Sample records for stellar objects description

  1. IPS guidestar selection for stellar mode (ASTRO)

    NASA Technical Reports Server (NTRS)

    Mullins, Larry; Wooten, Lewis

    1988-01-01

    This report describes how guide stars are selected for the Optical Sensor Package (OSP) for the Instrument Pointing System (IPS) when it is operating in the stellar mode on the ASTRO missions. It also describes how the objective loads are written and how the various roll angles are related; i.e., the celestial roll or position angle, the objective load roll angles, and the IPS gimbal angles. There is a brief description of how the IPS operates and its various modes of operation; i.e., IDOP, IDIN, and OSPCAL.

  2. The stellar wind of an O8.5 I(f) star in M 31

    NASA Technical Reports Server (NTRS)

    Haser, S. M.; Lennon, D. J.; Kudritzki, R.-P.; Puls, J.; Pauldrach, A. W. A.; Bianchi, L.; Hutchings, J. B.

    1995-01-01

    We rediscuss the UV spectrum of OB 78#231, an O8.5 I(f) star in the Andromeda galaxy M 31, which has been obtained with the Faint Object Spectrograph on the Hubble Space Telescope by Hutchings et al. (1992). The spectrum has been re-extracted with better knowledge of background, calibration, and scattered light. The empirical analysis of the stellar wind lines results in a terminal velocity and mass loss rate similar to those typically found in comparable galactic objects. Furthermore, a comparison with an FOS spectrum of an O7 supergiant in the Small Magellanic Cloud and IUE spectra of galactic objects implies a metallicity close to galactic counterparts. These results are confirmed quantitatively by spectrum synthesis calculations using a theoretical description of O-star winds.

  3. VizieR Online Data Catalog: LAMOST/SP_Ace DR1 catalog (Boeche+, 2018)

    NASA Astrophysics Data System (ADS)

    Boeche, C.; Smith, M. C.; Grebel, E. K.; Zhong, J.; Hou, J. L.; Chen, L.; Stello, D.

    2018-04-01

    The catalog contains stellar parameters including effective temperature (Teff), gravity (log g), metallicity [M/H], together with chemical abundances [Fe/H] and [alpha/H], derived with the code SP_Ace. It consists of 2,052,662 spectra, mostly Milky Way stars, from which 1,097,231 have measured parameters. The confidence intervals of the stellar parameters are expressed along with their upper and lower limits. Together with these main parameters we report other auxiliary information such as object designation, RA, DE, and other diagnostics as indicated in the table description. (1 data file).

  4. A Panchromatic View of Star-Forming Regions in the Magellanic Clouds: Characterizing Physical and Evolutionary Parameters of 1,000 Young Stellar Objects

    NASA Astrophysics Data System (ADS)

    Carlson, Lynn R.

    2010-01-01

    I discuss newly discovered Young Stellar Objects (YSOs) in several star-forming regions in the Magellanic Clouds. I exploit the synergy between infrared photometry from the Spitzer SAGE (Surveying the Agents of Galaxy Evolution) legacy programs, near-infrared and optical photometry from ground-based surveys, and HST imaging to characterize young stellar populations. This reveals a variety of Main Sequence Stars and Proto-Stars over a wide range of evolutionary stages. Through SED fitting, I characterize the youngest, embedded, infrared-bright YSOs. Complementary color-Magnitude analysis and isochrone fitting of optical data allows a statistical description of more evolved, unembedded stellar and protostellar populations within these same regions. I examine the early evolution of Magellanic star clusters, including propagating and triggered star formation, and take a step toward characterizing evolutionary timescales for YSOs. In this talk, I present an overview of the project and exemplify the analysis by focusing on NGC 602 in the SMC and Henize 206 in the LMC as examples. The SAGE Project is supported by NASA/Spitzer grant 1275598 and NASA NAG5-12595.

  5. Space Interferometry Mission: Measuring the Universe

    NASA Technical Reports Server (NTRS)

    Marr, James; Dallas, Saterios; Laskin, Robert; Unwin, Stephen; Yu, Jeffrey

    1991-01-01

    The Space Interferometry Mission (SIM) will be the NASA Origins Program's first space based long baseline interferometric observatory. SIM will use a 10 m Michelson stellar interferometer to provide 4 microarcsecond precision absolute position measurements of stars down to 20th magnitude over its 5 yr. mission lifetime. SIM will also provide technology demonstrations of synthesis imaging and interferometric nulling. This paper describes the what, why and how of the SIM mission, including an overall mission and system description, science objectives, general description of how SIM makes its measurements, description of the design concepts now under consideration, operations concept, and supporting technology program.

  6. Documentation for the machine-readable version of the ANS Ultraviolet Photometry Catalogue of Point Sources (Wesselius et al 1982)

    NASA Technical Reports Server (NTRS)

    Warren, W. H., Jr.

    1984-01-01

    The machine-readable version of the Astronomical Netherlands Satellite ultraviolet photometry catalog is described in detail, with a byte-by-byte format description and characteristics of the data file given. The catalog is a compilation of ultraviolet photometry in five bands, within the wavelength range 155 nm to 330 nm, for 3573 mostly stellar objects. Additional cross reference data (object identification, UBV photometry and MK spectral types) are included in the catalog.

  7. The effect of multiplicity of stellar encounters and the diffusion coefficients in a locally homogeneous three-dimensional stellar medium: Removing the classical divergence

    NASA Astrophysics Data System (ADS)

    Rastorguev, A. S.; Utkin, N. D.; Chumak, O. V.

    2017-08-01

    Agekyan's λ-factor that allows for the effect of multiplicity of stellar encounters with large impact parameters has been used for the first time to directly calculate the diffusion coefficients in the phase space of a stellar system. Simple estimates show that the cumulative effect, i.e., the total contribution of distant encounters to the change in the velocity of a test star, given the multiplicity of stellar encounters, is finite, and the logarithmic divergence inherent in the classical description of diffusion is removed, as was shown previously byKandrup using a different, more complex approach. In this case, the expressions for the diffusion coefficients, as in the classical description, contain the logarithm of the ratio of two independent quantities: the mean interparticle distance and the impact parameter of a close encounter. However, the physical meaning of this logarithmic factor changes radically: it reflects not the divergence but the presence of two characteristic length scales inherent in the stellar medium.

  8. The catalog of edge-on disk galaxies from SDSS. I. The catalog and the structural parameters of stellar disks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bizyaev, D. V.; Kautsch, S. J.; Mosenkov, A. V.

    We present a catalog of true edge-on disk galaxies automatically selected from the Seventh Data Release of the Sloan Digital Sky Survey (SDSS). A visual inspection of the g, r, and i images of about 15,000 galaxies allowed us to split the initial sample of edge-on galaxy candidates into 4768 (31.8% of the initial sample) genuine edge-on galaxies, 8350 (55.7%) non-edge-on galaxies, and 1865 (12.5%) edge-on galaxies not suitable for simple automatic analysis because these objects either show signs of interaction and warps, or nearby bright stars project on it. We added more candidate galaxies from RFGC, EFIGI, RC3, andmore » Galaxy Zoo catalogs found in the SDSS footprints. Our final sample consists of 5747 genuine edge-on galaxies. We estimate the structural parameters of the stellar disks (the stellar disk thickness, radial scale length, and central surface brightness) in the galaxies by analyzing photometric profiles in each of the g, r, and i images. We also perform simplified three-dimensional modeling of the light distribution in the stellar disks of edge-on galaxies from our sample. Our large sample is intended to be used for studying scaling relations in the stellar disks and bulges and for estimating parameters of the thick disks in different types of galaxies via the image stacking. In this paper, we present the sample selection procedure and general description of the sample.« less

  9. Testing the Formation Mechanism of Sub-Stellar Objects in Lupus (A SOLA Team Study)

    NASA Astrophysics Data System (ADS)

    De Gregorio-Monsalvo, Itziar; Lopez, C.; Takahashi, S.; Santamaria-Miranda

    2017-06-01

    The international SOLA team (Soul of Lupus with ALMA) has identified a set of pre- and proto-stellar candidates in Lupus 1 and 3 of substellar nature using 1.1mm ASTE/AzTEC maps and our optical to submillimeter database. We have observed with ALMA the most promising pre- and proto-brown dwarfs candidates. Our aims are to provide insights on how substellar objects form and evolve, from the equivalent to the pre-stellar cores to the Class II stage in the low mass regime of star formation. Our sample comprises 33 pre-stellar objects, 7 Class 0 and I objects, and 22 Class II objects.

  10. Stellar Populations in BL Lac type Objects

    NASA Astrophysics Data System (ADS)

    Serote Roos, Margarida

    The relationship between an Active Galactic Nucleus (AGN) and its host galaxy is a crucial question in the study of galaxy evolution. We present an estimate of the stellar contribution in a sample of low luminosity BL Lac type objects. We have performed stellar population synthesis for a sample of 19 objects selected from Marchã et al. (1996, MNRAS 281, 425). The stellar content is quantified using the equivalent widths of all absorption features available throughout the spectrum. The synthesis is done by a variant of the GPG method (Pelat: 1997, MNRAS 284, 365).

  11. VizieR Online Data Catalog: DUNES survey observational results (Eiroa+, 2013)

    NASA Astrophysics Data System (ADS)

    Eiroa, C.; Marshall, J. P.; Mora, A.; Montesinos, B.; Absil, O.; Augereau, J.-C.; Bayo, A.; Bryden, G.; Danchi, W.; Del Burgo, C.; Ertel, S.; Fridlund, M.; Heras, A. M.; Krivov, A. V.; Launhardt, R.; Liseau, R.; Loehne, T.; Maldonado, J.; Pilbratt, G. L.; Roberge, A.; Rodmann, J.; Sanz-Forcada, J.; Solano, E.; Stapelfeldt, K.; Thebault, P.; Wolf, S.; Ardila, D.; Arevalo, M.; Beichmann, C.; Faramaz, V.; Gonzalez-Garcia, B. M.; Gutierrez, R.; Lebreton, J.; Martinez-Arnaiz, R.; Meeus, G.; Montes, D.; Olofsson, G.; Su, K. Y. L.; White, G. J.; Barrado, D.; Fukagawa, M.; Gruen, E.; Kamp, I.; Lorente, R.; Morbidelli, A.; Mueller, S.; Mutschke, H.; Nakagawa, T.; Ribas, I.; Walker, H.

    2013-05-01

    The on-line tabular material contains a complete description of the DUNES objects, providing absolute parameters of the stars, the photometry used to build their spectral energy distributions, the Herschel/PACS fluxes, the photospheric predictions at the PACS wavelengths, the significance of the potential excesses and additional information concerning the stars with extended emission, the offsets of the stellar positions as measured in the optical and in the PACS100 images, the AORs (Astronomical Observation Request number) of the observations and the on-source integration times. (11 data files).

  12. The Phoenix stream: A cold stream in the southern hemisphere

    DOE PAGES

    Balbinot, E.

    2016-03-17

    In this study, we report the discovery of a stellar stream in the Dark Energy Survey (DES) Year 1 (Y1A1) data. The discovery was made through simple color-magnitude filters and visual inspection of the Y1A1 data. We refer to this new object as the Phoenix stream, after its resident constellation. After subtraction of the background stellar population we detect a clear signal of a simple stellar population. By fitting the ridge line of the stream in color-magnitude space, we find that a stellar population with agemore » $$\\tau=11.5\\pm0.5$$ Gyr and $[Fe/H]<-1.6$ located 17.5$$\\pm$$0.9 kpc from the Sun gives an adequate description of the stream stellar population. The stream is detected over an extension of 8$$^{\\circ}.$$1 (2.5 kpc) and has a width of $$\\sim$$54 pc assuming a Gaussian profile, indicating that a globular cluster is a probable progenitor. There is no known globular cluster within 5 kpc compatible with being the progenitor of the stream, assuming that the stream traces its orbit. We examined overdensities along the stream, however no obvious counterpart bound stellar system is visible in the coadded images. We also find overdensities along the stream that appear to be symmetrically distributed - consistent with the epicyclic overdensity scenario for the formation of cold streams - as well as a misalignment between the Northern and Southern part of stream. Despite the close proximity we find no evidence that this stream and the halo cluster NGC 1261 have a common accretion origin linked to the recently found EriPhe overdensity (Li et al. 2016).« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balbinot, E.

    In this study, we report the discovery of a stellar stream in the Dark Energy Survey (DES) Year 1 (Y1A1) data. The discovery was made through simple color-magnitude filters and visual inspection of the Y1A1 data. We refer to this new object as the Phoenix stream, after its resident constellation. After subtraction of the background stellar population we detect a clear signal of a simple stellar population. By fitting the ridge line of the stream in color-magnitude space, we find that a stellar population with agemore » $$\\tau=11.5\\pm0.5$$ Gyr and $[Fe/H]<-1.6$ located 17.5$$\\pm$$0.9 kpc from the Sun gives an adequate description of the stream stellar population. The stream is detected over an extension of 8$$^{\\circ}.$$1 (2.5 kpc) and has a width of $$\\sim$$54 pc assuming a Gaussian profile, indicating that a globular cluster is a probable progenitor. There is no known globular cluster within 5 kpc compatible with being the progenitor of the stream, assuming that the stream traces its orbit. We examined overdensities along the stream, however no obvious counterpart bound stellar system is visible in the coadded images. We also find overdensities along the stream that appear to be symmetrically distributed - consistent with the epicyclic overdensity scenario for the formation of cold streams - as well as a misalignment between the Northern and Southern part of stream. Despite the close proximity we find no evidence that this stream and the halo cluster NGC 1261 have a common accretion origin linked to the recently found EriPhe overdensity (Li et al. 2016).« less

  14. 77 FR 23318 - Culturally Significant Object Imported for Exhibition Determinations: “African Cosmos: Stellar Arts”

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-18

    ... DEPARTMENT OF STATE [Public Notice 7850] Culturally Significant Object Imported for Exhibition Determinations: ``African Cosmos: Stellar Arts'' SUMMARY: Notice is hereby given of the following determinations... the exhibition ``African Cosmos: Stellar Arts,'' imported from abroad for temporary exhibition within...

  15. Young Stellar Objects from Soft to Hard X-rays

    NASA Astrophysics Data System (ADS)

    Güdel, Manuel

    2009-05-01

    Magnetically active stars are the sites of efficient particle acceleration and plasma heating, processes that have been studied in detail in the solar corona. Investigation of such processes in young stellar objects is much more challenging due to various absorption processes. There is, however, evidence for violent magnetic energy release in very young stellar objects. The impact on young stellar environments (e.g., circumstellar disk heating and ionization, operation of chemical networks, photoevaporation) may be substantial. Hard X-ray devices like those carried on Simbol-X will establish a basis for detailed studies of these processes.

  16. MIGRATION TRAPS IN DISKS AROUND SUPERMASSIVE BLACK HOLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bellovary, Jillian M.; Low, Mordecai-Mark Mac; McKernan, Barry

    Accretion disks around supermassive black holes (SMBHs) in active galactic nuclei (AGNs) contain stars, stellar mass black holes, and other stellar remnants, which perturb the disk gas gravitationally. The resulting density perturbations exert torques on the embedded masses causing them to migrate through the disk in a manner analogous to planets in protoplanetary disks. We determine the strength and direction of these torques using an empirical analytic description dependent on local disk gradients, applied to two different analytic, steady-state disk models of SMBH accretion disks. We find that there are radii in such disks where the gas torque changes sign,more » trapping migrating objects. Our analysis shows that major migration traps generally occur where the disk surface density gradient changes sign from positive to negative, around 20–300R{sub g}, where R{sub g} = 2GM/c{sup 2} is the Schwarzschild radius. At these traps, massive objects in the AGN disk can accumulate, collide, scatter, and accrete. Intermediate mass black hole formation is likely in these disk locations, which may lead to preferential gap and cavity creation at these radii. Our model thus has significant implications for SMBH growth as well as gravitational wave source populations.« less

  17. Oscillations in stellar atmospheres

    NASA Technical Reports Server (NTRS)

    Costa, A.; Ringuelet, A. E.; Fontenla, J. M.

    1989-01-01

    Atmospheric excitation and propagation of oscillations are analyzed for typical pulsating stars. The linear, plane-parallel approach for the pulsating atmosphere gives a local description of the phenomenon. From the local analysis of oscillations, the minimum frequencies are obtained for radially propagating waves. The comparison of the minimum frequencies obtained for a variety of stellar types is in good agreement with the observed periods of the oscillations. The role of the atmosphere in the globar stellar pulsations is thus emphasized.

  18. Globular cluster photometry with the Hubble Space Telescope. I - Description of the method and analysis of the core of 47 Tuc

    NASA Technical Reports Server (NTRS)

    Guhathakurta, Puragra; Yanny, Brian; Schneider, Donald P.; Bahcall, John N.

    1992-01-01

    Accurate photometry for individual post-main-sequence stars in the core of the Galactic globular cluster 47 Tuc is presented and analyzed using an empirical point spread function model and Monte Carlo simulations. A V vs. V-I color-magnitude diagrams is constructed which shows several distinct stellar types, including RGB and HB stars. Twenty-four blue straggler stars are detected in 47 Tuc, more concentrated toward the center of the cluster than the giants. This supports the hypothesis is that the stragglers are either coalesced stars or members of binary systems that are more massive than single stars. The radial profile of the projected stellar density is flat in the central region of 47 Tuc with a core radius of 23 +/- 2 arcsec. No signature of a collapsed core is evident. The observed radial cumulative distribution of stars rules out the presence of a massive compact object in the center.

  19. SMASH: Survey of the MAgellanic Stellar History

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nidever, David L.; Olsen, Knut; Blum, Robert D.

    The Large and Small Magellanic Clouds are unique local laboratories for studying the formation and evolution of small galaxies in exquisite detail. The Survey of the MAgellanic Stellar History (SMASH) is an NOAO community Dark Energy Camera (DECam) survey of the Clouds mapping 480 deg{sup 2} (distributed over ∼2400 square degrees at ∼20% filling factor) to ∼24th mag in ugriz . The primary goals of SMASH are to identify low surface brightness stellar populations associated with the stellar halos and tidal debris of the Clouds, and to derive spatially resolved star formation histories. Here, we present a summary of the survey,more » its data reduction, and a description of the first public Data Release (DR1). The SMASH DECam data have been reduced with a combination of the NOAO Community Pipeline, the PHOTRED automated point-spread-function photometry pipeline, and custom calibration software. The astrometric precision is ∼15 mas and the accuracy is ∼2 mas with respect to the Gaia reference frame. The photometric precision is ∼0.5%–0.7% in griz and ∼1% in u with a calibration accuracy of ∼1.3% in all bands. The median 5 σ point source depths in ugriz are 23.9, 24.8, 24.5, 24.2, and 23.5 mag. The SMASH data have already been used to discover the Hydra II Milky Way satellite, the SMASH 1 old globular cluster likely associated with the LMC, and extended stellar populations around the LMC out to R  ∼ 18.4 kpc. SMASH DR1 contains measurements of ∼100 million objects distributed in 61 fields. A prototype version of the NOAO Data Lab provides data access and exploration tools.« less

  20. SMASH: Survey of the MAgellanic Stellar History

    NASA Astrophysics Data System (ADS)

    Nidever, David L.; Olsen, Knut; Walker, Alistair R.; Vivas, A. Katherina; Blum, Robert D.; Kaleida, Catherine; Choi, Yumi; Conn, Blair C.; Gruendl, Robert A.; Bell, Eric F.; Besla, Gurtina; Muñoz, Ricardo R.; Gallart, Carme; Martin, Nicolas F.; Olszewski, Edward W.; Saha, Abhijit; Monachesi, Antonela; Monelli, Matteo; de Boer, Thomas J. L.; Johnson, L. Clifton; Zaritsky, Dennis; Stringfellow, Guy S.; van der Marel, Roeland P.; Cioni, Maria-Rosa L.; Jin, Shoko; Majewski, Steven R.; Martinez-Delgado, David; Monteagudo, Lara; Noël, Noelia E. D.; Bernard, Edouard J.; Kunder, Andrea; Chu, You-Hua; Bell, Cameron P. M.; Santana, Felipe; Frechem, Joshua; Medina, Gustavo E.; Parkash, Vaishali; Serón Navarrete, J. C.; Hayes, Christian

    2017-11-01

    The Large and Small Magellanic Clouds are unique local laboratories for studying the formation and evolution of small galaxies in exquisite detail. The Survey of the MAgellanic Stellar History (SMASH) is an NOAO community Dark Energy Camera (DECam) survey of the Clouds mapping 480 deg2 (distributed over ˜2400 square degrees at ˜20% filling factor) to ˜24th mag in ugriz. The primary goals of SMASH are to identify low surface brightness stellar populations associated with the stellar halos and tidal debris of the Clouds, and to derive spatially resolved star formation histories. Here, we present a summary of the survey, its data reduction, and a description of the first public Data Release (DR1). The SMASH DECam data have been reduced with a combination of the NOAO Community Pipeline, the PHOTRED automated point-spread-function photometry pipeline, and custom calibration software. The astrometric precision is ˜15 mas and the accuracy is ˜2 mas with respect to the Gaia reference frame. The photometric precision is ˜0.5%-0.7% in griz and ˜1% in u with a calibration accuracy of ˜1.3% in all bands. The median 5σ point source depths in ugriz are 23.9, 24.8, 24.5, 24.2, and 23.5 mag. The SMASH data have already been used to discover the Hydra II Milky Way satellite, the SMASH 1 old globular cluster likely associated with the LMC, and extended stellar populations around the LMC out to R ˜ 18.4 kpc. SMASH DR1 contains measurements of ˜100 million objects distributed in 61 fields. A prototype version of the NOAO Data Lab provides data access and exploration tools.

  1. A circumstellar disk associated with a massive protostellar object.

    PubMed

    Jiang, Zhibo; Tamura, Motohide; Fukagawa, Misato; Hough, Jim; Lucas, Phil; Suto, Hiroshi; Ishii, Miki; Yang, Ji

    2005-09-01

    The formation process for stars with masses several times that of the Sun is still unclear. The two main theories are mergers of several low-mass young stellar objects, which requires a high stellar density, or mass accretion from circumstellar disks in the same way as low-mass stars are formed, accompanied by outflows during the process of gravitational infall. Although a number of disks have been discovered around low- and intermediate-mass young stellar objects, the presence of disks around massive young stellar objects is still uncertain and the mass of the disk system detected around one such object, M17, is disputed. Here we report near-infrared imaging polarimetry that reveals an outflow/disk system around the Becklin-Neugebauer protostellar object, which has a mass of at least seven solar masses (M(o)). This strongly supports the theory that stars with masses of at least 7M(o) form in the same way as lower mass stars.

  2. Testing stellar evolution models with detached eclipsing binaries

    NASA Astrophysics Data System (ADS)

    Higl, J.; Weiss, A.

    2017-12-01

    Stellar evolution codes, as all other numerical tools, need to be verified. One of the standard stellar objects that allow stringent tests of stellar evolution theory and models, are detached eclipsing binaries. We have used 19 such objects to test our stellar evolution code, in order to see whether standard methods and assumptions suffice to reproduce the observed global properties. In this paper we concentrate on three effects that contain a specific uncertainty: atomic diffusion as used for standard solar model calculations, overshooting from convective regions, and a simple model for the effect of stellar spots on stellar radius, which is one of the possible solutions for the radius problem of M dwarfs. We find that in general old systems need diffusion to allow for, or at least improve, an acceptable fit, and that systems with convective cores indeed need overshooting. Only one system (AI Phe) requires the absence of it for a successful fit. To match stellar radii for very low-mass stars, the spot model proved to be an effective approach, but depending on model details, requires a high percentage of the surface being covered by spots. We briefly discuss improvements needed to further reduce the freedom in modelling and to allow an even more restrictive test by using these objects.

  3. Young Stellar Objects observed by MOST

    NASA Astrophysics Data System (ADS)

    Siwak, Michal

    2013-07-01

    In the recent years the MOST satellite gathered dozens of high quality light curves of Young Stellar Objects (YSO). We present the most interesting results obtained from the data collected between 2009-2013.

  4. A simple physical model for X-ray burst sources

    NASA Technical Reports Server (NTRS)

    Joss, P. C.; Rappaport, S.

    1977-01-01

    In connection with information considered by Illarianov and Sunyaev (1975) and van den Heuvel (1975), a simple physical model for an X-ray burst source in the galactic disk is proposed. The model includes an unevolved OB star with a relatively weak stellar wind and a compact object in a close binary system. For some reason, the stellar wind from the OB star is unable to accrete steadily on to the compact object. When the stellar wind is sufficiently weak, the compact object accretes irregularly, leading to X-ray bursts.

  5. Near infrared photographic sky survey. 1: Catalog of red stellar objects

    NASA Technical Reports Server (NTRS)

    Craine, E. R.; Duerr, R. E.; Horner, V. M.; Imhoff, C. L.; Routsis, D. E.; Swihart, D. L.; Turnshek, D. A.

    1979-01-01

    Red stellar objects for which V-1 was greater than a value of about 2 (supm). 5 were extracted from photographs of 23 program fields. Tabular data for each field show the object name; the 1950 epoch right ascension, declination, galactic longitude, galactic latitude; radial distance from field venter in decimal degrees; color classes; and objects ordered by redness.

  6. Strong stellar winds.

    PubMed

    Conti, P S; McCray, R

    1980-04-04

    The hottest and most luminous stars lose a substantial fraction of their mass in strong stellar winds. These winds not only affect the evolution of the star, they also carve huge expanding cavities in the surrounding interstellar medium, possibly affecting star formation. The winds are probably driven by radiation pressure, but uncertainties persist in their theoretical description. Strong x-ray sources associated with a few of these hot stars may be used to probe the stellar winds. The nature of the weak x-ray sources recently observed to be associated with many of these stars is uncertain. It is suggested that roughly 10 percent of the luminous hot stars may have as companions neutron stars or black holes orbiting within the stellar winds.

  7. Optical infrared sky survey

    NASA Technical Reports Server (NTRS)

    Craine, E. R.

    1978-01-01

    A description is presented of a photographic survey of the northern sky currently underway at Steward Observatory. The survey is being conducted at a principal bandpass of 8000-9000 A supplemented by a V bandpass. The survey is the first of its type conducted using a small (20-in. aperture) wide-field telescope, a very large-format (146 mm) image intensifier with a red-extended, multialkali photocathode. The output phosphor of the intensifier is photographed with IIaD emulsion on film. One of the goals of the survey is to catalog red stellar objects on the photographs and to examine in detail regions of the sky which are obscured by hydrogen emission on conventional photographs.

  8. The Next Generation Virgo Cluster Survey. XII. Stellar Populations and Kinematics of Compact, Low-mass Early-type Galaxies from Gemini GMOS-IFU Spectroscopy

    NASA Astrophysics Data System (ADS)

    Guérou, Adrien; Emsellem, Eric; McDermid, Richard M.; Côté, Patrick; Ferrarese, Laura; Blakeslee, John P.; Durrell, Patrick R.; MacArthur, Lauren A.; Peng, Eric W.; Cuillandre, Jean-Charles; Gwyn, Stephen

    2015-05-01

    We present Gemini Multi Object Spectrograph integral-field unit (GMOS-IFU) data of eight compact, low-mass early-type galaxies (ETGs) in the Virgo cluster. We analyze their stellar kinematics and stellar population and present two-dimensional maps of these properties covering the central 5″ × 7″ region. We find a large variety of kinematics, from nonrotating to highly rotating objects, often associated with underlying disky isophotes revealed by deep images from the Next Generation Virgo Cluster Survey. In half of our objects, we find a centrally concentrated younger and more metal-rich stellar population. We analyze the specific stellar angular momentum through the λR parameter and find six fast rotators and two slow rotators, one having a thin counterrotating disk. We compare the local galaxy density and stellar populations of our objects with those of 39 more extended low-mass Virgo ETGs from the SMAKCED survey and 260 massive (M > 1010 {{M}⊙ }) ETGs from the ATLAS3D sample. The compact low-mass ETGs in our sample are located in high-density regions, often close to a massive galaxy, and have, on average, older and more metal-rich stellar populations than less compact low-mass galaxies. We find that the stellar population parameters follow lines of constant velocity dispersion in the mass-size plane, smoothly extending the comparable trends found for massive ETGs. Our study supports a scenario where low-mass compact ETGs have experienced long-lived interactions with their environment, including ram-pressure stripping and gravitational tidal forces, that may be responsible for their compact nature.

  9. Laboratory Synthesized Calcium Oxide and Calcium Hydroxide Grains: A Candidate to Explain the 6.8 Micron Band

    NASA Technical Reports Server (NTRS)

    Kimura, Yuki; Nuth, Joseph A., III

    2005-01-01

    We will demonstrate that CaO and Ca(OH)2 are excellent candidates to explain the 6.8 microns feature, which is one of the most obscure features in young stellar objects. We discuss the condensation of CaO grains and the potential formation of a Ca(OH)2 surface layer. The infrared spectra of these grains are compared with the spectra of fifteen young stellar objects. We note that CaO-rich grains are seen in all meteoritic CAIs (calcium-aluminum-rich inclusions) and the 6.8 micron feature has only been observed in young stellar objects. Therefore, we consider CaO grains to be a plausible candidate to explain the 6.8 microns feature and hypothesize that they are produced in the hot interiors of young stellar environments.

  10. Accretion-induced variability links young stellar objects, white dwarfs, and black holes.

    PubMed

    Scaringi, Simone; Maccarone, Thomas J; Körding, Elmar; Knigge, Christian; Vaughan, Simon; Marsh, Thomas R; Aranzana, Ester; Dhillon, Vikram S; Barros, Susana C C

    2015-10-01

    The central engines of disc-accreting stellar-mass black holes appear to be scaled down versions of the supermassive black holes that power active galactic nuclei. However, if the physics of accretion is universal, it should also be possible to extend this scaling to other types of accreting systems, irrespective of accretor mass, size, or type. We examine new observations, obtained with Kepler/K2 and ULTRACAM, regarding accreting white dwarfs and young stellar objects. Every object in the sample displays the same linear correlation between the brightness of the source and its amplitude of variability (rms-flux relation) and obeys the same quantitative scaling relation as stellar-mass black holes and active galactic nuclei. We also show that the most important parameter in this scaling relation is the physical size of the accreting object. This establishes the universality of accretion physics from proto-stars still in the star-forming process to the supermassive black holes at the centers of galaxies.

  11. Accretion-induced variability links young stellar objects, white dwarfs, and black holes

    PubMed Central

    Scaringi, Simone; Maccarone, Thomas J.; Körding, Elmar; Knigge, Christian; Vaughan, Simon; Marsh, Thomas R.; Aranzana, Ester; Dhillon, Vikram S.; Barros, Susana C. C.

    2015-01-01

    The central engines of disc-accreting stellar-mass black holes appear to be scaled down versions of the supermassive black holes that power active galactic nuclei. However, if the physics of accretion is universal, it should also be possible to extend this scaling to other types of accreting systems, irrespective of accretor mass, size, or type. We examine new observations, obtained with Kepler/K2 and ULTRACAM, regarding accreting white dwarfs and young stellar objects. Every object in the sample displays the same linear correlation between the brightness of the source and its amplitude of variability (rms-flux relation) and obeys the same quantitative scaling relation as stellar-mass black holes and active galactic nuclei. We also show that the most important parameter in this scaling relation is the physical size of the accreting object. This establishes the universality of accretion physics from proto-stars still in the star-forming process to the supermassive black holes at the centers of galaxies. PMID:26601307

  12. Improved models of stellar core collapse and still no explosions: what is missing?

    PubMed

    Buras, R; Rampp, M; Janka, H-Th; Kifonidis, K

    2003-06-20

    Two-dimensional hydrodynamic simulations of stellar core collapse are presented which for the first time were performed by solving the Boltzmann equation for the neutrino transport including a state-of-the-art description of neutrino interactions. Stellar rotation is also taken into account. Although convection develops below the neutrinosphere and in the neutrino-heated region behind the supernova shock, the models do not explode. This suggests missing physics, possibly with respect to the nuclear equation of state and weak interactions in the subnuclear regime. However, it might also indicate a fundamental problem with the neutrino-driven explosion mechanism.

  13. A relation between the characteristic stellar ages of galaxies and their intrinsic shapes

    NASA Astrophysics Data System (ADS)

    van de Sande, Jesse; Scott, Nicholas; Bland-Hawthorn, Joss; Brough, Sarah; Bryant, Julia J.; Colless, Matthew; Cortese, Luca; Croom, Scott M.; d'Eugenio, Francesco; Foster, Caroline; Goodwin, Michael; Konstantopoulos, Iraklis S.; Lawrence, Jon S.; McDermid, Richard M.; Medling, Anne M.; Owers, Matt S.; Richards, Samuel N.; Sharp, Rob

    2018-06-01

    Stellar population and stellar kinematic studies provide unique but complementary insights into how galaxies build-up their stellar mass and angular momentum1-3. A galaxy's mean stellar age reveals when stars were formed, but provides little constraint on how the galaxy's mass was assembled. Resolved stellar dynamics4 trace the change in angular momentum due to mergers, but major mergers tend to obscure the effect of earlier interactions5. With the rise of large multi-object integral field spectroscopic surveys, such as SAMI6 and MaNGA7, and single-object integral field spectroscopic surveys (for example, ATLAS3D (ref. 8), CALIFA9, MASSIVE10), it is now feasible to connect a galaxy's star formation and merger history on the same resolved physical scales, over a large range in galaxy mass, morphology and environment4,11,12. Using the SAMI Galaxy Survey, here we present a combined study of spatially resolved stellar kinematics and global stellar populations. We find a strong correlation of stellar population age with location in the (V/σ, ɛe) diagram that links the ratio of ordered rotation to random motions in a galaxy to its observed ellipticity. For the large majority of galaxies that are oblate rotating spheroids, we find that characteristic stellar age follows the intrinsic ellipticity of galaxies remarkably well.

  14. A relation between the characteristic stellar ages of galaxies and their intrinsic shapes

    NASA Astrophysics Data System (ADS)

    van de Sande, Jesse; Scott, Nicholas; Bland-Hawthorn, Joss; Brough, Sarah; Bryant, Julia J.; Colless, Matthew; Cortese, Luca; Croom, Scott M.; d'Eugenio, Francesco; Foster, Caroline; Goodwin, Michael; Konstantopoulos, Iraklis S.; Lawrence, Jon S.; McDermid, Richard M.; Medling, Anne M.; Owers, Matt S.; Richards, Samuel N.; Sharp, Rob

    2018-04-01

    Stellar population and stellar kinematic studies provide unique but complementary insights into how galaxies build-up their stellar mass and angular momentum1-3. A galaxy's mean stellar age reveals when stars were formed, but provides little constraint on how the galaxy's mass was assembled. Resolved stellar dynamics4 trace the change in angular momentum due to mergers, but major mergers tend to obscure the effect of earlier interactions5. With the rise of large multi-object integral field spectroscopic surveys, such as SAMI6 and MaNGA7, and single-object integral field spectroscopic surveys (for example, ATLAS3D (ref. 8), CALIFA9, MASSIVE10), it is now feasible to connect a galaxy's star formation and merger history on the same resolved physical scales, over a large range in galaxy mass, morphology and environment4,11,12. Using the SAMI Galaxy Survey, here we present a combined study of spatially resolved stellar kinematics and global stellar populations. We find a strong correlation of stellar population age with location in the (V/σ, ɛe) diagram that links the ratio of ordered rotation to random motions in a galaxy to its observed ellipticity. For the large majority of galaxies that are oblate rotating spheroids, we find that characteristic stellar age follows the intrinsic ellipticity of galaxies remarkably well.

  15. The Cannon: A data-driven approach to Stellar Label Determination

    NASA Astrophysics Data System (ADS)

    Ness, M.; Hogg, David W.; Rix, H.-W.; Ho, Anna. Y. Q.; Zasowski, G.

    2015-07-01

    New spectroscopic surveys offer the promise of stellar parameters and abundances (“stellar labels”) for hundreds of thousands of stars; this poses a formidable spectral modeling challenge. In many cases, there is a subset of reference objects for which the stellar labels are known with high(er) fidelity. We take advantage of this with The Cannon, a new data-driven approach for determining stellar labels from spectroscopic data. The Cannon learns from the “known” labels of reference stars how the continuum-normalized spectra depend on these labels by fitting a flexible model at each wavelength; then, The Cannon uses this model to derive labels for the remaining survey stars. We illustrate The Cannon by training the model on only 542 stars in 19 clusters as reference objects, with {T}{eff}, {log} g, and [{Fe}/{{H}}] as the labels, and then applying it to the spectra of 55,000 stars from APOGEE DR10. The Cannon is very accurate. Its stellar labels compare well to the stars for which APOGEE pipeline (ASPCAP) labels are provided in DR10, with rms differences that are basically identical to the stated ASPCAP uncertainties. Beyond the reference labels, The Cannon makes no use of stellar models nor any line-list, but needs a set of reference objects that span label-space. The Cannon performs well at lower signal-to-noise, as it delivers comparably good labels even at one-ninth the APOGEE observing time. We discuss the limitations of The Cannon and its future potential, particularly, to bring different spectroscopic surveys onto a consistent scale of stellar labels.

  16. A plausible energy source and structure for quasi-stellar objects

    NASA Technical Reports Server (NTRS)

    Daltabuit, E.; Cox, D.

    1972-01-01

    If a collision of two large, massive, fast gas clouds occurs, their kinetic energy is converted to radiation in a pair of shock fronts at their interface. The resulting structure is described, and the relevance of this as a radiation source for quasi-stellar objects is considered.

  17. Stellar Evolution and Modelling Stars

    NASA Astrophysics Data System (ADS)

    Silva Aguirre, Víctor

    In this chapter I give an overall description of the structure and evolution of stars of different masses, and review the main ingredients included in state-of-the-art calculations aiming at reproducing observational features. I give particular emphasis to processes where large uncertainties still exist as they have strong impact on stellar properties derived from large compilations of tracks and isochrones, and are therefore of fundamental importance in many fields of astrophysics.

  18. THE EVOLUTION OF EARLY- AND LATE-TYPE GALAXIES IN THE COSMIC EVOLUTION SURVEY UP TO z {approx} 1.2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pannella, Maurilio; Gabasch, Armin; Drory, Niv

    2009-08-10

    The Cosmic Evolution Survey (COSMOS) allows for the first time a highly significant census of environments and structures up to redshift 1, as well as a full morphological description of the galaxy population. In this paper we present a study aimed to constrain the evolution, in the redshift range 0.2 < z < 1.2, of the mass content of different morphological types and its dependence on the environmental density. We use a deep multicolor catalog, covering an area of {approx}0.7 deg{sup 2} inside the COSMOS field, with accurate photometric redshifts (i {approx}< 26.5 and {delta}z/(z {sub spec} + 1) {approx}more » 0.035). We estimate galaxy stellar masses by fitting the multicolor photometry to a grid of composite stellar population models. We quantitatively describe the galaxy morphology by fitting point-spread function convolved Sersic profiles to the galaxy surface brightness distributions down to F814 = 24 mag for a sample of 41,300 objects. We confirm an evolution of the morphological mix with redshift: the higher the redshift the more disk-dominated galaxies become important. We find that the morphological mix is a function of the local comoving density: the morphology density relation extends up to the highest redshift explored. The stellar mass function of disk-dominated galaxies is consistent with being constant with redshift. Conversely, the stellar mass function of bulge-dominated systems shows a decline in normalization with redshift. Such different behaviors of late-types and early-types stellar mass functions naturally set the redshift evolution of the transition mass. We find a population of relatively massive, early-type galaxies, having high specific star formation rate (SSFR) and blue colors which live preferentially in low-density environments. The bulk of massive (>7 x 10{sup 10} M {sub sun}) early-type galaxies have similar characteristic ages, colors, and SSFRs independently of the environment they belong to, with those hosting the oldest stars in the universe preferentially belonging to the highest density regions. The whole catalog including morphological information and stellar mass estimates analyzed in this work is made publicly available.« less

  19. The Final Helium Flash Object Sakurai: Photometric Behavior and Physical Characteristics.

    NASA Astrophysics Data System (ADS)

    Duerbeck, Hilmar W.; Benetti, Stefano; Gautschy, Alfred; van Genderen, Arnout M.; Kemper, Ciska; Liller, William; Thomas, Tom

    1997-10-01

    Six-color broadband photometry of Sakurai's Object, a star that underwent a final helium flash in late 1994, has been carried out since 1996 February. The light curves show that Sakurai's Object is continuously cooling while it slowly expands and slightly increases its luminosity. The distance is estimated to be 8 kpc, the interstellar extinction EB-V=0.53, and the luminosity in early 1997 is 10 000Lsun. The high luminosity indicates that the white dwarf is quite massive. With the assumption of a slightly accelerated photospheric expansion a realistic description of the outburst light curve is achieved. Superimposed on the gradual brightness changes are variations with amplitudes of up to 0.1 mag and cycle lengths of 63, 23, 14, and 8 days. In spite of the fact that no persistent periodicities could be detected, pulsational studies show that such cyclic changes can be used to constrain stellar parameters such as mass, luminosity, and chemical abundances.

