance transistor with ITO capping layers for steep-slope device application

    NASA Astrophysics Data System (ADS)

    Xu, Jing; Jiang, Shu-Ye; Zhang, Min; Zhu, Hao; Chen, Lin; Sun, Qing-Qing; Zhang, David Wei

    2018-03-01

    A negative capacitance field-effect transistor (NCFET) built with hafnium-based oxide is one of the most promising candidates for low power-density devices due to the extremely steep subthreshold swing (SS) and high on-state current induced by incorporating the ferroelectric material in the gate stack. Here, we demonstrated a two-dimensional (2D) back-gate NCFET with the integration of ferroelectric HfZrOx in the gate stack and few-layer MoS2 as the channel. Instead of using the conventional TiN capping metal to form ferroelectricity in HfZrOx, the NCFET was fabricated on a thickness-optimized Al2O3/indium tin oxide (ITO)/HfZrOx/ITO/SiO2/Si stack, in which the two ITO layers sandwiching the HfZrOx film acted as the control back gate and ferroelectric gate, respectively. The thickness of each layer in the stack was engineered for distinguishable optical identification of the exfoliated 2D flakes on the surface. The NCFET exhibited small off-state current and steep switching behavior with minimum SS as low as 47 mV/dec. Such a steep-slope transistor is compatible with the standard CMOS fabrication process and is very attractive for 2D logic and sensor applications and future energy-efficient nanoelectronic devices with scaling power supply.

  12. Transaction cost analysis of in-clinic versus telehealth consultations for chronic pain: preliminary evidence for rapid and affordable access to interdisciplinary collaborative consultation.

    PubMed

    Theodore, Brian R; Whittington, Jan; Towle, Cara; Tauben, David J; Endicott-Popovsky, Barbara; Cahana, Alex; Doorenbos, Ardith Z

    2015-06-01

    With ever increasing mandates to reduce costs and increase the quality of pain management, health care institutions are faced with the challenge of adopting innovative technologies and shifting workflows to provide value-based care. Transaction cost economic analysis can provide comparative evaluation of the consequences of these changes in the delivery of care. The aim of this study was to establish proof-of-concept using transaction cost analysis to examine chronic pain management in-clinic and through telehealth. Participating health care providers were asked to identify and describe two comparable completed transactions for patients with chronic pain: one consultation between patient and specialist in-clinic and the other a telehealth presentation of a patient's case by the primary care provider to a team of pain medicine specialists. Each provider completed two on-site interviews. Focus was on the time, value of time, and labor costs per transaction. Number of steps, time, and costs for providers and patients were identified. Forty-six discrete steps were taken for the in-clinic transaction, and 27 steps were taken for the telehealth transaction. Although similar in costs per patient ($332.89 in-clinic vs. $376.48 telehealth), the costs accrued over 153 business days in-clinic and 4 business days for telehealth. Time elapsed between referral and completion of initial consultation was 72 days in-clinic, 4 days for telehealth. U.S. health care is moving toward the use of more technologies and practices, and the information provided by transaction cost analyses of care delivery for pain management will be important to determine actual cost savings and benefits. Wiley Periodicals, Inc.

  13. Transaction Cost Analysis of In-Clinic Versus Telehealth Consultations for Chronic Pain: Preliminary Evidence for Rapid and Affordable Access to Interdisciplinary Collaborative Consultation

    PubMed Central

    Theodore, Brian R.; Whittington, Jan; Towle, Cara; Tauben, David J.; Endicott-Popovsky, Barbara; Cahana, Alex; Doorenbos, Ardith Z.

    2015-01-01

    Objectives With ever increasing mandates to reduce costs and increase the quality of pain management, health care institutions are faced with the challenge of adopting innovative technologies and shifting workflows to provide value-based care. Transaction cost economic analysis can provide comparative evaluation of the consequences of these changes in the delivery of care. The aim of this study was to establish proof-of-concept using transaction cost analysis to examine chronic pain management in-clinic and through telehealth. Methods Participating health care providers were asked to identify and describe two comparable completed transactions for patients with chronic pain: one consultation between patient and specialist in-clinic and the other a telehealth presentation of a patient’s case by the primary care provider to a team of pain medicine specialists. Each provider completed two on-site interviews. Focus was on the time, value of time, and labor costs per transaction. Number of steps, time, and costs for providers and patients were identified. Results Forty-six discrete steps were taken for the in-clinic transaction, and 27 steps were taken for the telehealth transaction. Although similar in costs per patient ($332.89 in-clinic vs. $376.48 telehealth), the costs accrued over 153 business days in-clinic and 4 business days for telehealth. Time elapsed between referral and completion of initial consultation was 72 days in-clinic, 4 days for telehealth. Conclusions U.S. health care is moving toward the use of more technologies and practices, and the information provided by transaction cost analyses of care delivery for pain management will be important to determine actual cost savings and benefits. PMID:25616057

  14. Investigation of very high energy cosmic rays by means of inclined muon bundles

    NASA Astrophysics Data System (ADS)

    Bogdanov, A. G.; Kokoulin, R. P.; Mannocchi, G.; Petrukhin, A. A.; Saavedra, O.; Shutenko, V. V.; Trinchero, G.; Yashin, I. I.

