Science.gov

Sample records for stellar mass functions

  1. The massive end of the stellar mass function

    NASA Astrophysics Data System (ADS)

    D'Souza, Richard; Vegetti, Simona; Kauffmann, Guinevere

    2015-12-01

    We derive average flux corrections to the Model magnitudes of the Sloan Digital Sky Survey (SDSS) galaxies by stacking together mosaics of similar galaxies in bins of stellar mass and concentration. Extra flux is detected in the outer low surface brightness part of the galaxies, leading to corrections ranging from 0.05 to 0.32 mag for the highest stellar mass galaxies. We apply these corrections to the MPA-JHU (Max-Planck Institute for Astrophysics - John Hopkins University) stellar masses for a complete sample of half a million galaxies from the SDSS survey to derive a corrected galaxy stellar mass function at z = 0.1 in the stellar mass range 9.5 < log (M*/M⊙) < 12.0. We find that the flux corrections and the use of the MPA-JHU stellar masses have a significant impact on the massive end of the stellar mass function, making the slope significantly shallower than that estimated by Li & White, but steeper than derived by Bernardi et al.. This corresponds to a mean comoving stellar mass density of galaxies with stellar masses log (M*/M⊙) ≥ 11.0 that is a factor of 3.36 larger than the estimate by Li & White, but is 43 per cent smaller than reported by Bernardi et al..

  2. Radial Variation in the Stellar Mass Functions of Star Clusters

    NASA Astrophysics Data System (ADS)

    Webb, Jeremy J.; Vesperini, Enrico

    2016-09-01

    A number of recent observational studies of Galactic globular clusters have measured the variation in the slope of a cluster's stellar mass function α with clustercentric distance r. In order to gather a deeper understanding of the information contained in such observations, we have explored the evolution of α(r) for star clusters with a variety of initial conditions using a large suite of N-body simulations. We have specifically studied how the time evolution of α(r) is affected by initial size, mass, binary fraction, primordial mass segregation, black hole retention, an external tidal field, and the initial mass function itself. Previous studies have shown that the evolution of αG is closely related to the amount of mass loss suffered by a cluster. Hence for each simulation we have also followed the evolution of the slope of the cluster's global stellar mass function, αG, and have shown that clusters follow a well-defined track in the αG-dα(r)/d(ln(r/rm)) plane. The location of a cluster on the αG - dα(r)/d(ln(r/rm)) plane can therefore constrain its dynamical history and, in particular, constrain possible variations in the stellar initial mass function. The αG-dα(r)/d(ln(r/rm)) plane thus serves as a key tool for fully exploiting the information contained in wide field studies of cluster stellar mass functions.

  3. The stellar mass function and efficiency of galaxy formation with a varying initial mass function

    NASA Astrophysics Data System (ADS)

    McGee, Sean L.; Goto, Ryosuke; Balogh, Michael L.

    2014-03-01

    Several recent observational studies have concluded that the initial mass function (IMF) of stars varies systematically with galaxy properties such as velocity dispersion. In this paper, we investigate the effect of linking the circular velocity of galaxies, as determined from the Fundamental Plane and Tully-Fisher relations, to the slope of the IMF with parametrizations guided by several of these studies. For each empirical relation, we generate stellar masses of ˜600 000 Sloan Digital Sky Survey galaxies at z ˜ 0.1, by fitting the optical photometry to large suites of synthetic stellar populations that sample the full range of galaxy parameters. We generate stellar mass functions and examine the stellar-to-halo mass relations using sub-halo abundance matching. At the massive end, the stellar mass functions become a power law, instead of the familiar exponential decline. As a result, it is a generic feature of these models that the central galaxy stellar-to-halo mass relation is significantly flatter at high masses (slope ˜-0.3 to -0.4) than in the case of a universal IMF (slope ˜-0.6). We find that regardless of whether the IMF varies systematically in all galaxies or just early types, there is still a well-defined peak in the central stellar-to-halo mass ratio at halo masses of ˜1012 M⊙. In general, the IMF variations explored here lead to significantly higher integrated stellar densities if the assumed dependence on circular velocity applies to all galaxies, including late-types; in fact the more extreme cases can be ruled out, as they imply an unphysical situation in which the stellar fraction exceeds the universal baryon fraction.

  4. Testing galaxy formation models with galaxy stellar mass functions

    NASA Astrophysics Data System (ADS)

    Lim, S. H.; Mo, H. J.; Lan, Ting-Wen; Ménard, Brice

    2016-10-01

    We compare predictions of a number of empirical models and numerical simulations of galaxy formation to the conditional stellar mass functions (CSMF) of galaxies in groups of different masses obtained recently by Lan et al. to test how well different models accommodate the data. The observational data clearly prefer a model in which star formation in low-mass halos changes behavior at a characteristic redshift zc ˜ 2. There is also tentative evidence that this characteristic redshift depends on environment, becoming zc ˜ 4 in regions that eventually evolve into rich clusters of galaxies. The constrained model is used to understand how galaxies form and evolve in dark matter halos, and to make predictions for other statistical properties of the galaxy population, such as the stellar mass functions of galaxies at high z, the star formation and stellar mass assembly histories in dark matter halos. A comparison of our model predictions with those of other empirical models shows that different models can make vastly different predictions, even though all of them are tuned to match the observed stellar mass functions of galaxies.

  5. The Origin and Universality of the Stellar Initial Mass Function

    NASA Astrophysics Data System (ADS)

    Offner, S. S. R.; Clark, P. C.; Hennebelle, P.; Bastian, N.; Bate, M. R.; Hopkins, P. F.; Moraux, E.; Whitworth, A. P.

    We review current theories for the origin of the stellar initial mass function (IMF) with particular focus on the extent to which the IMF can be considered universal across various environments. To place the issue in an observational context, we summarize the techniques used to determine the IMF for different stellar populations, the uncertainties affecting the results, and the evidence for systematic departures from universality under extreme circumstances. We next consider theories for the formation of prestellar cores by turbulent fragmentation and the possible impact of various thermal, hydrodynamic, and magneto-hydrodynamic (MHD) instabilities. We address the conversion of prestellar cores into stars and evaluate the roles played by different processes: competitive accretion, dynamical fragmentation, ejection and starvation, filament fragmentation and filamentary accretion flows, disk formation and fragmentation, critical scales imposed by thermodynamics, and magnetic braking. We present explanations for the characteristic shapes of the present-day prestellar core mass function (CMF) and the IMF and consider what significance can be attached to their apparent similarity. Substantial computational advances have occurred in recent years, and we review the numerical simulations that have been performed to predict the IMF directly and discuss the influence of dynamics, time-dependent phenomena, and initial conditions.

  6. The stellar initial mass function, core mass function and the last-crossing distribution

    NASA Astrophysics Data System (ADS)

    Hopkins, Philip F.

    2012-07-01

    Hennebelle & Chabrierattempted to derive the stellar initial mass function (IMF) as a consequence of lognormal density fluctuations in a turbulent medium, using an argument similar to Press & Schechter for Gaussian random fields. Like that example, however, the solution there does not resolve the 'cloud-in-cloud' problem; it also does not extend to the large scales that dominate the velocity and density fluctuations. In principle, these can change the results at the order-of-magnitude level or more. In this paper, we use the results from Hopkins to generalize the excursion set formalism and derive the exact solution in this regime. We argue that the stellar IMF and core mass function (CMF) should be associated with the last-crossing distribution, i.e. the mass spectrum of bound objects defined on the smallest scale on which they are self-gravitating. This differs from the first-crossing distribution (mass function on the largest self-gravitating scale) which is defined in cosmological applications and which, Hopkins shows, corresponds to the giant molecular cloud (GMC) mass function in discs. We derive an analytic equation for the last-crossing distribution that can be applied for an arbitrary collapse threshold shape in interstellar medium and cosmological studies. With this, we show that the same model that predicts the GMC mass function and large-scale structure of galaxy discs also predicts the CMF - and by extrapolation stellar IMF - in good agreement with observations. The only adjustable parameter in the model is the turbulent velocity power spectrum, which in the range ? gives similar results. We also use this to formally justify why the approximate solution in Hennebelle & Chabrier is reasonable (up to a normalization constant) over the mass range of the CMF/IMF; however, there are significant corrections at intermediate and high masses. We discuss how the exact solutions here can be used to predict additional quantities such as the clustering of stars

  7. THE LOW-MASS STELLAR POPULATION IN L1641: EVIDENCE FOR ENVIRONMENTAL DEPENDENCE OF THE STELLAR INITIAL MASS FUNCTION

    SciTech Connect

    Hsu, Wen-Hsin; Hartmann, Lee; Allen, Lori; Hernandez, Jesus; Megeath, S. T.; Mosby, Gregory; Tobin, John J.; Espaillat, Catherine

    2012-06-10

    We present results from an optical photometric and spectroscopic survey of the young stellar population in L1641, the low-density star-forming region of the Orion A cloud south of the Orion Nebula Cluster (ONC). Our goal is to determine whether L1641 has a large enough low-mass population to make the known lack of high-mass stars a statistically significant demonstration of environmental dependence of the upper mass stellar initial mass function (IMF). Our spectroscopic sample consists of IR-excess objects selected from the Spitzer/IRAC survey and non-excess objects selected from optical photometry. We have spectral confirmation of 864 members, with another 98 probable members; of the confirmed members, 406 have infrared excesses and 458 do not. Assuming the same ratio of stars with and without IR excesses in the highly extincted regions, L1641 may contain as many as {approx}1600 stars down to {approx}0.1 M{sub Sun }, comparable within a factor of two to the ONC. Compared to the standard models of the IMF, L1641 is deficient in O and early B stars to a 3{sigma}-4{sigma} significance level, assuming that we know of all the massive stars in L1641. With a forthcoming survey of the intermediate-mass stars, we will be in a better position to make a direct comparison with the neighboring, dense ONC, which should yield a stronger test of the dependence of the high-mass end of the stellar IMF on environment.

  8. Low-luminosity stellar mass functions in globular clusters

    SciTech Connect

    Richer, H.B.; Fahlman, G.G.; Buonanno, R.; Fusi Pecci, F. Roma Osservatorio Astronomico, Rome Bologna Universita )

    1990-08-01

    New data are presented on cluster luminosity functions and mass functions for selected fields in the globular clusters M13 and M71, extending down the main sequence to at least 0.2 solar mass. In this experiment, CCD photometry data were obtained at the prime focus of the CFHT on the cluster fields that were far from the cluster center. Luminosity functions were constructed, using the ADDSTAR routine to correct for the background, and mass functions were derived using the available models. The mass functions obtained for M13 and M71 were compared to existing data for NGC 6397. Results show that (1) all three globular clusters display a marked change in slope at about 0.4 solar mass, with the slopes becoming considerably steeper toward lower masses; (2) there is no correlation between the slope of the mass function and metallicity; and (3) the low-mass slope of the mass function for M13 is much steeper than for NGC 6397 and M71. 22 refs.

  9. RESOLVE and ECO: The Halo Mass-dependent Shape of Galaxy Stellar and Baryonic Mass Functions

    NASA Astrophysics Data System (ADS)

    Eckert, Kathleen D.; Kannappan, Sheila J.; Stark, David V.; Moffett, Amanda J.; Berlind, Andreas A.; Norris, Mark A.

    2016-06-01

    In this work, we present galaxy stellar and baryonic (stars plus cold gas) mass functions (SMF and BMF) and their halo mass dependence for two volume-limited data sets. The first, RESOLVE-B, coincides with the Stripe 82 footprint and is extremely complete down to baryonic mass M bary ˜ 109.1 M ⊙, probing the gas-rich dwarf regime below M bary ˜ 1010 M ⊙. The second, ECO, covers a ˜40× larger volume (containing RESOLVE-A) and is complete to M bary ˜ 109.4 M ⊙. To construct the SMF and BMF we implement a new “cross-bin sampling” technique with Monte Carlo sampling from the full likelihood distributions of stellar or baryonic mass. Our SMFs exhibit the “plateau” feature starting below M star ˜ 1010 M ⊙ that has been described in prior work. However, the BMF fills in this feature and rises as a straight power law below ˜1010 M ⊙, as gas-dominated galaxies become the majority of the population. Nonetheless, the low-mass slope of the BMF is not as steep as that of the theoretical dark matter halo MF. Moreover, we assign group halo masses by abundance matching, finding that the SMF and BMF, separated into four physically motivated halo mass regimes, reveal complex structure underlying the simple shape of the overall MFs. In particular, the satellite MFs are depressed below the central galaxy MF “humps” in groups with mass <1013.5 M ⊙ yet rise steeply in clusters. Our results suggest that satellite destruction and stripping are active from the point of nascent group formation. We show that the key role of groups in shaping MFs enables reconstruction of a given survey’s SMF or BMF based on its group halo mass distribution.

  10. Bondi-Hoyle-Littleton accretion and the upper-mass stellar initial mass function

    NASA Astrophysics Data System (ADS)

    Ballesteros-Paredes, Javier; Hartmann, Lee W.; Pérez-Goytia, Nadia; Kuznetsova, Aleksandra

    2015-09-01

    We report on a series of numerical simulations of gas clouds with self-gravity forming sink particles, adopting an isothermal equation of state to isolate the effects of gravity from thermal physics on the resulting sink mass distributions. Simulations starting with supersonic velocity fluctuations develop sink mass functions with a high-mass power-law tail dN/d log M ∝ MΓ, Γ = -1 ± 0.1, independent of the initial Mach number of the velocity field. Similar results but with weaker statistical significance hold for a simulation starting with initial density fluctuations. This mass function power-law dependence agrees with the asymptotic limit found by Zinnecker assuming Bondi-Hoyle-Littleton (BHL) accretion, even though the mass accretion rates of individual sinks show significant departures from the predicted dot{M}∝ M^2 behaviour. While BHL accretion is not strictly applicable due to the complexity of the environment, we argue that the final mass functions are the result of a relative M2 dependence resulting from gravitationally focused accretion. Our simulations may show the power-law mass function particularly clearly compared with others because our adoption of an isothermal equation of state limits the effects of thermal physics in producing a broad initial fragmentation spectrum; Γ → -1 is an asymptotic limit found only when sink masses grow well beyond their initial values. While we have purposely eliminated many additional physical processes (radiative transfer, feedback) which can affect the stellar mass function, our results emphasize the importance of gravitational focusing for massive star formation.

  11. Stellar mass functions of galaxies, discs and spheroids at z ˜ 0.1

    NASA Astrophysics Data System (ADS)

    Thanjavur, Karun; Simard, Luc; Bluck, Asa F. L.; Mendel, Trevor

    2016-06-01

    We present the stellar mass functions (SMFs) and mass densities of galaxies, and their spheroid and disc components in the local (z ˜ 0.1) Universe over the range 8.9 ≤ log(M/M⊙) ≤ 12 from spheroid+disc decompositions and corresponding stellar masses of a sample of over 600 000 galaxies in the Sloan Digital Sky Survey Data Release Seven spectroscopic sample. The galaxy SMF is well represented by a single Schechter function (M* = 11.116 ± 0.011, α = -1.145 ± 0.008), though with a hint of a steeper faint end slope. The corresponding stellar mass densities are (2.670 ± 0.110), (1.687 ± 0.063) and (0.910 ± 0.029)× 108 M⊙ Mpc-3 for galaxies, spheroids and discs, respectively. We identify a crossover stellar mass of log(M/M⊙) = 10.3 ± 0.030 at which the spheroid and disc SMFs are equal. Relative contributions of four distinct spheroid/disc dominated sub-populations to the overall galaxy SMF are also presented. The mean disc-to-spheroid stellar mass ratio shows a five-fold disc dominance at the low-mass end, decreasing monotonically with a corresponding increase in the spheroidal fraction till the two are equal at a galaxy stellar mass, log(M/M⊙) = 10.479 ± 0.013; the dominance of spheroids then grows with increasing stellar mass. The relative numbers of composite disc and spheroid-dominated galaxies show peaks in their distributions, perhaps indicative of a preferred galaxy mass. Our characterization of the low-redshift galaxy population provides stringent constraints for numerical simulations to reproduce.

  12. Systematic variation of the stellar initial mass function in early-type galaxies.

    PubMed

    Cappellari, Michele; McDermid, Richard M; Alatalo, Katherine; Blitz, Leo; Bois, Maxime; Bournaud, Frédéric; Bureau, M; Crocker, Alison F; Davies, Roger L; Davis, Timothy A; de Zeeuw, P T; Duc, Pierre-Alain; Emsellem, Eric; Khochfar, Sadegh; Krajnović, Davor; Kuntschner, Harald; Lablanche, Pierre-Yves; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Scott, Nicholas; Serra, Paolo; Weijmans, Anne-Marie; Young, Lisa M

    2012-04-26

    Much of our knowledge of galaxies comes from analysing the radiation emitted by their stars, which depends on the present number of each type of star in the galaxy. The present number depends on the stellar initial mass function (IMF), which describes the distribution of stellar masses when the population formed, and knowledge of it is critical to almost every aspect of galaxy evolution. More than 50 years after the first IMF determination, no consensus has emerged on whether it is universal among different types of galaxies. Previous studies indicated that the IMF and the dark matter fraction in galaxy centres cannot both be universal, but they could not convincingly discriminate between the two possibilities. Only recently were indications found that massive elliptical galaxies may not have the same IMF as the Milky Way. Here we report a study of the two-dimensional stellar kinematics for the large representative ATLAS(3D) sample of nearby early-type galaxies spanning two orders of magnitude in stellar mass, using detailed dynamical models. We find a strong systematic variation in IMF in early-type galaxies as a function of their stellar mass-to-light ratios, producing differences of a factor of up to three in galactic stellar mass. This implies that a galaxy's IMF depends intimately on the galaxy's formation history. PMID:22538610

  13. Systematic variation of the stellar initial mass function in early-type galaxies.

    PubMed

    Cappellari, Michele; McDermid, Richard M; Alatalo, Katherine; Blitz, Leo; Bois, Maxime; Bournaud, Frédéric; Bureau, M; Crocker, Alison F; Davies, Roger L; Davis, Timothy A; de Zeeuw, P T; Duc, Pierre-Alain; Emsellem, Eric; Khochfar, Sadegh; Krajnović, Davor; Kuntschner, Harald; Lablanche, Pierre-Yves; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Scott, Nicholas; Serra, Paolo; Weijmans, Anne-Marie; Young, Lisa M

    2012-04-25

    Much of our knowledge of galaxies comes from analysing the radiation emitted by their stars, which depends on the present number of each type of star in the galaxy. The present number depends on the stellar initial mass function (IMF), which describes the distribution of stellar masses when the population formed, and knowledge of it is critical to almost every aspect of galaxy evolution. More than 50 years after the first IMF determination, no consensus has emerged on whether it is universal among different types of galaxies. Previous studies indicated that the IMF and the dark matter fraction in galaxy centres cannot both be universal, but they could not convincingly discriminate between the two possibilities. Only recently were indications found that massive elliptical galaxies may not have the same IMF as the Milky Way. Here we report a study of the two-dimensional stellar kinematics for the large representative ATLAS(3D) sample of nearby early-type galaxies spanning two orders of magnitude in stellar mass, using detailed dynamical models. We find a strong systematic variation in IMF in early-type galaxies as a function of their stellar mass-to-light ratios, producing differences of a factor of up to three in galactic stellar mass. This implies that a galaxy's IMF depends intimately on the galaxy's formation history.

  14. A Fragmentation-Coalescence Model for the Initial Stellar Mass Function: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Yoshii, Y.; Saio, H.

    The authors have derived the initial stellar mass function, taking into account both effects of fragmentation of the gas clouds and coalescence among the fragments themselves. Protostars formed in a parent cloud establish a mean radiation field which interacts with grains to heat the gas, hence the next-generation protostars are necessarily massive. The coalescence among the fragments modifies the massive part of the mass spectrum. If one assumes L(m) ∝ m3 for protostars, a Salpeter-like initial stellar mass function is obtained.

  15. The impact of Spitzer infrared data on stellar mass estimates - and a revised galaxy stellar mass function at 0 < z < 5

    NASA Astrophysics Data System (ADS)

    Elsner, F.; Feulner, G.; Hopp, U.

    2008-01-01

    Aims:We estimate stellar masses of galaxies in the high redshift universe with the intention of determining the influence of newly available Spitzer/IRAC infrared data on the analysis. Based on the results, we probe the mass assembly history of the universe. Methods: We use the GOODS-MUSIC catalog, which provides multiband photometry from the U-filter to the 8 μm Spitzer band for almost 15 000 galaxies with either spectroscopic (for ≈7% of the sample) or photometric redshifts, and apply a standard model fitting technique to estimate stellar masses. We than repeat our calculations with fixed photometric redshifts excluding Spitzer photometry and directly compare the outcomes to look for systematic deviations. Finally we use our results to compute stellar mass functions and mass densities up to redshift z = 5. Results: We find that stellar masses tend to be overestimated on average if further constraining Spitzer data are not included into the analysis. Whilst this trend is small up to intermediate redshifts z ⪉ 2.5 and falls within the typical error in mass, the deviation increases strongly for higher redshifts and reaches a maximum of a factor of three at redshift z ≈ 3.5. Thus, up to intermediate redshifts, results for stellar mass density are in good agreement with values taken from literature calculated without additional Spitzer photometry. At higher redshifts, however, we find a systematic trend towards lower mass densities if Spitzer/IRAC data are included.

  16. Stellar mass functions: methods, systematics and results for the local Universe

    NASA Astrophysics Data System (ADS)

    Weigel, Anna K.; Schawinski, Kevin; Bruderer, Claudio

    2016-06-01

    We present a comprehensive method for determining stellar mass functions, and apply it to samples in the local Universe. We combine the classical 1/Vmax approach with STY, a parametric maximum likelihood method and step-wise maximum likelihood, a non-parametric maximum likelihood technique. In the parametric approach, we are assuming that the stellar mass function can be modelled by either a single or a double Schechter function and we use a likelihood ratio test to determine which model provides a better fit to the data. We discuss how the stellar mass completeness as a function of z biases the three estimators and how it can affect, especially the low-mass end of the stellar mass function. We apply our method to Sloan Digital Sky Survey DR7 data in the redshift range from 0.02 to 0.06. We find that the entire galaxy sample is best described by a double Schechter function with the following parameters: log (M*/M⊙) = 10.79 ± 0.01, log (Φ ^{{ast }}_1/h^3 Mpc^{-3}) = -3.31 ± 0.20, α1 = -1.69 ± 0.10, log (Φ ^{{ast }}_2/h^3 Mpc^{-3}) = -2.01 ± 0.28 and α2 = -0.79 ± 0.04. We also use morphological classifications from Galaxy Zoo and halo mass, overdensity, central/satellite, colour and specific star formation rate measurements to split the galaxy sample into over 130 subsamples. We determine and present the stellar mass functions and the best-fitting Schechter function parameters for each of these subsamples.

  17. The High-mass Stellar Initial Mass Function in M31 Clusters

    NASA Astrophysics Data System (ADS)

    Weisz, Daniel R.; Johnson, L. Clifton; Foreman-Mackey, Daniel; Dolphin, Andrew E.; Beerman, Lori C.; Williams, Benjamin F.; Dalcanton, Julianne J.; Rix, Hans-Walter; Hogg, David W.; Fouesneau, Morgan; Johnson, Benjamin D.; Bell, Eric F.; Boyer, Martha L.; Gouliermis, Dimitrios; Guhathakurta, Puragra; Kalirai, Jason S.; Lewis, Alexia R.; Seth, Anil C.; Skillman, Evan D.

    2015-06-01

    We have undertaken the largest systematic study of the high-mass stellar initial mass function (IMF) to date using the optical color–magnitude diagrams (CMDs) of 85 resolved, young (4 {Myr}\\lt t\\lt 25 {Myr}), intermediate mass star clusters (103–104 M⊙), observed as part of the Panchromatic Hubble Andromeda Treasury program. We fit each cluster’s CMD to measure its mass function (MF) slope for stars ≳2 M⊙. By modeling the ensemble of clusters, we find the distribution of MF slopes is best described by Γ = +{1.45}-0.06+0.03 with a very small intrinsic scatter and no drastic outliers. This model allows the MF slope to depend on cluster mass, size, and age, but the data imply no significant dependencies within this regime of cluster properties. The lack of an age dependence suggests that the MF slope has not significantly evolved over the first ∼25 Myr and provides direct observational evidence that the measured MF represents the IMF. Taken together, this analysis—based on an unprecedented large sample of young clusters, homogeneously constructed CMDs, well-defined selection criteria, and consistent principled modeling—implies that the high-mass IMF slope in M31 clusters is universal. The IMF has a slope (Γ = +{1.45}-0.06+0.03; statistical uncertainties) that is slightly steeper than the canonical Kroupa (+1.30) and Salpeter (+1.35) values, and our measurement of it represents a factor of ∼20 improvement in precision over the Kroupa IMF (+1.30 ± 0.7). Using our inference model on select Milky Way (MW) and LMC high-mass IMF studies from the literature, we find {Γ }{MW}∼ +1.15+/- 0.1 and {Γ }{LMC}∼ +1.3+/- 0.1, both with intrinsic scatter of ∼0.3–0.4 dex. Thus, while the high-mass IMF in the Local Group may be universal, systematics in the literature of IMF studies preclude any definitive conclusions; homogenous investigations of the high-mass IMF in the local universe are needed to overcome this limitation. Consequently, the present

  18. DYNAMICAL VERSUS STELLAR MASSES IN COMPACT EARLY-TYPE GALAXIES: FURTHER EVIDENCE FOR SYSTEMATIC VARIATION IN THE STELLAR INITIAL MASS FUNCTION

    SciTech Connect

    Conroy, Charlie; Dutton, Aaron A.; Graves, Genevieve J.; Mendel, J. Trevor; Van Dokkum, Pieter G.

    2013-10-20

    Several independent lines of evidence suggest that the stellar initial mass function (IMF) in early-type galaxies becomes increasingly 'bottom-heavy' with increasing galaxy mass and/or velocity dispersion, σ. Here we consider evidence for IMF variation in a sample of relatively compact early-type galaxies drawn from the Sloan Digital Sky Survey. These galaxies are of sufficiently high stellar density that a dark halo likely makes a minor contribution to the total dynamical mass, M {sub dyn}, within one effective radius. We fit our detailed stellar population synthesis models to the stacked absorption line spectra of these galaxies in bins of σ and find evidence from IMF-sensitive spectral features for a bottom-heavy IMF at high σ. We also apply simple 'mass-follows-light' dynamical models to the same data and find that M {sub dyn} is significantly higher than what would be expected if these galaxies were stellar dominated and had a universal Milky Way IMF. Adopting M {sub dyn} ≈ M {sub *} therefore implies that the IMF is 'heavier' at high σ. Most importantly, the quantitative amount of inferred IMF variation is very similar between the two techniques, agreeing to within ∼< 0.1 dex in mass. The agreement between two independent techniques, when applied to the same data, provides compelling evidence for systematic variation in the IMF as a function of early-type galaxy velocity dispersion. Any alternative explanations must reproduce both the results from dynamical and stellar population-based techniques.

  19. EVOLUTION OF THE HIGH-MASS END OF THE STELLAR INITIAL MASS FUNCTIONS IN STARBURST GALAXIES

    SciTech Connect

    Bekki, Kenji; Meurer, Gerhardt R.

    2013-03-01

    We investigate the time evolution and spatial variation of the stellar initial mass function (IMF) in star-forming disk galaxies by using chemodynamical simulations with an IMF model depending both on local densities and metallicities ([Fe/H]) of the interstellar medium (ISM). We find that the slope ({alpha}) of a power-law IMF (N(m){proportional_to}m {sup -{alpha}}) for stellar masses larger than 1 M{sub Sun} evolves from the canonical Salpeter IMF ({alpha} Almost-Equal-To 2.35) to be moderately top-heavy one ({alpha} Almost-Equal-To 1.9) in the simulated disk galaxies with starbursts triggered by galaxy interaction. We also find that {alpha} in star-forming regions correlates with star formation rate densities ({Sigma}{sub SFR} in units of M{sub Sun} yr{sup -1} kpc{sup -2}). Feedback effects of Type Ia and II supernovae are found to prevent IMFs from being too top-heavy ({alpha} < 1.5). The simulation predicts {alpha} Almost-Equal-To 0.23log {Sigma}{sub SFR} + 1.7 for log {Sigma}{sub SFR} {>=} -2 (i.e., more top-heavy in higher {Sigma}{sub SFR}), which is reasonably consistent with corresponding recent observational results. The present study also predicts that inner regions of starburst disk galaxies have smaller {alpha} and thus are more top-heavy (d{alpha}/dR {approx} 0.07 kpc{sup -1} for R {<=} 5 kpc). The predicted radial {alpha} gradient can be tested against future observational studies of the {alpha} variation in star-forming galaxies.

  20. Reconciling the Observed Star-forming Sequence with the Observed Stellar Mass Function

    NASA Astrophysics Data System (ADS)

    Leja, Joel; van Dokkum, Pieter G.; Franx, Marijn; Whitaker, Katherine E.

    2015-01-01

    We examine the connection between the observed star-forming sequence (SFR vprop M α) and the observed evolution of the stellar mass function in the range 0.2 < z < 2.5. We find that the star-forming sequence cannot have a slope α <~ 0.9 at all masses and redshifts because this would result in a much higher number density at 10 < log (M/M ⊙) < 11 by z = 1 than is observed. We show that a transition in the slope of the star-forming sequence, such that α = 1 at log (M/M ⊙) < 10.5 and α = 0.7-0.13z (Whitaker et al.) at log (M/M ⊙) > 10.5, greatly improves agreement with the evolution of the stellar mass function. We then derive a star-forming sequence that reproduces the evolution of the mass function by design. This star-forming sequence is also well described by a broken power law, with a shallow slope at high masses and a steep slope at low masses. At z = 2, it is offset by ~0.3 dex from the observed star-forming sequence, consistent with the mild disagreement between the cosmic star formation rate (SFR) and recent observations of the growth of the stellar mass density. It is unclear whether this problem stems from errors in stellar mass estimates, errors in SFRs, or other effects. We show that a mass-dependent slope is also seen in other self-consistent models of galaxy evolution, including semianalytical, hydrodynamical, and abundance-matching models. As part of the analysis, we demonstrate that neither mergers nor hidden low-mass quiescent galaxies are likely to reconcile the evolution of the mass function and the star-forming sequence. These results are supported by observations from Whitaker et al.

  1. RECONCILING THE OBSERVED STAR-FORMING SEQUENCE WITH THE OBSERVED STELLAR MASS FUNCTION

    SciTech Connect

    Leja, Joel; Van Dokkum, Pieter G.; Franx, Marijn; Whitaker, Katherine E.

    2015-01-10

    We examine the connection between the observed star-forming sequence (SFR ∝ M {sup α}) and the observed evolution of the stellar mass function in the range 0.2 < z < 2.5. We find that the star-forming sequence cannot have a slope α ≲ 0.9 at all masses and redshifts because this would result in a much higher number density at 10 < log (M/M {sub ☉}) < 11 by z = 1 than is observed. We show that a transition in the slope of the star-forming sequence, such that α = 1 at log (M/M {sub ☉}) < 10.5 and α = 0.7-0.13z (Whitaker et al.) at log (M/M {sub ☉}) > 10.5, greatly improves agreement with the evolution of the stellar mass function. We then derive a star-forming sequence that reproduces the evolution of the mass function by design. This star-forming sequence is also well described by a broken power law, with a shallow slope at high masses and a steep slope at low masses. At z = 2, it is offset by ∼0.3 dex from the observed star-forming sequence, consistent with the mild disagreement between the cosmic star formation rate (SFR) and recent observations of the growth of the stellar mass density. It is unclear whether this problem stems from errors in stellar mass estimates, errors in SFRs, or other effects. We show that a mass-dependent slope is also seen in other self-consistent models of galaxy evolution, including semianalytical, hydrodynamical, and abundance-matching models. As part of the analysis, we demonstrate that neither mergers nor hidden low-mass quiescent galaxies are likely to reconcile the evolution of the mass function and the star-forming sequence. These results are supported by observations from Whitaker et al.

  2. MOIRCS DEEP SURVEY. IV. EVOLUTION OF GALAXY STELLAR MASS FUNCTION BACK TO z {approx} 3

    SciTech Connect

    Kajisawa, M.; Ichikawa, T.; Yamada, T.; Akiyama, M.; Tokoku, C.; Yoshikawa, T.; Tanaka, I.; Suzuki, R.; Konishi, M.; Uchimoto, Y. K.; Ouchi, M.; Iwata, I.; Hamana, T.; Onodera, M.

    2009-09-10

    We use very deep near-infrared (NIR) imaging data obtained in MOIRCS Deep Survey (MODS) to investigate the evolution of the galaxy stellar mass function back to z {approx} 3. The MODS data reach J = 24.2, H = 23.1, and K = 23.1 (5{sigma}, Vega magnitude) over 103 arcmin{sup 2} (wide) and J = 25.1, H = 23.7, and K = 24.1 over 28 arcmin{sup 2} (deep) in the GOODS-North region. The wide and very deep NIR data allow us to measure the number density of galaxies down to low stellar mass (10{sup 9}-10{sup 10} M{sub sun}) even at high redshift with high statistical accuracy. The normalization of the mass function decreases with redshift, and the integrated stellar mass density becomes {approx}8%-18% of the local value at z {approx} 2 and {approx}4%-9% at z {approx} 3, which are consistent with results of previous studies in general fields. Furthermore, we found that the low-mass slope becomes steeper with redshift from {alpha} {approx} -1.3 at z {approx} 1 to {alpha} {approx} -1.6 at z {approx} 3 and that the evolution of the number density of low-mass (10{sup 9}-10{sup 10} M{sub sun}) galaxies is weaker than that of M* ({approx}10{sup 11} M{sub sun}) galaxies. This indicates that the contribution of low-mass galaxies to the total stellar mass density has been significant at high redshift. The steepening of the low-mass slope with redshift is an opposite trend expected from the stellar mass dependence of the specific star formation rate reported in previous studies. The present result suggests that the hierarchical merging process overwhelmed the effect of the stellar mass growth by star formation and was very important for the stellar mass assembly of these galaxies at 1 {approx}< z {approx}< 3.

  3. SALPETER NORMALIZATION OF THE STELLAR INITIAL MASS FUNCTION FOR MASSIVE GALAXIES AT z ∼ 1

    SciTech Connect

    Shetty, Shravan; Cappellari, Michele

    2014-05-10

    The stellar initial mass function (IMF) is a key parameter for studying galaxy evolution. Here we measure the IMF mass normalization for a sample of 68 field galaxies in the redshift range 0.7-0.9 within the Extended Groth Strip. To do this we derive the total (stellar + dark matter) mass-to-light [(M/L)] ratio using axisymmetric dynamical models. Within the region where we have kinematics (about one half-light radius), the models assume (1) that mass follows light, implying negligible differences between the slope of the stellar and total density profiles, (2) constant velocity anisotropy (β{sub z}≡1−σ{sub z}{sup 2}/σ{sub R}{sup 2}=0.2), and (3) that galaxies are seen at the average inclination for random orientations (i.e., i = 60°, where i = 90° represents edge-on). The dynamical models are based on anisotropic Jeans equations, constrained by Hubble Space Telescope/Advanced Camera for Surveys imaging and the central velocity dispersion of the galaxies, extracted from good-quality spectra taken by the DEEP2 survey. The population (M/L) are derived from full-spectrum fitting of the same spectra with a grid of simple stellar population models. Recent dynamical modeling results from the ATLAS{sup 3D} project and numerical simulations of galaxy evolution indicate that the dark matter fraction within the central regions of our galaxies should be small. This suggests that our derived total (M/L) should closely approximate the stellar M/L. Our comparison of the dynamical (M/L) and the population (M/L) then implies that for galaxies with stellar mass M {sub *} ≳ 10{sup 11} M {sub ☉}, the average normalization of the IMF is consistent with a Salpeter slope, with a substantial scatter. This is similar to what is found within a similar mass range for nearby galaxies.

  4. A fragmentation-coalescence model for the initial stellar mass function

    NASA Astrophysics Data System (ADS)

    Yoshii, Y.; Saio, H.

    1985-08-01

    The authors have derived the initial stellar mass function (IMF), taking into account both effects of fragmentation of the gas clouds and coalescence among the fragments themselves. For fragmentation Silk's scenario is adopted, i.e., protostars formed in a parent cloud establish a mean field of radiation which interacts with grains to heat the gas. The maximum mass of stars is determined by the constraint that the local Jeans length should be smaller than the mean separation among preexisting protostars. The effects of coalescence upon the resulting mass spectrum are studied. If one assumes L(m) ∝ m3 for protostars, a Salpeter-like initial stellar mass function is obtained, whereas for L(m) ∝ m1.5, the resulting slope of the IMF becomes nearly flat.

  5. CONNECTION BETWEEN DYNAMICALLY DERIVED INITIAL MASS FUNCTION NORMALIZATION AND STELLAR POPULATION PARAMETERS

    SciTech Connect

    McDermid, Richard M.; Cappellari, Michele; Bayet, Estelle; Bureau, Martin; Davies, Roger L.; Alatalo, Katherine; Blitz, Leo; Bois, Maxime; Bournaud, Frédéric; Duc, Pierre-Alain; Davis, Timothy A.; De Zeeuw, P. T.; Emsellem, Eric; Kuntschner, Harald; Khochfar, Sadegh; Krajnović, Davor; Morganti, Raffaella; Oosterloo, Tom; Naab, Thorsten; and others

    2014-09-10

    We report on empirical trends between the dynamically determined stellar initial mass function (IMF) and stellar population properties for a complete, volume-limited sample of 260 early-type galaxies from the ATLAS{sup 3D} project. We study trends between our dynamically derived IMF normalization α{sub dyn} ≡ (M/L){sub stars}/(M/L){sub Salp} and absorption line strengths, and interpret these via single stellar population-equivalent ages, abundance ratios (measured as [α/Fe]), and total metallicity, [Z/H]. We find that old and alpha-enhanced galaxies tend to have on average heavier (Salpeter-like) mass normalization of the IMF, but stellar population does not appear to be a good predictor of the IMF, with a large range of α{sub dyn} at a given population parameter. As a result, we find weak α{sub dyn}-[α/Fe] and α{sub dyn} –Age correlations and no significant α{sub dyn} –[Z/H] correlation. The observed trends appear significantly weaker than those reported in studies that measure the IMF normalization via the low-mass star demographics inferred through stellar spectral analysis.

  6. EVIDENCE FOR ENVIRONMENTAL DEPENDENCE OF THE UPPER STELLAR INITIAL MASS FUNCTION IN ORION A

    SciTech Connect

    Hsu, Wen-Hsin; Hartmann, Lee; Tobin, John J.; Ingleby, Laura; Allen, Lori; Hernandez, Jesus; Megeath, S. T.

    2013-02-20

    We extend our previous study of the stellar population of L1641, the lower-density star-forming region of the Orion A cloud south of the dense Orion Nebula Cluster (ONC), with the goal of testing whether there is a statistically significant deficiency of high-mass stars in low-density regions. Previously, we compared the observed ratio of low-mass stars to high-mass stars with theoretical models of the stellar initial mass function (IMF) to infer a deficiency of the highest-mass stars in L1641. We expand our population study to identify the intermediate-mass (late B to G) L1641 members in an attempt to make a more direct comparison with the mass function of the nearby ONC. The spectral-type distribution and the K-band luminosity function of L1641 are similar to those of the ONC, but problems of incompleteness and contamination prevent us from making a detailed test for differences. We limit our analysis to statistical tests of the ratio of high-mass to low-mass stars, which indicate a probability of only 3% that the ONC and the southern region of L1641 were drawn from the same population, supporting the hypothesis that the upper-mass end of the IMF is dependent on environmental density.

  7. Evidence for two distinct stellar initial mass functions: probing for clues to the dichotomy

    SciTech Connect

    Zaritsky, Dennis; Colucci, Janet E.; Bernstein, Rebecca A.; Pessev, Peter M.

    2014-12-01

    We present new measurements of the velocity dispersions of 11 Local Group globular clusters using spatially integrated spectra, to expand our sample of clusters with precise integrated-light velocity dispersions to 29, over 4 different host galaxies. This sample allows us to further our investigation of the stellar mass function among clusters, with a particular emphasis on a search for the driver of the apparent bimodal nature of the inferred stellar initial mass function (IMF). We confirm our previous result that clusters fall into two classes. If, as we argue, this behavior reflects a variation in the stellar IMF, the cause of that variation is not clear. The variations do not correlate with formation epoch as quantified by age, metallicity quantified by [Fe/H], host galaxy, or internal structure as quantified by velocity dispersion, physical size, relaxation time, or luminosity. The stellar mass-to-light ratios, Y{sub *}, of the high and low Y{sub *} cluster populations are well-matched to those found in recent studies of early and late type galaxies, respectively.

  8. On the temporal evolution of the stellar mass function of Galactic clusters

    NASA Astrophysics Data System (ADS)

    De Marchi, Guido; Paresce, Francesco; Portegies Zwart, Simon

    2010-01-01

    We show that we can obtain a good fit to the present-day stellar-mass functions of a large sample of young and old Galactic clusters with a tapered Salpeter power-law distribution function with an exponential truncation of the form dN/dm ∝ mα [1 - exp(-m/mc)β]. The average value of the power-law index α is ~-2.2, very close to the Salpeter value of -2.3, while the characteristic mass, mc, is in the range 0.1-0.6M⊙ and does not seem to vary in any systematic way with the present cluster parameters such as metal abundance, total cluster mass or central concentration. However, the characteristic mass shows a remarkable correlation with the dynamical age of the cluster, namely mc/M⊙ ≃ 0.15 + 0.5 × t3/4dyn, where tdyn is the dynamical time, taken as the ratio of cluster age and dissolution time. The small scatter around this correlation is likely due to uncertainties on the estimated value of tdyn. We attribute the observed trend to the onset of mass segregation through two-body relaxation in a tidal environment, causing preferential loss of low-mass stars from the cluster and hence a drift of the characteristic mass towards higher values. If dynamical evolution is indeed at the origin of the observed trend, it seems plausible that globular clusters, now with mc ≃ 0.35M⊙, were born with a stellar mass function very similar to that measured today in the youngest Galactic clusters and with a value of mc around 0.15 M⊙. This is consistent with the absence of a turn-over in the mass function of the Galactic bulge down to the observational limit at ~0.2M⊙ and argues for the universality of the initial mass function of Population I and II stars.

  9. Evidence for top-heavy stellar initial mass functions with increasing density and decreasing metallicity

    NASA Astrophysics Data System (ADS)

    Marks, Michael; Kroupa, Pavel; Dabringhausen, Jörg; Pawlowski, Marcel S.

    2012-05-01

    Residual-gas expulsion after cluster formation has recently been shown to leave an imprint in the low-mass present-day stellar mass function (PDMF) which allowed the estimation of birth conditions of some Galactic globular clusters (GCs) such as mass, radius and star formation efficiency. We show that in order to explain their characteristics (masses, radii, metallicity and PDMF) their stellar initial mass function (IMF) must have been top heavy. It is found that the IMF is required to become more top heavy the lower the cluster metallicity and the larger the pre-GC cloud-core density are. The deduced trends are in qualitative agreement with theoretical expectation. The results are consistent with estimates of the shape of the high-mass end of the IMF in the Arches cluster, Westerlund 1, R136 and NGC 3603, as well as with the IMF independently constrained for ultra-compact dwarf galaxies (UCDs). The latter suggests that GCs and UCDs might have formed along the same channel or that UCDs formed via mergers of GCs. A Fundamental Plane is found which describes the variation of the IMF with density and metallicity of the pre-GC cloud cores. The implications for the evolution of galaxies and chemical enrichment over cosmological times are expected to be major.

  10. Transition of the stellar initial mass function explored using binary population synthesis

    NASA Astrophysics Data System (ADS)

    Suda, Takuma; Komiya, Yutaka; Yamada, Shimako; Katsuta, Yutaka; Aoki, Wako; Gil-Pons, Pilar; Doherty, Carolyn L.; Campbell, Simon W.; Wood, Peter R.; Fujimoto, Masayuki Y.

    2013-05-01

    The stellar initial mass function (IMF) plays a crucial role in the determination of the number of surviving stars in galaxies, of the chemical composition of the interstellar medium and of the distribution of light in galaxies. A key unsolved question is whether the IMF is universal in time and space. Here, we use the state-of-the-art results of stellar evolution to show that the IMF of our Galaxy made a transition from an IMF dominated by massive stars to the present-day IMF at an early phase of the Galaxy formation. Updated results from stellar evolution in a wide range of metallicities have been implemented in a binary population synthesis code, and compared with the observations of carbon-enhanced metal-poor (CEMP) stars in our Galaxy. We find that the application of the present-day IMF to Galactic halo stars causes serious contradictions with four observable quantities connected with the evolution of asymptotic giant branch (AGB) stars. Furthermore, a comparison between our calculations and the observations of CEMP stars might help us to constrain the transition metallicity for the IMF, which we tentatively set at [Fe/H] ≈-2. A novelty of the current study is the inclusion of mass-loss suppression in intermediate-mass AGB stars at low metallicity. This significantly reduces the overproduction of nitrogen-enhanced stars, which was a major problem in previous studies when using the IMF dominated by high-mass stars. Our results also demonstrate that the use of the present-day IMF for all time in chemical evolution models results in the overproduction of Type I.5 supernovae. More data on stellar abundances will help us to understand how the IMF has changed, and what caused such a transition.

  11. M dwarfs in the Local Milky Way: The Field Low-Mass Stellar Luminosity and Mass Functions

    SciTech Connect

    Bochanski, Jr, John J.

    2008-01-01

    Modern sky surveys, such as the Sloan Digital Sky Survey (SDSS) and the Two-Micron All Sky Survey, have revolutionized how Astronomy is done. With millions of photometric and spectroscopic observations, global observational properties can be studied with unprecedented statistical significance. Low-mass stars dominate the local Milky Way, with tens of millions observed by SDSS within a few kpc. Thus, they make ideal tracers of the Galactic potential, and the thin and thick disks. In this thesis dissertation, I present my efforts to characterize the local low-mass stellar population, using a collection of observations from the Sloan Digital Sky Survey (SDSS). First, low-mass stellar template spectra were constructed from the co-addition of thousands of SDSS spectroscopic observations. These template spectra were used to quantify the observable changes introduced by chromospheric activity and metallicity. Furthermore, the average ugriz colors were measured as a function of spectral type. Next, the local kinematic structure of the Milky Way was quantified, using a special set of SDSS spectroscopic observations. Combining proper motions and radial velocities (measured using the spectral templates), along with distances, the full UVW space motions of over 7000 low-mass stars along one line of sight were computed. These stars were also separated kinematically to investigate other observational differences between the thin and thick disks. Finally, this dissertation details a project designed to measure the luminosity and mass functions of low-mass stars. Using a new technique optimized for large surveys, the field luminosity function (LF) and local stellar density profile are measured simultaneously. The sample size used to estimate the LF is nearly three orders of magnitude larger than any previous study, offering a definitive measurement of this quantity. The observed LF is transformed into a mass function (MF) and compared to previous studies.

  12. A study of the luminosity and mass functions of very young stellar clusters

    NASA Astrophysics Data System (ADS)

    Muench, August Albert

    We now know that the star formation process results in freely-floating objects with masses spanning nearly four orders of magnitude. However, both the distribution of these objects' masses at birth and the precise physics responsible for the shape of this initial mass function are poorly known and can be improved upon by focusing on very young star clusters just emerging from their parental molecular clouds. In this dissertation I have investigated the usefulness of the observed luminosity function of a very young cluster as a tool for deriving that cluster's underlying mass function. I find that a cluster's luminosity function is an excellent probe of the initial mass function over the entire range of stellar and substellar mass and can be utilized to acquire the statistics necessary for testing the hypothesis of a universal mass function. To study the luminosity and mass functions of such clusters I developed a Monte Carlo based population synthesis algorithm applicable to pre-main sequence stars. Using this algorithm I performed numerical experiments testing the sensitivity of model luminosity functions to changes in fundamental cluster parameters. After showing that the luminosity function is intrinsically most sensitive to the form of the underlying mass function, I studied three young clusters, NGC 2362, IC 348 and the Trapezium, and performed deep near-infrared surveys to construct their K-band luminosity functions. Using the model luminosity function algorithm, I derived each cluster's underlying mass function and found them to be remarkably similar, with all forming broad peaks at subsolar masses. Where these census are sufficiently deep I find that the mass function turns over and declines in number throughout the substellar regime but appears to contain structure near the deuterium-burning limit. Regardless, I find that brown dwarfs do not dominate stars either by number or total mass. Lastly, I use a statistically significant sample of candidate brown

  13. CLASH-VLT: The stellar mass function and stellar mass density profile of the z = 0.44 cluster of galaxies MACS J1206.2-0847

    NASA Astrophysics Data System (ADS)

    Annunziatella, M.; Biviano, A.; Mercurio, A.; Nonino, M.; Rosati, P.; Balestra, I.; Presotto, V.; Girardi, M.; Gobat, R.; Grillo, C.; Kelson, D.; Medezinski, E.; Postman, M.; Scodeggio, M.; Brescia, M.; Demarco, R.; Fritz, A.; Koekemoer, A.; Lemze, D.; Lombardi, M.; Sartoris, B.; Umetsu, K.; Vanzella, E.; Bradley, L.; Coe, D.; Donahue, M.; Infante, L.; Kuchner, U.; Maier, C.; Regős, E.; Verdugo, M.; Ziegler, B.

    2014-11-01

    Context. The study of the galaxy stellar mass function (SMF) in relation to the galaxy environment and the stellar mass density profile, ρ⋆(r), is a powerful tool to constrain models of galaxy evolution. Aims: We determine the SMF of the z = 0.44 cluster of galaxies MACS J1206.2-0847 separately for passive and star-forming (SF) galaxies, in different regions of the cluster, from the center out to approximately 2 virial radii. We also determine ρ⋆(r) to compare it to the number density and total mass density profiles. Methods: We use the dataset from the CLASH-VLT survey. Stellar masses are obtained by spectral energy distribution fitting with the MAGPHYS technique on 5-band photometric data obtained at the Subaru telescope. We identify 1363 cluster members down to a stellar mass of 109.5 M⊙, selected on the basis of their spectroscopic (~1/3 of the total) and photometric redshifts. We correct our sample for incompleteness and contamination by non members. Cluster member environments are defined using either the clustercentric radius or the local galaxy number density. Results: The whole cluster SMF is well fitted by a double Schechter function, which is the sum of the two Schechter functions that provide good fits to the SMFs of, separately, the passive and SF cluster populations. The SMF of SF galaxies is significantly steeper than the SMF of passive galaxies at the faint end. The SMF of the SF cluster galaxies does not depend on the environment. The SMF of the passive cluster galaxies has a significantly smaller slope (in absolute value) in the innermost (≤ 0.50 Mpc, i.e., ~0.25 virial radii), and in the highest density cluster region than in more external, lower density regions. The number ratio of giant/subgiant galaxies is maximum in this innermost region and minimum in the adjacent region, but then gently increases again toward the cluster outskirts. This is also reflected in a decreasing radial trend of the average stellar mass per cluster galaxy

  14. Perspectives on Intracluster Enrichment and the Stellar Initial Mass Function in Elliptical Galaxies

    NASA Technical Reports Server (NTRS)

    Lowenstein, Michael

    2013-01-01

    The amount of metals in the Intracluster Medium (ICM) in rich galaxy clusters exceeds that expected based on the observed stellar population by a large factor. We quantify this discrepancy--which we term the "cluster elemental abundance paradox"--and investigate the required properties of the ICM-enriching population. The necessary enhancement in metal enrichment may, in principle, originate in the observed stellar population if a larger fraction of stars in the supernova-progenitor mass range form from an initial mass function (IMF) that is either bottom-light or top-heavy, with the latter in some conflict with observed ICM abundance ratios. Other alternatives that imply more modest revisions to the IMF, mass return and remnant fractions, and primordial fraction, posit an increase in the fraction of 3-8 solar mass stars that explode as SNIa or assume that there are more stars than conventionally thought--although the latter implies a high star formation efficiency. We discuss the feasibility of these various solutions and the implications for the diversity of star formation, the process of elliptical galaxy formation, and the nature of this hidden source of ICM metal enrichment in light of recent evidence of an elliptical galaxy IMF that, because it is skewed to low masses, deepens the paradox.

  15. What do simulations predict for the galaxy stellar mass function and its evolution in different environments?

    SciTech Connect

    Vulcani, Benedetta; Bundy, Kevin; More, Surhud; De Lucia, Gabriella; Poggianti, Bianca M.; Calvi, Rosa

    2014-06-10

    We present a comparison between the observed galaxy stellar mass function and the one predicted from the De Lucia and Blaizot semi-analytic model applied to the Millennium Simulation, for cluster satellites and galaxies in the field (meant as a wide portion of the sky, including all environments), in the local universe (z ∼ 0.06), and at intermediate redshift (z ∼ 0.6), with the aim to shed light on the processes which regulate the mass distribution in different environments. While the mass functions in the field and in its finer environments (groups, binary, and single systems) are well matched in the local universe down to the completeness limit of the observational sample, the model overpredicts the number of low-mass galaxies in the field at z ∼ 0.6 and in clusters at both redshifts. Above M {sub *} = 10{sup 10.25} M {sub ☉}, it reproduces the observed similarity of the cluster and field mass functions but not the observed evolution. Our results point out two shortcomings of the model: an incorrect treatment of cluster-specific environmental effects and an overefficient galaxy formation at early times (as already found by, e.g., Weinmann et al.). Next, we consider only simulations. Also using the Guo et al. model, we find that the high-mass end of the mass functions depends on halo mass: only very massive halos host massive galaxies, with the result that their mass function is flatter. Above M {sub *} = 10{sup 9.4} M {sub ☉}, simulations show an evolution in the number of the most massive galaxies in all environments. Mass functions obtained from the two prescriptions are different, however, results are qualitatively similar, indicating that the adopted methods to model the evolution of central and satellite galaxies still have to be better implemented in semi-analytic models.

  16. Origin of a bottom-heavy stellar initial mass function in elliptical galaxies

    SciTech Connect

    Bekki, Kenji

    2013-12-10

    We investigate the origin of a bottom-heavy stellar initial mass function (IMF) recently observed in elliptical galaxies by using chemical evolution models with a non-universal IMF. We adopt the variable Kroupa IMF with the three slopes (α{sub 1}, α{sub 2}, and α{sub 3}) dependent on metallicities ([Fe/H]) and densities (ρ{sub g}) of star-forming gas clouds and thereby search for the best IMF model that can reproduce (1) the observed steep IMF slope (α{sub 2} ∼ 3, i.e., bottom-heavy) for low stellar masses (m ≤ 1 M {sub ☉}) and (2) the correlation of α{sub 2} with chemical properties of elliptical galaxies in a self-consistent manner. We find that if the IMF slope α{sub 2} depends on both [Fe/H] and ρ{sub g}, then elliptical galaxies with higher [Mg/Fe] can have steeper α{sub 2} (∼3) in our models. We also find that the observed positive correlation of stellar mass-to-light ratios (M/L) with [Mg/Fe] in elliptical galaxies can be quantitatively reproduced in our models with α{sub 2}∝β[Fe/H] + γlog ρ{sub g}, where β ∼ 0.5 and γ ∼ 2. We discuss whether the IMF slopes for low-mass (α{sub 2}) and high-mass stars (α{sub 3}) need to vary independently from each other to explain a number of IMF-related observational results self-consistently. We also briefly discuss why α{sub 2} depends differently on [Fe/H] in dwarf and giant elliptical galaxies.

  17. The importance of radiative feedback for the stellar initial mass function

    NASA Astrophysics Data System (ADS)

    Bate, Matthew R.

    2009-02-01

    We investigate the effect of radiative feedback on the star formation process using radiation hydrodynamical simulations. We repeat the previous hydrodynamical star cluster formation simulations of Bate et al. and Bate & Bonnell, but we use a realistic gas equation of state and radiative transfer in the flux-limited diffusion approximation rather than the original barotropic equation of state. Whereas star formation in the barotropic simulations continued unabated until the simulations stopped, we find that radiative feedback, even from low-mass stars, were essentially terminates the production of new objects within low-mass dense molecular cloud cores after roughly one local dynamical time. Radiative feedback also dramatically decreases the propensity of massive circumstellar discs to fragment and inhibits fragmentation of other dense gas (e.g. filaments) close to existing protostellar objects. These two effects decrease the numbers of protostars formed by a factor of ~4 compared with the original hydrodynamical simulations using the barotropic equation of state. In particular, whereas the original simulations produced more brown dwarfs than stars, the radiative feedback results in a ratio of stars to brown dwarfs of approximately 5:1, in much better agreement with observations. Most importantly, we find that although the characteristic stellar mass in the original calculations scaled linearly with the initial mean Jeans mass in the clouds, when radiative feedback is included the characteristic stellar mass is indistinguishable for the two calculations, regardless of the initial Jeans mass of the clouds. We thus propose that the reason the observed initial mass function appears to be universal in the local Universe is due to self-regulation of the star formation process by radiative feedback. We present an analytic argument showing how a characteristic mass may be derived that is relatively independent of initial conditions such as the cloud's density.

  18. THE STELLAR INITIAL MASS FUNCTION IN EARLY-TYPE GALAXIES FROM ABSORPTION LINE SPECTROSCOPY. II. RESULTS

    SciTech Connect

    Conroy, Charlie; Van Dokkum, Pieter G.

    2012-11-20

    The spectral absorption lines in early-type galaxies contain a wealth of information regarding the detailed abundance pattern, star formation history, and stellar initial mass function (IMF) of the underlying stellar population. Using our new population synthesis model that accounts for the effect of variable abundance ratios of 11 elements, we analyze very high quality absorption line spectra of 38 early-type galaxies and the nuclear bulge of M31. These data extend to 1 {mu}m and they therefore include the IMF-sensitive spectral features Na I, Ca II, and FeH at 0.82 {mu}m, 0.86 {mu}m, and 0.99 {mu}m, respectively. The models fit the data well, with typical rms residuals {approx}< 1%. Strong constraints on the IMF and therefore the stellar mass-to-light ratio, (M/L){sub stars}, are derived for individual galaxies. We find that the IMF becomes increasingly bottom-heavy with increasing velocity dispersion and [Mg/Fe]. At the lowest dispersions and [Mg/Fe] values the derived IMF is consistent with the Milky Way (MW) IMF, while at the highest dispersions and [Mg/Fe] values the derived IMF contains more low-mass stars (is more bottom-heavy) than even a Salpeter IMF. Our best-fit (M/L){sub stars} values do not exceed dynamically based M/L values. We also apply our models to stacked spectra of four metal-rich globular clusters in M31 and find an (M/L){sub stars} that implies fewer low-mass stars than a MW IMF, again agreeing with dynamical constraints. We discuss other possible explanations for the observed trends and conclude that variation in the IMF is the simplest and most plausible.

  19. VizieR Online Data Catalog: Galaxy stellar and baryonic mass functions (Eckert+, 2016)

    NASA Astrophysics Data System (ADS)

    Eckert, K. D.; Kannappan, S. J.; Stark, D. V.; Moffett, A. J.; Berlind, A. A.; Norris, M. A.

    2016-08-01

    To measure the galaxy stellar and baryonic mass functions (SMF and BMF), we use two volume-limited data sets, the B-semester subvolume of the RESOLVE survey, RESOLVE-B (Kannappan & Wei 2008AIPC.1035..163K; Kannappan et al. 2016, in preparation), and the ECO catalog (Moffett et al. 2015, J/ApJ/812/89), which contains the RESOLVE-A subvolume. RESOLVE is a volume and roughly baryonic mass limited survey of ~52100Mpc3 of the z~0 universe. It is smaller but more complete than ECO and is acquiring new 21cm and optical spectroscopy to conduct a full mass census of stars, gas, and dark matter. (1 data file).

  20. THE STELLAR INITIAL MASS FUNCTION AT 0.9 < z < 1.5

    SciTech Connect

    Martín-Navarro, Ignacio; Trujillo, Ignacio; Vazdekis, Alexandre; Barro, Guillermo; Charlot, Stéphane; Cava, Antonio; Ferreras, Ignacio; Barbera, Francesco La; Koekemoer, Anton M.; Cenarro, A. Javier

    2015-01-01

    We explore the stellar initial mass function (IMF) of a sample of 49 massive quiescent galaxies (MQGs) at 0.9 < z < 1.5. We base our analysis on intermediate resolution spectro-photometric data in the GOODS-N field taken in the near-infrared and optical with the Hubble Space Telescope Wide Field Camera 3 G141 grism and the Survey for High-z Absorption Red and Dead Sources. To constrain the slope of the IMF, we have measured the TiO{sub 2} spectral feature, whose strength depends strongly on the content of low-mass stars, as well as on stellar age. Using ultraviolet to near-infrared individual and stacked spectral energy distributions, we have independently estimated the stellar ages of our galaxies. Knowing the age of the stellar population, we interpret the strong differences in the TiO{sub 2} feature as an IMF variation. In particular, for the heaviest z ∼ 1 MQGs (M > 10{sup 11} M {sub ☉}), we find an average age of 1.7 ± 0.3 Gyr and a bottom-heavy IMF (Γ {sub b} = 3.2 ± 0.2). Lighter MQGs (2 × 10{sup 10} < M < 10{sup 11} M {sub ☉}) at the same redshift are younger on average (1.0 ± 0.2 Gyr) and present a shallower IMF slope (Γ{sub b}=2.7{sub −0.4}{sup +0.3}). Our results are in good agreement with the findings about the IMF slope in early-type galaxies of similar mass in the present-day universe. This suggests that the IMF, a key characteristic of the stellar populations in galaxies, is bottom-heavier for more massive galaxies and has remained unchanged in the last ∼8 Gyr.

  1. A hierarchical Bayesian approach for reconstructing the Initial Mass Function of Single Stellar Populations

    NASA Astrophysics Data System (ADS)

    Dries, M.; Trager, S. C.; Koopmans, L. V. E.

    2016-08-01

    Recent studies based on the integrated light of distant galaxies suggest that the initial mass function (IMF) might not be universal. Variations of the IMF with galaxy type and/or formation time may have important consequences for our understanding of galaxy evolution. We have developed a new stellar population synthesis (SPS) code specifically designed to reconstruct the IMF. We implement a novel approach combining regularization with hierarchical Bayesian inference. Within this approach we use a parametrized IMF prior to regulate a direct inference of the IMF. This direct inference gives more freedom to the IMF and allows the model to deviate from parametrized models when demanded by the data. We use Markov Chain Monte Carlo sampling techniques to reconstruct the best parameters for the IMF prior, the age, and the metallicity of a single stellar population. We present our code and apply our model to a number of mock single stellar populations with different ages, metallicities, and IMFs. When systematic uncertainties are not significant, we are able to reconstruct the input parameters that were used to create the mock populations. Our results show that if systematic uncertainties do play a role, this may introduce a bias on the results. Therefore, it is important to objectively compare different ingredients of SPS models. Through its Bayesian framework, our model is well-suited for this.

  2. A hierarchical Bayesian approach for reconstructing the initial mass function of single stellar populations

    NASA Astrophysics Data System (ADS)

    Dries, M.; Trager, S. C.; Koopmans, L. V. E.

    2016-11-01

    Recent studies based on the integrated light of distant galaxies suggest that the initial mass function (IMF) might not be universal. Variations of the IMF with galaxy type and/or formation time may have important consequences for our understanding of galaxy evolution. We have developed a new stellar population synthesis (SPS) code specifically designed to reconstruct the IMF. We implement a novel approach combining regularization with hierarchical Bayesian inference. Within this approach, we use a parametrized IMF prior to regulate a direct inference of the IMF. This direct inference gives more freedom to the IMF and allows the model to deviate from parametrized models when demanded by the data. We use Markov chain Monte Carlo sampling techniques to reconstruct the best parameters for the IMF prior, the age and the metallicity of a single stellar population. We present our code and apply our model to a number of mock single stellar populations with different ages, metallicities and IMFs. When systematic uncertainties are not significant, we are able to reconstruct the input parameters that were used to create the mock populations. Our results show that if systematic uncertainties do play a role, this may introduce a bias on the results. Therefore, it is important to objectively compare different ingredients of SPS models. Through its Bayesian framework, our model is well suited for this.

  3. AN EXTREMELY TOP-HEAVY INITIAL MASS FUNCTION IN THE GALACTIC CENTER STELLAR DISKS

    SciTech Connect

    Bartko, H.; Martins, F.; Fritz, T. K.; Genzel, R.; Ott, T.; Eisenhauer, F.; Gillessen, S.; Dodds-Eden, K.; Gerhard, O.; Mascetti, L.; Pfuhl, O.; Trippe, S.; Paumard, T.; Perrin, G.; Rouan, D.; Alexander, T.; Perets, H. B.; Levin, Y.; Nayakshin, S.; Reid, M. J. E-mail: fabrice.martins@graal.univ-montp2.f

    2010-01-01

    We present new observations of the nuclear star cluster in the central parsec of the Galaxy with the adaptive optics assisted, integral field spectrograph SINFONI on the ESO/VLT. Our work allows the spectroscopic detection of early- and late-type stars to m{sub K} >= 16, more than 2 mag deeper than our previous data sets. Our observations result in a total sample of 177 bona fide early-type stars. We find that most of these Wolf Rayet (WR), O-, and B-stars reside in two strongly warped disks between 0.''8 and 12'' from Sgr A*, as well as a central compact concentration (the S-star cluster) centered on Sgr A*. The later type B-stars (m{sub K} >15) in the radial interval between 0.''8 and 12'' seem to be in a more isotropic distribution outside the disks. The observed dearth of late-type stars in the central few arcseconds is puzzling, even when allowing for stellar collisions. The stellar mass function of the disk stars is extremely top heavy with a best-fit power law of dN/dm propor to m {sup -0.45+}-{sup 0.3}. WR/O-stars were formed in situ in a single star formation event approx6 Myr ago, this mass function probably reflects the initial mass function (IMF). The mass functions of the S-stars inside 0.''8 and of the early-type stars at distances beyond 12'' are compatible with a standard Salpeter/Kroupa IMF (best-fit power law of dN/dm propor to m {sup -2.15+}-{sup 0.3}).

  4. The VIMOS Public Extragalactic Redshift Survey (VIPERS). Environmental effects shaping the galaxy stellar mass function

    NASA Astrophysics Data System (ADS)

    Davidzon, I.; Cucciati, O.; Bolzonella, M.; De Lucia, G.; Zamorani, G.; Arnouts, S.; Moutard, T.; Ilbert, O.; Garilli, B.; Scodeggio, M.; Guzzo, L.; Abbas, U.; Adami, C.; Bel, J.; Bottini, D.; Branchini, E.; Cappi, A.; Coupon, J.; de la Torre, S.; Di Porto, C.; Fritz, A.; Franzetti, P.; Fumana, M.; Granett, B. R.; Guennou, L.; Iovino, A.; Krywult, J.; Le Brun, V.; Le Fèvre, O.; Maccagni, D.; Małek, K.; Marulli, F.; McCracken, H. J.; Mellier, Y.; Moscardini, L.; Polletta, M.; Pollo, A.; Tasca, L. A. M.; Tojeiro, R.; Vergani, D.; Zanichelli, A.

    2016-02-01

    We exploit the first public data release of VIPERS to investigate environmental effects in the evolution of galaxies between z ~ 0.5 and 0.9. The large number of spectroscopic redshifts (more than 50 000) over an area of about 10 deg2 provides a galaxy sample with high statistical power. The accurate redshift measurements (σz = 0.00047(1 + zspec)) allow us to robustly isolate galaxies living in the lowest and highest density environments (δ< 0.7 and δ> 4, respectively) as defined in terms of spatial 3D density contrast δ. We estimate the stellar mass function of galaxies residing in these two environments and constrain the high-mass end (ℳ ≳ 1011 ℳ⊙) with unprecedented precision. We find that the galaxy stellar mass function in the densest regions has a different shape than was measured at low densities, with an enhancement of massive galaxies and a hint of a flatter (less negative) slope at z< 0.8. We normalise each mass function to the comoving volume occupied by the corresponding environment and relate estimates from different redshift bins. We observe an evolution of the stellar mass function of VIPERS galaxies in high densities, while the low-density one is nearly constant. We compare these results to semi-analytical models and find consistent environmental signatures in the simulated stellar mass functions. We discuss how the halo mass function and fraction of central/satellite galaxies depend on the environments considered, making intrinsic and environmental properties of galaxies physically coupled, hence difficult to disentangle. The evolution of our low-density regions is described well by the formalism introduced by Peng et al. (2010, ApJ, 721, 193), and is consistent with the idea that galaxies become progressively passive because of internal physical processes. The same formalism could also describe the evolution of the mass function in the high density regions, but only if a significant contribution from dry mergers is considered. Based on

  5. Stochastic stellar cluster initial mass functions: Models and impact on integrated cluster parameter determination

    SciTech Connect

    Anders, P.; Kotulla, R.; De Grijs, R.; Wicker, J.

    2013-12-01

    Stellar clusters are regularly used to study the evolution of their host galaxy. Except for a few nearby galaxies, these studies rely on the interpretation of integrated cluster properties, especially integrated photometry observed using multiple filters (i.e., the spectral energy distribution, SED). To allow interpretation of such observations, we present a large set of GALEV cluster models using the realistic approach of adopting stochastically sampled stellar initial mass functions. We provide models for a wide range of cluster masses (10{sup 3}-2 × 10{sup 5} M {sub ☉}), metallicities (–2.3 ≤ [Fe/H] ≤ +0.18 dex), foreground extinction, and 184 regularly used filters. We analyze various sets of stochastic cluster SEDs by fitting them with non-stochastic models, which is the procedure commonly used in this field. We identify caveats and quantify the fitting uncertainties associated with this standard procedure. We show that this can yield highly unreliable fitting results, especially for low-mass clusters.

  6. AN INVENTORY OF THE STELLAR INITIAL MASS FUNCTION IN EARLY-TYPE GALAXIES

    SciTech Connect

    Tortora, C.; Romanowsky, A. J.; Napolitano, N. R.

    2013-03-01

    Given a flurry of recent claims for systematic variations in the stellar initial mass function (IMF), we carry out the first inventory of the observational evidence using different approaches. This includes literature results, as well as our own new findings from combined stellar population synthesis (SPS) and Jeans dynamical analyses of data on {approx}4500 early-type galaxies (ETGs) from the SPIDER project. We focus on the mass-to-light ratio mismatch relative to the Milky Way IMF, {delta}{sub IMF}, correlated against the central stellar velocity dispersion, {sigma}{sub *}. We find a strong correlation between {delta}{sub IMF} and {sigma}{sub *}, for a wide set of dark matter (DM) model profiles. These results are robust if a uniform halo response to baryons is adopted across the sample. The overall normalization of {delta}{sub IMF} and the detailed DM profile are less certain, but the data are consistent with standard cold DM halos and a central DM fraction that is roughly constant with {sigma}{sub *}. For a variety of related studies in the literature, using SPS, dynamics, and gravitational lensing, similar results are found. Studies based solely on spectroscopic line diagnostics agree on a Salpeter-like IMF at high {sigma}{sub *} but differ at low {sigma}{sub *}. Overall, we find that multiple independent lines of evidence appear to be converging on a systematic variation in the IMF, such that high-{sigma}{sub *} ETGs have an excess of low-mass stars relative to spirals and low-{sigma}{sub *} ETGs. Robust verification of super-Salpeter IMFs in the highest-{sigma}{sub *} galaxies will require additional scrutiny of scatter and systematic uncertainties. The implications for the distribution of DM are still inconclusive.

  7. An Inventory of the Stellar Initial Mass Function in Early-type Galaxies

    NASA Astrophysics Data System (ADS)

    Tortora, C.; Romanowsky, A. J.; Napolitano, N. R.

    2013-03-01

    Given a flurry of recent claims for systematic variations in the stellar initial mass function (IMF), we carry out the first inventory of the observational evidence using different approaches. This includes literature results, as well as our own new findings from combined stellar population synthesis (SPS) and Jeans dynamical analyses of data on ~4500 early-type galaxies (ETGs) from the SPIDER project. We focus on the mass-to-light ratio mismatch relative to the Milky Way IMF, δIMF, correlated against the central stellar velocity dispersion, σsstarf. We find a strong correlation between δIMF and σsstarf, for a wide set of dark matter (DM) model profiles. These results are robust if a uniform halo response to baryons is adopted across the sample. The overall normalization of δIMF and the detailed DM profile are less certain, but the data are consistent with standard cold DM halos and a central DM fraction that is roughly constant with σsstarf. For a variety of related studies in the literature, using SPS, dynamics, and gravitational lensing, similar results are found. Studies based solely on spectroscopic line diagnostics agree on a Salpeter-like IMF at high σsstarf but differ at low σsstarf. Overall, we find that multiple independent lines of evidence appear to be converging on a systematic variation in the IMF, such that high-σsstarf ETGs have an excess of low-mass stars relative to spirals and low-σsstarf ETGs. Robust verification of super-Salpeter IMFs in the highest-σsstarf galaxies will require additional scrutiny of scatter and systematic uncertainties. The implications for the distribution of DM are still inconclusive.

  8. An analytic explanation of the stellar initial mass function from the theory of spatial networks

    NASA Astrophysics Data System (ADS)

    Klishin, Andrei; Chilingarian, Igor

    2015-08-01

    The distribution of stars by mass or the stellar initial mass function (IMF) that has been intensively studied in the Milky Way and other galaxies is the key property regulating star formation and galaxy evolution. The mass function of prestellar dense cores (DCMF) is an IMF precursor that has a similar shape, a broken power law with a sharp decline at low masses, but offset to higher masses. Results from numerical simulations of star formation qualitatively resemble an observed IMF/DCMF, however, most analytic IMF theories critically depend on the empirically chosen input spectrum of mass fluctuations which evolve into dense cores and, subsequently, stars. Here we propose an analytic approach by representing a system of dense cores accreting gas from the surrounding diffuse interstellar medium (ISM) as a spatial network growing by preferential attachment and assuming that the ISM density has a self-similar fractal distribution following the Kolmogorov turbulence theory. We obtain a scale free power law with the exponent that is not related to the input fluctuation mass spectrum but depends only on the fractal distribution dimensionalities of infalling gas (Dp) and turbulent ISM (Dm=2.35). It can be as steep as -3.24 (uniform volume density Dp=3) and becomes Salpeter (α=-2.35) for Dp=2.5 that corresponds to a variety of Brownian processes in physics. Our theory reproduces the observed DCMF shape over three orders of magnitude in mass, and it rules out a low mass star dominated "bottom-heavy" IMF shape unless the same steep slope holds at the higher masses.

  9. Habitable zones exposed: astrosphere collapse frequency as a function of stellar mass.

    PubMed

    Smith, David S; Scalo, John M

    2009-09-01

    Stellar astrospheres--the plasma cocoons carved out of the interstellar medium by stellar winds--are one of several buffers that partially screen planetary atmospheres and surfaces from high-energy radiation. Screening by astrospheres is continually influenced by the passage of stars through the fluctuating density field of the interstellar medium (ISM). The most extreme events occur inside dense interstellar clouds, where the increased pressure may compress an astrosphere to a size smaller than the liquid-water habitable-zone distance. Habitable planets then enjoy no astrospheric buffering from exposure to the full flux of galactic cosmic rays and interstellar dust and gas, a situation we call "descreening" or "astrospheric collapse." Under such conditions the ionization fraction in the atmosphere and contribution to radiation damage of putative coding organisms at the surface would increase significantly, and a series of papers have suggested a variety of global responses to descreening. These possibilities motivate a more careful calculation of the frequency of descreening events. Using a ram-pressure balance model, we compute the size of the astrosphere in the apex direction as a function of parent-star mass and velocity and ambient interstellar density, emphasizing the importance of gravitational focusing of the interstellar flow. The interstellar densities required to descreen planets in the habitable zone of solar- and subsolar-mass stars are found to be about 600(M/M[middle dot in circle])(-2) cm(-3) for the Sun's velocity relative to the local ISM. Such clouds are rare and small, indicating that descreening encounters are rare. We use statistics from two independent catalogues of dense interstellar clouds to derive a dependence of descreening frequency on the parent-star mass that decreases strongly with decreasing stellar mass, due to the weaker gravitational focusing and smaller habitable-zone distances for lower-mass stars. We estimate an uncertain

  10. ON THE TEMPORAL EVOLUTION OF THE STELLAR MASS FUNCTION IN GALACTIC CLUSTERS

    SciTech Connect

    De Marchi, Guido; Paresce, Francesco; Portegies Zwart, Simon E-mail: paresce@iasfbo.inaf.i

    2010-07-20

    We show that we can obtain a good fit to the present-day stellar mass functions (MFs) of a large sample of young and old Galactic clusters in the range 0.1-10 M{sub sun} with a tapered power-law distribution function with an exponential truncation of the form dN/dm{proportional_to}m{sup {alpha}} [1 -e{sup -}(m/m{sub c}){sup {beta}}]. The average value of the power-law index {alpha} is {approx}-2, that of {beta} is {approx}2.5, whereas the characteristic mass m{sub c} is in the range 0.1-0.8 M {sub sun} and does not seem to vary in any systematic way with the present cluster parameters such as metal abundance, total cluster mass, or central concentration. However, m{sub c} shows a remarkable correlation with the dynamical age of the cluster, namely, m{sub c} /M {sub sun} {approx_equal} 0.15 + 0.5 x {tau}{sup 3/4}{sub dyn}, where {tau}{sub dyn} is the dynamical age taken as the ratio of cluster age and dissolution time. The small scatter seen around this correlation is consistent with the uncertainties in the estimated value of {tau}{sub dyn}. We attribute the observed trend to the onset of mass segregation via two-body relaxation in a tidal environment, causing the preferential loss of low-mass stars from the cluster and hence a drift of the characteristic mass m{sub c} toward higher values. If dynamical evolution is indeed at the origin of the observed trend, it would seem plausible that high-concentration globular clusters, now with median m{sub c} {approx_equal} 0.33 M{sub sun}, were born with a stellar MF very similar to that measured today in the youngest Galactic clusters and with a value of m{sub c} {approx_equal} 0.15 M{sub sun}. This hypothesis is consistent with the absence of a turnover in the MF of the Galactic bulge down to the observational limit at {approx}0.2 M{sub sun} and, if correct, it would carry the implication that the characteristic mass is not set by the thermal Jeans mass of the cloud.

  11. The initial mass functions of M31 and M32 through far red stellar absorption features

    NASA Astrophysics Data System (ADS)

    Zieleniewski, Simon; Houghton, Ryan C. W.; Thatte, Niranjan; Davies, Roger L.

    2015-09-01

    Using the Oxford Short Wavelength Integral Field specTrograph, we investigate radial variations of several initial mass function (IMF) dependent absorption features in M31 and M32. We obtain high signal-to-noise spectra at six pointings along the major axis of M31 out to ˜700 arcsec (2.7 kpc) and a single pointing of the central 10 pc for M32. In M31 the sodium Na I λ8190 index shows a flat equivalent width profile at ˜0.4 Å through the majority of the bulge, with a strong gradient up to 0.8 Å in the central 10 arcsec (38 pc); the Wing-Ford FeH λ9916 index is measured to be constant at 0.4 Å for all radii; and calcium triplet CaT λλ8498, 8542, 8662 shows a gradual increase through the bulge towards the centre. M32 displays flat profiles for all three indices, with FeH at ˜0.5 Å, very high CaT at ˜0.8 Å and low Na I at ˜0.1 Å. We analyse these data using stellar population models. We find that M31 is well described on all scales by a Chabrier IMF, with a gradient in sodium enhancement of [Na/Fe] ˜ +0.3 dex in the outer bulge, rising within the central 10 arcsec to perhaps [Na/Fe] ˜ +1.0 dex in the nuclear region. We find M32 is described by a Chabrier IMF and young stellar age in line with other studies. Models show that CaT is much more sensitive to metallicity and [α/Fe] than to IMF. We note that the centres of M31 and M32 have very high stellar densities and yet we measure Chabrier IMFs in these regions.

  12. THE PANCHROMATIC HUBBLE ANDROMEDA TREASURY. IV. A PROBABILISTIC APPROACH TO INFERRING THE HIGH-MASS STELLAR INITIAL MASS FUNCTION AND OTHER POWER-LAW FUNCTIONS

    SciTech Connect

    Weisz, Daniel R.; Fouesneau, Morgan; Dalcanton, Julianne J.; Clifton Johnson, L.; Beerman, Lori C.; Williams, Benjamin F.; Hogg, David W.; Foreman-Mackey, Daniel T.; Rix, Hans-Walter; Gouliermis, Dimitrios; Dolphin, Andrew E.; Lang, Dustin; Bell, Eric F.; Gordon, Karl D.; Kalirai, Jason S.; Skillman, Evan D.