  20. Blue Stragglers in Clusters and Integrated Spectral Properties of Stellar Populations

    NASA Astrophysics Data System (ADS)

    Xin, Yu; Deng, Licai

    Blue straggler stars are the most prominent bright objects in the colour-magnitude diagram of a star cluster that challenges the theory of stellar evolution. Star clusters are the closest counterparts of the theoretical concept of simple stellar populations (SSPs) in the Universe. SSPs are widely used as the basic building blocks to interpret stellar contents in galaxies. The concept of an SSP is a group of coeval stars which follows a given distribution in mass, and has the same chemical property and age. In practice, SSPs are more conveniently made by the latest stellar evolutionary models of single stars. In reality, however, stars can be more complicated than just single either at birth time or during the course of evolution in a typical environment. Observations of star clusters show that there are always exotic objects which do not follow the predictions of standard theory of stellar evolution. Blue straggler stars (BSSs), as discussed intensively in this book both observationally and theoretically, are very important in our context when considering the integrated spectral properties of a cluster, or a simple stellar population. In this chapter, we are going to describe how important the contribution of BSSs is to the total light of a cluster.

  1. The scaling relationship between baryonic mass and stellar disc size in morphologically late-type galaxies

    NASA Astrophysics Data System (ADS)

    Wu, Po-Feng

    2018-02-01

    Here I report the scaling relationship between the baryonic mass and scale-length of stellar discs for ∼1000 morphologically late-type galaxies. The baryonic mass-size relationship is a single power law R_\\ast ∝ M_b^{0.38} across ∼3 orders of magnitude in baryonic mass. The scatter in size at fixed baryonic mass is nearly constant and there are no outliers. The baryonic mass-size relationship provides a more fundamental description of the structure of the disc than the stellar mass-size relationship. The slope and the scatter of the stellar mass-size relationship can be understood in the context of the baryonic mass-size relationship. For gas-rich galaxies, the stars are no longer a good tracer for the baryons. High-baryonic-mass, gas-rich galaxies appear to be much larger at fixed stellar mass because most of the baryonic content is gas. The stellar mass-size relationship thus deviates from the power-law baryonic relationship, and the scatter increases at the low-stellar-mass end. These extremely gas-rich low-mass galaxies can be classified as ultra-diffuse galaxies based on the structure.

  2. Radio emission from supernovae and gamma-ray bursters and the need for the SKA

    NASA Astrophysics Data System (ADS)

    Weiler, Kurt W.; Van Dyk, Schuyler D.; Sramek, Richard A.; Panagia, Nino

    2004-12-01

    Study of radio supernovae (SNe) over the past 25 years includes two dozen detected objects and more than 100 upper limits. From this work it is possible to identify classes of radio properties, demonstrate conformance to and deviations from existing models, estimate the density and structure of the circumstellar material and, by inference, the evolution of the presupernova stellar wind, and reveal the last stages of stellar evolution before explosion. It is also possible to detect ionized hydrogen along the line of sight, to demonstrate binary properties of the stellar system, and to show clumpiness of the circumstellar material. Since 1997 the afterglow of γ-ray bursting sources (GRBs) has occasionally been detected in the radio, as well in other wavelength bands. In particular, the interesting and unusual γ-ray burst GRB 980425, almost certainly related to the radio supernova SN 1998bw, and the more recent SN 2003dh/GRB 030329 are links between the two classes of objects. Analyzing the extensive radio emission data available for SN 1998bw, one can describe its time evolution within the well established framework available for the analysis of radio emission from supernovae. This then allows relatively detailed description of a number of physical properties of the object. The radio emission can best be explained as the interaction of a mildly relativistic ( Γ ˜ 1.6) shock with a dense pre-explosion stellar wind-established circumstellar medium that is highly structured both azimuthally, in clumps or filaments, and radially, with observed density enhancements. From this we can support the conclusion that at least some members of the slow-soft class of GRBs are related to type Ib/c SNe and can be attributed to the explosion of a massive star in a dense, highly structured CSM that was presumably established by the pre-explosion stellar system. However, due to the lack of sensitivity of current radio telescopes, most supernovae cannot be studied if they are more distant than the Virgo Cluster (˜20 Mpc) or, for exceptionally luminous Type IIn supernovae, beyond ˜100 Mpc. While the GRBs are up to 4 orders-of-magnitude more radio luminous, they are also generally much more distant because of their small probability of detection in smaller volumes of space and most are at z ˜ 1. Those which are radio detected rarely exceed peak flux densities of ˜100 - 300 μJy. Such low flux densities mean that detailed study of their radio "light curves" and, derived from those light curves, the energetics and dynamics of the explosions and the properties of their progenitors and the circumburst medium is very difficult and severely limited in scope. The increased capability of the SKA to attack these problems will significantly advance the field.

  3. The Close Stellar Companions to Intermediate-mass Black Holes

    NASA Astrophysics Data System (ADS)

    MacLeod, Morgan; Trenti, Michele; Ramirez-Ruiz, Enrico

    2016-03-01

    When embedded in dense cluster cores, intermediate-mass black holes (IMBHs) acquire close stellar or stellar-remnant companions. These companions are not only gravitationally bound, but also tend to hierarchically isolate from other cluster stars through series of multibody encounters. In this paper we study the demographics of IMBH companions in compact star clusters through direct N-body simulations. We study clusters initially composed of 105 or 2 × 105 stars with IMBHs of 75 and 150 solar masses, and we follow their evolution for 6-10 Gyr. A tight, innermost binary pair of IMBH and stellar object rapidly forms. The IMBH has a companion with an orbital semimajor axis at least three times tighter than the second-most-bound object over 90% of the time. These companionships have typical periods on the order of years and are subject to cycles of exchange and destruction. The most frequently observed, long-lived pairings persist for ˜107 years. The demographics of IMBH companions in clusters are diverse: they include both main-sequence, giant stars and stellar remnants. Companion objects may reveal the presence of an IMBH in a cluster in one of several ways. The most-bound companion stars routinely suffer grazing tidal interactions with the IMBH, offering a dynamical mechanism to produce repeated flaring episodes like those seen in the IMBH candidate HLX-1. The stellar winds of companion stars provide a minimum quiescent accretion rate for IMBHs, with implications for radio searches for IMBH accretion in globular clusters. Finally, gravitational wave inspirals of compact objects occur with promising frequency.

  4. Role of nuclear reactions on stellar evolution of intermediate-mass stars

    NASA Astrophysics Data System (ADS)

    Möller, H.; Jones, S.; Fischer, T.; Martínez-Pinedo, G.

    2018-01-01

    The evolution of intermediate-mass stars (8 - 12 solar masses) represents one of the most challenging subjects in nuclear astrophysics. Their final fate is highly uncertain and strongly model dependent. They can become white dwarfs, they can undergo electron-capture or core-collapse supernovae or they might even proceed towards explosive oxygen burning and a subsequent thermonuclear explosion. We believe that an accurate description of nuclear reactions is crucial for the determination of the pre-supernova structure of these stars. We argue that due to the possible development of an oxygen-deflagration, a hydrodynamic description has to be used. We implement a nuclear reaction network with ∼200 nuclear species into the implicit hydrodynamic code AGILE. The reaction network considers all relevant nuclear electron captures and beta-decays. For selected relevant nuclear species, we include a set of updated reaction rates, for which we discuss the role for the evolution of the stellar core, at the example of selected stellar models. We find that the final fate of these intermediate-mass stars depends sensitively on the density threshold for weak processes that deleptonize the core.

  5. Stellar Classification Online - Public Exploration

    NASA Astrophysics Data System (ADS)

    Castelaz, Michael W.; Bedell, W.; Barker, T.; Cline, J.; Owen, L.

    2009-01-01

    The Michigan Objective Prism Blue Survey (e.g. Sowell et al 2007, AJ, 134, 1089) photographic plates located in the Astronomical Photographic Data Archive at the Pisgah Astronomical Research Institute hold hundreds of thousands of stellar spectra, many of which have not been classified before. The public is invited to participate in a distributed computing online environment to classify the stars on the objective prism plates. The online environment is called Stellar Classification Online - Public Exploration (SCOPE). Through a website, SCOPE participants are given a tutorial on stellar spectra and their classification, and given the chance to practice their skills at classification. After practice, participants register, login, and select stars for classification from scans of the objective prism plates. Their classifications are recorded in a database where the accumulation of classifications of the same star by many users will be statistically analyzed. The project includes stars with known spectral types to help test the reliability of classifications. The SCOPE webpage and the use of results will be described.

  6. Theoretical models for stellar X-ray polarization in compact objects

    NASA Technical Reports Server (NTRS)

    Meszaros, P.

    1991-01-01

    Degenerate stellar objects are expected to be strong sources of polarized X-ray emission. This is particularly true for strongly magnetized neutron stars, e.g. accretion or rotation powered pulsars, and gamma ray bursters. In these, linear polarization degrees well in excess of 30 percent are expected. Weaker magnetic field stellar sources, such as old neutron stars in low mass binary systems, white dwarfs and black holes are expected to have polarization degrees in the range 1-3 percent. A great interest attaches to the detection of polarization in these objects, since this would provide invaluable information concerning the geometry, radiation mechanism and magnetic field strength, necessary for testing and proving models of the structure and evolution of stars in their late stages. In this paper we review the theoretical models of the production of polarized radiation in compact stellar X-ray sources, and discuss the possibility of detecting these properties using currently planned detectors to be flown in space.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirano, Teruyuki; Suto, Yasushi; Taruya, Atsushi

    We obtain analytical expressions for the velocity anomaly due to the Rossiter-McLaughlin (RM) effect, for the case when the anomalous radial velocity is obtained by cross-correlation with a stellar template spectrum. In the limit of vanishing width of the stellar absorption lines, our result reduces to the formula derived by Ohta et al., which is based on the first moment of distorted stellar lines. Our new formula contains a term dependent on the stellar line width, which becomes important when rotational line broadening is appreciable. We generate mock transit spectra for four existing exoplanetary systems (HD 17156, TrES-2, TrES-4, andmore » HD 209458) following the procedure of Winn et al., and find that the new formula is in better agreement with the velocity anomaly extracted from the mock data. Thus, our result provides a more reliable analytical description of the velocity anomaly due to the RM effect, and explains the previously observed dependence of the velocity anomaly on the stellar rotation velocity.« less

  8. Promoting access to and use of seismic data in a large scientific community. SpaceInn data handling and archiving

    NASA Astrophysics Data System (ADS)

    Michel, Eric; Belkacem, Kevin; Samadi, Reza; Assis Peralta, Raphael de; Renié, Christian; Abed, Mahfoudh; Lin, Guangyuan; Christensen-Dalsgaard, Jørgen; Houdek, Günter; Handberg, Rasmus; Gizon, Laurent; Burston, Raymond; Nagashima, Kaori; Pallé, Pere; Poretti, Ennio; Rainer, Monica; Mistò, Angelo; Panzera, Maria Rosa; Roth, Markus

    2017-10-01

    The growing amount of seismic data available from space missions (SOHO, CoRoT, Kepler, SDO,…) but also from ground-based facilities (GONG, BiSON, ground-based large programmes…), stellar modelling and numerical simulations, creates new scientific perspectives such as characterizing stellar populations in our Galaxy or planetary systems by providing model-independent global properties of stars such as mass, radius, and surface gravity within several percent accuracy, as well as constraints on the age. These applications address a broad scientific community beyond the solar and stellar one and require combining indices elaborated with data from different databases (e.g. seismic archives and ground-based spectroscopic surveys). It is thus a basic requirement to develop a simple and effcient access to these various data resources and dedicated tools. In the framework of the European project SpaceInn (FP7), several data sources have been developed or upgraded. The Seismic Plus Portal has been developed, where synthetic descriptions of the most relevant existing data sources can be found, as well as tools allowing to localize existing data for given objects or period and helping the data query. This project has been developed within the Virtual Observatory (VO) framework. In this paper, we give a review of the various facilities and tools developed within this programme. The SpaceInn project (Exploitation of Space Data for Innovative Helio- and Asteroseismology) has been initiated by the European Helio- and Asteroseismology Network (HELAS).

  9. Predictions of stellar occultations by TNOs/Centaurs using Gaia

    NASA Astrophysics Data System (ADS)

    Desmars, Josselin; Camargo, Julio; Berard, Diane; Sicardy, Bruno; Leiva, Rodrigo; Vieira-Martins, Roberto; Braga-Ribas, Felipe; Assafin, Marcelo; Rossi, Gustavo; Chariklo occultations Team, Rio Group, Lucky Star Occultation Team, Granada Occultation Team

    2017-10-01

    Stellar occultations are the unique technique from the ground to access physical parameters of the distant solar system objects, such as the measure of the size and the shape at kilometric level, the detection of tenuous atmospheres (few nanobars), and the investigation of close vicinity (satellites, rings, jets).Predictions of stellar occultations require accurate positions of the star and the object.The Gaia DR1 catalog now allows to get stellar position to the milliarcsecond (mas) level. The main uncertainty in the prediction remains in the position of the object (tens to hundreds of mas).Now, we take advantage of the NIMA method for the orbit determination that uses the most recent observations reduced by the Gaia DR1 catalog and the astrometric positions derived from previous positive occultations.Up to now, we have detected nearly 50 positive occultations for about 20 objects that provide astrometric positions of the object at the time of the occultation. The uncertainty of these positions only depends on the uncertainty on the position of the occulted stars, which is a few mas with the Gaia DR1 catalog. The main limitation is now on the proper motion of the star which is only given for bright stars in the Tycho-Gaia Astrometric Solution. This limitation will be solved with the publicationof the Gaia DR2 expected on April 2018 giving proper motions and parallaxes for the Gaia stars. Until this date, we use hybrid stellar catalogs (UCAC5, HSOY) that provide proper motions derived from Gaia DR1 and another stellar catalog.Recently, the Gaia team presented a release of three preliminary Gaia DR2 stellar positions involved in the occultations by Chariklo (22 June and 23 July 2017) and by Triton (5 October 2017).Taking the case of Chariklo as an illustration, we will present a comparison between the proper motions of DR2 and the other catalogs and we will show how the Gaia DR2 will lead to a mas level precision in the orbit and in the prediction of stellar occultations.**Part of the research leading to these results has received funding from the European Research Council under theEuropean Community’s H2020 (2014-2020/ ERC Grant Agreement n 669416 ”LUCKY STAR”).

  10. Binary Populations and Stellar Dynamics in Young Clusters

    NASA Astrophysics Data System (ADS)

    Vanbeveren, D.; Belkus, H.; Van Bever, J.; Mennekens, N.

    2008-06-01

    We first summarize work that has been done on the effects of binaries on theoretical population synthesis of stars and stellar phenomena. Next, we highlight the influence of stellar dynamics in young clusters by discussing a few candidate UFOs (unconventionally formed objects) like intermediate mass black holes, η Car, ζ Pup, γ2 Velorum and WR 140.

  11. Probing the Dusty Stellar Populations of the Local Volume Galaxies with JWST/MIRI

    NASA Astrophysics Data System (ADS)

    Jones, Olivia C.; Meixner, Margaret; Justtanont, Kay; Glasse, Alistair

    2017-05-01

    The Mid-Infrared Instrument (MIRI) for the James Webb Space Telescope (JWST) will revolutionize our understanding of infrared stellar populations in the Local Volume. Using the rich Spitzer-IRS spectroscopic data set and spectral classifications from the Surveying the Agents of Galaxy Evolution (SAGE)-Spectroscopic survey of more than 1000 objects in the Magellanic Clouds, the Grid of Red Supergiant and Asymptotic Giant Branch Star Model (grams), and the grid of YSO models by Robitaille et al., we calculate the expected flux densities and colors in the MIRI broadband filters for prominent infrared stellar populations. We use these fluxes to explore the JWST/MIRI colors and magnitudes for composite stellar population studies of Local Volume galaxies. MIRI color classification schemes are presented; these diagrams provide a powerful means of identifying young stellar objects, evolved stars, and extragalactic background galaxies in Local Volume galaxies with a high degree of confidence. Finally, we examine which filter combinations are best for selecting populations of sources based on their JWST colors.

  12. Globular-cluster stars - Results of theoretical evolution and pulsation studies compared with the observations.

    NASA Technical Reports Server (NTRS)

    Iben, I., Jr.

    1971-01-01

    Survey of recently published studies on globular clusters, and comparison of stellar evolution and pulsation theory with reported observations. The theory of stellar evolution is shown to be capable of describing, in principle, the behavior of a star through all quasi-static stages. Yet, as might be expected, estimates of bulk properties obtained by comparing observations with results of pulsation and stellar atmosphere theory differ somewhat from estimates of these same properties obtained by comparing observations with results of evolution theory. A description is given of how such estimates are obtained, and suggestions are offered as to where the weak points in each theory may lie.

  13. Host Star Evolution for Planet Habitability.

    PubMed

    Gallet, Florian; Charbonnel, Corinne; Amard, Louis

    2016-11-01

    With about 2000 exoplanets discovered within a large range of different configurations of distance from the star, size, mass, and atmospheric conditions, the concept of habitability cannot rely only on the stellar effective temperature anymore. In addition to the natural evolution of habitability with the intrinsic stellar parameters, tidal, magnetic, and atmospheric interactions are believed to have strong impact on the relative position of the planets inside the so-called habitable zone. Moreover, the notion of habitability itself strongly depends on the definition we give to the term "habitable". The aim of this contribution is to provide a global and up-to-date overview of the work done during the last few years about the description and the modelling of the habitability, and to present the physical processes currently includes in this description.

  14. Modern Geometric Methods of Distance Determination

    NASA Astrophysics Data System (ADS)

    Thévenin, Frédéric; Falanga, Maurizio; Kuo, Cheng Yu; Pietrzyński, Grzegorz; Yamaguchi, Masaki

    2017-11-01

    Building a 3D picture of the Universe at any distance is one of the major challenges in astronomy, from the nearby Solar System to distant Quasars and galaxies. This goal has forced astronomers to develop techniques to estimate or to measure the distance of point sources on the sky. While most distance estimates used since the beginning of the 20th century are based on our understanding of the physics of objects of the Universe: stars, galaxies, QSOs, the direct measures of distances are based on the geometric methods as developed in ancient Greece: the parallax, which has been applied to stars for the first time in the mid-19th century. In this review, different techniques of geometrical astrometry applied to various stellar and cosmological (Megamaser) objects are presented. They consist in parallax measurements from ground based equipment or from space missions, but also in the study of binary stars or, as we shall see, of binary systems in distant extragalactic sources using radio telescopes. The Gaia mission will be presented in the context of stellar physics and galactic structure, because this key space mission in astronomy will bring a breakthrough in our understanding of stars, galaxies and the Universe in their nature and evolution with time. Measuring the distance to a star is the starting point for an unbiased description of its physics and the estimate of its fundamental parameters like its age. Applying these studies to candles such as the Cepheids will impact our large distance studies and calibration of other candles. The text is constructed as follows: introducing the parallax concept and measurement, we shall present briefly the Gaia satellite which will be the future base catalogue of stellar astronomy in the near future. Cepheids will be discussed just after to demonstrate the state of the art in distance measurements in the Universe with these variable stars, with the objective of 1% of error in distances that could be applied to our closest galaxy the LMC, and better constrain the distances of large sub-structures around the Milky Way. Then exciting objects like X-Ray binaries will be presented in two parts corresponding to "low" or "high" mass stars with compact objects observed with X-ray satellites. We shall demonstrate the capability of these objects to have their distances measured with high accuracy with not only helps in the study of these objects but could also help to measure the distance of the structure they belong. For cosmological objects and large distances of megaparsecs, we shall present what has been developed for more than 20 years in the geometric distance measurements of MegaMasers, the ultimate goal being the estimation of the H0 parameter.

  15. Model for quantum effects in stellar collapse

    NASA Astrophysics Data System (ADS)

    Arderucio-Costa, Bruno; Unruh, William G.

    2018-01-01

    We present a simple model for stellar collapse and evaluate the quantum mechanical stress-energy tensor to argue that quantum effects do not play an important role for the collapse of astrophysical objects.

  16. The shock-heated atmosphere of an asymptotic giant branch star resolved by ALMA

    NASA Astrophysics Data System (ADS)

    Vlemmings, Wouter; Khouri, Theo; O'Gorman, Eamon; De Beck, Elvire; Humphreys, Elizabeth; Lankhaar, Boy; Maercker, Matthias; Olofsson, Hans; Ramstedt, Sofia; Tafoya, Daniel; Takigawa, Aki

    2017-12-01

    Our current understanding of the chemistry and mass-loss processes in Sun-like stars at the end of their evolution depends critically on the description of convection, pulsations and shocks in the extended stellar atmosphere1. Three-dimensional hydrodynamical stellar atmosphere models provide observational predictions2, but so far the resolution to constrain the complex temperature and velocity structures seen in the models has been lacking. Here we present submillimetre continuum and line observations that resolve the atmosphere of the asymptotic giant branch star W Hydrae. We show that hot gas with chromospheric characteristics exists around the star. Its filling factor is shown to be small. The existence of such gas requires shocks with a cooling time longer than commonly assumed. A shocked hot layer will be an important ingredient in current models of stellar convection, pulsation and chemistry at the late stages of stellar evolution.

  17. Stellar Variability in the VVV Survey: An Update

    NASA Astrophysics Data System (ADS)

    Catelan, M.; Dekany, I.; Hempel, M.; Minniti, D.

    The Vista Variables in the Via Lactea (VVV) ESO Public Survey consists in a near-infrared time-series survey of the Galactic bulge and inner disk; covering 562 square degrees of the sky; over a total timespan of more than 5 years. In this paper; we provide an updated account of the current status of the survey; especially in the context of stellar variability studies. In this sense; we give a first description of our efforts towards the construction of the VVV Variable Star Catalog (VVV-VSC).

  18. Sixteen month decline in the 850 micron continuum brightness of the young stellar object HOPS 358 in NGC 2068

    NASA Astrophysics Data System (ADS)

    Mairs, Steve; Bell, Graham S.; Johnstone, Doug; Herczeg, Gregory J.; Bower, Geoffrey C.; Aikawa, Yuri; Lee, Jeong-Eun; Chen, Huei-Ru Vivien; Hatchell, Jennifer; Kang, Miju; Contreras Pena, Carlos; Scholz, Alexander; Naylor, Tim

    2018-04-01

    As part of our young stellar object (YSO) sub-mm monthly monitoring programme, the JCMT Transient Survey (Herczeg et al. 2017 ApJ, 849, 43; Johnstone et al. 2018 ApJ, 854, 31), we have uncovered a steady sixteen-month decline in the 850 micron peak brightness of YSO HOPS 358 (R.A.

  19. A NEW GENERATION OF PARSEC-COLIBRI STELLAR ISOCHRONES INCLUDING THE TP-AGB PHASE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marigo, Paola; Aringer, Bernhard; Chen, Yang

    2017-01-20

    We introduce a new generation of PARSEC–COLIBRI stellar isochrones that includes a detailed treatment of the thermally pulsing asymptotic giant branch (TP-AGB) phase, covering a wide range of initial metallicities (0.0001 < Z {sub i} < 0.06). Compared to previous releases, the main novelties and improvements are use of new TP-AGB tracks and related atmosphere models and spectra for M and C-type stars; inclusion of the surface H+He+CNO abundances in the isochrone tables, accounting for the effects of diffusion, dredge-up episodes and hot-bottom burning; inclusion of complete thermal pulse cycles, with a complete description of the in-cycle changes in themore » stellar parameters; new pulsation models to describe the long-period variability in the fundamental and first-overtone modes; and new dust models that follow the growth of the grains during the AGB evolution, in combination with radiative transfer calculations for the reprocessing of the photospheric emission. Overall, these improvements are expected to lead to a more consistent and detailed description of properties of TP-AGB stars expected in resolved stellar populations, especially in regard to their mean photometric properties from optical to mid-infrared wavelengths. We illustrate the expected numbers of TP-AGB stars of different types in stellar populations covering a wide range of ages and initial metallicities, providing further details on the “C-star island” that appears at intermediate values of age and metallicity, and about the AGB-boosting effect that occurs at ages close to 1.6-Gyr for populations of all metallicities. The isochrones are available through a new dedicated web server.« less

  20. Stellar, remnant, planetary, and dark-object masses from astrometric microlensing

    NASA Technical Reports Server (NTRS)

    Boden, A.; Gould, A. P.; Bennett, D. P.; Depoy, D. L.; Gaudi, S. B.; Griest, K.; Han, C.; Paczynski, B.; Reid, I. N.

    2002-01-01

    With SIM, we will break the microlensing degeneracy, and allow detailed interpretation of individual microlensing events. We will thus develop a detailed census of the dark and luminous stellar population of the Galaxy.

  1. The California- Kepler Survey. II. Precise Physical Properties of 2025 Kepler Planets and Their Host Stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, John Asher; Cargile, Phillip A.; Sinukoff, Evan

    We present stellar and planetary properties for 1305 Kepler Objects of Interest hosting 2025 planet candidates observed as part of the California- Kepler Survey. We combine spectroscopic constraints, presented in Paper I, with stellar interior modeling to estimate stellar masses, radii, and ages. Stellar radii are typically constrained to 11%, compared to 40% when only photometric constraints are used. Stellar masses are constrained to 4%, and ages are constrained to 30%. We verify the integrity of the stellar parameters through comparisons with asteroseismic studies and Gaia parallaxes. We also recompute planetary radii for 2025 planet candidates. Because knowledge of planetarymore » radii is often limited by uncertainties in stellar size, we improve the uncertainties in planet radii from typically 42% to 12%. We also leverage improved knowledge of stellar effective temperature to recompute incident stellar fluxes for the planets, now precise to 21%, compared to a factor of two when derived from photometry.« less

  2. A revised and updated catalog of quasi-stellar objects

    NASA Technical Reports Server (NTRS)

    Hewitt, A.; Burbidge, G.

    1993-01-01

    The paper contains a catalog of all known quasi-stellar objects (QSOs) with measured emission redshifts, and BL Lac objects, complete to 1992 December 31. The catalog contains 7315 objects, nearly all QSOs including about 90 BL Lac objects. The catalog and references contain extensive information on names, positions, magnitudes, colors, emission-line redshifts, absorption, variability, polarization, and X-ray, radio, and infrared data. A key in the form of subsidiary tables enables the reader to relate the name of a given object to its coordinate name, which is used throughout the compilation. Plots of the Hubble diagram, the apparent magnitude distribution, the emission redshift distribution, and the distribution of the QSOs on the sky are also given.

  3. An X-shooter survey of star forming regions: Low-mass stars and sub-stellar objects

    NASA Astrophysics Data System (ADS)

    Alcalá, J. M.; Stelzer, B.; Covino, E.; Cupani, G.; Natta, A.; Randich, S.; Rigliaco, E.; Spezzi, L.; Testi, L.; Bacciotti, F.; Bonito, R.; Covino, S.; Flaccomio, E.; Frasca, A.; Gandolfi, D.; Leone, F.; Micela, G.; Nisini, B.; Whelan, E.

    2011-03-01

    We present preliminary results of our X-shooter survey in star forming regions. In this contribution we focus on sub-samples of young stellar and sub-stellar objects (YSOs) in the Lupus star forming region and in the TW Hya association. We show that the X-shooter spectra are suitable for conducting several parallel studies such as YSO + disk fundamental parameters, accretion and outflow activity in the very low-mass (VLM) and sub-stellar regimes, as well as magnetic activity in young VLM YSOs, and Li abundance determinations. The capabilities of X-shooter in terms of wide spectral coverage, resolution and limiting magnitudes, allow us to assess simultaneously the accretion/outflow, magnetic activity, and disk diagnostics, from the UV and optical to the near-IR, avoiding ambiguities due to possible YSO variability. Based on observations collected at the European Southern Observatory, Chile, under Programmes 084.C-0269 and 085.C-0238.

  4. The Effects of Stellar Dynamics on the Evolution of Young, Dense Stellar Systems

    NASA Astrophysics Data System (ADS)

    Belkus, H.; van Bever, J.; Vanbeveren, D.

    In this paper, we report on first results of a project in Brussels in which we study the effects of stellar dynamics on the evolution of young dense stellar systems using 3 decades of expertise in massive-star evolution and our population (number and spectral) synthesis code. We highlight an unconventionally formed object scenario (UFO-scenario) for Wolf Rayet binaries and study the effects of a luminous blue variable-type instability wind mass-loss formalism on the formation of intermediate-mass black holes.

  5. Space Telescope Systems Description Handbook

    NASA Technical Reports Server (NTRS)

    Carter, R. E.

    1985-01-01

    The objective of the Space Telescope Project is to orbit a high quality optical 2.4-meter telescope system by the Space Shuttle for use by the astronomical community in conjunction with NASA. The scientific objectives of the Space Telescope are to determine the constitution, physical characteristics, and dynamics of celestial bodies; the nature of processes which occur in the extreme physical conditions existing in stellar objects; the history and evolution of the universe; and whether the laws of nature are universal in the space-time continuum. Like ground-based telescopes, the Space Telescope was designed as a general-purpose instrument, capable of utilizing a wide variety of scientific instruments at its focal plane. This multi-purpose characteristic will allow the Space Telescope to be effectively used as a national facility, capable of supporting the astronomical needs for an international user community and hence making contributions to man's needs. By using the Space Shuttle to provide scientific instrument upgrading and subsystems maintenance, the useful and effective operational lifetime of the Space Telescope will be extended to a decade or more.

  6. Probing the Dusty Stellar Populations of the Local Volume Galaxies with JWST /MIRI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Olivia C.; Meixner, Margaret; Justtanont, Kay

    The Mid-Infrared Instrument (MIRI) for the James Webb Space Telescope ( JWST ) will revolutionize our understanding of infrared stellar populations in the Local Volume. Using the rich Spitzer -IRS spectroscopic data set and spectral classifications from the Surveying the Agents of Galaxy Evolution (SAGE)–Spectroscopic survey of more than 1000 objects in the Magellanic Clouds, the Grid of Red Supergiant and Asymptotic Giant Branch Star Model (grams), and the grid of YSO models by Robitaille et al., we calculate the expected flux densities and colors in the MIRI broadband filters for prominent infrared stellar populations. We use these fluxes tomore » explore the JWST /MIRI colors and magnitudes for composite stellar population studies of Local Volume galaxies. MIRI color classification schemes are presented; these diagrams provide a powerful means of identifying young stellar objects, evolved stars, and extragalactic background galaxies in Local Volume galaxies with a high degree of confidence. Finally, we examine which filter combinations are best for selecting populations of sources based on their JWST colors.« less

  7. Atlas of low-mass young stellar object disks from mid-infrared interferometry

    NASA Astrophysics Data System (ADS)

    Varga, J.; Ábrahám, P.; Ratzka, Th.; Menu, J.; Gabányi, K.; Kóspál, Á.; van Boekel, R.; Mosoni, L.; Henning, Th.

    We present our approach of visibility modeling of disks around low-mass (< 2 M ⊙) young stellar objects (YSOs). We compiled an atlas based on mid-infrared interferometric observations from the MIDI instrument at the VLTI. We use three different models to fit the data. These models allow us to determine overall sizes (and the extent of the inner gaps) of the modeled circumstellar disks.

  8. Suzaku Observation of Strong Fluorescent Iron Line Emission from the Young Stellar Object V1647 Ori during Its New X-ray Outburst

    NASA Technical Reports Server (NTRS)

    Hamaguchi, Kenji; Grosso, Nicolas; Kastner, Joel H.; Weintraub, David A.; Richmond, Michael

    2009-01-01

    The Suzaku X-ray satellite observed the young stellar object V1647 Ori on 2008 October 8 during the new mass accretion outburst reported in August 2008. During the 87 ksec observation with a net exposure of 40 ks, V1647 Ori showed a. high level of X-ray emission with a gradual decrease in flux by a factor of 5 and then displayed an abrupt flux increase by an order of magnitude. Such enhanced X-ray variability was also seen in XMM-Newton observations in 2004 and 2005 during the 2003-2005 outburst, but has rarely been observed for other young stellar objects. The spectrum clearly displays emission from Helium-like iron, which is a signature of hot plasma (kT approx.5 keV). It also shows a fluorescent iron Ka line with a remarkably large equivalent width of approx. 600 eV. Such a, large equivalent width indicates that a part of the incident X-ray emission that irradiates the circumstellar material and/or the stellar surface is hidden from our line of sight. XMM-Newton spectra during the 2003-2005 outburst did not show a strong fluorescent iron Ka line ; so that the structure of the circumstellar gas very close to the stellar core that absorbs and re-emits X-ray emission from the central object may have changed in between 2005 and 2008. This phenomenon may be related to changes in the infrared morphology of McNeil's nebula between 2004 and 2008.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacLeod, Morgan; Ramirez-Ruiz, Enrico; Trenti, Michele

    When embedded in dense cluster cores, intermediate-mass black holes (IMBHs) acquire close stellar or stellar-remnant companions. These companions are not only gravitationally bound, but also tend to hierarchically isolate from other cluster stars through series of multibody encounters. In this paper we study the demographics of IMBH companions in compact star clusters through direct N-body simulations. We study clusters initially composed of 10{sup 5} or 2 × 10{sup 5} stars with IMBHs of 75 and 150 solar masses, and we follow their evolution for 6–10 Gyr. A tight, innermost binary pair of IMBH and stellar object rapidly forms. The IMBH has amore » companion with an orbital semimajor axis at least three times tighter than the second-most-bound object over 90% of the time. These companionships have typical periods on the order of years and are subject to cycles of exchange and destruction. The most frequently observed, long-lived pairings persist for ∼10{sup 7} years. The demographics of IMBH companions in clusters are diverse: they include both main-sequence, giant stars and stellar remnants. Companion objects may reveal the presence of an IMBH in a cluster in one of several ways. The most-bound companion stars routinely suffer grazing tidal interactions with the IMBH, offering a dynamical mechanism to produce repeated flaring episodes like those seen in the IMBH candidate HLX-1. The stellar winds of companion stars provide a minimum quiescent accretion rate for IMBHs, with implications for radio searches for IMBH accretion in globular clusters. Finally, gravitational wave inspirals of compact objects occur with promising frequency.« less

  10. Galaxy And Mass Assembly (GAMA): deconstructing bimodality - I. Red ones and blue ones

    NASA Astrophysics Data System (ADS)

    Taylor, Edward N.; Hopkins, Andrew M.; Baldry, Ivan K.; Bland-Hawthorn, Joss; Brown, Michael J. I.; Colless, Matthew; Driver, Simon; Norberg, Peder; Robotham, Aaron S. G.; Alpaslan, Mehmet; Brough, Sarah; Cluver, Michelle E.; Gunawardhana, Madusha; Kelvin, Lee S.; Liske, Jochen; Conselice, Christopher J.; Croom, Scott; Foster, Caroline; Jarrett, Thomas H.; Lara-Lopez, Maritza; Loveday, Jon

    2015-01-01

    We measure the mass functions for generically red and blue galaxies, using a z < 0.12 sample of log M* > 8.7 field galaxies from the Galaxy And Mass Assembly (GAMA) survey. Our motivation is that, as we show, the dominant uncertainty in existing measurements stems from how `red' and `blue' galaxies have been selected/defined. Accordingly, we model our data as two naturally overlapping populations, each with their own mass function and colour-mass relation, which enables us characterize the two populations without having to specify a priori which galaxies are `red' and `blue'. Our results then provide the means to derive objective operational definitions for the terms `red' and `blue', which are based on the phenomenology of the colour-mass diagrams. Informed by this descriptive modelling, we show that (1) after accounting for dust, the stellar colours of `blue' galaxies do not depend strongly on mass; (2) the tight, flat `dead sequence' does not extend much below log M* ˜ 10.5; instead, (3) the stellar colours of `red' galaxies vary rather strongly with mass, such that lower mass `red' galaxies have bluer stellar populations; (4) below log M* ˜ 9.3, the `red' population dissolves into obscurity, and it becomes problematic to talk about two distinct populations; as a consequence, (5) it is hard to meaningfully constrain the shape, including the existence of an upturn, of the `red' galaxy mass function below log M* ˜ 9.3. Points 1-4 provide meaningful targets for models of galaxy formation and evolution to aim for.

  11. Radio stars observed in the LAMOST spectral survey

    NASA Astrophysics Data System (ADS)

    Zhang, Li-Yun; Yue, Qiang; Lu, Hong-Peng; Han, Xian-Ming L.; Zhang, Yong; Shi, Jian-Rong; Wang, Yue-Fei; Hou, Yong-Hui; Zi-Huang, Cao

    2017-09-01

    Radio stars have attracted astronomers’ attention for several decades. To better understand the physics behind stellar radio emissions, it is important to study their optical behaviors. The LAMOST survey provides a large database for researching stellar spectroscopic properties of radio stars. In this work, we concentrate on their spectroscopic properties and infer physical properties from their spectra, such as stellar activity and variability. We mined big data from the LAMOST spectral survey Data Release 2 (DR2), published on 2016 June 30, by cross-matching them with radio stars from FIRST and other surveys. We obtained 783 good stellar spectra with high signal to noise ratio for 659 stars. The criteria for selection were positional coincidence within 1.5‧‧ and LAMOST objects classified as stars. We calculated the equivalent widths (EWs) of the Ca ii H&K, Hδ, Hγ, Hβ, Hα and Ca ii IRT lines by integrating the line profiles. Using the EWs of the Hα line, we detected 147 active stellar spectra of 89 objects having emissions above the Hα continuum. There were also 36 objects with repeated spectra, 28 of which showed chromospheric activity variability. Furthermore, we found 14 radio stars emitting noticeably in the Ca ii IRT lines. The low value of the EW8542/EW8498 ratio for these 14 radio stars possibly alludes to chromospheric plage regions.

  12. Revealing Companions to Nearby Stars with Astrometric Acceleration

    DTIC Science & Technology

    2012-07-01

    objects, such as stellar -mass black holes or failed supernova (Gould & Salim 2002). Table 4 includes a sample of some of the most interesting dis...knowledge of binary and multiple star statistics is needed for the study of star formation, for stellar population synthesis, for predicting the...frequency of supernovae, blue stragglers, X-ray binaries, etc. The statistical properties of binaries strongly depend on stellar mass. Only for nearby solar

  13. Resolving polarized stellar features thanks to polarimetric interferometry

    NASA Astrophysics Data System (ADS)

    Rousselet-Perraut, Karine; Chesneau, Olivier; Vakili, Farrokh; Mourard, Denis; Janel, Sebastien; Lavaud, Laurent; Crocherie, Axel

    2003-02-01

    Polarimetry is a powerful means for detecting and constraining various physical phenomena, such as scattering processes or magnetic fields, occuring in a large panel of stellar objects: extended atmospheres of hot stars, CP stars, Young Stellar Objects, Active Galaxy Nuclei, ... However, the lack of angular resolution is generally a strong handicap to drastically constrain the physical parameters and the geometry of the polarizing phenomena because of the cancelling of the polarized signal. In fact, even if stellar features are strongly polarized, the (spectro-)polarimetric signal integrated over the stellar surface rarely exceeds few percents. Coupling polarimetric and interferometric devices allows to resolve these local polarized structures and thus to constrain complex patchy stellar surfaces and/or environments such as disk topology in T Tauri stars, hot stars radiative winds or oscillations in Be star envelopes. In this article, we explain how interfero-polarimetric observables, basically the contrast and the position of the interference fringe patterns versus polarization (and even versus wavelength) are powerful to address the above scientific drivers and we emphasize on the key point of instrumental and data calibrations: since interferometric measurements are differential ones between 2 or more beams, this strongly relaxes the calibration requirements for the fringe phase observable. Prospects induced by the operation of the optical aperture synthesis arrays are also discussed.