    2018-03-01

    In a typical approach to extensive air shower (EAS) investigations, horizontal arrays are used and near-vertical EAS are detected. In contrast, in this work vertically arranged muon detectors are used to study inclined EAS. At large zenith angles, EAS consisting solely of muon component are employed. The transverse dimensions of EAS rapidly increase when the zenith angle increases. Hence, EAS in a wide energy interval can be explored by means of a relatively small detector. Here we present results of the analysis of the data on inclined muon bundles accumulated from 2002 to 2016 in the DECOR experiment. For the first time, these results demonstrate with more than 3σ significance the existence of the second knee in the EAS muon component spectrum near 1017 eV primary energy. An excess of muon bundles at energies about 1 EeV found earlier in DECOR data has been confirmed and analyzed in detail. It is highly likely that the obtained outcomes indicate the appearance of new processes of muon generation.

  15. Relative roughness controls on incipient sediment motion in steep channels

    NASA Astrophysics Data System (ADS)

    Prancevic, J.; Lamb, M. P.; Fuller, B. M.

    2012-12-01

    For over eight decades, researchers have noted an appreciable increase in the nondimensional shear stress (Shields number) at initiation of fluvial bedload transport with increasing bed slope. The precise cause of the trend, however, is obscured by the covariance of several factors with increased slope: a greater downstream component of the gravity acting on the grains and fluid, changes in bed morphology, increased grainsize relative to the channel width that may lead to grain bridging, and increased grainsize relative to flow depth (relative roughness) that may change flow hydraulics and particle buoyancy. Here, we report on ongoing laboratory experiments spanning a wide range of bed slopes (2% to 67%) designed to isolate these variables and determine the true cause of heightened critical Shields numbers on steep slopes. First, we eliminated bed morphology as a factor by using only planar beds. To investigate the effect of grain bridging, we used two different channel widths, representing width-to-grainsize ratios of 23:1 and 9:1. Finally, to separate the effects of slope from relative roughness, we compared incipient motion conditions for acrylic particles (submerged specific gravity of 0.15) to natural siliciclastic gravel (submerged specific gravity of 1.65). Different particle densities allowed us to explore incipient motion as a function of relative roughness, independent of channel slope, because lighter particles move at shallower flow depths than heavier ones of the same size. Results show that both materials exhibit a positive trend between bed slope and critical Shields number despite the existence of planar beds for all slopes. Furthermore, changing the grainsize-to-width ratio had a negligible effect on this trend. For all slopes, the critical Shields number for bedload transport was higher for the acrylic particles than for gravel, indicating that relative roughness has a strong control on incipient sediment motion independent of channel slope. These

  16. Homosexual inclinations and the passions: A Thomistic theory of the psychogenesis of same-sex attraction disorder

    PubMed Central

    Kinney, Robert Loyd

    2014-01-01

    The Catholic Church has held that every human being is a child of God, and every person deserves to be treated with dignity and love regardless of their actions. The phrase “love the sinner, hate the sin” is a simple summary of the approach the Church takes to loving all human beings. The Church has also held firmly that both homosexual acts and homosexual inclinations are disordered, although the origins or contributing factors of homosexual inclinations are not entirely understood. In this paper, I apply principles from St. Thomas Aquinas's treatise on the passions to show that habitual mis-identification of the cause of pleasure associated with the apprehension of beauty, or misjudgments, may be involved in the psychogenesis of same-sex attraction disorder. PMID:24899749

  17. Effect of Boundary-Layer Bleed Hole Inclination Angle and Scaling on Flow Coefficient Behavior

    NASA Technical Reports Server (NTRS)

    Eichorn, Michael B.; Barnhart, Paul J.; Davis, David O.; Vyas, Manan A.; Slater, John W.

    2013-01-01

    Phase II data results of the Fundamental Inlet Bleed Experiments study at NASA Glenn Research Center are presented which include flow coefficient behavior for 21 bleed hole configurations. The bleed configurations are all round holes with hole diameters ranging from 0.795 to 6.35 mm, hole inclination angles from 20deg to 90deg, and thickness-to-diameter ratios from 0.25 to 2.0. All configurations were tested at a unit Reynolds number of 2.46 10(exp 7)/m and at discrete local Mach numbers of 1.33, 1.62, 1.98, 2.46, and 2.92. Interactions between the design parameters of hole diameter, hole inclination angle, and thickness-to-diameter as well as the interactions between the flow parameters of pressure ratio and Mach number upon the flow coefficient are examined, and a preliminary statistical model is proposed. An existing correlation is also examined with respect to this data.

  18. Flow behaviour and structure of heterogeneous particles-water mixture in horizontal and inclined pipes

    NASA Astrophysics Data System (ADS)

    Vlasák, Pavel; Chára, Zdeněk; Konfršt, Jiří

    2018-06-01

    The effect of slurry velocity and mean concentration of heterogeneous particle-water mixture on flow behaviour and structure in the turbulent regime was studied in horizontal and inclined pipe sections of inner diameter D = 100 mm. The stratified flow pattern of heterogeneous particle-water mixture in the inclined pipe sections was revealed. The particles moved mostly near to the pipe invert. Concentration distribution in ascending and descending vertical pipe sections confirmed the effect of fall velocity on particle-carrier liquid slip velocity and increase of in situ concentration in the ascending pipe section. Slip velocity in two-phase flow, which is defined as the velocity difference between the solid and liquid phase, is one of mechanism of particle movement in two-phase flow. Due to the slip velocity, there is difference between transport and in situ concentrations, and the slip velocity can be determined from comparison of the in situ and transport concentration. For heterogeneous particle-water mixture flow the slip velocity depends on the flow structure.