    2013-01-10

    We present a probabilistic approach for inferring the parameters of the present-day power-law stellar mass function (MF) of a resolved young star cluster. This technique (1) fully exploits the information content of a given data set; (2) can account for observational uncertainties in a straightforward way; (3) assigns meaningful uncertainties to the inferred parameters; (4) avoids the pitfalls associated with binning data; and (5) can be applied to virtually any resolved young cluster, laying the groundwork for a systematic study of the high-mass stellar MF (M {approx}> 1 M {sub Sun }). Using simulated clusters and Markov Chain Monte Carlo sampling of the probability distribution functions, we show that estimates of the MF slope, {alpha}, are unbiased and that the uncertainty, {Delta}{alpha}, depends primarily on the number of observed stars and on the range of stellar masses they span, assuming that the uncertainties on individual masses and the completeness are both well characterized. Using idealized mock data, we compute the theoretical precision, i.e., lower limits, on {alpha}, and provide an analytic approximation for {Delta}{alpha} as a function of the observed number of stars and mass range. Comparison with literature studies shows that {approx}3/4 of quoted uncertainties are smaller than the theoretical lower limit. By correcting these uncertainties to the theoretical lower limits, we find that the literature studies yield ({alpha}) = 2.46, with a 1{sigma} dispersion of 0.35 dex. We verify that it is impossible for a power-law MF to obtain meaningful constraints on the upper mass limit of the initial mass function, beyond the lower bound of the most massive star actually observed. We show that avoiding substantial biases in the MF slope requires (1) including the MF as a prior when deriving individual stellar mass estimates, (2) modeling the uncertainties in the individual stellar masses, and (3) fully characterizing and then explicitly modeling the

  13. AN EMPIRICAL CONNECTION BETWEEN THE ULTRAVIOLET COLOR OF EARLY-TYPE GALAXIES AND THE STELLAR INITIAL MASS FUNCTION

    SciTech Connect

    Zaritsky, Dennis; Gil de Paz, Armando; Bouquin, Alexandre Y. K.

    2014-01-01

    Using new UV magnitudes for a sample of early-type galaxies (ETGs) with published stellar mass-to-light ratios, Y{sub *}, we find a correlation between UV color and Y{sub *} that is tighter than those previously identified between Y{sub *} and either the central stellar velocity dispersion, metallicity, or alpha enhancement. The sense of the correlation is that galaxies with larger Y{sub *} are bluer in the UV. We conjecture that differences in the lower mass end of the stellar initial mass function (IMF) are related to the nature of the extreme horizontal branch populations that are generally responsible for the UV flux in ETGs. If so, then UV color can be used to identify ETGs with particular IMF properties and to estimate Y{sub *}.

  14. On the Link Between Energy Equipartition and Radial Variation in the Stellar Mass Function of Star Clusters

    NASA Astrophysics Data System (ADS)

    Webb, Jeremy J.; Vesperini, Enrico

    2016-10-01

    We make use of N-body simulations to determine the relationship between two observable parameters that are used to quantify mass segregation and energy equipartition in star clusters. Mass segregation can be quantified by measuring how the slope of a cluster's stellar mass function α changes with clustercentric distance r, and then calculating δ _α = d α (r)/d ln(r/r_m) where rm is the cluster's half-mass radius. The degree of energy equipartition in a cluster is quantified by η, which is a measure of how stellar velocity dispersion σ depends on stellar mass m via σ(m)∝m-η. Through a suite of N-body star cluster simulations with a range of initial sizes, binary fractions, orbits, black hole retention fractions, and initial mass functions, we present the co-evolution of δα and η. We find that measurements of the global η are strongly affected by the radial dependence of σ and mean stellar mass and the relationship between η and δα depends mainly on the cluster's initial conditions and the tidal field. Within rm, where these effects are minimized, we find that η and δα initially share a linear relationship. However, once the degree of mass segregation increases such that the radial dependence of σ and mean stellar mass become a factor within rm, or the cluster undergoes core collapse, the relationship breaks down. We propose a method for determining η within rm from an observational measurement of δα. In cases where η and δα can be measured independently, this new method offers a way of measuring the cluster's dynamical state.

  15. DARK MATTER CONTRACTION AND THE STELLAR CONTENT OF MASSIVE EARLY-TYPE GALAXIES: DISFAVORING 'LIGHT' INITIAL MASS FUNCTIONS

    SciTech Connect

    Auger, M. W.; Treu, T.; Gavazzi, R.; Bolton, A. S.; Koopmans, L. V. E.; Marshall, P. J.

    2010-10-01

    We use stellar dynamics, strong lensing, stellar population synthesis models, and weak lensing shear measurements to constrain the dark matter (DM) profile and stellar mass in a sample of 53 massive early-type galaxies. We explore three DM halo models (unperturbed Navarro, Frenk, and White (NFW) halos and the adiabatic contraction models of Blumenthal and Gnedin) and impose a model for the relationship between the stellar and virial mass (i.e., a relationship for the star formation efficiency as a function of halo mass). We show that, given our model assumptions, the data clearly prefer a Salpeter-like initial mass function (IMF) over a lighter IMF (e.g., Chabrier or Kroupa), irrespective of the choice of DM halo. In addition, we find that the data prefer at most a moderate amount of adiabatic contraction (Blumenthal adiabatic contraction is strongly disfavored) and are only consistent with no adiabatic contraction (i.e., an NFW halo) if a mass-dependent IMF is assumed, in the sense of a more massive normalization of the IMF for more massive halos.

  16. VARIATIONS IN THE MASS FUNCTIONS OF CLUSTERED AND ISOLATED YOUNG STELLAR OBJECTS

    SciTech Connect

    Kirk, Helen; Myers, Philip C.

    2012-02-01

    We analyze high-quality, complete stellar catalogs for four young (roughly 1 Myr) and nearby (within {approx}300 pc) star-forming regions: Taurus, Lupus3, ChaI, and IC348, which have been previously shown to have stellar groups whose properties are similar to those of larger clusters such as the Orion Nebula Cluster (ONC). We find that stars at higher stellar surface densities within a region or belonging to groups tend to have a relative excess of more massive stars, over a wide range of masses. We find statistically significant evidence for this result in Taurus and IC348 as well as in the ONC. These differences correspond to having typically a {approx}10%-20% higher mean mass in the more clustered environment. Stars in ChaI show no evidence for a trend with either surface density or grouped status, and there are too few stars in Lupus3 to make any definitive interpretation. Models of clustered star formation do not typically extend to sufficiently low masses or small group sizes in order for their predictions to be tested, but our results suggest that this regime is important to consider.

  17. THE GALEX ARECIBO SDSS SURVEY. VII. THE BIVARIATE NEUTRAL HYDROGEN-STELLAR MASS FUNCTION FOR MASSIVE GALAXIES

    SciTech Connect

    Lemonias, Jenna J.; Schiminovich, David; Catinella, Barbara; Heckman, Timothy M.; Moran, Sean M.

    2013-10-20

    We present the bivariate neutral atomic hydrogen (H I)-stellar mass function (HISMF) φ(M{sub H{sub I}}, M{sub *}) for massive (log M{sub *}/M{sub ☉} \\gt 10) galaxies derived from a sample of 480 local (0.025 < z < 0.050) galaxies observed in H I at Arecibo as part of the GALEX Arecibo SDSS Survey. We fit six different models to the HISMF and find that a Schechter function that extends down to a 1% H I gas fraction, with an additional fractional contribution below that limit, is the best parameterization of the HISMF. We calculate Ω{sub H{sub I,{sub M{sub *>10{sup 1}{sup 0}}}}} and find that massive galaxies contribute 41% of the H I density in the local universe. In addition to the binned HISMF, we derive a continuous bivariate fit, which reveals that the Schechter parameters only vary weakly with stellar mass: M{sub H{sub I}{sup *}}, the characteristic H I mass, scales as M{sub *}{sup 0.39}; α, the slope of the HISMF at moderate H I masses, scales as M{sub *}{sup 0.07}; and f, the fraction of galaxies with H I gas fraction greater than 1%, scales as M{sub *}{sup -0.24}. The variation of f with stellar mass should be a strong constraint for numerical simulations. To understand the physical mechanisms that produce the shape of the HISMF, we redefine the parameters of the Schechter function as explicit functions of stellar mass and star formation rate (SFR) to produce a trivariate fit. This analysis reveals strong trends with SFR. While M{sub H{sub I}{sup *}} varies weakly with stellar mass and SFR (M{sub H{sub I}{sup *}} ∝ M{sub *}{sup 0.22}, M{sub H{sub I}{sup *}} ∝ SFR{sup –0.03}), α is a stronger function of both stellar mass and especially SFR (α ∝ M{sub *}{sup 0.47}, α ∝ SFR{sup 0.95}). The HISMF is a crucial tool that can be used to constrain cosmological galaxy simulations, test observational predictions of the H I content of populations of galaxies, and identify galaxies whose properties deviate from average trends.

  18. TRENDS IN MOLECULAR EMISSION FROM DIFFERENT EXTRAGALACTIC STELLAR INITIAL MASS FUNCTIONS

    SciTech Connect

    Banerji, M.; Viti, S.; Williams, D. A.

    2009-10-01

    Banerji et al. suggested that top-heavy stellar initial mass functions (IMFs) in galaxies may arise when the interstellar physical conditions inhibit low-mass star formation, and they determined the physical conditions under which this suppression may or may not occur. In this work, we explore the sensitivity of the chemistry of interstellar gas under a wide range of conditions. We use these results to predict the relative velocity-integrated antenna temperatures of the CO rotational spectrum for several models of high-redshift active galaxies which may produce both top-heavy and unbiased IMFs. We find that while active galaxies with solar metallicity (and top-heavy IMFs) produce higher antenna temperatures than those with subsolar metallicity (and unbiased IMFs), the actual rotational distribution is similar. The high-J to peak CO ratio however may be used to roughly infer the metallicity of a galaxy provided we know whether it is active or quiescent. The metallicity strongly influences the shape of the IMF. High-order CO transitions are also found to provide a good diagnostic for high far-UV intensity and low metallicity counterparts of Milky Way type systems both of which show some evidence for having top-heavy IMFs. We also compute the relative abundances of molecules known to be effective tracers of high-density gas in these galaxy models. We find that the molecules CO and CS may be used to distinguish between solar and subsolar metallicities in active galaxies at high redshift whereas HCN, HNC, and CN are found to be relatively insensitive to the IMF shape at the large visual magnitudes typically associated with extragalactic sources.

  19. Stellar mass and color dependence of the three-point correlation function of galaxies in the local universe

    SciTech Connect

    Guo, Hong; Li, Cheng; Jing, Y. P.; Börner, Gerhard

    2014-01-10

    The three-point correlation function (3PCF) for galaxies provides an opportunity to measure the non-Gaussianity generated from nonlinear structure formation and also probes information about galaxy formation and evolution that is generally not available from the two-point correlation function (2PCF). We measure the 3PCF of the Sloan Digital Sky Survey DR7 main sample galaxies in both redshift and projected spaces on scales up to 40 h {sup –1} Mpc. We explore the dependence of the 3PCF on galaxy stellar mass and color in order to constrain the formation and evolution for galaxies of different properties. The study of the dependence on these properties also helps better constrain the relation between galaxy stellar mass and color and the properties of their hosting dark-matter halos. We focus on the study of the reduced 3PCF, Q, defined as the ratio between the 3PCF and the sum of the products of the 2PCFs. We find a very weak stellar-mass dependence of Q in both redshift and projected spaces. On small scales, more massive galaxies tend to have slightly higher amplitudes of Q. The shape dependence of Q is also weak on these small scales, regardless of stellar mass and color. The reduced 3PCF has a strong color dependence for the low-mass galaxies, while no significant dependence on color is found for the high-mass galaxies. Low-mass red galaxies have higher amplitudes and stronger shape dependence of the reduced 3PCF than the blue galaxies, implying that these low-mass red galaxies tend to populate filamentary structures. The linear galaxy bias model fails to interpret the color dependence of Q, emphasizing the importance of a nonvanishing quadratic bias parameter in the correct modeling of the galaxy color distribution.

  20. Color-magnitude relations within globular cluster systems of giant elliptical galaxies: The effects of globular cluster mass loss and the stellar initial mass function

    SciTech Connect

    Goudfrooij, Paul; Kruijssen, J. M. Diederik E-mail: kruijssen@mpa-garching.mpg.de

    2014-01-01

    Several recent studies have provided evidence for a 'bottom-heavy' stellar initial mass function (IMF) in massive elliptical galaxies. Here we investigate the influence of the IMF shape on the recently discovered color-magnitude relation (CMR) among globular clusters (GCs) in such galaxies. To this end we use calculations of GC mass loss due to stellar and dynamical evolution to evaluate (1) the shapes of stellar mass functions in GCs after 12 Gyr of evolution as a function of current GC mass along with their effects on integrated-light colors and mass-to-light ratios, and (2) their impact on the effects of GC self-enrichment using the 2009 'reference' model of Bailin and Harris. As to the class of metal-poor GCs, we find the observed shape of the CMR (often referred to as the 'blue tilt') to be very well reproduced by Bailin and Harris's reference self-enrichment model once 12 Gyr of GC mass loss is taken into account. The influence of the IMF on this result is found to be insignificant. However, we find that the observed CMR among the class of metal-rich GCs (the 'red tilt') can only be adequately reproduced if the IMF was bottom-heavy (–3.0 ≲ α ≲ –2.3 in dN/dM∝M{sup α}), which causes the stellar mass function at subsolar masses to depend relatively strongly on GC mass. This constitutes additional evidence that the metal-rich stellar populations in giant elliptical galaxies were formed with a bottom-heavy IMF.

  1. Push it to the limit: Local Group constraints on high-redshift stellar mass functions for M⋆ ≥ 105 M⊙

    NASA Astrophysics Data System (ADS)

    Graus, Andrew S.; Bullock, James S.; Boylan-Kolchin, Michael; Weisz, Daniel R.

    2016-02-01

    We constrain the evolution of the galaxy stellar mass function from 2 < z < 5 for galaxies with stellar masses as low as 105 M⊙ by combining star formation histories of Milky Way satellite galaxies derived from deep Hubble Space Telescope observations with merger trees from the ELVIS suite of N-body simulations. This approach extends our understanding more than two orders of magnitude lower in stellar mass than is currently possible by direct imaging. We find the faint end slopes of the mass functions to be α = 1.42^{+0.07}_{-0.05} at z = 2 and α = 1.57^{+0.06}_{-0.06} at z = 5, and show the slope only weakly evolves from z = 5 to z = 0. Our findings are in stark contrast to a number of direct detection studies that suggest slopes as steep as α = -1.9 at these epochs. Such a steep slope would result in an order of magnitude too many luminous Milky Way satellites in a mass regime that is observationally complete (M⋆ > 2 × 105 M⊙ at z = 0). The most recent studies from ZFOURGE and CANDELS also suggest flatter faint end slopes that are consistent with our results, but with a lower degree of precision. This work illustrates the strong connections between low and high-z observations when viewed through the lens of lambda cold dark matter numerical simulations.

  2. The local stellar luminosity function and mass-to-light ratio in the near-infrared

    NASA Astrophysics Data System (ADS)

    Just, A.; Fuchs, B.; Jahreiß, H.; Flynn, C.; Dettbarn, C.; Rybizki, J.

    2015-07-01

    A new sample of stars, representative of the solar neighbourhood luminosity function (LF), is constructed from the Hipparcos catalogue and the Fifth Catalogue of Nearby Stars. We have cross-matched to sources in the Two Micron All Sky Survey catalogue so that for all stars individually determined near-infrared (NIR) photometry is available on a homogeneous system (typically Ks). The spatial completeness of the sample has been carefully determined by statistical methods, and the NIR LF of the stars has been derived by direct star counts. We find a local volume luminosity of 0.121 ± 0.004 LK⊙ pc-3, corresponding to a volumetric mass-to-light ratio (M/L) of M/L_K = 0.31 ± 0.02 {M}_{⊙}/L_{K⊙}, where giants contribute 80 per cent to the light but less than 2 per cent to the stellar mass. We derive the surface brightness of the solar cylinder with the help of a vertical disc model. We find a surface brightness of 99 LK⊙ pc-2 with an uncertainty of approximately 10 per cent. This corresponds to an M/L for the solar cylinder of M/L_K = 0.34 {M}_{⊙}/L_{K⊙}. The M/L for the solar cylinder is only 10 per cent larger than the local value despite the fact that the local population has a much larger contribution of young stars. It turns out that the effective scaleheights of the lower main sequence carrying most of the mass is similar to that of the giants, which are dominating the NIR light. The corresponding colour for the solar cylinder is V - K = 2.89 mag compared to the local value of V - K = 2.46 mag. An extrapolation of the local surface brightness to the whole Milky Way yields a total luminosity of MK = -24.2 mag. The Milky Way falls in the range of K band Tully-Fisher relations from the literature.

  3. DEAD, UNDEAD, AND ZOMBIE ZONES IN PROTOSTELLAR DISKS AS A FUNCTION OF STELLAR MASS

    SciTech Connect

    Mohanty, Subhanjoy; Ercolano, Barbara; Turner, Neal J. E-mail: ercolano@usm.lmu.de

    2013-02-10

    We investigate the viability of the magnetorotational instability (MRI) in X-ray ionized viscous accretion disks around both solar-type stars and very low mass stars. In particular, we determine the disk regions where the MRI can be shut off either by Ohmic resistivity (the so-called dead and undead zones) or by ambipolar diffusion (a region we term the zombie zone). We consider two stellar masses: M {sub *} = 0.7 M {sub Sun} and 0.1 M {sub Sun }. In each case, we assume that: the disk surface density profile is that of a scaled Minimum Mass Solar Nebula, with M {sub disk}/M {sub *} = 0.01 as suggested by current data; disk ionization is driven primarily by stellar X-rays, complemented by cosmic rays and radionuclides; and the stellar X-ray luminosity scales with bolometric luminosity as L{sub X} /L {sub *} Almost-Equal-To 10{sup -3.5}, as observed. Ionization rates are calculated with the MOCCASIN Monte Carlo X-ray transport code, and ionization balance determined using a simplified chemical network, including well-mixed 0.1 {mu}m grains at various levels of depletion. We find that (1) ambipolar diffusion is the primary factor controlling MRI activity in disks around both solar-type and very low mass classical T Tauri stars. Assuming that the MRI yields the maximum possible field strength at each radius, we further find that: (2) the MRI-active layer constitutes only {approx}5%-10% of the total disk mass; (3) the accretion rate ( M-dot ) varies radially in both magnitude and sign (inward or outward), implying time-variable accretion as well as the creation of disk gaps and overdensities, with consequences for planet formation and migration; (4) achieving the empirical accretion rates in solar-type and very low mass stars requires a depletion of well-mixed small grains (via grain growth and/or settling) by a factor of 10-1000 relative to the standard dust-to-gas mass ratio of 10{sup -2}; and (5) the current non-detection of polarized emission from field

  4. Dead, Undead, and Zombie Zones in Protostellar Disks as a Function of Stellar Mass

    NASA Astrophysics Data System (ADS)

    Mohanty, Subhanjoy; Ercolano, Barbara; Turner, Neal J.

    2013-02-01

    We investigate the viability of the magnetorotational instability (MRI) in X-ray ionized viscous accretion disks around both solar-type stars and very low mass stars. In particular, we determine the disk regions where the MRI can be shut off either by Ohmic resistivity (the so-called dead and undead zones) or by ambipolar diffusion (a region we term the zombie zone). We consider two stellar masses: M * = 0.7 M ⊙ and 0.1 M ⊙. In each case, we assume that: the disk surface density profile is that of a scaled Minimum Mass Solar Nebula, with M disk/M * = 0.01 as suggested by current data; disk ionization is driven primarily by stellar X-rays, complemented by cosmic rays and radionuclides; and the stellar X-ray luminosity scales with bolometric luminosity as LX /L * ≈ 10-3.5, as observed. Ionization rates are calculated with the MOCCASIN Monte Carlo X-ray transport code, and ionization balance determined using a simplified chemical network, including well-mixed 0.1 μm grains at various levels of depletion. We find that (1) ambipolar diffusion is the primary factor controlling MRI activity in disks around both solar-type and very low mass classical T Tauri stars. Assuming that the MRI yields the maximum possible field strength at each radius, we further find that: (2) the MRI-active layer constitutes only ~5%-10% of the total disk mass; (3) the accretion rate (\\dot{M}) varies radially in both magnitude and sign (inward or outward), implying time-variable accretion as well as the creation of disk gaps and overdensities, with consequences for planet formation and migration; (4) achieving the empirical accretion rates in solar-type and very low mass stars requires a depletion of well-mixed small grains (via grain growth and/or settling) by a factor of 10-1000 relative to the standard dust-to-gas mass ratio of 10-2 and (5) the current non-detection of polarized emission from field-aligned grains in the outer disk regions is consistent with active MRI at those radii.

  5. THE EVOLUTION OF THE STELLAR MASS FUNCTION OF GALAXIES FROM z = 4.0 AND THE FIRST COMPREHENSIVE ANALYSIS OF ITS UNCERTAINTIES: EVIDENCE FOR MASS-DEPENDENT EVOLUTION

    SciTech Connect

    Marchesini, Danilo; Van Dokkum, Pieter G.; Foerster Schreiber, Natascha M.; Franx, Marijn; Labbe, Ivo; Wuyts, Stijn

    2009-08-20

    We present the evolution of the stellar mass function (SMF) of galaxies from z = 4.0 to z = 1.3 measured from a sample constructed from the deep near-infrared Multi-wavelength Survey by Yale-Chile, the Faint Infrared Extragalactic Survey, and the Great Observatories Origins Deep Survey-Chandra Deep Field South surveys, all having very high-quality optical to mid-infrared data. This sample, unique in that it combines data from surveys with a large range of depths and areas in a self-consistent way, allowed us to (1) minimize the uncertainty due to cosmic variance and empirically quantify its contribution to the total error budget; (2) simultaneously probe the high-mass end and the low-mass end (down to {approx}0.05 times the characteristic stellar mass) of the SMF with good statistics; and (3) empirically derive the redshift-dependent completeness limits in stellar mass. We provide, for the first time, a comprehensive analysis of random and systematic uncertainties affecting the derived SMFs, including the effect of metallicity, extinction law, stellar population synthesis model, and initial mass function. We find that the mass density evolves by a factor of {approx}17{sup +7}{sub -10} since z = 4.0, mostly driven by a change in the normalization {phi}*. If only random errors are taken into account, we find evidence for mass-dependent evolution, with the low-mass end evolving more rapidly than the high-mass end. However, we show that this result is no longer robust when systematic uncertainties due to the SED-modeling assumptions are taken into account. Another significant uncertainty is the contribution to the overall stellar mass density of galaxies below our mass limit; future studies with WFC3 will provide better constraints on the SMF at masses below 10{sup 10} M{sub sun} at z>2. Taking our results at face value, we find that they are in conflict with semianalytic models of galaxy formation. The models predict SMFs that are in general too steep, with too many

  6. Ages of young star clusters, massive blue stragglers, and the upper mass limit of stars: Analyzing age-dependent stellar mass functions

    SciTech Connect

    Schneider, F. R. N.; Izzard, R. G.; Langer, N.; Stolte, A.; Hußmann, B.; De Mink, S. E.; De Koter, A.; Sana, H.; Gvaramadze, V. V.; Liermann, A.

    2014-01-10

    Massive stars rapidly change their masses through strong stellar winds and mass transfer in binary systems. The latter aspect is important for populations of massive stars as more than 70% of all O stars are expected to interact with a binary companion during their lifetime. We show that such mass changes leave characteristic signatures in stellar mass functions of young star clusters that can be used to infer their ages and to identify products of binary evolution. We model the observed present-day mass functions of the young Galactic Arches and Quintuplet star clusters using our rapid binary evolution code. We find that the shaping of the mass function by stellar wind mass loss allows us to determine the cluster ages as 3.5 ± 0.7 Myr and 4.8 ± 1.1 Myr, respectively. Exploiting the effects of binary mass exchange on the cluster mass function, we find that the most massive stars in both clusters are rejuvenated products of binary mass transfer, i.e., the massive counterpart of classical blue straggler stars. This resolves the problem of an apparent age spread among the most luminous stars exceeding the expected duration of star formation in these clusters. We perform Monte Carlo simulations to probe stochastic sampling, which support the idea of the most massive stars being rejuvenated binary products. We find that the most massive star is expected to be a binary product after 1.0 ± 0.7 Myr in Arches and after 1.7 ± 1.0 Myr in Quintuplet. Today, the most massive 9 ± 3 stars in Arches and 8 ± 3 in Quintuplet are expected to be such objects. Our findings have strong implications for the stellar upper mass limit and solve the discrepancy between the claimed 150 M {sub ☉} limit and observations of four stars with initial masses of 165-320 M {sub ☉} in R136 and of supernova 2007bi, which is thought to be a pair-instability supernova from an initial 250 M {sub ☉} star. Using the stellar population of R136, we revise the upper mass limit to values in the range

  7. Stellar Mass Distributions in Dwarf Irregular Galaxies

    NASA Astrophysics Data System (ADS)

    Zhang, Hongxin; Hunter, D.; LITTLE THINGS Team

    2011-01-01

    We present the radial distributions of the stellar mass and the star formation histories for a large sample of dwarf irregular galaxies assembled by the LITTLE THINGS project (Local Irregulars That Trace Luminosity Extremes The HI Nearby Galaxy Survey, http://www.lowell.edu/users/dah/littlethings/index.html). Specifically, utilizing the multi-band data including FUV/NUV/UBV/Hα/3.6μm, and with the CB07 stellar population synthesis models, we analyze the variations of the SEDs as a function of radius. By studying the relationship between the stellar mass, star formation histories, star formation and HI gas, we will discuss the possible star formation modes and the roles played by the stellar mass and gas in determining the star formation in dwarf irregular galaxies in general. We gratefully acknowledge funding for this research from the National Science Foundation (AST-0707563).

  8. Explaining the Stellar Initial Mass Function with the Theory of Spatial Networks

    NASA Astrophysics Data System (ADS)

    Klishin, Andrei A.; Chilingarian, Igor

    2016-06-01

    The distributions of stars and prestellar cores by mass (initial and dense core mass functions, IMF/DCMF) are among the key factors regulating star formation and are the subject of detailed theoretical and observational studies. Results from numerical simulations of star formation qualitatively resemble an observed mass function, a scale-free power law with a sharp decline at low masses. However, most analytic IMF theories critically depend on the empirically chosen input spectrum of mass fluctuations which evolve into dense cores and, subsequently, stars, and on the scaling relation between the amplitude and mass of a fluctuation. Here we propose a new approach exploiting techniques from the field of network science. We represent a system of dense cores accreting gas from the surrounding diffuse interstellar medium (ISM) as a spatial network growing by preferential attachment and assume that the ISM density has a self-similar fractal distribution following the Kolmogorov turbulence theory. We effectively combine gravoturbulent and competitive accretion approaches and predict the accretion rate to be proportional to the dense core mass: {dM}/{dt}\\propto M. Then we describe the dense core growth and demonstrate that the power-law core mass function emerges independently of the initial distribution of density fluctuations by mass. Our model yields a power law solely defined by the fractal dimensionalities of the ISM and accreting gas. With a proper choice of the low-mass cut-off, it reproduces observations over three decades in mass. We also rule out a low-mass star dominated “bottom-heavy” IMF in a single star-forming region.

  9. The VMC Survey. XVIII. Radial Dependence of the Low-mass, 0.55--0.82 M Stellar Mass Function in the Galactic Globular Cluster 47 Tucanae

    NASA Astrophysics Data System (ADS)

    Zhang, Chaoli; Li, Chengyuan; de Grijs, Richard; Bekki, Kenji; Deng, Licai; Zaggia, Simone; Rubele, Stefano; Piatti, Andrés E.; Cioni, Maria-Rosa L.; Emerson, Jim; For, Bi-Qing; Ripepi, Vincenzo; Marconi, Marcella; Ivanov, Valentin D.; Chen, Li

    2015-12-01

    We use near-infrared observations obtained as part of the Visible and Infrared Survey Telescope for Astronomy (VISTA) Survey of the Magellanic Clouds (VMC), as well as two complementary Hubble Space Telescope (HST) data sets, to study the luminosity and mass functions (MFs) as a function of clustercentric radius of the main-sequence stars in the Galactic globular cluster 47 Tucanae. The HST observations indicate a relative deficit in the numbers of faint stars in the central region of the cluster compared with its periphery, for 18.75 ≤ mF606W ≤ 20.9 mag (corresponding to a stellar mass range of 0.55 < m*/M⊙ < 0.73). The stellar number counts at 6.‧7 from the cluster core show a deficit for 17.62 ≤ mF606W ≤ 19.7 mag (i.e., 0.65 < m*/M⊙ < 0.82), which is consistent with expectations from mass segregation. The VMC-based stellar MFs exhibit power-law shapes for masses in the range 0.55 < m*/M⊙ < 0.82. These power laws are characterized by an almost constant slope, α. The radial distribution of the power-law slopes α thus shows evidence of the importance of both mass segregation and tidal stripping, for both the first- and second-generation stars in 47 Tuc.

  10. The stellar initial mass function in the early universe revealed from old stellar populations in our neighbourhood

    NASA Astrophysics Data System (ADS)

    Komiya, Yutaka; Yamada, Shimako; Suda, Takuma; Fujimoto, Masayuki Y.

    2013-07-01

    We present a new method to investigate the IMF in the early universe from observations of extremely metal-poor (EMP) stars. EMP stars are the low-mass survivors of stars which are formed in the early universe. We can give constraints on the IMF from statistics of the elemental abundances of the EMP stars in the Galactic halo.

  11. Significantly improving stellar mass and radius estimates: a new reference function for the Δν scaling relation

    NASA Astrophysics Data System (ADS)

    Guggenberger, Elisabeth; Hekker, Saskia; Basu, Sarbani; Bellinger, Earl

    2016-08-01

    The scaling relations between global asteroseismic observables and stellar properties are widely used to estimate masses and radii of stars exhibiting solar-like oscillations. Since the mass and radius of the Sun are known independently, the Sun is commonly used as a reference to scale to. However, the validity of the scaling relations depends on the homology between the star under study and the reference star. Solar-like oscillators span a wide range of masses and metallicities, as well as evolutionary phases. Most of these stars are therefore not homologous to the Sun. This leads to errors of up to 10 per cent (5 per cent) in mass (radius) when using the asteroseismic scaling relations with the Sun as the reference. In this paper, we derive a reference function to replace the solar-reference value used in the large-frequency separation scaling relation. Our function is the first that depends on both effective temperature and metallicity, and is applicable from the end of the main sequence to just above the bump on the red giant branch. This reference function improves the estimates of masses and radii determined through scaling relations by a factor of 2, i.e. allows masses and radii to be recovered with an accuracy of 5 per cent and 2 per cent, respectively.

  12. Mass functions for globular cluster main sequences based on CCD photometry and stellar models

    NASA Astrophysics Data System (ADS)

    McClure, Robert D.; Vandenberg, Don A.; Smith, Graeme H.; Fahlman, Gregory G.; Richer, Harvey B.; Hesser, James E.; Harris, William E.; Stetson, Peter B.; Bell, R. A.

    1986-08-01

    Main-sequence luminosity functions constructed from CCD observations of globular clusters reveal a strong trend in slope with metal abundance. Theoretical luminosity functions constructed from VandenBerg and Bell's (1985) isochrones have been fitted to the observations and reveal a trend between x, the power-law index of the mass function, and metal abundance. The most metal-poor clusters require an index of about x = 2.5, whereas the most metal-rich clusters exhibit an index of x of roughly -0.5. The luminosity functions for two sparse clusters, E3 and Pal 5, are distinct from those of the more massive clusters, in that they show a turndown which is possibly a result of mass loss or tidal disruption.

  13. THE STELLAR INITIAL MASS FUNCTION OF ULTRA-FAINT DWARF GALAXIES: EVIDENCE FOR IMF VARIATIONS WITH GALACTIC ENVIRONMENT

    SciTech Connect

    Geha, Marla; Brown, Thomas M.; Tumlinson, Jason; Kalirai, Jason S.; Avila, Roberto J.; Ferguson, Henry C.; Simon, Joshua D.; Kirby, Evan N.; VandenBerg, Don A.; Munoz, Ricardo R.; Guhathakurta, Puragra E-mail: tbrown@stsci.edu

    2013-07-01

    We present constraints on the stellar initial mass function (IMF) in two ultra-faint dwarf (UFD) galaxies, Hercules and Leo IV, based on deep Hubble Space Telescope Advanced Camera for Surveys imaging. The Hercules and Leo IV galaxies are extremely low luminosity (M{sub V} = -6.2, -5.5), metal-poor (([Fe/H]) = -2.4, -2.5) systems that have old stellar populations (>11 Gyr). Because they have long relaxation times, we can directly measure the low-mass stellar IMF by counting stars below the main-sequence turnoff without correcting for dynamical evolution. Over the stellar mass range probed by our data, 0.52-0.77 M{sub Sun }, the IMF is best fit by a power-law slope of {alpha}= 1.2{sub -0.5}{sup +0.4} for Hercules and {alpha} = 1.3 {+-} 0.8 for Leo IV. For Hercules, the IMF slope is more shallow than a Salpeter ({alpha} = 2.35) IMF at the 5.8{sigma} level, and a Kroupa ({alpha} = 2.3 above 0.5 M{sub Sun }) IMF slope at 5.4{sigma} level. We simultaneously fit for the binary fraction, f{sub binary}, finding f{sub binary}= 0.47{sup +0.16}{sub -0.14} for Hercules, and 0.47{sup +0.37}{sub -0.17} for Leo IV. The UFD binary fractions are consistent with that inferred for Milky Way stars in the same mass range, despite very different metallicities. In contrast, the IMF slopes in the UFDs are shallower than other galactic environments. In the mass range 0.5-0.8 M{sub Sun }, we see a trend across the handful of galaxies with directly measured IMFs such that the power-law slopes become shallower (more bottom-light) with decreasing galactic velocity dispersion and metallicity. This trend is qualitatively consistent with results in elliptical galaxies inferred via indirect methods and is direct evidence for IMF variations with galactic environment.

  14. THE STELLAR INITIAL MASS FUNCTION IN EARLY-TYPE GALAXIES FROM ABSORPTION LINE SPECTROSCOPY. I. DATA AND EMPIRICAL TRENDS

    SciTech Connect

    Van Dokkum, Pieter G.; Conroy, Charlie

    2012-11-20

    The strength of gravity-sensitive absorption lines in the integrated light of old stellar populations is one of the few direct probes of the stellar initial mass function (IMF) outside of the Milky Way. Owing to the advent of fully depleted CCDs with little or no fringing it has recently become possible to obtain accurate measurements of these features. Here, we present spectra covering the wavelength ranges 0.35-0.55 {mu}m and 0.72-1.03 {mu}m for the bulge of M31 and 34 early-type galaxies from the SAURON sample, obtained with the Low Resolution Imaging Spectrometer on Keck. The signal-to-noise ratio is {approx}> 200 A{sup -1} out to 1 {mu}m, which is sufficient to measure gravity-sensitive features for individual galaxies and to determine how they depend on other properties of the galaxies. Combining the new data with previously obtained spectra for globular clusters in M31 and the most massive elliptical galaxies in the Virgo cluster, we find that the dwarf-sensitive Na I {lambda}8183, 8195 doublet and the FeH {lambda}9916 Wing-Ford band increase systematically with velocity dispersion, while the giant-sensitive Ca II {lambda}8498, 8542, 8662 triplet decreases with dispersion. These trends are consistent with a varying IMF, such that galaxies with deeper potential wells have more dwarf-enriched mass functions. In a companion paper, we use a comprehensive stellar population synthesis model to demonstrate that IMF effects can be separated from age and abundance variations and quantify the IMF variation among early-type galaxies.

  15. STOCHASTIC STAR FORMATION AND A (NEARLY) UNIFORM STELLAR INITIAL MASS FUNCTION

    SciTech Connect

    Fumagalli, Michele; Krumholz, Mark R.; Da Silva, Robert L.

    2011-11-10

    Recent observations indicate a lower H{alpha} to FUV ratio in dwarf galaxies than in brighter systems, a trend that could be explained by a truncated and/or steeper initial mass function (IMF) in small galaxies. However, at low star formation rates (SFRs), the H{alpha} to FUV ratio can vary due to stochastic sampling even for a universal IMF, a hypothesis that has, prior to this work, received limited investigation. Using SLUG, a fully stochastic code for synthetic photometry in star clusters and galaxies, we compare the H{alpha} and FUV luminosity in a sample of {approx}450 nearby galaxies with models drawn from a universal Kroupa IMF and a modified IMF, the integrated galactic initial mass function (IGIMF). Once random sampling and time evolution are included, a Kroupa IMF convolved with the cluster mass function (CMF) reproduces the observed H{alpha} distribution at all FUV luminosities, while a truncated IMF as implemented in current IGIMF models underpredicts the H{alpha} luminosity by more than an order of magnitude at the lowest SFRs. We conclude that the observed luminosity is the result of the joint probability distribution function of the SFR, CMF, and a universal IMF, consistent with parts of the IGIMF theory, but that a truncation in the IMF in clusters is inconsistent with the observations. Future work will examine stochastic star formation and its time dependence in detail to study whether random sampling can explain other observations that suggest a varying IMF.

  16. The Luminosity and Stellar Mass Functions of Red W1-W2 Galaxies

    NASA Astrophysics Data System (ADS)

    O'Connor, J. A.; Rosenberg, J. L.; Satyapal, S.; Secrest, N. J.

    2016-08-01

    We present a study of nearby galaxies as a function of their [3.4]-[4.6] colour. Galaxies that are red in their [3.4]-[4.6] colour contain heated dust and the reddest systems ([3.4]-[4.6] > 0.5) are classified as AGN by some selection criteria. The sample discussed here includes nearby galaxies selected from the Sloan Digital Sky Survey (SDSS) that are also in the Wide-field Infrared Survey Explorer (WISE) catalogue. We calculate the number density of galaxies, in the form of the luminosity and mass functions, using the V/Vmax method and a Stepwise Maximum Likelihood method that has been modified to account for the additional colour selection. The reddest galaxies which have [3.4]-[4.6] > 0.8 and are sometimes classified as AGN by their colour, make up 0.2% of nearby galaxies. However, the reddest galaxies are a rising fraction of the low mass galaxy population. Identifying the lowest mass (M < 108M⊙) red ([3.4]-[4.6] > 0.8) galaxies as AGN is surprising given that none are optical AGN or composites, in contrast with their more massive (M > 1010M⊙) red galaxy counterparts that are dominated by optical AGN and composites (86.4%). We also show that these low mass red galaxies are associated with higher specific star formation rates than their bluer counterparts. While the properties of this relatively rare segment of nearby low-mass galaxies are intriguing, particularly if they are associated with AGN activity, there is not yet enough evidence to determine whether it is AGN or unusual star formation that is driving red colours in these systems.

  17. The luminosity and stellar mass functions of red W1-W2 galaxies

    NASA Astrophysics Data System (ADS)

    O'Connor, J. A.; Rosenberg, J. L.; Satyapal, S.; Secrest, N. J.

    2016-11-01

    We present a study of nearby galaxies as a function of their [3.4]-[4.6] colour. Galaxies that are red in their [3.4]-[4.6] colour contain heated dust and the reddest systems ([3.4]-[4.6] > 0.5) are classified as active galactic nuclei (AGN) by some selection criteria. The sample discussed here includes nearby galaxies selected from the Sloan Digital Sky Survey (SDSS) that are also in the Wide-field Infrared Survey Explorer (WISE) catalogue. We calculate the number density of galaxies, in the form of the luminosity and mass functions, using the V/Vmax method and a stepwise maximum likelihood method that has been modified to account for the additional colour selection. The reddest galaxies which have [3.4]-[4.6] > 0.8 and are sometimes classified as AGN by their colour make up 0.2 per cent of nearby galaxies. However, the reddest galaxies are a rising fraction of the low-mass galaxy population. Identifying the lowest mass (M < 108 M⊙) red ([3.4]-[4.6] > 0.8) galaxies as AGN is surprising given that none are optical AGN or composites, in contrast with their more massive (M > 1010 M⊙) red galaxy counterparts that are dominated by optical AGN and composites (86.4 per cent). We also show that these low-mass red galaxies are associated with higher specific star formation rates than their bluer counterparts. While the properties of this relatively rare segment of nearby low-mass galaxies are intriguing, particularly if they are associated with AGN activity, there is not yet enough evidence to determine whether it is AGN or unusual star formation that is driving red colours in these systems.

  18. SPIDER VIII - constraints on the stellar initial mass function of early-type galaxies from a variety of spectral features

    NASA Astrophysics Data System (ADS)

    La Barbera, F.; Ferreras, I.; Vazdekis, A.; de la Rosa, I. G.; de Carvalho, R. R.; Trevisan, M.; Falcón-Barroso, J.; Ricciardelli, E.

    2013-08-01

    We perform a spectroscopic study to constrain the stellar initial mass function (IMF) by using a large sample of 24 781 early-type galaxies from the Sloan Digital Sky Survey-based Spheroids Panchromatic Investigation in Different Environmental Regions survey. Clear evidence is found of a trend between IMF and central velocity dispersion (σ0), evolving from a standard Kroupa/Chabrier IMF at σ0 ˜ 100 km s-1 towards a more bottom-heavy IMF with increasing σ0, becoming steeper than the Salpeter function at σ0 ≳ 220 km s-1. We analyse a variety of spectral indices, combining gravity-sensitive features, with age- and metallicity-sensitive indices, and we also consider the effect of non-solar abundance variations. The indices, corrected to solar scale by means of semi-empirical correlations, are fitted simultaneously with the (nearly solar-scaled) extended MILES (MIUSCAT) stellar population models. Similar conclusions are reached when analysing the spectra with a hybrid approach, combining constraints from direct spectral fitting in the optical with those from IMF-sensitive indices. Our analysis suggests that σ0, rather than [α/Fe], drives the variation of the IMF. Although our analysis cannot discriminate between a single power-law (unimodal) IMF and a low-mass (≲0.5 M⊙) tapered (bimodal) IMF, robust constraints can be inferred for the fraction in low-mass stars at birth. This fraction (by mass) is found to increase from ˜20 per cent at σ0 ˜ 100 km s-1, up to ˜80 per cent at σ0 ˜ 300 km s-1. However, additional constraints can be provided with stellar mass-to-light (M/L) ratios: unimodal models predict M/L significantly larger than dynamical M/L, across the whole σ0 range, whereas a bimodal IMF is compatible. Our results are robust against individual abundance variations. No significant variation is found in Na and Ca in addition to the expected change from the correlation between [α/Fe] and σ0.

  19. The Evolution of the Galaxy Stellar Mass Function at z = 4-8: A Steepening Low-mass-end Slope with Increasing Redshift

    NASA Astrophysics Data System (ADS)

    Song, Mimi; Finkelstein, Steven L.; Ashby, Matthew L. N.; Grazian, A.; Lu, Yu; Papovich, Casey; Salmon, Brett; Somerville, Rachel S.; Dickinson, Mark; Duncan, K.; Faber, Sandy M.; Fazio, Giovanni G.; Ferguson, Henry C.; Fontana, Adriano; Guo, Yicheng; Hathi, Nimish; Lee, Seong-Kook; Merlin, Emiliano; Willner, S. P.

    2016-07-01

    We present galaxy stellar mass functions (GSMFs) at z = 4-8 from a rest-frame ultraviolet (UV) selected sample of ˜4500 galaxies, found via photometric redshifts over an area of ˜280 arcmin2 in the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS)/Great Observatories Origins Deep Survey (GOODS) fields and the Hubble Ultra Deep Field. The deepest Spitzer/IRAC data to date and the relatively large volume allow us to place a better constraint at both the low- and high-mass ends of the GSMFs compared to previous space-based studies from pre-CANDELS observations. Supplemented by a stacking analysis, we find a linear correlation between the rest-frame UV absolute magnitude at 1500 Å ({M}{{UV}}) and logarithmic stellar mass ({log}{M}* ) that holds for galaxies with {log}({M}* /{M}⊙ )≲ 10. We use simulations to validate our method of measuring the slope of the {log}{M}* -M UV relation, finding that the bias is minimized with a hybrid technique combining photometry of individual bright galaxies with stacked photometry for faint galaxies. The resultant measured slopes do not significantly evolve over z = 4-8, while the normalization of the trend exhibits a weak evolution toward lower masses at higher redshift. We combine the {log}{M}* -M UV distribution with observed rest-frame UV luminosity functions at each redshift to derive the GSMFs, finding that the low-mass-end slope becomes steeper with increasing redshift from α =-{1.55}-0.07+0.08 at z = 4 to α =-{2.25}-0.35+0.72 at z = 8. The inferred stellar mass density, when integrated over {M}* ={10}8-1013 M ⊙, increases by a factor of {10}-2+30 between z = 7 and z = 4 and is in good agreement with the time integral of the cosmic star formation rate density.

  20. Lower mass normalization of the stellar initial mass function for dense massive early-type galaxies at z ~ 1.4

    NASA Astrophysics Data System (ADS)

    Gargiulo, A.; Saracco, P.; Longhetti, M.; Tamburri, S.; Lonoce, I.; Ciocca, F.

    2015-01-01

    Aims: This paper aims at understanding whether the normalization of the stellar initial mass function (IMF) of massive galaxies varies with cosmic time and/or with mean stellar mass density Σ = M⋆/(2πRe2). Methods: We have tackled this question by taking advantage of a spectroscopic sample of 18 dense (Σ > 2500 M⊙ pc-2) massive early-type galaxies (ETGs) that we collected at 1.2 ≲ z ≲ 1.6. Each galaxy in the sample was selected in order to have available: i) a high-resolution deep HST-F160W image to visually classify it as an ETG; ii) an accurate velocity dispersion estimate; iii) stellar mass derived through the fit of multiband photometry; and iv) structural parameters (i.e. effective radius Re and Sersic index n) derived in the F160W-band. We have constrained the mass-normalization of the IMF of dense high-z ETGs by comparing the true stellar masses of the ETGs in the sample (Mtrue) derived through virial theorem, hence IMF independent, with those inferred through the fit of the photometry which assume a reference IMF (Mref). Adopting the virial estimator as proxy of the true stellar mass, we have implicitly assumed that these systems have zero dark matter. However, recent dynamical analysis of massive local ETGs have shown that the dark matter fraction within Re in dense ETGs is negligible (<5-10%) and simulations of dissipationless mergers of spheroidal galaxies have shown that this fraction decreases going back with time. Accurate dynamical models of local ETGs performed by the ATLAS3D team have shown that the virial estimator is prone to underestimating or overestimating the total masses. We have considered this, and based on the results of ATLAS3D we have shown that for dense ETGs the mean value of total masses derived through the virial estimator with a non-homologous virial coefficient and Sersic-Re are perfectly in agreement with the mean value of those derived through more sophisticated dynamical models, although, of course, the estimates

  1. Perspectives on Intracluster Enrichment and the Stellar Initial Mass Function in Elliptical Galaxies

    NASA Astrophysics Data System (ADS)

    Loewenstein, Michael

    2013-01-01

    Stars born in galaxy cluster potential wells must be responsible for the high level of enrichment measured in the intracluster medium; however, there is increasing tension between this truism and the parsimonious assumption that the stars in the generally old population studied optically in cluster galaxies emerged from the same formation sites at the same epochs. We show that star formation that produces a stellar population with a canonical IMF and standard efficiency in producing SNIa, and comprises 10% of the current overall cluster baryon content, falls short by a factor of >2 of explaining a typical rich cluster ICM Fe abundance. This is true even for extreme assumptions about the level and relative amount of SNIa and SNII products locked up in the stellar population that conflict with spectroscopic studies of cluster galaxies. We construct and utilize a simple evolutionary model of an old, simple stellar population to quantify the changes in the IMF shape required to bring the ICM and stars into concordance. While in some cases the required departure from the canonical IMF is modest, optical determinations of the IMF from kinematic and population studies in elliptical galaxies are driving the inferred IMF in the opposite direction. This recent evidence of a steep IMF in elliptical galaxies that conflicts with the nucleosynthetic requirements of the ICM may therefore indicate the need for an additional source of enrichment, or a higher stellar fraction than is usually assumed.

  2. Galaxy bimodality versus stellar mass and environment

    NASA Astrophysics Data System (ADS)

    Baldry, I. K.; Balogh, M. L.; Bower, R. G.; Glazebrook, K.; Nichol, R. C.; Bamford, S. P.; Budavari, T.

    2006-12-01

    We analyse a z < 0.1 galaxy sample from the Sloan Digital Sky Survey focusing on the variation in the galaxy colour bimodality with stellar mass and projected neighbour density Σ, and on measurements of the galaxy stellar mass functions. The characteristic mass increases with environmental density from about 1010.6 to (Kroupa initial mass function, H0 = 70) for Σ in the range 0.1-10Mpc-2. The galaxy population naturally divides into a red and blue sequence with the locus of the sequences in colour-mass and colour-concentration indices not varying strongly with environment. The fraction of galaxies on the red sequence is determined in bins of 0.2 in logΣ and bins). The red fraction fr generally increases continuously in both Σ and such that there is a unified relation: . Two simple functions are proposed which provide good fits to the data. These data are compared with analogous quantities in semi-analytical models based on the Millennium N-body simulation: the Bower et al. and Croton et al. models that incorporate active galactic nucleus feedback. Both models predict a strong dependence of the red fraction on stellar mass and environment that is qualitatively similar to the observations. However, a quantitative comparison shows that the Bower et al. model is a significantly better match; this appears to be due to the different treatment of feedback in central galaxies.

  3. THE EFFECT OF WARM DARK MATTER ON GALAXY PROPERTIES: CONSTRAINTS FROM THE STELLAR MASS FUNCTION AND THE TULLY-FISHER RELATION

    SciTech Connect

    Kang, Xi; Maccio, Andrea V.; Dutton, Aaron A.

    2013-04-10

    In this paper, we combine high-resolution N-body simulations with a semi-analytical model of galaxy formation to study the effects of a possible warm dark matter (WDM) component on the observable properties of galaxies. We compare three WDM models with a dark matter (DM) mass of 0.5, 0.75, and 2.0 keV with the standard cold dark matter case. For a fixed set of parameters describing the baryonic physics, the WDM models predict fewer galaxies at low (stellar) masses, as expected due to the suppression of power on small scales, while no substantial difference is found at the high-mass end. However, these differences in the stellar mass function vanish when a different set of parameters is used to describe the (largely unknown) galaxy formation processes. We show that it is possible to break this degeneracy between DM properties and the parameterization of baryonic physics by combining observations on the stellar mass function with the Tully-Fisher relation (the relation between stellar mass and the rotation velocity at large galactic radii as probed by resolved H I rotation curves). WDM models with a too warm candidate (m{sub {nu}} < 0.75 keV) cannot simultaneously reproduce the stellar mass function and the Tully-Fisher relation. We conclude that accurate measurements of the galaxy stellar mass function and the link between galaxies and DM halos down to the very low mass end can give very tight constraints on the nature of DM candidates.

  4. Galaxy stellar mass functions from ZFOURGE/CANDELS: An excess of low-mass galaxies since z = 2 and the rapid buildup of quiescent galaxies

    SciTech Connect

    Tomczak, Adam R.; Tran, Kim-Vy H.; Papovich, Casey; Kawinwanichakij, Lalitwadee; Mehrtens, Nicola; Spitler, Lee R.; Tilvi, Vithal; Quadri, Ryan F.; Kelson, Daniel D.; McCarthy, Patrick J.; Monson, Andrew J.; Persson, S. Eric; Labbé, Ivo; Straatman, Caroline M. S.; Glazebrook, Karl; Allen, Rebecca; Kacprzak, Glenn G.; Brammer, Gabriel B.; Van Dokkum, Pieter

    2014-03-10

    Using observations from the FourStar Galaxy Evolution Survey (ZFOURGE), we obtain the deepest measurements to date of the galaxy stellar mass function (SMF) at 0.2 < z < 3. ZFOURGE provides well-constrained photometric redshifts made possible through deep medium-bandwidth imaging at 1-2 μm. We combine this with Hubble Space Telescope imaging from the Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey, allowing for the efficient selection of both blue and red galaxies down to stellar masses of ∼10{sup 9.5} M {sub ☉} at z ∼ 2.5. The total surveyed area is 316 arcmin{sup 2} distributed over three independent fields. We supplement these data with the wider and shallower NEWFIRM Medium-Band Survey to provide stronger constraints at high masses. Several studies at z ≤ 1.5 have revealed a steepening of the slope at the low-mass end of the SMF, leading to an upturn at masses <10{sup 10} M {sub ☉} that is not well described by a standard single-Schechter function. We find evidence that this feature extends to at least z ∼ 2 and that it can be found in both the star-forming and quiescent populations individually. The characteristic mass (M*) and slope at the lowest masses (α) of a double-Schechter function fit to the SMF stay roughly constant at Log(M/M {sub ☉}) ∼ 10.65 and ∼ – 1.5, respectively. The SMF of star-forming galaxies has evolved primarily in normalization, while the change in shape is relatively minor. Our data allow us, for the first time, to observe a rapid buildup at the low-mass end of the quiescent SMF. Since z = 2.5, the total stellar mass density of quiescent galaxies (down to 10{sup 9} M {sub ☉}) has increased by a factor of ∼12, whereas the mass density of star-forming galaxies only increases by a factor of ∼2.2.

  5. Mass Transfer by Stellar Wind

    NASA Astrophysics Data System (ADS)

    Boffin, Henri M. J.

    I review the process of mass transfer in a binary system through a stellar wind, with an emphasis on systems containing a red giant. I show how wind accretion in a binary system is different from the usually assumed Bondi-Hoyle approximation, first as far as the flow's structure is concerned, but most importantly, also for the mass accretion and specific angular momentum loss. This has important implications on the evolution of the orbital parameters. I also discuss the impact of wind accretion, on the chemical pollution and change in spin of the accreting star. The last section deals with observations and covers systems that most likely went through wind mass transfer: barium and related stars, symbiotic stars and central stars of planetary nebulae (CSPN). The most recent observations of cool CSPN progenitors of barium stars, as well as of carbon-rich post-common envelope systems, are providing unique constraints on the mass transfer processes.

  6. The big problems in star formation: The star formation rate, stellar clustering, and the initial mass function

    NASA Astrophysics Data System (ADS)

    Krumholz, Mark R.

    2014-06-01

    Star formation lies at the center of a web of processes that drive cosmic evolution: generation of radiant energy, synthesis of elements, formation of planets, and development of life. Decades of observations have yielded a variety of empirical rules about how it operates, but at present we have no comprehensive, quantitative theory. In this review I discuss the current state of the field of star formation, focusing on three central questions: What controls the rate at which gas in a galaxy converts to stars? What determines how those stars are clustered, and what fraction of the stellar population ends up in gravitationally-bound structures? What determines the stellar initial mass function, and does it vary with star-forming environment? I use these three questions as a lens to introduce the basics of star formation, beginning with a review of the observational phenomenology and the basic physical processes. I then review the status of current theories that attempt to solve each of the three problems, pointing out links between them and opportunities for theoretical and numerical work that crosses the scale between them. I conclude with a discussion of prospects for theoretical progress in the coming years.

  7. Stellar mass function of cluster galaxies at z ~ 1.5: evidence for reduced quenching efficiency at high redshift

    NASA Astrophysics Data System (ADS)

    Nantais, Julie B.; van der Burg, Remco F. J.; Lidman, Chris; Demarco, Ricardo; Noble, Allison; Wilson, Gillian; Muzzin, Adam; Foltz, Ryan; DeGroot, Andrew; Cooper, Michael C.

    2016-08-01

    We present the stellar mass functions (SMFs) of passive and star-forming galaxies with a limiting mass of 1010.1M⊙ in four spectroscopically confirmed Spitzer Adaptation of the Red-sequence Cluster Survey (SpARCS) galaxy clusters at 1.37 mass growth.

  8. A PHYSICAL MODEL FOR THE 0 {approx}< z {approx}< 8 REDSHIFT EVOLUTION OF THE GALAXY ULTRAVIOLET LUMINOSITY AND STELLAR MASS FUNCTIONS

    SciTech Connect

    Tacchella, Sandro; Carollo, C. Marcella; Trenti, Michele

    2013-05-10

    We present a model to understand the redshift evolution of the UV luminosity and stellar mass functions of Lyman break galaxies. Our approach is based on the assumption that the luminosity and stellar mass of a galaxy is related to its dark-matter (DM) halo assembly and gas infall rate. Specifically, galaxies experience a burst of star formation at the halo assembly time, followed by a constant star formation rate, representing a secular star formation activity sustained by steady gas accretion. Star formation from steady gas accretion is the dominant contribution to the galaxy UV luminosity at all redshifts. The model is calibrated by constructing a galaxy luminosity versus halo mass relation at z = 4 via abundance matching. After this luminosity calibration, the model naturally fits the z = 4 stellar mass function, and correctly predicts the evolution of both luminosity and stellar mass functions from z = 0 to z = 8. While the details of star formation efficiency and feedback are hidden within our calibrated luminosity versus halo mass relation, our study highlights that the primary driver of galaxy evolution across cosmic time is the buildup of DM halos, without the need to invoke a redshift-dependent efficiency in converting gas into stars.

  9. ESTIMATES OF THE PLANET YIELD FROM GROUND-BASED HIGH-CONTRAST IMAGING OBSERVATIONS AS A FUNCTION OF STELLAR MASS

    SciTech Connect

    Crepp, Justin R.; Johnson, John Asher

    2011-06-01

    We use Monte Carlo simulations to estimate the number of extrasolar planets that are directly detectable in the solar neighborhood using current and forthcoming high-contrast imaging instruments. Our calculations take into consideration the important factors that govern the likelihood for imaging a planet, including the statistical properties of stars in the solar neighborhood, correlations between star and planet properties, observational effects, and selection criteria. We consider several different ground-based surveys, both biased and unbiased, and express the resulting planet yields as a function of stellar mass. Selecting targets based on their youth and visual brightness, we find that strong correlations between star mass and planet properties are required to reproduce high-contrast imaging results to date (i.e., HR 8799, {beta} Pic). Using the most recent empirical findings for the occurrence rate of gas-giant planets from radial velocity (RV) surveys, our simulations indicate that naive extrapolation of the Doppler planet population to semimajor axes accessible to high-contrast instruments provides an excellent agreement between simulations and observations using present-day contrast levels. In addition to being intrinsically young and sufficiently bright to serve as their own beacon for adaptive optics correction, A-stars have a high planet occurrence rate and propensity to form massive planets in wide orbits, making them ideal targets. The same effects responsible for creating a multitude of detectable planets around massive stars conspire to reduce the number orbiting low-mass stars. However, in the case of a young stellar cluster, where targets are approximately the same age and situated at roughly the same distance, MK-stars can easily dominate the number of detections because of an observational bias related to small number statistics. The degree to which low-mass stars produce the most planet detections in this special case depends upon whether

  10. Evidence for a non-universal stellar initial mass function in low-redshift high-density early-type galaxies

    NASA Astrophysics Data System (ADS)

    Dutton, Aaron A.; Mendel, J. Trevor; Simard, Luc

    2012-05-01

    We determine an absolute calibration of stellar mass-to-light ratios for the densest ≃3 per cent of early-type galaxies in the local Universe (redshift z≃ 0.08) from Sloan Digital Sky Survey (SDSS) Data Release 7. This sample of ˜4000 galaxies has, assuming a Chabrier initial mass function (IMF), effective stellar surface densities Σe > 2500 M⊙ pc-2, stellar population synthesis (SPS) stellar masses log10(MSPS/M⊙) < 10.8 and aperture velocity dispersions of ? (68 per cent range). In contrast to typical early-type galaxies, we show that these dense early-type galaxies follow the virial Fundamental Plane, which suggests that mass follows light. With the additional assumption that any dark matter does not follow the light, the dynamical masses of dense galaxies provide a direct measurement of stellar masses. Our dynamical masses (Mdyn), obtained from the spherical Jeans equations, are only weakly sensitive to the choice of anisotropy (β) due to the relatively large aperture of the SDSS fibre for these galaxies: Rap≃ 1.5Re. Assuming isotropic orbits (β= 0), we find a median log10(Mdyn/MSPS) = 0.233 ± 0.003, consistent with a Salpeter IMF, while more bottom-heavy IMFs and standard Milky Way IMFs are strongly disfavoured. Our results are consistent with, but do not require, a dependence of the IMF on dynamical mass or velocity dispersion. We find evidence for a colour dependence to the IMF such that redder galaxies have heavier IMFs with Mdyn/MSPS∝ (g-r)1.13 ± 0.09. This may reflect a more fundamental dependence of the IMF on the age or metallicity of a stellar population, or the density at which the stars formed.

  11. The massive end of the luminosity and stellar mass functions and clustering from CMASS to SDSS: evidence for and against passive evolution

    NASA Astrophysics Data System (ADS)

    Bernardi, M.; Meert, A.; Sheth, R. K.; Huertas-Company, M.; Maraston, C.; Shankar, F.; Vikram, V.

    2016-02-01

    We describe the luminosity function, based on Sérsic fits to the light profiles, of CMASS galaxies at z ˜ 0.55. Compared to previous estimates, our Sérsic-based reductions imply more luminous, massive galaxies, consistent with the effects of Sérsic- rather than Petrosian or de Vaucouleur-based photometry on the Sloan Digital Sky Survey (SDSS) main galaxy sample at z ˜ 0.1. This implies a significant revision of the high-mass end of the correlation between stellar and halo mass. Inferences about the evolution of the luminosity and stellar mass functions depend strongly on the assumed, and uncertain, k + e corrections. In turn, these depend on the assumed age of the population. Applying k + e corrections taken from fitting the models of Maraston et al. to the colours of both SDSS and CMASS galaxies, the evolution of the luminosity and stellar mass functions appears impressively passive, provided that the fits are required to return old ages. However, when matched in comoving number- or luminosity-density, the SDSS galaxies are less strongly clustered compared to their counterparts in CMASS. This rules out the passive evolution scenario, and, indeed, any minor merger scenarios which preserve the rank ordering in stellar mass of the population. Potential incompletenesses in the CMASS sample would further enhance this mismatch. Our analysis highlights the virtue of combining clustering measurements with number counts.

  12. The Efficiency of Stellar Reionization: Effects of Rotation, Metallicity, and Initial Mass Function

    NASA Astrophysics Data System (ADS)

    Topping, Michael W.; Shull, J. Michael

    2015-02-01

    We compute the production rate of photons in the ionizing Lyman continua (LyC) of H I (λ <= 912 Å), He I (λ <= 504 Å), and He II (λ <= 228 Å) using recent stellar evolutionary tracks coupled to a grid of non-LTE, line-blanketed WM-basic model atmospheres. The median LyC production efficiency is Q LyC = (6 ± 2) × 1060 LyC photons per M ⊙ of star formation (range [3.1-9.4] × 1060), corresponding to a revised calibration of 1053.3 ± 0.2 photons s-1 per M ⊙ yr-1. Efficiencies in the helium continua are QHe \\scriptsize{I} ≈ 1060 photons M⊙ -1 and QHe \\scriptsize{II} ≈ 1056 photons M⊙ -1 at solar metallicity and larger at low metallicity. The critical star formation rate needed to maintain reionization against recombinations at z ≈ 7 is \\dot{ρ }_SFR = (0.012 M⊙ yr-1 Mpc-3) [(1+z) / 8]3 (CH / 3) (0.2/ f_esc) for fiducial values of the intergalactic medium (IGM) clumping factor C H ≈ 3 and LyC escape fraction f esc ≈ 0.2. The boost in LyC production efficiency is an important ingredient, together with metallicity, C H, and f esc, in assessing whether IGM reionization was complete by z ≈ 7. Monte Carlo sampled spectra of coeval starbursts during the first 5 Myr have intrinsic flux ratios of F(1500)/F(900) ≈ 0.4-0.5 and F(912-)/F(912+) ≈ 0.4-0.7 in the far-UV (1500 Å), the LyC (900 Å), and at the Lyman edge (912 Å). These ratios can be used to calibrate the LyC escape fractions in starbursts.

  13. FUEL EFFICIENT GALAXIES: SUSTAINING STAR FORMATION WITH STELLAR MASS LOSS

    SciTech Connect

    Leitner, Samuel N.; Kravtsov, Andrey V.

    2011-06-10

    We examine the importance of secular stellar mass loss for fueling ongoing star formation in disk galaxies during the late stages of their evolution. For a galaxy of a given stellar mass, we calculate the total mass loss rate of its entire stellar population using star formation histories derived from the observed evolution of the M{sub *}-star formation rate (SFR) relation, along with the predictions of standard stellar evolution models for stellar mass loss for a variety of initial stellar mass functions. Our model shows that recycled gas from stellar mass loss can provide most or all of the fuel required to sustain the current level of star formation in late-type galaxies. Stellar mass loss can therefore remove the tension between the low gas infall rates that are derived from observations and the relatively rapid star formation occurring in disk galaxies. For galaxies where cold gas infall rates have been estimated, we demonstrate explicitly that stellar mass loss can account for most of the deficit between their SFR and infall rate.

  14. Stellar masses and radii as constraints on stellar models

    NASA Astrophysics Data System (ADS)

    Andersen, Johannes

    1993-01-01

    The current status of empirical data on stellar masses and radii of sufficient accuracy to give constraints on stellar models is reviewed. Results from the best-studied eclipsing binaries can already trace the main-sequence evolution of 1-10-solar-mass stars in considerable detail and will be even more useful when supplemented by chemical abundance data. Taking the deceptively simple question of the observed width of the main sequence as an example, it is shown how careful attention to the details of the data is required to reach robust conclusions about such features of modern stellar evolution models as opacity tables or convective overshooting. Only detailed modeling of specific systems with known masses, radii, and metal abundance constrain the theory strongly enough that a truly critical test is achieved. The same is true when using tidal interactions in binaries (apsidal motion, rotational synchronization, and orbital circularization) as another probe into stellar interiors.

  15. Variation of galactic cold gas reservoirs with stellar mass

    NASA Astrophysics Data System (ADS)

    Maddox, Natasha; Hess, Kelley M.; Obreschkow, Danail; Jarvis, M. J.; Blyth, S.-L.

    2015-02-01

    The stellar and neutral hydrogen (H I) mass functions at z ˜ 0 are fundamental benchmarks for current models of galaxy evolution. A natural extension of these benchmarks is the two-dimensional distribution of galaxies in the plane spanned by stellar and H I mass, which provides a more stringent test of simulations, as it requires the H I to be located in galaxies of the correct stellar mass. Combining H I data from the Arecibo Legacy Fast ALFA survey, with optical data from Sloan Digital Sky Survey, we find a distinct envelope in the H I-to-stellar mass distribution, corresponding to an upper limit in the H I fraction that varies monotonically over five orders of magnitude in stellar mass. This upper envelope in H I fraction does not favour the existence of a significant population of dark galaxies with large amounts of gas but no corresponding stellar population. The envelope shows a break at a stellar mass of ˜109 M⊙, which is not reproduced by modern models of galaxy populations tracing both stellar and gas masses. The discrepancy between observations and models suggests a mass dependence in gas storage and consumption missing in current galaxy evolution prescriptions. The break coincides with the transition from galaxies with predominantly irregular morphology at low masses to regular discs at high masses, as well as the transition from cold to hot accretion of gas in simulations.

  16. NEW ISOLATED PLANETARY-MASS OBJECTS AND THE STELLAR AND SUBSTELLAR MASS FUNCTION OF THE {sigma} ORIONIS CLUSTER

    SciTech Connect

    Pena Ramirez, K.; Bejar, V. J. S.; Petr-Gotzens, M. G. E-mail: vbejar@iac.es E-mail: ege@cab.inta-csic.es

    2012-07-20

    We report on our analysis of the VISTA Orion ZY JHK{sub s} photometric data (completeness magnitudes of Z = 22.6 and J = 21.0 mag) focusing on a circular area of 2798.4 arcmin{sup 2} around the young {sigma} Orionis star cluster ({approx}3 Myr, {approx}352 pc, and solar metallicity). The combination of the VISTA photometry with optical, WISE and Spitzer data allows us to identify a total of 210 {sigma} Orionis member candidates with masses in the interval 0.25-0.004 M{sub Sun }, 23 of which are new planetary-mass object findings. These discoveries double the number of cluster planetary-mass candidates known so far. One object has colors compatible with a T spectral type. The {sigma} Orionis cluster harbors about as many brown dwarfs (69, 0.072-0.012 M{sub Sun }) and planetary-mass objects (37, 0.012-0.004 M{sub Sun }) as very low mass stars (104, 0.25-0.072 M{sub Sun }). Based on Spitzer data, we derive a disk frequency of {approx}40% for very low mass stars, brown dwarfs, and planetary-mass objects in {sigma} Orionis. The radial density distributions of these three mass intervals are alike: all are spatially concentrated within an effective radius of 12' (1.2 pc) around the multiple star {sigma} Ori, and no obvious segregation between disk-bearing and diskless objects is observed. Using the VISTA data and the Mayrit catalog, we derive the cluster mass spectrum ({Delta}N/{Delta}M {approx} M{sup -{alpha}}) from {approx}19 to 0.006 M{sub Sun} (VISTA ZJ completeness), which is reasonably described by two power-law expressions with indices of {alpha} = 1.7 {+-} 0.2 for M > 0.35 M{sub Sun }, and {alpha} = 0.6 {+-} 0.2 for M < 0.35 M{sub Sun }. The {sigma} Orionis mass spectrum smoothly extends into the planetary-mass regime down to 0.004 M{sub Sun }. Our findings of T-type sources (<0.004 M{sub Sun }) in the VISTA {sigma} Orionis exploration appear to be smaller than what is predicted by the extrapolation of the cluster mass spectrum down to the survey J

  17. New Isolated Planetary-mass Objects and the Stellar and Substellar Mass Function of the σ Orionis Cluster

    NASA Astrophysics Data System (ADS)

    Peña Ramírez, K.; Béjar, V. J. S.; Zapatero Osorio, M. R.; Petr-Gotzens, M. G.; Martín, E. L.

    2012-07-01

    We report on our analysis of the VISTA Orion ZY JHKs photometric data (completeness magnitudes of Z = 22.6 and J = 21.0 mag) focusing on a circular area of 2798.4 arcmin2 around the young σ Orionis star cluster (~3 Myr, ~352 pc, and solar metallicity). The combination of the VISTA photometry with optical, WISE and Spitzer data allows us to identify a total of 210 σ Orionis member candidates with masses in the interval 0.25-0.004 M ⊙, 23 of which are new planetary-mass object findings. These discoveries double the number of cluster planetary-mass candidates known so far. One object has colors compatible with a T spectral type. The σ Orionis cluster harbors about as many brown dwarfs (69, 0.072-0.012 M ⊙) and planetary-mass objects (37, 0.012-0.004 M ⊙) as very low mass stars (104, 0.25-0.072 M ⊙). Based on Spitzer data, we derive a disk frequency of ~40% for very low mass stars, brown dwarfs, and planetary-mass objects in σ Orionis. The radial density distributions of these three mass intervals are alike: all are spatially concentrated within an effective radius of 12' (1.2 pc) around the multiple star σ Ori, and no obvious segregation between disk-bearing and diskless objects is observed. Using the VISTA data and the Mayrit catalog, we derive the cluster mass spectrum (ΔN/ΔM ~ M -α) from ~19 to 0.006 M ⊙ (VISTA ZJ completeness), which is reasonably described by two power-law expressions with indices of α = 1.7 ± 0.2 for M > 0.35 M ⊙, and α = 0.6 ± 0.2 for M < 0.35 M ⊙. The σ Orionis mass spectrum smoothly extends into the planetary-mass regime down to 0.004 M ⊙. Our findings of T-type sources (<0.004 M ⊙) in the VISTA σ Orionis exploration appear to be smaller than what is predicted by the extrapolation of the cluster mass spectrum down to the survey J-band completeness.

  18. THE EVOLUTION OF THE STELLAR MASS FUNCTIONS OF STAR-FORMING AND QUIESCENT GALAXIES TO z = 4 FROM THE COSMOS/UltraVISTA SURVEY

    SciTech Connect

    Muzzin, Adam; Franx, Marijn; Labbé, Ivo; Marchesini, Danilo; Stefanon, Mauro; McCracken, Henry J.; Milvang-Jensen, Bo; Fynbo, J. P. U.; Dunlop, James S.; Brammer, Gabriel; Van Dokkum, Pieter G.

    2013-11-01

    We present measurements of the stellar mass functions (SMFs) of star-forming and quiescent galaxies to z = 4 using a sample of 95,675 K{sub s} -selected galaxies in the COSMOS/UltraVISTA field. The SMFs of the combined population are in good agreement with previous measurements and show that the stellar mass density of the universe was only 50%, 10%, and 1% of its current value at z ∼ 0.75, 2.0, and 3.5, respectively. The quiescent population drives most of the overall growth, with the stellar mass density of these galaxies increasing as ρ{sub star}∝(1 + z){sup –4.7±0.4} since z = 3.5, whereas the mass density of star-forming galaxies increases as ρ{sub star}∝(1 + z){sup –2.3±0.2}. At z > 2.5, star-forming galaxies dominate the total SMF at all stellar masses, although a non-zero population of quiescent galaxies persists to z = 4. Comparisons of the K{sub s} -selected star-forming galaxy SMFs with UV-selected SMFs at 2.5 < z < 4 show reasonable agreement and suggest that UV-selected samples are representative of the majority of the stellar mass density at z > 3.5. We estimate the average mass growth of individual galaxies by selecting galaxies at fixed cumulative number density. The average galaxy with log(M{sub star}/M{sub ☉}) = 11.5 at z = 0.3 has grown in mass by only 0.2 dex (0.3 dex) since z = 2.0 (3.5), whereas those with log(M{sub star}/M{sub ☉}) = 10.5 have grown by >1.0 dex since z = 2. At z < 2, the time derivatives of the mass growth are always larger for lower-mass galaxies, which demonstrates that the mass growth in galaxies since that redshift is mass-dependent and primarily bottom-up. Lastly, we examine potential sources of systematic uncertainties in the SMFs and find that those from photo-z templates, stellar population synthesis modeling, and the definition of quiescent galaxies dominate the total error budget in the SMFs.

  19. Mass loss at the lowest stellar masses

    NASA Astrophysics Data System (ADS)

    Fernández, M.; Comerón, F.

    2005-09-01

    We report the discovery of a jet in a [SII] image of Par-Lup3-4, a remarkable M 5-type pre-main sequence object in the Lupus 3 star-forming cloud. The spectrum of this star is dominated by the emission lines commonly interpreted as tracers of accretion and outflows. Par-Lup3-4 is therefore at the very low-mass end of the exciting sources of jets. High resolution spectroscopy shows that the [SII] line profile is double-peaked, implying that the low excitation jet is seen at a small angle (probably ⪆8circ) with respect to the plane of the sky. The width of the Hα line suggests a dominating contribution from the accretion columns and from the shocks on the stellar surface. Unresolved Hα emission coming from an object located at 4farcs2 from Par-Lup3-4 is detected at a position angle 30circ or 210circ, with no counterpart seen either in visible or infrared images. We also confirm previous evidence of strong mass loss from the very low mass star LS-RCrA 1, with spectral type M 6.5 or later. All its forbidden lines are blueshifted with respect to the local standard of rest (LSR) of the molecular cloud at a position very close to the object and the line profile of the [OI] lines is clearly asymmetric. Thus, the receding jet could be hidden by a disk which is not seen edge-on. If an edge-on disk does not surround Par-Lup3-4 or LS-RCrA 1, an alternative explanation, possibly based on the effects of mass accretion, is required to account for their unusually low luminosities.

  20. THE BIMODAL GALAXY STELLAR MASS FUNCTION IN THE COSMOS SURVEY TO z approx 1: A STEEP FAINT END AND A NEW GALAXY DICHOTOMY

    SciTech Connect

    Drory, N.; Bundy, K.; Leauthaud, A.; Scoville, N.; Capak, P.; Salvato, M.; Ilbert, O.; Kneib, J. P.; Kartaltepe, J. S.; McCracken, H. J.; Sanders, D. B.; Thompson, D.; Willott, C. J.

    2009-12-20

    We present a new analysis of stellar mass functions in the COSMOS field to fainter limits than has been previously probed at z <= 1. The increase in dynamic range reveals features in the shape of the stellar mass function that deviate from a single Schechter function. Neither the total nor the red (passive) or blue (star-forming) galaxy stellar mass functions can be well fitted with a single Schechter function once the mass completeness limit of the sample probes below approx3 x 10{sup 9} M{sub sun}. We observe a dip or plateau at masses approx10{sup 10} M{sub sun}, just below the traditional M*, and an upturn toward a steep faint-end slope of alpha approx -1.7 at lower mass at all redshifts <=1. This bimodal nature of the mass function is not solely a result of the blue/red dichotomy. Indeed, the blue mass function is by itself bimodal at z approx 1. This suggests a new dichotomy in galaxy formation that predates the appearance of the red sequence. We propose two interpretations for this bimodal distribution. If the gas fraction increases toward lower mass, galaxies with M{sub baryon} approx 10{sup 10} M{sub sun} would shift to lower stellar masses, creating the observed dip. This would indicate a change in star formation efficiency, perhaps linked to supernovae feedback becoming much more efficient below approx10{sup 10} M{sub sun}. Therefore, we investigate whether the dip is present in the baryonic (stars+gas) mass function. Alternatively, the dip could be created by an enhancement of the galaxy assembly rate at approx10{sup 11} M{sub sun}, a phenomenon that naturally arises if the baryon fraction peaks at M{sub halo} approx 10{sup 12} M{sub sun}. In this scenario, galaxies occupying the bump around M{sub *} would be identified with central galaxies and the second fainter component of the mass function having a steep faint-end slope with satellite galaxies. The low-mass end of the blue and total mass functions exhibit a steeper slope than has been detected in

  1. Initial mass functions from ultraviolet stellar photometry: A comparison of Lucke and Hodge OB associations near 30 Doradus with the nearby field

    NASA Technical Reports Server (NTRS)

    Hill, Jesse K.; Isensee, Joan E.; Cornett, Robert H.; Bohlin, Ralph C.; O'Connell, Robert W.; Roberts, Morton S.; Smith, Andrew M.; Stecher, Theodore P.

    1994-01-01

    UV stellar photometry is presented for 1563 stars within a 40 minutes circular field in the Large Magellanic Cloud (LMC), excluding the 10 min x 10 min field centered on R136 investigated earlier by Hill et al. (1993). Magnitudes are computed from images obtained by the Ultraviolet Imaging Telescope (UIT) in bands centered at 1615 A and 2558 A. Stellar masses and extinctions are estimated for the stars in associations using the evolutionary models of Schaerer et al. (1993), assuming the age is 4 Myr and that the local LMC extinction follows the Fitzpatrick (1985) 30 Dor extinction curve. The estimated slope of the initial mass function (IMF) for massive stars (greater than 15 solar mass) within the Lucke and Hodge (LH) associations is Gamma = -1.08 +/- 0.2. Initial masses and extinctions for stars not within LH associations are estimated assuming that the stellar age is either 4 Myr or half the stellar lifetime, whichever is larger. The estimated slope of the IMF for massive stars not within LH associations is Gamma = -1.74 +/- 0.3 (assuming continuous star formation), compared with Gamma = -1.35, and Gamma = -1.7 +/- 0.5, obtained for the Galaxy by Salpeter (1955) and Scalo (1986), respectively, and Gamma = -1.6 obtained for massive stars in the Galaxy by Garmany, Conti, & Chiosi (1982). The shallower slope of the association IMF suggests that not only is the star formation rate higher in associations, but that the local conditions favor the formation of higher mass stars there. We make no corrections for binaries or incompleteness.

  2. Initial mass functions from ultraviolet stellar photometry: A comparison of Lucke and Hodge OB associations near 30 Doradus with the nearby field

    NASA Astrophysics Data System (ADS)

    Hill, Jesse K.; Isensee, Joan E.; Cornett, Robert H.; Bohlin, Ralph C.; O'Connell, Robert W.; Roberts, Morton S.; Smith, Andrew M.; Stecher, Theodore P.

    1994-04-01

    UV stellar photometry is presented for 1563 stars within a 40 minutes circular field in the Large Magellanic Cloud (LMC), excluding the 10 min x 10 min field centered on R136 investigated earlier by Hill et al. (1993). Magnitudes are computed from images obtained by the Ultraviolet Imaging Telescope (UIT) in bands centered at 1615 A and 2558 A. Stellar masses and extinctions are estimated for the stars in associations using the evolutionary models of Schaerer et al. (1993), assuming the age is 4 Myr and that the local LMC extinction follows the Fitzpatrick (1985) 30 Dor extinction curve. The estimated slope of the initial mass function (IMF) for massive stars (greater than 15 solar mass) within the Lucke and Hodge (LH) associations is Gamma = -1.08 +/- 0.2. Initial masses and extinctions for stars not within LH associations are estimated assuming that the stellar age is either 4 Myr or half the stellar lifetime, whichever is larger. The estimated slope of the IMF for massive stars not within LH associations is Gamma = -1.74 +/- 0.3 (assuming continuous star formation), compared with Gamma = -1.35, and Gamma = -1.7 +/- 0.5, obtained for the Galaxy by Salpeter (1955) and Scalo (1986), respectively, and Gamma = -1.6 obtained for massive stars in the Galaxy by Garmany, Conti, & Chiosi (1982). The shallower slope of the association IMF suggests that not only is the star formation rate higher in associations, but that the local conditions favor the formation of higher mass stars there. We make no corrections for binaries or incompleteness.