  14. Self-consistent calculation of the nuclear composition in hot and dense stellar matter

    NASA Astrophysics Data System (ADS)

    Furusawa, Shun; Mishustin, Igor

    2017-03-01

    We investigate the mass fractions and in-medium properties of heavy nuclei in stellar matter at characteristic densities and temperatures for supernova (SN) explosions. The individual nuclei are described within the compressible liquid-drop model taking into account modifications of bulk, surface, and Coulomb energies. The equilibrium properties of nuclei and the full ensemble of heavy nuclei are calculated self-consistently. It is found that heavy nuclei in the ensemble are either compressed or decompressed depending on the isospin asymmetry of the system. The compression or decompression has a little influence on the binding energies, total mass fractions, and average mass numbers of heavy nuclei, although the equilibrium densities of individual nuclei themselves are changed appreciably above one-hundredth of normal nuclear density. We find that nuclear structure in the single-nucleus approximation deviates from the actual one obtained in the multinucleus description, since the density of free nucleons is different between these two descriptions. This study indicates that a multinucleus description is required to realistically account for in-medium effects on the nuclear structure in supernova matter.

  15. Astronomical image data compression by morphological skeleton transformation

    NASA Astrophysics Data System (ADS)

    Huang, L.; Bijaoui, A.

    A compression method adapted for exact restoring of the detected objects and based on the morphological skeleton transformation is presented. The morphological skeleton provides a complete and compact description of an object and gives an efficient compression rate. The flexibility of choosing a structuring element adapted to different images and the simplicity of the implementation are considered to be advantages of the method. The experiment was carried out on three typical astronomical images. The first two images were obtained by digitizing a Palomar Schmidt photographic plate in a coma field with the PDS microdensitometer at Nice Observatory. The third image was obtained by CCD camera at the Pic du Midi Observatory. Each pixel was coded by 16 bits and stored at a computer system (VAX785) with STII format. Each image is characterized by 256 x 256 pixels. It is found that first image represents a stellar field, the second represents a set of galaxies in the Coma, and the third image contains an elliptical galaxy.

  16. Catching the Next Burst: the periodic young stellar object EC 53 in Serpens Main is sharply brightening at 850 microns and at near-IR H-band and K-band

    NASA Astrophysics Data System (ADS)

    Johnstone, Doug; Mairs, Steve; Naylor, Tim; Contreras Pena, Carlos; Varricatt, Watson; Hodapp, Klaus; Herczeg, Gregory J.; Lee, Jeong-Eun; Yoo, Hyunju; Bell, Graham S.; Bower, Geoffrey C.; Aikawa, Yuri; Chen, Huei-Ru Vivien; Hatchell, Jennifer; Park, Sunkyung

    2018-05-01

    As part of our young stellar object (YSO) sub-mm monthly monitoring programme, the JCMT-Transient Survey (Herczeg et al. 2017 ApJ, 849, 43; Johnstone et al. 2018 ApJ, 854, 31), we are using SCUBA2 to monitor the 850 micron peak brightness of the YSO EC 53 (R.A.

  17. Two-Dimensional Study of Mass Outflow from Central Gravitational Astrophysical Object. Analytical 2-D solutions for thermo-radiatively driven stellar winds.

    NASA Astrophysics Data System (ADS)

    Kakouris, A.

    The present PhD Thesis deals with the two-dimensional description of the plasma outflow from central astrophysical objects. The concept of stellar winds was originated by Eugene Parker 1958, and has become a very hot area of research the last decade. Mass outflow from all types of stars, as well as AGNs, quasars or planetary nebulae are observed in all astrophysical scales indicating at least two-dimensional (2-D) features (e.g. Hughes (editor), 1991, Beams and jets in astrophysics, Cambridge University Press). In a first stage, the flows are modeled empirically but their origin has to be in accordance with the fluid mechanics and the conservation laws. So, self-consistent 2-D models are needed (i.e. full solutions of the total set of equations which conserve mass, momentum and energy). The main mechanisms of ejecting plasma from an astrophysical object are the thermal (similar to solar wind), the radiative and the magnetic. Self consistent analytical 2-D steady hydrodynamic (HD) solutions for stellar winds have been presented by Tsinganos & Vlastou 1988, Tsinganos & Trussoni 1990, Tsinganos & Sauty 1992 and Lima & Priest 1993. Following their description we derive a new set of solutions in the present work. Our main assumptions are steady state (\\partial/\\partial t = 0), axisymmetry to the rotational axis (\\partial/\\partial \\phi = 0) and helicoidal geometry for the streamlines (meridional velocity {\\vec u}_{\\theta} = {\\vec 0} ). Besides, the fluid is assumed to be a nonmagnetized fully ionized hydrogen. The model could be named as non polytropic since we do not follow the polytropic assumption with a constant polytropic exponent but we evaluate the total external energy needed by the 1st law of Thermodynamics. Also, the solutions are \\theta-self similar since the dependence to the colatitude is given from the beginning. The generalized differential rotation of the fluid is taken into account considering a dependence of the rotational velocity of (V\\phi \\propto \\sin\\mu \\theta / R ) where \\mu is a parameter and R the radial distance. Using these assumptions we derive fully analytical (only a Simpson integration is needed) 2-D solutions of four types (with velocity maximum either along the equator or the polar axis of the central astrophysical object). One of them (named as solution in Range I) exhibits suitable features for stellar wind interpretation with velocity maximum along the equator because the outflow starts subsonic at the stellar surface and terminates supersonic at infinity. The other solutions are subsonic (breeze) or they could be examined only as inflows. The Range I solution is applied to real astrophysical objects. Moreover, the thermally driven 2 - D solutions are extended including the radiative force due to the absorption of the stellar light in the fluid. So, the 2-D solutions represent thermally and radiatively driven flows. The assumptions for the radiative force inclusion are that the radiative acceleration is radial and it is a function of radial distance solely (i.e. it is independent of the velocity). The first radiatively driven wind model was presented in 1975 by Castor, Abbott & Klein and was applied to O5f main sequence stars. In order to describe the radiative origin of the massive winds from early and late spectral type stars, the radiative force is separated into its continuum, thick lines and thin lines parts. The mechanism of the continuous absorption is the Thomson scattering of the photons by the free plasma electrons and it is always present. If the line contribution corresponds to the thick absorption spectral lines the model is named as 'thick line driven' otherwise the atmosphere is thought 'optically thin'. In this Thesis we consider an optically thin atmosphere and in this case the radiative force is written as a power law of distance (Chen & Marlborough 1994, Lamers 1986). Moreover, we examine the exponential dependence of the radiative acceleration upon the radial distance and exponential deviations from power laws. We apply to supergiant B stars and we obtain results in agreement with observations (Underhill & i oazan 1982). In the first chapter of the Thesis, the reader is introduced in the concept of the astrophysical flows. I show some observational data for outflows and the basic mechanisms of the outflows are reported. In chapter 2, the basic hydrodynamic equations are presented. In chapter 3, some 1-D or 2-D models (relevant to this Thesis) are reported. The new results appear in chapters 4, 5, 6 which posses the 3/4 of the Thesis. In chapter 4, the basic assumptions are presented and the full mathematical derivation and deduction of the solutions are given. The inclusion of the radiative force is also given. In chapter 5, the thermally driven solution is applied to astrophysical objects. We first apply to Sun and to young T Tauri stars and to late type supergiant stars. The 2-D nature of the solutions is presented. We note that the model fails to describe the outflow at the stellar surface because it needs relatively high initial velocities. In that area the magnetic field plays probably an important role. I deduce the role of the centrifugal force in the solutions comparing it with the thermal pressure force, the radiative force and gravity. The result is that the influence of the centrifugal force is negligible. Moreover, I apply the thermally and radiatively driven solution in Range I to B type supergiants. The problem of the high initial velocity at the stellar surface is waved when the radiative force is important. The results coincide with observations. In chapter 6, the haracteristics of the model are summarized and compared with previous models.

  18. Imaging Variable Stars with HST

    NASA Astrophysics Data System (ADS)

    Karovska, Margarita

    2011-05-01

    The Hubble Space Telescope (HST) observations of astronomical sources, ranging from objects in our solar system to objects in the early Universe, have revolutionized our knowledge of the Universe its origins and contents.I will highlight results from HST observations of variable stars obtained during the past twenty or so years. Multiwavelength observations of numerous variable stars and stellar systems were obtained using the superb HST imaging capabilities and its unprecedented angular resolution, especially in the UV and optical. The HST provided the first detailed images probing the structure of variable stars including their atmospheres and circumstellar environments. AAVSO observations and light curves have been critical for scheduling of many of these observations and provided important information and context for understanding of the imaging results of many variable sources. I will describe the scientific results from the imaging observations of variable stars including AGBs, Miras, Cepheids, semi-regular variables (including supergiants and giants), YSOs and interacting stellar systems with a variable stellar components. These results have led to an unprecedented understanding of the spatial and temporal characteristics of these objects and their place in the stellar evolutionary chains, and in the larger context of the dynamic evolving Universe.

  19. Imaging Variable Stars with HST

    NASA Astrophysics Data System (ADS)

    Karovska, M.

    2012-06-01

    (Abstract only) The Hubble Space Telescope (HST) observations of astronomical sources, ranging from objects in our solar system to objects in the early Universe, have revolutionized our knowledge of the Universe its origins and contents. I highlight results from HST observations of variable stars obtained during the past twenty or so years. Multiwavelength observations of numerous variable stars and stellar systems were obtained using the superb HST imaging capabilities and its unprecedented angular resolution, especially in the UV and optical. The HST provided the first detailed images probing the structure of variable stars including their atmospheres and circumstellar environments. AAVSO observations and light curves have been critical for scheduling of many of these observations and provided important information and context for understanding of the imaging results of many variable sources. I describe the scientific results from the imaging observations of variable stars including AGBs, Miras, Cepheids, semiregular variables (including supergiants and giants), YSOs and interacting stellar systems with a variable stellar components. These results have led to an unprecedented understanding of the spatial and temporal characteristics of these objects and their place in the stellar evolutionary chains, and in the larger context of the dynamic evolving Universe.

  20. A new model for gravitational potential perturbations in disks of spiral galaxies. An application to our Galaxy

    NASA Astrophysics Data System (ADS)

    Junqueira, T. C.; Lépine, J. R. D.; Braga, C. A. S.; Barros, D. A.

    2013-02-01

    Aims: We propose a new, more realistic description of the perturbed gravitational potential of spiral galaxies, with spiral arms having Gaussian-shaped groove profiles. The aim is to reach a self-consistent description of the spiral structure, that is, one in which an initial potential perturbation generates, by means of the stellar orbits, spiral arms with a profile similar to that of the imposed perturbation. Self-consistency is a condition for having long-lived structures. Methods: Using the new perturbed potential, we investigate the stable stellar orbits in galactic disks for galaxies with no bar or with only a weak bar. The model is applied to our Galaxy by making use of the axisymmetric component of the potential computed from the Galactic rotation curve, in addition to other input parameters similar to those of our Galaxy. The influence of the bulge mass on the stellar orbits in the inner regions of a disk is also investigated. Results: The new description offers the advantage of easy control of the parameters of the Gaussian profile of its potential. We compute the density contrast between arm and inter-arm regions. We find a range of values for the perturbation amplitude from 400 to 800 km2 s-2 kpc-1, which implies an approximate maximum ratio of the tangential force to the axisymmetric force between 3% and 6%. Good self-consistency of arm shapes is obtained between the Inner Lindblad resonance (ILR) and the 4:1 resonance. Near the 4:1 resonance the response density starts to deviate from the imposed logarithmic spiral form. This creates bifurcations that appear as short arms. Therefore the deviation from a perfect logarithmic spiral in galaxies can be understood as a natural effect of the 4:1 resonance. Beyond the 4:1 resonance we find closed orbits that have similarities with the arms observed in our Galaxy. In regions near the center, elongated stellar orbits appear naturally, in the presence of a massive bulge, without imposing any bar-shaped potential, but only extending the spiral perturbation a little inward of the ILR. This suggests that a bar is formed with a half-size ~3 kpc by a mechanism similar to that of the spiral arms. Conclusions: The potential energy perturbation that we adopted represents an important step in the direction of self-consistency, compared to previous sine function descriptions of the potential. In addition, our model produces a realistic description of the spiral structure, which is able to explain several details that were not yet understood.

  1. Variable stars around selected open clusters in the VVV area: Young Stellar Objects

    NASA Astrophysics Data System (ADS)

    Medina, Nicolas; Borissova, Jura; Bayo, Amelia; Kurtev, Radostin; Lucas, Philip

    2017-09-01

    Time-varying phenomena are one of the most substantial sources of astrophysical information, and led to many fundamental discoveries in modern astronomy. We have developed an automated tool to search and analyze variable sources in the near infrared Ks band, using the data from the Vista Variables in the Vía Láctea (VVV) ESO Public Survey ([5, 8]). One of our main goals is to investigate the Young Stellar Objects (YSOs) in the Galactic star forming regions, looking for: Variability. New pre-main sequence star clusters. Here we present the newly discovered YSOs within some selected stellar clusters in our Galaxy.

  2. McDonald Observatory Planetary Search - A high precision stellar radial velocity survey for other planetary systems

    NASA Technical Reports Server (NTRS)

    Cochran, William D.; Hatzes, Artie P.

    1993-01-01

    The McDonald Observatory Planetary Search program surveyed a sample of 33 nearby F, G, and K stars since September 1987 to search for substellar companion objects. Measurements of stellar radial velocity variations to a precision of better than 10 m/s were performed as routine observations to detect Jovian planets in orbit around solar type stars. Results confirm the detection of a companion object to HD114762.

  3. The Relationship Between Stellar Populations and Lyα Emission in Lyman Break Galaxies

    NASA Astrophysics Data System (ADS)

    Kornei, Katherine; Shapley, A. E.; Erb, D. K.; Steidel, C. C.; Reddy, N. A.; Pettini, M.; Bogosavljevic, M.

    2010-01-01

    We present the results of a photometric and spectroscopic survey of 321 Lyman break galaxies (LBGs) at z ˜ 3 to investigate systematically the relationship between Lyα emission and stellar populations. Lyα equivalent widths (EWs) were calculated from rest-frame UV spectroscopy and optical/near-infrared/Spitzer photometry was used in population synthesis modeling to derive the key properties of age, dust extinction, star formation rate (SFR), and stellar mass. We directly compare the stellar populations of LBGs with and without strong Lyα emission, where we designate the former group (EW ≥ 20 angstroms) as Lyα-emitters (LAEs) and the latter group (EW < 20 angstroms) as non-LAEs. This controlled method of comparing objects from the same UV luminosity distribution represents an improvement over previous studies in which the stellar populations of LBGs and narrowband-selected LAEs were contrasted, where the latter were often intrinsically fainter in broadband filters by an order of magnitude simply due to different selection criteria. Using a variety of statistical tests, we find that Lyα equivalent width and age, SFR, and dust extinction, respectively, are significantly correlated in the sense that objects with strong Lyα emission also tend to be older, lower in star formation rate, and less dusty than objects with weak Lyα emission, or the line in absorption. We accordingly conclude that, within the LBG sample, objects with strong Lyα emission represent a later stage of galaxy evolution in which supernovae-induced outflows have reduced the dust covering fraction. We also examined the hypothesis that the attenuation of Lyα photons is lower than that of the continuum, as proposed by some, but found no evidence to support this picture.

  4. Star formation in evolving molecular clouds

    NASA Astrophysics Data System (ADS)

    Völschow, M.; Banerjee, R.; Körtgen, B.

    2017-09-01

    Molecular clouds are the principle stellar nurseries of our universe; they thus remain a focus of both observational and theoretical studies. From observations, some of the key properties of molecular clouds are well known but many questions regarding their evolution and star formation activity remain open. While numerical simulations feature a large number and complexity of involved physical processes, this plethora of effects may hide the fundamentals that determine the evolution of molecular clouds and enable the formation of stars. Purely analytical models, on the other hand, tend to suffer from rough approximations or a lack of completeness, limiting their predictive power. In this paper, we present a model that incorporates central concepts of astrophysics as well as reliable results from recent simulations of molecular clouds and their evolutionary paths. Based on that, we construct a self-consistent semi-analytical framework that describes the formation, evolution, and star formation activity of molecular clouds, including a number of feedback effects to account for the complex processes inside those objects. The final equation system is solved numerically but at much lower computational expense than, for example, hydrodynamical descriptions of comparable systems. The model presented in this paper agrees well with a broad range of observational results, showing that molecular cloud evolution can be understood as an interplay between accretion, global collapse, star formation, and stellar feedback.

  5. Stellar Properties of Embedded Protostars: Progress and Prospects

    NASA Technical Reports Server (NTRS)

    Greene, Thomas

    2006-01-01

    Until now, high extinctions have prevented direct observation of the central objects of self-embedded, accreting protostars. However, sensitive high dispersion spectrographs on large aperture telescopes have allowed us to begin studying the stellar astrophysical properties of dozens of embedded low mass protostars in the nearest regions of star formation. These high dispersion spectra allow, for the first time, direct measurements of their stellar effective temperatures, surface gravities, rotation velocities, radial velocities (and spectroscopic binarity), mass accretion properties, and mass outflow indicators. Comparisons of the stellar properties with evolutionary models also allow us to estimate masses and constrain ages. We find that these objects have masses similar to those of older, more evolved T Tauri stars, but protostars have higher mean rotation velocities and angular momenta. Most protostars indicate high mass accretion or outflow, but some in Taurus-Auriga appear to be relatively quiescent. These new results are testing, expanding, and refining the standard star formation paradigm, and we explore how to expand this work further.

  6. The formation of ultra compact dwarf galaxies and massive globular clusters. Quasar-like objects to test for a variable stellar initial mass function

    NASA Astrophysics Data System (ADS)

    Jeřábková, T.; Kroupa, P.; Dabringhausen, J.; Hilker, M.; Bekki, K.

    2017-12-01

    The stellar initial mass function (IMF) has been described as being invariant, bottom-heavy, or top-heavy in extremely dense star-burst conditions. To provide usable observable diagnostics, we calculate redshift dependent spectral energy distributions of stellar populations in extreme star-burst clusters, which are likely to have been the precursors of present day massive globular clusters (GCs) and of ultra compact dwarf galaxies (UCDs). The retention fraction of stellar remnants is taken into account to assess the mass to light ratios of the ageing star-burst. Their redshift dependent photometric properties are calculated as predictions for James Webb Space Telescope (JWST) observations. While the present day GCs and UCDs are largely degenerate concerning bottom-heavy or top-heavy IMFs, a metallicity- and density-dependent top-heavy IMF implies the most massive UCDs, at ages < 100 Myr, to appear as objects with quasar-like luminosities with a 0.1-10% variability on a monthly timescale due to core collapse supernovae.

  7. The galaxy-wide initial mass function of dwarf late-type to massive early-type galaxies

    NASA Astrophysics Data System (ADS)

    Weidner, C.; Kroupa, P.; Pflamm-Altenburg, J.; Vazdekis, A.

    2013-12-01

    Observational studies are showing that the galaxy-wide stellar initial mass function (IMF) is top-heavy in galaxies with high star formation rates (SFRs). Calculating the integrated galactic stellar initial mass function (IGIMF) as a function of the SFR of a galaxy, it follows that galaxies which have or which formed with SFRs >10 M⊙ yr-1 would have a top-heavy IGIMF in excellent consistency with the observations. Consequently and in agreement with observations, elliptical galaxies would have higher mass-to-light ratios as a result of the overabundance of stellar remnants compared to a stellar population that formed with an invariant canonical stellar IMF. For the Milky Way, the IGIMF yields very good agreement with the disc- and the bulge IMF determinations. Our conclusions are that purely stochastic descriptions of star formation on the scales of a parsec and above are falsified. Instead, star formation follows the laws, stated here as axioms, which define the IGIMF theory. We also find evidence that the power-law index β of the embedded cluster mass function decreases with increasing SFR. We propose further tests of the IGIMF theory through counting massive stars in dwarf galaxies.

  8. A Catalogue of Massive Young Stellar Objects

    NASA Astrophysics Data System (ADS)

    Chan, S. J.; Henning, Th.; Schreyer, K.

    1994-12-01

    We report on an ongoing project to compile a catalogue of massive young stellar objects (YSOs). Massive young stellar objects are compact and luminous infrared sources. The stellar core is still surrounded by optically thick dust shells (cf. Henning 1990, Fundamentals of Cosmic Physics, 14, 321). This catalogue, which contains about 250 objects, will provide comprehensive information such as infrared and radio flux densities, association with maser sources, and outflow phenomena. The objects were selected from the IRAS Point Source Catalogue based on the following criteria: (1) IRAS flux density qualities >= 2 in the 4 IRAS bands (12 microns, 25 microns, 60 microns and 100 microns). (2) Fnu(12microns) <= Fnu(25microns) <= Fnu(60microns) <= F_ν(100microns) Fnu(100microns) >= 1000 Jy (3) IRAS colors (including uncertainty 0.15) should be within the following color box: -0.15 >= R(12/25) >= 1.15, -0.15 >= R(25/60) >= 0.75, -0.35 >= R(60/100) >= 0.35, where R(i/j)=jF_nu (i)/iF_nu (j) (Henning et al. 1990, A&A, 227, 542) (4) IRAS idtype (type of objects)!= 1; objects are not associated with galaxies or late-type stars; ∣b∣ <= 10{(deg}) Our main goal is to collect the observational data of these sources as complete as possible. The flux densities from near-infrared to radio range are assembled (J, H, K bands, IRAS bands, 350 microns, 800 microns and 1.3 mm bands, 2 cm and 6 cm bands). The information on dust features (such as ice, silicate, PAH) comes from the IRAS Low Resolution Spectrometer Atlas and literature (cf. Volk & Cohen, 1989, AJ, 98, 931). The maser sources (H_2O, type I OH, CH_3OH) and NH_3, HCO(+) , and CS molecular line data towards these objects, which have been observed, are also reported. The CO outflow velocity will be given if the object is found to be associated with an outflow.

  9. The Evolution of Massive Stars: a Selection of Facts and Questions

    NASA Astrophysics Data System (ADS)

    Vanbeveren, D.

    In the present paper we discuss a selection of facts and questions related to observations and evolutionary calculations of massive single stars and massive stars in interacting binaries. We focus on the surface chemical abundances, the role of stellar winds, the early Be-stars, the high mass X-ray binaries and the effects of rotation on stellar evolution. Finally, we present an unconventionally formed object scenario (UFO-scenario) of WR binaries in dense stellar environments.

  10. Assessing the Effect of Stellar Companions to Kepler Objects of Interest

    NASA Astrophysics Data System (ADS)

    Hirsch, Lea; Ciardi, David R.; Howard, Andrew

    2017-01-01

    Unknown stellar companions to Kepler planet host stars dilute the transit signal, causing the planetary radii to be underestimated. We report on the analysis of 165 stellar companions detected with high-resolution imaging to be within 2" of 159 KOI host stars. The majority of the planets and planet candidates in these systems have nominal radii smaller than 6 REarth. Using multi-filter photometry on each companion, we assess the likelihood that the companion is bound and estimate its stellar properties, including stellar radius and flux. We then recalculate the planet radii in these systems, determining how much each planet's size is underestimated if it is assumed to 1) orbit the primary star, 2) orbit the companion star, or 3) be equally likely to orbit either star in the system. We demonstrate the overall effect of unknown stellar companions on our understanding of Kepler planet sizes.

  11. A search for embedded young stellar objects in and near the IC 1396 complex

    NASA Technical Reports Server (NTRS)

    Schwartz, Richard D.; Wilking, Bruce A.; Giulbudagian, Armen L.

    1991-01-01

    The IRAS data base is used to locate young stellar object candidates in and near the IC 1396 complex located in the Cepheus OB2 association. Co-added survey data are used to identify all sources with a flux density Snu(100) greater than 10 Jy and with Snu(100) greater than Snu(60). The 15 sources located at the positions of globules and dark clouds are further analyzed using the inscan slices to assess the source profiles.

  12. Estimation of distances to stars with stellar parameters from LAMOST

    DOE PAGES

    Carlin, Jeffrey L.; Liu, Chao; Newberg, Heidi Jo; ...

    2015-06-05

    Here, we present a method to estimate distances to stars with spectroscopically derived stellar parameters. The technique is a Bayesian approach with likelihood estimated via comparison of measured parameters to a grid of stellar isochrones, and returns a posterior probability density function for each star's absolute magnitude. We tailor this technique specifically to data from the Large Sky Area Multi-object Fiber Spectroscopic Telescope (LAMOST) survey. Because LAMOST obtains roughly 3000 stellar spectra simultaneously within each ~5-degree diameter "plate" that is observed, we can use the stellar parameters of the observed stars to account for the stellar luminosity function and targetmore » selection effects. This removes biasing assumptions about the underlying populations, both due to predictions of the luminosity function from stellar evolution modeling, and from Galactic models of stellar populations along each line of sight. Using calibration data of stars with known distances and stellar parameters, we show that our method recovers distances for most stars within ~20%, but with some systematic overestimation of distances to halo giants. We apply our code to the LAMOST database, and show that the current precision of LAMOST stellar parameters permits measurements of distances with ~40% error bars. This precision should improve as the LAMOST data pipelines continue to be refined.« less

  13. Estimation of distances to stars with stellar parameters from LAMOST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlin, Jeffrey L.; Liu, Chao; Newberg, Heidi Jo

    Here, we present a method to estimate distances to stars with spectroscopically derived stellar parameters. The technique is a Bayesian approach with likelihood estimated via comparison of measured parameters to a grid of stellar isochrones, and returns a posterior probability density function for each star's absolute magnitude. We tailor this technique specifically to data from the Large Sky Area Multi-object Fiber Spectroscopic Telescope (LAMOST) survey. Because LAMOST obtains roughly 3000 stellar spectra simultaneously within each ~5-degree diameter "plate" that is observed, we can use the stellar parameters of the observed stars to account for the stellar luminosity function and targetmore » selection effects. This removes biasing assumptions about the underlying populations, both due to predictions of the luminosity function from stellar evolution modeling, and from Galactic models of stellar populations along each line of sight. Using calibration data of stars with known distances and stellar parameters, we show that our method recovers distances for most stars within ~20%, but with some systematic overestimation of distances to halo giants. We apply our code to the LAMOST database, and show that the current precision of LAMOST stellar parameters permits measurements of distances with ~40% error bars. This precision should improve as the LAMOST data pipelines continue to be refined.« less

  14. Constraints on modified gravity models from white dwarfs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banerjee, Srimanta; Singh, Tejinder P.; Shankar, Swapnil, E-mail: srimanta.banerjee@tifr.res.in, E-mail: swapnil.shankar@cbs.ac.in, E-mail: tpsingh@tifr.res.in

    Modified gravity theories can introduce modifications to the Poisson equation in the Newtonian limit. As a result, we expect to see interesting features of these modifications inside stellar objects. White dwarf stars are one of the most well studied stars in stellar astrophysics. We explore the effect of modified gravity theories inside white dwarfs. We derive the modified stellar structure equations and solve them to study the mass-radius relationships for various modified gravity theories. We also constrain the parameter space of these theories from observations.

  15. The donor star of the X-ray pulsar X1908+075

    NASA Astrophysics Data System (ADS)

    Martínez-Núñez, S.; Sander, A.; Gímenez-García, A.; Gónzalez-Galán, A.; Torrejón, J. M.; Gónzalez-Fernández, C.; Hamann, W.-R.

    2015-06-01

    High-mass X-ray binaries consist of a massive donor star and a compact object. While several of those systems have been well studied in X-rays, little is known for most of the donor stars as they are often heavily obscured in the optical and ultraviolet regime. There is an opportunity to observe them at infrared wavelengths, however. The goal of this study is to obtain the stellar and wind parameters of the donor star in the X1908+075 high-mass X-ray binary system with a stellar atmosphere model to check whether previous studies from X-ray observations and spectral morphology lead to a sufficient description of the donor star. We obtained H- and K-band spectra of X1908+075 and analysed them with the Potsdam Wolf-Rayet (PoWR) model atmosphere code. For the first time, we calculated a stellar atmosphere model for the donor star, whose main parameters are: Mspec = 15 ± 6 M⊙, T∗ = 23-3+6 kK, log geff = 3.0 ± 0.2 and log L/L⊙ = 4.81 ± 0.25. The obtained parameters point towards an early B-type (B0-B3) star, probably in a supergiant phase. Moreover we determined a more accurate distance to the system of 4.85 ± 0.50 kpc than the previously reported value. Based on observations made with the William Herschel Telescope operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias.Appendix A is available in electronic form at http://www.aanda.org

  16. Gemini Observations of Galaxies in Rich Early Environments (GOGREEN) I: survey description

    NASA Astrophysics Data System (ADS)

    Balogh, Michael L.; Gilbank, David G.; Muzzin, Adam; Rudnick, Gregory; Cooper, Michael C.; Lidman, Chris; Biviano, Andrea; Demarco, Ricardo; McGee, Sean L.; Nantais, Julie B.; Noble, Allison; Old, Lyndsay; Wilson, Gillian; Yee, Howard K. C.; Bellhouse, Callum; Cerulo, Pierluigi; Chan, Jeffrey; Pintos-Castro, Irene; Simpson, Rane; van der Burg, Remco F. J.; Zaritsky, Dennis; Ziparo, Felicia; Alonso, María Victoria; Bower, Richard G.; De Lucia, Gabriella; Finoguenov, Alexis; Lambas, Diego Garcia; Muriel, Hernan; Parker, Laura C.; Rettura, Alessandro; Valotto, Carlos; Wetzel, Andrew

    2017-10-01

    We describe a new Large Program in progress on the Gemini North and South telescopes: Gemini Observations of Galaxies in Rich Early Environments (GOGREEN). This is an imaging and deep spectroscopic survey of 21 galaxy systems at 1 < z < 1.5, selected to span a factor >10 in halo mass. The scientific objectives include measuring the role of environment in the evolution of low-mass galaxies, and measuring the dynamics and stellar contents of their host haloes. The targets are selected from the SpARCS, SPT, COSMOS, and SXDS surveys, to be the evolutionary counterparts of today's clusters and groups. The new red-sensitive Hamamatsu detectors on GMOS, coupled with the nod-and-shuffle sky subtraction, allow simultaneous wavelength coverage over λ ˜ 0.6-1.05 μm, and this enables a homogeneous and statistically complete redshift survey of galaxies of all types. The spectroscopic sample targets galaxies with AB magnitudes z΄ < 24.25 and [3.6] μm < 22.5, and is therefore statistically complete for stellar masses M* ≳ 1010.3 M⊙, for all galaxy types and over the entire redshift range. Deep, multiwavelength imaging has been acquired over larger fields for most systems, spanning u through K, in addition to deep IRAC imaging at 3.6 μm. The spectroscopy is ˜50 per cent complete as of semester 17A, and we anticipate a final sample of ˜500 new cluster members. Combined with existing spectroscopy on the brighter galaxies from GCLASS, SPT, and other sources, GOGREEN will be a large legacy cluster and field galaxy sample at this redshift that spectroscopically covers a wide range in stellar mass, halo mass, and clustercentric radius.

  17. Relativistic model for anisotropic strange stars

    NASA Astrophysics Data System (ADS)

    Deb, Debabrata; Chowdhury, Sourav Roy; Ray, Saibal; Rahaman, Farook; Guha, B. K.

    2017-12-01

    In this article, we attempt to find a singularity free solution of Einstein's field equations for compact stellar objects, precisely strange (quark) stars, considering Schwarzschild metric as the exterior spacetime. To this end, we consider that the stellar object is spherically symmetric, static and anisotropic in nature and follows the density profile given by Mak and Harko (2002) , which satisfies all the physical conditions. To investigate different properties of the ultra-dense strange stars we have employed the MIT bag model for the quark matter. Our investigation displays an interesting feature that the anisotropy of compact stars increases with the radial coordinate and attains its maximum value at the surface which seems an inherent property for the singularity free anisotropic compact stellar objects. In this connection we also perform several tests for physical features of the proposed model and show that these are reasonably acceptable within certain range. Further, we find that the model is consistent with the energy conditions and the compact stellar structure is stable with the validity of the TOV equation and Herrera cracking concept. For the masses below the maximum mass point in mass vs radius curve the typical behavior achieved within the framework of general relativity. We have calculated the maximum mass and radius of the strange stars for the three finite values of bag constant Bg.

  18. A parsec-scale optical jet from a massive young star in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    McLeod, Anna F.; Reiter, Megan; Kuiper, Rolf; Klaassen, Pamela D.; Evans, Christopher J.

    2018-02-01

    Highly collimated parsec-scale jets, which are generally linked to the presence of an accretion disk, are commonly observed in low-mass young stellar objects. In the past two decades, a few of these jets have been directly (or indirectly) observed from higher-mass (larger than eight solar masses) young stellar objects, adding to the growing evidence that disk-mediated accretion also occurs in high-mass stars, the formation mechanism of which is still poorly understood. Of the observed jets from massive young stars, none is in the optical regime (massive young stars are typically highly obscured by their natal material), and none is found outside of the Milky Way. Here we report observations of HH 1177, an optical ionized jet that originates from a massive young stellar object located in the Large Magellanic Cloud. The jet is highly collimated over its entire measured length of at least ten parsecs and has a bipolar geometry. The presence of a jet indicates ongoing, disk-mediated accretion and, together with the high degree of collimation, implies that this system is probably formed through a scaled-up version of the formation mechanism of low-mass stars. We conclude that the physics that govern jet launching and collimation is independent of stellar mass.

  19. A parsec-scale optical jet from a massive young star in the Large Magellanic Cloud.

    PubMed

    McLeod, Anna F; Reiter, Megan; Kuiper, Rolf; Klaassen, Pamela D; Evans, Christopher J

    2018-02-15

    Highly collimated parsec-scale jets, which are generally linked to the presence of an accretion disk, are commonly observed in low-mass young stellar objects. In the past two decades, a few of these jets have been directly (or indirectly) observed from higher-mass (larger than eight solar masses) young stellar objects, adding to the growing evidence that disk-mediated accretion also occurs in high-mass stars, the formation mechanism of which is still poorly understood. Of the observed jets from massive young stars, none is in the optical regime (massive young stars are typically highly obscured by their natal material), and none is found outside of the Milky Way. Here we report observations of HH 1177, an optical ionized jet that originates from a massive young stellar object located in the Large Magellanic Cloud. The jet is highly collimated over its entire measured length of at least ten parsecs and has a bipolar geometry. The presence of a jet indicates ongoing, disk-mediated accretion and, together with the high degree of collimation, implies that this system is probably formed through a scaled-up version of the formation mechanism of low-mass stars. We conclude that the physics that govern jet launching and collimation is independent of stellar mass.

  20. An atlas of H-alpha-emitting regions in M33: A systematic search for SS433 star candidates

    NASA Technical Reports Server (NTRS)

    Calzetti, Daniela; Kinney, Anne L.; Ford, Holland; Doggett, Jesse; Long, Knox S.

    1995-01-01

    We report finding charts and accurate positions for 432 compact H-alpha emitting regions in the Local Group galaxy M 33 (NGC 598), in an effort to isolate candidates for an SS433-like stellar system. The objects were extracted from narrow band images, centered in the rest-frame H-alpha (lambda 6563 A) and in the red continuum at 6100 A. The atlas is complete down to V approximately equal to 20 and includes 279 compact HII regions and 153 line emitting point-like sources. The point-like sources undoubtedly include a variety of objects: very small HII regions, early type stars with intense stellar winds, and Wolf-Rayet stars, but should also contain objects with the characteristics of SS433. This extensive survey of compact H-alpha regions in M 33 is a first step towards the identification of peculiar stellar systems like SS433 in external galaxies.

  1. Influence of Stellar Multiplicity On Planet Formation. III. Adaptive Optics Imaging of Kepler Stars With Gas Giant Planets

    NASA Astrophysics Data System (ADS)

    Wang, Ji; Fischer, Debra A.; Horch, Elliott P.; Xie, Ji-Wei

    2015-06-01

    As hundreds of gas giant planets have been discovered, we study how these planets form and evolve in different stellar environments, specifically in multiple stellar systems. In such systems, stellar companions may have a profound influence on gas giant planet formation and evolution via several dynamical effects such as truncation and perturbation. We select 84 Kepler Objects of Interest (KOIs) with gas giant planet candidates. We obtain high-angular resolution images using telescopes with adaptive optics (AO) systems. Together with the AO data, we use archival radial velocity data and dynamical analysis to constrain the presence of stellar companions. We detect 59 stellar companions around 40 KOIs for which we develop methods of testing their physical association. These methods are based on color information and galactic stellar population statistics. We find evidence of suppressive planet formation within 20 AU by comparing stellar multiplicity. The stellar multiplicity rate (MR) for planet host stars is {0}-0+5% within 20 AU. In comparison, the stellar MR is 18% ± 2% for the control sample, i.e., field stars in the solar neighborhood. The stellar MR for planet host stars is 34% ± 8% for separations between 20 and 200 AU, which is higher than the control sample at 12% ± 2%. Beyond 200 AU, stellar MRs are comparable between planet host stars and the control sample. We discuss the implications of the results on gas giant planet formation and evolution.

  2. THE TRIFID NEBULA: STELLAR SIBLING RIVALRY

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This NASA Hubble Space Telescope image of the Trifid Nebula reveals a stellar nursery being torn apart by radiation from a nearby, massive star. The picture also provides a peek at embryonic stars forming within an ill-fated cloud of dust and gas, which is destined to be eaten away by the glare from the massive neighbor. This stellar activity is a beautiful example of how the life cycles of stars like our Sun is intimately connected with their more powerful siblings. The Hubble image shows a small part of a dense cloud of dust and gas, a stellar nursery full of embryonic stars. This cloud is about 8 light-years away from the nebula's central star, which is beyond the top of this picture. Located about 9,000 light-years from Earth, the Trifid resides in the constellation Sagittarius. A stellar jet [the thin, wispy object pointing to the upper left] protrudes from the head of a dense cloud and extends three-quarters of a light-year into the nebula. The jet's source is a very young stellar object that lies buried within the cloud. Jets such as this are the exhaust gases of star formation. Radiation from the massive star at the center of the nebula is making the gas in the jet glow, just as it causes the rest of the nebula to glow. The jet in the Trifid is a 'ticker tape,' telling the history of one particular young stellar object that is continuing to grow as its gravity draws in gas from its surroundings. But this particular ticker tape will not run for much longer. Within the next 10,000 years the glare from the central, massive star will continue to erode the nebula, overrunning the forming star, and bringing its growth to an abrupt and possibly premature end. Another nearby star may have already faced this fate. The Hubble picture shows a 'stalk' [the finger-like object] pointing from the head of the dense cloud directly toward the star that powers the Trifid. This stalk is a prominent example of the evaporating gaseous globules, or 'EGGs,' that were seen previously in the Eagle Nebula, another star-forming region photographed by Hubble. The stalk has survived because at its tip there is a knot of gas that is dense enough to resist being eaten away by the powerful radiation. Reflected starlight at the tip of the EGG may be due to light from the Trifid's central star, or from a young stellar object buried within the EGG. Similarly, a tiny spike of emission pointing outward from the EGG looks like a small stellar jet. Hubble astronomers are tentatively interpreting this jet as the last gasp from a star that was cut off from its supply lines 100,000 years ago. The images were taken Sept. 8, 1997 through filters that isolate emission from hydrogen atoms, ionized sulfur atoms, and doubly ionized oxygen atoms. The images were combined in a single color composite picture. While the resulting picture is not true color, it is suggestive of what a human eye might see. Credits: NASA and Jeff Hester (Arizona State University)

  3. A two-column formalism for time-dependent modelling of stellar convection. I. Description of the method

    NASA Astrophysics Data System (ADS)

    Stökl, A.

    2008-11-01

    Context: In spite of all the advances in multi-dimensional hydrodynamics, investigations of stellar evolution and stellar pulsations still depend on one-dimensional computations. This paper devises an alternative to the mixing-length theory or turbulence models usually adopted in modelling convective transport in such studies. Aims: The present work attempts to develop a time-dependent description of convection, which reflects the essential physics of convection and that is only moderately dependent on numerical parameters and far less time consuming than existing multi-dimensional hydrodynamics computations. Methods: Assuming that the most extensive convective patterns generate the majority of convective transport, the convective velocity field is described using two parallel, radial columns to represent up- and downstream flows. Horizontal exchange, in the form of fluid flow and radiation, over their connecting interface couples the two columns and allows a simple circulating motion. The main parameters of this convective description have straightforward geometrical meanings, namely the diameter of the columns (corresponding to the size of the convective cells) and the ratio of the cross-section between up- and downdrafts. For this geometrical setup, the time-dependent solution of the equations of radiation hydrodynamics is computed from an implicit scheme that has the advantage of being unaffected by the Courant-Friedrichs-Lewy time-step limit. This implementation is part of the TAPIR-Code (short for The adaptive, implicit RHD-Code). Results: To demonstrate the approach, results for convection zones in Cepheids are presented. The convective energy transport and convective velocities agree with expectations for Cepheids and the scheme reproduces both the kinetic energy flux and convective overshoot. A study of the parameter influence shows that the type of solution derived for these stars is in fact fairly robust with respect to the constitutive numerical parameters.