  19. How accurate are Omron X-HJ-304-E and Yamax SW-700/701 pedometers at different speeds and various inclinations?

    PubMed

    Wallmann-Sperlich, B; Froboese, I; Reed, J L; Mathes, S; Sperlich, B

    2015-01-01

    The purpose of this study was to investigate step count and energy expenditure accuracy of the piezoelectric Omron (Walking Style X-HJ-304-E) and spring-levered Yamax (Digi-Walker-SW-700/701) pedometers at different speeds and various inclinations. Thirty subjects (15 females, aged: 24 ± 3 years) completed eleven 5-min trials at different treadmill speeds and inclinations (3.24 km∙h⁻¹ [inclination: 0, 9, 20%], 4.68 km∙h⁻¹ [0, 9, 20%], 6.48 km∙h⁻¹ [0, 9%], 9 km∙h⁻¹ [0%], 10.8 km∙h⁻¹ [0%], 12.6 km∙h⁻¹ [0%]). During each trial, an investigator recorded actual steps with a hand tally counter. Actual energy expenditure was measured using a portable indirect calorimeter. The Omron pedometer revealed high step count accuracy for all speeds and inclinations when worn on the hip or a backpack (Mean % of actual steps: 99.6%; Range: 95.8-101.3%). The Yamax pedometer revealed high step count accuracy (Mean % of actual steps: 99.8%; Range: 96.2-103.3%) when worn on the left hip at 6.48-12.6 km∙h⁻¹ (0%), 4.68 km∙h⁻¹ (9%, 20%), 6.48 km∙h⁻¹ (9%) and on the right hip at 10.8 km∙h⁻¹ (0%) and 6.48 km∙h⁻¹ (9%). The accuracy of the Omron and Yamax determined energy expenditure was poor (57.9-59.7%) when compared to indirect calorimetry. The Omron pedometer provides accurate step counts when worn on the hip and backpack at all tested speeds and inclinations. We therefore suggest an accurate application of this device for walking, hiking and running at moderate speeds. Both pedometers underestimated energy expenditure.

  20. Projectile Motion on an Inclined Misty Surface: I. Capturing and Analysing the Trajectory

    ERIC Educational Resources Information Center

    Ho, S. Y.; Foong, S. K.; Lim, C. H.; Lim, C. C.; Lin, K.; Kuppan, L.

    2009-01-01

    Projectile motion is usually the first non-uniform two-dimensional motion that students will encounter in a pre-university physics course. In this article, we introduce a novel technique for capturing the trajectory of projectile motion on an inclined Perspex plane. This is achieved by coating the Perspex with a thin layer of fine water droplets…

  1. Formation of stationary alternate bars in a steep channel with mixed-size sediment: a flume experiment

    Treesearch

    Thomas E. Lisle; Hiroshi Ikeda; Fujiko Iseya

    1991-01-01

    Abstract - Alternate bars were formed by sediment transport in a flume with Froude-modelled flow and relative roughness characteristic of gravel-boulder channels with steep slopes. The flume (0.3 m wide x 7.5 m long) was filled with a sand-gravel mixture, which was also fed into the top of the flume at a constant rate under constant discharge. Channel slope was set at...

  2. `Surface-Layer' momentum fluxes in nocturnal slope flows over steep terrain

    NASA Astrophysics Data System (ADS)

    Oldroyd, H. J.; Pardyjak, E.; Higgins, C. W.; Parlange, M. B.

    2017-12-01

    A common working definition for the `surface layer' is the lowest 10% of the atmospheric boundary layer (ABL) where the turbulent fluxes are essentially constant. The latter part of this definition is a critical assumption that must hold for accurate flux estimations from land-surface models, wall models, similarity theory, flux-gradient relations and bulk transfer methods. We present cases from observed momentum fluxes in nocturnal slope flows over steep (35.5 degree), alpine terrain in Val Ferret, Switzerland that satisfy the classical definitions of the surface layer and other cases where no traditional surface layer is observed. These cases broadly fall into two distinct flow regimes occurring under clear-sky conditions: (1) buoyancy-driven, `katabatic flow', characterized by an elevated velocity maximum (katabatic jet peak) and (2) `downslope winds', for which larger-scale forcing prevents formation of a katabatic jet. Velocity profiles in downslope wind cases are quite similar to logarithmic profiles typically observed over horizontal and homogeneous terrain, and the corresponding momentum fluxes roughly resemble a constant-flux surface-layer. Contrastingly, velocity profiles in the katabatic regime exhibit a jet-like shape. This jet strongly modulates the corresponding momentum fluxes, which exhibit strong gradients over the shallow katabatic layer and usually change sign near the jet peak, where the velocity gradients also change sign. However, a counter-gradient momentum flux is frequently observed near the jet peak (and sometimes at higher levels), suggesting strong non-local turbulent transport within the katabatic jet layer. We compare our observations with katabatic flow theories and observational studies over shallow-angle slopes and use co-spectral analyses to better identify and understand the non-local transport dynamics. Finally, we show that because of the counter-gradient momentum fluxes, surface layer stability and even local stability can be