  3. The ATLAS3D project - XX. Mass-size and mass-σ distributions of early-type galaxies: bulge fraction drives kinematics, mass-to-light ratio, molecular gas fraction and stellar initial mass function

    NASA Astrophysics Data System (ADS)

    Cappellari, Michele; McDermid, Richard M.; Alatalo, Katherine; Blitz, Leo; Bois, Maxime; Bournaud, Frédéric; Bureau, M.; Crocker, Alison F.; Davies, Roger L.; Davis, Timothy A.; de Zeeuw, P. T.; Duc, Pierre-Alain; Emsellem, Eric; Khochfar, Sadegh; Krajnović, Davor; Kuntschner, Harald; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Scott, Nicholas; Serra, Paolo; Weijmans, Anne-Marie; Young, Lisa M.

    2013-07-01

    ) and dwarf irregulars (Im), respectively. We use dynamical models to analyse our kinematic maps. We show that σe traces the bulge fraction, which appears to be the main driver for the observed trends in the dynamical (M/L)JAM and in indicators of the (M/L)pop of the stellar population like Hβ and colour, as well as in the molecular gas fraction. A similar variation along contours of σe is also observed for the mass normalization of the stellar initial mass function (IMF), which was recently shown to vary systematically within the ETGs' population. Our preferred relation has the form log _{10} [(M/L)_stars/(M/L)_Salp]=a+b× log _{10}({σ _e}/130 {km s^{-1}}) with a = -0.12 ± 0.01 and b = 0.35 ± 0.06. Unless there are major flaws in all stellar population models, this trend implies a transition of the mean IMF from Kroupa to Salpeter in the interval log _{10}({σ _e}/{km s}^{-1})≈ 1.9-2.5 (or {σ _e}≈ 90-290 km s-1), with a smooth variation in between, consistently with what was shown in Cappellari et al. The observed distribution of galaxy properties on the MP provides a clean and novel view for a number of previously reported trends, which constitute special two-dimensional projections of the more general four-dimensional parameters trends on the MP. We interpret it as due to a combination of two main effects: (i) an increase of the bulge fraction, which increases σe, decreases Re, and greatly enhance the likelihood for a galaxy to have its star formation quenched, and (ii) dry merging, increasing galaxy mass and Re by moving galaxies along lines of roughly constant σe (or steeper), while leaving the population nearly unchanged.

  4. The Nature of Hβ+[OIII] and [OII] emitters to z ˜ 5 with HiZELS: stellar mass functions and the evolution of EWs

    NASA Astrophysics Data System (ADS)

    Khostovan, Ali Ahmad; Sobral, David; Mobasher, Bahram

    2016-06-01

    I will present our recent-study of the properties of ~ 7000 narrow-band selected galaxies with strong Hβ+[OIII] and [OII] nebular emission lines from the High-z Emission Line Survey (HiZELS) between z ~ 0.8 - 5.0. Our sample covers a wide range in stellar mass(M_stellar ˜ 10^7.5-10^12.0 M⊙), rest-frame equivalent widths (EW_rest˜ 10-10^5 A), and line luminosities (L_line ˜ 10^40.5-10^43.2 erg s-1) allowing us to study the properties of typical active/star-forming galaxies. I will present our measurements of the Hβ+[OIII]-selected and [OII]-selected stellar mass functions and densities out to z ~ 3.5 where we find that for the Hβ+[OIII]-selected stellar mass functions both M* and φ* increases with cosmic time, which may be due to the [OIII] selection including an increasing fraction of AGN at lower redshifts. The [OII]-selected stellar mass functions show a constant M* ≈ 10^11.6 M⊙ and a strong, increasing evolution with cosmic time in φ* in line with Hα studies. I will also present our measurements in the evolution of the rest-frame equivalent widths for both emission-lines up to z ~ 5. This is the first time that the EW_rest evolution has been directly measured for Hβ+[OIII] and [OII] emitters up to these redshifts (z > 1). We find evidence for a slower evolution for z > 2 in the H β+[OIII] EW_rest and a decreasing trend for z > 3 in the [OII] EW_rest evolution, which would imply low [OII] EW at the highest redshifts and higher [OIII]/[OII] line ratios. This suggests that the ionization parameter at higher redshift is significantly higher than the local Universe, although other factors such as changes in metallicities and abundances over cosmic time can influence the [OIII]/[OII] evolution. Our results set the stage for future near-IR space-based narrow-band and spectroscopic surveys to test our extrapolated predictions and also produce z > 5 measurements to constrain the high-z end of the EW_rest and [OIII]/[OII] evolution.

  5. ON THE RADIAL STELLAR CONTENT OF EARLY-TYPE GALAXIES AS A FUNCTION OF MASS AND ENVIRONMENT

    SciTech Connect

    La Barbera, F.; Ferreras, I.; De Carvalho, R. R.; De la Rosa, I. G.; De Lucia, G.

    2011-10-20

    Using optical-optical and optical-NIR colors, we analyze the radial dependence of age and metallicity inside massive (M{sub *} {approx}> 10{sup 10.5} M{sub sun}), low-redshift (z < 0.1), early-type galaxies (ETGs), residing in both high-density group regions and the field. On average, internal color gradients of ETGs are mainly driven by metallicity, consistent with previous studies. However, we find that group galaxies feature positive age gradients, {nabla} {sub t}, i.e., a younger stellar population in the galaxy center, and steeper metallicity gradients, compared to the field sample, whose {nabla} {sub t} ranges from negative in lower mass galaxies to positive gradients at higher mass. These dependencies yield new constraints on models of galaxy formation and evolution. We speculate that age and metallicity gradients of group ETGs result from (either gas-rich or minor-dry) mergers and/or cold-gas accretion, while field ETGs exhibit the characteristic flatter gradients expected from younger, more metal-rich stars formed inside-out by later gas cooling.

  6. Galaxy and Mass Assembly (GAMA): the stellar mass budget of galaxy spheroids and discs

    NASA Astrophysics Data System (ADS)

    Moffett, Amanda J.; Lange, Rebecca; Driver, Simon P.; Robotham, Aaron S. G.; Kelvin, Lee S.; Alpaslan, Mehmet; Andrews, Stephen K.; Bland-Hawthorn, Joss; Brough, Sarah; Cluver, Michelle E.; Colless, Matthew; Davies, Luke J. M.; Holwerda, Benne W.; Hopkins, Andrew M.; Kafle, Prajwal R.; Liske, Jochen; Meyer, Martin

    2016-11-01

    We build on a recent photometric decomposition analysis of 7506 Galaxy and Mass Assembly (GAMA) survey galaxies to derive stellar mass function fits to individual spheroid and disc component populations down to a lower mass limit of log(M*/M⊙) = 8. We find that the spheroid/disc mass distributions for individual galaxy morphological types are well described by single Schechter function forms. We derive estimates of the total stellar mass densities in spheroids (ρspheroid = 1.24 ± 0.49 × 108 M⊙ Mpc -3h0.7) and discs (ρdisc = 1.20 ± 0.45 × 108 M⊙ Mpc -3h0.7), which translates to approximately 50 per cent of the local stellar mass density in spheroids and 48 per cent in discs. The remaining stellar mass is found in the dwarf `little blue spheroid' class, which is not obviously similar in structure to either classical spheroid or disc populations. We also examine the variation of component mass ratios across galaxy mass and group halo mass regimes, finding the transition from spheroid to disc mass dominance occurs near galaxy stellar mass ˜1011 M⊙ and group halo mass ˜1012.5 M⊙h-1. We further quantify the variation in spheroid-to-total mass ratio with group halo mass for central and satellite populations as well as the radial variation of this ratio within groups.

  7. PRIMUS: CONSTRAINTS ON STAR FORMATION QUENCHING AND GALAXY MERGING, AND THE EVOLUTION OF THE STELLAR MASS FUNCTION FROM z = 0-1

    SciTech Connect

    Moustakas, John; Coil, Alison L.; Mendez, Alexander J.; Aird, James; Blanton, Michael R.; Cool, Richard J.; Eisenstein, Daniel J.; Wong, Kenneth C.; Zhu, Guangtun; Arnouts, Stephane

    2013-04-10

    We measure the evolution of the stellar mass function (SMF) from z = 0-1 using multi-wavelength imaging and spectroscopic redshifts from the PRism MUlti-object Survey (PRIMUS) and the Sloan Digital Sky Survey (SDSS). From PRIMUS we construct an i < 23 flux-limited sample of {approx}40, 000 galaxies at z = 0.2-1.0 over five fields totaling Almost-Equal-To 5.5 deg{sup 2}, and from the SDSS we select {approx}170, 000 galaxies at z = 0.01-0.2 that we analyze consistently with respect to PRIMUS to minimize systematic errors in our evolutionary measurements. We find that the SMF of all galaxies evolves relatively little since z = 1, although we do find evidence for mass assembly downsizing; we measure a Almost-Equal-To 30% increase in the number density of {approx}10{sup 10} M{sub sun} galaxies since z Almost-Equal-To 0.6, and a {approx}< 10% change in the number density of all {approx}> 10{sup 11} M{sub sun} galaxies since z Almost-Equal-To 1. Dividing the sample into star-forming and quiescent using an evolving cut in specific star formation rate, we find that the number density of {approx}10{sup 10} M{sub sun} star-forming galaxies stays relatively constant since z Almost-Equal-To 0.6, whereas the space density of {approx}> 10{sup 11} M{sub sun} star-forming galaxies decreases by Almost-Equal-To 50% between z Almost-Equal-To 1 and z Almost-Equal-To 0. Meanwhile, the number density of {approx}10{sup 10} M{sub sun} quiescent galaxies increases steeply toward low redshift, by a factor of {approx}2-3 since z Almost-Equal-To 0.6, while the number of massive quiescent galaxies remains approximately constant since z Almost-Equal-To 1. These results suggest that the rate at which star-forming galaxies are quenched increases with decreasing stellar mass, but that the bulk of the stellar mass buildup within the quiescent population occurs around {approx}10{sup 10.8} M{sub sun}. In addition, we conclude that mergers do not appear to be a dominant channel for the stellar mass

  8. THE GROWTH OF GALAXY STELLAR MASS WITHIN DARK MATTER HALOS

    SciTech Connect

    Zehavi, Idit; Patiri, Santiago; Zheng Zheng

    2012-02-20

    We study the evolution of stellar mass in galaxies as a function of host halo mass, using the 'MPA' and 'Durham' semi-analytic models, implemented on the Millennium Run simulation. For both models, the stellar mass of the central galaxies increases rapidly with halo mass at the low-mass end and more slowly in halos of larger masses at the three redshifts probed (z {approx} 0, 1, 2). About 45% of the stellar mass in central galaxies in present-day halos less massive than {approx}10{sup 12} h{sup -1} M{sub Sun} is already in place at z {approx} 1, and this fraction increases to {approx}65% for more massive halos. The baryon conversion efficiency into stars has a peaked distribution with halo mass, and the peak location shifts toward lower mass from z {approx} 1 to z {approx} 0. The stellar mass in low-mass halos grows mostly by star formation since z {approx} 1, while in high-mass halos most of the stellar mass is assembled by mergers, reminiscent of 'downsizing'. We compare our findings to empirical results from the Sloan Digital Sky Survey and DEEP2 surveys utilizing galaxy clustering measurements to study galaxy evolution. The theoretical predictions are in qualitative agreement with these phenomenological results, but there are large discrepancies. The most significant one concerns the number of stars already in place in the progenitor galaxies at z {approx} 1, which is about a factor of two larger in both semi-analytic models. We demonstrate that methods studying galaxy evolution from the galaxy-halo connection are powerful in constraining theoretical models and can guide future efforts of modeling galaxy evolution. Conversely, semi-analytic models serve an important role in improving such methods.

  9. Variations of the Stellar Initial Mass Function in the Progenitors of Massive Early-type Galaxies and in Extreme Starburst Environments

    NASA Astrophysics Data System (ADS)

    Chabrier, Gilles; Hennebelle, Patrick; Charlot, Stéphane

    2014-12-01

    We examine variations of the stellar initial mass function (IMF) in extreme environments within the formalism derived by Hennebelle & Chabrier. We focus on conditions encountered in progenitors of massive early-type galaxies and starburst regions. We show that, when applying the concept of turbulent Jeans mass as the characteristic mass for fragmentation in a turbulent medium, the peak of the IMF in such environments is shifted toward smaller masses, leading to a bottom-heavy IMF, as suggested by various observations. In very dense and turbulent environments, we predict that the high-mass tail of the IMF can become even steeper than the standard Salpeter IMF, with a limit for the power-law exponent α ~= -2.7, in agreement with recent observational determinations. This steepening is a direct consequence of the high densities and Mach values in such regions but also of the time dependence of the fragmentation process, as incorporated in the Hennebelle-Chabrier theory. We provide analytical parameterizations of these IMFs in such environments to be used in galaxy evolution calculations. We also calculate the star-formation rates and the mass-to-light ratios expected under such extreme conditions and show that they agree well with the values inferred in starburst environments and massive high-redshift galaxies. This reinforces the paradigm of star formation as being a universal process, i.e., the direct outcome of gravitationally unstable fluctuations in a density field initially generated by large-scale, shock-dominated turbulence. This globally enables us to infer the variations of the stellar IMF and related properties for atypical galactic conditions.

  10. Variations of the stellar initial mass function in the progenitors of massive early-type galaxies and in extreme starburst environments

    SciTech Connect

    Chabrier, Gilles; Hennebelle, Patrick

    2014-12-01

    We examine variations of the stellar initial mass function (IMF) in extreme environments within the formalism derived by Hennebelle and Chabrier. We focus on conditions encountered in progenitors of massive early-type galaxies and starburst regions. We show that, when applying the concept of turbulent Jeans mass as the characteristic mass for fragmentation in a turbulent medium, the peak of the IMF in such environments is shifted toward smaller masses, leading to a bottom-heavy IMF, as suggested by various observations. In very dense and turbulent environments, we predict that the high-mass tail of the IMF can become even steeper than the standard Salpeter IMF, with a limit for the power-law exponent α ≅ –2.7, in agreement with recent observational determinations. This steepening is a direct consequence of the high densities and Mach values in such regions but also of the time dependence of the fragmentation process, as incorporated in the Hennebelle-Chabrier theory. We provide analytical parameterizations of these IMFs in such environments to be used in galaxy evolution calculations. We also calculate the star-formation rates and the mass-to-light ratios expected under such extreme conditions and show that they agree well with the values inferred in starburst environments and massive high-redshift galaxies. This reinforces the paradigm of star formation as being a universal process, i.e., the direct outcome of gravitationally unstable fluctuations in a density field initially generated by large-scale, shock-dominated turbulence. This globally enables us to infer the variations of the stellar IMF and related properties for atypical galactic conditions.

  11. The Nature of Hβ +[OIII] and [OII] emitters to z ˜ 5 with HiZELS: stellar mass functions and the evolution of EWs

    NASA Astrophysics Data System (ADS)

    Khostovan, A. A.; Sobral, D.; Mobasher, B.; Smail, I.; Darvish, B.; Nayyeri, H.; Hemmati, S.; Stott, J. P.

    2016-09-01

    We investigate the properties of ˜7000 narrow-band selected galaxies with strong Hβ +[OIII] and [OII] nebular emission lines from the High-z Emission Line Survey (HiZELS) between z ˜ 0.8 - 5.0. Our sample covers a wide range in stellar mass (Mstellar ˜ 107.5 - 12.0 M⊙), rest-frame equivalent widths (EWrest˜10 - 105 Å), and line luminosities (Lline ˜ 1040.5 - 43.2 erg s-1). We measure the Hβ +[OIII]-selected stellar mass functions out to z ˜ 3.5 and find that both M⋆ and φ⋆ increases with cosmic time. The [OII]-selected stellar mass functions show a constant M⋆ ≈ 1011.6 M⊙ and a strong, increasing evolution with cosmic time in φ⋆ in line with Hα studies. We also investigate the evolution of the EWrest as a function of redshift with a fixed mass range (109.5 - 10.0 M⊙) and find an increasing trend best represented by (1 + z)3.81 ± 0.14 and (1 + z)2.72 ± 0.19 up to z ˜ 2 and z ˜ 3 for Hβ +[OIII] and [OII] emitters, respectively. This is the first time that the EWrest evolution has been directly measured for Hβ +[OIII] and [OII] emitters up to these redshifts. There is evidence for a slower evolution for z > 2 in the Hβ +[OIII] EWrest and a decreasing trend for z > 3 in the [OII] EWrest evolution, which would imply low [OII] EW at the highest redshifts and higher [OIII]/[OII] line ratios. This suggests that the ionization parameter at higher redshift may be significantly higher than the local Universe. Our results set the stage for future near-IR space-based spectroscopic surveys to test our extrapolated predictions and also produce z > 5 measurements to constrain the high-z end of the EWrest and [OIII]/[OII] evolution.

  12. STELLAR POPULATIONS IN THE CENTRAL 0.5 pc OF THE GALAXY. II. THE INITIAL MASS FUNCTION

    SciTech Connect

    Lu, J. R.; Do, T.; Ghez, A. M.; Morris, M. R.; Yelda, S.; Matthews, K. E-mail: tuan.do@uci.edu E-mail: morris@astro.ucla.edu

    2013-02-20

    The supermassive black hole at the center of the Milky Way plays host to a massive, young cluster that may have formed in one of the most inhospitable environments in the Galaxy. We present new measurements of the global properties of this cluster, including the initial mass function (IMF), age, and cluster mass. These results are based on Keck laser-guide-star adaptive optics observations used to identify the young stars and measure their Kp-band luminosity function as presented in Do et al. A Bayesian inference methodology is developed to simultaneously fit the global properties of the cluster utilizing the observations and extensive simulations of synthetic star clusters. We find that the slope of the mass function for this cluster is {alpha} = 1.7 {+-} 0.2, which is steeper than previously reported, but still flatter than the traditional Salpeter slope of 2.35. The age of the cluster is between 2.5 and 5.8 Myr with 95% confidence, which is a younger age than typically adopted but consistent within the uncertainties of past measurements. The exact age of the cluster is difficult to determine since our results show two distinct age solutions (3.9 Myr and 2.8 Myr) due to model degeneracies in the relative number of Wolf-Rayet and OB stars. The total cluster mass is between 14,000 and 37,000 M {sub Sun} above 1 M {sub Sun} and it is necessary to include multiple star systems in order to fit the observed luminosity function and the number of observed Wolf-Rayet stars. The new IMF slope measurement is now consistent with X-ray observations indicating a factor of 10 fewer X-ray emitting pre-main-sequence stars than expected when compared with a Salpeter IMF. The young cluster at the Galactic center is one of the few definitive examples of an IMF that deviates significantly from the near-universal IMFs found in the solar neighborhood.

  13. The bulge-halo conspiracy in massive elliptical galaxies: implications for the stellar initial mass function and halo response to baryonic processes

    NASA Astrophysics Data System (ADS)

    Dutton, Aaron A.; Treu, Tommaso

    2014-03-01

    Recent studies have shown that massive elliptical galaxies have total mass density profiles within an effective radius that can be approximated as ρ_tot∝ r^{-γ^', with mean slope <γ'> = 2.08 ± 0.03 and scatter σ _{γ ^' } }=0.16± 0.02. The small scatter of the slope (known as the bulge-halo conspiracy) is not generic in Λ cold dark matter (ΛCDM) based models and therefore contains information about the galaxy formation process. We compute the distribution of γ' for ΛCDM-based models that reproduce the observed correlations between stellar mass, velocity dispersion, and effective radius of early-type galaxies in the Sloan Digital Sky Survey. The models have a range of stellar initial mass functions (IMFs) and dark halo responses to galaxy formation. The observed distribution of γ' is well reproduced by a model with cosmologically motivated but uncontracted dark matter haloes, and a Salpeter-type IMF. Other models are on average ruled out by the data, even though they may happen in individual cases. Models with adiabatic halo contraction (and lighter IMFs) predict too small values of γ'. Models with halo expansion, or mass-follows-light predict too high values of γ'. Our study shows that the non-homologous structure of massive early-type galaxies can be precisely reproduced by ΛCDM models if the IMF is not universal and if mechanisms, such as feedback from active galactic nuclei, or dynamical friction, effectively on average counterbalance the contraction of the halo expected as a result of baryonic cooling.

  14. AN ANOMALOUS QUIESCENT STELLAR MASS BLACK HOLE

    SciTech Connect

    Reynolds, Mark T.; Miller, Jon M.

    2011-06-10

    We present the results of a 40 ks Chandra observation of the quiescent stellar mass black hole GS 1354-64. A total of 266 net counts are detected at the position of this system. The resulting spectrum is found to be consistent with the spectra of previously observed quiescent black holes, i.e., a power law with a photon index of {Gamma} {approx} 2. The inferred luminosity in the 0.5-10 keV band is found to lie in the range 0.5-6.5 x 10{sup 34} erg s{sup -1}, where the uncertainty in the distance is the dominant source of this large luminosity range. Nonetheless, this luminosity is over an order of magnitude greater than that expected from the known distribution of quiescent stellar mass black hole luminosities and makes GS 1354-64 the only known stellar mass black hole to disagree with this relation. This observation suggests the possibility of significant accretion persisting in the quiescent state.

  15. New axes for the stellar mass fundamental plane

    NASA Astrophysics Data System (ADS)

    L* Schechter, Paul

    2015-08-01

    Multiple lines of argument, both observational and theoretical, point to a tight correlation between the stellar velocity dispersion observed for an early-type galaxy and the mass of the dark matter halo in which it is embedded. While effective radius and surface brightness measure properties of the stellar (baryonic) component, the stellar velocity dispersion tells us the mass, virial radius and velocity dispersion of the dark matter component. The stellar effective radius may be divided by the halo radius, and the stellar mass (inferred from the stellar surface brightness) divided by the halo mass to give new axes for the fundamental plane. The stellar velocity dispersion is then a measure of the overall size of the dark matter halo. The two dimensionless axes tell us the ratios of the stellar mass to halo mass and stellar extent to halo extent. If themass of a halo alone determined everything about the embedded galaxy, there would be a unique stellar mass fraction and a unique stellar radius fraction for a given dispersion, forming a fundamental line. If there is a range of stellar mass fractions and a range of stellar radius fractions, and if they are independent, the line will blow up into a sausage. The fact that it fans out into a plane and not a sausage tells us that the deviations in mass fraction and radius fraction from the fundamental line must be strongly correlated.

  16. A CONSTRAINT ON BROWN DWARF FORMATION VIA EJECTION: RADIAL VARIATION OF THE STELLAR AND SUBSTELLAR MASS FUNCTION OF THE YOUNG OPEN CLUSTER IC 2391

    SciTech Connect

    Boudreault, S.; Bailer-Jones, C. A. L.

    2009-12-01

    We present the stellar and substellar mass function (MF) of the open cluster IC 2391, plus its radial dependence, and use this to put constraints on the formation mechanism of brown dwarfs (BDs). Our multi-band optical and infrared photometric survey with spectroscopic follow-up covers 11 deg{sup 2}, making it the largest survey of this cluster to date. We observe a radial variation in the MF over the range 0.072-0.3 M {sub sun}, but no significant variation in the MF below the substellar boundary at the three cluster radius intervals is analyzed. This lack of radial variation for low masses is what we would expect with the ejection scenario for BD formation, although considering that IC 2391 has an age about three times older than its crossing time, we expect that BDs with a velocity greater than the escape velocity have already escaped the cluster. Alternatively, the variation in the MF of the stellar objects could be an indication that they have undergone mass segregation via dynamical evolution. We also observe a significant variation across the cluster in the color of the (background) field star locus in color-magnitude diagrams and conclude that this is due to variable background extinction in the Galactic plane. From our preliminary spectroscopic follow-up, to confirm BD status and cluster membership, we find that all candidates are M dwarfs (in either the field or the cluster), demonstrating the efficiency of our photometric selection method in avoiding contaminants (e.g., red giants). About half of our photometric candidates for which we have spectra are spectroscopically confirmed as cluster members; two are new spectroscopically confirmed BD members of IC 2391.

  17. A STELLAR-MASS-DEPENDENT DROP IN PLANET OCCURRENCE RATES

    SciTech Connect

    Mulders, Gijs D.; Pascucci, Ilaria; Apai, Dániel

    2015-01-10

    The Kepler spacecraft has discovered a large number of planets with up to one-year periods and down to terrestrial sizes. While the majority of the target stars are main-sequence dwarfs of spectral type F, G, and K, Kepler covers stars with effective temperatures as low as 2500 K, which corresponds to M stars. These cooler stars allow characterization of small planets near the habitable zone, yet it is not clear if this population is representative of that around FGK stars. In this paper, we calculate the occurrence of planets around stars of different spectral types as a function of planet radius and distance from the star and show that they are significantly different from each other. We further identify two trends. First, the occurrence of Earth- to Neptune-sized planets (1-4 R {sub ⊕}) is successively higher toward later spectral types at all orbital periods probed by Kepler; planets around M stars occur twice as frequently as around G stars, and thrice as frequently as around F stars. Second, a drop in planet occurrence is evident at all spectral types inward of a ∼10 day orbital period, with a plateau further out. By assigning to each spectral type a median stellar mass, we show that the distance from the star where this drop occurs is stellar mass dependent, and scales with semi-major axis as the cube root of stellar mass. By comparing different mechanisms of planet formation, trapping, and destruction, we find that this scaling best matches the location of the pre-main-sequence co-rotation radius, indicating efficient trapping of migrating planets or planetary building blocks close to the star. These results demonstrate the stellar-mass dependence of the planet population, both in terms of occurrence rate and of orbital distribution. The prominent stellar-mass dependence of the inner boundary of the planet population shows that the formation or migration of planets is sensitive to the stellar parameters.

  18. MOIRCS DEEP SURVEY. VIII. EVOLUTION OF STAR FORMATION ACTIVITY AS A FUNCTION OF STELLAR MASS IN GALAXIES SINCE z {approx} 3

    SciTech Connect

    Kajisawa, M.; Ichikawa, T.; Yamada, T.; Akiyama, M.; Uchimoto, Y. K.; Yoshikawa, T.; Onodera, M.

    2010-11-01

    We study the evolution of star formation activity of galaxies at 0.5 < z < 3.5 as a function of stellar mass, using very deep NIR data taken with the Multi-Object Infrared Camera and Spectrograph on the Subaru telescope in the GOODS-North region. The NIR imaging data reach K{approx} 23-24 Vega magnitude and they allow us to construct a nearly stellar-mass-limited sample down to {approx}10{sup 9.5-10} M{sub sun} even at z {approx} 3. We estimated star formation rates (SFRs) of the sample with two indicators, namely, the Spitzer/MIPS 24 {mu}m flux and the rest-frame 2800 A luminosity. The SFR distribution at a fixed M{sub star} shifts to higher values with increasing redshift at 0.5 < z < 3.5. More massive galaxies show stronger evolution of SFR at z {approx}> 1. We found galaxies at 2.5 < z < 3.5 show a bimodality in their SSFR distribution, which can be divided into two populations by a constant SSFR of {approx}2 Gyr{sup -1}. Galaxies in the low-SSFR group have SSFRs of {approx}0.5-1.0 Gyr{sup -1}, while the high-SSFR population shows {approx}10 Gyr{sup -1}. The cosmic SFR density (SFRD) is dominated by galaxies with M{sub star} = 10{sup 10-11} M{sub sun} at 0.5 < z < 3.5, while the contribution of massive galaxies with M{sub star} = 10{sup 11-11.5} M{sub sun} shows a strong evolution at z>1 and becomes significant at z {approx} 3, especially in the case with the SFR based on MIPS 24 {mu}m. In galaxies with M{sub star} = 10{sup 10-11.5} M{sub sun}, those with a relatively narrow range of SSFR ({approx}<1 dex) dominates the cosmic SFRD at 0.5 < z < 3.5. The SSFR of galaxies that dominate the SFRD systematically increases with redshift. At 2.5 < z < 3.5, the high-SSFR population, which is relatively small in number, dominates the SFRD. Major star formation in the universe at higher redshift seems to be associated with a more rapid growth of stellar mass of galaxies.

  19. THE VMC SURVEY. XVIII. RADIAL DEPENDENCE OF THE LOW-MASS, 0.55–0.82 M{sub ⊙} STELLAR MASS FUNCTION IN THE GALACTIC GLOBULAR CLUSTER 47 TUCANAE

    SciTech Connect

    Zhang, Chaoli; Li, Chengyuan; De Grijs, Richard; Bekki, Kenji; Deng, Licai; For, Bi-Qing; Zaggia, Simone; Rubele, Stefano; Piatti, Andrés E.; Cioni, Maria-Rosa L.; Ripepi, Vincenzo; Marconi, Marcella; Ivanov, Valentin D.; Chen, Li E-mail: grijs@pku.edu.cn

    2015-12-20

    We use near-infrared observations obtained as part of the Visible and Infrared Survey Telescope for Astronomy (VISTA) Survey of the Magellanic Clouds (VMC), as well as two complementary Hubble Space Telescope (HST) data sets, to study the luminosity and mass functions (MFs) as a function of clustercentric radius of the main-sequence stars in the Galactic globular cluster 47 Tucanae. The HST observations indicate a relative deficit in the numbers of faint stars in the central region of the cluster compared with its periphery, for 18.75 ≤ m{sub F606W} ≤ 20.9 mag (corresponding to a stellar mass range of 0.55 < m{sub *}/M{sub ⊙} < 0.73). The stellar number counts at 6.′7 from the cluster core show a deficit for 17.62 ≤ m{sub F606W} ≤ 19.7 mag (i.e., 0.65 < m{sub *}/M{sub ⊙} < 0.82), which is consistent with expectations from mass segregation. The VMC-based stellar MFs exhibit power-law shapes for masses in the range 0.55 < m{sub *}/M{sub ⊙} < 0.82. These power laws are characterized by an almost constant slope, α. The radial distribution of the power-law slopes α thus shows evidence of the importance of both mass segregation and tidal stripping, for both the first- and second-generation stars in 47 Tuc.

  20. Mass loss in 2D rotating stellar models

    SciTech Connect

    Lovekin, Caterine; Deupree, Bob

    2010-10-05

    Radiatively driven mass loss is an important factor in the evolution of massive stars . The mass loss rates depend on a number of stellar parameters, including the effective temperature and luminosity. Massive stars are also often rapidly rotating, which affects their structure and evolution. In sufficiently rapidly rotating stars, both the effective temperature and radius vary significantly as a function of latitude, and hence mass loss rates can vary appreciably between the poles and the equator. In this work, we discuss the addition of mass loss to a 2D stellar evolution code (ROTORC) and compare evolution sequences with and without mass loss. Preliminary results indicate that a full 2D calculation of mass loss using the local effective temperature and luminosity can significantly affect the distribution of mass loss in rotating main sequence stars. More mass is lost from the pole than predicted by 1D models, while less mass is lost at the equator. This change in the distribution of mass loss will affect the angular momentum loss, the surface temperature and luminosity, and even the interior structure of the star. After a single mass loss event, these effects are small, but can be expected to accumulate over the course of the main sequence evolution.

  1. Observing stellar mass and supermassive black holes

    NASA Astrophysics Data System (ADS)

    Cherepashchuk, A. M.

    2016-07-01

    During the last 50 years, great progress has been made in observing stellar-mass black holes (BHs) in binary systems and supermassive BHs in galactic nuclei. In 1964, Zeldovich and Salpeter showed that in the case of nonspherical accretion of matter onto a BH, huge energy releases occur. The theory of disk accretion of matter onto BHs was developed in 1972-1973 by Shakura and Sunyaev, Pringle and Rees, and Novikov and Thorne. Up to now, 100 years after the creation of Albert Einstein's General Theory of Relativity, which predicts the existence of BHs, the masses of tens of stellar-mass BHs ( M_BH=(4-35) M_ȯ) and many hundreds of supermassive BHs ( M_BH=(10^6-1010) M_ȯ) have been determined. A new field of astrophysics, so-called BH demography, is developing. The recent discovery of gravitational waves from BH mergers in binary systems opens a new era in BH studies.

  2. New Constraints on the Evolution of the Stellar-to-dark Matter Connection: A Combined Analysis of Galaxy-Galaxy Lensing, Clustering, and Stellar Mass Functions from z = 0.2 to z =1

    NASA Astrophysics Data System (ADS)

    Leauthaud, Alexie; Tinker, Jeremy; Bundy, Kevin; Behroozi, Peter S.; Massey, Richard; Rhodes, Jason; George, Matthew R.; Kneib, Jean-Paul; Benson, Andrew; Wechsler, Risa H.; Busha, Michael T.; Capak, Peter; Cortês, Marina; Ilbert, Olivier; Koekemoer, Anton M.; Le Fèvre, Oliver; Lilly, Simon; McCracken, Henry J.; Salvato, Mara; Schrabback, Tim; Scoville, Nick; Smith, Tristan; Taylor, James E.

    2012-01-01

    Using data from the COSMOS survey, we perform the first joint analysis of galaxy-galaxy weak lensing, galaxy spatial clustering, and galaxy number densities. Carefully accounting for sample variance and for scatter between stellar and halo mass, we model all three observables simultaneously using a novel and self-consistent theoretical framework. Our results provide strong constraints on the shape and redshift evolution of the stellar-to-halo mass relation (SHMR) from z = 0.2 to z = 1. At low stellar mass, we find that halo mass scales as Mh vpropM 0.46 * and that this scaling does not evolve significantly with redshift from z = 0.2 to z = 1. The slope of the SHMR rises sharply at M * > 5 × 1010 M ⊙ and as a consequence, the stellar mass of a central galaxy becomes a poor tracer of its parent halo mass. We show that the dark-to-stellar ratio, Mh /M *, varies from low to high masses, reaching a minimum of Mh /M * ~ 27 at M * = 4.5 × 1010 M ⊙ and Mh = 1.2 × 1012 M ⊙. This minimum is important for models of galaxy formation because it marks the mass at which the accumulated stellar growth of the central galaxy has been the most efficient. We describe the SHMR at this minimum in terms of the "pivot stellar mass," M piv *, the "pivot halo mass," M piv h , and the "pivot ratio," (Mh /M *)piv. Thanks to a homogeneous analysis of a single data set spanning a large redshift range, we report the first detection of mass downsizing trends for both M piv h and M piv *. The pivot stellar mass decreases from M piv * = 5.75 ± 0.13 × 1010 M ⊙ at z = 0.88 to M piv * = 3.55 ± 0.17 × 1010 M ⊙ at z = 0.37. Intriguingly, however, the corresponding evolution of M piv h leaves the pivot ratio constant with redshift at (Mh /M *)piv ~ 27. We use simple arguments to show how this result raises the possibility that star formation quenching may ultimately depend on Mh /M * and not simply on Mh , as is commonly assumed. We show that simple models with such a dependence

  3. NEW CONSTRAINTS ON THE EVOLUTION OF THE STELLAR-TO-DARK MATTER CONNECTION: A COMBINED ANALYSIS OF GALAXY-GALAXY LENSING, CLUSTERING, AND STELLAR MASS FUNCTIONS FROM z = 0.2 to z = 1

    SciTech Connect

    Leauthaud, Alexie; Tinker, Jeremy; Bundy, Kevin; George, Matthew R.; Behroozi, Peter S.; Wechsler, Risa H.; Busha, Michael T.; Schrabback, Tim; Massey, Richard; Rhodes, Jason; Benson, Andrew; Kneib, Jean-Paul; Ilbert, Olivier; Le Fevre, Oliver; Capak, Peter; Cortes, Marina; Koekemoer, Anton M.; Lilly, Simon; McCracken, Henry J.; Salvato, Mara; and others

    2012-01-10

    Using data from the COSMOS survey, we perform the first joint analysis of galaxy-galaxy weak lensing, galaxy spatial clustering, and galaxy number densities. Carefully accounting for sample variance and for scatter between stellar and halo mass, we model all three observables simultaneously using a novel and self-consistent theoretical framework. Our results provide strong constraints on the shape and redshift evolution of the stellar-to-halo mass relation (SHMR) from z = 0.2 to z = 1. At low stellar mass, we find that halo mass scales as M{sub h} {proportional_to}M{sup 0.46}{sub *} and that this scaling does not evolve significantly with redshift from z = 0.2 to z = 1. The slope of the SHMR rises sharply at M{sub *} > 5 Multiplication-Sign 10{sup 10} M{sub Sun} and as a consequence, the stellar mass of a central galaxy becomes a poor tracer of its parent halo mass. We show that the dark-to-stellar ratio, M{sub h} /M{sub *}, varies from low to high masses, reaching a minimum of M{sub h} /M{sub *} {approx} 27 at M{sub *} = 4.5 Multiplication-Sign 10{sup 10} M{sub Sun} and M{sub h} = 1.2 Multiplication-Sign 10{sup 12} M{sub Sun }. This minimum is important for models of galaxy formation because it marks the mass at which the accumulated stellar growth of the central galaxy has been the most efficient. We describe the SHMR at this minimum in terms of the 'pivot stellar mass', M{sup piv}{sub *}, the 'pivot halo mass', M{sup piv}{sub h}, and the 'pivot ratio', (M{sub h} /M{sub *}){sup piv}. Thanks to a homogeneous analysis of a single data set spanning a large redshift range, we report the first detection of mass downsizing trends for both M{sup piv}{sub h} and M{sup piv}{sub *}. The pivot stellar mass decreases from M{sup piv}{sub *} = 5.75 {+-} 0.13 Multiplication-Sign 10{sup 10} M{sub Sun} at z = 0.88 to M{sup piv}{sub *} = 3.55 {+-} 0.17 Multiplication-Sign 10{sup 10} M{sub Sun} at z = 0.37. Intriguingly, however, the corresponding evolution of M{sup piv}{sub h

  4. The X-Ray Luminosity Functions of Field Low-Mass X-Ray Binaries in Early-Type Galaxies: Evidence for a Stellar Age Dependence

    NASA Technical Reports Server (NTRS)

    Lehmer, B. D.; Berkeley, M.; Zezas, A.; Alexander, D. M.; Basu-Zych, A.; Bauer, F. E.; Brandt, W. N.; Fragos, T.; Hornschemeier, A. E.; Kalogera, V.; Ptak, A.; Sivakoff, G. R.; Tzanavaris, P.; Yukita, M.

    2014-01-01

    We present direct constraints on how the formation of low-mass X-ray binary (LMXB) populations in galactic fields depends on stellar age. In this pilot study, we utilize Chandra and Hubble Space Telescope (HST) data to detect and characterize the X-ray point source populations of three nearby early-type galaxies: NGC 3115, 3379, and 3384. The luminosity-weighted stellar ages of our sample span approximately equal to 3-10 Gyr. X-ray binary population synthesis models predict that the field LMXBs associated with younger stellar populations should be more numerous and luminous per unit stellar mass than older populations due to the evolution of LMXB donor star masses. Crucially, the combination of deep Chandra and HST observations allows us to test directly this prediction by identifying and removing counterparts to X-ray point sources that are unrelated to the field LMXB populations, including LMXBs that are formed dynamically in globular clusters, Galactic stars, and background AGN/galaxies. We find that the "young" early-type galaxy NGC 3384 (approximately equals 2-5 Gyr) has an excess of luminous field LMXBs (L(sub x) approximately greater than (5-10) × 10(exp 37) erg s(exp -1)) per unit K-band luminosity (L(sub K); a proxy for stellar mass) than the "old" early-type galaxies NGC 3115 and 3379 (approximately equals 8-10 Gyr), which results in a factor of 2-3 excess of L(sub X)/L(sub K) for NGC 3384. This result is consistent with the X-ray binary population synthesis model predictions; however, our small galaxy sample size does not allow us to draw definitive conclusions on the evolution field LMXBs in general. We discuss how future surveys of larger galaxy samples that combine deep Chandra and HST data could provide a powerful new benchmark for calibrating X-ray binary population synthesis models.

  5. The X-ray luminosity functions of field low-mass X-ray binaries in early-type galaxies: Evidence for a stellar age dependence

    SciTech Connect

    Lehmer, B. D.; Tzanavaris, P.; Yukita, M.; Berkeley, M.; Basu-Zych, A.; Hornschemeier, A. E.; Ptak, A.; Zezas, A.; Alexander, D. M.; Bauer, F. E.; Brandt, W. N.; Fragos, T.; Kalogera, V.; Sivakoff, G. R.

    2014-07-01

    We present direct constraints on how the formation of low-mass X-ray binary (LMXB) populations in galactic fields depends on stellar age. In this pilot study, we utilize Chandra and Hubble Space Telescope (HST) data to detect and characterize the X-ray point source populations of three nearby early-type galaxies: NGC 3115, 3379, and 3384. The luminosity-weighted stellar ages of our sample span ≈3-10 Gyr. X-ray binary population synthesis models predict that the field LMXBs associated with younger stellar populations should be more numerous and luminous per unit stellar mass than older populations due to the evolution of LMXB donor star masses. Crucially, the combination of deep Chandra and HST observations allows us to test directly this prediction by identifying and removing counterparts to X-ray point sources that are unrelated to the field LMXB populations, including LMXBs that are formed dynamically in globular clusters, Galactic stars, and background active galactic nuclei/galaxies. We find that the 'young' early-type galaxy NGC 3384 (≈2-5 Gyr) has an excess of luminous field LMXBs (L {sub X} ≳ (5-10) × 10{sup 37} erg s{sup –1}) per unit K-band luminosity (L{sub K} ; a proxy for stellar mass) than the 'old' early-type galaxies NGC 3115 and 3379 (≈8-10 Gyr), which results in a factor of ≈2-3 excess of L {sub X}/L{sub K} for NGC 3384. This result is consistent with the X-ray binary population synthesis model predictions; however, our small galaxy sample size does not allow us to draw definitive conclusions on the evolution field LMXBs in general. We discuss how future surveys of larger galaxy samples that combine deep Chandra and HST data could provide a powerful new benchmark for calibrating X-ray binary population synthesis models.

  6. Stellar Atmospheres, Atmospheric Extension, and Fundamental Parameters: Weighing Stars Using the Stellar Mass Index

    NASA Astrophysics Data System (ADS)

    Neilson, Hilding R.; Baron, Fabien; Norris, Ryan; Kloppenborg, Brian; Lester, John B.

    2016-10-01

    One of the great challenges of understanding stars is measuring their masses. The best methods for measuring stellar masses include binary interaction, asteroseismology, and stellar evolution models, but these methods are not ideal for red giant and supergiant stars. In this work, we propose a novel method for inferring stellar masses of evolved red giant and supergiant stars using interferometric and spectrophotometric observations combined with spherical model stellar atmospheres to measure what we call the stellar mass index, defined as the ratio between the stellar radius and mass. The method is based on the correlation between different measurements of angular diameter, used as a proxy for atmospheric extension, and fundamental stellar parameters. For a given star, spectrophotometry measures the Rosseland angular diameter while interferometric observations generally probe a larger limb-darkened angular diameter. The ratio of these two angular diameters is proportional to the relative extension of the stellar atmosphere, which is strongly correlated to the star’s effective temperature, radius, and mass. We show that these correlations are strong and can lead to precise measurements of stellar masses.

  7. The Evolution of the Fractions of Quiescent and Star-forming Galaxies as a Function of Stellar Mass Since z = 3: Increasing Importance of Massive, Dusty Star-forming Galaxies in the Early Universe

    NASA Astrophysics Data System (ADS)

    Martis, Nicholas S.; Marchesini, Danilo; Brammer, Gabriel B.; Muzzin, Adam; Labbé, Ivo; Momcheva, Ivelina G.; Skelton, Rosalind E.; Stefanon, Mauro; van Dokkum, Pieter G.; Whitaker, Katherine E.

    2016-08-01

    Using the UltraVISTA DR1 and 3D-HST catalogs, we construct a stellar-mass-complete sample, unique for its combination of surveyed volume and depth, to study the evolution of the fractions of quiescent galaxies, moderately unobscured star-forming galaxies, and dusty star-forming galaxies as a function of stellar mass over the redshift interval 0.2 ≤ z ≤ 3.0. We show that the role of dusty star-forming galaxies within the overall galaxy population becomes more important with increasing stellar mass and grows rapidly with increasing redshift. Specifically, dusty star-forming galaxies dominate the galaxy population with {log}({M}{{star}}/{M}ȯ )≳ 10.3 at z ≳ 2. The ratio of dusty and non-dusty star-forming galaxies as a function of stellar mass changes little with redshift. Dusty star-forming galaxies dominate the star-forming population at {log}({M}{{star}}/{M}ȯ )≳ 10.0{--}10.5, being a factor of ˜3–5 more common, while unobscured star-forming galaxies dominate at {log}({M}{{star}}/{M}ȯ )≲ 10. At {log}({M}{{star}}/{M}ȯ )\\gt 10.5, red galaxies dominate the galaxy population at all redshift z < 3, either because they are quiescent (at late times) or dusty star-forming (in the early universe).

  8. The Evolution of the Fractions of Quiescent and Star-forming Galaxies as a Function of Stellar Mass Since z = 3: Increasing Importance of Massive, Dusty Star-forming Galaxies in the Early Universe

    NASA Astrophysics Data System (ADS)

    Martis, Nicholas S.; Marchesini, Danilo; Brammer, Gabriel B.; Muzzin, Adam; Labbé, Ivo; Momcheva, Ivelina G.; Skelton, Rosalind E.; Stefanon, Mauro; van Dokkum, Pieter G.; Whitaker, Katherine E.

    2016-08-01

    Using the UltraVISTA DR1 and 3D-HST catalogs, we construct a stellar-mass-complete sample, unique for its combination of surveyed volume and depth, to study the evolution of the fractions of quiescent galaxies, moderately unobscured star-forming galaxies, and dusty star-forming galaxies as a function of stellar mass over the redshift interval 0.2 ≤ z ≤ 3.0. We show that the role of dusty star-forming galaxies within the overall galaxy population becomes more important with increasing stellar mass and grows rapidly with increasing redshift. Specifically, dusty star-forming galaxies dominate the galaxy population with {log}({M}{{star}}/{M}⊙ )≳ 10.3 at z ≳ 2. The ratio of dusty and non-dusty star-forming galaxies as a function of stellar mass changes little with redshift. Dusty star-forming galaxies dominate the star-forming population at {log}({M}{{star}}/{M}⊙ )≳ 10.0{--}10.5, being a factor of ˜3-5 more common, while unobscured star-forming galaxies dominate at {log}({M}{{star}}/{M}⊙ )≲ 10. At {log}({M}{{star}}/{M}⊙ )\\gt 10.5, red galaxies dominate the galaxy population at all redshift z < 3, either because they are quiescent (at late times) or dusty star-forming (in the early universe).

  9. Stellar evolution at high mass including the effect of a stellar wind

    NASA Technical Reports Server (NTRS)

    Stothers, R.; Chin, C.-W.

    1979-01-01

    The effect of a stellar wind on the evolution of stars in the mass range from 15 to 120 solar masses is investigated. All the stellar models are constructed with the use of Cox-Stewart opacities. Four possible cases of mass loss are considered: (1) no mass loss at all; (2) substantial mass loss from stars in all stages of evolution; (3) heavy mass loss from red supergiants only; and (4) sudden and very heavy mass loss from luminous yellow supergiants. The assumption of mass loss during the main-sequence phase of evolution is found to lead to a lowering of the luminosity and, unless the mass loss is extremely heavy, of the effective temperature as well. A comparison of the adopted mass-loss rates with observed rates suggests that stellar winds are probably not an important factor in the evolution of main-sequence stars and supergiants unless the initial masses are greater than about 30 solar masses.

  10. THE MASS DISTRIBUTION OF STELLAR-MASS BLACK HOLES

    SciTech Connect

    Farr, Will M.; Sravan, Niharika; Kalogera, Vicky; Cantrell, Andrew; Kreidberg, Laura; Bailyn, Charles D.; Mandel, Ilya E-mail: niharika.sravan@gmail.com E-mail: andrew.cantrell@yale.edu E-mail: charles.bailyn@yale.edu

    2011-11-10

    We perform a Bayesian analysis of the mass distribution of stellar-mass black holes using the observed masses of 15 low-mass X-ray binary systems undergoing Roche lobe overflow and 5 high-mass, wind-fed X-ray binary systems. Using Markov Chain Monte Carlo calculations, we model the mass distribution both parametrically-as a power law, exponential, Gaussian, combination of two Gaussians, or log-normal distribution-and non-parametrically-as histograms with varying numbers of bins. We provide confidence bounds on the shape of the mass distribution in the context of each model and compare the models with each other by calculating their relative Bayesian evidence as supported by the measurements, taking into account the number of degrees of freedom of each model. The mass distribution of the low-mass systems is best fit by a power law, while the distribution of the combined sample is best fit by the exponential model. This difference indicates that the low-mass subsample is not consistent with being drawn from the distribution of the combined population. We examine the existence of a 'gap' between the most massive neutron stars and the least massive black holes by considering the value, M{sub 1%}, of the 1% quantile from each black hole mass distribution as the lower bound of black hole masses. Our analysis generates posterior distributions for M{sub 1%}; the best model (the power law) fitted to the low-mass systems has a distribution of lower bounds with M{sub 1%}>4.3 M{sub sun} with 90% confidence, while the best model (the exponential) fitted to all 20 systems has M{sub 1%}>4.5 M{sub sun} with 90% confidence. We conclude that our sample of black hole masses provides strong evidence of a gap between the maximum neutron star mass and the lower bound on black hole masses. Our results on the low-mass sample are in qualitative agreement with those of Ozel et al., although our broad model selection analysis more reliably reveals the best-fit quantitative description of the

  11. Geometrical beaming of stellar mass ULXs

    NASA Astrophysics Data System (ADS)

    Middleton, Matthew J.; King, Andrew

    2016-10-01

    The presence or lack of eclipses in the X-ray light curves of ultraluminous X-ray sources (ULXs) can be directly linked to the accreting system geometry. In the case where the compact object is stellar mass and radiates isotropically, we should expect eclipses by a main-sequence to sub-giant secondary star on the recurrence time-scale of hours to days. X-ray light curves are now available for large numbers of ULXs as a result of the latest XMM-Newton catalogue. We determine the amount of fractional variability that should be injected into an otherwise featureless light curve for a given set of system parameters as a result of eclipses and compare this to the available data. We find that the vast majority of sources for which the variability has been measured to be non-zero and for which available observations meet the criteria for eclipse searches, have fractional variabilities which are too low to derive from eclipses and so must be viewed such that θ ≤ cos- 1(R*/a). This would require that the disc subtends a larger angle than that of the secondary star and is therefore consistent with a conical outflow formed from super-critical accretion rates and implies some level of geometrical beaming in ULXs.

  12. [Automatic Measurement of the Stellar Atmospheric Parameters Based Mass Estimation].

    PubMed

    Tu, Liang-ping; Wei, Hui-ming; Luo, A-li; Zhao, Yong-heng

    2015-11-01

    We have collected massive stellar spectral data in recent years, which leads to the research on the automatic measurement of stellar atmospheric physical parameters (effective temperature Teff, surface gravity log g and metallic abundance [Fe/ H]) become an important issue. To study the automatic measurement of these three parameters has important significance for some scientific problems, such as the evolution of the universe and so on. But the research of this problem is not very widely, some of the current methods are not able to estimate the values of the stellar atmospheric physical parameters completely and accurately. So in this paper, an automatic method to predict stellar atmospheric parameters based on mass estimation was presented, which can achieve the prediction of stellar effective temperature Teff, surface gravity log g and metallic abundance [Fe/H]. This method has small amount of computation and fast training speed. The main idea of this method is that firstly it need us to build some mass distributions, secondly the original spectral data was mapped into the mass space and then to predict the stellar parameter with the support vector regression (SVR) in the mass space. we choose the stellar spectral data from the United States SDSS-DR8 for the training and testing. We also compared the predicted results of this method with the SSPP and achieve higher accuracy. The predicted results are more stable and the experimental results show that the method is feasible and can predict the stellar atmospheric physical parameters effectively. PMID:26978937

  13. [Automatic Measurement of the Stellar Atmospheric Parameters Based Mass Estimation].

    PubMed

    Tu, Liang-ping; Wei, Hui-ming; Luo, A-li; Zhao, Yong-heng

    2015-11-01

    We have collected massive stellar spectral data in recent years, which leads to the research on the automatic measurement of stellar atmospheric physical parameters (effective temperature Teff, surface gravity log g and metallic abundance [Fe/ H]) become an important issue. To study the automatic measurement of these three parameters has important significance for some scientific problems, such as the evolution of the universe and so on. But the research of this problem is not very widely, some of the current methods are not able to estimate the values of the stellar atmospheric physical parameters completely and accurately. So in this paper, an automatic method to predict stellar atmospheric parameters based on mass estimation was presented, which can achieve the prediction of stellar effective temperature Teff, surface gravity log g and metallic abundance [Fe/H]. This method has small amount of computation and fast training speed. The main idea of this method is that firstly it need us to build some mass distributions, secondly the original spectral data was mapped into the mass space and then to predict the stellar parameter with the support vector regression (SVR) in the mass space. we choose the stellar spectral data from the United States SDSS-DR8 for the training and testing. We also compared the predicted results of this method with the SSPP and achieve higher accuracy. The predicted results are more stable and the experimental results show that the method is feasible and can predict the stellar atmospheric physical parameters effectively.

  14. STELLAR-MASS BLACK HOLES IN YOUNG GALAXIES

    SciTech Connect

    Wheeler, J. Craig; Johnson, Vincent E-mail: flint88@mail.utexas.edu

    2011-09-10

    We explore the potential cumulative energy production of stellar-mass black holes in early galaxies. Stellar-mass black holes may accrete substantially from the higher density interstellar media (ISMs) of primordial galaxies, and their energy release would be distributed more uniformly over the galaxies, perhaps providing a different mode of energy feedback into young galaxies than central supermassive black holes. We construct a model for the production and growth of stellar-mass black holes over the first few gigayears of a young galaxy. With the simplifying assumption of a constant density of the ISM, n {approx} 10{sup 4}-10{sup 5} cm{sup -3}, we estimate the number of accreting stellar-mass black holes to be {approx}10{sup 6} and the potential energy production to be as high as 10{sup 61} erg over several billion years. For densities less than 10{sup 5} cm{sup -3}, stellar-mass black holes are unlikely to reach their Eddington limit luminosities. The framework we present could be incorporated in numerical simulations to compute the feedback from stellar-mass black holes with inhomogeneous, evolving ISMs.

  15. Galaxy cosmological mass function

    NASA Astrophysics Data System (ADS)

    Lopes, Amanda R.; Iribarrem, Alvaro; Ribeiro, Marcelo B.; Stoeger, William R.

    2014-12-01

    Aims: This paper studies the galaxy cosmological mass function (GCMF) in a semi-empirical relativistic approach that uses observational data provided by recent galaxy redshift surveys. Methods: Starting from a previously presented relation between the mass-to-light ratio, the selection function obtained from the luminosity function (LF) data and the luminosity density, the average luminosity L, and the average galactic mass ℳg were computed in terms of the redshift. ℳg was also alternatively estimated by means of a method that uses the galaxy stellar mass function (GSMF). Comparison of these two forms of deriving the average galactic mass allowed us to infer a possible bias introduced by the selection criteria of the survey. We used the FORS Deep Field galaxy survey sample of 5558 galaxies in the redshift range 0.5 stellar mass-to-light ratio and its GSMF data. Results: Assuming ℳg0 ≈ 1011ℳ⊙ as the local value of the average galactic mass, the LF approach results in LB ∝ (1 + z)(2.40 ± 0.03) and ℳg ∝ (1 + z)(1.1 ± 0.2). However, using the GSMF results to calculate the average galactic mass produces ℳg ∝ (1 + z)(- 0.58 ± 0.22). We chose the latter result because it is less biased. We then obtained the theoretical quantities of interest, such as the differential number counts, to finally calculate the GCMF, which can be fitted by a Schechter function, but whose fitted parameter values are different from the values found in the literature for the GSMF. Conclusions: This GCMF behavior follows the theoretical predictions from the cold dark matter models in which the less massive objects form first, followed later by more massive ones. In the range 0.5

  16. Properties of stellar clusters around high-mass young stars

    NASA Astrophysics Data System (ADS)

    Faustini, F.; Molinari, S.; Testi, L.; Brand, J.

    2009-09-01

    Context: Twenty-six high-luminosity IRAS sources believed to be collection of stars in the early phases of high-mass star formation have been observed in the near-IR (J, H, K_s) to characterize the clustering properties of their young stellar population and compare them with those of more evolved objects (e.g., Herbig Ae/Be stars) of comparable mass. All the observed sources possess strong continuum and/or line emission in the millimeter, being therefore associated with gas and dust envelopes. Nine sources have far-IR colors characteristic of UCHII regions, while the other 17 are probably experiencing an evolutionary phase that precedes the hot-cores, as suggested by a variety of evidence collected in the past decade. Aims: We attempt to gain insight into the initial conditions of star formation in these clusters (initial mass function [IMF], star formation history [SFH]), and to determine mean cluster ages. Methods: For each cluster, we complete aperture photometry. We derive stellar density profiles, color-color and color-magnitude diagrams, and color (HKCF) and luminosity (KLF) functions. These two functions are compared with simulated KLFs and HKCFs from a model that generates populations of synthetic clusters starting from assumptions about the IMF, SFH, and Pre-MS evolution, and using the average properties of the observed clusters as boundary conditions (bolometric luminosity, dust distribution, infrared excess, extinction). Results: Twenty-two sources show evidence of clustering with a stellar richness indicator that varies from a few up to several tens of objects, and a median cluster radius of 0.7 pc. A considerable number of cluster members present an infrared excess characteristic of young pre-main-sequence objects. For a subset of 9 detected clusters, we could perform a statistically significant comparison of the observed KLFs with those resulting from synthetic cluster models; for these clusters, we find that the median stellar age ranges between 2.5

  17. Accurate Low-mass Stellar Models of KOI-126

    NASA Astrophysics Data System (ADS)

    Feiden, Gregory A.; Chaboyer, Brian; Dotter, Aaron

    2011-10-01

    The recent discovery of an eclipsing hierarchical triple system with two low-mass stars in a close orbit (KOI-126) by Carter et al. appeared to reinforce the evidence that theoretical stellar evolution models are not able to reproduce the observational mass-radius relation for low-mass stars. We present a set of stellar models for the three stars in the KOI-126 system that show excellent agreement with the observed radii. This agreement appears to be due to the equation of state implemented by our code. A significant dispersion in the observed mass-radius relation for fully convective stars is demonstrated; indicative of the influence of physics currently not incorporated in standard stellar evolution models. We also predict apsidal motion constants for the two M dwarf companions. These values should be observationally determined to within 1% by the end of the Kepler mission.

  18. RELATIONS BETWEEN CENTRAL BLACK HOLE MASS AND TOTAL GALAXY STELLAR MASS IN THE LOCAL UNIVERSE

    SciTech Connect

    Reines, Amy E.; Volonteri, Marta

    2015-11-10

    Scaling relations between central black hole (BH) mass and host galaxy properties are of fundamental importance to studies of BH and galaxy evolution throughout cosmic time. Here we investigate the relationship between BH mass and host galaxy total stellar mass using a sample of 262 broad-line active galactic nuclei (AGNs) in the nearby universe (z < 0.055), as well as 79 galaxies with dynamical BH masses. The vast majority of our AGN sample is constructed using Sloan Digital Sky Survey spectroscopy and searching for Seyfert-like narrow-line ratios and broad Hα emission. BH masses are estimated using standard virial techniques. We also include a small number of dwarf galaxies with total stellar masses M{sub stellar} ≲ 10{sup 9.5} M{sub ⊙} and a subsample of the reverberation-mapped AGNs. Total stellar masses of all 341 galaxies are calculated in the most consistent manner feasible using color-dependent mass-to-light ratios. We find a clear correlation between BH mass and total stellar mass for the AGN host galaxies, with M{sub BH} ∝ M{sub stellar}, similar to that of early-type galaxies with dynamically detected BHs. However, the relation defined by the AGNs has a normalization that is lower by more than an order of magnitude, with a BH-to-total stellar mass fraction of M{sub BH}/M{sub stellar} ∼ 0.025% across the stellar mass range 10{sup 8} ≤ M{sub stellar}/M{sub ⊙} ≤ 10{sup 12}. This result has significant implications for studies at high redshift and cosmological simulations in which stellar bulges cannot be resolved.

  19. A NEW METHOD FOR DERIVING THE STELLAR BIRTH FUNCTION OF RESOLVED STELLAR POPULATIONS

    SciTech Connect

    Gennaro, M.; Brown, T. M.; Gordon, K. D.; Tchernyshyov, K.

    2015-07-20

    We present a new method for deriving the stellar birth function (SBF) of resolved stellar populations. The SBF (stars born per unit mass, time, and metallicity) is the combination of the initial mass function (IMF), the star formation history (SFH), and the metallicity distribution function (MDF). The framework of our analysis is that of Poisson Point Processes (PPPs), a class of statistical models suitable when dealing with points (stars) in a multidimensional space (the measurement space of multiple photometric bands). The theory of PPPs easily accommodates the modeling of measurement errors as well as that of incompleteness. Our method avoids binning stars in the color–magnitude diagram and uses the whole likelihood function for each data point; combining the individual likelihoods allows the computation of the posterior probability for the population's SBF. Within the proposed framework it is possible to include nuisance parameters, such as distance and extinction, by specifying their prior distributions and marginalizing over them. The aim of this paper is to assess the validity of this new approach under a range of assumptions, using only simulated data. Forthcoming work will show applications to real data. Although it has a broad scope of possible applications, we have developed this method to study multi-band Hubble Space Telescope observations of the Milky Way Bulge. Therefore we will focus on simulations with characteristics similar to those of the Galactic Bulge.

  20. SPIDER. V. Measuring Systematic Effects in Early-type Galaxy Stellar Masses from Photometric Spectral Energy Distribution Fitting

    NASA Astrophysics Data System (ADS)

    Swindle, R.; Gal, R. R.; La Barbera, F.; de Carvalho, R. R.

    2011-10-01

    We present robust statistical estimates of the accuracy of early-type galaxy stellar masses derived from spectral energy distribution (SED) fitting as functions of various empirical and theoretical assumptions. Using large samples consisting of ~40,000 galaxies from the Sloan Digital Sky Survey (SDSS; ugriz), of which ~5000 are also in the UKIRT Infrared Deep Sky Survey (YJHK), with spectroscopic redshifts in the range 0.05 <= z <= 0.095, we test the reliability of some commonly used stellar population models and extinction laws for computing stellar masses. Spectroscopic ages (t), metallicities (Z), and extinctions (AV ) are also computed from fits to SDSS spectra using various population models. These external constraints are used in additional tests to estimate the systematic errors in the stellar masses derived from SED fitting, where t, Z, and AV are typically left as free parameters. We find reasonable agreement in mass estimates among stellar population models, with variation of the initial mass function and extinction law yielding systematic biases on the mass of nearly a factor of two, in agreement with other studies. Removing the near-infrared bands changes the statistical bias in mass by only ~0.06 dex, adding uncertainties of ~0.1 dex at the 95% CL. In contrast, we find that removing an ultraviolet band is more critical, introducing 2σ uncertainties of ~0.15 dex. Finally, we find that the stellar masses are less affected by the absence of metallicity and/or dust extinction knowledge. However, there is a definite systematic offset in the mass estimate when the stellar population age is unknown, up to a factor of 2.5 for very old (12 Gyr) stellar populations. We present the stellar masses for our sample, corrected for the measured systematic biases due to photometrically determined ages, finding that age errors produce lower stellar masses by ~0.15 dex, with errors of ~0.02 dex at the 95% CL for the median stellar age subsample.

  1. A Comprehensive Analysis of Uncertainties Affecting the Stellar Mass-Halo Mass Relation for 0

    SciTech Connect

    Behroozi, Peter S.; Conroy, Charlie; Wechsler, Risa H.

    2010-06-07

    We conduct a comprehensive analysis of the relationship between central galaxies and their host dark matter halos, as characterized by the stellar mass - halo mass (SM-HM) relation, with rigorous consideration of uncertainties. Our analysis focuses on results from the abundance matching technique, which assumes that every dark matter halo or subhalo above a specific mass threshold hosts one galaxy. We provide a robust estimate of the SM-HM relation for 0 < z < 1 and discuss the quantitative effects of uncertainties in observed galaxy stellar mass functions (GSMFs) (including stellar mass estimates and counting uncertainties), halo mass functions (including cosmology and uncertainties from substructure), and the abundance matching technique used to link galaxies to halos (including scatter in this connection). Our analysis results in a robust estimate of the SM-HM relation and its evolution from z=0 to z=4. The shape and evolution are well constrained for z < 1. The largest uncertainties at these redshifts are due to stellar mass estimates (0.25 dex uncertainty in normalization); however, failure to account for scatter in stellar masses at fixed halo mass can lead to errors of similar magnitude in the SM-HM relation for central galaxies in massive halos. We also investigate the SM-HM relation to z = 4, although the shape of the relation at higher redshifts remains fairly unconstrained when uncertainties are taken into account. We find that the integrated star formation at a given halo mass peaks at 10-20% of available baryons for all redshifts from 0 to 4. This peak occurs at a halo mass of 7 x 10{sup 11} M{sub {circle_dot}} at z = 0 and this mass increases by a factor of 5 to z = 4. At lower and higher masses, star formation is substantially less efficient, with stellar mass scaling as M{sub *} {approx} M{sub h}{sup 2.3} at low masses and M{sub *} {approx} M{sub h}{sup 0.29} at high masses. The typical stellar mass for halos with mass less than 10{sup 12} M

  2. VizieR Online Data Catalog: SDSS bulge, disk and total stellar mass estimates (Mendel+, 2014)

    NASA Astrophysics Data System (ADS)

    Mendel, J. T.; Simard, L.; Palmer, M.; Ellison, S. L.; Patton, D. R.

    2014-01-01

    We present a catalog of bulge, disk, and total stellar mass estimates for ~660000 galaxies in the Legacy area of the Sloan Digital Sky Survey Data (SDSS) Release 7. These masses are based on a homogeneous catalog of g- and r-band photometry described by Simard et al. (2011, Cat. J/ApJS/196/11), which we extend here with bulge+disk and Sersic profile photometric decompositions in the SDSS u, i, and z bands. We discuss the methodology used to derive stellar masses from these data via fitting to broadband spectral energy distributions (SEDs), and show that the typical statistical uncertainty on total, bulge, and disk stellar mass is ~0.15 dex. Despite relatively small formal uncertainties, we argue that SED modeling assumptions, including the choice of synthesis model, extinction law, initial mass function, and details of stellar evolution likely contribute an additional 60% systematic uncertainty in any mass estimate based on broadband SED fitting. We discuss several approaches for identifying genuine bulge+disk systems based on both their statistical likelihood and an analysis of their one-dimensional surface-brightness profiles, and include these metrics in the catalogs. Estimates of the total, bulge and disk stellar masses for both normal and dust-free models and their uncertainties are made publicly available here. (4 data files).

  3. RETIRED A STARS: THE EFFECT OF STELLAR EVOLUTION ON THE MASS ESTIMATES OF SUBGIANTS

    SciTech Connect

    Johnson, John Asher; Morton, Timothy D.; Wright, Jason T.

    2013-01-20

    Doppler surveys have shown that the occurrence rate of Jupiter-mass planets appears to increase as a function of stellar mass. However, this result depends on the ability to accurately measure the masses of evolved stars. Recently, Lloyd called into question the masses of subgiant stars targeted by Doppler surveys. Lloyd argues that very few observable subgiants have masses greater than 1.5 M {sub Sun }, and that most of them have masses in the range 1.0-1.2 M {sub Sun }. To investigate this claim, we use Galactic stellar population models to generate an all-sky distribution of stars. We incorporate the effects that make massive subgiants less numerous, such as the initial mass function and differences in stellar evolution timescales. We find that these effects lead to negligibly small systematic errors in stellar mass estimates, in contrast to the Almost-Equal-To 50% errors predicted by Lloyd. Additionally, our simulated target sample does in fact include a significant fraction of stars with masses greater than 1.5 M {sub Sun }, primarily because the inclusion of an apparent magnitude limit results in a Malmquist-like bias toward more massive stars, in contrast to the volume-limited simulations of Lloyd. The magnitude limit shifts the mean of our simulated distribution toward higher masses and results in a relatively smaller number of evolved stars with masses in the range 1.0-1.2 M {sub Sun }. We conclude that, within the context of our present-day understanding of stellar structure and evolution, many of the subgiants observed in Doppler surveys are indeed as massive as main-sequence A stars.

  4. Stellar mass and population diagnostics of cluster galaxies

    NASA Astrophysics Data System (ADS)

    Roediger, Joel C.

    2013-12-01

    We conduct a broad investigation about stellar mass and population diagnostics in order to formulate novel constraints related to the formation and evolution of galaxies from a nearby cluster environment. Our work is powered by the use of stellar population models which transform galaxy colours and/or absorption line strengths into estimates of its stellar properties. As input to such models, we assemble an extensive compilation of age and chemical abundance information for Galactic globular clusters. This compilation allows a confident expansion of these models into new regions of parameter space that promise to refine our knowledge of galactic chemical evolution. We then draw upon a state-of-the-art spectroscopic and photometric survey of the Virgo galaxy cluster in order to constrain spatial variations of the stellar ages, metallicities, and masses within its member galaxies, and their dynamical masses. We interpret these data in the context of the histories of star formation, chemical enrichment, and stellar mass assembly to formulate a broad picture of the build-up of this cluster's content over time. In it, the giant early-type galaxies formed through highly dissipational processes at early times that built up most of their stellar mass and drew significant amounts of dark matter within their optical radii. Conversely, dwarf early-types experienced environmental processes that quenched their star formation during either the early stages of cluster assembly or upon infall at later times. Somewhat perplexing is our finding that the internal dynamics of these galaxies are largely explained by their stellar masses. Lastly, Virgo spirals also suffer from their dense environment, through ram pressure stripping and/or tidal harrassment. In addition to quenching, these effects leave an imprint on their internal dynamical evolution too. Late-type spirals exhibit evidence of having ejected significant amounts of baryons from their inner regions, likely via energetic

  5. The universal stellar mass-stellar metallicity relation for dwarf galaxies

    SciTech Connect

    Kirby, Evan N.; Bullock, James S.; Cohen, Judith G.; Guhathakurta, Puragra; Gallazzi, Anna

    2013-12-20

    We present spectroscopic metallicities of individual stars in seven gas-rich dwarf irregular galaxies (dIrrs), and we show that dIrrs obey the same mass-metallicity relation as the dwarf spheroidal (dSph) satellites of both the Milky Way and M31: Z{sub ∗}∝M{sub ∗}{sup 0.30±0.02}. The uniformity of the relation is in contradiction to previous estimates of metallicity based on photometry. This relationship is roughly continuous with the stellar mass-stellar metallicity relation for galaxies as massive as M {sub *} = 10{sup 12} M {sub ☉}. Although the average metallicities of dwarf galaxies depend only on stellar mass, the shapes of their metallicity distributions depend on galaxy type. The metallicity distributions of dIrrs resemble simple, leaky box chemical evolution models, whereas dSphs require an additional parameter, such as gas accretion, to explain the shapes of their metallicity distributions. Furthermore, the metallicity distributions of the more luminous dSphs have sharp, metal-rich cut-offs that are consistent with the sudden truncation of star formation due to ram pressure stripping.

  6. A New Method for Deriving the Stellar Birth Function of Resolved Stellar Populations.

    NASA Astrophysics Data System (ADS)

    Gennaro, M.; Tchernyshyov, K.; Brown, T. M.; Gordon, K. D.

    2015-07-01

    We present a new method for deriving the stellar birth function (SBF) of resolved stellar populations. The SBF (stars born per unit mass, time, and metallicity) is the combination of the initial mass function (IMF), the star formation history (SFH), and the metallicity distribution function (MDF). The framework of our analysis is that of Poisson Point Processes (PPPs), a class of statistical models suitable when dealing with points (stars) in a multidimensional space (the measurement space of multiple photometric bands). The theory of PPPs easily accommodates the modeling of measurement errors as well as that of incompleteness. Our method avoids binning stars in the color–magnitude diagram and uses the whole likelihood function for each data point; combining the individual likelihoods allows the computation of the posterior probability for the population's SBF. Within the proposed framework it is possible to include nuisance parameters, such as distance and extinction, by specifying their prior distributions and marginalizing over them. The aim of this paper is to assess the validity of this new approach under a range of assumptions, using only simulated data. Forthcoming work will show applications to real data. Although it has a broad scope of possible applications, we have developed this method to study multi-band Hubble Space Telescope observations of the Milky Way Bulge. Therefore we will focus on simulations with characteristics similar to those of the Galactic Bulge. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at STScI, which is operated by AURA, Inc., under NASA contract NAS 5-26555.

  7. Stellar Mass Radial Profiles of Pan-STARRS MDS Galaxies

    NASA Astrophysics Data System (ADS)

    Zheng, Zheng; Thilker, D. A.; Heckman, T. M.

    2013-01-01

    Six-band (ugrizy) surface brightness radial profiles are derived for a sample of 48 late-type face-on non-interacting nearby galaxies using the Pan-STARRS Medium Deep Survey stack imaging (grizy) and the CFHT deep u-band imaging data. The surface brightnesses are measured down to ~ 29-30 ABmag/arcsec^2. The SB radial profiles are then fed into the advanced SED fitting software MAGPHYS (da Cunha et al. 2008) to derive radial profiles of stellar mass surface density as well as other parameters, such as metallicity and star formation history. The output stellar mass surface density profiles can be classified into three types (single exponential, down-bending, and up-bending), which is consistent with the results of Polen & Trujillo (2006). But the up-bending profiles are more common than indicated in PT06.

  8. The Close Stellar Companions to Intermediate-mass Black Holes

    NASA Astrophysics Data System (ADS)

    MacLeod, Morgan; Trenti, Michele; Ramirez-Ruiz, Enrico

    2016-03-01

    When embedded in dense cluster cores, intermediate-mass black holes (IMBHs) acquire close stellar or stellar-remnant companions. These companions are not only gravitationally bound, but also tend to hierarchically isolate from other cluster stars through series of multibody encounters. In this paper we study the demographics of IMBH companions in compact star clusters through direct N-body simulations. We study clusters initially composed of 105 or 2 × 105 stars with IMBHs of 75 and 150 solar masses, and we follow their evolution for 6-10 Gyr. A tight, innermost binary pair of IMBH and stellar object rapidly forms. The IMBH has a companion with an orbital semimajor axis at least three times tighter than the second-most-bound object over 90% of the time. These companionships have typical periods on the order of years and are subject to cycles of exchange and destruction. The most frequently observed, long-lived pairings persist for ˜107 years. The demographics of IMBH companions in clusters are diverse: they include both main-sequence, giant stars and stellar remnants. Companion objects may reveal the presence of an IMBH in a cluster in one of several ways. The most-bound companion stars routinely suffer grazing tidal interactions with the IMBH, offering a dynamical mechanism to produce repeated flaring episodes like those seen in the IMBH candidate HLX-1. The stellar winds of companion stars provide a minimum quiescent accretion rate for IMBHs, with implications for radio searches for IMBH accretion in globular clusters. Finally, gravitational wave inspirals of compact objects occur with promising frequency.

  9. Probing the Mass Distribution and Stellar Populations of M82

    NASA Astrophysics Data System (ADS)

    Greco, Johnny; Martini, P.; Thompson, T. A.

    2012-01-01

    M82 is often considered the archetypical starburst galaxy because of its spectacular starbust-driven superwind. Its close proximity of 3.6 Mpc and nearly edge-on geometry make it a unique laboratory for studying the physics of rapid star formation and violent galactic winds. In addition, there is evidence that it has been tidally-truncated by its interaction with M81 and therefore has essentially no dark matter halo. The mass distribution of this galaxy is needed to estimate the power of its superwind, as well as determine if a dark matter halo is still present. Numerous studies have used stellar and gas dynamics to estimate the mass distribution, yet the substantial dust attenuation has been a significant challenge. We have measured the stellar kinematics in the near-infrared K-band with the LUCI-1 spectrograph at the Large Binocular Telescope. We used the '2CO stellar absorption bandhead at 2.29µm to measure the stellar rotation curve out to ˜4kpc, and our results confirm that the dark matter halo is still present. This is in stark contrast with the nearly Keplerian gas dynamics measured with HI and CO emission from the interstellar medium. We estimate M82's dynamical mass to be ˜1010 M⊙. We have also measured the equivalent width of the 12CO bandhead to provide new constraints on the spatial extent of the red supergiant population. The variation in the CO equivalent width with radius clearly shows that supergiants dominate the light within 0.5kpc radius. The superwind is likely launched from this region, where we estimate the enclosed mass is 2×109 M⊙.

  10. The dependence of convective core overshooting on stellar mass

    NASA Astrophysics Data System (ADS)

    Claret, A.; Torres, G.

    2016-07-01

    Context. Convective core overshooting extends the main-sequence lifetime of a star. Evolutionary tracks computed with overshooting are very different from those that use the classical Schwarzschild criterion, which leads to rather different predictions for the stellar properties. Attempts over the last two decades to calibrate the degree of overshooting with stellar mass using detached double-lined eclipsing binaries have been largely inconclusive, mainly because of a lack of suitable observational data. Aims: We revisit the question of a possible mass dependence of overshooting with a more complete sample of binaries, and examine any additional relation there might be with evolutionary state or metal abundance Z. Methods: We used a carefully selected sample of 33 double-lined eclipsing binaries strategically positioned in the H-R diagram with accurate absolute dimensions and component masses ranging from 1.2 to 4.4 M⊙. We compared their measured properties with stellar evolution calculations to infer semi-empirical values of the overshooting parameter αov for each star. Our models use the common prescription for the overshoot distance dov = αovHp, where Hp is the pressure scale height at the edge of the convective core as given by the Schwarzschild criterion, and αov is a free parameter. Results: We find a relation between αov and mass, which is defined much more clearly than in previous work, and indicates a significant rise up to about 2 M⊙ followed by little or no change beyond this mass. No appreciable dependence is seen with evolutionary state at a given mass, or with metallicity at a given mass although the stars in our sample span a range of a factor of ten in [Fe/H], from -1.01 to + 0.01.

  11. Stellar winds in supergiant High Mass X-ray Binaries

    NASA Astrophysics Data System (ADS)

    Manousakis, Antonios; Walter, Roland

    2013-06-01

    Supergiant High Mass X-ray Binary systems (sgHMXBs) consist of a massive, late type, star and a neutron star. The massive stars exhibit strong, radiatively driven, stellar winds. Wind accretion onto compact object triggers X-ray emission, which alters the stellar wind significantly. Hydrodynamic simulation has been used to study the neutron star - stellar wind interaction it two sgHMXBs: i) A heavily obscured sgHMXB (IGR J17252-3616) discovered by INTEGRAL. To account for observable quantities (i.e., absorbing column density) we have to assume a very slow wind terminal velocity of about 500 km/s and a rather massive neutron star. If confirmed in other obscured systems, this could provide a completely new stellar wind diagnostics. ii) A classical sgHMXB (Vela X-1) has been studied in depth to understand the origin of the off-states observed in this system. Among many models used to account for this observed behavior (clumpy wind, gating mechanism) we propose that self-organized criticality of the accretion stream is the likely reason for the observed behavior.

  12. Stellar density profile and mass of the Milky Way bulge from VVV data

    NASA Astrophysics Data System (ADS)

    Valenti, E.; Zoccali, M.; Gonzalez, O. A.; Minniti, D.; Alonso-García, J.; Marchetti, E.; Hempel, M.; Renzini, A.; Rejkuba, M.

    2016-03-01

    We present the first stellar density profile of the Milky Way bulge that reaches latitude b = 0°. The profile was derived by counting red clump stars within the colour-magnitude diagram that was constructed using the new PSF-fitting photometry from VISTA Variables in the Vía Láctea (VVV) survey data. The new stellar density map covers the area between | l | ≤ 10° and | b | ≤ 4.5° with unprecedented accuracy, allowing the stellar kinematics from the Giraffe Inner Bulge Spectroscopic Survey (GIBS) to be linked to the stellar mass density distribution. In particular, the location of the central velocity-dispersion peak from GIBS matches a high over-density in the VVV star count map. By scaling the total luminosity function (LF) obtained from all VVV fields to the LF from Zoccali et al.(2003), we obtain the first fully empirical estimate of the mass in stars and in remnants of the Galactic bulge. Within (| b | < 9.5°, | l | < 10°), the Milky Way bulge stellar mass is 2.0 ± 0.3 × 1010M⊙. Based on observations taken within the ESO/VISTA Public Survey VVV under the programme ID 179.B-2002 (PI: Minniti).

  13. Not enough stellar mass Machos in the Galactic halo

    NASA Astrophysics Data System (ADS)

    Lasserre, T.; Afonso, C.; Albert, J. N.; Andersen, J.; Ansari, R.; Aubourg, É.; Bareyre, P.; Bauer, F.; Beaulieu, J. P.; Blanc, G.; Bouquet, A.; Char, S.; Charlot, X.; Couchot, F.; Coutures, C.; Derue, F.; Ferlet, R.; Glicenstein, J. F.; Goldman, B.; Gould, A.; Graff, D.; Gros, M.; Haissinski, J.; Hamilton, J. C.; Hardin, D.; de Kat, J.; Kim, A.; Lesquoy, É.; Loup, C.; Magneville, C.; Mansoux, B.; Marquette, J. B.; Maurice, É.; Milsztajn, A.; Moniez, M.; Palanque-Delabrouille, N.; Perdereau, O.; Prévot, L.; Regnault, N.; Rich, J.; Spiro, M.; Vidal-Madjar, A.; Vigroux, L.; Zylberajch, S.; EROS Collaboration

    2000-03-01

    We combine new results from the search for microlensing towards the Large Magellanic Cloud (lmc) by eros2 (Expérience de Recherche d'Objets Sombres) with limits previously reported by eros1 and eros2 towards both Magellanic Clouds. The derived upper limit on the abundance of stellar mass macho s rules out such objects as an important component of the Galactic halo if their mass is smaller than 1 Msun. Based on observations made at the European Southern Observatory, La Silla, Chile.

