Sample records for steerable drive wheels

  1. Control of a Wheeled Transport Robot with Two Steerable Wheels

    NASA Astrophysics Data System (ADS)

    Larin, V. B.

    2017-09-01

    The control of a system with one actuator failed is studied. The problem of control of a wheeled transport robot with two steerable wheels of which the rear one is stuck (its drive has failed) is solved. An algorithm for controlling the system in this situation is proposed. The effectiveness of the algorithm is demonstrated by way of an example.

  2. Position and force control of a vehicle with two or more steerable drive wheels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reister, D.B.; Unseren, M.A.

    1992-10-01

    When a vehicle with two or more steerable drive wheels is traveling in a circle, the motion of the wheels is constrained. The wheel translational velocity divided by the radius to the center of rotation must be the same for all wheels. When the drive wheels are controlled independently using position control, the motion of the wheels may violate the constraints and the wheels may slip. Consequently, substantial errors can occur in the orientation of the vehicle. A vehicle with N drive wheels has (N - 1) constraints and one degree of freedom. We have developed a new approach tomore » the control of a vehicle with N steerable drive wheels. The novel aspect of our approach is the use of force control. To control the vehicle, we have one degree of freedom for the position on the circle and (N - 1) forces that can be used to reduce errors. Recently, Kankaanranta and Koivo developed a control architecture that allows the force and position degrees of freedom to be decoupled. In the work of Kankaanranta and Koivo the force is an exogenous input. We have made the force endogenous by defining the force in terms of the errors in satisfying the rigid body kinematic constraints. We have applied the control architecture to the HERMIES-III robot and have measured a dramatic reduction in error (more than a factor of 20) compared to motions without force control.« less

  3. Personnel emergency carrier vehicle

    NASA Technical Reports Server (NTRS)

    Owens, Lester J. (Inventor); Fedor, Otto H. (Inventor)

    1987-01-01

    A personnel emergency carrier vehicle is disclosed which includes a vehicle frame supported on steerable front wheels and driven rear wheels. A supply of breathing air is connected to quick connect face mask coupling and umbilical cord couplings for supplying breathing air to an injured worker or attendant either with or without a self-contained atmospheric protection suit for protection against hazardous gases at an accident site. A non-sparking hydraulic motion is utilized to drive the vehicle and suitable direction and throttling controls are provided for controlling the delivery of a hydraulic driving fluid from a pressurized hydraulic fluid accumulator. A steering axis is steerable through a handle to steer the front wheels through a linkage assembly.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reister, D.B.; Unseren, M.A.

    When a vehicle with two or more steerable drive wheels is traveling in a circle, the motion of the wheels is constrained. The wheel translational velocity divided by the radius to the center of rotation must be the same for all wheels. When the drive wheels are controlled independently using position control, the motion of the wheels may violate the constraints and the wheels may slip. Consequently, substantial errors can occur in the orientation of the vehicle. A vehicle with N drive wheels has (N - 1) constraints and one degree of freedom. We have developed a new approach tomore » the control of a vehicle with N steerable drive wheels. The novel aspect of our approach is the use of force control. To control the vehicle, we have one degree of freedom for the position on the circle and (N - 1) forces that can be used to reduce errors. Recently, Kankaanranta and Koivo developed a control architecture that allows the force and position degrees of freedom to be decoupled. In the work of Kankaanranta and Koivo the force is an exogenous input. We have made the force endogenous by defining the force in terms of the errors in satisfying the rigid body kinematic constraints. We have applied the control architecture to the HERMIES-III robot and have measured a dramatic reduction in error (more than a factor of 20) compared to motions without force control.« less

  5. Method for controlling a vehicle with two or more independently steered wheels

    DOEpatents

    Reister, D.B.; Unseren, M.A.

    1995-03-28

    A method is described for independently controlling each steerable drive wheel of a vehicle with two or more such wheels. An instantaneous center of rotation target and a tangential velocity target are inputs to a wheel target system which sends the velocity target and a steering angle target for each drive wheel to a pseudo-velocity target system. The pseudo-velocity target system determines a pseudo-velocity target which is compared to a current pseudo-velocity to determine a pseudo-velocity error. The steering angle targets and the steering angles are inputs to a steering angle control system which outputs to the steering angle encoders, which measure the steering angles. The pseudo-velocity error, the rate of change of the pseudo-velocity error, and the wheel slip between each pair of drive wheels are used to calculate intermediate control variables which, along with the steering angle targets are used to calculate the torque to be applied at each wheel. The current distance traveled for each wheel is then calculated. The current wheel velocities and steering angle targets are used to calculate the cumulative and instantaneous wheel slip and the current pseudo-velocity. 6 figures.

  6. Multiple-degree-of-freedom vehicle

    DOEpatents

    Borenstein, Johann

    1995-01-01

    A multi-degree-of-freedom vehicle employs a compliant linkage to accommodate the need for a variation in the distance between drive wheels or drive systems which are independently steerable and drivable. The subject vehicle is provided with rotary encodes to provide signals representative of the orientation of the steering pivot associated with each such drive wheel or system, and a linear encoder which issues a signal representative of the fluctuations in the distance between the drive elements. The wheels of the vehicle are steered and driven in response to the linear encoder signal, there being provided a controller system for minimizing the fluctuations in the distance. The controller system is a software implementation of a plurality of controllers, operating at the chassis level and at the vehicle level. A trajectory interpolator receives x-displacement, y-displacement, and .theta.-displacement signals and produces to the vehicle level controller trajectory signals corresponding to interpolated control signals. The x-displacement, y-displacement, and .theta.-displacement signals are received from a human operator, via a manipulable joy stick.

  7. Method for controlling a vehicle with two or more independently steered wheels

    DOEpatents

    Reister, David B.; Unseren, Michael A.

    1995-01-01

    A method (10) for independently controlling each steerable drive wheel (W.sub.i) of a vehicle with two or more such wheels (W.sub.i). An instantaneous center of rotation target (ICR) and a tangential velocity target (v.sup.G) are inputs to a wheel target system (30) which sends the velocity target (v.sub.i.sup.G) and a steering angle target (.theta..sub.i.sup.G) for each drive wheel (W.sub.i) to a pseudovelocity target system (32). The pseudovelocity target system (32) determines a pseudovelocity target (v.sub.P.sup.G) which is compared to a current pseudovelocity (v.sub.P.sup.m) to determine a pseudovelocity error (.epsilon.). The steering angle targets (.theta..sup.G) and the steering angles (.theta..sup.m) are inputs to a steering angle control system (34) which outputs to the steering angle encoders (36), which measure the steering angles (.theta..sup.m). The pseudovelocity error (.epsilon.), the rate of change of the pseudovelocity error ( ), and the wheel slip between each pair of drive wheels (W.sub.i) are used to calculate intermediate control variables which, along with the steering angle targets (.theta..sup.G) are used to calculate the torque to be applied at each wheel (W.sub.i). The current distance traveled for each wheel (W.sub.i) is then calculated. The current wheel velocities (v.sup.m) and steering angle targets (.theta..sup.G) are used to calculate the cumulative and instantaneous wheel slip (e, ) and the current pseudovelocity (v.sub.P.sup.m).

  8. Design of a robotic vehicle with self-contained intelligent wheels

    NASA Astrophysics Data System (ADS)

    Poulson, Eric A.; Jacob, John S.; Gunderson, Robert W.; Abbott, Ben A.

    1998-08-01

    The Center for Intelligent Systems has developed a small robotic vehicle named the Advanced Rover Chassis 3 (ARC 3) with six identical intelligent wheel units attached to a payload via a passive linkage suspension system. All wheels are steerable, so the ARC 3 can move in any direction while rotating at any rate allowed by the terrain and motors. Each intelligent wheel unit contains a drive motor, steering motor, batteries, and computer. All wheel units are identical, so manufacturing, programing, and spare replacement are greatly simplified. The intelligent wheel concept would allow the number and placement of wheels on the vehicle to be changed with no changes to the control system, except to list the position of all the wheels relative to the vehicle center. The task of controlling the ARC 3 is distributed between one master computer and the wheel computers. Tasks such as controlling the steering motors and calculating the speed of each wheel relative to the vehicle speed in a corner are dependent on the location of a wheel relative to the vehicle center and ar processed by the wheel computers. Conflicts between the wheels are eliminated by computing the vehicle velocity control in the master computer. Various approaches to this distributed control problem, and various low level control methods, have been explored.

  9. Mechatronic track guidance on disturbed track: the trade-off between actuator performance and wheel wear

    NASA Astrophysics Data System (ADS)

    Kurzeck, Bernhard; Heckmann, Andreas; Wesseler, Christoph; Rapp, Matthias

    2014-05-01

    Future high-speed trains are the main focus of the DLR research project Next Generation Train. One central point of the research activities is the development of mechatronic track guidance for the two-axle intermediate wagons with steerable, individually powered, independently rotating wheels. The traction motors hereby fulfil two functions; they concurrently are traction drives and steering actuators. In this paper, the influence of the track properties - line layout and track irregularities - on the performance requirements for the guidance actuator is investigated using multi-body models in SIMPACK®. In order to compromise on the design conflict between low wheel wear and low steering torque, the control parameters of the mechatronic track guidance are optimised using the DLR in-house software MOPS. Besides the track irregularities especially the increasing inclination at transition curves defines high actuator requirements due to gyroscopic effects at high speed. After introducing a limiter for the actuating variables into the control system, a good performance is achieved.

  10. On Navigation Sensor Error Correction

    NASA Astrophysics Data System (ADS)

    Larin, V. B.

    2016-01-01

    The navigation problem for the simplest wheeled robotic vehicle is solved by just measuring kinematical parameters, doing without accelerometers and angular-rate sensors. It is supposed that the steerable-wheel angle sensor has a bias that must be corrected. The navigation parameters are corrected using the GPS. The approach proposed regards the wheeled robot as a system with nonholonomic constraints. The performance of such a navigation system is demonstrated by way of an example

  11. Landing Gear/Soil Interaction Development of Criteria for Aircraft Operation on Soil During Turning and High Speed Straight Roll

    DTIC Science & Technology

    1974-01-01

    system and does not permit differential thrust during turning. Turning Geometry and Force Analysis An aircraft with a castered -steerable nose wheel ...instantaneous radius of turn S= caster angle of nose wheel The definition of the turning angle and the development of side loads and longitudinal drag...pneumatic trail distance will vary with the turning angle, 0. It is alao possible that for a castered wheel , that the caster axis is displaced from the

  12. Replicating the AC-130’s Urban Close Air Support Capabilities Around the Clock

    DTIC Science & Technology

    2006-12-15

    Each employs four Allison T56 -15 turbo-prop engines, dual-wheel construction, steerable nose gear, two tandem-mounted main retractable landing gear...Primary Function: Close air support, air interdiction and force protection Builder: Lockheed/Boeing Corp. Power Plant: Four Allison T56 -A-15

  13. Remote driving with reduced bandwidth communication

    NASA Technical Reports Server (NTRS)

    Depiero, Frederick W.; Noell, Timothy E.; Gee, Timothy F.

    1993-01-01

    Oak Ridge National Laboratory has developed a real-time video transmission system for low bandwidth remote operations. The system supports both continuous transmission of video for remote driving and progressive transmission of still images. Inherent in the system design is a spatiotemporal limitation to the effects of channel errors. The average data rate of the system is 64,000 bits/s, a compression of approximately 1000:1 for the black and white National Television Standard Code video. The image quality of the transmissions is maintained at a level that supports teleoperation of a high mobility multipurpose wheeled vehicle at speeds up to 15 mph on a moguled dirt track. Video compression is achieved by using Laplacian image pyramids and a combination of classical techniques. Certain subbands of the image pyramid are transmitted by using interframe differencing with a periodic refresh to aid in bandwidth reduction. Images are also foveated to concentrate image detail in a steerable region. The system supports dynamic video quality adjustments between frame rate, image detail, and foveation rate. A typical configuration for the system used during driving has a frame rate of 4 Hz, a compression per frame of 125:1, and a resulting latency of less than 1s.

  14. Dynamics of a Two-Link Vehicle in an L-Shaped Corridor Revisited

    NASA Astrophysics Data System (ADS)

    Antonyuk, E. Ya.; Zabuga, A. T.

    2014-03-01

    The kinematics of a two-link mobile robot with three steerable wheels moving in an L-shaped corridor is analyzed. A smooth (with continuous first derivative) path is designed maintaining the optimal maneuverability of the vehicle. The motion of the vehicle along this path is planned. Analytical expressions for the reactions at the contact of the wheels with the ground are given in the general case of motion. The radius of curvature of the programmed path is shown to have a strong influence on the reactions.

  15. Design of a Day/Night Lunar Rover

    NASA Astrophysics Data System (ADS)

    Berkelman, Peter; Easudes, Jesse; Martin, Martin C.; Rollins, Eric; Silberman, Jack; Chen, Mei; Hancock, John; Mor, Andrew B.; Sharf, Alex; Warren, Tom; Bapna, Deepak

    1995-06-01

    The pair of lunar rovers discussed in this report will return video and state data to various ventures, including theme park and marketing concerns, science agencies, and educational institutions. The greatest challenge accepted by the design team was to enable operations throughout the extremely cold and dark lunar night, an unprecedented goal in planetary exploration. This is achieved through the use of the emerging technology of Alkali Metal Thermal to Electric Converters (AMTEC), provided with heat from a innovative beta-decay heat source, Krypton-85 gas. Although previous space missions have returned still images, our design will convey panoramic video from a ring of cameras around the rover. A six-wheel rocker bogie mechanism is implemented to propel the rover. The rovers will also provide the ability to safeguard their operation to allow untrained members of the general public to drive the vehicle. Additionally, scientific exploration and educational outreach will be supported with a user operable, steerable and zoomable camera.

  16. Motion of an Articulated Vehicle with Two-Dimensional Sections Subject to Lateral Obstacles

    NASA Astrophysics Data System (ADS)

    Antonyuk, E. Ya.; Zabuga, A. T.

    2016-07-01

    Some aspects of the geometry, kinematics, and dynamics of a three-section robotic vehicle with a front steerable wheel are studied. The constraints between the wheels and the flat ground are assumed nonholonomic. The vehicle moves in a narrow L-shaped corridor. A path for the characteristic points of the sections of the robot is designed. A dynamic model of the system is developed. The maximum possible dimensions of the robot that allow its unimpeded and non-stop motion are determined. The kinetostatic analysis of the load on a three-section vehicle moving along a planned path is modeled. The holonomic and nonholonomic constraint reactions between the wheels and the ground and in the joints between the sections are determined

  17. Miniature pipe crawler tractor

    DOEpatents

    McKay, Mark D.; Anderson, Matthew O.; Ferrante, Todd A.; Willis, W. David

    2000-01-01

    A pipe crawler tractor may comprise a half tractor assembly having a first base drive wheel, a second base drive wheel, and a top drive wheel. The drive wheels are mounted in spaced-apart relation so that the top drive wheel is positioned between the first and second base drive wheels. The mounting arrangement is also such that the first and second base drive wheels contact the inside surface of the pipe at respective first and second positions and so that the top drive wheel contacts the inside surface of the pipe at a third position, the third position being substantially diametrically opposed to the first and second positions. A control system connected to the half tractor assembly controls the rotation of the first base wheel, the second base wheel, and the top drive wheel to move the half tractor assembly within the pipe.

  18. Modeling the maneuvering of a vehicle

    NASA Astrophysics Data System (ADS)

    Antonyuk, E. Ya.; Zabuga, A. T.

    2012-07-01

    A kinematic model of one- and two-link robotic vehicles with two or three steerable wheels is considered. A nonsmooth path in the form of an astroid enveloping the positions of the robot is planned. The motion of a two-link vehicle with such a trajectory is modeled. A numerical analysis of the dynamic of robots is performed determining the reactions of nonholonomic constraints

  19. Miniature pipe crawler tractor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKay, M.D.; Anderson, M.O.; Ferrante, T.A.

    2000-03-14

    A pipe crawler tractor may comprise a half tractor assembly having a first base drive wheel, a second base drive wheel, and a top drive wheel. The drive wheels are mounted in spaced-apart relation so that the top drive wheel is positioned between the first and second base drive wheels. The mounting arrangement is also such that the first and second base drive wheels contact the inside surface of the pipe at respective first and second positions and so that the top drive wheel contacts the inside surface of the pipe at a third position, the third position being substantiallymore » diametrically opposed to the first and second positions. A control system connected to the half tractor assembly controls the rotation of the first base wheel, the second base wheel, and the top drive wheel to move the half tractor assembly within the pipe.« less

  20. Electronic 4-wheel drive control device

    NASA Technical Reports Server (NTRS)

    Hayato, S.; Takanori, S.; Shigeru, H.; Tatsunori, S.

    1984-01-01

    The internal rotation torque generated during operation of a 4-wheel drive vehicle is reduced using a control device whose clutch is attached to one part of the rear-wheel drive shaft. One torque sensor senses the drive torque associated with the rear wheel drive shaft. A second sensor senses the drive torque associated with the front wheel drive shaft. Revolution count sensors sense the revolutions of each drive shaft. By means of a microcomputer, the engagement of the clutch is changed to insure that the ratio of the torque sensors remains constant.

  1. All-wheel drive and winter-weather safety.

    DOT National Transportation Integrated Search

    2013-03-01

    It is frequently stated that people living in northern states, the so called Snowbelt of the United : States, benefit with respect to safety from driving all-wheel or four-wheel drive vehicles as : opposed to front or rear-wheel drive only. This stud...

  2. 49 CFR 533.5 - Requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... per gallon, in the model year specified as applicable: Table I Model year 2-wheel drive light trucks Captive imports Other 4-wheel drive light trucks Captive imports Other Limited product line light trucks... standard Captive imports Others 2-wheel drive light trucks Captive imports Others 4-wheel drive light...

  3. 49 CFR 533.5 - Requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... per gallon, in the model year specified as applicable: Table I Model year 2-wheel drive light trucks Captive imports Other 4-wheel drive light trucks Captive imports Other Limited product line light trucks... standard Captive imports Others 2-wheel drive light trucks Captive imports Others 4-wheel drive light...

  4. 49 CFR 533.5 - Requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... per gallon, in the model year specified as applicable: Table I Model year 2-wheel drive light trucks Captive imports Other 4-wheel drive light trucks Captive imports Other Limited product line light trucks... standard Captive imports Others 2-wheel drive light trucks Captive imports Others 4-wheel drive light...

  5. 40 CFR 86.235-94 - Dynamometer procedure.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., carbon dioxide, and oxides of nitrogen. (b) As long as an emission sample is not taken, practice runs...) Four-wheel drive vehicles will be tested in a two-wheel drive mode of operation. Full-time four-wheel drive vehicles will have one set of drive wheels temporarily disengaged by the vehicle manufacturer...

  6. Human machine interface to manually drive rhombic like vehicles in remote handling operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopes, Pedro; Vale, Alberto; Ventura, Rodrigo

    2015-07-01

    In the thermonuclear experimental reactor ITER, a vehicle named CTS is designed to transport a container with activated components inside the buildings. In nominal operations, the CTS is autonomously guided under supervision. However, in some unexpected situations, such as in rescue and recovery operations, the autonomous mode must be overridden and the CTS must be remotely guided by an operator. The CTS is a rhombic-like vehicle, with two drivable and steerable wheels along its longitudinal axis, providing omni-directional capabilities. The rhombic kinematics correspond to four control variables, which are difficult to manage in manual mode operation. This paper proposes amore » Human Machine Interface (HMI) to remotely guide the vehicle in manual mode. The proposed solution is implemented using a HMI with an encoder connected to a micro-controller and an analog 2-axis joystick. Experimental results were obtained comparing the proposed solution with other controller devices in different scenarios and using a software platform that simulates the kinematics and dynamics of the vehicle. (authors)« less

  7. Full drive-by-wire dynamic control for four-wheel-steer all-wheel-drive vehicles

    NASA Astrophysics Data System (ADS)

    Fahimi, Farbod

    2013-03-01

    Most of the controllers introduced for four-wheel-steer (4WS) vehicles are derived with the assumption that the longitudinal speed of the vehicle is constant. However, in real applications, the longitudinal speed varies, and the longitudinal, lateral, and yaw dynamics are coupled. In this paper, the longitudinal dynamics of the vehicle as well as its lateral and yaw motions are controlled simultaneously. This way, the effect of driving/braking forces of the tires on the lateral and yaw motions of the vehicle are automatically included in the control laws. To address the dynamic parameter uncertainty of the vehicle, a chatter-free variable structure controller is introduced. Elimination of chatter is achieved by introducing a dynamically adaptive boundary layer thickness. It is shown via simulations that the proposed control approach performs more robustly than the controllers developed based on dynamic models, in which longitudinal speed is assumed to be constant, and only lateral speed and yaw rate are used as system states. Furthermore, this approach supports all-wheel-drive vehicles. Front-wheel-drive or rear-wheel-drive vehicles are also supported as special cases of an all-wheel-drive vehicle.

  8. Bidirectional drive and brake mechanism

    NASA Technical Reports Server (NTRS)

    Swan, Scott A. (Inventor)

    1991-01-01

    A space transport vehicle is disclosed as including a body which is arranged to be movably mounted on an elongated guide member disposed in outer space and driven therealong. A drive wheel is mounted on a drive shaft and arranged to be positioned in rolling engagement with the elongated guide carrying the vehicle. A brake member is arranged on the drive shaft for movement into and out of engagement with an adjacent surface of the drive wheel. An actuator is mounted on the body to be manually moved back and forth between spaced positions in an arc of movement. A ratchet-and-pawl mechanism is arranged to operate upon movements of the actuator in one direction between first and second positions for coupling the actuator to the drive wheel to incrementally rotate the wheel in one rotational direction and to operate upon movements of the actuator in the opposite direction for uncoupling the actuator from the wheel. The brake member is threadedly coupled to the drive shaft in order that the brake member will be operated only when the actuator is moved on beyond its first and second positions for shifting the brake member along the drive shaft and into frictional engagement with the adjacent surface on the drive wheel.

  9. 49 CFR 533.5 - Requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 2-wheel drive category for compliance purposes. (c) For model years 1980 and 1981, manufacturers of... miles per gallon, in the model year specified as applicable: Table I Model year 2-wheel drive light trucks Captiveimports Other 4-wheel drive light trucks Captiveimports Other Limited product line light...

  10. Impediment to Spirit Drive on Sol 1806

    NASA Technical Reports Server (NTRS)

    2009-01-01

    The hazard avoidance camera on the front of NASA's Mars Exploration Rover Spirit took this image after a drive by Spirit on the 1,806th Martian day, or sol, (January 31, 2009) of Spirit's mission on the surface of Mars.

    The wheel at the bottom right of the image is Spirit's right-front wheel. Because that wheel no longer turns, Spirit drives backwards dragging that wheel. The drive on Sol 1806 covered about 30 centimeters (1 foot). The rover team had planned a longer drive, but Spirit stopped short, apparently from the right front wheel encountering the partially buried rock visible next to that wheel.

    The hazard avoidance cameras on the front and back of the rover provide wide-angle views. The hill on the horizon in the right half of this image is Husband Hill. Spirit reached the summit of Husband Hill in 2005.

  11. Origami Wheel Transformer: A Variable-Diameter Wheel Drive Robot Using an Origami Structure.

    PubMed

    Lee, Dae-Young; Kim, Sa-Reum; Kim, Ji-Suk; Park, Jae-Jun; Cho, Kyu-Jin

    2017-06-01

    A wheel drive mechanism is simple, stable, and efficient, but its mobility in unstructured terrain is seriously limited. Using a deformable wheel is one of the ways to increase the mobility of a wheel drive robot. By changing the radius of its wheels, the robot becomes able to pass over not only high steps but also narrow gaps. In this article, we propose a novel design for a variable-diameter wheel using an origami-based soft robotics design approach. By simply folding a patterned sheet into a wheel shape, a variable-diameter wheel was built without requiring lots of mechanical parts and a complex assembly process. The wheel's diameter can change from 30 to 68 mm, and it is light in weight at about 9.7 g. Although composed of soft materials (fabrics and films), the wheel can bear more than 400 times its weight. The robot was able to change the wheel's radius in response to terrain conditions, allowing it to pass over a 50-mm gap when the wheel is shrunk and a 50-mm step when the wheel is enlarged.

  12. Decoupling control of steering and driving system for in-wheel-motor-drive electric vehicle

    NASA Astrophysics Data System (ADS)

    Zhang, Han; Zhao, Wanzhong

    2018-02-01

    To improve the maneuverability and stability of in-wheel-motor-drive electric vehicle, a control strategy based on nonlinear decoupling control method is proposed in this paper, realizing the coordinated control of the steering and driving system. At first, the nonlinear models of the in-wheel-motor-drive electric vehicle and its sub-system are constructed. Then the inverse system decoupling theory is applied to decompose the nonlinear system into several independent subsystems, which makes it possible to realize the coordinated control of each subsystem. Next, the μ-Synthesis theory is applied to eliminate the influence of model uncertainty, improving the stability, robustness and tracking performance of in-wheel-motor-drive electric vehicle. Simulation and experiment results and numerical analyses, based on the electric vehicle actuated by in-wheel-motors, prove that the proposed control method is effective to accomplish the decoupling control of the steering and driving system in both simulation and real practice.

  13. Stabilizing Wheels For Rover Vehicle

    NASA Technical Reports Server (NTRS)

    Collins, Earl R., Jr.

    1990-01-01

    Proposed articulated, normally-four-wheeled vehicle holds extra pair of wheels in reserve. Deployed to lengthen wheelbase on slopes, thereby making vehicle more stable, and to aid vehicle in negotiating ledge or to right vehicle if turned upside down. Extra wheels are drive wheels mounted on arms so they pivot on axis of forward drive wheels. Both extra wheels and arms driven by chains, hydraulic motors, or electric motors. Concept promises to make remotely controlled vehicles more stable and maneuverable in such applications as firefighting, handling hazardous materials, and carrying out operations in dangerous locations.

  14. Evaluating the Effects of Restraint Systems on 4WD Testing Methodologies: A Collaborative Effort between the NVFEL and ANL

    EPA Science Inventory

    Testing vehicles for emissions and fuel economy has traditionally been conducted with a single-axle chassis dynamometer. The 2006 SAE All Wheel Drive Symposium cited four wheel drive (4WD) and all wheel drive (AWD) sales as climbing from 20% toward 30% of a motor vehicle mar...

  15. Global Versus Reactive Navigation for Joint UAV-UGV Missions in a Cluttered Environment

    DTIC Science & Technology

    2012-06-01

    spaces. The vehicle uses a two- wheel 5 differential drive system with a third omnidirectional caster for balance. This uncomplicated system saves... wheels , two differential drive wheels and one omni- directional caster wheel . The vehicle changes the direction of its movement by altering the speed of...Virtual Speed Versus Time..........64  Figure 23:  Heading and Yaw Rate Versus Time................64  Figure 24:  Individual Wheel Speeds Versus Time

  16. Electronic differential control of 2WD electric vehicle considering steering stability

    NASA Astrophysics Data System (ADS)

    Hua, Yiding; Jiang, Haobin; Geng, Guoqing

    2017-03-01

    Aiming at the steering wheel differential steering control technology of rear wheel independent driving electric wheel, considering the assisting effect of electronic differential control on vehicle steering, based on the high speed steering characteristic of electric wheel car, the electronic differential speed of auxiliary wheel steering is also studied. A yaw moment control strategy is applied to the vehicle at high speed. Based on the vehicle stability reference value, yaw rate is used to design the fuzzy controller to distribute the driving wheel torque. The simulation results show that the basic electronic differential speed function is realized based on the yaw moment control strategy, while the vehicle stability control is improved and the driving safety is enhanced. On the other hand, the torque control strategy can also assist steering of vehicle.

  17. Vehicle Dynamics Control of In-wheel Electric Motor Drive Vehicles Based on Averaging of Tire Force Usage

    NASA Astrophysics Data System (ADS)

    Masaki, Nobuo; Iwano, Haruo; Kamada, Takayoshi; Nagai, Masao

    For in-wheel electric motor drive vehicles, a new vehicle dynamics control which is based on the tire force usage rate is proposed. The new controller adopts non-linear optimal control could manage the interference between direct yaw-moment control and the tire force usage rate. The new control is considered total longitudinal and transverse tire force. Therefore the controller can prevent tire force saturation near tire force limit during cornering. Simulations and test runs by the custom made four wheel drive in-wheel motor electric vehicle show that higher driving stability performance compared to the performance of the same vehicle without control.

  18. Mid-sized omnidirectional robot with hydraulic drive and steering

    NASA Astrophysics Data System (ADS)

    Wood, Carl G.; Perry, Trent; Cook, Douglas; Maxfield, Russell; Davidson, Morgan E.

    2003-09-01

    Through funding from the US Army-Tank-Automotive and Armaments Command's (TACOM) Intelligent Mobility Program, Utah State University's (USU) Center for Self-Organizing and Intelligent Systems (CSOIS) has developed the T-series of omni-directional robots based on the USU omni-directional vehicle (ODV) technology. The ODV provides independent computer control of steering and drive in a single wheel assembly. By putting multiple omni-directional (OD) wheels on a chassis, a vehicle is capable of uncoupled translational and rotational motion. Previous robots in the series, the T1, T2, T3, ODIS, ODIS-T, and ODIS-S have all used OD wheels based on electric motors. The T4 weighs approximately 1400 lbs and features a 4-wheel drive wheel configuration. Each wheel assembly consists of a hydraulic drive motor and a hydraulic steering motor. A gasoline engine is used to power both the hydraulic and electrical systems. The paper presents an overview of the mechanical design of the vehicle as well as potential uses of this technology in fielded systems.

  19. Mechanical Design Engineering Enabler Project wheel and wheel drives

    NASA Technical Reports Server (NTRS)

    Nutt, Richard E.; Couch, Britt K.; Holley, John L., Jr.; Garris, Eric S.; Staut, Paul V.

    1992-01-01

    Our group was assigned the responsibility of designing the wheel and wheel drive system for a proof-of-concept model of the lunar-based ENABLER. ENABLER is a multi-purpose, six wheeled vehicle designed to lift and transport heavy objects associated with the construction of a lunar base. The resulting design was based on the performance criteria of the ENABLER. The drive system was designed to enable the vehicle to achieve a speed of 7 mph on a level surface, climb a 30 percent grade, and surpass a one meter high object and one meter wide crevice. The wheel assemblies were designed to support the entire weight of the vehicle on two wheels. The wheels were designed to serve as the main component of the vehicle's suspension and will provide suitable traction for lunar-type surfaces. The expected performance of the drive system for the ENABLER was influenced by many mechanical factors. The expected top speed on a level sandy surface is 4 mph instead of the desired 7 mph. This is due to a lack of necessary power at the wheels. The lack of power resulted from dimension considerations that allowed only an eight horsepower engine and also from mechanical inefficiencies of the hydraulic system. However, the vehicle will be able to climb a 30 percent grade, surpass a one meter high object and one meter wide crevice. The wheel assemblies will be able to support the entire weight of the vehicle on two wheels. The wheels will also provide adequate suspension for the vehicle and sufficient traction for lunar-type surfaces.

  20. Friction self-oscillation decrease in nonlinear system of locomotive traction drive

    NASA Astrophysics Data System (ADS)

    Antipin, D. Ya; Vorobiyov, V. I.; Izmerov, O. V.; Shorokhov, S. G.; Bondarenko, D. A.

    2017-02-01

    The problems of the friction self-oscillation decrease in a nonlinear system of a locomotive traction drive are considered. It is determined that the self-oscillation amplitude decrease in a locomotive wheel pair during boxing in traction drives with an elastic linkage between an armature of a traction electric motor and gearing can be achieved due to drive damping capacity during impact vibro-damping in an axle reduction gear with a hard driven gear. The self-oscillation amplitude reduction in a wheel pair in the designs of locomotive traction drives with the location of elastic elements between a wheel pair and gearing can be obtained owing to the application of drive inertial masses as an anti-vibrator. On the basis of the carried out investigations, a design variant of a self-oscillation shock absorber of a traction electric motor framework on a reduction gear suspension with an absorber located beyond a wheel-motor unit was offered.

  1. Novel Straight Road Driving Control of Power Assisted Wheelchair Based on Disturbance Estimation of Right and Left Wheels

    NASA Astrophysics Data System (ADS)

    Seki, Hirokazu; Sugimoto, Takeaki; Tadakuma, Susumu

    This paper describes a novel straight road driving control scheme of power assisted wheelchair. Power assisted wheelchair which assists the driving force by electric motors is expected to be widely used as a mobility support system for elderly people and disabled people. The straight driving can be prevented by the road conditions such as branches, grass and carpets because the right and left wheels drive independently. This paper proposes a straight road driving control system based on the disturbance torque estimation. The proposed system estimates the difference of the driving torque by disturbance torque observer and compensates to one side of the wheels. Some practical driving experiments on various road conditions show the effectiveness of the proposed control system.

  2. Portrait of an Aging Wheel

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This plot maps the increasing amounts of energy needed to spin Spirit's right front wheel drive, which has been showing signs of age. The wheel has now traveled six times farther than its design life. Since Spirit's 126th day on Mars, this wheel has required additional electric current to run at normal speeds, as indicated with blue diamonds on this graph. Efforts to improve the situation by redistributing the lubricant in the wheel with heat and rest were only mildly successful (pink squares). To cope with the condition, rover planners have come up with a creative solution: they will drive the rover backwards using five of six wheels. The sixth wheel will be activated only when the terrain demands it.

  3. Design of driving control strategy of torque distribution for two - wheel independent drive electric vehicle

    NASA Astrophysics Data System (ADS)

    Zhang, Chuanwei; Zhang, Dongsheng; Wen, Jianping

    2018-02-01

    In order to coordinately control the torque distribution of existing two-wheel independent drive electric vehicle, and improve the energy efficiency and control stability of the whole vehicle, the control strategies based on fuzzy control were designed which adopt the direct yaw moment control as the main line. For realizing the torque coordination simulation of the two-wheel independent drive vehicle, the vehicle model, motor model and tire model were built, including the vehicle 7 - DOF dynamics model, motion equation, torque equation. Finally, in the Carsim - Simulink joint simulation platform, the feasibility of the drive control strategy was verified.

  4. Method for surmounting an obstacle by a robot vehicle

    NASA Technical Reports Server (NTRS)

    Wilcox, Brian H. (Inventor); Ohm, Timothy R. (Inventor)

    1994-01-01

    Surmounting obstacles in the path of a robot vehicle is accomplished by rotating the wheel forks of the vehicle about their transverse axes with respect to the vehicle body so as to shift most of the vehicle weight onto the rear wheels, and then driving the vehicle forward so as to drive the now lightly-loaded front wheels (only) over the obstacle. Then, after the front wheels have either surmounted or completely passed the obstacle (depending upon the length of the obstacle), the forks are again rotated about their transverse axes so as to shift most of the vehicle weight onto the front wheels. Then the vehicle is again driven forward so as to drive the now lightly-loaded rear wheels over the obstacle. Once the obstacle has been completely cleared and the vehicle is again on relatively level terrain, the forks are again rotated so as to uniformly distribute the vehicle weight between the front and rear wheels.

  5. 23. DETAIL VIEW OF THE CLUTCH MECHANISM FOR THE MILL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. DETAIL VIEW OF THE CLUTCH MECHANISM FOR THE MILL POWER DISTRIBUTION SYSTEM FROM LEFT TO RIGHT. TRANSFER WHEEL WITH A BELT THAT CONNECTS TO THE DRIVE WHEEL OF THE MAIN POWER SHAFT. THE CLUTCH MECHANISM, THE DRIVE WHEEL THAT RECEIVED ITS POWER FROM A BELT CONNECTED TO TRANSFER WHEEL IN THE ELECTRIC MOTOR ROOM (BEHIND CAMERA). - Standard Gold Mill, East of Bodie Creek, Northeast of Bodie, Bodie, Mono County, CA

  6. Opportunity's First Dip into Victoria Crater

    NASA Technical Reports Server (NTRS)

    2007-01-01

    NASA's Mars Exploration Rover Opportunity entered Victoria Crater during the rover's 1,291st Martian day, or sol, (Sept. 11, 2007). The rover team commanded Opportunity to drive just far enough into the crater to get all six wheels onto the inner slope, and then to back out again and assess how much the wheels slipped on the slope. The driving commands for the day included a precaution for the rover to stop driving if the wheels were slipping more than 40 percent. Slippage exceeded that amount on the last step of the drive, so Opportunity stopped with its front pair of wheels still inside the crater. The rover team planned to assess results of the drive, then start Opportunity on an extended exploration inside the crater.

    This wide-angle view taken by Opportunity's front hazard-identification camera at the end of the day's driving shows the wheel tracks created by the short dip into the crater. The left half of the image looks across an alcove informally named 'Duck Bay' toward a promontory called 'Cape Verde' clockwise around the crater wall. The right half of the image looks across the main body of the crater, which is 800 meters (half a mile) in diameter.

  7. A novel dual motor drive system for three wheel electric vehicles

    NASA Astrophysics Data System (ADS)

    Panmuang, Piyapat; Thongsan, Taweesak; Suwapaet, Nuchida; Laohavanich, Juckamass; Photong, Chonlatee

    2018-03-01

    This paper presents a novel dual motor drive system used for three wheel electric vehicles that have one free wheel at the front and two wheels with a drive system at the end of the vehicles. A novel dual motor drive system consists of two identical DC motors that are independently controlled by its speed-torque controller. Under light load conditions, only one of the DC motors will operate around it rated whilst under hard load conditions both of the DC motors will operate. With this drive system, the motors will operate only at its high performance at rated or else no operate to retain longer lifetime. The simulated results for the Skylab three wheel electric vehicle prototype with 8kW at full load (high torque, low speed) and around 4kW at light/normal operating loads (regular speed-torque) showed that the proposed system provides better dynamic responses with faster overshoot current/voltage recovery time, has lower investment costs, has longer lifetime of the motors and allows the motors to always operate at their high performance and thus achieve more cost effective system compared to a single motor drive system with 8kW DC motors.

  8. Driver behavior following an automatic steering intervention.

    PubMed

    Fricke, Nicola; Griesche, Stefan; Schieben, Anna; Hesse, Tobias; Baumann, Martin

    2015-10-01

    The study investigated driver behavior toward an automatic steering intervention of a collision mitigation system. Forty participants were tested in a driving simulator and confronted with an inevitable collision. They performed a naïve drive and afterwards a repeated exposure in which they were told to hold the steering wheel loosely. In a third drive they experienced a false alarm situation. Data on driving behavior, i.e. steering and braking behavior as well as subjective data was assessed in the scenarios. Results showed that most participants held on to the steering wheel strongly or counter-steered during the system intervention during the first encounter. Moreover, subjective data collected after the first drive showed that the majority of drivers was not aware of the system intervention. Data from the repeated drive in which participants were instructed to hold the steering wheel loosely, led to significantly more participants holding the steering wheel loosely and thus complying with the instruction. This study seems to imply that without knowledge and information of the system about an upcoming intervention, the most prevalent driving behavior is a strong reaction with the steering wheel similar to an automatic steering reflex which decreases the system's effectiveness. Results of the second drive show some potential for countermeasures, such as informing drivers shortly before a system intervention in order to prevent inhibiting reactions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Wheeled Vehicle Drive Lines, Axles, and Suspension Systems. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Army Ordnance Center and School, Aberdeen Proving Ground, MD.

    This course is one of several subcourses that make up the entire Army correspondence course on wheeled vehicle maintenance. The subcourse is designed to provide the student with information about the operation, malfunction diagnosis, maintenance, and repair of wheeled vehicle drive lines, axles, and suspension systems. It provides the basic…

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reister, D.B.; Pin, F.G.

    This paper addresses the problem of time-optional motions for a mobile platform in a planar environment. The platform has two non-steerable independently driven wheels. The overall mission of the robot is expressed in terms of a sequence of via points at which the platform must be at rest in a given configuration (position and orientation). The objective is to plan time-optimal trajectories between these configurations assuming an unobstructed environment. Using Pontryagin's maximum principle (PMP), we formally demonstrate that all time optimal motions of the platform for this problem occur for bang-bang controls on the wheels (at each instant, the accelerationmore » on each wheel is either at its upper or lower limit). The PMP, however, only provides necessary conditions for time optimality. To find the time optimal robot trajectories, we first parameterize the bang-bang trajectories using the switch times on the wheels (the times at which the wheel accelerations change sign). With this parameterization, we can fully search the robot trajectory space and find the switch times that will produce particular paths to a desired final configuration of the platform. We show numerically that robot trajectories with three switch times (two on one wheel, one on the other) can reach any position, while trajectories with four switch times can reach any configuration. By numerical comparison with other trajectories involving similar or greater numbers of switch times, we then identify the sets of time-optimal trajectories. These are uniquely defined using ranges of the parameters, and consist of subsets of trajectories with three switch times for the problem when the final orientation of the robot is not specified, and four switch times when a full final configuration is specified. We conclude with a description of the use of the method for trajectory planning for one of our robots.« less

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reister, D.B.; Pin, F.G.

    This paper addresses the problem of time-optional motions for a mobile platform in a planar environment. The platform has two non-steerable independently driven wheels. The overall mission of the robot is expressed in terms of a sequence of via points at which the platform must be at rest in a given configuration (position and orientation). The objective is to plan time-optimal trajectories between these configurations assuming an unobstructed environment. Using Pontryagin`s maximum principle (PMP), we formally demonstrate that all time optimal motions of the platform for this problem occur for bang-bang controls on the wheels (at each instant, the accelerationmore » on each wheel is either at its upper or lower limit). The PMP, however, only provides necessary conditions for time optimality. To find the time optimal robot trajectories, we first parameterize the bang-bang trajectories using the switch times on the wheels (the times at which the wheel accelerations change sign). With this parameterization, we can fully search the robot trajectory space and find the switch times that will produce particular paths to a desired final configuration of the platform. We show numerically that robot trajectories with three switch times (two on one wheel, one on the other) can reach any position, while trajectories with four switch times can reach any configuration. By numerical comparison with other trajectories involving similar or greater numbers of switch times, we then identify the sets of time-optimal trajectories. These are uniquely defined using ranges of the parameters, and consist of subsets of trajectories with three switch times for the problem when the final orientation of the robot is not specified, and four switch times when a full final configuration is specified. We conclude with a description of the use of the method for trajectory planning for one of our robots.« less

  12. 49 CFR 533.4 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... by a manufacturer whose principal place of business is in the United States. 4-wheel drive, general utility vehicle means a 4-wheel drive, general purpose automobile capable of off-highway operation that...

  13. Pressure tracking control of vehicle ABS using piezo valve modulator

    NASA Astrophysics Data System (ADS)

    Jeon, Juncheol; Choi, Seung-Bok

    2011-03-01

    This paper presents a wheel slip control for the ABS(anti-lock brake system) of a passenger vehicle using a controllable piezo valve modulator. The ABS is designed to optimize for braking effectiveness and good steerability. As a first step, the principal design parameters of the piezo valve and pressure modulator are appropriately determined by considering the braking pressure variation during the ABS operation. The proposed piezo valve consists of a flapper, pneumatic circuit and a piezostack actuator. In order to get wide control range of the pressure, the pressure modulator is desired. The modulator consists of a dual-type cylinder filled with different substances (fluid and gas) and a piston rod moving vertical axis to transmit the force. Subsequently, a quarter car wheel slip model is formulated and integrated with the governing equation of the piezo valve modulator. A sliding mode controller to achieve the desired slip rate is then designed and implemented. Braking control performances such as brake pressure and slip rate are evaluated via computer simulations.

  14. BLOWER MOTOR & DRIVE WHEEL. Hot Springs National Park, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    BLOWER MOTOR & DRIVE WHEEL. - Hot Springs National Park, Bathhouse Row, Superior Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  15. Two speed drive system. [mechanical device for changing speed on rotating vehicle wheel

    NASA Technical Reports Server (NTRS)

    Burch, J. L. (Inventor)

    1972-01-01

    A two speed drive system for a wheel of a vehicle by which shifting from one speed to the other is accomplished by the inherent mechanism of the wheel is described. A description of the speed shifting operation is provided and diagrams of the mechanism are included. Possible application to lunar roving vehicles is proposed.

  16. Human machine interface to manually drive rhombic like vehicles such as transport casks in ITER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopes, Pedro; Vale, Alberto; Ventura, Rodrigo

    2015-07-01

    The Cask and Plug Remote Handling System (CPRHS) and the respective Cask Transfer System (CTS) are designed to transport activated components between the reactor and the hot cell buildings of ITER during maintenance operations. In nominal operation, the CPRHS/CTS shall operate autonomously under human supervision. However, in some unexpected situations, the automatic mode must be overridden and the vehicle must be remotely guided by a human operator due to the harsh conditions of the environment. The CPRHS/CTS is a rhombic-like vehicle with two independent steerable and drivable wheels along its longitudinal axis, giving it omni-directional capabilities. During manual guidance, themore » human operator has to deal with four degrees of freedom, namely the orientations and speeds of two wheels. This work proposes a Human Machine Interface (HMI) to manage the degrees of freedom and to remotely guide the CPRHS/CTS in ITER taking the most advantages of rhombic like capabilities. Previous work was done to drive each wheel independently, i.e., control the orientation and speed of each wheel independently. The results have shown that the proposed solution is inefficient. The attention of the human operator becomes focused in a single wheel. In addition, the proposed solution cannot assure that the commands accomplish the physical constrains of the vehicle, resulting in slippage or even in clashes. This work proposes a solution that consists in the control of the vehicle looking at the position of its center of mass and its heading in the world frame. The solution is implemented using a rotational disk to control the vehicle heading and a common analogue joystick to control the vector speed of the center of the mass of the vehicle. The number of degrees of freedom reduces to three, i.e., two angles (vehicle heading and the orientation of the vector speed) and a scalar (the magnitude of the speed vector). This is possible using a kinematic model based on the vehicle Instantaneous Center of Rotation (ICR): a geometric approach where, at each time instant, the vehicle describes a circumference (either with a finite or infinite radius). The inverse of the kinematic model transforms the three input parameters of the center of mass into the four parameters for the wheels, preserving the omni-directional capabilities. The solution is implemented and tested using a HMI with a control disk and an analog joystick with two axis. The control disk was specially designed for this solution and implemented using a programmable micro-controller. In the first set of experiments, the HMI communicates with a computer running a simulator of the CPRHS/CTS, with the vehicle kinematics and dynamics, moving in a map of the ITER buildings. In the second set of experiments, the HMI communicates with a scaled prototype of the CPRHS running in a mock-up scenario to obtain more realistic results. Several type of tests were performed to evaluate the usability of the HMI. Different human operators without knowledge neither experience with this interface were invited to test the HMI. The operators had to drive the vehicle from an initial place to a final destination under the following conditions: with a pre-computed path to help guidance, without any path, with the information of the closest obstacles and without any help. The performance was evaluated using the time duration of the operation, the energy required to perform the described path, the risk of collision and, in case of a pre-computed path, the comparison between paths. In addition, each operator tested the HMI several times to evaluate the performance along consecutive trials. (authors)« less

  17. 49 CFR 230.114 - Wheel centers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., following the repair, the crankpin and axle shall remain tight in the wheel. Banding of the hub is permitted... 49 Transportation 4 2013-10-01 2013-10-01 false Wheel centers. 230.114 Section 230.114... Tenders Wheels and Tires § 230.114 Wheel centers. (a) Filling blocks and shims. Driving and trailing wheel...

  18. 49 CFR 230.114 - Wheel centers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., following the repair, the crankpin and axle shall remain tight in the wheel. Banding of the hub is permitted... 49 Transportation 4 2014-10-01 2014-10-01 false Wheel centers. 230.114 Section 230.114... Tenders Wheels and Tires § 230.114 Wheel centers. (a) Filling blocks and shims. Driving and trailing wheel...

  19. 49 CFR 230.105 - Lateral motion.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... between the hubs of the wheels and the boxes on any pair of wheels shall not exceed the following limits: Inches Engine truck wheels (with swing centers) 1 Engine truck wheels (with rigid centers) 11/2 Trailing truck wheels 1 Driving wheels 3/4 (b) Limits increased. These limits may be increased on steam...

  20. 49 CFR 230.114 - Wheel centers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., following the repair, the crankpin and axle shall remain tight in the wheel. Banding of the hub is permitted... 49 Transportation 4 2012-10-01 2012-10-01 false Wheel centers. 230.114 Section 230.114... Tenders Wheels and Tires § 230.114 Wheel centers. (a) Filling blocks and shims. Driving and trailing wheel...

  1. 49 CFR 230.105 - Lateral motion.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... between the hubs of the wheels and the boxes on any pair of wheels shall not exceed the following limits: Inches Engine truck wheels (with swing centers) 1 Engine truck wheels (with rigid centers) 11/2 Trailing truck wheels 1 Driving wheels 3/4 (b) Limits increased. These limits may be increased on steam...

  2. 49 CFR 230.105 - Lateral motion.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... between the hubs of the wheels and the boxes on any pair of wheels shall not exceed the following limits: Inches Engine truck wheels (with swing centers) 1 Engine truck wheels (with rigid centers) 11/2 Trailing truck wheels 1 Driving wheels 3/4 (b) Limits increased. These limits may be increased on steam...

  3. 49 CFR 230.114 - Wheel centers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., following the repair, the crankpin and axle shall remain tight in the wheel. Banding of the hub is permitted... 49 Transportation 4 2011-10-01 2011-10-01 false Wheel centers. 230.114 Section 230.114... Tenders Wheels and Tires § 230.114 Wheel centers. (a) Filling blocks and shims. Driving and trailing wheel...

  4. 49 CFR 230.114 - Wheel centers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., following the repair, the crankpin and axle shall remain tight in the wheel. Banding of the hub is permitted... 49 Transportation 4 2010-10-01 2010-10-01 false Wheel centers. 230.114 Section 230.114... Tenders Wheels and Tires § 230.114 Wheel centers. (a) Filling blocks and shims. Driving and trailing wheel...

  5. 49 CFR 230.105 - Lateral motion.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... between the hubs of the wheels and the boxes on any pair of wheels shall not exceed the following limits: Inches Engine truck wheels (with swing centers) 1 Engine truck wheels (with rigid centers) 11/2 Trailing truck wheels 1 Driving wheels 3/4 (b) Limits increased. These limits may be increased on steam...

  6. 49 CFR 230.105 - Lateral motion.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... between the hubs of the wheels and the boxes on any pair of wheels shall not exceed the following limits: Inches Engine truck wheels (with swing centers) 1 Engine truck wheels (with rigid centers) 11/2 Trailing truck wheels 1 Driving wheels 3/4 (b) Limits increased. These limits may be increased on steam...

  7. Omnidirectional wheel

    NASA Technical Reports Server (NTRS)

    Blumrich, J. F. (Inventor)

    1974-01-01

    The apparatus consists of a wheel having a hub with radially disposed spokes which are provided with a plurality of circumferential rim segments. These rim segments carry, between the spokes, rim elements which are rigid relative to their outer support surfaces, and defined in their outer contour to form a part of the circle forming the wheel diameter. The rim segments have provided for each of the rim elements an independent drive means selectively operable when the element is in ground contact to rotatably drive the rim element in a direction of movement perpendicularly lateral to the normal plane of rotation and movement of the wheel. This affords the wheel omnidirectional movement.

  8. Novel Straight and Circular Road Driving Control of Electric Power Assisted Wheelchair Based on Fuzzy Algorithm

    NASA Astrophysics Data System (ADS)

    Seki, Hirokazu; Tadakuma, Susumu

    This paper describes a novel straight and circular road driving control scheme for electric power assisted wheelchairs. “Electric power assisted wheelchair” which assists the driving force by electric motors is expected to be widely used as a mobility support system for elderly people and disabled people, however, the performance of the straight and circular road driving must be further improved because the two wheels drive independently. This paper proposes a novel driving control scheme based on fuzzy algorithm to realize the stable and reliable driving on straight and circular roads. The suitable assisted torque of the right and left wheels is determined by fuzzy algorithm based on the posture angular velocity of the wheelchair and the human input torque proportion of the right and left wheels. Some experiments on the practical roads show the effectiveness of the proposed control system.

  9. 48. MAIN WAREHOUSE THIRD LEVEL Elevator drive mechanism is ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    48. MAIN WAREHOUSE - THIRD LEVEL Elevator drive mechanism is seen to the right, while drive wheels, belt wheels and chain drives are visible in the wooden wall framing. The horizontal metal conveyor (at the top of the wall Just under the inverted 'V' brace) is part of the empty can supply system connected to the external can conveyor. See Photo No. 28. - Hovden Cannery, 886 Cannery Row, Monterey, Monterey County, CA

  10. Interaction of In-wheel permanent magnet synchronous motor with tire dynamics

    NASA Astrophysics Data System (ADS)

    Song, Ziyou; Li, Jianqiu; Wei, Yintao; Xu, Liangfei; Ouyang, Minggao

    2015-05-01

    Drive wheel systems combined with the in-wheel permanent magnet synchronous motor (I-PMSM) and the tire are highly electromechanical-coupled. However, the deformation dynamics of this system, which may influence the system performance, is neglected in most existing literatures. For this reason, a deformable tire and a detailed I-PMSM are modeled using Matlab/Simulink. Furthermore, the influence of tire/road contact interface is accurately described by the non-linear relaxation length-based model and magic formula pragmatic model. The drive wheel model used in this paper is closer to that of a real tire in contrast to the rigid tire model which is widely used. Based on the near-precise model mentioned above, the sensitivity of the dynamic tire and I-PMSM parameters to the relative error of slip ratio estimation is analyzed. Additionally, the torsional and longitudinal vibrations of the drive wheel are presented both in time and frequency domains when a quarter vehicle is started under conditions of a specific torque curve, which includes an abrupt torque change from 30 N · m to 200 N · m. The parameters sensitivity on drive wheel vibrations is also studied, and the parameters include the mass distribution ratio of tire, the tire torsional stiffness, the tire damping coefficient, and the hysteresis band of the PMSM current control algorithm. Finally, different target torque curves are compared in the simulation, which shows that the estimation error of the slip ratio gets violent, and the longitudinal force includes more fluctuation components with the increasing change rate of the torque. This paper analyzes the influence of the drive wheel deformation on the vehicle dynamic control, and provides useful information regarding the electric vehicle traction control.

  11. Preliminary Design and Investigation of Integrated Compressor with Composite Material Wheel

    NASA Astrophysics Data System (ADS)

    Wang, Jifeng; Müller, Norbert

    2012-06-01

    An integrated water vapor compressor with composite material wheel is developed and strength analysis using FEM is presented. The design of wound composite material allows for integrating all rotating parts of the drive that may simply reduce to only the rotor of the electrical motor, since no drive shaft is required anymore. This design can reduce the number of parts and mass, which is convenient for engineers to maintain the compressor. The electrical motors are brushless DC motors operating through a frequency drive and apply a torque on the wheels through the materials bonded in the wheel shrouds. This system allows a large amount of compression to be produced in a multi-stage compression setup. To determine the stress and vibration characteristics of this integrated compressor, numerical analysis is carried out using FEM. The simulation result shows that the integrated compressor with composite material wheel can be used in a chiller system where water as a refrigerant.

  12. Electric propulsion system for wheeled vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramos, J.A.

    1981-11-03

    An electric propulsion system for a wheeled vehicle has a generator and motor connected to a drive shaft and an electrical system for charging a battery during all conditions of power transfer from the wheels of the vehicle to the generator to minimize energy required for propulsion. A variable speed power coupling unit connecting the motor to the drive shaft has sprockets revolving about a belt connected sun sprocket with speed control effected by varying the rate of satellite sprocket rotation.

  13. Warning system against locomotive driving wheel flaccidity

    NASA Astrophysics Data System (ADS)

    Luo, Peng

    2014-09-01

    Causes of locomotive relaxation are discussed. Alarm system against locomotive driving wheel flaccidity is designed by means of techniques of infrared temperature measurement and Hall sensor measurement. The design scheme of the system, the principle of detecting locomotive driving wheel flaccidity with temperature and Hall sensor is introduced, threshold temperature of infrared alarm is determined. The circuit system is designed by microcontroller technology and the software is designed with the assembly language. The experiment of measuring the flaccid displacement with Hall sensor measurement is simulated. The results show that the system runs well with high reliability and low cost, which has a wide prospect of application and popularization.

  14. 36 CFR 7.65 - Assateague Island National Seashore.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... yards of any waterfowl hunting blind during waterfowl season. (12) Hunting on seashore lands and waters...-the-road vehicles such as beachbuggies, four-wheel-drive vehicles, pickup trucks, and standard... not meet the following standards: On four-wheel-drive vehicles and trailers towed by any vehicle: Per...

  15. 36 CFR 7.65 - Assateague Island National Seashore.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... yards of any waterfowl hunting blind during waterfowl season. (12) Hunting on seashore lands and waters...-the-road vehicles such as beachbuggies, four-wheel-drive vehicles, pickup trucks, and standard... not meet the following standards: On four-wheel-drive vehicles and trailers towed by any vehicle: Per...