  4. The wind of the M-type AGB star RT Virginis probed by VLTI/MIDI

    NASA Astrophysics Data System (ADS)

    Sacuto, S.; Ramstedt, S.; Höfner, S.; Olofsson, H.; Bladh, S.; Eriksson, K.; Aringer, B.; Klotz, D.; Maercker, M.

    2013-03-01

    Aims: We study the circumstellar environment of the M-type AGB star RT Vir using mid-infrared high spatial resolution observations from the ESO-VLTI focal instrument MIDI. The aim of this study is to provide observational constraints on theoretical prediction that the winds of M-type AGB objects can be driven by photon scattering on iron-free silicate grains located in the close environment (about 2 to 3 stellar radii) of the star. Methods: We interpreted spectro-interferometric data, first using wavelength-dependent geometric models. We then used a self-consistent dynamic model atmosphere containing a time-dependent description of grain growth for pure forsterite dust particles to reproduce the photometric, spectrometric, and interferometric measurements of RT Vir. Since the hydrodynamic computation needs stellar parameters as input, a considerable effort was first made to determine these parameters. Results: MIDI differential phases reveal the presence of an asymmetry in the stellar vicinity. Results from the geometrical modeling give us clues to the presence of aluminum and silicate dust in the close circumstellar environment (<5 stellar radii). Comparison between spectro-interferometric data and a self-consistent dust-driven wind model reveals that silicate dust has to be present in the region between 2 to 3 stellar radii to reproduce the 59 and 63 m baseline visibility measurements around 9.8 μm. This gives additional observational evidence in favor of winds driven by photon scattering on iron-free silicate grains located in the close vicinity of an M-type star. However, other sources of opacity are clearly missing to reproduce the 10-13 μm visibility measurements for all baselines. Conclusions: This study is a first attempt to understand the wind mechanism of M-type AGB stars by comparing photometric, spectrometric, and interferometric measurements with state-of-the-art, self-consistent dust-driven wind models. The agreement of the dynamic model atmosphere with interferometric measurements in the 8-10 μm spectral region gives additional observational evidence that the winds of M-type stars can be driven by photon scattering on iron-free silicate grains. Finally, a larger statistical study and progress in advanced self-consistent 3D modeling are still required to solve the remaining problems. Based on observations made with the Very Large Telescope Interferometer at Paranal Observatory under programs 083.D-0234 and 086.D-0737 (Open Time Observations).

  5. Advances in high energy astronomy from space

    NASA Technical Reports Server (NTRS)

    Giacconi, R.

    1972-01-01

    Observational techniques, derived through space technology, and examples of what can be learned from X-ray observations of a few astronomical objects are given. Astronomical phenomena observed include the sun, stellar objects, and galactic objects.

  6. The ATLAS3D Project - XXX. Star formation histories and stellar population scaling relations of early-type galaxies

    NASA Astrophysics Data System (ADS)

    McDermid, Richard M.; Alatalo, Katherine; Blitz, Leo; Bournaud, Frédéric; Bureau, Martin; Cappellari, Michele; Crocker, Alison F.; Davies, Roger L.; Davis, Timothy A.; de Zeeuw, P. T.; Duc, Pierre-Alain; Emsellem, Eric; Khochfar, Sadegh; Krajnović, Davor; Kuntschner, Harald; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Scott, Nicholas; Serra, Paolo; Weijmans, Anne-Marie; Young, Lisa M.

    2015-04-01

    We present the stellar population content of early-type galaxies from the ATLAS3D survey. Using spectra integrated within apertures covering up to one effective radius, we apply two methods: one based on measuring line-strength indices and applying single stellar population (SSP) models to derive SSP-equivalent values of stellar age, metallicity, and alpha enhancement; and one based on spectral fitting to derive non-parametric star formation histories, mass-weighted average values of age, metallicity, and half-mass formation time-scales. Using homogeneously derived effective radii and dynamically determined galaxy masses, we present the distribution of stellar population parameters on the Mass Plane (MJAM, σe, R^maj_e), showing that at fixed mass, compact early-type galaxies are on average older, more metal-rich, and more alpha-enhanced than their larger counterparts. From non-parametric star formation histories, we find that the duration of star formation is systematically more extended in lower mass objects. Assuming that our sample represents most of the stellar content of today's local Universe, approximately 50 per cent of all stars formed within the first 2 Gyr following the big bang. Most of these stars reside today in the most massive galaxies (>1010.5 M⊙), which themselves formed 90 per cent of their stars by z ˜ 2. The lower mass objects, in contrast, have formed barely half their stars in this time interval. Stellar population properties are independent of environment over two orders of magnitude in local density, varying only with galaxy mass. In the highest density regions of our volume (dominated by the Virgo cluster), galaxies are older, alpha-enhanced, and have shorter star formation histories with respect to lower density regions.

  7. X-shooter study of accretion in Chamaeleon I. II. A steeper increase of accretion with stellar mass for very low-mass stars?

    NASA Astrophysics Data System (ADS)

    Manara, C. F.; Testi, L.; Herczeg, G. J.; Pascucci, I.; Alcalá, J. M.; Natta, A.; Antoniucci, S.; Fedele, D.; Mulders, G. D.; Henning, T.; Mohanty, S.; Prusti, T.; Rigliaco, E.

    2017-08-01

    The dependence of the mass accretion rate on the stellar properties is a key constraint for star formation and disk evolution studies. Here we present a study of a sample of stars in the Chamaeleon I star-forming region carried out using spectra taken with the ESO VLT/X-shooter spectrograph. The sample is nearly complete down to stellar masses (M⋆) 0.1 M⊙ for the young stars still harboring a disk in this region. We derive the stellar and accretion parameters using a self-consistent method to fit the broadband flux-calibrated medium resolution spectrum. The correlation between accretion luminosity to stellar luminosity, and of mass accretion rate to stellar mass in the logarithmic plane yields slopes of 1.9 ± 0.1 and 2.3 ± 0.3, respectively. These slopes and the accretion rates are consistent with previous results in various star-forming regions and with different theoretical frameworks. However, we find that a broken power-law fit, with a steeper slope for stellar luminosity lower than 0.45 L⊙ and for stellar masses lower than 0.3 M⊙ is slightly preferred according to different statistical tests, but the single power-law model is not excluded. The steeper relation for lower mass stars can be interpreted as a faster evolution in the past for accretion in disks around these objects, or as different accretion regimes in different stellar mass ranges. Finally, we find two regions on the mass accretion versus stellar mass plane that are empty of objects: one region at high mass accretion rates and low stellar masses, which is related to the steeper dependence of the two parameters we derived. The second region is located just above the observational limits imposed by chromospheric emission, at M⋆ 0.3 - 0.4 M⊙. These are typical masses where photoevaporation is known to be effective. The mass accretion rates of this region are 10-10M⊙/yr, which is compatible with the value expected for photoevaporation to rapidly dissipate the inner disk. This work is based on observations made with ESO Telescopes at the Paranal Observatory under programme ID 090.C-0253 and 095.C-0378.

  8. Stellar Feedback Up and Close

    NASA Astrophysics Data System (ADS)

    Gadotti, Dimitri; Timer Team

    2017-07-01

    We report the serendipitous discovery of ongoing stellar feedback in the star-bursting nuclear ring of a nearby spiral galaxy, as part of the TIMER survey with MUSE. Combining MUSE and ALMA data we show bubbles of ionised gas expanding from the ring and shocking with the cold ISM. We demonstrate how much energy is being released into the ISM corresponding to the star formation observed, how fast the heated ISM is expanding from the centre, and provide a physical description of the shocks happening at the interface between the heated and cold phases of the ISM. Further, we quantitatively show how the exchange of energy between the two phases impacts the dynamics of the cold ISM. Finally, applying a model to the spatially-resolved spectral properties of this system, we find that about 60% of the energy input into the ISM is produced via the direct transfer of momentum from photons scattering onto dust grains, and 27% produced by mass loss in supernova explosions. The remaining energy input is produced via photoionisation heating ( 12%) and stellar winds ( 1%). These analyses provide invaluable measurements against which our theoretical understanding of stellar feedback can be compared, particularly state-of-the-art simulations that aim at reproducing star formation and stellar feedback in galaxies.

  9. The future of stellar occultations by distant solar system bodies: Perspectives from the Gaia astrometry and the deep sky surveys

    NASA Astrophysics Data System (ADS)

    Camargo, J. I. B.; Desmars, J.; Braga-Ribas, F.; Vieira-Martins, R.; Assafin, M.; Sicardy, B.; Bérard, D.; Benedetti-Rossi, G.

    2018-05-01

    Distant objects in the solar system are crucial to better understand the history and evolution of its outskirts. The stellar occultation technique allows the determination of their sizes and shapes with kilometric accuracy, a detailed investigation of their immediate vicinities, as well as the detection of tenuous atmospheres. The prediction of such events is a key point in this study, and yet accurate enough predictions are available to a handful of objects only. In this work, we briefly discuss the dramatic impact that both the astrometry from the Gaia space mission and the deep sky surveys - the Large Synoptic Survey Telescope in particular - will have on the prediction of stellar occultations and how they may influence the future of the study of distant small solar system bodies through this technique.

  10. The inner-disk and stellar properties of the young stellar object WL 16

    NASA Technical Reports Server (NTRS)

    Carr, John S.; Tokunaga, Alan T.; Najita, Joan; Shu, Frank H.; Glassgold, Alfred E.

    1993-01-01

    We present kinematic evidence for a rapidly rotating circumstellar disk around the young stellar object WL 16, based on new high-velocity-resolution data of the v = 2-0 CO bandhead emission. A Keplerian disk provides an excellent fit to the observed profile and requires a projected velocity for the CO-emitting region of roughly 250 km/s at the inner radius and 140 km/s at the outer radius, giving a ratio of the inner to the outer radius of about 0.3. We show that satisfying the constraints imposed by the gas kinematics, the observed CO flux, and the total source luminosity requires the mass of WL 16 to lie between 1.4 and 2.5 solar mass. The inner disk radius for the CO emission must be less than 8 solar radii.

  11. Thomas-Fermi model for a bulk self-gravitating stellar object in two dimensions

    NASA Astrophysics Data System (ADS)

    De, Sanchari; Chakrabarty, Somenath

    2015-09-01

    In this article we have solved a hypothetical problem related to the stability and gross properties of two-dimensional self-gravitating stellar objects using the Thomas-Fermi model. The formalism presented here is an extension of the standard three-dimensional problem discussed in the book on statistical physics, Part I by Landau and Lifshitz. Further, the formalism presented in this article may be considered a class problem for post-graduate-level students of physics or may be assigned as a part of their dissertation project.

  12. Classifying and Finding Nearby Compact Stellar Systems

    NASA Astrophysics Data System (ADS)

    Colebaugh, Alexander; Cunningham, Devin; Dixon, Christopher; Romanowsky, Aaron; Striegel, Stephanie

    2018-01-01

    Compact stellar systems (CSSs) such as compact ellipticals (cEs) and ultracompact dwarfs (UCDs) are relatively rare and poorly understood types of galaxies. To build a more complete picture of these objects, we create search queries using the Sloan Digital Sky Survey, to inventory CSSs in the nearby universe and to explore their properties. We develop an objective set of criteria for classifying cEs, and use these to construct a large, novel catalog of cEs both during and after formation. We also investigate the numbers of cEs and UCDs around nearby giant galaxies.

  13. Observations of Young Stellar Objects with Infrared Interferometry: Recent Results from PTI, KI and IOTA

    NASA Astrophysics Data System (ADS)

    Akeson, Rachel

    Young stellar objects have been one of the favorite targets of infrared interferometers for many years. In this contribution I will briefly review some of the first results and their contributions to the field and then describe some of the recent results from the Keck Interferometer (KI), the Palomar Testbed Interferometer (PTI) and the Infrared-Optical Telescope Array (IOTA). This conference also saw many exciting new results from the VLTI at both near and mid-infrared wavelengths that are covered by other contributions.

  14. Wide-Field Infrared Survey Explorer Observations of Young Stellar Objects in the Lynds 1509 Dark Cloud in Auriga

    NASA Technical Reports Server (NTRS)

    Liu, Wilson M.; Padgett, Deborah L.; Terebey, Susan; Angione, John; Rebull, Luisa M.; McCollum, Bruce; Fajardo-Acosta, Sergio; Leisawitz, David

    2015-01-01

    The Wide-Field Infrared Survey Explorer (WISE) has uncovered a striking cluster of young stellar object (YSO) candidates associated with the L1509 dark cloud in Auriga. The WISE observations, at 3.4, 4.6, 12, and 22 microns, show a number of objects with colors consistent with YSOs, and their spectral energy distributions suggest the presence of circumstellar dust emission, including numerous Class I, flat spectrum, and Class II objects. In general, the YSOs in L1509 are much more tightly clustered than YSOs in other dark clouds in the Taurus-Auriga star forming region, with Class I and flat spectrum objects confined to the densest aggregates, and Class II objects more sparsely distributed. We estimate a most probable distance of 485-700 pc, and possibly as far as the previously estimated distance of 2 kpc.

  15. The AMBRE Project: Stellar parameterisation of the ESO:UVES archived spectra

    NASA Astrophysics Data System (ADS)

    Worley, C. C.; de Laverny, P.; Recio-Blanco, A.; Hill, V.; Bijaoui, A.

    2016-06-01

    Context. The AMBRE Project is a collaboration between the European Southern Observatory (ESO) and the Observatoire de la Côte d'Azur (OCA) that has been established to determine the stellar atmospheric parameters for the archived spectra of four ESO spectrographs. Aims: The analysis of the UVES archived spectra for their stellar parameters was completed in the third phase of the AMBRE Project. From the complete ESO:UVES archive dataset that was received covering the period 2000 to 2010, 51 921 spectra for the six standard setups were analysed. These correspond to approximately 8014 distinct targets (that comprise stellar and non-stellar objects) by radial coordinate search. Methods: The AMBRE analysis pipeline integrates spectral normalisation, cleaning and radial velocity correction procedures in order that the UVES spectra can then be analysed automatically with the stellar parameterisation algorithm MATISSE to obtain the stellar atmospheric parameters. The synthetic grid against which the MATISSE analysis is carried out is currently constrained to parameters of FGKM stars only. Results: Stellar atmospheric parameters are reported for 12 403 of the 51 921 UVES archived spectra analysed in AMBRE:UVES. This equates to ~23.9% of the sample and ~3708 stars. Effective temperature, surface gravity, metallicity, and alpha element to iron ratio abundances are provided for 10 212 spectra (~19.7%), while effective temperature at least is provided for the remaining 2191 spectra. Radial velocities are reported for 36 881 (~71.0%) of the analysed archive spectra. While parameters were determined for 32 306 (62.2%) spectra these parameters were not considered reliable (and thus not reported to ESO) for reasons such as very low S/N, too poor radial velocity determination, spectral features too broad for analysis, and technical issues from the reduction. Similarly the parameters of a further 7212 spectra (13.9%) were also not reported to ESO based on quality criteria and error analysis which were determined within the automated parameterisation process. Those tests lead us to expect that multi-component stellar systems will return high errors in radial velocity and fitting to the synthetic spectra and therefore will not have parameters reported to ESO. Typical external errors of σTeff ~ 110 dex, σlog g ~ 0.18 dex, σ[ M/H ] ~ 0.13 dex, and σ[ α/ Fe ] ~ 0.05 dex with some variation between giants and dwarfs and between setups are reported. Conclusions: UVES is used to observe an extensive collection of stellar and non-stellar objects all of which have been included in the archived dataset provided to OCA by ESO. The AMBRE analysis extracts those objects that lie within the FGKM parameter space of the AMBRE slow-rotating synthetic spectra grid. Thus by homogeneous blind analysis AMBRE has successfully extracted and parameterised the targeted FGK stars (23.9% of the analysed sample) from within the ESO:UVES archive.

  16. Interaction effects on galaxy pairs with Gemini/GMOS- III: stellar population synthesis

    NASA Astrophysics Data System (ADS)

    Krabbe, A. C.; Rosa, D. A.; Pastoriza, M. G.; Hägele, G. F.; Cardaci, M. V.; Dors, O. L., Jr.; Winge, C.

    2017-05-01

    We present an observational study of the impacts of interactions on the stellar population in a sample of galaxy pairs. Long-slit spectra in the wavelength range 3440-7300 Å obtained with the Gemini Multi-Object Spectrograph (GMOS) at Gemini South for 15 galaxies in nine close pairs were used. The spatial distributions of the stellar population contributions were obtained using the stellar population synthesis code starlight. Taking into account the different contributions to the emitted light, we found that most of the galaxies in our sample are dominated by young/intermediate stellar populations. This result differs from the one derived for isolated galaxies, where the old stellar population dominates the disc surface brightness. We interpreted such different behaviour as being due to the effect of gas inflows along the discs of interacting galaxies on the star formation over a time-scale of the order of about 2 Gyr. We also found that, in general, the secondary galaxy of a pair has a higher contribution from the young stellar population than the primary one. We compared the estimated values of stellar and nebular extinction derived from the synthesis method and the Hα/Hβ emission-line ratio, finding that nebular extinctions are systematically higher than stellar ones by about a factor of 2. We did not find any correlation between nebular and stellar metallicities. Neither did we find a correlation between stellar metallicities and ages, while a positive correlation between nebular metallicities and stellar ages was obtained, with older regions being the most metal-rich.

  17. DOUBLE COMPACT OBJECTS. I. THE SIGNIFICANCE OF THE COMMON ENVELOPE ON MERGER RATES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dominik, Michal; Belczynski, Krzysztof; Bulik, Tomasz

    2012-11-01

    The last decade of observational and theoretical developments in stellar and binary evolution provides an opportunity to incorporate major improvements to the predictions from population synthesis models. We compute the Galactic merger rates for NS-NS, BH-NS, and BH-BH mergers with the StarTrack code. The most important revisions include updated wind mass-loss rates (allowing for stellar-mass black holes up to 80 M {sub Sun }), a realistic treatment of the common envelope phase (a process that can affect merger rates by 2-3 orders of magnitude), and a qualitatively new neutron star/black hole mass distribution (consistent with the observed {sup m}ass gap{supmore » )}. Our findings include the following. (1) The binding energy of the envelope plays a pivotal role in determining whether a binary merges within a Hubble time. (2) Our description of natal kicks from supernovae plays an important role, especially for the formation of BH-BH systems. (3) The masses of BH-BH systems can be substantially increased in the case of low metallicities or weak winds. (4) Certain combinations of parameters underpredict the Galactic NS-NS merger rate and can be ruled out. (5) Models incorporating delayed supernovae do not agree with the observed NS/BH 'mass gap', in accordance with our previous work. This is the first in a series of three papers. The second paper will study the merger rates of double compact objects as a function of redshift, star formation rate, and metallicity. In the third paper, we will present the detection rates for gravitational-wave observatories, using up-to-date signal waveforms and sensitivity curves.« less

  18. Return to [Log-]Normalcy: Rethinking Quenching, The Star Formation Main Sequence, and Perhaps Much More

    NASA Astrophysics Data System (ADS)

    Abramson, Louis E.; Gladders, Michael D.; Dressler, Alan; Oemler, Augustus, Jr.; Poggianti, Bianca; Vulcani, Benedetta

    2016-11-01

    Knowledge of galaxy evolution rests on cross-sectional observations of different objects at different times. Understanding of galaxy evolution rests on longitudinal interpretations of how these data relate to individual objects moving through time. The connection between the two is often assumed to be clear, but we use a simple “physics-free” model to show that it is not and that exploring its nuances can yield new insights. Comprising nothing more than 2094 loosely constrained lognormal star formation histories (SFHs), the model faithfully reproduces the following data it was not designed to match: stellar mass functions at z≤slant 8; the slope of the star formation rate/stellar mass relation (the SFR “Main Sequence”) at z≤slant 6; the mean {sSFR}(\\equiv {SFR}/{M}* ) of low-mass galaxies at z≤slant 7; “fast-” and “slow-track” quenching; downsizing; and a correlation between formation timescale and {sSFR}({M}* ,t) similar to results from simulations that provides a natural connection to bulge growth. We take these findings—which suggest that quenching is the natural downturn of all SFHs affecting galaxies at rates/times correlated with their densities—to mean that: (1) models in which galaxies are diversified on Hubble timescales by something like initial conditions rival the dominant grow-and-quench framework as good descriptions of the data; or (2) absent spatial information, many metrics of galaxy evolution are too undiscriminating—if not inherently misleading—to confirm a unique explanation. We outline future tests of our model but stress that, even if ultimately incorrect, it illustrates how exploring different paradigms can aid learning and, we hope, more detailed modeling efforts.

  19. A Pan-Carina Young Stellar Object Catalog: Intermediate-mass Young Stellar Objects in the Carina Nebula Identified Via Mid-infrared Excess Emission

    NASA Astrophysics Data System (ADS)

    Povich, Matthew S.; Smith, Nathan; Majewski, Steven R.; Getman, Konstantin V.; Townsley, Leisa K.; Babler, Brian L.; Broos, Patrick S.; Indebetouw, Rémy; Meade, Marilyn R.; Robitaille, Thomas P.; Stassun, Keivan G.; Whitney, Barbara A.; Yonekura, Yoshinori; Fukui, Yasuo

    2011-05-01

    We present a catalog of 1439 young stellar objects (YSOs) spanning the 1.42 deg2 field surveyed by the Chandra Carina Complex Project (CCCP), which includes the major ionizing clusters and the most active sites of ongoing star formation within the Great Nebula in Carina. Candidate YSOs were identified via infrared (IR) excess emission from dusty circumstellar disks and envelopes, using data from the Spitzer Space Telescope (the Vela-Carina survey) and the Two-Micron All Sky Survey. We model the 1-24 μm IR spectral energy distributions of the YSOs to constrain physical properties. Our Pan-Carina YSO Catalog (PCYC) is dominated by intermediate-mass (2 M sun < m <~ 10 M sun) objects with disks, including Herbig Ae/Be stars and their less evolved progenitors. The PCYC provides a valuable complementary data set to the CCCP X-ray source catalogs, identifying 1029 YSOs in Carina with no X-ray detection. We also catalog 410 YSOs with X-ray counterparts, including 62 candidate protostars. Candidate protostars with X-ray detections tend to be more evolved than those without. In most cases, X-ray emission apparently originating from intermediate-mass, disk-dominated YSOs is consistent with the presence of low-mass companions, but we also find that X-ray emission correlates with cooler stellar photospheres and higher disk masses. We suggest that intermediate-mass YSOs produce X-rays during their early pre-main-sequence evolution, perhaps driven by magnetic dynamo activity during the convective atmosphere phase, but this emission dies off as the stars approach the main sequence. Extrapolating over the stellar initial mass function scaled to the PCYC population, we predict a total population of >2 × 104 YSOs and a present-day star formation rate (SFR) of >0.008 M sun yr-1. The global SFR in the Carina Nebula, averaged over the past ~5 Myr, has been approximately constant.

  20. Employing Machine-Learning Methods to Study Young Stellar Objects

    NASA Astrophysics Data System (ADS)

    Moore, Nicholas

    2018-01-01

    Vast amounts of data exist in the astronomical data archives, and yet a large number of sources remain unclassified. We developed a multi-wavelength pipeline to classify infrared sources. The pipeline uses supervised machine learning methods to classify objects into the appropriate categories. The program is fed data that is already classified to train it, and is then applied to unknown catalogues. The primary use for such a pipeline is the rapid classification and cataloging of data that would take a much longer time to classify otherwise. While our primary goal is to study young stellar objects (YSOs), the applications extend beyond the scope of this project. We present preliminary results from our analysis and discuss future applications.

  1. A hot compact dust disk around a massive young stellar object.

    PubMed

    Kraus, Stefan; Hofmann, Karl-Heinz; Menten, Karl M; Schertl, Dieter; Weigelt, Gerd; Wyrowski, Friedrich; Meilland, Anthony; Perraut, Karine; Petrov, Romain; Robbe-Dubois, Sylvie; Schilke, Peter; Testi, Leonardo

    2010-07-15

    Circumstellar disks are an essential ingredient of the formation of low-mass stars. It is unclear, however, whether the accretion-disk paradigm can also account for the formation of stars more massive than about 10 solar masses, in which strong radiation pressure might halt mass infall. Massive stars may form by stellar merging, although more recent theoretical investigations suggest that the radiative-pressure limit may be overcome by considering more complex, non-spherical infall geometries. Clear observational evidence, such as the detection of compact dusty disks around massive young stellar objects, is needed to identify unambiguously the formation mode of the most massive stars. Here we report near-infrared interferometric observations that spatially resolve the astronomical-unit-scale distribution of hot material around a high-mass ( approximately 20 solar masses) young stellar object. The image shows an elongated structure with a size of approximately 13 x 19 astronomical units, consistent with a disk seen at an inclination angle of approximately 45 degrees . Using geometric and detailed physical models, we found a radial temperature gradient in the disk, with a dust-free region less than 9.5 astronomical units from the star, qualitatively and quantitatively similar to the disks observed in low-mass star formation. Perpendicular to the disk plane we observed a molecular outflow and two bow shocks, indicating that a bipolar outflow emanates from the inner regions of the system.

  2. Prediction of stellar occultations by distant solar system bodies in the Gaia era

    NASA Astrophysics Data System (ADS)

    Desmars, Josselin; Camargo, Julio; Sicardy, Bruno; Braga-Ribas, Felipe; Vieira-Martins, Roberto; Assafin, Marcelo; Bérard, Diane; Benedetti-Rossi, Gustavo

    2018-04-01

    Stellar occultations are a unique technique to access physical characteristics of distant solar system objects from the ground. They allow the measure of the size and the shape at kilometric level, the detection of tenuous atmospheres (few nanobars), and the investigation of close vicinity (satellites, rings) of Transneptunian objects and Centaurs. This technique is made successful thanks to accurate predictions of occultations. Accuracy of the predictions depends on the uncertainty in the position of the occulted star and the object's orbit. The Gaia stellar catalogue (Gaia Collaboration (2017)) now allows to get accurate astrometric stellar positions (to the mas level). The main uncertainty remains on the orbit. In this context, we now take advantage of the NIMA method (Desmars et al.(2015)) for the orbit determination and of the Gaia DR1 catalogue for the astrometry. In this document, we show how the orbit determination is improved by reducing current and some past observations with Gaia DR1. Moreover, we also use more than 45 past positive occultations observed in the 2009-2017 period to derive very accurate astrometric positions only depending on the position of the occulted stars (about few mas with Gaia DR1). We use the case of (10199) Chariklo as an illustration. The main limitation lies in the imprecision of the proper motions which is going to be solved by the Gaia DR2 release.

  3. On the Nature of Ultra-faint Dwarf Galaxy Candidates. II. The Case of Cetus II

    NASA Astrophysics Data System (ADS)

    Conn, Blair C.; Jerjen, Helmut; Kim, Dongwon; Schirmer, Mischa

    2018-04-01

    We obtained deep Gemini GMOS-S g, r photometry of the ultra-faint dwarf galaxy candidate Cetus II with the aim of providing stronger constraints on its size, luminosity, and stellar population. Cetus II is an important object in the size–luminosity plane, as it occupies the transition zone between dwarf galaxies and star clusters. All known objects smaller than Cetus II (r h ∼ 20 pc) are reported to be star clusters, while most larger objects are likely dwarf galaxies. We found a prominent excess of main-sequence stars in the color–magnitude diagram of Cetus II, best described by a single stellar population with an age of 11.2 Gyr, metallicity of [Fe/H] = ‑1.28 dex, an [α/Fe] = 0.0 dex at a heliocentric distance of 26.3 ± 1.2 kpc. As well as being spatially located within the Sagittarius dwarf tidal stream, these properties are well matched to the Sagittarius galaxy’s Population B stars. Interestingly, like our recent findings on the ultra-faint dwarf galaxy candidate Tucana V, the stellar field in the direction of Cetus II shows no evidence of a concentrated overdensity despite tracing the main sequence for over six magnitudes. These results strongly support the picture that Cetus II is not an ultra-faint stellar system in the Milky Way halo, but made up of stars from the Sagittarius tidal stream.

  4. Stellar, Remnant, Planetary, and Dark-Object Masses from Astrometric Microlensing

    NASA Technical Reports Server (NTRS)

    Gould, Andrew P.; Bennett, David P.; Boden, Andrew; Depoy, Darren L.; Gaudi, Scott B.; Griest, Kim; Han, Cheongho; Paczynski, Bohdan; Reid, I. Neill

    2004-01-01

    The primary goal of our project is to make a complete census of the stellar population of the Galaxy. We are broadening the term stellar here to include both ordinary stars and dark stars. Ordinary stars, burning their nuclear fuel and shining, can perhaps best be studied with traditional astronomical techniques, but dark stars, by which we include old brown dwarfs, black holes, old white dwarfs, neutron stars, and perhaps exotic objects such as mirror matter stars or primordial black holes, can only be studied by their gravitational effects. Traditionally, these objects have been probed in binaries, and thus selected in a way that may or may not be representative of their respective field populations. The only way to examine the field population of these stars is through microlensing, the deflection of light from a visible star in the background by an object (dark or not) in the foreground. When lensed, there are two images of the background star. Although these images cannot be resolved when the lens has a stellar mass, the lensing effect can be detected in two ways: photometrically, i.e. by measuring the magnification of the source by the lens, and astrometrically, i.e. by measuring the shift in the centroid of the two images. Photometric microlensing experiments have detected hundreds of microlensing events over the past decade. Despite its successes, photometric microlensing has so far been somewhat frustrating because these events are difficult to interpret. Almost nothing is known about the masses of individual lenses and very little is known about the statistical properties of the lenses treated as a whole, such as their average mass. Although probably over 100 of the lenses are in fact dark objects, we can't determine which they are, let alone investigate finer details such as what their masses are, and where they are in the Galaxy. With SIM, we will break the microlensing degeneracy, and allow detailed interpretation of individual microlensing events. We will thus develop a detailed census of the dark and luminous stellar population of the Galaxy.

  5. Research relative to atmosphere physics and spacecraft applications studies

    NASA Technical Reports Server (NTRS)

    Greenwood, Stuart W.

    1987-01-01

    Progress is reported in several areas of research. Brief descriptions are given in each of the following areas: Spacelab data analysis; San Marco activity; Molecular physics; Stellar energy analysis; Troposphere data analysis; Voyager encounter analysis; Laser activity; Gravity wave study; Venus studies; and Shuttle environmental studies.

  6. The Origin of Stellar Species: constraining stellar evolution scenarios with Local Group galaxy surveys

    NASA Astrophysics Data System (ADS)

    Sarbadhicary, Sumit; Badenes, Carles; Chomiuk, Laura; Maldonado, Jessica; Caprioli, Damiano; Heger, Mairead; Huizenga, Daniel

    2018-01-01

    Our understanding of the progenitors of many stellar species, such as supernovae, massive and low-mass He-burning stars, is limited because of many poorly constrained aspects of stellar evolution theory. For my dissertation, I have focused on using Local Group galaxy surveys to constrain stellar evolution scenarios by measuring delay-time distributions (DTD). The DTD is the hypothetical occurrence rate of a stellar object per elapsed time after a brief burst of star formation. It is the measured distribution of timescales on which stars evolve, and therefore serves as a powerful observational constraint on theoretical progenitor models. The DTD can be measured from a survey of stellar objects and a set of star-formation histories of the host galaxy, and is particularly effective in the Local Group, where high-quality star-formation histories are available from resolved stellar populations. I am currently calculating a SN DTD with supernova remnants (SNRs) in order to provide the strongest constraints on the progenitors of thermonuclear and core-collapse supernovae. However, most SNRs do not have reliable age measurements and their evolution depends on the ambient environment. For this reason, I wrote a radio light curve model of an SNR population to extract the visibility times and rates of supernovae - crucial ingredients for the DTD - from an SNR survey. The model uses observational constraints on the local environments from multi-wavelength surveys, accounts for missing SNRs and employs the latest models of shock-driven particle acceleration. The final calculation of the SN DTD in the Local Group is awaiting completion of a systematic SNR catalog from deep radio-continuum images, now in preparation by a group led by Dr. Laura Chomiuk. I have also calculated DTDs for the LMC population of RR Lyrae and Cepheid variables, which serve as important distance calibrators and stellar population tracers. We find that Cepheids can have delay-times between 10 Myrs - 1 Gyr, while RR Lyrae can have delay-times < 10 Gyrs. These observations cannot be explained by models using mass and metallicity alone. In future projects, I will apply the DTD technique to constrain the supergiant and pre-supernova evolutionary models.

  7. Time dependent emission line profiles in the radially streaming particle model of Seyfert galaxy nuclei and quasi-stellar objects

    NASA Technical Reports Server (NTRS)

    Hubbard, R.

    1974-01-01

    The radially-streaming particle model for broad quasar and Seyfert galaxy emission features is modified to include sources of time dependence. The results are suggestive of reported observations of multiple components, variability, and transient features in the wings of Seyfert and quasi-stellar emission lines.

  8. The Spitzer Atlas of Stellar Spectra (SASS)

    NASA Astrophysics Data System (ADS)

    Ardila, D. R.; van Dyk, S. D., Makowiecki, W.; Stauffer, J.; Song, I.; Ro, J.; Fajardo-Acosta, S.; Hoard, D. W.; Wachter, S.

    2011-11-01

    We present the Spitzer Atlas of Stellar Spectra (SASS), which includes 159 stellar spectra (5 to 32 micron; R about 100) taken with the Infrared Spectrograph on the Spitzer Space Telescope. This Atlas gathers representative spectra of a broad section of the Hertzsprung-Russell diagram, intended to serve as a general stellar spectral reference in the mid-infrared. It includes stars from all luminosity classes, as well as Wolf-Rayet (WR) objects. Furthermore, it includes some objects of intrinsic interest, like blue stragglers and certain pulsating variables. All the spectra have been uniformly reduced, and all are available online. For dwarfs and giants, the spectra of early-type objects are relatively featureless, dominated by Hydrogen lines around A spectral types. Besides these, the most noticeable photospheric features correspond to water vapor and silicon monoxide in late-type objects and methane and ammonia features at the latest spectral types. Most supergiant spectra in the Atlas present evidence of circumstellar gas. The sample includes five M supergiant spectra, which show strong dust excesses and in some cases PAH features. Sequences of WR stars present the well-known pattern of lines of He I and He II, as well as forbidden lines of ionized metals. The characteristic flat-top shape of the [Ne III] line is evident even at these low spectral resolutions. Several Luminous Blue Variables and other transition stars are present in the Atlas and show very diverse spectra, dominated by circumstellar gas and dust features. We show that the [8]-[24] Spitzer colors (IRAC and MIPS) are poor predictors of spectral type for most luminosity classes.

  9. VizieR Online Data Catalog: California-Kepler Survey (CKS). III. Planet radii (Fulton+, 2017)

    NASA Astrophysics Data System (ADS)

    Fulton, B. J.; Petigura, E. A.; Howard, A. W.; Isaacson, H.; Marcy, G. W.; Cargile, P. A.; Hebb, L.; Weiss, L. M.; Johnson, J. A.; Morton, T. D.; Sinukoff, E.; Crossfield, I. J. M.; Hirsch, L. A.

    2017-11-01

    We adopt the stellar sample and the measured stellar parameters from the California-Kepler Survey (CKS) program (Petigura et al. 2017, Cat. J/AJ/154/107; Paper I). The measured values of Teff, logg, and [Fe/H] are based on a detailed spectroscopic characterization of Kepler Object of Interest (KOI) host stars using observations from Keck/HIRES. In Johnson et al. 2017 (Cat J/AJ/154/108; Paper II), we associated those stellar parameters from Paper I to Dartmouth isochrones (Dotter et al. 2008ApJS..178...89D) to derive improved stellar radii and masses, allowing us to recalculate planetary radii using the light-curve parameters from Mullally et al. 2015 (Cat. J/ApJS/217/31). (1 data file).

  10. Modelling resonances and orbital chaos in disk galaxies. Application to a Milky Way spiral model

    NASA Astrophysics Data System (ADS)

    Michtchenko, T. A.; Vieira, R. S. S.; Barros, D. A.; Lépine, J. R. D.

    2017-01-01

    Context. Resonances in the stellar orbital motion under perturbations from the spiral arm structure can play an important role in the evolution of the disks of spiral galaxies. The epicyclic approximation allows the determination of the corresponding resonant radii on the equatorial plane (in the context of nearly circular orbits), but is not suitable in general. Aims: We expand the study of resonant orbits by analysing stellar motions perturbed by spiral arms with Gaussian-shaped groove profiles without any restriction on the stellar orbital configurations, and we expand the concept of Lindblad (epicyclic) resonances for orbits with large radial excursions. Methods: We define a representative plane of initial conditions, which covers the whole phase space of the system. Dynamical maps on representative planes of initial conditions are constructed numerically in order to characterize the phase-space structure and identify the precise location of the co-rotation and Lindblad resonances. The study is complemented by the construction of dynamical power spectra, which provide the identification of fundamental oscillatory patterns in the stellar motion. Results: Our approach allows a precise description of the resonance chains in the whole phase space, giving a broader view of the dynamics of the system when compared to the classical epicyclic approach. We generalize the concept of Lindblad resonances and extend it to cases of resonant orbits with large radial excursions, even for objects in retrograde motion. The analysis of the solar neighbourhood shows that, depending on the current azimuthal phase of the Sun with respect to the spiral arms, a star with solar kinematic parameters (SSP) may evolve in dynamically distinct regions, either inside the stable co-rotation resonance or in a chaotic zone. Conclusions: Our approach contributes to quantifying the domains of resonant orbits and the degree of chaos in the whole Galactic phase-space structure. It may serve as a starting point to apply these techniques to the investigation of clumps in the distribution of stars in the Galaxy, such as kinematic moving groups.

  11. Assessing the Effect of Stellar Companions from High-resolution Imaging of Kepler Objects of Interest

    NASA Astrophysics Data System (ADS)

    Hirsch, Lea A.; Ciardi, David R.; Howard, Andrew W.; Everett, Mark E.; Furlan, Elise; Saylors, Mindy; Horch, Elliott P.; Howell, Steve B.; Teske, Johanna; Marcy, Geoffrey W.

    2017-03-01

    We report on 176 close (<2″) stellar companions detected with high-resolution imaging near 170 hosts of Kepler Objects of Interest (KOIs). These Kepler targets were prioritized for imaging follow-up based on the presence of small planets, so most of the KOIs in these systems (176 out of 204) have nominal radii <6 {R}\\oplus . Each KOI in our sample was observed in at least two filters with adaptive optics, speckle imaging, lucky imaging, or the Hubble Space Telescope. Multi-filter photometry provides color information on the companions, allowing us to constrain their stellar properties and assess the probability that the companions are physically bound. We find that 60%-80% of companions within 1″ are bound, and the bound fraction is >90% for companions within 0.″5 the bound fraction decreases with increasing angular separation. This picture is consistent with simulations of the binary and background stellar populations in the Kepler field. We also reassess the planet radii in these systems, converting the observed differential magnitudes to a contamination in the Kepler bandpass and calculating the planet radius correction factor, X R = R p (true)/R p (single). Under the assumption that planets in bound binaries are equally likely to orbit the primary or secondary, we find a mean radius correction factor for planets in stellar multiples of X R = 1.65. If stellar multiplicity in the Kepler field is similar to the solar neighborhood, then nearly half of all Kepler planets may have radii underestimated by an average of 65%, unless vetted using high-resolution imaging or spectroscopy.