  14. RESEARCH PAPER: Old stellar population synthesis: new age and mass estimates for Mayall II = G1

    NASA Astrophysics Data System (ADS)

    Ma, Jun; de Grijs, Richard; Fan, Zhou; Rey, Soo-Chang; Wu, Zhen-Yu; Zhou, Xu; Wu, Jiang-Hua; Jiang, Zhao-Ji; Chen, Jian-Sheng; Lee, Kyungsook; Sohn, Sangmo Tony

    2009-06-01

    Mayall II = G1 is one of the most luminous globular clusters (GCs) in M31. Here, we determine its age and mass by comparing multicolor photometry with theoretical stellar population synthesis models. Based on far- and near-ultraviolet GALEX photometry, broad-band UBVRI, and infrared JHKS 2MASS data, we construct the most extensive spectral energy distribution of G1 to date, spanning the wavelength range from 1538 to 20 000 Å. A quantitative comparison with a variety of simple stellar population (SSP) models yields a mean age which is consistent with G1 being among the oldest building blocks of M31 and having formed within ~1.7 Gyr after the Big Bang. Irrespective of the SSP model or stellar initial mass function adopted, the resulting mass estimates (of order 107 Modot) indicate that G1 is one of the most massive GCs in the Local Group. However, we speculate that the cluster's exceptionally high mass suggests that it may not be a genuine GC. Our results also suggest that G1 may contain, on average, (1.65±0.63) × 102 Lodot far-ultraviolet-bright, hot, extreme horizontal-branch stars, depending on the adopted SSP model. In addition, we demonstrate that extensive multi-passband photometry coupled with SSP analysis enables one to obtain age estimates for old SSPs that have similar accuracies as those from integrated spectroscopy or resolved stellar photometry, provided that some of the free parameters can be constrained independently.

  15. Stellar evolution at high mass with convective core overshooting

    NASA Technical Reports Server (NTRS)

    Stothers, R. B.; Chin, C.-W.

    1985-01-01

    The transition from stellar evolution models with no convective core overshooting (CCO) at all to models in which homogeneous mixing due to CCO reaches far beyond the formal convective core boundary is systematically explored. Overshooting is parameterized in terms of the ratio d/H(p), where d is the distance of convective overshoot beyond the formal convective core boundary and H(p) is the local pressure scale height. It is concluded that CCO in very massive main sequence stars produces a great expansion of the stellar envelope if d/H(p) is large but not excessively large. CCO does not entirely suppress convective instability above the overshoot zone in the envelopes of main sequence stars more massive than about 15 solar masses. A general comparison of theoretically constructed isochrones for young stars with observed main sequence turnups indicates that the observed turnups are longer, brighter, and cooler at the tip than those expected on thfe basis of standard evolutionary theory.

  16. REPRODUCING THE STELLAR MASS/HALO MASS RELATION IN SIMULATED {Lambda}CDM GALAXIES: THEORY VERSUS OBSERVATIONAL ESTIMATES

    SciTech Connect

    Munshi, Ferah; Governato, F.; Loebman, S.; Quinn, T.; Brooks, A. M.; Christensen, C.; Shen, S.; Moster, B.; Wadsley, J.

    2013-03-20

    We examine the present-day total stellar-to-halo mass (SHM) ratio as a function of halo mass for a new sample of simulated field galaxies using fully cosmological, {Lambda}CDM, high-resolution SPH + N-body simulations. These simulations include an explicit treatment of metal line cooling, dust and self-shielding, H{sub 2}-based star formation (SF), and supernova-driven gas outflows. The 18 simulated halos have masses ranging from a few times 10{sup 8} to nearly 10{sup 12} M{sub Sun }. At z = 0, our simulated galaxies have a baryon content and morphology typical of field galaxies. Over a stellar mass range of 2.2 Multiplication-Sign 10{sup 3}-4.5 Multiplication-Sign 10{sup 10} M{sub Sun} we find extremely good agreement between the SHM ratio in simulations and the present-day predictions from the statistical abundance matching technique presented in Moster et al. This improvement over past simulations is due to a number systematic factors, each decreasing the SHM ratios: (1) gas outflows that reduce the overall SF efficiency but allow for the formation of a cold gas component; (2) estimating the stellar masses of simulated galaxies using artificial observations and photometric techniques similar to those used in observations; and (3) accounting for a systematic, up to 30% overestimate in total halo masses in DM-only simulations, due to the neglect of baryon loss over cosmic times. Our analysis suggests that stellar mass estimates based on photometric magnitudes can underestimate the contribution of old stellar populations to the total stellar mass, leading to stellar mass errors of up to 50% for individual galaxies. These results highlight that implementing a realistic high density threshold for SF considerably reduces the overall SF efficiency due to more effective feedback. However, we show that in order to reduce the perceived tension between the SF efficiency in galaxy formation models and in real galaxies, it is very important to use proper techniques to

  17. THE OBSERVED RELATION BETWEEN STELLAR MASS, DUST EXTINCTION, AND STAR FORMATION RATE IN LOCAL GALAXIES

    SciTech Connect

    Zahid, H. J.; Kewley, L. J.; Kudritzki, R. P.; Yates, R. M.

    2013-02-15

    In this study, we investigate the relation between stellar mass, dust extinction, and star formation rate (SFR) using {approx}150,000 star-forming galaxies from SDSS DR7. We show that the relation between dust extinction and SFR changes with stellar mass. For galaxies at the same stellar mass, dust extinction is anti-correlated with the SFR at stellar masses <10{sup 10} M {sub Sun }. There is a sharp transition in the relation at a stellar mass of 10{sup 10} M {sub Sun }. At larger stellar masses, dust extinction is positively correlated with the SFR for galaxies at the same stellar mass. The observed relation between stellar mass, dust extinction, and SFR presented in this study helps to confirm similar trends observed in the relation between stellar mass, metallicity, and SFR. The relation reported in this study provides important new constraints on the physical processes governing the chemical evolution of galaxies. The correlation between SFR and dust extinction for galaxies with stellar masses >10{sup 10} M {sub Sun} is shown to extend to the population of quiescent galaxies suggesting that the physical processes responsible for the observed relation between stellar mass, dust extinction, and SFR may be related to the processes leading to the shutdown of star formation in galaxies.

  18. THE MASS MIXING LENGTH IN CONVECTIVE STELLAR ENVELOPES

    SciTech Connect

    Trampedach, Regner; Stein, Robert F. E-mail: stein@pa.msu.edu

    2011-04-20

    The scale length over which convection mixes mass in a star can be calculated as the inverse of the vertical derivative of the unidirectional (up or down) mass flux. This is related to the mixing length in the mixing length theory of stellar convection. We give the ratio of mass mixing length to pressure scale height for a grid of three-dimensional surface convection simulations, covering from 4300 K to 6900 K on the main sequence, and up to giants at log g = 2.2, all for solar composition. These simulations also confirm what is already known from solar simulations that convection does not proceed by discrete convective elements, but rather as a continuous, slow, smooth, warm upflow and turbulent, entropy deficient, fast down drafts. This convective topology also results in mixing on a scale comparable to the classic mixing length formulation, and is simply a consequence of mass conservation on flows in a stratified atmosphere.

  19. Galaxy And Mass Assembly (GAMA): stellar mass growth of spiral galaxies in the cosmic web

    NASA Astrophysics Data System (ADS)

    Alpaslan, Mehmet; Grootes, Meiert; Marcum, Pamela M.; Popescu, Cristina; Tuffs, Richard; Bland-Hawthorn, Joss; Brough, Sarah; Brown, Michael J. I.; Davies, Luke J. M.; Driver, Simon P.; Holwerda, Benne W.; Kelvin, Lee S.; Lara-López, Maritza A.; López-Sánchez, Ángel R.; Loveday, Jon; Moffett, Amanda; Taylor, Edward N.; Owers, Matt; Robotham, Aaron S. G.

    2016-04-01

    We look for correlated changes in stellar mass and star formation rate (SFR) along filaments in the cosmic web by examining the stellar masses and UV-derived SFRs of 1799 ungrouped and unpaired spiral galaxies that reside in filaments. We devise multiple distance metrics to characterize the complex geometry of filaments, and find that galaxies closer to the cylindrical centre of a filament have higher stellar masses than their counterparts near the periphery of filaments, on the edges of voids. In addition, these peripheral spiral galaxies have higher SFRs at a given mass. Complementing our sample of filament spiral galaxies with spiral galaxies in tendrils and voids, we find that the average SFR of these objects in different large-scale environments are similar to each other with the primary discriminant in SFR being stellar mass, in line with previous works. However, the distributions of SFRs are found to vary with large-scale environment. Our results thus suggest a model in which in addition to stellar mass as the primary discriminant, the large-scale environment is imprinted in the SFR as a second-order effect. Furthermore, our detailed results for filament galaxies suggest a model in which gas accretion from voids on to filaments is primarily in an orthogonal direction. Overall, we find our results to be in line with theoretical expectations of the thermodynamic properties of the intergalactic medium in different large-scale environments.

  20. Modeling the Near-Infrared Luminosity Function of Young Stellar Clusters

    NASA Astrophysics Data System (ADS)

    Muench, A. A.; Lada, E. A.; Lada, C. J.

    1999-12-01

    We present the results of numerical experiments designed to evaluate the usefulness of near-infrared luminosity functions for constraining the Initial Mass Function (IMF) of young (0-10 Myr) stellar populations. Using Monte Carlo techniques, we create a suite of model luminosity functions systematically varying each of these basic underlying relations: the underlying IMF, cluster star forming history, and theoretical pre-main sequence mass-to-luminosity relations. Our modeling techniques also allow us to explore the effects of unresolved binaries, infrared excess emission from circumstellar disks, and interstellar extinction on the cluster luminosity function. From this numerical modeling, we find that the luminosity function of a young stellar population is considerably more sensitive to variations in the underlying initial mass function than to either variations in the star forming history or assumed pre-main-sequence (PMS) mass-to-luminosity relation. To illustrate the potential effectiveness of using the KLF of a young cluster to constrain its IMF, we model the observed K band luminosity function of the nearby Trapezium cluster. Our derived mass function for the Trapezium spans two orders of magnitude in stellar mass (5>Msun>0.02) and has a peak near the hydrogen burning limit. Below the hydrogen burning limit, the mass function steadily decreases with decreasing mass throughout the brown dwarf regime. We also test the hypothesis of a space varying IMF by performing model fits to the K band luminosity functions of several other young clusters.

  1. RETENTION OF STELLAR-MASS BLACK HOLES IN GLOBULAR CLUSTERS

    SciTech Connect

    Morscher, Meagan; Umbreit, Stefan; Farr, Will M.; Rasio, Frederic A. E-mail: s-umbreit@northwestern.edu E-mail: rasio@northwestern.edu

    2013-01-20

    Globular clusters should be born with significant numbers of stellar-mass black holes (BHs). It has been thought for two decades that very few of these BHs could be retained through the cluster lifetime. With masses {approx}10 M{sub Sun }, BHs are {approx}20 times more massive than an average cluster star. They segregate into the cluster core, where they may eventually decouple from the remainder of the cluster. The small-N core then evaporates on a short timescale. This is the so-called Spitzer instability. Here we present the results of a full dynamical simulation of a globular cluster containing many stellar-mass BHs with a realistic mass spectrum. Our Monte Carlo simulation code includes detailed treatments of all relevant stellar evolution and dynamical processes. Our main finding is that old globular clusters could still contain many BHs at present. In our simulation, we find no evidence for the Spitzer instability. Instead, most of the BHs remain well mixed with the rest of the cluster, with only the innermost few tens of BHs segregating significantly. Over the 12 Gyr evolution, fewer than half of the BHs are dynamically ejected through strong binary interactions in the cluster core. The presence of BHs leads to long-term heating of the cluster, ultimately producing a core radius on the high end of the distribution for Milky Way globular clusters (and those of other galaxies). A crude extrapolation from our model suggests that the BH-BH merger rate from globular clusters could be comparable to the rate in the field.

  2. Multifrequency studies of galaxies and groups. I. Environmental effect on galaxy stellar mass and morphology

    NASA Astrophysics Data System (ADS)

    Poudel, A.; Heinämäki, P.; Nurmi, P.; Teerikorpi, P.; Tempel, E.; Lietzen, H.; Einasto, M.

    2016-05-01

    Context. To understand the role of the environment in galaxy formation, evolution, and present-day properties, it is essential to study the multifrequency behavior of different galaxy populations under various environmental conditions. Aims: We study the stellar mass functions of different galaxy populations in groups as a function of their large-scale environments using multifrequency observations. Methods: We cross-matched the SDSS DR10 group catalog with GAMA Data Release 2 and Wide-field Survey Explorer (WISE) data to construct a catalog of 1651 groups and 11 436 galaxies containing photometric information in 15 different wavebands ranging from ultraviolet (0.152 μm) to mid-infrared (22 μm). We performed the spectral energy distribution (SED) fitting of galaxies using the MAGPHYS code and estimate the rest-frame luminosities and stellar masses. We used the 1 /Vmax method to estimate the galaxy stellar mass and luminosity functions, and the luminosity density field of galaxies to define the large-scale environment of galaxies. Results: The stellar mass functions of both central and satellite galaxies in groups are different in low- and high-density, large-scale environments. Satellite galaxies in high-density environments have a steeper low-mass end slope compared to low-density environments, independent of the galaxy morphology. Central galaxies in low-density environments have a steeper low-mass end slope, but the difference disappears for fixed galaxy morphology. The characteristic stellar mass of satellite galaxies is higher in high-density environments and the difference exists only for galaxies with elliptical morphologies. Conclusions: Galaxy formation in groups is more efficient in high-density, large-scale environments. Groups in high-density environments have higher abundances of satellite galaxies, irrespective of the satellite galaxy morphology. The elliptical satellite galaxies are generally more massive in high-density environments. The stellar

  3. Very Low Mass Stellar and Substellar Companions to Solar-like Stars from MARVELS. IV. A Candidate Brown Dwarf or Low-mass Stellar Companion to HIP 67526

    NASA Astrophysics Data System (ADS)

    Jiang, Peng; Ge, Jian; Cargile, Phillip; Crepp, Justin R.; De Lee, Nathan; Porto de Mello, Gustavo F.; Esposito, Massimiliano; Ferreira, Letícia D.; Femenia, Bruno; Fleming, Scott W.; Gaudi, B. Scott; Ghezzi, Luan; González Hernández, Jonay I.; Hebb, Leslie; Lee, Brian L.; Ma, Bo; Stassun, Keivan G.; Wang, Ji; Wisniewski, John P.; Agol, Eric; Bizyaev, Dmitry; Brewington, Howard; Chang, Liang; Nicolaci da Costa, Luiz; Eastman, Jason D.; Ebelke, Garrett; Gary, Bruce; Kane, Stephen R.; Li, Rui; Liu, Jian; Mahadevan, Suvrath; Maia, Marcio A. G.; Malanushenko, Viktor; Malanushenko, Elena; Muna, Demitri; Nguyen, Duy Cuong; Ogando, Ricardo L. C.; Oravetz, Audrey; Oravetz, Daniel; Pan, Kaike; Pepper, Joshua; Paegert, Martin; Allende Prieto, Carlos; Rebolo, Rafael; Santiago, Basilio X.; Schneider, Donald P.; Shelden Bradley, Alaina C.; Sivarani, Thirupathi; Snedden, Stephanie; van Eyken, J. C.; Wan, Xiaoke; Weaver, Benjamin A.; Zhao, Bo

    2013-09-01

    We report the discovery of a candidate brown dwarf (BD) or a very low mass stellar companion (MARVELS-5b) to the star HIP 67526 from the Multi-object Apache point observatory Radial Velocity Exoplanet Large-area Survey (MARVELS). The radial velocity curve for this object contains 31 epochs spread over 2.5 yr. Our Keplerian fit, using a Markov Chain Monte Carlo approach, reveals that the companion has an orbital period of 90.2695^{+0.0188}_{-0.0187} days, an eccentricity of 0.4375 ± 0.0040, and a semi-amplitude of 2948.14^{+16.65}_{-16.55} m s-1. Using additional high-resolution spectroscopy, we find the host star has an effective temperature T eff = 6004 ± 34 K, a surface gravity log g (cgs) =4.55 ± 0.17, and a metallicity [Fe/H] =+0.04 ± 0.06. The stellar mass and radius determined through the empirical relationship of Torres et al. yields 1.10 ± 0.09 M ⊙ and 0.92 ± 0.19 R ⊙. The minimum mass of MARVELS-5b is 65.0 ± 2.9M Jup, indicating that it is likely to be either a BD or a very low mass star, thus occupying a relatively sparsely populated region of the mass function of companions to solar-type stars. The distance to this system is 101 ± 10 pc from the astrometric measurements of Hipparcos. No stellar tertiary is detected in the high-contrast images taken by either FastCam lucky imaging or Keck adaptive optics imaging, ruling out any star with mass greater than 0.2 M ⊙ at a separation larger than 40 AU.

  4. VERY LOW MASS STELLAR AND SUBSTELLAR COMPANIONS TO SOLAR-LIKE STARS FROM MARVELS. IV. A CANDIDATE BROWN DWARF OR LOW-MASS STELLAR COMPANION TO HIP 67526

    SciTech Connect

    Jiang Peng; Ge Jian; De Lee, Nathan; Fleming, Scott W.; Lee, Brian L.; Ma Bo; Wang, Ji; Cargile, Phillip; Hebb, Leslie; Stassun, Keivan G.; Crepp, Justin R.; Porto de Mello, Gustavo F.; Ferreira, Leticia D.; Esposito, Massimiliano; Femenia, Bruno; Gonzalez Hernandez, Jonay I.; Ghezzi, Luan; Wisniewski, John P.; Agol, Eric; and others

    2013-09-15

    We report the discovery of a candidate brown dwarf (BD) or a very low mass stellar companion (MARVELS-5b) to the star HIP 67526 from the Multi-object Apache point observatory Radial Velocity Exoplanet Large-area Survey (MARVELS). The radial velocity curve for this object contains 31 epochs spread over 2.5 yr. Our Keplerian fit, using a Markov Chain Monte Carlo approach, reveals that the companion has an orbital period of 90.2695{sup +0.0188}{sub -0.0187} days, an eccentricity of 0.4375 {+-} 0.0040, and a semi-amplitude of 2948.14{sup +16.65}{sub -16.55} m s{sup -1}. Using additional high-resolution spectroscopy, we find the host star has an effective temperature T{sub eff} = 6004 {+-} 34 K, a surface gravity log g (cgs) =4.55 {+-} 0.17, and a metallicity [Fe/H] =+0.04 {+-} 0.06. The stellar mass and radius determined through the empirical relationship of Torres et al. yields 1.10 {+-} 0.09 M{sub Sun} and 0.92 {+-} 0.19 R{sub Sun }. The minimum mass of MARVELS-5b is 65.0 {+-} 2.9M{sub Jup}, indicating that it is likely to be either a BD or a very low mass star, thus occupying a relatively sparsely populated region of the mass function of companions to solar-type stars. The distance to this system is 101 {+-} 10 pc from the astrometric measurements of Hipparcos. No stellar tertiary is detected in the high-contrast images taken by either FastCam lucky imaging or Keck adaptive optics imaging, ruling out any star with mass greater than 0.2 M{sub Sun} at a separation larger than 40 AU.

  5. Stellar mass-to-light ratio gradients in galaxies: correlations with mass

    NASA Astrophysics Data System (ADS)

    Tortora, C.; Napolitano, N. R.; Romanowsky, A. J.; Jetzer, Ph.; Cardone, V. F.; Capaccioli, M.

    2011-12-01

    We analyse the stellar mass-to-light ratio (M/L) gradients in a large sample of local galaxies taken from the Sloan Digital Sky Survey, spanning a wide range of stellar masses and morphological types. As suggested by the well-known relationship between M/L values and colours, we show that M/L gradients are strongly correlated with colour gradients, which we trace to the effects of age variations. Stellar M/L gradients generally follow patterns of variation with stellar mass and galaxy type that were previously found for colour and metallicity gradients. In late-type galaxies M/L gradients are negative, steepening with increasing mass. In early-type galaxies M/L gradients are shallower, while presenting a twofold trend: they decrease with mass up to a characteristic mass of ? and increase at larger masses. We compare our findings with other analyses and discuss some implications for galaxy formation and for dark matter estimates.

  6. SPIDER. V. MEASURING SYSTEMATIC EFFECTS IN EARLY-TYPE GALAXY STELLAR MASSES FROM PHOTOMETRIC SPECTRAL ENERGY DISTRIBUTION FITTING

    SciTech Connect

    Swindle, R.; Gal, R. R.; La Barbera, F.; De Carvalho, R. R.

    2011-10-15

    We present robust statistical estimates of the accuracy of early-type galaxy stellar masses derived from spectral energy distribution (SED) fitting as functions of various empirical and theoretical assumptions. Using large samples consisting of {approx}40,000 galaxies from the Sloan Digital Sky Survey (SDSS; ugriz), of which {approx}5000 are also in the UKIRT Infrared Deep Sky Survey (YJHK), with spectroscopic redshifts in the range 0.05 {<=} z {<=} 0.095, we test the reliability of some commonly used stellar population models and extinction laws for computing stellar masses. Spectroscopic ages (t), metallicities (Z), and extinctions (A{sub V} ) are also computed from fits to SDSS spectra using various population models. These external constraints are used in additional tests to estimate the systematic errors in the stellar masses derived from SED fitting, where t, Z, and A{sub V} are typically left as free parameters. We find reasonable agreement in mass estimates among stellar population models, with variation of the initial mass function and extinction law yielding systematic biases on the mass of nearly a factor of two, in agreement with other studies. Removing the near-infrared bands changes the statistical bias in mass by only {approx}0.06 dex, adding uncertainties of {approx}0.1 dex at the 95% CL. In contrast, we find that removing an ultraviolet band is more critical, introducing 2{sigma} uncertainties of {approx}0.15 dex. Finally, we find that the stellar masses are less affected by the absence of metallicity and/or dust extinction knowledge. However, there is a definite systematic offset in the mass estimate when the stellar population age is unknown, up to a factor of 2.5 for very old (12 Gyr) stellar populations. We present the stellar masses for our sample, corrected for the measured systematic biases due to photometrically determined ages, finding that age errors produce lower stellar masses by {approx}0.15 dex, with errors of {approx}0.02 dex at the

  7. THE PANCHROMATIC HUBBLE ANDROMEDA TREASURY. III. MEASURING AGES AND MASSES OF PARTIALLY RESOLVED STELLAR CLUSTERS

    SciTech Connect

    Beerman, Lori C.; Johnson, L. Clifton; Fouesneau, Morgan; Dalcanton, Julianne J.; Weisz, Daniel R.; Williams, Ben F.; Seth, Anil C.; Bell, Eric F.; Bianchi, Luciana C.; Caldwell, Nelson; Dolphin, Andrew E.; Gouliermis, Dimitrios A.; Kalirai, Jason S.; Larsen, Soren S.; Melbourne, Jason L.; Rix, Hans-Walter; Skillman, Evan D.

    2012-12-01

    The apparent age and mass of a stellar cluster can be strongly affected by stochastic sampling of the stellar initial mass function (IMF), when inferred from the integrated color of low-mass clusters ({approx}<10{sup 4} M {sub Sun }). We use simulated star clusters to show that these effects are minimized when the brightest, rapidly evolving stars in a cluster can be resolved, and the light of the fainter, more numerous unresolved stars can be analyzed separately. When comparing the light from the less luminous cluster members to models of unresolved light, more accurate age estimates can be obtained than when analyzing the integrated light from the entire cluster under the assumption that the IMF is fully populated. We show the success of this technique first using simulated clusters, and then with a stellar cluster in M31. This method represents one way of accounting for the discrete, stochastic sampling of the stellar IMF in less massive clusters and can be leveraged in studies of clusters throughout the Local Group and other nearby galaxies.

  8. Mergers of accreting stellar-mass black holes

    NASA Astrophysics Data System (ADS)

    Tagawa, H.; Umemura, M.; Gouda, N.

    2016-11-01

    We present post-Newtonian N-body simulations on mergers of accreting stellar-mass black holes (BHs), where such general relativistic effects as the pericentre shift and gravitational wave (GW) emission are taken into consideration. The attention is concentrated on the effects of the dynamical friction and the Hoyle-Lyttleton mass accretion by ambient gas. We consider a system composed of 10 BHs with initial mass of 30 M⊙. As a result, we show that mergers of accreting stellar-mass BHs are classified into four types: a gas drag-driven, an interplay-driven, a three-body-driven, or an accretion-driven merger. We find that BH mergers proceed before significant mass accretion, even if the accretion rate is ˜10 Eddington accretion rate, and then all BHs can merge into one heavy BH. Using the simulation results for a wide range of parameters, we derive a critical accretion rate (dot{m}_c), below which the BH growth is promoted faster by mergers. Also, it is found that the effect of the recoil by the GW emission can reduce dot{m}_c especially in gas number density higher than 108 cm-3, and enhance the escape probability of merged BHs. Very recently, a gravitational wave event, GW150914, as a result of the merger of a ˜30 M⊙ BH binary has been detected. Based on the present simulations, the BH merger in GW150914 is likely to be driven by three-body encounters accompanied by a few M⊙ of gas accretion, in high-density environments like dense interstellar clouds or galactic nuclei.

  9. MEASUREMENT OF THE MASS AND STELLAR POPULATION DISTRIBUTION IN M82 WITH THE LBT

    SciTech Connect

    Greco, Johnny P.; Martini, Paul; Thompson, Todd A.

    2012-09-20

    We present a K-band spectroscopic study of the stellar and gas kinematics, mass distribution, and stellar populations of the archetypical starburst galaxy M82. Our results are based on a single spectrum at a position angle of 67.{sup 0}5 through the K-band nucleus. We used the {sup 12}CO stellar absorption band head at 2.29 {mu}m (CO{sub 2.29}) to measure the rotation curve out to nearly 4 kpc radius on both the eastern and western sides of the galaxy. Our data show that the rotation curve is flat from 1 to 4 kpc. This stands in sharp contrast to some previous studies, which have interpreted H I and CO emission-line position-velocity diagrams as evidence for a declining rotation curve. The kinematics of the Br{gamma}, H{sub 2}, and He I emission lines are consistent with, although characterized by slightly higher velocities than, the stellar kinematics. We derived M82's mass distribution from our stellar kinematic measurements and estimate that its total dynamical mass is {approx}10{sup 10} M{sub Sun }. We measured the equivalent width of CO{sub 2.29} (W{sub 2.29}) as a function of distance from the center of the galaxy to investigate the spatial extent of the red supergiant (RSG) population. The variation in W{sub 2.29} with radius clearly shows that RSGs dominate the light inside 500 pc radius. M82's superwind is likely launched from this region, where we estimate that the enclosed mass is {approx}<2 Multiplication-Sign 10{sup 9} M{sub Sun }.

  10. Quantitative constraints on starburst cycles in galaxies with stellar masses in the range 108-1010 M⊙

    NASA Astrophysics Data System (ADS)

    Kauffmann, Guinevere

    2014-07-01

    We have used 4000 Å break and HδA indices in combination with SFR/M* derived from emission line flux measurements to constrain the recent star formation histories of galaxies with stellar masses in the range 108-1010 M⊙. The fraction of the total SFR density in galaxies with ongoing bursts is a strong function of stellar mass, declining from 0.85 at a stellar mass of 108 M⊙ to 0.25 for galaxies with M* ˜ 1010 M⊙. Low-mass galaxies are not all young. The distribution of half-mass formation times for galaxies with stellar masses less than 109 M⊙ is broad, spanning the range 1-10 Gyr. The peak-to-trough variation in star formation rate among the bursting population ranges lies in the range 10-25. In low-mass galaxies, the average duration of the bursts is comparable to the dynamical time of the galaxy. Galaxy structure is correlated with estimated burst mass fraction, but in different ways in low- and high-mass galaxies. High-mass galaxies with large burst mass fractions are more centrally concentrated, indicating that bulge formation is at work. In low-mass galaxies, stellar surface densities μ* decrease as a function of Fburst. These results are in good agreement with the observational predictions of Teyssier et al. and lend further credence to the idea that the cuspy halo problem can be solved by energy input from multiple starbursts over the lifetime of the galaxy. We note that there is no compelling evidence for initial mass function variations in the population of star-forming galaxies in the local Universe.

  11. The masses and spins of neutron stars and stellar-mass black holes

    NASA Astrophysics Data System (ADS)

    Miller, M. Coleman; Miller, Jon M.

    2015-01-01

    Stellar-mass black holes and neutron stars represent extremes in gravity, density, and magnetic fields. They therefore serve as key objects in the study of multiple frontiers of physics. In addition, their origin (mainly in core-collapse supernovae) and evolution (via accretion or, for neutron stars, magnetic spindown and reconfiguration) touch upon multiple open issues in astrophysics. In this review, we discuss current mass and spin measurements and their reliability for neutron stars and stellar-mass black holes, as well as the overall importance of spins and masses for compact object astrophysics. Current masses are obtained primarily through electromagnetic observations of binaries, although future microlensing observations promise to enhance our understanding substantially. The spins of neutron stars are straightforward to measure for pulsars, but the birth spins of neutron stars are more difficult to determine. In contrast, even the current spins of stellar-mass black holes are challenging to measure. As we discuss, major inroads have been made in black hole spin estimates via analysis of iron lines and continuum emission, with reasonable agreement when both types of estimate are possible for individual objects, and future X-ray polarization measurements may provide additional independent information. We conclude by exploring the exciting prospects for mass and spin measurements from future gravitational wave detections, which are expected to revolutionize our understanding of strong gravity and compact objects.

  12. THE GALACTIC CENTER CLOUD G2-A YOUNG LOW-MASS STAR WITH A STELLAR WIND

    SciTech Connect

    Scoville, N.; Burkert, A.

    2013-05-10

    We explore the possibility that the G2 gas cloud falling in toward SgrA* is the mass-loss envelope of a young T Tauri star. As the star plunges to smaller radius at 1000-6000 km s{sup -1}, a strong bow shock forms where the stellar wind is impacted by the hot X-ray emitting gas in the vicinity of SgrA*. For a stellar mass-loss rate of 4 Multiplication-Sign 10{sup -8} M{sub Sun} yr{sup -1} and wind velocity 100 km s{sup -1}, the bow shock will have an emission measure (EM = n {sup 2} vol) at a distance {approx}10{sup 16} cm, similar to that inferred from the IR emission lines. The ionization of the dense bow shock gas is potentially provided by collisional ionization at the shock front and cooling radiation (X-ray and UV) from the post shock gas. The former would predict a constant line flux as a function of distance from SgrA*, while the latter will have increasing emission at lesser distances. In this model, the star and its mass-loss wind should survive pericenter passage since the wind is likely launched at 0.2 AU and this is much less than the Roche radius at pericenter ({approx}3 AU for a stellar mass of 2 M{sub Sun }). In this model, the emission cloud will probably survive pericenter passage, discriminating this scenario from others.

  13. Clustered star formation and the origin of stellar masses.

    PubMed

    Pudritz, Ralph E

    2002-01-01

    Star clusters are ubiquitous in galaxies of all types and at all stages of their evolution. We also observe them to be forming in a wide variety of environments, ranging from nearby giant molecular clouds to the supergiant molecular clouds found in starburst and merging galaxies. The typical star in our galaxy and probably in others formed as a member of a star cluster, so star formation is an intrinsically clustered and not an isolated phenomenon. The greatest challenge regarding clustered star formation is to understand why stars have a mass spectrum that appears to be universal. This review examines the observations and models that have been proposed to explain these fundamental issues in stellar formation.

  14. Not enough stellar mass Machos in the Galactic halo

    NASA Astrophysics Data System (ADS)

    Milsztajn, A.; Lasserre, T.

    We present an update of results from the search for microlensing towards the Large Magellanic Cloud (lmc) by eros (Expérience de Recherche d'Objets Sombres). We have now monitored 25 million stars over three years. Because of the small number of observed microlensing candidates (four), our results are best presented as upper limits on the amount of dark compact objects in the halo of our Galaxy. We discuss critically the candidates and the possible location of the lenses, halo or lmc. We compare our results to those of the macho group. Finally, we combine these new results with those from our search towards the Small Magellanic Cloud as well as earlier ones from the eros1 phase of our survey. The combined data is sensitive to compact objects in the broad mass range 10-7 - 10 Msolar. The derived upper limit on the abundance of stellar mass machos rules out such objects as the dominant component of the Galactic halo if their mass is smaller than 2Msolar.

  15. EFFECT OF UNCERTAINTIES IN STELLAR MODEL PARAMETERS ON ESTIMATED MASSES AND RADII OF SINGLE STARS

    SciTech Connect

    Basu, Sarbani; Verner, Graham A.; Chaplin, William J.; Elsworth, Yvonne E-mail: gav@bison.ph.bham.ac.uk E-mail: y.p.elsworth@bham.ac.uk

    2012-02-10

    Accurate and precise values of radii and masses of stars are needed to correctly estimate properties of extrasolar planets. We examine the effect of uncertainties in stellar model parameters on estimates of the masses, radii, and average densities of solar-type stars. We find that in the absence of seismic data on solar-like oscillations, stellar masses can be determined to a greater accuracy than either stellar radii or densities; but to get reasonably accurate results the effective temperature, log g, and metallicity must be measured to high precision. When seismic data are available, stellar density is the most well-determined property, followed by radius, with mass the least well-determined property. Uncertainties in stellar convection, quantified in terms of uncertainties in the value of the mixing length parameter, cause the most significant errors in the estimates of stellar properties.

  16. A Comparison of Stellar Mass-Transfer & Merger Simulations

    NASA Astrophysics Data System (ADS)

    Tohline, Joel E.; Motl, P.; Diehl, S.; Even, W.; Clayton, G.; Fryer, C.

    2011-01-01

    We present detailed comparisons of 3D stellar mass-transfer and merger simulations that have been carried out using two very different numerical hydrodynamic algorithms -- a finite-volume "grid" code (typically using 4M cylindrical grid cells) and a smoothed-particle hydrodynamics (SPH) code (typically using 1M particles). In all cases the initial binary models contain synchronously rotating, n = 3/2 polytropic stars of a specified mass ratio (q = Mdonor/Maccretor) that are in circular orbit with one star (the donor) marginally filling its Roche lobe. In our "base" set of 8 comparison simulations, we have followed the evolution of binaries having four different initial mass ratios (q0 = 1.3, 0.7, 0.5, 0.4) and each is evolved using two different equations of state: polytropic (P) and ideal-gas (I). In addition, some evolutions are repeated using a different numerical resolution and/or a different initial episode of "driving" to initiate mass-transfer. In the case of the binary systems with q0 = 1.3 and q0 = 0.7, the codes show a remarkable level of quantitative agreement; in the former case, the two stars merge and, in the latter case, the donor gets tidally disrupted. Binary systems with q0 = 0.5 or 0.4 enter a long phase (> 10-20 orbits) of stable mass-transfer during which the binary separation steadily increases; tidal disruption of the donor may ultimately occur if sufficiently deep contact is made between the Roche lobe and the donor during an initial episode of "driving." This work has been supported by grants AST-0708551 and DGE-0504507 from the U.S. National Science Foundation; by grants NNX07AG84G and NNX10AC72G from NASA's ATP program; and by grants of high-performance computing time on the TeraGrid, at LSU and across LONI (Louisiana Optical Network Initiative).

  17. The incidence of stellar mergers and mass gainers among massive stars

    SciTech Connect

    De Mink, S. E.; Sana, H.; Langer, N.; Izzard, R. G.; Schneider, F. R. N.

    2014-02-10

    Because the majority of massive stars are born as members of close binary systems, populations of massive main-sequence stars contain stellar mergers and products of binary mass transfer. We simulate populations of massive stars accounting for all major binary evolution effects based on the most recent binary parameter statistics and extensively evaluate the effect of model uncertainties. Assuming constant star formation, we find that 8{sub −4}{sup +9}% of a sample of early-type stars are the products of a merger resulting from a close binary system. In total we find that 30{sub −15}{sup +10}% of massive main-sequence stars are the products of binary interaction. We show that the commonly adopted approach to minimize the effects of binaries on an observed sample by excluding systems detected as binaries through radial velocity campaigns can be counterproductive. Systems with significant radial velocity variations are mostly pre-interaction systems. Excluding them substantially enhances the relative incidence of mergers and binary products in the non-radial velocity variable sample. This poses a challenge for testing single stellar evolutionary models. It also raises the question of whether certain peculiar classes of stars, such as magnetic O stars, are the result of binary interaction and it emphasizes the need to further study the effect of binarity on the diagnostics that are used to derive the fundamental properties (star-formation history, initial mass function, mass-to-light ratio) of stellar populations nearby and at high redshift.

  18. Stellar feedback from high-mass X-ray binaries in cosmological hydrodynamical simulations

    NASA Astrophysics Data System (ADS)

    Artale, M. C.; Tissera, P. B.; Pellizza, L. J.

    2015-04-01

    We explored the role of X-ray binaries composed by a black hole and a massive stellar companion [black hole X-ray binaries (BHXs)] as sources of kinetic feedback by using hydrodynamical cosmological simulations. Following previous results, our BHX model selects metal-poor stars (Z = [0, 10-4]) as possible progenitors. The model that better reproduces observations assumes that an ˜20 per cent fraction of low-metallicity black holes are in binary systems which produces BHXs. These sources are estimated to deposit ˜1052 erg of kinetic energy per event. With these parameters and in the simulated volume, we find that the energy injected by BHXs represents ˜30 per cent of the total energy released by Type II supernova and BHX events at redshift z ˜ 7 and then decreases rapidly as baryons get chemically enriched. Haloes with virial masses smaller than ˜1010 M⊙ (or Tvir ≲ 105 K) are the most directly affected ones by BHX feedback. These haloes host galaxies with stellar masses in the range 107-108 M⊙. Our results show that BHX feedback is able to keep the interstellar medium warm, without removing a significant gas fraction, in agreement with previous analytical calculations. Consequently, the stellar-to-dark matter mass ratio is better reproduced at high redshift. Our model also predicts a stronger evolution of the number of galaxies as a function of the stellar mass with redshift when BHX feedback is considered. These findings support previous claims that the BHXs could be an effective source of feedback in early stages of galaxy evolution.

  19. Modeling the Near-Infrared Luminosity Functions of Young Stellar Clusters

    NASA Astrophysics Data System (ADS)

    Muench, August A.; Lada, Elizabeth A.; Lada, Charles J.

    2000-04-01

    We present the results of numerical experiments designed to evaluate the usefulness of near-infrared (NIR) luminosity functions for constraining the initial mass function (IMF) of young stellar populations. We test the sensitivity of the NIR K-band luminosity function (KLF) of a young stellar cluster to variations in the underlying IMF, star-forming history, and pre-main-sequence mass-to-luminosity relations. Using Monte Carlo techniques, we create a suite of model luminosity functions systematically varying each of these basic underlying relations. From this numerical modeling, we find that the luminosity function of a young stellar population is considerably more sensitive to variations in the underlying initial mass function than to either variations in the star-forming history or assumed pre-main-sequence (PMS) mass-to-luminosity relation. Variations in a cluster's star-forming history are also found to produce significant changes in the KLF. In particular, we find that the KLFs of young clusters evolve in a systematic manner with increasing mean age. Our experiments indicate that variations in the PMS mass-to-luminosity relation, resulting from differences in adopted PMS tracks, produce only small effects on the form of the model luminosity functions and that these effects are mostly likely not detectable observationally. To illustrate the potential effectiveness of using the KLF of a young cluster to constrain its IMF, we model the observed KLF of the nearby Trapezium cluster. With knowledge of the star-forming history of this cluster obtained from optical spectroscopic studies, we derive the simplest underlying IMF whose model luminosity function matches the observations. Our derived mass function for the Trapezium spans 2 orders of magnitude in stellar mass (5>Msolar>0.02) and has a peak near the hydrogen-burning limit. Below the hydrogen-burning limit, the mass function steadily decreases with decreasing mass throughout the brown dwarf regime. Comparison

  20. Stellar

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This eerie, dark structure, resembling an imaginary sea serpent's head, is a column of cool molecular hydrogen gas (two atoms of hydrogen in each molecule) and dust that is an incubator for new stars. The stars are embedded inside finger-like protrusions extending from the top of the nebula. Each 'fingertip' is somewhat larger than our own solar system. The pillar is slowly eroding away by the ultraviolet light from nearby hot stars, a process called 'photoevaporation.' As it does, small globules of especially dense gas buried within the cloud is uncovered. These globules have been dubbed 'EGGs' -- an acronym for 'Evaporating Gaseous Globules.' The shadows of the EGGs protect gas behind them, resulting in the finger-like structures at the top of the cloud. Forming inside at least some of the EGGs are embryonic stars -- stars that abruptly stop growing when the EGGs are uncovered and they are separated from the larger reservoir of gas from which they were drawing mass. Eventually the stars emerge, as the EGGs themselves succumb to photoevaporation. The stellar EGGS are found, appropriately enough, in the 'Eagle Nebula' (also called M16 -- the 16th object in Charles Messier's 18th century catalog of 'fuzzy' permanent objects in the sky), a nearby star-forming region 7,000 light-years away in the constellation Serpens. The picture was taken on April 1, 1995 with the Hubble Space Telescope Wide Field and Planetary Camera 2. The color image is constructed from three separate images taken in the light of emission from different types of atoms. Red shows emission from singly-ionized sulfur atoms. Green shows emission from hydrogen. Blue shows light emitted by doubly-ionized oxygen atoms.

  1. Accretion onto the first stellar mass black holes

    SciTech Connect

    Alvarez, Marcelo A.; Wise, John H.; Abel, Tom

    2009-08-05

    The first stars, forming at redshifts z > 15 in minihalos with M {approx} 10{sup 5-6} M{sub {circle_dot}} may leave behind remnant black holes, which could conceivably have been the 'seeds' for the supermassive black holes observed at z {approx}< 7. We study remnant black hole growth through accretion, including for the first time the radiation emitted due to accretion, with adaptive mesh refinement cosmological radiation-hydrodynamical simulations. The effects of photo-ionization and heating dramatically affect the large-scale inflow, resulting in negligible mass growth. We compare cases with accretion luminosity included and neglected to show that accretion radiation drastically changes the environment within 100 pc of the black hole, increasing gas temperatures by an order of magnitude. Gas densities are reduced and further star formation in the same minihalo is prevented for the two hundred million years we followed. Without radiative feedback included most seed black holes do not gain mass as efficiently as has been hoped for in previous theories, implying that black hole remnants of Pop III stars in minihalos are not likely to be miniquasars. Most importantly, however, our calculations demonstrate that if these black holes are indeed accreting close to the Bondi-Hoyle rate with ten percent radiative efficiency they have a dramatic local effect in regulating star formation in the first galaxies. This suggests a novel mechanism for massive black hole formation - stellar-mass black holes may have suppressed fragmentation and star formation after falling into halos with virial temperatures {approx} 10{sup 4} K, facilitating intermediate mass black hole formation at their centers.

  2. ENVIRONMENTAL DEPENDENCE OF THE STAR FORMATION RATE, SPECIFIC STAR FORMATION RATE, AND THE PRESENCE OF ACTIVE GALACTIC NUCLEI FOR HIGH STELLAR MASS AND LOW STELLAR MASS GALAXIES

    SciTech Connect

    Deng Xinfa; Song Jun; Chen Yiqing; Jiang Peng; Ding Yingping

    2012-07-10

    Using two volume-limited main galaxy samples of the Sloan Digital Sky Survey Data Release 8 (SDSS DR8), we explore the environmental dependence of the star formation rate (SFR), specific star formation rate (SSFR), and the presence of active galactic nuclei (AGNs) for high stellar mass (HSM) and low stellar mass (LSM) galaxies. It is found that the environmental dependence of the SFR and SSFR for luminous HSM galaxies and faint LSM ones remains very strong: galaxies in the lowest density regime preferentially have higher SFR and SSFR than galaxies in the densest regime, while the environmental dependence of the SFR and SSFR for luminous LSM galaxies is substantially reduced. Our result also shows that the fraction of AGNs in HSM galaxies decreases as a function of density, while the one in LSM galaxies depends very little on local density. In the faint LSM galaxy sample, the SFR and SSFR of galaxies strongly decrease with increasing density, but the fraction of AGNs depends very little on local density. Such a result can rule out that AGNs are fueled by the cold gas in the disk component of galaxies that is also driving the star formation of those galaxies.

  3. Calculation of the magnetic surface function gradient in stellarators with broken stellarator symmetry

    SciTech Connect

    Nemov, V. V.; Kasilov, S. V.; Kernbichler, W.; Seiwald, B.

    2010-05-15

    The computation of the gradient of the magnetic surface function, nablapsi, plays an essential role in plasma physics, e.g., for investigations of plasma equilibrium currents or transport fluxes in stellarators. The evaluation of nablapsi becomes more complicated if the magnetic field B does not exhibit stellarator symmetry. Here, a scheme for computation of nablapsi for magnetic configurations which do not show stellarator symmetry is presented. The proposed method is based on computations of gradients of integrals of magnetic field line equations. This new technique for nablapsi calculations is applied to Uragan-2M [O. S. Pavlichenko for the U-2M group, Plasma Phys. Controlled Fusion 35, B223 (1993)]. Taking into account the influence of current feeds and detachable joints of the helical winding the magnetic configuration does not exhibit stellarator symmetry. Computations of nablapsi, the effective ripple epsilon{sub eff}, and the geometrical factor lambda{sub b} for the bootstrap current in the 1/nu transport regime are performed.

  4. GALAXY STELLAR MASS ASSEMBLY BETWEEN 0.2 < z < 2 FROM THE S-COSMOS SURVEY

    SciTech Connect

    Ilbert, O.; Le Floc'h, E.; Kartaltepe, J.; Sanders, D. B.; Salvato, M.; Capak, P.; Scoville, N.; Aussel, H.; McCracken, H. J.; Mobasher, B.; Arnouts, S.; Bundy, K.; Tasca, L.; Cassata, P.; Kneib, J.-P.; Le Fevre, O.; Koekemoer, A.; Lilly, S.; Surace, J.; Taniguchi, Y.

    2010-02-01

    We follow the galaxy stellar mass assembly by morphological and spectral type in the COSMOS 2 deg{sup 2} field. We derive the stellar mass functions and stellar mass densities from z = 2 to z = 0.2 using 196,000 galaxies selected at F{sub 3.6{mu}m} > 1 muJy with accurate photometric redshifts ({sigma}{sub (z{sub phot}-z{sub spec})/(1+z{sub spec})}=0.008 at i {sup +} < 22.5). Using a spectral classification, we find that z {approx} 1 is an epoch of transition in the stellar mass assembly of quiescent galaxies. Their stellar mass density increases by 1.1 dex between z = 1.5-2 and z = 0.8-1 ({Delta}t {approx} 2.5 Gyr), but only by 0.3 dex between z = 0.8-1 and z {approx} 0.1 ({Delta}t {approx} 6 Gyr). Then, we add the morphological information and find that 80%-90% of the massive quiescent galaxies (log M {approx} 11) have an elliptical morphology at z < 0.8. Therefore, a dominant mechanism links the shutdown of star formation and the acquisition of an elliptical morphology in massive galaxies. Still, a significant fraction of quiescent galaxies present a Spi/Irr morphology at low mass (40%-60% at log M approx 9.5), but this fraction is smaller than predicted by semi-analytical models using a 'halo quenching' recipe. We also analyze the evolution of star-forming galaxies and split them into 'intermediate activity' and 'high activity' galaxies. We find that the most massive 'high activity' galaxies end their high star formation rate phase first. Finally, the space density of massive star-forming galaxies becomes lower than the space density of massive elliptical galaxies at z < 1. As a consequence, the rate of 'wet mergers' involved in the formation of the most massive ellipticals must decline very rapidly at z < 1, which could explain the observed slow down in the assembly of these quiescent and massive sources.

  5. The early gaseous and stellar mass assembly of Milky Way-type galaxy haloes

    NASA Astrophysics Data System (ADS)

    Hensler, Gerhard

    2015-08-01

    In cosmological simulations of Cold Dark Matter (CDM) structure formation a vast number of subhalos is expected around massive galaxies like the Milky Way (MW). These DM subhalos are filled with baryons, gas that forms stars very early as observed from the stellar populations in the MW satellite galaxies. Satellite galaxies evolve in the tidal field of their mature galaxy and suffer accretion to the major galaxy and their partly disruption. By this, their mass loss is expected to feed the galaxy halo with stars and gas.From the Via Lactea II simulations we select a massive DM halo with its satellite system which evolves in the simulations to a present-day MW-type galaxy. We follow its evolution from redshift 4.5 to 2.5, i.e. over almost 2 billion years of the most interesting epoch of mass assembly. A high mass resolution allows for even low-mass satellites down to 10^5 Msun, but limits their distance range to the innermost 240 satellites of the system only. The applied chemo-dynamical method includes star formation, stellar energetic and chemical feedback, and gas physical processes.After the onset of the simulation our models demonstrate the action of tidal effects and satellite merging on the star-formation rate of the satellites, their gas loss by means of hot-gas expansion, of ram-pressure and tidal stripping, and the tidal extraction of stars, leading to the formation of the stellar and gaseous galactic halo. We also analyze the evolution of the satellites’ mass function, their baryonic and DM mass distributions, chemical abundances, their compactness, their present-day appearance, etc. with respect to observations and present-day correlations.

  6. The Mass Dependence between Protoplanetary Disks and their Stellar Hosts

    NASA Astrophysics Data System (ADS)

    Andrews, Sean M.; Rosenfeld, Katherine A.; Kraus, Adam L.; Wilner, David J.

    2013-07-01

    We present a substantial extension of the millimeter (mm) wave continuum photometry catalog for circumstellar dust disks in the Taurus star-forming region, based on a new "snapshot" λ = 1.3 mm survey with the Submillimeter Array. Combining these new data with measurements in the literature, we construct a mm-wave luminosity distribution, f(L mm), for Class II disks that is statistically complete for stellar hosts with spectral types earlier than M8.5 and has a 3σ depth of roughly 3 mJy. The resulting census eliminates a longstanding selection bias against disks with late-type hosts, and thereby demonstrates that there is a strong correlation between L mm and the host spectral type. By translating the locations of individual stars in the Hertzsprung-Russell diagram into masses and ages, and adopting a simple conversion between L mm and the disk mass, Md , we confirm that this correlation corresponds to a statistically robust relationship between the masses of dust disks and the stars that host them. A Bayesian regression technique is used to characterize these relationships in the presence of measurement errors, data censoring, and significant intrinsic scatter: the best-fit results indicate a typical 1.3 mm flux density of ~25 mJy for 1 M ⊙ hosts and a power-law scaling L_mm ∝ M_{\\ast}^{1.5-2.0}. We suggest that a reasonable treatment of dust temperature in the conversion from L mm to Md favors an inherently linear Md vpropM * scaling, with a typical disk-to-star mass ratio of ~0.2%-0.6%. The measured rms dispersion around this regression curve is ±0.7 dex, suggesting that the combined effects of diverse evolutionary states, dust opacities, and temperatures in these disks imprint a full width at half-maximum range of a factor of ~40 on the inferred Md (or L mm) at any given host mass. We argue that this relationship between Md and M * likely represents the origin of the inferred correlation between giant planet frequency and host star mass in the exoplanet

  7. ACCRETION ONTO THE FIRST STELLAR-MASS BLACK HOLES

    SciTech Connect

    Alvarez, Marcelo A.; Abel, Tom Wise, John H

    2009-08-20

    The first stars, forming at redshifts z > 15 in minihalos with M {approx} 10{sup 5-6} M {sub sun} may leave behind remnant black holes, which could conceivably have been the 'seeds' for the supermassive black holes observed at z {approx}< 7. We study remnant black hole growth through accretion, including for the first time the radiation emitted due to accretion, with adaptive mesh refinement cosmological radiation-hydrodynamical simulations. The effects of photoionization and heating dramatically affect the large-scale inflow, resulting in negligible mass growth. We compare cases with accretion luminosity included and neglected to show that accretion radiation drastically changes the environment within 100 pc of the black hole, increasing gas temperatures by an order of magnitude. Gas densities are reduced and further star formation in the same minihalo is prevented for the 200 million years we followed. Without radiative feedback included most seed black holes do not gain mass as efficiently as has been hoped for in previous theories, implying that black hole remnants of population III stars in minihalos are not likely to be miniquasars. Most importantly, however, our calculations demonstrate that if these black holes are indeed accreting close to the Bondi-Hoyle rate with 10% radiative efficiency they have a dramatic local effect in regulating star formation in the first galaxies. This suggests a novel mechanism for massive black hole formation-stellar-mass black holes may have suppressed fragmentation and star formation after falling into halos with virial temperatures {approx}10{sup 4} K, facilitating massive black hole formation at their centers.

  8. The VIMOS VLT Deep Survey. Tracing the galaxy stellar mass assembly history over the last 8 Gyr

    NASA Astrophysics Data System (ADS)

    Vergani, D.; Scodeggio, M.; Pozzetti, L.; Iovino, A.; Franzetti, P.; Garilli, B.; Zamorani, G.; Maccagni, D.; Lamareille, F.; Le Fèvre, O.; Charlot, S.; Contini, T.; Guzzo, L.; Bottini, D.; Le Brun, V.; Picat, J. P.; Scaramella, R.; Tresse, L.; Vettolani, G.; Zanichelli, A.; Adami, C.; Arnouts, S.; Bardelli, S.; Bolzonella, M.; Cappi, A.; Ciliegi, P.; Foucaud, S.; Gavignaud, I.; Ilbert, O.; McCracken, H. J.; Marano, B.; Marinoni, C.; Mazure, A.; Meneux, B.; Merighi, R.; Paltani, S.; Pellò, R.; Pollo, A.; Radovich, M.; Zucca, E.; Bondi, M.; Bongiorno, A.; Brinchmann, J.; Cucciati, O.; de la Torre, S.; Gregorini, L.; Perez-Montero, E.; Mellier, Y.; Merluzzi, P.; Temporin, S.

    2008-08-01

    Aims: Our aim is to investigate the history of mass assembly for galaxies of different stellar masses and types. Methods: We selected a mass-limited sample of 4048 objects from the VIMOS VLT Deep Survey (VVDS) in the redshift interval 0.5 ≤ z ≤ 1.3. We then used an empirical criterion, based on the amplitude of the 4000 ÅBalmer break (D_n4000), to separate the galaxy population into spectroscopically early- and late-type systems. The equivalent width of the [OII]3727 line is used as proxy for the star formation activity. We also derived a type-dependent stellar mass function in three redshift bins. Results: We discuss to what extent stellar mass drives galaxy evolution, showing for the first time the interplay between stellar ages and stellar masses over the past 8 Gyr. Low-mass galaxies have small D_n4000 and at increasing stellar mass, the galaxy distribution moves to higher D_n4000 values as observed in the local Universe. As cosmic time goes by, we witness an increasing abundance of massive spectroscopically early-type systems at the expense of the late-type systems. This spectral transformation of late-type systems into old massive galaxies at lower redshift is a process started at early epochs (z > 1.3) and continuing efficiently down to the local Universe. This is also confirmed by the evolution of our type-dependent stellar mass function. The underlying stellar ages of late-type galaxies apparently do not show evolution, most likely as a result of a continuous and efficient formation of new stars. All star formation activity indicators consistently point towards a star formation history peaked in the past for massive galaxies, with little or no residual star formation taking place in the most recent epochs. In contrast, most of the low-mass systems show just the opposite characteristics, with significant star formation present at all epochs. The activity and efficiency of forming stars are mechanisms that depend on galaxy stellar mass, and the stellar

  9. Ultraviolet to infrared emission of z > 1 galaxies: Can we derive reliable star formation rates and stellar masses?

    NASA Astrophysics Data System (ADS)

    Buat, V.; Heinis, S.; Boquien, M.; Burgarella, D.; Charmandaris, V.; Boissier, S.; Boselli, A.; Le Borgne, D.; Morrison, G.

    2014-01-01

    Aims: Our knowledge of the cosmic mass assembly relies on measurements of star formation rates (SFRs) and stellar masses (Mstar), of galaxies as a function of redshift. These parameters must be estimated in a consistent way with a good knowledge of systematics before studying their correlation and the variation of the specific SFR. Constraining these fundamental properties of galaxies across the Universe is of utmost importance if we want to understand galaxy formation and evolution. Methods: We seek to derive SFRs and stellar masses in distant galaxies and to quantify the main uncertainties affecting their measurement. We explore the impact of the assumptions made in their derivation with standard calibrations or through a fitting process, as well as the impact of the available data, focusing on the role of infrared emission originating from dust. Results: We build a sample of galaxies with z > 1, all observed from the ultraviolet to the infrared in their rest frame. The data are fitted with the code CIGALE, which is also used to build and analyse a catalogue of mock galaxies. Models with different star formation histories are introduced: an exponentially decreasing or increasing SFR and a more complex one coupling a decreasing SFR with a younger burst of constant star formation. We define different sets of data, with or without a good sampling of the ultraviolet range, near-infrared, and thermal infrared data. Variations of the metallicity are also investigated. The impact of these different cases on the determination of stellar mass and SFR are analysed. Conclusions: Exponentially decreasing models with a redshift formation of the stellar population zf ≃ 8 cannot fit the data correctly. All the other models fit the data correctly at the price of unrealistically young ages when the age of the single stellar population is taken to be a free parameter, especially for the exponentially decreasing models. The best fits are obtained with two stellar populations. As

  10. The galaxy population of Abell 1367: the stellar mass-metallicity relation

    NASA Astrophysics Data System (ADS)

    Mouhcine, M.; Kriwattanawong, W.; James, P. A.

    2011-04-01

    Using wide baseline broad-band photometry, we analyse the stellar population properties of a sample of 72 galaxies, spanning a wide range of stellar masses and morphological types, in the nearby spiral-rich and dynamically young galaxy cluster Abell 1367. The sample galaxies are distributed from the cluster centre out to approximately half the cluster Abell radius. The optical/near-infrared colours are compared with simple stellar population synthesis models from which the luminosity-weighted stellar population ages and metallicities are determined. The locus of the colours of elliptical galaxies traces a sequence of varying metallicity at a narrow range of luminosity-weighted stellar ages. Lenticular galaxies in the red sequence, however, exhibit a substantial spread of luminosity-weighted stellar metallicities and ages. For red-sequence lenticular galaxies and blue cloud galaxies, low-mass galaxies tend to be on average dominated by stellar populations of younger luminosity-weighted ages. Sample galaxies exhibit a strong correlation between integrated stellar mass and luminosity-weighted stellar metallicity. Galaxies with signs of morphological disturbance and ongoing star formation activity, tend to be underabundant with respect to passive galaxies in the red sequence of comparable stellar masses. We argue that this could be due to tidally driven gas flows towards the star-forming regions, carrying less enriched gas and diluting the pre-existing gas to produce younger stellar populations with lower metallicities than would be obtained prior to the interaction. Finally, we find no statistically significant evidence for changes in the luminosity-weighted ages and metallicities for either red-sequence or blue-cloud galaxies, at fixed stellar mass, with location within the cluster. We dedicate this work to the memory of our friend and colleague C. Moss who died suddenly recently.

  11. Binary black hole mergers from globular clusters: Masses, merger rates, and the impact of stellar evolution

    NASA Astrophysics Data System (ADS)

    Rodriguez, Carl L.; Chatterjee, Sourav; Rasio, Frederic A.

    2016-04-01

    The recent discovery of GW150914, the binary black hole merger detected by Advanced LIGO, has the potential to revolutionize observational astrophysics. But to fully utilize this new window into the Universe, we must compare these new observations to detailed models of binary black hole formation throughout cosmic time. Expanding upon our previous work [C. L. Rodriguez, M. Morscher, B. Pattabiraman, S. Chatterjee, C.-J. Haster, and F. A. Rasio, Phys. Rev. Lett. 115, 051101 (2015).], we study merging binary black holes formed in globular clusters using our Monte Carlo approach to stellar dynamics. We have created a new set of 52 cluster models with different masses, metallicities, and radii to fully characterize the binary black hole merger rate. These models include all the relevant dynamical processes (such as two-body relaxation, strong encounters, and three-body binary formation) and agree well with detailed direct N -body simulations. In addition, we have enhanced our stellar evolution algorithms with updated metallicity-dependent stellar wind and supernova prescriptions, allowing us to compare our results directly to the most recent population synthesis predictions for merger rates from isolated binary evolution. We explore the relationship between a cluster's global properties and the population of binary black holes that it produces. In particular, we derive a numerically calibrated relationship between the merger times of ejected black hole binaries and a cluster's mass and radius. With our improved treatment of stellar evolution, we find that globular clusters can produce a significant population of massive black hole binaries that merge in the local Universe. We explore the masses and mass ratios of these binaries as a function of redshift, and find a merger rate of ˜5 Gpc-3yr-1 in the local Universe, with 80% of sources having total masses from 32 M⊙ to 64 M⊙. Under standard assumptions, approximately one out of every seven binary black hole mergers

  12. The stellar-to-halo mass relation of GAMA galaxies from 100 deg2 of KiDS weak lensing data

    NASA Astrophysics Data System (ADS)

    van Uitert, Edo; Cacciato, Marcello; Hoekstra, Henk; Brouwer, Margot; Sifón, Cristóbal; Viola, Massimo; Baldry, Ivan; Bland-Hawthorn, Joss; Brough, Sarah; Brown, M. J. I.; Choi, Ami; Driver, Simon P.; Erben, Thomas; Heymans, Catherine; Hildebrandt, Hendrik; Joachimi, Benjamin; Kuijken, Konrad; Liske, Jochen; Loveday, Jon; McFarland, John; Miller, Lance; Nakajima, Reiko; Peacock, John; Radovich, Mario; Robotham, A. S. G.; Schneider, Peter; Sikkema, Gert; Taylor, Edward N.; Verdoes Kleijn, Gijs

    2016-07-01

    We study the stellar-to-halo mass relation of central galaxies in the range 9.7 < log 10(M*/h- 2 M⊙) < 11.7 and z < 0.4, obtained from a combined analysis of the Kilo Degree Survey (KiDS) and the Galaxy And Mass Assembly (GAMA) survey. We use ˜100 deg2 of KiDS data to study the lensing signal around galaxies for which spectroscopic redshifts and stellar masses were determined by GAMA. We show that lensing alone results in poor constraints on the stellar-to-halo mass relation due to a degeneracy between the satellite fraction and the halo mass, which is lifted when we simultaneously fit the stellar mass function. At M* > 5 × 1010 h- 2 M⊙, the stellar mass increases with halo mass as {˜ }M_h^{0.25}. The ratio of dark matter to stellar mass has a minimum at a halo mass of 8 × 1011 h-1 M⊙ with a value of M_h/M_{*}=56_{-10}^{+16} [h]. We also use the GAMA group catalogue to select centrals and satellites in groups with five or more members, which trace regions in space where the local matter density is higher than average, and determine for the first time the stellar-to-halo mass relation in these denser environments. We find no significant differences compared to the relation from the full sample, which suggests that the stellar-to-halo mass relation does not vary strongly with local density. Furthermore, we find that the stellar-to-halo mass relation of central galaxies can also be obtained by modelling the lensing signal and stellar mass function of satellite galaxies only, which shows that the assumptions to model the satellite contribution in the halo model do not significantly bias the stellar-to-halo mass relation. Finally, we show that the combination of weak lensing with the stellar mass function can be used to test the purity of group catalogues.

  13. THE STELLAR-TO-HALO MASS RELATION OF LOCAL GALAXIES SEGREGATES BY COLOR

    SciTech Connect

    Rodríguez-Puebla, Aldo; Yang, Xiaohu; Foucaud, Sebastien; Jing, Y. P.; Avila-Reese, Vladimir; Drory, Niv

    2015-02-01

    By means of a statistical approach that combines different semi-empirical methods of galaxy-halo connection, we derive the stellar-to-halo mass relations (SHMR) of local blue and red central galaxies. We also constrain the fraction of halos hosting blue/red central galaxies and the occupation statistics of blue and red satellites as a function of halo mass, M {sub h}. For the observational input we use the blue and red central/satellite galaxy stellar mass functions and two-point correlation functions in the stellar mass range of 9 < log(M {sub *}/M {sub ☉}) <12. We find that: (1) the SHMR of central galaxies is segregated by color, with blue centrals having a SHMR above that of red centrals; at log(M {sub h}/M {sub ☉}) ∼12, the M {sub *}-to-M {sub h} ratio of the blue centrals is ≈0.05, which is ∼1.7 times larger than the value of red centrals. (2) The constrained scatters around the SHMRs of red and blue centrals are ≈0.14 and ≈0.11 dex, respectively. The scatter of the average SHMR of all central galaxies changes from ∼0.20 dex to ∼0.14 dex in the 11.3 < log(M {sub h}/M {sub ☉}) <15 range. (3) The fraction of halos hosting blue centrals at M{sub h}=10{sup 11} M {sub ☉} is 87%, but at 2 × 10{sup 12} M {sub ☉} decays to ∼20%, approaching a few percent at higher masses. The characteristic mass at which this fraction is the same for blue and red galaxies is M{sub h}≈7×10{sup 11} M {sub ☉}. Our results suggest that the SHMR of central galaxies at large masses is shaped by mass quenching. At low masses processes that delay star formation without invoking too strong supernova-driven outflows could explain the high M {sub *}-to-M {sub h} ratios of blue centrals as compared to those of the scarce red centrals.

  14. The Dynamical Evolution of Stellar-Mass Black Holes in Dense Star Clusters

    NASA Astrophysics Data System (ADS)

    Morscher, Maggie

    Globular clusters are gravitationally bound systems containing up to millions of stars, and are found ubiquitously in massive galaxies, including the Milky Way. With densities as high as a million stars per cubic parsec, they are one of the few places in the Universe where stars interact with one another. They therefore provide us with a unique laboratory for studying how gravitational interactions can facilitate the formation of exotic systems, such as X-ray binaries containing black holes, and merging double black hole binaries, which are produced much less efficiently in isolation. While telescopes can provide us with a snapshot of what these dense clusters look like at present, we must rely on detailed numerical simulations to learn about their evolution. These simulations are quite challenging, however, since dense star clusters are described by a complicated set of physical processes occurring on many different length and time scales, including stellar and binary evolution, weak gravitational scattering encounters, strong resonant binary interactions, and tidal stripping by the host galaxy. Until very recently, it was not possible to model the evolution of systems with millions of stars, the actual number contained in the largest clusters, including all the relevant physics required describe these systems accurately. The Northwestern Group's Henon Monte Carlo code, CMC, which has been in development for over a decade, is a powerful tool that can be used to construct detailed evolutionary models of large star clusters. With its recent parallelization, CMC is now capable of addressing a particularly interesting unsolved problem in astrophysics: the dynamical evolution of stellar black holes in dense star clusters. Our current understanding of the stellar initial mass function and massive star evolution suggests that young globular clusters may have formed hundreds to thousands of stellar-mass black holes, the remnants of stars with initial masses from 20 - 100

  15. Powerful, Rotating Disk Winds from Stellar-mass Black Holes

    NASA Astrophysics Data System (ADS)

    Miller, J. M.; Fabian, A. C.; Kaastra, J.; Kallman, T.; King, A. L.; Proga, D.; Raymond, J.; Reynolds, C. S.

    2015-12-01

    We present an analysis of ionized X-ray disk winds found in the Fe K band of four stellar-mass black holes observed with Chandra, including 4U 1630-47, GRO J1655-40, H 1743-322, and GRS 1915+105. High-resolution photoionization grids were generated in order to model the data. Third-order gratings spectra were used to resolve complex absorption profiles into atomic effects and multiple velocity components. The Fe xxv line is found to be shaped by contributions from the intercombination line (in absorption), and the Fe xxvi line is detected as a spin-orbit doublet. The data require 2-3 absorption zones, depending on the source. The fastest components have velocities approaching or exceeding 0.01c, increasing mass outflow rates and wind kinetic power by orders of magnitude over prior single-zone models. The first-order spectra require re-emission from the wind, broadened by a degree that is loosely consistent with Keplerian orbital velocities at the photoionization radius. This suggests that disk winds are rotating with the orbital velocity of the underlying disk, and provides a new means of estimating launching radii—crucial to understanding wind driving mechanisms. Some aspects of the wind velocities and radii correspond well to the broad-line region in active galactic nuclei (AGNs), suggesting a physical connection. We discuss these results in terms of prevalent models for disk wind production and disk accretion itself, and implications for massive black holes in AGNs.

  16. Dartmouth Stellar Evolution Database and the ACS Survey of Galactic Globular Clusters II. Stellar Evolution Tracks, Isochrones, Luminosity Functions, and Synthetic Horizontal-Branch Models

    DOE Data Explorer

    Dotter, A; Chaboyer, B; Jevremovic, D; Kostov, V; Baron, E; Ferguson, J; Sarajedini, A; Anderson, J

    The Dartmouth Stellar Evolution Database is a collection of stellar evolution tracks and isochrones that spans a range of [Fe/H] from -2.5 to +0.5, [a/Fe] from -0.2 to +0.8 (for [Fe/H]<=0) or +0.2 (for [Fe/H]>0), and initial He mass fractions from Y=0.245 to 0.40. Stellar evolution tracks were computed for masses between 0.1 and 4 Msolar, allowing isochrones to be generated for ages as young as 250 Myr. For the range in masses where the core He flash occurs, separate He-burning tracks were computed starting from the zero age horizontal branch. The tracks and isochrones have been transformed to the observational plane in a variety of photometric systems including standard UBV(RI)C, Stromgren uvby, SDSS ugriz, 2MASS JHKs, and HST ACS/WFC and WFPC2. The Dartmouth Stellar Evolution Database is accessible through a Web site at http://stellar.dartmouth.edu/~models/ where all tracks, isochrones, and additional files can be downloaded. [Copied from online abstract of paper titled "Darmouth Stellar Evolution Database" authored by Dotter, Chaboyer, Jevremovic, Kostov, Baron, Ferguson, and Jason. Abstract is located at http://adsabs.harvard.edu/abs/2008ApJS..178...89D] Web tools are also available at the home page (http://stellar.dartmouth.edu/~models/index.html). These tools allow users to create isochrones and convert them to luminosity functions or create synthetic horizontal branch models.

  17. The Clustering of Radio Galaxies: Biasing and Evolution versus Stellar Mass

    NASA Astrophysics Data System (ADS)

    Nusser, Adi; Tiwari, Prabhakar

    2015-10-01

    We study the angular clustering of ∼6 × 105 NVSS sources on scales ≳ 50{h}-1 {Mpc} in the context of the ΛCDM scenario. The analysis partially relies on the redshift distribution of 131 radio galaxies, inferred from the Hercules and CENSORS survey, and an empirical fit to the stellar-to-halo mass relation. For redshifts z ≲ 0.7, the fraction of radio activity versus stellar mass evolves as {f}{{{RL}}}∼ {M}*{α 0+{α }1z}, where α0 = 2.529 ± 0.184 and {α }1={1.854}-0.761+0.708. The estimate on α0 is largely driven by the results of Best et al., while the constraint on α1 is new. We derive a biasing factor b(z=0.5)={2.093}-0.109+0.164 between radio galaxies and the underlying mass. The function b(z)=0.33{z}2+0.85z+1.6 fits well the redshift dependence. We also provide convenient parametric forms for the redshift-dependent radio luminosity function, which are consistent with the redshift distribution and the NVSS source count versus flux.

  18. A grid of MHD models for stellar mass loss and spin-down rates of solar analogs

    SciTech Connect

    Cohen, O.; Drake, J. J.

    2014-03-01

    Stellar winds are believed to be the dominant factor in the spin-down of stars over time. However, stellar winds of solar analogs are poorly constrained due to observational challenges. In this paper, we present a grid of magnetohydrodynamic models to study and quantify the values of stellar mass loss and angular momentum loss rates as a function of the stellar rotation period, magnetic dipole component, and coronal base density. We derive simple scaling laws for the loss rates as a function of these parameters, and constrain the possible mass loss rate of stars with thermally driven winds. Despite the success of our scaling law in matching the results of the model, we find a deviation between the 'solar dipole' case and a real case based on solar observations that overestimates the actual solar mass loss rate by a factor of three. This implies that the model for stellar fields might require a further investigation with additional complexity. Mass loss rates in general are largely controlled by the magnetic field strength, with the wind density varying in proportion to the confining magnetic pressure B {sup 2}. We also find that the mass loss rates obtained using our grid models drop much faster with the increase in rotation period than scaling laws derived using observed stellar activity. For main-sequence solar-like stars, our scaling law for angular momentum loss versus poloidal magnetic field strength retrieves the well-known Skumanich decline of angular velocity with time, Ω{sub *}∝t {sup –1/2}, if the large-scale poloidal magnetic field scales with rotation rate as B{sub p}∝Ω{sub ⋆}{sup 2}.

  19. The core mass growth and stellar lifetime of thermally pulsing asymptotic giant branch stars

    SciTech Connect

    Kalirai, Jason S.; Tremblay, Pier-Emmanuel; Marigo, Paola E-mail: paola.marigo@unipd.it

    2014-02-10

    We establish new constraints on the intermediate-mass range of the initial-final mass relation, and apply the results to study the evolution of stars on the thermally pulsing asymptotic giant branch (TP-AGB). These constraints derive from newly discovered (bright) white dwarfs in the nearby Hyades and Praesepe star clusters, including a total of 18 high signal-to-noise ratio measurements with progenitor masses of M {sub initial} = 2.8-3.8 M {sub ☉}. We also include a new analysis of existing white dwarfs in the older NGC 6819 and NGC 7789 star clusters, M {sub initial} = 1.6 and 2.0 M {sub ☉}. Over this range of initial masses, stellar evolutionary models for metallicity Z {sub initial} = 0.02 predict the maximum growth of the core of TP-AGB stars. By comparing the newly measured remnant masses to the robust prediction of the core mass at the first thermal pulse on the AGB (i.e., from stellar interior models), we establish several findings. First, we show that the stellar core mass on the AGB grows rapidly from 10% to 30% for stars with M {sub initial} = 1.6 to 2.0 M {sub ☉}. At larger masses, the core-mass growth decreases steadily to ∼10% at M {sub initial} = 3.4 M {sub ☉}, after which there is a small hint of a upturn out to M {sub initial} = 3.8 M {sub ☉}. These observations are in excellent agreement with predictions from the latest TP-AGB evolutionary models in Marigo et al. We also compare to models with varying efficiencies of the third dredge-up and mass loss, and demonstrate that the process governing the growth of the core is largely the stellar wind, while the third dredge-up plays a secondary, but non-negligible role. Based on the new white dwarf measurements, we perform an exploratory calibration of the most popular mass-loss prescriptions in the literature, as well as of the third dredge-up efficiency as a function of the stellar mass. Finally, we estimate the lifetime and the integrated luminosity of stars on the TP-AGB to peak at t

  20. THE MASS DEPENDENCE BETWEEN PROTOPLANETARY DISKS AND THEIR STELLAR HOSTS

    SciTech Connect

    Andrews, Sean M.; Rosenfeld, Katherine A.; Kraus, Adam L.; Wilner, David J.

    2013-07-10

    We present a substantial extension of the millimeter (mm) wave continuum photometry catalog for circumstellar dust disks in the Taurus star-forming region, based on a new ''snapshot'' {lambda} = 1.3 mm survey with the Submillimeter Array. Combining these new data with measurements in the literature, we construct a mm-wave luminosity distribution, f(L{sub mm}), for Class II disks that is statistically complete for stellar hosts with spectral types earlier than M8.5 and has a 3{sigma} depth of roughly 3 mJy. The resulting census eliminates a longstanding selection bias against disks with late-type hosts, and thereby demonstrates that there is a strong correlation between L{sub mm} and the host spectral type. By translating the locations of individual stars in the Hertzsprung-Russell diagram into masses and ages, and adopting a simple conversion between L{sub mm} and the disk mass, M{sub d} , we confirm that this correlation corresponds to a statistically robust relationship between the masses of dust disks and the stars that host them. A Bayesian regression technique is used to characterize these relationships in the presence of measurement errors, data censoring, and significant intrinsic scatter: the best-fit results indicate a typical 1.3 mm flux density of {approx}25 mJy for 1 M{sub Sun} hosts and a power-law scaling L{sub mm}{proportional_to}M{sub *}{sup 1.5-2.0}. We suggest that a reasonable treatment of dust temperature in the conversion from L{sub mm} to M{sub d} favors an inherently linear M{sub d} {proportional_to}M{sub *} scaling, with a typical disk-to-star mass ratio of {approx}0.2%-0.6%. The measured rms dispersion around this regression curve is {+-}0.7 dex, suggesting that the combined effects of diverse evolutionary states, dust opacities, and temperatures in these disks imprint a full width at half-maximum range of a factor of {approx}40 on the inferred M{sub d} (or L{sub mm}) at any given host mass. We argue that this relationship between M{sub d

  1. Ultraviolet to Mid-Infrared Observations of Star-forming Galaxies at z~2: Stellar Masses and Stellar Populations

    NASA Astrophysics Data System (ADS)

    Shapley, Alice E.; Steidel, Charles C.; Erb, Dawn K.; Reddy, Naveen A.; Adelberger, Kurt L.; Pettini, Max; Barmby, Pauline; Huang, Jiasheng

    2005-06-01

    We present the broadband UV through mid-infrared spectral energy distributions (SEDs) of a sample of 72 spectroscopically confirmed star-forming galaxies at z=2.30+/-0.3. Located in a 72 arcmin2 field centered on the bright background QSO, HS 1700+643, these galaxies were preselected to lie at z~2 solely on the basis of their rest-frame UV colors and luminosities and should be representative of UV-selected samples at high redshift. In addition to deep ground-based photometry spanning from 0.35 to 2.15 μm, we make use of Spitzer IRAC data, which probe the rest-frame near-IR at z~2. The range of stellar populations present in the sample is investigated with simple, single-component stellar population synthesis models. The inability to constrain the form of the star formation history limits our ability to determine the parameters of extinction, age, and star formation rate without using external multiwavelength information. Emphasizing stellar mass estimates, which are much less affected by these uncertainties, we find =10.32+/-0.51 for the sample. The addition of Spitzer IRAC data as a long-wavelength baseline reduces stellar mass uncertainties by a factor of 1.5-2 relative to estimates based on optical-Ks photometry alone. However, the total stellar mass estimated for the sample is remarkably insensitive to the inclusion of IRAC data. We find correlations between stellar mass and rest-frame R band (observed Ks) and rest-frame 1.4 μm (observed 4.5 μm) luminosities, although with significant scatter. Even at rest-frame 1.4 μm, the mass-to-light ratio varies by a factor of 15 indicating that even the rest-frame near-IR, when taken alone, is a poor indicator of stellar mass in star-forming galaxies at z~2. Allowing for the possibility of episodic star formation, we find that typical galaxies in our sample could contain up to 3 times more stellar mass in an old underlying burst than what was inferred from single-component modeling. In contrast, mass

  2. Full-lifetime simulations of multiple unequal-mass planets across all phases of stellar evolution

    NASA Astrophysics Data System (ADS)

    Veras, Dimitri; Mustill, Alexander J.; Gänsicke, Boris T.; Redfield, Seth; Georgakarakos, Nikolaos; Bowler, Alex B.; Lloyd, Maximillian J. S.

    2016-06-01

    We know that planetary systems are just as common around white dwarfs as around main-sequence stars. However, self-consistently linking a planetary system across these two phases of stellar evolution through the violent giant branch poses computational challenges, and previous studies restricted architectures to equal-mass planets. Here, we remove this constraint and perform over 450 numerical integrations over a Hubble time (14 Gyr) of packed planetary systems with unequal-mass planets. We characterize the resulting trends as a function of planet order and mass. We find that intrusive radial incursions in the vicinity of the white dwarf become less likely as the dispersion amongst planet masses increases. The orbital meandering which may sustain a sufficiently dynamic environment around a white dwarf to explain observations is more dependent on the presence of terrestrial-mass planets than any variation in planetary mass. Triggering unpacking or instability during the white dwarf phase is comparably easy for systems of unequal-mass planets and systems of equal-mass planets; instabilities during the giant branch phase remain rare and require fine-tuning of initial conditions. We list the key dynamical features of each simulation individually as a potential guide for upcoming discoveries.