  16. 36 CFR 7.65 - Assateague Island National Seashore.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... yards of any waterfowl hunting blind during waterfowl season. (12) Hunting on seashore lands and waters...-the-road vehicles such as beachbuggies, four-wheel-drive vehicles, pickup trucks, and standard... not meet the following standards: On four-wheel-drive vehicles and trailers towed by any vehicle: Per...

  17. Neural-network hybrid control for antilock braking systems.

    PubMed

    Lin, Chih-Min; Hsu, C F

    2003-01-01

    The antilock braking systems are designed to maximize wheel traction by preventing the wheels from locking during braking, while also maintaining adequate vehicle steerability; however, the performance is often degraded under harsh road conditions. In this paper, a hybrid control system with a recurrent neural network (RNN) observer is developed for antilock braking systems. This hybrid control system is comprised of an ideal controller and a compensation controller. The ideal controller, containing an RNN uncertainty observer, is the principal controller; and the compensation controller is a compensator for the difference between the system uncertainty and the estimated uncertainty. Since for dynamic response the RNN has capabilities superior to the feedforward NN, it is utilized for the uncertainty observer. The Taylor linearization technique is employed to increase the learning ability of the RNN. In addition, the on-line parameter adaptation laws are derived based on a Lyapunov function, so the stability of the system can be guaranteed. Simulations are performed to demonstrate the effectiveness of the proposed NN hybrid control system for antilock braking control under various road conditions.

  18. Wheel speed management control system for spacecraft

    NASA Technical Reports Server (NTRS)

    Goodzeit, Neil E. (Inventor); Linder, David M. (Inventor)

    1991-01-01

    A spacecraft attitude control system uses at least four reaction wheels. In order to minimize reaction wheel speed and therefore power, a wheel speed management system is provided. The management system monitors the wheel speeds and generates a wheel speed error vector. The error vector is integrated, and the error vector and its integral are combined to form a correction vector. The correction vector is summed with the attitude control torque command signals for driving the reaction wheels.

  19. In-line drivetrain and four wheel drive work machine using same

    DOEpatents

    Hoff, Brian

    2008-08-05

    A four wheel drive articulated mine loader is powered by a fuel cell and propelled by a single electric motor. The drivetrain has the first axle, second axle, and motor arranged in series on the work machine chassis. Torque is carried from the electric motor to the back differential via a pinion meshed with the ring gear of the back differential. A second pinion oriented in an opposite direction away from the ring gear is coupled to a drive shaft to transfer torque from the ring gear to the differential of the front axle. Thus, the ring gear of the back differential acts both to receive torque from the motor and to transfer torque to the forward axle. The in-line drive configuration includes a single electric motor and a single reduction gear to power the four wheel drive mine loader.

  20. Development and performance characterization of an electric ground vehicle with independently actuated in-wheel motors

    NASA Astrophysics Data System (ADS)

    Wang, Rongrong; Chen, Yan; Feng, Daiwei; Huang, Xiaoyu; Wang, Junmin

    This paper presents the development and experimental characterizations of a prototyping pure electric ground vehicle, which is equipped with four independently actuated in-wheel motors (FIAIWM) and is powered by a 72 V 200 Ah LiFeYPO 4 battery pack. Such an electric ground vehicle (EGV) employs four in-wheel (or hub) motors to independently drive/brake the four wheels and is one of the promising vehicle architectures primarily due to its actuation flexibility, energy efficiency, and performance potentials. Experimental data obtained from the EGV chassis dynamometer tests were employed to generate the in-wheel motor torque response and power efficiency maps in both driving and regenerative braking modes. A torque distribution method is proposed to show the potentials of optimizing the FIAIWM EGV operational energy efficiency by utilizing the actuation flexibility and the characterized in-wheel motor efficiency and torque response.

  1. After a Spirit Drive West of Home Plate

    NASA Image and Video Library

    2009-04-20

    NASA's Mars Exploration Rover Spirit drove 6.98 meters (22.9 feet) southeastward on the 1,871st Martian day, or sol, of the rover's mission on Mars (April 8, 2009). As usual since losing the use of its right-front wheel in 2006, Spirit drove backward, dragging the immobile wheel. The rover used its front hazard-avoidance camera after the drive to capture this view looking back at the ground covered. For scale, the distance between the parallel wheel tracks is about 1 meter (40 inches). The drive added to progress in trekking counterclockwise around a low plateau called "Home Plate." Spirit is driving through a valley on the west side of the plateau. Home Plate is not within this image. The hill on the horizon in the upper right is Husband Hill, the summit of which is about 750 meters (nearly half a mile) to the north of Spirit's position. Following this drive, Spirit experienced difficulties that prevented driving during the subsequent week. http://photojournal.jpl.nasa.gov/catalog/PIA11990

  2. 49 CFR 570.59 - Service brake system.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... the following tests. (1) Roller-type or drive-on platform tests. The force applied by the brake on a front wheel or a rear wheel shall not differ by more than 25 percent from the force applied by the brake on the other front wheel or the other rear wheel respectively. (i) Inspection procedure. The vehicle...

  3. 49 CFR 570.59 - Service brake system.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... the following tests. (1) Roller-type or drive-on platform tests. The force applied by the brake on a front wheel or a rear wheel shall not differ by more than 25 percent from the force applied by the brake on the other front wheel or the other rear wheel respectively. (i) Inspection procedure. The vehicle...

  4. 49 CFR 570.59 - Service brake system.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... the following tests. (1) Roller-type or drive-on platform tests. The force applied by the brake on a front wheel or a rear wheel shall not differ by more than 25 percent from the force applied by the brake on the other front wheel or the other rear wheel respectively. (i) Inspection procedure. The vehicle...

  5. 49 CFR 570.59 - Service brake system.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... the following tests. (1) Roller-type or drive-on platform tests. The force applied by the brake on a front wheel or a rear wheel shall not differ by more than 25 percent from the force applied by the brake on the other front wheel or the other rear wheel respectively. (i) Inspection procedure. The vehicle...

  6. 49 CFR 570.59 - Service brake system.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... the following tests. (1) Roller-type or drive-on platform tests. The force applied by the brake on a front wheel or a rear wheel shall not differ by more than 25 percent from the force applied by the brake on the other front wheel or the other rear wheel respectively. (i) Inspection procedure. The vehicle...

  7. Influence of tire dynamics on slip ratio estimation of independent driving wheel system

    NASA Astrophysics Data System (ADS)

    Li, Jianqiu; Song, Ziyou; Wei, Yintao; Ouyang, Minggao

    2014-11-01

    The independent driving wheel system, which is composed of in-wheel permanent magnet synchronous motor(I-PMSM) and tire, is more convenient to estimate the slip ratio because the rotary speed of the rotor can be accurately measured. However, the ring speed of the tire ring doesn't equal to the rotor speed considering the tire deformation. For this reason, a deformable tire and a detailed I-PMSM are modeled by using Matlab/Simulink. Moreover, the tire/road contact interface(a slippery road) is accurately described by the non-linear relaxation length-based model and the Magic Formula pragmatic model. Based on the relatively accurate model, the error of slip ratio estimated by the rotor rotary speed is analyzed in both time and frequency domains when a quarter car is started by the I-PMSM with a definite target torque input curve. In addition, the natural frequencies(NFs) of the driving wheel system with variable parameters are illustrated to present the relationship between the slip ratio estimation error and the NF. According to this relationship, a low-pass filter, whose cut-off frequency corresponds to the NF, is proposed to eliminate the error in the estimated slip ratio. The analysis, concerning the effect of the driving wheel parameters and road conditions on slip ratio estimation, shows that the peak estimation error can be reduced up to 75% when the LPF is adopted. The robustness and effectiveness of the LPF are therefore validated. This paper builds up the deformable tire model and the detailed I-PMSM models, and analyzes the effect of the driving wheel parameters and road conditions on slip ratio estimation.

  8. New Record Five-Wheel Drive, Spirit's Sol 1856

    NASA Technical Reports Server (NTRS)

    2009-01-01

    NASA's Mars Exploration Rover Spirit used its navigation camera to take the images that have been combined into this stereo, 180-degree view of the rover's surroundings during the 1,856th Martian day, or sol, of Spirit's surface mission (March 23, 2009). The center of the view is toward the west-southwest.

    The rover had driven 25.82 meters (84.7 feet) west-northwestward earlier on Sol 1856. This is the longest drive on Mars so far by a rover using only five wheels. Spirit lost the use of its right-front wheel in March 2006. Before Sol 1856, the farthest Spirit had covered in a single sol's five-wheel drive was 24.83 meters (81.5 feet), on Sol 1363 (Nov. 3, 2007).

    The Sol 1856 drive made progress on a route planned for taking Spirit around the western side of the low plateau called 'Home Plate.' A portion of the northwestern edge of Home Plate is prominent in the left quarter of this image, toward the south.

    This view is presented as a cylindrical projection with geometric seam correction.

  9. Proposal to use vibration analysis steering components and car body to monitor, for example, the state of unbalance wheel

    NASA Astrophysics Data System (ADS)

    Janczur, R.

    2016-09-01

    The results of road tests of car VW Passat equipped with tires of size 195/65 R15, on the influence of the unbalancing front wheel on vibration of the parts of steering system, steering wheel and the body of the vehicle have been presented in this paper. Unbalances wheels made using weights of different masses, placed close to the outer edge of the steel rim and checked on the machine Hunter GSP 9700 for balancing wheels. The recorded waveforms vibration steering components and car body, at different constant driving speeds, subjected to spectral analysis to determine the possibility of isolating vibration caused by unbalanced wheel in various states and coming from good quality asphalt road surface. The results were discussed in terms of the possibility of identifying the state of unbalancing wheels and possible changes in radial stiffness of the tire vibration transmitted through the system driving wheel on the steering wheel. Vibration analysis steering components and car body, also in the longitudinal direction, including information from the CAN bus of the state of motion of the car, can be used to monitor the development of the state of unbalance wheel, tire damage or errors shape of brake discs or brake drums, causing pulsations braking forces.

  10. 75 FR 32806 - Notice of Issuance of Final Determination Concerning Certain Upright and Recumbent Exercise Bikes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-09

    ... assembly, are assembled in the U.S. The primary subassemblies include the wheel assembly; the leg leveler.../shaft; the drive pulley/crank hub; the idler-arm assembly; the alternator- pulley assembly; the rear.... Pressing flange bearing into wheel using arbor press; (wheel assembly) 2. Securing insert to wheel and...

  11. ILC TARGET WHEEL RIM FRAGMENT/GUARD PLATE IMPACT ANALYSIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hagler, L

    2008-07-17

    A positron source component is needed for the International Linear Collider Project. The leading design concept for this source is a rotating titanium alloy wheel whose spokes rotate through an intense localized magnetic field. The system is composed of an electric motor, flexible motor/drive-shaft coupling, stainless steel drive-shaft, two Plumber's Block tapered roller bearings, a titanium alloy target wheel, and electromagnet. Surrounding the target wheel and magnet is a steel frame with steel guarding plates intended to contain shrapnel in case of catastrophic wheel failure. Figure 1 is a layout of this system (guard plates not shown for clarity). Thismore » report documents the FEA analyses that were performed at LLNL to help determine, on a preliminary basis, the required guard plate thickness for three potential plate steels.« less

  12. Fault-tolerant control of electric vehicles with in-wheel motors using actuator-grouping sliding mode controllers

    NASA Astrophysics Data System (ADS)

    Li, Boyuan; Du, Haiping; Li, Weihua

    2016-05-01

    Although electric vehicles with in-wheel motors have been regarded as one of the promising vehicle architectures in recent years, the probability of in-wheel motor fault is still a crucial issue due to the system complexity and large number of control actuators. In this study, a modified sliding mode control (SMC) is applied to achieve fault-tolerant control of electric vehicles with four-wheel-independent-steering (4WIS) and four-wheel-independent-driving (4WID). Unlike in traditional SMC, in this approach the steering geometry is re-arranged according to the location of faulty wheels in the modified SMC. Three SMC control laws for longitudinal velocity control, lateral velocity control and yaw rate control are designed based on specific vehicle motion scenarios. In addition the actuator-grouping SMC method is proposed so that driving actuators are grouped and each group of actuators can be used to achieve the specific control target, which avoids the strong coupling effect between each control target. Simulation results prove that the proposed modified SMC can achieve good vehicle dynamics control performance in normal driving and large steering angle turning scenarios. In addition, the proposed actuator-grouping SMC can solve the coupling effect of different control targets and the control performance is improved.

  13. Benefit of "Push-pull" Locomotion for Planetary Rover Mobility

    NASA Technical Reports Server (NTRS)

    Creager, Colin M.; Moreland, Scott Jared; Skonieczny, K.; Johnson, K.; Asnani, V.; Gilligan, R.

    2011-01-01

    As NASAs exploration missions on planetary terrains become more aggressive, a focus on alternative modes of locomotion for rovers is necessary. In addition to climbing steep slopes, the terrain in these extreme environments is often unknown and can be extremely hard to traverse, increasing the likelihood of a vehicle or robot becoming damaged or immobilized. The conventional driving mode in which all wheels are either driven or free-rolling is very efficient on flat hard ground, but does not always provide enough traction to propel the vehicle through soft or steep terrain. This paper presents an alternative mode of travel and investigates the fundamental differences between these locomotion modes. The methods of push-pull locomotion discussed can be used with articulated wheeled vehicles and are identified as walking or inchinginch-worming. In both cases, the braked non-rolling wheels provide increased thrust. An in-depth study of how soil reacts under a rolling wheel vs. a braked wheel was performed by visually observing the motion of particles beneath the surface. This novel technique consists of driving or dragging a wheel in a soil bin against a transparent wall while high resolution, high-rate photographs are taken. Optical flow software was then used to determine shearing patterns in the soil. Different failure modes were observed for the rolling and braked wheel cases. A quantitative comparison of inching vs. conventional driving was also performed on a full-scale vehicle through a series of drawbar pull tests in the Lunar terrain strength simulant, GRC-1. The effect of tire stiffness was also compared; typically compliant tires provide better traction when driving in soft soil, however its been observed that rigid wheels may provide better thrust when non-rolling. Initial tests indicate up to a possible 40 increase in pull force capability at high slip when inching vs. rolling.

  14. 40 CFR 86.1111-87 - Test procedures for PCA testing.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... in paragraph (a) of § 86.133. (v) The manufacturer may substitute slave tires for the drive wheel... same size as the drive wheel tires. (vi) The cold start exhaust emission test described in § 86.137... well as the likelihood that similar settings will occur on in-use heavy-duty engines or light-duty...

  15. Wheel drives for large telescopes: save the cost and keep the performance over hydrostatic bearings

    NASA Astrophysics Data System (ADS)

    Campbell, Marvin F.

    2014-07-01

    The use of steel wheels on steel tracks has been around since steel was invented, and before that it was iron wheels on iron tracks. Not to be made obsolete by the passage of time, this approach for moving large objects is still valid, even optimal, but the detailed techniques for achieving high performance and long life have been much improved. The use of wheel-and-track designs has been very popular in radio astronomy for the largest of the large radio telescopes (RT), including such notables as the 305m Arecibo RT, the 100m telescopes at Effelsberg, Germany (at 3600 tonnes) and the Robert C. Byrd, Greenbank Telescope (GBT, 7600 tonnes) at Greenbank, West Virginia. Of course, the 76m Lovell Telescope at Jodrell Bank is the grandfather of all large aperture radio telescopes that use wheel drives. Smaller sizes include NRAO's Very Long Baseline Array (VLBA) telescopes at 25m and others. Wheel drives have also been used on large radars of significance such as the 410 tonne Ground Based Radar-Prototype (GBR-P) and the 150 foot (45.7m) Altair Radar, and the 2130 tonne Sea Based X-Band Radar (SBX). There are also many examples of wheel driven communications antennas of 18 meters and larger. All of these instruments have one thing in common: they all use steel wheels that run in a circle on one or more flat, level, steel tracks. This paper covers issues related to designing for wheel driven systems. The intent is for managing motion to sub arc-second levels, and for this purpose it is primary for the designer to manage measurement and alignment errors, and to establish repeatability through dimensional control, structural and drive stiffness management, adjustability and error management. In a practical sense, there are very few, if any, fabricators that can machine structural and drive components to sufficiently small decimal places to matter. In fact, coming within 2-3 orders of magnitude of the precision needed is about the best that can be expected. Further, it is incumbent on the design team to develop the servo control system features, correction algorithms and structural features in concert with each other. Telescope designers are generally adept at many of these practices, so the scope of this paper is not that, but is limited to those items that pertain to a precision wheel driven system.

  16. Operationality Improvement Control of Electric Power Assisted Wheelchair by Fuzzy Algorithm Considering Posture Angle

    NASA Astrophysics Data System (ADS)

    Murakami, Hiroki; Seki, Hirokazu; Minakata, Hideaki; Tadakuma, Susumu

    This paper describes a novel operationality improvement control for electric power assisted wheelchairs. “Electric power assisted wheelchair” which assists the driving force by electric motors is expected to be widely used as a mobility support system for elderly people and disabled people, however, the performance of the straight and circular road driving must be further improved because the two wheels drive independently. This paper proposes a novel operationality improvement control by fuzzy algorithm to realize the stable driving on straight and circular roads. The suitable assisted torque of the right and left wheels is determined by fuzzy algorithm based on the posture angular velocity, the posture angle of the wheelchair, the human input torque proportion and the total human torque of the right and left wheels. Some experiments on the practical roads show the effectiveness of the proposed control system.

  17. Power transmission device for four wheel drive vehicle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iwatsuki, T.; Kawamoto, M.; Kano, T.

    This patent describes a power transmission device with an improved differential motion limiting mechanism for a four wheel drive vehicle having automatic transmission means, front wheel differential gear means, differential motion limiting means and transfer unit means including center differential gear means, comprising: a first gear mount casing having a gear adapted to mesh with an output of a transmission; a differential motion limiting device arranged together with a front wheel differential gear in the first gear mount casing. The front wheel differential gear having a first diff-carrier and the differential motion limiting device comprising a hydraulic friction clutch formore » engaging and disengaging the first gear mount casing with the first diff-carrier of the front wheel differential gear; a second gear mount casing disposed coaxially with respect to the first gear mount casing; and a transfer unit including a center differential gear arranged in the second gear mount casing, the center differential gear comprising a second diff-carrier coupled with the first gear mount casing, a first side gear coupled with the first diff-carrier of the front wheel differential gear, and a second side gear coupled with the second gear mount casing for transmitting power to the rear wheels.« less

  18. Vehicle dynamics control of four in-wheel motor drive electric vehicle using gain scheduling based on tyre cornering stiffness estimation

    NASA Astrophysics Data System (ADS)

    Xiong, Lu; Yu, Zhuoping; Wang, Yang; Yang, Chen; Meng, Yufeng

    2012-06-01

    This paper focuses on the vehicle dynamic control system for a four in-wheel motor drive electric vehicle, aiming at improving vehicle stability under critical driving conditions. The vehicle dynamics controller is composed of three modules, i.e. motion following control, control allocation and vehicle state estimation. Considering the strong nonlinearity of the tyres under critical driving conditions, the yaw motion of the vehicle is regulated by gain scheduling control based on the linear quadratic regulator theory. The feed-forward and feedback gains of the controller are updated in real-time by online estimation of the tyre cornering stiffness, so as to ensure the control robustness against environmental disturbances as well as parameter uncertainty. The control allocation module allocates the calculated generalised force requirements to each in-wheel motor based on quadratic programming theory while taking the tyre longitudinal/lateral force coupling characteristic into consideration. Simulations under a variety of driving conditions are carried out to verify the control algorithm. Simulation results indicate that the proposed vehicle stability controller can effectively stabilise the vehicle motion under critical driving conditions.

  19. 21 CFR 870.1290 - Steerable catheter control system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Steerable catheter control system. 870.1290... (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Diagnostic Devices § 870.1290 Steerable catheter control system. (a) Identification. A steerable catheter control system is a device that is...

  20. 21 CFR 870.1290 - Steerable catheter control system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Steerable catheter control system. 870.1290... (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Diagnostic Devices § 870.1290 Steerable catheter control system. (a) Identification. A steerable catheter control system is a device that is...

  1. 21 CFR 870.1290 - Steerable catheter control system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Steerable catheter control system. 870.1290... (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Diagnostic Devices § 870.1290 Steerable catheter control system. (a) Identification. A steerable catheter control system is a device that is...

  2. Coordinated Control of Slip Ratio for Wheeled Mobile Robots Climbing Loose Sloped Terrain

    PubMed Central

    Li, Zhengcai; Wang, Yang

    2014-01-01

    A challenging problem faced by wheeled mobile robots (WMRs) such as planetary rovers traversing loose sloped terrain is the inevitable longitudinal slip suffered by the wheels, which often leads to their deviation from the predetermined trajectory, reduced drive efficiency, and possible failures. This study investigates this problem using terramechanics analysis of the wheel-soil interaction. First, a slope-based wheel-soil interaction terramechanics model is built, and an online slip coordinated algorithm is designed based on the goal of optimal drive efficiency. An equation of state is established using the coordinated slip as the desired input and the actual slip as a state variable. To improve the robustness and adaptability of the control system, an adaptive neural network is designed. Analytical results and those of a simulation using Vortex demonstrate the significantly improved mobile performance of the WMR using the proposed control system. PMID:25276849

  3. Coordinated control of slip ratio for wheeled mobile robots climbing loose sloped terrain.

    PubMed

    Li, Zhengcai; Wang, Yang

    2014-01-01

    A challenging problem faced by wheeled mobile robots (WMRs) such as planetary rovers traversing loose sloped terrain is the inevitable longitudinal slip suffered by the wheels, which often leads to their deviation from the predetermined trajectory, reduced drive efficiency, and possible failures. This study investigates this problem using terramechanics analysis of the wheel-soil interaction. First, a slope-based wheel-soil interaction terramechanics model is built, and an online slip coordinated algorithm is designed based on the goal of optimal drive efficiency. An equation of state is established using the coordinated slip as the desired input and the actual slip as a state variable. To improve the robustness and adaptability of the control system, an adaptive neural network is designed. Analytical results and those of a simulation using Vortex demonstrate the significantly improved mobile performance of the WMR using the proposed control system.

  4. A Study of a Handrim-Activated Power-Assist Wheelchair Based on a Non-Contact Torque Sensor

    PubMed Central

    Nam, Ki-Tae; Jang, Dae-Jin; Kim, Yong Chol; Heo, Yoon; Hong, Eung-Pyo

    2016-01-01

    Demand for wheelchairs is increasing with growing numbers of aged and disabled persons. Manual wheelchairs are the most commonly used assistive device for mobility because they are convenient to transport. Manual wheelchairs have several advantages but are not easy to use for the elderly or those who lack muscular strength. Therefore, handrim-activated power-assist wheelchairs (HAPAW) that can aid driving power with a motor by detecting user driving intentions through the handrim are being researched. This research will be on HAPAW that judge user driving intentions by using non-contact torque sensors. To deliver the desired motion, which is sensed from handrim rotation relative to a fixed controller, a new driving wheel mechanism is designed by applying a non-contact torque sensor, and corresponding torques are simulated. Torques are measured by a driving wheel prototype and compared with simulation results. The HAPAW prototype was developed using the wheels and a driving control algorithm that uses left and right input torques and time differences are used to check if the non-contact torque sensor can distinguish users’ driving intentions. Through this procedure, it was confirmed that the proposed sensor can be used effectively in HAPAW. PMID:27509508

  5. 76 FR 62356 - Certain New Pneumatic Off-the-Road Tires From the People's Republic of China: Preliminary Results...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-07

    ...-steer loaders are four-wheel drive vehicles with the left-side drive wheels independent of the right... exporter can demonstrate that it is sufficiently independent so as to be entitled to a separate rate.\\28... separate rate analysis is not necessary to determine whether it is independent from government control.\\29...

  6. Air actuated clutch for four wheel drive vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clohessy, K.E.

    1986-12-09

    A control system is described for selectively engaging and disengaging a vehicle wheel and a vehicle drive mechanism comprising; a spindle having inside and outside rotative support surfaces, the spindle adapted to be mounted to a vehicle frame, an axle portion rotatably supported on the inside support surface, and drive means for selectively and rotatively driving the axle portion relative to the spindle; a wheel hub assembly adapted to carry a vehicle wheel, the hub assembly rotatively supported on the outside support surface of the spindle; a sealed expansion chamber defined in part by the spindle, the axle portion, themore » hub assembly and a movable wall carried by the hub assembly, venting means venting the outer side of the movable wall to atmospheric pressure, the clutch ring engaged by the movable wall for movement of the clutch ring with movement of the movable wall as induced by a pressure difference generated within the chamber, and pressurizing means for selectively pressurizing and depressurizing the expansion chamber to thereby selectively shift the clutch ring between the positions of interlocking the axle portion and hub assembly and unlocking the axle portion and hub assembly.« less

  7. Long-Term Performance Evaluation of Asphalt Surface Treatments: Product Placement

    DTIC Science & Technology

    2010-02-01

    20 Wheeler-Sack Army Airfield, Fort Drum , New York ...............................................................28 4...Grip Tester underside view ................................................................................ 6 Figure 3. Rotating disc of Dynamic...measures pavement friction using the braked -wheel, fixed-slip principle. Two wheels support the Grip Tester on a drive axle, while a measuring wheel with

  8. Design and analysis of new fault-tolerant permanent magnet motors for four-wheel-driving electric vehicles

    NASA Astrophysics Data System (ADS)

    Liu, Guohai; Gong, Wensheng; Chen, Qian; Jian, Linni; Shen, Yue; Zhao, Wenxiang

    2012-04-01

    In this paper, a novel in-wheel permanent-magnet (PM) motor for four-wheel-driving electrical vehicles is proposed. It adopts an outer-rotor topology, which can help generate a large drive torque, in order to achieve prominent dynamic performance of the vehicle. Moreover, by adopting single-layer concentrated-windings, fault-tolerant teeth, and the optimal combination of slot and pole numbers, the proposed motor inherently offers negligible electromagnetic coupling between different phase windings, hence, it possesses a fault-tolerant characteristic. Meanwhile, the phase back electromotive force waveforms can be designed to be sinusoidal by employing PMs with a trapezoidal shape, eccentric armature teeth, and unequal tooth widths. The electromagnetic performance is comprehensively investigated and the optimal design is conducted by using the finite-element method.

  9. Development of a smart guide wire using an electrostrictive polymer: option for steerable orientation and force feedback

    NASA Astrophysics Data System (ADS)

    Ganet, F.; Le, M. Q.; Capsal, J. F.; Lermusiaux, P.; Petit, L.; Millon, A.; Cottinet, P. J.

    2015-12-01

    The development of steerable guide wire or catheter designs has been strongly limited by the lack of enabling actuator technologies. This paper presents the properties of an electrostrive actuator technology for steerable actuation. By carefully tailoring material properties and the actuator design, which can be integrated in devices, this technology should realistically make it possible to obtain a steerable guide wire design with considerable latitude. Electromechanical characteristics are described, and their impact on a steerable design is discussed.

  10. Road accidents caused by sleepy drivers: Update of a Norwegian survey.

    PubMed

    Phillips, Ross Owen; Sagberg, Fridulv

    2013-01-01

    The current study tests, updates and expands a model of factors associated with sleepy driving, originally based on a 1997 survey of accident-involved Norwegian drivers (Sagberg, F., 1999. Road accidents caused by drivers falling asleep. Accident Analysis & Prevention 31, 639-649). The aim is to establish a robust model to inform measures to tackle sleepy driving. The original questions on (i) tiredness-related accidents and (ii) incidents of sleep behind the wheel in the last 12 months were again posed in 2003 and 2008, in independent surveys of Norwegian drivers involved in accidents reported to a large insurance company. According to those drivers at-fault for the accident, tiredness or sleepiness behind the wheel contributed to between 1.9 and 3.9 per cent of all types of accident reported to the insurance company across these years. Accident-involved drivers not at fault for the accident reported a reduction in the incidence of sleep behind the wheel for the preceding year, decreasing from 8.3 per cent in 1997 to 2.9 per cent in 2008. The reasons for this are not clear. According to logistic regression analysis of survey responses, the following factors were robustly associated with road accidents involving sleepy driving: driving off the road; good road conditions; longer distance driven since the start of the trip; and fewer years with a driving licence. The following factors are consistently associated with reports of sleep behind the wheel, whether or not it leads to an accident: being male; driving further per year; being younger; and having sleep-related health problems. Taken together these findings suggest that young, inexperienced male drivers who drive long distances may be a suitable target for road safety campaigns aimed at tackling sleepy driving. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Wheel Diameter and Speedometer Reading

    NASA Astrophysics Data System (ADS)

    Murray, Clifton

    2010-09-01

    Most introductory physics students have seen vehicles with nonstandard wheel diameters; some may themselves drive "low-rider" cars or "big-wheel" pickup trucks. But how does changing wheel diameter affect speedometer readout for a given speed? Deriving the answer can be followed readily by students who have been introduced to rotation, and it makes a good illustration of how reasoning in physics can lead to a result that is useful outside the classroom.

  12. Tire-road friction coefficient estimation based on the resonance frequency of in-wheel motor drive system

    NASA Astrophysics Data System (ADS)

    Chen, Long; Bian, Mingyuan; Luo, Yugong; Qin, Zhaobo; Li, Keqiang

    2016-01-01

    In this paper, a resonance frequency-based tire-road friction coefficient (TRFC) estimation method is proposed by considering the dynamics performance of the in-wheel motor drive system under small slip ratio conditions. A frequency response function (FRF) is deduced for the drive system that is composed of a dynamic tire model and a simplified motor model. A linear relationship between the squared system resonance frequency and the TFRC is described with the FRF. Furthermore, the resonance frequency is identified by the Auto-Regressive eXogenous model using the information of the motor torque and the wheel speed, and the TRFC is estimated thereafter by a recursive least squares filter with the identified resonance frequency. Finally, the effectiveness of the proposed approach is demonstrated through simulations and experimental tests on different road surfaces.

  13. Compliant-linkage kinematic design for multi-degree-of-freedom mobile robots

    NASA Astrophysics Data System (ADS)

    Borenstein, Johann

    1993-05-01

    Multi-degree-of-freedom (MDOF) vehicles have many potential advantages over conventional (i.e., 2-DOF) vehicles. For example, MDOF vehicles can travel sideways and they can negotiate tight turns more easily. In addition, some MDOF designs provide better payload capability, better traction, and improved static and dynamic stability. However, MDOF vehicles with more than three degrees-of-freedom are difficult to control because of their overconstrained nature. These difficulties translate into severe wheel slippage or jerky motion under certain driving conditions. In the past, these problems limited the use of MDOF vehicles to applications where the vehicle would follow a guide-wire, which would correct wheel slippage and control errors. By contrast, autonomous or semi-autonomous mobile robots usually rely on dead-reckoning between periodic absolute position updates and their performance is diminished by excessive wheel slippage. This paper introduces a new concept in the kinematic design of MDOF vehicles. This concept is based on the provision of a compliant linkage between drive wheels or drive axles. Simulation results indicate that compliant linkage allows to overcome the control problems found in conventional MDOF vehicles and reduces the amount of wheel slippage to the same level (or less) than the amount of slippage found on a comparable 2-DOF vehicle.

  14. The CRREL Instrumented Vehicle: Hardware and Software.

    DTIC Science & Technology

    1983-01-01

    rear axle torque are meas- ured. The vehicle is equipped for front-wheel, rear-wheel or four-wheel drive. A dual brake system allows front-, rear- or...four-wheel braking . A minicomputer- based data acquisition system is installed in the vehicle to control data gather ing and to process the data. The...o..o...o 4 4. Dual brake system control valves . ........ 5 5. Schematic of modified brake system ...... .... st 5 6. Air-shock-absorber regulator

  15. Rover Wheel-Actuated Tool Interface

    NASA Technical Reports Server (NTRS)

    Matthews, Janet; Ahmad, Norman; Wilcox, Brian

    2007-01-01

    A report describes an interface for utilizing some of the mobility features of a mobile robot for general-purpose manipulation of tools and other objects. The robot in question, now undergoing conceptual development for use on the Moon, is the All-Terrain Hex-Limbed Extra-Terrestrial Explorer (ATHLETE) rover, which is designed to roll over gentle terrain or walk over rough or steep terrain. Each leg of the robot is a six-degree-of-freedom general purpose manipulator tipped by a wheel with a motor drive. The tool interface includes a square cross-section peg, equivalent to a conventional socket-wrench drive, that rotates with the wheel. The tool interface also includes a clamp that holds a tool on the peg, and a pair of fold-out cameras that provides close-up stereoscopic images of the tool and its vicinity. The field of view of the imagers is actuated by the clamp mechanism and is specific to each tool. The motor drive can power any of a variety of tools, including rotating tools for helical fasteners, drills, and such clamping tools as pliers. With the addition of a flexible coupling, it could also power another tool or remote manipulator at a short distance. The socket drive can provide very high torque and power because it is driven by the wheel motor.

  16. Transfer system

    DOEpatents

    Kurosawa, Kanji; Koga, Bunichiro; Ito, Hideki; Kiriyama, Shigeru; Higuchi, Shizuo

    2003-05-20

    A transport system includes a traveling rail (1) which constitutes a transport route and a transport body (3) which is capable of traveling on the traveling rail in the longitudinal direction of the traveling rail. Flexible drive tubes (5) are arranged on the traveling rail in the longitudinal direction of the traveling rail. The transport body includes a traveling wheel (4) which is capable of rolling on the traveling rail and drive wheels (2) which are capable of rolling on the drive tubes upon receiving the rotational drive power generated by pressure of a pressure medium supplied to the drive tubes while depressing the drive tubes. The traveling rail includes a plurality of transport sections and the transport body is capable of receiving a rotational drive force from the drive tubes at every transport sections. If necessary, a transport route changeover switch which changes over the transport route can be provided between the transport sections.

  17. Reliability of Heart Rate Variability Analysis by Using Electrocardiogram Recorded Unrestrainedly from an Automobile Steering-Wheel

    NASA Astrophysics Data System (ADS)

    Osaka, Motohisa; Murata, Hiroshige; Tateoka, Katsuhiko; Katoh, Takao

    2007-07-01

    Some cases of traffic accidents are assumed to be due to the occurrences of cardiac events during driving, which are thought to be induced by imbalance of autonomic nervous activities. These can be measured by analyzing heart rate variability. Therefore, we developed a new system of steering-wheel electrocardiogram with a soft-ware to remove noises. We compared the trends of sympathetic and parasympathetic nerve activities measured from the steering-wheel electrocardiograms with those recorded simultaneously from chest leads. For each parameter of instantaneous heart rate, low- or high-frequency component of heart rate variability in all the cases, the trend from the steering-wheel electrocardiogram resembled that from the chest-lead electrocardiogram. In 3 of 7 subjects, the trend of LF/HF showed a strong relationship between the steering-wheel electrocardiogram and the chest-lead electrocardiogram. Our system will open doors to a new strategy to keep a driver out of a risk by notifying it while driving.

  18. i3Drive, a 3D interactive driving simulator.

    PubMed

    Ambroz, Miha; Prebil, Ivan

    2010-01-01

    i3Drive, a wheeled-vehicle simulator, can accurately simulate vehicles of various configurations with up to eight wheels in real time on a desktop PC. It presents the vehicle dynamics as an interactive animation in a virtual 3D environment. The application is fully GUI-controlled, giving users an easy overview of the simulation parameters and letting them adjust those parameters interactively. It models all relevant vehicle systems, including the mechanical models of the suspension, power train, and braking and steering systems. The simulation results generally correspond well with actual measurements, making the system useful for studying vehicle performance in various driving scenarios. i3Drive is thus a worthy complement to other, more complex tools for vehicle-dynamics simulation and analysis.

  19. Direct yaw moment control and power consumption of in-wheel motor vehicle in steady-state turning

    NASA Astrophysics Data System (ADS)

    Kobayashi, Takao; Katsuyama, Etsuo; Sugiura, Hideki; Ono, Eiichi; Yamamoto, Masaki

    2017-01-01

    Driving force distribution control is one of the characteristic performance aspects of in-wheel motor vehicles and various methods have been developed to control direct yaw moment while turning. However, while these controls significantly enhance vehicle dynamic performance, the additional power required to control vehicle motion still remains to be clarified. This paper constructed new formulae of the mechanism by which direct yaw moment alters the cornering resistance and mechanical power of all wheels based on a simple bicycle model, including the electric loss of the motors and the inverters. These formulation results were validated by an actual test vehicle equipped with in-wheel motors in steady-state turning. The validated theory was also applied to a comparison of several different driving force distribution mechanisms from the standpoint of innate mechanical power.

  20. Driving Anger and Driving Behavior in Adults with ADHD

    ERIC Educational Resources Information Center

    Richards, Tracy L.; Deffenbacher, Jerry L.; Rosen, Lee A.; Barkley, Russell A.; Rodricks, Trisha

    2006-01-01

    Objective: This study assesses whether anger in the context of driving is associated with the negative driving outcomes experienced by individuals with ADHD. Method: ADHD adults (n = 56) complete measures of driving anger, driving anger expression, angry thoughts behind the wheel, and aggressive, risky, and crash-related behavior. Results are…

  1. Optimal control of mode transition for four-wheel-drive hybrid electric vehicle with dry dual-clutch transmission

    NASA Astrophysics Data System (ADS)

    Zhao, Zhiguo; Lei, Dan; Chen, Jiayi; Li, Hangyu

    2018-05-01

    When the four-wheel-drive hybrid electric vehicle (HEV) equipped with a dry dual clutch transmission (DCT) is in the mode transition process from pure electrical rear wheel drive to front wheel drive with engine or hybrid drive, the problem of vehicle longitudinal jerk is prominent. A mode transition robust control algorithm which resists external disturbance and model parameter fluctuation has been developed, by taking full advantage of fast and accurate torque (or speed) response of three electrical power sources and getting the clutch of DCT fully involved in the mode transition process. Firstly, models of key components of driveline system have been established, and the model of five-degrees-of-freedom vehicle longitudinal dynamics has been built by using a Uni-Tire model. Next, a multistage optimal control method has been produced to realize the decision of engine torque and clutch-transmitted torque. The sliding-mode control strategy for measurable disturbance has been proposed at the stage of engine speed dragged up. Meanwhile, the double tracking control architecture that integrates the model calculating feedforward control with H∞ robust feedback control has been presented at the stage of speed synchronization. Finally, the results from Matlab/Simulink software and hardware-in-the-loop test both demonstrate that the proposed control strategy for mode transition can not only coordinate the torque among different power sources and clutch while minimizing vehicle longitudinal jerk, but also provide strong robustness to model uncertainties and external disturbance.

  2. Walk and roll robot

    NASA Technical Reports Server (NTRS)

    Wilson, Andrew (Inventor); Punnoose, Andrew (Inventor); Strausser, Katherine (Inventor); Parikh, Neil (Inventor)

    2011-01-01

    A mobile robotic unit features a main body, a plurality of legs for supporting the main body on and moving the main body in forward and reverse directions about a base surface, and a drive assembly. According to an exemplary embodiment each leg includes a respective pivotal hip joint, a pivotal knee joint, and a wheeled foot adapted to roll along the base surface. Also according to an exemplary embodiments the drive assembly includes a motor operatively associated with the hip and knee joints and the wheeled foot for independently driving pivotal movement of the hip joint and the knee joint and rolling motion of the wheeled foot. The hip joint may include a ball-and-socket-type joint interconnecting top portion of the leg to the main body, such that the hip joint is adapted to pivot said leg in a direction transverse to a forward-and-reverse direction.

  3. A fuzzy logic sliding mode controlled electronic differential for a direct wheel drive EV

    NASA Astrophysics Data System (ADS)

    Ozkop, Emre; Altas, Ismail H.; Okumus, H. Ibrahim; Sharaf, Adel M.

    2015-11-01

    In this study, a direct wheel drive electric vehicle based on an electronic differential system with a fuzzy logic sliding mode controller (FLSMC) is studied. The conventional sliding surface is modified using a fuzzy rule base to obtain fuzzy dynamic sliding surfaces by changing its slopes using the global error and its derivative in a fuzzy logic inference system. The controller is compared with proportional-integral-derivative (PID) and sliding mode controllers (SMCs), which are usually preferred to be used in industry. The proposed controller provides robustness and flexibility to direct wheel drive electric vehicles. The fuzzy logic sliding mode controller, electronic differential system and the overall electrical vehicle mechanism are modelled and digitally simulated by using the Matlab software. Simulation results show that the system with FLSMC has better efficiency and performance compared to those of PID and SMCs.

  4. Traction drive automatic transmission for gas turbine engine driveline

    DOEpatents

    Carriere, Donald L.

    1984-01-01

    A transaxle driveline for a wheeled vehicle has a high speed turbine engine and a torque splitting gearset that includes a traction drive unit and a torque converter on a common axis transversely arranged with respect to the longitudinal centerline of the vehicle. The drive wheels of the vehicle are mounted on a shaft parallel to the turbine shaft and carry a final drive gearset for driving the axle shafts. A second embodiment of the final drive gearing produces an overdrive ratio between the output of the first gearset and the axle shafts. A continuously variable range of speed ratios is produced by varying the position of the drive rollers of the traction unit. After starting the vehicle from rest, the transmission is set for operation in the high speed range by engaging a first lockup clutch that joins the torque converter impeller to the turbine for operation as a hydraulic coupling.

  5. Prevalence of sleepiness while driving four-wheel motor vehicles in Fiji: a population-based survey (TRIP 9).

    PubMed

    Herman, Josephine; Ameratunga, Shanthi N; Wainiqolo, Iris; Kafoa, Berlin; Robinson, Elizabeth; McCaig, Eddie; Jackson, Rod

    2013-08-01

    Sleepiness has been shown to be a risk factor for road crashes in high-income countries, but has received little attention in low- and middle-income countries. We examined the prevalence of sleepiness and sleep-related disorders among drivers of four-wheel motor vehicles in Fiji. Using a two-stage cluster sampling roadside survey conducted over 12 months, we recruited a representative sample of people driving four-wheel motor vehicles on the island of Viti Levu, Fiji. A structured interviewer-administered questionnaire sought self-report information on driver characteristics including sleep-related measures. The 752 motor vehicle drivers recruited (84% response rate) were aged 17-75 years, with most driving in Viti Levu undertaken by male subjects (93%), and those identifying with Indian (70%) and Fijian (22%) ethnic groups. Drivers who reported that they were not fully alert accounted for 17% of driving, while a further 1% of driving was undertaken by those who reported having difficulty staying awake or feeling sleepy. A quarter of the driving time among 15-24-year-olds included driving while sleepy or not fully alert, with a similar proportion driving while chronically sleep deprived (ie, with less than five nights of adequate sleep in the previous week=27%). Driving while acutely or chronically sleep deprived was generally more common among Fijians compared with Indians. Driving while not fully alert is relatively common in Fiji. Sleepiness while driving may be an important contributor to road traffic injuries in this and other low- and middle-income countries.

  6. 40 CFR 1066.410 - Dynamometer test procedure.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... drive mode. (For purposes of this paragraph (g), the term four-wheel drive includes other multiple drive... Dynamometer test procedure. (a) Dynamometer testing may consist of multiple drive cycles with both cold-start...-setting part identifies the driving schedules and the associated sample intervals, soak periods, engine...

  7. Equations of motion of the lunar roving vehicle.

    NASA Technical Reports Server (NTRS)

    Kaufman, S.

    1973-01-01

    Equations of motion have been formulated for a four-wheel vehicle as it traverses a terrain characterized by slopes, craters, bumps, washboards, or a power spectrum. Independent suspension and electric motor propulsion are considered. These equations were programmed on the UNIVAC 1108 digital computer. Results are given for the steerability of the Lunar Roving Vehicle (LRV) which was found to be satisfactory for normal operating speeds and turning radii. The vehicle was also found to be satisfactory against overturning in both the pitch and roll mode, and results are presented for various speeds as the LRV engages a bump on meter in diameter and of varying heights. Speed, power consumption, and load characteristics are presented for the LRV traversing a simulated lunar soil at full throttle. Comparisons are given against data compiled from the Apollo 15 mission.

  8. 77 FR 5302 - Ford Motor Company, Receipt of Petition for Decision of Inconsequential Noncompliance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-02

    ... plane of the steering wheel hub; or for a turn signal control that is operated in a plane essentially parallel to the face plane of the steering wheel in its normal driving position and which is located on the... face plane of the steering wheel hub, the identifier must meet Table 2 requirements for the horn...

  9. Opportunity's View After Drive on Sol 1806 (Polar)

    NASA Technical Reports Server (NTRS)

    2009-01-01

    NASA's Mars Exploration Rover Opportunity used its navigation camera to take the images combined into this full-circle view of the rover's surroundings just after driving 60.86 meters (200 feet) on the 1,806th Martian day, or sol, of Opportunity's surface mission (Feb. 21, 2009). North is at the center; south at both ends.

    Tracks from the drive extend northward across dark-toned sand ripples and light-toned patches of exposed bedrock in the Meridiani Planum region of Mars. For scale, the distance between the parallel wheel tracks is about 1 meter (about 40 inches).

    Engineers designed the Sol 1806 drive to be driven backwards as a strategy to redistribute lubricant in the rovers wheels. The right-front wheel had been showing signs of increased friction.

    The rover's position after the Sol 1806 drive was about 2 kilometer (1.2 miles) south southwest of Victoria Crater. Cumulative odometry was 14.74 kilometers (9.16 miles) since landing in January 2004, including 2.96 kilometers (1.84 miles) since climbing out of Victoria Crater on the west side of the crater on Sol 1634 (August 28, 2008).

    This view is presented as a polar projection with geometric seam correction.

  10. Opportunity's View After Drive on Sol 1806 (Vertical)

    NASA Technical Reports Server (NTRS)

    2009-01-01

    NASA's Mars Exploration Rover Opportunity used its navigation camera to take the images combined into this full-circle view of the rover's surroundings just after driving 60.86 meters (200 feet) on the 1,806th Martian day, or sol, of Opportunity's surface mission (Feb. 21, 2009). North is at the center; south at both ends.

    Tracks from the drive extend northward across dark-toned sand ripples and light-toned patches of exposed bedrock in the Meridiani Planum region of Mars. For scale, the distance between the parallel wheel tracks is about 1 meter (about 40 inches).

    Engineers designed the Sol 1806 drive to be driven backwards as a strategy to redistribute lubricant in the rovers wheels. The right-front wheel had been showing signs of increased friction.

    The rover's position after the Sol 1806 drive was about 2 kilometer (1.2 miles) south southwest of Victoria Crater. Cumulative odometry was 14.74 kilometers (9.16 miles) since landing in January 2004, including 2.96 kilometers (1.84 miles) since climbing out of Victoria Crater on the west side of the crater on Sol 1634 (August 28, 2008).

    This view is presented as a vertical projection with geometric seam correction.

  11. Opportunity's View After Drive on Sol 1806

    NASA Technical Reports Server (NTRS)

    2009-01-01

    NASA's Mars Exploration Rover Opportunity used its navigation camera to take the images combined into this full-circle view of the rover's surroundings just after driving 60.86 meters (200 feet) on the 1,806th Martian day, or sol, of Opportunity's surface mission (Feb. 21, 2009). North is at the center; south at both ends.

    Tracks from the drive extend northward across dark-toned sand ripples and light-toned patches of exposed bedrock in the Meridiani Planum region of Mars. For scale, the distance between the parallel wheel tracks is about 1 meter (about 40 inches).

    Engineers designed the Sol 1806 drive to be driven backwards as a strategy to redistribute lubricant in the rovers wheels. The right-front wheel had been showing signs of increased friction.

    The rover's position after the Sol 1806 drive was about 2 kilometer (1.2 miles) south southwest of Victoria Crater. Cumulative odometry was 14.74 kilometers (9.16 miles) since landing in January 2004, including 2.96 kilometers (1.84 miles) since climbing out of Victoria Crater on the west side of the crater on Sol 1634 (August 28, 2008).

    This view is presented as a cylindrical projection with geometric seam correction.

  12. Mobility performance analysis of an innovation lunar rover with diameter-variable wheel

    NASA Astrophysics Data System (ADS)

    Sun, Gang; Gao, Feng; Sun, Peng; Xu, Guoyan

    2007-11-01

    To achieve excellent mobility performance, a four-wheel, all-wheel drive lunar rover with diameter-variable wheel was presented, the wheel can be contracted and extended by the motor equipped in the wheel hub, accompanied with wheel diameter varying from 200mm to 390mm. The wheel sinkage and drawbar pull force were predicated with terramechanics formulae and lunar regolith mechanic parameters employed, furthermore, the slope traversability was investigated through quasi-static modeling mechanic analysis, also the obstacle resistance and the maximum negotiable obstacle height for different wheel radius were derived from the equations of static equilibrium of the rover. Analysis results show that for the innovation lunar rover presented, it will bring much better slope traveling stability and obstacle climbing capability than rovers with normal wheels, these will improve the rover mobility performance and stabilize the rover's frame, smooth the motion of sensors.

  13. Attention Deficit Hyperactivity Disorder Symptoms, Sleepiness and Accidental Risk in 36140 Regularly Registered Highway Drivers

    PubMed Central

    Philip, Pierre; Micoulaud-Franchi, Jean-Arthur; Lagarde, Emmanuel; Taillard, Jacques; Canel, Annick; Sagaspe, Patricia; Bioulac, Stéphanie

    2015-01-01

    Background Attention Deficit Hyperactivity Disorder (ADHD) is a frequent neurodevelopmental disorder that increases accidental risk. Recent studies show that some patients with ADHD can also suffer from excessive daytime sleepiness but there are no data assessing the role of sleepiness in road safety in patients with ADHD. We conducted an epidemiological study to explore sleep complaints, inattention and driving risks among automobile drivers. Methods and Findings From August to September 2014, 491186 regular highway users were invited to participate in an Internet survey on driving habits. 36140 drivers answered a questionnaire exploring driving risks, sleep complaints, sleepiness at the wheel, ADHD symptoms (Adult ADHD Self-Report Scale) and distraction at the wheel. 1.7% of all drivers reported inattention-related driving accidents and 0.3% sleep-related driving accidents in the previous year. 1543 drivers (4.3%) reported ADHD symptoms and were more likely to report accidents than drivers without ADHD symptoms (adjusted OR = 1.24, [1.03–1.51], p < .021). 14.2% of drivers with ADHD symptoms reported severe excessive daytime sleepiness (Epworth Sleepiness Scale >15) versus 3.2% of drivers without ADHD symptoms and 20.5% reported severe sleepiness at the wheel versus 7.3%. Drivers with ADHD symptoms reported significantly more sleep-related (adjusted OR = 1.4, [1.21–1.60], p < .0001) and inattention-related (adjusted OR = 1.9, [1.71–2.14], p<0001) near misses than drivers without ADHD symptoms. The fraction of near-misses attributable to severe sleepiness at the wheel was 4.24% for drivers without ADHD symptoms versus 10,35% for drivers with ADHD symptoms. Conclusion Our study shows that drivers with ADHD symptoms have more accidents and a higher level of sleepiness at the wheel than drivers without ADHD symptoms. Drivers with ADHD symptoms report more sleep-related and inattention-related near misses, thus confirming the clinical importance of exploring both attentional deficits and sleepiness at the wheel in these drivers. Road safety campaigns should be improved to better inform drivers of these accidental risks. PMID:26376078

  14. Attention Deficit Hyperactivity Disorder Symptoms, Sleepiness and Accidental Risk in 36140 Regularly Registered Highway Drivers.

    PubMed

    Philip, Pierre; Micoulaud-Franchi, Jean-Arthur; Lagarde, Emmanuel; Taillard, Jacques; Canel, Annick; Sagaspe, Patricia; Bioulac, Stéphanie

    2015-01-01

    Attention Deficit Hyperactivity Disorder (ADHD) is a frequent neurodevelopmental disorder that increases accidental risk. Recent studies show that some patients with ADHD can also suffer from excessive daytime sleepiness but there are no data assessing the role of sleepiness in road safety in patients with ADHD. We conducted an epidemiological study to explore sleep complaints, inattention and driving risks among automobile drivers. From August to September 2014, 491186 regular highway users were invited to participate in an Internet survey on driving habits. 36140 drivers answered a questionnaire exploring driving risks, sleep complaints, sleepiness at the wheel, ADHD symptoms (Adult ADHD Self-Report Scale) and distraction at the wheel. 1.7% of all drivers reported inattention-related driving accidents and 0.3% sleep-related driving accidents in the previous year. 1543 drivers (4.3%) reported ADHD symptoms and were more likely to report accidents than drivers without ADHD symptoms (adjusted OR = 1.24, [1.03-1.51], p < .021). 14.2% of drivers with ADHD symptoms reported severe excessive daytime sleepiness (Epworth Sleepiness Scale >15) versus 3.2% of drivers without ADHD symptoms and 20.5% reported severe sleepiness at the wheel versus 7.3%. Drivers with ADHD symptoms reported significantly more sleep-related (adjusted OR = 1.4, [1.21-1.60], p < .0001) and inattention-related (adjusted OR = 1.9, [1.71-2.14], p<0001) near misses than drivers without ADHD symptoms. The fraction of near-misses attributable to severe sleepiness at the wheel was 4.24% for drivers without ADHD symptoms versus 10,35% for drivers with ADHD symptoms. Our study shows that drivers with ADHD symptoms have more accidents and a higher level of sleepiness at the wheel than drivers without ADHD symptoms. Drivers with ADHD symptoms report more sleep-related and inattention-related near misses, thus confirming the clinical importance of exploring both attentional deficits and sleepiness at the wheel in these drivers. Road safety campaigns should be improved to better inform drivers of these accidental risks.

  15. 49 CFR 571.208a - Optional test procedures for vehicles manufactured between January 27, 2004 and August 31, 2004.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 20.6 °C and 22.2 °C (69 °F to 72 °F). S16.2.9 Steering wheel adjustment. S16.2.9.1 Adjust a tiltable steering wheel, if possible, so that the steering wheel hub is at the geometric center of its full range of driving positions. S16.2.9.2 If there is no setting detent at the mid-position, lower the steering wheel...

  16. The shape of cars to come

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashley, S.

    1991-05-01

    Ford's new concept car achieves weight, size, and cost savings with an innovative lightweight aluminum space frame composed of simple extrusions that are fitted together like Lego blocks and adhesively bonded. On the outside, the design is a blend of art and technology that is a modern restatement of a large luxury car. The other major focus of the design is the Contour's compact T-drive powertrain configuration (also shared by the Mystique). This consists of a transversely mounted engine stuffed into the front of the chassis with a longitudinally positioned transmission right behind it. The T-drive arrangement shrinks the car'smore » engine bay and overall length while expanding the passenger compartment. In addition, powerplants with from four to eight cylinders as well as front-wheel-, rear-wheel-, and four-wheel-drive transmission systems can all be incorporated into the T-drive. Other technical innovations on the Contour include an unusual ducted cooling system, a compact brake assembly, a lightweight high-efficiency air conditioner, centralized single-source lighting, and simple but effective suspension technology.« less

  17. Integrated chassis control for a three-axle electric bus with distributed driving motors and active rear steering system

    NASA Astrophysics Data System (ADS)

    Liu, Wei; He, Hongwen; Sun, Fengchun; Lv, Jiangyi

    2017-05-01

    This paper describes an integrated chassis control framework for a novel three-axle electric bus with active rear steering (ARS) axle and four motors at the middle and rear wheels. The proposed integrated framework consists of four parts: (1) an active speed limiting controller is designed for anti-body slip control and rollover prevention; (2) an ARS controller is designed for coordinating the tyre wear between the driving wheels; (3) an inter-axle torque distribution controller is designed for optimal torque distribution between the axles, considering anti-wheel slip and battery power limitations and (4) a data acquisition and estimation module for collecting the measured and estimated vehicle states. To verify the performances, a simulation platform is established in Trucksim software combined with Simulink. Three test cases are particularly designed to show the performances. The proposed algorithm is compared with a simple even control algorithm. The test results show satisfactory lateral stability and rollover prevention performances under severe steering conditions. The desired tyre wear coordinating performance is also realised, and the wheel slip ratios are restricted within stable region during intensive driving and emergency braking with complicated road conditions.

  18. Estimation of Longitudinal Force and Sideslip Angle for Intelligent Four-Wheel Independent Drive Electric Vehicles by Observer Iteration and Information Fusion.

    PubMed

    Chen, Te; Chen, Long; Xu, Xing; Cai, Yingfeng; Jiang, Haobin; Sun, Xiaoqiang

    2018-04-20

    Exact estimation of longitudinal force and sideslip angle is important for lateral stability and path-following control of four-wheel independent driven electric vehicle. This paper presents an effective method for longitudinal force and sideslip angle estimation by observer iteration and information fusion for four-wheel independent drive electric vehicles. The electric driving wheel model is introduced into the vehicle modeling process and used for longitudinal force estimation, the longitudinal force reconstruction equation is obtained via model decoupling, the a Luenberger observer and high-order sliding mode observer are united for longitudinal force observer design, and the Kalman filter is applied to restrain the influence of noise. Via the estimated longitudinal force, an estimation strategy is then proposed based on observer iteration and information fusion, in which the Luenberger observer is applied to achieve the transcendental estimation utilizing less sensor measurements, the extended Kalman filter is used for a posteriori estimation with higher accuracy, and a fuzzy weight controller is used to enhance the adaptive ability of observer system. Simulations and experiments are carried out, and the effectiveness of proposed estimation method is verified.