  12. Confronting Models of Massive Star Evolution and Explosions with Remnant Mass Measurements

    NASA Astrophysics Data System (ADS)

    Raithel, Carolyn A.; Sukhbold, Tuguldur; Özel, Feryal

    2018-03-01

    The mass distribution of compact objects provides a fossil record that can be studied to uncover information on the late stages of massive star evolution, the supernova explosion mechanism, and the dense matter equation of state. Observations of neutron star masses indicate a bimodal Gaussian distribution, while the observed black hole mass distribution decays exponentially for stellar-mass black holes. We use these observed distributions to directly confront the predictions of stellar evolution models and the neutrino-driven supernova simulations of Sukhbold et al. We find strong agreement between the black hole and low-mass neutron star distributions created by these simulations and the observations. We show that a large fraction of the stellar envelope must be ejected, either during the formation of stellar-mass black holes or prior to the implosion through tidal stripping due to a binary companion, in order to reproduce the observed black hole mass distribution. We also determine the origins of the bimodal peaks of the neutron star mass distribution, finding that the low-mass peak (centered at ∼1.4 M ⊙) originates from progenitors with M ZAMS ≈ 9–18 M ⊙. The simulations fail to reproduce the observed peak of high-mass neutron stars (centered at ∼1.8 M ⊙) and we explore several possible explanations. We argue that the close agreement between the observed and predicted black hole and low-mass neutron star mass distributions provides new, promising evidence that these stellar evolution and explosion models capture the majority of relevant stellar, nuclear, and explosion physics involved in the formation of compact objects.

  13. Discovery of the Most Ultra-Luminous QSO Using GAIA, SkyMapper, and WISE

    NASA Astrophysics Data System (ADS)

    Wolf, Christian; Bian, Fuyan; Onken, Christopher A.; Schmidt, Brian P.; Tisserand, Patrick; Alonzi, Noura; Hon, Wei Jeat; Tonry, John L.

    2018-06-01

    We report the discovery of the ultra-luminous quasi-stellar object SMSS J215728.21-360215.1 with magnitude z = 16.9 and W4 = 7.42 at redshift 4.75. Given absolute magnitudes of M145, AB = -29.3, M300, AB = -30.12, and logLbol/Lbol, ⊙ = 14.84, it is the quasi-stellar object with the highest unlensed UV-optical luminosity currently known in the Universe. It was found by combining proper-motion data from Gaia DR2 with photometry from SkyMapper DR1 and the Wide-field Infrared Survey Explorer. In the GAIA database, it is an isolated single source and thus unlikely to be strongly gravitationally lensed. It is also unlikely to be a beamed source as it is not discovered in the radio domain by either NRAO-VLA Sky Survey or Sydney University Molonglo Southern Survey. It is classed as a weak-emission-line quasi-stellar object and possesses broad absorption line features. A lightcurve from ATLAS spanning the time from 2015 October to 2017 December shows little sign of variability.

  14. Optical Monitoring of Young Stellar Objects

    NASA Astrophysics Data System (ADS)

    Kar, Aman; Jang-Condell, Hannah; Kasper, David; Findlay, Joseph; Kobulnicky, Henry A.

    2018-06-01

    Observing Young Stellar Objects (YSOs) for variability in different wavelengths enables us to understand the evolution and structure of the protoplanetary disks around stars. The stars observed in this project are known YSOs that show variability in the Infrared. Targets were selected from the Spitzer Space Telescope Young Stellar Object Variability (YSOVAR) Program, which monitored star-forming regions in the mid-infrared. The goal of our project is to investigate any correlation between the variability in the infrared versus the optical. Infrared variability of YSOs is associated with the heating of the protoplanetary disk while accretion signatures are observed in the H-alpha region. We used the University of Wyoming’s Red Buttes Observatory to monitor these stars for signs of accretion using an H-alpha narrowband filter and the Johnson-Cousins filter set, over the Summer of 2017. We perform relative photometry and inspect for an image-to-image variation by observing these targets for a period of four months every two to three nights. The study helps us better understand the link between accretion and H-alpha activity and establish a disk-star connection.

  15. The SEEDS High-Contrast Imaging Survey of Exoplanets Around Young Stellar Objects

    NASA Astrophysics Data System (ADS)

    Uyama, Taichi; Hashimoto, Jun; Kuzuhara, Masayuki; Mayama, Satoshi; Akiyama, Eiji; Currie, Thayne; Livingston, John; Kudo, Tomoyuki; Kusakabe, Nobuhiko; Abe, Lyu; Brandner, Wolfgang; Brandt, Timothy D.; Carson, Joseph C.; Egner, Sebastian; Feldt, Markus; Goto, Miwa; Grady, Carol A.; Guyon, Olivier; Hayano, Yutaka; Hayashi, Masahiko; Hayashi, Saeko S.; Henning, Thomas; Hodapp, Klaus W.; Ishii, Miki; Iye, Masanori; Janson, Markus; Kandori, Ryo; Knapp, Gillian R.; Kwon, Jungmi; Matsuo, Taro; Mcelwain, Michael W.; Miyama, Shoken; Morino, Jun-Ichi; Moro-Martin, Amaya; Nishimura, Tetsuo; Pyo, Tae-Soo; Serabyn, Eugene; Suenaga, Takuya; Suto, Hiroshi; Suzuki, Ryuji; Takahashi, Yasuhiro H.; Takami, Michihiro; Takato, Naruhisa; Terada, Hiroshi; Thalmann, Christian; Turner, Edwin L.; Watanabe, Makoto; Wisniewski, John; Yamada, Toru; Takami, Hideki; Usuda, Tomonori; Tamura, Motohide

    2017-03-01

    We present high-contrast observations of 68 young stellar objects (YSOs) that have been explored as part of the Strategic Exploration of Exoplanets and Disks with Subaru (SEEDS) survey on the Subaru telescope. Our targets are very young (<10 Myr) stars, which often harbor protoplanetary disks where planets may be forming. We achieve a typical contrast of ˜10-4-10-5.5 at an angular distance of 1″ from the central star, corresponding to typical mass sensitivities (assuming hot-start evolutionary models) of ˜10 M J at 70 au and ˜6 M J at 140 au. We detected a new stellar companion to HIP 79462 and confirmed the substellar objects GQ Lup b and ROXs 42B b. An additional six companion candidates await follow-up observations to check for common proper motion. Our SEEDS YSO observations probe the population of planets and brown dwarfs at the very youngest ages; these may be compared to the results of surveys targeting somewhat older stars. Our sample and the associated observational results will help enable detailed statistical analyses of giant planet formation.

  16. A black hole in a globular cluster.

    PubMed

    Maccarone, Thomas J; Kundu, Arunav; Zepf, Stephen E; Rhode, Katherine L

    2007-01-11

    Globular star clusters contain thousands to millions of old stars packed within a region only tens of light years across. Their high stellar densities make it very probable that their member stars will interact or collide. There has accordingly been considerable debate about whether black holes should exist in these star clusters. Some theoretical work suggests that dynamical processes in the densest inner regions of globular clusters may lead to the formation of black holes of approximately 1,000 solar masses. Other numerical simulations instead predict that stellar interactions will eject most or all of the black holes that form in globular clusters. Here we report the X-ray signature of an accreting black hole in a globular cluster associated with the giant elliptical galaxy NGC 4472 (in the Virgo cluster). This object has an X-ray luminosity of about 4 x 10(39) erg s(-1), which rules out any object other than a black hole in such an old stellar population. The X-ray luminosity varies by a factor of seven in a few hours, which excludes the possibility that the object is several neutron stars superposed.

  17. Star-forming galaxies in intermediate-redshift clusters: stellar versus dynamical masses of luminous compact blue galaxies

    NASA Astrophysics Data System (ADS)

    Randriamampandry, S. M.; Crawford, S. M.; Bershady, M. A.; Wirth, G. D.; Cress, C. M.

    2017-10-01

    We investigate the stellar masses of the class of star-forming objects known as luminous compact blue galaxies (LCBGs) by studying a sample of galaxies in the distant cluster MS 0451.6-0305 at z ≈ 0.54 with ground-based multicolour imaging and spectroscopy. For a sample of 16 spectroscopically confirmed cluster LCBGs (colour B - V < 0.5, surface brightness μB < 21 mag arcsec-2 and magnitude MB < -18.5), we measure stellar masses by fitting spectral energy distribution (SED) models to multiband photometry, and compare with dynamical masses [determined from velocity dispersion in the range 10 < σv(km s- 1) < 80] we previously obtained from their emission-line spectra. We compare two different stellar population models that measure stellar mass in star-bursting galaxies, indicating correlations between the stellar age, extinction and stellar mass derived from the two different SED models. The stellar masses of cluster LCBGs are distributed similarly to those of field LCBGs, but the cluster LCBGs show lower dynamical-to-stellar mass ratios (Mdyn/M⋆ = 2.6) than their field LCBG counterparts (Mdyn/M⋆ = 4.8), echoing trends noted previously in low-redshift dwarf elliptical galaxies. Within this limited sample, the specific star formation rate declines steeply with increasing mass, suggesting that these cluster LCBGs have undergone vigorous star formation.

  18. Stellar population in star formation regions of galaxies

    NASA Astrophysics Data System (ADS)

    Gusev, Alexander S.; Shimanovskaya, Elena V.; Shatsky, Nikolai I.; Sakhibov, Firouz; Piskunov, Anatoly E.; Kharchenko, Nina V.

    2018-05-01

    We developed techniques for searching young unresolved star groupings (clusters, associations, and their complexes) and of estimating their physical parameters. Our study is based on spectroscopic, spectrophotometric, and UBVRI photometric observations of 19 spiral galaxies. In the studied galaxies, we found 1510 objects younger than 10 Myr and present their catalogue. Having combined photometric and spectroscopic data, we derived extinctions, chemical abundances, sizes, ages, and masses of these groupings. We discuss separately the specific cases, when the gas extinction does not agree with the interstellar one. We assume that this is due to spatial offset of Hii clouds with respect to the related stellar population.We developed a method to estimate age of stellar population of the studied complexes using their morphology and the relation with associated H emission region. In result we obtained the estimates of chemical abundances for 80, masses for 63, and ages for 57 young objects observed in seven galaxies.

  19. SED Modeling of 20 Massive Young Stellar Objects

    NASA Astrophysics Data System (ADS)

    Tanti, Kamal Kumar

    In this paper, we present the spectral energy distributions (SEDs) modeling of twenty massive young stellar objects (MYSOs) and subsequently estimated different physical and structural/geometrical parameters for each of the twenty central YSO outflow candidates, along with their associated circumstellar disks and infalling envelopes. The SEDs for each of the MYSOs been reconstructed by using 2MASS, MSX, IRAS, IRAC & MIPS, SCUBA, WISE, SPIRE and IRAM data, with the help of a SED Fitting Tool, that uses a grid of 2D radiative transfer models. Using the detailed analysis of SEDs and subsequent estimation of physical and geometrical parameters for the central YSO sources along with its circumstellar disks and envelopes, the cumulative distribution of the stellar, disk and envelope parameters can be analyzed. This leads to a better understanding of massive star formation processes in their respective star forming regions in different molecular clouds.

  20. Not All Stars Are the Sun: Empirical Calibration of the Mixing Length for Metal-poor Stars Using One-dimensional Stellar Evolution Models

    NASA Astrophysics Data System (ADS)

    Joyce, M.; Chaboyer, B.

    2018-03-01

    Theoretical stellar evolution models are constructed and tailored to the best known, observationally derived characteristics of metal-poor ([Fe/H] ∼ ‑2.3) stars representing a range of evolutionary phases: subgiant HD 140283, globular cluster M92, and four single, main sequence stars with well-determined parallaxes: HIP 46120, HIP 54639, HIP 106924, and WOLF 1137. It is found that the use of a solar-calibrated value of the mixing length parameter α MLT in models of these objects is ineffective at reproducing their observed properties. Empirically calibrated values of α MLT are presented for each object, accounting for uncertainties in the input physics employed in the models. It is advocated that the implementation of an adaptive mixing length is necessary in order for stellar evolution models to maintain fidelity in the era of high-precision observations.

  1. Detection of an Optical Counterpart to the ALFALFA Ultra-compact High-velocity Cloud AGC 249525

    NASA Astrophysics Data System (ADS)

    Janesh, William; Rhode, Katherine L.; Salzer, John J.; Janowiecki, Steven; Adams, Elizabeth A. K.; Haynes, Martha P.; Giovanelli, Riccardo; Cannon, John M.

    2017-03-01

    We report on the detection at >98% confidence of an optical counterpart to AGC 249525, an ultra-compact high-velocity cloud (UCHVC) discovered by the Arecibo Legacy Fast ALFA survey blind neutral hydrogen survey. UCHVCs are compact, isolated H I clouds with properties consistent with their being nearby low-mass galaxies, but without identified counterparts in extant optical surveys. Analysis of the resolved stellar sources in deep g- and I-band imaging from the WIYN pODI camera reveals a clustering of possible red giant branch stars associated with AGC 249525 at a distance of 1.64 ± 0.45 Mpc. Matching our optical detection with the H I synthesis map of AGC 249525 from Adams et al. shows that the stellar overdensity is exactly coincident with the highest-density H I contour from that study. Combining our optical photometry and the H I properties of this object yields an absolute magnitude of -7.1≤slant {M}V≤slant -4.5, a stellar mass between 2.2+/- 0.6× {10}4 {M}⊙ and 3.6+/- 1.0× {10}5 {M}⊙ , and an H I to stellar mass ratio between 9 and 144. This object has stellar properties within the observed range of gas-poor ultra-faint dwarfs in the Local Group, but is gas-dominated.

  2. A MODEL FOR (QUASI-)PERIODIC MULTIWAVELENGTH PHOTOMETRIC VARIABILITY IN YOUNG STELLAR OBJECTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kesseli, Aurora Y.; Petkova, Maya A.; Wood, Kenneth

    We present radiation transfer models of rotating young stellar objects (YSOs) with hot spots in their atmospheres, inner disk warps, and other three-dimensional effects in the nearby circumstellar environment. Our models are based on the geometry expected from magneto-accretion theory, where material moving inward in the disk flows along magnetic field lines to the star and creates stellar hot spots upon impact. Due to rotation of the star and magnetosphere, the disk is variably illuminated. We compare our model light curves to data from the Spitzer YSOVAR project to determine if these processes can explain the variability observed at opticalmore » and mid-infrared wavelengths in young stars. We focus on those variables exhibiting “dipper” behavior that may be periodic, quasi-periodic, or aperiodic. We find that the stellar hot-spot size and temperature affects the optical and near-infrared light curves, while the shape and vertical extent of the inner disk warp affects the mid-IR light curve variations. Clumpy disk distributions with non-uniform fractal density structure produce more stochastic light curves. We conclude that magneto-accretion theory is consistent with certain aspects of the multiwavelength photometric variability exhibited by low-mass YSOs. More detailed modeling of individual sources can be used to better determine the stellar hot-spot and inner disk geometries of particular sources.« less

  3. Paving the way for the JWST: witnessing globular cluster formation at z > 3

    NASA Astrophysics Data System (ADS)

    Vanzella, E.; Calura, F.; Meneghetti, M.; Mercurio, A.; Castellano, M.; Caminha, G. B.; Balestra, I.; Rosati, P.; Tozzi, P.; De Barros, S.; Grazian, A.; D'Ercole, A.; Ciotti, L.; Caputi, K.; Grillo, C.; Merlin, E.; Pentericci, L.; Fontana, A.; Cristiani, S.; Coe, D.

    2017-06-01

    We report on five compact, extremely young (<10 Myr) and blue (βUV < -2.5, Fλ = λβ) objects observed with VLT/Multi Unit Spectroscopic Explorer at redshifts 3.1169 and 3.235, in addition to three objects at z = 6.145. These sources are strongly magnified (3-40 times) by the Hubble Frontier Field galaxy clusters MACS J0416 and AS1063. Their delensed half-light radii (Re) are between 16 and 140 pc, the stellar masses are ≃1-20 × 106 M⊙, the magnitudes are mUV = 28.8-31.4 (-17 < MUV < -15) and specific star formation rates can be as large as ˜800 Gyr-1. Remarkably, the inferred physical properties of two objects are similar to those expected in some globular cluster formation scenarios, representing the best candidate proto-GCs discovered so far. Rest-frame optical high-dispersion spectroscopy of one of them at z = 3.1169 yields a velocity dispersion σv ≃ 20 km s-1, implying a dynamical mass dominated by the stellar mass. Another object at z = 6.145, with delensed MUV ≃ -15.3 (mUV ≃ 31.4), shows a stellar mass and a star formation rate surface density consistent with the values expected from popular GC formation scenarios. An additional star-forming region at z = 6.145, with delensed mUV ≃ 32, a stellar mass of 0.5 × 106 M⊙ and a star formation rate of 0.06 M⊙ yr-1 is also identified. These objects currently represent the faintest spectroscopically confirmed star-forming systems at z > 3, elusive even in the deepest blank fields. We discuss how proto-GCs might contribute to the ionization budget of the Universe and augment Lyα visibility during reionization. This work underlines the crucial role of JWST in characterizing the rest-frame optical and near-infrared properties of such low-luminosity high-z objects.

  4. Challenges in the optical system of GAIA

    NASA Astrophysics Data System (ADS)

    Le Poole, Rudolf S.

    2017-11-01

    The precision aimed at by ESA's Astrometry and Radial Velocity mission GAIA surpasses that of the successful HIPPARCOS mission by more than 2 orders of magnitude, while at the same time increasing the number of objects 10000 times. This overwhelming increase in performance (statistical weight increased by 8 orders of magnitude) is achieved by insisting on a full description in terms of photon shot noise as the fundamental limiting factor. Yet such measurements refer to wave front topography to be understood to the level of better than 100 pico meters, in an optical system a few meters across. Obviously such understanding relies heavily on the expected stability, and chromatic effects also are of dominant importance, requiring stellar spectral energy distributions to be determined. It is fascinating that the experience of HIPPARCOS can indeed generate sufficient confidence for these performance specifications to be within reach. Elaborating the design specifications and tolerances I hope to convince you of GAIA's imminent success.

  5. Documentation for the machine-readable version of the AGK3 Star Catalogue of Positions and Proper Motions North of -2 deg .5 declination (Dieckvoss and Collaborators 1975)

    NASA Technical Reports Server (NTRS)

    Warren, W. H., Jr.

    1984-01-01

    A detailed description of the machine-readable astronomical catalog as it is currently being distributed from the Astronomical Data Center is given. Stellar motions and positions are listed herein in tabular form.

  6. STELLAR ENCOUNTER RATE IN GALACTIC GLOBULAR CLUSTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bahramian, Arash; Heinke, Craig O.; Sivakoff, Gregory R.

    2013-04-01

    The high stellar densities in the cores of globular clusters cause significant stellar interactions. These stellar interactions can produce close binary mass-transferring systems involving compact objects and their progeny, such as X-ray binaries and radio millisecond pulsars. Comparing the numbers of these systems and interaction rates in different clusters drives our understanding of how cluster parameters affect the production of close binaries. In this paper we estimate stellar encounter rates ({Gamma}) for 124 Galactic globular clusters based on observational data as opposed to the methods previously employed, which assumed 'King-model' profiles for all clusters. By deprojecting cluster surface brightness profilesmore » to estimate luminosity density profiles, we treat 'King-model' and 'core-collapsed' clusters in the same way. In addition, we use Monte Carlo simulations to investigate the effects of uncertainties in various observational parameters (distance, reddening, surface brightness) on {Gamma}, producing the first catalog of globular cluster stellar encounter rates with estimated errors. Comparing our results with published observations of likely products of stellar interactions (numbers of X-ray binaries, numbers of radio millisecond pulsars, and {gamma}-ray luminosity) we find both clear correlations and some differences with published results.« less

  7. Mapping accretion and its variability in the young open cluster NGC 2264: a study based on u-band photometry

    NASA Astrophysics Data System (ADS)

    Venuti, L.; Bouvier, J.; Flaccomio, E.; Alencar, S. H. P.; Irwin, J.; Stauffer, J. R.; Cody, A. M.; Teixeira, P. S.; Sousa, A. P.; Micela, G.; Cuillandre, J.-C.; Peres, G.

    2014-10-01

    Context. The accretion process has a central role in the formation of stars and planets. Aims: We aim at characterizing the accretion properties of several hundred members of the star-forming cluster NGC 2264 (3 Myr). Methods: We performed a deep ugri mapping as well as a simultaneous u-band+r-band monitoring of the star-forming region with CFHT/MegaCam in order to directly probe the accretion process onto the star from UV excess measurements. Photometric properties and stellar parameters are determined homogeneously for about 750 monitored young objects, spanning the mass range ~0.1-2 M⊙. About 40% of the sample are classical (accreting) T Tauri stars, based on various diagnostics (Hα, UV and IR excesses). The remaining non-accreting members define the (photospheric + chromospheric) reference UV emission level over which flux excess is detected and measured. Results: We revise the membership status of cluster members based on UV accretion signatures, and report a new population of 50 classical T Tauri star (CTTS) candidates. A large range of UV excess is measured for the CTTS population, varying from a few times 0.1 to ~3 mag. We convert these values to accretion luminosities and accretion rates, via a phenomenological description of the accretion shock emission. We thus obtain mass accretion rates ranging from a few 10-10 to ~10-7 M⊙/yr. Taking into account a mass-dependent detection threshold for weakly accreting objects, we find a >6σ correlation between mass accretion rate and stellar mass. A power-law fit, properly accounting for censored data (upper limits), yields Ṁacc ∝ M*1.4±0.3. At any given stellar mass, we find a large spread of accretion rates, extending over about 2 orders of magnitude. The monitoring of the UV excess on a timescale of a couple of weeks indicates that its variability typically amounts to 0.5 dex, i.e., much smaller than the observed spread in accretion rates. We suggest that a non-negligible age spread across the star-forming region may effectively contribute to the observed spread in accretion rates at a given mass. In addition, different accretion mechanisms (like, e.g., short-lived accretion bursts vs. more stable funnel-flow accretion) may be associated to different Ṁacc regimes. Conclusions: A huge variety of accretion properties is observed for young stellar objects in the NGC 2264 cluster. While a definite correlation seems to hold between mass accretion rate and stellar mass over the mass range probed here, the origin of the large intrinsic spread observed in mass accretion rates at any given mass remains to be explored. Based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii.Full Tables 2-4 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/570/A82

  8. The SOLA Team: A Star Formation Project To Study the Soul of Lupus with ALMA

    NASA Astrophysics Data System (ADS)

    De Gregorio-Monsalvo, Itziar; Saito, M.; Rodon, J.; Takahashi, S.

    2017-06-01

    The SOLA team is a multi-national and multi-wavelength collaboration composed by scientists with technical expertise in ALMA and in infrared and optical techniques. The aim of the team is to establish a low-mass star formation scenario based on the Lupus molecular clouds. In this talk I will present our unique catalog of pre-stellar and proto-stellar cores toward Lupus molecular clouds, the results on our latest studies in protoplanetary disks, as well as our ALMA Cycle 3 data aiming at testing the formation mechanism of sub-stellar objects in Lupus molecular clouds.

  9. Detecting the Disruption of Dark-Matter Halos with Stellar Streams.

    PubMed

    Bovy, Jo

    2016-03-25

    Narrow stellar streams in the Milky Way halo are uniquely sensitive to dark-matter subhalos, but many of these subhalos may be tidally disrupted. I calculate the interaction between stellar and dark-matter streams using analytical and N-body calculations, showing that disrupting objects can be detected as low-concentration subhalos. Through this effect, we can constrain the lumpiness of the halo as well as the orbit and present position of individual dark-matter streams. This will have profound implications for the formation of halos and for direct- and indirect-detection dark-matter searches.

  10. Protoplanetary Nebulae

    NASA Astrophysics Data System (ADS)

    Kwok, S.; Murdin, P.

    2000-11-01

    Protoplanetary nebulae (or pre-planetary nebulae, PPNs) are defined as objects that are in transition between the asymptotic giant branch (AGB) and planetary nebula phases of STELLAR EVOLUTION. Stars on the AGB lose mass at a high rate ((10-7-10-4)M⊙ yr-1) in the form of a stellar wind. Such mass loss eventually depletes the hydrogen envelope of the star and exposes the electron-degenerate carbon...

  11. The multi-messenger approach to particle acceleration by massive stars: a science case for optical, radio and X-ray observatories

    NASA Astrophysics Data System (ADS)

    De Becker, Michaël

    2018-04-01

    Massive stars are extreme stellar objects whose properties allow for the study of some interesting physical processes, including particle acceleration up to relativistic velocities. In particular, the collisions of massive star winds in binary systems lead notably to acceleration of electrons involved in synchrotron emission, hence their identification as non-thermal radio emitters. This has been demonstrated for about 40 objects so far. The relativistic electrons are also expected to produce non-thermal high-energy radiation through inverse Compton scattering. This class of objects permits thus to investigate non-thermal physics through observations in the radio and high energy spectral domains. However, the binary nature of these sources introduces some stringent requirements to adequately interpret their behavior and model non-thermal processes. In particular, these objects are well-established variable stellar sources on the orbital time-scale. The stellar and orbital parameters need to be determined, and this is notably achieved through studies in the optical domain. The combination of observations in the visible domain (including e.g. 3.6-m DOT) with radio measurements using notably GMRT and X-ray observations constitutes thus a promising strategy to investigate particle-accelerating colliding-wind binaries in the forthcoming decade.

  12. The Dragonfly Nearby Galaxies Survey. IV. A Giant Stellar Disk in NGC 2841

    NASA Astrophysics Data System (ADS)

    Zhang, Jielai; Abraham, Roberto; van Dokkum, Pieter; Merritt, Allison; Janssens, Steven

    2018-03-01

    Neutral gas is commonly believed to dominate over stars in the outskirts of galaxies, and investigations of the disk-halo interface are generally considered to be in the domain of radio astronomy. This may simply be a consequence of the fact that deep H I observations typically probe to a lower-mass surface density than visible wavelength data. This paper presents low-surface-brightness, optimized visible wavelength observations of the extreme outskirts of the nearby spiral galaxy NGC 2841. We report the discovery of an enormous low-surface brightness stellar disk in this object. When azimuthally averaged, the stellar disk can be traced out to a radius of ∼70 kpc (5 R 25 or 23 inner disk scale lengths). The structure in the stellar disk traces the morphology of H I emission and extended UV emission. Contrary to expectations, the stellar mass surface density does not fall below that of the gas mass surface density at any radius. In fact, at all radii greater than ∼20 kpc, the ratio of the stellar mass to gas mass surface density is a constant 3:1. Beyond ∼30 kpc, the low-surface-brightness stellar disk begins to warp, which may be an indication of a physical connection between the outskirts of the galaxy and infall from the circumgalactic medium. A combination of stellar migration, accretion, and in situ star formation might be responsible for building up the outer stellar disk, but whatever mechanisms formed the outer disk must also explain the constant ratio between stellar and gas mass in the outskirts of this galaxy.

  13. SPITZER OBSERVATIONS OF LONG-TERM INFRARED VARIABILITY AMONG YOUNG STELLAR OBJECTS IN CHAMAELEON I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flaherty, Kevin M.; Herbst, William; DeMarchi, Lindsay

    Infrared variability is common among young stellar objects, with surveys finding daily to weekly fluctuations of a few tenths of a magnitude. Space-based observations can produce highly sampled infrared light curves, but are often limited to total baselines of about 1 month due to the orientation of the spacecraft. Here we present observations of the Chameleon I cluster, whose low declination makes it observable by the Spitzer Space Telescope over a 200-day period. We observe 30 young stellar objects with a daily cadence to better sample variability on timescales of months. We find that such variability is common, occurring inmore » ∼80% of the detected cluster members. The change in [3.6]–[4.5] color over 200 days for many of the sources falls between that expected for extinction and fluctuations in disk emission. With our high cadence and long baseline we can derive power spectral density curves covering two orders of magnitude in frequency and find significant power at low frequencies, up to the boundaries of our 200-day survey. Such long timescales are difficult to explain with variations driven by the interaction between the disk and stellar magnetic field, which has a dynamical timescale of days to weeks. The most likely explanation is either structural or temperature fluctuations spread throughout the inner ∼0.5 au of the disk, suggesting that the intrinsic dust structure is highly dynamic.« less

  14. THE SPITZER ATLAS OF STELLAR SPECTRA (SASS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ardila, David R.; Van Dyk, Schuyler D.; Makowiecki, Wojciech

    2010-12-15

    We present the Spitzer Atlas of Stellar Spectra, which includes 159 stellar spectra (5-32 {mu}m; R {approx} 100) taken with the Infrared Spectrograph on the Spitzer Space Telescope. This Atlas gathers representative spectra of a broad section of the Hertzsprung-Russell diagram, intended to serve as a general stellar spectral reference in the mid-infrared. It includes stars from all luminosity classes, as well as Wolf-Rayet (WR) objects. Furthermore, it includes some objects of intrinsic interest, such as blue stragglers and certain pulsating variables. All of the spectra have been uniformly reduced, and all are available online. For dwarfs and giants, themore » spectra of early-type objects are relatively featureless, characterized by the presence of hydrogen lines in A spectral types. Besides these, the most noticeable photospheric features correspond to water vapor and silicon monoxide in late-type objects and methane and ammonia features at the latest spectral types. Most supergiant spectra in the Atlas present evidence of circumstellar gas and/or dust. The sample includes five M supergiant spectra, which show strong dust excesses and in some cases polycyclic aromatic hydrocarbon features. Sequences of WR stars present the well-known pattern of lines of He I and He II, as well as forbidden lines of ionized metals. The characteristic flat-top shape of the [Ne III] line is evident even at these low spectral resolutions. Several Luminous Blue Variables and other transition stars are present in the Atlas and show very diverse spectra, dominated by circumstellar gas and dust features. We show that the [8]-[24] Spitzer colors (IRAC and MIPS) are poor predictors of spectral type for most luminosity classes.« less

  15. The Spitzer Atlas of Stellar Spectra (SASS)

    NASA Astrophysics Data System (ADS)

    Ardila, David R.; Van Dyk, Schuyler D.; Makowiecki, Wojciech; Stauffer, John; Song, Inseok; Rho, Jeonghee; Fajardo-Acosta, Sergio; Hoard, D. W.; Wachter, Stefanie

    2010-12-01

    We present the Spitzer Atlas of Stellar Spectra, which includes 159 stellar spectra (5-32 μm R ~ 100) taken with the Infrared Spectrograph on the Spitzer Space Telescope. This Atlas gathers representative spectra of a broad section of the Hertzsprung-Russell diagram, intended to serve as a general stellar spectral reference in the mid-infrared. It includes stars from all luminosity classes, as well as Wolf-Rayet (WR) objects. Furthermore, it includes some objects of intrinsic interest, such as blue stragglers and certain pulsating variables. All of the spectra have been uniformly reduced, and all are available online. For dwarfs and giants, the spectra of early-type objects are relatively featureless, characterized by the presence of hydrogen lines in A spectral types. Besides these, the most noticeable photospheric features correspond to water vapor and silicon monoxide in late-type objects and methane and ammonia features at the latest spectral types. Most supergiant spectra in the Atlas present evidence of circumstellar gas and/or dust. The sample includes five M supergiant spectra, which show strong dust excesses and in some cases polycyclic aromatic hydrocarbon features. Sequences of WR stars present the well-known pattern of lines of He I and He II, as well as forbidden lines of ionized metals. The characteristic flat-top shape of the [Ne III] line is evident even at these low spectral resolutions. Several Luminous Blue Variables and other transition stars are present in the Atlas and show very diverse spectra, dominated by circumstellar gas and dust features. We show that the [8]-[24] Spitzer colors (IRAC and MIPS) are poor predictors of spectral type for most luminosity classes.

  16. Spectroscopy and nonthermal processes

    NASA Technical Reports Server (NTRS)

    Querci, Monique

    1987-01-01

    Stellar spectra are analyzed to determine nonthermal processes for cool stars. A shock wave crossing model is supported by a study of the behavior of absorption and emission spectra. The shock waves are attributed to atmospheric kinetics. Circumstellar spectral lines are studied for information about gaseous circumstellar layers. The description of stellar envelopes is carried on through circumstellar dust. Characteristic properties of polarization in the dust are described in the case of specific stars, emphasizing narrowband observations in Mira, semiregular, and supergiant stars. Finally, the direct approach to measuring the angular diameters of stars and mapping the distribution of circumstellar dust and gas by lunar occultation or interferometry is discussed, using two prototype stars, an M supergiant and a dusty carbon star.

  17. The NN-explore Exoplanet Stellar Speckle Imager: Instrument Description and Preliminary Results

    NASA Astrophysics Data System (ADS)

    Scott, Nicholas J.; Howell, Steve B.; Horch, Elliott P.; Everett, Mark E.

    2018-05-01

    A new speckle and wide-field imaging instrument for the WIYN telescope called NN-EXPLORE Exoplanet Stellar Speckle Imager (NESSI) is described. NESSI offers simultaneous two-color diffraction-limited imaging and wide-field traditional imaging for validation and characterization of transit and precision RV exoplanet studies. Many exoplanet targets will come from the NASA K2 and Transiting Exoplanet Survey Satellite (TESS) missions. NESSI is capable of resolving close binaries at sub-arcsecond separations down to the diffraction limit and >6 mag contrast difference in the visible band on targets as faint as 14th mag. Preliminary results from the instrument commissioning at WIYN and demonstrations of the instrument’s capabilities are presented.

  18. GAMA/H-ATLAS: The Dust Opacity-Stellar Mass Surface Density Relation for Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Grootes, M. W.; Tuffs, R. J.; Popescu, C. C.; Pastrav, B.; Andrae, E.; Gunawardhana, M.; Kelvin, L. S.; Liske, J.; Seibert, M.; Taylor, E. N.; Graham, Alister W.; Baes, M.; Baldry, I. K.; Bourne, N.; Brough, S.; Cooray, A.; Dariush, A.; De Zotti, G.; Driver, S. P.; Dunne, L.; Gomez, H.; Hopkins, A. M.; Hopwood, R.; Jarvis, M.; Loveday, J.; Maddox, S.; Madore, B. F.; Michałowski, M. J.; Norberg, P.; Parkinson, H. R.; Prescott, M.; Robotham, A. S. G.; Smith, D. J. B.; Thomas, D.; Valiante, E.

    2013-03-01

    We report the discovery of a well-defined correlation between B-band face-on central optical depth due to dust, τ ^f_B, and the stellar mass surface density, μ*, of nearby (z <= 0.13) spiral galaxies: {log}(τ ^{f}_{B}) = 1.12(+/- 0.11) \\cdot {log}({μ _{*}}/{{M}_{⊙ } {kpc}^{-2}}) - 8.6(+/- 0.8). This relation was derived from a sample of spiral galaxies taken from the Galaxy and Mass Assembly (GAMA) survey, which were detected in the FIR/submillimeter (submm) in the Herschel-ATLAS science demonstration phase field. Using a quantitative analysis of the NUV attenuation-inclination relation for complete samples of GAMA spirals categorized according to stellar mass surface density, we demonstrate that this correlation can be used to statistically correct for dust attenuation purely on the basis of optical photometry and Sérsic-profile morphological fits. Considered together with previously established empirical relationships of stellar mass to metallicity and gas mass, the near linearity and high constant of proportionality of the τ ^f_B - μ_{*} relation disfavors a stellar origin for the bulk of refractory grains in spiral galaxies, instead being consistent with the existence of a ubiquitous and very rapid mechanism for the growth of dust in the interstellar medium. We use the τ ^f_B - μ_{*} relation in conjunction with the radiation transfer model for spiral galaxies of Popescu & Tuffs to derive intrinsic scaling relations between specific star formation rate (SFR), stellar mass, and stellar surface density, in which attenuation of the UV light used for the measurement of SFR is corrected on an object-to-object basis. A marked reduction in scatter in these relations is achieved which we demonstrate is due to correction of both the inclination-dependent and face-on components of attenuation. Our results are consistent with a general picture of spiral galaxies in which most of the submm emission originates from grains residing in translucent structures, exposed to UV in the diffuse interstellar radiation field.

  19. Circumstellar disc lifetimes in numerous galactic young stellar clusters

    NASA Astrophysics Data System (ADS)

    Richert, A. J. W.; Getman, K. V.; Feigelson, E. D.; Kuhn, M. A.; Broos, P. S.; Povich, M. S.; Bate, M. R.; Garmire, G. P.

    2018-07-01

    Photometric detections of dust circumstellar discs around pre-main sequence (PMS) stars, coupled with estimates of stellar ages, provide constraints on the time available for planet formation. Most previous studies on disc longevity, starting with Haisch, Lada & Lada, use star samples from PMS clusters but do not consider data sets with homogeneous photometric sensitivities and/or ages placed on a uniform time-scale. Here we conduct the largest study to date of the longevity of inner dust discs using X-ray and 1-8 µm infrared photometry from the MYStIX and SFiNCs projects for 69 young clusters in 32 nearby star-forming regions with ages t ≤ 5 Myr. Cluster ages are derived by combining the empirical AgeJX method with PMS evolutionary models, which treat dynamo-generated magnetic fields in different ways. Leveraging X-ray data to identify disc-free objects, we impose similar stellar mass sensitivity limits for disc-bearing and disc-free young stellar objects while extending the analysis to stellar masses as low as M ˜ 0.1 M⊙. We find that the disc longevity estimates are strongly affected by the choice of PMS evolutionary model. Assuming a disc fraction of 100 per cent at zero age, the inferred disc half-life changes significantly, from t1/2 ˜ 1.3-2 Myr to t1/2 ˜ 3.5 Myr when switching from non-magnetic to magnetic PMS models. In addition, we find no statistically significant evidence that disc fraction varies with stellar mass within the first few Myr of life for stars with masses <2 M⊙, but our samples may not be complete for more massive stars. The effects of initial disc fraction and star-forming environment are also explored.

  20. SECULAR EVOLUTION OF BINARIES NEAR MASSIVE BLACK HOLES: FORMATION OF COMPACT BINARIES, MERGER/COLLISION PRODUCTS AND G2-LIKE OBJECTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prodan, Snezana; Antonini, Fabio; Perets, Hagai B., E-mail: sprodan@cita.utoronto.ca, E-mail: antonini@cita.utoronto.ca

    2015-02-01

    Here we discuss the evolution of binaries around massive black holes (MBHs) in nuclear stellar clusters. We focus on their secular evolution due to the perturbation by the MBHs, while simplistically accounting for their collisional evolution. Binaries with highly inclined orbits with respect to their orbits around MBHs are strongly affected by secular processes, which periodically change their eccentricities and inclinations (e.g., Kozai-Lidov cycles). During periapsis approach, dissipative processes such as tidal friction may become highly efficient, and may lead to shrinkage of a binary orbit and even to its merger. Binaries in this environment can therefore significantly change theirmore » orbital evolution due to the MBH third-body perturbative effects. Such orbital evolution may impinge on their later stellar evolution. Here we follow the secular dynamics of such binaries and its coupling to tidal evolution, as well as the stellar evolution of such binaries on longer timescales. We find that stellar binaries in the central parts of nuclear stellar clusters (NSCs) are highly likely to evolve into eccentric and/or short-period binaries, and become strongly interacting binaries either on the main sequence (at which point they may even merge), or through their later binary stellar evolution. The central parts of NSCs therefore catalyze the formation and evolution of strongly interacting binaries, and lead to the enhanced formation of blue stragglers, X-ray binaries, gravitational wave sources, and possible supernova progenitors. Induced mergers/collisions may also lead to the formation of G2-like cloud-like objects such as the one recently observed in the Galactic center.« less

  1. VizieR Online Data Catalog: ATLAS3D Project. XXX (McDermid+, 2015)

    NASA Astrophysics Data System (ADS)

    McDermid, R. M.; Alatalo, K.; Blitz, L.; Bournaud, F.; Bureau, M.; Cappellari, M.; Crocker, A. F.; Davies, R. L.; Davis, T. A.; De Zeeuw, P. T.; Duc, P.-A.; Emsellem, E.; Khochfar, S.; Krajnovic, D.; Kuntschner, H.; Morganti, R.; Naab, T.; Oosterloo, T.; Sarzi, M.; Scott, N.; Serra, P.; Weijmans, A.-M.; Young, L. M.

    2015-09-01

    We present the stellar population content of early-type galaxies from the ATLAS3D survey. Using spectra integrated within apertures covering up to one effective radius, we apply two methods: one based on measuring line-strength indices and applying single stellar population (SSP) models to derive SSP-equivalent values of stellar age, metallicity, and alpha enhancement; and one based on spectral fitting to derive non-parametric star formation histories, mass-weighted average values of age, metallicity, and half-mass formation time-scales. Using homogeneously derived effective radii and dynamically determined galaxy masses, we present the distribution of stellar population parameters on the Mass Plane (MJAM, σe, Rmaje), showing that at fixed mass, compact early-type galaxies are on average older, more metal-rich, and more alpha-enhanced than their larger counterparts. From non-parametric star formation histories, we find that the duration of star formation is systematically more extended in lower mass objects. Assuming that our sample represents most of the stellar content of today's local Universe, approximately 50 percent of all stars formed within the first 2Gyr following the big bang. Most of these stars reside today in the most massive galaxies (>1010.5M⊙), which themselves formed 90 percent of their stars by z~2. The lower mass objects, in contrast, have formed barely half their stars in this time interval. Stellar population properties are independent of environment over two orders of magnitude in local density, varying only with galaxy mass. In the highest density regions of our volume (dominated by the Virgo cluster), galaxies are older, alpha-enhanced, and have shorter star formation histories with respect to lower density regions. (4 data files).