  3. A measurement routine to determine 137Cs activities at steep mountain slopes

    NASA Astrophysics Data System (ADS)

    Schaub, Monika; Konz, Nadine; Meusburger, Katrin; Alewell, Chrstine

    2010-05-01

    Caesium-137 (137Cs) is a common tracer for soil erosion. So far, in-situ measurements in steep alpine environments have not often been done. Most studies have been carried out in arable lands and with Ge detectors. However, the NaI detector system is a good priced, easy to handle field instrument. A comparison of laboratory measurements with GeLi detector and in-situ measurements with NaI detector of 137Cs gamma soil radiation has been done in an alpine catchment (Urseren Valley, Swizerland). The aim of this study was to calibrate the in-situ NaI detector system for application at steep alpine slopes. Replicate samples from an altitudinal transect through the Urseren Valley were measured ex situ in the laboratory with a GeLi detector, and compared to in situ NaI detector measurements. Ex situ soil samples showed a big variability in 137Cs activities at a meter-scale. This large, small scale heterogeneity determined with the GeLi detector is smoothed out by uncollimated in-situ measurements with the NaI detector, which provide integrated estimates of 137Cs within the field of view of each measurement (3.1 m2). There was no dependency of 137Cs on pH, clay content and carbon content. However, a close relationship was determined between 137Cs and soil moisture. Thus, in-situ data must be corrected for soil moisture. Close correlation (R2 = 0.86) was found for 137Cs activities (in Bq kg-1) estimated with both, in-situ (NaI detector) and laboratory (GeLi detector) methods which proves the validity of the in-situ measurements with the NaI detector system. This paper describes the calibration of the NaI detector system for field application under elevated 137Cs activities originating from Chernobyl fallout.

  4. Vortex-induced vibrations of a flexible cylinder at large inclination angle

    PubMed Central

    Bourguet, Rémi; Triantafyllou, Michael S.

    2015-01-01

    The free vibrations of a flexible circular cylinder inclined at 80° within a uniform current are investigated by means of direct numerical simulation, at Reynolds number 500 based on the body diameter and inflow velocity. In spite of the large inclination angle, the cylinder exhibits regular in-line and cross-flow vibrations excited by the flow through the lock-in mechanism, i.e. synchronization of body motion and vortex formation. A profound reconfiguration of the wake is observed compared with the stationary body case. The vortex-induced vibrations are found to occur under parallel, but also oblique vortex shedding where the spanwise wavenumbers of the wake and structural response coincide. The shedding angle and frequency increase with the spanwise wavenumber. The cylinder vibrations and fluid forces present a persistent spanwise asymmetry which relates to the asymmetry of the local current relative to the body axis, owing to its in-line bending. In particular, the asymmetrical trend of flow–body energy transfer results in a monotonic orientation of the structural waves. Clockwise and counter-clockwise figure eight orbits of the body alternate along the span, but the latter are found to be more favourable to structure excitation. Additional simulations at normal incidence highlight a dramatic deviation from the independence principle, which states that the system behaviour is essentially driven by the normal component of the inflow velocity. PMID:25512586

  5. Flow Characteristics and Robustness of an Inclined Quad-vortex Range Hood

    PubMed Central

    CHEN, Jia-Kun; HUANG, Rong Fung

    2014-01-01

    A novel design of range hood, which was termed the inclined quad-vortex (IQV) range hood, was examined for its flow and containment leakage characteristics under the influence of a plate sweeping across the hood face. A flow visualization technique was used to unveil the flow behavior. Three characteristic flow modes were observed: convex, straight, and concave modes. A tracer gas detection method using sulfur hexafluoride (SF6) was employed to measure the containment leakage levels. The results were compared with the test data reported previously in the literature for a conventional range hood and an inclined air curtain (IAC) range hood. The leakage SF6 concentration of the IQV range hood under the influence of the plate sweeping was 0.039 ppm at a suction flow rate of 9.4 m3/min. The leakage concentration of the conventional range hood was 0.768 ppm at a suction flow rate of 15.0 m3/min. For the IAC range hood, the leakage concentration was 0.326 ppm at a suction flow rate of 10.9 m3/min. The IQV range hood presented a significantly lower leakage level at a smaller suction flow rate than the conventional and IAC range hoods due to its aerodynamic design for flow behavior. PMID:24583513

  6. Self-Other Resonance, Its Control and Prosocial Inclinations: Brain-Behavior Relationships

    PubMed Central

    Christov-Moore, Leonardo; Iacoboni, Marco

    2016-01-01

    Humans seem to place a positive reward value on prosocial behavior. Evidence suggests that this prosocial inclination is driven by our reflexive tendency to share in the observed sensations, emotions and behavior of others, or “self-other resonance”. In this study, we examine how neural correlates of self-other resonance relate to prosocial decision-making. Subjects performed two tasks while undergoing fMRI: Observation of a human hand pierced by a needle, and observation and imitation of emotional facial expressions. Outside the scanner, subjects played the Dictator Game with players of low or high income (represented by neutral-expression headshots). Subjects’ offers in the Dictator Game were correlated with activity in neural systems associated with self-other resonance and anticorrelated with activity in systems implicated in the control of pain, affect and imitation. Activity in these latter systems was specifically correlated with subjects’ diminished sharing towards players of high incomes. Functional connectivity between areas involved in self-other resonance and top-down control was negatively correlated with subjects’ offers. This study suggests that the interaction between self-other resonance and top-down control processes are an important component of prosocial inclinations towards others, even when biological stimuli associated with self-other resonance are limited. These findings support a view of prosocial decision-making that is grounded in embodied cognition. PMID:26954937

  7. Validity of the Acti4 software using ActiGraph GT3X+accelerometer for recording of arm and upper body inclination in simulated work tasks.