  19. Estimation of Longitudinal Force and Sideslip Angle for Intelligent Four-Wheel Independent Drive Electric Vehicles by Observer Iteration and Information Fusion

    PubMed Central

    Chen, Long; Xu, Xing; Cai, Yingfeng; Jiang, Haobin; Sun, Xiaoqiang

    2018-01-01

    Exact estimation of longitudinal force and sideslip angle is important for lateral stability and path-following control of four-wheel independent driven electric vehicle. This paper presents an effective method for longitudinal force and sideslip angle estimation by observer iteration and information fusion for four-wheel independent drive electric vehicles. The electric driving wheel model is introduced into the vehicle modeling process and used for longitudinal force estimation, the longitudinal force reconstruction equation is obtained via model decoupling, the a Luenberger observer and high-order sliding mode observer are united for longitudinal force observer design, and the Kalman filter is applied to restrain the influence of noise. Via the estimated longitudinal force, an estimation strategy is then proposed based on observer iteration and information fusion, in which the Luenberger observer is applied to achieve the transcendental estimation utilizing less sensor measurements, the extended Kalman filter is used for a posteriori estimation with higher accuracy, and a fuzzy weight controller is used to enhance the adaptive ability of observer system. Simulations and experiments are carried out, and the effectiveness of proposed estimation method is verified. PMID:29677124

  20. Rotations by Spirit Right-Front Wheel, Sol 2117

    NASA Image and Video Library

    2009-12-21

    This frame taken from a three-frame animation aids evaluation of performance of the right-front wheel on NASA Mars Exploration Rover Spirit during a drive on the rover 2,117th Martian day, or sol Dec. 16, 2009.

  1. Analysis of the individual factors affecting mobile phone use while driving in France: socio-demographic characteristics, car and phone use in professional and private contexts.

    PubMed

    Brusque, Corinne; Alauzet, Aline

    2008-01-01

    In France, as in many other countries, phoning while driving is legally restricted because of its negative impact on driving performance which increases accident risk. Nevertheless, it is still a frequently observed practice and one which has not been analyzed in detail. This study attempts to identify the profiles of those who use mobile phones while at the wheel and determine the forms taken by this use. A representative sample of 1973 French people was interviewed by phone on their driving practices and mobile phone use in everyday life and their mobile phone use while driving. Logistics regressions have been conducted to highlight the explanatory factors of phoning while driving. Strong differences between males and females have been shown. For the male population, age is the main explanatory factor of phoning while driving, followed by phone use for work-related reasons and extensive mobile phone use in everyday life. For females, high mileage and intensive use of mobile phone are the only two explanatory factors. We defined the intensive phone use at the wheel group as drivers who receive or send at least five or more calls per day while driving. There is no socio-demographic variable related to this practice. Car and phone uses in everyday life are the only explanatory factors for this intensive mobile use of the phone at the wheel.

  2. Rotary steerable motor system for underground drilling

    DOEpatents

    Turner, William E.; Perry, Carl A.; Wassell, Mark E.; Barbely, Jason R.; Burgess, Daniel E.; Cobern, Martin E.

    2010-07-27

    A preferred embodiment of a system for rotating and guiding a drill bit in an underground bore includes a drilling motor and a drive shaft coupled to drilling motor so that drill bit can be rotated by the drilling motor. The system further includes a guidance module having an actuating arm movable between an extended position wherein the actuating arm can contact a surface of the bore and thereby exert a force on the housing of the guidance module, and a retracted position.

  3. Rotary steerable motor system for underground drilling

    DOEpatents

    Turner, William E [Durham, CT; Perry, Carl A [Middletown, CT; Wassell, Mark E [Kingwood, TX; Barbely, Jason R [Middletown, CT; Burgess, Daniel E [Middletown, CT; Cobern, Martin E [Cheshire, CT

    2008-06-24

    A preferred embodiment of a system for rotating and guiding a drill bit in an underground bore includes a drilling motor and a drive shaft coupled to drilling motor so that drill bit can be rotated by the drilling motor. The system further includes a guidance module having an actuating arm movable between an extended position wherein the actuating arm can contact a surface of the bore and thereby exert a force on the housing of the guidance module, and a retracted position.

  4. Identifying cognitive distraction using steering wheel reversal rates.

    PubMed

    Kountouriotis, Georgios K; Spyridakos, Panagiotis; Carsten, Oliver M J; Merat, Natasha

    2016-11-01

    The influence of driver distraction on driving performance is not yet well understood, but it can have detrimental effects on road safety. In this study, we examined the effects of visual and non-visual distractions during driving, using a high-fidelity driving simulator. The visual task was presented either at an offset angle on an in-vehicle screen, or on the back of a moving lead vehicle. Similar to results from previous studies in this area, non-visual (cognitive) distraction resulted in improved lane keeping performance and increased gaze concentration towards the centre of the road, compared to baseline driving, and further examination of the steering control metrics indicated an increase in steering wheel reversal rates, steering wheel acceleration, and steering entropy. We show, for the first time, that when the visual task is presented centrally, drivers' lane deviation reduces (similar to non-visual distraction), whilst measures of steering control, overall, indicated more steering activity, compared to baseline. When using a visual task that required the diversion of gaze to an in-vehicle display, but without a manual element, lane keeping performance was similar to baseline driving. Steering wheel reversal rates were found to adequately tease apart the effects of non-visual distraction (increase of 0.5° reversals) and visual distraction with offset gaze direction (increase of 2.5° reversals). These findings are discussed in terms of steering control during different types of in-vehicle distraction, and the possible role of manual interference by distracting secondary tasks. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. A new energy-efficient control approach for space telescope drive system

    NASA Astrophysics Data System (ADS)

    Zhou, Wangping; Wang, Yong

    Drive control makes the telescope accurately track celestial bodies in spite of external and in-ternal disturbances, and is a key technique to the performance of telescopes. In this paper, we propose a nonlinear adaptive observer based on power reversible approach for high preci-sion position tracking, i.e., space telescopes. The nonlinear adaptive observer automatically estimates the disturbances in drive system, and the observed value is applied to compensate for the real disturbances. With greatly reduced disturbances, the control precision can be ev-idently improved. In conventional drive control, the brake device is often used to slow down the reaction wheel and may waste enormous energy. To avoid those disadvantages, an H-bridge is put forward for wheel speed regulation. Such H-bridge has four independent sections, and each section mainly consists of a power electronic switch and an anti-parallel diode. A pair of diagonal sections is switched on for speeding up the reaction wheel and the other pair act in reverse. During the period of the wheel slowing down, the armature current of drive motor goes through the two path-wise diodes to discharge the battery. Thusly, energy waste is avoided. Based on the disturbance compensation, an optimal controller is designed to minimize an eval-uation function which is made up of a weighted sum of position errors and energy consumption. The outputs of the controller are amplified to control the H-bridge. Simulations are performed in MATLAB language. The results show that high precision control can be obtained by the proposed approach. And the energy consumption will be remarkably reduced.

  6. Sleepiness at the wheel across Europe: a survey of 19 countries.

    PubMed

    Gonçalves, Marta; Amici, Roberto; Lucas, Raquel; Åkerstedt, Torbjörn; Cirignotta, Fabio; Horne, Jim; Léger, Damien; McNicholas, Walter T; Partinen, Markku; Téran-Santos, Joaquín; Peigneux, Philippe; Grote, Ludger

    2015-06-01

    The European Sleep Research Society aimed to estimate the prevalence, determinants and consequences of falling asleep at the wheel. In total, 12 434 questionnaires were obtained from 19 countries using an anonymous online questionnaire that collected demographic and sleep-related data, driving behaviour, history of drowsy driving and accidents. Associations were quantified using multivariate logistic regression. The average prevalence of falling asleep at the wheel in the previous 2 years was 17%. Among respondents who fell asleep, the median prevalence of sleep-related accidents was 7.0% (13.2% involved hospital care and 3.6% caused fatalities). The most frequently perceived reasons for falling asleep at the wheel were poor sleep in the previous night (42.5%) and poor sleeping habits in general (34.1%). Falling asleep was more frequent in the Netherlands [odds ratio = 3.55 (95% confidence interval: 1.97; 6.39)] and Austria [2.34 (1.75; 3.13)], followed by Belgium [1.52 (1.28; 1.81)], Portugal [1.34 (1.13, 1.58)], Poland [1.22 (1.06; 1.40)] and France [1.20 (1.05; 1.38)]. Lower odds were found in Croatia [0.36 (0.21; 0.61)], Slovenia [0.62 (0.43; 0.89)] and Italy [0.65 (0.53; 0.79)]. Individual determinants of falling asleep were younger age; male gender [1.79 (1.61; 2.00)]; driving ≥20 000 km year [2.02 (1.74; 2.35)]; higher daytime sleepiness [7.49 (6.26; 8.95)] and high risk of obstructive sleep apnea syndrome [3.48 (2.78; 4.36) in men]. This Pan European survey demonstrates that drowsy driving is a major safety hazard throughout Europe. It emphasizes the importance of joint research and policy efforts to reduce the burden of sleepiness at the wheel for European drivers.

  7. Design features that affect the maneuverability of wheelchairs and scooters.

    PubMed

    Koontz, Alicia M; Brindle, Eric D; Kankipati, Padmaja; Feathers, David; Cooper, Rory A

    2010-05-01

    To determine the minimum space required for wheeled mobility device users to perform 4 maneuverability tasks and to investigate the impact of selected design attributes on space. Case series. University laboratory, Veterans Affairs research facility, vocational training center, and a national wheelchair sport event. The sample of convenience included manual wheelchair (MWC; n=109), power wheelchair (PWC; n=100), and scooter users (n=14). A mock environment was constructed to create passageways to form an L-turn, 360 degrees -turn in place, and a U-turn with and without a barrier. Passageway openings were increased in 5-cm increments until the user could successfully perform each task without hitting the walls. Structural dimensions of the device and user were collected using an electromechanical probe. Mobility devices were grouped into categories based on design features and compared using 1-way analysis of variance and post hoc pairwise Bonferroni-corrected tests. Minimum passageway widths for the 4 maneuverability tasks. Ultralight MWCs with rear axles posterior to the shoulder had the shortest lengths and required the least amount of space compared with all other types of MWCs (P<.05). Mid-wheel-drive PWCs required the least space for the 360 degrees -turn in place compared with front-wheel-drive and rear-wheel-drive PWCs (P<.01) but performed equally as well as front-wheel-drive models on all other turning tasks. PWCs with seat functions required more space to perform the tasks. Between 10% and 100% of users would not be able to maneuver in spaces that meet current Accessibility Guidelines for Buildings and Facilities specifications. This study provides data that can be used to support wheelchair prescription and home modifications and to update standards to improve the accessibility of public areas.

  8. Driving in Parkinson's disease: mobility, accidents, and sudden onset of sleep at the wheel.

    PubMed

    Meindorfner, Charlotte; Körner, Yvonne; Möller, Jens Carsten; Stiasny-Kolster, Karin; Oertel, Wolfgang Hermann; Krüger, Hans-Peter

    2005-07-01

    Only few studies have addressed driving ability in Parkinson's disease (PD) to date. However, studies investigating accident proneness of PD patients are urgently needed in the light of motor disability in PD and--particularly--the report of "sleep attacks" at the wheel. We sent a questionnaire about sudden onset of sleep (SOS) and driving behavior to 12,000 PD patients. Subsequently, of 6,620 complete data sets, 361 patients were interviewed by phone. A total of 82% of those 6,620 patients held a driving license, and 60% of them still participated in traffic. Of the patients holding a driving license, 15% had been involved in and 11% had caused at least one accident during the past 5 years. The risk of causing accidents was significantly increased for patients who felt moderately impaired by PD, had an increased Epworth Sleepiness Scale (ESS) score, and had experienced SOS while driving. Sleep attacks at the wheel usually occurred in easy driving situations and resulted in typical fatigue-related accidents. Those having retired from driving had a more advanced (subjective) disease severity, higher age, more frequently female gender, an increased ESS score, and a longer disease duration. The study revealed SOS and daytime sleepiness as critical factors for traffic safety in addition to motor disabilities of PD patients. The results suggest that real sleep attacks without any prior sleepiness are rare. However, our data underline the importance of mobility for patients and the need for further studies addressing the ability to drive in PD. Copyright 2005 Movement Disorder Society.

  9. Research of 600C Grade Welding V-N Micro-Alloyed Steel Used on Truck Axle Housing After Thermal Forming

    NASA Astrophysics Data System (ADS)

    Quanli, Wang; Hui, Pan; Qingmei, Liu

    Automobile axle housing is the basic element to install the main reducing gear, differential mechanism, semi-axis, wheel hub and suspension. The main function of automobile axle housing is to support the automobile quality with driven axle, fix the driving wheel relative axial position and bear the driving wheel transmission force during the automobile running. Axle housing steel with the thickness of not less than 12mm is produced by the thermal forming method, which is to heat the plate to 830 degree and hold some time, then thermal forming, and cool to room temperature. The steel plate should maintain the original strength and good ductility and toughness requirements with thermal forming process.

  10. In-wheel hub SRM simulation and analysis

    NASA Astrophysics Data System (ADS)

    Sager, Milton W., III

    Is it feasible to replace the conventional gasoline engine and subsequent drive system in a motorcycle with an electric switched reluctance motor (SRM) by placing the SRM inside the rear wheel, thereby removing the need for things such as a clutch, chain, transmission, gears and sprockets? The goal of this thesis is to study the theoretical aspect of prototyping and analyzing an in-wheel electric hub motor to replace the standard gasoline engine traditionally found on motorcycles. With the recent push for clean energy, electric vehicles are becoming more common. All currently produced electric motorcycles use conventional, prefabricated electric motors connected to the traditional sprocket and chain design. This greatly restricts the efficiency and range of these motorcycles. My design stands apart by turning the rear wheel into a SRM which uses electromagnets around a non-magnetic core to convert electrical energy into mechanical force driving the rear wheel. To my knowledge, there is currently no motorcycle designed with an in-wheel hub SRM. A three-phase SRM and a five-phase SRM will be simulated and analyzed using MATLAB with Simulink. Factors such as friction, weight, power, etc. will be taken into account in order to create a realistic simulation as if it were inside the rear wheel of a motorcycle. Since time and finances will not allow for a full scale build, a scaled model three-phase SRM will be attempted for demonstration purposes.

  11. Self-locking telescoping manipulator arm

    NASA Technical Reports Server (NTRS)

    Nesmith, M. F. (Inventor)

    1985-01-01

    A telescoping manipulator arm and pivotable finger assembly are disclosed. The telescoping arm assembly includes a generally T-shaped arm having three outwardly extending fingers guided on grooved roller guides to compensate for environmental variations. The pivotable finger assembly includes four pivoting fingers. Arcuate teeth are formed on the ends of the fingers. A rack having teeth on four sides meshes with each one of the fingers. One surface of the rack includes teeth along its entire surface which mesh with teeth of one of the fingers. The teeth at the remote end of the rack engage teeth of a gear wheel. The wheel includes a worm which meshes with a worn drive shaft of the drive motor providing a ninety degree self-locking drive for locking the fingers in a desired position. A similar drive provides a self-locking drive for positioning the telescoping arm.

  12. Impact of steerable sheaths on contact forces and reconnection sites in ablation for persistent atrial fibrillation.

    PubMed

    Ullah, Waqas; Hunter, Ross J; McLean, Ailsa; Dhinoja, Mehul; Earley, Mark J; Sporton, Simon; Schilling, Richard J

    2015-03-01

    In preclinical studies, catheter contact force (CF) during radiofrequency ablation correlates with the subsequent lesion size. We investigated the impact of steerable sheaths on ablation CF, its consistency, and wide area circumferential ablation (WACA) line reconnection sites. Five thousand and sixty-four ablations were analyzed across 60 patients undergoing first-time ablation for persistent AF using a CF-sensing catheter: 19 manual nonsteerable sheath (Manual-NSS), 11 manual steerable sheath, and 30 robotic steerable sheath (Sensei, Hansen Medical Inc.) procedures were studied. Ablation CFs were higher in the steerable sheath groups for all left atrial ablations and also WACA ablations specifically (P < 0.006), but less consistent per WACA segment (P < 0.005). There were significant differences in the CFs around both WACAs by group: in the left WACA CFs were lower with Manual-NSS, other than at the anterior-inferior and posterior-superior regions, and lower in the right WACA, other than the anterior-superior region. There was a difference in the proportion of segments chronically reconnecting across groups: Manual-NSS 26.5%, manual steerable sheath 4.6%, robotic 12% (P < 0.0005). The left atrial appendage/PV ridge and right posterior wall were common sites of reconnection in all groups. Steerable sheaths increased ablation CF; however, there were region-specific heterogeneities in the extent of increment, with some segments where they failed to increase CF. Steerable sheath use was associated with reduced WACA-segment reconnection. It may be that the benefits of steerable sheath use in terms of higher CFs could be translated to improved clinical outcomes if regional weaknesses of this technology are taken into account during ablation procedures. © 2014 Wiley Periodicals, Inc.

  13. Close Look at Curiosity First Drive

    NASA Image and Video Library

    2010-07-29

    A test operator in clean-room garb observes rolling of the wheels during the first drive test of NASA Curiosity rover, on July 23, 2010. Technicians and engineers conducted the drive test at the Jet Propulsion Laboratory in Pasadena, Calif.

  14. 21 CFR 870.1280 - Steerable catheter.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Steerable catheter. 870.1280 Section 870.1280 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Diagnostic Devices § 870.1280 Steerable catheter. (a...

  15. 21 CFR 870.1280 - Steerable catheter.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Steerable catheter. 870.1280 Section 870.1280 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Diagnostic Devices § 870.1280 Steerable catheter. (a...

  16. Omni-directional and holonomic rolling platform with decoupled rotational and translational degrees of freedom

    DOEpatents

    Pin, F.G.; Killough, S.M.

    1994-12-20

    A wheel assembly includes a support, a cage rotatably mounted on the support and having a longitudinal rotation axis, a first ball wheel rotatably mounted in the cage and having a rotation axis orthogonal to the rotation axis of the cage, and a second ball wheel rotatably mounted in the cage and having a rotation axis orthogonal to the rotation axis or the cage and to the rotation axis of the first ball wheel. A control circuit includes a photodetector signal which indicates ground contact for each ball wheel, and a tachometer which indicates actual drive shaft velocity. 6 figures.

  17. Omni-directional and holonomic rolling platform with decoupled rotational and translational degrees of freedom

    DOEpatents

    Pin, Francois G.; Killough, Stephen M.

    1994-01-01

    A wheel assembly includes a support, a cage rotatably mounted on the support and having a longitudinal rotation axis, a first ball wheel rotatably mounted in the cage and having a rotation axis orthogonal to the rotation axis of the cage, and a second ball wheel rotatably mounted in the cage and having a rotation axis orthogonal to the rotation axis or the cage and to the rotation axis of the first ball wheel. A control circuit includes a photodetector signal which indicates ground contact for each ball wheel, and a tachometer which indicates actual drive shaft velocity.

  18. Bright Soil Churned by Spirit's Sol 1861 Drive

    NASA Technical Reports Server (NTRS)

    2009-01-01

    NASA's Mars Exploration Rover Spirit drove 22.7 meters (74 feet) toward the southwest on the 1,861st Martian day, or sol, of Spirit's mission on Mars (March 28, 2009). After the drive, the rover took this image with its front hazard-avoidance camera, looking back at the tracks from the drive.

    As usual since losing the use of its right-front wheel in 2006, Spirit drove backwards. The immobile right-front wheel churned up a long stripe of bright soil during this drive. Where Spirit has found such bright soil in the past, subsequent analysis of the composition found concentrations of sulfur or silica that testified to past action of water at the site. When members of the rover team saw the large quantity of bright soil exposed by the Sol 1861 drive, they quickly laid plans to investigate the composition with Spirit's alpha particle X-ray spectrometer.

    The Sol 1861 drive took the rover past the northwest corner of the low plateau called 'Home Plate,' making progress on a route around the western side of Home Plate. The edge of Home Plate forms the horizon on the right side of this image. Husband Hill is on the horizon on the left side. For scale, the parallel rover wheel tracks are about 1 meter (40 inches) apart. The rover's hazard-avoidance cameras take 'fisheye' wide-angle images.

  19. 21 CFR 870.1290 - Steerable catheter control system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Steerable catheter control system. 870.1290 Section 870.1290 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Diagnostic Devices § 870.1290 Steerable...

  20. 21 CFR 870.1290 - Steerable catheter control system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Steerable catheter control system. 870.1290 Section 870.1290 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Diagnostic Devices § 870.1290 Steerable...

  1. Exercise tricycle for paraplegics.

    PubMed

    Gföhler, M; Loicht, M; Lugner, P

    1998-01-01

    The work describes a tricycle that can be used by paraplegics without assistance. Paraplegics can get on and off the tricycle independently, using hydraulic adjustment of the saddle height. The two rear wheels can be swivelled with adjustable hydraulic damping, which avoids the stability problems of a standard tricycle when riding around bends. The principal driving power is assumed to be provided by functional electrical stimulation of the femoral muscles. A hub motor is integrated in the front wheel to increase the radius of action, as additional drive for cycling up gradients and in case muscle force is not sufficient. The desired drive power is adjusted by a throttle grip on the handlebar. The percentage of motor power can also be adjusted. The force applied to the pedal, the absolute angular position of the crank, and the angular velocity of the front wheel are continuously measured by a force measurement pedal and a goniometer. Based on this information, the motor and the functional electrical stimulation of the legs are controlled.

  2. Assessment of driving-related skills for older drivers : traffic tech.

    DOT National Transportation Integrated Search

    2010-04-01

    Relating behind-the-wheel driving performance to performance : on office-based screening tools is challenging. It is : important to use tools that are predictive of poor driving : performance (sensitivity), but also to find tools that do not : have h...

  3. Friction drive position transducer

    NASA Astrophysics Data System (ADS)

    Waclawik, Ronald E.; Cayer, James L.; Lapointe, Kenneth M.

    1991-10-01

    A spring force loaded contact wheel mounted in a stationary position relative to a reciprocating shaft is disclosed. The apparatus of the present invention includes a tensioning assembly for maintaining absolute contact between the contact wheel and the reciprocating shaft wherein the tensioning assembly urges the contact wheel against the shaft to maintain contact therebetween so that the wheel turns as the shaft is linearly displaced. A rotary encoding device is coupled to the wheel for translating the angular and rotational movement thereof into an electronic signal for providing linear displacement information and derivative data with respect to displacement of the shaft. Absolute friction contact and cooperative interaction between the shaft and the contact wheel is further enhanced in the preferred embodiment by advantageously selecting the types of surface finish and the amount of surface area of the contact wheel relative to the surface condition of the shaft as well as by reducing the moment of inertia of the contact wheel.

  4. Friction drive position transducer

    NASA Astrophysics Data System (ADS)

    Waclawik, Ronald E.; Cayer, James L.; Lapointe, Kenneth M.

    1993-06-01

    A spring force loaded contact wheel mounted in a stationary position relative to a reciprocating shaft is disclosed. The apparatus of the present invention includes a tensioning assembly for maintaining absolute contact between the contact wheel and the reciprocating shaft wherein the tensioning assembly urges the contact wheel against the shaft to maintain contact there between so that the wheel turn as the shaft is linearly displaced. A rotary encoding device is coupled to the wheel for translating the angular and rotational movement thereof into an electronic signal for providing linear displacement information and derivative data with respect to displacement of the shaft. Absolute friction contact and cooperative interaction between the shaft and the contact wheel is further enhanced in the preferred embodiment by advantageously selecting the type of surface finish and the amount of surface area of the contact wheel relative to the surface condition of the shaft as well as by reducing the moment of inertia of the contact wheel.

  5. Exploration quantum steering, nonlocality and entanglement of two-qubit X-state in structured reservoirs

    PubMed Central

    Sun, Wen-Yang; Wang, Dong; Shi, Jia-Dong; Ye, Liu

    2017-01-01

    In this work, there are two parties, Alice on Earth and Bob on the satellite, which initially share an entangled state, and some open problems, which emerge during quantum steering that Alice remotely steers Bob, are investigated. Our analytical results indicate that all entangled pure states and maximally entangled evolution states (EESs) are steerable, and not every entangled evolution state is steerable and some steerable states are only locally correlated. Besides, quantum steering from Alice to Bob experiences a “sudden death” with increasing decoherence strength. However, shortly after that, quantum steering experiences a recovery with the increase of decoherence strength in bit flip (BF) and phase flip (PF) channels. Interestingly, while they initially share an entangled pure state, all EESs are steerable and obey Bell nonlocality in PF and phase damping channels. In BF channels, all steerable states can violate Bell-CHSH inequality, but some EESs are unable to be employed to realize steering. However, when they initially share an entangled mixed state, the outcome is different from that of the pure state. Furthermore, the steerability of entangled mixed states is weaker than that of entangled pure states. Thereby, decoherence can induce the degradation of quantum steering, and the steerability of state is associated with the interaction between quantum systems and reservoirs. PMID:28145467

  6. A Traction Control Strategy with an Efficiency Model in a Distributed Driving Electric Vehicle

    PubMed Central

    Lin, Cheng

    2014-01-01

    Both active safety and fuel economy are important issues for vehicles. This paper focuses on a traction control strategy with an efficiency model in a distributed driving electric vehicle. In emergency situation, a sliding mode control algorithm was employed to achieve antislip control through keeping the wheels' slip ratios below 20%. For general longitudinal driving cases, an efficiency model aiming at improving the fuel economy was built through an offline optimization stream within the two-dimensional design space composed of the acceleration pedal signal and the vehicle speed. The sliding mode control strategy for the joint roads and the efficiency model for the typical drive cycles were simulated. Simulation results show that the proposed driving control approach has the potential to apply to different road surfaces. It keeps the wheels' slip ratios within the stable zone and improves the fuel economy on the premise of tracking the driver's intention. PMID:25197697

  7. A traction control strategy with an efficiency model in a distributed driving electric vehicle.

    PubMed

    Lin, Cheng; Cheng, Xingqun

    2014-01-01

    Both active safety and fuel economy are important issues for vehicles. This paper focuses on a traction control strategy with an efficiency model in a distributed driving electric vehicle. In emergency situation, a sliding mode control algorithm was employed to achieve antislip control through keeping the wheels' slip ratios below 20%. For general longitudinal driving cases, an efficiency model aiming at improving the fuel economy was built through an offline optimization stream within the two-dimensional design space composed of the acceleration pedal signal and the vehicle speed. The sliding mode control strategy for the joint roads and the efficiency model for the typical drive cycles were simulated. Simulation results show that the proposed driving control approach has the potential to apply to different road surfaces. It keeps the wheels' slip ratios within the stable zone and improves the fuel economy on the premise of tracking the driver's intention.

  8. Steering redundancy for self-driving vehicles using differential braking

    NASA Astrophysics Data System (ADS)

    Jonasson, M.; Thor, M.

    2018-05-01

    This paper describes how differential braking can be used to turn a vehicle in the context of providing fail-operational control for self-driving vehicles. Two vehicle models are developed with differential input. The models are used to explain the bounds of curvature that differential braking provides and they are then validated with measurements in a test vehicle. Particular focus is paid on wheel suspension effects that significantly influence the obtained curvature. The vehicle behaviour and its limitations due to wheel suspension effects are, owing to the vehicle models, defined and explained. Finally, a model-based controller is developed to control the vehicle curvature during a fault by differential braking. The controller is designed to compensate for wheel angle disturbance that is likely to occur during the control event.

  9. GOAT (goes over all terrain) vehicle: a scaleable robotic vehicle

    NASA Astrophysics Data System (ADS)

    Dodson, Michael G.; Owsley, Stanley L.; Moorehead, Stewart J.

    2003-09-01

    Many of the potential applications of mobile robots require a small to medium sized vehicle that is capable of traversing large obstacles and rugged terrain. Search and rescue operations require a robot small enough to drive through doorways, yet capable enough to surmount rubble piles and stairs. This paper presents the GOAT (Goes Over All Terrain) vehicle, a medium scale robot which incorporates a novel configuration which puts the drive wheels on the ends of actuated arms. This allows GOAT to adjust body height and posture and combines the benefits of legged locomotion with the ease of wheeled driving. The paper presents the design of the GOAT and the results of prototype construction and initial testing.

  10. Experience with Geared Propeller Drives for Aviation Engines

    NASA Technical Reports Server (NTRS)

    Kutzbach, K

    1920-01-01

    I. The development of the gear wheels: (a) bending stresses; (b) compressive stresses; (c) heating; (d) precision of manufacture. II. General arrangement of the gearing. III. Vibration in the shaft transmission. An overview is given of experience with geared propeller drives for aviation engines. The development of gear wheels is discussed with emphasis upon bending stresses, compressive stresses, heating, and precision in manufacturing. With respect to the general arrangement of gear drives for airplanes, some principal rules of mechanical engineering that apply with special force are noted. The primary vibrations in the shaft transmission are discussed. With respect to vibration, various methods for computing vibration frequency and the influence of elastic couplings are discussed.

  11. Steering Bell-diagonal states

    PubMed Central

    Quan, Quan; Zhu, Huangjun; Liu, Si-Yuan; Fei, Shao-Ming; Fan, Heng; Yang, Wen-Li

    2016-01-01

    We investigate the steerability of two-qubit Bell-diagonal states under projective measurements by the steering party. In the simplest nontrivial scenario of two projective measurements, we solve this problem completely by virtue of the connection between the steering problem and the joint-measurement problem. A necessary and sufficient criterion is derived together with a simple geometrical interpretation. Our study shows that a Bell-diagonal state is steerable by two projective measurements iff it violates the Clauser-Horne-Shimony-Holt (CHSH) inequality, in sharp contrast with the strict hierarchy expected between steering and Bell nonlocality. We also introduce a steering measure and clarify its connections with concurrence and the volume of the steering ellipsoid. In particular, we determine the maximal concurrence and ellipsoid volume of Bell-diagonal states that are not steerable by two projective measurements. Finally, we explore the steerability of Bell-diagonal states under three projective measurements. A simple sufficient criterion is derived, which can detect the steerability of many states that are not steerable by two projective measurements. Our study offers valuable insight on steering of Bell-diagonal states as well as the connections between entanglement, steering, and Bell nonlocality. PMID:26911250

  12. 18. William E. Barrett, Photographer, August 1975. EXPOSED VIEW OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. William E. Barrett, Photographer, August 1975. EXPOSED VIEW OF LOWER PULLEYS OF LEFT-HAND MILL. LOWER LEFT IS BAND SAW PULLEY. UPPER LEFT IS TENSION WHEEL. LARGE PULLEY ON RIGHT IS DRIVE WHEEL FROM POWER SOURCE. - Meadow River Lumber Company, Highway 60, Rainelle, Greenbrier County, WV

  13. 18. Detail view of central pivot pier, drive gear rack, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. Detail view of central pivot pier, drive gear rack, and stabilizing wheel, looking southwest - India Point Railroad Bridge, Spanning Seekonk River between Providence & East Providence, Providence, Providence County, RI

  14. RoboSimian Driving

    NASA Image and Video Library

    2015-06-09

    JPL's RoboSimian drives a four-wheeled vehicle through a slalom course at the DARPA Robotics Challenge Finals in Pomona, California. This image was taken on June 6, 2015. http://photojournal.jpl.nasa.gov/catalog/PIA19325

  15. Cable and Line Inspection Mechanism

    NASA Technical Reports Server (NTRS)

    Ross, Terence J. (Inventor)

    2003-01-01

    An automated cable and line inspection mechanism visually scans the entire surface of a cable as the mechanism travels along the cable=s length. The mechanism includes a drive system, a video camera, a mirror assembly for providing the camera with a 360 degree view of the cable, and a laser micrometer for measuring the cable=s diameter. The drive system includes an electric motor and a plurality of drive wheels and tension wheels for engaging the cable or line to be inspected, and driving the mechanism along the cable. The mirror assembly includes mirrors that are positioned to project multiple images of the cable on the camera lens, each of which is of a different portion of the cable. A data transceiver and a video transmitter are preferably employed for transmission of video images, data and commands between the mechanism and a remote control station.

  16. Cable and line inspection mechanism

    NASA Technical Reports Server (NTRS)

    Ross, Terence J. (Inventor)

    2003-01-01

    An automated cable and line inspection mechanism visually scans the entire surface of a cable as the mechanism travels along the cable=s length. The mechanism includes a drive system, a video camera, a mirror assembly for providing the camera with a 360 degree view of the cable, and a laser micrometer for measuring the cable=s diameter. The drive system includes an electric motor and a plurality of drive wheels and tension wheels for engaging the cable or line to be inspected, and driving the mechanism along the cable. The mirror assembly includes mirrors that are positioned to project multiple images of the cable on the camera lens, each of which is of a different portion of the cable. A data transceiver and a video transmitter are preferably employed for transmission of video images, data and commands between the mechanism and a remote control station.

  17. Effect of sleep deprivation on driving safety in housestaff.

    PubMed

    Marcus, C L; Loughlin, G M

    1996-12-01

    Sleep deprivation is known to affect driving safety. Housestaff (HS) are routinely sleep-deprived when on call. We hypothesized that this would affect their driving. We therefore administered questionnaires regarding driving to 70 pediatric HS, who were on call every fourth night, and to 85 faculty members (FAC), who were rarely disturbed at night. HS were questioned about events during their residency, and FAC were questioned about events during the preceding three years. There was an 87% response rate for each group. HS slept 2.7 +/- 0.9 (SD) hours when on call vs 7.2 +/- 0.8 hours when not on call (p < 0.001). 44% of HS had fallen asleep when stopped at a light, vs 12.5% FAC (p < 0.001). 23% of HS had fallen asleep while driving vs. 8% FAC (ns). A total of 49% of HS had fallen asleep at the wheel; 90% of these events occurred post-call. In contrast, only 13% of FAC had fallen asleep at the wheel (p < 0.001). HS had received a total of 25 traffic citations for moving violations vs. 15 for FAC and were involved in 20 motor vehicle accidents vs. 11 for FAC. One traffic citation clearly resulted from HS falling asleep at the wheel vs. none for FAC. We conclude that HS frequently fall asleep when driving post-call. We speculate that current HS work schedules may place some HS at risk for injury to themselves and others. Further study, using prospectively objective measures is indicated.

  18. Multibody dynamics simulation of an all-wheel-drive motorcycle for handling and energy efficiency investigations

    NASA Astrophysics Data System (ADS)

    Griffin, J. W.; Popov, A. A.

    2018-07-01

    It is now possible, through electrical, hydraulic or mechanical means, to power the front wheel of a motorcycle. The aim of this is often to improve performance in limit-handling scenarios including off-road low-traction conditions and on-road high-speed cornering. Following on from research into active torque distribution in 4-wheeled vehicles, the possibility exists for efficiency improvements to be realised by reducing the total amount of energy dissipated as slip at the wheel-road contact. This paper presents the results of an investigation into the effect that varying the torque distribution ratio has on the energy consumption of the two-wheeled vehicle. A 13-degree of freedom multibody model was created, which includes the effects of suspension, aerodynamics and gyroscopic bodies. SimMechanics, from the MathWorks?, is used for automatic generation of equations of motion and time-domain simulation, in conjunction with MATLAB and Simulink. A simple driver model is used to control the speed and yaw rate of the motorcycle. The handling characteristics of the motorcycle are quantitatively analysed, and the impact of torque distribution on energy consumption is considered during straight line and cornering situations. The investigation has shown that only a small improvement in efficiency can be made by transferring a portion of the drive torque to the front wheel. Tyre longevity could be improved by reduced slip energy dissipation.

  19. New Record Five-Wheel Drive, Spirit's Sol 1856 (Stereo)

    NASA Technical Reports Server (NTRS)

    2009-01-01

    [figure removed for brevity, see original site] Left-eye view of a color stereo pair for PIA11962 [figure removed for brevity, see original site] Right-eye view of a color stereo pair for PIA11962

    NASA's Mars Exploration Rover Spirit used its navigation camera to take the images that have been combined into this stereo, 180-degree view of the rover's surroundings during the 1,856th Martian day, or sol, of Spirit's surface mission (March 23, 2009). The center of the view is toward the west-southwest.

    This view combines images from the left-eye and right-eye sides of the navigation camera. It appears three-dimensional when viewed through red-blue glasses with the red lens on the left.

    The rover had driven 25.82 meters (84.7 feet) west-northwestward earlier on Sol 1856. This is the longest drive on Mars so far by a rover using only five wheels. Spirit lost the use of its right-front wheel in March 2006. Before Sol 1856, the farthest Spirit had covered in a single sol's five-wheel drive was 24.83 meters (81.5 feet), on Sol 1363 (Nov. 3, 2007).

    The Sol 1856 drive made progress on a route planned for taking Spirit around the western side of the low plateau called 'Home Plate.' A portion of the northwestern edge of Home Plate is prominent in the left quarter of this image, toward the south.

    This view is presented as a cylindrical-perspective projection with geometric seam correction.

  20. Einstein-Podolsky-Rosen steering: Its geometric quantification and witness

    NASA Astrophysics Data System (ADS)

    Ku, Huan-Yu; Chen, Shin-Liang; Budroni, Costantino; Miranowicz, Adam; Chen, Yueh-Nan; Nori, Franco

    2018-02-01

    We propose a measure of quantum steerability, namely, a convex steering monotone, based on the trace distance between a given assemblage and its corresponding closest assemblage admitting a local-hidden-state (LHS) model. We provide methods to estimate such a quantity, via lower and upper bounds, based on semidefinite programming. One of these upper bounds has a clear geometrical interpretation as a linear function of rescaled Euclidean distances in the Bloch sphere between the normalized quantum states of (i) a given assemblage and (ii) an LHS assemblage. For a qubit-qubit quantum state, these ideas also allow us to visualize various steerability properties of the state in the Bloch sphere via the so-called LHS surface. In particular, some steerability properties can be obtained by comparing such an LHS surface with a corresponding quantum steering ellipsoid. Thus, we propose a witness of steerability corresponding to the difference of the volumes enclosed by these two surfaces. This witness (which reveals the steerability of a quantum state) enables one to find an optimal measurement basis, which can then be used to determine the proposed steering monotone (which describes the steerability of an assemblage) optimized over all mutually unbiased bases.

  1. Sliding GAIT Algorithm for the All-Terrain Hex-Limbed Extra-Terrestrial Explorer (ATHLETE)

    NASA Technical Reports Server (NTRS)

    Townsend, Julie; Biesiadecki, Jeffrey

    2012-01-01

    The design of a surface robotic system typically involves a trade between the traverse speed of a wheeled rover and the terrain-negotiating capabilities of a multi-legged walker. The ATHLETE mobility system, with both articulated limbs and wheels, is uniquely capable of both driving and walking, and has the flexibility to employ additional hybrid mobility modes. This paper introduces the Sliding Gait, an intermediate mobility algorithm faster than walking with better terrain-handling capabilities than wheeled mobility.

  2. Vehicle for carrying an object of interest

    DOEpatents

    Zollinger, W.T.; Ferrante, T.A.

    1998-10-13

    A vehicle for carrying an object of interest across a supporting surface including a frame having opposite first and second ends; a first pair of wheels fixedly mounted on the first end of the frame; a second pair of wheels pivotally mounted on the second end of the frame; and a pair of motors borne by the frame, each motor disposed in driving relation relative to one of the pairs of wheels, the motors propelling the vehicle across the supporting surface. 8 figs.

  3. Vehicle for carrying an object of interest

    DOEpatents

    Zollinger, W. Thor; Ferrante, Todd A.

    1998-01-01

    A vehicle for carrying an object of interest across a supporting surface including a frame having opposite first and second ends; a first pair of wheels fixedly mounted on the first end of the frame; a second pair of wheels pivotally mounted on the second end of the frame; and a pair of motors borne by the frame, each motor disposed in driving relation relative to one of the pairs of wheels, the motors propelling the vehicle across the supporting surface.

  4. 14 CFR 33.7 - Engine ratings and operating limitations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... turbine wheel inlet gas. (5) Pressure of— (i) Fuel at the fuel inlet; and (ii) Oil at the main oil gallery. (6) Accessory drive torque and overhang moment. (7) Component life. (8) Turbosupercharger turbine wheel r.p.m. (c) For turbine engines, ratings and operating limitations are established relating to the...

  5. 49 CFR 571.101 - Standard No. 101; Controls and displays.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... accessibility, visibility and recognition of motor vehicle controls, telltales and indicators, and to facilitate... pressing on the center of the face plane of the steering wheel hub; or for a turn signal control that is operated in a plane essentially parallel to the face plane of the steering wheel in its normal driving...

  6. 49 CFR 571.101 - Standard No. 101; Controls and displays.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... accessibility, visibility and recognition of motor vehicle controls, telltales and indicators, and to facilitate... pressing on the center of the face plane of the steering wheel hub; or for a turn signal control that is operated in a plane essentially parallel to the face plane of the steering wheel in its normal driving...

  7. 49 CFR 571.101 - Standard No. 101; Controls and displays.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... accessibility, visibility and recognition of motor vehicle controls, telltales and indicators, and to facilitate... pressing on the center of the face plane of the steering wheel hub; or for a turn signal control that is operated in a plane essentially parallel to the face plane of the steering wheel in its normal driving...

  8. 49 CFR 571.101 - Standard No. 101; Controls and displays.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... accessibility, visibility and recognition of motor vehicle controls, telltales and indicators, and to facilitate... pressing on the center of the face plane of the steering wheel hub; or for a turn signal control that is operated in a plane essentially parallel to the face plane of the steering wheel in its normal driving...

  9. 49 CFR 571.101 - Standard No. 101; Controls and displays.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... accessibility, visibility and recognition of motor vehicle controls, telltales and indicators, and to facilitate... pressing on the center of the face plane of the steering wheel hub; or for a turn signal control that is operated in a plane essentially parallel to the face plane of the steering wheel in its normal driving...

  10. Side slope stability of articulated-frame logging tractors

    Treesearch

    H.G. Gibson; K.C. Elliott; S.P.E. Persson

    1971-01-01

    Many log or pulpwood transporting machines have hinged or articulated frames for steering. The articulated frame offers advantages for these machines, but the design introduces some problems in stability. We formulated and analyzed a mathematical model simulating stability of a 4-wheel-drive, articulated frame logging tractor (wheeled skidder) at static or low constant...

  11. Experimental verification and comparison of the rubber V- belt continuously variable transmission models

    NASA Astrophysics Data System (ADS)

    Grzegożek, W.; Dobaj, K.; Kot, A.

    2016-09-01

    The paper includes the analysis of the rubber V-belt cooperation with the CVT transmission pulleys. The analysis of the forces and torques acting in the CVT transmission was conducted basing on calculated characteristics of the centrifugal regulator and the torque regulator. The accurate estimation of the regulator surface curvature allowed for calculation of the relation between the driving wheel axial force, the engine rotational speed and the gear ratio of the CVT transmission. Simplified analytical models of the rubber V-belt- pulley cooperation are based on three basic approaches. The Dittrich model assumes two contact regions on the driven and driving wheel. The Kim-Kim model considers, in addition to the previous model, also the radial friction. The radial friction results in the lack of the developed friction area on the driving pulley. The third approach, formulated in the Cammalleri model, assumes variable sliding angle along the wrap arch and describes it as a result the belt longitudinal and cross flexibility. Theoretical torque on the driven and driving wheel was calculated on the basis of the known regulators characteristics. The calculated torque was compared to the measured loading torque. The best accordance, referring to the centrifugal regulator range of work, was obtained for the Kim-Kim model.

  12. Pipe weld crown removal device

    DOEpatents

    Sword, Charles K.; Sette, Primo J.

    1992-01-01

    A device is provided for grinding down the crown of a pipe weld joining aligned pipe sections so that the weld is substantially flush with the pipe sections joined by the weld. The device includes a cage assembly comprising a pair of spaced cage rings adapted to be mounted for rotation on the respective pipe sections on opposite sides of the weld, a plurality of grinding wheels, supported by the cage assembly for grinding down the crown of the weld, and a plurality of support shafts, each extending longitudinally along the joined pipe sections, parallel thereto, for individually mounting respective grinding wheels. Each end of the support shafts is mounted for rotation in a bearing assembly housed within a radially directed opening in a corresponding one of the cage rings so as to provide radial movement of the associated shaft, and thus of the associated grinding wheel, towards and away from the weld. A first drive sprocket provides rotation of the cage assembly around the pipe sections while a second drive unit, driven by a common motor, provides rotation of the grinding wheels.

  13. Stability enhancement and fuel economy of the 4-wheel-drive hybrid electric vehicles by optimal tyre force distribution

    NASA Astrophysics Data System (ADS)

    Goodarzi, Avesta; Mohammadi, Masoud

    2014-04-01

    In this paper, vehicle stability control and fuel economy for a 4-wheel-drive hybrid vehicle are investigated. The integrated controller is designed within three layers. The first layer determines the total yaw moment and total lateral force made by using an optimal controller method to follow the desired dynamic behaviour of a vehicle. The second layer determines optimum tyre force distribution in order to optimise tyre usage and find out how the tyres should share longitudinal and lateral forces to achieve a target vehicle response under the assumption that all four wheels can be independently steered, driven, and braked. In the third layer, the active steering, wheel slip, and electrical motor torque controllers are designed. In the front axle, internal combustion engine (ICE) is coupled to an electric motor (EM). The control strategy has to determine the power distribution between ICE and EM to minimise fuel consumption and allowing the vehicle to be charge sustaining. Finally, simulations performed in MATLAB/SIMULINK environment show that the proposed structure could enhance the vehicle stability and fuel economy in different manoeuvres.

  14. Association between reported sleep need and sleepiness at the wheel: comparative study on French highways between 1996 and 2011

    PubMed Central

    Quera-Salva, M A; Sauvagnac-Quera, R; Sagaspe, P; Taillard, J; Contrand, B; Micoulaud, J A; Lagarde, E; Barbot, F; Philip, P

    2016-01-01

    Objective To investigate the evolution over 15 years of sleep schedules, sleepiness at the wheel and driving risk among highway drivers. Methods Comparative survey including questions on usual sleep schedules and before the trip, sleepiness at the wheel, the Epworth sleepiness scale, Basic Nordic Sleep Questionnaire (BNSQ) and a travel questionnaire. Results 80% of drivers stopped by the highway patrol agreed to participate in both studies with a total of 3545 drivers in 2011 and 2196 drivers in 1996 interviewed. After standardisation based on sex, age and mean annual driving distance, drivers in 2011 reported shorter sleep time on week days (p<0.0001), and week-ends (p<0.0001) and shorter optimal sleep time (p<0.0001) compared to 1996 drivers. There were more drivers sleepy at the wheel in 2011 than in 1996 (p<0.0001) and 2.5 times more drivers in 2011 than in 1996 had an Epworth sleepiness score >15 indicating severe sleepiness. Conclusions Even if drivers in 2011 reported good sleep hygiene prior to a highway journey, drivers have reduced their mean weekly sleep duration over 15 years and have a higher risk of sleepiness at the wheel. Sleep hygiene for automobile drivers remains an important concept to address. PMID:28003284

  15. Looking southwest at the motor, drive shaft, and stokers for ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking southwest at the motor, drive shaft, and stokers for boilers numbers 1 through 6. - Wheeling-Pittsburgh Steel Corporation, Allenport Works, Boiler House, Route 88 on West bank of Monongahela River, Allenport, Washington County, PA

  16. The effect of competition on heart rate during kart driving: A field study.

    PubMed

    Matsumura, Kenta; Yamakoshi, Takehiro; Yamakoshi, Yasuhiro; Rolfe, Peter

    2011-09-09

    Both the act of competing, which can create a kind of mental stress, and participation in motor sports, which induces physical stress from intense g-forces, are known to increase heart rate dramatically. However, little is known about the specific effect of competition on heart rate during motor sports, particularly during four-wheel car driving. The goal of this preliminary study, therefore, was to investigate whether competition increases heart rate under such situations. The participants drove an entry-level formula kart during two competitive races and during solo driving against the clock while heart rate and g-forces were measured. Analyses showed that heart rate values during the races (168.8 beats/min) were significantly higher than those during solo driving (140.9 beats/min) and rest (75.1 beats/min). The results of this preliminary study indicate that competition heightens heart rate during four-wheel car driving. Kart drivers should be concerned about maintaining good health and developing physical strength.

  17. The effect of competition on heart rate during kart driving: A field study

    PubMed Central

    2011-01-01

    Background Both the act of competing, which can create a kind of mental stress, and participation in motor sports, which induces physical stress from intense g-forces, are known to increase heart rate dramatically. However, little is known about the specific effect of competition on heart rate during motor sports, particularly during four-wheel car driving. The goal of this preliminary study, therefore, was to investigate whether competition increases heart rate under such situations. Findings The participants drove an entry-level formula kart during two competitive races and during solo driving against the clock while heart rate and g-forces were measured. Analyses showed that heart rate values during the races (168.8 beats/min) were significantly higher than those during solo driving (140.9 beats/min) and rest (75.1 beats/min). Conclusions The results of this preliminary study indicate that competition heightens heart rate during four-wheel car driving. Kart drivers should be concerned about maintaining good health and developing physical strength. PMID:21906298

  18. Multi-functional Electric Module for a Vehicle

    NASA Technical Reports Server (NTRS)

    Waligora, Thomas M. (Inventor); Fraser-Chanpong, Nathan (Inventor); Figuered, Joshua M. (Inventor); Reed, Ryan (Inventor); Akinyode, Akinjide Akinniyi (Inventor); Spain, Ivan (Inventor); Dawson, Andrew D. (Inventor); Herrera, Eduardo (Inventor); Markee, Mason M. (Inventor); Bluethmann, William J. (Inventor)

    2015-01-01

    A multi-functional electric module (eModule) is provided for a vehicle having a chassis, a master controller, and a drive wheel having a propulsion-braking module. The eModule includes a steering control assembly, mounting bracket, propulsion control assembly, brake controller, housing, and control arm. The steering control assembly includes a steering motor controlled by steering controllers in response to control signals from the master controller. A mounting feature of the bracket connects to the chassis. The propulsion control assembly and brake controller are in communication with the propulsion-braking module. The control arm connects to the lower portion and contains elements of a suspension system, with the control arm being connectable to the drive wheel via a wheel input/output block. The controllers are responsive to the master controller to control a respective steering, propulsion, and braking function. The steering motor may have a dual-wound stator with windings controlled via the respective steering controllers.

  19. A numerical investigation on the efficiency of range extending systems using Advanced Vehicle Simulator

    NASA Astrophysics Data System (ADS)

    Varnhagen, Scott; Same, Adam; Remillard, Jesse; Park, Jae Wan

    2011-03-01

    Series plug-in hybrid electric vehicles of varying engine configuration and battery capacity are modeled using Advanced Vehicle Simulator (ADVISOR). The performance of these vehicles is analyzed on the bases of energy consumption and greenhouse gas emissions on the tank-to-wheel and well-to-wheel paths. Both city and highway driving conditions are considered during the simulation. When simulated on the well-to-wheel path, it is shown that the range extender with a Wankel rotary engine consumes less energy and emits fewer greenhouse gases compared to the other systems with reciprocating engines during many driving cycles. The rotary engine has a higher power-to-weight ratio and lower noise, vibration and harshness compared to conventional reciprocating engines, although performs less efficiently. The benefits of a Wankel engine make it an attractive option for use as a range extender in a plug-in hybrid electric vehicle.

  20. Characterization of the powertrain components for a hybrid quadricycle

    NASA Astrophysics Data System (ADS)

    De Santis, M.; Agnelli, S.; Silvestri, L.; Di Ilio, G.; Giannini, O.

    2016-06-01

    This paper presents the experimental characterization of a prototyping hybrid electric quadricycle, which is equipped with two independently actuated hub (in-wheel) motors and powered by a 51 V 132 Ah LiFeYPO4 battery pack. Such a vehicle employs two hub motors located in the rear axles in order to independently drive/brake the rear wheels; such architecture allows to implement a torque vectoring system to improve the vehicle dynamics. Due to its actuation flexibility, energy efficiency and performance potentials, this architecture is one of the promising powertrain design for electric quadricycle. Experimental data obtained from measurements on the vehicle powertrain components going from the battery pack to the inverter and to the in-wheel motor were employed to generate the hub motor torque response and power efficiency maps in both driving and regenerative braking modes. Furthermore, the vehicle is equipped with a gasoline internal combustion engine as range extender whose efficiency was also characterized.

  1. Teens and distracted driving : texting, talking and other uses of the cell phone behind the wheel

    DOT National Transportation Integrated Search

    2009-11-16

    This study investigated cell phone use and texting while driving, by teenage drivers, in the United States. It found that one third of 16-17 year old teenagers who text do so while driving. 50% of 16-17 year old teenagers have spoken on cell phones w...

  2. Influence of wheelchair front caster wheel on reverse directional stability.

    PubMed

    Guo, Songfeng; Cooper, Rory A; Corfman, Tom; Ding, Dan; Grindle, Garrett

    2003-01-01

    The purpose of this research was to study directional stability during reversing of rear-wheel drive, electric powered wheelchairs (EPW) under different initial front caster orientations. Specifically, the weight distribution differences caused by certain initial caster orientations were examined as a possible mechanism for causing directional instability that could lead to accidents. Directional stability was quantified by measuring the drive direction error of the EPW by a motion analysis system. The ground reaction forces were collected to determine the load on the front casters, as well as back-emf data to attain the speed of the motors. The drive direction error was found to be different for various initial caster orientations. Drive direction error was greatest when both casters were oriented 90 degrees to the left or right, and least when both casters were oriented forward. The results show that drive direction error corresponds to the loading difference on the casters. The data indicates that loading differences may cause asymmetric drag on the casters, which in turn causes unbalanced torque load on the motors. This leads to a difference in motor speed and drive direction error.

  3. Special Feature: Automotive Technology.

    ERIC Educational Resources Information Center

    Wagner, Margaret; And Others

    1993-01-01

    Includes "National Trouble Shooting Contest--Training Technicians, Not Mechanics" (Wagner); "Front Wheel Drive on a Small Scale" (Waggoner); "Air Bags in Hit and Run on Rack and Pinion Technicians" (Collard); and "Future Technology--A Blind Spot Detector for Highway Driving" (Zoghi, Bellubi). (JOW)

  4. Steerable Principal Components for Space-Frequency Localized Images*

    PubMed Central

    Landa, Boris; Shkolnisky, Yoel

    2017-01-01

    As modern scientific image datasets typically consist of a large number of images of high resolution, devising methods for their accurate and efficient processing is a central research task. In this paper, we consider the problem of obtaining the steerable principal components of a dataset, a procedure termed “steerable PCA” (steerable principal component analysis). The output of the procedure is the set of orthonormal basis functions which best approximate the images in the dataset and all of their planar rotations. To derive such basis functions, we first expand the images in an appropriate basis, for which the steerable PCA reduces to the eigen-decomposition of a block-diagonal matrix. If we assume that the images are well localized in space and frequency, then such an appropriate basis is the prolate spheroidal wave functions (PSWFs). We derive a fast method for computing the PSWFs expansion coefficients from the images' equally spaced samples, via a specialized quadrature integration scheme, and show that the number of required quadrature nodes is similar to the number of pixels in each image. We then establish that our PSWF-based steerable PCA is both faster and more accurate then existing methods, and more importantly, provides us with rigorous error bounds on the entire procedure. PMID:29081879

  5. Two wheeled lunar dumptruck

    NASA Technical Reports Server (NTRS)

    Brus, Michael R.; Haleblain, Ray; Hernandez, Tomas L.; Jensen, Paul E.; Kraynick, Ronald L.; Langley, Stan J.; Shuman, Alan G.

    1988-01-01

    The design of a two wheel bulk material transport vehicle is described in detail. The design consists of a modified cylindrical bowl, two independently controlled direct drive motors, and two deformable wheels. The bowl has a carrying capacity of 2.8 m (100 ft) and is constructed of aluminum. The low speed, high HP motors are directly connected to the wheels, thus yielding only two moving parts. The wheels, specifically designed for lunar applications, utilize the chevron tread pattern for optimum traction. The vehicle is maneuvered by varying the relative angular velocities of the wheels. The bulk material being transported is unloaded by utilizing the motors to oscillate the bowl back and forth to a height at which dumping is achieved. The analytical models were tested using a scaled prototype of the lunar transport vehicle. The experimental data correlated well with theoretical predictions. Thus, the design established provides a feasible alternative for the handling of bulk material on the moon.