  2. Stellar Occultations by TNOs and Centaurs: first results in the “Gaia era”

    NASA Astrophysics Data System (ADS)

    Rossi, Gustavo; Vieira-Martins, Roberto; Sicardy, Bruno; Ortiz, Jose Luis; Rio Group, Lucky Star Occultation Team, Granada Occultation Team

    2017-10-01

    After the first release of the GAIA catalog (in September/2016), stellar positions are now known with unprecedented accuracy, reaching values of the order of milliarcseconds. This improvement reflected into a stunning accuracy on the astrometry of moving objects, such as TNOs. Unfortunately, Gaia stars proper motions will be only available on the second data release (DR2) next year, so there is still a need to use hybrid stellar catalogs for occultation predictions until then. Despite that, stellar occultations predictions are now much more accurate, and the biggest uncertainties comes mainly from the object ephemerides. This issue will be overcome by large surveys such as the LSST, which will provide positions for the known TNOs and it is expected to increase the number of known TNOs by nearly 40,000, with an unprecedent amount of acquired information.This huge amount of data also poses a new era in stellar occultations: predictions will be very accurate and the participation of professional astronomers, laboratories, and the amateur community will be crucial to observe the predicted events; observation campaigns will need to be selected according to a specific scientific purpose such as the probability to detect rings or archs around a body, the presence of atmosphere or even the detection of topographic features; the development of softwares capable of reducing the data more efficiently and an easier method to coordinate observation campaigns are needed.Here we present some impressive results obtained from predictions and observed occultations in 2017 (among them we have Pluto, Chariklo and Haumea), the problems we are starting to face in the beginning of the “Gaia era” and the future challenges of stellar occultation.

  3. Colliding stellar winds in O-type close binary systems

    NASA Technical Reports Server (NTRS)

    Gies, Douglas R.

    1991-01-01

    A study of the stellar wind properties of O-type close binary systems is presented. The main objective of this program was to search for colliding winds in four systems, AO Cas, iota Ori, Plaskett's star, and 29 UW CMa, through an examination of high dispersion UV spectra from IUE and optical spectra of the H alpha and He I lambda 6678 emission lines.

  4. The Cosmic Century

    NASA Astrophysics Data System (ADS)

    Longair, Malcolm S.

    2013-04-01

    Part I. Stars and Stellar Evolution up to the Second World War: 1. The legacy of the nineteenth century; 2. The classification of stellar spectra; 3. Stellar structure and evolution; 4. The end points of stellar evolution; Part II. The Large-Scale Structure of the Universe, 1900-1939: 5. The Galaxy and the nature of spiral nebulae; 6. The origins of astrophysical cosmology; Part III. The Opening up of the Electromagnetic Spectrum: 7. The opening up of the electromagnetic spectrum and the new astronomies; Part IV. The Astrophysics of Stars and Galaxies since 1945: 8. Stars and stellar evolution; 9. The physics of the interstellar medium; 10. The physics of galaxies and clusters of galaxies; 11. High-energy astrophysics; Part V. Astrophysical Cosmology since 1945: 12. Astrophysical cosmology; 13. The determination of cosmological parameters; 14. The evolution of galaxies and active galaxies with cosmic epoch; 15. The origin of galaxies and the large-scale structure of the Universe; 16. The very early Universe; References; Name index; Object index; Subject index.

  5. Understanding the Milky Way Halo through Large Surveys

    NASA Astrophysics Data System (ADS)

    Koposov, Sergey

    This thesis presents an extensive study of stellar substructure in the outskirts of the Milky Way(MW), combining data mining of SDSS with theoretical modeling. Such substructure, either bound star clusters and satellite galaxies, or tidally disrupted objects forming stellar streams are powerful diagnostics of the Milky Way's dynamics and formation history. I have developed an algorithmic technique of searching for stellar overdensities in the MW halo, based on SDSS catalogs. This led to the discovery of unusual ultra-faint ~ (1000Lsun) globular clusters with very compact sizes and relaxation times << t_Hubble. The detailed analysis of a known stellar stream (GD-1), allowed me to make the first 6-D phase space map for such an object along 60 degrees on the sky. By modeling the stream's orbit I could place strong constraints on the Galactic potential, e.g. Vcirc(R0)= 224+/-13 km/s. The application of the algorithmic search for stellar overdensities to the SDSS dataset and to mock datasets allowed me to quantify SDSS's severe radial incompleteness in its search for ultra-faint dwarf galaxies and to determine the luminosity function of MW satellites down to luminosities of M_V ~ -3. I used the semi-analytical model in order to compare the CDM model predictions for the MW satellite population with the observations; this comparison has shown that the recently increased census of MW satellites, better understanding of the radial incompleteness and the suppression of star formation after the reionization can fully solve the "Missing satellite problem".

  6. X-shooter spectroscopy of young stellar objects in Lupus. Accretion properties of class II and transitional objects

    NASA Astrophysics Data System (ADS)

    Alcalá, J. M.; Manara, C. F.; Natta, A.; Frasca, A.; Testi, L.; Nisini, B.; Stelzer, B.; Williams, J. P.; Antoniucci, S.; Biazzo, K.; Covino, E.; Esposito, M.; Getman, F.; Rigliaco, E.

    2017-04-01

    The mass accretion rate, Ṁacc, is a key quantity for the understanding of the physical processes governing the evolution of accretion discs around young low-mass (M⋆ ≲ 2.0 M⊙) stars and substellar objects (YSOs). We present here the results of a study of the stellar and accretion properties of the (almost) complete sample of class II and transitional YSOs in the Lupus I, II, III and IV clouds, based on spectroscopic data acquired with the VLT/X-shooter spectrograph. Our study combines the dataset from our previous work with new observations of 55 additional objects. We have investigated 92 YSO candidates in total, 11 of which have been definitely identified with giant stars unrelated to Lupus. The stellar and accretion properties of the 81 bona fide YSOs, which represent more than 90% of the whole class II and transition disc YSO population in the aforementioned Lupus clouds, have been homogeneously and self-consistently derived, allowing for an unbiased study of accretion and its relationship with stellar parameters. The accretion luminosity, Lacc, increases with the stellar luminosity, L⋆, with an overall slope of 1.6, similar but with a smaller scatter than in previous studies. There is a significant lack of strong accretors below L⋆ ≈ 0.1 L⊙, where Lacc is always lower than 0.01 L⋆. We argue that the Lacc - L⋆ slope is not due to observational biases, but is a true property of the Lupus YSOs. The log Ṁacc - log M⋆ correlation shows a statistically significant evidence of a break, with a steeper relation for M⋆ ≲ 0.2 M⊙ and a flatter slope for higher masses. The bimodality of the Ṁacc - M⋆ relation is confirmed with four different evolutionary models used to derive the stellar mass. The bimodal behaviour of the observed relationship supports the importance of modelling self-gravity in the early evolution of the more massive discs, but other processes, such as photo-evaporation and planet formation during the YSO's lifetime, may also lead to disc dispersal on different timescales depending on the stellar mass. The sample studied here more than doubles the number of YSOs with homogeneously and simultaneously determined Lacc and luminosity, Lline, of many permitted emission lines. Hence, we also refined the empirical relationships between Lacc and Lline on a more solid statistical basis. Based on observations collected at the European Southern Observatory at Paranal, under programs 084.C-0269(A), 085.C-0238(A), 086.C-0173(A), 087.C-0244(A), 089.C-0143(A), 095.C-0134(A), 097.C-0349(A), and archive data of programmes 085.C-0764(A) and 093.C-0506(A).

  7. The Relationship between Stellar Populations and Lyα Emission in Lyman Break Galaxies

    NASA Astrophysics Data System (ADS)

    Kornei, Katherine A.; Shapley, Alice E.; Erb, Dawn K.; Steidel, Charles C.; Reddy, Naveen A.; Pettini, Max; Bogosavljević, Milan

    2010-03-01

    We present the results of a photometric and spectroscopic survey of 321 Lyman break galaxies (LBGs) at z~ 3 to investigate systematically the relationship between Lyα emission and stellar populations. Lyα equivalent widths (W Lyα) were calculated from rest-frame UV spectroscopy and optical/near-infrared/Spitzer photometry was used in population synthesis modeling to derive the key properties of age, dust extinction, star formation rate (SFR), and stellar mass. We directly compare the stellar populations of LBGs with and without strong Lyα emission, where we designate the former group (W Lyα>= 20 Å) as Lyα emitters (LAEs) and the latter group (W Lyα< 20 Å) as non-LAEs. This controlled method of comparing objects from the same UV luminosity distribution represents an improvement over previous studies in which the stellar populations of LBGs and narrowband-selected LAEs were contrasted, where the latter were often intrinsically fainter in broadband filters by an order of magnitude simply due to different selection criteria. Using a variety of statistical tests, we find that Lyα equivalent width and age, SFR, and dust extinction, respectively, are significantly correlated in the sense that objects with strong Lyα emission also tend to be older, lower in SFR, and less dusty than objects with weak Lyα emission, or the line in absorption. We accordingly conclude that, within the LBG sample, objects with strong Lyα emission represent a later stage of galaxy evolution in which supernovae-induced outflows have reduced the dust covering fraction. We also examined the hypothesis that the attenuation of Lyα photons is lower than that of the continuum, as proposed by some, but found no evidence to support this picture. Based, in part, on data obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA, and was made possible by the generous financial support of the W.M. Keck Foundation.

  8. VizieR Online Data Catalog: Stellar encounters with long-period comets (Feng+, 2015)

    NASA Astrophysics Data System (ADS)

    Feng, F.; Bailer-Jones, C. A. L.

    2016-07-01

    We have conducted simulations of the perturbation of the Oort cloud in order to estimate the significance of known encounters in generating long-period comets. We collected the data of stellar encounters from three sources: (Bailer-Jones, 2015, Cat. J/A+A/575/A35, hereafter BJ15), Dybczynski & Berski (2015MNRAS.449.2459D), and Mamajek et al. (2015ApJ...800L..17M). Following BJ15, we use the term 'object' to refer to each encountering star in our catalogue. A specific star may appear more than once but with different data, thus leading to a different object. (1 data file).

  9. Bright Localized Near-Infrared Emission at 1-4 AU in the AB Aurigae Disk Revealed by IOTA Closure Phases

    NASA Astrophysics Data System (ADS)

    Millan-Gabet, R.; Monnier, J. D.; Berger, J.-P.; Traub, W. A.; Schloerb, F. P.; Pedretti, E.; Benisty, M.; Carleton, N. P.; Haguenauer, P.; Kern, P.; Labeye, P.; Lacasse, M. G.; Malbet, F.; Perraut, K.; Pearlman, M.; Thureau, N.

    2006-07-01

    We report on the detection of localized off-center emission at 1-4 AU in the circumstellar environment of the young stellar object AB Aurigae. We used closure-phase measurements in the near-infrared that were made at the long-baseline interferometer IOTA, the first obtained on a young stellar object using this technique. When probing sub-AU scales, all closure phases are close to zero degrees, as expected given the previously determined size of the AB Aurigae inner-dust disk. However, a clear closure-phase signal of -3.5d +/- 0.5d is detected on one triangle containing relatively short baselines, requiring a high degree of non-point symmetry from emission at larger (AU-sized) scales in the disk. We have not identified any alternative explanation for these closure-phase results, and we demonstrate that a ``disk hot spot'' model can fit our data. We speculate that such detected asymmetric near-infrared emission might arise as a result of localized viscous heating due to a gravitational instability in the AB Aurigae disk, or to the presence of a close stellar companion or accreting substellar object.

  10. Galaxy evolution. Isolated compact elliptical galaxies: stellar systems that ran away.

    PubMed

    Chilingarian, Igor; Zolotukhin, Ivan

    2015-04-24

    Compact elliptical galaxies form a rare class of stellar system (~30 presently known) characterized by high stellar densities and small sizes and often harboring metal-rich stars. They were thought to form through tidal stripping of massive progenitors, until two isolated objects were discovered where massive galaxies performing the stripping could not be identified. By mining astronomical survey data, we have now found 195 compact elliptical galaxies in all types of environment. They all share similar dynamical and stellar population properties. Dynamical analysis for nonisolated galaxies demonstrates the feasibility of their ejection from host clusters and groups by three-body encounters, which is in agreement with numerical simulations. Hence, isolated compact elliptical and isolated quiescent dwarf galaxies are tidally stripped systems that ran away from their hosts. Copyright © 2015, American Association for the Advancement of Science.

  11. Spectral Classification of the 30 Doradus Stellar Populations

    NASA Astrophysics Data System (ADS)

    Walborn, Nolan R.; Blades, J. Chris

    1997-10-01

    An optical spectral classification study of 106 OB stars within the 30 Doradus Nebula has sharpened the description of the spatial and temporal structures among the associated clusters. Five distinct stellar groups are recognized: (1) the central early-O (Carina phase) concentration, which includes Radcliffe 136 (R136); (2) a younger (Orion phase) population to the north and west of R136, containing heavily embedded early-O dwarfs and IR sources, the formation of which was likely triggered by the central concentration; (3) an older population of late-O and early-B supergiants (Scorpius OB1 phase) throughout the central field, whose structural relationship, if any, to the younger groups is unclear; (4) a previously known, even older compact cluster 3' northwest of R136, containing A- and M-type supergiants (h and χ Persei phase), which has evidently affected the nebular dynamics substantially; and (5) a newly recognized Sco OB1-phase association, surrounding the recently discovered luminous blue variable (LBV) R143, in the southern part of the Nebula. The intricacy of this region and the implications for the interpretation of more distant starbursts are emphasized. The evidence indicates that the formation of the 30 Dor stellar content was neither instantaneous nor continuous, but rather that the stars formed in discrete events at different epochs. The average difference between the derived and calibration absolute visual magnitudes of the stars is 0.05, indicating that the classification, calibration, and adopted distance modulus (V0 - MV = 18.6) are accurate. For 70 of the stars, either the absolute value of that difference is <=0.6 mag, or they are subluminous dwarfs or superluminous supergiants. Many astrophysically interesting objects have been isolated for further investigation. Surprisingly, in view of the presence of several O3 supergiants, the mid-Of star R139 is identified as the most massive object in this sample; it is located well along the 120 M⊙ track, very near the Humphreys-Davidson limit, and it is probably an immediate LBV precursor. This work can and should be extended in three ways: (1) higher resolution and higher S/N observations of many of the stars with larger ground-based telescopes for quantitative analysis, (2) ground-based spectral classification of the numerous additional accessible stars in the field, and (3) spatially resolved spectral classification of compact multiple systems with the Hubble Space Telescope.

  12. Masses and luminosities for 342 stars from the PennState-Toruń Centre for Astronomy Planet Search

    NASA Astrophysics Data System (ADS)

    Adamczyk, M.; Deka-Szymankiewicz, B.; Niedzielski, A.

    2016-03-01

    Aims: We present revised basic astrophysical stellar parameters: the masses, luminosities, ages, and radii for 342 stars from the PennState-Toruń Centre for Astronomy Planet Search. For 327 stars the atmospheric parameters were already available in the literature. For the other 15 objects we also present spectroscopic atmospheric parameters: the effective temperatures, surface gravities, and iron abundances. Methods: Spectroscopic atmospheric parameters were obtained with a standard spectroscopic analysis procedure, using ARES and MOOG, or TGVIT codes. To refine the stellar masses, ages, and luminosities, we applied a Bayesian method. Results: The revised stellar masses for 342 stars and their uncertainties are generally lower than previous estimates. Atmospheric parameters for 13 objects are determined here for the first time. Table 3 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/587/A119

  13. The Intriguing Case of the (Almost) Dark Galaxy AGC 229385

    NASA Astrophysics Data System (ADS)

    Salzer, John

    2015-10-01

    The ALFALFA blind HI survey has catalogued tens of thousands of HI sources over 7000 square degrees of high Galactic latitude sky. While the vast majority of the sources in ALFALFA have optical counterparts in existing wide-field surveys like SDSS, a class of objects has been identified that have no obvious optical counterparts in existing catalogs. Dubbed almost dark galaxies, these objects represent an extreme in the continuum of galaxy properties, with the highest HI mass-to-optical light ratios ever measured. We propose to use HST to observe AGC 229385, an almost dark object found in deep WIYN imaging to have an ultra-low surface brightness stellar component with extremely blue colors. AGC 229385 falls well off of all galaxy scaling relationships, including the Baryonic Tully-Fisher relation. Ground-based optical and HI data have been able to identify this object as extreme, but are insufficient to constrain the properties of its stellar component or its distance - for this, we need HST. Our science goals are twofold: to better constrain the distance to AGC 229385, and to investigate the stellar population(s) in this mysterious object. The requested observations will not only provide crucial insight into the properties and evolution of this specific system but will also help us understand this important class of ultra low surface brightness, gas-rich galaxies. The proposed observations are designed to be exploratory, yet they promise to pay rich dividends for a modest investment in observing time.

  14. THE BLANCO COSMOLOGY SURVEY: DATA ACQUISITION, PROCESSING, CALIBRATION, QUALITY DIAGNOSTICS, AND DATA RELEASE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Desai, S.; Mohr, J. J.; Semler, D. R.

    2012-09-20

    The Blanco Cosmology Survey (BCS) is a 60 night imaging survey of {approx}80 deg{sup 2} of the southern sky located in two fields: ({alpha}, {delta}) = (5 hr, -55 Degree-Sign ) and (23 hr, -55 Degree-Sign ). The survey was carried out between 2005 and 2008 in griz bands with the Mosaic2 imager on the Blanco 4 m telescope. The primary aim of the BCS survey is to provide the data required to optically confirm and measure photometric redshifts for Sunyaev-Zel'dovich effect selected galaxy clusters from the South Pole Telescope and the Atacama Cosmology Telescope. We process and calibrate themore » BCS data, carrying out point-spread function-corrected model-fitting photometry for all detected objects. The median 10{sigma} galaxy (point-source) depths over the survey in griz are approximately 23.3 (23.9), 23.4 (24.0), 23.0 (23.6), and 21.3 (22.1), respectively. The astrometric accuracy relative to the USNO-B survey is {approx}45 mas. We calibrate our absolute photometry using the stellar locus in grizJ bands, and thus our absolute photometric scale derives from the Two Micron All Sky Survey, which has {approx}2% accuracy. The scatter of stars about the stellar locus indicates a systematic floor in the relative stellar photometric scatter in griz that is {approx}1.9%, {approx}2.2%, {approx}2.7%, and {approx}2.7%, respectively. A simple cut in the AstrOmatic star-galaxy classifier spread{sub m}odel produces a star sample with good spatial uniformity. We use the resulting photometric catalogs to calibrate photometric redshifts for the survey and demonstrate scatter {delta}z/(1 + z) = 0.054 with an outlier fraction {eta} < 5% to z {approx} 1. We highlight some selected science results to date and provide a full description of the released data products.« less

  15. The Blanco Cosmology Survey: Data Acquisition, Processing, Calibration, Quality Diagnostics and Data Release

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Desai, S.; /Munich U. /Munich, Tech. U., Universe; Armstrong, R.

    2012-04-01

    The Blanco Cosmology Survey (BCS) is a 60 night imaging survey of {approx}80 deg{sup 2} of the southern sky located in two fields: ({alpha},{delta})= (5 hr, -55{sup circ} and 23 hr, -55{sup circ}). The survey was carried out between 2005 and 2008 in griz bands with the Mosaic2 imager on the Blanco 4m telescope. The primary aim of the BCS survey is to provide the data required to optically confirm and measure photometric redshifts for Sunyaev-Zel'dovich effect selected galaxy clusters from the South Pole Telescope and the Atacama Cosmology Telescope. We process and calibrate the BCS data, carrying out PSFmore » corrected model fitting photometry for all detected objects. The median 10{sigma} galaxy (point source) depths over the survey in griz are approximately 23.3 (23.9), 23.4 (24.0), 23.0 (23.6) and 21.3 (22.1), respectively. The astrometric accuracy relative to the USNO-B survey is {approx}45 milli-arcsec. We calibrate our absolute photometry using the stellar locus in grizJ bands, and thus our absolute photometric scale derives from 2MASS which has {approx}2% accuracy. The scatter of stars about the stellar locus indicates a systematics floor in the relative stellar photometric scatter in griz that is {approx}1.9%, {approx}2.2%, {approx}2.7% and {approx}2.7%, respectively. A simple cut in the AstrOmatic star-galaxy classifier produces a star sample with good spatial uniformity. We use the resulting photometric catalogs to calibrate photometric redshifts for the survey and demonstrate scatter {delta} z/(1+z)=0.054 with an outlier fraction {eta}<5% to z{approx}1. We highlight some selected science results to date and provide a full description of the released data products.« less

  16. THE YOUNG STELLAR POPULATION OF LYNDS 1340. AN INFRARED VIEW

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kun, M.; Moór, A.; Wolf-Chase, G.

    We present results of an infrared study of the molecular cloud Lynds 1340, forming three groups of low- and intermediate-mass stars. Our goals are to identify and characterize the young stellar population of the cloud, study the relationships between the properties of the cloud and the emergent stellar groups, and integrate L1340 into the picture of the star-forming activity of our Galactic environment. We selected candidate young stellar objects (YSOs) from the Spitzer and WISE databases using various published color criteria and classified them based on the slope of the spectral energy distribution (SED). We identified 170 Class II, 27more » flat SED, and 45 Class 0/I sources. High angular resolution near-infrared observations of the RNO 7 cluster, embedded in L1340, revealed eight new young stars of near-infrared excess. The surface density distribution of YSOs shows three groups, associated with the three major molecular clumps of L1340, each consisting of ≲100 members, including both pre-main-sequence stars and embedded protostars. New Herbig–Haro objects were identified in the Spitzer images. Our results demonstrate that L1340 is a prolific star-forming region of our Galactic environment in which several specific properties of the intermediate-mass mode of star formation can be studied in detail.« less

  17. Stellar Velocity Dispersion: Linking Quiescent Galaxies to Their Dark Matter Halos

    NASA Astrophysics Data System (ADS)

    Zahid, H. Jabran; Sohn, Jubee; Geller, Margaret J.

    2018-06-01

    We analyze the Illustris-1 hydrodynamical cosmological simulation to explore the stellar velocity dispersion of quiescent galaxies as an observational probe of dark matter halo velocity dispersion and mass. Stellar velocity dispersion is proportional to dark matter halo velocity dispersion for both central and satellite galaxies. The dark matter halos of central galaxies are in virial equilibrium and thus the stellar velocity dispersion is also proportional to dark matter halo mass. This proportionality holds even when a line-of-sight aperture dispersion is calculated in analogy to observations. In contrast, at a given stellar velocity dispersion, the dark matter halo mass of satellite galaxies is smaller than virial equilibrium expectations. This deviation from virial equilibrium probably results from tidal stripping of the outer dark matter halo. Stellar velocity dispersion appears insensitive to tidal effects and thus reflects the correlation between stellar velocity dispersion and dark matter halo mass prior to infall. There is a tight relation (≲0.2 dex scatter) between line-of-sight aperture stellar velocity dispersion and dark matter halo mass suggesting that the dark matter halo mass may be estimated from the measured stellar velocity dispersion for both central and satellite galaxies. We evaluate the impact of treating all objects as central galaxies if the relation we derive is applied to a statistical ensemble. A large fraction (≳2/3) of massive quiescent galaxies are central galaxies and systematic uncertainty in the inferred dark matter halo mass is ≲0.1 dex thus simplifying application of the simulation results to currently available observations.

  18. Simulation of optical interstellar scintillation

    NASA Astrophysics Data System (ADS)

    Habibi, F.; Moniez, M.; Ansari, R.; Rahvar, S.

    2013-04-01

    Aims: Stars twinkle because their light propagates through the atmosphere. The same phenomenon is expected on a longer time scale when the light of remote stars crosses an interstellar turbulent molecular cloud, but it has never been observed at optical wavelengths. The aim of the study described in this paper is to fully simulate the scintillation process, starting from the molecular cloud description as a fractal object, ending with the simulations of fluctuating stellar light curves. Methods: Fast Fourier transforms are first used to simulate fractal clouds. Then, the illumination pattern resulting from the crossing of background star light through these refractive clouds is calculated from a Fresnel integral that also uses fast Fourier transform techniques. Regularisation procedure and computing limitations are discussed, along with the effect of spatial and temporal coherency (source size and wavelength passband). Results: We quantify the expected modulation index of stellar light curves as a function of the turbulence strength - characterised by the diffraction radius Rdiff - and the projected source size, introduce the timing aspects, and establish connections between the light curve observables and the refractive cloud. We extend our discussion to clouds with different structure functions from Kolmogorov-type turbulence. Conclusions: Our study confirms that current telescopes of ~4 m with fast-readout, wide-field detectors have the capability of discovering the first interstellar optical scintillation effects. We also show that this effect should be unambiguously distinguished from any other type of variability through the observation of desynchronised light curves, simultaneously measured by two distant telescopes.

  19. A Study of the Stellar Population in Selected SO Galaxies

    NASA Technical Reports Server (NTRS)

    Perez, M.; Danks, A.

    1997-01-01

    The goal of this program was to observe at least two SO galaxies with abnormal colors in the blue and clear optical signatures of dust and gas. The galaxies NGC 2217 and NGC 1808 were observed at least in one of the IUE cameras (1200-200 and 2000-3200 A) during the 13th episode, using the 4 US1 shifts assigned to this program. The galaxy NGC 2217 had been found to be part of a subgroup of SO galaxies with external gas rotating in retrograde motion with respect to the stars. This galaxy is a face-on object with indications of large amount of gas, quite rare for a SO galaxy. We observed this object on three different occasions with IUE at different positions of the large aperture (spacecraft roll angle) with respect to the nuclear region. These exposures allowed us to take full advantage of the spatial resolution of IUE by mapping nuclear and bulge region of this galaxy. We found that the data point to a marginally earlier stellar population toward the central region. The UV light as a whole is dominated by a late-type stellar population of principally G and K stars. The almost face-on view of this galaxy appears optically thick to UV light. It is conceivable that in analogy to out own Galaxy, the stellar populations weakly detected in NGC 2217, are mostly halo and late-type stars in the center with an increasing contribution of dust and early stellar populations (so far undetected) as we move outward along the faint spiral arms. This result is contrary to our initial expectation, since the counterrotating gas does not appear to be enhancing star formation in this galaxy. Even more interesting were the observations of NGC 1808; galaxy which has been classified, with a handful of other objects, both as a starburst and Seyfert galaxy. Attachment: 'The White-Dwarf Companions of 56 Persei and HR 3643.'

  20. Black holes in binary stellar systems and galactic nuclei

    NASA Astrophysics Data System (ADS)

    Cherepashchuk, A. M.

    2014-04-01

    In the last 40 years, following pioneering papers by Ya B Zeldovich and E E Salpeter, in which a powerful energy release from nonspherical accretion of matter onto a black hole (BH) was predicted, many observational studies of black holes in the Universe have been carried out. To date, the masses of several dozen stellar-mass black holes (M_BH = (4{-}20) M_\\odot) in X-ray binary systems and of several hundred supermassive black holes (M_BH = (10^{6}{-}10^{10}) M_\\odot) in galactic nuclei have been measured. The estimated radii of these massive and compact objects do not exceed several gravitational radii. For about ten stellar-mass black holes and several dozen supermassive black holes, the values of the dimensionless angular momentum a_* have been estimated, which, in agreement with theoretical predictions, do not exceed the limiting value a_* = 0.998. A new field of astrophysics, so-called black hole demography, which studies the birth and growth of black holes and their evolutionary connection to other objects in the Universe, namely stars, galaxies, etc., is rapidly developing. In addition to supermassive black holes, massive stellar clusters are observed in galactic nuclei, and their evolution is distinct from that of supermassive black holes. The evolutionary relations between supermassive black holes in galactic centers and spheroidal stellar components (bulges) of galaxies, as well as dark-matter galactic haloes are brought out. The launch into Earth's orbit of the space radio interferometer RadioAstron opened up the real possibility of finally proving that numerous discovered massive and highly compact objects with properties very similar to those of black holes make up real black holes in the sense of Albert Einstein's General Relativity. Similar proofs of the existence of black holes in the Universe can be obtained by intercontinental radio interferometry at short wavelengths \\lambda \\lesssim 1 mm (the international program, Event Horizon Telescope).

  1. Modelling ultraviolet-line diagnostics of stars, the ionized and the neutral interstellar medium in star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Vidal-García, A.; Charlot, S.; Bruzual, G.; Hubeny, I.

    2017-09-01

    We combine state-of-the-art models for the production of stellar radiation and its transfer through the interstellar medium (ISM) to investigate ultraviolet-line diagnostics of stars, the ionized and the neutral ISM in star-forming galaxies. We start by assessing the reliability of our stellar population synthesis modelling by fitting absorption-line indices in the ISM-free ultraviolet spectra of 10 Large Magellanic Cloud clusters. In doing so, we find that neglecting stochastic sampling of the stellar initial mass function in these young (∼10-100 Myr), low-mass clusters affects negligibly ultraviolet-based age and metallicity estimates but can lead to significant overestimates of stellar mass. Then, we proceed and develop a simple approach, based on an idealized description of the main features of the ISM, to compute in a physically consistent way the combined influence of nebular emission and interstellar absorption on ultraviolet spectra of star-forming galaxies. Our model accounts for the transfer of radiation through the ionized interiors and outer neutral envelopes of short-lived stellar birth clouds, as well as for radiative transfer through a diffuse intercloud medium. We use this approach to explore the entangled signatures of stars, the ionized and the neutral ISM in ultraviolet spectra of star-forming galaxies. We find that, aside from a few notable exceptions, most standard ultraviolet indices defined in the spectra of ISM-free stellar populations are prone to significant contamination by the ISM, which increases with metallicity. We also identify several nebular-emission and interstellar-absorption features, which stand out as particularly clean tracers of the different phases of the ISM.

  2. Deriving Physical Properties from Broadband Photometry with Prospector: Description of the Model and a Demonstration of its Accuracy Using 129 Galaxies in the Local Universe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leja, Joel; Johnson, Benjamin D.; Conroy, Charlie

    2017-03-10

    Broadband photometry of galaxies measures an unresolved mix of complex stellar populations, gas, and dust. Interpreting these data is a challenge for models: many studies have shown that properties derived from modeling galaxy photometry are uncertain by a factor of two or more, and yet answering key questions in the field now requires higher accuracy than this. Here, we present a new model framework specifically designed for these complexities. Our model, Prospector- α , includes dust attenuation and re-radiation, a flexible attenuation curve, nebular emission, stellar metallicity, and a six-component nonparametric star formation history. The flexibility and range of themore » parameter space, coupled with Monte Carlo Markov chain sampling within the Prospector inference framework, is designed to provide unbiased parameters and realistic error bars. We assess the accuracy of the model with aperture-matched optical spectroscopy, which was excluded from the fits. We compare spectral features predicted solely from fits to the broadband photometry to the observed spectral features. Our model predicts H α luminosities with a scatter of ∼0.18 dex and an offset of ∼0.1 dex across a wide range of morphological types and stellar masses. This agreement is remarkable, as the H α luminosity is dependent on accurate star formation rates, dust attenuation, and stellar metallicities. The model also accurately predicts dust-sensitive Balmer decrements, spectroscopic stellar metallicities, polycyclic aromatic hydrocarbon mass fractions, and the age- and metallicity-sensitive features D{sub n}4000 and H δ . Although the model passes all these tests, we caution that we have not yet assessed its performance at higher redshift or the accuracy of recovered stellar masses.« less

  3. Inferring probabilistic stellar rotation periods using Gaussian processes

    NASA Astrophysics Data System (ADS)

    Angus, Ruth; Morton, Timothy; Aigrain, Suzanne; Foreman-Mackey, Daniel; Rajpaul, Vinesh

    2018-02-01

    Variability in the light curves of spotted, rotating stars is often non-sinusoidal and quasi-periodic - spots move on the stellar surface and have finite lifetimes, causing stellar flux variations to slowly shift in phase. A strictly periodic sinusoid therefore cannot accurately model a rotationally modulated stellar light curve. Physical models of stellar surfaces have many drawbacks preventing effective inference, such as highly degenerate or high-dimensional parameter spaces. In this work, we test an appropriate effective model: a Gaussian Process with a quasi-periodic covariance kernel function. This highly flexible model allows sampling of the posterior probability density function of the periodic parameter, marginalizing over the other kernel hyperparameters using a Markov Chain Monte Carlo approach. To test the effectiveness of this method, we infer rotation periods from 333 simulated stellar light curves, demonstrating that the Gaussian process method produces periods that are more accurate than both a sine-fitting periodogram and an autocorrelation function method. We also demonstrate that it works well on real data, by inferring rotation periods for 275 Kepler stars with previously measured periods. We provide a table of rotation periods for these and many more, altogether 1102 Kepler objects of interest, and their posterior probability density function samples. Because this method delivers posterior probability density functions, it will enable hierarchical studies involving stellar rotation, particularly those involving population modelling, such as inferring stellar ages, obliquities in exoplanet systems, or characterizing star-planet interactions. The code used to implement this method is available online.

  4. VizieR Online Data Catalog: LAMOST candidate members of star clusters (Xiang+, 2015)

    NASA Astrophysics Data System (ADS)

    Xiang, M. S.; Liu, X. W.; Yuan, H. B.; Huang, Y.; Huo, Z. Y.; Zhang, H. W.; Chen, B. Q.; Zhang, H. H.; Sun, N. C.; Wang, C.; Zhao, Y. H.; Shi, J. R.; Luo, A. L.; Li, G. P.; Wu, Y.; Bai, Z. R.; Zhang, Y.; Hou, Y. H.; Yuan, H. L.; Li, G. W.; Wei, Z.

    2015-08-01

    In this work, we describe the algorithms and implementation of LSP3, the LAMOST Stellar Parameter Pipeline at Peking University, a pipeline developed to determine the stellar parameters (radial velocity Vr, effective temperature Teff, surface gravity logg and metallicity [Fe/H]) from LAMOST spectra based on a template-matching technique. Following the data policy of LAMOST surveys, the data as well as the LSP3 pipeline will be public released as value-added products of the first data release of LAMOST (LAMOST DR1; Bai et al., 2015, A&A submitted), currently scheduled in 2014 December and can be accessed via http://lamost973.pku.edu.cn/site/node/4, along with a description file. (1 data file).

  5. Simulating the environment around planet-hosting stars. II. Stellar winds and inner astrospheres

    NASA Astrophysics Data System (ADS)

    Alvarado-Gómez, J. D.; Hussain, G. A. J.; Cohen, O.; Drake, J. J.; Garraffo, C.; Grunhut, J.; Gombosi, T. I.

    2016-10-01

    We present the results of a comprehensive numerical simulation of the environment around three exoplanet-host stars (HD 1237, HD 22049, and HD 147513). Our simulations consider one of the latest models currently used for space weather studies in the Heliosphere, with turbulent Alfvén wave dissipation as the source of coronal heating and stellar wind acceleration. Large-scale magnetic field maps, recovered with two implementations of the tomographic technique of Zeeman-Doppler imaging, serve to drive steady-state solutions in each system. This paper contains the description of the stellar wind and inner astrosphere, while the coronal structure was discussed in a previous paper. The analysis includes the magneto-hydrodynamical properties of the stellar wind, the associated mass and angular momentum loss rates, as well as the topology of the astrospheric current sheet in each system. A systematic comparison among the considered cases is performed, including two reference solar simulations covering activity minimum and maximum. For HD 1237, we investigate the interactions between the structure of the developed stellar wind, and a possible magnetosphere around the Jupiter-mass planet in this system. We find that the process of particle injection into the planetary atmosphere is dominated by the density distribution rather than the velocity profile of the stellar wind. In this context, we predict a maximum exoplanetary radio emission of 12 mJy at 40 MHz in this system, assuming the crossing of a high-density streamer during periastron passage. Furthermore, in combination with the analysis performed in the first paper of this study, we obtain for the first time a fully simulated mass loss-activity relation. This relation is compared and discussed in the context of the previously proposed observational counterpart, derived from astrospheric detections. Finally, we provide a characterisation of the global 3D properties of the stellar wind of these systems, at the inner edges of their habitable zones.

  6. Observational constraints on the inter-binary stellar flare hypothesis for the gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Rao, A. R.; Vahia, M. N.

    1994-01-01

    The Gamma Ray Observatory/Burst and Transient Source Experiment (GRO/BATSE) results on the Gamma Ray Bursts (GRBs) have given an internally consistent set of observations of about 260 GRBs which have been released for analysis by the BATSE team. Using this database we investigate our earlier suggestion (Vahia and Rao, 1988) that GRBs are inter-binary stellar flares from a group of objects classified as Magnetically Active Stellar Systems (MASS) which includes flare stars, RS CVn binaries and cataclysmic variables. We show that there exists an observationally consistent parameter space for the number density, scale height and flare luminosity of MASS which explains the complete log(N) - log(P) distribution of GRBs as also the observed isotropic distribution. We further use this model to predict anisotropy in the GRB distribution at intermediate luminosities. We make definite predictions under the stellar flare hypothesis that can be tested in the near future.

  7. Spectral synthesis in the ultraviolet. II - Stellar populations and star formation in blue compact galaxies

    NASA Technical Reports Server (NTRS)

    Fanelli, Michael N.; O'Connell, Robert W.; Thuan, Trinh X.

    1988-01-01

    An initial attempt to apply optimizing spectral synthesis techniques to the far-UV spectra of blue compact galaxies (BCGs) is presented. The far-UV absorption-line spectra of the galaxies are clearly composite, with the signatures of the main-sequence types between O3 and mid-A. Most of the low-ionization absorption lines have a stellar origin. The Si IV and C IV features in several objects have P Cygni profiles. In Haro I the strength of Si IV indicates a significant blue supergiant population. The metal-poor blue compact dwarf Mrk 209 displays weak absorption lines, evidence that the stellar component has the same low metallicity as observed in the ionized gas. Good fits to the data are obtained the technique of optimizing population synthesis. The solutions yield stellar luminosity functions which display large discontinuities, indicative of discrete star formation episodes or bursts. The amount of UV extinction is low.

  8. A new technique for calculations of binary stellar evolution, with application to magnetic braking

    NASA Technical Reports Server (NTRS)

    Rappaport, S.; Joss, P. C.; Verbunt, F.

    1983-01-01

    The development of appropriate computer programs has made it possible to conduct studies of stellar evolution which are more detailed and accurate than the investigations previously feasible. However, the use of such programs can also entail some serious drawbacks which are related to the time and expense required for the work. One approach for overcoming these drawbacks involves the employment of simplified stellar evolution codes which incorporate the essential physics of the problem of interest without attempting either great generality or maximal accuracy. Rappaport et al. (1982) have developed a simplified code to study the evolution of close binary stellar systems composed of a collapsed object and a low-mass secondary. The present investigation is concerned with a more general, but still simplified, technique for calculating the evolution of close binary systems with collapsed binaries and mass-losing secondaries.

  9. First planet confirmation with the exoplanet tracker

    NASA Astrophysics Data System (ADS)

    van Eyken, Julian C.; Ge, Jian C.; Mahadevan, Suvrath; DeWitt, Curtis; Ren, Deqing

    2003-11-01

    The Exoplanet Tracker (ET) is a new concept of instrument for measuring stellar radial velocity variations. ET is based on a dispersed fixed-delay interferometer, a combination of Michelson interferometer and medium resolution (R~6700) spectrograph which overlays interferometer fringes on a long-slit stellar spectrum. By measuring shifts in the fringes rather than the Doppler shifts in the absorption lines themselves, we are able to make accurate stellar radial velocity measurements with a high throughput and low cost instrument. The single-order operation of the instrument can also in principle allow multi-object observations. We plan eventually to conduct deep large scale surveys for extra-solar planets using this technique. We present confirmation of the planetary companion to 51Peg from our first stellar observations at the Kitt Peak 2.1m telescope, showing results consistent with previous observations. We outline the fundamentals of the instrument, and summarize our current progress in terms of accuracy and throughput.