    PubMed

    Korshøj, Mette; Skotte, Jørgen H; Christiansen, Caroline S; Mortensen, Pelle; Kristiansen, Jesper; Hanisch, Christiana; Ingebrigtsen, Jørgen; Holtermann, Andreas

    2014-01-01

    The validity of inclinometer measurements by ActiGraph GT3X+ (AG) accelerometer, when analysed with the Acti4 customised software, was examined by comparison of inclinometer measurements with a reference system (TrakStar) in a protocol with standardised arm movements and simulated working tasks. The sensors were placed at the upper arm (distal to the deltoid insertion) and at the spine (level of T1-T2) on eight participants. Root mean square errors (RMSEs) values of inclination between the two systems were low for the slow- and medium-speed standardised arm movements and in simulated working tasks. Fast arm movements caused the inclination estimated by the AG to deviate from the reference measurements (RMSE values up to ∼10°). Furthermore, it was found that AG positioned at the upper arm provided inclination data without bias compared to the reference system. These findings indicate that the AG provides valid estimates of arm and upper body inclination in working participants. Being inexpensive, small, water-resistant and without wires, ActiGraph GT3X+ seems to be a valid mean for direct long-term field measurements of arm and trunk inclinations when analysed by the Acti4 customised software.

  8. Topographic effect on the inclination angle of ramp like structures in rough wall, turbulent channel flow

    NASA Astrophysics Data System (ADS)

    Awasthi, Ankit; Anderson, William

    2015-11-01

    We have studied variation in structural inclination angle of coherent structures responding to a topography with abrupt spanwise heterogeneity. Recent results have shown that such a topography induces a turbulent secondary flow due to spanwise-wall normal heterogeneity of the Reynolds stresses (Anderson et al., 2015: J. Fluid Mech.). The presence of these spanwise alternating low and high momentum pathways (which are flanked by counter rotating, domain-scale vortices, Willingham et al., 2014: Phys. Fluids; Barros and Christensen, 2014: J. Fluid Mech.) are primarily due to the spanwise heterogeneity of the complex roughness under consideration. Results from the present research have been used to explore structural attributes of the hairpin packet paradigm in the presence of a turbulent secondary flow. Vortex visualization in the streamwise-wall normal plane above the crest (high drag) and trough (low drag) demonstrate variation in the inclination angle of coherent structures. The inclination angle of structures above the crest was approximately 45 degrees, much larger than the ``canonical'' value of 15 degrees. Thus, we present evidence that the hairpin packet concept is preserved - but modified - when a turbulent secondary flow is present. This work was supported by the Air Force Office of Sci. Research, Young Inv. Program (PM: Dr. R. Ponnoppan and Ms. E. Montomery) under Grant # FA9550-14-1-0394. Computational resources were provided by the Texas Adv. Comp. Center at Univ. of Texas.

  9. Effect of upflow velocity on the performance of an inclined plate membrane bioreactor treating municipal wastewater.

    PubMed

    Fontanos, P M; Yamamoto, K; Nakajima, F

    2011-01-01

    An inclined plate membrane bioreactor (iPMBR) was introduced to meet the challenge of handling high mixed liquor suspended solids when operating at long sludge retention times. During the first 407 days of operation, the iPMBR was able to rezone more sludge (1.5-10.5 times greater) in its upstream, anoxic tank compared to its downstream, aerobic tank. This could extend membrane filtration by diverting most of the sludge from the aerobic zone. During this period, the upflow velocities through the inclined plates of the anoxic tank ranged from 2.3 x 10(-4) to 7.7 x 10(-4) m/s. After Day 407, the operating conditions were changed to determine whether the iPMBR would fail to create a sludge concentration difference between its two tanks. When the upflow velocity was increased to 1.8 x 10(-3) m/s, the sludge concentration difference between the two zones was removed. This indicated that the upflow velocity had increased sufficiently to overcome the settling velocities of most flocs, resulting in more solids being carried from the anoxic to the aerobic tank. For the configuration of this iPMBR, operating at flow rates where the upflow velocity through the inclined plates was less than 1.0 x 10(-3) m/s would be necessary to keep a significant sludge concentration difference between its two zones.

  10. Mechanics of gravitational spreading of steep-sided ridges («sackung»)

    USGS Publications Warehouse

    Savage, W.Z.; Varnes, D.J.