  6. Implications of driving patterns on well-to-wheel performance of plug-in hybrid electric vehicles.

    PubMed

    Raykin, Leon; MacLean, Heather L; Roorda, Matthew J

    2012-06-05

    This study examines how driving patterns (distance and conditions) and the electricity generation supply interact to impact well-to-wheel (WTW) energy use and greenhouse gas (GHG) emissions of plug-in hybrid electric vehicles (PHEVs). The WTW performance of a PHEV is compared with that of a similar (nonplug-in) gasoline hybrid electric vehicle and internal combustion engine vehicle (ICEV). Driving PHEVs for short distances between recharging generally results in lower WTW total and fossil energy use and GHG emissions per kilometer compared to driving long distances, but the extent of the reductions depends on the electricity supply. For example, the shortest driving pattern in this study with hydroelectricity uses 81% less fossil energy than the longest driving pattern. However, the shortest driving pattern with coal-based electricity uses only 28% less fossil energy. Similar trends are observed in reductions relative to the nonplug-in vehicles. Irrespective of the electricity supply, PHEVs result in greater reductions in WTW energy use and GHG emissions relative to ICEVs for city than highway driving conditions. PHEVs charging from coal facilities only reduce WTW energy use and GHG emissions relative to ICEVs for certain favorable driving conditions. The study results have implications for environmentally beneficial PHEV adoption and usage patterns.

  7. Vehicle wheel drag coefficient in relation to travelling velocity - CFD analysis

    NASA Astrophysics Data System (ADS)

    Leśniewicz, P.; Kulak, M.; Karczewski, M.

    2016-10-01

    In order to understand the aerodynamic losses associated with a rotating automobile wheel, a detailed characteristics of the drag coefficient in relation to the applied velocity are necessary. Single drag coefficient value is most often reported for the commercially available vehicles, much less is revealed about the influence of particular car components on the energy consumption in various driving cycles. However, detailed flow potential losses determination is desired for performance estimation. To address these needs, the numerical investigation of an isolated wheel is proposed herein.

  8. Efficient direct yaw moment control: tyre slip power loss minimisation for four-independent wheel drive vehicle

    NASA Astrophysics Data System (ADS)

    Kobayashi, Takao; Katsuyama, Etsuo; Sugiura, Hideki; Ono, Eiichi; Yamamoto, Masaki

    2018-05-01

    This paper proposes an efficient direct yaw moment control (DYC) capable of minimising tyre slip power loss on contact patches for a four-independent wheel drive vehicle. Simulations identified a significant power loss reduction with a direct yaw moment due to a change in steer characteristics during acceleration or deceleration while turning. Simultaneously, the vehicle motion can be stabilised. As a result, the proposed control method can ensure compatibility between vehicle dynamics performance and energy efficiency. This paper also describes the results of a full-vehicle simulation that was conducted to examine the effectiveness of the proposed DYC.

  9. Study on Drive System of Hybrid Tree Harvester.

    PubMed

    Rong-Feng, Shen; Xiaozhen, Zhang; Chengjun, Zhou

    2017-01-01

    Hybrid tree harvester with a 60 kW diesel engine combined with a battery pile could be a "green" forest harvesting and transportation system. With the new design, the diesel engine maintains a constant engine speed, keeping fuel consumption low while charging the batteries that drive the forwarder. As an additional energy saving method, the electric motors work as generators to charge the battery pile when the vehicle moves downhill. The vehicle is equipped with six large wheels providing high clearance over uneven terrain while reducing ground pressure. Each wheel is driven via a hub gear by its own alternating current motor, and each of the three wheel pairs can be steered independently. The combination of the diesel engine and six electric motors provides plenty of power for heavy lifting and pulling. The main component parameters of the drive system are calculated and optimized with a set of dynamics and simulated with AVL Cruise software. The results provide practical insights for the fuel tree harvester and are helpful to reduce the structure and size of the tree harvester. Advantage Environment provides information about existing and future products designed to reduce environmental impacts.

  10. Kinematic evaluation of mobile robotic platforms for overground gait neurorehabilitation

    NASA Astrophysics Data System (ADS)

    Alias, N. Akmal; Huq, M. Saiful; Ibrahim, B. S. K. K.; Omar, Rosli

    2017-09-01

    Gait assistive devices offer a great solution to the walking re-education which reduce patients theoretical limit by aiding the anatomical joints to be in line with the rehabilitation session. Overground gait training, which is differs significantly from body-weight supported treadmill training in many aspects, essentially consists of a mobile robotic base to support the subject securely (usually with overhead harness) while its motion and orientation is controlled seamlessly to facilitate subjects free movement. In this study, efforts have been made for evaluation of both holonomic and nonholonomic drives, the outcome of which may constitute the primarily results to the effective approach in designing a robotic platform for the mobile rehabilitation robot. The sets of kinematic equations are derived using typical geometries of two different drives. The results indicate that omnidirectional mecanum wheel platform is capable for more sophisticated discipline. Although the differential drive platform happens to be more simple and easy to construct, but it is less desirable as it has limited number of motions applicable to the system. The omnidirectional robot consisting of mecanum wheels, which is classified as holonomic is potentially the best solution in terms of its capability to move in arbitrary direction without concerning the changing of wheel's direction.

  11. Integrated Fault Diagnosis Algorithm for Motor Sensors of In-Wheel Independent Drive Electric Vehicles.

    PubMed

    Jeon, Namju; Lee, Hyeongcheol

    2016-12-12

    An integrated fault-diagnosis algorithm for a motor sensor of in-wheel independent drive electric vehicles is presented. This paper proposes a method that integrates the high- and low-level fault diagnoses to improve the robustness and performance of the system. For the high-level fault diagnosis of vehicle dynamics, a planar two-track non-linear model is first selected, and the longitudinal and lateral forces are calculated. To ensure redundancy of the system, correlation between the sensor and residual in the vehicle dynamics is analyzed to detect and separate the fault of the drive motor system of each wheel. To diagnose the motor system for low-level faults, the state equation of an interior permanent magnet synchronous motor is developed, and a parity equation is used to diagnose the fault of the electric current and position sensors. The validity of the high-level fault-diagnosis algorithm is verified using Carsim and Matlab/Simulink co-simulation. The low-level fault diagnosis is verified through Matlab/Simulink simulation and experiments. Finally, according to the residuals of the high- and low-level fault diagnoses, fault-detection flags are defined. On the basis of this information, an integrated fault-diagnosis strategy is proposed.

  12. Online Detection of Driver Fatigue Using Steering Wheel Angles for Real Driving Conditions

    PubMed Central

    Li, Zuojin; Li, Shengbo Eben; Li, Renjie; Cheng, Bo; Shi, Jinliang

    2017-01-01

    This paper presents a drowsiness on-line detection system for monitoring driver fatigue level under real driving conditions, based on the data of steering wheel angles (SWA) collected from sensors mounted on the steering lever. The proposed system firstly extracts approximate entropy (ApEn) features from fixed sliding windows on real-time steering wheel angles time series. After that, this system linearizes the ApEn features series through an adaptive piecewise linear fitting using a given deviation. Then, the detection system calculates the warping distance between the linear features series of the sample data. Finally, this system uses the warping distance to determine the drowsiness state of the driver according to a designed binary decision classifier. The experimental data were collected from 14.68 h driving under real road conditions, including two fatigue levels: “wake” and “drowsy”. The results show that the proposed system is capable of working online with an average 78.01% accuracy, 29.35% false detections of the “awake” state, and 15.15% false detections of the “drowsy” state. The results also confirm that the proposed method based on SWA signal is valuable for applications in preventing traffic accidents caused by driver fatigue. PMID:28257094

  13. Study on Drive System of Hybrid Tree Harvester

    PubMed Central

    Xiaozhen, Zhang; Chengjun, Zhou

    2017-01-01

    Hybrid tree harvester with a 60 kW diesel engine combined with a battery pile could be a “green” forest harvesting and transportation system. With the new design, the diesel engine maintains a constant engine speed, keeping fuel consumption low while charging the batteries that drive the forwarder. As an additional energy saving method, the electric motors work as generators to charge the battery pile when the vehicle moves downhill. The vehicle is equipped with six large wheels providing high clearance over uneven terrain while reducing ground pressure. Each wheel is driven via a hub gear by its own alternating current motor, and each of the three wheel pairs can be steered independently. The combination of the diesel engine and six electric motors provides plenty of power for heavy lifting and pulling. The main component parameters of the drive system are calculated and optimized with a set of dynamics and simulated with AVL Cruise software. The results provide practical insights for the fuel tree harvester and are helpful to reduce the structure and size of the tree harvester. Advantage Environment provides information about existing and future products designed to reduce environmental impacts. PMID:28634596

  14. A new formulation of the understeer coefficient to relate yaw torque and vehicle handling

    NASA Astrophysics Data System (ADS)

    Bucchi, F.; Frendo, F.

    2016-06-01

    The handling behaviour of vehicles is an important property for its relation to performance and safety. In 1970s, Pacejka did the groundwork for an objective analysis introducing the handling diagram and the understeer coefficient. In more recent years, the understeer concept is still mentioned but the handling is actively managed by direct yaw control (DYC). In this paper an accurate analysis of the vehicle handling is carried out, considering also the effect of drive forces. This analysis brings to a new formulation of the understeer coefficient, which is almost equivalent to the classical one, but it can be obtained by quasi-steady-state manoeuvres. In addition, it relates the vehicle yaw torque to the understeer coefficient, filling up the gap between the classical handling approach and DYC. A multibody model of a Formula SAE car is then used to perform quasi-steady-state simulations in order to verify the effectiveness of the new formulation. Some vehicle set-ups and wheel drive arrangements are simulated and the results are discussed. In particular, the handling behaviours of the rear wheel drive (RWD) and the front wheel drive (FWD) architectures are compared, finding an apparently surprising result: for the analysed vehicle the FWD is less understeering than for RWD. The relation between the yaw torque and the understeer coefficient allows to understand this behaviour and opens-up the possibility for different yaw control strategies.

  15. Quantum steerability: Characterization, quantification, superactivation, and unbounded amplification

    NASA Astrophysics Data System (ADS)

    Hsieh, Chung-Yun; Liang, Yeong-Cherng; Lee, Ray-Kuang

    2016-12-01

    Quantum steering, also called Einstein-Podolsky-Rosen steering, is the intriguing phenomenon associated with the ability of spatially separated observers to steer—by means of local measurements—the set of conditional quantum states accessible by a distant party. In the light of quantum information, all steerable quantum states are known to be resources for quantum information processing tasks. Here, via a quantity dubbed steering fraction, we derive a simple, but general criterion that allows one to identify quantum states that can exhibit quantum steering (without having to optimize over the measurements performed by each party), thus making an important step towards the characterization of steerable quantum states. The criterion, in turn, also provides upper bounds on the largest steering-inequality violation achievable by arbitrary finite-dimensional maximally entangled states. For the quantification of steerability, we prove that a strengthened version of the steering fraction is a convex steering monotone and demonstrate how it is related to two other steering monotones, namely, steerable weight and steering robustness. Using these tools, we further demonstrate the superactivation of steerability for a well-known family of entangled quantum states, i.e., we show how the steerability of certain entangled, but unsteerable quantum states can be recovered by allowing joint measurements on multiple copies of the same state. In particular, our approach allows one to explicitly construct a steering inequality to manifest this phenomenon. Finally, we prove that there exist examples of quantum states (including some which are unsteerable under projective measurements) whose steering-inequality violation can be arbitrarily amplified by allowing joint measurements on as little as three copies of the same state. For completeness, we also demonstrate how the largest steering-inequality violation can be used to bound the largest Bell-inequality violation and derive, analogously, a simple sufficient condition for Bell nonlocality from the latter.

  16. DETAIL TOP VIEW OF AERIAL TRAMWAY DRIVE MECHANISM, LOOKING NORTHEAST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL TOP VIEW OF AERIAL TRAMWAY DRIVE MECHANISM, LOOKING NORTHEAST. THE FRICTION BRAKING SYSTEM CAN BE SEEN IN SHADOW ABOVE THE LARGE CABLE WHEEL BELOW. - Keane Wonder Mine, Park Route 4 (Daylight Pass Cutoff), Death Valley Junction, Inyo County, CA

  17. Asleep at the Wheel-The Road to Addressing Drowsy Driving

    DOT National Transportation Integrated Search

    2017-01-25

    Drowsy driving is a dangerous behavior that leads to thousands of deaths and injuries each year. It is also a controllable factor for drivers. Drivers are capable of modifying this behavior if given sufficient information and motivation. Our goal is ...

  18. 7. Detail of Flywheels and Drive Assembly, Looking West, Showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Detail of Flywheels and Drive Assembly, Looking West, Showing (Left to Right): Brake, Pulley Wheel, and Flywheel - Heckert Oil Pumping Jack, 0.6 mile North of Connoquenessing Creek, 0.15 mile East of Powder Mill Creek, Renfrew, Butler County, PA

  19. Detecting lane departures from steering wheel signal.

    PubMed

    Sandström, Max; Lampsijärvi, Eetu; Holmström, Axi; Maconi, Göran; Ahmadzai, Shabana; Meriläinen, Antti; Hæggström, Edward; Forsman, Pia

    2017-02-01

    Current lane departure warning systems are video-based and lose data when road- and weather conditions are bad. This study sought to develop a lane departure warning algorithm based on the signal drawn from the steering wheel. The rationale is that a car-based lane departure warning system should be robust regardless of road- and weather conditions. N=34 professional driver students drove in a high-fidelity driving simulator at 80km/h for 55min every third hour during 36h of sustained wakefulness. During each driving session we logged the steering wheel- and lane position signals at 60Hz. To derive the lane position signal, we quantified the transfer function of the simulated vehicle and used it to derive the absolute lane position signal from the steering wheel signal. The Pearson correlation between the derived- and actual lane position signals was r=0.48 (based on 12,000km). Next we designed an algorithm that alerted, up to three seconds before they occurred, about upcoming lane deviations that exceeded 0.2m. The sensitivity of the algorithm was 47% and the specificity was 71%. To our knowledge this exceeds the performance of the current video-based systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. A Novel Mittag-Leffler Kernel Based Hybrid Fault Diagnosis Method for Wheeled Robot Driving System.

    PubMed

    Yuan, Xianfeng; Song, Mumin; Zhou, Fengyu; Chen, Zhumin; Li, Yan

    2015-01-01

    The wheeled robots have been successfully applied in many aspects, such as industrial handling vehicles, and wheeled service robots. To improve the safety and reliability of wheeled robots, this paper presents a novel hybrid fault diagnosis framework based on Mittag-Leffler kernel (ML-kernel) support vector machine (SVM) and Dempster-Shafer (D-S) fusion. Using sensor data sampled under different running conditions, the proposed approach initially establishes multiple principal component analysis (PCA) models for fault feature extraction. The fault feature vectors are then applied to train the probabilistic SVM (PSVM) classifiers that arrive at a preliminary fault diagnosis. To improve the accuracy of preliminary results, a novel ML-kernel based PSVM classifier is proposed in this paper, and the positive definiteness of the ML-kernel is proved as well. The basic probability assignments (BPAs) are defined based on the preliminary fault diagnosis results and their confidence values. Eventually, the final fault diagnosis result is archived by the fusion of the BPAs. Experimental results show that the proposed framework not only is capable of detecting and identifying the faults in the robot driving system, but also has better performance in stability and diagnosis accuracy compared with the traditional methods.

  1. A Novel Mittag-Leffler Kernel Based Hybrid Fault Diagnosis Method for Wheeled Robot Driving System

    PubMed Central

    Yuan, Xianfeng; Song, Mumin; Chen, Zhumin; Li, Yan

    2015-01-01

    The wheeled robots have been successfully applied in many aspects, such as industrial handling vehicles, and wheeled service robots. To improve the safety and reliability of wheeled robots, this paper presents a novel hybrid fault diagnosis framework based on Mittag-Leffler kernel (ML-kernel) support vector machine (SVM) and Dempster-Shafer (D-S) fusion. Using sensor data sampled under different running conditions, the proposed approach initially establishes multiple principal component analysis (PCA) models for fault feature extraction. The fault feature vectors are then applied to train the probabilistic SVM (PSVM) classifiers that arrive at a preliminary fault diagnosis. To improve the accuracy of preliminary results, a novel ML-kernel based PSVM classifier is proposed in this paper, and the positive definiteness of the ML-kernel is proved as well. The basic probability assignments (BPAs) are defined based on the preliminary fault diagnosis results and their confidence values. Eventually, the final fault diagnosis result is archived by the fusion of the BPAs. Experimental results show that the proposed framework not only is capable of detecting and identifying the faults in the robot driving system, but also has better performance in stability and diagnosis accuracy compared with the traditional methods. PMID:26229526

  2. GMT azimuth bogie wheel-rail interface wear study

    NASA Astrophysics Data System (ADS)

    Teran, Jose; Lindh, Cory; Morgan, Chris; Manuel, Eric; Bigelow, Bruce C.; Burgett, William S.

    2016-07-01

    Performance of the GMT azimuth drive system is vital for the operation of the telescope and, as such, all components subject to wear at the drive interface merit a high level of scrutiny for achieving a proper balance between capital costs, maintenance costs, and the risk for downtime during planned and unplanned maintenance or replacement procedures. Of particular importance is the interface between the azimuth wheels and rail, as usage frequency is high, the full weight of the enclosure must be transferred through small patches of contact, and replacement of the rail would pose a greater logistical challenge than the replacement of smaller components such as bearings and gearmotors. This study investigates tradeoffs between various wheel-rail and roller-track interfaces, including performance, complexity, and anticipated wear considerations. First, a survey of railway and overhead crane industry literature is performed and general detailing recommendations are made to minimize wear and the risk of rolling contact fatigue. Second, Adams/VI-Rail is used to simulate lifetime wear of four specific configurations under consideration for the GMT azimuth wheel-rail interface; all studied configurations are shown to be viable, and their relative merits are discussed.

  3. Modeling of traction-coupling properties of wheel propulsor

    NASA Astrophysics Data System (ADS)

    Sakhapov, R. L.; Nikolaeva, R. V.; Gatiyatullin, M. H.; Makhmutov, M. M.

    2017-12-01

    In conditions of operation of aggregates on soils with low bearing capacity, the main performance indicators of their operation are determined by the properties of retaining the functional qualities of the propulsor. Therefore, the parameters of the anti-skid device can not be calculated by only one criterion. The equipment of propellers with anti-skid devices, which allow to reduce the compaction effect of the propulsion device on the soil, seems to be a rational solution to the problem of increasing traction and coupling properties of the driving wheels. The mathematical model is based on the study of the interaction of the driving wheel with anti-skid devices and a deformable bearing surface, which takes into account the wheel diameter, skid coefficient, the parameters of the anti-skid device, the physical and mechanical properties of the soil. As a basic mathematical model that determines the dependence of the coupling properties on the wheel parameters, the model obtained as a result of integration and reflecting the process of soil deformation from the shear stress is adopted. The total value of the resistance forces will determine the force of the hitch pressure on the horizontal soil layers, and the value of its deformation is the degree of wheel slippage. When the anti-skid devices interact with the soil, the traction capacity of the wheel is composed of shear forces, soil shear and soil deformation forces with detachable hooks. As a result of the interaction of the hook with the soil, the latter presses against the walls of the hook with the force equal to the sum of the hook load and the resistance to movement. During operation, the linear dimensions of the hook will decrease, which is not taken into account by the safety factor. Abrasive wear of the thickness of the hook is approximately proportional to the work of friction caused by the movement of the hook when inserted into the soil and slipping the wheel.

  4. Mars Technology Rover with Arm-Mounted Percussive Coring Tool, Microimager, and Sample-Handling Encapsulation Containerization Subsystem

    NASA Technical Reports Server (NTRS)

    Younse, Paulo J.; Dicicco, Matthew A.; Morgan, Albert R.

    2012-01-01

    A report describes the PLuto (programmable logic) Mars Technology Rover, a mid-sized FIDO (field integrated design and operations) class rover with six fully drivable and steerable cleated wheels, a rocker-bogey suspension, a pan-tilt mast with panorama and navigation stereo camera pairs, forward and rear stereo hazcam pairs, internal avionics with motor drivers and CPU, and a 5-degrees-of-freedom robotic arm. The technology rover was integrated with an arm-mounted percussive coring tool, microimager, and sample handling encapsulation containerization subsystem (SHEC). The turret of the arm contains a percussive coring drill and microimager. The SHEC sample caching system mounted to the rover body contains coring bits, sample tubes, and sample plugs. The coring activities performed in the field provide valuable data on drilling conditions for NASA tasks developing and studying coring technology. Caching of samples using the SHEC system provide insight to NASA tasks investigating techniques to store core samples in the future.

  5. Effects of fatigue on driving performance under different roadway geometries: a simulator study.

    PubMed

    Du, Hongji; Zhao, Xiaohua; Zhang, Xingjian; Zhang, Yunlong; Rong, Jian

    2015-01-01

    This article examines the effects of fatigue on driving performance under different roadway geometries using a driving simulator. Twenty-four participants each completed a driving scenario twice: while alert and while experiencing fatigue. The driving scenario was composed of straight road segments and curves; there were 6 curves with 3 radius values (i.e., 200, 500, and 800 m) and 2 turning directions (i.e., left and right). Analysis was conducted on driving performance measures such as longitudinal speed, steering wheel movements, and lateral position. RESULTS confirmed that decremental changes in driving performance due to fatigue varied among road conditions. On straight segments, drivers' abilities to steer and maintain lane position were impaired, whereas on curves we found decremental changes in the quality of longitudinal speed as well as steering control and keeping the vehicle in the lane. Moreover, the effects of fatigue on driving performance were relative to the radius and direction of the curve. Fatigue impaired drivers' abilities to control the steering wheel, and the impairment proved more obvious on curves. The degree varied significantly as the curve radius changed. Drivers tended to drive closer to the right side due to fatigue, and the impairment in maintaining lane position became more obvious as the right-turn curve radius decreased. Driver fatigue has detrimental effects on driving performance, and the effects differ under different roadway geometries.

  6. Modelling of a mecanum wheel taking into account the geometry of road rollers

    NASA Astrophysics Data System (ADS)

    Hryniewicz, P.; Gwiazda, A.; Banaś, W.; Sękala, A.; Foit, K.

    2017-08-01

    During the process planning in a company one of the basic factors associated with the production costs is the operation time for particular technological jobs. The operation time consists of time units associated with the machining tasks of a workpiece as well as the time associated with loading and unloading and the transport operations of this workpiece between machining stands. Full automation of manufacturing in industry companies tends to a maximal reduction in machine downtimes, thereby the fixed costs simultaneously decreasing. The new construction of wheeled vehicles, using Mecanum wheels, reduces the transport time of materials and workpieces between machining stands. These vehicles have the ability to simultaneously move in two axes and thus more rapid positioning of the vehicle relative to the machining stand. The Mecanum wheel construction implies placing, around the wheel free rollers that are mounted at an angle 450, which allow the movement of the vehicle not only in its axis but also perpendicular thereto. The improper selection of the rollers can cause unwanted vertical movement of the vehicle, which may cause difficulty in positioning of the vehicle in relation to the machining stand and the need for stabilisation. Hence the proper design of the free rollers is essential in designing the whole Mecanum wheel construction. It allows avoiding the disadvantageous and unwanted vertical vibrations of a whole vehicle with these wheels. In the article the process of modelling the free rollers, in order to obtain the desired shape of unchanging, horizontal trajectory of the vehicle is presented. This shape depends on the desired diameter of the whole Mecanum wheel, together with the road rollers, and the width of the drive wheel. Another factor related with the curvature of the trajectory shape is the length of the road roller and its diameter decreases depending on the position with respect to its centre. The additional factor, limiting construction of the road rollers, is their bearings. Depending on the load, carried by the vehicle and the rotational speed of the drive wheel, the bearings themselves can greatly affect the diameter of the rollers and the whole Mecanum wheels. The solution of this problem is presented in the paper. It is illustrated with virtual models elaborated in advanced program of the CAE class.

  7. Design and manufacture of wheels for a dual-mode (manned - automatic) lunar surface roving vehicle. Volume 2: Proposed test plan

    NASA Technical Reports Server (NTRS)

    1970-01-01

    A developmental test plan for the wheel and wheel drive assembly of the dual-mode (manned/automated) lunar surface roving vehicle is presented. The tests cover performance, as well as critical environmental characteristics. Insofar as practical, the environmental conditions imposed will be in the sequence expected during the hardware's life from storage through the lunar mission. Test procedures are described for static load deflection and endurance tests. Soft soil tests to determine mobility characteristics including drawbar-pull and thrust vs slip, and motion resistance for various wheel loads are also discussed. Test designs for both ambient and thermal vacuum conditions are described. Facility, transducer, and instrumentation requirements are outlined.

  8. Aerodynamic analysis of an isolated vehicle wheel

    NASA Astrophysics Data System (ADS)

    Leśniewicz, P.; Kulak, M.; Karczewski, M.

    2014-08-01

    Increasing fuel prices force the manufacturers to look into all aspects of car aerodynamics including wheels, tyres and rims in order to minimize their drag. By diminishing the aerodynamic drag of vehicle the fuel consumption will decrease, while driving safety and comfort will improve. In order to properly illustrate the impact of a rotating wheel aerodynamics on the car body, precise analysis of an isolated wheel should be performed beforehand. In order to represent wheel rotation in contact with the ground, presented CFD simulations included Moving Wall boundary as well as Multiple Reference Frame should be performed. Sliding mesh approach is favoured but too costly at the moment. Global and local flow quantities obtained during simulations were compared to an experiment in order to assess the validity of the numerical model. Results of investigation illustrates dependency between type of simulation and coefficients (drag and lift). MRF approach proved to be a better solution giving result closer to experiment. Investigation of the model with contact area between the wheel and the ground helps to illustrate the impact of rotating wheel aerodynamics on the car body.

  9. Diamond machine tool face lapping machine

    DOEpatents

    Yetter, H.H.

    1985-05-06

    An apparatus for shaping, sharpening and polishing diamond-tipped single-point machine tools. The isolation of a rotating grinding wheel from its driving apparatus using an air bearing and causing the tool to be shaped, polished or sharpened to be moved across the surface of the grinding wheel so that it does not remain at one radius for more than a single rotation of the grinding wheel has been found to readily result in machine tools of a quality which can only be obtained by the most tedious and costly processing procedures, and previously unattainable by simple lapping techniques.

  10. Wheels and Tires: Understanding the Numbers on the Sides of Tires Might Lead to Longer Life Tires and Improved Driving Safety

    ERIC Educational Resources Information Center

    Ritz, John M.

    2005-01-01

    Automotive wheels and tires require knowledge to understand their specifications and use. While the durability and useful life of tires have increased substantially over the last several decades, in all probability consumers will purchase a number of vehicle tires over their lifetime. Knowing how they are made and what the numbers mean will assist…

  11. 32 CFR 636.28 - Special rules for motorcycles/mopeds.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... earphones while driving is prohibited. (h) Military personnel, civilian employees, and family member drivers of a privately or government-owned motorcycle/moped (two or three wheeled motor driven vehicles) are required to attend and complete an approved Motorcycle Defense Driving Course (MDDC) prior to operation of...

  12. 32 CFR 636.28 - Special rules for motorcycles/mopeds.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... earphones while driving is prohibited. (h) Military personnel, civilian employees, and family member drivers of a privately or government-owned motorcycle/moped (two or three wheeled motor driven vehicles) are required to attend and complete an approved Motorcycle Defense Driving Course (MDDC) prior to operation of...

  13. The ACUSITT ultrasonic ablator: the first steerable needle with an integrated interventional tool

    NASA Astrophysics Data System (ADS)

    Burdette, E. Clif; Rucker, D. Caleb; Prakash, Punit; Diederich, Chris J.; Croom, Jordon M.; Clarke, Clyde; Stolka, Philipp; Juang, Titania; Boctor, Emad M.; Webster, Robert J., III

    2010-03-01

    Steerability in percutaneous medical devices is highly desirable, enabling a needle or needle-like instrument to avoid sensitive structures (e.g. nerves or blood vessels), access obstructed anatomical targets, and compensate for the inevitable errors induced by registration accuracy thresholds and tissue deformation during insertion. Thus, mechanisms for needle steering have been of great interest in the engineering community in the past few years, and several have been proposed. While many interventional applications have been hypothesized for steerable needles (essentially anything deliverable via a regular needle), none have yet been demonstrated as far as the authors are aware. Instead, prior studies have focused on model validation, control, and accuracy assessment. In this paper, we present the first integrated steerable needle-interventional device. The ACUSITT integrates a multi-tube steerable Active Cannula (AC) with an Ultrasonic Interstitial Thermal Therapy ablator (USITT) to create a steerable percutaneous device that can deliver a spatially and temporally controllable (both mechanically and electronically) thermal dose profile. We present our initial experiments toward applying the ACUSITT to treat large liver tumors through a single entry point. This involves repositioning the ablator tip to several different locations, without withdrawing it from the liver capsule, under 3D Ultrasound image guidance. In our experiments, the ACUSITT was deployed to three positions, each 2cm apart in a conical pattern to demonstrate the feasibility of ablating large liver tumors 7cm in diameter without multiple parenchyma punctures.

  14. Forces on wheels and fuel consumption in cars

    NASA Astrophysics Data System (ADS)

    Güémez, J.; Fiolhais, M.

    2013-07-01

    Motivated by real classroom discussions, we analyze the forces acting on moving vehicles, specifically friction on their wheels. In typical front-wheel-drive cars when the car accelerates these forces are in the forward direction in the front wheels, but they are in the opposite direction in the rear wheels. The situation may be intriguing for students, but it may also be helpful and stimulating to clarify the role of friction forces on rolling objects. In this paper we also study the thermodynamical aspects of an accelerating car, relating the distance traveled to the amount of fuel consumed. The fuel consumption is explicitly shown to be Galilean invariant and we identify the Gibbs free energy as the relevant quantity that enters into the thermodynamical description of the accelerating car. The more realistic case of the car's motion with the dragging forces taken into account is also discussed.

  15. Engineering analysis of shortfall for new technologies. Analysis memorandum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-03-11

    The engineering principles that govern the mpg performance of alternative technologies on the EPA test procedure and under in-use conditions are examined. The results can be used to interpret the shortfall of alternative technologies derived from statistical analyses. The analysis examines each of the four technologies in comparison to the conventional technology counterpart. Manual transmissions are compared to automatics, fuel injected S.I. engines to carburetted S.I. engines, front-wheel drive vehicles to rear-wheel drive vehicles and diesel engines to carburetted S.I. engines. The changes in shortfall of the four technologies in comparison to conventional technologies are explained through differences in responsesmore » to the factors.« less

  16. Vehicle handling and stability control by the cooperative control of 4WS and DYC

    NASA Astrophysics Data System (ADS)

    Shen, Huan; Tan, Yun-Sheng

    2017-07-01

    This paper proposes an integrated control system that cooperates with the four-wheel steering (4WS) and direct yaw moment control (DYC) to improve the vehicle handling and stability. The design works of the four-wheel steering and DYC control are based on sliding mode control. The integration control system produces the suitable 4WS angle and corrective yaw moment so that the vehicle tracks the desired yaw rate and sideslip angle. Considering the change of the vehicle longitudinal velocity that means the comfort of driving conditions, both the driving torque and braking torque are used to generate the corrective yaw moment. Simulation results show the effectiveness of the proposed control algorithm.

  17. Piezoelectric step-motion actuator

    DOEpatents

    Mentesana,; Charles, P [Leawood, KS

    2006-10-10

    A step-motion actuator using piezoelectric material to launch a flight mass which, in turn, actuates a drive pawl to progressively engage and drive a toothed wheel or rod to accomplish stepped motion. Thus, the piezoelectric material converts electrical energy into kinetic energy of the mass, and the drive pawl and toothed wheel or rod convert the kinetic energy of the mass into the desired rotary or linear stepped motion. A compression frame may be secured about the piezoelectric element and adapted to pre-compress the piezoelectric material so as to reduce tensile loads thereon. A return spring may be used to return the mass to its resting position against the compression frame or piezoelectric material following launch. Alternative embodiment are possible, including an alternative first embodiment wherein two masses are launched in substantially different directions, and an alternative second embodiment wherein the mass is eliminated in favor of the piezoelectric material launching itself.

  18. New level of vehicle comfort and vehicle stability via utilisation of the suspensions anti-dive and anti-squat geometry

    NASA Astrophysics Data System (ADS)

    Lindvai-Soos, Daniel; Horn, Martin

    2018-07-01

    In this article a novel vehicle dynamics control concept is designed for a vehicle equipped with wheel individual electric traction machines, electronically controlled brakes and semi-active suspensions. The suspension's cross-couplings between traction forces and vertical forces via anti-dive and anti-squat geometry is utilised in the control concept to improve driving comfort and driving stability. The control concept is divided into one main and two cascaded branches. The main controller consists of a multivariable vehicle dynamics controller and a control allocation scheme to improve the vehicle's driving comfort. The cascaded feedback loops maintain the vehicle's stability according to wheel slip and vehicle sideslip. The performance of the combined vehicle dynamics controller is compared to a standard approach in simulation. It can be stated that the controller piloting semi-active suspensions together with brake and traction devices enables a superior performance regarding comfort and stability.

  19. Energy analysis of electric vehicles using batteries or fuel cells through well-to-wheel driving cycle simulations

    NASA Astrophysics Data System (ADS)

    Campanari, Stefano; Manzolini, Giampaolo; Garcia de la Iglesia, Fernando

    This work presents a study of the energy and environmental balances for electric vehicles using batteries or fuel cells, through the methodology of the well to wheel (WTW) analysis, applied to ECE-EUDC driving cycle simulations. Well to wheel balances are carried out considering different scenarios for the primary energy supply. The fuel cell electric vehicles (FCEV) are based on the polymer electrolyte membrane (PEM) technology, and it is discussed the possibility to feed the fuel cell with (i) hydrogen directly stored onboard and generated separately by water hydrolysis (using renewable energy sources) or by conversion processes using coal or natural gas as primary energy source (through gasification or reforming), (ii) hydrogen generated onboard with a fuel processor fed by natural gas, ethanol, methanol or gasoline. The battery electric vehicles (BEV) are based on Li-ion batteries charged with electricity generated by central power stations, either based on renewable energy, coal, natural gas or reflecting the average EU power generation feedstock. A further alternative is considered: the integration of a small battery to FCEV, exploiting a hybrid solution that allows recovering energy during decelerations and substantially improves the system energy efficiency. After a preliminary WTW analysis carried out under nominal operating conditions, the work discusses the simulation of the vehicles energy consumption when following standardized ECE-EUDC driving cycle. The analysis is carried out considering different hypothesis about the vehicle driving range, the maximum speed requirements and the possibility to sustain more aggressive driving cycles. The analysis shows interesting conclusions, with best results achieved by BEVs only for very limited driving range requirements, while the fuel cell solutions yield best performances for more extended driving ranges where the battery weight becomes too high. Results are finally compared to those of conventional internal combustion engine vehicles, showing the potential advantages of the different solutions considered in the paper and indicating the possibility to reach the target of zero-emission vehicles (ZEV).

  20. Characterizing Wheel-Soil Interaction Loads Using Meshfree Finite Element Methods: A Sensitivity Analysis for Design Trade Studies

    NASA Technical Reports Server (NTRS)

    Contreras, Michael T.; Trease, Brian P.; Bojanowski, Cezary; Kulakx, Ronald F.

    2013-01-01

    A wheel experiencing sinkage and slippage events poses a high risk to planetary rover missions as evidenced by the mobility challenges endured by the Mars Exploration Rover (MER) project. Current wheel design practice utilizes loads derived from a series of events in the life cycle of the rover which do not include (1) failure metrics related to wheel sinkage and slippage and (2) performance trade-offs based on grouser placement/orientation. Wheel designs are rigorously tested experimentally through a variety of drive scenarios and simulated soil environments; however, a robust simulation capability is still in development due to myriad of complex interaction phenomena that contribute to wheel sinkage and slippage conditions such as soil composition, large deformation soil behavior, wheel geometry, nonlinear contact forces, terrain irregularity, etc. For the purposes of modeling wheel sinkage and slippage at an engineering scale, meshfree nite element approaches enable simulations that capture su cient detail of wheel-soil interaction while remaining computationally feasible. This study implements the JPL wheel-soil benchmark problem in the commercial code environment utilizing the large deformation modeling capability of Smooth Particle Hydrodynamics (SPH) meshfree methods. The nominal, benchmark wheel-soil interaction model that produces numerically stable and physically realistic results is presented and simulations are shown for both wheel traverse and wheel sinkage cases. A sensitivity analysis developing the capability and framework for future ight applications is conducted to illustrate the importance of perturbations to critical material properties and parameters. Implementation of the proposed soil-wheel interaction simulation capability and associated sensitivity framework has the potential to reduce experimentation cost and improve the early stage wheel design proce

  1. Association between reported sleep need and sleepiness at the wheel: comparative study on French highways between 1996 and 2011.

    PubMed

    Quera-Salva, M A; Hartley, S; Sauvagnac-Quera, R; Sagaspe, P; Taillard, J; Contrand, B; Micoulaud, J A; Lagarde, E; Barbot, F; Philip, P

    2016-12-21

    To investigate the evolution over 15 years of sleep schedules, sleepiness at the wheel and driving risk among highway drivers. Comparative survey including questions on usual sleep schedules and before the trip, sleepiness at the wheel, the Epworth sleepiness scale, Basic Nordic Sleep Questionnaire (BNSQ) and a travel questionnaire. 80% of drivers stopped by the highway patrol agreed to participate in both studies with a total of 3545 drivers in 2011 and 2196 drivers in 1996 interviewed. After standardisation based on sex, age and mean annual driving distance, drivers in 2011 reported shorter sleep time on week days (p<0.0001), and week-ends (p<0.0001) and shorter optimal sleep time (p<0.0001) compared to 1996 drivers. There were more drivers sleepy at the wheel in 2011 than in 1996 (p<0.0001) and 2.5 times more drivers in 2011 than in 1996 had an Epworth sleepiness score >15 indicating severe sleepiness. Even if drivers in 2011 reported good sleep hygiene prior to a highway journey, drivers have reduced their mean weekly sleep duration over 15 years and have a higher risk of sleepiness at the wheel. Sleep hygiene for automobile drivers remains an important concept to address. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  2. Integrated Fault Diagnosis Algorithm for Motor Sensors of In-Wheel Independent Drive Electric Vehicles

    PubMed Central

    Jeon, Namju; Lee, Hyeongcheol

    2016-01-01

    An integrated fault-diagnosis algorithm for a motor sensor of in-wheel independent drive electric vehicles is presented. This paper proposes a method that integrates the high- and low-level fault diagnoses to improve the robustness and performance of the system. For the high-level fault diagnosis of vehicle dynamics, a planar two-track non-linear model is first selected, and the longitudinal and lateral forces are calculated. To ensure redundancy of the system, correlation between the sensor and residual in the vehicle dynamics is analyzed to detect and separate the fault of the drive motor system of each wheel. To diagnose the motor system for low-level faults, the state equation of an interior permanent magnet synchronous motor is developed, and a parity equation is used to diagnose the fault of the electric current and position sensors. The validity of the high-level fault-diagnosis algorithm is verified using Carsim and Matlab/Simulink co-simulation. The low-level fault diagnosis is verified through Matlab/Simulink simulation and experiments. Finally, according to the residuals of the high- and low-level fault diagnoses, fault-detection flags are defined. On the basis of this information, an integrated fault-diagnosis strategy is proposed. PMID:27973431

  3. Conversion and control of an all-terrain vehicle for use as an autonomous mobile robot

    NASA Astrophysics Data System (ADS)

    Jacob, John S.; Gunderson, Robert W.; Fullmer, R. R.

    1998-08-01

    A systematic approach to ground vehicle automation is presented, combining low-level controls, trajectory generation and closed-loop path correction in an integrated system. Development of cooperative robotics for precision agriculture at Utah State University required the automation of a full-scale motorized vehicle. The Triton Predator 8- wheeled skid-steering all-terrain vehicle was selected for the project based on its ability to maneuver precisely and the simplicity of controlling the hydrostatic drivetrain. Low-level control was achieved by fitting an actuator on the engine throttle, actuators for the left and right drive controls, encoders on the left and right drive shafts to measure wheel speeds, and a signal pick-off on the alternator for measuring engine speed. Closed loop control maintains a desired engine speed and tracks left and right wheel speeds commands. A trajectory generator produces the wheel speed commands needed to steer the vehicle through a predetermined set of map coordinates. A planar trajectory through the points is computed by fitting a 2D cubic spline over each path segment while enforcing initial and final orientation constraints at segment endpoints. Acceleration and velocity profiles are computed for each trajectory segment, with the velocity over each segment dependent on turning radius. Left and right wheel speed setpoints are obtained by combining velocity and path curvature for each low-level timestep. The path correction algorithm uses GPS position and compass orientation information to adjust the wheel speed setpoints according to the 'crosstrack' and 'downtrack' errors and heading error. Nonlinear models of the engine and the skid-steering vehicle/ground interaction were developed for testing the integrated system in simulation. These test lead to several key design improvements which assisted final implementation on the vehicle.

  4. Torsional Dynamics of Steerable Needles: Modeling and Fluoroscopic Guidance

    PubMed Central

    Swensen, John P.; Lin, MingDe; Okamura, Allison M.; Cowan, Noah J.

    2017-01-01

    Needle insertions underlie a diversity of medical interventions. Steerable needles provide a means by which to enhance existing needle-based interventions and facilitate new ones. Tip-steerable needles follow a curved path and can be steered by twisting the needle base during insertion, but this twisting excites torsional dynamics that introduce a discrepancy between the base and tip twist angles. Here, we model the torsional dynamics of a flexible rod—such as a tip-steerable needle—during subsurface insertion and develop a new controller based on the model. The torsional model incorporates time-varying mode shapes to capture the changing boundary conditions inherent during insertion. Numerical simulations and physical experiments using two distinct setups—stereo camera feedback in semi-transparent artificial tissue and feedback control with real-time X-ray imaging in optically opaque artificial tissue— demonstrate the need to account for torsional dynamics in control of the needle tip. PMID:24860026

  5. Army Synthetic Validity Project Report of Phase 2 Results. Volume 3. Research Instruments

    DTIC Science & Technology

    1990-10-01

    Areas 7. The type of secondary arms room lock shown at A in the diagram below requires rotation A. monthly B. quarterly C. semiannually D. annually E...building concrete, stone, or other structures (for example, roads, fortifications , buildings, etc.). 16. Operate wheeled vehicles - drive wheeled...for cover and concealment and to place weapons, fortifications , mines, and detectors. 64. Translate foreign languages - translate written or spoken

  6. Cross-coupled control for all-terrain rovers.

    PubMed

    Reina, Giulio

    2013-01-08

    Mobile robots are increasingly being used in challenging outdoor environments for applications that include construction, mining, agriculture, military and planetary exploration. In order to accomplish the planned task, it is critical that the motion control system ensure accuracy and robustness. The achievement of high performance on rough terrain is tightly connected with the minimization of vehicle-terrain dynamics effects such as slipping and skidding. This paper presents a cross-coupled controller for a 4-wheel-drive/4-wheel-steer robot, which optimizes the wheel motors' control algorithm to reduce synchronization errors that would otherwise result in wheel slip with conventional controllers. Experimental results, obtained with an all-terrain rover operating on agricultural terrain, are presented to validate the system. It is shown that the proposed approach is effective in reducing slippage and vehicle posture errors.

  7. Opportunity's View After Drive on Sol 1806 (Stereo)

    NASA Technical Reports Server (NTRS)

    2009-01-01

    [figure removed for brevity, see original site] Left-eye view of a color stereo pair for PIA11816 [figure removed for brevity, see original site] Right-eye view of a color stereo pair for PIA11816

    NASA's Mars Exploration Rover Opportunity used its navigation camera to take the images combined into this stereo, full-circle view of the rover's surroundings just after driving 60.86 meters (200 feet) on the 1,806th Martian day, or sol, of Opportunity's surface mission (Feb. 21, 2009). North is at the center; south at both ends.

    This view combines images from the left-eye and right-eye sides of the navigation camera. It appears three-dimensional when viewed through red-blue glasses with the red lens on the left.

    Tracks from the drive extend northward across dark-toned sand ripples and light-toned patches of exposed bedrock in the Meridiani Planum region of Mars. For scale, the distance between the parallel wheel tracks is about 1 meter (about 40 inches).

    Engineers designed the Sol 1806 drive to be driven backwards as a strategy to redistribute lubricant in the rovers wheels. The right-front wheel had been showing signs of increased friction.

    The rover's position after the Sol 1806 drive was about 2 kilometer (1.2 miles) south southwest of Victoria Crater. Cumulative odometry was 14.74 kilometers (9.16 miles) since landing in January 2004, including 2.96 kilometers (1.84 miles) since climbing out of Victoria Crater on the west side of the crater on Sol 1634 (August 28, 2008).

    This view is presented as a cylindrical-perspective projection with geometric seam correction.

  8. A Feasability Study of the Wheel Electrostatic Spectrometer

    NASA Technical Reports Server (NTRS)

    Johansen, Michael Ryan; Phillips, James Ralph; Kelley, Joshua David; Mackey, Paul J.; Holbert, Eirik; Clements, Gregory R.; Calle, Carlos I.

    2014-01-01

    Mars rover missions rely on time-consuming, power-exhausting processes to analyze the Martian regolith. A low power electrostatic sensor in the wheels of a future Mars rover could be used to quickly determine when the rover is driving over a different type of regolith. The Electrostatics and Surface Physics Laboratory at NASA's Kennedy Space Center developed the Wheel Electrostatic Spectrometer as a feasibility study to investigate this option. In this paper, we discuss recent advances in this technology to increase the repeatability of the tribocharging experiments, along with supporting data. In addition, we discuss the development of a static elimination tool optimized for Martian conditions.

  9. Single wheel hub motor failures and their impact on vehicle and driver behaviour

    NASA Astrophysics Data System (ADS)

    Wanner, Daniel; Kreußlein, Maria; Augusto, Bruno; Drugge, Lars; Stensson Trigell, Annika

    2016-10-01

    This research work studies the impact of single wheel hub motor failures on the dynamic behaviour of electric vehicles and the corresponding driver reactions. An experimental study in a moving-base driving simulator is conducted to analyse the influence of single wheel hub motor failures for motorway speeds. Driver reaction times are derived from the measured data and discussed in their experimental context. The failure is rated objectively on the dynamic behaviour of the vehicle and compared to the subjective evaluation. Findings indicate that critical traffic situations impairing traffic safety can occur for motorway speeds. Clear counteractions by the drivers had to be taken.

  10. Using special additions to preparation of the moulding mixture for casting steel parts of drive wheel type

    NASA Astrophysics Data System (ADS)

    Josan, A.; Pinca Bretotean, C.

    2015-06-01

    The paper presents the possibility of using special additions to the execution of moulding mixtures for steel castings, drive wheel type. Critical analysis of moulding technology leads to the idea that most defects appear due to using improper moulding mixture. Using a improper moulding mixture leads to penetration of steel in moulding mixture, resulting in the formation of adherences, due to inadequate refractarity of the mould and core mixtures. Using only the unique mixture to the moulding leads to increasing consumption of new sand, respectively to the increase of price of piece. Acording to the dates registered in the industrial practice is necessary to use the special additions to obtain the moulding mixtures, carbonaceous materials respectively.

  11. Power Product Equipment Technician: Equipment Systems. Teacher Edition. Student Edition.

    ERIC Educational Resources Information Center

    Hilley, Robert

    This packet contains teacher and student editions on the topic of equipment systems, intended for the preparation of power product equipment technicians. This publication contains seven units: (1) principles of power transmission; (2) mechanical drive systems; (3) principles of fluid power; (4) hydraulic and pneumatic drive systems; (5) wheel and…

  12. 40 CFR 86.535-90 - Dynamometer procedure.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... run consists of two tests, a “cold” start test and a “hot” start test following the “cold” start by 10... Administrator. (d) Practice runs over the prescribed driving schedule may be performed at test points, provided... the proper speed-time relationship, or to permit sampling system adjustments. (e) The drive wheel...

  13. Steering Dynamics of Tilting Narrow Track Vehicle with Passive Front Wheel Design

    NASA Astrophysics Data System (ADS)

    TAN, Jeffrey Too Chuan; ARAKAWA, Hiroki; SUDA, Yoshihiro

    2016-09-01

    In recent years, narrow track vehicle has been emerged as a potential candidate for the next generation of urban transportation system, which is greener and space effective. Vehicle body tilting has been a symbolic characteristic of such vehicle, with the purpose to maintain its stability with the narrow track body. However, the coordination between active steering and vehicle tilting requires considerable driving skill in order to achieve effective stability. In this work, we propose an alternative steering method with a passive front wheel that mechanically follows the vehicle body tilting. The objective of this paper is to investigate the steering dynamics of the vehicle under various design parameters of the passive front wheel. Modeling of a three-wheel tilting narrow track vehicle and multibody dynamics simulations were conducted to study the effects of two important front wheel design parameters, i.e. caster angle and trail toward the vehicle steering dynamics in steering response time, turning radius, steering stability and resiliency towards external disturbance. From the results of the simulation studies, we have verified the relationships of these two front wheel design parameters toward the vehicle steering dynamics.

  14. TIMING APPARATUS

    DOEpatents

    Bennett, A.E.; Geisow, J.C.H.

    1956-04-17

    The timing device comprises an escapement wheel and pallet, a spring drive to rotate the escapement wheel to a zero position, means to wind the pretensioned spring proportional to the desired signal time, and a cam mechanism to control an electrical signal switch by energizing the switch when the spring has been wound to the desired position, and deenergizing it when it reaches the zero position. This device produces an accurately timed signal variably witain the control of the operator.

  15. Vehicle Performance Recorder (VPR)/ HMMWV (High Mobility Multi-Purpose Wheeled Vehicle) Interface Verification.

    DTIC Science & Technology

    1984-05-01

    hybrid transmission used in the VPR vehicle. From these comparisons made with HMMWV Developmental Test data, confidence can be placed in the validity of...I ............ ........ . ... .... ......... I................ l........ igr 3-2 Drwa pul .1 - hg rne 4004 .. d 3000 \\. PR VEIcLE 2000...Engine: GMC, V-8 diesel, 6.2 L. Transmission: Model THM 475/400 ( hybrid ). Transfer: New process 218, full time 4-wheel drive. Differential: Gleasman

  16. Reach Capability of Men and Women: A Three-Dimensional Analysis

    DTIC Science & Technology

    1978-07-01

    anthropometric dimensions are provided. Measurements were taken in a simplified automobile driving compartment without a steering wheel and restraint belts...the opposite hand grasping an aircraft control wheel . Subjects were not permitted to slide from beneath the harness. Reach capability for the right and...experience reaching difficulties. The author’s analysis of her data indicated that "some modifications to the aircraft or to its installations need to be

  17. Steerable Beam Array Antenna for Use in ATS-6 Test Program

    DOT National Transportation Integrated Search

    1976-05-01

    The design and development of an advanced L-Band microstrip phased array antenna for aircraft is described. The array is: : Electronically steerable in elevation, Conformal to the surface of an aircraft, 0.20 inch thick, Low cost fabrication techniqu...

  18. Cross-Coupled Control for All-Terrain Rovers

    PubMed Central

    Reina, Giulio

    2013-01-01

    Mobile robots are increasingly being used in challenging outdoor environments for applications that include construction, mining, agriculture, military and planetary exploration. In order to accomplish the planned task, it is critical that the motion control system ensure accuracy and robustness. The achievement of high performance on rough terrain is tightly connected with the minimization of vehicle-terrain dynamics effects such as slipping and skidding. This paper presents a cross-coupled controller for a 4-wheel-drive/4-wheel-steer robot, which optimizes the wheel motors' control algorithm to reduce synchronization errors that would otherwise result in wheel slip with conventional controllers. Experimental results, obtained with an all-terrain rover operating on agricultural terrain, are presented to validate the system. It is shown that the proposed approach is effective in reducing slippage and vehicle posture errors. PMID:23299625

  19. Prototype color field sequential television lens assembly

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The design, development, and evaluation of a prototype modular lens assembly with a self-contained field sequential color wheel is presented. The design of a color wheel of maximum efficiency, the selection of spectral filters, and the design of a quiet, efficient wheel drive system are included. Design tradeoffs considered for each aspect of the modular assembly are discussed. Emphasis is placed on achieving a design which can be attached directly to an unmodified camera, thus permitting use of the assembly in evaluating various candidate camera and sensor designs. A technique is described which permits maintaining high optical efficiency with an unmodified camera. A motor synchronization system is developed which requires only the vertical synchronization signal as a reference frequency input. Equations and tradeoff curves are developed to permit optimizing the filter wheel aperture shapes for a variety of different design conditions.

  20. Applicability of the Remote Mobile Emplacement Package (RMEP) design as a mobility aid for proposed post-84 Mars missions, phase O

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The results of study to determine the applicability of the Remote Mobile Emplacement Package (RMEP) design concept as a mobility aid for the proposed post-'84 Mars missions are presented. The RMEP wheel and mobility subsystem parameters: wheel tire size, weight, stowed volume, and environmental effects; obstacle negotiation; reliability and wear; motor and drive train; and electrical power demand were reviewed. Results indicated that: (1) the basic RMEP wheel design would be satisfactory, with additional attention to heating, side loading, tread wear and ultraviolet radiation protection; (2) motor and drive train power requirements on Mars would be less than on Earth; and (3) the mobility electrical power requirements would be small enough to offer the option of operating the Mars mini rover untethered. Payload power required for certain sampling functions would preclude the use of battery power for these missions. Hazard avoidance and reverse direction maneuvers are discussed. Limited examination of vehicle payload integration and thermal design was made, pending establishment of a baseline vehicle/payload design.

  1. Mechanical Design and Testing of an Instrumented Rocker-Bogie Mobility System for the Kapvik Micro-Rover

    NASA Astrophysics Data System (ADS)

    Setterfield, T.

    The rocker-bogie mobility system is a six-wheeled mobility system with the ability to equilibrate ground pressure amongst its wheels and traverse obstacles up to one wheel diameter in height; it has been used previously on NASA's Sojourner, Spirit, Opportunity and Curiosity rovers. This paper presents the mechanical design of an instrumented rocker-bogie mobility system for Kapvik, a 30 kg planetary micro-rover prototype developed for the Canadian Space Agency. The design of the wheel drive system is presented, including: motor selection, gear train selection, and performance limits. The design of a differential mechanism, which minimizes the pitch angle of the rover body, is provided. Design considerations for the integration of single-axis force sensors above the wheel hubs are presented. Structural analysis of the rocker and bogie links is outlined. The cross-hill and uphill-downhill static stability of Kapvik is investigated. Load cell and joint position data from testing during obstacle negotiation and uphill operation are presented.

  2. Driver dependent factors and the risk of causing a collision for two wheeled motor vehicles

    PubMed Central

    Lardelli-Claret, P; Jimenez-Moleon, J; de Dios, Luna-del-... J; Garcia-Martin, M; Bueno-Cavanillas, A; Galvez-Vargas, R

    2005-01-01

    Objective: To assess the effect of driver dependent factors on the risk of causing a collision for two wheeled motor vehicles (TWMVs). Design: Case control study. Setting: Spain, from 1993 to 2002. Subjects: All drivers of TWMVs involved in the 181 551 collisions between two vehicles recorded in the Spanish registry which did not involve pedestrians, and in which at least one of the vehicles was a TWMV and only one driver had committed a driving infraction. The infractor and non-infractor drivers constituted the case and control groups, respectively. Main outcome measures: Logistic regression analyses were used to obtain crude and adjusted odds ratio estimates for each of the driver related factors recorded in the registry (age, sex, nationality, psychophysical factors, and speeding infractions, among others). Results: Inappropriate speed was the variable with the greatest influence on the risk of causing a collision, followed by excessive speed and driving under the influence of alcohol. Younger and older drivers, foreign drivers, and driving without a valid license were also associated with a higher risk of causing a collision. In contrast, helmet use, female sex, and longer time in possession of a driving license were associated with a lower risk. Conclusions: Although the main driver dependent factors related to the risk of causing a collision for a TWMV were similar to those documented for four wheeled vehicles, several differences in the pattern of associations support the need to study moped and motorcycle crashes separately from crashes involving other types of vehicles. PMID:16081752

  3. Drowsy Driving: Asleep at the Wheel

    MedlinePlus

    ... Emergency Preparedness & Response Environmental Health Healthy Living Injury, Violence & Safety Life Stages & Populations Travelers’ Health Workplace Safety & Health Features Media Sign up for Features Get Email Updates To ...

  4. Group traction drive as means to increase energy efficiency of lokomotives of open-pit transport

    NASA Astrophysics Data System (ADS)

    Antipin, D. Ya; Izmerov, O. V.; Bishutin, S. G.; Kobishchanov, V. V.