  3. The range of variation of the mass of the most massive star in stellar clusters derived from 35 million Monte Carlo simulations

    SciTech Connect

    Popescu, Bogdan; Hanson, M. M. E-mail: margaret.hanson@uc.edu

    2014-01-01

    A growing fraction of simple stellar population models, in an aim to create more realistic simulations capable of including stochastic variation in their outputs, begin their simulations with a distribution of discrete stars following a power-law function of masses. Careful attention is needed to create a correctly sampled initial mass function (IMF), and here we provide a solid mathematical method, called MASSCLEAN IMF Sampling, for doing so. We use our method to perform 10 million MASSCLEAN Monte Carlo stellar cluster simulations to determine the most massive star in a mass distribution as a function of the total mass of the cluster. We find that a maximum mass range is predicted, not a single maximum mass. This range is (1) dependent on the total mass of the cluster and (2) independent of an upper stellar mass limit, M{sub limit} , for unsaturated clusters and emerges naturally from our IMF sampling method. We then turn our analysis around, starting with our new database of 25 million simulated clusters, to constrain the highest mass star from the observed integrated colors of a sample of 40 low-mass Large Magellanic Cloud stellar clusters of known age and mass. Finally, we present an analytical description of the maximum mass range of the most massive star as a function of the cluster's total mass and present a new M{sub max} -M{sub cluster} relation.

  4. Establishing a relation between the mass and the spin of stellar-mass black holes.

    PubMed

    Banerjee, Indrani; Mukhopadhyay, Banibrata

    2013-08-01

    Stellar mass black holes (SMBHs), forming by the core collapse of very massive, rapidly rotating stars, are expected to exhibit a high density accretion disk around them developed from the spinning mantle of the collapsing star. A wide class of such disks, due to their high density and temperature, are effective emitters of neutrinos and hence called neutrino cooled disks. Tracking the physics relating the observed (neutrino) luminosity to the mass, spin of black holes (BHs) and the accretion rate (M) of such disks, here we establish a correlation between the spin and mass of SMBHs at their formation stage. Our work shows that spinning BHs are more massive than nonspinning BHs for a given M. However, slowly spinning BHs can turn out to be more massive than spinning BHs if M at their formation stage was higher compared to faster spinning BHs.

  5. Establishing a relation between the mass and the spin of stellar-mass black holes.

    PubMed

    Banerjee, Indrani; Mukhopadhyay, Banibrata

    2013-08-01

    Stellar mass black holes (SMBHs), forming by the core collapse of very massive, rapidly rotating stars, are expected to exhibit a high density accretion disk around them developed from the spinning mantle of the collapsing star. A wide class of such disks, due to their high density and temperature, are effective emitters of neutrinos and hence called neutrino cooled disks. Tracking the physics relating the observed (neutrino) luminosity to the mass, spin of black holes (BHs) and the accretion rate (M) of such disks, here we establish a correlation between the spin and mass of SMBHs at their formation stage. Our work shows that spinning BHs are more massive than nonspinning BHs for a given M. However, slowly spinning BHs can turn out to be more massive than spinning BHs if M at their formation stage was higher compared to faster spinning BHs. PMID:23971549

  6. 3D mapping of stellar populations in galaxies as a function of environment

    NASA Astrophysics Data System (ADS)

    Thomas, Daniel

    2015-08-01

    MaNGA (Mapping Nearby Galaxies at Apache Point Observatory) is a6-year SDSS-IV survey that will obtain resolved spectroscopy from 3600A to 10300 A for a representative sample of 10,000 nearby galaxies. MaNGA will allow the internal kinematics and spatially-resolved properties of stellar populations and gas inside galaxies to be studied as a function of local environment and halo mass for the very first time. I will present results from our analysis of the first year MaNGA data. The main focus is on the 3-dimensional distribution of stellar population properties in galaxies - formation age, element abundance, IMF slope - studying how these vary spatially in galaxies as a function of galaxy environment and dark matter halo mass.

  7. Intense accretion and mass loss of a very low mass young stellar object

    NASA Astrophysics Data System (ADS)

    Fernández, M.; Comerón, F.

    2001-12-01

    We present visible and near-infrared photometry and spectroscopy of LS-RCrA 1, a faint, very late-type object (M 6.5-M 7) seen in the direction of the R Coronae Australis star forming complex. While its emission spectrum shows prominent features of accretion and mass loss typical of young stellar objects, its underlying continuum and photometric properties are puzzling when trying to derive a mass and age based on pre-main sequence evolutionary tracks: the object appears to be far too faint for a young member of the R Coronae Australis complex of its spectral type. We speculate that this may be due to either its evolution along pre-main sequence tracks being substantially altered by the intense accretion, or to a combination of partial blocking and scattering of the light of the object by a nearly edge-on circumstellar disk. The rich emission line spectrum superimposed on the stellar continuum is well explained by an intense accretion process: the Halpha , CaII infrared triplet, and HeI 6678 lines show equivalent widths typical of very active classical T Tauri stars. The near-infrared observations show anomalously weak spectral features and no significant excess emission in the K band, which we tentatively interpret as indicating line filling due to emission in a magnetic accretion funnel flow. At the same time, numerous, strong forbidden optical lines ([OI], [NII] and [SII]) and H2 emission at 2.12 mu m suggest that the object is simultaneously undergoing mass loss, providing another example that shows that mass loss and accretion are closely related processes. Such an intense accretion and mass loss activity is observed for the first time in a young stellar object in the transition region between low mass stars and brown dwarfs, and provides a valuable observational test on the effects of accretion on the evolution of objects with such low masses. Based on observations collected at the European Southern Observatory in La Silla and Cerro Paranal (Chile), in

  8. New white dwarfs for the stellar initial mass-final mass relation

    NASA Astrophysics Data System (ADS)

    Dobbie, Paul D.; Baxter, Richard

    2010-11-01

    We present the preliminary results of a survey of the open clusters NGC3532 and NGC2287 for new white dwarf members which can help improve understanding of the form of the upper end of the stellar initial mass-final mass relation. We identify four objects with cooling times, distances and proper motions consistent with membership of these clusters. We find that despite a range in age of ~100 Myrs the masses of the four heaviest white dwarfs in NGC3532 span the narrow mass interval MWD~0.9-1.0Msolar suggesting that the initial mass-final mass relation is relatively flatter over 4.5Msolar<~Minit<~6.5Msolar than at immediately lower masses. Additionally, we have unearthed WD J0646-203 which is possibly the most massive cluster white dwarf identified to date. With MWD~1.1Msolar it seems likely to be composed of ONe and has a cooling time consistent with it having evolved from a single star.

  9. Stellar-mass black holes and ultraluminous x-ray sources.

    PubMed

    Fender, Rob; Belloni, Tomaso

    2012-08-01

    We review the likely population, observational properties, and broad implications of stellar-mass black holes and ultraluminous x-ray sources. We focus on the clear empirical rules connecting accretion and outflow that have been established for stellar-mass black holes in binary systems in the past decade and a half. These patterns of behavior are probably the keys that will allow us to understand black hole feedback on the largest scales over cosmological time scales.

  10. The Pleiades mass function: Models versus observations

    NASA Astrophysics Data System (ADS)

    Moraux, E.; Kroupa, P.; Bouvier, J.

    2004-10-01

    Two stellar-dynamical models of binary-rich embedded proto-Orion-Nebula-type clusters that evolve to Pleiades-like clusters are studied with an emphasis on comparing the stellar mass function with observational constraints. By the age of the Pleiades (about 100 Myr) both models show a similar degree of mass segregation which also agrees with observational constraints. This thus indicates that the Pleiades is well relaxed and that it is suffering from severe amnesia. It is found that the initial mass function (IMF) must have been indistinguishable from the standard or Galactic-field IMF for stars with mass m ≲ 2 M⊙, provided the Pleiades precursor had a central density of about 104.8 stars/pc3. A denser model with 105.8 stars/pc3 also leads to reasonable agreement with observational constraints, but owing to the shorter relaxation time of the embedded cluster it evolves through energy equipartition to a mass-segregated condition just prior to residual-gas expulsion. This model consequently preferentially loses low-mass stars and brown dwarfs (BDs), but the effect is not very pronounced. The empirical data indicate that the Pleiades IMF may have been steeper than the Salpeter for stars with m⪆ 2 M⊙.

  11. CONSTRAINING THE QUADRUPOLE MOMENT OF STELLAR-MASS BLACK HOLE CANDIDATES WITH THE CONTINUUM FITTING METHOD

    SciTech Connect

    Bambi, Cosimo; Barausse, Enrico E-mail: barausse@umd.edu

    2011-04-20

    Black holes in general relativity are known as Kerr black holes and are characterized solely by two parameters, the mass M and the spin J. All the higher multipole moments of the gravitational field are functions of these two parameters. For instance, the quadrupole moment is Q = -J {sup 2}/M, which implies that a measurement of M, J, and Q for black hole candidates would allow one to test whether these objects are really black holes as described by general relativity. While future gravitational-wave experiments will be able to test the Kerr nature of these objects with very high accuracy, in this paper we show that it is possible to put constraints on the quadrupole moment of stellar-mass black hole candidates by using presently available X-ray data of the thermal spectrum of their accretion disk.

  12. Protostar mass functions in young clusters

    SciTech Connect

    Myers, Philip C.

    2014-01-20

    In an improved model of protostar mass functions (PMFs), protostars gain mass from isothermal cores in turbulent clumps. Their mass accretion rate is similar to Shu accretion at low mass and to reduced Bondi accretion at high mass. Accretion durations follow a simple expression in which higher-mass protostars accrete for longer times. These times are set by ejections, stellar feedback, and gravitational competition, which terminate accretion and reduce its efficiency. The mass scale is the mass of a critically stable isothermal core. In steady state, the PMF approaches a power law at high mass because of competition between clump accretion and accretion stopping. The power law exponent is the ratio of the timescales of accretion and accretion stopping. The protostar luminosity function (PLF) peaks near 1 L {sub ☉} because of inefficient accretion of core gas. Models fit observed PLFs in four large embedded clusters. These indicate that their underlying PMFs may be top-heavy compared with the initial mass function, depending on the protostar radius model.

  13. STELLAR MASS-TO-LIGHT RATIOS FROM GALAXY SPECTRA: HOW ACCURATE CAN THEY BE?

    SciTech Connect

    Gallazzi, Anna; Bell, Eric F. E-mail: ericbell@umich.edu

    2009-12-01

    Stellar masses play a crucial role in the exploration of galaxy properties and the evolution of the galaxy population. In this paper, we explore the minimum possible uncertainties in stellar mass-to-light ratios (M {sub *}/L) from the assumed star formation history (SFH) and metallicity distribution, with the goals of providing a minimum set of requirements for observational studies. We use a large Monte Carlo library of SFHs to study as a function of galaxy spectral type and signal-to-noise ratio (S/N) the statistical uncertainties of M {sub *}/L values using either absorption-line data or broadband colors. The accuracy of M {sub *}/L estimates can be significantly improved by using metal-sensitive indices in combination with age-sensitive indices, in particular for galaxies with intermediate-age or young stellar populations. While M {sub *}/L accuracy clearly depends on the spectral S/N, there is no significant gain in improving the S/N much above 50 pixel{sup -1} and limiting uncertainties of {approx}0.03 dex are reached. Assuming that dust is accurately corrected or absent and that the redshift is known, color-based M {sub *}/L estimates are only slightly more uncertain than spectroscopic estimates (at comparable spectroscopic and photometric quality), but are more easily affected by systematic biases. This is the case in particular for galaxies with bursty SFHs (high H{delta} {sub A} at fixed D4000 {sub n}), the M {sub *}/L of which cannot be constrained any better than {approx}0.15 dex with any indicators explored here. Finally, we explore the effects of the assumed prior distribution in SFHs and metallicity, finding them to be higher for color-based estimates.

  14. STELLAR MASSES FROM THE CANDELS SURVEY: THE GOODS-SOUTH AND UDS FIELDS

    SciTech Connect

    Santini, P.; Fontana, A.; Castellano, M.; Grazian, A.; Amorin, R.; Ferguson, H. C.; Mobasher, B.; Barro, G.; Hsu, L. T.; Salvato, M.; Wuyts, S.; Galametz, A.; Lee, B.; Lee, S.-K.; Pforr, J.; Wiklind, T.; Almaini, O.; Cooper, M. C.; Weiner, B.; and others

    2015-03-10

    We present the public release of the stellar mass catalogs for the GOODS-S and UDS fields obtained using some of the deepest near-IR images available, achieved as part of the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey project. We combine the effort from 10 different teams, who computed the stellar masses using the same photometry and the same redshifts. Each team adopted their preferred fitting code, assumptions, priors, and parameter grid. The combination of results using the same underlying stellar isochrones reduces the systematics associated with the fitting code and other choices. Thanks to the availability of different estimates, we can test the effect of some specific parameters and assumptions on the stellar mass estimate. The choice of the stellar isochrone library turns out to have the largest effect on the galaxy stellar mass estimates, resulting in the largest distributions around the median value (with a semi interquartile range larger than 0.1 dex). On the other hand, for most galaxies, the stellar mass estimates are relatively insensitive to the different parameterizations of the star formation history. The inclusion of nebular emission in the model spectra does not have a significant impact for the majority of galaxies (less than a factor of 2 for ∼80% of the sample). Nevertheless, the stellar mass for the subsample of young galaxies (age <100 Myr), especially in particular redshift ranges (e.g., 2.2 < z < 2.4, 3.2 < z < 3.6, and 5.5 < z < 6.5), can be seriously overestimated (by up to a factor of 10 for <20 Myr sources) if nebular contribution is ignored.

  15. Stellar Masses from the CANDELS Survey: The GOODS-South and UDS Fields

    NASA Astrophysics Data System (ADS)

    Santini, P.; Ferguson, H. C.; Fontana, A.; Mobasher, B.; Barro, G.; Castellano, M.; Finkelstein, S. L.; Grazian, A.; Hsu, L. T.; Lee, B.; Lee, S.-K.; Pforr, J.; Salvato, M.; Wiklind, T.; Wuyts, S.; Almaini, O.; Cooper, M. C.; Galametz, A.; Weiner, B.; Amorin, R.; Boutsia, K.; Conselice, C. J.; Dahlen, T.; Dickinson, M. E.; Giavalisco, M.; Grogin, N. A.; Guo, Y.; Hathi, N. P.; Kocevski, D.; Koekemoer, A. M.; Kurczynski, P.; Merlin, E.; Mortlock, A.; Newman, J. A.; Paris, D.; Pentericci, L.; Simons, R.; Willner, S. P.

    2015-03-01

    We present the public release of the stellar mass catalogs for the GOODS-S and UDS fields obtained using some of the deepest near-IR images available, achieved as part of the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey project. We combine the effort from 10 different teams, who computed the stellar masses using the same photometry and the same redshifts. Each team adopted their preferred fitting code, assumptions, priors, and parameter grid. The combination of results using the same underlying stellar isochrones reduces the systematics associated with the fitting code and other choices. Thanks to the availability of different estimates, we can test the effect of some specific parameters and assumptions on the stellar mass estimate. The choice of the stellar isochrone library turns out to have the largest effect on the galaxy stellar mass estimates, resulting in the largest distributions around the median value (with a semi interquartile range larger than 0.1 dex). On the other hand, for most galaxies, the stellar mass estimates are relatively insensitive to the different parameterizations of the star formation history. The inclusion of nebular emission in the model spectra does not have a significant impact for the majority of galaxies (less than a factor of 2 for ~80% of the sample). Nevertheless, the stellar mass for the subsample of young galaxies (age <100 Myr), especially in particular redshift ranges (e.g., 2.2 < z < 2.4, 3.2 < z < 3.6, and 5.5 < z < 6.5), can be seriously overestimated (by up to a factor of 10 for <20 Myr sources) if nebular contribution is ignored.

  16. Haloes light and dark: dynamical models of the stellar halo and constraints on the mass of the Galaxy

    NASA Astrophysics Data System (ADS)

    Williams, A. A.; Evans, N. W.

    2015-11-01

    We develop a flexible set of action-based distribution functions (DFs) for stellar haloes. The DFs have five free parameters, controlling the inner and outer density slope, break radius, flattening, and anisotropy, respectively. The DFs generate flattened stellar haloes with a rapidly varying logarithmic slope in density, as well as a spherically aligned velocity ellipsoid with a long axis that points towards the Galactic Centre - all attributes possessed by the stellar halo of the Milky Way. We use our action-based DF to model the blue horizontal branch stars extracted from the Sloan Digital Sky Survey as stellar halo tracers in a spherical Galactic potential. As the selection function is hard to model, we fix the density law from earlier studies and solve for the anisotropy and gravitational potential parameters. Our best-fitting model has a velocity anisotropy that becomes more radially anisotropic on moving outwards. It changes from β ≈ 0.4 at Galactocentric radius of 15 kpc to ≈0.7 at 60 kpc. This is a gentler increase than is typically found in simulations of stellar haloes built from the multiple accretion of smaller systems. We find the potential corresponds to an almost flat rotation curve with amplitude of ≈200 km s-1 at these distances. This implies an enclosed mass of ≈4.5 × 1011 M⊙ within a spherical shell of radius 50 kpc.

  17. The dependence of oxygen and nitrogen abundances on stellar mass from the CALIFA survey

    NASA Astrophysics Data System (ADS)

    Pérez-Montero, E.; García-Benito, R.; Vílchez, J. M.; Sánchez, S. F.; Kehrig, C.; CALIFA Collaboration

    2016-06-01

    We analysed the optical spectra of individual emission-line regions extracted from a sample of 350 spiral galaxies of the CALIFA survey. We selected the star-forming HII regions and calculated total O/H abundances and N/O ratios using the semi-empirical routine HII-Chi-mistry. We performed linear fittings to the abundances as a function of the de-projected galactocentric distances and we studied the statistical properties of the slopes and the characteristic values at the effective radius as a function of other integrated properties. Although galaxies present a wide variety of spatial chemical distributions both for O/H and N/O, a characteristic value at the effective radius can be obtained that tightly correlates with stellar mass. No other dependences are found with other integrated properties such as SFR, morphology or presence of a bar.

  18. AGE AND MASS SEGREGATION OF MULTIPLE STELLAR POPULATIONS IN GALACTIC NUCLEI AND THEIR OBSERVATIONAL SIGNATURES

    SciTech Connect

    Perets, Hagai B.; Mastrobuono-Battisti, Alessandra

    2014-04-01

    Nuclear stellar clusters (NSCs) are known to exist around massive black holes in galactic nuclei. They are thought to have formed through in situ star formation following gas inflow to the nucleus of the galaxy and/or through the infall of multiple stellar clusters. Here we study the latter, and explore the composite structure of the NSC and its relation to the various stellar populations originating from its progenitor infalling clusters. We use N-body simulations of cluster infalls and show that this scenario may produce observational signatures in the form of age segregation: the distribution of the stellar properties (e.g., stellar age and/or metallicity) in the NSCs reflects the infall history of the different clusters. The stellar populations of clusters, infalling at different times (dynamical ages), are differentially segregated in the NSC and are not fully mixed even after a few gigayears of evolution. Moreover, the radial properties of stellar populations in the progenitor cluster are mapped to their radial distribution in the final NSC, potentially leading to efficient mass segregation in NSCs, even those where relaxation times are longer than a Hubble time. Finally, the overall structures of the stellar populations present non-spherical configurations and show significant cluster to cluster population differences.

  19. RECENT STELLAR MASS ASSEMBLY OF LOW-MASS STAR-FORMING GALAXIES AT REDSHIFTS 0.3 < z < 0.9

    SciTech Connect

    Rodríguez-Muñoz, Lucía; Gallego, Jesús; De Paz, Armando Gil; Villar, Víctor; Tresse, Laurence; Charlot, Stéphane; Barro, Guillermo

    2015-01-20

    The epoch when low-mass star-forming galaxies (LMSFGs) form the bulk of their stellar mass is uncertain. While some models predict an early formation, others favor a delayed scenario until later ages of the universe. We present constraints on the star formation histories (SFHs) of a sample of LMSFGs obtained through the analysis of their spectral energy distributions using a novel approach that (1) consistently combines photometric (broadband) and spectroscopic (equivalent widths of emission lines) data, and (2) uses physically motivated SFHs with non-uniform variations of the star formation rate (SFR) as a function of time. The sample includes 31 spectroscopically confirmed LMSFGs (7.3 ≤ log M {sub *}/M {sub ☉} ≤ 8.0), at 0.3 < z {sub spec} < 0.9, in the Extended-Chandra Deep Field-South field. Among them, 24 were selected with photometric stellar mass log M {sub *}/M {sub ☉} < 8.0, 0.3 < z {sub phot} < 1.0, and m {sub NB816,} {sub AB} < 26 mag; the remaining 7 were selected as blue compact dwarfs within the same photometric redshift and magnitude ranges. We also study a secondary sample of 43 more massive spectroscopically confirmed galaxies (8.0 < log M {sub *}/M {sub ☉} ≤ 9.1), selected with the same criteria. The SFRs and stellar masses derived for both samples place our targets on the standard main sequence of star-forming galaxies. The median SFH of LMSFGs at intermediate redshifts appears to form 90% of the median stellar mass inferred for the sample in the ∼0.5-1.8 Gyr immediately preceding the observation. These results suggest a recent stellar mass assembly for LMSFGs, consistent with the cosmological downsizing trends. We find similar median SFH timescales for the more massive secondary sample.

  20. The building up of the black hole mass -stellar mass relation

    NASA Astrophysics Data System (ADS)

    Lamastra, Alessandra

    We derive the growth of SMBHs relative to the stellar content of their host galaxy predicted under the assumption of BH accretion triggered by galaxy encounters occurring during their merging histories. The latter are described through Monte Carlo realizations, and are con-nected to gas processes, star formation and BH accretion using a semi-analytic model of galaxy formation in a cosmological framework. This allows us to connect the star formation process in the host galaxies to the growth of Supermassive Black Holes. We show that, within this framework, the ratio Γ ≡ (MBH /M∗ )(z)/(MBH /M∗ )(z = 0) between the Black Hole mass and the galactic stellar mass (normalized to the local value) depends on both BH mass and red-shift. While the average value and the spread of Γ(z) increase with z, such an effect is larger for massive BHs, reaching values Γ ≈ 5 for massive Black Holes (M ≥ 109 M ) at z 4, in agreement with recent observations of high-redshift QSOs; this is due to the the effectiveness of interactions in triggering BH accretion in high-density environments (where massive haloes form) at high redshifts. To test such a model against observations, we worked out specific pre-dictions for sub-samples of the simulated galaxies corresponding to the different observational samples for which measurements of Γ have been obtained. We found that for Broad Line AGNs at intermediate redshifts 1 z 2 values of Γ ≈ 2 are expected, with a mild trend toward larger value for increasing BH mass. Instead, when we select from our Monte Carlo simulations only extremely gas rich, rapidly star forming galaxies at the epoch of peak in the cosmic star formation (2 ≤ z ≤ 3), we find low values 0.3 ≤ Γ ≤ 1.5, consistent with recent observational findings on samples of sub-mm galaxies; in the framework of our model, these objects end up at z = 0 in low-to-intermediate mass BHs (M ≤ 109 M ), and they do not represent typical paths leading to local massive

  1. The Gaia-ESO Survey: Hydrogen lines in red giants directly trace stellar mass

    NASA Astrophysics Data System (ADS)

    Bergemann, Maria; Serenelli, Aldo; Schönrich, Ralph; Ruchti, Greg; Korn, Andreas; Hekker, Saskia; Kovalev, Mikhail; Mashonkina, Lyudmila; Gilmore, Gerry; Randich, Sofia; Asplund, Martin; Rix, Hans-Walter; Casey, Andrew R.; Jofre, Paula; Pancino, Elena; Recio-Blanco, Alejandra; de Laverny, Patrick; Smiljanic, Rodolfo; Tautvaisiene, Grazina; Bayo, Amelia; Lewis, Jim; Koposov, Sergey; Hourihane, Anna; Worley, Clare; Morbidelli, Lorenzo; Franciosini, Elena; Sacco, Germano; Magrini, Laura; Damiani, Francesco; Bestenlehner, Joachim M.

    2016-10-01

    Red giant stars are perhaps the most important type of stars for Galactic and extra-galactic archaeology: they are luminous, occur in all stellar populations, and their surface temperatures allow precise abundance determinations for many different chemical elements. Yet, the full star formation and enrichment history of a galaxy can be traced directly only if two key observables can be determined for large stellar samples: age and chemical composition. While spectroscopy is a powerful method to analyse the detailed abundances of stars, stellar ages are the missing link in the chain, since they are not a direct observable. However, spectroscopy should be able to estimate stellar masses, which for red giants directly infer ages provided their chemical composition is known. Here we establish a new empirical relation between the shape of the hydrogen line in the observed spectra of red giants and stellar mass determined from asteroseismology. The relation allows determining stellar masses and ages with an accuracy of 10-15%. The method can be used with confidence for stars in the following range of stellar parameters: 4000 < Teff < 5000 K, 0.5 < log g< 3.5, -2.0 < [Fe/H] < 0.3, and luminosities log L/LSun < 2.5. Our analysis provides observational evidence that the Hα spectral characteristics of red giant stars are tightly correlated with their mass and therefore their age. We also show that the method samples well all stellar populations with ages above 1 Gyr. Targeting bright giants, the method allows obtaining simultaneous age and chemical abundance information far deeper than would be possible with asteroseismology, extending the possible survey volume to remote regions of the Milky Way and even to neighbouring galaxies such as Andromeda or the Magellanic Clouds even with current instrumentation, such as the VLT and Keck facilities.

  2. The panchromatic Hubble Andromeda Treasury. V. Ages and masses of the year 1 stellar clusters

    SciTech Connect

    Fouesneau, Morgan; Johnson, L. Clifton; Weisz, Daniel R.; Dalcanton, Julianne J.; Williams, Benjamin F.; Bell, Eric F.; Bianchi, Luciana; Caldwell, Nelson; Gouliermis, Dimitrios A.; Guhathakurta, Puragra; Larsen, Søren S.; Rix, Hans-Walter; Seth, Anil C.; Skillman, Evan D.

    2014-05-10

    We present ages and masses for 601 star clusters in M31 from the analysis of the six filter integrated light measurements from near-ultraviolet to near-infrared wavelengths, made as part of the Panchromatic Hubble Andromeda Treasury (PHAT). We derive the ages and masses using a probabilistic technique, which accounts for the effects of stochastic sampling of the stellar initial mass function. Tests on synthetic data show that this method, in conjunction with the exquisite sensitivity of the PHAT observations and their broad wavelength baseline, provides robust age and mass recovery for clusters ranging from ∼10{sup 2} to 2 × 10{sup 6} M {sub ☉}. We find that the cluster age distribution is consistent with being uniform over the past 100 Myr, which suggests a weak effect of cluster disruption within M31. The age distribution of older (>100 Myr) clusters falls toward old ages, consistent with a power-law decline of index –1, likely from a combination of fading and disruption of the clusters. We find that the mass distribution of the whole sample can be well described by a single power law with a spectral index of –1.9 ± 0.1 over the range of 10{sup 3}-3 × 10{sup 5} M {sub ☉}. However, if we subdivide the sample by galactocentric radius, we find that the age distributions remain unchanged. However, the mass spectral index varies significantly, showing best-fit values between –2.2 and –1.8, with the shallower slope in the highest star formation intensity regions. We explore the robustness of our study to potential systematics and conclude that the cluster mass function may vary with respect to environment.

  3. A stellar evolution paradigm based on specific mass loss and feedback modes

    NASA Technical Reports Server (NTRS)

    Cuntz, Manfred; Stencel, Robert E.

    1992-01-01

    We present a new paradigm for stellar evolution which deals with a detailed treatment of mass loss and feedback modes. The paradigm is presented as a logical diagram which describes the respective dependencies of atmospheric properties relevant to mass loss generation.

  4. Burying a binary: Dynamical mass loss and a continuous optically thick outflow explain the candidate stellar merger V1309 Scorpii

    SciTech Connect

    Pejcha, Ondřej

    2014-06-10

    V1309 Sco was proposed to be a stellar merger and a common envelope transient based on the pre-outburst light curve of a contact eclipsing binary with a rapidly decaying orbital period. Using published data, I show that the period decay timescale P/ P-dot of V1309 Sco decreased from ∼1000 to ∼170 yr in ≲ 6 yr, which implies a very high value of P{sup ¨}. I argue that V1309 Sco experienced an onset of dynamical mass loss through the outer Lagrange point, which eventually obscured the binary. The photosphere of the resulting continuous optically thick outflow expands as the mass-loss rate increases, explaining the ∼200 day rise to optical maximum. The model yields the mass-loss rate of the binary star as a function of time and fits the observed light curve remarkably well. It is also possible to observationally constrain the properties of the surface layers undergoing the dynamical mass loss. V1309 Sco is thus a prototype of a new class of stellar transients distinguished by a slow rise to optical maximum that are driven by dynamical mass loss from a binary. I discuss the implications of these findings for stellar transients and other suggested common envelope events.

  5. Evolution of stellar collision products in open clusters. II. A grid of low-mass collisions

    NASA Astrophysics Data System (ADS)

    Glebbeek, E.; Pols, O. R.

    2008-09-01

    In a companion paper we studied the detailed evolution of stellar collision products that occurred in an N-body simulation of the old open cluster M 67 and compared our detailed models to simple prescriptions. In this paper we extend this work by studying the evolution of the collision products in open clusters as a function of mass and age of the progenitor stars. We calculated a grid of head-on collisions covering the section of parameter space relevant for collisions in open clusters. We create detailed models of the merger remnants using an entropy-sorting algorithm and follow their subsequent evolution during the initial contraction phase, through the main sequence and up to the giant branch with our detailed stellar evolution code. We compare the location of our models in a colour-magnitude diagram to the observed blue straggler population of the old open clusters M 67 and NGC 188 and find that they cover the observed blue straggler region of both clusters. For M 67, collisions need to have taken place recently. Differences between the evolution tracks of the collision products and normal main sequence stars can be understood quantitatively using a simple analytic model. We present an analytic recipe that can be used in an N-body code to transform a precomputed evolution track for a normal star into an evolution track for a collision product. Tables 4 and 5 are only available in electronic form at http://www.aanda.org

  6. Galaxy Zoo 2: A Study of Bar Fraction Versus Stellar Mass and Environment

    NASA Astrophysics Data System (ADS)

    Fortson, Lucy; Bamford, S.; Lintott, C.; Schawinski, K.; Smith, A.; Whyte, L.; Galaxy Zoo Team

    2010-01-01

    Galaxy Zoo has involved ¼ million of the public through the Internet in providing morphological classifications of nearly a million galaxies from the Sloan Digital Sky Survey (SDSS). Galaxy Zoo 2 is a follow on project and has already recorded more than 40 million detailed morphological classifications on the brightest 250,000 galaxies in the SDSS. Among the most interesting products is a catalog of 10,000 barred spirals - an order of magnitude increase on the sample sizes used in most current population studies of barred spirals. In this poster we present a first look at the properties of this catalog focusing in particular on the fraction of spirals with bars as a function of environment, stellar mass and star formation history. Barred spirals are a sensitive indicator of the dynamical state of a galaxy and we discuss the implications for the evolution of the spiral population.

  7. Mass-loss From Evolved Stellar Populations In The Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Riebel, David

    2012-01-01

    I have conducted a study of a sample of 30,000 evolved stars in the Large Magellanic Cloud (LMC) and 6,000 in the Small Magellanic Cloud (SMC), covering their variability, mass-loss properties, and chemistry. The initial stages of of my thesis work focused on the infrared variability of Asymptotic Giant Branch (AGB) stars in the LMC. I determined the period-luminosity (P-L) relations for 6 separate sequences of 30,000 evolved star candidates at 8 wavelengths, as a function of photometrically assigned chemistry, and showed that the P-L relations are different for different chemical populations (O-rich or C-rich). I also present results from the Grid of Red supergiant and Asymptotic giant branch star ModelS (GRAMS) radiative transfer (RT) model grid applied to the evolved stellar population of the LMC. GRAMS is a pre-computed grid of RT models of RSG and AGB stars and surrounding circumstellar dust. Best-fit models are determined based on 12 bands of photometry from the optical to the mid-infrared. Using a pre-computed grid, I can present the first reasonably detailed radiative transfer modeling for tens of thousands of stars, allowing me to make statistically accurate estimations of the carbon-star luminosity function and the global dust mass return to the interstellar medium from AGB stars, both key parameters for stellar population synthesis models to reproduce. In the SAGE-Var program, I used the warm Spitzer mission to take 4 additional epochs of observations of 7500 AGB stars in the LMC and SMC. These epochs, combined with existing data, enable me to derive mean fluxes at 3.6 and 4.5 microns, that will be used for tighter constraints for GRAMS, which is currently limited by the variability induced error on the photometry. This work is support by NASA NAG5-12595 and Spitzer contract 1415784.

  8. DISSECTING THE STELLAR-MASS-SFR CORRELATION IN z = 1 STAR-FORMING DISK GALAXIES

    SciTech Connect

    Salmi, F.; Daddi, E.; Elbaz, D.; Sargent, M. T.; Bethermin, M.; Renzini, A.; Le Borgne, D. E-mail: edaddi@cea.fr

    2012-07-20

    Using a mass-limited sample of 24 {mu}m detected, star-forming galaxies at 0.5 < z < 1.3, we study the mass-star formation rate (SFR) correlation and its tightness. The correlation is well defined ({sigma} = 0.28 dex) for disk galaxies (n{sub Sersic} < 1.5), while more bulge-dominated objects often have lower specific SFRs (sSFRs). For disk galaxies, a much tighter correlation ({sigma} = 0.19 dex) is obtained if the rest-frame H-band luminosity is used instead of stellar mass derived from multi-color photometry. The sSFR correlates strongly with rest-frame optical colors (hence luminosity-weighted stellar age) and also with clumpiness (which likely reflects the molecular gas fraction). This implies that most of the observed scatter is real, despite its low level, and not dominated by random measurement errors. After correcting for these differential effects a remarkably small dispersion remains ({sigma} = 0.14 dex), suggesting that measurement errors in mass or SFR are {approx}< 0.10 dex, excluding systematic uncertainties. Measurement errors in stellar masses, the thickening of the correlation due to real sSFR variations, and varying completeness with stellar mass, can spuriously bias the derived slope to lower values due to the finite range over which observables (mass and SFR) are available. When accounting for these effects, the intrinsic slope for the main sequence for disk galaxies gets closer to unity.

  9. The Stellar Mass-Halo Mass Relation for Low-mass X-Ray Groups At 0.5< z< 1 in the CDFS With CSI

    NASA Astrophysics Data System (ADS)

    Patel, Shannon G.; Kelson, Daniel D.; Williams, Rik J.; Mulchaey, John S.; Dressler, Alan; McCarthy, Patrick J.; Shectman, Stephen A.

    2015-02-01

    Since z˜ 1, the stellar mass density locked in low-mass groups and clusters has grown by a factor of ˜8. Here, we make the first statistical measurements of the stellar mass content of low-mass X-ray groups at 0.5\\lt z\\lt 1, enabling the calibration of stellar-to-halo mass scales for wide-field optical and infrared surveys. Groups are selected from combined Chandra and XMM-Newton X-ray observations in the Chandra Deep Field South. These ultra-deep observations allow us to identify bona fide low-mass groups at high redshift and enable measurements of their total halo masses. We compute aggregate stellar masses for these halos using galaxies from the Carnegie-Spitzer-IMACS (CSI) spectroscopic redshift survey. Stars comprise ˜3%-4% of the total mass of group halos with masses {{10}12.8}\\lt {{M}200}/{{M}⊙ }\\lt {{10}13.5} (about the mass of Fornax and one-fiftieth the mass of Virgo). Complementing our sample with higher mass halos at these redshifts, we find that the stellar-to-halo mass ratio decreases toward higher halo masses, consistent with other work in the local and high redshift universe. The observed scatter about the stellar-halo mass relation is σ ˜ 0.25 dex, which is relatively small and suggests that total group stellar mass can serve as a rough proxy for halo mass. We find no evidence for any significant evolution in the stellar-halo mass relation since z≲ 1. Quantifying the stellar content in groups since this epoch is critical given that hierarchical assembly leads to such halos growing in number density and hosting increasing shares of quiescent galaxies. This Letter includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile. This research is based on observations made with the NASA/ESA Hubble Space Telescope obtained at the Space Telescope Science Institute. STScI is operated by the Association of Universities for Research in Astronomy, Inc. under NASA contract NAS 5-26555.

  10. Testing the Consistency of Stellar and Gas Dynamical Black Hole Mass Measurements in AGNs

    NASA Astrophysics Data System (ADS)

    Walsh, Jonelle; Barth, A. J.; van den Bosch, R. C. E.; Sarzi, M.; Shields, J. C.

    2011-01-01

    NGC 3998 and NGC 4203 are two nearby S0 galaxies with LINER nuclei. The mass of the black hole in NGC 3998 has been measured previously through gas dynamical modeling of the emission-line disk using HST/STIS observations, while a gas dynamical measurement of the black hole mass in NGC 4203 is currently in progress. As both objects are also good targets for stellar dynamical modeling, they provide an excellent opportunity for the direct comparison of black hole mass measurements via the stellar and gas dynamical techniques. This necessary consistency check has so far only been attempted on a few galaxies with limited results. We will present laser guide star adaptive optics observations of NGC 3998 and NGC 4203 with the integral field spectrograph OSIRIS on the Keck II telescope. We measure high resolution stellar kinematics from the K-band CO bandheads, resolving the black hole sphere of influence. Additional large-scale observations of the stellar kinematics were taken at multiple slit positions with LRIS on the Keck I telescope and with the integral field spectrograph VIRUS-P on the 2.7m telescope at the McDonald Observatory. We will present preliminary results from the stellar dynamical modeling and constraints on the black hole masses.

  11. Mapping the inner stellar halo of the Milky Way from 2MASS and SDSS-III/APOGEE survey

    NASA Astrophysics Data System (ADS)

    Fernández-Trincado, J. G.; Robin, A. C.; Reylé, C.

    2015-12-01

    The Besançon Galaxy model was used to compare the infrared colour distribution of synthetic stars with those from 2MASS observations taking the selection function of the data into account, in order to study the shape of the stellar halo of the Milky Way, with complemetary spectroscopic data from SDSS-III/APOGEE survey. Furthermore, we compared the generated mock metallicity distribution of the Besançon Galaxy model, to the intrinsic metallicity distribution with reliable stellar parameters from the APOGEE Stellar Parameters and Chemical Abundances Pipeline (ASPCAP). The comparison was carried accross a large volume of the inner part of the Galaxy, revealing that a metal-poor population, [M/H]<-1.2 dex, could fill an extended component of the inner galactic halo. With this data set, we are able to model a more realistic mass density distribution of the stellar halo component of the Milky Way, assuming a six-parameters double power-law model, and reconstruct the behaviour of the rotation curve in the inner part of the Galaxy.

  12. Quantifying the line-of-sight mass distributions for time-delay lenses with stellar masses

    NASA Astrophysics Data System (ADS)

    Rusu, Cristian; Fassnacht, Chris; Treu, Tommaso; Suyu, Sherry; Auger, Matt; Koopmans, Leon; Marshall, Phil; Wong, Kenneth; Collett, Thomas; Agnello, Adriano; Blandford, Roger; Courbin, Frederic; Hilbert, Stefan; Meylan, Georges; Sluse, Dominique

    2014-12-01

    Measuring cosmological parameters with a realistic account of systematic uncertainties is currently one of the principal challenges of physical cosmology. Building on our recent successes with two gravitationally lensed systems, we have started a program to achieve accurate cosmographic measurements from five gravitationally lensed quasars. We aim at measuring H_0 with an accuracy better than 4%, comparable to but independent from measurements by current BAO, SN or Cepheid programs. The largest current contributor to the error budget in our sample is uncertainty about the line-of-sight mass distribution and environment of the lens systems. In this proposal, we request wide-field u-band imaging of the only lens in our sample without already available Spitzer/IRCA observations, B1608+656. The proposed observations are critical for reducing these uncertainties by providing accurate redshifts and in particular stellar masses for galaxies in the light cones of the target lens system. This will establish lensing as a powerful and independent tool for determining cosmography, in preparation for the hundreds of time-delay lenses that will be discovered by future surveys.

  13. Stellar encounter driven red-giant star mass loss in globular clusters

    SciTech Connect

    Pasquato, Mario; Moraghan, Anthony; Chung, Chul; Lee, Young-Wook; De Luca, Andrea; Raimondo, Gabriella; Carini, Roberta; Brocato, Enzo

    2014-07-01

    Globular cluster (GC) color-magnitude diagrams (CMDs) are reasonably well understood in terms of standard stellar evolution. However, there are still some open issues, such as fully accounting for the horizontal branch (HB) morphology in terms of chemical and dynamical parameters. Mass loss on the red giant branch (RGB) shapes the mass distribution of the HB stars, and the color distribution in turn. The physical mechanisms driving mass loss are still unclear, as direct observations fail to reveal a clear correlation between mass-loss rate and stellar properties. The HB mass distribution is further complicated by helium-enhanced multiple stellar populations due to differences in the evolving mass along the HB. We present a simple analytical mass-loss model based on tidal stripping through Roche-Lobe overflow during stellar encounters. Our model naturally results in a non-Gaussian mass-loss distribution with high skewness and contains only two free parameters. We fit it to the HB mass distribution of four Galactic GCs, as obtained from fitting the CMD with zero age HB models. The best-fit model accurately reproduces the observed mass distribution. If confirmed on a wider sample of GCs, our results would account for the effects of dynamics in RGB mass-loss processes and provide a physically motivated procedure for synthetic CMDs of GCs. Our physical modeling of mass loss may result in the ability to disentangle the effects of dynamics and helium-enhanced multiple populations on the HB morphology and is instrumental in making HB morphology a probe of the dynamical state of GCs, leading to an improved understanding of their evolution.

  14. Shock interactions, turbulence and the origin of the stellar mass spectrum.

    PubMed

    Pudritz, Ralph E; Kevlahan, N K-R

    2013-11-28

    Supersonic turbulence is an essential element in understanding how structure within interstellar gas is created and shaped. In the context of star formation, many computational studies show that the mass spectrum of density and velocity fluctuations within dense clouds, as well as the distribution of their angular momenta, trace their origin to the statistical and physical properties of gas that is lashed with shock waves. In this paper, we review the observations, simulations and theories of how turbulent-like processes can account for the structures we see in molecular clouds. We then compare traditional ideas of supersonic turbulence with a simpler physical model involving the effects of multiple shock waves and their interactions in the interstellar medium. Planar intersecting shock waves produce dense filaments and generate vortex sheets that are essential to create the broad range of density and velocity structure in clouds. As an example, the lower-mass behaviour of the stellar initial mass function can be traced to the tendency of a collection of shock waves to build up a lognormal density distribution (or column density). Vorticity--which is essential to produce velocity structure over a very broad range of length scales in shocked clouds--can also be generated by the passage of curved shocks or intersecting planar shocks through such media. Two major additional physical forces affect the structure of star-forming gas--gravity and feedback processes from young stars. Both of these can produce power-law tails at the high-mass end of the initial mass function.

  15. TOWARD UNDERSTANDING STELLAR RADIAL VELOCITY JITTER AS A FUNCTION OF WAVELENGTH: THE SUN AS A PROXY

    SciTech Connect

    Marchwinski, Robert C.; Mahadevan, Suvrath; Robertson, Paul; Ramsey, Lawrence; Harder, Jerald E-mail: suvrath@astro.psu.edu E-mail: lwr@psu.edu

    2015-01-01

    Using solar spectral irradiance measurements from the SORCE spacecraft and the F/F' technique, we have estimated the radial velocity (RV) scatter induced on the Sun by stellar activity as a function of wavelength. Our goal was to evaluate the potential advantages of using new near-infrared (NIR) spectrographs to search for low-mass planets around bright F, G, and K stars by beating down activity effects. Unlike M dwarfs, which have higher fluxes and therefore greater RV information content in the NIR, solar-type stars are brightest at visible wavelengths, and, based solely on information content, are better suited to traditional optical RV surveys. However, we find that the F/F' estimated RV noise induced by stellar activity is diminished by up to a factor of four in the NIR versus the visible. Observations with the upcoming future generation of NIR instruments can be a valuable addition to the search for low-mass planets around bright FGK stars in reducing the amount of stellar noise affecting RV measurements.

  16. THE PROGENITOR MASS OF SN 2011dh FROM STELLAR POPULATION ANALYSIS

    SciTech Connect

    Murphy, Jeremiah W.; Jennings, Zachary G.; Williams, Benjamin; Dalcanton, Julianne J.; Dolphin, Andrew E. E-mail: adolphin@raytheon.com

    2011-11-20

    Using Hubble Space Telescope photometry, we characterize the age of the stellar association in the vicinity of supernova (SN) 2011dh and use it to infer the zero-age main-sequence mass (M{sub ZAMS}) of the progenitor star. We find two distinct and significant star formation (SF) events with ages of <6 and 17{sup +3}{sub -4} Myr, and the corresponding M{sub ZAMS} are >29 and 13{sup +2}{sub -1} M{sub Sun }, respectively. These two bursts represent 18{sup +4}{sub -9}% (young) and 64{sup +10}{sub -14}% (old) of the total SF in the last 50 Myr. Adopting these fractions as probabilities suggests that the most probable M{sub ZAMS} is 13{sup +2}{sub -1} M{sub Sun }. These results are most sensitive to the luminosity function along the well-understood main sequence (MS) and are less sensitive to uncertain late-stage stellar evolution. Therefore, they stand even if the progenitor suffered disruptive post-MS evolution (e.g., eruptive mass loss or binary Roche-lobe overflow). Progenitor identification will help to further constrain the appropriate population. Even though pre-explosion images show a yellow supergiant (YSG) at the site of the SN, panchromatic SN light curves suggest a more compact star as the progenitor. In spite of this, our results suggest an association between the YSG and the SN. Not only was the star located at the SN site, but reinforcing an association, the star's bolometric luminosity is consistent with the final evolutionary stage of the 17 Myr old starburst. If the YSG disappears, then M{sub ZAMS} = 13{sup +2}{sub -1} M{sub Sun }, but if it persists, then our results allow the possibility that the progenitor was an unseen star of >29 M{sub Sun }.

  17. High-redshift quasars host galaxies: is there a stellar mass crisis?

    NASA Astrophysics Data System (ADS)

    Valiante, Rosa; Schneider, Raffaella; Salvadori, Stefania; Gallerani, Simona

    2014-11-01

    We investigate the evolutionary properties of a sample of quasars (QSOs) at 5 < z < 6.4 using the semi-analytical hierarchical model GAMETE/QSODUST. We find that the observed properties of these QSOs are well reproduced by a common formation scenario in which stars form according to a standard initial mass function, via quiescent star formation and efficient merger-driven bursts, while the central black hole (BH) grows via gas accretion and BH-BH mergers. Eventually, a strong active galactic nuclei-driven wind starts to clear up the interstellar medium of dust and gas, damping the star formation and un-obscuring the line of sight towards the QSO. In this scenario, all the QSOs hosts have final stellar masses in the range (4-6) × 1011 M⊙, a factor of 3-30 larger than the upper limits allowed by the observations. We discuss alternative scenarios to alleviate this apparent tension: the most likely explanation resides in the large uncertainties that still affect dynamical mass measurements in these high-z galaxies. In addition, during the transition between the starburst-dominated and the active QSO phase, we predict that ˜40 per cent of the progenitor galaxies can be classified as Submillimetre Galaxies, although their number rapidly decreases with redshift.

  18. NGC 1866: A Critical test of Stellar Evolution for Intermediate Mass Stars

    NASA Astrophysics Data System (ADS)

    Walker, Alistair

    1999-07-01

    We propose to obtain V {F555W} and I {F814W} images centered on the LMC cluster NGC 1866, with a range of exposure times such that we can measure all cluster stars from the brightest at V 15 down to V 25. NGC 1866 has age 100 Myr and is so populous that the evolving stars, with M 5 M_sun, are caught even in short phases of evolution. As such, it provides a critical test of stellar evolution theory applicable to these intermediate mass stars. We will prepare a color- magnitude diagram that will, for the first time, include all the luminous evolved stars. This is impossible to achieve from ground-based observations due to crowding. We will also measure a luminosity function for the unevolved main sequence to M 0.5 M_sun which allows both determination of the IMF for cluster stars with masses in the range 0.5 - 5 M_sun and an investigation of the cluster dynamical evolution by study of the spatial mass distribution. The deep and accurate MS photometry will also permit precise fitting of a fiducial ZAMS, and hence derivation of a distance relative to the Hyades, the basis of the ZAMS calibration. Since NGC 1866 contains at least 23 Cepheid variables, we will thus calibrate the Period-Luminosity relation zeropoint, and determine the distance to the LMC relative to the very accurate Hipparcos parallax distance to the Hyades with a minimum of steps and assumptions.

  19. Luminosity functions for very low mass stars and brown dwarfs

    NASA Technical Reports Server (NTRS)

    Laughlin, Gregory; Bodenheimer, Peter

    1993-01-01

    A theoretical investigation of the luminosity function for low-mass objects to constrain the stellar initial mass function at the low-mass end is reported. The ways in which luminosity functions for low-mass stars are affected by star formation histories, brown dwarf and premain-sequence cooling rates and main-sequence mass luminosity relations, and the IMF are examined. Cooling rates and the mass-luminosity relation are determined through a new series of evolutionary calculations for very low mass stars and brown dwarfs in the range 0.05-0.50 solar mass. Model luminosity functions are constructed for specific comparison with the results of four recent observational surveys. The likelihood that the stellar mass function in the solar neighborhood is increasing at masses near the bottom of the main sequence and perhaps at lower masses is confirmed. In the most optimistic case, brown dwarfs contribute half of the local missing disk mass. The actual contribution is likely to be considerably less.

  20. A dynamical calibration of the mass-luminosity relation at very low stellar masses and young ages.

    PubMed

    Close, Laird M; Lenzen, Rainer; Guirado, Jose C; Nielsen, Eric L; Mamajek, Eric E; Brandner, Wolfgang; Hartung, Markus; Lidman, Chris; Biller, Beth

    2005-01-20

    Mass is the most fundamental parameter of a star, yet it is also one of the most difficult to measure directly. In general, astronomers estimate stellar masses by determining the luminosity and using the 'mass-luminosity' relationship, but this relationship has never been accurately calibrated for young, low-mass stars and brown dwarfs. Masses for these low-mass objects are therefore constrained only by theoretical models. A new high-contrast adaptive optics camera enabled the discovery of a young (50 million years) companion only 0.156 arcseconds (2.3 au) from the more luminous (> 120 times brighter) star AB Doradus A. Here we report a dynamical determination of the mass of the newly resolved low-mass companion AB Dor C, whose mass is 0.090 +/- 0.005 solar masses. Given its measured 1-2-micrometre luminosity, we have found that the standard mass-luminosity relations overestimate the near-infrared luminosity of such objects by about a factor of approximately 2.5 at young ages. The young, cool objects hitherto thought to be substellar in mass are therefore about twice as massive, which means that the frequency of brown dwarfs and planetary mass objects in young stellar clusters has been overestimated.

  1. The evolution in the stellar mass of brightest cluster galaxies over the past 10 billion years

    NASA Astrophysics Data System (ADS)

    Bellstedt, Sabine; Lidman, Chris; Muzzin, Adam; Franx, Marijn; Guatelli, Susanna; Hill, Allison R.; Hoekstra, Henk; Kurinsky, Noah; Labbe, Ivo; Marchesini, Danilo; Marsan, Z. Cemile; Safavi-Naeini, Mitra; Sifón, Cristóbal; Stefanon, Mauro; van de Sande, Jesse; van Dokkum, Pieter; Weigel, Catherine

    2016-08-01

    Using a sample of 98 galaxy clusters recently imaged in the near-infrared with the European Southern Observatory (ESO) New Technology Telescope, WIYN telescope and William Herschel Telescope, supplemented with 33 clusters from the ESO archive, we measure how the stellar mass of the most massive galaxies in the universe, namely brightest cluster galaxies (BCGs), increases with time. Most of the BCGs in this new sample lie in the redshift range 0.2 < z < 0.6, which has been noted in recent works to mark an epoch over which the growth in the stellar mass of BCGs stalls. From this sample of 132 clusters, we create a subsample of 102 systems that includes only those clusters that have estimates of the cluster mass. We combine the BCGs in this subsample with BCGs from the literature, and find that the growth in stellar mass of BCGs from 10 billion years ago to the present epoch is broadly consistent with recent semi-analytic and semi-empirical models. As in other recent studies, tentative evidence indicates that the stellar mass growth rate of BCGs may be slowing in the past 3.5 billion years. Further work in collecting larger samples, and in better comparing observations with theory using mock images, is required if a more detailed comparison between the models and the data is to be made.

  2. EVOLUTION OF PLANETARY ORBITS WITH STELLAR MASS LOSS AND TIDAL DISSIPATION

    SciTech Connect

    Adams, Fred C.; Bloch, Anthony M.

    2013-11-10

    Intermediate mass stars and stellar remnants often host planets, and these dynamical systems evolve because of mass loss and tides. This paper considers the combined action of stellar mass loss and tidal dissipation on planetary orbits in order to determine the conditions required for planetary survival. Stellar mass loss is included using a so-called Jeans model, described by a dimensionless mass loss rate γ and an index β. We use an analogous prescription to model tidal effects, described here by a dimensionless dissipation rate Γ and two indices (q, p). The initial conditions are determined by the starting value of angular momentum parameter η{sub 0} (equivalently, the initial eccentricity) and the phase θ of the orbit. Within the context of this model, we derive an analytic formula for the critical dissipation rate Γ, which marks the boundary between orbits that spiral outward due to stellar mass loss and those that spiral inward due to tidal dissipation. This analytic result Γ = Γ(γ, β, q, p, η{sub 0}, θ) is essentially exact for initially circular orbits and holds to within an accuracy of ≈50% over the entire multi-dimensional parameter space, where the individual parameters vary by several orders of magnitude. For stars that experience mass loss, the stellar radius often displays quasi-periodic variations, which produce corresponding variations in tidal forcing; we generalize the calculation to include such pulsations using a semi-analytic treatment that holds to the same accuracy as the non-pulsating case. These results can be used in many applications, e.g., to predict/constrain properties of planetary systems orbiting white dwarfs.

  3. STELLAR-MASS-DEPENDENT DISK STRUCTURE IN COEVAL PLANET-FORMING DISKS

    SciTech Connect

    Szucs, Laszlo; Apai, Daniel; Pascucci, Ilaria; Dullemond, Cornelis P. E-mail: apai@stsci.ed E-mail: dullemon@mpia.d

    2010-09-10

    Previous studies suggest that the planet-forming disks around very low mass stars/brown dwarfs may be flatter than those around more massive stars, in contrast to model predictions of larger scale heights for gas-disks around lower-mass stars. We conducted a statistically robust study to determine whether there is evidence for stellar-mass-dependent disk structure in planet-forming disks. We find a statistically significant difference in the Spitzer/IRAC color distributions of disks around very low mass and low mass stars all belonging to the same star-forming region, the Chamaeleon I star-forming region. We show that self-consistently calculated flared disk models cannot fit the median spectral energy distributions (SEDs) of the two groups. These SEDs can only be explained by flatter disk models, consistent with the effect of dust settling in disks. We find that, relative to the disk structure predicted for flared disks, the required reduction in disk scale height is anti-correlated with the stellar mass; i.e., disks around lower-mass stars are flatter. Our results show that the initial and boundary conditions of planet formation are stellar-mass-dependent, an important finding that must be considered in planet formation models.

  4. A Pan-Carina Young Stellar Object Catalog: Intermediate-mass Young Stellar Objects in the Carina Nebula Identified Via Mid-infrared Excess Emission

    NASA Astrophysics Data System (ADS)

    Povich, Matthew S.; Smith, Nathan; Majewski, Steven R.; Getman, Konstantin V.; Townsley, Leisa K.; Babler, Brian L.; Broos, Patrick S.; Indebetouw, Rémy; Meade, Marilyn R.; Robitaille, Thomas P.; Stassun, Keivan G.; Whitney, Barbara A.; Yonekura, Yoshinori; Fukui, Yasuo

    2011-05-01

    We present a catalog of 1439 young stellar objects (YSOs) spanning the 1.42 deg2 field surveyed by the Chandra Carina Complex Project (CCCP), which includes the major ionizing clusters and the most active sites of ongoing star formation within the Great Nebula in Carina. Candidate YSOs were identified via infrared (IR) excess emission from dusty circumstellar disks and envelopes, using data from the Spitzer Space Telescope (the Vela-Carina survey) and the Two-Micron All Sky Survey. We model the 1-24 μm IR spectral energy distributions of the YSOs to constrain physical properties. Our Pan-Carina YSO Catalog (PCYC) is dominated by intermediate-mass (2 M sun < m <~ 10 M sun) objects with disks, including Herbig Ae/Be stars and their less evolved progenitors. The PCYC provides a valuable complementary data set to the CCCP X-ray source catalogs, identifying 1029 YSOs in Carina with no X-ray detection. We also catalog 410 YSOs with X-ray counterparts, including 62 candidate protostars. Candidate protostars with X-ray detections tend to be more evolved than those without. In most cases, X-ray emission apparently originating from intermediate-mass, disk-dominated YSOs is consistent with the presence of low-mass companions, but we also find that X-ray emission correlates with cooler stellar photospheres and higher disk masses. We suggest that intermediate-mass YSOs produce X-rays during their early pre-main-sequence evolution, perhaps driven by magnetic dynamo activity during the convective atmosphere phase, but this emission dies off as the stars approach the main sequence. Extrapolating over the stellar initial mass function scaled to the PCYC population, we predict a total population of >2 × 104 YSOs and a present-day star formation rate (SFR) of >0.008 M sun yr-1. The global SFR in the Carina Nebula, averaged over the past ~5 Myr, has been approximately constant.

  5. FRIENDS OF HOT JUPITERS. III. AN INFRARED SPECTROSCOPIC SEARCH FOR LOW-MASS STELLAR COMPANIONS

    SciTech Connect

    Piskorz, Danielle; Knutson, Heather A.; Ngo, Henry; Batygin, Konstantin; Muirhead, Philip S.; Crepp, Justin R.; Hinkley, Sasha; Morton, Timothy D.

    2015-12-01

    Surveys of nearby field stars indicate that stellar binaries are common, yet little is known about the effects that these companions may have on planet formation and evolution. The Friends of Hot Jupiters project uses three complementary techniques to search for stellar companions to known planet-hosting stars: radial velocity monitoring, adaptive optics imaging, and near-infrared spectroscopy. In this paper, we examine high-resolution K band infrared spectra of fifty stars hosting gas giant planets on short-period orbits. We use spectral fitting to search for blended lines due to the presence of cool stellar companions in the spectra of our target stars, where we are sensitive to companions with temperatures between 3500 and 5000 K and projected separations less than 100 AU in most systems. We identify eight systems with candidate low-mass companions, including one companion that was independently detected in our AO imaging survey. For systems with radial velocity accelerations, a spectroscopic non-detection rules out scenarios involving a stellar companion in a high inclination orbit. We use these data to place an upper limit on the stellar binary fraction at small projected separations, and show that the observed population of candidate companions is consistent with that of field stars and also with the population of wide-separation companions detected in our previous AO survey. We find no evidence that spectroscopic stellar companions are preferentially located in systems with short-period gas giant planets on eccentric and/or misaligned orbits.

  6. INSIGHTS ON THE STELLAR MASS-METALLICITY RELATION FROM THE CALIFA SURVEY

    SciTech Connect

    González Delgado, R. M.; García-Benito, R.; Pérez, E.; Cortijo-Ferrero, C.; López Fernández, R.; Sánchez, S. F.; Alves, J.; Bland-Hawthorn, J.; Galbany, L.; Gallazzi, A.; Husemann, B.; Bekeraite, S.; Jungwiert, B.; López-Sánchez, A. R.; De Lorenzo-Cáceres, A.; Marino, R. A. [CEI Campus Moncloa, UCM-UPM, Departamento de Astrofísica y CC. de la Atmósfera, Facultad de CC. Físicas, Universidad Complutense de Madrid, Avda. Complutense s Collaboration: CALIFA collaboration920; and others

    2014-08-10

    We use spatially and temporally resolved maps of stellar population properties of 300 galaxies from the CALIFA integral field survey to investigate how the stellar metallicity (Z {sub *}) relates to the total stellar mass (M {sub *}) and the local mass surface density (μ{sub *}) in both spheroidal- and disk-dominated galaxies. The galaxies are shown to follow a clear stellar mass-metallicity relation (MZR) over the whole 10{sup 9}-10{sup 12} M {sub ☉} range. This relation is steeper than the one derived from nebular abundances, which is similar to the flatter stellar MZR derived when we consider only young stars. We also find a strong relation between the local values of μ{sub *} and Z {sub *} (the μZR), betraying the influence of local factors in determining Z {sub *}. This shows that both local (μ{sub *}-driven) and global (M {sub *}-driven) processes are important in determining metallicity in galaxies. We find that the overall balance between local and global effects varies with the location within a galaxy. In disks, μ{sub *} regulates Z {sub *}, producing a strong μZR whose amplitude is modulated by M {sub *}. In spheroids it is M {sub *} that dominates the physics of star formation and chemical enrichment, with μ{sub *} playing a minor, secondary role. These findings agree with our previous analysis of the star formation histories of CALIFA galaxies, which showed that mean stellar ages are mainly governed by surface density in galaxy disks and by total mass in spheroids.

  7. Inference on gravitational waves from coalescences of stellar-mass compact objects and intermediate-mass black holes

    NASA Astrophysics Data System (ADS)

    Haster, Carl-Johan; Wang, Zhilu; Berry, Christopher P. L.; Stevenson, Simon; Veitch, John; Mandel, Ilya

    2016-04-01

    Gravitational waves from coalescences of neutron stars or stellar-mass black holes into intermediate-mass black holes (IMBHs) of ≳100 solar masses represent one of the exciting possible sources for advanced gravitational-wave detectors. These sources can provide definitive evidence for the existence of IMBHs, probe globular-cluster dynamics, and potentially serve as tests of general relativity. We analyse the accuracy with which we can measure the masses and spins of the IMBH and its companion in intermediate-mass-ratio coalescences. We find that we can identify an IMBH with a mass above 100 M⊙ with 95 per cent confidence provided the massive body exceeds 130 M⊙. For source masses above ˜200 M⊙, the best measured parameter is the frequency of the quasi-normal ringdown. Consequently, the total mass is measured better than the chirp mass for massive binaries, but the total mass is still partly degenerate with spin, which cannot be accurately measured. Low-frequency detector sensitivity is particularly important for massive sources, since sensitivity to the inspiral phase is critical for measuring the mass of the stellar-mass companion. We show that we can accurately infer source parameters for cosmologically redshifted signals by applying appropriate corrections. We investigate the impact of uncertainty in the model gravitational waveforms and conclude that our main results are likely robust to systematics.

  8. Do Not Forget the Forest for the Trees: The Stellar-mass Halo-mass Relation in Different Environments

    NASA Astrophysics Data System (ADS)

    Tonnesen, Stephanie; Cen, Renyue

    2015-10-01

    The connection between dark matter halos and galactic baryons is often not well constrained nor well resolved in cosmological hydrodynamical simulations. Thus, halo occupation distribution models that assign galaxies to halos based on halo mass are frequently used to interpret clustering observations, even though it is well known that the assembly history of dark matter halos is related to their clustering. In this paper we use high-resolution hydrodynamical cosmological simulations to compare the halo and stellar mass growth of galaxies in a large-scale overdensity to those in a large-scale underdensity (on scales of about 20 Mpc). The simulation reproduces assembly bias, in which halos have earlier formation times in overdense environments than in underdense regions. We find that the ratio of stellar mass to halo mass is larger in overdense regions in central galaxies residing in halos with masses between 1011 and 1012.9 M⊙. When we force the local density (within 2 Mpc) at z = 0 to be the same for galaxies in the large-scale over- and underdensities, we find the same results. We posit that this difference can be explained by a combination of earlier formation times, more interactions at early times with neighbors, and more filaments feeding galaxies in overdense regions. This result puts the standard practice of assigning stellar mass to halos based only on their mass, rather than considering their larger environment, into question.

  9. DO NOT FORGET THE FOREST FOR THE TREES: THE STELLAR-MASS HALO-MASS RELATION IN DIFFERENT ENVIRONMENTS

    SciTech Connect

    Tonnesen, Stephanie; Cen, Renyue E-mail: cen@astro.princeton.edu

    2015-10-20

    The connection between dark matter halos and galactic baryons is often not well constrained nor well resolved in cosmological hydrodynamical simulations. Thus, halo occupation distribution models that assign galaxies to halos based on halo mass are frequently used to interpret clustering observations, even though it is well known that the assembly history of dark matter halos is related to their clustering. In this paper we use high-resolution hydrodynamical cosmological simulations to compare the halo and stellar mass growth of galaxies in a large-scale overdensity to those in a large-scale underdensity (on scales of about 20 Mpc). The simulation reproduces assembly bias, in which halos have earlier formation times in overdense environments than in underdense regions. We find that the ratio of stellar mass to halo mass is larger in overdense regions in central galaxies residing in halos with masses between 10{sup 11} and 10{sup 12.9} M{sub ⊙}. When we force the local density (within 2 Mpc) at z = 0 to be the same for galaxies in the large-scale over- and underdensities, we find the same results. We posit that this difference can be explained by a combination of earlier formation times, more interactions at early times with neighbors, and more filaments feeding galaxies in overdense regions. This result puts the standard practice of assigning stellar mass to halos based only on their mass, rather than considering their larger environment, into question.

  10. THE XMM CLUSTER SURVEY: THE STELLAR MASS ASSEMBLY OF FOSSIL GALAXIES

    SciTech Connect

    Harrison, Craig D.; Miller, Christopher J.; Richards, Joseph W.; Deadman, Paul-James; Lloyd-Davies, E. J.; Kathy Romer, A.; Mehrtens, Nicola; Liddle, Andrew R.; Hoyle, Ben; Hilton, Matt; Stott, John P.; Capozzi, Diego; Collins, Chris A.; Sahlen, Martin; Stanford, S. Adam; Viana, Pedro T. P.

    2012-06-10

    This paper presents both the result of a search for fossil systems (FSs) within the XMM Cluster Survey and the Sloan Digital Sky Survey and the results of a study of the stellar mass assembly and stellar populations of their fossil galaxies. In total, 17 groups and clusters are identified at z < 0.25 with large magnitude gaps between the first and fourth brightest galaxies. All the information necessary to classify these systems as fossils is provided. For both groups and clusters, the total and fractional luminosity of the brightest galaxy is positively correlated with the magnitude gap. The brightest galaxies in FSs (called fossil galaxies) have stellar populations and star formation histories which are similar to normal brightest cluster galaxies (BCGs). However, at fixed group/cluster mass, the stellar masses of the fossil galaxies are larger compared to normal BCGs, a fact that holds true over a wide range of group/cluster masses. Moreover, the fossil galaxies are found to contain a significant fraction of the total optical luminosity of the group/cluster within 0.5 R{sub 200}, as much as 85%, compared to the non-fossils, which can have as little as 10%. Our results suggest that FSs formed early and in the highest density regions of the universe and that fossil galaxies represent the end products of galaxy mergers in groups and clusters.

  11. The Stripe 82 Massive Galaxy Project - II. Stellar mass completeness of spectroscopic galaxy samples from the Baryon Oscillation Spectroscopic Survey

    NASA Astrophysics Data System (ADS)

    Leauthaud, Alexie; Bundy, Kevin; Saito, Shun; Tinker, Jeremy; Maraston, Claudia; Tojeiro, Rita; Huang, Song; Brownstein, Joel R.; Schneider, Donald P.; Thomas, Daniel

    2016-04-01

    The Baryon Oscillation Spectroscopic Survey (BOSS) has collected spectra for over one million galaxies at 0.15 < z < 0.7 over a volume of 15.3 Gpc3 (9376 deg2) - providing us an opportunity to study the most massive galaxy populations with vanishing sample variance. However, BOSS samples are selected via complex colour cuts that are optimized for cosmology studies, not galaxy science. In this paper, we supplement BOSS samples with photometric redshifts from the Stripe 82 Massive Galaxy Catalog and measure the total galaxy stellar mass function (SMF) at z ˜ 0.3 and z ˜ 0.55. With the total SMF in hand, we characterize the stellar mass completeness of BOSS samples. The high-redshift CMASS (constant mass) sample is significantly impacted by mass incompleteness and is 80 per cent complete at log 10(M*/M⊙) > 11.6 only in the narrow redshift range z = [0.51, 0.61]. The low-redshift LOWZ sample is 80 per cent complete at log 10(M*/M⊙) > 11.6 for z = [0.15, 0.43]. To construct mass complete samples at lower masses, spectroscopic samples need to be significantly supplemented by photometric redshifts. This work will enable future studies to better utilize the BOSS samples for galaxy-formation science.

  12. Older and colder: The impact of starspots on stellar masses, ages, and lithium during the pre-main sequence

    NASA Astrophysics Data System (ADS)

    Somers, Garrett

    2016-01-01

    clusters, studying the initial mass function, measuring planet formation timescales, and inferring the lifetimes of circum-stellar disks.

  13. Chromospheric dust formation, stellar masers and mass loss

    NASA Technical Reports Server (NTRS)

    Stencel, R. E.

    1986-01-01

    A multistep scenario which describes a plausible mass loss mechanism associated with red giant and related stars is outlined. The process involves triggering a condensation instability in an extended chromosphere, leading to the formation of cool, dense clouds which are conducive to the formation of molecules and dust grains. Once formed, the dust can be driven away from the star by radiation pressure. Consistency with various observed phenomena is discussed.

  14. GRAVITATIONAL CONUNDRUM? DYNAMICAL MASS SEGREGATION VERSUS DISRUPTION OF BINARY STARS IN DENSE STELLAR SYSTEMS

    SciTech Connect

    De Grijs, Richard; Li, Chengyuan; Zheng, Yong; Kouwenhoven, M. B. N.; Deng, Licai; Hu, Yi; Wicker, James E.

    2013-03-01

    Upon their formation, dynamically cool (collapsing) star clusters will, within only a few million years, achieve stellar mass segregation for stars down to a few solar masses, simply because of gravitational two-body encounters. Since binary systems are, on average, more massive than single stars, one would expect them to also rapidly mass segregate dynamically. Contrary to these expectations and based on high-resolution Hubble Space Telescope observations, we show that the compact, 15-30 Myr old Large Magellanic Cloud cluster NGC 1818 exhibits tantalizing hints at the {approx}> 2{sigma} level of significance (>3{sigma} if we assume a power-law secondary-to-primary mass-ratio distribution) of an increasing fraction of F-star binary systems (with combined masses of 1.3-1.6 M {sub Sun }) with increasing distance from the cluster center, specifically between the inner 10''-20'' (approximately equivalent to the cluster's core and half-mass radii) and the outer 60''-80''. If confirmed, then this will offer support for the theoretically predicted but thus far unobserved dynamical disruption processes of the significant population of 'soft' binary systems-with relatively low binding energies compared to the kinetic energy of their stellar members-in star clusters, which we have access to here by virtue of the cluster's unique combination of youth and high stellar density.

  15. The global and local stellar mass assembly histories of galaxies from the MaNGA survey

    NASA Astrophysics Data System (ADS)

    Ibarra-Medel, Hétor J.; Sánchez,, Sebastián F.; Avila-Reese, Vladimir; Hernández-Toledo, Héctor M., J.; González, J. Jesús; Drory, Niv; Bundy, Kevin; Bizyaev, Dmitry; Cano-Díaz, Mariana; Malanushenko, Elena; Pan, Kaike; Roman-Lopes, Alexandre; Thomas, Daniel

    2016-06-01

    By means of the fossil record method implemented through Pipe3D we reconstruct the global and radial stellar mass growth histories (MGHs) of a large sample of galaxies in the mass range 10^{8.5}M⊙-10^{11.5}M⊙ from the MaNGA survey. We find that: (1) The main driver of the global MGHs is mass, with more massive galaxies assembling their masses earlier (downsizing). (2) For most galaxies in their late evolutionary stages, the innermost regions formed earlier than the outermost ones (inside-out). This behaviour is stronger for blue/late-type galaxies.

  16. On the deceleration of Fanaroff-Riley Class I jets: mass loading by stellar winds

    NASA Astrophysics Data System (ADS)

    Perucho, M.; Martí, J. M.; Laing, R. A.; Hardee, P. E.

    2014-06-01

    Jets in low-luminosity radio galaxies are known to decelerate from relativistic speeds on parsec scales to mildly or subrelativistic speeds on kiloparsec scales. Several mechanisms have been proposed to explain this effect, including strong reconfinement shocks and the growth of instabilities (both leading to boundary-layer entrainment) and mass loading from stellar winds or molecular clouds. We have performed a series of axisymmetric simulations of the early evolution of jets in a realistic ambient medium to probe the effects of mass loading from stellar winds using the code RATPENAT. We study the evolution of Fanaroff-Riley Class I (FR I) jets, with kinetic powers Lj ˜ 1041-1044 erg s-1, within the first 2 kpc of their evolution, where deceleration by stellar mass loading should be most effective. Mass entrainment rates consistent with present models of stellar mass loss in elliptical galaxies produce deceleration and effective decollimation of weak FR I jets within the first kiloparsec. However, powerful FR I jets are not decelerated significantly. In those cases where the mass loading is important, the jets show larger opening angles and decollimate at smaller distances, but the overall structure and dynamics of the bow shock are similar to those of unloaded jets with the same power and thrust. According to our results, the flaring observed on kiloparsec scales is initiated by mass loading in the weaker FR I jets and by reconfinement shocks or the growth of instabilities in the more powerful jets. The final mechanism of decollimation and deceleration is always the development of disruptive pinching modes.

  17. Mass and Metallicity Requirement in Stellar Models for Galactic Chemical Evolution Applications

    NASA Astrophysics Data System (ADS)

    Côté, Benoit; West, Christopher; Heger, Alexander; Ritter, Christian; O'Shea, Brian W.; Herwig, Falk; Travaglio, Claudia; Bisterzo, Sara

    2016-09-01

    We used a one-zone chemical evolution model to address the question of how many masses and metallicities are required in grids of massive stellar models in order to ensure reliable galactic chemical evolution predictions. We used a set of yields that includes seven masses between 13 and 30 M⊙, 15 metallicities between 0 and 0.03 in mass fraction, and two different remnant mass prescriptions. We ran several simulations where we sampled subsets of stellar models to explore the impact of different grid resolutions. Stellar yields from low- and intermediate-mass stars and from Type Ia supernovae have been included in our simulations, but with a fixed grid resolution. We compared our results with the stellar abundances observed in the Milky Way for O, Na, Mg, Si, Ca, Ti, and Mn. Our results suggest that the range of metallicity considered is more important than the number of metallicities within that range, which only affects our numerical predictions by about 0.1 dex. We found that our predictions at [Fe/H] ≲ -2 are very sensitive to the metallicity range and the mass sampling used for the lowest metallicity included in the set of yields. Variations between results can be as high as 0.8 dex. At higher [Fe/H], we found that the required number of masses depends on the element of interest and on the remnant mass prescription. With a monotonic remnant mass prescription where every model explodes as a core-collapse supernova, the mass resolution induces variations of 0.2 dex on average. But with a remnant mass prescription that includes islands of non-explodability, the mass resolution can cause variations of about 0.2 to 0.7 dex depending on the choice of the lower limit of the metallicity range. With such a remnant mass prescription, explosive or non-explosive models can be missed if not enough masses are selected, resulting in over- or under-estimations of the mass ejected by massive stars.

  18. YOUNG STELLAR CLUSTERS WITH A SCHUSTER MASS DISTRIBUTION. I. STATIONARY WINDS

    SciTech Connect

    Palous, Jan; Wuensch, Richard; Hueyotl-Zahuantitla, Filiberto; Martinez-Gonzalez, Sergio; Silich, Sergiy; Tenorio-Tagle, Guillermo

    2013-08-01

    Hydrodynamic models for spherically symmetric winds driven by young stellar clusters with a generalized Schuster stellar density profile are explored. For this we use both semi-analytic models and one-dimensional numerical simulations. We determine the properties of quasi-adiabatic and radiative stationary winds and define the radius at which the flow turns from subsonic to supersonic for all stellar density distributions. Strongly radiative winds significantly diminish their terminal speed and thus their mechanical luminosity is strongly reduced. This also reduces their potential negative feedback into their host galaxy interstellar medium. The critical luminosity above which radiative cooling becomes dominant within the clusters, leading to thermal instabilities which make the winds non-stationary, is determined, and its dependence on the star cluster density profile, core radius, and half-mass radius is discussed.

  19. Dark matter capture in the first stars: a power source and limit on stellar mass

    SciTech Connect

    Freese, Katherine; Spolyar, Douglas; Aguirre, Anthony E-mail: dspolyar@physics.ucsc.edu

    2008-11-15

    The annihilation of weakly interacting massive particles can provide an important heat source for the first (Pop III, 'Pop' standing for 'population') stars, potentially leading to a new phase of stellar evolution known as a 'dark star'. When dark matter (DM) capture via scattering off baryons is included, the luminosity from DM annihilation may dominate over the luminosity due to fusion, depending on the DM density and scattering cross section. The influx of DM due to capture may thus prolong the dark star phase of stellar evolution as long as the ambient DM density is high enough. Comparison of DM luminosity with the Eddington luminosity for the star may constrain the stellar mass of zero-metallicity stars. Alternatively, if sufficiently massive Pop III stars are found, they might be used to bound dark matter properties.

  20. The Stellar Content of Intermediate-Mass Star-Forming Regions.

    NASA Astrophysics Data System (ADS)

    Lundquist, Michael; Kobulnicky, H.; Alexander, M.; Vargas Alvarez, C.; Arvidsson, K.; Kerton, C.

    2012-01-01

    In an effort to understand the factors that govern the transition from low- to high-mass star formation, we report near-infrared imaging and spectroscopy of stars within a sample of intermediate-mass star-forming regions (IMSFRs). Some IMSFRs appear to contain compact <1 pc embedded clusters at an early evolutionary stage similar to compact HII regions, but lacking the massive ionizing central star(s). The IMSFRs have photodissociation regions with diameters 1 pc powered by the equivalent of an early B star, but because all sources lack radio free-free emission, they must host a collection of less massive stars. These spectroscopic observations using FLAMINGOS on the Kitt Peak 4 m telescope, coupled with 2MASS and UKIDSS infrared imaging, identify which candidate IMSFRs host probable stellar clusters and address the nature of their most massive stellar constituents.

  1. A stellar-mass black hole population in the globular cluster NGC 6101?

    NASA Astrophysics Data System (ADS)

    Peuten, M.; Zocchi, A.; Gieles, M.; Gualandris, A.; Hénault-Brunet, V.

    2016-11-01

    Dalessandro et al. observed a similar distribution for blue straggler stars and main-sequence turn-off stars in the Galactic globular cluster NGC 6101, and interpreted this feature as an indication that this cluster is not mass-segregated. Using direct N-body simulations, we find that a significant amount of mass segregation is expected for a cluster with the mass, radius and age of NGC 6101. Therefore, the absence of mass segregation cannot be explained by the argument that the cluster is not yet dynamically evolved. By varying the retention fraction of stellar-mass black holes, we show that segregation is not observable in clusters with a high black hole retention fraction (>50 per cent after supernova kicks and >50 per cent after dynamical evolution). Yet all model clusters have the same amount of mass segregation in terms of the decline of the mean mass of stars and remnants with distance to the centre. We also discuss how kinematics can be used to further constrain the presence of a stellar-mass black hole population and distinguish it from the effect of an intermediate-mass black hole. Our results imply that the kick velocities of black holes are lower than those of neutron stars. The large retention fraction during its dynamical evolution can be explained if NGC 6101 formed with a large initial radius in a Milky Way satellite.

  2. Evolution of the brightest cluster galaxies: the influence of morphology, stellar mass and environment

    NASA Astrophysics Data System (ADS)

    Zhao, Dongyao; Aragón-Salamanca, Alfonso; Conselice, Christopher J.

    2015-11-01

    Using a sample of 425 nearby brightest cluster galaxies (BCGs) from von der Linden et al., we study the relationship between their internal properties (stellar masses, structural parameters and morphologies) and their environment. More massive BCGs tend to inhabit denser regions and more massive clusters than lower mass BCGs. Furthermore, cDs, which are BCGs with particularly extended envelopes, seem to prefer marginally denser regions and tend to be hosted by more massive haloes than elliptical BCGs. cD and elliptical BCGs show parallel positive correlations between their stellar masses and environmental densities. However, at a fixed environmental density, cDs are, on average, ˜40 per cent more massive. Our results, together with the findings of previous studies, suggest an evolutionary link between elliptical and cD BCGs. We suggest that most present-day cDs started their life as ellipticals, which subsequently grew in stellar mass and size due to mergers. In this process, the cD envelope developed. The large scatter in the stellar masses and sizes of the cDs reflects their different merger histories. The growth of the BCGs in mass and size seems to be linked to the hierarchical growth of the structures they inhabit: as the groups and clusters became denser and more massive, the BCGs at their centres also grew. This process is nearing completion since the majority (˜60 per cent) of the BCGs in the local Universe have cD morphology. However, the presence of galaxies with intermediate morphological classes (between ellipticals and cDs) suggests that the growth and morphological transformation of some BCGs is still ongoing.