    1987-01-01

    Large-scale gravitational spreading of steep-sided ridges characterized by linear fissures, trenches, and uphill-facing scarps high on the sides and tops of ridges are known worldwide. Such spreading, termed sackung, is commonly attributed to pervasive plastic deformation of a rock mass, and is here analyzed as such. Beginning with a previously developed exact elastic solution for gravity-induced stresses in a symmetric ridge, stresses calculated from the exact solution are used in the Coulomb failure criterion to determine the extent of ridge failure under self-weight. Finally, when the regions of failure are established, a plastic flow solution is applied to predict the location of and sense of movement on upward-facing scarps near ridge crests and other features common in sackung. ?? 1987 International Assocaition of Engineering Geology.

  11. Wildfire-induced initiation of debris flows in a steep bedrock landscape, San Gabriel Mountains, California

    NASA Astrophysics Data System (ADS)

    Ulizio, T. P.; Palucis, M. C.; Fuller, B. M.; Lamb, M. P.

    2017-12-01

    Steep, rocky landscapes often produce large sediment yields and increased debris flow activity following wildfire. There are two main hypotheses for debris flow initiation in burned regions during rain storms: (1) debris flows initiate from failure of the soil mantle on hillslopes where fire has destroyed root systems resulting in loss of soil strength, and (2) debris flows initiate in river channels that have been loaded by dry ravel following incineration of vegetation dams on hillslopes. To evaluate these hypotheses, we monitored a steep first-order catchment that burned in the 2016 Fish Canyon fire within the front range of the San Gabriel Mountains, CA. Following each post-fire storm, we measured the hillslope and channel topography using UAV imaging and structure-from-motion, and monitored activity during storm events with field cameras. Following the fire, but prior to the first storm event, most of the hillslopes were stripped to bedrock and 0.5 m of dry ravel had accumulated along the length of the channel. By using measurements of sediment storage behind vegetation in a nearby unburned catchment, but with a similar burn history, we found that much of the loose sediment in the channel can be attributed to dry ravel following incineration of vegetation dams. Throughout the rainy season, the catchment produced a series of debris flows that evacuated the accumulated dry ravel in the channel, exposed bedrock in the channel, and built a debris flow fan across a terrace that abuts the downstream end of the channel. Although later storms were larger, most sediment transport occurred during the first few storms, indicating that sediment supply can limit debris flow activity, and that larger storms do not necessarily produce larger debris flows. Our measurements of the volume of the newly formed debris flow fan approximately matches the volume of evacuated ravel from the channel, and we did not observe landslide scars on hillslopes. Together, these observations and

  12. Inclination Shallowing in the Permian/Triassic Boundary Sedimentary Sections of the East European Platform: the New Paleomagnetic Pole and its Significance for GAD Hypothesis

    NASA Astrophysics Data System (ADS)

    Veselovskiy, R. V.; Fetisova, A. M.; Balabanov, Y.

    2017-12-01

    One of the key challenges which are traditionally encountered in studying the paleomagnetism of terrigenous sedimentary strata is the necessity to allow for the effect of shallowing of paleomagnetic inclinations which takes place under the compaction of the sediment at the early stages of diagenesis and most clearly manifests itself in the case of midlatitude sedimentation. Traditionally, estimating the coefficient of inclination flattening (f) implies routine re-deposition experiments and studying their magnetic anisotropy (Kodama, 2012), which is not possible in every standard paleomagnetic laboratory. The Elongation-Inclination (E/I) statistical method for estimating the coefficient of inclination shallowing, which was recently suggested in (Tauxe and Kent, 2004), does not require the investigation of the rock material in a specially equipped laboratory but toughens the requirements on the paleomagnetic data and, primarily, regarding the volume of the data, which significantly restricts the possibilities of the post factum estimation and correction for inclination shallowing. We present the results of the paleomagnetic reinvestigation of the some key sections of the Upper Permian and Lower Triassic rocks located on the East European Platform. The obtained paleomagnetic data allowed us to estimate the coefficient of inclination shallowing by the E/I method and calculate a new P-Tr paleomagnetic pole for Europe. The absence of a statistically significant difference between the mean Siberian, European and North American Permian-Triassic paleomagnetic poles allow us to conclude that 252 Ma the configuration of the Earth's magnetic field was predominantly dipole. We believe that the assumption of the non-dipolarity of the geomagnetic field at the Permian-Triassic boundary, which has been repeatedly discussed in recent decades (Van der Voo and Torsvik, 2001; Bazhenov and Shatsillo, 2010; Veselovskiy and Pavlov, 2006), arose due to the failure to take into account the

  13. STEEP STREAMS - Solid Transport Evaluation and Efficiency in Prevention: Sustainable Techniques of Rational Engineering and Advanced MethodS

    NASA Astrophysics Data System (ADS)

    Armanini, Aronne; Cardoso, Antonio H.; Di Baldassarre, Giuliano; Bellin, Alberto; Breinl, Korbinian; Canelas, Ricardo B.; Larcher, Michele; Majone, Bruno; Matos, Jorges; Meninno, Sabrina; Nucci, Elena; Rigon, Riccardo; Rosatti, Giorgio; Zardi, Dino