    2017-10-01

    Questions of possible use of a group drive for locomotives of an open-pit transport are considered. The possibility of a significant reduction of traction costs in the case of a combination of a group traction drive with devices for the non-inertial regulation of the coefficient of friction between the wheel and the rail has been shown, and new patentable solutions have been proposed.

  5. Modelling and Simulation in the Design Process of Armored Vehicles

    DTIC Science & Technology

    2003-03-01

    trackway conditions is a demanding optimization task. Basically, a high level of ride comfort requires soft suspension tuning, whereas driving safety relies...The maximum off-road speed is generally limited by traction, input torque, driving safety and ride comfort. When obstacles are to be negotiated, the...wheel travel was defined during the mobility simulation runs. Figure 14: Ramp 1.5m at 40 kph; virtual and physical prototype Driving safety and ride

  6. Break in Raised Tread on Curiosity Wheel

    NASA Image and Video Library

    2017-03-21

    Two of the raised treads, called grousers, on the left middle wheel of NASA's Curiosity Mars rover broke during the first quarter of 2017, including the one seen partially detached at the top of the wheel in this image from the Mars Hand Lens Imager (MAHLI) camera on the rover's arm. This image was taken on March 19, 2017, as part of a set used by rover team members to inspect the condition of the rover's six wheels during the 1,641st Martian day, or sol, of Curiosity's work on Mars. Holes and tears in the wheels worsened significantly during 2013 as Curiosity was crossing terrain studded with sharp rocks on the route from near its 2012 landing site to the base of Mount Sharp. Team members have used MAHLI systematically since then to watch for when any of the zig-zag shaped grousers begin to break. The last prior set of wheel-inspection images from before Sol 1641 was taken on Jan. 27, 2017, (Sol 1591) and revealed no broken grousers. Longevity testing with identical aluminum wheels on Earth indicates that when three grousers on a given wheel have broken, that wheel has reached about 60 percent of its useful life. Curiosity has driven well over 60 percent of the amount needed for reaching all the geological layers planned as the mission's science destinations, so the start of seeing broken grousers is not expected to affect the mission's operations. Curiosity's six aluminum wheels are about 20 inches (50 centimeters) in diameter and 16 inches (40 centimeters) wide. Each of the six wheels has its own drive motor, and the four corner wheels also have steering motors. http://photojournal.jpl.nasa.gov/catalog/PIA21486

  7. MEMS-based beam-steerable free-space optical communication link for reconfigurable wireless data center

    NASA Astrophysics Data System (ADS)

    Deng, Peng; Kavehrad, Mohsen; Lou, Yan

    2017-01-01

    Flexible wireless datacenter networks based on free space optical communication (FSO) links are being considered as promising solutions to meet the future datacenter demands of high throughput, robustness to dynamic traffic patterns, cabling complexity and energy efficiency. Robust and precise steerable FSO links over dynamic traffic play a key role in the reconfigurable optical wireless datacenter inter-rack network. In this work, we propose and demonstrate a reconfigurable 10Gbps FSO system incorporated with smart beam acquisition and tracking mechanism based on gimballess two-axis MEMS micro-mirror and retro-reflective film marked aperture. The fast MEMS-based beam acquisition switches laser beam of FSO terminal from one rack to the next for reconfigurable networks, and the precise beam tracking makes FSO device auto-correct the misalignment in real-time. We evaluate the optical power loss and bit error rate performance of steerable FSO links at various directions. Experimental results suggest that the MEMS based beam steerable FSO links hold considerable promise for the future reconfigurable wireless datacenter networks.

  8. Keyring models: An approach to steerability

    NASA Astrophysics Data System (ADS)

    Miller, Carl A.; Colbeck, Roger; Shi, Yaoyun

    2018-02-01

    If a measurement is made on one half of a bipartite system, then, conditioned on the outcome, the other half has a new reduced state. If these reduced states defy classical explanation—that is, if shared randomness cannot produce these reduced states for all possible measurements—the bipartite state is said to be steerable. Determining which states are steerable is a challenging problem even for low dimensions. In the case of two-qubit systems, a criterion is known for T-states (that is, those with maximally mixed marginals) under projective measurements. In the current work, we introduce the concept of keyring models—a special class of local hidden state models. When the measurements made correspond to real projectors, these allow us to study steerability beyond T-states. Using keyring models, we completely solve the steering problem for real projective measurements when the state arises from mixing a pure two-qubit state with uniform noise. We also give a partial solution in the case when the uniform noise is replaced by independent depolarizing channels.

  9. Flexible Manufacturing System Handbook. Volume II. Description of the Technology

    DTIC Science & Technology

    1983-02-01

    hubs, or wheels with considerable 4 FM5 Handbook, Volume II milling, drilling and/or tapping, are usually candidates for inclusion in a prismatic...0.06 inch) to transfer pallets to a machine or unload station. Wheel encoders can be used as less precise feedback for the drive system and its...must be used to control pallet transfer. The Cincinnati Milacron Variable Mission System uses this type of MHS, specifically the Eaton-Kenway Robo

  10. Slow Progress in Dune (Left Rear Wheel)

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The left rear wheel of NASA's Mars Exploration Rover Opportunity makes slow but steady progress through soft dune material in this movie clip of frames taken by the rover's rear hazard identification camera over a period of several days. The sequence starts on Opportunity's 460th martian day, or sol (May 10, 2005) and ends 11 days later. In eight drives during that period, Opportunity advanced a total of 26 centimeters (10 inches) while spinning its wheels enough to have driven 46 meters (151 feet) if there were no slippage. The motion appears to speed up near the end of the clip, but that is an artifact of individual frames being taken less frequently.

  11. Slow Progress in Dune (Left Front Wheel)

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The left front wheel of NASA's Mars Exploration Rover Opportunity makes slow but steady progress through soft dune material in this movie clip of frames taken by the rover's front hazard identification camera over a period of several days. The sequence starts on Opportunity's 460th martian day, or sol (May 10, 2005) and ends 11 days later. In eight drives during that period, Opportunity advanced a total of 26 centimeters (10 inches) while spinning its wheels enough to have driven 46 meters (151 feet) if there were no slippage. The motion appears to speed up near the end of the clip, but that is an artifact of individual frames being taken less frequently.

  12. Steerable K/Ka-Band Antenna For Land-Mobile Satellite Applications

    NASA Technical Reports Server (NTRS)

    Densmore, Arthur; Jamnejad, Vahraz; Woo, Kenneth

    1994-01-01

    Prototype steerable microwave antenna tracks and communicates with geostationary satellite. Designed to mount on roof of vehicle and only 10 cm tall. K/Ka-band antenna rugged and compact to suit rooftop mobile operating environment. More-delicate signal-processing and control equipment located inside vehicle.

  13. Methods for Improving the Curvature of Steerable Needles in Biological Tissue

    PubMed Central

    Adebar, Troy K.; Greer, Joseph D.; Laeseke, Paul F.; Hwang, Gloria L.; Okamura, Allison M.

    2016-01-01

    Robotic needle steering systems have the potential to improve percutaneous interventions such as radiofrequency ablation of liver tumors, but steering techniques described to date have not achieved sufficiently small radius of curvature in biological tissue to be relevant to this application. In this work, the impact of tip geometry on steerable needle curvature is examined. Finite-element simulations and experiments with bent-tip needles in ex vivo liver tissue demonstrate that selection of tip length and angle can greatly improve curvature, with radius of curvature below 5 cm in liver tissue possible through judicious selection of these parameters. Motivated by the results of this analysis, a new articulated-tip steerable needle is described, in which a distal section is actively switched by a robotic system between a straight tip (resulting in a straight path) and a bent tip (resulting in a curved path). This approach allows the tip length and angle to be increased, while the straight configuration allows the needle tip to still pass through an introducer sheath and rotate inside the body. Validation testing in liver tissue shows that the new articulated-tip steerable needle achieves smaller radius of curvature compared to bent-tip needles described in previous work. Steerable needles with optimized tip parameters, which can generate tight curves in liver tissue, increase the clinical relevance of needle steering to percutaneous interventions. PMID:26441438

  14. Improved infrared-sensing running wheel systems with an effective exercise activity indicator.

    PubMed

    Chen, Chi-Chun; Chang, Ming-Wen; Chang, Ching-Ping; Chang, Wen-Ying; Chang, Shin-Chieh; Lin, Mao-Tsun; Yang, Chin-Lung

    2015-01-01

    This paper describes an infrared-sensing running wheel (ISRW) system for the quantitative measurement of effective exercise activity in rats. The ISRW system provides superior exercise training compared with commercially available traditional animal running platforms. Four infrared (IR) light-emitting diode/detector pairs embedded around the rim of the wheel detect the rat's real-time position; the acrylic wheel has a diameter of 55 cm and a thickness of 15 cm, that is, it is larger and thicker than traditional exercise wheels, and it is equipped with a rubber track. The acrylic wheel hangs virtually frictionless, and a DC motor with an axially mounted rubber wheel, which has a diameter of 10 cm, drives the acrylic wheel from the outer edge. The system can automatically train rats to run persistently. The proposed system can determine effective exercise activity (EEA), with the IR sensors (which are connected to a conventional PC) recording the rat exercise behavior. A prototype of the system was verified by a hospital research group performing ischemic stroke experiments on rats by considering middle cerebral artery occlusion. The experimental data demonstrated that the proposed system provides greater neuroprotection in an animal stroke model compared with a conventional treadmill and a motorized running wheel for a given exercise intensity. The quantitative exercise effectiveness indicator showed a 92% correlation between an increase in the EEA and a decrease in the infarct volume. This indicator can be used as a noninvasive and objective reference in clinical animal exercise experiments.

  15. Precision wire feeder for small diameter wire

    DOEpatents

    Brandon, Eldon D.; Hooper, Frederick M.; Reichenbach, Marvin L.

    1992-01-01

    A device for feeding small diameter wire having a diameter less than 0.04 mm (16 mil) to a welding station includes a driving wheel for controllably applying a non-deforming driving force to the wire to move the free end of the wire towards the welding station; and a tension device such as a torque motor for constantly applying a reverse force to the wire in opposition to the driving force to keep the wire taut.

  16. Precision wire feeder for small diameter wire

    DOEpatents

    Brandon, E.D.; Hooper, F.M.; Reichenbach, M.L.

    1992-08-11

    A device for feeding small diameter wire having a diameter less than 0.04 mm (16 mil) to a welding station includes a driving wheel for controllably applying a non-deforming driving force to the wire to move the free end of the wire towards the welding station; and a tension device such as a torque motor for constantly applying a reverse force to the wire in opposition to the driving force to keep the wire taut. 1 figure.

  17. Open-wheel race car driving: energy cost for pilots.

    PubMed

    Beaune, Bruno; Durand, Sylvain; Mariot, Jean-Pierre

    2010-11-01

    The aim of this study was to evaluate the energy cost of speedway open-wheel race car driving using actimetry. Eight pilot students participated in a training session consisting of 5 successive bouts of around 30 minutes driving at steady speed on the Bugatti speedway of Le Mans (France). Energy expenditure (EE, kcal) was determined continuously by the actimetric method using the standard equation. Energy cost was estimated through physical activity ratio (PAR = EE/BMR ratio, Mets) calculation after basal metabolism rate (BMR, kcal·min-1) estimation. A 1-met PAR value was attributed to the individual BMR of each volunteer. Bout durations and EE were not significantly different between driving bouts. Mean speed was 139.94 ± 2.96 km·h-1. Physical activity ratio values ranged 4.92 ± 0.50 to 5.43 ± 0.47 Mets, corresponding to a 5.27 ± 0.47-Mets mean PAR values and a 1.21 ± 0.41 kcal·min-1 mean BMR value. These results suggest that actimetry is a simple and efficient method for EE and PAR measurements in motor sports. However, further studies are needed in the future to accurately evaluate relationships between PAR and driving intensity or between PAR and race car type.

  18. Definition of simulated driving tests for the evaluation of drivers' reactions and responses.

    PubMed

    Bartolozzi, Riccardo; Frendo, Francesco

    2014-01-01

    This article aims at identifying the most significant measures in 2 perception-response (PR) tests performed at a driving simulator: a braking test and a lateral skid test, which were developed in this work. Forty-eight subjects (26 females and 22 males) with a mean age of 24.9 ± 3.0 years were enrolled for this study. They were asked to perform a drive on the driving simulator at the University of Pisa (Italy) following a specific test protocol, including 8-10 braking tests and 8-10 lateral skid tests. Driver input signals and vehicle model signals were recorded during the drives and analyzed to extract measures such as the reaction time, first response time, etc. Following a statistical procedure (based on analysis of variance [ANOVA] and post hoc tests), all test measures (3 for the braking test and 8 for the lateral skid test) were analyzed in terms of statistically significant differences among different drivers. The presented procedure allows evaluation of the capability of a given test to distinguish among different drivers. In the braking test, the reaction time showed a high dispersion among single drivers, leading to just 4.8 percent of statistically significant driver pairs (using the Games-Howell post hoc test), whereas the pedal transition time scored 31.9 percent. In the lateral skid test, 28.5 percent of the 2 × 2 comparisons showed significantly different reaction times, 19.5 percent had different response times, 35.2 percent had a different second peak of the steering wheel signal, and 33 percent showed different values of the integral of the steering wheel signal. For the braking test, which has been widely employed in similar forms in the literature, it was shown how the reaction time, with respect to the pedal transition time, can have a higher dispersion due to the influence of external factors. For the lateral skid test, the following measures were identified as the most significant for application studies: the reaction time for the reaction phase, the second peak of the steering wheel angle for the first instinctive response, and the integral of the steering wheel angle for the complete response. The methodology used to analyze the test measures was founded on statistically based and objective evaluation criteria and could be applied to other tests. Even if obtained with a fixed-base simulator, the obtained results represent useful information for applications of the presented PR tests in experimental campaigns with driving simulators.

  19. Visiting EPA Region 3’s Offices

    EPA Pesticide Factsheets

    Information on visiting EPA Region 3’s offices in Philadelphia, Pa., Annapolis, Md., Fort Meade, Md. and Wheeling, W. Va. including the address, building access, public transportation and driving directions.

  20. 49 CFR 230.111 - Spring rigging.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... condition for service. Adjusting weights by shifting weights from one pair of wheels to another is... band; (3) Broken coil springs; or (4) Broken driving box saddle, equalizer, hanger, bolt, or pin...

  1. Does the Tempo of Music Impact Human Behavior Behind the Wheel?

    PubMed

    Navarro, Jordan; Osiurak, François; Reynaud, Emanuelle

    2018-06-01

    Assess the influence of background music tempo on driving performance. Music with a fast tempo is known to increase the level of arousal, whereas the reverse is observed for slow music. The relationship between driving performance and level of arousal was expected to take the form of an inverted U-curve. Three experiments were undertaken to manipulate the musical background during driving. In Experiment 1, the driver's preferred music track played at its original and modified (plus or minus 30%) tempo were used together with the simple ticking of a metronome. In Experiment 2, music tracks of different tempos were played during driving. In Experiment 3, music tracks were categorized as arousing or relaxing based on the associated perceived level of arousal. Listening to music tended to influence drivers' performances in a car-following task by improving coherence and gain adjustments relative to the followed vehicle but simultaneously shortened the intervehicular time. Although the tempo of the music per se did not directly affect driving behavior, arousing music tracks improved drivers' adjustments to the followed vehicle (Experiment 3). The tempo of the music listened to behind the wheel was not found to influence driving behaviors. However, arousing music improved drivers' responsiveness to changes in the speed of the followed vehicle. However, this benefit was canceled out by a reduction in the drivers' intervehicle safety margin. Listening to arousing music while driving cannot be considered to improve road safety, at least in a car-following task without attentional impairments.

  2. Opportunity Rolls Free Again (Four Wheels)

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This animated piece illustrates the recent escape of NASA's Mars Exploration Rover Opportunity from dangerous, loose material on the vast plains leading to the rover's next long-term target, 'Victoria Crater.'

    A series of images from the front and rear hazard-avoidance cameras make up this brief movie chronicling the challenge Opportunity faced to free itself from the ripple dubbed 'Jammerbugt.' Each quadrant shows one of the rover's four corner wheels: left front wheel in upper left, right front wheel in upper right, rear wheels in the lower quadrants. The wheels became partially embedded in the ripple at the end of a drive on Opportunity's 833rd Martian day, or sol (May 28, 2006). The images in this clip were taken on sols 836 through 841 (May 31 through June 5, 2006).

    Scientists and engineers who had been elated at the meters of progress the rover had been making in earlier drives were happy for even centimeters of advance per sol as they maneuvered their explorer through the slippery material of Jammerbugt. The wheels reached solid footing on a rock outcrop on the final sol of this sequence.

    The science and engineering teams appropriately chose the ripple's informal from name the name of a bay on the north coast of Denmark. Jammerbugt, or Jammerbugten, loosely translated, means Bay of Lamentation or Bay of Wailing. The shipping route from the North Sea to the Baltic passes Jammerbugt on its way around the northern tip of Jutland. This has always been an important trade route and many ships still pass by the bay. The prevailing wind directions are typically northwest to southwest with the strongest winds and storms tending to blow from the northwest. A northwesterly wind will blow straight into the Jammerbugt, towards shore. Therefore, in the age of sail, many ships sank there during storms. The shore is sandy, but can have strong waves, so running aground was very dangerous even though there are no rocks.

    Fortunately, Opportunity weathered its 'Jammerbugt' and is again on its way toward Victoria Crater.

  3. A portable wheel tester for tyre-road friction and rolling resistance determination

    NASA Astrophysics Data System (ADS)

    Pytka, J.; Budzyński, P.; Tarkowski, P.; Piaskowski, M.

    2016-09-01

    The paper describes theory of operation, design and construction as well as results from primarily experiments with a portable wheel tester that has been developed by the authors as a device for on-site determination of tyre-road braking/driving friction and rolling resistance. The paper includes schematics, drawings, descriptions as well as graphical results form early tests with the presented device. It is expected that the tester can be useful in road accident reconstruction applications as well as in vehicle dynamics research.

  4. Youth With Wheels and Their Responsibilities. A Combined Teacher Guide and Student Handbook for Pre Driving Age Students.

    ERIC Educational Resources Information Center

    Oklahoma Curriculum Improvement Commission, Oklahoma City.

    The purpose of this guide is to help pre-driving age students understand the responsibilities inherent in using public streets and highways. Materials, which can be integrated into existing secondary school courses, are divided into nine chapters covering traffic rules and signs; alcohol and drugs; safety on buses, skateboards, multigeared…

  5. 49 CFR 571.126 - Standard No. 126; Electronic stability control systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... cycle that is designed for low-speed, off-road driving, or (b) the vehicle is in a four-wheel drive configuration selected by the driver on the previous ignition cycle that is designed for operation at higher.... Light outriggers are designed with a maximum weight of 27 kg (59.5 lb) and a maximum roll moment of...

  6. Safe Driving in Illinois. A Manual to Accompany the Illinois Rules of the Road.

    ERIC Educational Resources Information Center

    Rice, Gail; Nowack, Linda

    Designed to accompany and supplement the Illinois Rules of the Road manual, this book is intended to better prepare future drivers for the written test for the instruction permit or driver's license. It includes many pictures and shows and describes driving situations a driver will probably face when behind the wheel. Parts dealing with important…

  7. Experimental detection of steerability in Bell local states with two measurement settings

    NASA Astrophysics Data System (ADS)

    Orieux, Adeline; Kaplan, Marc; Venuti, Vivien; Pramanik, Tanumoy; Zaquine, Isabelle; Diamanti, Eleni

    2018-04-01

    Steering, a quantum property stronger than entanglement but weaker than non-locality in the quantum correlation hierarchy, is a key resource for one-sided device-independent quantum key distribution applications, in which only one of the communicating parties is trusted. A fine-grained steering inequality was introduced in (2014 Phys. Rev. A 90 050305), enabling for the first time the detection of steering in all steerable two-qubit Werner states using only two measurement settings. Here, we numerically and experimentally investigate this inequality for generalized Werner states and successfully detect steerability in a wide range of two-photon polarization-entangled Bell local states generated by a parametric down-conversion source.

  8. Driving performance at lateral system limits during partially automated driving.

    PubMed

    Naujoks, Frederik; Purucker, Christian; Wiedemann, Katharina; Neukum, Alexandra; Wolter, Stefan; Steiger, Reid

    2017-11-01

    This study investigated driver performance during system limits of partially automated driving. Using a motion-based driving simulator, drivers encountered different situations in which a partially automated vehicle could no longer safely keep the lateral guidance. Drivers were distracted by a non-driving related task on a touch display or driving without an additional secondary task. While driving in partially automated mode drivers could either take their hands off the steering wheel for only a short period of time (10s, so-called 'Hands-on' variant) or for an extended period of time (120s, so-called 'Hands-off' variant). When the system limit was reached (e.g., when entering a work zone with temporary lines), the lateral vehicle control by the automation was suddenly discontinued and a take-over request was issued to the drivers. Regardless of the hands-off interval and the availability of a secondary task, all drivers managed the transition to manual driving safely. No lane exceedances were observed and the situations were rated as 'harmless' by the drivers. The lack of difference between the hands-off intervals can be partly attributed to the fact that most of the drivers kept contact to the steering wheel, even in the hands-off condition. Although all drivers were able to control the system limits, most of them could not explain why exactly the take-over request was issued. The average helpfulness of the take-over request was rated on an intermediate level. Consequently, providing drivers with information about the reason for a system limit can be recommended. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. 76 FR 32327 - Regulatory Guidance on the Designation of Steerable Rear Axle Operators (Tillermen) as Drivers of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-06

    ..., to ``tillerman,'' a person exercising control over the movement of a steerable rear axle on a CMV... Riggers Association, asking about other circumstances under which a person exercising control over a CMV's... AND PENALTIES Section 383.3, ``Applicability.'' ``Question 34: Would a tillerman, a person exercising...

  10. Multipartite steering inequalities based on entropic uncertainty relations

    NASA Astrophysics Data System (ADS)

    Riccardi, Alberto; Macchiavello, Chiara; Maccone, Lorenzo

    2018-05-01

    We investigate quantum steering for multipartite systems by using entropic uncertainty relations. We introduce entropic steering inequalities whose violation certifies the presence of different classes of multipartite steering. These inequalities witness both steerable states and genuine multipartite steerable states. Furthermore, we study their detection power for several classes of states of a three-qubit system.

  11. Initial clinical application of a robotically steerable catheter system in endovascular aneurysm repair.

    PubMed

    Riga, Celia; Bicknell, Colin; Cheshire, Nicholas; Hamady, Mohamad

    2009-04-01

    To report the initial clinical use of a robotically steerable catheter during endovascular aneurysm repair (EVAR) in order to assess this novel and innovative approach in a clinical setting. Following a series of in-vitro studies and procedure rehearsals using a pulsatile silicon aneurysm model, a 78-year-old man underwent robot-assisted EVAR of a 5.9-cm infrarenal abdominal aortic aneurysm. During the standard procedure, a 14-F remotely steerable robotic catheter was used to successfully navigate through the aneurysm sac, cannulate the contralateral limb of a bifurcated stent-graft under fluoroscopic guidance, and place stiff wires using fine and controlled movements. The procedure was completed successfully. There were no postoperative complications, and computed tomographic angiography prior to discharge and at 3 months confirmed that the stent-graft remained in good position, with no evidence of an endoleak. EVAR using robotically-steerable catheters is feasible. This technology may simplify more complex procedures by increasing the accuracy of vessel cannulation and perhaps reduce procedure times and radiation exposure to the patient and operator.

  12. Striker Suitability Challenges in a Complex Threat Environment

    DTIC Science & Technology

    2008-04-23

    áåÑçêãÉÇ=ÅÜ~åÖÉ=======- 163 - = = large number of wheel spindles developed fatigue cracks and had to be replaced early. Drive shafts are also failing... spindles developing fatigue cracks – drive shafts breaking – prescribed tire pressure is 80 PSI, however, with slat armor/sandbags – must maintain...drive shafts , differentials – Impairs off-road ops, larger footprint • Though not designed primarily for the urban fight (MOUT), Stryker is well-suited

  13. Head assembly for multiposition borehole extensometer

    DOEpatents

    Frank, Donald N.

    1983-01-01

    A head assembly for a borehole extensometer and an improved extensometer for measuring subsurface subsidence. A plurality of inflatable anchors provide discrete measurement points. A metering rod is fixed to each of the anchors which are displaced when subsidence occurs, thereby translating the attached rod. The head assembly includes a sprocket wheel rotatably mounted on a standpipe and engaged by a chain which is connected at one end to the metering rod and at the other end to a counterweight. A second sprocket wheel connected to the standpipe also engages the chain and drives a connected potentiometer. The head assembly converts the linear displacement of the metering rod to the rotary motion of the second sprocket wheel, which is measured by the potentiometer, producing a continuous electrical output.

  14. REAL-TIME MODEL-BASED ELECTRICAL POWERED WHEELCHAIR CONTROL

    PubMed Central

    Wang, Hongwu; Salatin, Benjamin; Grindle, Garrett G.; Ding, Dan; Cooper, Rory A.

    2009-01-01

    The purpose of this study was to evaluate the effects of three different control methods on driving speed variation and wheel-slip of an electric-powered wheelchair (EPW). A kinematic model as well as 3-D dynamic model was developed to control the velocity and traction of the wheelchair. A smart wheelchair platform was designed and built with a computerized controller and encoders to record wheel speeds and to detect the slip. A model based, a proportional-integral-derivative (PID) and an open-loop controller were applied with the EPW driving on four different surfaces at three specified speeds. The speed errors, variation, rise time, settling time and slip coefficient were calculated and compared for a speed step-response input. Experimental results showed that model based control performed best on all surfaces across the speeds. PMID:19733494

  15. Diesel engine catalytic combustor system. [aircraft engines

    NASA Technical Reports Server (NTRS)

    Ream, L. W. (Inventor)

    1984-01-01

    A low compression turbocharged diesel engine is provided in which the turbocharger can be operated independently of the engine to power auxiliary equipment. Fuel and air are burned in a catalytic combustor to drive the turbine wheel of turbine section which is initially caused to rotate by starter motor. By opening a flapper value, compressed air from the blower section is directed to catalytic combustor when it is heated and expanded, serving to drive the turbine wheel and also to heat the catalytic element. To start, engine valve is closed, combustion is terminated in catalytic combustor, and the valve is then opened to utilize air from the blower for the air driven motor. When the engine starts, the constituents in its exhaust gas react in the catalytic element and the heat generated provides additional energy for the turbine section.

  16. Using Unconstrained Tongue Motion as an Alternative Control Mechanism for Wheeled Mobility

    PubMed Central

    Huo, Xueliang; Ghovanloo, Maysam

    2015-01-01

    Tongue drive system (TDS) is a tongue-operated, minimally invasive, unobtrusive, noncontact, and wireless assistive technology that infers users’ intentions by detecting and classifying their voluntary tongue motions, and translating them to user-defined commands. We have developed customized interface circuitry between an external TDS (eTDS) prototype and a commercial powered wheelchair (PWC) as well as three control strategies to evaluate the tongue motion as an alternative control input for wheeled mobility. We tested the eTDS performance in driving PWCs on 12 able-bodied human subjects, of which 11 were novice. The results showed that all subjects could complete navigation tasks by operating the PWC using their tongue motions. Despite little prior experience, the average time using the eTDS and the tongue was only approximately three times longer than using a joystick and the fingers. Navigation time was strongly dependant on the number of issued commands, which reduced by gaining experience. Particularly, the unintended issued commands (the Midas touch problem) were rare, demonstrating the effectiveness of the tongue tracking and external magnetic field cancellation algorithms as well as the safety of the TDS for wheeled mobility. PMID:19362901

  17. Using unconstrained tongue motion as an alternative control mechanism for wheeled mobility.

    PubMed

    Huo, Xueliang; Ghovanloo, Maysam

    2009-06-01

    Tongue drive system (TDS) is a tongue-operated, minimally invasive, unobtrusive, noncontact, and wireless assistive technology that infers users' intentions by detecting and classifying their voluntary tongue motions, and translating them to user-defined commands. We have developed customized interface circuitry between an external TDS (eTDS) prototype and a commercial powered wheelchair (PWC) as well as three control strategies to evaluate the tongue motion as an alternative control input for wheeled mobility. We tested the eTDS performance in driving PWCs on 12 able-bodied human subjects, of which 11 were novice. The results showed that all subjects could complete navigation tasks by operating the PWC using their tongue motions. Despite little prior experience, the average time using the eTDS and the tongue was only approximately three times longer than using a joystick and the fingers. Navigation time was strongly dependant on the number of issued commands, which reduced by gaining experience. Particularly, the unintended issued commands (the Midas touch problem) were rare, demonstrating the effectiveness of the tongue tracking and external magnetic field cancellation algorithms as well as the safety of the TDS for wheeled mobility.

  18. Teen Drinking and Driving: A Dangerous Mix. CDC Vitalsigns[TM

    ERIC Educational Resources Information Center

    Centers for Disease Control and Prevention, 2012

    2012-01-01

    The percentage of teens in high school who drink and drive has decreased by more than half since 1991, but more can be done. Nearly one million high school teens drank alcohol and got behind the wheel in 2011. Teen drivers are 3 times more likely than more experienced drivers to be in a fatal crash. Drinking any alcohol greatly increases this risk…

  19. Hitching a ride: Seed accrual rates on different types of vehicles.

    PubMed

    Rew, Lisa J; Brummer, Tyler J; Pollnac, Fredric W; Larson, Christian D; Taylor, Kimberley T; Taper, Mark L; Fleming, Joseph D; Balbach, Harold E

    2018-01-15

    Human activities, from resource extraction to recreation, are increasing global connectivity, especially to less-disturbed and previously inaccessible places. Such activities necessitate road networks and vehicles. Vehicles can transport reproductive plant propagules long distances, thereby increasing the risk of invasive plant species transport and dispersal. Subsequent invasions by less desirable species have significant implications for the future of threatened species and habitats. The goal of this study was to understand vehicle seed accrual by different vehicle types and under different driving conditions, and to evaluate different mitigation strategies. Using studies and experiments at four sites in the western USA we addressed three questions: How many seeds and species accumulate and are transported on vehicles? Does this differ with vehicle type, driving surface, surface conditions, and season? What is our ability to mitigate seed dispersal risk by cleaning vehicles? Our results demonstrated that vehicles accrue plant propagules, and driving surface, surface conditions, and season affect the rate of accrual: on- and off-trail summer seed accrual on all-terrain vehicles was 13 and 3508 seeds km -1 , respectively, and was higher in the fall than in the summer. Early season seed accrual on 4-wheel drive vehicles averaged 7 and 36 seeds km -1 on paved and unpaved roads respectively, under dry conditions. Furthermore, seed accrual on unpaved roads differed by vehicle type, with tracked vehicles accruing more than small and large 4-wheel drives; and small 4-wheel drives more than large. Rates were dramatically increased under wet surface conditions. Vehicles indiscriminately accrue a wide diversity of seeds (different life histories, forms and seed lengths); total richness, richness of annuals, biennials, forbs and shrubs, and seed length didn't differ among vehicle types, or additional seed bank samples. Our evaluation of portable vehicle wash units showed that approximately 80% of soil and seed was removed from dirty vehicles. This suggests that interception programs to reduce vehicular seed transportation risk are feasible and should be developed for areas of high conservation value, or where the spread of invasive species is of special concern. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Steering, Entanglement, Nonlocality, and the EPR Paradox

    NASA Astrophysics Data System (ADS)

    Wiseman, Howard; Jones, Steve; Andrew, Doherty

    2007-06-01

    The concept of steering was introduced by Schroedinger in 1935 as a generalization of the EPR paradox for arbitrary pure bipartite entangled states and arbitrary measurements by one party. Until now, it has never been rigorously defined, so it has not been known (for example) what mixed states are steerable (that is, can be used to exhibit steering). We provide an operational definition, from which we prove (by considering Werner states and Isotropic states) that steerable states are a strict subset of the entangled states, and a strict superset of the states that can exhibit Bell-nonlocality. For arbitrary bipartite Gaussian states we derive a linear matrix inequality that decides the question of steerability via Gaussian measurements, and we relate this to the original EPR paradox.

  1. Mobile satellite communications - Vehicle antenna technology update

    NASA Technical Reports Server (NTRS)

    Bell, D.; Naderi, F. M.

    1986-01-01

    This paper discusses options for vehicle antennas to be used in mobile satellite communications systems. Two types of antennas are identified. A non-steerable, azimuthally omnidirectional antenna with a modest gain of 3 to 5 dBi is suggested when a low cost is desired. Alternatively, mechanically or electronically steerable antennas with a higher gain of 10 to 12 dBi are suggested to alleviate power and spectrum scarcity associated with mobile satellite communications. For steerable antennas, both open-loop and closed-loop pointing schemes are discussed. Monopulse and sequential lobing are proposed for the mechanically steered and electronically steered antennas, respectively. This paper suggests a hybrid open-loop/closed-loop pointing technique as the best performer in the mobile satellite environment.

  2. Emissions from U.S. waste collection vehicles.

    PubMed

    Maimoun, Mousa A; Reinhart, Debra R; Gammoh, Fatina T; McCauley Bush, Pamela

    2013-05-01

    This research is an in-depth environmental analysis of potential alternative fuel technologies for waste collection vehicles. Life-cycle emissions, cost, fuel and energy consumption were evaluated for a wide range of fossil and bio-fuel technologies. Emission factors were calculated for a typical waste collection driving cycle as well as constant speed. In brief, natural gas waste collection vehicles (compressed and liquid) fueled with North-American natural gas had 6-10% higher well-to-wheel (WTW) greenhouse gas (GHG) emissions relative to diesel-fueled vehicles; however the pump-to-wheel (PTW) GHG emissions of natural gas waste collection vehicles averaged 6% less than diesel-fueled vehicles. Landfill gas had about 80% lower WTW GHG emissions relative to diesel. Biodiesel waste collection vehicles had between 12% and 75% lower WTW GHG emissions relative to diesel depending on the fuel source and the blend. In 2011, natural gas waste collection vehicles had the lowest fuel cost per collection vehicle kilometer travel. Finally, the actual driving cycle of waste collection vehicles consists of repetitive stops and starts during waste collection; this generates more emissions than constant speed driving. Published by Elsevier Ltd.

  3. General scaling relations for locomotion in granular media

    NASA Astrophysics Data System (ADS)

    Slonaker, James; Motley, D. Carrington; Zhang, Qiong; Townsend, Stephen; Senatore, Carmine; Iagnemma, Karl; Kamrin, Ken

    2017-05-01

    Inspired by dynamic similarity in fluid systems, we have derived a general dimensionless form for locomotion in granular materials, which is validated in experiments and discrete element method (DEM) simulations. The form instructs how to scale size, mass, and driving parameters in order to relate dynamic behaviors of different locomotors in the same granular media. The scaling can be derived by assuming intrusion forces arise from resistive force theory or equivalently by assuming the granular material behaves as a continuum obeying a frictional yield criterion. The scalings are experimentally confirmed using pairs of wheels of various shapes and sizes under many driving conditions in a common sand bed. We discuss why the two models provide such a robust set of scaling laws even though they neglect a number of the complexities of granular rheology. Motivated by potential extraplanetary applications, the dimensionless form also implies a way to predict wheel performance in one ambient gravity based on tests in a different ambient gravity. We confirm this using DEM simulations, which show that scaling relations are satisfied over an array of driving modes even when gravity differs between scaled tests.

  4. A novel integrated chassis controller for full drive-by-wire vehicles

    NASA Astrophysics Data System (ADS)

    Song, Pan; Tomizuka, Masayoshi; Zong, Changfu

    2015-02-01

    In this paper, a systematic design with multiple hierarchical layers is adopted in the integrated chassis controller for full drive-by-wire vehicles. A reference model and the optimal preview acceleration driver model are utilised in the driver control layer to describe and realise the driver's anticipation of the vehicle's handling characteristics, respectively. Both the sliding mode control and terminal sliding mode control techniques are employed in the vehicle motion control (MC) layer to determine the MC efforts such that better tracking performance can be attained. In the tyre force allocation layer, a polygonal simplification method is proposed to deal with the constraints of the tyre adhesive limits efficiently and effectively, whereby the load transfer due to both roll and pitch is also taken into account which directly affects the constraints. By calculating the motor torque and steering angle of each wheel in the executive layer, the total workload of four wheels is minimised during normal driving, whereas the MC efforts are maximised in extreme handling conditions. The proposed controller is validated through simulation to improve vehicle stability and handling performance in both open- and closed-loop manoeuvres.

  5. Can Youth with Autism Spectrum Disorder Use Virtual Reality Driving Simulation Training to Evaluate and Improve Driving Performance? An Exploratory Study.

    PubMed

    Cox, Daniel J; Brown, Timothy; Ross, Veerle; Moncrief, Matthew; Schmitt, Rose; Gaffney, Gary; Reeve, Ron

    2017-08-01

    Investigate how novice drivers with autism spectrum disorder (ASD) differ from experienced drivers and whether virtual reality driving simulation training (VRDST) improves ASD driving performance. 51 novice ASD drivers (mean age 17.96 years, 78% male) were randomized to routine training (RT) or one of three types of VRDST (8-12 sessions). All participants followed DMV behind-the-wheel training guidelines for earning a driver's license. Participants were assessed pre- and post-training for driving-specific executive function (EF) abilities and tactical driving skills. ASD drivers showed worse baseline EF and driving skills than experienced drivers. At post-assessment, VRDST significantly improved driving and EF performance over RT. This study demonstrated feasibility and potential efficacy of VRDST for novice ASD drivers.

  6. Effects of trait anger, driving anger, and driving experience on dangerous driving behavior: A moderated mediation analysis.

    PubMed

    Ge, Yan; Zhang, Qian; Zhao, Wenguo; Zhang, Kan; Qu, Weina

    2017-11-01

    To explore the effect of anger behind the wheel on driving behavior and accident involvement has been the subject of many studies. However, few studies have explored the interaction between anger and driving experience on dangerous driving behavior. This study is a moderated mediation analysis of the effect of trait anger, driving anger, and driving experience on driving behavior. A sample of 303 drivers was tested using the Trait Anger Scale (TAS), the Driving Anger Scale (DAS), and the Dula Dangerous Driving Index (DDDI). The results showed that trait anger and driving anger were positively correlated with dangerous driving behavior. Driving anger partially mediated the effect of trait anger on dangerous driving behavior. Driving experience moderated the relationship between trait anger and driving anger. It also moderated the effect of driving anger on dangerous driving behavior. These results suggest that drivers with more driving experience may be safer as they are not easily irritated during driving. © 2017 Wiley Periodicals, Inc.

  7. Comparative efficiency and driving range of light- and heavy-duty vehicles powered with biomass energy stored in liquid fuels or batteries

    PubMed Central

    Laser, Mark; Lynd, Lee R.

    2014-01-01

    This study addresses the question, “When using cellulosic biomass for vehicular transportation, which field-to-wheels pathway is more efficient: that using biofuels or that using bioelectricity?” In considering the question, the level of assumed technological maturity significantly affects the comparison, as does the intended transportation application. Results from the analysis indicate that for light-duty vehicles, over ranges typical in the United States today (e.g., 560–820 miles), field-to-wheels performance is similar, with some scenarios showing biofuel to be more efficient, and others indicating the two pathways to be essentially the same. Over the current range of heavy-duty vehicles, the field-to-wheels efficiency is higher for biofuels than for electrically powered vehicles. Accounting for technological advances and range, there is little basis to expect mature bioelectricity-powered vehicles to have greater field-to-wheels efficiency (e.g., kilometers per gigajoule biomass or per hectare) compared with mature biofuel-powered vehicles. PMID:24550477

  8. Driving simulator sickness: Impact on driving performance, influence of blood alcohol concentration, and effect of repeated simulator exposures.

    PubMed

    Helland, Arne; Lydersen, Stian; Lervåg, Lone-Eirin; Jenssen, Gunnar D; Mørland, Jørg; Slørdal, Lars

    2016-09-01

    Simulator sickness is a major obstacle to the use of driving simulators for research, training and driver assessment purposes. The purpose of the present study was to investigate the possible influence of simulator sickness on driving performance measures such as standard deviation of lateral position (SDLP), and the effect of alcohol or repeated simulator exposure on the degree of simulator sickness. Twenty healthy male volunteers underwent three simulated driving trials of 1h's duration with a curvy rural road scenario, and rated their degree of simulator sickness after each trial. Subjects drove sober and with blood alcohol concentrations (BAC) of approx. 0.5g/L and 0.9g/L in a randomized order. Simulator sickness score (SSS) did not influence the primary outcome measure SDLP. Higher SSS significantly predicted lower average speed and frequency of steering wheel reversals. These effects seemed to be mitigated by alcohol. Higher BAC significantly predicted lower SSS, suggesting that alcohol inebriation alleviates simulator sickness. The negative relation between the number of previous exposures to the simulator and SSS was not statistically significant, but is consistent with habituation to the sickness-inducing effects, as shown in other studies. Overall, the results suggest no influence of simulator sickness on SDLP or several other driving performance measures. However, simulator sickness seems to cause test subjects to drive more carefully, with lower average speed and fewer steering wheel reversals, hampering the interpretation of these outcomes as measures of driving impairment and safety. BAC and repeated simulator exposures may act as confounding variables by influencing the degree of simulator sickness in experimental studies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. On-road Driving Performance of Patients with Bilateral Moderate and Advanced Glaucoma

    PubMed Central

    Bhorade, Anjali M.; Yom, Victoria H.; Barco, Peggy; Wilson, Bradley; Gordon, Mae; Carr, David

    2017-01-01

    Purpose To compare on-road driving performance of patients with moderate or advanced glaucoma to controls and evaluate factors associated with unsafe driving. Design Case-control pilot study. Methods A consecutive sample of 21 patients with bilateral moderate or advanced glaucoma from Washington University, St. Louis, MO and 38 community-dwelling controls were enrolled. Participants, ages 55–90 years, underwent a comprehensive clinical evaluation by a trained occupational therapist and an on-road driving evaluation by a masked driver rehabilitation specialist. Overall driving performance of pass vs. marginal/fail and number of wheel and/or brake interventions were recorded. Results Fifty-two percent of glaucoma participants scored a marginal/fail compared to 21% of controls (odds ratio [OR], 4.1; 95% CI, 1.30–13.14;p=.02). Glaucoma participants had a higher risk of wheel interventions than controls (OR, 4.67; 95% CI, 1.03–21.17;p=.046). There were no differences detected between glaucoma participants who scored a pass vs. marginal/fail for visual field mean deviation of the better (p=.62) or worse (p=.88) eye, binocular distance (p=.15) or near (p=.23) visual acuity, contrast sensitivity (p=.28) or glare (p=.88). However, glaucoma participants with a marginal/fail score performed worse on Trail Making Tests A (p=.03) and B (p=.05), right-sided Jamar grip strength (p=.02), Rapid Pace Walk (p=.03), Braking Response Time (p=.03), and identifying traffic signs (p=.05). Conclusions and Relevance Patients with bilateral moderate or advanced glaucoma are at risk for unsafe driving – particularly those with impairments on psychometric and mobility tests. A comprehensive clinical assessment and on-road driving evaluation is recommended to effectively evaluate driving safety of these patients. PMID:26949136

  10. Gaussian quantum steering and its asymmetry in curved spacetime

    NASA Astrophysics Data System (ADS)

    Wang, Jieci; Cao, Haixin; Jing, Jiliang; Fan, Heng

    2016-06-01

    We study Gaussian quantum steering and its asymmetry in the background of a Schwarzschild black hole. We present a Gaussian channel description of quantum state evolution under the influence of Hawking radiation. We find that thermal noise introduced by the Hawking effect will destroy the steerability between an inertial observer Alice and an accelerated observer Bob who hovers outside the event horizon, while it generates steerability between Bob and a hypothetical observer anti-Bob inside the event horizon. Unlike entanglement behaviors in curved spacetime, here the steering from Alice to Bob suffers from a "sudden death" and the steering from anti-Bob to Bob experiences a "sudden birth" with increasing Hawking temperature. We also find that the Gaussian steering is always asymmetric and the maximum steering asymmetry cannot exceed ln 2 , which means the state never evolves to an extremal asymmetry state. Furthermore, we obtain the parameter settings that maximize steering asymmetry and find that (i) s =arccosh cosh/2r 1 -sinh2r is the critical point of steering asymmetry and (ii) the attainment of maximal steering asymmetry indicates the transition between one-way steerability and both-way steerability for the two-mode Gaussian state under the influence of Hawking radiation.

  11. Hybrid powertrain controller

    DOEpatents

    Jankovic, Miroslava; Powell, Barry Kay

    2000-12-26

    A hybrid powertrain for a vehicle comprising a diesel engine and an electric motor in a parallel arrangement with a multiple ratio transmission located on the torque output side of the diesel engine, final drive gearing connecting drivably the output shaft of transmission to traction wheels of the vehicle, and an electric motor drivably coupled to the final drive gearing. A powertrain controller schedules fuel delivered to the diesel engine and effects a split of the total power available, a portion of the power being delivered by the diesel and the balance of the power being delivered by the motor. A shifting schedule for the multiple ratio transmission makes it possible for establishing a proportional relationship between accelerator pedal movement and torque desired at the wheels. The control strategy for the powertrain maintains drivability of the vehicle that resembles drivability of a conventional spark ignition vehicle engine powertrain while achieving improved fuel efficiency and low exhaust gas emissions.

  12. Novel Control Scheme of Power Assisted Wheelchair for Preventing Overturn (Part I)-Adjustment of Assisted Torque and Performance Evaluation From Field Test-

    NASA Astrophysics Data System (ADS)

    Seki, Hirokazu; Hata, Naoki; Koyasu, Yuichi; Hori, Yoichi

    Aged people and disabled people who have difficulty in walking are increasing. As one of mobility support, significance of power assisted wheelchair which assists driving force using electric motors and spreads their living areas has been enhanced. However, the increased driving force often causes a dangerous overturn of wheelchair. In this paper, control method to prevent power assisted wheelchair from overturning is proposed. It is found the front wheels rising is caused by magnitude and rapid increase of assisted torque. Therefore, feedforward control method to limit the assisted torque by tuning its magnitude or time constant is proposed. In order to emphasize safety and feeling of security, these methods make the front wheels no rise. The effectiveness of the proposed method is verified by the practical experiments and field test based performance evaluation using many trial subjects.

  13. Risk of Motor Vehicle Accidents Related to Sleepiness at the Wheel: A Systematic Review and Meta-Analysis.

    PubMed

    Bioulac, Stéphanie; Franchi, Jean-Arthur Micoulaud; Arnaud, Mickael; Sagaspe, Patricia; Moore, Nicholas; Salvo, Francesco; Philip, Pierre

    2017-10-01

    Sleepiness at the wheel is widely believed to be a cause of motor vehicle accidents. Nevertheless, a systematic review of studies investigating this relationship has not yet been published. The objective of this study was to quantify the relationship between sleepiness at the wheel and motor vehicle accidents. A systematic review was performed using Medline, Scopus, and ISI Web of Science. The outcome measure of interest was motor vehicle accident defined as involving four- or two-wheeled vehicles in road traffic, professional and nonprofessional drivers, with or without objective consequences. The exposure was sleepiness at the wheel defined as self-reported sleepiness at the wheel. Studies were included if they provided adjusted risk estimates of motor vehicle accidents related to sleepiness at the wheel. Risk estimates and 95% confidence intervals (95% CIs) were extracted and pooled as odds ratios (ORs) using a random-effect model. Heterogeneity was quantified using Q statistics and the I2 index. The potential causes of heterogeneity were investigated using meta-regressions. Ten cross-sectional studies (51,520 participants), six case-control studies (4904 participants), and one cohort study (13,674 participants) were included. Sleepiness at the wheel was associated with an increased risk of motor vehicle accidents (pooled OR 2.51 [95% CI 1.87; 3.39]). A significant heterogeneity was found between the individual risk estimates (Q = 93.21; I2 = 83%). Sleepiness at the wheel increases the risk of motor vehicle accidents and should be considered when investigating fitness to drive. Further studies are required to explore the nature of this relationship. PROSPERO 2015 CRD42015024805. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  14. Soil compaction effects of forwarding and its relationship with 6- and 8-wheel drive machines

    Treesearch

    Fernando Seixas; Tim McDonald

    1997-01-01

    A study was done to determine the impact, if any, of a range of drive train options on the soil compaction effects of forwarders. The purpose of the study was to evaluate the cost of optional forwarder equipment versus its ability to reduce detrimental soil physical property changes. Tests were done on forwarders equipped with wide and narrow tires, rear steel tracks,...

  15. VTI Driving Simulator: Mathematical Model of a Four-wheeled Vehicle for Simulation in Real Time. VTI Rapport 267A.

    ERIC Educational Resources Information Center

    Nordmark, Staffan

    1984-01-01

    This report contains a theoretical model for describing the motion of a passenger car. The simulation program based on this model is used in conjunction with an advanced driving simulator and run in real time. The mathematical model is complete in the sense that the dynamics of the engine, transmission and steering system is described in some…

  16. Dynamic Modeling and Soil Mechanics for Path Planning of the Mars Exploration Rovers

    NASA Technical Reports Server (NTRS)

    Trease, Brian

    2011-01-01

    To help minimize risk of high sinkage and slippage during drives and to better understand soil properties and rover terramechanics from drive data, a multidisciplinary team was formed under the Mars Exploration Rover project to develop and utilize dynamic computer-based models for rover drives over realistic terrains. The resulting system, named ARTEMIS (Adams-based Rover Terramechanics and Mobility Interaction System), consists of the dynamic model, a library of terramechanics subroutines, and the high-resolution digital elevation maps of the Mars surface. A 200-element model of the rovers was developed and validated for drop tests before launch, using Adams dynamic modeling software. The external library was built in Fortran and called by Adams to model the wheel-soil interactions include the rut-formation effect of deformable soils, lateral and longitudinal forces, bull-dozing effects, and applied wheel torque. The paper presents the details and implementation of the system. To validate the developed system, one study case is presented from a realistic drive on Mars of the Opportunity rover. The simulation results match well from the measurement of on-board telemetry data. In its final form, ARTEMIS will be used in a predictive manner to assess terrain navigability and will become part of the overall effort in path planning and navigation for both Martian and lunar rovers.

  17. Practice Safe Driving.

    PubMed

    2017-07-01

    More than 30,000 people die in motor vehicle collisions each year in the United States. Distracted, drowsy, and drunk driving cause most motor vehicle collision injuries and deaths. An editorial published in the October 2016 issue of JOSPT identified the global need for effective strategies to reduce, if not eliminate, preventable injuries, including whiplash-associated disorders and deaths from distracted driving. This is a call to action for everyone who gets behind the wheel of a car. J Orthop Sports Phys Ther 2017;47(7):449. doi:10.2519/jospt.2017.0506.

  18. Impaired alertness and performance driving home from the night shift: a driving simulator study.

    PubMed

    Akerstedt, Torbjörn; Peters, Björn; Anund, Anna; Kecklund, Göran

    2005-03-01

    Driving in the early morning is associated with increased accident risk affecting not only professional drivers but also those who commute to work. The present study used a driving simulator to investigate the effects of driving home from a night shift. Ten shift workers participated after a normal night shift and after a normal night sleep. The results showed that driving home from the night shift was associated with an increased number of incidents (two wheels outside the lane marking, from 2.4 to 7.6 times), decreased time to first accident, increased lateral deviation (from 18 to 43 cm), increased eye closure duration (0.102 to 0.143 s), and increased subjective sleepiness. The results indicate severe postnight shift effects on sleepiness and driving performance.

  19. Nonlinear adaptive formation control for a class of autonomous holonomic planetary exploration rovers

    NASA Astrophysics Data System (ADS)

    Ganji, Farid

    This dissertation presents novel nonlinear adaptive formation controllers for a heterogeneous group of holonomic planetary exploration rovers navigating over flat terrains with unknown soil types and surface conditions. A leader-follower formation control architecture is employed. In the first part, using a point-mass model for robots and a Coulomb-viscous friction model for terrain resistance, direct adaptive control laws and a formation speed-adaptation strategy are developed for formation navigation over unknown and changing terrain in the presence of actuator saturation. On-line estimates of terrain frictional parameters compensate for unknown terrain resistance and its variations. In saturation events over difficult terrain, the formation speed is reduced based on the speed of the slowest saturated robot, using internal fleet communication and a speed-adaptation strategy, so that the formation error stays bounded and small. A formal proof for asymptotic stability of the formation system in non-saturated conditions is given. The performance of robot controllers are verified using a modular 3-robot formation simulator. Simulations show that the formation errors reduce to zero asymptotically under non-saturated conditions as is guaranteed by the theoretical proof. In the second part, the proposed adaptive control methodology is extended for formation control of a class of omnidirectional rovers with three independently-driven universal holonomic rigid wheels, where the rovers' rigid-body dynamics, drive-system electromechanical characteristics, and wheel-ground interaction mechanics are incorporated. Holonomic rovers have the ability to move simultaneously and independently in translation and rotation, rendering great maneuverability and agility, which makes them suitable for formation navigation. Novel nonlinear adaptive control laws are designed for the input voltages of the three wheel-drive motors. The motion resistance, which is due to the sinkage of rover wheels in soft planetary terrain, is modeled using classical terramechanics theory. The unknown system parameters for adaptive estimation pertain to the rolling resistance forces and scrubbing resistance torques at the wheel-terrain interfaces. Novel terramechanical formulas for terrain resistance forces and torques are derived via considering the universal holonomic wheels as rigid toroidal wheels moving forward and/or sideways as well as turning on soft ground. The asymptotic stability of the formation control system is rigorously proved using Lyapunov's direct method.

  20. Test Rover Sinks into Prepared Soil

    NASA Image and Video Library

    2009-06-30

    While a test rover rolls off a plywood surface into a prepared bed of soft soil, rover team members Colette Lohr left and Kim Lichtenberg center eye the wheels digging into the soil and Paolo Bellutta enters the next driving command.

  1. 57. Exterior view of marine railway #4. BBW work Tun ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    57. Exterior view of marine railway #4. BBW work Tun Sam on the ways seen from Starboard Bow. Note rail/roller type (steel railway/steel wheels). - Barbour Boat Works, Tryon Palace Drive, New Bern, Craven County, NC

  2. Novel Applications of a Thermally Tunable Bistable Buckling Silicon-on-Insulator (SOI) Microfabricated Membrane

    DTIC Science & Technology

    2015-09-17

    applications, a tunable pressure sensor and a steerable micromirror . A differential pressure across the mem- brane causes deflection, up or down, which can...0.55µm/psi. A steerable micromirror was realized by selectively heat- ing a single quadrant of a buckled membrane, localized heating results in membrane...124 6.2.1 Micromirror Actuator Optimization . . . . . . . . . . . . . . . . . . . . . . . . 124 6.3 Summary

  3. Impact of Mass and Weight Distribution on Manual Wheelchair Propulsion Torque.

    PubMed

    Sprigle, Stephen; Huang, Morris

    2015-01-01

    Propulsion effort of manual wheelchairs, a major determinant of user mobility, is a function of human biomechanics and mechanical design. Human studies that investigate both variables simultaneously have resulted in largely inconsistent outcomes, motivating the implementation of a robotic propulsion system that characterizes the inherent mechanical performance of wheelchairs. This study investigates the impacts of mass and mass distribution on manual wheelchair propulsion by configuring an ultra-lightweight chair to two weights (12-kg and 17.6-kg) and two load distributions (70% and 55% on drive wheels). The propulsion torques of these four configurations were measured for a straight maneuver and a fixed-wheel turn, on both tile and carpet. Results indicated that increasing mass to 17.6-kg had the largest effect on straight acceleration, requiring 7.4% and 5.8% more torque on tile and carpet, respectively. Reducing the drive wheel load to 55% had the largest effect on steady-state straight motion and on both turning acceleration and steady-state turning; for tile and carpet, propulsion torque increased by 13.5% and 11.8%, 16.5% and 4.1%, 73% and 5.1%, respectively. These results demonstrate the robot's high sensitivity, and support the clinical importance of evaluating effects of wheelchair mass and axle position on propulsion effort across maneuvers and surfaces.

  4. Prototype Space Fabrication Platform

    DTIC Science & Technology

    1993-12-01

    Wheel Mechanism . . 5-12 5.3.4 Butt Welding of T-Beams ..... .......... 5-14 5.3.5 Application of Cross Members ............ 5-17 5.3.6 Application of...fabrication process and deployed into spece by a drive mechanism on each cap member. The drive mechanism also provided the force necessary to extract...members were stacked closely together and stored in a clip mechanism . The clip had a belt ’ ed mechanism designed to advance the stack, one member at

  5. An examination of the concept of driving point receptance

    NASA Astrophysics Data System (ADS)

    Sheng, X.; He, Y.; Zhong, T.