  3. GAMA/H-ATLAS: The Dust Opacity-Stellar Mass Surface Density Relation for Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Grootes, M. W.; Tuffs, R. J.; Popescu, C. C.; Pastrav, B.; Andrae, E.; Gunawardhana, M.; Kelvin, L. S.; Liske, J.; Seibert, M.; Taylor, E. N.; Graham, Alister W.; Baes, M.; Baldry, I. K.; Bourne, N.; Brough, S.; Cooray, A.; Dariush, A.; De Zotti, G.; Driver, S. P.; Dunne, L.; Gomez, H.; Hopkins, A. M.; Hopwood, R.; Jarvis, M.; Loveday, J.; Maddox, S.; Madore, B. F.; Michałowski, M. J.; Norberg, P.; Parkinson, H. R.; Prescott, M.; Robotham, A. S. G.; Smith, D. J. B.; Thomas, D.; Valiante, E.

    2013-03-01

    We report the discovery of a well-defined correlation between B-band face-on central optical depth due to dust, τ ^f_B, and the stellar mass surface density, μ*, of nearby (z <= 0.13) spiral galaxies: {log}(τ ^{f}_{B}) = 1.12(+/- 0.11) \\cdot {log}({μ _{*}}/{{M}_{⊙ } {kpc}^{-2}}) - 8.6(+/- 0.8). This relation was derived from a sample of spiral galaxies taken from the Galaxy and Mass Assembly (GAMA) survey, which were detected in the FIR/submillimeter (submm) in the Herschel-ATLAS science demonstration phase field. Using a quantitative analysis of the NUV attenuation-inclination relation for complete samples of GAMA spirals categorized according to stellar mass surface density, we demonstrate that this correlation can be used to statistically correct for dust attenuation purely on the basis of optical photometry and Sérsic-profile morphological fits. Considered together with previously established empirical relationships of stellar mass to metallicity and gas mass, the near linearity and high constant of proportionality of the τ ^f_B - μ_{*} relation disfavors a stellar origin for the bulk of refractory grains in spiral galaxies, instead being consistent with the existence of a ubiquitous and very rapid mechanism for the growth of dust in the interstellar medium. We use the τ ^f_B - μ_{*} relation in conjunction with the radiation transfer model for spiral galaxies of Popescu & Tuffs to derive intrinsic scaling relations between specific star formation rate (SFR), stellar mass, and stellar surface density, in which attenuation of the UV light used for the measurement of SFR is corrected on an object-to-object basis. A marked reduction in scatter in these relations is achieved which we demonstrate is due to correction of both the inclination-dependent and face-on components of attenuation. Our results are consistent with a general picture of spiral galaxies in which most of the submm emission originates from grains residing in translucent structures

  4. Black Holes across the Mass Spectrum-from Stellar Mass BH to ULXs and AGN

    NASA Technical Reports Server (NTRS)

    Mushotzky, Richard

    2006-01-01

    I will discuss the observational characteristics of black holes and how they compare across the 10^8 range in mass and as a function of luminosity and apparent Eddington ratio. I will concentrate on the broad band spectrum, the timing signatures and the energy budget of these objects. In particular I will stress the similarities and differences in the x-ray spectra and power density spectra of AGN, ultraluminous x-ray sources and galactic black holes as a function of 'state'. I will also discuss the nature of the Fe K line and other diagnostics of the regions near the event horizon.

  5. Photometric monitoring of open clusters: Low-mass eclipsing binary stars and the stellar mass-luminosity-radius relation

    NASA Astrophysics Data System (ADS)

    Hebb, Leslie

    2006-06-01

    This thesis describes a photometric monitoring survey of Galactic star clusters designed to detect low-mass eclipsing binary star systems through variations in their relative lightcurves. The aim is to use cluster eclipsing binaries to measure the masses and radii of M-dwarf stars with ages and metallicities known from studies of brighter cluster stars. This information will provide an improved calibration of the mass-luminosity-radius relation for low-mass stars, be used to test stellar structure and evolution models, and help quantify the contribution of low-mass stars to the global mass census in the Galaxy. The survey is designed to detect eclipse events in stars of ~0.3 M_sun and consists of 600 Gbytes of raw imaging data on six open clusters with a range of ages (~ 0.15 - 4 Gyr) and metallicites (~ -0.2 - 0.0 dex). The clusters NGC 1647 and M 35 contain excellent candidate systems showing eclipse like variations in brightness and photometry consistent with cluster membership. The analysis of these clusters and the eclipsing M-dwarf stars detected in them are presented. Analysis of the candidate system in NGC 1647 confirms the object as a newly discovered M-dwarf eclipsing binary in the cluster with compenent masses of M 1 = 0.47 ± 0.05[Special characters omitted.] and M 2 = 0.19 ± 0.02[Special characters omitted.] . The small mass ratio ( M 2 / M 1 ) and low secondary mass of this object provide an unprecedented opportunity to test stellar models. We find that no stellar evolution models are consistent with all the properties of both M-dwarf stars in the eclipsing binary. The candidate in M 35 has been confirmed as an M-dwarf eclipsing binary, and the masses of the individual components are estimated to be M 1 ~ 0.25 M_sun and M 2 ~ 0.15 M_sun . Additional high resolution spectroscopic and photometric observations, for which we have applied and been awarded time, are necessary to accurately derive the intrinsic properties of the individual stellar

  6. Exploring Systematic Effects in the Relation Between Stellar Mass, Gas Phase Metallicity, and Star Formation Rate

    NASA Astrophysics Data System (ADS)

    Telford, O. Grace; Dalcanton, Julianne J.; Skillman, Evan D.; Conroy, Charlie

    2016-08-01

    There is evidence that the well-established mass-metallicity relation in galaxies is correlated with a third parameter: star formation rate (SFR). The strength of this correlation may be used to disentangle the relative importance of different physical processes (e.g., infall of pristine gas, metal-enriched outflows) in governing chemical evolution. However, all three parameters are susceptible to biases that might affect the observed strength of the relation between them. We analyze possible sources of systematic error, including sample bias, application of signal-to-noise ratio cuts on emission lines, choice of metallicity calibration, uncertainty in stellar mass determination, aperture effects, and dust. We present the first analysis of the relation between stellar mass, gas phase metallicity, and SFR using strong line abundance diagnostics from Dopita et al. for ˜130,000 star-forming galaxies in the Sloan Digital Sky Survey and provide a detailed comparison of these diagnostics in an appendix. Using these new abundance diagnostics yields a 30%-55% weaker anti-correlation between metallicity and SFR at fixed stellar mass than that reported by Mannucci et al. We find that, for all abundance diagnostics, the anti-correlation with SFR is stronger for the relatively few galaxies whose current SFRs are elevated above their past average SFRs. This is also true for the new abundance diagnostic of Dopita et al., which gives anti-correlation between Z and SFR only in the high specific star formation rate (sSFR) regime, in contrast to the recent results of Kashino et al. The poorly constrained strength of the relation between stellar mass, metallicity, and SFR must be carefully accounted for in theoretical studies of chemical evolution.

  7. Magnetic Origins of the Stellar Mass-Obliquity Correlation in Planetary Systems

    NASA Astrophysics Data System (ADS)

    Spalding, Christopher; Batygin, Konstantin

    2015-10-01

    Detailed observational characterization of transiting exoplanet systems has revealed that the spin-axes of massive (M≳ 1.2{M}⊙ ) stars often exhibit substantial misalignments with respect to the orbits of the planets they host. Conversely, lower-mass stars tend to only have limited obliquities. A similar trend has recently emerged within the observational data set of young stars’ magnetic field strengths: massive T-Tauri stars tend to have dipole fields that are ˜10 times weaker than their less-massive counterparts. Here we show that the associated dependence of magnetic star-disk torques upon stellar mass naturally explains the observed spin-orbit misalignment trend, provided that misalignments are obtained within the disk-hosting phase. Magnetic torques act to realign the stellar spin-axes of lower-mass stars with the disk plane on a timescale significantly shorter than the typical disk lifetime, whereas the same effect operates on a much longer timescale for massive stars. Cumulatively, our results point to a primordial excitation of extrasolar spin-orbit misalignment, signalling consistency with disk-driven migration as the dominant transport mechanism for short-period planets. Furthermore, we predict that spin-orbit misalignments in systems where close-in planets show signatures of dynamical, post-nebular emplacement will not follow the observed correlation with stellar mass.

  8. Effects of Stellar-Mass Black Holes on Massive Star Cluster Evolution

    NASA Astrophysics Data System (ADS)

    Chatterjee, Sourav; Rasio, Frederic A.; Morscher, Meagan; Rodriguez, Carl L.; Pattabiraman, Bharat

    2015-08-01

    Recent observations have revealed the existence of stellar mass black holes in Galactic globular clusters. Given that the detection of black holes is challenging, these detections likely indicate the existence of large populations of stellar mass black holes in these clusters. This is in direct contrast to the past understanding that at most a handful of black holes may remain in old globular clusters due to rapid mutual dynamical ejection. Modern realistic star-by-star numerical simulations suggest that the retention fraction of stellar mass black holes is typically much higher than previously thought and depends on the details of initial properties such as total cluster mass, distribution of birth kicks, and initial concentration of the cluster. The presence of a population of black holes also dramatically alters the global evolution of star clusters. I will present results from our latest numerical simulations with a focus on the observable global properties of star clusters that might serve as indicators of the presence of a large population of retained black holes.

  9. THE STELLAR MASS–HALO MASS RELATION FOR LOW-MASS X-RAY GROUPS AT 0.5< z< 1 IN THE CDFS WITH CSI

    SciTech Connect

    Patel, Shannon G.; Kelson, Daniel D.; Williams, Rik J.; Mulchaey, John S.; Dressler, Alan; McCarthy, Patrick J.; Shectman, Stephen A.

    2015-01-30

    Since z∼1, the stellar mass density locked in low-mass groups and clusters has grown by a factor of ∼8. Here, we make the first statistical measurements of the stellar mass content of low-mass X-ray groups at 0.5stellar-to-halo mass scales for wide-field optical and infrared surveys. Groups are selected from combined Chandra and XMM-Newton X-ray observations in the Chandra Deep Field South. These ultra-deep observations allow us to identify bona fide low-mass groups at high redshift and enable measurements of their total halo masses. We compute aggregate stellar masses for these halos using galaxies from the Carnegie-Spitzer-IMACS (CSI) spectroscopic redshift survey. Stars comprise ∼3%–4% of the total mass of group halos with masses 10{sup 12.8}mass of Fornax and one-fiftieth the mass of Virgo). Complementing our sample with higher mass halos at these redshifts, we find that the stellar-to-halo mass ratio decreases toward higher halo masses, consistent with other work in the local and high redshift universe. The observed scatter about the stellar–halo mass relation is σ∼0.25 dex, which is relatively small and suggests that total group stellar mass can serve as a rough proxy for halo mass. We find no evidence for any significant evolution in the stellar–halo mass relation since z≲1. Quantifying the stellar content in groups since this epoch is critical given that hierarchical assembly leads to such halos growing in number density and hosting increasing shares of quiescent galaxies.

  10. A New Planet around an M Dwarf: Revealing a Correlation between Exoplanets and Stellar Mass

    NASA Astrophysics Data System (ADS)

    Johnson, John Asher; Butler, R. Paul; Marcy, Geoffrey W.; Fischer, Debra A.; Vogt, Steven S.; Wright, Jason T.; Peek, Kathryn M. G.

    2007-11-01

    We report precise Doppler measurements of GJ 317 (M3.5 V) that reveal the presence of a planet with a minimum mass MPsini=1.2 MJup in an eccentric, 692.9 day orbit. GJ 317 is only the third M dwarf with a Doppler-detected Jovian planet. The residuals to a single-Keplerian fit show evidence of a possible second orbital companion. The inclusion of a second Jupiter-mass planet (P~2700 days, MPsini=0.83 MJup) decreases sqrt(χ2ν) from 2.02 to 1.23, and reduces the rms from 12.5 to 6.32 m s-1. A false-alarm test yields a 1.1% probability that the curvature in the residuals of the single-planet fit is due to random fluctuations, lending additional credibility to the two-planet model. However, our data only marginally constrain a two-planet fit, and further monitoring is necessary to fully characterize the properties of the second companion. To study the effect of stellar mass on giant planet occurrence, we measure the fraction of stars with planets in three mass bins comprised of our samples of M Dwarfs, solar-mass stars, and intermediate-mass subgiants. We find a positive correlation between stellar mass and the occurrence rate of Jovian planets within 2.5 AU. Low-mass K and M stars have a 1.8%+/-1.0% planet occurrence rate compared to 4.2%+/-0.7% for solar-mass stars and 8.9%+/-2.9% for the higher mass subgiants. This result indicates that the former F- and A-type stars with M*>=1.3 Msolar in our sample are nearly 5 times more likely than the M dwarfs to harbor a giant planet. Our analysis shows that the correlation between Jovian planet occurrence and stellar mass exists even after correcting for the effects of stellar metallicity. Based on observations obtained at the W. M. Keck Observatory, which is operated jointly by the University of California and the California Institute of Technology. Keck time has been granted by both NASA and the University of California.

  11. On the theoretical framework of magnetized outflows from stellar-mass black holes and related observations

    NASA Astrophysics Data System (ADS)

    Christodoulou, D. M.; Contopoulos, I.; Kazanas, D.; Steiner, J. F.; Papadopoulos, D. B.; Laycock, S. G. T.

    2016-09-01

    The spins of stellar-mass black holes (BHs) and the power outputs of their jets are measurable quantities. Unfortunately, the currently employed methods do not agree and the results are controversial. Two major issues concern the measurements of BH spin and beam (jet) power. The former issue can be resolved by future observations. But the latter issue can be resolved now, if we pay attention to what is expected from theoretical considerations. The question of whether a correlation has been found between the power outputs of few objects and the spins of their BHs is moot because BH beam power does not scale with the square of the spin of the BH. We show that the theoretical BH beam power is a strongly non-linear function of spin that cannot be approximated by a quadratic relation, as is generally stated when the influence of the magnetic field is not accounted for in the Blandford & Znajek model. The BH beam power of ballistic jets should scale a lot more steeply with BH spin irrespective of the magnetic field assumed to thread the horizon and the spin range considered. This behaviour may already be visible in the analyses of radio observations by Narayan & McClintock and Russell et al. In agreement with previous studies, we also find that the power output that originates in the inner regions of the surrounding accretion discs is higher than that from the BHs and it cannot be ignored in investigations of continuous compact jets from these systems.

  12. Black holes in stellar-mass binary systems: expiating original spin?

    NASA Astrophysics Data System (ADS)

    King, Andrew; Nixon, Chris

    2016-10-01

    We investigate systematically whether accreting black hole systems are likely to reach global alignment of the black hole spin and its accretion disc with the binary plane. In low-mass X-ray binaries (LMXBs), there is only a modest tendency to reach such global alignment, and it is difficult to achieve fully: except for special initial conditions, we expect misalignment of the spin and orbital planes by ˜1 rad for most of the LMXB lifetime. The same is expected in high-mass X-ray binaries. A fairly close approach to global alignment is likely in most stellar-mass ultraluminous X-ray binary systems (ULXs) where the companion star fills its Roche lobe and transfers mass on a thermal or nuclear time-scale to a black hole of lower mass. These systems are unlikely to show orbital eclipses, as their emission cones are close to the hole's spin axis. This offers a potential observational test, as models for ULXs invoking intermediate-mass black holes do predict eclipses for ensembles of ≳ 10 systems. Recent observational work shows that eclipses are either absent or extremely rare in ULXs, supporting the picture that most ULXs are stellar-mass binaries with companion stars more massive than the accretor.

  13. Stellar evolution at high mass with semiconvective mixing according to the Schwarzschild criterion

    NASA Technical Reports Server (NTRS)

    Stothers, R.; Chin, C.-W.

    1976-01-01

    Evolutionary sequences for stellar models with 10, 15, 30, and 60 solar masses, as well as four different initial chemical compositions, are calculated to the end of core helium burning using the Schwarzschild criterion for convection. The results are analyzed in terms of the modifications of interior structure and surface parameters induced by semiconvective mixing as a result of adopting the Schwarzschild criterion. It is found that the main differences from results based on the Ledoux criterion are the great extent of the convectively unstable layers in the intermediate zone and the eventual development of a fully convective zone at the base of the semiconvective one. It is shown that semiconvection develops outside the convective core just after the ZAMS stage for masses greater than 12 solar masses and just before the stage of central hydrogen exhaustion for masses greater than 6 solar masses. The present models are found to be insufficiently hot in comparison with the bulk of observed stable blue supergiants and to predict far too many red supergiants fro the range above 20 solar masses. It is concluded that something is fundamentally wrong with the models, the most likely suspects being the stellar opacities adopted and the neglect of mass loss.

  14. SMOOTH(ER) STELLAR MASS MAPS IN CANDELS: CONSTRAINTS ON THE LONGEVITY OF CLUMPS IN HIGH-REDSHIFT STAR-FORMING GALAXIES

    SciTech Connect

    Wuyts, Stijn; Foerster Schreiber, Natascha M.; Genzel, Reinhard; Lutz, Dieter; Guo Yicheng; Giavalisco, Mauro; Barro, Guillermo; Faber, Sandra M.; Kocevski, Dale D.; Koo, David C.; McGrath, Elizabeth; Dekel, Avishai; Ferguson, Henry C.; Grogin, Norman A.; Koekemoer, Anton M.; Lotz, Jennifer; Hathi, Nimish P.; Huang, Kuang-Han; Newman, Jeffrey A.; and others

    2012-07-10

    We perform a detailed analysis of the resolved colors and stellar populations of a complete sample of 323 star-forming galaxies (SFGs) at 0.5 < z < 1.5 and 326 SFGs at 1.5 < z < 2.5 in the ERS and CANDELS-Deep region of GOODS-South. Galaxies were selected to be more massive than 10{sup 10} M{sub Sun} and have specific star formation rates (SFRs) above 1/t{sub H} . We model the seven-band optical ACS + near-IR WFC3 spectral energy distributions of individual bins of pixels, accounting simultaneously for the galaxy-integrated photometric constraints available over a longer wavelength range. We analyze variations in rest-frame color, stellar surface mass density, age, and extinction as a function of galactocentric radius and local surface brightness/density, and measure structural parameters on luminosity and stellar mass maps. We find evidence for redder colors, older stellar ages, and increased dust extinction in the nuclei of galaxies. Big star-forming clumps seen in star formation tracers are less prominent or even invisible in the inferred stellar mass distributions. Off-center clumps contribute up to {approx}20% to the integrated SFR, but only 7% or less to the integrated mass of all massive SFGs at z {approx} 1 and z {approx} 2, with the fractional contributions being a decreasing function of wavelength used to select the clumps. The stellar mass profiles tend to have smaller sizes and M20 coefficients, and higher concentration and Gini coefficients than the light distribution. Our results are consistent with an inside-out disk growth scenario with brief (100-200 Myr) episodic local enhancements in star formation superposed on the underlying disk. Alternatively, the young ages of off-center clumps may signal inward clump migration, provided this happens efficiently on the order of an orbital timescale.

  15. LOW-METALLICITY PROTOSTARS AND THE MAXIMUM STELLAR MASS RESULTING FROM RADIATIVE FEEDBACK: SPHERICALLY SYMMETRIC CALCULATIONS

    SciTech Connect

    Hosokawa, Takashi; Omukai, Kazuyuki E-mail: hosokawa@th.nao.ac.j

    2009-10-01

    The final mass of a newborn star is set at the epoch when the mass accretion onto the star is terminated. We study the evolution of accreting protostars and the limits of accretion in low-metallicity environments under spherical symmetry. Accretion rates onto protostars are estimated via the temperature evolution of prestellar cores with different metallicities. The derived rates increase with decreasing metallicity, from M-dot{approx_equal}10{sup -6} M odot yr{sup -1} at Z = Z {sub sun} to 10{sup -3} M {sub sun} yr{sup -1} at Z = 0. With the derived accretion rates, the protostellar evolution is numerically calculated. We find that, at lower metallicity, the protostar has a larger radius and reaches the zero-age main sequence (ZAMS) at higher stellar mass. Using this protostellar evolution, we evaluate the upper stellar mass limit where the mass accretion is hindered by radiative feedback. We consider the effects of radiation pressure exerted on the accreting envelope, and expansion of an H II region. The mass accretion is finally terminated by radiation pressure on dust grains in the envelope for Z approx> 10{sup -3} Z {sub sun} and by the expanding H II region for lower metallicity. The mass limit from these effects increases with decreasing metallicity from M {sub *} {approx_equal} 10 M {sub sun} at Z = Z {sub sun} to {approx_equal}300 M {sub sun} at Z = 10{sup -6} Z {sub sun}. The termination of accretion occurs after the central star arrives at the ZAMS at all metallicities, which allows us to neglect protostellar evolution effects in discussing the upper mass limit by stellar feedback. The fragmentation induced by line cooling in low-metallicity clouds yields prestellar cores with masses large enough that the final stellar mass is set by the feedback effects. Although relaxing the assumption of spherical symmetry will alter feedback effects, our results will be a benchmark for more realistic evolution to be explored in future studies.

  16. Growing massive black holes through supercritical accretion of stellar-mass seeds

    NASA Astrophysics Data System (ADS)

    Lupi, A.; Haardt, F.; Dotti, M.; Fiacconi, D.; Mayer, L.; Madau, P.

    2016-03-01

    The rapid assembly of the massive black holes that power the luminous quasars observed at z ˜ 6-7 remains a puzzle. Various direct collapse models have been proposed to head-start black hole growth from initial seeds with masses ˜105 M⊙, which can then reach a billion solar mass while accreting at the Eddington limit. Here, we propose an alternative scenario based on radiatively inefficient supercritical accretion of stellar-mass holes embedded in the gaseous circumnuclear discs (CNDs) expected to exist in the cores of high-redshift galaxies. Our sub-pc resolution hydrodynamical simulations show that stellar-mass holes orbiting within the central 100 pc of the CND bind to very high density gas clumps that arise from the fragmentation of the surrounding gas. Owing to the large reservoir of dense cold gas available, a stellar-mass black hole allowed to grow at super-Eddington rates according to the `slim-disc' solution can increase its mass by three orders of magnitudes within a few million years. These findings are supported by simulations run with two different hydro codes, RAMSES based on the Adaptive Mesh Refinement technique and GIZMO based on a new Lagrangian Godunov-type method, and with similar, but not identical, sub-grid recipes for star formation, supernova feedback, black hole accretion and feedback. The low radiative efficiency of supercritical accretion flows are instrumental to the rapid mass growth of our black holes, as they imply modest radiative heating of the surrounding nuclear environment.

  17. The Vimos VLT Deep Survey. Stellar mass segregation and large-scale galaxy environment in the redshift range 0.2 < z < 1.4

    NASA Astrophysics Data System (ADS)

    Scodeggio, M.; Vergani, D.; Cucciati, O.; Iovino, A.; Franzetti, P.; Garilli, B.; Lamareille, F.; Bolzonella, M.; Pozzetti, L.; Abbas, U.; Marinoni, C.; Contini, T.; Bottini, D.; Le Brun, V.; Le Fèvre, O.; Maccagni, D.; Scaramella, R.; Tresse, L.; Vettolani, G.; Zanichelli, A.; Adami, C.; Arnouts, S.; Bardelli, S.; Cappi, A.; Charlot, S.; Ciliegi, P.; Foucaud, S.; Gavignaud, I.; Guzzo, L.; Ilbert, O.; McCracken, H. J.; Marano, B.; Mazure, A.; Meneux, B.; Merighi, R.; Paltani, S.; Pellò, R.; Pollo, A.; Radovich, M.; Zamorani, G.; Zucca, E.; Bondi, M.; Bongiorno, A.; Brinchmann, J.; de La Torre, S.; de Ravel, L.; Gregorini, L.; Memeo, P.; Perez-Montero, E.; Mellier, Y.; Temporin, S.; Walcher, C. J.

    2009-07-01

    Context: Hierarchical models of galaxy formation predict that the properties of a dark matter halo depend on the large-scale environment surrounding the halo. As a result of this correlation, we expect massive haloes to be present in larger number in overdense regions than in underdense ones. Given that a correlation exists between a galaxy stellar mass and the hosting dark matter halo mass, the segregation in dark matter halo mass should then result in a segregation in the distribution of stellar mass in the galaxy population. Aims: In this work we study the distribution of galaxy stellar mass and rest-frame optical color as a function of the large-scale galaxy distribution using the VLT VIMOS Deep Survey sample, in order to verify the presence of segregation in the properties of the galaxy population. Methods: We use VVDS redshift measurements and multi-band photometric data to derive estimates of the stellar mass, rest-frame optical color, and of the large-scale galaxy density, on a scale of approximately 8 Mpc, for a sample of 5619 galaxies in the redshift range 0.2mass and optical color segregation over the whole redshift interval covered by our sample, such that the median value of the mass distribution is larger and the rest-frame optical color is redder in regions of high galaxy density. The amplitude of the mass segregation changes little with redshift, at least in the high stellar mass regime that we can uniformly sample over the 0.2 < z < 1.4 redshift interval. The color segregation, instead, decreases significantly for z > 0.7. However, when we consider only galaxies in narrow bins of stellar mass, in order to exclude the effects of stellar mass segregation on galaxy properties, we no longer observe any significant color segregation. Based on data obtained with the European Southern Observatory Very Large Telescope, Paranal, Chile, program 070.A-9007(A), and on data obtained at the Canada-France-Hawaii Telescope

  18. Confirmation of Small Dynamical and Stellar Masses for Extreme Emission Line Galaxies at z Approx. 2

    NASA Technical Reports Server (NTRS)

    Maseda, Michael V.; van Der Wel, Arjen; da Cunha, Elisabete; Rix, Hans-Walter; Pacifici, Camilla; Momcheva, Ivelina; Brammer, Gabriel B.; Franx, Marijn; van Dokkum, Pieter; Bell, Eric F.; Fumagalli, Mattia; Grogin, Norman A.; Kocevski, Dale D.; Koekemoer, Anton M.; Lundgren, Britt F.; Marchesini, Danilo; Nelson, Eric J.; Patel, Shannon G.; Skelton, Rosalind E.; Straughn, Amber N.; Trump. Jonathan R.; Weiner, Benjamin J.; Whitaker, Katherine E.; Wuyts, Stijn

    2013-01-01

    Spectroscopic observations from the Large Binocular Telescope and the Very Large Telescope reveal kinematically narrow lines (approx. 50 km/s) for a sample of 14 extreme emission line galaxies at redshifts 1.4 < z < 2.3. These measurements imply that the total dynamical masses of these systems are low (< or approx. 3 × 10(exp 9) M). Their large [O III] (lambda)5007 equivalent widths (500-1100 Angstroms) and faint blue continuum emission imply young ages of 10-100 Myr and stellar masses of 10(exp 8)-10(exp 9)M, confirming the presence of a violent starburst. The dynamical masses represent the first such determinations for low-mass galaxies at z > 1. The stellar mass formed in this vigorous starburst phase represents a large fraction of the total (dynamical) mass, without a significantly massive underlying population of older stars. The occurrence of such intense events in shallow potentials strongly suggests that supernova-driven winds must be of critical importance in the subsequent evolution of these systems.

  19. Influence of a stellar wind on the evolution of a star of 30 solar masses

    NASA Technical Reports Server (NTRS)

    Stothers, R.; Chin, C.

    1980-01-01

    A coarse grid of theoretical evolutionary tracks was calculated for a 30 solar mass star to determine the role of mass loss in the evolution of the star during core He burning. The Cox-Stewart opacities were applied, and the rate of mass loss, criterion for convection, and initial chemical composition were taken into consideration. Using the Schwarzschild criterion, the star undergoes little mass loss during core He burning and remains a blue supergiant separated from main sequence stars on the H-R diagram. The stellar remnant consists of the original He core and may appear bluer than equally luminous main sequence stars; a variety of possible evolutionary tracks can be obtained for an initial solar mass of 30 with proper choices of free parameters.

  20. Linking low- to high-mass young stellar objects with Herschel-HIFI observations of water

    NASA Astrophysics Data System (ADS)

    San José-García, I.; Mottram, J. C.; van Dishoeck, E. F.; Kristensen, L. E.; van der Tak, F. F. S.; Braine, J.; Herpin, F.; Johnstone, D.; van Kempen, T. A.; Wyrowski, F.

    2016-01-01

    Context. Water probes the dynamics in young stellar objects (YSOs) effectively, especially shocks in molecular outflows. It is therefore a key molecule for exploring whether the physical properties of low-mass protostars can be extrapolated to massive YSOs, an important step in understanding the fundamental mechanisms regulating star formation. Aims: As part of the WISH key programme, we investigate excited water line properties as a function of source luminosity, in particular the dynamics and the excitation conditions of shocks along the outflow cavity wall. Methods: Velocity-resolved Herschel-HIFI spectra of the H2O 202-111 (988 GHz), 211-202 (752 GHz) and 312-303 (1097 GHz) lines were analysed, together with 12CO J = 10-9 and 16-15, for 52 YSOs with bolometric luminosities ranging from <1 to >105 L⊙. The H2O and 12CO line profiles were decomposed into multiple Gaussian components which are related to the different physical structures of the protostellar system. The non-LTE radiative transfer code radex was used to constrain the excitation conditions of the shocks along the outflow cavity. Results: The profiles of the three excited water lines are similar, indicating that they probe the same gas. Two main emission components are seen in all YSOs: a broad component associated with non-dissociative shocks in the outflow cavity wall ("cavity shocks") and a narrow component associated with the quiescent envelope material. More than 60% of the total integrated intensity in the excited water lines comes from the broad cavity shock component, while the remaining emission comes mostly from the envelope for low-mass Class I, intermediate- and high-mass objects, and dissociative "spot shocks" for low-mass Class 0 protostars. The widths of the water lines are surprisingly similar from low- to high-mass YSOs, whereas 12CO J = 10-9 line widths increase slightly with Lbol. The excitation analysis of the cavity shock component shows stronger 752 GHz emission for high-mass

  1. VizieR Online Data Catalog: Stellar masses of optical & IR QSO hosts (Zhang+, 2016)

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Shi, Y.; Rieke, G. H.; Xia, X.; Wang, Y.; Sun, B.; Wan, L.

    2016-05-01

    This study builds on that of Shi et al. (2014, J/ApJS/214/23), who presented infrared spectroscopic and photometric observations of Palomar-Green (PG; Schmidt & Green 1983ApJ...269..352S) and 2MASS quasars (Cutri et al. 2001ASPC..232...78C; Smith et al. 2002, J/ApJ/569/23) and used them to derive SFRs. We complement these results by estimating the stellar masses using the optical/near-IR photometric measurements of quasar hosts from the literature based on Hubble Space Telescope (HST) and ground-based adaptive optics (AO) observations. (1 data file).

  2. Stellar and Intermediate-Mass Black Holes in the Milky Way and Nearby Galaxies

    SciTech Connect

    Irwin, Jimmy

    2010-08-09

    With the advent of high resolution X-ray telescopes, the ability to identify extragalactic black holes has greatly enhanced our understanding of massive compact objects, as we are no longer limited to the rather meager Milky Way black hole population. The greatly increased numbers have opened up opportunities to find new modes of compact object accretion and potentially long-sought evidence for intermediate-mass black holes. In this lecture series, the current state of knowledge of stellar- and intermediate-mass black holes is reviewed, particularly in regards to black hole populations in external galaxies.

  3. Dynamical Estimate of Post-main-sequence Stellar Masses in 47 Tucanae

    NASA Astrophysics Data System (ADS)

    Parada, Javiera; Richer, Harvey; Heyl, Jeremy; Kalirai, Jason; Goldsbury, Ryan

    2016-07-01

    We use the effects of mass segregation on the radial distribution of different stellar populations in the core of 47 Tucanae to find estimates for the masses of stars at different post-main-sequence evolutionary stages. We take samples of main-sequence (MS) stars from the core of 47 Tucanae, at different magnitudes (i.e., different masses), and use the effects of this dynamical process to develop a relation between the radial distance (RD) at which the cumulative distribution reaches the 20th and 50th percentile and stellar mass. From these relations we estimate the masses of different post-MS populations. We find that mass remains constant for stars going through the evolutionary stages from the upper MS up to the horizontal branch (HB). By comparing RDs of the HB stars with stars of lower masses, we can exclude a mass loss greater than 0.09 {M}⊙ during the red giant branch (RGB) stage at nearly the 3σ level. The slightly higher mass estimates for the asymptotic giant branch (AGB) are consistent with the AGB having evolved from somewhat more massive stars. The AGB also exhibits evidence of contamination by more massive stars, possibly blue straggler stars (BSSs), going through the RGB phase. We do not include the BSSs in this paper due to the complexity of these objects; instead, the complete analysis of this population is left for a companion paper. The process to estimate the masses described in this paper is exclusive to the core of 47 Tuc.

  4. Stellar mass to halo mass scaling relation for X-ray-selected low-mass galaxy clusters and groups out to redshift z ≈ 1

    NASA Astrophysics Data System (ADS)

    Chiu, I.; Saro, A.; Mohr, J.; Desai, S.; Bocquet, S.; Capasso, R.; Gangkofner, C.; Gupta, N.; Liu, J.

    2016-05-01

    We present the stellar mass-halo mass scaling relation for 46 X-ray-selected low-mass clusters or groups detected in the XMM-Newton-Blanco Cosmology Survey (XMM-BCS) survey with masses 2 × 1013 M⊙ ≲ M500 ≲ 2.5 × 1014 M⊙ (median mass 8 × 1013 M⊙) at redshift 0.1 ≤ z ≤ 1.02 (median redshift 0.47). The cluster binding masses M500 are inferred from the measured X-ray luminosities LX, while the stellar masses M⋆ of the galaxy populations are estimated using near-infrared (NIR) imaging from the South Pole Telescope Deep Field survey and optical imaging from the BCS survey. With the measured LX and stellar mass M⋆, we determine the best-fitting stellar mass-halo mass relation, accounting for selection effects, measurement uncertainties and the intrinsic scatter in the scaling relation. The resulting mass trend is M_{star }∝ M_{500}^{0.69± 0.15}, the intrinsic (lognormal) scatter is σ _{ln M_{star }|M_{500}}=0.36^{+0.07}_{-0.06}, and there is no significant redshift trend M⋆ ∝ (1 + z)-0.04 ± 0.47, although the uncertainties are still large. We also examine M⋆ within a fixed projected radius of 0.5 Mpc, showing that it provides a cluster binding mass proxy with intrinsic scatter of ≈93 per cent (1σ in M500). We compare our M⋆ = M⋆(M500, z) scaling relation from the XMM-BCS clusters with samples of massive, Sunyaev-Zel'dovich Effect selected clusters (M500 ≈ 6 × 1014 M⊙) and low-mass NIR-selected clusters (M500 ≈ 1014 M⊙) at redshift 0.6 ≲ z ≲ 1.3. After correcting for the known mass measurement systematics in the compared samples, we find that the scaling relation is in good agreement with the high-redshift samples, suggesting that for both groups and clusters the stellar content of the galaxy populations within R500 depends strongly on mass but only weakly on redshift out to z ≈ 1.

  5. Dark matter inside early-type galaxies as function of mass and redshift

    NASA Astrophysics Data System (ADS)

    Nigoche-Netro, A.; Ramos-Larios, G.; Lagos, P.; Ruelas-Mayorga, A.; de la Fuente, E.; Kemp, S. N.; Navarro, S. G.; Corral, L. J.; Hidalgo-Gámez, A. M.

    2016-10-01

    We study the behaviour of the dynamical and stellar mass inside the effective radius (re) of early-type galaxies (ETGs). We use several samples of ETGs - ranging from 19 000 to 98 000 objects - from the ninth data release of the Sloan Digital Sky Survey. We consider Newtonian dynamics, different light profiles and different initial mass functions (IMF) to calculate the dynamical and stellar mass. We assume that any difference between these two masses is due to dark matter and/or a non-universal IMF. The main results for galaxies in the redshift range 0.0024 < z < 0.3500 and in the dynamical mass range 9.5 < log(M) < 12.5 are: (i) a significant part of the intrinsic dispersion of the distribution of dynamical versus stellar mass is due to redshift; (ii) the difference between dynamical and stellar mass increases as a function of dynamical mass and decreases as a function of redshift; (iii) the difference between dynamical and stellar mass goes from approximately 0 to 70 per cent of the dynamical mass depending on mass and redshift; (iv) these differences could be due to dark matter or a non-universal IMF or a combination of both; (v) the amount of dark matter inside ETGs would be equal to or less than the difference between dynamical and stellar mass depending on the impact of the IMF on the stellar mass estimation; (vi) the previous results go in the same direction of some results of the Fundamental Plane (FP) found in the literature in the sense that they could be interpreted as an increase of dark matter along the FP and a dependence of the FP on redshift.

  6. The dependence of oxygen and nitrogen abundances on stellar mass from the CALIFA survey

    NASA Astrophysics Data System (ADS)

    Pérez-Montero, E.; García-Benito, R.; Vílchez, J. M.; Sánchez, S. F.; Kehrig, C.; Husemann, B.; Duarte Puertas, S.; Iglesias-Páramo, J.; Galbany, L.; Mollá, M.; Walcher, C. J.; Ascasíbar, Y.; González Delgado, R. M.; Marino, R. A.; Masegosa, J.; Pérez, E.; Rosales-Ortega, F. F.; Sánchez-Blázquez, P.; Bland-Hawthorn, J.; Bomans, D.; López-Sánchez, Á. R.; Ziegler, B.; Califa Collaboration

    2016-10-01

    Context. The study of the integrated properties of star-forming galaxies is central to understand their formation and evolution. Some of these properties are extensive and therefore their analysis require totally covering and spatially resolved observations. Among these properties, metallicity can be defined in spiral discs by means of integral field spectroscopy (IFS) of individual H ii regions. The simultaneous analysis of the abundances of primary elements, as oxygen, and secondary, as nitrogen, also provides clues about the star formation history and the processes that shape the build-up of spiral discs. Aims: Our main aim is to analyse simultaneously O/H and N/O abundance ratios in H ii regions in different radial positions of the discs in a large sample of spiral galaxies to obtain the slopes and the characteristic abundance ratios that can be related to their integrated properties. Methods: We analysed the optical spectra of individual selected H ii regions extracted from a sample of 350 spiral galaxies of the CALIFA survey. We calculated total O/H abundances and, for the first time, N/O ratios using the semi-empirical routine Hii-Chi-mistry, which, according to Pérez-Montero (2014, MNRAS, 441, 2663), is consistent with the direct method and reduces the uncertainty in the O/H derivation using [N ii] lines owing to the dispersion in the O/H-N/O relation. Then we performed linear fittings to the abundances as a function of the de-projected galactocentric distances. Results: The analysis of the radial distribution both for O/H and N/O in the non-interacting galaxies reveals that both average slopes are negative, but a non-negligible fraction of objects have a flat or even a positive gradient (at least 10% for O/H and 4% for N/O). The slopes normalised to the effective radius appear to have a slight dependence on the total stellar mass and the morphological type, as late low-mass objects tend to have flatter slopes. No clear relation is found, however, to

  7. The empirical mass distribution of hot B subdwarfs: Implications for stellar evolution theory

    NASA Astrophysics Data System (ADS)

    Van Grootel, V.; Fontaine, G.; Charpinet, S.; Brassard, P.; Green, E. M.

    2013-03-01

    Subdwarf B (sdB) stars are hot, compact, and evolved objects that form the very hot end of the horizontal branch, the so-called Extreme Horizontal Branch (EHB). Understanding the formation of sdB stars is one of the remaining challenges of stellar evolution theory. Several scenarios have been proposed to account for the existence of such objects, made of He-burning core surrounded by very thin H-rich envelope. They give quite different theoretical mass distributions for the resulting sdB stars. Detailed asteroseismic analyses, including mass estimates, of 15 pulsating hot B subdwarfs have been published since a decade. The masses have also been reliably determined by light curve modeling and spectroscopy for 7 sdB components of eclipsing and/or reflection effect binaries. These empirical mass distributions, although based on small-number statistics, can be compared with the expectations of stellar evolution theory. In particular, the two He white dwarfs merger scenario does not seem to be the dominant channel to form isolated sdB stars, while the post-red giant branch scenario is reinforced. This opens new questions on extreme mass loss of red giants to form EHB stars, possibly in connection with the recently discovered close substellar companions and planets orbiting sdB stars.

  8. Two stellar-mass black holes in the globular cluster M22.

    PubMed

    Strader, Jay; Chomiuk, Laura; Maccarone, Thomas J; Miller-Jones, James C A; Seth, Anil C

    2012-10-01

    Hundreds of stellar-mass black holes probably form in a typical globular star cluster, with all but one predicted to be ejected through dynamical interactions. Some observational support for this idea is provided by the lack of X-ray-emitting binary stars comprising one black hole and one other star ('black-hole/X-ray binaries') in Milky Way globular clusters, even though many neutron-star/X-ray binaries are known. Although a few black holes have been seen in globular clusters around other galaxies, the masses of these cannot be determined, and some may be intermediate-mass black holes that form through exotic mechanisms. Here we report the presence of two flat-spectrum radio sources in the Milky Way globular cluster M22, and we argue that these objects are black holes of stellar mass (each ∼10-20 times more massive than the Sun) that are accreting matter. We find a high ratio of radio-to-X-ray flux for these black holes, consistent with the larger predicted masses of black holes in globular clusters compared to those outside. The identification of two black holes in one cluster shows that ejection of black holes is not as efficient as predicted by most models, and we argue that M22 may contain a total population of ∼5-100 black holes. The large core radius of M22 could arise from heating produced by the black holes.

  9. Two stellar-mass black holes in the globular cluster M22.

    PubMed

    Strader, Jay; Chomiuk, Laura; Maccarone, Thomas J; Miller-Jones, James C A; Seth, Anil C

    2012-10-01

    Hundreds of stellar-mass black holes probably form in a typical globular star cluster, with all but one predicted to be ejected through dynamical interactions. Some observational support for this idea is provided by the lack of X-ray-emitting binary stars comprising one black hole and one other star ('black-hole/X-ray binaries') in Milky Way globular clusters, even though many neutron-star/X-ray binaries are known. Although a few black holes have been seen in globular clusters around other galaxies, the masses of these cannot be determined, and some may be intermediate-mass black holes that form through exotic mechanisms. Here we report the presence of two flat-spectrum radio sources in the Milky Way globular cluster M22, and we argue that these objects are black holes of stellar mass (each ∼10-20 times more massive than the Sun) that are accreting matter. We find a high ratio of radio-to-X-ray flux for these black holes, consistent with the larger predicted masses of black holes in globular clusters compared to those outside. The identification of two black holes in one cluster shows that ejection of black holes is not as efficient as predicted by most models, and we argue that M22 may contain a total population of ∼5-100 black holes. The large core radius of M22 could arise from heating produced by the black holes. PMID:23038466

  10. The Mass Function in h+(chi) Persei

    NASA Astrophysics Data System (ADS)

    Bragg, Ann; Kenyon, Scott

    2000-08-01

    Knowledge of the stellar initial mass function (IMF) is critical to understanding star formation and galaxy evolution. Past studies of the IMF in open clusters have primarily used luminosity functions to determine mass functions, frequently in relatively sparse clusters. Our goal with this project is to derive a reliable, well- sampled IMF for a pair of very dense young clusters (h+(chi) Persei) with ages, 1-2 × 10^7 yr (e.g., Vogt A& A 11:359), where stellar evolution theory is robust. We will construct the HR diagram using both photometry and spectral types to derive more accurate stellar masses and ages than are possible using photometry alone. Results from the two clusters will be compared to examine the universality of the IMF. We currently have a spectroscopic sample covering an area within 9 arc-minutes of the center of each cluster taken with the FAST Spectrograph. The sample is complete to V=15.4 and contains ~ 1000 stars. We request 2 nights at WIYN/HYDRA to extend this sample to deeper magnitudes, allowing us to determine the IMF of the clusters to a lower limiting mass and to search for a pre-main sequence, theoretically predicted to be present for clusters of this age. Note that both clusters are contained within a single HYDRA field.

  11. BEYOND THE MAIN SEQUENCE: TESTING THE ACCURACY OF STELLAR MASSES PREDICTED BY THE PARSEC EVOLUTIONARY TRACKS

    SciTech Connect

    Ghezzi, Luan; Johnson, John Asher

    2015-10-20

    Characterizing the physical properties of exoplanets and understanding their formation and orbital evolution requires precise and accurate knowledge of their host stars. Accurately measuring stellar masses is particularly important because they likely influence planet occurrence and the architectures of planetary systems. Single main-sequence stars typically have masses estimated from evolutionary tracks, which generally provide accurate results due to their extensive empirical calibration. However, the validity of this method for subgiants and giants has been called into question by recent studies, with suggestions that the masses of these evolved stars could have been overestimated. We investigate these concerns using a sample of 59 benchmark evolved stars with model-independent masses (from binary systems or asteroseismology) obtained from the literature. We find very good agreement between these benchmark masses and the ones estimated using evolutionary tracks. The average fractional difference in the mass interval ∼0.7–4.5 M{sub ⊙} is consistent with zero (−1.30 ± 2.42%), with no significant trends in the residuals relative to the input parameters. A good agreement between model-dependent and -independent radii (−4.81 ± 1.32%) and surface gravities (0.71 ± 0.51%) is also found. The consistency between independently determined ages for members of binary systems adds further support for the accuracy of the method employed to derive the stellar masses. Taken together, our results indicate that determination of masses of evolved stars using grids of evolutionary tracks is not significantly affected by systematic errors, and is thus valid for estimating the masses of isolated stars beyond the main sequence.

  12. AN INITIAL MASS FUNCTION STUDY OF THE DWARF STARBURST GALAXY NGC 4214

    SciTech Connect

    Andrews, J. E.; Calzetti, D.; Chandar, R.; Lee, J. C.; Whitmore, B.; Elmegreen, B. G.; Kennicutt, R. C.; Kissel, J. S.; Da Silva, Robert L.; Krumholz, Mark R.; O'Connell, R. W.; Dopita, M. A.; Frogel, Jay A.; Kim, Hwihyun E-mail: callzetti@astro.umass.edu

    2013-04-10

    The production rate of ionizing photons in young ({<=}8 Myr), unresolved stellar clusters in the nearby irregular galaxy NGC 4214 is probed using multi-wavelength Hubble Space Telescope WFC3 data. We normalize the ionizing photon rate by the cluster mass to investigate the upper end of the stellar initial mass function (IMF). We have found that within the uncertainties the upper end of the stellar IMF appears to be universal in this galaxy, and that deviations from a universal IMF can be attributed to stochastic sampling of stars in clusters with masses {approx}<10{sup 3} M{sub Sun }. Furthermore, we have found that there does not seem to be a dependence of the maximum stellar mass on the cluster mass. We have also found that for massive clusters, feedback may cause an underrepresentation in H{alpha} luminosities, which needs to be taken into account when conducting this type of analysis.

  13. Evidence for the inside-out growth of the stellar mass distribution in galaxy clusters since z ~ 1

    NASA Astrophysics Data System (ADS)

    van der Burg, Remco F. J.; Hoekstra, Henk; Muzzin, Adam; Sifón, Cristóbal; Balogh, Michael L.; McGee, Sean L.

    2015-05-01

    We study the radial number density and stellar mass density distributions of satellite galaxies in a sample of 60 massive clusters at 0.04 stellar masses, and then statistically subtract fore- and background sources using data from the COSMOS survey. We measure the galaxy number density and stellar mass density distributions in logarithmically spaced bins over 2 orders of magnitude in radial distance from the BCGs. For projected distances in the range 0.1 stellar mass distribution is well-described by an NFW profile with a concentration of c = 2.03 ± 0.20. However, at smaller radii we measure a significant excess in the stellar mass in satellite galaxies of about 1011M⊙ per cluster, compared to these NFW profiles. We do obtain good fits to generalised NFW profiles with free inner slopes and to Einasto profiles. To examine how clusters assemble their stellar mass component over cosmic time, we compare this local sample to the GCLASS cluster sample at z ~ 1, which represents the approximate progenitor sample of the low-z clusters. This allows for a direct comparison, which suggests that the central parts (R< 0.4 Mpc) of the stellar mass distributions of satellites in local galaxy clusters are already in place at z ~ 1, and contain sufficient excess material for further BCG growth. Evolving towards z = 0, clusters appear to assemble their stellar mass primarily onto the outskirts, making them grow in an inside-out fashion. Appendix A is available in electronic form at http://www.aanda.org

  14. The early gaseous and stellar mass assembly of Milky Way-type galaxy halos

    NASA Astrophysics Data System (ADS)

    Hensler, Gerhard; Petrov, Mykola

    2016-08-01

    How the Milky Way has accumulated its mass over the Hubble time, whether significant amounts of gas and stars were accreted from satellite galaxies, or whether the Milky Way has experienced an initial gas assembly and then evolved more-or-less in isolation is one of the burning questions in modern astronomy, because it has consequences for our understanding of galaxy formation in the cosmological context. Here we present the evolutionary model of a Milky Way-type satellite system zoomed into a cosmological large-scale simulation. Embedded into Dark Matter halos and allowing for baryonic processes these chemo-dynamical simulations aim at studying the gas and stellar loss from the satellites to feed the Milky Way halo and the stellar chemical abundances in the halo and the satellite galaxies.

  15. Absence of evidence is not evidence of absence: the colour-density relation at fixed stellar mass persists to z ~ 1

    NASA Astrophysics Data System (ADS)

    Cooper, Michael C.; Coil, Alison L.; Gerke, Brian F.; Newman, Jeffrey A.; Bundy, Kevin; Conselice, Christopher J.; Croton, Darren J.; Davis, Marc; Faber, S. M.; Guhathakurta, Puragra; Koo, David C.; Lin, Lihwai; Weiner, Benjamin J.; Willmer, Christopher N. A.; Yan, Renbin

    2010-11-01

    We use data drawn from the DEEP2 Galaxy Redshift Survey to investigate the relationship between local galaxy density, stellar mass and rest-frame galaxy colour. At z ~ 0.9, we find that the shape of the stellar mass function at the high-mass [ log 10(M*/h-2 Msolar) > 10.1] end depends on the local environment, with high-density regions favouring more massive systems. Accounting for this stellar mass-environment relation (i.e. working at fixed stellar mass), we find a significant colour-density relation for galaxies with 10.6 < log 10(M*/h-2 Msolar) < 11.1 and 0.75 < z < 0.95. This result is shown to be robust to variations in the sample selection and to extend to even lower masses [down to log 10(M*/h-2 Msolar) ~ 10.4]. We conclude by discussing our results in comparison to recent works in the literature, which report no significant correlation between galaxy properties and environment at fixed stellar mass for the same redshift and stellar mass domain. The non-detection of environmental dependence found in other data sets is largely attributable to their smaller sample sizes and lower sampling density, as well as systematic effects such as inaccurate redshifts and biased analysis techniques. Ultimately, our results based on DEEP2 data illustrate that the evolutionary state of a galaxy at z ~ 1 is not exclusively determined by the stellar mass of the galaxy. Instead, we show that local environment appears to play a distinct role in the transformation of galaxy properties at z > 1. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The observatory was made possible by the generous financial support of the W. M. Keck Foundation. E-mail: cooper@as.arizona.edu (MCC); cnaw@as.arizona.edu (CNAW); bjw@as.arizona.edu (BJW); bgerke@slac.stanford.edu (BFG); janewman

  16. Reassessing the Relation Between Stellar Mass, Metallicity, and Star Formation Rate in the Local Universe

    NASA Astrophysics Data System (ADS)

    Telford, Olivia Grace; Dalcanton, Julianne; Skillman, Evan D.; Conroy, Charlie

    2015-01-01

    There is considerable evidence that the well-established mass-metallicity relation in galaxies depends on a third parameter: star formation rate (SFR). The observed strength of this dependence varies substantially depending on the choice of metallicity calibration, but has significant implications for theories of galaxy evolution, as it constrains the interplay between infall of pristine gas, metal production due to star formation, and ejection of enriched gas from galaxies. We present a new analysis of the relation between stellar mass, gas phase metallicity and SFR for ~140,000 star-forming galaxies in the Sloan Digital Sky Survey. Using a new set of theoretically calibrated abundance diagnostics from Dopita et al. (2013), we find a weaker dependence of metallicity on SFR at fixed stellar mass than was found by previous studies using different calibration techniques for gas phase metallicity. We analyze possible biases in the derivation of mass, metallicity, and SFR that could cause the observed strength of the metallicity dependence on SFR to differ from reality, as the calculation of each of these quantities is subject to systematic errors. Chemical evolution models must carefully consider these sources of potential bias when accounting for metallicity dependence on SFR.

  17. HIGH- AND INTERMEDIATE-MASS YOUNG STELLAR OBJECTS IN THE LARGE MAGELLANIC CLOUD

    SciTech Connect

    Gruendl, Robert A.; Chu, Y.-H. E-mail: chu@astro.illinois.edu

    2009-09-01

    nebulae, and background galaxies. A comprehensive search for YSOs in the LMC has also been carried out by the SAGE team and reported by Whitney et al. There are three major differences between these two searches. (1) In the common region of color-magnitude space, {approx}850 of our 1172 probable YSOs are missed in the SAGE YSO catalog because their conservative point-source identification criteria have excluded YSOs superposed on complex stellar and interstellar environments. (2) About 20%-30% of the YSOs identified by the SAGE team are sources we classify as background galaxies. (3) The SAGE YSO catalog identifies YSO in parts of color-magnitude space that we excluded and thus contains more evolved or fainter YSOs missed by our analysis. The shortcomings and strengths of both these YSO catalogs should be considered prior to statistical studies of star formation in the LMC. Finally, the mid-infrared luminosity functions in the IRAC bands of our most likely YSO candidates in the LMC can be well described by N(L) {proportional_to} L {sup -1}, which is consistent with the Salpeter initial mass function if a mass-luminosity relation of L {proportional_to} M {sup 2.4} is adopted.

  18. FUV Spectra of Evolved Late-K and M Stars: Mass Loss Revisited and Stellar Activity

    NASA Technical Reports Server (NTRS)

    Harper, Graham M.

    2002-01-01

    This is the final report for the FUSE Cycle 1 program A100: FUV Spectra of Evolved Late-K and M Stars: Mass Loss revisited and Stellar Activity. Targets alpha TrA (K3 II) and gamma Cru (M3 III) were originally assigned 25 ksec each, to be observed in the medium aperture. Once the in-flight performance and telescope alignment problems were known, the observations were reprogrammed to optimized the scientific return of the program. Alpha TrA was scheduled for 25 ksec observations in both the medium and large apertures. The principle aim of this program was to measure the stellar FUV line and continuum emission, in order to estimate the photoionization radiation field and to determine the level of stellar activity through the fluxes in the collisionally excited high temperature diagnostics: C III 977Angstroms and O VI 1032,1038Angstrom doublet. The medium aperture observations were obtained successfully while the large aperture observations were thought by Johns Hopkins University (JHU)to be lost to satellite problems. There was insufficient signal-to- noise in the medium aperture short wavelength Sic channels to do quantitative science.

  19. Temperature-dependent nuclear partition functions and abundances in the stellar interior

    NASA Astrophysics Data System (ADS)

    Nabi, Jameel-Un; Nasser Tawfik, Abdel; Ezzelarab, Nada; Abas Khan, Ali

    2016-05-01

    We calculate the temperature-dependent nuclear partition functions (TDNPFs) and nuclear abundances for 728 nuclei, assuming nuclear statistical equilibrium (NSE). The theories of stellar evolution support NSE. Discrete nuclear energy levels have been calculated microscopically, using the pn-QRPA theory, up to an excitation energy of 10 MeV in the calculation of the TDNPFs. This feature of our paper distinguishes it from previous calculations. Experimental data is also incorporated wherever available to ensure the reliability of our results. Beyond 10 MeV, we employ a simple Fermi gas model and perform integration over the nuclear level densities to approximate the TDNPFs. We calculate nuclidic abundances, using the Saha equation, as a function of three parameters: stellar density, stellar temperature and the lepton-to-baryon content of stellar matter. All these physical parameters are considered to be extremely important in the stellar interior. The results obtained in this paper show that the equilibrium configuration of nuclei remains unaltered by increasing the stellar density (only the calculated nuclear abundances increase by roughly the same order of magnitude). Increasing the stellar temperature smoothes the equilibrium configuration showing peaks at the neutron-number magic nuclei.

  20. SUPER-CRITICAL GROWTH OF MASSIVE BLACK HOLES FROM STELLAR-MASS SEEDS

    SciTech Connect

    Madau, Piero; Haardt, Francesco; Dotti, Massimo

    2014-04-01

    We consider super-critical accretion with angular momentum onto stellar-mass black holes as a possible mechanism for growing billion-solar-mass black holes from light seeds at early times. We use the radiatively inefficient ''slim disk'' solution—advective, optically thick flows that generalize the standard geometrically thin disk model—to show how mildly super-Eddington intermittent accretion may significantly ease the problem of assembling the first massive black holes when the universe was less than 0.8 Gyr old. Because of the low radiative efficiencies of slim disks around non-rotating as well as rapidly rotating black holes, the mass e-folding timescale in this regime is nearly independent of the spin parameter. The conditions that may lead to super-critical growth in the early universe are briefly discussed.

  1. Super-critical Growth of Massive Black Holes from Stellar-mass Seeds

    NASA Astrophysics Data System (ADS)

    Madau, Piero; Haardt, Francesco; Dotti, Massimo

    2014-04-01

    We consider super-critical accretion with angular momentum onto stellar-mass black holes as a possible mechanism for growing billion-solar-mass black holes from light seeds at early times. We use the radiatively inefficient "slim disk" solution—advective, optically thick flows that generalize the standard geometrically thin disk model—to show how mildly super-Eddington intermittent accretion may significantly ease the problem of assembling the first massive black holes when the universe was less than 0.8 Gyr old. Because of the low radiative efficiencies of slim disks around non-rotating as well as rapidly rotating black holes, the mass e-folding timescale in this regime is nearly independent of the spin parameter. The conditions that may lead to super-critical growth in the early universe are briefly discussed.

  2. The Evolution of Advanced Merger (U)LIRGs on the Color-Stellar Mass Diagram

    NASA Astrophysics Data System (ADS)

    Guo, Rui; Hao, Cai-Na; Xia, Xiao-Yang

    2016-08-01

    Based on a sample of 79 local advanced merger (adv-merger) (U)LIRGs, we search for evidence of quenching processes by investigating the distributions of star formation history indicators (EW(Hα), EW(HΔA) and Dn(4000)) on the NUV-r color-mass and SFR-M * diagrams. The distributions of EW(Hα) and Dn(4000) on the NUV-r color-mass diagram show clear trends that at a given stellar mass, galaxies with redder NUV-r colors have smaller EW(Hα) and larger D n (4000). The reddest adv-merger (U)LIRGs close to the green valley mostly have D n (4000)> 1.4. In addition, in the SFR-M * diagram, as the SFR decreases, the EW(Hα) decreases and the D n (4000) increases, implying that the adv-merger (U)LIRGs on the star formation main sequence have more evolved stellar populations than those above the main sequence. These results indicate that a fraction of the adv-merger (U)LIRGs have already exhibited signs of fading from the starburst phase and that the NUV-r reddest adv-merger (U)LIRGs are likely at the initial stage of post-starbursts with an age of ∼ 1 Gyr, which is consistent with the gas exhaustion time-scales. Therefore, our results offer additional support for the fast evolutionary track from the blue cloud to the red sequence.

  3. Stellar, Remnant, Planetary, and Dark-Object Masses from Astrometric Microlensing

    NASA Technical Reports Server (NTRS)

    Gould, Andrew P.; Bennett, David P.; Boden, Andrew; Depoy, Darren L.; Gaudi, Scott B.; Griest, Kim; Han, Cheongho; Paczynski, Bohdan; Reid, I. Neill

    2004-01-01

    The primary goal of our project is to make a complete census of the stellar population of the Galaxy. We are broadening the term stellar here to include both ordinary stars and dark stars. Ordinary stars, burning their nuclear fuel and shining, can perhaps best be studied with traditional astronomical techniques, but dark stars, by which we include old brown dwarfs, black holes, old white dwarfs, neutron stars, and perhaps exotic objects such as mirror matter stars or primordial black holes, can only be studied by their gravitational effects. Traditionally, these objects have been probed in binaries, and thus selected in a way that may or may not be representative of their respective field populations. The only way to examine the field population of these stars is through microlensing, the deflection of light from a visible star in the background by an object (dark or not) in the foreground. When lensed, there are two images of the background star. Although these images cannot be resolved when the lens has a stellar mass, the lensing effect can be detected in two ways: photometrically, i.e. by measuring the magnification of the source by the lens, and astrometrically, i.e. by measuring the shift in the centroid of the two images. Photometric microlensing experiments have detected hundreds of microlensing events over the past decade. Despite its successes, photometric microlensing has so far been somewhat frustrating because these events are difficult to interpret. Almost nothing is known about the masses of individual lenses and very little is known about the statistical properties of the lenses treated as a whole, such as their average mass. Although probably over 100 of the lenses are in fact dark objects, we can't determine which they are, let alone investigate finer details such as what their masses are, and where they are in the Galaxy. With SIM, we will break the microlensing degeneracy, and allow detailed interpretation of individual microlensing events. We

  4. THE OBSERVABLE PRESTELLAR PHASE OF THE INITIAL MASS FUNCTION

    SciTech Connect

    Padoan, Paolo; Nordlund, Ake E-mail: aake@nbi.dk

    2011-11-15

    The observed similarities between the mass function of prestellar cores (CMF) and the stellar initial mass function (IMF) have led to the suggestion that the IMF is already largely determined in the gas phase. However, theoretical arguments show that the CMF may differ significantly from the IMF. In this Letter, we study the relation between the CMF and the IMF, as predicted by the IMF model of Padoan and Nordlund. We show that (1) the observed mass of prestellar cores is on average a few times smaller than that of the stellar systems they generate; (2) the CMF rises monotonically with decreasing mass, with a noticeable change in slope at approximately 3-5 M{sub Sun }, depending on mean density; (3) the selection of cores with masses larger than half their Bonnor-Ebert mass yields a CMF approximately consistent with the system IMF, rescaled in mass by the same factor as our model IMF, and therefore suitable to estimate the local efficiency of star formation, and to study the dependence of the IMF peak on cloud properties; and (4) only one in five pre-brown-dwarf core candidates is a true progenitor to a brown dwarf.

  5. Observational Constraints on Low-Mass Stellar Evolution and Planet Formation

    NASA Astrophysics Data System (ADS)

    Birkby, Jayne Louise

    2011-07-01

    Low-mass stars (? < 1.0M⊙) account for more than 70% of the galactic stellar population yet models describing the evolution of their fundamental properties lack stringent observational constraints, especially at early ages. Furthermore, recent observations indicate a significant discrepancy between model predictions and the precise (2 - 3%) observed, dynamical masses and radii measured using low-mass eclipsing binary systems (EBs). Additionally, the theory of planet formation via core accretion predicts notably less hot-Jupiter formation around M-dwarfs (Mdot ? ≤ 0.6M⊙), but as yet, no large enough study exists to robustly test it. Further still, it is predicted that the dynamic environment of stellar clusters, in which most stars are believed to form, hampers planet formation, but again, current null detections of planets in stellar clusters are not statistically significant to test the theory. More observations are required to cement both the theory of low-mass stellar evolution and planet formation. This thesis aims to provide the necessary constraints by uncovering new low-mass EBs and transiting exoplanets in time-series photometry and follow-up spectroscopy from the Monitor project, a photometric monitoring campaign of low-mass stars in nine young open clusters, and in the WFCAM Transit Survey (WTS), a photometric monitoring campaign of ∼10,000 field M-dwarfs. Chapters 3 and 4 present my study of the young (130 Myr) cluster, M 50. I confirm three EB candidates as cluster members, including evidence that one of these is in a triple system with a wide-separation, low-mass tertiary component. The derived masses and radii for this system and one further double-lined, non-cluster member are presented, but these objects required dedicated, single-slit spectroscopic follow-up to yield the accuracy required to test pre-main sequence models. My non-detection of planets in this cluster is consistent with the results of all other cluster transit surveys. The

  6. Bright Central Galaxies (BCGs) in Dark Energy Survey Science Verification Data: Stellar Mass Growth in X-Ray Selected Clusters and Groups Since z=1.2

    NASA Astrophysics Data System (ADS)

    Zhang, Yuanyuan; Miller, Christopher; McKay, Timothy; Dark Energy Survey Collaboration

    2015-04-01

    We study the stellar mass of bright central galaxies and its evolution with time. We use a new sample of 106 0 < z < 1 . 3 clusters that have been selected in the X-ray and confirmed with redshift follow-up from Dark Energy Survey (DES) Science Verification data. This new sample allows us to probe BCG evolution over a wide range of halo mass and redshift using a single data set. We derive constraints on the BCG stellar to halo mass relation as a function of cluster mass/redshift and investigate the stellar mass growth of BCGs to z = 1.2. At z < 0 . 9 , we find that the semi-analytical modeling reproduces the observed growth of BCGs. However, at z > 0 . 9 , we confirm previous findings that the observed BCGs appear to be overly-massive (luminous) when compared to the models. The growth rate for BCGs in a M200 =10 13 . 8 solar mass cluster at z=1.0 is observed to be slower than that predicted by hierarchical growth and semi-analytic modeling.

  7. Stellar Masses in the Mysterious Young Triple Star System AS 205

    NASA Astrophysics Data System (ADS)

    Encalada, Frankie; Rosero, Viviana A.; Prato, Lisa A.; Bruhns, Sara

    2015-01-01

    The lack of accurate absolute mass measurements for young, low-mass pre-main sequence stars is problematic for the calibration of stellar evolutionary track models. An on-going program to increase the sample of young star masses begins with mass ratio measurements in spectroscopic binaries. By the end of its 5-year duration, the GAIA all-sky mission will provide new astrometric measurements for young spectroscopic binaries down to separations of tens of microarcseconds, yielding absolute masses for double-lined systems. We obtain mass ratios by taking high-resolution spectra of young double-lined spectroscopic binaries over a few epochs to construct a radial velocity versus phase diagram. For the young spectroscopic binary AS 205B, using eight of our own spectra supplied by the CSHELL instrument on the IRTF at Mauna Kea, plus one from the literature, we estimate a period of approximately 140 days, an eccentricity of 0.7, and a mass-ratio of 0.5. This spectroscopic system comprises the secondary in a 1.4'' visual binary in which both the A and B components are surrounded by optically thick, actively accreting disks, making AS 205B a member of that rare class of young spectroscopic binaries with a primordial circumbinary disk.

  8. AGN host galaxy mass function in COSMOS. Is AGN feedback responsible for the mass-quenching of galaxies?

    NASA Astrophysics Data System (ADS)

    Bongiorno, A.; Schulze, A.; Merloni, A.; Zamorani, G.; Ilbert, O.; La Franca, F.; Peng, Y.; Piconcelli, E.; Mainieri, V.; Silverman, J. D.; Brusa, M.; Fiore, F.; Salvato, M.; Scoville, N.

    2016-04-01

    We investigate the role of supermassive black holes in the global context of galaxy evolution by measuring the host galaxy stellar mass function (HGMF) and the specific accretion rate, that is, λSAR, the distribution function (SARDF), up to z ~ 2.5 with ~1000 X-ray selected AGN from XMM-COSMOS. Using a maximum likelihood approach, we jointly fit the stellar mass function and specific accretion rate distribution function, with the X-ray luminosity function as an additional constraint. Our best-fit model characterizes the SARDF as a double power-law with mass-dependent but redshift-independent break, whose low λSAR slope flattens with increasing redshift while the normalization increases. This implies that for a given stellar mass, higher λSAR objects have a peak in their space density at earlier epoch than the lower λSAR objects, following and mimicking the well-known AGN cosmic downsizing as observed in the AGN luminosity function. The mass function of active galaxies is described by a Schechter function with an almost constant M∗⋆ and a low-mass slope α that flattens with redshift. Compared to the stellar mass function, we find that the HGMF has a similar shape and that up to log (M⋆/M⊙) ~ 11.5, the ratio of AGN host galaxies to star-forming galaxies is basically constant (~10%). Finally, the comparison of the AGN HGMF for different luminosity and specific accretion rate subclasses with a previously published phenomenological model prediction for the "transient" population, which are galaxies in the process of being mass-quenched, reveals that low-luminosity AGN do not appear to be able to contribute significantly to the quenching and that at least at high masses, that is, M⋆ > 1010.7 M⊙, feedback from luminous AGN (log Lbol ≳ 46 [erg/s]) may be responsible for the quenching of star formation in the host galaxy.

  9. Evidence for a fundamental stellar upper mass limit from clustered star formation, and some implications therof

    NASA Astrophysics Data System (ADS)

    Kroupa, Pavel; Weidner, Carsten

    Theoretical considerations lead to the expectation that stars should not have masses larger than about m_{max*}=60-120M_⊙, while the observational evidence has been ambiguous. Only very recently has a physical stellar mass limit near 150M_⊙ emerged thanks to modern high-resolution observations of local star-burst clusters. But this limit does not appear to depend on metallicity, in contradiction to theory. Important uncertainties remain though. It is now also emerging that star-clusters limit the masses of their constituent stars, such that a well-defined relation between the mass of the most massive star in a cluster and the cluster mass, m_{max}=F(M_{ecl}) ≤ m_{max*}≈ 150M_⊙, exists. One rather startling finding is that the observational data strongly favour clusters being built-up by consecutively forming more-massive stars until the most massive stars terminate further star-formation. The relation also implies that composite populations, which consist of many star clusters, most of which may be dissolved, must have steeper composite IMFs than simple stellar populations such as are found in individual clusters. Thus, for example, 10^5 Taurus-Auriga star-forming groups, each with 20 stars, will ever only sample the IMF below about 1M_⊙. This IMF will therefore not be identical to the IMF of one cluster with 2×, 10^6 stars. The implication is that the star-formation history of a galaxy critically determines its integrated galaxial IMF and thus the total number of supernovae per star and its chemical enrichment history. Galaxy formation and evolution models that rely on an invariant IMF would be wrong.

  10. The black hole mass and the stellar ring in NGC 3706

    SciTech Connect

    Gültekin, Kayhan; Richstone, Douglas O.; Gebhardt, Karl; Kormendy, John; Lauer, Tod R.; Bender, Ralf; Tremaine, Scott

    2014-02-01

    We determine the mass of the nuclear black hole (M) in NGC 3706, an early-type galaxy with a central surface brightness minimum arising from an apparent stellar ring, which is misaligned with respect to the galaxy's major axis at larger radii. We fit new HST/STIS and archival data with axisymmetric orbit models to determine M, mass-to-light ratio (Y {sub V}), and dark matter halo profile. The best-fit model parameters with 1σ uncertainties are M=(6.0{sub −0.9}{sup +0.7})×10{sup 8} M{sub ⊙} and Υ{sub V}=6.0±0.2 M{sub ⊙} L{sub ⊙,V}{sup −1} at an assumed distance of 46 Mpc. The models are inconsistent with no black hole at a significance of Δχ{sup 2} = 15.4 and require a dark matter halo to adequately fit the kinematic data, but the fits are consistent with a large range of plausible dark matter halo parameters. The ring is inconsistent with a population of co-rotating stars on circular orbits, which would produce a narrow line-of-sight velocity distribution (LOSVD). Instead, the ring's LOSVD has a small value of |V|/σ, the ratio of mean velocity to velocity dispersion. Based on the observed low |V|/σ, our orbit modeling, and a kinematic decomposition of the ring from the bulge, we conclude that the stellar ring contains stars that orbit in both directions. We consider potential origins for this unique feature, including multiple tidal disruptions of stellar clusters, a change in the gravitational potential from triaxial to axisymmetric, resonant capture and inclining of orbits by a binary black hole, and multiple mergers leading to gas being funneled to the center of the galaxy.

  11. Formation of in situ stellar haloes in Milky Way-mass galaxies

    NASA Astrophysics Data System (ADS)

    Cooper, Andrew P.; Parry, Owen H.; Lowing, Ben; Cole, Shaun; Frenk, Carlos

    2015-12-01

    We study the formation of stellar haloes in three Milky Way-mass galaxies using cosmological smoothed particle hydrodynamics simulations, focusing on the subset of halo stars that form in situ, as opposed to those accreted from satellites. In situ stars in our simulations dominate the stellar halo out to 20 kpc and account for 30-40 per cent of its total mass. We separate in situ halo stars into three straightforward, physically distinct categories according to their origin: stars scattered from the disc of the main galaxy (`heated disc'), stars formed from gas smoothly accreted on to the halo (`smooth' gas) and stars formed in streams of gas stripped from infalling satellites (`stripped' gas). We find that most belong to the stripped gas category. Those originating in smooth gas outside the disc tend to form at the same time and place as the stripped-gas population, suggesting that their formation is associated with the same gas-rich accretion events. The scattered disc star contribution is negligible overall but significant in the solar neighbourhood, where ≳90 per cent of stars on eccentric orbits once belonged to the disc. However, the distinction between halo and thick disc in this region is highly ambiguous. The chemical and kinematic properties of the different components are very similar at the present day, but the global properties of the in situ halo differ substantially between the three galaxies in our study. In our simulations, the hierarchical buildup of structure is the driving force behind not only the accreted stellar halo, but also those halo stars formed in situ.

  12. Forecasting life: a study of activity cycles in low-mass stars: lessons from long-term stellar light curves.

    PubMed

    Kafka, Stella

    2012-06-01

    Magnetic activity cycles are indirect traces of magnetic fields and can provide an insight on the nature and action of stellar dynamos and stellar magnetic activity. This, in turn, can determine local space weather and activity effects on stellar habitable zones. Using photometric monitoring of low-mass stars, we study the presence and properties of their magnetic activity cycles. We introduce long-term light curves of our sample stars, and discuss the properties of the observed trends, especially at spectral types where stars are fully convective (later than M3).

  13. Investigating a Possible New Heavyweight Champion for Stellar Mass Black Holes with XMM-Newton

    NASA Astrophysics Data System (ADS)

    Barnard, Robin

    Using methods described below, we have identified a record-breaking black hole candidate (BHC) associated with a globular cluster inside the Andromeda Galaxy (M31). Our BHC, known as XBo 135, has an inferred mass of 50 solar masses, around 60% heavier than the current record holder. We have been granted a 33 hr observation with the XMM-Newton X-ray observatory that will allow us to test different scenarios for the formation of such a beast. We are asking for $55k to support one postdoc (R. Barnard) for 6 months, travel to a conference to share our results, and publication in ApJ. We have strong observational evidence for two classes of black hole (BH): stellar mass BHs that are formed in the death throes of the most massive stars, and supermassive BHs that live at the centers of most galaxies. Stellar mass BHs are 3-30 times more massive than the Sun, while supermassive black holes 1 E+6 times more massive still. It is unknown how such massive black holes are formed, although we suspect the existence of a class of intermediate mass black holes that bridge the two populations. Our target, XBo 135, is an X-ray binary (XB) system where a compact object (neutron star or black hole) accretes material from a co-orbiting donor star; mass transfer from the donor to the compact object results in a huge release of energy, extracted from the gravitational potential energy of the in-falling matter. The material forms an accretion disk that gets faster and hotter as it approaches the accretor, extracting energy >10 times more efficiently than nuclear fusion. We have invented a method for identifying BHXBs from the X-ray emission alone, summarized as follows. At low accretion rates, all XBs exhibit strikingly similar emission that is dominated by a power law component with photon index <2, contributing >90% of the X-ray flux. Crucially, this emission is limited to luminosities below 10% of the Eddington limit , which is proportional to the mass of the accretor. If we observe low

  14. Mass Accretion Processes in Young Stellar Objects: Role of Intense Flaring Activity

    NASA Astrophysics Data System (ADS)

    Orlando, Salvatore; Reale, Fabio; Peres, Giovanni; Mignone, Andrea

    2014-11-01

    According to the magnetospheric accretion scenario, young low-mass stars are surrounded by circumstellar disks which they interact with through accretion of mass. The accretion builds up the star to its final mass and is also believed to power the mass outflows, which may in turn have a signicant role in removing the excess angular momentum from the star-disk system. Although the process of mass accretion is a critical aspect of star formation, some of its mechanisms are still to be fully understood. On the other hand, strong flaring activity is a common feature of young stellar objects (YSOs). In the Sun, such events give rise to perturbations of the interplanetary medium. Similar but more energetic phenomena occur in YSOs and may influence the circumstellar environment. In fact, a recent study has shown that an intense flaring activity close to the disk may strongly perturb the stability of circumstellar disks, thus inducing mass accretion episodes (Orlando et al. 2011). Here we review the main results obtained in the field and the future perspectives.

  15. Assisted Inspirals of Stellar Mass Black Holes Embedded in AGN Disks: Solving the "Final AU Problem"

    NASA Astrophysics Data System (ADS)

    Stone, Nicholas C.; Metzger, Brian D.; Haiman, Zoltán

    2016-09-01

    We explore the evolution of stellar mass black hole binaries (BHBs) which are formed in the self-gravitating disks of active galactic nuclei (AGN). Hardening due to three-body scattering and gaseous drag are effective mechanisms that reduce the semi-major axis of a BHB to radii where gravitational waves take over, on timescales shorter than the typical lifetime of the AGN disk. Taking observationally-motivated assumptions for the rate of star formation in AGN disks, we find a rate of disk-induced BHB mergers (R ˜ 3 yr^{-1} Gpc^{-3}, but with large uncertainties) that is comparable with existing estimates of the field rate of BHB mergers, and the approximate BHB merger rate implied by the recent Advanced LIGO detection of GW150914. BHBs formed thorough this channel will frequently be associated with luminous AGN, which are relatively rare within the sky error regions of future gravitational wave detector arrays. This channel could also possess a (potentially transient) electromagnetic counterpart due to super-Eddington accretion onto the stellar mass black hole following the merger.

  16. Stellar Masses, Star Formation Rates and X-ray Constraints on Galaxies in the Coma Cluster

    NASA Astrophysics Data System (ADS)

    Hrinda, Greg; Desjardins, T. D.; Hornschemeier, A. E.; Gallagher, S.; Hammer, D.; Miller, N. A.; Ptak, A.; Tzanavaris, P.; Johnson, K. E.; Walker, L.

    2014-01-01

    We report on new measurements of star formation rates and stellar masses in the “infall” region of the nearby Coma cluster of galaxies. This region is approximately 1 Mpc from the cluster core, where relatively gas-rich galaxies are interacting with the hot intracluster medium, providing an important view of the impact of cluster processes on galaxy evolution. We have used infrared and ultraviolet data available from both ground and spaced-based observations to make these measurements. The star formation rates and stellar mass values were verified via comparison with published results in the Coma core as well as the Sloan Digital Sky Survey spectral measurements. The infall region has also been observed by XMM-Newton to faint limits to obtain X-ray luminosities for the galaxies in this field. Specifically, we present X-ray photometry of approximately 20 galaxies with XMM-Newton coverage to constrain the X-ray - SFR correlation in a cluster environment. This project was supported by the Baltimore Excellence in STEM Teaching program via summer internship funding to Hrinda.

  17. THE SUPERMASSIVE BLACK HOLE MASS-SPHEROID STELLAR MASS RELATION FOR SERSIC AND CORE-SERSIC GALAXIES

    SciTech Connect

    Scott, Nicholas; Graham, Alister W; Schombert, James

    2013-05-01

    We have examined the relationship between supermassive black hole mass (M{sub BH}) and the stellar mass of the host spheroid (M{sub sph,*}) for a sample of 75 nearby galaxies. To derive the spheroid stellar masses we used improved Two Micron All Sky Survey K{sub s}-band photometry from the ARCHANGEL photometry pipeline. Dividing our sample into core-Sersic and Sersic galaxies, we find that they are described by very different M{sub BH}-M{sub sph,*} relations. For core-Sersic galaxies-which are typically massive and luminous, with M{sub BH} {approx}> 2 Multiplication-Sign 10{sup 8} M{sub Sun }-we find M{sub BH}{proportional_to} M{sub sph,*}{sup 0.97{+-}0.14}, consistent with other literature relations. However, for the Sersic galaxies-with typically lower masses, M{sub sph,*} {approx}< 3 Multiplication-Sign 10{sup 10} M{sub Sun }-we find M{sub BH}{proportional_to}M{sub sph,*}{sup 2.22{+-}0.58}, a dramatically steeper slope that differs by more than 2 standard deviations. This relation confirms that, for Sersic galaxies, M{sub BH} is not a constant fraction of M{sub sph,*}. Sersic galaxies can grow via the accretion of gas which fuels both star formation and the central black hole, as well as through merging. Their black hole grows significantly more rapidly than their host spheroid, prior to growth by dry merging events that produce core-Sersic galaxies, where the black hole and spheroid grow in lockstep. We have additionally compared our Sersic M{sub BH}-M{sub sph,*} relation with the corresponding relation for nuclear star clusters, confirming that the two classes of central massive object follow significantly different scaling relations.