    2017-04-01

    The STEEP STREAMS (Solid Transport Evaluation and Efficiency in Prevention: Sustainable Techniques of Rational Engineering and Advanced MethodS) project consists of a collaboration among the Universities of Trento, Uppsala and Lisbon, who joined in a consortium within the ERANET Water JPI call WaterWorks2014. The aim of the project is to produce new rational criteria for the design of protection works against debris flows, a phenomenon consisting in hyper-concentrated flows of water and sediments, classified as catastrophic events typical of small mountainous basins (area <10 km2) and triggered by intense rainstorms. Such events are non-stationary phenomena that arise in a very short time, and their recurrence is rather difficult to determine. Compared to flash floods, they are more difficult to anticipate, mostly since they are triggered by convective precipitation events, posing a higher risk of damage and even loss of human lives. These extreme events occur almost annually across Europe, though the formal return period in an exposed site is much larger. Recently, an increase in intensity and frequency of small-scale storm events, leading to extreme solid transport in steep channels, are recognized as one of the effects of climate change. In this context, one of the key challenges of this project is the use of comparatively coarse RCM projections to the small catchments examined in STEEP STREAMS. Given these changes, conventional protection works and their design criteria may not suffice to provide adequate levels of protection to human life and urban settlements. These structures create a storage area upstream the alluvial fans and the settlements, thereby reducing the need of channelization in areas often constrained by urban regulations. To optimize the lamination, and in particular to reduce the peak of solid mass flux, it is necessary that the deposition basin is controlled by a slit check dam, capable of inducing a controlled sedimentation of the solid mas

  14. A peculiar class of debris disks from Herschel/DUNES. A steep fall off in the far infrared

    NASA Astrophysics Data System (ADS)

    Ertel, S.; Wolf, S.; Marshall, J. P.; Eiroa, C.; Augereau, J.-C.; Krivov, A. V.; Löhne, T.; Absil, O.; Ardila, D.; Arévalo, M.; Bayo, A.; Bryden, G.; del Burgo, C.; Greaves, J.; Kennedy, G.; Lebreton, J.; Liseau, R.; Maldonado, J.; Montesinos, B.; Mora, A.; Pilbratt, G. L.; Sanz-Forcada, J.; Stapelfeldt, K.; White, G. J.

    2012-05-01

    Context. The existence of debris disks around old main sequence stars is usually explained by continuous replenishment of small dust grains through collisions from a reservoir of larger objects. Aims: We present photometric data of debris disks around HIP 103389 (HD 199260), HIP 107350 (HN Peg, HD 206860), and HIP 114948 (HD 219482), obtained in the context of our Herschel open time key program DUNES (DUst around NEarby Stars). Methods: We used Herschel/PACS to detect the thermal emission of the three debris disks with a 3σ sensitivity of a few mJy at 100 μm and 160 μm. In addition, we obtained Herschel/PACS photometric data at 70 μm for HIP 103389. These observations are complemented by a large variety of optical to far-infrared photometric data. Two different approaches are applied to reduce the Herschel data to investigate the impact of data reduction on the photometry. We fit analytical models to the available spectral energy distribution (SED) data using the fitting method of simulated thermal annealing as well as a classical grid search method. Results: The SEDs of the three disks potentially exhibit an unusually steep decrease at wavelengths ≥70 μm. We investigate the significance of the peculiar shape of these SEDs and the impact on models of the disks provided it is real. Using grain compositions that have been applied successfully for modeling of many other debris disks, our modeling reveals that such a steep decrease of the SEDs in the long wavelength regime is inconsistent with a power-law exponent of the grain size distribution -3.5 expected from a standard equilibrium collisional cascade. In contrast, a steep grain size distribution or, alternatively an upper grain size in the range of few tens of micrometers are implied. This suggests that a very distinct range of grain sizes would dominate the thermal emission of such disks. However, we demonstrate that the understanding of the data of faint sources obtained with Herschel is still incomplete

  15. Inclined dislocation arrays in AlGaN/AlGaN quantum well structures emitting at 290 nm

    NASA Astrophysics Data System (ADS)

    Chang, T. Y.; Moram, M. A.; McAleese, C.; Kappers, M. J.; Humphreys, C. J.

    2010-12-01

    We report on the structural and optical properties of deep ultraviolet emitting AlGaN/AlGaN multiple quantum wells (MQWs) grown on (0001) sapphire by metal-organic vapor phase epitaxy using two different buffer layer structures, one containing a thin (1 μm) AlN layer combined with a GaN interlayer and the other a thick (4 μm) AlN layer. Transmission electron microscopy analysis of both structures showed inclined arrays of dislocations running through the AlGaN layers at an angle of ˜30°, originating at bunched steps at the AlN surface and terminating at bunched steps at the surface of the MQW structure. In all layers, these inclined dislocation arrays are surrounded by AlGaN with a relatively higher Ga content, consistent with plan-view cathodoluminescence maps in which the bunched surface steps are associated with longer emission wavelengths. The structure with the 4 μm-thick AlN buffer layer had a dislocation density lower by a factor of 2 (at (1.7±0.1)×109 cm-2) compared to the structure with the 1 μm thick AlN buffer layer, despite the presence of the inclined dislocation arrays.

  16. VizieR Online Data Catalog: MRCR-SUMSS Ultra-steep-spectrum (USS) sample (Broderick+, 2007)

    NASA Astrophysics Data System (ADS)

    Broderick, J. W.; Bryant, J. J.; Hunstead, R. W.; Sadler, E. M.; Murphy, T.