    2018-04-01

    In the field of vibration, driving point receptance is a well-established and widely applied concept. However, as demonstrated in this paper, when a driving point receptance is calculated using the finite element (FE) method with solid elements, it does not converge as the FE mesh becomes finer, suggesting that there is a singularity. Hence, the concept of driving point receptance deserves a rigorous examination. In this paper, it is firstly shown that, for a point harmonic force applied on the surface of an elastic half-space, the Boussinesq formula can be applied to calculate the displacement amplitude of the surface if the response point is sufficiently close to the load. Secondly, by applying the Betti reciprocal theorem, it is shown that the displacement of an elastic body near a point harmonic force can be decomposed into two parts, with the first one being the displacement of an elastic half-space. This decomposition is useful, since it provides a solid basis for the introduction of a contact spring between a wheel and a rail in interaction. However, according to the Boussinesq formula, this decomposition also leads to the conclusion that a driving point receptance is infinite (singular), and would be undefinable. Nevertheless, driving point receptances have been calculated using different methods. Since the singularity identified in this paper was not appreciated, no account was given to the singularity in these calculations. Thus, the validity of these calculation methods must be examined. This constructs the third part of the paper. As the final development of the paper, the above decomposition is utilised to define and determine driving point receptances required for dealing with wheel/rail interactions.

  6. A new energy-efficient control approach for astronomical telescope drive system

    NASA Astrophysics Data System (ADS)

    Zhou, W.; Wang, Y.

    2012-12-01

    Drive control makes the astronomical telescope accurately tracking celestial bodies in spite of external and internal disturbances, which is a key technique to the performance of telescopes. In this paper, we propose a nonlinear ad, aptive observer based on power reversible approach for high precision telescope position tracking. The nonlinear adaptive observer automatically estimates the disturbances in drive system, and the observed value is applied to compensate for the real disturbances. With greatly reduced disturbances, the control precision can be evidently improved. In conventional drive control, the brake device is often used to slow down the reaction wheel and may waste enormous energy. To avoid those disadvantages, an H-bridge is put forward for wheel speed regulation. Such H-bridge has four independent sections, and each section mainly consists of a power electronic switch and an anti-parallel diode. During the period of the mount slowing down, the armature current of drive motor goes through the two path-wise diodes to charge the battery. Thus, energy waste is avoided. Based on the disturbance compensation, an optimal controller is designed to minimize an evaluation function which is made up of a weighted sum of position errors and energy consumption.The outputs of the controller are applied to control the H-bridge. Simulations are performed in MATLAB language. The results show that high precision control can be obtained by the proposed approach. And the energy consumption will be remarkably reduced.

  7. Design and Modeling of a Test Bench for Dual-Motor Electric Drive Tracked Vehicles Based on a Dynamic Load Emulation Method.

    PubMed

    Wang, Zhe; Lv, Haoliang; Zhou, Xiaojun; Chen, Zhaomeng; Yang, Yong

    2018-06-21

    Dual-motor Electric Drive Tracked Vehicles (DDTVs) have attracted increasing attention due to their high transmission efficiency and economical fuel consumption. A test bench for the development and validation of new DDTV technologies is necessary and urgent. How to load the vehicle on a DDTV test bench exactly the same as on a real road is a crucial issue when designing the bench. This paper proposes a novel dynamic load emulation method to address this problem. The method adopts dual dynamometers to simulate both the road load and the inertia load that are imposed on the dual independent drive systems. The vehicle’s total inertia equivalent to the drive wheels is calculated with separate consideration of vehicle body, tracks and road wheels to obtain a more accurate inertia load. A speed tracking control strategy with feedforward compensation is implemented to control the dual dynamometers, so as to make the real-time dynamic load emulation possible. Additionally, a MATLAB/Simulink model of the test bench is built based on a dynamics analysis of the platform. Experiments are finally carried out on this test bench under different test conditions. The outcomes show that the proposed load emulation method is effective, and has good robustness and adaptability to complex driving conditions. Besides, the accuracy of the established test bench model is also demonstrated by comparing the results obtained from the simulation model and experiments.

  8. Control architecture for an adaptive electronically steerable flash lidar and associated instruments

    NASA Astrophysics Data System (ADS)

    Ruppert, Lyle; Craner, Jeremy; Harris, Timothy

    2014-09-01

    An Electronically Steerable Flash Lidar (ESFL), developed by Ball Aerospace & Technologies Corporation, allows realtime adaptive control of configuration and data-collection strategy based on recent or concurrent observations and changing situations. This paper reviews, at a high level, some of the algorithms and control architecture built into ESFL. Using ESFL as an example, it also discusses the merits and utility such adaptable instruments in Earth-system studies.

  9. Inflammation-induced decrease in voluntary wheel running in mice: a nonreflexive test for evaluating inflammatory pain and analgesia.

    PubMed

    Cobos, Enrique J; Ghasemlou, Nader; Araldi, Dionéia; Segal, David; Duong, Kelly; Woolf, Clifford J

    2012-04-01

    Inflammatory pain impacts adversely on the quality of life of patients, often resulting in motor disabilities. Therefore, we studied the effect of peripheral inflammation induced by intraplantar administration of complete Freund's adjuvant (CFA) in mice on a particular form of voluntary locomotion, wheel running, as an index of mobility impairment produced by pain. The distance traveled over 1 hour of free access to activity wheels decreased significantly in response to hind paw inflammation, peaking 24 hours after CFA administration. Recovery of voluntary wheel running by day 3 correlated with the ability to support weight on the inflamed limb. Inflammation-induced mechanical hypersensitivity, measured with von Frey hairs, lasted considerably longer than the impaired voluntary wheel running and is not driving; therefore, the change in voluntary behavior. The CFA-induced decrease in voluntary wheel running was dose-dependently reversed by subcutaneous administration of antiinflammatory and analgesic drugs, including naproxen (10-80 mg/kg), ibuprofen (2.5-20mg/kg), diclofenac (1.25-10mg/kg), celecoxib (2.5-20mg/kg), prednisolone (0.62-5mg/kg), and morphine (0.06-0.5mg/kg), all at much lower doses than reported in most rodent models. Furthermore, the doses that induced recovery in voluntary wheel running did not reduce CFA-induced mechanical allodynia, indicating a greater sensitivity of the former as a surrogate measure of inflammatory pain. We conclude that monitoring changes in voluntary wheel running in mice during peripheral inflammation is a simple, observer-independent objective measure of functional changes produced by inflammation, likely more aligned to the global level of pain than reflexive measures, and much more sensitive to analgesic drug effects. Copyright © 2012 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  10. A drive system to add standing mobility to a manual standing wheelchair.

    PubMed

    Nickel, Eric; Hansen, Andrew; Pearlman, Jonathan; Goldish, Gary

    2016-05-16

    Current manual standing wheelchairs are not mobile in the standing position. The addition of standing mobility may lead to improved health and function for the user and may increase utilization of standing wheelchairs. In this project, a chain drive system was fitted to a manual standing wheelchair, adding mobility in the standing position. The hand rims are accessible from both seated and standing positions. The prototype uses 16-inch drive wheels in front with casters in the rear. Additional anterior casters are elevated when seated for navigating obstacles and then descend when standing to create a six-wheeled base with extended anterior support. Stability testing shows the center of pressure remains within the base of support when leaning to the sides or front in both seated and standing positions. Four veterans with spinal cord injury provided feedback on the design and reported that mobility during standing was very important or extremely important to them. The veterans liked the perceived stability and mobility of the prototype and provided feedback for future refinements. For example, reducing the overall width (width from hand rim to hand rim) and weight could make this system more functional for users.

  11. Online Detection of Driver Fatigue Using Steering Wheel Angles for Real Driving Conditions.

    PubMed

    Li, Zuojin; Li, Shengbo Eben; Li, Renjie; Cheng, Bo; Shi, Jinliang

    2017-03-02

    This paper presents a drowsiness on-line detection system for monitoring driver fatigue level under real driving conditions, based on the data of steering wheel angles (SWA) collected from sensors mounted on the steering lever. The proposed system firstly extracts approximate entropy (ApEn)featuresfromfixedslidingwindowsonreal-timesteeringwheelanglestimeseries. Afterthat, this system linearizes the ApEn features series through an adaptive piecewise linear fitting using a given deviation. Then, the detection system calculates the warping distance between the linear features series of the sample data. Finally, this system uses the warping distance to determine the drowsiness state of the driver according to a designed binary decision classifier. The experimental data were collected from 14.68 h driving under real road conditions, including two fatigue levels: "wake" and "drowsy". The results show that the proposed system is capable of working online with an average 78.01% accuracy, 29.35% false detections of the "awake" state, and 15.15% false detections of the "drowsy" state. The results also confirm that the proposed method based on SWA signal is valuable for applications in preventing traffic accidents caused by driver fatigue.

  12. TULIPs: tunable, light-controlled interacting protein tags for cell biology.

    PubMed

    Strickland, Devin; Lin, Yuan; Wagner, Elizabeth; Hope, C Matthew; Zayner, Josiah; Antoniou, Chloe; Sosnick, Tobin R; Weiss, Eric L; Glotzer, Michael

    2012-03-04

    Naturally photoswitchable proteins offer a means of directly manipulating the formation of protein complexes that drive a diversity of cellular processes. We developed tunable light-inducible dimerization tags (TULIPs) based on a synthetic interaction between the LOV2 domain of Avena sativa phototropin 1 (AsLOV2) and an engineered PDZ domain (ePDZ). TULIPs can recruit proteins to diverse structures in living yeast and mammalian cells, either globally or with precise spatial control using a steerable laser. The equilibrium binding and kinetic parameters of the interaction are tunable by mutation, making TULIPs readily adaptable to signaling pathways with varying sensitivities and response times. We demonstrate the utility of TULIPs by conferring light sensitivity to functionally distinct components of the yeast mating pathway and by directing the site of cell polarization.

  13. Development and validation of a numerical model for cross-section optimization of a multi-part probe for soft tissue intervention.

    PubMed

    Frasson, L; Neubert, J; Reina, S; Oldfield, M; Davies, B L; Rodriguez Y Baena, F

    2010-01-01

    The popularity of minimally invasive surgical procedures is driving the development of novel, safer and more accurate surgical tools. In this context a multi-part probe for soft tissue surgery is being developed in the Mechatronics in Medicine Laboratory at Imperial College, London. This study reports an optimization procedure using finite element methods, for the identification of an interlock geometry able to limit the separation of the segments composing the multi-part probe. An optimal geometry was obtained and the corresponding three-dimensional finite element model validated experimentally. Simulation results are shown to be consistent with the physical experiments. The outcome of this study is an important step in the provision of a novel miniature steerable probe for surgery.

  14. 24. UPPER STATION, LOWER FLOOR, MOTOR ROOM, OFF VERTICAL DEFLECTOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. UPPER STATION, LOWER FLOOR, MOTOR ROOM, OFF VERTICAL DEFLECTOR SHEAVE, MOTOR, BRAKE, PINION SHAFT, DRIVE WHEEL. - Monongahela Incline Plane, Connecting North side of Grandview Avenue at Wyoming Street with West Carson Street near Smithfield Street, Pittsburgh, Allegheny County, PA

  15. Defining Toll Fee of Wheeling Renewable with Reference to a Gas Pipeline in Indonesia

    NASA Astrophysics Data System (ADS)

    Hakim, Amrullah

    2017-07-01

    Indonesia has a huge number of renewable energy sources (RE) however; the utilization of these is currently very low. The main challenge of power production is its alignment with consumption levels; supply should equal demand at all times. There is a strong initiative from corporations with high energy demand, compared to other sectors, to apply a renewable portfolio standard for their energy input, e.g. 15% of their energy consumption requirement must come from a renewable energy source. To support this initiative, the utilization of power wheeling will help large factories on industrial estates to source firm and steady renewables from remote sites. The wheeling renewable via PLN’s transmission line has been regulated under the Ministry Decree in 2015 however; the tariff or toll fee has not yet been defined. The potential project to apply wheeling renewable will obtain power supply from a geothermal power plant, with power demand from the scattered factories under one company. This is the concept driving the application of power wheeling in the effort to push the growth of renewable energy in Indonesia. Given that the capacity of PLN’s transmission line are normally large and less congested compared to distribution line, the wheeling renewable can accommodate the scattered factories locations which then results in the cheaper toll fee of the wheeling renewable. Defining the best toll fee is the main topic of this paper with comparison of the toll fee of the gas pipeline infrastructure in Indonesia, so that it can be applied massively to achieve COP21’s commitment.

  16. A study on high-speed rolling contact between a wheel and a contaminated rail

    NASA Astrophysics Data System (ADS)

    Zhao, Xin; Wen, Zefeng; Zhu, Minhao; Jin, Xuesong

    2014-10-01

    A 3-D explicit finite element model is developed to investigate the transient wheel-rail rolling contact in the presence of rail contamination or short low adhesion zones (LAZs). A transient analysis is required because the wheel passes by a short LAZ very quickly, especially at high speeds. A surface-to-surface contact algorithm (by the penalty method) is employed to solve the frictional rolling contact between the wheel and the rail meshed by solid elements. The LAZ is simulated by a varying coefficient of friction along the rail. Different traction efforts and action of the traction control system triggered by the LAZ are simulated by applying a time-dependent driving torque to the wheel axle. Structural flexibilities of the vehicle-track system are considered properly. Analysis focuses on the contact forces, creepage, contact stresses and the derived frictional work and plastic deformation. It is found that the longitudinal contact force and the maximum surface shear stress in the contact patch become obviously lower in the LAZ and much higher as the wheel re-enters the dry rail section. Consequently, a higher wear rate and larger plastic flow are expected at the location where the dry contact starts to be rebuilt. In other words, contact surface damages such as wheel flats and rail burns may come into being because of the LAZ. Length of the LAZ, the traction level, etc. are varied. The results also show that local contact surface damages may still occur as the traction control system acts.

  17. Advanced emergency braking under split friction conditions and the influence of a destabilising steering wheel torque

    NASA Astrophysics Data System (ADS)

    Tagesson, Kristoffer; Cole, David

    2017-07-01

    The steering system in most heavy trucks is such that it causes a destabilising steering wheel torque when braking on split friction, that is, different friction levels on the two sides of the vehicle. Moreover, advanced emergency braking systems are now mandatory in most heavy trucks, making vehicle-induced split friction braking possible. This imposes higher demands on understanding how the destabilising steering wheel torque affects the driver, which is the focus here. Firstly, an experiment has been carried out involving 24 subjects all driving a truck where automatic split friction braking was emulated. Secondly, an existing driver-vehicle model has been adapted and implemented to improve understanding of the observed outcome. A common conclusion drawn, after analysing results, is that the destabilising steering wheel torque only has a small effect on the motion of the vehicle. The underlying reason is a relatively slow ramp up of the disturbance in comparison to the observed cognitive delay amongst subjects; also the magnitude is low and initially suppressed by passive driver properties.

  18. Hopping Robot with Wheels

    NASA Technical Reports Server (NTRS)

    Barlow, Edward; Marzwell, Nevellie; Fuller, Sawyer; Fionni, Paolo; Tretton, Andy; Burdick, Joel; Schell, Steve

    2003-01-01

    A small prototype mobile robot is capable of (1) hopping to move rapidly or avoid obstacles and then (2) moving relatively slowly and precisely on the ground by use of wheels in the manner of previously reported exploratory robots of the "rover" type. This robot is a descendant of a more primitive hopping robot described in "Minimally Actuated Hopping Robot" (NPO- 20911), NASA Tech Briefs, Vol. 26, No. 11 (November 2002), page 50. There are many potential applications for robots with hopping and wheeled-locomotion (roving) capabilities in diverse fields of endeavor, including agriculture, search-and-rescue operations, general military operations, removal or safe detonation of land mines, inspection, law enforcement, and scientific exploration on Earth and remote planets. The combination of hopping and roving enables this robot to move rapidly over very rugged terrain, to overcome obstacles several times its height, and then to position itself precisely next to a desired target. Before a long hop, the robot aims itself in the desired hopping azimuth and at a desired takeoff angle above horizontal. The robot approaches the target through a series of hops and short driving operations utilizing the steering wheels for precise positioning.

  19. SeaFrame: Innovation Leads to Superior Warfighting Capability. Volume 4, Issue 1, 2008

    DTIC Science & Technology

    2008-01-01

    U” stands for utility, “K” stands for front wheel drive, and “W” indicates two rear-driving axles .) AMPHIBIOUS FORCE LOGISTIC SUPPORT...using the very latest state-of-the-art instrumentation and analysis techniques,” says Gabor Karafiath, one of the project’s principal investigators. “I...first with standard bladed propulsors with struts and shafting . Then, the model was modified to accom- modate four waterjets, the nozzles of which were

  20. Durability, value, and reliability of selected electric powered wheelchairs.

    PubMed

    Fass, Megan V; Cooper, Rory A; Fitzgerald, Shirley G; Schmeler, Mark; Boninger, Michael L; Algood, S David; Ammer, William A; Rentschler, Andrew J; Duncan, John

    2004-05-01

    To compare the durability, value, and reliability of selected electric powered wheelchairs (EPWs), purchased in 1998. Engineering standards tests of quality and performance. A rehabilitation engineering center. Fifteen EPWs: 3 each of the Jazzy, Quickie, Lancer, Arrow, and Chairman models. Not applicable. Wheelchairs were evaluated for durability (lifespan), value (durability, cost), and reliability (rate of repairs) using 2-drum and curb-drop machines in accordance with the standards of the American National Standards Institute and Rehabilitation Engineering and Assistive Technology Society of North America. The 5 brands differed significantly (P

  1. C-5M Super Galaxy Utilization with Joint Precision Airdrop System

    DTIC Science & Technology

    2012-03-22

    System Notes FireFly 900-2,200 Steerable Parafoil Screamer 500-2,200 Steerable Parafoil w/additional chutes to slow touchdown Dragonfly...setting . This initial feasible solution provides the Nonlinear Program algorithm a starting point to continue its calculations. The model continues...provides the NLP with a starting point of 1. This provides the NLP algorithm a point within the feasible region to begin its calculations in an attempt

  2. Development and validation of a new kind of coupling element for wheel-hub motors

    NASA Astrophysics Data System (ADS)

    Perekopskiy, Sergey; Kasper, Roland

    2018-05-01

    For the automotive industry, electric powered vehicles are becoming an increasingly relevant factor in the competition against climate change. Application of one special example - a wheel-hub motor, for electric powered vehicle can support this challenge. Patented slotless air gap winding invented at the chair of mechatronics of the Otto von Guericke University Magdeburg has great application potential in constantly growing e-mobility field, especially for wheel-hub motors based on this technology due to its advantages, such as a high gravimetric power density and high efficiency. However, advantages of this technology are decreased by its sensibility to the loads out of driving maneuvers by dimensional variations of air gap consistency. This article describes the development and validation of a coupling element for the designed wheel-hub motor. To find a suitable coupling concept first the assembly structure of the motor was analyzed and developed design of the coupling element was checked. Based on the geometry of the motor and wheel a detailed design of the coupling element was generated. The analytical approach for coupling element describes a potential of the possible loads on the coupling element. The FEM simulation of critical load cases for the coupling element validated results of the analytical approach.

  3. Modular Robotic Vehicle

    NASA Technical Reports Server (NTRS)

    Borroni-Bird, Christopher E. (Inventor); Lapp, Anthony Joseph (Inventor); Vitale, Robert L. (Inventor); Lee, Chunhao J. (Inventor); Bluethmann, William J. (Inventor); Ridley, Justin S. (Inventor); Junkin, Lucien Q. (Inventor); Ambrose, Robert O. (Inventor); Lutz, Jonathan J. (Inventor); Guo, Raymond (Inventor)

    2015-01-01

    A modular robotic vehicle includes a chassis, driver input devices, an energy storage system (ESS), a power electronics module (PEM), modular electronic assemblies (eModules) connected to the ESS via the PEM, one or more master controllers, and various embedded controllers. Each eModule includes a drive wheel containing a propulsion-braking module, and a housing containing propulsion and braking control assemblies with respective embedded propulsion and brake controllers, and a mounting bracket covering a steering control assembly with embedded steering controllers. The master controller, which is in communication with each eModule and with the driver input devices, communicates with and independently controls each eModule, by-wire, via the embedded controllers to establish a desired operating mode. Modes may include a two-wheel, four-wheel, diamond, and omni-directional steering modes as well as a park mode. A bumper may enable docking with another vehicle, with shared control over the eModules of the vehicles.

  4. Automatic guidance control of an articulated all-wheel-steered vehicle

    NASA Astrophysics Data System (ADS)

    Kim, Young Chol; Yun, Kyong-Han; Min, Kyung-Deuk

    2014-04-01

    This paper presents automatic guidance control of a single-articulated all-wheel-steered vehicle being developed by the Korea Railroad Research Institute. The vehicle has an independent drive motor on each wheel except for the front axle. The guidance controller is designed so that the vehicle follows the given reference path within permissible lateral deviations. We use a three-input/three-output linearised model derived from the nonlinear dynamic model of the vehicle. For the purpose of simplifying the controller and making it tunable, we consider a decentralised control configuration. We first design a second-order decoupling compensator for the two-input/two-output system that is strongly coupled and then design a first-order controller for each decoupled feedback loop by using the characteristic ratio assignment method. The simulation results for the nonlinear dynamic model indicate that the proposed control configuration successfully achieves the design objectives.

  5. Dual optical mechanical position tracker

    NASA Astrophysics Data System (ADS)

    Everett, S. L., Jr.

    1985-06-01

    This patent application describes an apparatus for retaining control of moving carriage impact dot matrix print heads when subjected to strong external forces such as shock and/or vibration. Position and direction of carriage movement is provided by a photo emitter-sensor assembly and a slotted timing wheel or disc having a plurality of equally spaced slots whose slot width is equal to the slot separation. The slot width is sufficient to frame a pair of side-by-side emitters which operate in conjunction with a pair of side-by-side sensors on the other side of the timing wheel. The order or sequence in which the sensors receive photo energy from their respective emitters indicates the direction of rotation of the timing wheel while simultaneous reception of photo energy by the side-by-side sensors provides an indication of valid rest position of the carriage drive motor.

  6. Automated Coal-Mine Shuttle Car

    NASA Technical Reports Server (NTRS)

    Collins, E. R., Jr.

    1984-01-01

    Cable-guided car increases efficiency in underground coal mines. Unmanned vehicle contains storage batteries in side panels for driving traction motors located in wheels. Batteries recharged during inactive periods or slid out as unit and replaced by fresh battery bank. Onboard generator charges batteries as car operates.

  7. Computer Simulations and Literature Survey of Continuously Variable Transmissions for Use in Buses

    DOT National Transportation Integrated Search

    1981-12-01

    Numerous studies have been conducted on the concept of flywheel energy storage for buses. Flywheel systems require a continuously variable transmission (CVT) of some type to transmit power between the flywheel and the drive wheels. However, a CVT can...

  8. Evaluating Environmental Impacts of Off-Road Vehicles.

    ERIC Educational Resources Information Center

    Kay, Jeanne; And Others

    1981-01-01

    Discusses a study undertaken to determine the ecological effects of off-road vehicles, such as four-wheel drive trucks and dirt bikes in the Big Cottonwood Canyon area near Salt Lake City. Applications of the study to other investigations of off-road vehicles are discussed. (DB)

  9. NASA Curiosity Rover in Profile

    NASA Image and Video Library

    2011-12-09

    About the size of a small SUV, NASA Curiosity rover is well equipped for a tour of Gale Crater on Mars. This impressive rover has six-wheel drive and the ability to turn in place a full 360 degrees, as well as the agility to climb steep hills.

  10. On the efficiency of small air coil motors

    NASA Astrophysics Data System (ADS)

    Horowitz, P.

    1981-05-01

    The efficiency of two types of small ironless motors in the output range of 5 to 500 mW was investigated for use in driving a miniature roller pump for a portable infusion system. One motor has a continuous rotating coil (commutator motor) and one has an oscillating coil. In this case a ratchet and ratchet wheel is needed to generate a rotating motion (ratchet wheel motor). The electromechanical transducer and a mechanical transformation and support system are discussed as well as frictional losses. The influence of the size of the motor is discussed. An expression for the total efficiency is obtained which enables the calculation of the speed of rotation of a certain motor at maximum efficiency for a certain required output. This optimal speed of rotation is hardly influenced by the required speed of rotation at the output shaft of the driving. The transmission, if required, has only a small effect on the optimum speed of rotation of the motor.

  11. Optimisation of driver actions in RWD race car including tyre thermodynamics

    NASA Astrophysics Data System (ADS)

    Maniowski, Michal

    2016-04-01

    The paper presents an innovative method for a lap time minimisation by using genetic algorithms for a multi objective optimisation of a race driver-vehicle model. The decision variables consist of 16 parameters responsible for actions of a professional driver (e.g. time traces for brake, accelerator and steering wheel) on a race track part with RH corner. Purpose-built, high fidelity, multibody vehicle model (called 'miMa') is described by 30 generalised coordinates and 440 parameters, crucial in motorsport. Focus is put on modelling of the tyre tread thermodynamics and its influence on race vehicle dynamics. Numerical example considers a Rear Wheel Drive BMW E36 prepared for track day events. In order to improve the section lap time (by 5%) and corner exit velocity (by 4%) a few different driving strategies are found depending on thermal conditions of semi-slick tyres. The process of the race driver adaptation to initially cold or hot tyres is explained.

  12. Sleepiness and Motor Vehicle Crashes in a Representative Sample of Portuguese Drivers: The Importance of Epidemiological Representative Surveys.

    PubMed

    Gonçalves, M; Peralta, A R; Monteiro Ferreira, J; Guilleminault, Christian

    2015-01-01

    Sleepiness is considered to be a leading cause of crashes. Despite the huge amount of information collected in questionnaire studies, only some are based on representative samples of the population. Specifics of the populations studied hinder the generalization of these previous findings. For the Portuguese population, data from sleep-related car crashes/near misses and sleepiness while driving are missing. The objective of this study is to determine the prevalence of near-miss and nonfatal motor vehicle crashes related to sleepiness in a representative sample of Portuguese drivers. Structured phone interviews regarding sleepiness and sleep-related crashes and near misses, driving habits, demographic data, and sleep quality were conducted using the Pittsburgh Sleep Quality Index and sleep apnea risk using the Berlin questionnaire. A multivariate regression analysis was used to determine the associations with sleepy driving (feeling sleepy or falling asleep while driving) and sleep-related near misses and crashes. Nine hundred subjects, representing the Portuguese population of drivers, were included; 3.1% acknowledged falling asleep while driving during the previous year and 0.67% recalled sleepiness-related crashes. Higher education, driving more than 15,000 km/year, driving more frequently between 12:00 a.m. and 6 a.m., fewer years of having a driver's license, less total sleep time per night, and higher scores on the Epworth Sleepiness Scale (ESS) were all independently associated with sleepy driving. Sleepiness-related crashes and near misses were associated only with falling asleep at the wheel in the previous year. Sleep-related crashes occurred more frequently in drivers who had also had sleep-related near misses. Portugal has lower self-reported sleepiness at the wheel and sleep-related near misses than most other countries where epidemiological data are available. Different population characteristics and cultural, social, and road safety specificities may be involved in these discrepancies. Despite this, Portuguese drivers report sleep-related crashes in frequencies similar to those of drivers in other countries.

  13. Airborne electronically steerable phased array. [steerable antennas - systems analysis

    NASA Technical Reports Server (NTRS)

    Coats, R.

    1975-01-01

    Results of a study directed to the design of a lightweight high-gain, spaceborne communications array are presented. The array includes simultaneous transmission and receiving, automatic acquisition and tracking of a signal within a 60-degree cone from the array normal, and provides for independent forming of the transmit and receive beams. Application for this array is the space shuttle, space station, or any of the advanced manned (or unmanned) orbital vehicles. Performance specifications are also given.

  14. Study of Command and Control (C&C) Structures on Integrating Unmanned Autonomous Systems (UAS) into Manned Environments

    DTIC Science & Technology

    2012-09-01

    and traveled all the way around Lake Tahoe. The self - driving cars have logged over 140,000 miles since October 9, 2010 (Google 2010) pictured here...UNDERWATER VEHICLES (AUV) STARFISH is the name given to a small team of autonomous robotic fish - a project carried out by the Acoustic Research...www.scribd.com/doc/42245301/Manual-Mine- Clearance-Book1. Accessed July 23, 2012. Google. The Self - Driving Car Logs more Miles on New Wheels. August 7

  15. Refined Gearbox Design for the Chariot Lunar Rover

    NASA Technical Reports Server (NTRS)

    Bauman, Steve; Lewicki, David

    2010-01-01

    In planning for NASA's return to the moon by the year 2020, the NASA Johnson Space Center (JSC) designed and built a lunar concept vehicle called Chariot. Slightly larger than a pickup truck, it was designed to demonstrate similar utilitarian functions, but with twelve wheels for redundancy, reliability, and reduced surface contact pressure. JSC designed a motor gearbox to drive each of Chariot s six wheel pods. The pods can be independently steered over 360 for maneuverability. This paper describes the design of a second generation, drop-in replacement gearbox. The new design has a lower parts count, and is lighter than the original, which represents a step toward flight hardware.

  16. Jan did it.

    PubMed

    Persson, P B

    2018-06-16

    Four-wheel drive means being stuck in an even more remote place. It is so difficult to push or pull in any direction, sweat drips by the liter, yet the wheel moves by the μm, just to slide back into stuck position. The same can happen to journals. Something may not work as intended, or the scientific environment changes and strategic decisions must be made to reestablish past glory. Acta Physiologica experienced hard times, as Scandinavian authors no longer took for granted publishing in their small, but beautiful, society owned journal. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  17. Process Research and Development of Antibodies as Countermeasures for C. Botulinum

    DTIC Science & Technology

    2007-03-01

    Suite: 150 L working volume fermentor for yeast and bacteria, harvesting and clarifying capabilities using either continuous centrifugation or cross... CONTACTOR /DISCONNCT WITH 120VAC COIL INTERFACE FOR ATC 9. ALUMINUM WHEELS, STEEL HOUSING, STEEL MOTOR AND DRIVE HOUSINGS 5. ADJUSTABLE MOTOR SUPPORTS

  18. Canadian truckers could drive 14 hours at a stretch, under proposed new rule

    DOT National Transportation Integrated Search

    2000-01-15

    Research shows the risk of crashing increases substantially if truck drivers spend more than eight hours behind the wheel. A new Canadian rule governing truckers' hours of service is due in June 2000. In contrast, truckers on United States roads are ...

  19. Magnetically-Guided Penetrant Applicator

    NASA Technical Reports Server (NTRS)

    Molina, Orlando G.

    1990-01-01

    Small wheeled vehicle moved inside nonmagnetic enclosure. Miniature magnetically guided truck uses foam-rubber sponge pads to apply penetrant fluid for inspection of welds in hidden surfaces of nonmagnetic tubes. Risk of explosion less than if electric motor used to drive vehicle. Inexpensive to make and made in range of sizes.

  20. SDO Delta H Mode Design and Analysis

    NASA Technical Reports Server (NTRS)

    Mason, Paul A.; Starin, Scott R.

    2007-01-01

    While on orbit, disturbance torques on a three axis stabilized spacecraft tend to increase the system momentum, which is stored in the reaction wheels. Upon reaching the predefined momentum capacity (or maximum wheel speed) of the reaction wheel, an external torque must be used to unload the momentum. The purpose of the Delta H mode is to manage the system momentum. This is accomplished by driving the reaction wheels to a target momentum state while the attitude thrusters, which provide an external torque, are used to maintain the attitude. The Delta H mode is designed to meet the mission requirements and implement the momentum management plan. Changes in the requirements or the momentum management plan can lead to design changes in the mode. The momentum management plan defines the expected momentum buildup trend, the desired momentum state and how often the system is driven to the desired momentum state (unloaded). The desired momentum state is chosen based on wheel capacity, wheel configuration, thruster layout and thruster sizing. For the Solar Dynamics Observatory mission, the predefined wheel momentum capacity is a function of the jitter requirements, power, and maximum momentum capacity. Changes in jitter requirements or power limits can lead to changes in the desired momentum state. These changes propagate into the changes in the momentum management plan and therefore the Delta H mode design. This paper presents the analysis and design performed for the Solar Dynamics Observatory Delta H mode. In particular, the mode logic and processing needed to meet requirements is described along with the momentum distribution formulation. The Delta H mode design is validated using the Solar Dynamics Observatory High Fidelity simulator. Finally, a summary of the design is provided along with concluding remarks.

  1. Work schedules of long-distance truck drivers before and after 2004 hours-of-service rule change.

    PubMed

    McCartt, Anne T; Hellinga, Laurie A; Solomon, Mark G

    2008-01-01

    Federal rules regulate work hours of interstate commercial truck drivers. On January 4, 2004, a new work rule was implemented, increasing daily and weekly maximum driving limits and daily off-duty requirements. The present study assessed changes in long-distance truck drivers' reported work schedules and reported fatigued driving after the rule change. Associations between reported rule violations, fatigued driving, and schedule as well as other characteristics were examined. Samples of long-distance truck drivers were interviewed face-to-face in two states immediately before the rule change (November-December 2003) and about 1 year (November-December 2004) and 2 years (November-December 2005) after the change. Drivers reported substantially more hours of driving after the rule change. Most drivers reported regularly using a new restart provision, which permits a substantial increase in weekly driving. Reported daily off-duty and sleep time increased. Reported incidents of falling asleep at the wheel of the truck increased between 2003 (before the rule change) and 2004 and 2005 (after the change); in 2005 about one fifth of drivers reported falling asleep at the wheel in the past month. The frequency of reported rule violations under the old and new rules was similar. The percentage of trucks with electronic on-board recorders increased significantly to almost half the fleet; only a few drivers were using automated recorders to report rule compliance. More than half of drivers said that requiring automated recorders on all large trucks to enforce driving-hour limits would improve compliance with work rules. Based on the 2004-2005 survey data, drivers who reported more frequent rule violations were significantly more likely to report fatigued driving. Predictors of reported violations included having unrealistic delivery schedules, longer wait times to drop off or pick up loads, difficulty finding a legal place to stop or rest, and driving a refrigerated trailer. Reported truck driver fatigue increased after the new rule was implemented, suggesting that the rule change may not have achieved the goal of reducing fatigued driving. Reported violations of the work rules remain common. Because many trucks already have electronic recorders, requiring them as a means of monitoring driving hours appears feasible.

  2. Steering mechanism for a subsoil boring apparatus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kinnan, F.R.

    This paper describes a subsoil boring apparatus. It comprises: a rotatable, steerable boring assembly; motor means for producing rotary motion; pipe string means coupled to the motor means and the boring assembly to import rotation thereto; and impacting means coupled to the motor means to apply impact forces to the pipe string means to improve the steerability of the boring assembly wherein only on of the motor means and the impact means can be applied to the k pipe string means at one time.

  3. 40 CFR 86.136-90 - Engine starting and restarting.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... started. If necessary, braking may be employed to keep the drive wheels from turning. (c) If the vehicle... petroleum-fueled diesel vehicles and the particulate sampling system when testing methanol-fueled diesel... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission...

  4. 36 CFR 7.2 - Crater Lake National Park.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... with snow poles and signs, only that portion of the North Entrance Road intended for wheeled vehicle... permitted in Crater Lake National Park on the North Entrance Road from its intersection with the Rim Drive to the park boundary, and on intermittent routes detouring from the North Entrance Road as designated...

  5. 36 CFR 7.2 - Crater Lake National Park.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... with snow poles and signs, only that portion of the North Entrance Road intended for wheeled vehicle... permitted in Crater Lake National Park on the North Entrance Road from its intersection with the Rim Drive to the park boundary, and on intermittent routes detouring from the North Entrance Road as designated...

  6. 36 CFR 7.2 - Crater Lake National Park.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... with snow poles and signs, only that portion of the North Entrance Road intended for wheeled vehicle... permitted in Crater Lake National Park on the North Entrance Road from its intersection with the Rim Drive to the park boundary, and on intermittent routes detouring from the North Entrance Road as designated...

  7. 36 CFR 7.2 - Crater Lake National Park.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... with snow poles and signs, only that portion of the North Entrance Road intended for wheeled vehicle... permitted in Crater Lake National Park on the North Entrance Road from its intersection with the Rim Drive to the park boundary, and on intermittent routes detouring from the North Entrance Road as designated...

  8. 36 CFR 7.2 - Crater Lake National Park.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... with snow poles and signs, only that portion of the North Entrance Road intended for wheeled vehicle... permitted in Crater Lake National Park on the North Entrance Road from its intersection with the Rim Drive to the park boundary, and on intermittent routes detouring from the North Entrance Road as designated...

  9. Stop/Start: Driving

    Science.gov Websites

    /generator visible. The car is moving. There are purple arrows flowing from the gasoline engine to the electric starter/generator. There are red arrows flowing from the gasoline engine to the front wheels . There are blue arrows flowing from the electric starter/generator to the battery. Main stage: See

  10. High Performance Split-Stirling Cooler Program

    DTIC Science & Technology

    1982-09-01

    or crankcase subassembly includes the two drive cranks 1800 apart, the two motor bearings, the flywheel and target wheel . This assembly is dynamically...DISPLACER SEAL FRICTION REGENERATOR FLOW @ lOPSI E"I’ •’ REGENERATOR RUNOUT COMP. BRG. LUBRICATION "COMP. PISTON SEAL COMP. PISTON SEAL FRICTION INTER

  11. 75 FR 44948 - California State Motor Vehicle Pollution Control Standards; Within-the-Scope Determination for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-30

    ... amendments to its evaporative emission test procedures, four-wheel drive dynamometer provisions, and vehicle... manufacturer has certified vehicles using an alternative running loss test procedure, CARB may conduct... manufacturer's approved alternative running loss test procedure; (3) provide manufacturers an option to use an...

  12. 30 CFR 18.20 - Quality of material, workmanship, and design.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., circuits, arrangements, or combinations of components and materials cannot be foreseen, MSHA reserves the... provided on each mobile machine that travels at a speed greater than 2.5 miles per hour. (f) Brakes shall be provided for each wheel-mounted machine, unless design of the driving mechanism will preclude...

  13. 30 CFR 18.20 - Quality of material, workmanship, and design.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., circuits, arrangements, or combinations of components and materials cannot be foreseen, MSHA reserves the... provided on each mobile machine that travels at a speed greater than 2.5 miles per hour. (f) Brakes shall be provided for each wheel-mounted machine, unless design of the driving mechanism will preclude...

  14. 30 CFR 18.20 - Quality of material, workmanship, and design.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., circuits, arrangements, or combinations of components and materials cannot be foreseen, MSHA reserves the... provided on each mobile machine that travels at a speed greater than 2.5 miles per hour. (f) Brakes shall be provided for each wheel-mounted machine, unless design of the driving mechanism will preclude...

  15. A predictive wheel-soil interaction model for planetary rovers validated in testbeds and against MER Mars rover performance data

    NASA Astrophysics Data System (ADS)

    Richter, L.; Ellery, A.; Gao, Y.; Michaud, S.; Schmitz, N.; Weiss, S.

    Successful designs of vehicles intended for operations on planetary objects outside the Earth demand, just as for terrestrial off-the-road vehicles, a careful assessment of the terrain relevant for the vehicle mission and predictions of the mobility performance to allow rational trade-off's to be made for the choice of the locomotion concept and sizing. Principal issues driving the chassis design for rovers are the stress-strain properties of the planetary surface soil, the distribution of rocks in the terrain representing potential obstacles to movement, and the gravity level on the celestial object in question. Thus far, planetary rovers have been successfully designed and operated for missions to the Earth's moon and to the planet Mars, including NASA's Mars Exploration Rovers (MER's) `Spirit' and `Opportunity' being in operation on Mars since their landings in January 2004. Here we report on the development of a wheel-soil interaction model with application to wheel sizes and wheel loads relevant to current and near-term robotic planetary rovers, i.e. wheel diameters being between about 200 and 500 mm and vertical quasistatic wheel loads in operation of roughly 100 to 200 N. Such a model clearly is indispensable for sizings of future rovers to analyse the aspect of rover mobility concerned with motion across soils. This work is presently funded by the European Space Agency (ESA) as part of the `Rover Chassis Evaluation Tools' (RCET) effort which has developed a set of S/W-implemented models for predictive mobility analysis of rovers in terms of movement on soils and across obstacles, coupled with dedicated testbeds to validate the wheel-soil models. In this paper, we outline the details of the wheel-soil modelling performed within the RCET work and present comparisons of predictions of wheel performance (motion resistance, torque vs. slip and drawbar pull vs. slip) for specific test cases with the corresponding measurements performed in the RCET single wheel testbed and in the RCET system-level testbed, the latter permitting drawbar pull vs. slip measurements for complete rover development vehicles under controlled and homogeneous soil conditions. Required modifications of the wheel-soil model, in particular related to modelling the effect of wheel slip, are discussed. To strengthen the model validation base, we have run single wheel measurements using a spare MER Mars rover wheel and have performed comparisons with MER actual mobility performance data, available through one of us (LR) who is a member of the MER Athena science team. Corresponding results will be presented. Keywords: rovers, wheel, soil, mobility, vehicle performance, RCET (Rover Chassis Evaluation Tools), MER (Mars Exploration Rover mission) 2

  16. All-Versus-Nothing Proof of Einstein-Podolsky-Rosen Steering

    PubMed Central

    Chen, Jing-Ling; Ye, Xiang-Jun; Wu, Chunfeng; Su, Hong-Yi; Cabello, Adán; Kwek, L. C.; Oh, C. H.

    2013-01-01

    Einstein-Podolsky-Rosen steering is a form of quantum nonlocality intermediate between entanglement and Bell nonlocality. Although Schrödinger already mooted the idea in 1935, steering still defies a complete understanding. In analogy to “all-versus-nothing” proofs of Bell nonlocality, here we present a proof of steering without inequalities rendering the detection of correlations leading to a violation of steering inequalities unnecessary. We show that, given any two-qubit entangled state, the existence of certain projective measurement by Alice so that Bob's normalized conditional states can be regarded as two different pure states provides a criterion for Alice-to-Bob steerability. A steering inequality equivalent to the all-versus-nothing proof is also obtained. Our result clearly demonstrates that there exist many quantum states which do not violate any previously known steering inequality but are indeed steerable. Our method offers advantages over the existing methods for experimentally testing steerability, and sheds new light on the asymmetric steering problem. PMID:23828242

  17. Applications of Phase-Based Motion Processing

    NASA Technical Reports Server (NTRS)

    Branch, Nicholas A.; Stewart, Eric C.

    2018-01-01

    Image pyramids provide useful information in determining structural response at low cost using commercially available cameras. The current effort applies previous work on the complex steerable pyramid to analyze and identify imperceptible linear motions in video. Instead of implicitly computing motion spectra through phase analysis of the complex steerable pyramid and magnifying the associated motions, instead present a visual technique and the necessary software to display the phase changes of high frequency signals within video. The present technique quickly identifies regions of largest motion within a video with a single phase visualization and without the artifacts of motion magnification, but requires use of the computationally intensive Fourier transform. While Riesz pyramids present an alternative to the computationally intensive complex steerable pyramid for motion magnification, the Riesz formulation contains significant noise, and motion magnification still presents large amounts of data that cannot be quickly assessed by the human eye. Thus, user-friendly software is presented for quickly identifying structural response through optical flow and phase visualization in both Python and MATLAB.

  18. Omni Directional Multimaterial Soft Cylindrical Actuator and Its Application as a Steerable Catheter.

    PubMed

    Gul, Jahan Zeb; Yang, Young Jin; Su, Kim Young; Choi, Kyung Hyun

    2017-09-01

    Soft actuators with complex range of motion lead to strong interest in applying devices like biomedical catheters and steerable soft pipe inspectors. To facilitate the use of soft actuators in devices where controlled, complex, precise, and fast motion is required, a structurally controlled Omni directional soft cylindrical actuator is fabricated in a modular way using multilayer composite of polylactic acid based conductive Graphene, shape memory polymer, shape memory alloy, and polyurethane. Multiple fabrication techniques are discussed step by step that mainly include fused deposition modeling based 3D printing, dip coating, and UV curing. A mathematical control model is used to generate patterned electrical signals for the Omni directional deformations. Characterizations like structural control, bending, recovery, path, and thermal effect are carried out with and without load (10 g) to verify the new cylindrical design concept. Finally, the application of Omni directional actuator as a steerable catheter is explored by fabricating a scaled version of carotid artery through 3D printing using a semitransparent material.

  19. Steerable dyadic wavelet transform and interval wavelets for enhancement of digital mammography

    NASA Astrophysics Data System (ADS)

    Laine, Andrew F.; Koren, Iztok; Yang, Wuhai; Taylor, Fred J.

    1995-04-01

    This paper describes two approaches for accomplishing interactive feature analysis by overcomplete multiresolution representations. We show quantitatively that transform coefficients, modified by an adaptive non-linear operator, can make more obvious unseen or barely seen features of mammography without requiring additional radiation. Our results are compared with traditional image enhancement techniques by measuring the local contrast of known mammographic features. We design a filter bank representing a steerable dyadic wavelet transform that can be used for multiresolution analysis along arbitrary orientations. Digital mammograms are enhanced by orientation analysis performed by a steerable dyadic wavelet transform. Arbitrary regions of interest (ROI) are enhanced by Deslauriers-Dubuc interpolation representations on an interval. We demonstrate that our methods can provide radiologists with an interactive capability to support localized processing of selected (suspicion) areas (lesions). Features extracted from multiscale representations can provide an adaptive mechanism for accomplishing local contrast enhancement. By improving the visualization of breast pathology can improve changes of early detection while requiring less time to evaluate mammograms for most patients.

  20. Wheeled mobility device transportation safety in fixed route and demand-responsive public transit vehicles within the United States.

    PubMed

    Frost, Karen L; van Roosmalen, Linda; Bertocci, Gina; Cross, Douglas J

    2012-01-01

    An overview of the current status of wheelchair transportation safety in fixed route and demand-responsive, non-rail, public transportation vehicles within the US is presented. A description of each mode of transportation is provided, followed by a discussion of the primary issues affecting safety, accessibility, and usability. Technologies such as lifts, ramps, securement systems, and occupant restraint systems, along with regulations and voluntary industry standards have been implemented with the intent of improving safety and accessibility for individuals who travel while seated in their wheeled mobility device (e.g., wheelchair or scooter). However, across both fixed route and demand-responsive transit systems a myriad of factors such as nonuse and misuse of safety systems, oversized wheeled mobility devices, vehicle space constraints, and inadequate vehicle operator training may place wheeled mobility device (WhMD) users at risk of injury even under non-impact driving conditions. Since WhMD-related incidents also often occur during the boarding and alighting process, the frequency of these events, along with factors associated with these events are described for each transit mode. Recommendations for improving WhMD transportation are discussed given the current state of

  1. Joint 3-D vessel segmentation and centerline extraction using oblique Hough forests with steerable filters.

    PubMed

    Schneider, Matthias; Hirsch, Sven; Weber, Bruno; Székely, Gábor; Menze, Bjoern H

    2015-01-01

    We propose a novel framework for joint 3-D vessel segmentation and centerline extraction. The approach is based on multivariate Hough voting and oblique random forests (RFs) that we learn from noisy annotations. It relies on steerable filters for the efficient computation of local image features at different scales and orientations. We validate both the segmentation performance and the centerline accuracy of our approach both on synthetic vascular data and four 3-D imaging datasets of the rat visual cortex at 700 nm resolution. First, we evaluate the most important structural components of our approach: (1) Orthogonal subspace filtering in comparison to steerable filters that show, qualitatively, similarities to the eigenspace filters learned from local image patches. (2) Standard RF against oblique RF. Second, we compare the overall approach to different state-of-the-art methods for (1) vessel segmentation based on optimally oriented flux (OOF) and the eigenstructure of the Hessian, and (2) centerline extraction based on homotopic skeletonization and geodesic path tracing. Our experiments reveal the benefit of steerable over eigenspace filters as well as the advantage of oblique split directions over univariate orthogonal splits. We further show that the learning-based approach outperforms different state-of-the-art methods and proves highly accurate and robust with regard to both vessel segmentation and centerline extraction in spite of the high level of label noise in the training data. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. A novel design for steerable instruments based on laser-cut nitinol.

    PubMed

    Dewaele, Frank; Kalmar, Alain F; De Ryck, Frederic; Lumen, Nicolaas; Williams, Leonie; Baert, Edward; Vereecke, Hugo; Kalala Okito, Jean Pierre; Mabilde, Cyriel; Blanckaert, Bart; Keereman, Vincent; Leybaert, Luc; Van Nieuwenhove, Yves; Caemaert, Jacques; Van Roost, Dirk

    2014-06-01

    Omnidirectional articulated instruments enhance dexterity. In neurosurgery, for example, the simultaneous use of 2 instruments through the same endoscopic shaft remains a difficult feat. It is, however, very challenging to manufacture steerable instruments of the requisite small diameter. We present a new technique to produce such instruments by means of laser cutting. Only 3 coaxial tubes are used. The middle tube has a cutting pattern that allows the steering forces to be transmitted from the proximal to the distal end. In this way the steering part is concealed in the wall of the tube. Large diameter articulated instruments such as for laparoscopy might benefit from the excellent tip stability provided by the same economical technology. Coaxial nitinol tubes are laser-cut with a Rofin Stent Cutter in a specific pattern. The 3 tubes are assembled by sliding them over one another, forming a single composite tube. In a surgical simulator, the neurosurgical microinstruments and laparoscopic needle drivers were evaluated on surgical convenience. Simultaneous use of 2 neurosurgical instruments (1.5 mm diameter) through the same endoscopic shaft proved to be very intuitive. The tip of the steerable laparoscopic instruments (10 mm diameter) could resist a lateral force of more than 20 N. The angle of motion for either instrument was at least 70° in any direction. A new design for steerable endoscopic instruments is presented. It allows the construction in a range from microinstruments to 10-mm laparoscopic devices with excellent tip stability. © The Author(s) 2013.

  3. Terrain physical properties derived from orbital data and the first 360 sols of Mars Science Laboratory Curiosity rover observations in Gale Crater

    NASA Astrophysics Data System (ADS)

    Arvidson, R. E.; Bellutta, P.; Calef, F.; Fraeman, A. A.; Garvin, J. B.; Gasnault, O.; Grant, J. A.; Grotzinger, J. P.; Hamilton, V. E.; Heverly, M.; Iagnemma, K. A.; Johnson, J. R.; Lanza, N.; Le Mouélic, S.; Mangold, N.; Ming, D. W.; Mehta, M.; Morris, R. V.; Newsom, H. E.; Rennó, N.; Rubin, D.; Schieber, J.; Sletten, R.; Stein, N. T.; Thuillier, F.; Vasavada, A. R.; Vizcaino, J.; Wiens, R. C.

    2014-06-01

    Physical properties of terrains encountered by the Curiosity rover during the first 360 sols of operations have been inferred from analysis of the scour zones produced by Sky Crane Landing System engine plumes, wheel touch down dynamics, pits produced by Chemical Camera (ChemCam) laser shots, rover wheel traverses over rocks, the extent of sinkage into soils, and the magnitude and sign of rover-based slippage during drives. Results have been integrated with morphologic, mineralogic, and thermophysical properties derived from orbital data, and Curiosity-based measurements, to understand the nature and origin of physical properties of traversed terrains. The hummocky plains (HP) landing site and traverse locations consist of moderately to well-consolidated bedrock of alluvial origin variably covered by slightly cohesive, hard-packed basaltic sand and dust, with both embedded and surface-strewn rock clasts. Rock clasts have been added through local bedrock weathering and impact ejecta emplacement and form a pavement-like surface in which only small clasts (<5 to 10 cm wide) have been pressed into the soil during wheel passages. The bedded fractured (BF) unit, site of Curiosity's first drilling activity, exposes several alluvial-lacustrine bedrock units with little to no soil cover and varying degrees of lithification. Small wheel sinkage values (<1 cm) for both HP and BF surfaces demonstrate that compaction resistance countering driven-wheel thrust has been minimal and that rover slippage while traversing across horizontal surfaces or going uphill, and skid going downhill, have been dominated by terrain tilts and wheel-surface material shear modulus values.

  4. Cryogenic Motor Enhancement for the NIRISS Instrument on the James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Aldridge, David; Gentilhomme, Macso; Gibson, Andrew; Cameron, Peter; McColgan, Ashley; Dhanji, Zul; Lambros, Scott; Anderson, Mike

    2015-09-01

    Initial testing of the JWST NIRISS Dual Wheel Mechanism showed unsatisfactory life from the motors used to drive the individual wheel components. An investigation uncovered that theinternal friction had increased due to wear at the lubricated interface between the motor gearhead planetary gears and the planet gear retaining pins, reducing output torque. Work was undertaken to improve the life of this interface. Several design options were selected for development. A successful redesign was qualified with a larger gearhead, modified to use ball-bearings for planetary gear support. To further enhance life, all internal lubrication was changed to sputtered MoS2. PGM- HT cages were also employed for planetary and motor rotor bearings.

  5. Use of the dispersion ratio in estimating the nonlinear properties of an object of diagnosis

    NASA Technical Reports Server (NTRS)

    Balitskiy, F. Y.; Genkin, M. D.; Ivanova, M. A.; Kobrinskiy, A. A.; Sokolova, A. G.

    1973-01-01

    An experimental investigation for estimating the nonlinearity of a diagnostic object was carried out on a single-stage, spur gear reducer. The linearity of the properties of spur gearing (including the linearity of its mode of operation) was tested. Torsional vibrations of the driven wheel and transverse (to the meshing plane) vibrations of the drive wheel on its support were taken as the two outputs of the object to be analyzed. The results of the investigation showed that the degree of nonlinearity of a reducing gear is essentially connected with its operating mode, so that different mathematical models of it can correspond to different values of the system parameters.

  6. PD-like controller for delayed bilateral teleoperation of wheeled robots

    NASA Astrophysics Data System (ADS)

    Slawiñski, E.; Mut, V.; Santiago, D.

    2016-08-01

    This paper proposes a proportional derivative (PD)-like controller applied to the delayed bilateral teleoperation of wheeled robots with force feedback in face of asymmetric and varying-time delays. In contrast to bilateral teleoperation of manipulator robots, in these systems, there is a mismatch between the models of the master and slave (mobile robot), problem that is approached in this work, where the system stability is analysed. From this study, it is possible to infer the control parameters, depending on the time delay, necessary to assure stability. Finally, the performance of the delayed teleoperation system is evaluated through tests where a human operator drives a 3D simulator as well as a mobile robot for pushing objects.

  7. Development of crawler type device using new measuring system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maruyama, T.; Sasaki, T.; Yagi, T.

    1995-08-01

    This paper reports the development and field application of a new device which examine shell to shell weld joints of RPV. In a BWR type nuclear power plant, there is narrow space around the Reactor Pressure Vessel (RPV) because RPV is enclosed by the Reactor Shield Wall (RSW) and thermal insulations. The developed device is characterized by a new position measuring system and magnet wheels for driving. The new position measuring system uses laser beam and ultrasonic wave. The magnet wheels make the device travel freely in the narrow space between RPV and insulation. This device is tested on mock-upsmore » and applied examination of RPVs to verify field applicability.« less

  8. Mechanism for Deploying a Long, Thin-Film Antenna from a Rover

    NASA Technical Reports Server (NTRS)

    Lazio, Joseph; Matthews, B.; Nesnas, Issa A.; Zarzhitsky, Dimitri

    2013-01-01

    Observations with radio telescopes address key problems in cosmology, astrobiology, heliophysics, and planetary science including the first light in the Universe (Cosmic Dawn), magnetic fields of extrasolar planets, particle acceleration mechanisms, and the lunar ionosphere. The Moon is a unique science platform because it allows access to radio frequencies that do not penetrate the Earth's ionosphere and because its far side is shielded from intense terrestrial emissions. A radio antenna can be realized by using polyimide film as a substrate, with a conducting substance deposited on it. Such an antenna can be rolled into a small volume for transport, then deployed by unrolling, and a robotic rover offers a natural means of unrolling a polyimide film-based antenna. An antenna deployment mechanism was developed that allows a thin film to be deposited onto a ground surface, in a controlled manner, using a minimally actuated rover. The deployment mechanism consists of two rollers, one driven and one passive. The antenna film is wrapped around the driven roller. The passive roller is mounted on linear bearings that allow it to move radially with respect to the driven roller. Springs preload the passive roller against the driven roller, and prevent the tightly wrapped film from unspooling or "bird's nesting" on the driven spool. The antenna deployment mechanism is integrated on the minimally-actuated Axel rover. Axel is a two-wheeled rover platform with a trailing boom that is capable of traversing undulated terrain and overcoming obstacles of a wheel radius in height. It is operated by four motors: one that drives each wheel; a third that controls the rotation of the boom, which orients the body mounted sensors; and a fourth that controls the rover's spool to drive the antenna roller. This low-mass axle-like rover houses its control and communication avionics inside its cylindrical body. The Axel rover teleoperation software has an auto-spooling mode that allows a user to automatically deploy the thin-film antenna at a rate proportional to the wheel speed as it drives the rover along its trajectory. The software allows Axel to deposit the film onto the ground to prevent or minimize relative motion between the film and the terrain to avoid the risk of scraping and antenna with the terrain.