  18. The evolving relation between star formation rate and stellar mass in the VIDEO survey since z = 3

    NASA Astrophysics Data System (ADS)

    Johnston, Russell; Vaccari, Mattia; Jarvis, Matt; Smith, Mathew; Giovannoli, Elodie; Häußler, Boris; Prescott, Matthew

    2015-11-01

    We investigate the star formation rate (SFR) and stellar mass, M*, relation of a star-forming (SF) galaxy (SFG) sample in the XMM-LSS field to z ˜ 3.0 using the near-infrared data from the VISTA Deep Extragalactic Observations (VIDEO) survey. Combining VIDEO with broad-band photometry, we use the SED fitting algorithm CIGALE to derive SFRs and M* and have adapted it to account for the full photometric redshift probability-distribution-function uncertainty. Applying an SF selection using the D4000 index, we find evidence for strong evolution in the normalization of the SFR-M* relation out to z ˜ 3 and a roughly constant slope of (SFR ∝ M_*^{α }) α = 0.69 ± 0.02 to z ˜ 1.7. We find this increases close to unity towards z ˜ 2.65. Alternatively, if we apply a colour selection, we find a distinct turnover in the SFR-M* relation between 0.7 ≲ z ≲ 2.0 at the high-mass end, and suggest that this is due to an increased contamination from passive galaxies. We find evolution of the specific SFR ∝ (1 + z)2.60 at log10(M*/M⊙) ˜ 10.5, out to z ≲ 2.4 with an observed flattening beyond z ˜ 2 with increased stellar mass. Comparing to a range of simulations we find the analytical scaling relation approaches, that invoke an equilibrium model, a good fit to our data, suggesting that a continual smooth accretion regulated by continual outflows may be a key driver in the overall growth of SFGs.

  19. Synthetic infrared images and spectral energy distributions of a young low-mass stellar cluster

    NASA Astrophysics Data System (ADS)

    Kurosawa, Ryuichi; Harries, Tim J.; Bate, Matthew R.; Symington, Neil H.

    2004-07-01

    We present three-dimensional Monte Carlo radiative-transfer models of a very young (<105 yr old) low-mass (50 Msolar) stellar cluster containing 23 stars and 27 brown dwarfs. The models use the density and the stellar mass distributions from the large-scale smoothed particle hydrodynamics (SPH) simulation of the formation of a low-mass stellar cluster by Bate, Bonnell and Bromm. Using adaptive mesh refinement, the SPH density is mapped to the radiative-transfer grid without loss of resolution. The temperature of the ISM and the circumstellar dust is computed using Lucy's Monte Carlo radiative equilibrium algorithm. Based on this temperature, we compute the spectral energy distributions of the whole cluster and the individual objects. We also compute simulated far-infrared Spitzer Space Telescope (SST) images (24-, 70-, and 160-μm bands) and construct colour-colour diagrams (near-infrared HKL and mid-infrared SST bands). The presence of accretion discs around the light sources influences the morphology of the dust temperature structure on a large scale (up to several 104 au). A considerable fraction of the interstellar dust is underheated compared with a model without the accretion discs because the radiation from the light sources is blocked/shadowed by the discs. The spectral energy distribution (SED) of the model cluster with accretion discs shows excess emission at λ= 3-30 μm and λ > 500 μm, compared with that without accretion discs. While the former excess is caused by the warm dust present in the discs, the latter is caused by the presence of the underheated (shadowed) dust. Our model with accretion discs around each object shows a similar distribution of spectral index (2.2-20 μm) values (i.e. Class 0-III sources) to that seen in the ρ Ophiuchus cloud. We confirm that the best diagnostics for identifying objects with accretion discs are mid-infrared (λ= 3-10 μm) colours (e.g. SST IRAC bands) rather than HKL colours.

  20. Determination of the stellar (n,γ) cross section of Ca40 with accelerator mass spectrometry

    NASA Astrophysics Data System (ADS)

    Dillmann, I.; Domingo-Pardo, C.; Heil, M.; Käppeler, F.; Wallner, A.; Forstner, O.; Golser, R.; Kutschera, W.; Priller, A.; Steier, P.; Mengoni, A.; Gallino, R.; Paul, M.; Vockenhuber, C.

    2009-06-01

    The stellar (n,γ) cross section of Ca40 at kT=25 keV has been measured with a combination of the activation technique and accelerator mass spectrometry (AMS). This combination is required when direct off-line counting of the produced activity is compromised by the long half-life and/or missing γ-ray transitions. The neutron activations were performed at the Karlsruhe Van de Graaff accelerator using the quasistellar neutron spectrum of kT=25 keV produced by the Li7(p,n)Be7 reaction. The subsequent AMS measurements were carried out at the Vienna Environmental Research Accelerator (VERA) with a 3 MV tandem accelerator. The doubly magic Ca40 is a bottle-neck isotope in incomplete silicon burning, and its neutron capture cross section determines the amount of leakage, thus impacting on the eventual production of iron group elements. Because of its high abundance, Ca40 can also play a secondary role as “neutron poison” for the s-process. Previous determinations of this value at stellar energies were based on time-of-flight measurements. Our method uses an independent approach, and yields for the Maxwellian-averaged cross section at kT=30 keV a value of <σ>30keV=5.73±0.34 mb.

  1. No Evidence for Multiple Stellar Populations in the Low-mass Galactic Globular Cluster E 3

    NASA Astrophysics Data System (ADS)

    Salinas, Ricardo; Strader, Jay

    2015-08-01

    Multiple stellar populations are a widespread phenomenon among Galactic globular clusters. Even though the origin of the enriched material from which new generations of stars are produced remains unclear, it is likely that self-enrichment will be feasible only in clusters massive enough to retain this enriched material. We searched for multiple populations in the low mass (M˜ 1.4× {10}4 {M}⊙ ) globular cluster E3, analyzing SOAR/Goodman multi-object spectroscopy centered on the blue cyanogen (CN) absorption features of 23 red giant branch stars. We find that the CN abundance does not present the typical bimodal behavior seen in clusters hosting multistellar populations, but rather a unimodal distribution that indicates the presence of a genuine single stellar population, or a level of enrichment much lower than in clusters that show evidence for two populations from high-resolution spectroscopy. E3 would be the first bona fide Galactic old globular cluster where no sign of self-enrichment is found. Based on observations obtained at the Southern Astrophysical Research (SOAR) Telescope, which is a joint project of the Ministério da Ciência, Tecnologia, e Inovação (MCTI) da República Federativa do Brasil, the US National Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel Hill (UNC), and Michigan State University (MSU).

  2. A stellar feedback origin for neutral hydrogen in high-redshift quasar-mass haloes

    NASA Astrophysics Data System (ADS)

    Faucher-Giguère, Claude-André; Feldmann, Robert; Quataert, Eliot; Kereš, Dušan; Hopkins, Philip F.; Murray, Norman

    2016-09-01

    Observations reveal that quasar host haloes at z ˜ 2 have large covering fractions of cool dense gas (≳60 per cent for Lyman limit systems within a projected virial radius). Most simulations have so far failed to explain these large observed covering fractions. We analyse a new set of 15 simulated massive haloes with explicit stellar feedback from the FIRE project, covering the halo mass range Mh ≈ 2 × 1012 - 1013 M⊙ at z = 2. This extends our previous analysis of the circum-galactic medium of high-redshift galaxies to more massive haloes. Active galactic nuclei (AGN) feedback is not included in these simulations. We find Lyman limit system covering fractions consistent with those observed around quasars. The large H I covering fractions arise from star formation-driven galactic winds, including winds from low-mass satellite galaxies that interact with cosmological filaments. We show that it is necessary to resolve these satellite galaxies and their winds to reproduce the large Lyman limit system covering fractions observed in quasar-mass haloes. Our simulations predict that galaxies occupying dark matter haloes of mass similar to quasars but without a luminous AGN should have Lyman limit system covering fractions comparable to quasars.

  3. New Insights on the Galactic Bulge Initial Mass Function

    NASA Astrophysics Data System (ADS)

    Calamida, A.; Sahu, K. C.; Casertano, S.; Anderson, J.; Cassisi, S.; Gennaro, M.; Cignoni, M.; Brown, T. M.; Kains, N.; Ferguson, H.; Livio, M.; Bond, H. E.; Buonanno, R.; Clarkson, W.; Ferraro, I.; Pietrinferni, A.; Salaris, M.; Valenti, J.

    2015-09-01

    We have derived the Galactic bulge initial mass function (IMF) of the Sagittarius Window Eclipsing Extrasolar Planet Search field in the mass range 0.15 \\lt M/{M}⊙ 1.0, using deep photometry collected with the Advanced Camera for Surveys on the Hubble Space Telescope. Observations at several epochs, spread over 9 years, allowed us to separate the disk and bulge stars down to very faint magnitudes, F814W ≈ 26 mag, with a proper-motion accuracy better than 0.5 mas yr-1 (20 km s-1). This allowed us to determine the IMF of the pure bulge component uncontaminated by disk stars for this low-reddening field in the Sagittarius window. In deriving the mass function, we took into account the presence of unresolved binaries, errors in photometry, distance modulus and reddening, as well as the metallicity dispersion and the uncertainties caused by adopting different theoretical color-temperature relations. We found that the Galactic bulge IMF can be fitted with two power laws with a break at M˜ 0.56 {M}⊙ , the slope being steeper (α =-2.41+/- 0.50) for the higher masses, and shallower (α =-1.25+/- 0.20) for the lower masses. In the high-mass range, our derived mass function agrees well with the mass function derived for other regions of the bulge. In the low-mass range however, our mass function is slightly shallower, which suggests that separating the disk and bulge components is particularly important in the low-mass range. The slope of the bulge mass function is also similar to the slope of the mass function derived for the disk in the high-mass regime, but the bulge mass function is slightly steeper in the low-mass regime. We used our new mass function to derive stellar mass-to-light values for the Galactic bulge and we obtained 2.1 \\lt M/{L}F814W \\lt 2.4 and 3.1 \\lt M/{L}F606W \\lt 3.6 according to different assumptions on the slope of the IMF for masses larger than 1{M}⊙ . Based on observations made with the NASA/ESA Hubble Space Telescope, obtained by the

  4. UNCOVERING DRIVERS OF DISK ASSEMBLY: BULGELESS GALAXIES AND THE STELLAR MASS TULLY-FISHER RELATION

    SciTech Connect

    Miller, Sarah H.; Sullivan, Mark; Ellis, Richard S.

    2013-01-01

    In order to determine what processes govern the assembly history of galaxies with rotating disks, we examine the stellar mass Tully-Fisher (TF) relation over a wide range in redshift partitioned according to whether or not galaxies contain a prominent bulge. Using our earlier Keck spectroscopic sample, for which bulge/total parameters are available from analyses of Hubble Space Telescope images, we find that bulgeless disk galaxies with z > 0.8 present a significant offset from the local (TF) relation whereas, at all redshifts probed, those with significant bulges fall along the local relation. Our results support the suggestion that bulge growth may somehow expedite the maturing of disk galaxies onto the (TF) relation. We discuss a variety of physical hypotheses that may explain this result in the context of kinematic observations of star-forming galaxies at redshifts z = 0 and z > 2.

  5. CHARACTERIZING THE BROWN DWARF FORMATION CHANNELS FROM THE INITIAL MASS FUNCTION AND BINARY-STAR DYNAMICS

    SciTech Connect

    Thies, Ingo; Pflamm-Altenburg, Jan; Kroupa, Pavel; Marks, Michael

    2015-02-10

    The stellar initial mass function (IMF) is a key property of stellar populations. There is growing evidence that the classical star-formation mechanism by the direct cloud fragmentation process has difficulties reproducing the observed abundance and binary properties of brown dwarfs and very-low-mass stars. In particular, recent analytical derivations of the stellar IMF exhibit a deficit of brown dwarfs compared to observational data. Here we derive the residual mass function of brown dwarfs as an empirical measure of the brown dwarf deficiency in recent star-formation models with respect to observations and show that it is compatible with the substellar part of the Thies-Kroupa IMF and the mass function obtained by numerical simulations. We conclude that the existing models may be further improved by including a substellar correction term that accounts for additional formation channels like disk or filament fragmentation. The term ''peripheral fragmentation'' is introduced here for such additional formation channels. In addition, we present an updated analytical model of stellar and substellar binarity. The resulting binary fraction and the dynamically evolved companion mass-ratio distribution are in good agreement with observational data on stellar and very-low-mass binaries in the Galactic field, in clusters, and in dynamically unprocessed groups of stars if all stars form as binaries with stellar companions. Cautionary notes are given on the proper analysis of mass functions and the companion mass-ratio distribution and the interpretation of the results. The existence of accretion disks around young brown dwarfs does not imply that these form just like stars in direct fragmentation.

  6. The dwarfs beyond: The stellar-to-halo mass relation for a new sample of intermediate redshift low-mass galaxies

    SciTech Connect

    Miller, Sarah H.; Ellis, Richard S.; Newman, Andrew B.; Benson, Andrew

    2014-02-20

    A number of recent challenges to the standard ΛCDM paradigm relate to discrepancies that arise in comparing the abundance and kinematics of local dwarf galaxies with the predictions of numerical simulations. Such arguments rely heavily on the assumption that the Local Volume's dwarf and satellite galaxies form a representative distribution in terms of their stellar-to-halo mass ratios. To address this question, we present new, deep spectroscopy using DEIMOS on Keck for 82 low-mass (10{sup 7}-10{sup 9} M {sub ☉}), star-forming galaxies at intermediate redshift (0.2 < z < 1). For 50% of these we are able to determine resolved rotation curves using nebular emission lines and thereby construct the stellar mass Tully-Fisher relation to masses as low as 10{sup 7} M {sub ☉}. Using scaling relations determined from weak lensing data, we convert this to a stellar-to-halo mass relation for comparison with abundance matching predictions. We find a discrepancy between our observations and the predictions from abundance matching in the sense that we observe 3-12 times more stellar mass at a given halo mass. We suggest possible reasons for this discrepancy, as well as improved tests for the future.

  7. ON THE INTERMEDIATE-REDSHIFT CENTRAL STELLAR MASS-HALO MASS RELATION, AND IMPLICATIONS FOR THE EVOLUTION OF THE MOST MASSIVE GALAXIES SINCE z ∼ 1

    SciTech Connect

    Shankar, Francesco; Buchan, Stewart; Guo, Hong; Zheng, Zheng; Bouillot, Vincent; Rettura, Alessandro; Meert, Alan; Bernardi, Mariangela; Sheth, Ravi; Vikram, Vinu; Kravtsov, Andrey; Marchesini, Danilo; Behroozi, Peter; Maraston, Claudia; Capozzi, Diego; Ascaso, Begoña; Huertas-Company, Marc; Lemaux, Brian C.; Gal, Roy R.; Lubin, Lori M.; and others

    2014-12-20

    The stellar mass-halo mass relation is a key constraint in all semi-analytic, numerical, and semi-empirical models of galaxy formation and evolution. However, its exact shape and redshift dependence remain under debate. Several recent works support a relation in the local universe steeper than previously thought. Based on comparisons with a variety of data on massive central galaxies, we show that this steepening holds up to z ∼ 1 for stellar masses M {sub star} ≳ 2 × 10{sup 11} M {sub ☉}. Specifically, we find significant evidence for a high-mass end slope of β ≳ 0.35-0.70 instead of the usual β ≲ 0.20-0.30 reported by a number of previous results. When including the independent constraints from the recent Baryon Oscillation Spectroscopic Survey clustering measurements, the data, independent of any systematic errors in stellar masses, tend to favor a model with a very small scatter (≲ 0.15 dex) in stellar mass at fixed halo mass, in the redshift range z < 0.8 and for M {sub star} > 3 × 10{sup 11} M {sub ☉}, suggesting a close connection between massive galaxies and host halos even at relatively recent epochs. We discuss the implications of our results with respect to the evolution of the most massive galaxies since z ∼ 1.

  8. ATOMIC PARTITION FUNCTION FOR STELLAR ATMOSPHERES AND PLASMA DIAGNOSTICS

    SciTech Connect

    Cardona, O.; Martinez-Arroyo, M.; Lopez-Castillo, M. A. E-mail: mmtz@inaoep.m

    2010-03-01

    A new approximate partition function is derived as a function of temperature and total number density of particles in the given system, and three adjustable parameters. The derivation assumes that we can simulate the calculations of the partition function for hydrogen by means of averages of the energies and sums of the statistical weights. We present the procedure and mathematical process to obtain an approximate analytic function and its derivatives that depend on those parameters. The comparisons with other calculations reported in the literature show good agreement. The free parameters of this function are calculated and given in a table for all the ions of the first 20 atomic species.

  9. STELLAR-MASS BLACK HOLE SPIN CONSTRAINTS FROM DISK REFLECTION AND CONTINUUM MODELING

    SciTech Connect

    Miller, J. M.; Reynolds, C. S.; Fabian, A. C.; Miniutti, G.; Gallo, L. C.

    2009-05-20

    Accretion disk reflection spectra, including broad iron emission lines, bear the imprints of the strong Doppler shifts and gravitational redshifts close to black holes. The extremity of these shifts depends on the proximity of the innermost stable circular orbit to the black hole, and that orbit is determined by the black hole spin parameter. Modeling relativistic spectral features, then, gives a means of estimating black hole spin. We report on the results of fits made to archival X-ray spectra of stellar-mass black holes and black hole candidates, selected for strong disk reflection features. Following recent work, these spectra were fit with reflection models and disk continuum emission models (where required) in which black hole spin is a free parameter. Although our results must be regarded as preliminary, we find evidence for a broad range of black hole spin parameters in our sample. The black holes with the most relativistic radio jets are found to have high spin parameters, though jets are observed in a black hole with a low spin parameter. For those sources with constrained binary system parameters, we examine the distribution of spin parameters versus black hole mass, binary mass ratio, and orbital period. We discuss the results within the context of black hole creation events, relativistic jet production, and efforts to probe the innermost relativistic regime around black holes.

  10. THE XMM CLUSTER SURVEY: THE BUILD-UP OF STELLAR MASS IN BRIGHTEST CLUSTER GALAXIES AT HIGH REDSHIFT

    SciTech Connect

    Stott, J. P.; Collins, C. A.; Hilton, M.; Capozzi, D.; Sahlen, M.; Lloyd-Davies, E.; Hosmer, M.; Liddle, A. R.; Mehrtens, N.; Romer, A. K.; Miller, C. J.; Stanford, S. A.; Viana, P. T. P.; Davidson, M.; Hoyle, B.; Kay, S. T.; Nichol, R. C.

    2010-07-20

    We present deep J- and K{sub s} -band photometry of 20 high redshift galaxy clusters between z = 0.8 and1.5, 19 of which are observed with the MOIRCS instrument on the Subaru telescope. By using near-infrared light as a proxy for stellar mass we find the surprising result that the average stellar mass of Brightest Cluster Galaxies (BCGs) has remained constant at {approx}9 x 10{sup 11} M {sub sun} since z {approx} 1.5. We investigate the effect on this result of differing star formation histories generated by three well-known and independent stellar population codes and find it to be robust for reasonable, physically motivated choices of age and metallicity. By performing Monte Carlo simulations we find that the result is unaffected by any correlation between BCG mass and cluster mass in either the observed or model clusters. The large stellar masses imply that the assemblage of these galaxies took place at the same time as the initial burst of star formation. This result leads us to conclude that dry merging has had little effect on the average stellar mass of BCGs over the last 9-10 Gyr in stark contrast to the predictions of semi-analytic models, based on the hierarchical merging of dark matter halos, which predict a more protracted mass build-up over a Hubble time. However, we discuss that there is potential for reconciliation between observation and theory if there is a significant growth of material in the intracluster light over the same period.

  11. The impact of chromospheric activity on observed initial mass functions

    SciTech Connect

    Stassun, Keivan G.; Scholz, Aleks; Dupuy, Trent J.; Kratter, Kaitlin M.

    2014-12-01

    Using recently established empirical calibrations for the impact of chromospheric activity on the radii, effective temperatures, and estimated masses of active low-mass stars and brown dwarfs, we reassess the shape of the initial mass function (IMF) across the stellar/substellar boundary in the Upper Sco star-forming region (age ∼ 5-10 Myr). We adjust the observed effective temperatures to warmer values using the observed strength of the chromospheric Hα emission, and redetermine the estimated masses of objects using pre-main-sequence evolutionary tracks in the H-R diagram. The effect of the activity-adjusted temperatures is to shift the objects to higher masses by 3%-100%. While the slope of the resulting IMF at substellar masses is not strongly changed, the peak of the IMF does shift from ≈0.06 to ≈0.11 M {sub ☉}. Moreover, for objects with masses ≲ 0.2 M {sub ☉}, the ratio of brown dwarfs to stars changes from ∼80% to ∼33%. These results suggest that activity corrections are essential for studies of the substellar mass function, if the masses are estimated from spectral types or from effective temperatures.

  12. A Search For Stellar-mass Black Holes Via Astrometric Microlensing

    NASA Astrophysics Data System (ADS)

    Lu, J. R.; Sinukoff, E.; Ofek, E. O.; Udalski, A.; Kozlowski, S.

    2016-10-01

    While dozens of stellar-mass black holes (BHs) have been discovered in binary systems, isolated BHs have eluded detection. Their presence can be inferred when they lens light from a background star. We attempt to detect the astrometric lensing signatures of three photometrically identified microlensing events, OGLE-2011-BLG-0022, OGLE-2011-BLG-0125, and OGLE-2012-BLG-0169 (OB110022, OB110125, and OB120169), located toward the Galactic Bulge. These events were selected because of their long durations, which statistically favors more massive lenses. Astrometric measurements were made over one to two years using laser-guided adaptive optics observations from the W. M. Keck Observatory. Lens model parameters were first constrained by the photometric light curves. The OB120169 light curve is well fit by a single-lens model, while both OB110022 and OB110125 light curves favor binary lens models. Using the photometric fits as prior information, no significant astrometric lensing signal was detected and all targets were consistent with linear motion. The significant lack of astrometric signal constrains the lens mass of OB110022 to 0.05–1.79 M ⊙ in a 99.7% confidence interval, which disfavors a BH lens. Fits to OB110125 yielded a reduced Einstein crossing time and insufficient observations during the peak, so no mass limits were obtained. Two degenerate solutions exist for OB120169, which have a lens mass between 0.2–38.8 M ⊙ and 0.4–39.8 M ⊙ for a 99.7% confidence interval. Follow-up observations of OB120169 will further constrain the lens mass. Based on our experience, we use simulations to design optimal astrometric observing strategies and show that with more typical observing conditions the detection of BHs is feasible.

  13. A calibration of the stellar mass fundamental plane at z ∼ 0.5 using the micro-lensing-induced flux ratio anomalies of macro-lensed quasars {sup ,} {sup ,}

    SciTech Connect

    Schechter, Paul L.; Pooley, David; Blackburne, Jeffrey A.; Wambsganss, Joachim

    2014-10-01

    We measure the stellar mass surface densities of early-type galaxies by observing the micro-lensing of macro-lensed quasars caused by individual stars, including stellar remnants, brown dwarfs, and red dwarfs too faint to produce photometric or spectroscopic signatures. Instead of observing multiple micro-lensing events in a single system, we combine single-epoch X-ray snapshots of 10 quadruple systems, and compare the measured relative magnifications for the images with those computed from macro-models. We use these to normalize a stellar mass fundamental plane constructed using a Salpeter initial mass function with a low-mass cutoff of 0.1 M {sub ☉} and treat the zeropoint of the surface mass density as a free parameter. Our method measures the graininess of the gravitational potential produced by individual stars, in contrast to methods that decompose a smooth total gravitational potential into two smooth components, one stellar and one dark. We find the median likelihood value for the normalization factor F by which the Salpeter stellar masses must be multiplied is 1.23, with a one sigma confidence range, dominated by small number statistics, of 0.77

  14. UV-TO-FIR ANALYSIS OF SPITZER/IRAC SOURCES IN THE EXTENDED GROTH STRIP. II. PHOTOMETRIC REDSHIFTS, STELLAR MASSES, AND STAR FORMATION RATES

    SciTech Connect

    Barro, G.; Perez-Gonzalez, P. G.; Gallego, J.; Villar, V.; Zamorano, J.; Ashby, M. L. N.; Kajisawa, M.; Yamada, T.; Miyazaki, S.

    2011-04-01

    Based on the ultraviolet to far-infrared photometry already compiled and presented in a companion paper (Paper I), we present a detailed spectral energy distribution (SED) analysis of nearly 80,000 IRAC 3.6 + 4.5 {mu}m selected galaxies in the Extended Groth Strip. We estimate photometric redshifts, stellar masses, and star formation rates (SFRs) separately for each galaxy in this large sample. The catalog includes 76,936 sources with [3.6] {<=} 23.75 (85% completeness level of the IRAC survey) over 0.48 deg{sup 2}. The typical photometric redshift accuracy is {Delta}z/(1 + z) = 0.034, with a catastrophic outlier fraction of just 2%. We quantify the systematics introduced by the use of different stellar population synthesis libraries and initial mass functions in the calculation of stellar masses. We find systematic offsets ranging from 0.1 to 0.4 dex, with a typical scatter of 0.3 dex. We also provide UV- and IR-based SFRs for all sample galaxies, based on several sets of dust emission templates and SFR indicators. We evaluate the systematic differences and goodness of the different SFR estimations using the deep FIDEL 70 {mu}m data available in the Extended Groth Strip. Typical random uncertainties of the IR-bases SFRs are a factor of two, with non-negligible systematic effects at z {approx}> 1.5 observed when only MIPS 24 {mu}m data are available. All data products (SEDs, postage stamps from imaging data, and different estimations of the photometric redshifts, stellar masses, and SFRs of each galaxy) described in this and the companion paper are publicly available, and they can be accessed through our the Web interface utility Rainbow-navigator.

  15. THE DEPENDENCE OF STELLAR MASS AND ANGULAR MOMENTUM LOSSES ON LATITUDE AND THE INTERACTION OF ACTIVE REGION AND DIPOLAR MAGNETIC FIELDS

    SciTech Connect

    Garraffo, Cecilia; Drake, Jeremy J.; Cohen, Ofer

    2015-11-01

    Rotation evolution of late-type stars is dominated by magnetic braking and the underlying factors that control this angular momentum loss are important for the study of stellar spin-down. In this work, we study angular momentum loss as a function of two different aspects of magnetic activity using a calibrated Alfvén wave-driven magnetohydrodynamic wind model: the strengths of magnetic spots and their distribution in latitude. By driving the model using solar and modified solar surface magnetograms, we show that the topology of the field arising from the net interaction of both small-scale and large-scale field is important for spin-down rates and that angular momentum loss is not a simple function of large scale magnetic field strength. We find that changing the latitude of magnetic spots can modify mass and angular momentum loss rates by a factor of two. The general effect that causes these differences is the closing down of large-scale open field at mid- and high-latitudes by the addition of the small-scale field. These effects might give rise to modulation of mass and angular momentum loss through stellar cycles, and present a problem for ab initio attempts to predict stellar spin-down based on wind models. For all the magnetogram cases considered here, from dipoles to various spotted distributions, we find that angular momentum loss is dominated by the mass loss at mid-latitudes. The spin-down torque applied by magnetized winds therefore acts at specific latitudes and is not evenly distributed over the stellar surface, though this aspect is unlikely to be important for understanding spin-down and surface flows on stars.

  16. Using modern stellar observables to constrain stellar parameters and the physics of the stellar interior

    NASA Astrophysics Data System (ADS)

    van Saders, Jennifer L.

    2014-05-01

    The current state and future evolution of a star is, in principle, specified by a only a few physical quantities: the mass, age, hydrogen, helium, and metal abundance. These same fundamental quantities are crucial for reconstructing the history of stellar systems ranging in scale from planetary systems to galaxies. However, the fundamental parameters are rarely directly observable, and we are forced to use proxies that are not always sensitive or unique functions of the stellar parameters we wish to determine. Imprecise or inaccurate determinations of the fundamental parameters often limit our ability to draw inferences about a given system. As new technologies, instruments, and observing techniques become available, the list of viable stellar observables increases, and we can explore new links between the observables and fundamental quantities in an effort to better characterize stellar systems. In the era of missions such as Kepler, time-domain observables such as the stellar rotation period and stellar oscillations are now available for an unprecedented number of stars, and future missions promise to further expand the sample. Furthermore, despite the successes of stellar evolution models, the processes and detailed structure of the deep stellar interior remains uncertain. Even in the case of well-measured, well understood stellar observables, the link to the underlying parameters contains uncertainties due to our imperfect understanding of stellar interiors. Model uncertainties arise from sources such as the treatment of turbulent convection, transport of angular momentum and mixing, and assumptions about the physical conditions of stellar matter. By carefully examining the sensitivity of stellar observables to physical processes operating within the star and model assumptions, we can design observational tests for the theory of stellar interiors. I propose a series of tools based on new or revisited stellar observables that can be used both to constrain

  17. The VIMOS Public Extragalactic Redshift Survey (VIPERS) . Luminosity and stellar mass dependence of galaxy clustering at 0.5 < z < 1.1

    NASA Astrophysics Data System (ADS)

    Marulli, F.; Bolzonella, M.; Branchini, E.; Davidzon, I.; de la Torre, S.; Granett, B. R.; Guzzo, L.; Iovino, A.; Moscardini, L.; Pollo, A.; Abbas, U.; Adami, C.; Arnouts, S.; Bel, J.; Bottini, D.; Cappi, A.; Coupon, J.; Cucciati, O.; De Lucia, G.; Fritz, A.; Franzetti, P.; Fumana, M.; Garilli, B.; Ilbert, O.; Krywult, J.; Le Brun, V.; Le Fèvre, O.; Maccagni, D.; Małek, K.; McCracken, H. J.; Paioro, L.; Polletta, M.; Schlagenhaufer, H.; Scodeggio, M.; Tasca, L. A. M.; Tojeiro, R.; Vergani, D.; Zanichelli, A.; Burden, A.; Di Porto, C.; Marchetti, A.; Marinoni, C.; Mellier, Y.; Nichol, R. C.; Peacock, J. A.; Percival, W. J.; Phleps, S.; Wolk, M.; Zamorani, G.

    2013-09-01

    Aims: We investigate the dependence of galaxy clustering on luminosity and stellar mass in the redshift range 0.5 < z < 1.1, using the first ~ 55 000 redshifts from the VIMOS Public Extragalactic Redshift Survey (VIPERS). Methods: We measured the redshift-space two-point correlation functions (2PCF), ξ(s) and ξ(rp,π) , and the projected correlation function, wp(rp), in samples covering different ranges of B-band absolute magnitudes and stellar masses. We considered both threshold and binned galaxy samples, with median B-band absolute magnitudes - 21.6 ≲ MB - 5log (h) ≲ - 19.5 and median stellar masses 9.8 ≲ log (M⋆ [h-2 M⊙]) ≲ 10.7. We assessed the real-space clustering in the data from the projected correlation function, which we model as a power law in the range 0.2 < rp [h-1 Mpc ] < 20. Finally, we estimated the galaxy bias as a function of luminosity, stellar mass, and redshift, assuming a flat Λ cold dark matter model to derive the dark matter 2PCF. Results: We provide the best-fit parameters of the power-law model assumed for the real-space 2PCF - the correlation length, r0, and the slope, γ - as well as the linear bias parameter, as a function of the B-band absolute magnitude, stellar mass, and redshift. We confirm and provide the tightest constraints on the dependence of clustering on luminosity at 0.5 < z < 1.1. We prove the complexity of comparing the clustering dependence on stellar mass from samples that are originally flux-limited and discuss the possible origin of the observed discrepancies. Overall, our measurements provide stronger constraints on galaxy formation models, which are now required to match, in addition to local observations, the clustering evolution measured by VIPERS galaxies between z = 0.5 and z = 1.1 for a broad range of luminosities and stellar masses. Based on observations collected at the European Southern Observatory, Paranal, Chile, under programmes 182.A-0886 (LP) at the Very Large Telescope, and also based on

  18. On mass-response functions

    NASA Astrophysics Data System (ADS)

    Rinaldo, Andrea; Marani, Alessandro; Bellin, Alberto

    1989-07-01

    Field transport of reactive solute species is investigated through a class of stochastic models, here termed mass response functions (MRFs), which incorporate simplified concepts of chemical/physical nonequilibrium kinetics in the formulation of transport by travel time distributions. MRFs are probability density functions (pdfs) associated with solute particles' travel time within transport volumes. The theory hinges on recent advances in modeling transport of solutes in groundwater and in basin scale transport volumes and links the approaches of surface hydrologists with recent subsurface transport models. The relationship between MRFs and the theory of solute transport by continuous motions is investigated. It is found that MRFs extend the basic formulation of transport of inert solutes to a particular case of sorption process. The relationship between MRFs and the basic differential convection-dispersion equation incorporating linear sorption is also investigated. It is found here that not only are transfer functions of solutes consistent with any mechanistic three-dimensional (3-D) model of convection dispersion, but also that they are, under limit conditions, the product of the travel time distribution of the carrier flow with a bounded continuous function. The latter is the solution to an initial value problem which results from solving the general 3-D differential equations of convection dispersion with sorption under some simplifying assumptions, and formally coincides with the resident concentration included (as an assumption) in the original MRF formulation. Travel time distributions and MRFs underlain by statistical constraints rather than by dynamical models are proposed. Non-Gaussian distributions are studied by statistical-mechanical tools and are found to represent the norm, rather than the exception, in this formulation of transport of reactive solutes. The concepts are applied to a field study and are shown to yield reliable models of solute

  19. STELLAR MASS-GAP AS A PROBE OF HALO ASSEMBLY HISTORY AND CONCENTRATION: YOUTH HIDDEN AMONG OLD FOSSILS

    SciTech Connect

    Deason, A. J.; Conroy, C.; Wetzel, A. R.; Tinker, J. L.

    2013-11-10

    We investigate the use of the halo mass-gap statistic—defined as the logarithmic difference in mass between the host halo and its most massive satellite subhalo—as a probe of halo age and concentration. A cosmological N-body simulation is used to study N ∼ 25, 000 group/cluster-sized halos in the mass range 10{sup 12.5} < M{sub halo}/M{sub ☉} < 10{sup 14.5}. In agreement with previous work, we find that halo mass-gap is related to halo formation time and concentration. On average, older and more highly concentrated halos have larger halo mass-gaps, and this trend is stronger than the mass-concentration relation over a similar dynamic range. However, there is a large amount of scatter owing to the transitory nature of the satellite subhalo population, which limits the use of the halo mass-gap statistic on an object-by-object basis. For example, we find that 20% of very large halo mass-gap systems (akin to {sup f}ossil groups{sup )} are young and have likely experienced a recent merger between a massive satellite subhalo and the central subhalo. We relate halo mass-gap to the observable stellar mass-gap via abundance matching. Using a galaxy group catalog constructed from the Sloan Digital Sky Survey Data Release 7, we find that the star formation and structural properties of galaxies at fixed mass show no trend with stellar mass-gap. This is despite a variation in halo age of ≈2.5 Gyr over ≈1.2 dex in stellar mass-gap. Thus, we find no evidence to suggest that the halo formation history significantly affects galaxy properties.

  20. Water in high-mass pre- and proto-stellar cores from Hi-GAL

    NASA Astrophysics Data System (ADS)

    Persson, Carina M.; Olmi, Luca; Codella, Claudio

    2015-08-01

    As a part of our on-going investigation of the earliest phases of massive star formation, we present Herschel-HIFI data of H2O, NH3 and N2H+ towards a sample of high-mass starless cores and proto-stellar objects in two galactic fields, each containing objects in different evolutionary stages. We observed 17 sources in the l = 30° galactic field, and 35 sources in the l = 59° field. The clumps in the l = 59°region have lower luminosity and mass than the l = 30° objects. We find that the sources with detections have much higher mean luminosities than compared to the sources with no detection of any line, but the mean masses are similar. Most sources with detections are proto-stellar, and at least two of the detected sources in the l = 59° region are in a more advanced stage of evolution. For the l = 30° sources no preferential evolutionary phase is evident. None of these sources, however, appear to belong to the late phase of envelope dispersal.The detections show complex line shapes from the protostellar envelopes, molecular outflows and infall. All detections in the l = 59° field show similar water line profiles with broad outflows, whereas towards l = 30° no outflows are detected and all sources display very different line shapes. Both water and ammonia are also often self-absorbed, sometimes saturated, and some sources show an inverse or a regular P-Cygni line profile. N2H+ do not exhibit line asymmetries or absorption. The integrated intensities of the three lines are correlated, and we also find correlations between the water line luminosity and continuum temperature. The typical water luminosity towards the l = 30° sources is lower than compared to l = 59° sources, but their continuum temperature is higher, which may suggest a later evolutionary stage.In the sight-lines towards 11 sources in the l = 30° field, among which four have no detections in the star-forming regions, we also detect H2O and NH3 in absorption from interstellar gas. Since

  1. A Steeper than Linear Disk Mass–Stellar Mass Scaling Relation

    NASA Astrophysics Data System (ADS)

    Pascucci, I.; Testi, L.; Herczeg, G. J.; Long, F.; Manara, C. F.; Hendler, N.; Mulders, G. D.; Krijt, S.; Ciesla, F.; Henning, Th.; Mohanty, S.; Drabek-Maunder, E.; Apai, D.; Szűcs, L.; Sacco, G.; Olofsson, J.

    2016-11-01

    The disk mass is among the most important input parameter for every planet formation model to determine the number and masses of the planets that can form. We present an ALMA 887 μm survey of the disk population around objects from ∼2 to 0.03 M ⊙ in the nearby ∼2 Myr old Chamaeleon I star-forming region. We detect thermal dust emission from 66 out of 93 disks, spatially resolve 34 of them, and identify two disks with large dust cavities of about 45 au in radius. Assuming isothermal and optically thin emission, we convert the 887 μm flux densities into dust disk masses, hereafter M dust. We find that the {M}{dust}{--}{M}* relation is steeper than linear and of the form M dust ∝ (M *)1.3–1.9, where the range in the power-law index reflects two extremes of the possible relation between the average dust temperature and stellar luminosity. By reanalyzing all millimeter data available for nearby regions in a self-consistent way, we show that the 1–3 Myr old regions of Taurus, Lupus, and Chamaeleon I share the same {M}{dust}{--}{M}* relation, while the 10 Myr old Upper Sco association has a steeper relation. Theoretical models of grain growth, drift, and fragmentation reproduce this trend and suggest that disks are in the fragmentation-limited regime. In this regime millimeter grains will be located closer in around lower-mass stars, a prediction that can be tested with deeper and higher spatial resolution ALMA observations.

  2. Galaxy Zoo: the dependence of the star formation-stellar mass relation on spiral disc morphology

    NASA Astrophysics Data System (ADS)

    Willett, Kyle W.; Schawinski, Kevin; Simmons, Brooke D.; Masters, Karen L.; Skibba, Ramin A.; Kaviraj, Sugata; Melvin, Thomas; Wong, O. Ivy; Nichol, Robert C.; Cheung, Edmond; Lintott, Chris J.; Fortson, Lucy

    2015-05-01

    We measure the stellar mass-star formation rate (SFR) relation in star-forming disc galaxies at z ≤ 0.085, using Galaxy Zoo morphologies to examine different populations of spirals as classified by their kiloparsec-scale structure. We examine the number of spiral arms, their relative pitch angle, and the presence of a galactic bar in the disc, and show that both the slope and dispersion of the M⋆-SFR relation is constant when varying all the above parameters. We also show that mergers (both major and minor), which represent the strongest conditions for increases in star formation at a constant mass, only boost the SFR above the main relation by ˜0.3 dex; this is significantly smaller than the increase seen in merging systems at z > 1. Of the galaxies lying significantly above the M⋆-SFR relation in the local Universe, more than 50 per cent are mergers. We interpret this as evidence that the spiral arms, which are imperfect reflections of the galaxy's current gravitational potential, are either fully independent of the various quenching mechanisms or are completely overwhelmed by the combination of outflows and feedback. The arrangement of the star formation can be changed, but the system as a whole regulates itself even in the presence of strong dynamical forcing.

  3. Process of stellar nucleosynthesis which mimicks mass fractionation in P-xenon

    SciTech Connect

    Heymann, D.; Dziczkaniec, M.

    1980-01-01

    The combination of the O-shell theory of Heymann and Dziczkaniec and the supernova theory of Woosley and Howard clearly identifies the astrophysical sites for the formation of the anomalous light Xe component in carbonaceous chondrites. These sites are the O- and Ne-shells, and possibly C-shell of a massive star. Most of the Xe-124 and Xe-126 are formed in the O-shell during hydrostatic core silicon-burning, when a seed of heavy nuclei is exposed to an effective temperature near T9 2.0. Xe-128 is formed via Ba-128 in the O-shell, but the amounts appear too small to satisfy the deduced Xe-128/Xe-124 and Xe-128/Xe-126 yield ratios from the chondrites. However, substantial amounts of Xe-128 can be formed in the adjacent Ne- and C-shells during the explosion. The formation of Ba-128 in the O-shell would increase if the (gamma, alpha) photodisintegration rate in Ba-128 is actually smaller than calculated by Woosley and Howard. Lewis et al. have proposed that the anomalous light Xe component is mass-fractionated normal Xe. It is in this sense that the process of stellar nucleosynthesis of the present paper mimicks mass-fractionation.

  4. A process of stellar nucleosynthesis which mimicks mass fractionation in P-xenon

    NASA Astrophysics Data System (ADS)

    Heymann, D.; Dziczkaniec, M.

    1980-03-01

    The combination of the O-shell theory of Heymann and Dziczkaniec and the supernova theory of Woosley and Howard clearly identifies the astrophysical sites for the formation of the anomalous light Xe component in carbonaceous chondrites. These sites are the O- and Ne-shells, and possibly C-shell of a massive star. Most of the Xe-124 and Xe-126 are formed in the O-shell during hydrostatic core silicon-burning, when a seed of heavy nuclei is exposed to an effective temperature near T9 = 2.0. Xe-128 is formed via Ba-128 in the O-shell, but the amounts appear too small to satisfy the deduced Xe-128/Xe-124 and Xe-128/Xe-126 yield ratios from the chondrites. However, substantial amounts of Xe-128 can be formed in the adjacent Ne- and C-shells during the explosion. The formation of Ba-128 in the O-shell would increase if the (gamma, alpha) photodisintegration rate in Ba-128 is actually smaller than calculated by Woosley and Howard. Lewis et al. have proposed that the anomalous light Xe component is mass-fractionated normal Xe. It is in this sense that the process of stellar nucleosynthesis of the present paper mimicks mass-fractionation.

  5. The SDSS-2MASS-WISE 10-dimensional stellar colour locus

    NASA Astrophysics Data System (ADS)

    Davenport, James R. A.; Ivezić, Željko; Becker, Andrew C.; Ruan, John J.; Hunt-Walker, Nicholas M.; Covey, Kevin R.; Lewis, Alexia R.; AlSayyad, Yusra; Anderson, Lauren M.

    2014-06-01

    We present the fiducial main-sequence stellar locus traced by 10 photometric colours observed by Sloan Digital Sky Survey (SDSS), Two Micron All Sky Survey (2MASS), and Wide-field Infrared Survey Explorer (WISE). Median colours are determined using 1052 793 stars with r-band extinction less than 0.125. We use this locus to measure the dust extinction curve relative to the r band, which is consistent with previous measurements in the SDSS and 2MASS bands. The WISE band extinction coefficients are larger than predicted by standard extinction models. Using 13 lines of sight, we find variations in the extinction curve in H, Ks, and WISE bandpasses. Relative extinction decreases towards Galactic anticentre, in agreement with prior studies. Relative extinction increases with Galactic latitude, in contrast to previous observations. This indicates a universal mid-IR extinction law does not exist due to variations in dust grain size and chemistry with Galactocentric position. A preliminary search for outliers due to warm circumstellar dust is also presented, using stars with high signal-to-noise ratio in the W3 band. We find 199 such outliers, identified by excess emission in Ks - W3. Inspection of SDSS images for these outliers reveals a large number of contaminants due to nearby galaxies. Six sources appear to be genuine dust candidates, yielding a fraction of systems with infrared excess of 0.12 ± 0.05 per cent.

  6. Diffuse supernova neutrinos: oscillation effects, stellar cooling and progenitor mass dependence

    SciTech Connect

    Lunardini, Cecilia; Tamborra, Irene E-mail: tamborra@mpp.mpg.de

    2012-07-01

    We estimate the diffuse supernova neutrino background (DSNB) using the recent progenitor-dependent, long-term supernova simulations from the Basel group and including neutrino oscillations at several post-bounce times. Assuming multi-angle matter suppression of collective effects during the accretion phase, we find that oscillation effects are dominated by the matter-driven MSW resonances, while neutrino-neutrino collective effects contribute at the 5–10% level. The impact of the neutrino mass hierarchy, of the time-dependent neutrino spectra and of the diverse progenitor star population is 10% or less, small compared to the uncertainty of at least 25% of the normalization of the supernova rate. Therefore, assuming that the sign of the neutrino mass hierarchy will be determined within the next decade, the future detection of the DSNB will deliver approximate information on the MSW-oscillated neutrino spectra. With a reliable model for neutrino emission, its detection will be a powerful instrument to provide complementary information on the star formation rate and for learning about stellar physics.

  7. A process of stellar nucleosynthesis which mimicks mass fractionation in P-xenon

    NASA Technical Reports Server (NTRS)

    Heymann, D.; Dziczkaniec, M.

    1980-01-01

    The combination of the O-shell theory of Heymann and Dziczkaniec and the supernova theory of Woosley and Howard clearly identifies the astrophysical sites for the formation of the anomalous light Xe component in carbonaceous chondrites. These sites are the O- and Ne-shells, and possibly C-shell of a massive star. Most of the Xe-124 and Xe-126 are formed in the O-shell during hydrostatic core silicon-burning, when a seed of heavy nuclei is exposed to an effective temperature near T9 = 2.0. Xe-128 is formed via Ba-128 in the O-shell, but the amounts appear too small to satisfy the deduced Xe-128/Xe-124 and Xe-128/Xe-126 yield ratios from the chondrites. However, substantial amounts of Xe-128 can be formed in the adjacent Ne- and C-shells during the explosion. The formation of Ba-128 in the O-shell would increase if the (gamma, alpha) photodisintegration rate in Ba-128 is actually smaller than calculated by Woosley and Howard. Lewis et al. have proposed that the anomalous light Xe component is mass-fractionated normal Xe. It is in this sense that the process of stellar nucleosynthesis of the present paper mimicks mass-fractionation.

  8. Ultra-diffuse Galaxies in Clusters and the Field: Masses and Stellar Populations

    NASA Astrophysics Data System (ADS)

    Romanowsky, Aaron; Laine, Seppo; Krick, Jessica; van Dokkum, Pieter; Villaume, Alexa; Brodie, Jean

    2016-08-01

    Ultra-diffuse galaxies (UDGs) were recognized only last year as a novel class of galaxies, with luminosities like dwarfs but sizes like giants. Although some UDGs appear to be just unusually extended dwarfs, others show evidence of being very different and unexpected: their dark matter halos are overmassive by factors of ~10, with one UDG even being arguably a 'failed Milky Way.' These exotic galaxies might be a byproduct of environmental processes within galaxy clusters, but UDGs have also now been found in the field. It is crucial for understanding their origins to test if UDGs have the same properties in cluster and field environments. Here we propose studying the stellar populations (ages and metallicities) of seven UDGs using Spitzer/IRAC 3.6- and 4.5-micron imaging combined with optical photometry, along with mass estimation of three of the UDGs using HST/ACS imaging to provide globular cluster number counts and colors (proxies for halo mass). This ultra low surface brightness photometry in the near infrared, on an important new class of galaxies, could become a legacy result from the Spitzer mission.

  9. Bright radio emission from an ultraluminous stellar-mass microquasar in M 31.

    PubMed

    Middleton, Matthew J; Miller-Jones, James C A; Markoff, Sera; Fender, Rob; Henze, Martin; Hurley-Walker, Natasha; Scaife, Anna M M; Roberts, Timothy P; Walton, Dominic; Carpenter, John; Macquart, Jean-Pierre; Bower, Geoffrey C; Gurwell, Mark; Pietsch, Wolfgang; Haberl, Frank; Harris, Jonathan; Daniel, Michael; Miah, Junayd; Done, Chris; Morgan, John S; Dickinson, Hugh; Charles, Phil; Burwitz, Vadim; Della Valle, Massimo; Freyberg, Michael; Greiner, Jochen; Hernanz, Margarita; Hartmann, Dieter H; Hatzidimitriou, Despina; Riffeser, Arno; Sala, Gloria; Seitz, Stella; Reig, Pablo; Rau, Arne; Orio, Marina; Titterington, David; Grainge, Keith

    2013-01-10

    A subset of ultraluminous X-ray sources (those with luminosities of less than 10(40) erg s(-1); ref. 1) are thought to be powered by the accretion of gas onto black holes with masses of ∼5-20M cicled dot, probably by means of an accretion disk. The X-ray and radio emission are coupled in such Galactic sources; the radio emission originates in a relativistic jet thought to be launched from the innermost regions near the black hole, with the most powerful emission occurring when the rate of infalling matter approaches a theoretical maximum (the Eddington limit). Only four such maximal sources are known in the Milky Way, and the absorption of soft X-rays in the interstellar medium hinders the determination of the causal sequence of events that leads to the ejection of the jet. Here we report radio and X-ray observations of a bright new X-ray source in the nearby galaxy M 31, whose peak luminosity exceeded 10(39) erg s(-1). The radio luminosity is extremely high and shows variability on a timescale of tens of minutes, arguing that the source is highly compact and powered by accretion close to the Eddington limit onto a black hole of stellar mass. Continued radio and X-ray monitoring of such sources should reveal the causal relationship between the accretion flow and the powerful jet emission. PMID:23235823

  10. Mass and stellar orbit distribution of Early-Type galaxy haloes

    NASA Astrophysics Data System (ADS)

    Napolitano, Nicola R.

    2015-08-01

    We present orbital anisotropy and dark halo parameters of a sample of early-type galaxies (ETGs) for which hundreds of planetary nebulae (PNe) have been observed within the PN.S Elliptical Galaxy Survey. Recent analyses have shown that PNe closely follow the bulk of the stellar population and can be used in combination with long slit and integral field kinematics to constrain the mass and orbital distribution of early-type galaxies out to their outskirts (~6-10Re). Discrete tracers currently represent a powerful tool for the investigation of these otherwise inaccessible regions of galaxies with other standard techniques, where typical dynamical times are longer and we expect to measure the signature or recent evolutionary events. In particular, the possibility to infer the variation of the orbital distribution of stars in the galaxy haloes is a strong observational test for galaxy formation scenarios than can be compared with predictions of hydrodynamical simulations. Finally, we will discuss the dark matter concentration and virial mass results against the predictions of state-of-art cosmological simulation in the LambdaCDM cosmology defined by Planck cosmological parameters. All these evidence together will allow us to gain insight on the baryon and dark matter assembly in the halo regions of early-type galaxies.

  11. Observational Constraints on Stellar Flares and Prominences

    NASA Astrophysics Data System (ADS)

    Aarnio, Alicia

    2016-07-01

    Multi-wavelength surveys have catalogued a wealth of stellar flare data for stars representing a broad range of masses and ages. Young solar analogs inform our understanding of the Sun's evolution and the influence of its activity on early solar system formation, while field star observations allow us to place its current activity into context within a statistical ensemble of main-sequence G-type stars. At the same time, stellar observations probe a variety of interior and coronal conditions, providing constraints on models of equilibrium (and loss thereof!) for magnetic structures. In this review, I will focus on our current understanding of stellar flares, prominences, and coronal mass ejections as a function of stellar parameters. As our interpretation of stellar data relies heavily on solar-stellar analogy, I will explore how far into extreme stellar parameter spaces this comparison can be invoked.

  12. Homogeneous spectroscopic parameters for bright planet host stars from the northern hemisphere . The impact on stellar and planetary mass

    NASA Astrophysics Data System (ADS)

    Sousa, S. G.; Santos, N. C.; Mortier, A.; Tsantaki, M.; Adibekyan, V.; Delgado Mena, E.; Israelian, G.; Rojas-Ayala, B.; Neves, V.

    2015-04-01

    Aims: In this work we derive new precise and homogeneous parameters for 37 stars with planets. For this purpose, we analyze high resolution spectra obtained by the NARVAL spectrograph for a sample composed of bright planet host stars in the northern hemisphere. The new parameters are included in the SWEET-Cat online catalogue. Methods: To ensure that the catalogue is homogeneous, we use our standard spectroscopic analysis procedure, ARES+MOOG, to derive effective temperatures, surface gravities, and metallicities. These spectroscopic stellar parameters are then used as input to compute the stellar mass and radius, which are fundamental for the derivation of the planetary mass and radius. Results: We show that the spectroscopic parameters, masses, and radii are generally in good agreement with the values available in online databases of exoplanets. There are some exceptions, especially for the evolved stars. These are analyzed in detail focusing on the effect of the stellar mass on the derived planetary mass. Conclusions: We conclude that the stellar mass estimations for giant stars should be managed with extreme caution when using them to compute the planetary masses. We report examples within this sample where the differences in planetary mass can be as high as 100% in the most extreme cases. Based on observations obtained at the Telescope Bernard Lyot (USR5026) operated by the Observatoire Midi-Pyrénées and the Institut National des Science de l'Univers of the Centre National de la Recherche Scientifique of France (Run ID L131N11 - OPTICON_2013A_027).

  13. On the shoulders of giants: properties of the stellar halo and the Milky Way mass distribution

    SciTech Connect

    Kafle, Prajwal Raj; Sharma, Sanjib; Lewis, Geraint F.; Bland-Hawthorn, Joss

    2014-10-10

    Halo stars orbit within the potential of the Milky Way, and hence their kinematics can be used to understand the underlying mass distribution. However, the inferred mass distribution depends sensitively on assumptions made on the density and the velocity anisotropy profiles of the tracer population. Also, there is a degeneracy between the parameters of the halo and those of the disk or bulge. Most previous attempts that use halo stars have made arbitrary assumptions about these. In this paper, we decompose the Galaxy into three major components—a bulge, a Miyamoto-Nagai disk, and a Navarro-Frenk-White dark matter halo - and then model the kinematic data of the halo blue horizontal branch and K-giant stars from the Sloan Extension for Galactic Understanding and Exploration. Additionally, we use the gas terminal velocity curve and the Sgr A* proper motion. With the distance of the Sun from the center of the Galaxy R {sub ☉} = 8.5 kpc, our kinematic analysis reveals that the density of the stellar halo has a break at 17.2{sub −1.0}{sup +1.1} kpc and an exponential cutoff in the outer parts starting at 97.7{sub −15.8}{sup +15.6} kpc. Also, we find that the tracer velocity anisotropy is radially biased with β {sub s} = 0.4 ± 0.2 in the outer halo. We measure halo virial mass M {sub vir} to be 0.80{sub −0.16}{sup +0.31}×10{sup 12} M{sub ⊙}, concentration c to be 21.1{sub −8.3}{sup +14.8}, disk mass to be 0.95{sub −0.30}{sup +0.24}×10{sup 11} M{sub ⊙}, disk scale length to be 4.9{sub −0.4}{sup +0.4} kpc, and bulge mass to be 0.91{sub −0.38}{sup +0.31}×10{sup 10} M{sub ⊙}. The halo mass is found to be small, and this has important consequences. The giant stars reveal that the outermost halo stars have low velocity dispersion, but interestingly this suggests a truncation of the stellar halo density rather than a small overall mass of the Galaxy. Our estimates of local escape velocity v{sub esc}=550.9{sub −22.1}{sup +32.4} km s{sup −1} and

  14. Luminous and High Stellar Mass Candidate Galaxies at z ≈ 8 Discovered in the Cosmic Assembly Near-Infrared Deep Extragalactic Legacy Survey

    NASA Astrophysics Data System (ADS)

    Yan, Haojing; Finkelstein, Steven L.; Huang, Kuang-Han; Ryan, Russell E.; Ferguson, Henry C.; Koekemoer, Anton M.; Grogin, Norman A.; Dickinson, Mark; Newman, Jeffrey A.; Somerville, Rachel S.; Davé, Romeel; Faber, S. M.; Papovich, Casey; Guo, Yicheng; Giavalisco, Mauro; Lee, Kyoung-soo; Reddy, Naveen; Cooray, Asantha R.; Siana, Brian D.; Hathi, Nimish P.; Fazio, Giovanni G.; Ashby, Matthew; Weiner, Benjamin J.; Lucas, Ray A.; Dekel, Avishai; Pentericci, Laura; Conselice, Christopher J.; Kocevski, Dale D.; Lai, Kamson

    2012-12-01

    One key goal of the Hubble Space Telescope Cosmic Assembly Near-Infrared Deep Extragalactic Legacy Survey is to track galaxy evolution back to z ≈ 8. Its two-tiered "wide and deep" strategy bridges significant gaps in existing near-infrared surveys. Here we report on z ≈ 8 galaxy candidates selected as F105W-band dropouts in one of its deep fields, which covers 50.1 arcmin2 to 4 ks depth in each of three near-infrared bands in the Great Observatories Origins Deep Survey southern field. Two of our candidates have J < 26.2 mag, and are >1 mag brighter than any previously known F105W-dropouts. We derive constraints on the bright end of the rest-frame ultraviolet luminosity function of galaxies at z ≈ 8, and show that the number density of such very bright objects is higher than expected from the previous Schechter luminosity function estimates at this redshift. Another two candidates are securely detected in Spitzer Infrared Array Camera images, which are the first such individual detections at z ≈ 8. Their derived stellar masses are on the order of a few × 109 M ⊙, from which we obtain the first measurement of the high-mass end of the galaxy stellar mass function at z ≈ 8. The high number density of very luminous and very massive galaxies at z ≈ 8, if real, could imply a large stellar-to-halo mass ratio and an efficient conversion of baryons to stars at such an early time.

  15. Comparing Dark Energy Survey and HST-CLASH observations of the galaxy cluster RXC J2248.7-4431: implications for stellar mass versus dark matter

    NASA Astrophysics Data System (ADS)

    Palmese, A.; Lahav, O.; Banerji, M.; Gruen, D.; Jouvel, S.; Melchior, P.; Aleksić, J.; Annis, J.; Diehl, H. T.; Hartley, W. G.; Jeltema, T.; Romer, A. K.; Rozo, E.; Rykoff, E. S.; Seitz, S.; Suchyta, E.; Zhang, Y.; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Capozzi, D.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Crocce, M.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; Desai, S.; Dietrich, J. P.; Doel, P.; Estrada, J.; Evrard, A. E.; Flaugher, B.; Frieman, J.; Gerdes, D. W.; Goldstein, D. A.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; James, D. J.; Kuehn, K.; Kuropatkin, N.; Li, T. S.; Lima, M.; Maia, M. A. G.; Marshall, J. L.; Miller, C. J.; Miquel, R.; Nord, B.; Ogando, R.; Plazas, A. A.; Roodman, A.; Sanchez, E.; Scarpine, V.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Tucker, D.; Vikram, V.

    2016-08-01

    We derive the stellar mass fraction in the galaxy cluster RXC J2248.7-4431 observed with the Dark Energy Survey (DES) during the Science Verification period. We compare the stellar mass results from DES (5 filters) with those from the Hubble Space Telescope CLASH (17 filters). When the cluster spectroscopic redshift is assumed, we show that stellar masses from DES can be estimated within 25% of CLASH values. We compute the stellar mass contribution coming from red and blue galaxies, and study the relation between stellar mass and the underlying dark matter using weak lensing studies with DES and CLASH. An analysis of the radial profiles of the DES total and stellar mass yields a stellar-to-total fraction of f⋆ = (6.8 ± 1.7) × 10-3 within a radius of r200c ≃ 2 Mpc. Our analysis also includes a comparison of photometric redshifts and star/galaxy separation efficiency for both datasets. We conclude that space-based small field imaging can be used to calibrate the galaxy properties in DES for the much wider field of view. The technique developed to derive the stellar mass fraction in galaxy clusters can be applied to the ˜100 000 clusters that will be observed within this survey and yield important information about galaxy evolution.

  16. Fundamental Parameters and Spectral Energy Distributions of Young and Field Age Objects with Masses Spanning the Stellar to Planetary Regime

    NASA Astrophysics Data System (ADS)

    Filippazzo, Joe; Rice, Emily L.; Faherty, Jacqueline K.; Cruz, Kelle L.; Godfrey, Paige A.; BDNYC

    2016-01-01

    The physical and atmospheric properties of ultracool dwarfs are deeply entangled due to the degenerate effects of mass, age, metallicity, clouds and dust, activity, rotation, and possibly even formation mechanism on observed spectra. Accurate determination of fundamental parameters for a wide diversity of objects at the low end of the IMF is thus crucial to testing stellar and planetary formation theories. To determine these quantities, we constructed and flux calibrated nearly-complete spectral energy distributions (SEDs) for 221 M, L, T, and Y dwarfs using published parallaxes and 0.3-40 μm spectra and photometry. From these homogeneous SEDs, we calculated bolometric luminosity (Lbol), effective temperature (Teff), mass, surface gravity, radius, spectral indexes, synthetic photometry, and bolometric corrections (BCs) for each object. We used these results to derive Lbol, Teff, and BC polynomial relations across the entire very-low-mass star/brown dwarf/planetary mass regime. We use a subsample of objects with age constraints based on nearby young moving group membership, companionship with a young star, or spectral signatures of low surface gravity to define new age-sensitive diagnostics and characterize the reddening of young substellar atmospheres as a redistribution of flux from the near-infrared into the mid-infrared. Consequently we find the SED flux pivots at Ks band, making BCKs as a function of spectral type a tight and age independent relationship. We find that young L dwarfs are systematically 300 K cooler than field age objects of the same spectral type and up to 600 K cooler than field age objects of the same absolute H magnitude. Finally, we present preliminary comparisons of these empirical results to best fit parameters from four different model atmosphere grids via Markov-Chain Monte Carlo analysis in order to create prescriptions for the reliable and efficient characterization of new ultracool dwarfs.

  17. Very Low Mass Stellar and Substellar Companions to Solar-like Stars from MARVELS. I. A Low-mass Ratio Stellar Companion to TYC 4110-01037-1 in a 79 Day Orbit

    NASA Astrophysics Data System (ADS)

    Wisniewski, John P.; Ge, Jian; Crepp, Justin R.; De Lee, Nathan; Eastman, Jason; Esposito, Massimiliano; Fleming, Scott W.; Gaudi, B. Scott; Ghezzi, Luan; Gonzalez Hernandez, Jonay I.; Lee, Brian L.; Stassun, Keivan G.; Agol, Eric; Allende Prieto, Carlos; Barnes, Rory; Bizyaev, Dmitry; Cargile, Phillip; Chang, Liang; Da Costa, Luiz N.; Porto De Mello, G. F.; Femenía, Bruno; Ferreira, Leticia D.; Gary, Bruce; Hebb, Leslie; Holtzman, Jon; Liu, Jian; Ma, Bo; Mack, Claude E.; Mahadevan, Suvrath; Maia, Marcio A. G.; Nguyen, Duy Cuong; Ogando, Ricardo L. C.; Oravetz, Daniel J.; Paegert, Martin; Pan, Kaike; Pepper, Joshua; Rebolo, Rafael; Santiago, Basilio; Schneider, Donald P.; Shelden, Alaina C.; Simmons, Audrey; Tofflemire, Benjamin M.; Wan, Xiaoke; Wang, Ji; Zhao, Bo

    2012-05-01

    TYC 4110-01037-1 has a low-mass stellar companion, whose small mass ratio and short orbital period are atypical among binary systems with solar-like (T eff <~ 6000 K) primary stars. Our analysis of TYC 4110-01037-1 reveals it to be a moderately aged (lsim5 Gyr) solar-like star having a mass of 1.07 ± 0.08 M ⊙ and radius of 0.99 ± 0.18 R ⊙. We analyze 32 radial velocity (RV) measurements from the SDSS-III MARVELS survey as well as 6 supporting RV measurements from the SARG spectrograph on the 3.6 m Telescopio Nazionale Galileo telescope obtained over a period of ~2 years. The best Keplerian orbital fit parameters were found to have a period of 78.994 ± 0.012 days, an eccentricity of 0.1095 ± 0.0023, and a semi-amplitude of 4199 ± 11 m s-1. We determine the minimum companion mass (if sin i = 1) to be 97.7 ± 5.8 M Jup. The system's companion to host star mass ratio, >=0.087 ± 0.003, places it at the lowest end of observed values for short period stellar companions to solar-like (T eff <~ 6000 K) stars. One possible way to create such a system would be if a triple-component stellar multiple broke up into a short period, low q binary during the cluster dispersal phase of its lifetime. A candidate tertiary body has been identified in the system via single-epoch, high contrast imagery. If this object is confirmed to be comoving, we estimate it would be a dM4 star. We present these results in the context of our larger-scale effort to constrain the statistics of low-mass stellar and brown dwarf companions to FGK-type stars via the MARVELS survey.

  18. Global Simulations of the Interaction of Microquasar Jets with a Stellar Wind in High-mass X-ray Binaries

    NASA Astrophysics Data System (ADS)

    Yoon, D.; Heinz, S.

    2015-03-01

    Jets powered by high-mass X-ray binaries must traverse the powerful wind of the companion star. We present the first global three-dimensional simulations of jet-wind interaction in high-mass X-ray binaries. We show that the wind momentum flux intercepted by the jet can lead to significant bending of the jet and that jets propagating through a spherical wind will be bent to an asymptotic angle {{\\psi }∞ }. We derive simple expressions for {{\\psi }∞ } as a function of jet power and wind thrust. For known wind parameters, measurements of {{\\psi }∞ } can be used to constrain the jet power. In the case of Cygnus X-1, the lack of jet precession as a function of orbital phase observed by the Very Long Baseline Array can be used to put a lower limit on the jet power of {{L}jet}≳ {{10}36} ergs {{s}-1}. We further discuss the case where the initial jet is inclined relative to the binary orbital axis. We also analyze the case of Cygnus X-3 and show that jet bending is likely negligible unless the jet is significantly less powerful or much wider than currently thought. Our numerical investigation is limited to isotropic stellar winds. We discuss the possible effects of wind clumping on jet-wind interaction, which are likely significant, but argue that our limits on jet power for Cygnus X-1 are likely unaffected by clumping unless the global wind mass-loss rate is orders of magnitude below the commonly assumed range for Cyg X-1.

  19. A prescription and fast code for the long-term evolution of star clusters - III. Unequal masses and stellar evolution

    NASA Astrophysics Data System (ADS)

    Alexander, Poul E. R.; Gieles, Mark; Lamers, Henny J. G. L. M.; Baumgardt, Holger

    2014-08-01

    We present a new version of the fast star cluster evolution code EVOLVE ME A CLUSTER OF STARS (EMACSS). While previous versions of EMACSS reproduced clusters of single-mass stars, this version models clusters with an evolving stellar content. Stellar evolution dominates early evolution, and leads to: (1) reduction of the mean mass of stars due to the mass loss of high-mass stars; (2) expansion of the half-mass radius; (3) for (nearly) Roche Volume filling clusters, the induced escape of stars. Once sufficient relaxation has occurred (≃10 relaxation times-scales), clusters reach a second, `balanced' state whereby the core releases energy as required by the cluster as a whole. In this state: (1) stars escape due to tidal effects faster than before balanced evolution; (2) the half-mass radius expands or contracts depending on the Roche volume filling factor; and (3) the mean mass of stars increases due to the preferential ejection of low-mass stars. We compare the EMACSS results of several cluster properties against N-body simulations of clusters spanning a range of initial number of stars, mass, half-mass radius, and tidal environments, and show that our prescription accurately predicts cluster evolution for this data base. Finally, we consider applications for EMACSS, such as studies of galactic globular cluster populations in cosmological simulations.

  20. Galaxy and Group Baryonic Mass Functions for the RESOLVE Survey

    NASA Astrophysics Data System (ADS)

    Eckert, Kathleen D.; Kannappan, Sheila; Moffett, Amanda J.; Baker, Ashley; Stark, David; Berlind, Andreas A.; Storey-Fisher, Kate; Erickcek, Adrienne L.; Norris, Mark A.; Resolve Team

    2015-01-01

    We present a comparison of the galaxy and group baryonic mass functions for a subvolume of the RESOLVE (Resolved Spectroscopy Of a Local VolumE) survey. RESOLVE occupies A and B semester volumes totaling ~52,000 cubic Mpc, complete in baryonic mass to ~10^9.3 Msun and 10^9.0 Msun respectively, with galaxies and groups ranging in halo mass from 10^11-10^14 Msun. The A semester volume is surrounded by the larger ECO catalog, which lacks complete HI data but occupies ~561,000 cubic Mpc. We define the observed baryonic mass of a galaxy or group to be the sum of its stellar and cold atomic hydrogen components, with the latter inferred indirectly for much of ECO. For groups, we infer the total baryonic mass by summing the observed components of each constituent galaxy and add the likely hot halo gas based on prescriptions from observations and semi-analytic models. We perform subhalo/halo abundance matching between observed galaxies/groups and dark matter simulations, and we compare derived halo properties based on matching on luminosity vs. on observed baryonic mass (or on inferred total baryonic mass for groups). We also present a status update on the galaxy and group velocity functions for these surveys, which will allow for more direct comparison with dark matter simulations. This project was supported by NSF funding for the RESOLVE survey (AST-0955368).

  1. Reconstructing the stellar mass distributions of galaxies using S{sup 4}G IRAC 3.6 and 4.5 μm images. II. The conversion from light to mass

    SciTech Connect

    Meidt, Sharon E.; Schinnerer, Eva; Van de Ven, Glenn; Querejeta, Miguel; Peletier, Reynier; Knapen, Johan H.; Cisternas, Mauricio; Muñoz-Mateos, Juan-Carlos; Hinz, Joannah L.; De Paz, Armando Gil; Athanassoula, E.; Bosma, Albert; Buta, Ronald J.; Ho, Luis C.; Holwerda, Benne; and others

    2014-06-20

    We present a new approach for estimating the 3.6 μm stellar mass-to-light (M/L) ratio Y{sub 3.6} in terms of the [3.6]-[4.5] colors of old stellar populations. Our approach avoids several of the largest sources of uncertainty in existing techniques using population synthesis models. By focusing on mid-IR wavelengths, we gain a virtually dust extinction-free tracer of the old stars, avoiding the need to adopt a dust model to correctly interpret optical or optical/near-IR colors normally leveraged to assign the mass-to-light ratio Y. By calibrating a new relation between near-IR and mid-IR colors of giant stars observed in GLIMPSE we also avoid the discrepancies in model predictions for the [3.6]-[4.5] colors of old stellar populations due to uncertainties in the molecular line opacities assumed in template spectra. We find that the [3.6]-[4.5] color, which is driven primarily by metallicity, provides a tight constraint on Y{sub 3.6}, which varies intrinsically less than at optical wavelengths. The uncertainty on Y{sub 3.6} of ∼0.07 dex due to unconstrained age variations marks a significant improvement on existing techniques for estimating the stellar M/L with shorter wavelength data. A single Y{sub 3.6} = 0.6 (assuming a Chabrier initial mass function (IMF)), independent of [3.6]-[4.5] color, is also feasible because it can be applied simultaneously to old, metal-rich and young, metal-poor populations, and still with comparable (or better) accuracy (∼0.1 dex) than alternatives. We expect our Y{sub 3.6} to be optimal for mapping the stellar mass distributions in S{sup 4}G galaxies, for which we have developed an independent component analysis technique to first isolate the old stellar light at 3.6 μm from nonstellar emission (e.g., hot dust and the 3.3 polycyclic aromatic hydrocarbon feature). Our estimate can also be used to determine the fractional contribution of nonstellar emission to global (rest-frame) 3.6 μm fluxes, e.g., in WISE imaging, and

  2. Breathing FIRE: How Stellar Feedback Drives Radial Migration, Rapid Size Fluctuations, and Population Gradients in Low-mass Galaxies

    NASA Astrophysics Data System (ADS)

    El-Badry, Kareem; Wetzel, Andrew; Geha, Marla; Hopkins, Philip F.; Kereš, Dusan; Chan, T. K.; Faucher-Giguère, Claude-André

    2016-04-01

    We examine the effects of stellar feedback and bursty star formation on low-mass galaxies (Mstar = 2 × 106 - 5 × 1010 M⊙) using the Feedback in Realistic Environments (FIRE) simulations. While previous studies emphasized the impact of feedback on dark matter profiles, we investigate the impact on the stellar component: kinematics, radial migration, size evolution, and population gradients. Feedback-driven outflows/inflows drive significant radial stellar migration over both short and long timescales via two processes: (1) outflowing/infalling gas can remain star-forming, producing young stars that migrate ˜1 kpc within their first 100 Myr, and (2) gas outflows/inflows drive strong fluctuations in the global potential, transferring energy to all stars. These processes produce several dramatic effects. First, galaxies’ effective radii can fluctuate by factors of >2 over ˜200 Myr, and these rapid size fluctuations can account for much of the observed scatter in the radius at fixed Mstar. Second, the cumulative effects of many outflow/infall episodes steadily heat stellar orbits, causing old stars to migrate outward most strongly. This age-dependent radial migration mixes—and even inverts—intrinsic age and metallicity gradients. Thus, the galactic-archaeology approach of calculating radial star formation histories from stellar populations at z = 0 can be severely biased. These effects are strongest at Mstar ≈ 107-9.6 M⊙, the same regime where feedback most efficiently cores galaxies. Thus, detailed measurements of stellar kinematics in low-mass galaxies can strongly constrain feedback models and test baryonic solutions to small-scale problems in ΛCDM.

  3. AGN and stellar feedback in star-forming galaxies at redshift 2 : outflows, mass-loading and quenching

    NASA Astrophysics Data System (ADS)

    Roos, O.

    2016-06-01

    Galactic-scale outflows are ubiquitous in observations of star-forming galaxies, up to high redshift. Such galactic outflows are mainly generated by internal sources of feedback: young stars, supernovae and active galactic nuclei (AGNs). Still, the physical origins of such outflows are not well understood, and their main driver is still debated. Up to now, most simulations take into account AGN feedback or stellar feedback but not both, because both phenomena happen on very different spatial and time scales. Most of them also still fail to reproduce all observed parameters from first principles. In this poster, we present the POGO project: Physical Origins of Galactic Outflows. With this suite of 23 simulations, we model AGN and stellar feedback simultaneously based on physical assumptions for the first time at very high resolution (6 to 1.5 pc), and investigate their impact on the outflow parameters of the host-galaxy. Here, we show that AGN and stellar feedback couple non-linearly, and that the mass-loading of the resulting outflow highly depends on the mass of the host, all the more because the coupling can either be positive (small masses) or negative (intermediate masses). Nevertheless, the main driver of the outflow remains the AGN at all masses.

  4. On the Globular Cluster Initial Mass Function below 1 Msolar

    NASA Astrophysics Data System (ADS)

    Paresce, Francesco; De Marchi, Guido

    2000-05-01

    Accurate luminosity functions (LFs) for a dozen globular clusters have now been measured at or just beyond their half-light radius using HST. They span almost the entire cluster main sequence (MS) below 0.75 Msolar. All these clusters exhibit LFs that rise continuously from an absolute I magnitude MI~=6 to a peak at MI~=8.5-9 and then drop with increasing MI. Transformation of the LFs into mass functions (MFs) by means of mass-luminosity (ML) relations that are consistent with all presently available data on the physical properties of low-mass, low-metallicity stars shows that all the LFs observed so far can be obtained from MFs having the shape of a lognormal distribution with characteristic mass mc=0.33+/-0.03 Msolar and standard deviation σ=0.34+/-0.04. In particular, the LFs of the four clusters in the sample that extend well beyond the peak luminosity down to close to the hydrogen-burning limit (NGC 6341, NGC 6397, NGC 6752, and NGC 6809) can only be reproduced by such distributions and not by a single power law in the 0.1-0.6 Msolar range. After correction for the effects of mass segregation, the variation of the ratio of the number of higher to lower mass stars with cluster mass or any simple orbital parameter or the expected time to disruption recently computed for these clusters shows no statistically significant trend over a range of this last parameter of more than a factor of ~100. We conclude that the global MFs of these clusters have not been measurably modified by evaporation and tidal interactions with the Galaxy and, thus, should reflect the initial distribution of stellar masses. Since the lognormal function that we find is also very similar to the one obtained independently for much younger clusters and to the form expected theoretically, the implication seems to be unavoidable that it represents the true stellar initial mass function for this type of star in this mass range. Based on observations with the NASA/ESA Hubble Space Telescope

  5. Failed supernovae explain the compact remnant mass function

    SciTech Connect

    Kochanek, C. S.

    2014-04-10

    One explanation for the absence of higher mass red supergiants (16.5 M {sub ☉} ≲ M ≲ 25 M {sub ☉}) as the progenitors of Type IIP supernovae (SNe) is that they die in failed SNe creating black holes. Simulations show that such failed SNe still eject their hydrogen envelopes in a weak transient, leaving a black hole with the mass of the star's helium core (5-8 M {sub ☉}). Here we show that this naturally explains the typical masses of observed black holes and the gap between neutron star and black hole masses without any fine-tuning of stellar mass loss, binary mass transfer, or the SN mechanism, beyond having it fail in a mass range where many progenitor models have density structures that make the explosions more likely to fail. There is no difficulty including this ∼20% population of failed SNe in any accounting of SN types over the progenitor mass function. And, other than patience, there is no observational barrier to either detecting these black hole formation events or limiting their rates to be well below this prediction.

  6. LSD: Lyman-break galaxies Stellar populations and Dynamics - I. Mass, metallicity and gas at z ~ 3.1

    NASA Astrophysics Data System (ADS)

    Mannucci, F.; Cresci, G.; Maiolino, R.; Marconi, A.; Pastorini, G.; Pozzetti, L.; Gnerucci, A.; Risaliti, G.; Schneider, R.; Lehnert, M.; Salvati, M.

    2009-10-01

    We present the first results of a project, Lyman-break galaxies Stellar populations and Dynamics (LSD), aimed at obtaining spatially resolved, near-infrared (IR) spectroscopy of a complete sample of Lyman-break galaxies at z ~ 3. Deep observations with adaptive optics resulted in the detection of the main optical lines, such as [OII] λ3727, Hβ and [OIII] λ5007, which are used to study sizes, star formation rates (SFRs), morphologies, gas-phase metallicities, gas fractions and effective yields. Optical, near-IR and Spitzer/Infrared Array Camera photometry are used to measure stellar mass. We obtain that morphologies are usually complex, with the presence of several peaks of emissions and companions that are not detected in broad-band images. Typical metallicities are 10-50 per cent solar, with a strong evolution of the mass-metallicity relation from lower redshifts. Stellar masses, gas fraction and evolutionary stages vary significantly among the galaxies, with less massive galaxies showing larger fractions of gas. In contrast with observations in the local universe, effective yields decrease with stellar mass and reach solar values at the low-mass end of the sample. This effect can be reproduced by gas infall with rates of the order of the SFRs. Outflows are present but are not needed to explain the mass-metallicity relation. We conclude that a large fraction of these galaxies is actively creating stars after major episodes of gas infall or merging. Based on observations collected with European Southern Observatory/Very Large Telescope (ESO/VLT) (proposals 075.A-0300 and 076.A-0711), with the Italian TNG, operated by FGG (INAF) at the Spanish Observatorio del Roque de los Muchachos, and with the Spitzer Space Telescope, operated by JPL (Caltech) under a contract with NASA.

  7. Stellar halos around Local Group galaxies

    NASA Astrophysics Data System (ADS)

    McConnachie, Alan W.

    2016-08-01

    The Local Group is now home to 102 known galaxies and candidates, with many new faint galaxies continuing to be discovered. The total stellar mass range spanned by this population covers a factor of close to a billion, from the faintest systems with stellar masses of order a few thousand to the Milky Way and Andromeda, with stellar masses of order 1011 M ⊙. Here, I discuss the evidence for stellar halos surrounding Local Group galaxies spanning from dwarf scales (with the case of the Andromeda II dwarf spheroidal), though to intermediate mass systems (M33) and finishing with M31. Evidence of extended stellar populations and merging is seen across the luminosity function, indicating that the processes that lead to halo formation are common at all mass scales.

  8. Accelerating a water maser face-on jet from a high mass young stellar object

    NASA Astrophysics Data System (ADS)

    Motogi, Kazuhito; Sorai, Kazuo; Honma, Mareki; Hirota, Tomoya; Hachisuka, Kazuya; Niinuma, Kotaro; Sugiyama, Koichiro; Yonekura, Yoshinori; Fujisawa, Kenta

    2016-10-01

    We report on long-term single-dish and VLBI monitoring for intermittent flare activities of a dominant blue-shifted H2O maser associated with a southern high mass young stellar object, G353.273+0.641. Bi-weekly single-dish monitoring using the Hokkaido University Tomakomai 11 m radio telescope has shown that a systematic acceleration continues over four years beyond the lifetime of individual maser features. This fact suggests that the H2O maser traces a region where molecular gas is steadily accelerated. There were five maser flares during the five years of monitoring, and maser distributions in four of them were densely monitored by VLBI Exploration of Radio Astrometry (VERA). The overall distribution of the maser features suggests the presence of a bipolar jet, with the 3D kinematics indicating that it is almost face-on (inclination angle of ˜ 8°-17° from the line of sight). Most maser features were recurrently excited within a region of 100×100 au2 around the radio continuum peak, while their spatial distributions significantly varied between each flare. This confirms that episodic propagations of outflow shocks recurrently invoke intermittent flare activities. We also measured annual parallax, deriving a source distance of 1.70^{+0.19}_{-0.16} kpc that is consistent with the commonly used photometric distance.