    2008-09-01

    This paper introduces a new program to find high-redshift radio galaxies in the Southern hemisphere through ultra-steep spectrum (USS) selection. We define a sample of 234 USS radio sources with spectral indices {alpha}843408<=-1.0 (S{nu}{prop.to}{nu}alpha) and flux densities S408>=200mJy in a region of 0.35sr, chosen by cross-correlating the revised 408MHz Molonglo Reference Catalogue, the 843MHz Sydney University Molonglo Sky Survey and the 1400MHz NRAO VLA Sky Survey in the overlap region -40{deg}

  17. Analysis of a self-propelling sheet with heat transfer through non-isothermal fluid in an inclined human cervical canal.

    PubMed

    Walait, Ahsan; Siddiqui, A M; Rana, M A

    2018-02-13

    The present theoretical analysis deals with biomechanics of the self-propulsion of a swimming sheet with heat transfer through non-isothermal fluid filling an inclined human cervical canal. Partial differential equations arising from the mathematical modeling of the proposed model are solved analytically. Flow variables like pressure gradient, propulsive velocity, fluid velocity, time mean flow rate, fluid temperature, and heat-transfer coefficients are analyzed for the pertinent parameters. Striking features of the pumping characteristics are explored. Propulsive velocity of the swimming sheet becomes faster for lower Froude number, higher Reynolds number, and for a vertical channel. Temperature and peak value of the heat-transfer coefficients below the swimming sheet showed an increase by the increment of Brinkmann number, inclination, pressure difference over wavelength, and Reynolds number whereas these quantities decrease with increasing Froude number. Aforesaid parameters have shown opposite effects on the peak value of the heat-transfer coefficients below and above the swimming sheet. Relevance of the current results to the spermatozoa transport with heat transfer through non-isothermal cervical mucus filling an inclined human cervical canal is also explored.

  18. The Effect of Leading-Edge Sweep and Surface Inclination on the Hypersonic Flow Field Over a Blunt Flat Plate

    NASA Technical Reports Server (NTRS)

    Creager, Marcus O.

    1959-01-01

    An investigation of the effects of variation of leading-edge sweep and surface inclination on the flow over blunt flat plates was conducted at Mach numbers of 4 and 5.7 at free-stream Reynolds numbers per inch of 6,600 and 20,000, respectively. Surface pressures were measured on a flat plate blunted by a semicylindrical leading edge over a range of sweep angles from 0 deg to 60 deg and a range of surface inclinations from -10 deg to +10 deg. The surface pressures were predicted within an average error of +/- 8 percent by a combination of blast-wave and boundary-layer theory extended herein to include effects of sweep and surface inclination. This combination applied equally well to similar data of other investigations. The local Reynolds number per inch was found to be lower than the free-stream Reynolds number per inch. The reduction in local Reynolds number was mitigated by increasing the sweep of the leading edge. Boundary-layer thickness and shock-wave shape were changed little by the sweep of the leading edge.

  19. Slip Effects on Mixed Convective Peristaltic Transport of Copper-Water Nanofluid in an Inclined Channel

    PubMed Central

    Abbasi, Fahad Munir; Hayat, Tasawar; Ahmad, Bashir; Chen, Guo-Qian

    2014-01-01

    Peristaltic transport of copper-water nanofluid in an inclined channel is reported in the presence of mixed convection. Both velocity and thermal slip conditions are considered. Mathematical modelling has been carried out using the long wavelength and low Reynolds number approximations. Resulting coupled system of equations is solved numerically. Quantities of interest are analyzed through graphs. Numerical values of heat transfer rate at the wall for different parameters are obtained and examined. Results showed that addition of copper nanoparticles reduces the pressure gradient, axial velocity at the center of channel, trapping and temperature. Velocity slip parameter has a decreasing effect on the velocity near the center of channel. Temperature of nanofluid increases with increase in the Grashoff number and channel inclination angle. It is further concluded that the heat transfer rate at the wall increases considerably in the presence of copper nanoparticles. PMID:25170908

  20. A Bio-Realistic Analog CMOS Cochlea Filter With High Tunability and Ultra-Steep Roll-Off.

    PubMed

    Wang, Shiwei; Koickal, Thomas Jacob; Hamilton, Alister; Cheung, Rebecca; Smith, Leslie S

    2015-06-01

    This paper presents the design and experimental results of a cochlea filter in analog very large scale integration (VLSI) which highly resembles physiologically measured response of the mammalian cochlea. The filter consists of three specialized sub-filter stages which respectively provide passive response in low frequencies, actively tunable response in mid-band frequencies and ultra-steep roll-off at transition frequencies from pass-band to stop-band. The sub-filters are implemented in balanced ladder topology using floating active inductors. Measured results from the fabricated chip show that wide range of mid-band tuning including gain tuning of over 20 dB, Q factor tuning from 2 to 19 as well as the bio-realistic center frequency shift are achieved by adjusting only one circuit parameter. Besides, the filter has an ultra-steep roll-off reaching over 300 dB/dec. By changing biasing currents, the filter can be configured to operate with center frequencies from 31 Hz to 8 kHz. The filter is 9th order, consumes 59.5 ∼ 90.0 μW power and occupies 0.9 mm2 chip area. A parallel bank of the proposed filter can be used as the front-end in hearing prosthesis devices, speech processors as well as other bio-inspired auditory systems owing to its bio-realistic behavior, low power consumption and small size.