  9. After Opportunity's First Drive in Six Weeks

    NASA Technical Reports Server (NTRS)

    2007-01-01

    NASA's Mars Exploration Rover Opportunity used its front hazard-identification camera to obtain this image at the end of a drive on the rover's 1,271st sol, or Martian day (Aug. 21, 2007).

    Due to sun-obscuring dust storms limiting the rover's supply of solar energy, Opportunity had not driven since sol 1,232 (July 12, 2007). On sol 1,271, after the sky above Opportunity had been gradually clearing for more than two weeks, the rover rolled 13.38 meters (44 feet). Wheel tracks are visible in front of the rover because the drive ended with a short test of driving backwards.

    Opportunity's turret of four tools at the end of the robotic arm fills the center of the image. Victoria Crater, site of the rover's next science targets, lies ahead.

  10. A Novel GMM-Based Behavioral Modeling Approach for Smartwatch-Based Driver Authentication.

    PubMed

    Yang, Ching-Han; Chang, Chin-Chun; Liang, Deron

    2018-03-28

    All drivers have their own distinct driving habits, and usually hold and operate the steering wheel differently in different driving scenarios. In this study, we proposed a novel Gaussian mixture model (GMM)-based method that can improve the traditional GMM in modeling driving behavior. This new method can be applied to build a better driver authentication system based on the accelerometer and orientation sensor of a smartwatch. To demonstrate the feasibility of the proposed method, we created an experimental system that analyzes driving behavior using the built-in sensors of a smartwatch. The experimental results for driver authentication-an equal error rate (EER) of 4.62% in the simulated environment and an EER of 7.86% in the real-traffic environment-confirm the feasibility of this approach.

  11. Baseline tests of the Kordesh hybrid passenger vehicle

    NASA Technical Reports Server (NTRS)

    Soltis, R. F.; Bozek, J. M.; Denington, R. J.; Dustin, M. O.

    1978-01-01

    Performance test results are presented for a four-passenger Austin A40 sedan that was converted to a heat-engine-alternator-and battery-powered hybrid. It is propelled by a conventional, gasoline-fueled, heat-engine-driven alternator and a traction pack powering a series-wound, 10 hp direct-current electric drive motor. The 16 hp gasoline engine drives the 7 kilowatt alternator, which provides electrical power to the drive motor or to the 96 volt traction battery through a rectifier. The propulsion battery consists of eight 12 volt batteries connected in series. The electric motor is coupled to a four-speed standard transmission, which drives the rear wheels. Power to the motor is controlled by a three-step foot throttle, which actuates relays that control armature current and field excitation. Conventional hydraulic brakes are used.

  12. Estimation of longitudinal force, lateral vehicle speed and yaw rate for four-wheel independent driven electric vehicles

    NASA Astrophysics Data System (ADS)

    Chen, Te; Xu, Xing; Chen, Long; Jiang, Haobing; Cai, Yingfeng; Li, Yong

    2018-02-01

    Accurate estimation of longitudinal force, lateral vehicle speed and yaw rate is of great significance to torque allocation and stability control for four-wheel independent driven electric vehicle (4WID-EVs). A fusion method is proposed to estimate the longitudinal force, lateral vehicle speed and yaw rate for 4WID-EVs. The electric driving wheel model (EDWM) is introduced into the longitudinal force estimation, the longitudinal force observer (LFO) is designed firstly based on the adaptive high-order sliding mode observer (HSMO), and the convergence of LFO is analyzed and proved. Based on the estimated longitudinal force, an estimation strategy is then presented in which the strong tracking filter (STF) is used to estimate lateral vehicle speed and yaw rate simultaneously. Finally, co-simulation via Carsim and Matlab/Simulink is carried out to demonstrate the effectiveness of the proposed method. The performance of LFO in practice is verified by the experiment on chassis dynamometer bench.

  13. The Innovative Design and Prototype Verification of Wheelchair with One Degree of Freedom to Perform Lifting and Standing Functions

    NASA Astrophysics Data System (ADS)

    Hsieh, Long-Chang; Chen, Tzu-Hsia

    2017-12-01

    Traditionally, the mechanism of wheelchair with lifting and standing functions has 2 degrees of freedom, and used 2 power sources to perform these 2 motion function. The purpose of this paper is to invent new wheelchair with 1 degree of freedom to perform these 2 motion functions. Hence, we can use only 1 power source to drive the mechanism to achieve lifting and standing motion functions. The new design has the advantages of simple operation, more stability, and more safety. For traditional standing wheelchair, its’ centre of gravity moves forward when standing up and it needs 2 auxiliary wheels to prevent dumping. In this paper, by using the checklist method of Osborn, the wheelchair with 1 DOF is invented to perform lifting and standing functions. The centre of gravity of this new wheelchair after standing up still located between the front and rear wheels, no auxiliary wheels needed. Finally, the prototype is manufactured to verify the theoretical results.

  14. 40 CFR 600.002-85 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... differential (or equivalent) turns for each turn of the drive wheels. (29) “Auxiliary Emission Control Device... miles traveled by an automobile or group of automobiles per gallon of gasoline or diesel fuel consumed as computed in § 600.113 or § 600.207 or (ii) the equivalent petroleum-based fuel economy for an...

  15. Solar panels make really good cents.

    PubMed

    Hancock, Bobby

    2009-02-01

    Bobby Hancock, senior director of facility management for the Bloorview Kids Rehab facility in Toronto, describes how features such as a 37 kW penthouse roof solar array, thermal glazed windows, rainwater harvesting, and air handling units with variable speed drives and heat recovery wheels, contribute to the "green" credentials of Canada's largest children's rehabilitation centre.

  16. Mobile Business Retailing: Driving Experiential Learning on Campus

    ERIC Educational Resources Information Center

    Fischbach, Sarah; Guerrero, Veronica

    2018-01-01

    Engaging students in the classroom is a struggle all faculty face especially in the age of modern technology. This article proposes a novel approach to engage and motivate students through the mobile business "on wheels" marketing concept. The growth in mobile business retailing (e.g., food trucks, mobile dog groomers, etc.) is an…

  17. 49 CFR 533.4 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., manufacturer, and model year are used as defined in section 501 of the Act. (2) The term automobile is used as..., one which is not domestically manufactured but which is imported in the 1980 model year or thereafter by a manufacturer whose principal place of business is in the United States. 4-wheel drive, general...

  18. The Selection of a Van Lift or a Scooter.

    ERIC Educational Resources Information Center

    Stevens, John H.

    1990-01-01

    This newsletter issue describes 3-wheeled scooters and van lifts that can assist a person with a disability to drive independently or have access to transportation. The section on van lifts compares hydraulic lifts and electric lifts, lists manufacturers, and offers an "assessment quiz" outlining factors to consider in selecting a van…

  19. Behind the Wheel and on the Map: Genetic and Environmental Associations between Drunk Driving and Other Externalizing Behaviors

    PubMed Central

    Quinn, Patrick D.; Harden, K. Paige

    2013-01-01

    Drunk driving, a major contributor to alcohol-related mortality, has been linked to a variety of other alcohol-related (e.g., Alcohol Dependence, early age at first drink) and non-alcohol-related externalizing behaviors. In a sample of 517 same-sex twin pairs from the National Longitudinal Study of Adolescent Health, we examined three conceptualizations of the etiology of drunk driving in relation to other externalizing behaviors. A series of behavioral-genetic models found consistent evidence for drunk driving as a manifestation of genetic vulnerabilities toward a spectrum of alcohol-related and non-alcohol-related externalizing behaviors. Most notably, multidimensional scaling analyses produced a genetic “map” with drunk driving located near its center, supporting the strength of drunk driving’s genetic relations with a broad range of externalizing behaviors. In contrast, non-shared environmental associations with drunk driving were weaker and more diffuse. Drunk driving may be a manifestation of genetic vulnerabilities toward a broad externalizing spectrum. PMID:24128260

  20. Analysis of the relationship between errors in manufacture of slot connections and gear drive noises

    NASA Technical Reports Server (NTRS)

    Bodronosov, M. K.

    1973-01-01

    On the basis of experimental research, an analysis was carried out of the effect of certain errors in manufacture of straight-barrel slots on the noise characteristics of gear drives. In carrying out the experiments, the gear crowns of the test wheels were held immovable, and only the geometric dimensions of the slots and the mutual locations of the individual elements were varied. The investigation of the effect of each factor was carried out under otherwise equal conditions, on 34:56 cog ratio gear pairs (m = 2mm), made of 40 C steel, with a gear crown accuracy of 7 X, machining fineness 7, at a speed v = 7.1 m/sec. The number of slots was 6. The clearance in slot pairs in dimension D, equal to 0.015, 0.05, 0.08 and 0.110 mm, was obtained by change in the outer diameter of the spindle by means of polishing. The results of the tests of the experimental wheels showed that their noise level increases with increase in clearance.

  1. Solar collector mounting and support apparatus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hutchison, J.A.

    1981-12-22

    A solar collector system is described of the type having a movable surface for receiving solar radiation having improved means for rotatably supporting the movable surface and for rotating the collector surface. A support axle for the collector includes a ball at one end which is carried within a cylindrical sleeve in the solar collector to support the weight of the collector. A torque transmitting arm comprising a flexible flat strip is connected at one end to the axle and at the other end to the collector surface. An improved rotational drive mechanism includes a first sprocket wheel carried onmore » the axle and a second sprocket wheel supported on a support pylon with a drive chain engaging both sprockets. A double acting piston also supported by the pylon is coupled to the chain so that the chain may be driven by a hydraulic control system to rotate the collector surfaces as required. An improved receiver tube support ring is also provided for use with the improved mounting and support apparatus to improve overall efficiency by reducing thermal losses.« less

  2. JPL's electric and hybrid vehicles project: Project activities and preliminary test results. [power conditioning and battery charge efficiency

    NASA Technical Reports Server (NTRS)

    Barber, T. A.

    1980-01-01

    Efforts to achieve a 100 mile urban range, to reduce petroleum usage 40% to 70%, and to commercialize battery technology are discussed with emphasis on an all plastic body, four passenger car that is flywheel assisted and battery powered, and on an all metal body, four passenger car with front wheel drive and front motor. For the near term case, a parallel hybrid in which the electric motor and the internal combustion engine may directly power the drive wheels, is preferred to a series design. A five passenger car in which the electric motor and the gasoline engine both feed into the same transmission is discussed. Upgraded demonstration vehicles were tested using advanced lead acid, nickel zinc, nickel iron, and zinc chloride batteries to determine maximum acceleration, constant speed, and battery behavior. The near term batteries demonstrated significant improvement relative to current lead acid batteries. The increase in range was due to improved energy density, and ampere hour capacity, with relatively 1 small weight and volume differences.

  3. Handling performance control for hybrid 8-wheel-drive vehicle and simulation verification

    NASA Astrophysics Data System (ADS)

    Ni, Jun; Hu, Jibin

    2016-08-01

    In order to improve handling performance of a hybrid 8-Wheel-Drive vehicle, the handling performance control strategy was proposed. For armoured vehicle, besides handling stability in high speed, the minimum steer radius in low speed is also a key tactical and technical index. Based on that, the proposed handling performance control strategy includes 'Handling Stability' and 'Radius Minimization' control modes. In 'Handling Stability' control mode, 'Neutralsteer Radio' is defined to adjust the steering characteristics to satisfy different demand in different speed range. In 'Radius Minimization' control mode, the independent motors are controlled to provide an additional yaw moment to decrease the minimum steer radius. In order to verify the strategy, a simulation platform was built including engine and continuously variable transmission systems, generator and battery systems, independent motors and controllers systems, vehicle dynamic and tyre mechanical systems. The simulation results show that the handling performance of the vehicle can be enhanced significantly, and the minimum steer radius can be decreased by 20% which is significant improvement compared to the common level of main battle armoured vehicle around the world.

  4. A Hierarchical Model Predictive Tracking Control for Independent Four-Wheel Driving/Steering Vehicles with Coaxial Steering Mechanism

    NASA Astrophysics Data System (ADS)

    Itoh, Masato; Hagimori, Yuki; Nonaka, Kenichiro; Sekiguchi, Kazuma

    2016-09-01

    In this study, we apply a hierarchical model predictive control to omni-directional mobile vehicle, and improve the tracking performance. We deal with an independent four-wheel driving/steering vehicle (IFWDS) equipped with four coaxial steering mechanisms (CSM). The coaxial steering mechanism is a special one composed of two steering joints on the same axis. In our previous study with respect to IFWDS with ideal steering, we proposed a model predictive tracking control. However, this method did not consider constraints of the coaxial steering mechanism which causes delay of steering. We also proposed a model predictive steering control considering constraints of this mechanism. In this study, we propose a hierarchical system combining above two control methods for IFWDS. An upper controller, which deals with vehicle kinematics, runs a model predictive tracking control, and a lower controller, which considers constraints of coaxial steering mechanism, runs a model predictive steering control which tracks the predicted steering angle optimized an upper controller. We verify the superiority of this method by comparing this method with the previous method.

  5. Experimental Evaluation of the Scale Model Method to Simulate Lunar Vehicle Dynamics

    NASA Technical Reports Server (NTRS)

    Johnson, Kyle; Asnani, Vivake; Polack, Jeff; Plant, Mark

    2016-01-01

    As compared to driving on Earth, the presence of lower gravity and uneven terrain on planetary bodies makes high speed driving difficult. In order to maintain ground contact and control vehicles need to be designed with special attention to dynamic response. The challenge of maintaining control on the Moon was evident during high speed operations of the Lunar Roving Vehicle (LRV) on Apollo 16, as at one point all four tires were off the ground; this event has been referred to as the Lunar Grand Prix. Ultimately, computer simulation should be used to examine these phenomena during the vehicle design process; however, experimental techniques are required for the validation and elucidation of key issues. The objectives of this study were to evaluate the methodology for developing a scale model of a lunar vehicle using similitude relationships and to test how vehicle configuration, six or eight wheel pods, and local tire compliance, soft or stiff, affect the vehicles dynamic performance. A wheel pod consists of a drive and steering transmission and wheel. The Lunar Electric Rover (LER), a human driven vehicle with a pressurized cabin, was selected as an example for which a scale model was built. The scaled vehicle was driven over an obstacle and the dynamic response was observed and then scaled to represent the full-size vehicle in lunar gravity. Loss of ground contact, in terms of vehicle travel distance with tires off the ground, was examined. As expected, local tire compliance allowed ground contact to be maintained over a greater distance. However, switching from a six-tire configuration to an eight-tire configuration with reduced suspension stiffness had a negative effect on ground contact. It is hypothesized that this was due to the increased number or frequency of impacts. The development and testing of this scale model provided practical lessons for future low-gravity vehicle development.

  6. Research on Performance of Wire-controlled Hydraulic Steering System Based on Four-wheel Steering

    NASA Astrophysics Data System (ADS)

    Tao, P.; Jin, X. H.

    2018-05-01

    In this paper, the steering stability and control strategy of forklift are put forward. Drive based on yawing moment distribution of rotary torque coordination control method, through analyzing the linear two degree of freedom model of forklift truck, forklift yawing angular velocity and mass center side-slip Angle of expectations, as the control target parameters system, using fuzzy controller output driving forklift steering the yawing moment, to drive rotary torque distribution, make the forklift truck to drive horizontal pendulum angular velocity and side-slip Angle tracking reference model very well. In this paper, the lateral stability control system were designed, the joint simulation in MATLAB/Simulink, the simulation results show that under the different partial load, the control system can effectively to control side forklift lateral stability, enhanced the forklift driving safety, for the side forklift steering stability study provides a theoretical basis.

  7. Opportunity Rolls Free Again (Left Front Wheel)

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This animated piece illustrates the recent escape of NASA's Mars Exploration Rover Opportunity from dangerous, loose material on the vast plains leading to the rover's next long-term target, 'Victoria Crater.'

    A series of images of the rover's left front wheel, taken by the front hazard-avoidance camera, make up this brief movie. It chronicles the challenge Opportunity faced to free itself from a ripple dubbed 'Jammerbugt.' The rover's wheels became partially embedded in the ripple at the end of a drive on Opportunity's 833rd Martian day, or sol (May 28, 2006). The images in this clip were taken on sols 836 through 841 (May 31 through June 5, 2006).

    Scientists and engineers who had been elated at the meters of progress the rover had been making in earlier drives were happy for even centimeters of advance per sol as they maneuvered their explorer through the slippery material of Jammerbugt. The wheels reached solid footing on a rock outcrop on the final sol of this sequence.

    The science and engineering teams appropriately chose the ripple's informal from name the name of a bay on the north coast of Denmark. Jammerbugt, or Jammerbugten, loosely translated, means Bay of Lamentation or Bay of Wailing. The shipping route from the North Sea to the Baltic passes Jammerbugt on its way around the northern tip of Jutland. This has always been an important trade route and many ships still pass by the bay. The prevailing wind directions are typically northwest to southwest with the strongest winds and storms tending to blow from the northwest. A northwesterly wind will blow straight into the Jammerbugt, towards shore. Therefore, in the age of sail, many ships sank there during storms. The shore is sandy, but can have strong waves, so running aground was very dangerous even though there are no rocks.

    Fortunately, Opportunity weathered its 'Jammerbugt' and is again on its way toward Victoria Crater.

  8. Opportunity Rolls Free Again (Right Front Wheel)

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This animated piece illustrates the recent escape of NASA's Mars Exploration Rover Opportunity from dangerous, loose material on the vast plains leading to the rover's next long-term target, 'Victoria Crater.'

    A series of images of the rover's right front wheel, taken by the front hazard-avoidance camera, make up this brief movie. It chronicles the challenge Opportunity faced to free itself from a ripple dubbed 'Jammerbugt.' The rover's wheels became partially embedded in the ripple at the end of a drive on Opportunity's 833rd Martian day, or sol (May 28, 2006). The images in this clip were taken on sols 836 through 841 (May 31 through June 5, 2006).

    Scientists and engineers who had been elated at the meters of progress the rover had been making in earlier drives were happy for even centimeters of advance per sol as they maneuvered their explorer through the slippery material of Jammerbugt. The wheels reached solid footing on a rock outcrop on the final sol of this sequence.

    The science and engineering teams appropriately chose the ripple's informal from name the name of a bay on the north coast of Denmark. Jammerbugt, or Jammerbugten, loosely translated, means Bay of Lamentation or Bay of Wailing. The shipping route from the North Sea to the Baltic passes Jammerbugt on its way around the northern tip of Jutland. This has always been an important trade route and many ships still pass by the bay. The prevailing wind directions are typically northwest to southwest with the strongest winds and storms tending to blow from the northwest. A northwesterly wind will blow straight into the Jammerbugt, towards shore. Therefore, in the age of sail, many ships sank there during storms. The shore is sandy, but can have strong waves, so running aground was very dangerous even though there are no rocks.

    Fortunately, Opportunity weathered its 'Jammerbugt' and is again on its way toward Victoria Crater.

  9. Mars Relay Spacecraft: A Low-Cost Approach

    NASA Technical Reports Server (NTRS)

    SvitekT, .; King, J.; Fulton, R.; McOmber, R.; Hastrup, R.; Miller, A.

    1995-01-01

    The next phase of Mars exploration will utilize numerous globally distributed small low-cost devices including landers penetrators microrovers and balloons. Direct-to-Earth communications links if required for these landers will drive the lander design for two reasons: a) mass and complexity needed for a steerable high-gain antenna and b) power requirements for a high-power amplifier (i.e. solar panel and battery mass). Total mass of the direct link hardware for several recent small-lander designs exceeded the mass of the scientific payload. Alternatively if communications are via a Mars-orbiting relay spacecraft resource requirements for the local UHF communication link are comparatively trivial: a simple whip antenna and less than 1 watt power. Clearly using a Mars relay spacecraft (MRS) is the preferred option if the MRS mission can be accomplished in an affordable and robust way. Our paper describes a point design for such a mission launched in the s001 or 2003 opportunity.

  10. Adams-Based Rover Terramechanics and Mobility Simulator - ARTEMIS

    NASA Technical Reports Server (NTRS)

    Trease, Brian P.; Lindeman, Randel A.; Arvidson, Raymond E.; Bennett, Keith; VanDyke, Lauren P.; Zhou, Feng; Iagnemma, Karl; Senatore, Carmine

    2013-01-01

    The Mars Exploration Rovers (MERs), Spirit and Opportunity, far exceeded their original drive distance expectations and have traveled, at the time of this reporting, a combined 29 kilometers across the surface of Mars. The Rover Sequencing and Visualization Program (RSVP), the current program used to plan drives for MERs, is only a kinematic simulator of rover movement. Therefore, rover response to various terrains and soil types cannot be modeled. Although sandbox experiments attempt to model rover-terrain interaction, these experiments are time-intensive and costly, and they cannot be used within the tactical timeline of rover driving. Imaging techniques and hazard avoidance features on MER help to prevent the rover from traveling over dangerous terrains, but mobility issues have shown that these methods are not always sufficient. ARTEMIS, a dynamic modeling tool for MER, allows planned drives to be simulated before commands are sent to the rover. The deformable soils component of this model allows rover-terrain interactions to be simulated to determine if a particular drive path would take the rover over terrain that would induce hazardous levels of slip or sink. When used in the rover drive planning process, dynamic modeling reduces the likelihood of future mobility issues because high-risk areas could be identified before drive commands are sent to the rover, and drives planned over these areas could be rerouted. The ARTEMIS software consists of several components. These include a preprocessor, Digital Elevation Models (DEMs), Adams rover model, wheel and soil parameter files, MSC Adams GUI (commercial), MSC Adams dynamics solver (commercial), terramechanics subroutines (FORTRAN), a contact detection engine, a soil modification engine, and output DEMs of deformed soil. The preprocessor is used to define the terrain (from a DEM) and define the soil parameters for the terrain file. The Adams rover model is placed in this terrain. Wheel and soil parameter files can be altered in the respective text files. The rover model and terrain are viewed in Adams View, the GUI for ARTEMIS. The Adams dynamics solver calls terramechanics subroutines in FORTRAN containing the Bekker-Wong equations.

  11. Epicardial phrenic nerve displacement during catheter ablation of atrial and ventricular arrhythmias: procedural experience and outcomes.

    PubMed

    Kumar, Saurabh; Barbhaiya, Chirag R; Baldinger, Samuel H; Koplan, Bruce A; Maytin, Melanie; Epstein, Laurence M; John, Roy M; Michaud, Gregory F; Tedrow, Usha B; Stevenson, William G

    2015-08-01

    Arrhythmia origin in close proximity to the phrenic nerve (PN) can hinder successful catheter ablation. We describe our approach with epicardial PN displacement in such instances. PN displacement via percutaneous pericardial access was attempted in 13 patients (age 49±16 years, 9 females) with either atrial tachycardia (6 patients) or atrial fibrillation triggered from a superior vena cava focus (1 patient) adjacent to the right PN or epicardial ventricular tachycardia origin adjacent to the left PN (6 patients). An epicardially placed steerable sheath/4 mm-catheter combination (5 patients) or a vascular or an esophageal balloon (8 patients) was ultimately successful. Balloon placement was often difficult requiring manipulation via a steerable sheath. In 2 ventricular tachycardia cases, absence of PN capture was achieved only once the balloon was directly over the ablation catheter. In 3 atrial tachycardia patients, PN displacement was not possible with a balloon; however, a steerable sheath/catheter combination was ultimately successful. PN displacement allowed acute abolishment of all targeted arrhythmias. No PN injury occurred acutely or in follow up. Two patients developed acute complications (pleuro-pericardial fistula 1 and pericardial bleeding 1). Survival free of target arrhythmia was achieved in all atrial tachycardia patients; however, a nontargeted ventricular tachycardia recurred in 1 patient at a median of 13 months' follow up. Arrhythmias originating in close proximity to the PN can be targeted successfully with PN displacement with an epicardially placed steerable sheath/catheter combination, or balloon, but this strategy can be difficult to implement. Better tools for phrenic nerve protection are desirable. © 2015 American Heart Association, Inc.

  12. Low-Cost MEMS Sensors and Vision System for Motion and Position Estimation of a Scooter

    PubMed Central

    Guarnieri, Alberto; Pirotti, Francesco; Vettore, Antonio

    2013-01-01

    The possibility to identify with significant accuracy the position of a vehicle in a mapping reference frame for driving directions and best-route analysis is a topic which is attracting a lot of interest from the research and development sector. To reach the objective of accurate vehicle positioning and integrate response events, it is necessary to estimate position, orientation and velocity of the system with high measurement rates. In this work we test a system which uses low-cost sensors, based on Micro Electro-Mechanical Systems (MEMS) technology, coupled with information derived from a video camera placed on a two-wheel motor vehicle (scooter). In comparison to a four-wheel vehicle; the dynamics of a two-wheel vehicle feature a higher level of complexity given that more degrees of freedom must be taken into account. For example a motorcycle can twist sideways; thus generating a roll angle. A slight pitch angle has to be considered as well; since wheel suspensions have a higher degree of motion compared to four-wheel motor vehicles. In this paper we present a method for the accurate reconstruction of the trajectory of a “Vespa” scooter; which can be used as alternative to the “classical” approach based on GPS/INS sensor integration. Position and orientation of the scooter are obtained by integrating MEMS-based orientation sensor data with digital images through a cascade of a Kalman filter and a Bayesian particle filter. PMID:23348036

  13. Low-Cost MEMS sensors and vision system for motion and position estimation of a scooter.

    PubMed

    Guarnieri, Alberto; Pirotti, Francesco; Vettore, Antonio

    2013-01-24

    The possibility to identify with significant accuracy the position of a vehicle in a mapping reference frame for driving directions and best-route analysis is a topic which is attracting a lot of interest from the research and development sector. To reach the objective of accurate vehicle positioning and integrate response events, it is necessary to estimate position, orientation and velocity of the system with high measurement rates. In this work we test a system which uses low-cost sensors, based on Micro Electro-Mechanical Systems (MEMS) technology, coupled with information derived from a video camera placed on a two-wheel motor vehicle (scooter). In comparison to a four-wheel vehicle; the dynamics of a two-wheel vehicle feature a higher level of complexity given that more degrees of freedom must be taken into account. For example a motorcycle can twist sideways; thus generating a roll angle. A slight pitch angle has to be considered as well; since wheel suspensions have a higher degree of motion compared to four-wheel motor vehicles. In this paper we present a method for the accurate reconstruction of the trajectory of a "Vespa" scooter; which can be used as alternative to the "classical" approach based on GPS/INS sensor integration. Position and orientation of the scooter are obtained by integrating MEMS-based orientation sensor data with digital images through a cascade of a Kalman filter and a Bayesian particle filter.

  14. A New Superalloy Enabling Heavy Duty Gas Turbine Wheels for Improved Combined Cycle Efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Detor, Andrew; DiDomizio, Richard; McAllister, Don

    The drive to increase combined cycle turbine efficiency from 62% to 65% for the next-generation advanced cycle requires a new heavy duty gas turbine wheel material capable of operating at 1200°F and above. Current wheel materials are limited by the stability of their major strengthening phase (gamma double prime), which coarsens at temperatures approaching 1200°F, resulting in a substantial reduction in strength. More advanced gamma prime superalloys, such as those used in jet engine turbine disks, are also not suitable due to size constraints; the gamma prime phase overages during the slow cooling rates inherent in processing thick-section turbine wheels.more » The current program addresses this need by screening two new alloy design concepts. The first concept exploits a gamma prime/gamma double prime coprecipitation reaction. Through manipulation of alloy chemistry, coprecipitation is controlled such that gamma double prime is used only to slow the growth of gamma prime during slow cooling, preventing over-aging, and allowing for subsequent heat treatment to maximize strength. In parallel, phase field modeling provides fundamental understanding of the coprecipitation reaction. The second concept uses oxide dispersion strengthening to improve on two existing alloys that exhibit excellent hold time fatigue crack growth resistance, but have insufficient strength to be considered for gas turbine wheels. Mechanical milling forces the dissolution of starting oxide powders into a metal matrix allowing for solid state precipitation of new, nanometer scale oxides that are effective at dispersion strengthening.« less

  15. A tyre slip-based integrated chassis control of front/rear traction distribution and four-wheel independent brake from moderate driving to limit handling

    NASA Astrophysics Data System (ADS)

    Joa, Eunhyek; Park, Kwanwoo; Koh, Youngil; Yi, Kyongsu; Kim, Kilsoo

    2018-04-01

    This paper presents a tyre slip-based integrated chassis control of front/rear traction distribution and four-wheel braking for enhanced performance from moderate driving to limit handling. The proposed algorithm adopted hierarchical structure: supervisor - desired motion tracking controller - optimisation-based control allocation. In the supervisor, by considering transient cornering characteristics, desired vehicle motion is calculated. In the desired motion tracking controller, in order to track desired vehicle motion, virtual control input is determined in the manner of sliding mode control. In the control allocation, virtual control input is allocated to minimise cost function. The cost function consists of two major parts. First part is a slip-based tyre friction utilisation quantification, which does not need a tyre force estimation. Second part is an allocation guideline, which guides optimally allocated inputs to predefined solution. The proposed algorithm has been investigated via simulation from moderate driving to limit handling scenario. Compared to Base and direct yaw moment control system, the proposed algorithm can effectively reduce tyre dissipation energy in the moderate driving situation. Moreover, the proposed algorithm enhances limit handling performance compared to Base and direct yaw moment control system. In addition to comparison with Base and direct yaw moment control, comparison the proposed algorithm with the control algorithm based on the known tyre force information has been conducted. The results show that the performance of the proposed algorithm is similar with that of the control algorithm with the known tyre force information.

  16. A comparative evaluation of in-vehicle side view displays layouts in critical lane changing situation.

    PubMed

    Beck, Donghyun; Lee, Minho; Park, Woojin

    2017-12-01

    This study conducted a driving simulator experiment to comparatively evaluate three in-vehicle side view displays layouts for camera monitor systems (CMS) and the traditional side view mirror arrangement. The three layouts placed two electronic side view displays near the traditional mirrors positions, on the dashboard at each side of the steering wheel and on the centre fascia with the two displays joined side-by-side, respectively. Twenty-two participants performed a time- and safety-critical driving task that required rapidly gaining situation awareness through the side view displays/mirrors and making a lane change to avoid collision. The dependent variables were eye-off-the-road time, response time, and, ratings of perceived workload, preference and perceived safety. Overall, the layout placing the side view displays on the dashboard at each side of the steering wheel was found to be the best. The results indicated that reducing eye gaze travel distance and maintaining compatibility were both important for the design of CMS displays layout. Practitioner Summary: A driving simulator study was conducted to comparatively evaluate three in-vehicle side view displays layouts for camera monitor systems (CMS) and the traditional side view mirror arrangement in critical lane changing situation. Reducing eye movement and maintaining compatibility were found to be both important for the ergonomics design of CMS displays layout.

  17. Investigation of an alleged mechanism of finger injury in an automobile crash.

    PubMed

    Stacey, Stephen; Kent, Richard

    2006-07-01

    This investigation centers on the case of an adult male whose finger was allegedly amputated by the steering wheel of his car during a crash. The subject claimed to have been driving with his left index finger inserted through a hole in the spoke of his steering wheel and was subsequently involved in an offset frontal collision with a tree. The finger was found to be cleanly severed at the mid-shaft of the proximal phalanx after the crash. This injury was alleged to have been caused by inertial loading from the rotation of the steering wheel during the crash. To determine whether this injury mechanism was plausible, three laboratory tests representing distinct loading scenarios were carried out with postmortem human surrogates loaded dynamically by the subject's steering wheel. It was found that the inertial loads generated in this loading scenario are insufficient to amputate the finger. Additionally, artificially constraining the finger to force an amputation to occur revealed that a separation at the proximal interphalangeal joint occurs rather than a bony fracture of the proximal phalanx. Based on these biomechanical tests, it can be concluded that the subject's injury did not occur during the automobile crash in question. Furthermore, it can be shown that the injury was self-inflicted to fraudulently claim on an insurance policy.

  18. Testing of Lightweight Fuel Cell Vehicles System at Low Speeds with Energy Efficiency Analysis

    NASA Astrophysics Data System (ADS)

    Mustaffa, Muhammad Rizuwan B.; Mohamed, Wan Ahmad Najmi B. Wan

    2013-12-01

    A fuel cell vehicle power train mini test bench was developed which consists of a 1 kW open cathode hydrogen fuel cell, electric motor, wheel, gearing system, DC/DC converter and vehicle control system (VCS). Energy efficiency identification and energy flow evaluation is a useful tool in identifying a detail performance of each component and sub-systems in a fuel cell vehicle system configuration. Three artificial traction loads was simulated at 30 kg, 40 kg and 50 kg force on a single wheel drive configuration. The wheel speed range reported here covers from idle to 16 km/h (low speed range) as a preliminary input in the research work frame. The test result shows that the system efficiency is 84.5 percent when the energy flow is considered from the fuel cell to the wheel and 279 watts of electrical power was produced by the fuel cell during that time. Dynamic system responses was also identified as the load increases beyond the motor traction capabilities where the losses at the converter and motor controller increased significantly as it tries to meet the motor traction power demands. This work is currently being further expanded within the work frame of developing a road-worthy fuel cell vehicle.

  19. Development of feedback-speed-control system of fixed-abrasive tool for mat-surface fabrication

    NASA Astrophysics Data System (ADS)

    Yanagihara, K.; Kita, R.

    2018-01-01

    This study deals with the new method to fabricate a mat-surface by using fixed-abrasive tool. Mat-surface is a surface with microscopic irregularities whose dimensions are close to the wavelengths of visible light (400-700 nanometers). In order to develop the new method to fabricate mat-surface without pre-masking and large scale back up facility, utilization of fixed-abrasive tool is discussed. The discussion clarifies that abrasives in shot blasting are given kinetic energy along to only plunge-direction while excluding traverse-direction. If the relative motion between tool and work in fixed-abrasive process can be realized as that in blasting, mat-surface will be accomplished with fixed-abrasive process. To realize the proposed idea, new surface-fabrication system to which is adopted feedback-speed-control of abrasive wheel has been designed. The system consists of micro-computer unit (MPU), work-speed sensor, fixed-abrasive wheel, and wheel driving unit. The system can control relative speed between work and wheel in optimum range to produce mat-surface. Finally experiment to verify the developed system is carried out. The results of experiments show that the developed system is effective and it can produce the surface from grinding to mat-surface seamlessly.

  20. Transformation Based Education Leaders--The Wheels That Drive Successful Institutions for Sustainable Educational Excellence

    ERIC Educational Resources Information Center

    Leonard, Bobby

    2006-01-01

    In this article, author Bobby Leonard asserts that the best institutions in India today are good in Policies Systems and administration. However, the key is developing a new generation of education based workforce under the hands of a good leader. India requires transformational leaders, leaders who can transform educational systems and who are…

  1. 49 CFR 384.204 - CDL issuance and information.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... a CMV only by issuance of a CDL, unless a waiver under the provisions of § 383.7 applies, which... training occurs, to undergo behind-the-wheel training in a CMV only by means of a learner's permit issued... offense under § 383.51 based on such enforcement, to drive a CMV while holding a dated receipt for such...

  2. Faculty Perceptions Pertaining to Attributes of Successful Universities and Future Learning Environments

    ERIC Educational Resources Information Center

    Hashim, Khairuddin; Kutbi, Ibrahim

    2017-01-01

    Significant changes are driving the wheels of progress. In the context of higher education, developments in technology and globalization have made a profound impact. There is need for universities to take stock of developments to plan with realistic goals so as not to be left behind in a highly competitive globalized environment. With rapid…

  3. Dynamo: A Model Transition Framework for Dynamic Stability Control and Body Mass Manipulation

    DTIC Science & Technology

    2011-11-01

    driving at high speed, and you turn the steering wheel hard to the right and slam on the brakes, then you will end up in the oversteer regime. At the...sensors (GPS, IMU, LIDAR ) for vehicle control. Figure 17: Dynamo high-speed small UGV hardware platform We will perform experiments to measure the MTC

  4. A portable helium sniffer

    USGS Publications Warehouse

    Friedman, Irving; Denton, E.H.

    1976-01-01

    A portable helium sniffer has been developed for field use. The instrument is mounted in a four-wheel-drive pickup truck and can detect 50 parts per billion of helium in soil gas. The usefulness of helium sniffing in soil is being investigated as a prospecting tool in gas, oil, uranium, and geothermal prospecting as well as in earthquake prediction.

  5. 76 FR 35208 - Pacific Gas and Electric Company; Nevada Irrigation District; Notice of Environmental Site Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-16

    ...; Project No. 2266-102--California] Pacific Gas and Electric Company; Nevada Irrigation District; Notice of... Pacific Gas and Electric Company (PG&E) and Nevada Irrigation District (NID) (applicants) will conduct an... (recommend a 4-wheel drive vehicle), but car pooling to the extent possible is encouraged. We do not...

  6. Use and Testing of the Motorcycle by the US Army April 1917 to February 1977

    DTIC Science & Technology

    1977-06-10

    the-road capability for most of its other vehicles by converting them to four-wheel drive. According to Major General George A. Lynch, the overweight ...No Norway MAJ Ola Aabakken Yes Yes No Pakistan MAJ Najeeb Ahmed Yes Yes No Peru * MAJ Alberto Arciniega Philippines COL Mariano P. Adalem No

  7. Test Report: Assembly and Structural Loading of Army Research Lab’s High Strength Low Alloy - Vanadium (HSLA - V) Bridge

    DTIC Science & Technology

    2010-04-28

    34 to 1" drive adapter MHE ============ 15,000 lbs forklift 6,000 lbs. forklift 5,000 pallet truck Two 30,000 lbs. 6’x16’ caster wheeled carts...Suggested modifications to reduce assembly time* ================================================== Use powered torque multipliers to torque bolts

  8. Helicopter Drive System R and M Design Guide

    DTIC Science & Technology

    1979-04-01

    Section Page Misalignment and Shaft Runout ...... .................. ... 50 Seal Materials .............. ......................... ... 53 Environmental...rotor brake analysis differs from aircraft wheel brake analysis in two respects. First, advantage is taken of the aerodynamic drag on the rotating...expected transmission cavity pressure and shaft runout . It is stressed that both the pressure and runout must be considered, since they drastically affect

  9. Farm Tractors, Occupational Therapy, and Four-Wheel Drive: Transforming a Military Vehicle into a Cultural Icon

    ERIC Educational Resources Information Center

    Iarocci, Andrew

    2010-01-01

    The armed forces of World War II employed unprecedented numbers of mechanical transport vehicles, precipitating a spike in demand for automotive manufactures. Eager to capture a share of the less certain postwar automobile marketplace, defense contractors such as Willys-Overland pursued a diverse range of product development and advertising…

  10. Development of Cryogenic Filter Wheels for the HERSCHEL Photodetector Array Camera & Spectrometer (PACS)

    NASA Technical Reports Server (NTRS)

    Koerner, Christian; Kampf, Dirk; Poglitsch, Albrecht; Schubert, Josef; Ruppert, U.; Schoele, M.

    2014-01-01

    This paper describes the two PACS Filter Wheels that are direct-drive rotational mechanisms operated at a temperature below 5K inside the PACS focal plane unit of the Herschel Satellite. The purpose of the mechanisms is to switch between filters. The rotation axis is pivoted to the support structure via a slightly preloaded pair of ball bearings and driven by a Cryotorquer. Position sensing is realized by a pair of Hall effect sensors. Powerless positioning at the filter positions is achieved by a magnetic ratchet system. The key technologies are the Cryotorquer design and the magnetic ratchet design in the low temperature range. Furthermore, we will report on lessons learned during the development and qualification of the mechanism and the paint.

  11. The Steerable Microcatheter: A New Device for Selective Catheterisation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soyama, Takeshi; Yoshida, Daisuke; Sakuhara, Yusuke, E-mail: yusaku@med.hokudai.ac.jp

    The steerable microcatheter (SwiftNINJA, Sumitomo Bakelite, Tokyo, Japan), which has a remote-controlled flexible tip manipulated using a dial in the handgrip, was recently developed and delivered to the market. This device enables the user to change the angle of the microcatheter tip manually, and potentially makes selective catheterisation easier. We evaluated its unique characteristics and utility in selective catheterisation and coil embolization. This article describes: (1) the advantages of this device in catheterisations involving acute angle branches, and (2) a new technique of compact coil packing with the use of intentional folding by the bendable tip of the catheter.

  12. Secure Continuous Variable Teleportation and Einstein-Podolsky-Rosen Steering

    NASA Astrophysics Data System (ADS)

    He, Qiongyi; Rosales-Zárate, Laura; Adesso, Gerardo; Reid, Margaret D.

    2015-10-01

    We investigate the resources needed for secure teleportation of coherent states. We extend continuous variable teleportation to include quantum teleamplification protocols that allow nonunity classical gains and a preamplification or postattenuation of the coherent state. We show that, for arbitrary Gaussian protocols and a significant class of Gaussian resources, two-way steering is required to achieve a teleportation fidelity beyond the no-cloning threshold. This provides an operational connection between Gaussian steerability and secure teleportation. We present practical recipes suggesting that heralded noiseless preamplification may enable high-fidelity heralded teleportation, using minimally entangled yet steerable resources.

  13. Method and apparatus for recovering a gas from a gas hydrate located on the ocean floor

    DOEpatents

    Wyatt, Douglas E.

    2001-01-01

    A method and apparatus for recovering a gas from a gas hydrate on the ocean floor includes a flexible cover, a plurality of steerable base members secured to the cover, and a steerable mining module. A suitable source for inflating the cover over the gas hydrate deposit is provided. The mining module, positioned on the gas hydrate deposit, is preferably connected to the cover by a control cable. A gas retrieval conduit or hose extends upwardly from the cover to be connected to a support ship on the ocean surface.

  14. Distributed and self-adaptive vehicle speed estimation in the composite braking case for four-wheel drive hybrid electric car

    NASA Astrophysics Data System (ADS)

    Zhao, Z.-G.; Zhou, L.-J.; Zhang, J.-T.; Zhu, Q.; Hedrick, J.-K.

    2017-05-01

    Considering the controllability and observability of the braking torques of the hub motor, Integrated Starter Generator (ISG), and hydraulic brake for four-wheel drive (4WD) hybrid electric cars, a distributed and self-adaptive vehicle speed estimation algorithm for different braking situations has been proposed by fully utilising the Electronic Stability Program (ESP) sensor signals and multiple powersource signals. Firstly, the simulation platform of a 4WD hybrid electric car was established, which integrates an electronic-hydraulic composited braking system model and its control strategy, a nonlinear seven degrees-of-freedom vehicle dynamics model, and the Burckhardt tyre model. Secondly, combining the braking torque signals with the ESP signals, self-adaptive unscented Kalman sub-filter and main-filter adaptable to the observation noise were, respectively, designed. Thirdly, the fusion rules for the sub-filters and master filter were proposed herein, and the estimation results were compared with the simulated value of a real vehicle speed. Finally, based on the hardware in-the-loop platform and by picking up the regenerative motor torque signals and wheel cylinder pressure signals, the proposed speed estimation algorithm was tested under the case of moderate braking on the highly adhesive road, and the case of Antilock Braking System (ABS) action on the slippery road, as well as the case of ABS action on the icy road. Test results show that the presented vehicle speed estimation algorithm has not only a high precision but also a strong adaptability in the composite braking case.

  15. Asleep at the Wheel-The Road to Addressing Drowsy Driving.

    PubMed

    Higgins, J Stephen; Michael, Jeff; Austin, Rory; Åkerstedt, Torbjörn; Van Dongen, Hans P A; Watson, Nathaniel; Czeisler, Charles; Pack, Allan I; Rosekind, Mark R

    2017-02-01

    Drowsy driving is a dangerous behavior that leads to thousands of deaths and injuries each year. It is also a controllable factor for drivers. Drivers are capable of modifying this behavior if given sufficient information and motivation. Our goal is to establish a comprehensive and strategic effort to end drowsy driving crashes and deaths. This article highlights some of the conclusions of a unique recent meeting of sleep experts and highway safety professionals and describes the first steps the community has taken and plans to take in the future to address this issue. Published by Oxford University Press on behalf of Sleep Research Society (SRS) 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  16. Wind-Sculpted Vicinity After Opportunity's Sol 1797 Drive (Vertical)

    NASA Technical Reports Server (NTRS)

    2009-01-01

    NASA's Mars Exploration Rover Opportunity used its navigation camera to take the images combined into this full-circle view of the rover's surroundings just after driving 111 meters (364 feet) on the 1,797th Martian day, or sol, of Opportunity's surface mission (Feb. 12, 2009). North is at the center; south at both ends.

    Tracks from the drive recede northward across dark-toned sand ripples in the Meridiani Planum region of Mars. Patches of lighter-toned bedrock are visible on the left and right sides of the image. For scale, the distance between the parallel wheel tracks is about 1 meter (about 40 inches).

    This view is presented as a vertical projection with geometric seam correction.

  17. Wind-Sculpted Vicinity After Opportunity's Sol 1797 Drive

    NASA Technical Reports Server (NTRS)

    2009-01-01

    NASA's Mars Exploration Rover Opportunity used its navigation camera to take the images combined into this full-circle view of the rover's surroundings just after driving 111 meters (364 feet) on the 1,797th Martian day, or sol, of Opportunity's surface mission (Feb. 12, 2009). North is at the center; south at both ends.

    Tracks from the drive recede northward across dark-toned sand ripples in the Meridiani Planum region of Mars. Patches of lighter-toned bedrock are visible on the left and right sides of the image. For scale, the distance between the parallel wheel tracks is about 1 meter (about 40 inches).

    This view is presented as a cylindrical projection with geometric seam correction.

  18. Wind-Sculpted Vicinity After Opportunity's Sol 1797 Drive (Polar)

    NASA Technical Reports Server (NTRS)

    2009-01-01

    NASA's Mars Exploration Rover Opportunity used its navigation camera to take the images combined into this full-circle view of the rover's surroundings just after driving 111 meters (364 feet) on the 1,797th Martian day, or sol, of Opportunity's surface mission (Feb. 12, 2009). North is at the center; south at both ends.

    Tracks from the drive recede northward across dark-toned sand ripples in the Meridiani Planum region of Mars. Patches of lighter-toned bedrock are visible on the left and right sides of the image. For scale, the distance between the parallel wheel tracks is about 1 meter (about 40 inches).

    This view is presented as a polar projection with geometric seam correction.

  19. TTI (Texas Transportation Institute) track/dynamometer study. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reineman, M.; Thompson, G.

    1983-01-01

    Seven passenger cars and one light truck were operated over the EPA urban and highway driving cycles to compare fuel economy measurements obtained on a test track with the fuel economy results obtained on a chassis dynamometer. The test program was designed to duplicate, as closely as possible, the track force loading (as determined by standard EPA road coastdown procedures) on the dynamometer. Experimental parameters which were investigated included loading differences between front- and rear-wheel drive vehicles, volumetric versus carbon balance fuel measurement techniques, coupled versus uncoupled roll dynamometer tests, and curved track versus straight track coastdowns.

  20. Fuel cell drives for road vehicles

    NASA Astrophysics Data System (ADS)

    Charnah, R. M.

    For fuel-cell driven vehicles, including buses, the fuel cell may be the main, determining factor in the system but must be integrated into the complete design process. A Low-Floor Bus design is used to illustrate this point. The influence of advances in drive-train electronics is illustrated as are novel designs for motors and mechanical transmission of power to the wheels allowing the use of novel hub assemblies. A hybrid electric power system is being deployed in which Fuel Cells produce the energy needs but are coupled with batteries especially for acceleration phases and for recuperative braking.

  1. A novel curvature-controllable steerable needle for percutaneous intervention.

    PubMed

    Bui, Van Khuyen; Park, Sukho; Park, Jong-Oh; Ko, Seong Young

    2016-08-01

    Over the last few decades, flexible steerable robotic needles for percutaneous intervention have been the subject of significant interest. However, there still remain issues related to (a) steering the needle's direction with less damage to surrounding tissues and (b) increasing the needle's maximum curvature for better controllability. One widely used approach is to control the fixed-angled bevel-tip needle using a "duty-cycle" algorithm. While this algorithm has shown its applicability, it can potentially damage surrounding tissue, which has prevented the widespread adoption of this technology. This situation has motivated the development of a new steerable flexible needle that can change its curvature without axial rotation, while at the same time producing a larger curvature. In this article, we propose a novel curvature-controllable steerable needle. The proposed robotic needle consists of two parts: a cannula and a stylet with a bevel-tip. The curvature of the needle's path is controlled by a control offset, defined by the offset between the bevel-tip and the cannula. As a result, the necessity of rotating the whole needle's body is decreased. The duty-cycle algorithm is utilized to a limited degree to obtain a larger radius of curvature, which is similar to a straight path. The first prototype of 0.46 mm (outer diameter) was fabricated and tested with both in vitro gelatin phantom and ex vivo cow liver tissue. The maximum curvatures measured 0.008 mm(-1) in 6 wt% gelatin phantom, 0.0139 mm(-1) in 10 wt% gelatin phantom, and 0.0038 mm(-1) in cow liver. The experimental results show a linear relationship between the curvature and the control offset, which can be utilized for future implementation of this control algorithm. © IMechE 2016.

  2. Dynamic Analysis of Heavy Vehicle Medium Duty Drive Shaft Using Conventional and Composite Material

    NASA Astrophysics Data System (ADS)

    Kumar, Ashwani; Jain, Rajat; Patil, Pravin P.

    2016-09-01

    The main highlight of this study is structural and modal analysis of single piece drive shaft for selection of material. Drive shaft is used for torque carrying from vehicle transmission to rear wheel differential system. Heavy vehicle medium duty transmission drive shaft was selected as research object. Conventional materials (Steel SM45 C, Stainless Steel) and composite materials (HS carbon epoxy, E Glass Polyester Resin Composite) were selected for the analysis. Single piece composite material drive shaft has advantage over conventional two-piece steel drive shaft. It has higher specific strength, longer life, less weight, high critical speed and higher torque carrying capacity. The main criteria for drive shaft failure are strength and weight. Maximum modal frequency obtained is 919 Hz. Various harmful vibration modes (lateral vibration and torsional vibration) were identified and maximum deflection region was specified. For single-piece drive shaft the natural bending frequency should be higher because it is subjected to torsion and shear stress. Single piece drive shaft was modelled using Solid Edge and Pro-E. Finite Element Analysis was used for structural and modal analysis with actual running boundary condition like frictional support, torque and moment. FEA simulation results were validated with experimental literature results.

  3. Five-cylinder engine as an economical, smooth-running power plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hauk, F.; Dommes, W.

    For the first time in the history of automobile engineering, AUDI NSU has introduced a 5-cylinder in-line gasoline engine for production cars designed to run at speeds up to about 7,000 rpm. This unusual new design makes it possible to set new standards of performance and smoothness, while still retaining the advantages of front wheel drive.

  4. Use and user patterns among Michigan licensed off-highway vehicles ownership types

    Treesearch

    Joel A. Lynch; Charles M. Nelson

    2002-01-01

    Conventional off-highway vehicles (OHVs) range from small personal vehicles, such as motorcycles and all terrain vehicles to full-size passenger vehicles such as four-wheel drive trucks. The market and general recreational use of OHVs has changed markedly over the past thirty years. While many studies of OHV enthusiasts generalize to all OHV types, little research has...

  5. Influence of uneven distribution of coupling mass on locomotive wheel pairs, its tractive power, straight and curved sections of industrial rail tracks.

    NASA Astrophysics Data System (ADS)

    Keropyan, A. M.; Kantovich, L. I.; Voronin, B. V.; Kuziev, D. A.; Zotov, V. V.

    2017-10-01

    This article deals with the problems of unloading the axes of wheel sets of locomotives of industrial railway transport by the example of exploitation in conditions of open chasing works. Studies have established that the displacement of the center of mass of an open-pit locomotive depends primarily on the height of the center of gravity, the height of the location of the hook of the locomotive coupling over the rails and the slope of the track. Therefore, to increase the coefficient of utilization of the adhesive weight and to ensure rational operating conditions, it is necessary to provide an adjustable displacement of the locomotive’s center of mass taking into account the actual operating conditions, including when driving on rectilinear and curvilinear sections of the track. Analysis of calculation results showed that for the traction unit OPE1 when driving in traction mode in close to the extreme operating conditions, it is necessary to provide a constructive solution for displacement of the center of mass of the locomotive up to 0.5 m in the course of movement of the locomotive’s center of mass.

  6. ATHLETE: Lunar Cargo Handling for International Lunar Exploration

    NASA Technical Reports Server (NTRS)

    Wilcox, Brian H.

    2010-01-01

    As part of the Human-Robot Systems Project within the NASA Exploration Technology Development Program, the Jet Propulsion Laboratory is developing a vehicle called ATHLETE: the All-Terrain Hex-Limbed Extra-Terrestrial Explorer. The basic idea of ATHLETE is to have six relatively small wheels on the ends of legs. The small wheels and associated drive actuators are much less massive than the larger wheels and gears needed for an "all terrain" vehicle that cannot "walk" out of extreme terrain. The mass savings for the wheels and wheel actuators is greater than the mass penalty of the legs, for a net mass savings. Starting in 2009, NASA became engaged in detailed architectural studies for international discussions with the European Space Agency (ESA), the Japanese Space Agency (JAXA), and the Canadian Space Agency (CSA) under the auspices of the International Architecture Working Group (IAWG). ATHLETE is considered in most of the campaign options considered, providing a way to offload cargo from large Altair-class landers (having a cargo deck 6+ meters above the surface) as well as offloading international landers launched on Ariane-5 or H-2 launch vehicles. These international landers would carry provisions as well as scientific instruments and/or small rovers that would be used by international astronauts as part of an international effort to explore the moon.Work described in this paper includes architectural studies in support of the international missions as well as field testing of a half-scale ATHLETE prototype performing cargo offloading from a lander mockup, along with multi-kilometer traverse, climbing over greater than 1 m rocks, tool use, etc.

  7. Driver sleepiness and risk of motor vehicle crash injuries: a population-based case control study in Fiji (TRIP 12).

    PubMed

    Herman, Josephine; Kafoa, Berlin; Wainiqolo, Iris; Robinson, Elizabeth; McCaig, Eddie; Connor, Jennie; Jackson, Rod; Ameratunga, Shanthi

    2014-03-01

    Published studies investigating the role of driver sleepiness in road crashes in low and middle-income countries have largely focused on heavy vehicles. We investigated the contribution of driver sleepiness to four-wheel motor vehicle crashes in Fiji, a middle-income Pacific Island country. The population-based case control study included 131 motor vehicles involved in crashes where at least one person died or was hospitalised (cases) and 752 motor vehicles identified in roadside surveys (controls). An interviewer-administered questionnaire completed by drivers or proxies collected information on potential risks for crashes including sleepiness while driving, and factors that may influence the quantity or quality of sleep. Following adjustment for confounders, there was an almost six-fold increase in the odds of injury-involved crashes for vehicles driven by people who were not fully alert or sleepy (OR 5.7, 95%CI: 2.7, 12.3), or those who reported less than 6 h of sleep during the previous 24 h (OR 5.9, 95%CI: 1.7, 20.9). The population attributable risk for crashes associated with driving while not fully alert or sleepy was 34%, and driving after less than 6 h sleep in the previous 24 h was 9%. Driving by people reporting symptoms suggestive of obstructive sleep apnoea was not significantly associated with crash risk. Driver sleepiness is an important contributor to injury-involved four-wheel motor vehicle crashes in Fiji, highlighting the need for evidence-based strategies to address this poorly characterised risk factor for car crashes in less resourced settings. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Customized altitude-azimuth mount for a raster-scanning Fourier transform spectrometer

    NASA Astrophysics Data System (ADS)

    Durrenberger, Jed E.; Gutman, William M.; Gammill, Troy D.; Grover, Dennis H.

    1996-10-01

    Applications of the Army Research Laboratory Mobile Atmospheric Spectrometer Remote Sensing Rover required development of a customized computer-controlled mount to satisfy a variety of requirements within a limited budget. The payload was designed to operate atop a military electronics shelter mounted on a 4-wheel drive truck to be above most atmospheric ground turbulence. Pointing orientation in altitude is limited by constraints imposed by use of a liquid nitrogen detector Dewar in the spectrometer. Stepper motor drives and control system are compatible with existing custom software used with other instrumentation for controlled incremental raster stepping. The altitude axis passes close to the center of gravity of the complete payload to minimize load eccentricity and drive torque requirements. Dovetail fixture mounting enables quick service and fine adjustment of balance to minimize stepper/gearbox drive backlash through the limited orientation range in altitude. Initial applications to characterization of remote gas plumes have been successful.