  9. An Initial Mass Function for Individual Stars in Galactic Disks. I. Constraining the Shape of the Initial Mass Function

    NASA Astrophysics Data System (ADS)

    Parravano, Antonio; McKee, Christopher F.; Hollenbach, David J.

    2011-01-01

    We derive a semi-empirical galactic initial mass function (IMF) from observational constraints. We assume that the IMF, ψ(m), is a smooth function of the stellar mass m. The mass dependence of the proposed IMF is determined by five parameters: the low-mass slope γ, the high-mass slope -Γ (taken to be -1.35), the characteristic mass m ch (~ the peak mass of the IMF), and the lower and upper limits on the mass, m ell and mu (taken to be 0.004 and 120 M sun, respectively): ψ(m)dln m vprop m -Γ{1 - exp [ - (m/m ch)γ+Γ]}dln m. The values of γ and m ch are derived from two integral constraints: (1) the ratio of the number density of stars in the range m = 0.1-0.6 M sun to that in the range m = 0.6-0.8 M sun as inferred from the mass distribution of field stars in the local neighborhood and (2) the ratio of the number of stars in the range m = 0.08-1 M sun to the number of brown dwarfs in the range m = 0.03-0.08 M sun in young clusters. The IMF satisfying the above constraints is characterized by the parameters γ = 0.51 and m ch = 0.35 M sun (which corresponds to a peak mass of 0.27 M sun ). This IMF agrees quite well with the Chabrier IMF for the entire mass range over which we have compared with data, but predicts significantly more stars with masses <0.03 M sun; we also compare with other IMFs in current use and give a number of important parameters implied by the IMFs.

  10. From Outside-in to Inside-out: Galaxy Assembly Mode Depends on Stellar Mass

    NASA Astrophysics Data System (ADS)

    Pan, Zhizheng; Li, Jinrong; Lin, Weipeng; Wang, Jing; Fan, Lulu; Kong, Xu

    2015-05-01

    In this Letter, we investigate how galaxy mass assembly mode depends on stellar mass M* using a large sample of ˜10,000 low-redshift galaxies. Our galaxy sample is selected to have SDSS {{R}90}\\gt 5\\buildrel{\\prime\\prime}\\over{.} 0, which allows the measures of both the integrated and the central NUV-r color indices. We find that in the {{M}*}-(NUV-r) green valley (GV), the {{M}*}\\lt {{10}10} {{M}⊙ } galaxies mostly have positive or flat color gradients, while most of the {{M}*}\\gt {{10}10.5} {{M}⊙ } galaxies have negative color gradients. When their central Dn4000 index values exceed 1.6, the {{M}*}\\lt {{10}10.0} {{M}⊙ } galaxies have moved to the UV red sequence, whereas a large fraction of the {{M}*}\\gt {{10}10.5} {{M}⊙ } galaxies still lie on the UV blue cloud or the GV region. We conclude that the main galaxy assembly mode is transiting from “the outside-in” mode to “the inside-out” mode at {{M}*}\\lt {{10}10} {{M}⊙ } and at {{M}*}\\gt {{10}10.5} {{M}⊙ }. We argue that the physical origin of this is the compromise between the internal and the external processes that drive the star formation quenching in galaxies. These results can be checked with the upcoming large data produced by the ongoing integral field spectroscopic survey projects, such as CALIFA, MaNGA, and SAMI in the near future.

  11. A PANCHROMATIC STUDY OF BLAST COUNTERPARTS: TOTAL STAR FORMATION RATE, MORPHOLOGY, ACTIVE GALACTIC NUCLEUS FRACTION, AND STELLAR MASS

    SciTech Connect

    Moncelsi, Lorenzo; Ade, Peter A. R.; Cortese, Luca; Dye, Simon; Eales, Stephen; Griffin, Matthew; Hargrave, Peter C.; Mauskopf, Philip; Pascale, Enzo; Tucker, Carole; Chapin, Edward L.; Halpern, Mark; Marsden, Gaelen; Scott, Douglas; Wiebe, Donald V.; Devlin, Mark J.; Truch, Matthew D. P.; Netterfield, Calvin B.; Viero, Marco P.

    2011-02-01

    We carry out a multi-wavelength study of individual galaxies detected by the Balloon-borne Large Aperture Submillimeter Telescope (BLAST) and identified at other wavelengths, using data spanning the radio to the ultraviolet (UV). We develop a Monte Carlo method to account for flux boosting, source blending, and correlations among bands, which we use to derive deboosted far-infrared (FIR) luminosities for our sample. We estimate total star-formation rates (SFRs) for BLAST counterparts with z {<=} 0.9 by combining their FIR and UV luminosities. Star formation is heavily obscured at L{sub FIR} {approx}> 10{sup 11} L{sub sun}, z {approx}> 0.5, but the contribution from unobscured starlight cannot be neglected at L{sub FIR} {approx}< 10{sup 11} L{sub sun}, z {approx}< 0.25. We assess that about 20% of the galaxies in our sample show indication of a type 1 active galactic nucleus, but their submillimeter emission is mainly due to star formation in the host galaxy. We compute stellar masses for a subset of 92 BLAST counterparts; these are relatively massive objects, with a median mass of {approx}10{sup 11} M{sub sun}, which seem to link the 24 {mu}m and Submillimetre Common-User Bolometer Array (SCUBA) populations, in terms of both stellar mass and star formation activity. The bulk of the BLAST counterparts at z {approx}< 1 appears to be run-of-the-mill star-forming galaxies, typically spiral in shape, with intermediate stellar masses and practically constant specific SFRs. On the other hand, the high-z tail of the BLAST counterparts significantly overlaps with the SCUBA population, in terms of both SFRs and stellar masses, with observed trends of specific SFR that support strong evolution and downsizing.

  12. Stellar Masses and Start Formation Rates of Lensed Dusty Star-Forming Galaxies from the SPT Survey

    NASA Astrophysics Data System (ADS)

    Ma, Jingzhe; Gonzalez, Anthony; SPT SMG Collaboration

    2016-01-01

    To understand cosmic mass assembly in the Universe at early epochs, we primarily rely on measurements of stellar mass and star formation rate of distant galaxies. In this paper, we present stellar masses and star formation rates of six high-redshift (2.8 ≤ z ≤ 5.7) dusty, star-forming galaxies (DSFGs) that are strongly gravitationally lensed by foreground galaxies. These sources were first discovered by the South Pole Telescope (SPT) at millimeter wavelengths and all have spectroscopic redshifts and robust lens models derived from ALMA observations. We have conducted follow-up observations, obtaining multi-wavelength imaging data, using HST, Spitzer, Herschel and the Atacama Pathfinder EXperiment (APEX). We use the high-resolution HST/WFC3 images to disentangle the background source from the foreground lens in Spitzer/IRAC data. The detections and upper limits provide important constraints on the spectral energy distributions (SEDs) for these DSFGs, yielding stellar masses, IR luminosities, and star formation rates (SFRs). The SED fits of six SPT sources show that the intrinsic stellar masses span a range more than one order of magnitude with a median value ˜ 5 ×1010M⊙. The intrinsic IR luminosities range from 4×1012L⊙ to 4×1013L⊙. They all have prodigious intrinsic star formation rates of 510 to 4800 M⊙yr-1. Compared to the star-forming main sequence (MS), these six DSFGs have specific SFRs that all lie above the MS, including two galaxies that are a factor of 10 higher than the MS. Our results suggest that we are witnessing the ongoing strong starburst events which may be driven by major mergers.

  13. The Relation between Star-Formation Rate and Stellar Mass of Galaxies at z ~ 1-4

    NASA Astrophysics Data System (ADS)

    Katsianis, A.; Tescari, E.; Wyithe, J. S. B.

    2016-07-01

    The relation between the star-formation Rate and stellar mass (M ⋆) of galaxies represents a fundamental constraint on galaxy formation, and has been studied extensively both in observations and cosmological hydrodynamic simulations. However, the observed amplitude of the star-formation rate-stellar mass relation has not been successfully reproduced in simulations, indicating either that the halo accretion history and baryonic physics are poorly understood/modelled or that observations contain biases. In this paper, we examine the evolution of the SFR - M ⋆ relation of z ~ 1-4 galaxies and display the inconsistency between observed relations that are obtained using different techniques. We employ cosmological hydrodynamic simulations from various groups which are tuned to reproduce a range of observables and compare these with a range of observed SFR - M ⋆ relations. We find that numerical results are consistent with observations that use Spectral Energy Distribution techniques to estimate star-formation rates, dust corrections, and stellar masses. On the contrary, simulations are not able to reproduce results that were obtained by combining only UV and IR luminosities (UV+IR). These imply star-formation rates at a fixed stellar mass that are larger almost by a factor of 5 than those of Spectral Energy Distribution measurements for z ~ 1.5-4. For z < 1.5, the results from simulations, Spectral Energy Distribution fitting techniques and IR+UV conversion agree well. We find that surveys that preferably select star-forming galaxies (e.g. by adopting Lyman-break or blue selection) typically predict a larger median/average star-formation rate at a fixed stellar mass especially for high mass objects, with respect to mass selected samples and hydrodynamic simulations. Furthermore, we find remarkable agreement between the numerical results from various authors who have employed different cosmological codes and run simulations with different resolutions. This is

  14. Stellar orbits in the Galaxy and mass extinctions on the Earth: a connection?

    NASA Astrophysics Data System (ADS)

    Porto de Mello, G. F.; Dias, W. S.; Lepine, J.; Lorenzo-Oliveira, D.; Kazu, R. S.

    2014-03-01

    The orbits of the stars in the disk of the Galaxy, and their passages through the Galactic spiral arms, are a rarely mentioned factor of biosphere stability which might be important for long-term planetary climate evolution, with a possible bearing on mass extinctions. The Sun lies very near the co-rotation radius, where stars revolve around the Galaxy in the same period as the density wave perturbations of the spiral arms (Dias & Lepine 2005). Conventional wisdom generally considers that this status makes for few passages through the spiral arms. Controversy still surrounds whether time spent inside or around spiral arms is dangerous to biospheres and conducive to mass extinctions (Bailer-Jones 2009). Possible threats include giant molecular clouds disturbing the Oort comet cloud and provoking heavy bombardment (Clube & Napier 1982); a higher exposure to cosmic rays near star forming regions triggering increased cloudiness in Earth's atmosphere and ice ages (Gies & Helsel 2005); and the destruction of Earth's ozone layer posed by supernova explosions (Gehrels et al 2003). We present detailed calculations of the history of spiral arm passages for all 212 solartype stars nearer than 20 parsecs, including the total time spent inside the spiral arms in the last 500 million years, when the spiral arm position can be traced with good accuracy. There is a very large diversity of stellar orbits amongst solar neighborhood solar-type stars, and the time fraction spent inside spiral arms can vary from a few percent to nearly half the time. The Sun, despite its proximity to the galactic co-rotation radius, has exceptionally low eccentricity and a low vertical velocity component, and therefore spends 40% of its lifetime crossing the spiral arms, more than nearly all nearby stars. We discuss the possible implications of this fact to the long-term habitability of the Earth, and possible correlations of the Sun's passage through the spiral arms with the five great mass

  15. A Physical Approach to the Identification of High-z Mergers: Morphological Classification in the Stellar Mass Domain.

    NASA Astrophysics Data System (ADS)

    Cibinel, A.; Le Floc'h, E.; Perret, V.; Bournaud, F.; Daddi, E.; Pannella, M.; Elbaz, D.; Amram, P.; Duc, P.-A.

    2015-06-01

    At z ≳ 1, the distinction between merging and “normal” star-forming galaxies based on single band morphology is often hampered by the presence of large clumps which result in a disturbed, merger-like appearance even in rotationally supported disks. In this paper we discuss how a classification based on canonical, non-parametric structural indices measured on resolved stellar mass maps, rather than on single-band images, reduces the misclassification of clumpy but not merging galaxies. We calibrate the mass-based selection of mergers using the MIRAGE hydrodynamical numerical simulations of isolated and merging galaxies which span a stellar mass range of 109.8-1010.6 M⊙ and merger ratios between 1:1-1:6.3. These simulations are processed to reproduce the typical depth and spatial resolution of observed Hubble Ultra Deep Field (HUDF) data. We test our approach on a sample of real z≃ 2 galaxies with kinematic classification into disks or mergers and on ˜100 galaxies in the HUDF field with photometric/spectroscopic redshift between 1.5 ≤ z ≤ 3 and M > 109.4 M⊙. We find that a combination of the asymmetry AMASS and M20, MASS indices measured on the stellar mass maps can efficiently identify real (major) mergers with ≲20% contamination from clumpy disks in the merger sample. This mass-based classification cannot be reproduced in star-forming galaxies by H-band measurements alone, which instead result in a contamination from clumpy galaxies which can be as high as 50%. Moreover, we find that the mass-based classification always results in a lower contamination from clumpy galaxies than an H-band classification, regardless of the depth of the imaging used (e.g., CANDELS versus HUDF).

  16. Stellar, remnant, planetary, and dark-object masses from astrometric microlensing

    NASA Technical Reports Server (NTRS)

    Boden, A.; Gould, A. P.; Bennett, D. P.; Depoy, D. L.; Gaudi, S. B.; Griest, K.; Han, C.; Paczynski, B.; Reid, I. N.

    2002-01-01

    With SIM, we will break the microlensing degeneracy, and allow detailed interpretation of individual microlensing events. We will thus develop a detailed census of the dark and luminous stellar population of the Galaxy.

  17. A SWIFT SURVEY OF ACCRETION ONTO STELLAR-MASS BLACK HOLES

    SciTech Connect

    Reynolds, Mark T.; Miller, Jon M.

    2013-05-20

    We present a systemic analysis of all of the stellar-mass black hole binaries (confirmed and candidate) observed by the Swift observatory up to 2010 June. The broad Swift bandpass enables a trace of disk evolution over an unprecedented range in flux and temperature. The final data sample consists of 476 X-ray spectra containing greater than 100 counts, in the 0.6-10 keV band. This is the largest sample of high-quality CCD spectra of accreting black holes published to date. In addition, strictly simultaneous data at optical/UV wavelengths are available for 255 (54%) of these observations. The data are modeled with a combination of an accretion disk and a hard spectral component. For the hard component we consider both a simple power-law model and a thermal Comptonization model. An accretion disk is detected at greater than the 5{sigma} confidence level in 61% of the observations. Light curves and color-color diagrams are constructed for each system. Hardness-luminosity and disk fraction-luminosity diagrams are constructed and are observed to be consistent with those typically observed by RXTE, noting the sensitivity below 2 keV provided by Swift. The observed spectra have an average luminosity of {approx}1% Eddington, though we are sensitive to accretion disks down to a luminosity of 10{sup -3} L{sub Edd}. Thus, this is also the largest sample of such cool accretion disks studied to date. The accretion disk temperature distribution displays two peaks consistent with the classical hard and soft spectral states, with a smaller number of disks distributed between these. The distribution of inner disk radii is observed to be continuous regardless of which model is used to fit the hard continua. There is no evidence for large-scale truncation of the accretion disk in the hard state (at least for L{sub x} {approx}> 10{sup -3} L{sub Edd}), with all of the accretion disks having radii {approx}< 40 R{sub g} . Plots of the accretion disk inner radius versus hardness ratio

  18. The Galaxy mass function up to z =4 in the GOODS-MUSIC sample: into the epoch of formation of massive galaxies

    NASA Astrophysics Data System (ADS)

    Fontana, A.; Salimbeni, S.; Grazian, A.; Giallongo, E.; Pentericci, L.; Nonino, M.; Fontanot, F.; Menci, N.; Monaco, P.; Cristiani, S.; Vanzella, E.; de Santis, C.; Gallozzi, S.

    2006-12-01

    Aims.The goal of this work is to measure the evolution of the Galaxy Stellar Mass Function and of the resulting Stellar Mass Density up to redshift ≃4, in order to study the assembly of massive galaxies in the high redshift Universe. Methods: .We have used the GOODS-MUSIC catalog, containing 3000 Ks-selected galaxies with multi-wavelength coverage extending from the U band to the Spitzer 8 μm band, of which 27% have spectroscopic redshifts and the remaining fraction have accurate photometric redshifts. On this sample we have applied a standard fitting procedure to measure stellar masses. We compute the Galaxy Stellar Mass Function and the resulting Stellar Mass Density up to redshift ≃4, taking into proper account the biases and incompleteness effects. Results: .Within the well known trend of global decline of the Stellar Mass Density with redshift, we show that the decline of the more massive galaxies may be described by an exponential timescale of ≃6 Gyr up to z≃ 1.5, and proceeds much faster thereafter, with an exponential timescale of ≃0.6 Gyr. We also show that there is some evidence for a differential evolution of the Galaxy Stellar Mass Function, with low mass galaxies evolving faster than more massive ones up to z≃ 1{-}1.5 and that the Galaxy Stellar Mass Function remains remarkably flat (i.e. with a slope close to the local one) up to z≃ 1{-}1.3. Conclusions: .The observed behaviour of the Galaxy Stellar Mass Function is consistent with a scenario where about 50% of present-day massive galaxies formed at a vigorous rate in the epoch between redshift 4 and 1.5, followed by a milder evolution until the present-day epoch.

  19. The low-mass star and sub-stellar populations of the 25 Orionis group

    NASA Astrophysics Data System (ADS)

    Downes, Juan José; Briceño, César; Mateu, Cecilia; Hernández, Jesús; Vivas, Anna Katherina; Calvet, Nuria; Hartmann, Lee; Petr-Gotzens, Monika G.; Allen, Lori

    2014-10-01

    We present the results of a survey of the low-mass star and brown dwarf population of the 25 Orionis group. Using optical photometry from the CIDA (Centro de Investigaciones de Astronomía `Francisco J. Duarte', Mérida, Venezuela) Deep Survey of Orion, near-IR photometry from the Visible and Infrared Survey Telescope for Astronomy and low-resolution spectroscopy obtained with Hectospec at the MMT telescope, we selected 1246 photometric candidates to low-mass stars and brown dwarfs with estimated masses within 0.02 ≲ M/M⊙ ≲ 0.8 and spectroscopically confirmed a sample of 77 low-mass stars as new members of the cluster with a mean age of ˜7 Myr. We have obtained a system initial mass function of the group that can be well described by either a Kroupa power-law function with indices α3 = -1.73 ± 0.31 and α2 = 0.68 ± 0.41 in the mass ranges 0.03 ≤ M/M⊙ ≤ 0.08 and 0.08 ≤ M/M⊙ ≤ 0.5, respectively, or a Scalo lognormal function with coefficients m_c=0.21^{+0.02}_{-0.02} and σ = 0.36 ± 0.03 in the mass range 0.03 ≤ M/M⊙ ≤ 0.8. From the analysis of the spatial distribution of this numerous candidate sample, we have confirmed the east-west elongation of the 25 Orionis group observed in previous works, and rule out a possible southern extension of the group. We find that the spatial distributions of low-mass stars and brown dwarfs in 25 Orionis are statistically indistinguishable. Finally, we found that the fraction of brown dwarfs showing IR excesses is higher than for low-mass stars, supporting the scenario in which the evolution of circumstellar discs around the least massive objects could be more prolonged.

  20. Precession of orbits around the stellar-mass black hole in H 1743-322

    NASA Astrophysics Data System (ADS)

    Ingram, Adam

    2016-07-01

    Accreting stellar-mass black holes often show a quasi-periodic oscillation (QPO) in their X-ray flux with a period that slowly drifts from ~10s to ~0.05s, and an iron emission line in their X-ray spectrum. The iron line is generated by fluorescent re-emission, by the accretion disk, of X-ray photons originating in the innermost hot flow. The line shape is distorted by relativistic motion of the orbiting plasma and the gravitational pull of the black hole. The QPO arises from the immediate vicinity of the black hole, but its physical origin has long been debated. It has been suggested that the QPO originates via Lense-Thirring precession, a General Relativistic effect causing the inner flow to precess as the spinning black hole twists up the surrounding space-time. This predicts a characteristic rocking of the iron line between red and blue shift as the receding and approaching sides of the disk are respectively illuminated. I will talk about our observations of the black hole binary H 1743-322 in which the line energy varies in step with the ~4.5s QPO cycle, providing strong evidence that such QPOs originate via Lense-Thirring precession. This effect has previously been measured in our Solar System but our detection is in the strong field regime of General Relativity, at a precession rate 14 orders of magnitude faster than possible in the Earth's gravitational field. Our result enables the application of tomographic techniques to map the motion of matter in the strong gravity near black hole event horizons.

  1. AN UNDERSTANDING OF THE SHOULDER OF GIANTS: JOVIAN PLANETS AROUND LATE K DWARF STARS AND THE TREND WITH STELLAR MASS

    SciTech Connect

    Gaidos, Eric; Fischer, Debra A.; Mann, Andrew W.; Howard, Andrew W.

    2013-07-01

    Analyses of exoplanet statistics suggest a trend of giant planet occurrence with host star mass, a clue to how planets like Jupiter form. One missing piece of the puzzle is the occurrence around late K dwarf stars (masses of 0.5-0.75 M{sub Sun} and effective temperatures of 3900-4800 K). We analyzed four years of Doppler radial velocity (RVs) data for 110 late K dwarfs, one of which hosts two previously reported giant planets. We estimate that 4.0% {+-} 2.3% of these stars have Saturn-mass or larger planets with orbital periods <245 days, depending on the planet mass distribution and RV variability of stars without giant planets. We also estimate that 0.7% {+-} 0.5% of similar stars observed by Kepler have giant planets. This Kepler rate is significantly (99% confidence) lower than that derived from our Doppler survey, but the difference vanishes if only the single Doppler system (HIP 57274) with completely resolved orbits is considered. The difference could also be explained by the exclusion of close binaries (without giant planets) from the Doppler but not Kepler surveys, the effect of long-period companions and stellar noise on the Doppler data, or an intrinsic difference between the two populations. Our estimates for late K dwarfs bridge those for solar-type stars and M dwarfs, and support a positive trend with stellar mass. Small sample size precludes statements about finer structure, e.g., a ''shoulder'' in the distribution of giant planets with stellar mass. Future surveys such as the Next Generation Transit Survey and the Transiting Exoplanet Satellite Survey will ameliorate this deficiency.

  2. The International Deep Planet Survey. II. The frequency of directly imaged giant exoplanets with stellar mass

    NASA Astrophysics Data System (ADS)

    Galicher, R.; Marois, C.; Macintosh, B.; Zuckerman, B.; Barman, T.; Konopacky, Q.; Song, I.; Patience, J.; Lafrenière, D.; Doyon, R.; Nielsen, E. L.

    2016-10-01

    Context. Radial velocity and transit methods are effective for the study of short orbital period exoplanets but they hardly probe objects at large separations for which direct imaging can be used. Aims: We carried out the international deep planet survey of 292 young nearby stars to search for giant exoplanets and determine their frequency. Methods: We developed a pipeline for a uniform processing of all the data that we have recorded with NIRC2/Keck II, NIRI/Gemini North, NICI/Gemini South, and NACO/VLT for 14 yr. The pipeline first applies cosmetic corrections and then reduces the speckle intensity to enhance the contrast in the images. Results: The main result of the international deep planet survey is the discovery of the HR 8799 exoplanets. We also detected 59 visual multiple systems including 16 new binary stars and 2 new triple stellar systems, as well as 2279 point-like sources. We used Monte Carlo simulations and the Bayesian theorem to determine that 1.05+2.80-0.70% of stars harbor at least one giant planet between 0.5 and 14 MJ and between 20 and 300 AU. This result is obtained assuming uniform distributions of planet masses and semi-major axes. If we consider power law distributions as measured for close-in planets instead, the derived frequency is 2.30+5.95-1.55%, recalling the strong impact of assumptions on Monte Carlo output distributions. We also find no evidence that the derived frequency depends on the mass of the hosting star, whereas it does for close-in planets. Conclusions: The international deep planet survey provides a database of confirmed background sources that may be useful for other exoplanet direct imaging surveys. It also puts new constraints on the number of stars with at least one giant planet reducing by a factor of two the frequencies derived by almost all previous works. Tables 11-15 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc

  3. VERY LOW MASS STELLAR AND SUBSTELLAR COMPANIONS TO SOLAR-LIKE STARS FROM MARVELS. I. A LOW-MASS RATIO STELLAR COMPANION TO TYC 4110-01037-1 IN A 79 DAY ORBIT

    SciTech Connect

    Wisniewski, John P.; Agol, Eric; Barnes, Rory; Ge, Jian; De Lee, Nathan; Fleming, Scott W.; Lee, Brian L.; Chang, Liang; Crepp, Justin R.; Eastman, Jason; Gaudi, B. Scott; Esposito, Massimiliano; Gonzalez Hernandez, Jonay I.; Prieto, Carlos Allende; Ghezzi, Luan; Da Costa, Luiz N.; Porto De Mello, G. F.; Stassun, Keivan G.; Cargile, Phillip; Bizyaev, Dmitry; and others

    2012-05-15

    TYC 4110-01037-1 has a low-mass stellar companion, whose small mass ratio and short orbital period are atypical among binary systems with solar-like (T{sub eff} {approx}< 6000 K) primary stars. Our analysis of TYC 4110-01037-1 reveals it to be a moderately aged ({approx}<5 Gyr) solar-like star having a mass of 1.07 {+-} 0.08 M{sub Sun} and radius of 0.99 {+-} 0.18 R{sub Sun }. We analyze 32 radial velocity (RV) measurements from the SDSS-III MARVELS survey as well as 6 supporting RV measurements from the SARG spectrograph on the 3.6 m Telescopio Nazionale Galileo telescope obtained over a period of {approx}2 years. The best Keplerian orbital fit parameters were found to have a period of 78.994 {+-} 0.012 days, an eccentricity of 0.1095 {+-} 0.0023, and a semi-amplitude of 4199 {+-} 11 m s{sup -1}. We determine the minimum companion mass (if sin i = 1) to be 97.7 {+-} 5.8 M{sub Jup}. The system's companion to host star mass ratio, {>=}0.087 {+-} 0.003, places it at the lowest end of observed values for short period stellar companions to solar-like (T{sub eff} {approx}< 6000 K) stars. One possible way to create such a system would be if a triple-component stellar multiple broke up into a short period, low q binary during the cluster dispersal phase of its lifetime. A candidate tertiary body has been identified in the system via single-epoch, high contrast imagery. If this object is confirmed to be comoving, we estimate it would be a dM4 star. We present these results in the context of our larger-scale effort to constrain the statistics of low-mass stellar and brown dwarf companions to FGK-type stars via the MARVELS survey.

  4. Evolution of Intrinsic Scatter in the SFR-Stellar Mass Correlation at 0.5

    NASA Astrophysics Data System (ADS)

    Kurczynski, Peter; Gawiser, Eric J.; Acquaviva, Viviana; Rafelski, Marc; Teplitz, Harry I.; UVUDF Team, CANDELS Team

    2016-01-01

    We present observations of intrinsic scatter in the Star Formation Rate (SFR) - Stellar Mass (M*) correlation in the redshift range 0.5 < z < 3.0 and in the mass range 10^7 < M* < 10^11 Msun. We utilize photometry from the Hubble Ultradeep Field from the UDF12 and UVUDF campaigns and CANDELS/GOODS-S. By utilizing the exceptionally deep UDF photometry (e.g. F160W 29.9 AB, 5 sigma depth) and fitting the corresponding SEDs, we extend the SFR-M* correlation by a factor of 10-100X lower in M*. We detect galaxies down to M* approx 10^7 Msun, comparable to dwarf galaxies in the local universe. We find that the intrinsic scatter is relatively constant across the mass range, and in conflict with theoretical predictions, we do not find evidence for markedly increased scatter at low mass. We find a moderate increase in total and intrinsic scatter with time across the epoch of peak cosmic star formation. These findings are consistent with gradual assembly of stellar mass in galaxies as low as 10^7 Msun and star formation that is increasingly stochastic with cosmic time.

  5. EDDINGTON-LIMITED ACCRETION AND THE BLACK HOLE MASS FUNCTION AT REDSHIFT 6

    SciTech Connect

    Willott, Chris J.; Crampton, David; Hutchings, John B.; Schade, David; Albert, Loic; Arzoumanian, Doris; Bergeron, Jacqueline; Omont, Alain; Delorme, Philippe; Reyle, Celine

    2010-08-15

    We present discovery observations of a quasar in the Canada-France High-z Quasar Survey (CFHQS) at redshift z = 6.44. We also use near-infrared spectroscopy of nine CFHQS quasars at z {approx} 6 to determine black hole masses. These are compared with similar estimates for more luminous Sloan Digital Sky Survey quasars to investigate the relationship between black hole mass and quasar luminosity. We find a strong correlation between Mg II FWHM and UV luminosity and that most quasars at this early epoch are accreting close to the Eddington limit. Thus, these quasars appear to be in an early stage of their life cycle where they are building up their black hole mass exponentially. Combining these results with the quasar luminosity function, we derive the black hole mass function at z = 6. Our black hole mass function is {approx}10{sup 4} times lower than at z = 0 and substantially below estimates from previous studies. The main uncertainties which could increase the black hole mass function are a larger population of obscured quasars at high redshift than is observed at low redshift and/or a low quasar duty cycle at z = 6. In comparison, the global stellar mass function is only {approx}10{sup 2} times lower at z = 6 than at z = 0. The difference between the black hole and stellar mass function evolution is due to either rapid early star formation which is not limited by radiation pressure as is the case for black hole growth or inefficient black hole seeding. Our work predicts that the black hole mass-stellar mass relation for a volume-limited sample of galaxies declines rapidly at very high redshift. This is in contrast to the observed increase at 4 < z < 6 from the local relation if one just studies the most massive black holes.

  6. A LINK BETWEEN STAR FORMATION QUENCHING AND INNER STELLAR MASS DENSITY IN SLOAN DIGITAL SKY SURVEY CENTRAL GALAXIES

    SciTech Connect

    Fang, Jerome J.; Faber, S. M.; Koo, David C.

    2013-10-10

    We study the correlation between galaxy structure and the quenching of star formation using a sample of Sloan Digital Sky Survey central galaxies with stellar masses 9.75 < log M{sub *}/M{sub ☉} < 11.25 and redshifts z < 0.075. Galaxy Evolution Explorer UV data are used to cleanly divide the sample into star-forming and quenched galaxies and to identify galaxies in transition (the green valley). Despite a stark difference in visual appearance between blue and red galaxies, their average radial stellar mass density profiles are remarkably similar (especially in the outer regions) at fixed mass. The inner stellar mass surface density within a radius of 1 kpc, Σ{sub 1}, is used to quantify the growth of the bulge as galaxies evolve. When galaxies are divided into narrow mass bins, their distribution in the color-Σ{sub 1} plane at fixed mass forms plausible evolutionary tracks. Σ{sub 1} seems to grow as galaxies evolve through the blue cloud, and once it crosses a threshold value, galaxies are seen to quench at fixed Σ{sub 1}. The Σ{sub 1} threshold for quenching grows with stellar mass, Σ{sub 1}∝M{sub *}{sup 0.64}. However, the existence of some star-forming galaxies above the threshold Σ{sub 1} implies that a dense bulge is necessary but not sufficient to quench a galaxy fully. This would be consistent with a two-step quenching process in which gas within a galaxy is removed or stabilized against star formation by bulge-driven processes (such as a starburst, active galactic nucleus feedback, or morphological quenching), whereas external gas accretion is suppressed by separate halo-driven processes (such as halo gas shock heating). Quenching thus depends on an interplay between the inner structure of a galaxy and its surrounding dark matter halo, and lack of perfect synchrony between the two could produce the observed scatter in color versus Σ{sub 1}.

  7. Mass function study of open star clusters Haffner 11 and Czernik 31

    NASA Astrophysics Data System (ADS)

    Bisht, D.; Yadav, R. K. S.; Durgapal, A. K.

    2016-08-01

    We analysis VI CCD data of two open clusters Haffner 11 and Czernik 31 in order to determine their luminosity function, mass function and mass-segregation for the first time. The observed luminosity function is corrected for both data incompleteness and field star contamination. Theoretical stellar evolutionary isochrones are used to convert luminosity function into mass function. The Mass function slopes are derived as 1.22 ± 0.42 and 1.55 ± 0.38 for Haffner 11 and Czernik 31 respectively. They agree with the Salpeter value (x = 1.35) within the errors. The effect of mass segregation are observed in both the clusters. The estimated dynamical relaxation time is less than age of the clusters. This indicates that they are dynamically relaxed. The cause of relaxation may be due to the dynamical evolution or imprint of star formation or both.

  8. The Mass Function of Cosmic Structures

    NASA Astrophysics Data System (ADS)

    Audit, E.; Teyssier, R.; Alimi, J.-M.

    We investigate some modifications to the Press and Schechter (1974) (PS) prescription resulting from shear and tidal effects. These modifications rely on more realistic treatments of the collapse process than the standard approach based on the spherical model. First, we show that the mass function resulting from a new approximate Lagrangian dynamic (Audit and Alimi, A&A 1996), contains more objects at high mass, than the classical PS mass function and is well fitted by a PS-like function with a threshold density of deltac ≍ 1.4. However, such a Lagrangian description can underestimate the epoch of structure formation since it defines it as the collapse of the first principal axis. We therefore suggest some analytical prescriptions, for computing the collapse time along the second and third principal axes, and we deduce the corresponding mass functions. The collapse along the third axis is delayed by the shear and the number of objects of high mass then decreases. Finally, we show that the shear also strongly affects the formation of low-mass halos. This dynamical effect implies a modification of the low-mass slope of the mass function and allows the reproduction of the observed luminosity function of field galaxies.

  9. The effects of the stellar wind and orbital motion on the jets of high-mass microquasars

    NASA Astrophysics Data System (ADS)

    Bosch-Ramon, V.; Barkov, M. V.

    2016-05-01

    Context. High-mass microquasar jets propagate under the effect of the wind from the companion star, and the orbital motion of the binary system. The stellar wind and the orbit may be dominant factors determining the jet properties beyond the binary scales. Aims: This is an analytical study, performed to characterise the effects of the stellar wind and the orbital motion on the jet properties. Methods: Accounting for the wind thrust transferred to the jet, we derive analytical estimates to characterise the jet evolution under the impact of the stellar wind. We include the Coriolis force effect, induced by orbital motion and enhanced by the wind's presence. Large-scale evolution of the jet is sketched, accounting for wind-to-jet thrust transfer, total energy conservation, and wind-jet flow mixing. Results: If the angle of the wind-induced jet bending is larger than its half-opening angle, the following is expected: (i) a strong recollimation shock; (ii) bending against orbital motion, caused by Coriolis forces and enhanced by the wind presence; and (iii) non-ballistic helical propagation further away. Even if disrupted, the jet can re-accelerate due to ambient pressure gradients, but wind entrainment can weaken this acceleration. On large scales, the opening angle of the helical structure is determined by the wind-jet thrust relation, and the wind-loaded jet flow can be rather slow. Conclusions: The impact of stellar winds on high-mass microquasar jets can yield non-ballistic helical jet trajectories, jet partial disruption and wind mixing, shocks, and possibly non-thermal emission. Among other observational diagnostics, such as radiation variability at any band, the radio morphology on milliarcsecond scales can be informative on the wind-jet interaction.

  10. THE SLOAN LENS ACS SURVEY. XI. BEYOND HUBBLE RESOLUTION: SIZE, LUMINOSITY, AND STELLAR MASS OF COMPACT LENSED GALAXIES AT INTERMEDIATE REDSHIFT

    SciTech Connect

    Newton, Elisabeth R.; Marshall, Philip J.; Treu, Tommaso; Auger, Matthew W.; Gavazzi, Raphaeel; Bolton, Adam S.; Koopmans, Leon V. E.; Moustakas, Leonidas A.

    2011-06-20

    We exploit the strong lensing effect to explore the properties of intrinsically faint and compact galaxies at intermediate redshift (z{sub s} {approx_equal} 0.4-0.8) at the highest possible resolution at optical wavelengths. Our sample consists of 46 strongly lensed emission line galaxies (ELGs) discovered by the Sloan Lens ACS Survey (SLACS). The galaxies have been imaged at high resolution with the Hubble Space Telescope (HST) in three bands (V{sub HST} , I{sub 814}, and H{sub 160}), allowing us to infer their size, luminosity, and stellar mass using stellar population synthesis models. Lens modeling is performed using a new fast and robust code, KLENS, which we test extensively on real and synthetic non-lensed galaxies, and also on simulated galaxies multiply imaged by SLACS-like galaxy-scale lenses. Our tests show that our measurements of galaxy size, flux, and Sersic index are robust and accurate, even for objects intrinsically smaller than the HST point-spread function. The median magnification is 8.8, with a long tail that extends to magnifications above 40. Modeling the SLACS sources reveals a population of galaxies with colors and Sersic indices (median n {approx} 1) consistent with the galaxies detected with HST in the Galaxy Evolution from Morphology and SEDs (GEMS) and Hubble Ultra Deep Field (HUDF) surveys, but that are (typically) {approx}2 mag fainter and {approx}5 times smaller in apparent size than GEMS and {approx}4 mag brighter than but similar in size to HUDF. The size-stellar-mass and size-luminosity relations for the SLACS sources are offset to smaller sizes with respect to both comparison samples. The closest analog are ultracompact ELGs identified by HST grism surveys. The lowest mass galaxies in our sample are comparable to the brightest Milky Way satellites in stellar mass (10{sup 7} M{sub sun}) and have well-determined half-light radii of 0.''05 ({approx}0.3 kpc).

  11. Mapping stellar content to dark matter haloes - II. Halo mass is the main driver of galaxy quenching

    NASA Astrophysics Data System (ADS)

    Zu, Ying; Mandelbaum, Rachel

    2016-04-01

    We develop a simple yet comprehensive method to distinguish the underlying drivers of galaxy quenching, using the clustering and galaxy-galaxy lensing of red and blue galaxies in Sloan Digital Sky Survey. Building on the iHOD framework developed by Zu & Mandelbaum, we consider two quenching scenarios: (1) a `halo' quenching model in which halo mass is the sole driver for turning off star formation in both centrals and satellites; and (2) a `hybrid' quenching model in which the quenched fraction of galaxies depends on their stellar mass, while the satellite quenching has an extra dependence on halo mass. The two best-fitting models describe the red galaxy clustering and lensing equally well, but halo quenching provides significantly better fits to the blue galaxies above 1011 h-2 M⊙. The halo quenching model also correctly predicts the average halo mass of the red and blue centrals, showing excellent agreement with the direct weak lensing measurements of locally brightest galaxies. Models in which quenching is not tied to halo mass, including an age-matching model in which galaxy colour depends on halo age at fixed M*, fail to reproduce the observed halo mass for massive blue centrals. We find similar critical halo masses responsible for the quenching of centrals and satellites (˜1.5 × 1012 h-1 M⊙), hinting at a uniform quenching mechanism for both, e.g. the virial shock heating of infalling gas. The success of the iHOD halo quenching model provides strong evidence that the physical mechanism that quenches star formation in galaxies is tied principally to the masses of their dark matter haloes rather than the properties of their stellar components.

  12. Stellar modelling of Spica, a high-mass spectroscopic binary with a β Cep variable primary component

    NASA Astrophysics Data System (ADS)

    Tkachenko, A.; Matthews, J. M.; Aerts, C.; Pavlovski, K.; Pápics, P. I.; Zwintz, K.; Cameron, C.; Walker, G. A. H.; Kuschnig, R.; Degroote, P.; Debosscher, J.; Moravveji, E.; Kolbas, V.; Guenther, D. B.; Moffat, A. F. J.; Rowe, J. F.; Rucinski, S. M.; Sasselov, D.; Weiss, W. W.

    2016-05-01

    Binary stars provide a valuable test of stellar structure and evolution, because the masses of the individual stellar components can be derived with high accuracy and in a model-independent way. In this work, we study Spica, an eccentric double-lined spectroscopic binary system with a β Cep type variable primary component. We use state-of-the-art modelling tools to determine accurate orbital elements of the binary system and atmospheric parameters of both stellar components. We interpret the short-period variability intrinsic to the primary component, detected on top of the orbital motion both in the photometric and spectroscopic data. The non-local thermodynamic equilibrium based spectrum analysis reveals two stars of similar atmospheric chemical composition consistent with the present-day cosmic abundance standard. The masses and radii of the stars are found to be 11.43 ± 1.15 M⊙ and 7.21 ± 0.75 M⊙, and 7.47 ± 0.54 R⊙ and 3.74 ± 0.53 R⊙ for the primary and secondary, respectively. We find the primary component to pulsate in three independent modes, of which one is identified as a radial mode, while the two others are found to be non-radial, low degree l modes. The frequency of one of these modes is an exact multiple of the orbital frequency, and the l = m = 2 mode identification suggests a tidal nature for this particular mode. We find a very good agreement between the derived dynamical and evolutionary masses for the Spica system to within the observational errors of the measured masses. The age of the system is estimated to be 12.5 ± 1 Myr.

  13. Explaining the Three-decade Correlation between Star Formation Rate and Stellar Mass in Galaxies at z~1

    NASA Astrophysics Data System (ADS)

    Gawiser, Eric J.; Kurczynski, Peter; Acquaviva, Viviana; UVUDF Team, CANDELS Team

    2016-01-01

    In star-forming galaxies across cosmic time, a correlation has been found between the mass of stars already assembled and its time derivative, the star formation rate. This surprising correlation was not predicted by theory, but it can be reproduced within cosmological hydrodynamics simulations and semi-analytical models of galaxy formation. Here we use SpeedyMC, a Markov Chain Monte Carlo code for Spectral Energy Distribution fitting, to measure the star formation rates and stellar masses of 800 galaxies from the Ultraviolet Ultradeep Field (UVUDF) and CANDELS/GOODS-S field at redshift 1 < z < 1.5. This galaxy sample leverages the deepest images taken with the Hubble Space Telescope to extend the SFR-M* correlation a factor of 10-100X lower in M* than previous studies, down to values of 10^7 M_sun comparable to present-day dwarf galaxies. Accounting for each galaxy's parameter uncertainties, including their covariances, yields a power-law correlation across three decades with intrinsic scatter of 0.2 dex. Having assumed realistic star formation histories that can rise and fall with time, we are able to measure star formation rates on timescales varying from instantaneous to the "lifetime" average for each galaxy. As the timescale over which star formation rate is averaged increases, the power-law exponent of the correlation with stellar mass increases to unity, and the scatter decreases to 0.05 dex. We conclude that the observed correlation between star formation rate and stellar mass results from a tight correlation between recent and lifetime-average star formation rates and a narrow spread of galaxy ages at a given star formation rate. The resulting correlation provides crucial evidence that galaxy formation proceeds through self-regulated star formation. We gratefully acknowledge support from NSF grant AST-1055919 and grants from NASA via the Space Telescope Science Institute in support of programs 12060.57, 12445.56, and GO-12534.

  14. GAS REGULATION OF GALAXIES: THE EVOLUTION OF THE COSMIC SPECIFIC STAR FORMATION RATE, THE METALLICITY-MASS-STAR-FORMATION RATE RELATION, AND THE STELLAR CONTENT OF HALOS

    SciTech Connect

    Lilly, Simon J.; Carollo, C. Marcella; Pipino, Antonio; Peng Yingjie; Renzini, Alvio

    2013-08-01

    A very simple physical model of galaxies is one in which the formation of stars is instantaneously regulated by the mass of gas in a reservoir with mass loss scaling with the star-formation rate (SFR). This model links together three different aspects of the evolving galaxy population: (1) the cosmic time evolution of the specific star-formation rate (sSFR) relative to the growth of halos, (2) the gas-phase metallicities across the galaxy population and over cosmic time, and (3) the ratio of the stellar to dark matter mass of halos. The gas regulator is defined by the gas consumption timescale ({epsilon}{sup -1}) and the mass loading {lambda} of the wind outflow {lambda}{center_dot}SFR. The simplest regulator, in which {epsilon} and {lambda} are constant, sets the sSFR equal to exactly the specific accretion rate of the galaxy; more realistic situations lead to an sSFR that is perturbed from this precise relation. Because the gas consumption timescale is shorter than the timescale on which the system evolves, the metallicity Z is set primarily by the instantaneous operation of the regulator system rather than by the past history of the system. The metallicity of the gas reservoir depends on {epsilon}, {lambda}, and sSFR, and the regulator system therefore naturally produces a Z(m{sub star}, SFR) relation if {epsilon} and {lambda} depend on the stellar mass m{sub star}. Furthermore, this relation will be the same at all epochs unless the parameters {epsilon} and {lambda} themselves change with time. A so-called fundamental metallicity relation is naturally produced by these conditions. The overall mass-metallicity relation Z(m{sub star}) directly provides the fraction f{sub star}(m{sub star}) of incoming baryons that are being transformed into stars. The observed Z(m{sub star}) relation of Sloan Digital Sky Survey (SDSS) galaxies implies a strong dependence of stellar mass on halo mass that reconciles the different faint-end slopes of the stellar and halo mass

  15. Stellar feedback efficiencies: supernovae versus stellar winds

    NASA Astrophysics Data System (ADS)

    Fierlinger, Katharina M.; Burkert, Andreas; Ntormousi, Evangelia; Fierlinger, Peter; Schartmann, Marc; Ballone, Alessandro; Krause, Martin G. H.; Diehl, Roland

    2016-02-01

    Stellar winds and supernova (SN) explosions of massive stars (`stellar feedback') create bubbles in the interstellar medium (ISM) and insert newly produced heavy elements and kinetic energy into their surroundings, possibly driving turbulence. Most of this energy is thermalized and immediately removed from the ISM by radiative cooling. The rest is available for driving ISM dynamics. In this work we estimate the amount of feedback energy retained as kinetic energy when the bubble walls have decelerated to the sound speed of the ambient medium. We show that the feedback of the most massive star outweighs the feedback from less massive stars. For a giant molecular cloud (GMC) mass of 105 M⊙ (as e.g. found in the Orion GMCs) and a star formation efficiency of 8 per cent the initial mass function predicts a most massive star of approximately 60 M⊙. For this stellar evolution model we test the dependence of the retained kinetic energy of the cold GMC gas on the inclusion of stellar winds. In our model winds insert 2.34 times the energy of an SN and create stellar wind bubbles serving as pressure reservoirs. We find that during the pressure-driven phases of the bubble evolution radiative losses peak near the contact discontinuity (CD), and thus the retained energy depends critically on the scales of the mixing processes across the CD. Taking into account the winds of massive stars increases the amount of kinetic energy deposited in the cold ISM from 0.1 per cent to a few per cent of the feedback energy.

  16. Stellar Winds

    NASA Astrophysics Data System (ADS)

    Owocki, Stan

    A "stellar wind" is the continuous, supersonic outflow of matter from the surface layers of a star. Our sun has a solar wind, driven by the gas-pressure expansion of the hot (T > 106 K) solar corona. It can be studied through direct in situ measurement by interplanetary spacecraft; but analogous coronal winds in more distant solar-type stars are so tenuous and transparent that that they are difficult to detect directly. Many more luminous stars have winds that are dense enough to be opaque at certain wavelengths of the star's radiation, making it possible to study their wind outflows remotely through careful interpretation of the observed stellar spectra. Red giant stars show slow, dense winds that may be driven by the pressure from magnetohydrodyanmic waves. As stars with initial mass up to 8 M ⊙ evolve toward the Asymptotic Giant Branch (AGB), a combination of stellar pulsations and radiative scattering off dust can culminate in "superwinds" that strip away the entire stellar envelope, leaving behind a hot white dwarf stellar core with less than the Chandrasekhar mass of ˜ ​​ 1. 4M ⊙. The winds of hot, luminous, massive stars are driven by line-scattering of stellar radiation, but such massive stars can also exhibit superwind episodes, either as Red Supergiants or Luminous Blue Variable stars. The combined wind and superwind mass loss can strip the star's hydrogen envelope, leaving behind a Wolf-Rayet star composed of the products of earlier nuclear burning via the CNO cycle. In addition to such direct effects on a star's own evolution, stellar winds can be a substantial source of mass, momentum, and energy to the interstellar medium, blowing open large cavities or "bubbles" in this ISM, seeding it with nuclear processed material, and even helping trigger the formation of new stars, and influencing their eventual fate as white dwarves or core-collapse supernovae. This chapter reviews the properties of such stellar winds, with an emphasis on the various

  17. Metal-Poor, Strongly Star-Forming Galaxies in the DEEP2 Survey: The Relationship Between Stellar Mass, Temperature-Based Metallicity, and Star Formation Rate

    NASA Technical Reports Server (NTRS)

    Ly, Chun; Rigby, Jane R.; Cooper, Michael; Yan, Renbin

    2015-01-01

    We report on the discovery of 28 redshift (z) approximately 0.8 metal-poor galaxies in DEEP2. These galaxies were selected for their detection of the weak [O (sub III)] lambda 4363 emission line, which provides a "direct" measure of the gas-phase metallicity. A primary goal for identifying these rare galaxies is to examine whether the fundamental metallicity relation (FMR) between stellar mass, gas metallicity, and star formation rate (SFR) extends to low stellar mass and high SFR. The FMR suggests that higher SFR galaxies have lower metallicity (at fixed stellar mass). To test this trend, we combine spectroscopic measurements of metallicity and dust-corrected SFRs, with stellar mass estimates from modeling the optical photometry. We find that these galaxies are 1.05 plus or minus 0.61 decimal exponent (dex) above the redshift (z) approximately equal to 1 stellar mass-SFR relation, and 0.23 plus or minus 0.23 decimal exponent (dex) below the local mass-metallicity relation. Relative to the FMR, the latter offset is reduced to 0.01 decimal exponent (dex), but significant dispersion remains (0.29 decimal exponent (dex) with 0.16 decimal exponent (dex) due to measurement uncertainties). This dispersion suggests that gas accretion, star formation and chemical enrichment have not reached equilibrium in these galaxies. This is evident by their short stellar mass doubling timescale of approximately 100 (sup plus 310) (sub minus 75) million years that suggests stochastic star formation. Combining our sample with other redshift (z) of approximately 1 metal-poor galaxies, we find a weak positive SFR-metallicity dependence (at fixed stellar mass) that is significant at 97.3 percent confidence. We interpret this positive correlation as recent star formation that has enriched the gas, but has not had time to drive the metal-enriched gas out with feedback mechanisms.

  18. Metal-Poor, Strongly Star-Forming Galaxies in the DEEP2 Survey: The Relationship Between Stellar Mass, Temperature-Based Metallicity, and Star Formation Rate

    NASA Technical Reports Server (NTRS)

    Ly, Chun; Rigby, Jane R.; Cooper, Michael; Yan, Renbin

    2015-01-01

    We report on the discovery of 28 redshift (z) approximately equal to 0.8 metal-poor galaxies in DEEP2. These galaxies were selected for their detection of the weak [O (sub III)] lambda 4363 emission line, which provides a "direct" measure of the gas-phase metallicity. A primary goal for identifying these rare galaxies is to examine whether the fundamental metallicity relation (FMR) between stellar mass, gas metallicity, and star formation rate (SFR) holds for low stellar mass and high SFR galaxies. The FMR suggests that higher SFR galaxies have lower metallicity (at fixed stellar mass). To test this trend, we combine spectroscopic measurements of metallicity and dust-corrected SFR with stellar mass estimates from modeling the optical photometry. We find that these galaxies are 1.05 plus or minus 0.61 dex above the redshift (z) approximately 1 stellar mass-SFR relation and 0.23 plus or minus 0.23 dex below the local mass-metallicity relation. Relative to the FMR, the latter offset is reduced to 0.01 dex, but significant dispersion remains dex with 0.16 dex due to measurement uncertainties). This dispersion suggests that gas accretion, star formation, and chemical enrichment have not reached equilibrium in these galaxies. This is evident by their short stellar mass doubling timescale of approximately equal to 100 (sup plus 310) (sub minus 75) million years which suggests stochastic star formation. Combining our sample with other redshift (z) of approximately 1 metal-poor galaxies, we find a weak positive SFR-metallicity dependence (at fixed stellar mass) that is significant at 94.4 percent confidence. We interpret this positive correlation as recent star formation that has enriched the gas but has not had time to drive the metal-enriched gas out with feedback mechanisms.

  19. STELLAR VELOCITY DISPERSION MEASUREMENTS IN HIGH-LUMINOSITY QUASAR HOSTS AND IMPLICATIONS FOR THE AGN BLACK HOLE MASS SCALE

    SciTech Connect

    Grier, C. J.; Martini, P.; Peterson, B. M.; Pogge, R. W.; Zu, Y.; Watson, L. C.; Bentz, M. C.; Dasyra, K. M.; Dietrich, M.; Ferrarese, L.

    2013-08-20

    We present new stellar velocity dispersion measurements for four luminous quasars with the Near-Infrared Integral Field Spectrometer instrument and the ALTAIR laser guide star adaptive optics system on the Gemini North 8 m telescope. Stellar velocity dispersion measurements and measurements of the supermassive black hole (BH) masses in luminous quasars are necessary to investigate the coevolution of BHs and galaxies, trace the details of accretion, and probe the nature of feedback. We find that higher-luminosity quasars with higher-mass BHs are not offset with respect to the M{sub BH}-{sigma}{sub *} relation exhibited by lower-luminosity active galactic nuclei (AGNs) with lower-mass BHs, nor do we see correlations with galaxy morphology. As part of this analysis, we have recalculated the virial products for the entire sample of reverberation-mapped AGNs and used these data to redetermine the mean virial factor (f) that places the reverberation data on the quiescent M{sub BH}-{sigma}{sub *} relation. With our updated measurements and new additions to the AGN sample, we obtain (f) = 4.31 {+-} 1.05, which is slightly lower than, but consistent with, most previous determinations.

  20. Young and embedded clusters in Cygnus-X: evidence for building up the initial mass function?

    NASA Astrophysics Data System (ADS)

    Maia, F. F. S.; Moraux, E.; Joncour, I.

    2016-05-01

    We provide a new view on the Cygnus-X north complex by accessing for the first time the low mass content of young stellar populations in the region. Canada-France-Hawaii Telescope/Wide-Field Infrared Camera was used to perform a deep near-infrared survey of this complex, sampling stellar masses down to ˜0.1 M⊙. Several analysis tools, including a extinction treatment developed in this work, were employed to identify and uniformly characterize a dozen unstudied young star clusters in the area. Investigation of their mass distributions in low-mass domain revealed a relatively uniform log-normal initial mass function (IMF) with a characteristic mass of 0.32 ± 0.08 M⊙ and mass dispersion of 0.40 ± 0.06. In the high-mass regime, their derived slopes showed that while the youngest clusters (age < 4 Myr) presented slightly shallower values with respect to the Salpeter's, our older clusters (4 Myr < age < 18 Myr) showed IMF compliant values and a slightly denser stellar population. Although possibly evidencing a deviation from an `universal' IMF, these results also supports a scenario where these gas-dominated young clusters gradually `build up' their IMF by accreting low-mass stars formed in their vicinity during their first ˜3 Myr, before the gas expulsion phase, emerging at the age of ˜4 Myr with a fully fledged IMF. Finally, the derived distances to these clusters confirmed the existence of at least three different star-forming regions throughout Cygnus-X north complex, at distances of 500-900 pc, 1.4-1.7 and 3.0 kpc, and revealed evidence of a possible interaction between some of these stellar populations and the Cygnus OB2 association.

  1. Galaxy And Mass Assembly (GAMA): The absence of stellar mass segregation in galaxy groups and consistent predictions from GALFORM and EAGLE simulations

    NASA Astrophysics Data System (ADS)

    Kafle, P. R.; Robotham, A. S. G.; Lagos, C. del P.; Davies, L. J.; Moffett, A. J.; Driver, S. P.; Andrews, S. K.; Baldry, I. K.; Bland-Hawthorn, J.; Brough, S.; Cortese, L.; Drinkwater, M. J.; Finnegan, R.; Hopkins, A. M.; Loveday, J.

    2016-09-01

    We investigate the contentious issue of the presence, or lack thereof, of satellites mass segregation in galaxy groups using the Galaxy And Mass Assembly (GAMA) survey, the GALFORM semi-analytic and the EAGLE cosmological hydrodynamical simulation catalogues of galaxy groups. We select groups with halo mass 12 ≤ log (Mhalo/h-1M⊙) < 14.5 and redshift z ≤ 0.32 and probe the radial distribution of stellar mass out to twice the group virial radius. All the samples are carefully constructed to be complete in stellar mass at each redshift range and efforts are made to regularise the analysis for all the data. Our study shows negligible mass segregation in galaxy group environments with absolute gradients of ≲ 0.08 dex and also shows a lack of any redshift evolution. Moreover, we find that our results at least for the GAMA data are robust to different halo mass and group centre estimates. Furthermore, the EAGLE data allows us to probe much fainter luminosities (r-band magnitude of 22) as well as investigate the three-dimensional spatial distribution with intrinsic halo properties, beyond what the current observational data can offer. In both cases we find that the fainter EAGLE data show a very mild spatial mass segregation at z ≤ 0.22, which is again not apparent at higher redshift. Interestingly, our results are in contrast to some earlier findings using the Sloan Digital Sky Survey. We investigate the source of the disagreement and suggest that subtle differences between the group finding algorithms could be the root cause.

  2. AN INITIAL MASS FUNCTION FOR INDIVIDUAL STARS IN GALACTIC DISKS. I. CONSTRAINING THE SHAPE OF THE INITIAL MASS FUNCTION

    SciTech Connect

    Parravano, Antonio; McKee, Christopher F.; Hollenbach, David J.

    2011-01-01

    We derive a semi-empirical galactic initial mass function (IMF) from observational constraints. We assume that the IMF, {psi}(m), is a smooth function of the stellar mass m. The mass dependence of the proposed IMF is determined by five parameters: the low-mass slope {gamma}, the high-mass slope -{Gamma} (taken to be -1.35), the characteristic mass m{sub ch} ({approx} the peak mass of the IMF), and the lower and upper limits on the mass, m{sub l} and m{sub u} (taken to be 0.004 and 120 M{sub sun}, respectively): {psi}(m)dln m {proportional_to} m{sup -}{Gamma}{l_brace}1 - exp [- (m/m{sub ch}){sup {gamma}}+{Gamma}]{r_brace}dln m. The values of {gamma} and m{sub ch} are derived from two integral constraints: (1) the ratio of the number density of stars in the range m = 0.1-0.6 M{sub sun} to that in the range m = 0.6-0.8 M{sub sun} as inferred from the mass distribution of field stars in the local neighborhood and (2) the ratio of the number of stars in the range m = 0.08-1 M{sub sun} to the number of brown dwarfs in the range m = 0.03-0.08 M{sub sun} in young clusters. The IMF satisfying the above constraints is characterized by the parameters {gamma} = 0.51 and m{sub ch} = 0.35 M{sub sun} (which corresponds to a peak mass of 0.27 M{sub sun} ). This IMF agrees quite well with the Chabrier IMF for the entire mass range over which we have compared with data, but predicts significantly more stars with masses <0.03 M{sub sun}; we also compare with other IMFs in current use and give a number of important parameters implied by the IMFs.

  3. THE STELLAR METALLICITY DISTRIBUTION FUNCTION OF THE GALACTIC HALO FROM SDSS PHOTOMETRY

    SciTech Connect

    An, Deokkeun; Beers, Timothy C.; Johnson, Jennifer A.; Pinsonneault, Marc H.; Lee, Young Sun; Bovy, Jo; Ivezic, Zeljko; Carollo, Daniela; Newby, Matthew

    2013-01-20

    We explore the stellar metallicity distribution function of the Galactic halo based on SDSS ugriz photometry. A set of stellar isochrones is calibrated using observations of several star clusters and validated by comparisons with medium-resolution spectroscopic values over a wide range of metal abundance. We estimate distances and metallicities for individual main-sequence stars in the multiply scanned SDSS Stripe 82, at heliocentric distances in the range 5-8 kpc and |b| > 35 Degree-Sign , and find that the in situ photometric metallicity distribution has a shape that matches that of the kinematically selected local halo stars from Ryan and Norris. We also examine independent kinematic information from proper-motion measurements for high Galactic latitude stars in our sample. We find that stars with retrograde rotation in the rest frame of the Galaxy are generally more metal poor than those exhibiting prograde rotation, which is consistent with earlier arguments by Carollo et al. that the halo system comprises at least two spatially overlapping components with differing metallicity, kinematics, and spatial distributions. The observed photometric metallicity distribution and that of Ryan and Norris can be described by a simple chemical evolution model by Hartwick (or by a single Gaussian distribution); however, the suggestive metallicity-kinematic correlation contradicts the basic assumption in this model that the Milky Way halo consists primarily of a single stellar population. When the observed metallicity distribution is deconvolved using two Gaussian components with peaks at [Fe/H] Almost-Equal-To -1.7 and -2.3, the metal-poor component accounts for {approx}20%-35% of the entire halo population in this distance range.

  4. The Stellar Metallicity Distribution Function of the Galactic Halo from SDSS Photometry

    NASA Astrophysics Data System (ADS)

    An, Deokkeun; Beers, Timothy C.; Johnson, Jennifer A.; Pinsonneault, Marc H.; Lee, Young Sun; Bovy, Jo; Ivezić, Željko; Carollo, Daniela; Newby, Matthew

    2013-01-01

    We explore the stellar metallicity distribution function of the Galactic halo based on SDSS ugriz photometry. A set of stellar isochrones is calibrated using observations of several star clusters and validated by comparisons with medium-resolution spectroscopic values over a wide range of metal abundance. We estimate distances and metallicities for individual main-sequence stars in the multiply scanned SDSS Stripe 82, at heliocentric distances in the range 5-8 kpc and |b| > 35°, and find that the in situ photometric metallicity distribution has a shape that matches that of the kinematically selected local halo stars from Ryan & Norris. We also examine independent kinematic information from proper-motion measurements for high Galactic latitude stars in our sample. We find that stars with retrograde rotation in the rest frame of the Galaxy are generally more metal poor than those exhibiting prograde rotation, which is consistent with earlier arguments by Carollo et al. that the halo system comprises at least two spatially overlapping components with differing metallicity, kinematics, and spatial distributions. The observed photometric metallicity distribution and that of Ryan & Norris can be described by a simple chemical evolution model by Hartwick (or by a single Gaussian distribution); however, the suggestive metallicity-kinematic correlation contradicts the basic assumption in this model that the Milky Way halo consists primarily of a single stellar population. When the observed metallicity distribution is deconvolved using two Gaussian components with peaks at [Fe/H] ≈ -1.7 and -2.3, the metal-poor component accounts for ~20%-35% of the entire halo population in this distance range.

  5. The Anemic Stellar Halo of M101

    NASA Astrophysics Data System (ADS)

    Holwerda, Benne

    2014-10-01

    Models of galaxy formation in a cosmological context predict that massive disk galaxies should have richly-structured extended stellar halos, containing ~10% of a galaxy's stars, originating in large part from the tidal disruption of dwarf galaxies. Observations of a number of nearby disk galaxies have generally agreed with these expectations. Recent new observations in integrated light with a novel array of low scattered-light telephoto lenses have failed to convincingly detect a stellar halo in the nearby massive face-on disk galaxy M101 (van Dokkum et al. 2014). They argue that any halo has to have <0.3% of the mass of the galaxy. This halo would be the least massive of any massive disk galaxy in the local Universe (by factors of several) -- such a halo is not predicted or naturally interpreted by the models, and would present a critical challenge to the picture of ubiquitous stellar halos formed from the debris of disrupting dwarf galaxies.We propose to resolve the stellar populations of this uniquely anemic stellar halo for 6 orbits with HST (ACS and WFC3), allowing us to reach surface brightness limits sufficient to clearly detect and characterize M101's stellar halo if it carries more than 0.1% of M101's mass. With resolved stellar populations, we can use the gradient of stellar populations as a function of radius to separate stellar halo from disk, which is impossible using integrated light observations. The resolved stellar populations will reveal the halo mass to much greater accuracy, measure the halo radial profile, constrain any halo lopsidedness, estimate the halo's stellar metallicity, and permit an analysis of outer disk stellar populations.

  6. FORMATION OF MASSIVE BLACK HOLES IN DENSE STAR CLUSTERS. II. INITIAL MASS FUNCTION AND PRIMORDIAL MASS SEGREGATION

    SciTech Connect

    Goswami, Sanghamitra; Umbreit, Stefan; Rasio, Frederic A.; Bierbaum, Matt

    2012-06-10

    A promising mechanism to form intermediate-mass black holes is the runaway merger in dense star clusters, where main-sequence stars collide and form a very massive star (VMS), which then collapses to a black hole (BH). In this paper, we study the effects of primordial mass segregation and the importance of the stellar initial mass function (IMF) on the runaway growth of VMSs using a dynamical Monte Carlo code for N-body systems with N as high as 10{sup 6} stars. Our code now includes an explicit treatment of all stellar collisions. We place special emphasis on the possibility of top-heavy IMFs, as observed in some very young massive clusters. We find that both primordial mass segregation and the shape of the IMF affect the rate of core collapse of star clusters and thus the time of the runaway. When we include primordial mass segregation, we generally see a decrease in core-collapse time (t{sub cc}). Although for smaller degrees of primordial mass segregation this decrease in t{sub cc} is mostly due to the change in the density profile of the cluster, for highly mass-segregated (primordial) clusters, it is the increase in the average mass in the core which reduces the central relaxation time decreasing t{sub cc}. The final mass of the VMS formed is always close to {approx}10{sup -3} of the total cluster mass, in agreement with previous studies and is reminiscent of the observed correlation between the central BH mass and the bulge mass of the galaxies. As the degree of primordial mass segregation is increased, the mass of the VMS increases at most by a factor of three. Flatter IMFs generally increase the average mass in the whole cluster, which increases t{sub cc}. For the range of IMFs investigated in this paper, this increase in t{sub cc} is to some degree balanced by stellar collisions, which accelerate core collapse. Thus, there is no significant change in t{sub cc} for the somewhat flatter global IMFs observed in very young massive clusters.

  7. Limits on the spin up of stellar-mass black holes through a spiral stationary accretion shock instability

    NASA Astrophysics Data System (ADS)

    Moreno Méndez, Enrique; Cantiello, Matteo

    2016-04-01

    The spin of a number of black holes (BHs) in binary systems has been measured. In the case of BHs found in low-mass X-ray binaries (LMXBs) the observed values are in agreement with some theoretical predictions based on binary stellar evolution. However, using the same evolutionary models, the calculated spins of BHs in high-mass X-ray binaries (HMXBs) fall short compared to the observations. A possible solution to this conundrum is the accretion of high-specific-angular-momentum material after the formation of the BH, although this requires accretion above the Eddington limit. Another suggestion is that the observed high values of the BHs spin could be the result of an asymmetry during Core Collapse (CC). The only available energy to spin up the compact object during CC is its binding energy. A way to convert it to rotational kinetic energy is by using a Standing Accretion Shock Instability (SASI), which can develop during CC and push angular momentum into the central compact object through a spiral mode (m = 1). Here we study the CC-SASI scenario and discuss, in the case of LMXBs and HMXBs, the limits for the spin of a stellar-mass BHs. Our results predict a strong dichotomy in the maximum spin of low-mass compact objects and massive BHs found in HMXBs. The maximum spin value (|a⋆|) for a compact object near the mass boundary between BHs and NSs is found to be somewhere between 0.27 and 0.38, depending on whether secular or dynamical instabilities limit the efficiency of the spin up process. For more massive BHs, such as those found in HMXBs, the natal spin is substantially smaller and for MBH > 8M⊙ spin is limited to values |a⋆| ≲ 0.05. Therefore we conclude that the observed high spins of BHs in HMXBs cannot be the result of a CC-SASI spin up.

  8. The initial mass function of stars: evidence for uniformity in variable systems.

    PubMed

    Kroupa, Pavel

    2002-01-01

    The distribution of stellar masses that form in one star formation event in a given volume of space is called the initial mass function (IMF). The IMF has been estimated from low-mass brown dwarfs to very massive stars. Combining IMF estimates for different populations in which the stars can be observed individually unveils an extraordinary uniformity of the IMF. This general insight appears to hold for populations including present-day star formation in small molecular clouds, rich and dense massive star-clusters forming in giant clouds, through to ancient and metal-poor exotic stellar populations that may be dominated by dark matter. This apparent universality of the IMF is a challenge for star formation theory, because elementary considerations suggest that the IMF ought to systematically vary with star-forming conditions. PMID:11778039

  9. The initial mass function of stars: evidence for uniformity in variable systems.

    PubMed

    Kroupa, Pavel

    2002-01-01

    The distribution of stellar masses that form in one star formation event in a given volume of space is called the initial mass function (IMF). The IMF has been estimated from low-mass brown dwarfs to very massive stars. Combining IMF estimates for different populations in which the stars can be observed individually unveils an extraordinary uniformity of the IMF. This general insight appears to hold for populations including present-day star formation in small molecular clouds, rich and dense massive star-clusters forming in giant clouds, through to ancient and metal-poor exotic stellar populations that may be dominated by dark matter. This apparent universality of the IMF is a challenge for star formation theory, because elementary considerations suggest that the IMF ought to systematically vary with star-forming conditions.

  10. Spitzer Space Telescope Constraint on the Stellar Mass of a z = 6.96 Lyα Emitter

    NASA Astrophysics Data System (ADS)

    Ota, Kazuaki; Ly, Chun; Malkan, Matthew A.; Motohara, Kentaro; Hayashi, Masao; Shimasaku, Kazuhiro; Morokuma, Tomoki; Iye, Masanori; Kashikawa, Nobunari; Hattori, Takashi

    2010-10-01

    We obtained mid-infrared 3.6 and 4.5μm imaging of a z = 6.96 Lyα emitter (LAE), IOK-1, discovered in the Subaru Deep Field, using Spitzer Space Telescope Infrared Array Camera observations. After removal of a nearby bright source, we found that IOK-1 is not significantly detected in any of these infrared bands to m_{3.6μm ˜ 24.00 and m_{4.5μm} ˜ 23.54 at 3σ. Fitting population synthesis models to the spectral energy distribution consisting of the upper limit fluxes of the optical-to-infrared non-detection images and fluxes in detection images, we constrained the stellar mass, M*, IOK-1. This LAE could have either a mass as low as M* ≲ 2-9 × 108 M_{odot} for young age (≲10 Myr) and low dust reddening (AV ˜ 0) or a mass as large as M* ≲ 1-4 × 10M_{odot} for either old age ($>100 Myr) or high dust reddening (AV ˜ 1.5). This would be within the range of masses of z ˜ 3-6.6 LAEs studied to date, ˜106-1010M_{odot} Hence, IOK-1 is not a particularly unique galaxy with extremely high mass or low mass, but is similar to one of the LAEs seen at later epochs.

  11. The Next Generation Virgo Cluster Survey. XII. Stellar Populations and Kinematics of Compact, Low-mass Early-type Galaxies from Gemini GMOS-IFU Spectroscopy

    NASA Astrophysics Data System (ADS)

    Guérou, Adrien; Emsellem, Eric; McDermid, Richard M.; Côté, Patrick; Ferrarese, Laura; Blakeslee, John P.; Durrell, Patrick R.; MacArthur, Lauren A.; Peng, Eric W.; Cuillandre, Jean-Charles; Gwyn, Stephen

    2015-05-01

    We present Gemini Multi Object Spectrograph integral-field unit (GMOS-IFU) data of eight compact, low-mass early-type galaxies (ETGs) in the Virgo cluster. We analyze their stellar kinematics and stellar population and present two-dimensional maps of these properties covering the central 5″ × 7″ region. We find a large variety of kinematics, from nonrotating to highly rotating objects, often associated with underlying disky isophotes revealed by deep images from the Next Generation Virgo Cluster Survey. In half of our objects, we find a centrally concentrated younger and more metal-rich stellar population. We analyze the specific stellar angular momentum through the λR parameter and find six fast rotators and two slow rotators, one having a thin counterrotating disk. We compare the local galaxy density and stellar populations of our objects with those of 39 more extended low-mass Virgo ETGs from the SMAKCED survey and 260 massive (M > 1010 {{M}⊙ }) ETGs from the ATLAS3D sample. The compact low-mass ETGs in our sample are located in high-density regions, often close to a massive galaxy, and have, on average, older and more metal-rich stellar populations than less compact low-mass galaxies. We find that the stellar population parameters follow lines of constant velocity dispersion in the mass-size plane, smoothly extending the comparable trends found for massive ETGs. Our study supports a scenario where low-mass compact ETGs have experienced long-lived interactions with their environment, including ram-pressure stripping and gravitational tidal forces, that may be responsible for their compact nature.

  12. Initial mass function of intermediate-mass black hole seeds

    NASA Astrophysics Data System (ADS)

    Ferrara, A.; Salvadori, S.; Yue, B.; Schleicher, D.

    2014-09-01

    We study the initial mass function (IMF) and hosting halo properties of intermediate-mass black holes (IMBHs, 104-6 M⊙) formed inside metal-free, UV-illuminated atomic-cooling haloes (virial temperature Tvir ≥ 104 K) either via the direct collapse of the gas or via an intermediate supermassive star (SMS) stage. These IMBHs have been recently advocated as the seeds of the supermassive black holes observed at z ≈ 6. We achieve this goal in three steps: (a) we derive the gas accretion rate for a proto-SMS to undergo General Relativity instability and produce a direct collapse black hole (DCBH) or to enter the zero-age main sequence and later collapse into an IMBH; (b) we use merger-tree simulations to select atomic-cooling haloes in which either a DCBH or SMS can form and grow, accounting for metal enrichment and major mergers that halt the growth of the proto-SMS by gas fragmentation. We derive the properties of the hosting haloes and the mass distribution of black holes at this stage, and dub it the `birth mass function'; (c) we follow the further growth of the DCBH by accreting the leftover gas in the parent halo and compute the final IMBH mass. We consider two extreme cases in which minihaloes (Tvir < 104 K) can (fertile) or cannot (sterile) form stars and pollute their gas leading to a different IMBH IMF. In the (fiducial) fertile case, the IMF is bimodal extending over a broad range of masses, M ≈ (0.5-20) × 105 M⊙, and the DCBH accretion phase lasts from 10 to 100 Myr. If minihaloes are sterile, the IMF spans the narrower mass range M ≈ (1-2.8) × 106 M⊙, and the DCBH accretion phase is more extended (70-120 Myr). We conclude that a good seeding prescription is to populate haloes (a) of mass 7.5 < log (Mh/ M⊙) < 8, (b) in the redshift range 8 < z < 17, (c) with IMBH in the mass range 4.75 < (log M•/ M⊙) < 6.25.

  13. Statistical treatment of fluctuations in the gravitational focusing of light due to stellar masses within a gravitational lens

    NASA Technical Reports Server (NTRS)

    Deguchi, Shuji; Watson, William D.

    1987-01-01

    When light from small, distant sources in the universe is gravitationally focused by an intervening galaxy, the gravitational lens can be influenced by the granularity of the matter distribution which is caused by the stellar (or other compact) masses in the galaxy. A largely analytic, statistical calculation for a gravitational lens due to a collection of compact masses - valid for sources of finite size and for large (as well as small) 'optical depths' for the lens - is developed to treat fluctuations in the light caused by such 'microfocusing' effects. Previous treatments have been either numerical simulations of the Monte Carlo type or limited to single-star (i.e., low-optical-depth) effects.

  14. MASS FUNCTION PREDICTIONS BEYOND {Lambda}CDM

    SciTech Connect

    Bhattacharya, Suman; Lukic, Zarija; Habib, Salman; Heitmann, Katrin; White, Martin; Wagner, Christian

    2011-05-10

    The statistics of dark matter halos is an essential component of precision cosmology. The mass distribution of halos, as specified by the halo mass function, is a key input for several cosmological probes. The sizes of N-body simulations are now such that, for the most part, results need no longer be statistics-limited, but are still subject to various systematic uncertainties. Discrepancies in the results of simulation campaigns for the halo mass function remain in excess of statistical uncertainties and of roughly the same size as the error limits set by near-future observations; we investigate and discuss some of the reasons for these differences. Quantifying error sources and compensating for them as appropriate, we carry out a high-statistics study of dark matter halos from 67 N-body simulations to investigate the mass function and its evolution for a reference {Lambda}CDM cosmology and for a set of wCDM cosmologies. For the reference {Lambda}CDM cosmology (close to WMAP5), we quantify the breaking of universality in the form of the mass function as a function of redshift, finding an evolution of as much as 10% away from the universal form between redshifts z = 0 and z = 2. For cosmologies very close to this reference we provide a fitting formula to our results for the (evolving) {Lambda}CDM mass function over a mass range of 6 x 10{sup 11}-3 x 10{sup 15} M{sub sun} to an estimated accuracy of about 2%. The set of wCDM cosmologies is taken from the Coyote Universe simulation suite. The mass functions from this suite (which includes a {Lambda}CDM cosmology and others with w {approx_equal} -1) are described by the fitting formula for the reference {Lambda}CDM case at an accuracy level of 10%, but with clear systematic deviations. We argue that, as a consequence, fitting formulae based on a universal form for the mass function may have limited utility in high-precision cosmological applications.

  15. Mass Function Predictions Beyond ΛCDM

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Suman; Heitmann, Katrin; White, Martin; Lukić, Zarija; Wagner, Christian; Habib, Salman

    2011-05-01

    The statistics of dark matter halos is an essential component of precision cosmology. The mass distribution of halos, as specified by the halo mass function, is a key input for several cosmological probes. The sizes of N-body simulations are now such that, for the most part, results need no longer be statistics-limited, but are still subject to various systematic uncertainties. Discrepancies in the results of simulation campaigns for the halo mass function remain in excess of statistical uncertainties and of roughly the same size as the error limits set by near-future observations; we investigate and discuss some of the reasons for these differences. Quantifying error sources and compensating for them as appropriate, we carry out a high-statistics study of dark matter halos from 67 N-body simulations to investigate the mass function and its evolution for a reference ΛCDM cosmology and for a set of wCDM cosmologies. For the reference ΛCDM cosmology (close to WMAP5), we quantify the breaking of universality in the form of the mass function as a function of redshift, finding an evolution of as much as 10% away from the universal form between redshifts z = 0 and z = 2. For cosmologies very close to this reference we provide a fitting formula to our results for the (evolving) ΛCDM mass function over a mass range of 6 × 1011-3 × 1015 M sun to an estimated accuracy of about 2%. The set of wCDM cosmologies is taken from the Coyote Universe simulation suite. The mass functions from this suite (which includes a ΛCDM cosmology and others with w ~= -1) are described by the fitting formula for the reference ΛCDM case at an accuracy level of 10%, but with clear systematic deviations. We argue that, as a consequence, fitting formulae based on a universal form for the mass function may have limited utility in high-precision cosmological applications.

  16. VERY LOW MASS STELLAR AND SUBSTELLAR COMPANIONS TO SOLAR-LIKE STARS FROM MARVELS. II. A SHORT-PERIOD COMPANION ORBITING AN F STAR WITH EVIDENCE OF A STELLAR TERTIARY AND SIGNIFICANT MUTUAL INCLINATION

    SciTech Connect

    Fleming, Scott W.; Ge Jian; De Lee, Nathan; Jiang Peng; Lee, Brian; Nelson, Ben; Barnes, Rory; Beatty, Thomas G.; Gaudi, B. Scott; Shappee, Benjamin J.; Crepp, Justin R.; Esposito, Massimiliano; Femenia, Bruno; Gonzalez Hernandez, Jonay I.; Ferreira, Leticia; Porto de Mello, Gustavo F.; Gary, Bruce; Hebb, Leslie; Stassun, Keivan; Ghezzi, Luan; and others

    2012-09-15

    We report the discovery via radial velocity (RV) measurements of a short-period (P = 2.430420 {+-} 0.000006 days) companion to the F-type main-sequence star TYC 2930-00872-1. A long-term trend in the RV data also suggests the presence of a tertiary stellar companion with P > 2000 days. High-resolution spectroscopy of the host star yields T{sub eff} = 6427 {+-} 33 K, log g = 4.52 {+-} 0.14, and [Fe/H] = -0.04 {+-} 0.05. These parameters, combined with the broadband spectral energy distribution (SED) and a parallax, allow us to infer a mass and radius of the host star of M{sub 1} = 1.21 {+-} 0.08 M{sub Sun} and R{sub 1} = 1.09{sup +0.15}{sub -0.13} R{sub Sun }. The minimum mass of the inner companion is below the hydrogen-burning limit; however, the true mass is likely to be substantially higher. We are able to exclude transits of the inner companion with high confidence. Further, the host star spectrum exhibits a clear signature of Ca H and K core emission, indicating stellar activity, but a lack of photometric variability and small vsin I suggest that the primary's spin axis is oriented in a pole-on configuration. The rotational period of the primary estimated through an activity-rotation relation matches the orbital period of the inner companion to within 1.5 {sigma}, suggesting that the primary and inner companion are tidally locked. If the inner companion's orbital angular momentum vector is aligned with the stellar spin axis as expected through tidal evolution, then it has a stellar mass of {approx}0.3-0.4 M{sub Sun }. Direct imaging limits the existence of stellar companions to projected separations <30 AU. No set of spectral lines and no significant flux contribution to the SED from either companion are detected, which places individual upper mass limits of M{sub {l_brace}2,3{r_brace}} {approx}< 1.0 M{sub Sun }, provided they are not stellar remnants. If the tertiary is not a stellar remnant, then it likely has a mass of {approx}0.5-0.6 M{sub Sun }, and its