  10. Constructing and Monitoring the Infrared SED of the First Known Recent Stellar Merger

    NASA Astrophysics Data System (ADS)

    McCollum, Bruce; Laine, Seppo; Bruhweiler, Frederick; Rottler, Lee

    2012-12-01

    Stellar mergers have long been thought to be astrophysically important to the evolution and global properties of dense stellar aggregates and even open clusters. However, the study of this phenomenon has until now been severely impeded by the lack of any definite, recent merger with which to compare models. It was recently realized that a 2008 nova was in fact a contact binary which erupted when the two stars finally merged. We have obtained post-merger infrared observations which show a large IR excess and a nonstellar SED which have changed subsantially over time, and near-IR emission lines from shocked material. This object is an important opportunity to learn about the nature and time evolution of recent merger products, and to assemble a unique data set which will be used for many years as a basis for modeling stellar mergers.

  11. On the origin of bursts in blue compact dwarf galaxies: clues from kinematics and stellar populations

    NASA Astrophysics Data System (ADS)

    Koleva, M.; De Rijcke, S.; Zeilinger, W. W.; Verbeke, R.; Schroyen, J.; Vermeylen, L.

    2014-06-01

    Blue compact dwarf galaxies (BCDs) form stars at, for their sizes, extraordinarily high rates. In this paper, we study what triggers this starburst and what is the fate of the galaxy once its gas fuel is exhausted. We select four BCDs with smooth outer regions, indicating them as possible progenitors of dwarf elliptical galaxies. We have obtained photometric and spectroscopic data with the FORS and ISAAC instruments on the VLT. We analyse their infrared spectra using a full spectrum fitting technique, which yields the kinematics of their stars and ionized gas together with their stellar population characteristics. We find that the stellar velocity to velocity dispersion ratio ((v/σ)⋆) of our BCDs is of the order of 1.5, similar to that of dwarf elliptical galaxies. Thus, those objects do not require significant (if any) loss of angular momentum to fade into early-type dwarfs. This finding is in discordance with previous studies, which however compared the stellar kinematics of dwarf elliptical galaxies with the gaseous kinematics of star-forming dwarfs. The stellar velocity fields of our objects are very disturbed and the star formation regions are often kinematically decoupled from the rest of the galaxy. These regions can be more or less metal rich with respect to the galactic body and sometimes they are long lived. These characteristics prevent us from pinpointing a unique trigger of the star formation, even within the same galaxy. Gas impacts, mergers, and in-spiraling gas clumps are all possible star formation igniters for our targets.

  12. New T Tauri stars in Chamaeleon I and Chamaeleon II

    NASA Technical Reports Server (NTRS)

    Hartigan, Patrick

    1993-01-01

    A new objective prism survey of the entire Chamaeleon I dark cloud and 2/3 of the Chamaeleon II cloud has uncovered 26 new H-alpha emission line objects that were missed by previous H-alpha plate surveys. The new H-alpha emission line objects have similar IR colors and spatial distributions to the known T Tauri stars in these dark clouds, and could represent the very low mass end of the stellar population in these clouds or an older, less active component to the usual classical T Tauri star population. The new H-alpha survey identified 70 percent of the total known Young Stellar Objects (YSOs) in Cha I, compared with 35 percent for IRAS, and 25 percent from the Einstein X-ray survey. Ten of the new objects are weak-lined stars, with H-alpha equivalent widths less than 10 A. Weak-lined T Tauri stars make up about half of the total population of young stars in the Chamaeleon I cloud, a proportion similar to the Taurus-Auriga cloud. Presented are coordinates, finding charts, and optical and IR photometry of the new emission-line objects.

  13. Auto-consistent test of Galaxy star formation histories derived from resolved stellar population and integral spectroscopy

    NASA Astrophysics Data System (ADS)

    Rodrigues, M.; Patricio, V.; Rothberg, B.; Sanchez-Janssen, R.; Vale Asari, N.

    We present the first results of our observational project 'Starfish' (STellar Population From Integrated Spectrum). The goal of this project is to calibrate, for the first time, the properties of stellar populations derived from integrated spectra with the same properties derived from direct imaging of stellar populations in the same set of galaxies. These properties include the star-formation history (SFH), stellar mass, age, and metallicity. To date, such calibrations have been demonstrated only in star clusters, globular clusters with single stellar populations, not in complex and composite objects such as galaxies. We are currently constructing a library of integrated spectra obtained from a sample of 38 nearby dwarf galaxies obtained with GEMINI/GMOS-N&S (25h) and VLT/VIMOS-IFU (43h). These are to be compared with color magnitude diagrams (CMDs) of the same galaxies constructed from archival HST imaging sensitive to at least 1.5 magnitudes below the tip of the red giant branch. From this comparison we will assess the systematics and uncertainties from integrated spectral techniques. The spectra library will be made publicly available to the community via a dedicated web-page and Vizier database. This dataset will provide a unique benchmark for testing fitting procedures and stellar population models for both nearby and distant galaxies. http://www.sc.eso.org/˜marodrig/Starfish/

  14. The peculiar dipping events in the disc-bearing young-stellar object EPIC 204278916

    NASA Astrophysics Data System (ADS)

    Scaringi, S.; Manara, C. F.; Barenfeld, S. A.; Groot, P. J.; Isella, A.; Kenworthy, M. A.; Knigge, C.; Maccarone, T. J.; Ricci, L.; Ansdell, M.

    2016-12-01

    EPIC 204278916 has been serendipitously discovered from its K2 light curve that displays irregular dimmings of up to 65 per cent for ≈25 consecutive days out of 78.8 d of observations. For the remaining duration of the observations, the variability is highly periodic and attributed to stellar rotation. The star is a young, low-mass (M-type) pre-main-sequence star with clear evidence of a resolved tilted disc from Atacama Large Millimeter/submillimeter Array (ALMA) observations. We examine the K2 light curve in detail and hypothesize that the irregular dimmings are caused by either a warped inner disc edge or transiting cometary-like objects in either circular or eccentric orbits. The explanations discussed here are particularly relevant for other recently discovered young objects with similar absorption dips.

  15. Unidentified point sources in the IRAS minisurvey

    NASA Technical Reports Server (NTRS)

    Houck, J. R.; Soifer, B. T.; Neugebauer, G.; Beichman, C. A.; Aumann, H. H.; Clegg, P. E.; Gillett, F. C.; Habing, H. J.; Hauser, M. G.; Low, F. J.

    1984-01-01

    Nine bright, point-like 60 micron sources have been selected from the sample of 8709 sources in the IRAS minisurvey. These sources have no counterparts in a variety of catalogs of nonstellar objects. Four objects have no visible counterparts, while five have faint stellar objects visible in the error ellipse. These sources do not resemble objects previously known to be bright infrared sources.

  16. A search for N-type galaxies

    NASA Technical Reports Server (NTRS)

    Jefferies, J. T.

    1971-01-01

    A large number of distant clusters of galaxies was examined for the presence of a bright compact galaxy or blue stellar object. Nearly 600 square degrees of sky were searched using glass copies of the National Geographic Society-Palomar Observatory Sky Survey plates, and over 20 fields were selected for observation. The objects were examined for infrared and ultraviolet excesses, using wideband filter photography and spectroscopy. Initial findings include a faint, distant cluster of galaxies near the quasi-stellar radio source 4C 37.43 with a red shift of 0.370. One of these galaxies has an emission line at 6895 A, indicating a possible red shift of 0.377 of the 5007 A line of (0 III).

  17. NIR integral field spectroscopy of high mass young stellar objects

    NASA Astrophysics Data System (ADS)

    Murakawa, K.; Lumsden, S. L.; Oudmaijer, R. D.; Davies, B.; Hoare, M. G.

    2013-03-01

    We present K-band Integral Field Spectroscopy of six high mass young stellar objects (IRAS~18151-1208, AFGL~2136, S106~IRS4, V645 Cyg, IRAS~19065+0526, and G082.5682+ 00.4040) obtained using the adaptive optics assisted NIFS instrument mounted on the Gemini North telescope. The targets are chosen from the Red MSX Source survey led by University of Leeds. The data show the spectral features of Brγ, H2, and gas phase CO emissions and absorptions with a spectral resolution of R ≈ 5500, which allow a three-dimensional spectro-astrometric analysis of the line emissions. We discuss the results of the ionized jets and winds, and rotating CO torus.

  18. Stellar kinematics and dark matter in dwarf galaxies

    NASA Astrophysics Data System (ADS)

    Battaglia, Giuseppina

    2015-08-01

    In this review I will tour through the most recent findings on the internal kinematic properties of Local Group dwarf galaxies, as determined from extensive spectroscopic surveys of their stellar component.I will also discuss the current status on determinations of the dark matter content and distribution in these objects, with particular focus on the Milky Way dwarf spheroidals, for which the available data-sets allow the application of sophisticated mass modeling techniques.

  19. Simulating Convection in Stellar Envelopes

    NASA Astrophysics Data System (ADS)

    Tanner, Joel

    2014-01-01

    Understanding convection in stellar envelopes, and providing a mathematical description of it, would represent a substantial advance in stellar astrophysics. As one of the largest sources of uncertainty in stellar models, existing treatments of convection fail to account for many of the dynamical effects of convection, such as turbulent pressure and asymmetry in the velocity field. To better understand stellar convection, we must be able to study and examine it in detail, and one of the best tools for doing so is numerical simulation. Near the stellar surface, both convective and radiative process play a critical role in determining the structure and gas dynamics. By following these processes from first principles, convection can be simulated self-consistently and accurately, even in regions of inefficient energy transport where existing descriptions of convection fail. Our simulation code includes two radiative transfer solvers that are based on different assumptions and approximations. By comparing simulations that differ only in their respective radiative transfer methods, we are able to isolate the effect that radiative efficiency has on the structure of the superadiabatic layer. We find the simulations to be in good general agreement, but they show distinct differences in the thermal structure in the superadiabatic layer and atmosphere. Using the code to construct a grid of three-dimensional radiation hydrodynamic simulations, we investigate the link between convection and various chemical compositions. The stellar parameters correspond to main-sequence stars at several surface gravities, and span a range in effective temperatures (4500 < Teff < 6400). Different chemical compositions include four metallicities (Z = 0.040, 0.020, 0.010, 0.001), three helium abundances (Y = 0.1, 0.2, 0.3) and several levels of alpha-element enhancement. Our grid of simulations shows that various convective properties, such as velocity and the degree of superadiabaticity, are sensitive to changes in opacity which are in response to adjustments to the metallicity and helium abundance. We find that increasing the metallicity forces the location of the transition region to lower densities and pressures, and results in larger mean and turbulent velocities throughout the superadiabatic region. We also quantify the degree of convective overshoot in the atmosphere, and show that it increases with metallicity as well. The signature of helium differs from that of metallicity in the manner in which the photospheric velocity distribution is affected. We also find that helium abundance and surface gravity behave largely in similar ways, but differ in the way they affect the mean molecular weight. A simple model for spectral line formation suggests that the bisectors and absolute Doppler shifts of spectral lines depend on the helium abundance. We look at the effect of alpha-element enhancement and find that it has a considerably smaller effect on the convective dynamics in the superadiabatic layer compared to that of helium abundance. Improving the treatment of convection in stellar models remains one of the primary applications of RHD simulations. A simple and direct way to introduce the effect of 3D convection into 1D stellar models is through the surface boundary condition. Usually the atmospheric structure of a stellar model is defined beforehand in the form of a T-tau relation, and is kept fixed at chemical compositions and stages of evolution. Extracting mean atmospheric stratifications from simulations provides a means of introducing surface boundary conditions to stellar models that self-consistently include the effects of realistic convection and overshoot. We apply data from simulations to stellar models in this manner to measure how realistic atmospheric stratifications relate to the value of the mixing length parameter in calibrated stellar models. Moving beyond improving the surface boundary condition, we also explore a method for calibrating the mixing length parameter, which is relevant for improving the adiabatic structure of sub-photospheric convection. Since the MLT treatment of convection defines the thermal structure of the atmosphere and SAL arbitrarily, one strategy for calibrating the mixing length parameter is to tune it so that it matches the thermodynamics of the simulations. In particular, we consider adjusting the mixing length parameter such that the specific entropy of the model matches that of an equivalent simulation eliminates the need to arbitrarily set the parameter, and in principle will produce stellar models with more accurate radii. By examining simulations along contours in the log(g)-log(Teff) plane that correspond to the convective envelope adiabats, the variation in convective properties can be reduced to a simplified form that is more convenient for use in stellar models.

  20. A direct imaging search for close stellar and sub-stellar companions to young nearby stars

    NASA Astrophysics Data System (ADS)

    Vogt, N.; Mugrauer, M.; Neuhäuser, R.; Schmidt, T. O. B.; Contreras-Quijada, A.; Schmidt, J. G.

    2015-01-01

    A total of 28 young nearby stars (ages {≤ 60} Myr) have been observed in the K_s-band with the adaptive optics imager Naos-Conica of the Very Large Telescope at the Paranal Observatory in Chile. Among the targets are ten visual binaries and one triple system at distances between 10 and 130 pc, all previously known. During a first observing epoch a total of 20 faint stellar or sub-stellar companion-candidates were detected around seven of the targets. These fields, as well as most of the stellar binaries, were re-observed with the same instrument during a second epoch, about one year later. We present the astrometric observations of all binaries. Their analysis revealed that all stellar binaries are co-moving. In two cases (HD 119022 AB and FG Aqr B/C) indications for significant orbital motions were found. However, all sub-stellar companion candidates turned out to be non-moving background objects except PZ Tel which is part of this project but whose results were published elsewhere. Detection limits were determined for all targets, and limiting masses were derived adopting three different age values; they turn out to be less than 10 Jupiter masses in most cases, well below the brown dwarf mass range. The fraction of stellar multiplicity and of the sub-stellar companion occurrence in the star forming regions in Chamaeleon are compared to the statistics of our search, and possible reasons for the observed differences are discussed. Based on observations made with ESO telescopes at Paranal Observatory under programme IDs 083.C-0150(B), 084.C-0364(A), 084.C-0364(B), 084.C-0364(C), 086.C-0600(A) and 086.C-0600(B).

  1. MASSIVE GALAXIES IN COSMOS: EVOLUTION OF BLACK HOLE VERSUS BULGE MASS BUT NOT VERSUS TOTAL STELLAR MASS OVER THE LAST 9 Gyr?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jahnke, Knud; Cisternas, Mauricio; Inskip, Katherine

    2009-12-01

    We constrain the ratio of black hole (BH) mass to total stellar mass of type-1 active galactic nuclei (AGNs) in the COSMOS survey at 1 < z < 2. For 10 AGNs at mean redshift z approx 1.4 with both Hubble Space Telescope (HST)/ACS and HST/NICMOS imaging data, we are able to compute the total stellar mass M {sub *,total}, based on rest-frame UV-to-optical host galaxy colors which constrain mass-to-light ratios. All objects have virial M {sub BH} estimates available from the COSMOS Magellan/IMACS and zCOSMOS surveys. We find within errors zero difference between the M {sub BH}-M {sub *,total}more » relation at z approx 1.4 and the M {sub BH}-M {sub *,bulge} relation in the local universe. Our interpretation is (1) if our objects were purely bulge-dominated, the M {sub BH}-M {sub *,bulge} relation has not evolved since z approx 1.4. However, (2) since we have evidence for substantial disk components, the bulges of massive galaxies (M {sub *,total} = 11.1 +- 0.3 or log M {sub BH} approx 8.3 +- 0.2) must have grown over the last 9 Gyr predominantly by redistribution of the disk into the bulge mass. Since all necessary stellar mass exists in galaxies at z = 1.4, no star formation or addition of external stellar material is required, but only a redistribution, e.g., induced by minor and major merging or through disk instabilities. Merging, in addition to redistributing mass in the galaxy, will add both BH and stellar/bulge mass, but does not change the overall final M {sub BH}/M {sub *,bulge} ratio. Since the overall cosmic stellar and BH mass buildup trace each other tightly over time, our scenario of bulge formation in massive galaxies is independent of any strong BH feedback and means that the mechanism coupling BH and bulge mass until the present is very indirect.« less

  2. Bow shocks in a newly discovered maser source in IRAS 20231+3440

    NASA Astrophysics Data System (ADS)

    Ogbodo, C. S.; Burns, R. A.; Handa, T.; Omodaka, T.; Nakagawa, A.; Nagayama, T.; Honma, M.; Chibueze, J. O.; Ubachukwu, A. A.; Eze, R. N. C.

    2017-08-01

    From measuring the annual parallax of water masers over 1.5 yr with VLBI Exploration of Radio Astrometry, we present the trigonometric parallax and corresponding distance of another newly identified water maser source in the region of IRAS 20231+3440 as π = 0.611 ± 0.022 mas and D = 1.64 ± 0.06 kpc, respectively. We measured the absolute proper motions of all the newly detected maser spots (30 spots) and presented two pictures describing the possible spatial distribution of the water maser as the morphology marks out an arc of masers whose average proper motion velocity in the jet direction was 14.26 km s-1. As revealed by the ALLWISE composite image and by applying the colour-colour method of young stellar objects (YSO) identification and classification on photometric archived data, we identified the driving source of the north maser group to be a class I, young stellar object. To further probe the nature of the progenitor, we used the momentum rate maximum value (1.2 × 10-4 M⊙ yr-1 km s-1) of the outflow to satisfy that the progenitor under investigation is a low-mass young stellar object concurrently forming alongside an intermediate-mass YSO ˜60 000 au (˜37 arcsec) away from it.

  3. Mining the Sloan Digital Sky Survey to trace the M-sigma correlation below 106 solar masses

    NASA Astrophysics Data System (ADS)

    Barth, A. J.; Greene, J. E.; Ho, L. C.

    2004-05-01

    Do dwarf galaxies and late-type spirals host central black holes with masses below 106 M⊙? Stellar-dynamical detections of black holes with such low masses are only possible for the very nearest galaxies, but in more distant objects the presence of a black hole can still be inferred if its accretion luminosity can be detected. NGC 4395 and POX 52 are two examples of Seyfert galaxies with black hole masses well below 106 M⊙, but very little is known about the demographics of such objects. We have searched the Sloan DR1 archives to identify Seyfert galaxies that are likely to have black hole masses below 106 M⊙, using the luminosity-radius relation and the broad-line widths to derive virial mass estimates for the black holes (Greene & Ho 2004). To examine the host galaxy properties, we have begun a program to measure their stellar velocity dispersions using the ESI spectrograph at Keck. Here we present preliminary results from this project, including 12 newly identified Seyfert galaxies having stellar velocity dispersions below 70 km s-1. The masses and velocity dispersions of these objects are consistent with an extrapolation of the local M--σ relation to masses below 106 M⊙.

  4. YSOVAR: MID-INFRARED VARIABILITY OF YOUNG STELLAR OBJECTS AND THEIR DISKS IN THE CLUSTER IRAS 20050+2720

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poppenhaeger, K.; Wolk, S. J.; Hora, J. L.

    2015-10-15

    We present a time-variability study of young stellar objects (YSOs) in the cluster IRAS 20050+2720, performed at 3.6 and 4.5 μm with the Spitzer Space Telescope; this study is part of the Young Stellar Object VARiability (YSOVAR) project. We have collected light curves for 181 cluster members over 60 days. We find a high variability fraction among embedded cluster members of ca. 70%, whereas young stars without a detectable disk display variability less often (in ca. 50% of the cases) and with lower amplitudes. We detect periodic variability for 33 sources with periods primarily in the range of 2–6 days.more » Practically all embedded periodic sources display additional variability on top of their periodicity. Furthermore, we analyze the slopes of the tracks that our sources span in the color–magnitude diagram (CMD). We find that sources with long variability time scales tend to display CMD slopes that are at least partially influenced by accretion processes, while sources with short variability timescales tend to display extinction-dominated slopes. We find a tentative trend of X-ray detected cluster members to vary on longer timescales than the X-ray undetected members.« less

  5. Looking for Galaxies in All the Right Places: A Search for Stellar Populations in ALFALFA’s Ultra-compact High Velocity Clouds

    NASA Astrophysics Data System (ADS)

    Janesh, William; Rhode, Katherine L.; Salzer, John J.; Janowiecki, Steven; Adams, Elizabeth; Haynes, Martha P.; Giovanelli, Riccardo; Cannon, John M.

    2018-01-01

    Nearby gas-rich dwarf galaxies are excellent laboratories for investigating the baryonic feedback processes that govern star formation and galaxy evolution in galaxies at the extreme end of the mass function. Detecting and studying such objects may help resolve the well-known tension between cosmological model predictions for low-mass dark matter halos and observations. The ALFALFA neutral hydrogen (Hi) survey has detected a sample of isolated ultra-compact high-velocity Hi clouds (UCHVCs) with kinematic properties that make them likely members of the Local Volume, but that have no optical counterparts in existing optical surveys. This UCHVC sample possesses Hi properties (at 1 Mpc, Hi masses of ~105-106 M⊙, Hi diameters of ~2-3 kpc, and dynamical masses of ~107-108 M⊙) similar to other known ultra-faint dwarf galaxies like Leo T. Following the discovery of Leo P, an extremely metal-poor, gas-rich star-forming dwarf galaxy associated with an ALFALFA UCHVC, we have initiated a campaign to obtain deep optical imaging of 56 UCHVCs using the wide field-of-view, high-resolution ODI camera on the WIYN 3.5-m telescope. Here we present a brief overview of our campaign to search for resolved stellar populations associated with the UCHVCs in our optical images, and initial results from our survey.After creating a stellar catalog from the pipeline-reduced and stacked ODI g- and i-band images, we apply a color-magnitude filter tuned for old, metal-poor stellar populations to select red giant branch stars at distances between 250 kpc and 2 Mpc. The spatial distribution of the stars selected by the filter is then smoothed, and overdensities in the fields are identified. Of the 22 targets analyzed to date, seven have associated stellar populations detected at a high confidence (92% to 99.9% significance). The detected objects have a range of distances (from 350 kpc to 1.6 Mpc) and have optical properties similar to those of ultra-faint dwarf galaxies. These objects have extreme Hi-to-stellar mass ratios, and given their isolation, may represent a progenitor population to the ultra-faint dwarfs. They also help constrain the conditions needed for star formation in the lowest-mass galaxies.

  6. Multi-wavelength Observations of Accreting Compact Objects

    NASA Astrophysics Data System (ADS)

    Hernandez Santisteban, Juan Venancio

    2016-11-01

    The study of compact binaries invokes core astrophysical concepts ranging from stellar and sub-stellar atmospheres and interiors, stellar and binary evolution to physics of accretion. All of these systems are hosts to a compact object a white dwarf, neutron star or black hole ???? which produces a wide variety of exotic and energetic phenomena across the full electromagnetic spectrum. In this thesis, I will make use of multi-wavelength observations ranging from far-ultraviolet to nearinfrared in order to investigate two main topics: a) the late evolution of cataclysmic variables, and b) the accreting state of transitional millisecond pulsars. Firstly, I analyse the Very Large Telescope X-Shooter time-resolved spectroscopy of the short orbital period cataclysmic variable, SDSS J1433+1011, in Chapter 2. The wide wavelength coverage allowed me to perform a detailed characterisation of the system, as well as a direct mass measurement of the brown dwarf companion. I show that the donor in SDSS J1433+1011 successfully transitioned from the stellar to sub-stellar regime, as predicted by evolutionary models. Further light-curve modelling allowed me to show that a low albedo as well as a low heat circulation efficiency is present in the atmosphere of the sub-stellar donor. In Chapter 3, I analyse data from large synoptic surveys, such as SDSS and PTF, to search for the predicted population of dead cataclysmic variables. Following the non-detection of dead CVs, I was able to estimate the space density (?0 < 2?10????5 pc????3) of this hidden population via a Monte Carlo simulation of the Galactic CV population. In Chapter 4, I present Hubble Space Telescope ultraviolet observations of the transitional millisecond pulsar PSR J1023+0038, during its latest accretion state. In combination with optical and near-infrared data, I show that a standard accretion disc does not reach the magnetosphere of the neutron star. Instead, the overall spectrum is consistent with a truncated disc at ? 2:3 ? 109 cm away from the compact object. Furthermore, the ultraviolet data shares remarkable similarities with the only accreting white dwarf in a propeller regime, AE Aqr. Finally, I summarise my results in Chapter 5 and provide future lines of research in accreting compact binaries based on this work.

  7. Star and Dust Formation Activities in AzTEC-3, a Starburst Galaxy at z = 5.3

    NASA Astrophysics Data System (ADS)

    Dwek, Eli; Staguhn, Johannes G.; Arendt, Richard G.; Capak, Peter L.; Kovacs, Attila; Benford, Dominic J.; Fixsen, Dale; Karim, Alexander; Leclercq, Samuel; Maher, Stephen F.; Moseley, Samuel H.; Schinnerer, Eva; Sharp, Elmer H.

    2011-09-01

    Analyses of high-redshift ultraluminous infrared (IR) galaxies traditionally use the observed optical to submillimeter spectral energy distribution (SED) and estimates of the dynamical mass as observational constraints to derive the star formation rate (SFR), the stellar mass, and age of these objects. An important observational constraint neglected in the analysis is the mass of dust giving rise to the IR emission. In this paper we add this constraint to the analysis of AzTEC-3. Adopting an upper limit to the mass of stars and a bolometric luminosity for this object, we construct different stellar and chemical evolutionary scenarios, constrained to produce the inferred dust mass and observed luminosity before the associated stellar mass exceeds the observational limit. We use the PÉGASE population synthesis code and a chemical evolution model to follow the evolution of the galaxy's SED and its stellar and dust masses as a function of galactic age for seven different stellar initial mass functions (IMFs). We find that the model with a Top Heavy IMF provided the most plausible scenario consistent with the observational constraints. In this scenario the dust formed over a period of ~200 Myr, with an SFR of ~500 M sun yr-1. These values for the age and SFR in AzTEC-3 are significantly higher and lower, respectively, from those derived without the dust mass constraint. However, this scenario is not unique, and others cannot be completely ruled out because of the prevailing uncertainties in the age of the galaxy, its bolometric luminosity, and its stellar and dust masses. A robust result of our models is that all scenarios require most of the radiating dust mass to have been accreted in molecular clouds. Our new procedure highlights the importance of a multiwavelength approach, and of the use of dust evolution models in constraining the age and the star formation activity and history in galaxies.

  8. STAR AND DUST FORMATION ACTIVITIES IN AzTEC-3, A STARBURST GALAXY AT z = 5.3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dwek, Eli; Staguhn, Johannes G.; Arendt, Richard G.

    2011-09-01

    Analyses of high-redshift ultraluminous infrared (IR) galaxies traditionally use the observed optical to submillimeter spectral energy distribution (SED) and estimates of the dynamical mass as observational constraints to derive the star formation rate (SFR), the stellar mass, and age of these objects. An important observational constraint neglected in the analysis is the mass of dust giving rise to the IR emission. In this paper we add this constraint to the analysis of AzTEC-3. Adopting an upper limit to the mass of stars and a bolometric luminosity for this object, we construct different stellar and chemical evolutionary scenarios, constrained to producemore » the inferred dust mass and observed luminosity before the associated stellar mass exceeds the observational limit. We use the PEGASE population synthesis code and a chemical evolution model to follow the evolution of the galaxy's SED and its stellar and dust masses as a function of galactic age for seven different stellar initial mass functions (IMFs). We find that the model with a Top Heavy IMF provided the most plausible scenario consistent with the observational constraints. In this scenario the dust formed over a period of {approx}200 Myr, with an SFR of {approx}500 M{sub sun} yr{sup -1}. These values for the age and SFR in AzTEC-3 are significantly higher and lower, respectively, from those derived without the dust mass constraint. However, this scenario is not unique, and others cannot be completely ruled out because of the prevailing uncertainties in the age of the galaxy, its bolometric luminosity, and its stellar and dust masses. A robust result of our models is that all scenarios require most of the radiating dust mass to have been accreted in molecular clouds. Our new procedure highlights the importance of a multiwavelength approach, and of the use of dust evolution models in constraining the age and the star formation activity and history in galaxies.« less

  9. The Two Components of the Evolved Massive Binary LZ Cephei: Testing the Effects of Binarity on Stellar Evolution

    NASA Technical Reports Server (NTRS)

    Mahy, L.; Martins, F.; Donati, J.-F.; Bouret, J.-C.

    2011-01-01

    We present an in-dep(h study of the two components of the binary system LZ Cep to constrain the effects of binarity on the evolution of massive stars. Methods. We analyzed a set of high-resolution, high signal-to-noise ratio optical spectra obtained over the orbital period of the system to perform a spectroscopic disentangling and derive an orbital solution. We subsequently determine the stellar properties of each component by means of an analysis with the CMFGEN atmosphere code. Finally, with the derived stellar parameters, we model the Hipparcos photometric light curve using the program NIGHTFALL to obtain the orbit inclination and the stellar masses. Results.LZ Cep is a O9III+ON9.7V binary. It is as a semi-detailed system in which either the primary or the secondary star almost fills up its Roche lobe. The dynamical masses are about 16.0 Stellar Mass (primary) and 6.5 Stellar Mass (secondary). The latter is lower than the typical mass of late-type O stars. The secondary component is chemically more evolved than the primary (which barely shows any sign of CNO processing), with strong helium and nitrogen enhancements as well as carbon and oxygen depletions. These properties (surface abundances and mass) are typical of Wolf-Rayet stars, although the spectral type is ON9.7V. The luminosity of the secondary is consistent with that of core He-burning objects. The preferred, tentative evolutionary scenario to explain abe observed properties involves mass transfer from the secondary - which was initially more massive- towards the primary. The secondary is now almost a core He-burning object, probably with only a thin envelope of H-rich and CNO processed material. A very inefficient mass transfer is necessary to explain the chemical appearance of the primary. Alternative scenarios are discussed but they are affected by greater uncertainties.

  10. Delayed Gratification Habitable Zones (DG-HZs): When Deep Outer Solar System Regions Become Balmy During Post-Main Sequence Stellar Evolution

    NASA Astrophysics Data System (ADS)

    Stern, S. A.

    2002-09-01

    Late in the Sun's evolution it, like all low and moderate mass stars, it will burn as a red giant, generating 1000s of solar luminosities for a few tens of millions of years. A dozen years ago this stage of stellar evolution was predicted to create observable sublimation signatures in systems where Kuiper Belts (KBs) are extant (Stern et al. 1990, Nature, 345, 305); recently, the SWAS spacecraft detected such systems (Melnick et al. 2001, 412, 160). During the red giant phase, the habitable zone of our solar system will lie in the region where Triton, Pluto-Charon, and KBOs orbit. Compared to the 1 AU habitable zone where Earth resided early in the solar system's history, this "delayed gratification habitable zone (DG-HZ)" will enjoy a far less biologically hazardous environment-- with far lower harmful UV radiation levels from the Sun, and a far quieter collisional environment. Objects like Triton, Pluto-Charon, and KBOs, which are known to be rich in both water and organics, will then become possible sites for biochemical and perhaps even biological evolution. The Sun's DG-HZ may only be of academic interest owing to its great separation from us in time. However, several 108 approximately solar-type Milky Way stars burn as luminous red giants today. Thus, if icy-organic objects are common in the 20-50 AU zones of these stars, as they are in our solar system (and as inferred in numerous main sequence stellar disk systems), then DG-HZs form a kind of niche habitable zone that is likely to be numerically common in the galaxy. I will show the calculated temporal evolution of DG-HZs around various stellar types using modern stellar evolution luminosity tracks, and then discuss various aspects of DG-HZs, including the effects of stellar pulsations and mass loss winds. This work was supported by NASA's Origins of Solar Systems Program.

  11. The growth of discs and bulges during hierarchical galaxy formation - II. Metallicity, stellar populations and dynamical evolution

    NASA Astrophysics Data System (ADS)

    Tonini, C.; Mutch, S. J.; Wyithe, J. S. B.; Croton, D. J.

    2017-03-01

    We investigate the properties of the stellar populations of model galaxies as a function of galaxy evolutionary history and angular momentum content. We use the new semi-analytic model presented in Tonini et al. This new model follows the angular momentum evolution of gas and stars, providing the base for a new star formation recipe, and treatment of the effects of mergers that depends on the central galaxy dynamical structure. We find that the new recipes have the effect of boosting the efficiency of the baryonic cycle in producing and recycling metals, as well as preventing minor mergers from diluting the metallicity of bulges and ellipticals. The model reproduces the stellar mass-stellar metallicity relation for galaxies above 1010 solar masses, including Brightest Cluster Galaxies. Model discs, galaxies dominated by instability-driven components, and merger-driven objects each stem from different evolutionary channels. These model galaxies therefore occupy different loci in the galaxy mass-size relation, which we find to be in accord with the ATLAS 3D classification of disc galaxies, fast rotators and slow rotators. We find that the stellar populations' properties depend on the galaxy evolutionary type, with more evolved stellar populations being part of systems that have lost or dissipated more angular momentum during their assembly history.

  12. A chronicle of galaxy mass assembly in the EAGLE simulation

    NASA Astrophysics Data System (ADS)

    Qu, Yan; Helly, John C.; Bower, Richard G.; Theuns, Tom; Crain, Robert A.; Frenk, Carlos S.; Furlong, Michelle; McAlpine, Stuart; Schaller, Matthieu; Schaye, Joop; White, Simon D. M.

    2017-01-01

    We analyse the mass assembly of central galaxies in the Evolution and Assembly of Galaxies and their Environments (EAGLE) hydrodynamical simulations. We build merger trees to connect galaxies to their progenitors at different redshifts and characterize their assembly histories by focusing on the time when half of the galaxy stellar mass was assembled into the main progenitor. We show that galaxies with stellar mass M* < 1010.5 M⊙ assemble most of their stellar mass through star formation in the main progenitor (`in situ' star formation). This can be understood as a consequence of the steep rise in star formation efficiency with halo mass for these galaxies. For more massive galaxies, however, an increasing fraction of their stellar mass is formed outside the main progenitor and subsequently accreted. Consequently, while for low-mass galaxies, the assembly time is close to the stellar formation time, the stars in high-mass galaxies typically formed long before half of the present-day stellar mass was assembled into a single object, giving rise to the observed antihierarchical downsizing trend. In a typical present-day M* ≥ 1011 M⊙ galaxy, around 20 per cent of the stellar mass has an external origin. This fraction decreases with increasing redshift. Bearing in mind that mergers only make an important contribution to the stellar mass growth of massive galaxies, we find that the dominant contribution comes from mergers with galaxies of mass greater than one-tenth of the main progenitor's mass. The galaxy merger fraction derived from our simulations agrees with recent observational estimates.

  13. Cosmic-Ray Propagation in Turbulent Spiral Magnetic Fields Associated with Young Stellar Objects

    NASA Astrophysics Data System (ADS)

    Fatuzzo, Marco; Adams, Fred C.

    2018-04-01

    External cosmic rays impinging upon circumstellar disks associated with young stellar objects provide an important source of ionization, and, as such, play an important role in disk evolution and planet formation. However, these incoming cosmic rays are affected by a variety of physical processes internal to stellar/disk systems, including modulation by turbulent magnetic fields. Globally, these fields naturally provide both a funneling effect, where cosmic rays from larger volumes are focused into the disk region, and a magnetic mirroring effect, where cosmic rays are repelled due to the increasing field strength. This paper considers cosmic-ray propagation in the presence of a turbulent spiral magnetic field, analogous to that produced by the solar wind. The interaction of this wind with the interstellar medium defines a transition radius, analogous to the heliopause, which provides the outer boundary to this problem. We construct a new coordinate system where one coordinate follows the spiral magnetic field lines and consider magnetic perturbations to the field in the perpendicular directions. The presence of magnetic turbulence replaces the mirroring points with a distribution of values and moves the mean location outward. Our results thus help quantify the degree to which cosmic-ray fluxes are reduced in circumstellar disks by the presence of magnetic field structures that are shaped by stellar winds. The new coordinate system constructed herein should also be useful in other astronomical applications.

  14. AN OFF-CENTERED ACTIVE GALACTIC NUCLEUS IN NGC 3115

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menezes, R. B.; Steiner, J. E.; Ricci, T. V., E-mail: robertobm@astro.iag.usp.br

    2014-11-20

    NGC 3115 is an S0 galaxy that has always been considered to have a pure absorption-line spectrum. Some recent studies have detected a compact radio-emitting nucleus in this object, coinciding with the photometric center and with a candidate for the X-ray nucleus. This is evidence of the existence of a low-luminosity active galactic nucleus (AGN) in the galaxy, although no emission line has ever been observed. We report the detection of an emission-line spectrum of a type 1 AGN in NGC 3115, with an Hα luminosity of L {sub Hα} = (4.2 ± 0.4) × 10{sup 37} erg s{sup –1}. Our analysismore » revealed that this AGN is located at a projected distance of ∼0.''29 ± 0.''05 (corresponding to ∼14.3 ± 2.5 pc) from the stellar bulge center, which is coincident with the kinematic center of this object's stellar velocity map. The black hole corresponding to the observed off-centered AGN may form a binary system with a black hole located at the stellar bulge center. However, it is also possible that the displaced black hole is the merged remnant of the binary system coalescence, after the ''kick'' caused by the asymmetric emission of gravitational waves. We propose that certain features in the stellar velocity dispersion map are the result of perturbations caused by the off-centered AGN.« less

  15. YOUNG STELLAR CLUSTERS CONTAINING MASSIVE YOUNG STELLAR OBJECTS IN THE VVV SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borissova, J.; Alegría, S. Ramírez; Kurtev, R.

    The purpose of this research is to study the connections of the global properties of eight young stellar clusters projected in the Vista Variables in the Via Lactea (VVV) ESO Large Public Survey disk area and their young stellar object (YSO) populations. The analysis is based on the combination of spectroscopic parallax-based reddening and distance determinations with main-sequence and pre-main-sequence ishochrone fitting to determine the basic parameters (reddening, age, distance) of the sample clusters. The lower mass limit estimations show that all clusters are low or intermediate mass (between 110 and 1800  M {sub ⊙}), the slope Γ of themore » obtained present-day mass functions of the clusters is close to the Kroupa initial mass function. The YSOs in the cluster’s surrounding fields are classified using low resolution spectra, spectral energy distribution fits with theoretical predictions, and variability, taking advantage of multi-epoch VVV observations. All spectroscopically confirmed YSOs (except one) are found to be massive (more than 8 M {sub ⊙}). Using VVV and GLIMPSE color–color cuts we have selected a large number of new YSO candidates, which are checked for variability and 57% are found to show at least low-amplitude variations. In few cases it was possible to distinguish between YSO and AGB classifications on the basis of light curves.« less

  16. Accretion Signatures on Massive Young Stellar Objects

    NASA Astrophysics Data System (ADS)

    Navarete, F.; Damineli, A.; Barbosa, C. L.; Blum, R. D.

    2015-01-01

    We present preliminary results from a survey of molecular H2 (2.12 μm) emission in massive young stellar objects (MYSO) candidates selected from the Red MSX Source survey. We observed 354 MYSO candidates through the H2 S(1) 1-0 transition (2.12 μm) and an adjacent continuum narrow-band filters using the Spartan/SOAR and WIRCam/CFHT cameras. The continuum-subtracted H2 maps were analyzed and extended H2 emission was found in 50% of the sample (178 sources), and 38% of them (66) have polar morphology, suggesting collimated outflows. The polar-like structures are more likely to be driven on radio-quiet sources, indicating that these structures occur during the pre-ultra compact H ii phase. We analyzed the continuum images and found that 54% (191) of the sample displayed extended continuum emission and only ~23% (80) were associated to stellar clusters. The extended continuum emission is correlated to the H2 emission and those sources within stellar clusters does display diffuse H2 emission, which may be due to fluorescent H2 emission. These results support the accretion scenario for massive star formation, since the merging of low-mass stars would not produce jet-like structures. Also, the correlation between jet-like structures and radio-quiet sources indicates that higher inflow rates are required to form massive stars in a typical timescale less than 105 years.

  17. Strong bimodality in the host halo mass of central galaxies from galaxy-galaxy lensing

    NASA Astrophysics Data System (ADS)

    Mandelbaum, Rachel; Wang, Wenting; Zu, Ying; White, Simon; Henriques, Bruno; More, Surhud

    2016-04-01

    We use galaxy-galaxy lensing to study the dark matter haloes surrounding a sample of locally brightest galaxies (LBGs) selected from the Sloan Digital Sky Survey. We measure mean halo mass as a function of the stellar mass and colour of the central galaxy. Mock catalogues constructed from semi-analytic galaxy formation simulations demonstrate that most LBGs are the central objects of their haloes, greatly reducing interpretation uncertainties due to satellite contributions to the lensing signal. Over the full stellar mass range, 10.3 < log [M*/M⊙] < 11.6, we find that passive central galaxies have haloes that are at least twice as massive as those of star-forming objects of the same stellar mass. The significance of this effect exceeds 3σ for log [M*/M⊙] > 10.7. Tests using the mock catalogues and on the data themselves clarify the effects of LBG selection and show that it cannot artificially induce a systematic dependence of halo mass on LBG colour. The bimodality in halo mass at fixed stellar mass is reproduced by the astrophysical model underlying our mock catalogue, but the sign of the effect is inconsistent with recent, nearly parameter-free age-matching models. The sign and magnitude of the effect can, however, be reproduced by halo occupation distribution models with a simple (few-parameter) prescription for type dependence.