  9. Processing and filtrating of driver fatigue characteristic parameters based on rough set

    NASA Astrophysics Data System (ADS)

    Ye, Wenwu; Zhao, Xuyang

    2018-05-01

    With the rapid development of economy, people become increasingly rich, and cars have become a common means of transportation in daily life. However, the problem of traffic safety is becoming more and more serious. And fatigue driving is one of the main causes of traffic accidents. Therefore, it is of great importance for us to study the detection of fatigue driving to improve traffic safety. In the cause of determining whether the driver is tired, the characteristic quantity related to the steering angle of the steering wheel and the characteristic quantity of the driver's pulse are all important indicators. The fuzzy c-means clustering is used to discretize the above indexes. Because the characteristic parameters are too miscellaneous, rough set is used to filtrate these characteristics. Finally, this paper finds out the highest correlation with fatigue driving. It is proved that these selected characteristics are of great significance to the evaluation of fatigue driving.

  10. High reduction transaxle for electric vehicle

    DOEpatents

    Kalns, Ilmars

    1987-01-01

    A drivetrain (12) includes a transaxle assembly (16) for driving ground engaging wheels of a land vehicle powered by an AC motor. The transaxle includes a ratio change section having planetary gear sets (24, 26) and brake assemblies (28, 30). Sun gears (60, 62) of the gear sets are directly and continuously connected to an input drive shaft (38) driven by the motor. A first drive (78a) directly and continuously connects a planetary gear carrier (78) of gear sets (24) with a ring gear (68) of gear set (26). A second drive (80a) directly and continuously connects a planetary gear carrier (80) of gear set (26) with a sun gear (64) of a final speed reduction gear set (34) having a planetary gear carrier directly and continuously connected to a differential (22). Brakes (28, 30) are selectively engageable to respectively ground a ring gear 66 of gear set 24 and ring gear 68 of gear set 26.

  11. Method of Controlling Steering of a Ground Vehicle

    NASA Technical Reports Server (NTRS)

    Guo, Raymond (Inventor); Atluri, Venkata Prasad (Inventor); Bluethmann, William J. (Inventor); Lee, Chunhao J. (Inventor); Vitale, Robert L. (Inventor); Dawson, Andrew D. (Inventor)

    2016-01-01

    A method of controlling steering of a vehicle through setting wheel angles of a plurality of modular electronic corner assemblies (eModules) is provided. The method includes receiving a driving mode selected from a mode selection menu. A position of a steering input device is determined in a master controller. A velocity of the vehicle is determined, in the master controller, when the determined position of the steering input device is near center. A drive mode request corresponding to the selected driving mode to the plurality of steering controllers is transmitted to the master controller. A required steering angle of each of the plurality of eModules is determined, in the master controller, as a function of the determined position of the steering input device, the determined velocity of the vehicle, and the selected first driving mode. The eModules are set to the respective determined steering angles.

  12. Estimating Driving Performance Based on EEG Spectrum Analysis

    NASA Astrophysics Data System (ADS)

    Lin, Chin-Teng; Wu, Ruei-Cheng; Jung, Tzyy-Ping; Liang, Sheng-Fu; Huang, Teng-Yi

    2005-12-01

    The growing number of traffic accidents in recent years has become a serious concern to society. Accidents caused by driver's drowsiness behind the steering wheel have a high fatality rate because of the marked decline in the driver's abilities of perception, recognition, and vehicle control abilities while sleepy. Preventing such accidents caused by drowsiness is highly desirable but requires techniques for continuously detecting, estimating, and predicting the level of alertness of drivers and delivering effective feedbacks to maintain their maximum performance. This paper proposes an EEG-based drowsiness estimation system that combines electroencephalogram (EEG) log subband power spectrum, correlation analysis, principal component analysis, and linear regression models to indirectly estimate driver's drowsiness level in a virtual-reality-based driving simulator. Our results demonstrated that it is feasible to accurately estimate quantitatively driving performance, expressed as deviation between the center of the vehicle and the center of the cruising lane, in a realistic driving simulator.

  13. A novel shape from focus method based on 3D steerable filters for improved performance on treating textureless region

    NASA Astrophysics Data System (ADS)

    Fan, Tiantian; Yu, Hongbin

    2018-03-01

    A novel shape from focus method combining 3D steerable filter for improved performance on treating textureless region was proposed in this paper. Different from conventional spatial methods focusing on the search of maximum edges' response to estimate the depth map, the currently proposed method took both of the edges' response and the axial imaging blur degree into consideration during treatment. As a result, more robust and accurate identification for the focused location can be achieved, especially when treating textureless objects. Improved performance in depth measurement has been successfully demonstrated from both of the simulation and experiment results.

  14. Experimental verification of steerability via geometric Bell-like inequalities

    NASA Astrophysics Data System (ADS)

    Li, Jian; Wang, Cen-Yang; Liu, Tong-Jun; Wang, Qin

    2018-03-01

    Quantum steering is one form of quantum correlations interpolating between entanglement and Bell nonlocality, which in some cases can be detected by various steering inequalities. Recently, a remarkable and useful steerability criterion via geometric Bell-like inequalities was established [M. Zukowski, A. Dutta, and Z. Yin, Phys. Rev. A 91, 032107 (2015), 10.1103/PhysRevA.91.032107]. We report an experimental investigation of this steering criterion and verify the geometric Bell-like steering inequality experimentally by using of the Werner states. The results demonstrate that the geometric Bell-like steering inequality is a convenient tool to detect quantum steering both theoretically and practically.

  15. Morphological self-organizing feature map neural network with applications to automatic target recognition

    NASA Astrophysics Data System (ADS)

    Zhang, Shijun; Jing, Zhongliang; Li, Jianxun

    2005-01-01

    The rotation invariant feature of the target is obtained using the multi-direction feature extraction property of the steerable filter. Combining the morphological operation top-hat transform with the self-organizing feature map neural network, the adaptive topological region is selected. Using the erosion operation, the topological region shrinkage is achieved. The steerable filter based morphological self-organizing feature map neural network is applied to automatic target recognition of binary standard patterns and real-world infrared sequence images. Compared with Hamming network and morphological shared-weight networks respectively, the higher recognition correct rate, robust adaptability, quick training, and better generalization of the proposed method are achieved.

  16. Stronger steerability criterion for more uncertain continuous-variable systems

    NASA Astrophysics Data System (ADS)

    Chowdhury, Priyanka; Pramanik, Tanumoy; Majumdar, A. S.

    2015-10-01

    We derive a fine-grained uncertainty relation for the measurement of two incompatible observables on a single quantum system of continuous variables, and show that continuous-variable systems are more uncertain than discrete-variable systems. Using the derived fine-grained uncertainty relation, we formulate a stronger steering criterion that is able to reveal the steerability of NOON states that has hitherto not been possible using other criteria. We further obtain a monogamy relation for our steering inequality which leads to an, in principle, improved lower bound on the secret key rate of a one-sided device independent quantum key distribution protocol for continuous variables.

  17. Modeling and Validation of the Three Dimensional Deflection of an MRI-Compatible Magnetically-Actuated Steerable Catheter

    PubMed Central

    Liu, Taoming; Poirot, Nate Lombard; Franson, Dominique; Seiberlich, Nicole; Griswold, Mark A.; Çavuşoğlu, M. Cenk

    2016-01-01

    Objective This paper presents the three dimensional kinematic modeling of a novel steerable robotic ablation catheter system. The catheter, embedded with a set of current-carrying micro-coils, is actuated by the magnetic forces generated by the magnetic field of the magnetic resonance imaging (MRI) scanner. Methods This paper develops a 3D model of the MRI actuated steerable catheter system by using finite differences approach. For each finite segment, a quasi-static torque-deflection equilibrium equation is calculated using beam theory. By using the deflection displacements and torsion angles, the kinematic model of the catheter system is derived. Results The proposed models are validated by comparing the simulation results of the proposed model with the experimental results of a hardware prototype of the catheter design. The maximum tip deflection error is 4.70 mm and the maximum root-mean-square (RMS) error of the shape estimation is 3.48 mm. Conclusion The results demonstrate that the proposed model can successfully estimate the deflection motion of the catheter. Significance The presented three dimensional deflection model of the magnetically controlled catheter design paves the way to efficient control of the robotic catheter for treatment of atrial fibrillation. PMID:26731519

  18. Influence of the Mesh Geometry Evolution on Gearbox Dynamics during Its Maintenance

    NASA Astrophysics Data System (ADS)

    Dąbrowski, Z.; Dziurdź, J.; Klekot, G.

    2017-12-01

    Toothed gears constitute the necessary elements of power transmission systems. They are applied as stationary devices in drive systems of road vehicles, ships and crafts as well as airplanes and helicopters. One of the problems related to the toothed gears usage is the determination of their technical state or its evolutions. Assuming that the gear slippage velocity is attributed to vibrations and noises generated by cooperating toothed wheels, the application of a simple cooperation model of rolled wheels of skew teeth is proposed for the analysis of the mesh evolution influence on the gear dynamics. In addition, an example of utilising an ordinary coherence function for investigating evolutionary mesh changes related to the effects impossible to be described by means of the simple kinematic model is presented.

  19. Drug driving and the management of risk: the perspectives and practices of a sample of problem drug users.

    PubMed

    McIntosh, James; O'Brien, Tommy; McKeganey, Neil

    2008-06-01

    This paper reports on a qualitative study of the attitudes and risk management strategies of a sample of problem drug users in relation to driving while under the influence of drugs. Interviews were conducted with 26 individuals (21 men and 5 women) all of whom had been addicted to heroin and had admitted to driving while under the influence of illegal drugs. The drug users reported four main strategies for managing the risks associated with drug driving: attempting to limit their drug intake to their tolerance level; delaying driving after taking a drug until they felt safe; stopping driving if they felt unsafe while behind the wheel; and avoiding driving altogether under the influence of certain drugs. However, the interviewees' accounts of their drug driving behaviour suggest that these strategies are not only far from reliable, they may also act to encourage drug driving by creating a false sense of security. The reassurance they provide may also undermine any educational messages targeting drug driving. There was little in the problem users' accounts to suggest that media campaigns or a more effective method of detection would have much influence upon their behaviour. The paper concludes that the most realistic approach to the problem may be to incorporate drug driving interventions within drug treatment programmes.

  20. Decrease of dynamic loads in mobile energy means

    NASA Astrophysics Data System (ADS)

    Polivaev, O. I.; Gorban, L. K.; Vorohobin, A. V.; Vedrinsky, O. S.

    2018-03-01

    The increase in the productivity of machine and tractor units is possible due to the increase in operating speeds, this leads to the emergence of increased dynamic loads in the system “engine-transmission-propulsion unit-soil”, which worsens the performance of machine-tractor aggregates. To reduce fluctuations in the “engine-transmission” system, special vibration dampers are used, which installed in close proximity to the engine and protect well the transmission from uneven engine operation; however, such dampers practically do not eliminate the oscillations of external loads. Reducing dynamic loads on the transmission and the mobile power engine (MPE) is an important issue directly related to improving the performance, reliability and durability of the tractor, as well as reducing the slippage of the drive wheels. In order to reduce effectively dynamic loads on the transmission and on the MPE, it is necessary to introduce resilient damping elements closer to the sources of oscillations, namely, to the driving wheels. At the same time, the elastic-damping element should provide accumulation of vibration energy caused by external influences and have a large energy capacity. The installation of an elastic-damping element in the final link of the tractor transmission ensures a reduction in the magnitude of external influences, thereby protecting the engine and transmission from large dynamic loads, and allows one to reduce the slippage of the propellers, which has a positive effect on the traction and energy characteristics of the tractor. Traction tests of the LTP-55 tractor on a concrete road showed that the use of an elasto-damping drive makes it possible to increase the maximum tractive power from 33.5 to 35.3 kW and to reduce the slipping of propellers by 12-30%, the specific fuel consumption by 6-10%. When driving on stubble, the use of an elastic-damping drive increases the maximum tractive power from 25 to 26 kW, reduces the skidding of propellers by 10-28%, and the specific fuel consumption by 10-12.5%.

  1. Frequency, causes and human impact of motor vehicle-related road traffic accident (RTA) in Lubumbashi, Democratic Republic of Congo.

    PubMed

    Nangana, Luzitu Severin; Monga, Ben; Ngatu, Nlandu Roger; Mbelambela, Etongola Papy; Mbutshu, Lukuke Hendrick; Malonga, Kaj Francoise

    2016-09-01

    Road traffic accident (RTA)-related trauma remains a public health issue. The aim of this study was to determine the frequency, causes and human impact of motor vehicle-related RTA in Lubumbashi, Democratic Republic of Congo. A prospective cross-sectional study was conducted in the first semester of the year 2015 in which 288 drivers (144 RTA-causing drivers and 144 control drivers who have been declared not guilty by road safety agents) involved in 144 motor vehicle-related RTA were interviewed, and only data on all RTA involving two motor vehicles with at least four wheels were recorded and analyzed. Results showed a total of 144 RTA that involved two motor vehicles with four wheels occurring during the study period which affected 104 people, including 93 injury and 11 fatality cases. The mean age of RTA-causing drivers was 33.8 ± 7.4, whereas it was 35 ± 8.8 for control drivers. The majority of RTA-causing drivers (53.4 %) did not attend a driving school. Over speeding (32 %), distracted driving (22 %), overtaking (16 %) and careless driving/risky maneuver (15 %) and driving under the influence of alcohol (9 %) were the main causes of RTA occurrence. In addition, the absence of a valid driving license [aOR = 12.74 (±2.71); 95 % CI 3.877-41.916; p = 0.015], unfastened seat belt for the RTA-causing driver [aOR = 1.85 (±0.62); 95 % CI 1.306-6.661; p = 0.048] and presence of damages on RTA-causing vehicle [aOR = 33.56 (24.01); 95 % CI 1.429-78.352; p = 0.029] were associated with the occurrence of RTA-related fatality. This study showed a relatively high frequency of RTA occurring in Lubumbashi and suggests the necessity to reinforce road traffic regulation.

  2. Electromobility concept for racing cars based on lithium-ion batteries and supercapacitors

    NASA Astrophysics Data System (ADS)

    Frenzel, B.; Kurzweil, P.; Rönnebeck, H.

    For the construction of an all-electric race car, all aspects from engineering design over cost estimation up to the road capability are illuminated. From the most promising batteries for electric vehicle propulsion, the state-of-the art and commercial availability of lithium-ion secondary batteries is critically discussed with respect to cycle-life and unfavorable charge-discharge conditions. A market-overview is given with respect to a small electric car. Different combinations of electric motors and a recuperation system have been investigated. Weight aspects of central drive systems were considered and compared with decentralized wheel-hub drives. As a result, a centralized high-speed drive train based on a permanent-magnet synchronous engine with high-energy magnets seems to be superior due to limited space for assembly.

  3. AlliedSignal driver's viewer enhancement (DVE) for paramilitary and commercial applications

    NASA Astrophysics Data System (ADS)

    Emanuel, Michael; Caron, Hubert; Kovacevic, Branislav; Faina-Cherkaoui, Marcela; Wrobel, Leslie; Turcotte, Gilles

    1999-07-01

    AlliedSignal Driver's Viewer Enhancement (DVE) system is a thermal imager using a 320 X 240 uncooled microbolometer array. This high performance system was initially developed for military combat and tactical wheeled vehicles. It features a very small sensor head remotely mounted from the display, control and processing module. The sensor head has a modular design and is being adapted to various commercial applications such as truck and car-driving aid, using specifically designed low cost optics. Tradeoffs in the system design, system features and test results are discussed in this paper. A short video shows footage of the DVE system while driving at night.

  4. Monotony of road environment and driver fatigue: a simulator study.

    PubMed

    Thiffault, Pierre; Bergeron, Jacques

    2003-05-01

    Studies have shown that drowsiness and hypovigilance frequently occur during highway driving and that they may have serious implications in terms of accident causation. This paper focuses on the task induced factors that are involved in the development of these phenomena. A driving simulator study was conducted in order to evaluate the impact of the monotony of roadside visual stimulation using a steering wheel movement (SWM) analysis procedure. Fifty-six male subjects each drove during two different 40-min periods. In one case, roadside visual stimuli were essentially repetitive and monotonous, while in the other one, the environment contained disparate visual elements aiming to disrupt monotony without changing road geometry. Subject's driving performance was compared across these conditions in order to determine whether disruptions of monotony can have a positive effect and help alleviate driver fatigue. Results reveal an early time-on-task effect on driving performance for both driving periods and more frequent large SWM when driving in the more monotonous road environment, which implies greater fatigue and vigilance decrements. Implications in terms of environmental countermeasures for driver fatigue are discussed.

  5. Analysis and control of high-speed wheeled vehicles

    NASA Astrophysics Data System (ADS)

    Velenis, Efstathios

    In this work we reproduce driving techniques to mimic expert race drivers and obtain the open-loop control signals that may be used by auto-pilot agents driving autonomous ground wheeled vehicles. Race drivers operate their vehicles at the limits of the acceleration envelope. An accurate characterization of the acceleration capacity of the vehicle is required. Understanding and reproduction of such complex maneuvers also require a physics-based mathematical description of the vehicle dynamics. While most of the modeling issues of ground-vehicles/automobiles are already well established in the literature, lack of understanding of the physics associated with friction generation results in ad-hoc approaches to tire friction modeling. In this work we revisit this aspect of the overall vehicle modeling and develop a tire friction model that provides physical interpretation of the tire forces. The new model is free of those singularities at low vehicle speed and wheel angular rate that are inherent in the widely used empirical static models. In addition, the dynamic nature of the tire model proposed herein allows the study of dynamic effects such as transients and hysteresis. The trajectory-planning problem for an autonomous ground wheeled vehicle is formulated in an optimal control framework aiming to minimize the time of travel and maximize the use of the available acceleration capacity. The first approach to solve the optimal control problem is using numerical techniques. Numerical optimization allows incorporation of a vehicle model of high fidelity and generates realistic solutions. Such an optimization scheme provides an ideal platform to study the limit operation of the vehicle, which would not be possible via straightforward simulation. In this work we emphasize the importance of online applicability of the proposed methodologies. This underlines the need for optimal solutions that require little computational cost and are able to incorporate real, unpredictable environments. A semi-analytic methodology is developed to generate the optimal velocity profile for minimum time travel along a prescribed path. The semi-analytic nature ensures minimal computational cost while a receding horizon implementation allows application of the methodology in uncertain environments. Extensions to increase fidelity of the vehicle model are finally provided.

  6. Optimal CV-22 Centralized Intermediate Repair Facility Locations and Parts Repair

    DTIC Science & Technology

    2009-06-01

    and Reorder Point for TEWS ............................ 36 Table 8. Excel Model for Safety Stock and Reorder Point for FADEC ...Digital Engine Control ( FADEC ) Main Wheel Assembly Blade Fold System Landing Gear Control Panel Drive System Interface Unit Main Landing Gear...Radar 4 Forward Looking Infrared System (FLIR) 4 Tactical Electronic Warfare System (TEWS) 1 Full Authority Digital Engine Control ( FADEC ) 2 Blade

  7. Car Builder: Design, Construct and Test Your Own Cars. School Version with Lesson Plans. [CD-ROM].

    ERIC Educational Resources Information Center

    Highsmith, Joni Bitman

    Car Builder is a scientific CD-ROM-based simulation program that lets students design, construct, modify, test, and compare their own cars. Students can design sedans, four-wheel-drive vehicles, vans, sport cars, and hot rods. They may select for aerodynamics, power, and racing ability, or economic and fuel efficiency. It is a program that teaches…

  8. Apparent mass of the human body in the vertical direction: Effect of a footrest and a steering wheel

    NASA Astrophysics Data System (ADS)

    Toward, M. G. R.; Griffin, M. J.

    2010-04-01

    The apparent mass of the seated human body influences the vibration transmitted through a car seat. The apparent mass of the body is known to be influenced by sitting posture but the influence of the position of the hands and the feet is not well understood. This study was designed to quantify the influence of steering wheel location and the position of a footrest on the vertical apparent mass of the human body. The influences of the forces applied by the hands to a steering wheel and by the feet to a footrest were also investigated. Twelve subjects were exposed to whole-body vertical random vibration (1.0 m s -2 rms over the frequency range 0.13-40.0 Hz) while supported by a rigid seat with a backrest reclined to 15°. The apparent mass of the body was measured with five horizontal positions and three vertical positions of a steering wheel and also with hands in the lap, and with five horizontal positions of a footrest. The influence of five forward forces (0, 50, 100, 150, 200 N) applied separately to the 'steering wheel' and the footrest were also investigated as well as a 'no backrest' condition. With their hands in their laps, subjects exhibited a resonance around 6.7 Hz, compared to 4.8 Hz when sitting upright with no backrest. In the same posture holding a steering wheel, the mass supported on the seat surface decreased and there was an additional resonance at 4 Hz. Moving the steering wheel away from the body reduced the apparent mass at the primary resonance frequency and increased the apparent mass around the 4 Hz resonance. As the feet moved forward, the mass supported on the seat surface decreased, indicating that the backrest and footrest supported a greater proportion of the subject weight. Applying force to either the steering wheel or the footrest reduced the apparent mass at resonance and decreased the mass supported on the seat surface. It is concluded that the positions and contact conditions of the hands and the feet affect the biodynamic response of the body in a car driving posture. As the biodynamic response influences the vibration transmitted through seats, these factors should be considered in dynamic models of vehicle seating.

  9. Design and Analysis of Drive Shaft using Kevlar/Epoxy and Glass/Epoxy as a Composite Material

    NASA Astrophysics Data System (ADS)

    Karthikeyan, P.; Gobinath, R.; Kumar, L. Ajith; Jenish, D. Xavier

    2017-05-01

    In automobile industry drive shaft is one of the most important components to transmit power form the engine to rear wheel through the differential gear. Generally steel drive shaft is used in automobile industry, nowadays they are more interested to replace steel drive shaft with that of composite drive shaft. The overall objective of this paper is to analyze the composite drive shaft using to find out the best replacement for conventional steel drive shaft. The uses of advanced composite materials such as Kevlar, Graphite, Carbon and Glass with proper resins ware resulted in remarkable achievements in automobile industry because of its greater specific strength and specific modulus, improved fatigue and corrosion resistances and reduction in energy requirements due to reduction in weight as compared to steel shaft. This paper is to presents, the modeling and analysis of drive shaft using Kevlar/Epoxy and Glass/Epoxy as a composite material and to find best replacement for conventional steel drive shafts with an Kevlar/epoxy or Glass/Epoxy resin composite drive shaft. Modeling is done using CATIA software and Analysis is carried out by using ANSYS 10.0 software for easy understanding. The composite drive shaft reduces the weight by 81.67 % for Kevlar/Epoxy and 72.66% for Glass/Epoxy when compared with conventional steel drive shaft.

  10. Quantum steering and entanglement in three-mode triangle Bose-Hubbard system

    NASA Astrophysics Data System (ADS)

    Kalaga, J. K.; Leoński, W.; Szczȩśniak, R.

    2017-11-01

    We consider the possibility of generation steerable states in Bose-Hubbard system composed of three interacting wells in the form of a triangle. We show that although our system still fulfills the monogamy relations, the presence of additional coupling which transforms a chain of wells onto triangle gives a variety of new possibilities for the generation of steerable quantum states. Deriving analytical formulas for the parameters describing steering and bipartite entanglement, we show that interplay between two couplings influences quantum correlations of various types. We compare the time evolution of steering parameters to those describing bipartite entanglement and find the relations between the appearance of maximal entanglement and disappearance of steering effect.

  11. Research on fatigue driving pre-warning system based on multi-information fusion

    NASA Astrophysics Data System (ADS)

    Zhao, Xuyang; Ye, Wenwu

    2018-05-01

    With the development of science and technology, transportation network has grown faster. But at the same time, the quantity of traffic accidents due to fatigue driving grows faster as well. In the meantime, fatigue driving has been one of the main causes of traffic accidents. Therefore, it is indispensable for us to study the detection of fatigue driving to help to driving safety. There are numerous approaches in discrimination method. Each type of method has its reasonable theoretical basis, but the disadvantages of traditional fatigue driving detection methods have been more and more obvious since we study the traditional physiology and psychological features of fatigue drivers. So we set up a new system based on multi-information fusion and pattern recognition theory. In the paper, the fatigue driving pre-warning system discriminates fatigue by analyzing the characteristic parameters, the parameters derived from the steering wheel angle, the driver's power of gripping and the heart rate. And the data analysis system is established based on fuzzy C-means clustering theory. Finally, KNN classifier is used to establish the relation between feature indexes and fatigue degree. It is verified that the system has the better accuracy, agility and robustness according to our confirmatory experiment.

  12. GOS hook type wells, directional planning, techniques applied and problems encountered

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    A /Azim, M.; Fahmy, H.; Salem, A.

    1995-10-01

    This paper addresses the various aspects of hook type wells introduced and drilled within GUPCO operations during he last two years. The first well of this category was October-G10, drilled in October 1992 from October ``G`` platform to a target point in the Nubia formation. Several wells of the same type have been drilled through 1993 and 1994. This group includes October-H1, Ramadan 3-57, July 62-69 and SB 374-3. Drilling hook type well profiles has resulted in increased production and more reserve recovery. The driving force behind using this profile was the reservoir requirements where it was required to hitmore » a target within few meters at a certain angle and direction. Torque and drag models have been used to optimize well path planning, resulting in lower torque and drag values. Daily pot appraisal of the drilling operations to monitor hole cleaning effectiveness. Combination of advanced steerable systems and PDC bits enabled GUPCO to drill these wells cost effectively.« less

  13. Saturn Apollo Program

    NASA Image and Video Library

    1971-01-01

    The Lunar Roving Vehicle (LRV) was designed to transport astronauts and materials on the Moon. It was a collapsible open-space vehicle about 10 feet long with large mesh wheels, anterna, appendages, tool caddies, and cameras. Powered by two 36-volt batteries, it has four 1/4-hp drive motors, one for each wheel. The vehicle was designed to travel in forward or reverse, negotiate obstacles about 1 foot high, cross crevasses about 2 feet wide, and climb or descend moderate slopes. Its speed limit was about 9 miles (14 kilometers) per hour. An LRV was used on each of the last three Apollo missions (Apollo 15, Apollo 16, and Apollo 17) and permitted the crew to travel several miles from the Lunar Module. The LRV was designed, developed, and tested by the Marshall Space Flight Center, and built by the Boeing Plant in Kent, Washington.

  14. Saturn Apollo Program

    NASA Image and Video Library

    1971-01-01

    The Lunar Roving Vehicle (LRV) was designed to transport astronauts and materials on the Moon. It was a collapsible open-space vehicle about 10 feet long with large mesh wheels, anterna, appendages, tool caddies, and cameras. Powered by two 36-volt batteries, it has four 1/4-hp drive motors, one for each wheel. The vehicle was designed to travel in forward or reverse, negotiate obstacles about 1 foot high, cross crevasses about 2 feet wide, and climb or descend moderate slopes. Its speed limit was about 9 miles (14 kilometers) per hour. An LRV was used on each of the last three Apollo missions (Apollo 15, Apollo 16, and Apollo 17) and permitted the crews to travel several miles from the Lunar Module. The LRV was designed, developed, and tested by the Marshall Space Flight Center, and built by the Boeing Plant in Kent, Washington.

  15. Rover Slip Validation and Prediction Algorithm

    NASA Technical Reports Server (NTRS)

    Yen, Jeng

    2009-01-01

    A physical-based simulation has been developed for the Mars Exploration Rover (MER) mission that applies a slope-induced wheel-slippage to the rover location estimator. Using the digital elevation map from the stereo images, the computational method resolves the quasi-dynamic equations of motion that incorporate the actual wheel-terrain speed to estimate the gross velocity of the vehicle. Based on the empirical slippage measured by the Visual Odometry software of the rover, this algorithm computes two factors for the slip model by minimizing the distance of the predicted and actual vehicle location, and then uses the model to predict the next drives. This technique, which has been deployed to operate the MER rovers in the extended mission periods, can accurately predict the rover position and attitude, mitigating the risk and uncertainties in the path planning on high-slope areas.

  16. Tracking Positions and Attitudes of Mars Rovers

    NASA Technical Reports Server (NTRS)

    Ali, Khaled; vanelli, Charles; Biesiadecki, Jeffrey; Martin, Alejandro San; Maimone, Mark; Cheng, Yang; Alexander, James

    2006-01-01

    The Surface Attitude Position and Pointing (SAPP) software, which runs on computers aboard the Mars Exploration Rovers, tracks the positions and attitudes of the rovers on the surface of Mars. Each rover acquires data on attitude from a combination of accelerometer readings and images of the Sun acquired autonomously, using a pointable camera to search the sky for the Sun. Depending on the nature of movement commanded remotely by operators on Earth, the software propagates attitude and position by use of either (1) accelerometer and gyroscope readings or (2) gyroscope readings and wheel odometry. Where necessary, visual odometry is performed on images to fine-tune the position updates, particularly on high-wheel-slip terrain. The attitude data are used by other software and ground-based personnel for pointing a high-gain antenna, planning and execution of driving, and positioning and aiming scientific instruments.

  17. Torque vectoring for improving stability of small electric vehicles

    NASA Astrophysics Data System (ADS)

    Grzegożek, W.; Weigel-Milleret, K.

    2016-09-01

    The electric vehicles solutions based on the individually controlled electric motors propel a single wheel allow to improve the dynamic properties of the vehicle by varying the distribution of the driving torque. Most of the literature refer to the vehicles with a track typical for passenger cars. This paper examines whether the narrow vehicle (with a very small track) torque vectoring bring a noticeable change of the understeer characteristics and whether torque vectoring is possible to use in securing a narrow vehicle from roll over (roll mitigation). The paper contains road tests of the steering characteristics (steady state understeer characteristic quasi-static acceleration with a fixed steering wheel (SH = const) and on the constant radius track (R = const)) of the narrow vehicle. The vehicle understeer characteristic as a function of a power distribution is presented.

  18. A Two-Wheeled, Self-Balancing Electric Vehicle Used As an Environmentally Friendly Individual Means of Transport

    NASA Astrophysics Data System (ADS)

    Bździuch, D.; Grzegożek, W.

    2016-09-01

    This paper shows a concept of a model of a two-wheeled self-balancing vehicle with an electric motor drive as an environmentally-friendly personal transporter. The principle of work, modelling of construction and performing a simulation are presented and discussed. The visualization of the designed vehicle was made thanks to using Solid Works a computer-aided design program. The vehicle was modelled as an inverted pendulum. The stability of the mechanism in the equilibrium position was studied. An exemplary steering system was also subjected to the analysis that compared two controllers: PID and LQR which enabled to monitor the balance of the vehicle when the required conditions were fulfilled. Modelling of work of the controllers and the evaluation of the obtained results in required conditions were performed in the MATLAB environment.

  19. Adaptive Inner-Loop Rover Control

    NASA Technical Reports Server (NTRS)

    Kulkarni, Nilesh; Ippolito, Corey; Krishnakumar, Kalmanje; Al-Ali, Khalid M.

    2006-01-01

    Adaptive control technology is developed for the inner-loop speed and steering control of the MAX Rover. MAX, a CMU developed rover, is a compact low-cost 4-wheel drive, 4-wheel steer (double Ackerman), high-clearance agile durable chassis, outfitted with sensors and electronics that make it ideally suited for supporting research relevant to intelligent teleoperation and as a low-cost autonomous robotic test bed and appliance. The design consists of a feedback linearization based controller with a proportional - integral (PI) feedback that is augmented by an online adaptive neural network. The adaptation law has guaranteed stability properties for safe operation. The control design is retrofit in nature so that it fits inside the outer-loop path planning algorithms. Successful hardware implementation of the controller is illustrated for several scenarios consisting of actuator failures and modeling errors in the nominal design.

  20. Decoupling control of a five-phase fault-tolerant permanent magnet motor by radial basis function neural network inverse

    NASA Astrophysics Data System (ADS)

    Chen, Qian; Liu, Guohai; Xu, Dezhi; Xu, Liang; Xu, Gaohong; Aamir, Nazir

    2018-05-01

    This paper proposes a new decoupled control for a five-phase in-wheel fault-tolerant permanent magnet (IW-FTPM) motor drive, in which radial basis function neural network inverse (RBF-NNI) and internal model control (IMC) are combined. The RBF-NNI system is introduced into original system to construct a pseudo-linear system, and IMC is used as a robust controller. Hence, the newly proposed control system incorporates the merits of the IMC and RBF-NNI methods. In order to verify the proposed strategy, an IW-FTPM motor drive is designed based on dSPACE real-time control platform. Then, the experimental results are offered to verify that the d-axis current and the rotor speed are successfully decoupled. Besides, the proposed motor drive exhibits strong robustness even under load torque disturbance.

  1. Review of manual control methods for handheld maneuverable instruments.

    PubMed

    Fan, Chunman; Dodou, Dimitra; Breedveld, Paul

    2013-06-01

    By the introduction of new technologies, surgical procedures have been varying from free access in open surgery towards limited access in minimal access surgery. Improving access to difficult-to-reach anatomic sites, e.g. in neurosurgery or percutaneous interventions, needs advanced maneuverable instrumentation. Advances in maneuverable technology require the development of dedicated methods enabling surgeons to stay in direct, manual control of these complex instruments. This article gives an overview of the state-of-the-art in the development of manual control methods for handheld maneuverable instruments. It categorizes the manual control methods in three levels: a) number of steerable segments, b) number of Degrees Of Freedom (DOF), and c) coupling between control motion of the handle and steering motion of the tip. The literature research was completed by using Web of Science, Scopus and PubMed. The study shows that in controlling single steerable segments, direct as well as indirect control methods have been developed, whereas in controlling multiple steerable segments, a gradual shift can be noticed from parallel and serial control to integrated control. The development of multi-segmented maneuverable instruments is still at an early stage, and an intuitive and effective method to control them has to become a primary focus in the domain of minimal access surgery.

  2. Building mechanical Greenberger-Horne-Zeilinger and cluster states by harnessing optomechanical quantum steerable correlations

    NASA Astrophysics Data System (ADS)

    Tan, Huatang; Wei, Yanghua; Li, Gaoxiang

    2017-11-01

    Greenberger-Horne-Zeilinger (GHZ) and cluster states are two typical kinds of multipartite entangled states and can respectively be used for realizing quantum networks and one-way computation. We propose a feasible scheme for generating Gaussian GHZ and cluster states of multiple mechanical oscillators by pulsed cavity optomechanics. In our scheme, each optomechanical cavity is driven by a blue-detuned pulse to establish quantum steerable correlations between the cavity output field and the mechanical oscillator, and the cavity outputs are combined at a beam-splitter array with given transmissivity and reflectivity for each beam splitter. We show that by harnessing the light-mechanical steerable correlations, the mechanical GHZ and cluster states can be realized via homodyne detection on the amplitude and phase quadratures of the output fields from the beam-splitter array. These achieved mechanical entangled states can be viewed as the output states of an effective mechanical beam-splitter array with the mechanical inputs prepared in squeezed states with the light-mechanical steering. The effects of detection efficiency and thermal noise on the achieved mechanical states are investigated. The present scheme does not require externally injected squeezing and it can also be applicable to other systems such as light-atomic-ensemble interface, apart from optomechanical systems.

  3. Post-launch analysis of the deployment dynamics of a space web sounding rocket experiment

    NASA Astrophysics Data System (ADS)

    Mao, Huina; Sinn, Thomas; Vasile, Massimiliano; Tibert, Gunnar

    2016-10-01

    Lightweight deployable space webs have been proposed as platforms or frames for a construction of structures in space where centrifugal forces enable deployment and stabilization. The Suaineadh project was aimed to deploy a 2 × 2m2 space web by centrifugal forces in milli-gravity conditions and act as a test bed for the space web technology. Data from former sounding rocket experiments, ground tests and simulations were used to design the structure, the folding pattern and control parameters. A developed control law and a reaction wheel were used to control the deployment. After ejection from the rocket, the web was deployed but entanglements occurred since the web did not start to deploy at the specified angular velocity. The deployment dynamics was reconstructed from the information recorded in inertial measurement units and cameras. The nonlinear torque of the motor used to drive the reaction wheel was calculated from the results. Simulations show that if the Suaineadh started to deploy at the specified angular velocity, the web would most likely have been deployed and stabilized in space by the motor, reaction wheel and controller used in the experiment.

  4. Risky riding behavior on two wheels: the role of cognitive, social, and personality variables among young adolescents.

    PubMed

    Falco, Alessandra; Piccirelli, Alessandra; Girardi, Damiano; Dal Corso, Laura; De Carlo, Nicola A

    2013-09-01

    The main objective of this study was to analyze and estimate the relations between risky riding behaviors and some personality and sociocognitive variables through structural equation modeling. We focused on two-wheel riding behavior among a sample of 1,028 Italian adolescents at their first driving experience. The main findings confirmed the role of personality in influencing riding behavior directly as well as indirectly through risk perception. In particular, risk perception was a significant mediator between personality, social norm, and riding behavior. The significant relations that emerged in the general sample were further confirmed in the two specific sub-samples of males and females. In terms of social marketing and educational communication, it may consequently be advisable to proceed in an integrated and coordinated manner at both the cognitive and social level, taking into account some "dispositions to risk" related to personality. The integrated and coordinated action on different levels--cognitive, social, and personality--may therefore allow more effective and significant results in reducing those risky riding behaviors that often underlie young two-wheel riders' higher involvement in traffic accidents. Copyright © 2013 National Safety Council and Elsevier Ltd. All rights reserved.

  5. Hand on the wheel, mind on the mobile: an analysis of social factors contributing to texting while driving.

    PubMed

    Seiler, Steven J

    2015-02-01

    In an era defined by social technology, mobile phones provide constant connection to others. However, they also present a very dangerous situation when people choose to use their mobile phones while driving. In particular, exchanging text messages while driving has resulted in numerous accidents and fatalities. The purpose of this study is to examine social factors that lead people to text while driving. Specifically, using a multivariate logistic regression analysis of data from a 2010 survey by the Pew Research Center, variables for general mobile talk, driving while talking on a mobile, using the Internet on a mobile, sexting, and various motivations for texting were examined to determine factors that increase the likelihood of texting while driving. The findings suggest that people engage in mobile multiplexing (i.e., communication using two or more media on the mobile) while driving. Additionally, exchanging text messages in public, and consequently texting while driving, has become normalized. Furthermore, people are socialized into such behaviors through observing others texting while driving and using a mobile recklessly while driving. Finally, a number of motivations for texting were found to increase the likelihood of texting while driving significantly. Ultimately, the author contends that texting while driving has become a cultural artifact in the United States, which conflicts with driver safety as well as laws prohibiting texting while driving. The findings of this study could inform future awareness campaigns and technology developers to help establish a safer driving environment within the multitasking culture.

  6. Brain activity during driving with distraction: an immersive fMRI study

    PubMed Central

    Schweizer, Tom A.; Kan, Karen; Hung, Yuwen; Tam, Fred; Naglie, Gary; Graham, Simon J.

    2013-01-01

    Introduction: Non-invasive measurements of brain activity have an important role to play in understanding driving ability. The current study aimed to identify the neural underpinnings of human driving behavior by visualizing the areas of the brain involved in driving under different levels of demand, such as driving while distracted or making left turns at busy intersections. Materials and Methods: To capture brain activity during driving, we placed a driving simulator with a fully functional steering wheel and pedals in a 3.0 Tesla functional magnetic resonance imaging (fMRI) system. To identify the brain areas involved while performing different real-world driving maneuvers, participants completed tasks ranging from simple (right turns) to more complex (left turns at busy intersections). To assess the effects of driving while distracted, participants were asked to perform an auditory task while driving analogous to speaking on a hands-free device and driving. Results: A widely distributed brain network was identified, especially when making left turns at busy intersections compared to more simple driving tasks. During distracted driving, brain activation shifted dramatically from the posterior, visual and spatial areas to the prefrontal cortex. Conclusions: Our findings suggest that the distracted brain sacrificed areas in the posterior brain important for visual attention and alertness to recruit enough brain resources to perform a secondary, cognitive task. The present findings offer important new insights into the scientific understanding of the neuro-cognitive mechanisms of driving behavior and lay down an important foundation for future clinical research. PMID:23450757

  7. Behind the Wheel: Predictors of Driving Exposure in Older Drivers.

    PubMed

    Coxon, Kristy; Chevalier, Anna; Lo, Serigne; Ivers, Rebecca; Brown, Julie; Keay, Lisa

    2015-06-01

    To explore and deepen understanding of factors influencing driving exposure for older drivers. Cross-sectional. Baseline data on function and driving exposure from 1 week of driving were evaluated. A convenience sample of 380 drivers aged 75 and older, residing in northwest Sydney, was recruited. Participants were required to be the primary drivers of their own vehicle. Driver function was evaluated using the DriveSafe and DriveAware clinic-based assessments to measure visual attention to the driving environment and awareness of driving ability. Demographic information was obtained through interview. An in-vehicle monitoring device with data logger and GPS receiver, was used to measure driving exposure in 362 of 380 participants' vehicles. Driving exposure outcomes were total distance driven, furthest distance traveled from home, and average trip length. Factors influencing these exposure outcomes were analyzed using generalized linear regression. Drivers typically drove 100 km in local and surrounding areas during the week. Function was predictive of all driving exposure outcomes. Drivers with lower levels of function drove fewer kilometers and took shorter trips closer to home. Age, health status, and personal circumstance (e.g., rural residence) also influenced exposure, but sex did not. Using objective measures, this study provides evidence that function, age, health status, and personal circumstance influence driving exposure of older drivers. Understanding how older people use driving to preserve their independence is important for exploring safe driving strategies for older people. © 2015, Copyright the Authors Journal compilation © 2015, The American Geriatrics Society.

  8. Systems Engineering Technology Readiness Assessment of Hybrid-Electric Technologies for Tactical Wheeled Vehicles

    DTIC Science & Technology

    2014-09-01

    reasonable yield within this decade. Similarly, the permanent magnet motors , which are desirable for traction due to their high efficiency, must also be...degrees C and 180 degrees C (RDECOM Public Affairs 2014). Current electric drive vehicles, using permanent magnet motors , have thermal limitations well...performance and their good efficiency, benefits particularly applicable to permanent magnet motors . Synchronous motors with permanent magnets, in

  9. Compact Hybrid Automotive Propulsion System

    NASA Technical Reports Server (NTRS)

    Lupo, G.

    1986-01-01

    Power train proposed for experimental vehicle powered by internal combustion engine and electric motor. Intended for front-wheel drive automobile, power train mass produced using existing technology. System includes internal-combustion engine, electric motor, continuously variable transmission, torque converter, differential, and control and adjustment systems for electric motor and transmission. Continuously variable transmission integrated into hydraulic system that also handles power steering and power brakes. Batteries for electric motor mounted elsewhere in vehicle.

  10. Sales Training for Army Recruiter Success: Interviews with Excellent Recruiters

    DTIC Science & Technology

    1987-11-01

    can, you know, jeez, how many milking today, you know. What you milking, what kind of cows you got? Are they aJerseys or Holsteins or what, you know...and I got cow shit all over, that’s just the way it was, right. I had a pair of cowboy boots and I had a cowboy hat and I drove a four- wheel drive pick

  11. Automation of Armored Four Wheel Counter Steer Vehicles

    DTIC Science & Technology

    2015-08-28

    designed and implemented with an operator ease-of-use approach, allowing the simple transition between manual control and autonomous operation. Automation...Public Release The U.S. Army’s efforts in vehicle auto- mation are designed in part to protect soldiers in the field as they traverse poten- tially...System (AMAS) convoy autonomy, sensor, and drive-by-wire kits, to ground-up autonomous vehicle designs , such as TARDEC’s Autonomous Platform

  12. Design and evaluation of a seat orientation controller during uneven terrain driving.

    PubMed

    Candiotti, Jorge; Wang, Hongwu; Chung, Cheng-Shiu; Kamaraj, Deepan C; Grindle, Garrett G; Shino, Motoki; Cooper, Rory A

    2016-03-01

    Electric powered wheelchairs (EPWs) are essential devices for people with disabilities as aids for mobility and quality of life improvement. However, the design of currently available common EPWs is still limited and makes it challenging for the users to drive in both indoor and outdoor environments such as uneven surfaces, steep hills, or cross slopes, making EPWs susceptible to loss of stability and at risk for falls. An alternative wheel-legged robotic wheelchair, "MEBot", was designed to improve the safety and mobility of EPW users in both indoor and outdoor environments. MEBot is able to elevate its six wheels using pneumatic actuators, as well to detect changes in the seat angle using a gyroscope and accelerometer. This capability enables MEBot to provide sensing for a dynamic self-leveling seat application that can maintain the center of mass within the boundaries of the wheelchair, thereby, improving EPW safety. To verify the effectiveness of the application, MEBot was tested on a motion platform with six degrees of freedom to simulate different slopes that could be experienced by the EPW in outdoor environments. The results demonstrate the robustness of the application to maintain the wheelchair seat in a horizontal reference against changes in the ground angle. Published by Elsevier Ltd.

  13. A Mode Matched Triaxial Vibratory Wheel Gyroscope with Fully Decoupled Structure

    PubMed Central

    Xia, Dunzhu; Kong, Lun; Gao, Haiyu

    2015-01-01

    To avoid the oscillation of four unequal masses seen in previous triaxial linear gyroscopes, a modified silicon triaxial gyroscope with a rotary wheel is presented in this paper. To maintain a large sensitivity and suppress the coupling of different modes, this novel gyroscope structure is designed be perfectly symmetrical with a relatively large size of about 9.8 mm × 9.8 mm. It is available for differentially detecting three-axis angular rates simultaneously. To overcome the coupling between drive and sense modes, numerous necessary frames, beams, and anchors are delicately figured out and properly arranged. Besides, some frequency tuning and feedback mechanisms are addressed in the case of post processing after fabrication. To facilitate mode matched function, a new artificial fish swarm algorithm (AFSA) performed faster than particle swarm optimization (PSO) with a frequency split of 108 Hz. Then, by entrusting the post adjustment of the springs dimensions to the finite element method (FEM) software ANSYS, the final frequency splits can be below 3 Hz. The simulation results demonstrate that the modal frequencies in drive and different sense modes are respectively 8001.1, 8002.6, 8002.8 and 8003.3 Hz. Subsequently, different axis cross coupling effects and scale factors are also analyzed. The simulation results effectively validate the feasibility of the design and relevant theoretical calculation. PMID:26593916

  14. Development of an Electric Motor Powered Low Cost Coconut Deshelling Machine

    NASA Astrophysics Data System (ADS)

    Mondal, Imdadul Hoque; Prasanna Kumar, G. V.

    2016-06-01

    An electric motor powered coconut deshelling machine was developed in line with the commercially available unit, but with slight modifications. The machine worked on the principle that the coconut shell can be caused to fail in shear and compressive forces. It consisted of a toothed wheel, a deshelling rod, an electric motor, and a compound chain drive. A bevelled 16 teeth sprocket with 18 mm pitch was used as the toothed wheel. Mild steel round bar of 18 mm diameter was used as the deshelling rod. The sharp edge tip of the deshelling rod was inserted below the shell to apply shear force on the shell, and the fruit was tilted toward the rotary toothed wheel to apply the compressive force on the shell. The speed of rotation of the toothed wheel was set at 34 ± 2 rpm. The output capacity of the machine was found to be 24 coconuts/h with 95 % of the total time effectively used for deshelling. The labour requirement was found to be 43 man-h/1000 nuts. About 13 % of the kernels got scraped and about 7 % got sliced during the operation. The developed coconut deshelling machine was recommended for the minimum annual use of 200 h or deshelling of 4700 coconuts per year. The cost of operation for 200 h of annual use was found to be about ` 47/h. The developed machine was found to be simple, easy to operate, energy efficient, safe and reduce drudgery involved in deshelling by conventional methods.

  15. Comparing deflection measurements of a magnetically steerable catheter using optical imaging and MRI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lillaney, Prasheel, E-mail: Prasheel.Lillaney@ucsf.edu; Caton, Curtis; Martin, Alastair J.

    2014-02-15

    Purpose: Magnetic resonance imaging (MRI) is an emerging modality for interventional radiology, giving clinicians another tool for minimally invasive image-guided interventional procedures. Difficulties associated with endovascular catheter navigation using MRI guidance led to the development of a magnetically steerable catheter. The focus of this study was to mechanically characterize deflections of two different prototypes of the magnetically steerable catheterin vitro to better understand their efficacy. Methods: A mathematical model for deflection of the magnetically steerable catheter is formulated based on the principle that at equilibrium the mechanical and magnetic torques are equal to each other. Furthermore, two different image basedmore » methods for empirically measuring the catheter deflection angle are presented. The first, referred to as the absolute tip method, measures the angle of the line that is tangential to the catheter tip. The second, referred to the base to tip method, is an approximation that is used when it is not possible to measure the angle of the tangent line. Optical images of the catheter deflection are analyzed using the absolute tip method to quantitatively validate the predicted deflections from the mathematical model. Optical images of the catheter deflection are also analyzed using the base to tip method to quantitatively determine the differences between the absolute tip and base to tip methods. Finally, the optical images are compared to MR images using the base to tip method to determine the accuracy of measuring the catheter deflection using MR. Results: The optical catheter deflection angles measured for both catheter prototypes using the absolute tip method fit very well to the mathematical model (R{sup 2} = 0.91 and 0.86 for each prototype, respectively). It was found that the angles measured using the base to tip method were consistently smaller than those measured using the absolute tip method. The deflection angles measured using optical data did not demonstrate a significant difference from the angles measured using MR image data when compared using the base to tip method. Conclusions: This study validates the theoretical description of the magnetically steerable catheter, while also giving insight into different methods and modalities for measuring the deflection angles of the prototype catheters. These results can be used to mechanically model future iterations of the design. Quantifying the difference between the different methods for measuring catheter deflection will be important when making deflection measurements in future studies. Finally, MR images can be used to reliably measure deflection angles since there is no significant difference between the MR and optical measurements.« less

  16. Results From Mars Show Electrostatic Charging of the Mars Pathfinder Sojourner Rover

    NASA Technical Reports Server (NTRS)

    Kolecki, Joseph C.; Siebert, Mark W.

    1998-01-01

    Indirect evidence (dust accumulation) has been obtained indicating that the Mars Pathfinder rover, Sojourner, experienced electrostatic charging on Mars. Lander camera images of the Sojourner rover provide distinctive evidence of dust accumulation on rover wheels during traverses, turns, and crabbing maneuvers. The sol 22 (22nd Martian "day" after Pathfinder landed) end-of-day image clearly shows fine red dust concentrated around the wheel edges with additional accumulation in the wheel hubs. A sol 41 image of the rover near the rock "Wedge" (see the next image) shows a more uniform coating of dust on the wheel drive surfaces with accumulation in the hubs similar to that in the previous image. In the sol 41 image, note particularly the loss of black-white contrast on the Wheel Abrasion Experiment strips (center wheel). This loss of contrast was also seen when dust accumulated on test wheels in the laboratory. We believe that this accumulation occurred because the Martian surface dust consists of clay-sized particles, similar to those detected by Viking, which have become electrically charged. By adhering to the wheels, the charged dust carries a net nonzero charge to the rover, raising its electrical potential relative to its surroundings. Similar charging behavior was routinely observed in an experimental facility at the NASA Lewis Research Center, where a Sojourner wheel was driven in a simulated Martian surface environment. There, as the wheel moved and accumulated dust (see the following image), electrical potentials in excess of 100 V (relative to the chamber ground) were detected by a capacitively coupled electrostatic probe located 4 mm from the wheel surface. The measured wheel capacitance was approximately 80 picofarads (pF), and the calculated charge, 8 x 10(exp -9) coulombs (C). Voltage differences of 100 V and greater are believed sufficient to produce Paschen electrical discharge in the Martian atmosphere. With an accumulated net charge of 8 x 10(exp -9) C, and average arc time of 1 msec, arcs can also occur with estimated arc currents approaching 10 milliamperes (mA). Discharges of this magnitude could interfere with the operation of sensitive electrical or electronic elements and logic circuits. Sojourner rover wheel tested in laboratory before launch to Mars. Before launch, we believed that the dust would become triboelectrically charged as it was moved about and compacted by the rover wheels. In all cases observed in the laboratory, the test wheel charged positively, and the wheel tracks charged negatively. Dust samples removed from the laboratory wheel averaged a few ones to tens of micrometers in size (clay size). Coarser grains were left behind in the wheel track. On Mars, grain size estimates of 2 to 10 mm were derived for the Martian surface materials from the Viking Gas Exchange Experiment. These size estimates approximately match the laboratory samples. Our tentative conclusion for the Sojourner observations is that fine clay-sized particles acquired an electrostatic charge during rover traverses and adhered to the rover wheels, carrying electrical charge to the rover. Since the Sojourner rover carried no instruments to measure this mission's onboard electrical charge, confirmatory measurements from future rover missions on Mars are desirable so that the physical and electrical properties of the Martian surface dust can be characterized. Sojourner was protected by discharge points, and Faraday cages were placed around sensitive electronics. But larger systems than Sojourner are being contemplated for missions to the Martian surface in the foreseeable future. The design of such systems will require a detailed knowledge of how they will interact with their environment. Validated environmental interaction models and guidelines for the Martian surface must be developed so that design engineers can test new ideas prior to cutting hardware. These models and guidelines cannot be validated without actual flighata. Electrical charging of vehicles and, one day, astronauts moving across the Martian surface may have moderate to severe consequences if large potential differences develop. The observations from Sojourner point to just such a possibility. It is desirable to quantify these results. The various lander/rover missions being planned for the upcoming decade provide the means for doing so. They should, therefore, carry instruments that will not only measure vehicle charging but characterize all the natural and induced electrical phenomena occurring in the environment and assess their impact on future missions.

  17. Large - scale Rectangular Ruler Automated Verification Device

    NASA Astrophysics Data System (ADS)

    Chen, Hao; Chang, Luping; Xing, Minjian; Xie, Xie

    2018-03-01

    This paper introduces a large-scale rectangular ruler automated verification device, which consists of photoelectric autocollimator and self-designed mechanical drive car and data automatic acquisition system. The design of mechanical structure part of the device refer to optical axis design, drive part, fixture device and wheel design. The design of control system of the device refer to hardware design and software design, and the hardware mainly uses singlechip system, and the software design is the process of the photoelectric autocollimator and the automatic data acquisition process. This devices can automated achieve vertical measurement data. The reliability of the device is verified by experimental comparison. The conclusion meets the requirement of the right angle test procedure.

  18. Tool For Driving Many Fasteners Simultaneously

    NASA Technical Reports Server (NTRS)

    Cook, Joseph S., Jr.

    1995-01-01

    Proposed tool tightens or loosens several bolts, screws, nuts, or other threaded fasteners arranged in circle on compressor head, automotive wheel, pipe-end flange, or similar object. Enables assembly or disassembly in fraction of time needed to tighten fasteners one at a time. Simultaneously applies same torque to all fasteners, preventing distortion and enhancing reliability. Concept not limited to circular fastener patterns. Adapted to rectangular configurations like on engine intake manifolds, by adding gears to drive train to provide proper spacing. Designed to deliver fixed or adjustable maximum torque. To ensure even seal loading, piston pressure simultaneously ramped from initial to final values to maintain relatively constant torque loading on all fasteners until final specifications limit achieved.

  19. Agile and dexterous robot for inspection and EOD operations

    NASA Astrophysics Data System (ADS)

    Handelman, David A.; Franken, Gordon H.; Komsuoglu, Haldun

    2010-04-01

    The All-Terrain Biped (ATB) robot is an unmanned ground vehicle with arms, legs and wheels designed to drive, crawl, walk and manipulate objects for inspection and explosive ordnance disposal tasks. This paper summarizes on-going development of the ATB platform. Control technology for semi-autonomous legged mobility and dual-arm dexterity is described as well as preliminary simulation and hardware test results. Performance goals include driving on flat terrain, crawling on steep terrain, walking on stairs, opening doors and grasping objects. Anticipated benefits of the adaptive mobility and dexterity of the ATB platform include increased robot agility and autonomy for EOD operations, reduced operator workload and reduced operator training and skill requirements.

  20. Evolutionary algorithm for vehicle driving cycle generation.

    PubMed

    Perhinschi, Mario G; Marlowe, Christopher; Tamayo, Sergio; Tu, Jun; Wayne, W Scott

    2011-09-01

    Modeling transit bus emissions and fuel economy requires a large amount of experimental data over wide ranges of operational conditions. Chassis dynamometer tests are typically performed using representative driving cycles defined based on vehicle instantaneous speed as sequences of "microtrips", which are intervals between consecutive vehicle stops. Overall significant parameters of the driving cycle, such as average speed, stops per mile, kinetic intensity, and others, are used as independent variables in the modeling process. Performing tests at all the necessary combinations of parameters is expensive and time consuming. In this paper, a methodology is proposed for building driving cycles at prescribed independent variable values using experimental data through the concatenation of "microtrips" isolated from a limited number of standard chassis dynamometer test cycles. The selection of the adequate "microtrips" is achieved through a customized evolutionary algorithm. The genetic representation uses microtrip definitions as genes. Specific mutation, crossover, and karyotype alteration operators have been defined. The Roulette-Wheel selection technique with elitist strategy drives the optimization process, which consists of minimizing the errors to desired overall cycle parameters. This utility is part of the Integrated Bus Information System developed at West Virginia University.

Top