  18. The detection of a discrete outflow from the young stellar object GL 490

    NASA Technical Reports Server (NTRS)

    Mitchell, G. F.; Allen, M.; Beer, R.; Dekany, R.; Huntress, W.

    1988-01-01

    A high-resolution (0.059/cm) M-band spectrum has been obtained of the embedded young stellar object GL490. The spectrum shows interstellar absorption in the fundamental vibrational band, v = 1-0, of (C-12)O. Two strong and narrow (10 km/s) velocity components are present. One, at the velocity of GL490 (vLSR = -16 km/s), is likely gas in the molecular cloud within which GL490 is embedded. The other component is blueshifted by 13 km/s relative to GL490. An observation of emission from the J = 3-2 transition of HCO(+) using a 20-arcsec beam supports the view that the blueshifted gas is near the central object. The -29-km/s feature is interpreted as a recently ejected shell. It is conjectured that the extended outflows of cold molecular gas seen by millimeter CO emission observations are driven by sporadic outbursts rather than by continuous flows from the central object.

  19. The inner structure of very massive elliptical galaxies: implications for the inside-out formation mechanism of z˜ 2 galaxies

    NASA Astrophysics Data System (ADS)

    Tiret, O.; Salucci, P.; Bernardi, M.; Maraston, C.; Pforr, J.

    2011-03-01

    We analyse a sample of 23 supermassive elliptical galaxies (central velocity dispersion larger than 330 km s-1) drawn from the Sloan Digital Sky Survey. For each object, we estimate the dynamical mass from the light profile and central velocity dispersion, and compare it with the stellar mass derived from stellar population models. We show that these galaxies are dominated by luminous matter within the radius for which the velocity dispersion is measured. We find that the sizes and stellar masses are tightly correlated, with Re∝M1.1*, making the mean density within the de Vaucouleurs radius a steeply declining function of M*: ρe∝M-2.2*. These scalings are easily derived from the virial theorem if one recalls that this sample has essentially fixed (but large) σ0. In contrast, the mean density within 1 kpc is almost independent of M*, at a value that is in good agreement with recent studies of z˜ 2 galaxies. The fact that the mass within 1 kpc has remained approximately unchanged suggests assembly histories that were dominated by minor mergers - but we discuss why this is not the unique way to achieve this. Moreover, the total stellar mass of the objects in our sample is typically a factor of ˜5 larger than that in the high-redshift (z˜ 2) sample, an amount which seems difficult to achieve. If our galaxies are the evolved objects of the recent high-redshift studies, then we suggest that major mergers are required at z≳ 1.5 and that minor mergers become the dominant growth mechanism for massive galaxies at z≲ 1.5.

  20. On the Nature of the Enigmatic Object IRAS 19312+1950: A Rare Phase of Massive Star Formation?

    NASA Technical Reports Server (NTRS)

    Cordiner, M. A.; Boogert, A. C. A.; Charnley, S. B.; Justtanont, K.; Cox, N. L. J.; Smith, R. G.; Tielens, A. G. G. M.; Wirstrom, E. S.; Milam, S. N.; Keane, J. V.

    2016-01-01

    IRAS?19312+1950 is a peculiar object that has eluded firm characterization since its discovery, with combined maser properties similar to an evolved star and a young stellar object (YSO). To help determine its true nature, we obtained infrared spectra of IRAS?19312+1950 in the range 5-550 microns using the Herschel and Spitzer space observatories. The Herschel PACS maps exhibit a compact, slightly asymmetric continuum source at 170 microns, indicative of a large, dusty circumstellar envelope. The far-IR CO emission line spectrum reveals two gas temperature components: approx. = 0.22 Stellar Mass of material at 280+/-18 K, and ˜1.6 Me of material at 157+/-3 K. The OI 63 micron line is detected on-source but no significant emission from atomic ions was found. The HIFI observations display shocked, high-velocity gas with outflow speeds up to 90 km/s along the line of sight. From Spitzer spectroscopy, we identify ice absorption bands due to H2O at 5.8 microns and CO2 at 15 microns. The spectral energy distribution is consistent with a massive, luminous (approx. 2 × 10(exp 4) Stellar Luminosity) central source surrounded by a dense, warm circumstellar disk and envelope of total mass approx. 500-700 Stellar Mass with large bipolar outflow cavities. The combination of distinctive far-IR spectral features suggest that IRAS19312+1950 should be classified as an accreting, high-mass YSO rather than an evolved star. In light of this reclassification, IRAS19312+1950 becomes only the fifth high-mass protostar known to exhibit SiO maser activity, and demonstrates that 18 cm OH maser line ratios may not be reliable observational discriminators between evolved stars and YSOs.

  1. ClassLess: A Comprehensive Database of Young Stellar Objects

    NASA Astrophysics Data System (ADS)

    Hillenbrand, Lynne A.; baliber, nairn

    2015-08-01

    We have designed and constructed a database intended to house catalog and literature-published measurements of Young Stellar Objects (YSOs) within ~1 kpc of the Sun. ClassLess, so called because it includes YSOs in all stages of evolution, is a relational database in which user interaction is conducted via HTML web browsers, queries are performed in scientific language, and all data are linked to the sources of publication. Each star is associated with a cluster (or clusters), and both spatially resolved and unresolved measurements are stored, allowing proper use of data from multiple star systems. With this fully searchable tool, myriad ground- and space-based instruments and surveys across wavelength regimes can be exploited. In addition to primary measurements, the database self consistently calculates and serves higher level data products such as extinction, luminosity, and mass. As a result, searches for young stars with specific physical characteristics can be completed with just a few mouse clicks. We are in the database population phase now, and are eager to engage with interested experts worldwide on local galactic star formation and young stellar populations.

  2. Selected Papers on Protoplanetary Disks

    NASA Technical Reports Server (NTRS)

    Bell, K. R.; Cassen, P. M.; Wasson, J. T.; Woolum, D. S.; Klahr, H. H.; Henning, Th.

    2004-01-01

    Three papers present studies of thermal balances, dynamics, and electromagnetic spectra of protoplanetary disks, which comprise gas and dust orbiting young stars. One paper addresses the reprocessing, in a disk, of photons that originate in the disk itself in addition to photons that originate in the stellar object at the center. The shape of the disk is found to strongly affect the redistribution of energy. Another of the three papers reviews an increase in the optical luminosity of the young star FU Orionis. The increase began in the year 1936 and similar increases have since been observed in other stars. The paper summarizes astronomical, meteoric, and theoretical evidence that these increases are caused by increases in mass fluxes through the inner portions of the protoplanetary disks of these stars. The remaining paper presents a mathematical-modeling study of the structures of protostellar accretion disks, with emphasis on limits on disk flaring. Among the conclusions reached in the study are that (1) the radius at which a disk becomes shadowed from its central stellar object depends on radial mass flow and (2) most planet formation has occurred in environments unheated by stellar radiation.

  3. Warm gas towards young stellar objects in Corona Australis. Herschel/PACS observations from the DIGIT key programme

    NASA Astrophysics Data System (ADS)

    Lindberg, Johan E.; Jørgensen, Jes K.; Green, Joel D.; Herczeg, Gregory J.; Dionatos, Odysseas; Evans, Neal J.; Karska, Agata; Wampfler, Susanne F.

    2014-05-01

    Context. The effects of external irradiation on the chemistry and physics in the protostellar envelope around low-mass young stellar objects are poorly understood. The Corona Australis star-forming region contains the R CrA dark cloud, comprising several low-mass protostellar cores irradiated by an intermediate-mass young star. Aims: We study the effects of the irradiation coming from the young luminous Herbig Be star R CrA on the warm gas and dust in a group of low-mass young stellar objects. Methods: Herschel/PACS far-infrared datacubes of two low-mass star-forming regions in the R CrA dark cloud are presented. The distributions of CO, OH, H2O, [C ii], [O i], and continuum emission are investigated. We have developed a deconvolution algorithm which we use to deconvolve the maps, separating the point-source emission from the extended emission. We also construct rotational diagrams of the molecular species. Results: By deconvolution of the Herschel data, we find large-scale (several thousand AU) dust continuum and spectral line emission not associated with the point sources. Similar rotational temperatures are found for the warm CO (282 ± 4 K), hot CO (890 ± 84 K), OH (79 ± 4 K), and H2O (197 ± 7 K) emission in the point sources and the extended emission. The rotational temperatures are also similar to those found in other more isolated cores. The extended dust continuum emission is found in two ridges similar in extent and temperature to molecular millimetre emission, indicative of external heating from the Herbig Be star R CrA. Conclusions: Our results show that nearby luminous stars do not increase the molecular excitation temperatures of the warm gas around young stellar objects (YSOs). However, the emission from photodissociation products of H2O, such as OH and O, is enhanced in the warm gas associated with these protostars and their surroundings compared to similar objects not subjected to external irradiation. Table 9 and appendices are available in electronic form at http://www.aanda.org

  4. And the Title for Densest Galaxy Goes To…

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-07-01

    Two surprisingly small heavy-weights have been discovered around galaxies in the nearby Virgo cluster by a team led by undergrads Michael Sandoval and Richard Vo and their advisor Aaron Romanowsky of San Jose State University. Setting a new record, these two objects now hold the title of the densest galaxy and the densest free-floating stellar system ever observed. Classification Difficulties What is the difference between large star clusters and small galaxies? Once thought to be distinct categories, the decade-old discovery of a new class of object, ultracompact dwarfs (UCDs), blurred the line between them somewhat: UCDs sit awkwardly between the two categories in size, mass and luminosity. So what are UCDs? It's hard to say — in part because their full range of possible parameters has yet to be carefully explored. Sandoval and his team set out to address this problem by combing through archival data from the Sloan Digital Sky Survey, searching for objects that display properties between those of star clusters and galaxies. Their search yielded two especially interesting objects: one around the galaxy M59, and the other around M85 (see figure 2). Follow-up observations with Subaru Telescope and the Southern Astrophysical Research telescope provided additional imaging and spectroscopic information. Plot of stellar surface mass density vs. mass of known stellar systems. The data include the two new objects (M85-HCC1 and M59-UCD3) as well as globular clusters, UCDs, and compact elliptical galaxies. Credit: Sandoval et al. 2015 Record-Breakers What makes these two discoveries so unusual? Both are remarkably dense compared to similar objects! The first, M59-UCD3, was categorized as an ultracompact dwarf galaxy — but it's significantly more dense than any other galaxy discovered. The night sky in M59-UCD3 would appear to contain roughly a million stars, compared to the few thousand we see overhead here in the Solar neighborhood. M85-HCC1 is another ten times denser than even that! It's such an unusual stellar system that it defies classification in the usual categories, which is why Sandoval and collaborators created a new name for this type of object: hypercompact cluster. In spite of the differences between these two stellar systems, the team argues that there is evidence that they were formed the same way. They believe that both objects are galactic centers that have been tidally stripped of all of the outlying stars and gas, leaving only the dense cores behind. They argue that this could be caused by mergers of M59 and M85 with intermediate mass galaxies. If true, searching for more of these unique objects could provide us with clues to how galaxies were assembled. Citation: Michael Sandoval et al. 2015 ApJ 808 L32 doi:10.1088/2041-8205/808/1/L32 Bonus: Check out this cool visualization from the authors of how tidal stripping of a small galaxy might happen. This is one theory of how UCDs are formed. Click here to view the video on YouTube.

  5. Wide-field Infrared Survey Explorer

    NASA Technical Reports Server (NTRS)

    Padgett, Deborah

    2012-01-01

    We present WISE (Wide-field Infrared Survey Explorer) mid-infrared photometry of young stellar object candidates in the Canis Majoris clouds at a distance of 1 kpc. WISE has identified 682 objects with apparent 12 and 22 micron excess emission in a 7 deg x 10 deg field around the CMa Rl cloud . While a substantial fraction of these candidates are likely galaxies, AGB stars, and artifacts from confusion along the galactic plane, others are part of a spectacular cluster of YSOs imaged by WISE along a dark filament in the R1 cloud. Palomar Double Spectrograph observations of several sources in this cluster confirm their identity as young A and B stars with strong emission lines. In this contribution, we plot the optical -mid-infrared spectral energy distribution for the WISE YSO candidates and discuss potential contaminants to the sample . The data demonstrate the utility of WISE in performing wide-area surveys for young stellar objects.

  6. First Spectroscopic Identification of Massive Young Stellar Objects in the Galactic Center

    NASA Technical Reports Server (NTRS)

    An, Deokkeun; Ramirez, V.; Sellgren, Kris; Arendt, Richard G.; Boogert, A. C.; Schultheis, Mathias; Stolovy, Susan R.; Cotera, Angela S.; Robitaille, Thomas P.; Smith, Howard A.

    2009-01-01

    We report the detection of several molecular gas-phase and ice absorption features in three photometrically-selected young stellar object (YSO) candidates in the central 280 pc of the Milky Way. Our spectra, obtained with the Infrared Spectrograph (IRS) onboard the Spitzer Space Telescope, reveal gas-phase absorption from CO2 (15.0 microns), C2H2 (13.7 microns) and HCN (14.0 microns). We attribute this absorption to warm, dense gas in massive YSOs. We also detect strong and broad 15 microns CO2 ice absorption features, with a remarkable double-peaked structure. The prominent long-wavelength peak is due to CH3OH-rich ice grains, and is similar to those found in other known massive YSOs. Our IRS observa.tions demonstra.te the youth of these objects, and provide the first spectroscopic identification of massive YSOs in the Galactic Center.

  7. Testing of the Apollo 15 Metric Camera System.

    NASA Technical Reports Server (NTRS)

    Helmering, R. J.; Alspaugh, D. H.

    1972-01-01

    Description of tests conducted (1) to assess the quality of Apollo 15 Metric Camera System data and (2) to develop production procedures for total block reduction. Three strips of metric photography over the Hadley Rille area were selected for the tests. These photographs were utilized in a series of evaluation tests culminating in an orbitally constrained block triangulation solution. Results show that film deformations up to 25 and 5 microns are present in the mapping and stellar materials, respectively. Stellar reductions can provide mapping camera orientations with an accuracy that is consistent with the accuracies of other parameters in the triangulation solutions. Pointing accuracies of 4 to 10 microns can be expected for the mapping camera materials, depending on variations in resolution caused by changing sun angle conditions.

  8. The Dark Energy Survey view of the Sagittarius stream: Discovery of two faint stellar system candidates

    DOE PAGES

    Luque, E.; Pieres, A.; Santiago, B.; ...

    2017-02-17

    We report the discovery of two new candidate stellar systems in the constellation of Cetus using the data from the first two years of the Dark Energy Survey (DES). The objects, DES J0111–1341 and DES J0225+0304, are located at a heliocentric distance of ~25 kpc and appear to have old and metal-poor populations. Their distances to the Sagittarius orbital plane, ~1.73 kpc (DES J0111–1341) and ~0.50 kpc (DES J0225+0304), indicate that they are possibly associated with the Sagittarius dwarf stream. The half-light radius (rh ≃ 4.55 pc) and luminosity (MV ≃ +0.3) of DES J0111–1341 are consistent with it beingmore » an ultrafaint stellar cluster, while the half-light radius (rh ≃ 18.55 pc) and luminosity (MV ≃ –1.1) of DES J0225+0304 place it in an ambiguous region of size–luminosity space between stellar clusters and dwarf galaxies. Determinations of the characteristic parameters of the Sagittarius stream, metallicity spread (–2.18 ≲ [Fe/H] ≲ –0.95) and distance gradient (23 kpc ≲ D⊙ ≲ 29 kpc), within the DES footprint in the Southern hemisphere, using the same DES data, also indicate a possible association between these systems. If these objects are confirmed through spectroscopic follow-up to be gravitationally bound systems and to share a Galactic trajectory with the Sagittarius stream, DES J0111–1341 and DES J0225+0304 would be the first ultrafaint stellar systems associated with the Sagittarius stream. Moreover, DES J0225+0304 would also be the first confirmed case of an ultrafaint satellite of a satellite.« less

  9. Kepler AutoRegressive Planet Search

    NASA Astrophysics Data System (ADS)

    Feigelson, Eric

    NASA's Kepler mission is the source of more exoplanets than any other instrument, but the discovery depends on complex statistical analysis procedures embedded in the Kepler pipeline. A particular challenge is mitigating irregular stellar variability without loss of sensitivity to faint periodic planetary transits. This proposal presents a two-stage alternative analysis procedure. First, parametric autoregressive ARFIMA models, commonly used in econometrics, remove most of the stellar variations. Second, a novel matched filter is used to create a periodogram from which transit-like periodicities are identified. This analysis procedure, the Kepler AutoRegressive Planet Search (KARPS), is confirming most of the Kepler Objects of Interest and is expected to identify additional planetary candidates. The proposed research will complete application of the KARPS methodology to the prime Kepler mission light curves of 200,000: stars, and compare the results with Kepler Objects of Interest obtained with the Kepler pipeline. We will then conduct a variety of astronomical studies based on the KARPS results. Important subsamples will be extracted including Habitable Zone planets, hot super-Earths, grazing-transit hot Jupiters, and multi-planet systems. Groundbased spectroscopy of poorly studied candidates will be performed to better characterize the host stars. Studies of stellar variability will then be pursued based on KARPS analysis. The autocorrelation function and nonstationarity measures will be used to identify spotted stars at different stages of autoregressive modeling. Periodic variables with folded light curves inconsistent with planetary transits will be identified; they may be eclipsing or mutually-illuminating binary star systems. Classification of stellar variables with KARPS-derived statistical properties will be attempted. KARPS procedures will then be applied to archived K2 data to identify planetary transits and characterize stellar variability.

  10. The Dark Energy Survey view of the Sagittarius stream: discovery of two faint stellar system candidates

    NASA Astrophysics Data System (ADS)

    Luque, E.; Pieres, A.; Santiago, B.; Yanny, B.; Vivas, A. K.; Queiroz, A.; Drlica-Wagner, A.; Morganson, E.; Balbinot, E.; Marshall, J. L.; Li, T. S.; Neto, A. Fausti; da Costa, L. N.; Maia, M. A. G.; Bechtol, K.; Kim, A. G.; Bernstein, G. M.; Dodelson, S.; Whiteway, L.; Diehl, H. T.; Finley, D. A.; Abbott, T.; Abdalla, F. B.; Allam, S.; Annis, J.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Burke, D. L.; Rosell, A. Carnero; Kind, M. Carrasco; Carretero, J.; Cunha, C. E.; D'Andrea, C. B.; Desai, S.; Doel, P.; Evrard, A. E.; Flaugher, B.; Fosalba, P.; Gerdes, D. W.; Goldstein, D. A.; Gruen, D.; Gruendl, R. A.; Gutierrez, G.; James, D. J.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Martini, P.; Miquel, R.; Nord, B.; Ogando, R.; Plazas, A. A.; Romer, A. K.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Walker, A. R.

    2017-06-01

    We report the discovery of two new candidate stellar systems in the constellation of Cetus using the data from the first two years of the Dark Energy Survey (DES). The objects, DES J0111-1341 and DES J0225+0304, are located at a heliocentric distance of ˜25 kpc and appear to have old and metal-poor populations. Their distances to the Sagittarius orbital plane, ˜1.73 kpc (DES J0111-1341) and ˜0.50 kpc (DES J0225+0304), indicate that they are possibly associated with the Sagittarius dwarf stream. The half-light radius (rh ≃ 4.55 pc) and luminosity (MV ≃ +0.3) of DES J0111-1341 are consistent with it being an ultrafaint stellar cluster, while the half-light radius (rh ≃ 18.55 pc) and luminosity (MV ≃ -1.1) of DES J0225+0304 place it in an ambiguous region of size-luminosity space between stellar clusters and dwarf galaxies. Determinations of the characteristic parameters of the Sagittarius stream, metallicity spread (-2.18 ≲ [Fe/H] ≲ -0.95) and distance gradient (23 kpc ≲ D⊙ ≲ 29 kpc), within the DES footprint in the Southern hemisphere, using the same DES data, also indicate a possible association between these systems. If these objects are confirmed through spectroscopic follow-up to be gravitationally bound systems and to share a Galactic trajectory with the Sagittarius stream, DES J0111-1341 and DES J0225+0304 would be the first ultrafaint stellar systems associated with the Sagittarius stream. Furthermore, DES J0225+0304 would also be the first confirmed case of an ultrafaint satellite of a satellite.

  11. Digging deeper into the Southern skies: a compact Milky Way companion discovered in first-year Dark Energy Survey data

    NASA Astrophysics Data System (ADS)

    Luque, E.; Queiroz, A.; Santiago, B.; Pieres, A.; Balbinot, E.; Bechtol, K.; Drlica-Wagner, A.; Neto, A. Fausti; da Costa, L. N.; Maia, M. A. G.; Yanny, B.; Abbott, T.; Allam, S.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Rosell, A. Carnero; Kind, M. Carrasco; Carretero, J.; Cunha, C. E.; Desai, S.; Diehl, H. T.; Dietrich, J. P.; Eifler, T. F.; Finley, D. A.; Flaugher, B.; Fosalba, P.; Frieman, J.; Gerdes, D. W.; Gruen, D.; Gutierrez, G.; Honscheid, K.; James, D. J.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Li, T. S.; March, M.; Marshall, J. L.; Martini, P.; Miquel, R.; Neilsen, E.; Nichol, R. C.; Nord, B.; Ogando, R.; Plazas, A. A.; Romer, A. K.; Roodman, A.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thaler, J.; Tucker, D.; Walker, A. R.; Zhang, Y.

    2016-05-01

    We use the first-year Dark Energy Survey (DES) data down to previously unprobed photometric depths to search for stellar systems in the Galactic halo, therefore complementing the previous analysis of the same data carried out by our group earlier this year. Our search is based on a matched filter algorithm that produces stellar density maps consistent with stellar population models of various ages, metallicities, and distances over the survey area. The most conspicuous density peaks in these maps have been identified automatically and ranked according to their significance and recurrence for different input models. We report the discovery of one additional stellar system besides those previously found by several authors using the same first-year DES data. The object is compact, and consistent with being dominated by an old and metal-poor population. DES 1 is found at high significance and appears in the DES images as a compact concentration of faint blue point sources. Assuming different spatial profile parameterizations, the best-fitting heliocentric distance and total absolute magnitude in the range of 77.6-87.1 kpc and -3.00 ≲ MV ≲ -2.21, respectively. The half-light radius of this object, rh ˜ 10 pc and total luminosity are consistent with it being a low-mass halo cluster. It is also found to have a very elongated shape (ɛ ˜ 0.57). In addition, our deeper probe of DES first-year data confirms the recently reported satellite galaxy candidate Horologium II as a significant stellar overdensity. We also infer its structural properties and compare them to those reported in the literature.

  12. The Dark Energy Survey view of the Sagittarius stream: Discovery of two faint stellar system candidates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luque, E.; Pieres, A.; Santiago, B.

    We report the discovery of two new candidate stellar systems in the constellation of Cetus using the data from the first two years of the Dark Energy Survey (DES). The objects, DES J0111–1341 and DES J0225+0304, are located at a heliocentric distance of ~25 kpc and appear to have old and metal-poor populations. Their distances to the Sagittarius orbital plane, ~1.73 kpc (DES J0111–1341) and ~0.50 kpc (DES J0225+0304), indicate that they are possibly associated with the Sagittarius dwarf stream. The half-light radius (rh ≃ 4.55 pc) and luminosity (MV ≃ +0.3) of DES J0111–1341 are consistent with it beingmore » an ultrafaint stellar cluster, while the half-light radius (rh ≃ 18.55 pc) and luminosity (MV ≃ –1.1) of DES J0225+0304 place it in an ambiguous region of size–luminosity space between stellar clusters and dwarf galaxies. Determinations of the characteristic parameters of the Sagittarius stream, metallicity spread (–2.18 ≲ [Fe/H] ≲ –0.95) and distance gradient (23 kpc ≲ D⊙ ≲ 29 kpc), within the DES footprint in the Southern hemisphere, using the same DES data, also indicate a possible association between these systems. If these objects are confirmed through spectroscopic follow-up to be gravitationally bound systems and to share a Galactic trajectory with the Sagittarius stream, DES J0111–1341 and DES J0225+0304 would be the first ultrafaint stellar systems associated with the Sagittarius stream. Moreover, DES J0225+0304 would also be the first confirmed case of an ultrafaint satellite of a satellite.« less

  13. Weaving the history of the solar wind with magnetic field lines

    NASA Astrophysics Data System (ADS)

    Alvarado Gomez, Julian

    2017-08-01

    Despite its fundamental role for the evolution of the solar system, our observational knowledge of the wind properties of the young Sun comes from a single stellar observation. This unexpected fact for a field such as astrophysics arises from the difficulty of detecting Sun-like stellar winds. Their detection relies on the appearance of an astrospheric signature (from the stellar wind-ISM interaction region), visible only with the aid of high-resolution HST Lyman-alpha spectra. However, observations and modelling of the present day Sun have revealed that magnetic fields constitute the main driver of the solar wind, providing guidance on how such winds would look like back in time. In this context we propose observations of four young Sun-like stars in order to detect their astrospheres and characterise their stellar winds. For all these objects we have recovered surface magnetic field maps using the technique of Zeeman Doppler Imaging, and developed detailed wind models based on these observed field distributions. Even a single detection would represent a major step forward for our understanding of the history of the solar wind, and the outflows in more active stars. Mass loss rate estimates from HST will be confronted with predictions from realistic models of the corona/stellar wind. In one of our objects the comparison would allow us to quantify the wind variability induced by the magnetic cycle of a star, other than the Sun, for the first time. Three of our targets are planet hosts, thus the HST spectra would also provide key information on the high-energy environment of these systems, guaranteeing their legacy value for the growing field of exoplanet characterisation.

  14. Tidal Disruptions Due to Stellar Mass Black Hole Binaries: Modifying the Spin Magnitudes and Directions of LIGO Sources

    NASA Astrophysics Data System (ADS)

    Lopez, Martin; Batta, Aldo; Ramírez-Ruiz, Enrico

    2018-01-01

    Globular clusters have about a thousand times denser stellar environments than our Milky Way. This crowded setting leads to many interactions between inhabitants of the cluster and the formation of a whole myriad of exotic objects. One such object is a binary system that forms which is composed of two stellar mass black holes (BHs). Due to the recent detection of gravitational waves (GWs), we know that some of these BH binaries (BHBs) are able to merge. Upon coalescence, BHBs produce GW signals that can be measured by the Laser Interferometer Gravitational-Wave Observatory (LIGO) group on Earth. Spin is one such parameter that LIGO can estimate from the type of signals they observe and as such can be used to constrain their production site. After these BHBs are assembled in dense stellar systems they can continue to interact with other members, either through tidal interactions or physical collisions. When a BHB tidally disrupts a star, a significant fraction of the debris can be accreted by the binary, effectively altering the spin of the BH members. Therefore, although a dynamically formed BHB will initially have low randomly aligned spins, through these types of interactions their birth spins can be significantly altered both in direction and magnitude. We have used a Lagrangian 3D Smoothed Particle Hydrodynamics (SPH) code GADGET-3 to simulate these interactions. Our results allow us to understand whether accretion from a tidal disruption event can significantly alter the birth properties of dynamically assembled BHBs such as spin, mass, and orbital attributes. The implications of these results will help us constrain the properties of BHBs in dense stellar systems in anticipation of an exciting decade ahead of us.

  15. VizieR Online Data Catalog: AO imaging of KOIs with gas giant planets (Wang+, 2015)

    NASA Astrophysics Data System (ADS)

    Wang, J.; Fischer, D. A.; Horch, E. P.; Xie, J.-W.

    2017-09-01

    From the NASA Exoplanet Archive (http://exoplanetarchive.ipac.caltech.edu), we select Kepler Objects of Interest (KOIs) that satisfy the following criteria: (1) disposition of either Candidate or Confirmed, (2) stellar effective temperature (Teff) lower than 6500 K, (3) stellar surface gravity (log g) higher than 4.0, (4) Kepler magnitude (KP) brighter than 14th mag, (5) with at least one gas giant planet (3.8 R{earth}=

  16. On the expected γ-ray emission from nearby flaring stars

    NASA Astrophysics Data System (ADS)

    Ohm, S.; Hoischen, C.

    2018-02-01

    Stellar flares have been extensively studied in soft X-rays (SXRs) by basically every X-ray mission. Hard X-ray (HXR) emission from stellar superflares, however, have only been detected from a handful of objects over the past years. One very extreme event was the superflare from the young M-dwarf DG CVn binary star system, which triggered Swift/BAT as if it was a γ-ray burst. In this work, we estimate the expected γ-ray emission from DG CVn and the most extreme stellar flares by extrapolating from solar flares based on measured solar energetic particles (SEPs), as well as thermal and non-thermal emission properties. We find that ions are plausibly accelerated in stellar superflares to 100 GeV energies, and possibly up to TeV energies in the associated coronal mass ejections. The corresponding π0-decay γ-ray emission could be detectable from stellar superflares with ground-based γ-ray telescopes. On the other hand, the detection of γ-ray emission implies particle densities high enough that ions suffer significant losses due to inelastic proton-proton scattering. The next-generation Cherenkov Telescope Array (CTA) should be able to probe superflares from M dwarfs in the solar neighbourhood and constrain the energy in interacting cosmic rays and/or their maximum energy. The detection of γ-ray emission from stellar flares would open a new window for the study of stellar physics, the underlying physical processes in flares and their impact on habitability of planetary systems.

  17. IRAS observations of young stellar objects in the Corona Australis dark cloud

    NASA Technical Reports Server (NTRS)

    Wilking, Bruce A.; Greene, Thomas P.; Lada, Charles J.; Meyer, Michael R.; Young, Erick T.

    1992-01-01

    The young stellar object (YSO) population associated with the dark cloud complex in Corona Australis is studied by synthesizing IRAS data with newly obtained near-IR and mid-IR photometry and previously published optical/IR data. Twenty-four YSOs in the Cr A complex are identified. The observed range of spectral energy distribution shapes and bolometric luminosities are consistent with those observed in other dark clouds. The duration and efficiency of star formation are found to be similar to the Rho Ophiuchi IR cluster. The low number of YSOs compared to other dark clouds is understood by a reevaluation of the molecular mass of the R Cr A cloud which shows it to be much less massive than previously assumed.

  18. Antimatter in the universe

    NASA Astrophysics Data System (ADS)

    Dolgov, A. D.

    2011-03-01

    The models leading to a high abundance of antimatter in the universe are discussed. Special attention is payed to the model of antimatter creation in the form of compact stellar-like objects. Such objects can contribute significantly to the cosmological dark matter. Observational signatures of antimatter in the Galaxy are discussed.

  19. Antimatter in the universe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dolgov, A. D., E-mail: dolgov@itep.ru

    2011-03-15

    The models leading to a high abundance of antimatter in the universe are discussed. Special attention is payed to the model of antimatter creation in the form of compact stellar-like objects. Such objects can contribute significantly to the cosmological dark matter. Observational signatures of antimatter in the Galaxy are discussed.

  20. The globular cluster system of NGC 1316. II. The extraordinary object SH2

    NASA Astrophysics Data System (ADS)

    Richtler, T.; Kumar, B.; Bassino, L. P.; Dirsch, B.; Romanowsky, A. J.

    2012-07-01

    Context. SH2 has been described as an isolated HII-region, located about 6.5' south of the nucleus of NGC 1316 (Fornax A), a merger remnant in the the outskirts of the Fornax cluster of galaxies. Aims: We give a first, preliminary description of the stellar content and environment of this remarkable object. Methods: We used photometric data in the Washington system and HST photometry from the Hubble Legacy Archive for a morphological description and preliminary aperture photometry. Low-resolution spectroscopy provides radial velocities of the brightest star cluster in SH2 and a nearby intermediate-age cluster. Results: SH2 is not a normal HII-region, ionized by very young stars. It contains a multitude of star clusters with ages of approximately 108 yr. A ring-like morphology is striking. SH2 seems to be connected to an intermediate-age massive globular cluster with a similar radial velocity, which itself is the main object of a group of fainter clusters. Metallicity estimates from emission lines remain ambiguous. Conclusions: The present data do not yet allow firm conclusions about the nature or origin of SH2. It might be a dwarf galaxy that has experienced a burst of extremely clustered star formation. We may witness how globular clusters are donated to a parent galaxy. Based on observations taken at the European Southern Observatory, Cerro Paranal, Chile, under the programmes 082.B-0680, on observations taken at the Interamerican Observatory, Cerro Tololo, Chile. Furthermore based on observations made with the NASA/ESA Hubble Space Telescope (HST, PI: A. Sandage, Prop.ID: 7504), and obtained from the Hubble Legacy Archive, which is a collaboration between the Space Telescope Science Institute (STScI/NASA), the Space Telescope European Coordinating Facility (ST-ECF/ESA) and the Canadian Astronomy Data Centre (CADC/NRC/CSA).

  1. (abstract) Realization of a Faster, Cheaper, Better Mission and Its New Paradigm Star Tracker, the Advanced Stellar Compass

    NASA Technical Reports Server (NTRS)

    Eisenman, Allan Read; Liebe, Carl Christian; Joergensen, John Lief; Jensen, Gunnar Bent

    1997-01-01

    The first Danish satellite, rsted, will be launched in August of 1997. The scientific objective of sted is to perform a precision mapping of the Earth's magnetic field. Attitude data for the payload and the satellite are provided by the Advanced Stellar Compass (ASC) star tracker. The ASC consists of a CCD star camera and a capable microprocessor which operates by comparing the star image frames taken by the camera to its internal star catalogs.

  2. Stellar populations in local star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Perez-Gonzalez, P. G.

    2003-11-01

    The main goal of this thesis work is studying the main properties of the stellar populations embedded in a statistically complete sample of local active star-forming galaxies: the Universidad Complutense de Madrid (UCM) Survey of emission-line galaxies. This sample contains 191 local star-forming galaxies at an average redshift of 0.026. The survey was carried out using an objective-prism technique centered at the wavelength of the Halpha nebular emission-line (a common tracer of recent star formation). (continues)

  3. Variability of Massive Young Stellar Objects in Cygnus-X

    NASA Astrophysics Data System (ADS)

    Thomas, Nancy H.; Hora, J. L.; Smith, H. A.

    2013-01-01

    Young stellar objects (YSOs) are stars in the process of formation. Several recent investigations have shown a high rate of photometric variability in YSOs at near- and mid-infrared wavelengths. Theoretical models for the formation of massive stars (1-10 solar masses) remain highly idealized, and little is known about the mechanisms that produce the variability. An ongoing Spitzer Space Telescope program is studying massive star formation in the Cygnus-X region. In conjunction with the Spitzer observations, we have conducted a ground-based near-infrared observing program of the Cygnus-X DR21 field using PAIRITEL, the automated infrared telescope at Whipple Observatory. Using the Stetson index for variability, we identified variable objects and a number of variable YSOs in our time-series PAIRITEL data of DR21. We have searched for periodicity among our variable objects using the Lomb-Scargle algorithm, and identified periodic variable objects with an average period of 8.07 days. Characterization of these variable and periodic objects will help constrain models of star formation present. This work is supported in part by the NSF REU and DOD ASSURE programs under NSF grant no. 0754568 and by the Smithsonian Institution.

  4. Data reduction and calibration for LAMOST survey

    NASA Astrophysics Data System (ADS)

    Luo, Ali; Zhang, Jiannan; Chen, Jianjun; Song, Yihan; Wu, Yue; Bai, Zhongrui; Wang, Fengfei; Du, Bing; Zhang, Haotong

    2014-01-01

    There are three data pipelines for LAMOST survey. The raw data is reduced to one dimension spectra by the data reduction pipeline(2D pipeline), the extracted spectra are classified and measured by the spectral analysis pipeline(1D pipeline), while stellar parameters are measured by LASP pipeline. (a) The data reduction pipeline. The main tasks of the data reduction pipeline include bias calibration, flat field, spectra extraction, sky subtraction, wavelength calibration, exposure merging and wavelength band connection. (b) The spectra analysis pipeline. This pipeline is designed to classify and identify objects from the extracted spectra and to measure their redshift (or radial velocity). The PCAZ (Glazebrook et al. 1998) method is applied to do the classification and redshift measurement. (c) Stellar parameters LASP. Stellar parameters pipeline (LASP) is to estimate stellar atmospheric parameters, e.g. effective temperature Teff, surface gravity log g, and metallicity [Fe/H], for F, G and K type stars. To effectively determine those fundamental stellar measurements, three steps with different methods are employed. The first step utilizes the line indices to approximately define the effective temperature range of the analyzed star. Secondly, a set of the initial approximate values of the three parameters are given based on template fitting method. Finally, we exploit ULySS (Koleva et al. 2009) to give the final values of parameters through minimizing the χ 2 value between the observed spectrum and a multidimensional grid of model spectra which is generated by an interpolating of ELODIE library. There are two other classification for A type star and M type star. For A type star, standard MK system is employed (Gray et al. 2009) to give each object temperature class and luminosity type. For M type star, they are classified into subclasses by an improved Hammer method, and metallicity of each objects is also given. During the pilot survey, algorithms were improved and the pipelines were tested. The products of LAMOST survey will include extracted and calibrated spectra in FITS format, a catalog of FGK stars with stellar parameters, a catalog of M dwarf with subclass and metallicity, and a catalog of A type star with MK classification. A part of the pilot survey data, including about 319 000 high quality spectra with SNR > 10, a catalog of stellar parameters of FGK stars and another catalog of a subclass of M type stars have been released to the public in August 2012 (Luo et al. 2012). The general survey started from October 2012, and completed the first year survey. The formal data release one (DR1) is being prepared, which will include both pilot survey and first year general survey, and planed to be released under the LAMOST data policy.

  5. Early assembly of the most massive galaxies.

    PubMed

    Collins, Chris A; Stott, John P; Hilton, Matt; Kay, Scott T; Stanford, S Adam; Davidson, Michael; Hosmer, Mark; Hoyle, Ben; Liddle, Andrew; Lloyd-Davies, Ed; Mann, Robert G; Mehrtens, Nicola; Miller, Christopher J; Nichol, Robert C; Romer, A Kathy; Sahlén, Martin; Viana, Pedro T P; West, Michael J

    2009-04-02

    The current consensus is that galaxies begin as small density fluctuations in the early Universe and grow by in situ star formation and hierarchical merging. Stars begin to form relatively quickly in sub-galactic-sized building blocks called haloes which are subsequently assembled into galaxies. However, exactly when this assembly takes place is a matter of some debate. Here we report that the stellar masses of brightest cluster galaxies, which are the most luminous objects emitting stellar light, some 9 billion years ago are not significantly different from their stellar masses today. Brightest cluster galaxies are almost fully assembled 4-5 billion years after the Big Bang, having grown to more than 90 per cent of their final stellar mass by this time. Our data conflict with the most recent galaxy formation models based on the largest simulations of dark-matter halo development. These models predict protracted formation of brightest cluster galaxies over a Hubble time, with only 22 per cent of the stellar mass assembled at the epoch probed by our sample. Our findings suggest a new picture in which brightest cluster galaxies experience an early period of rapid growth rather than prolonged hierarchical assembly.

  6. THE STELLAR MASS FUNDAMENTAL PLANE AND COMPACT QUIESCENT GALAXIES AT z < 0.6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zahid, H. Jabran; Damjanov, Ivana; Geller, Margaret J.

    2016-04-20

    We examine the evolution of the relation between stellar mass surface density, velocity dispersion, and half-light radius—the stellar mass fundamental plane (MFP)—for quiescent galaxies at z < 0.6. We measure the local relation from galaxies in the Sloan Digital Sky Survey and the intermediate redshift relation from ∼500 quiescent galaxies with stellar masses 10 ≲ log( M {sub *}/ M {sub ⊙}) ≲ 11.5. Nearly half of the quiescent galaxies in our intermediate redshift sample are compact. After accounting for important selection and systematic effects, the velocity dispersion distribution of galaxies at intermediate redshifts is similar to that of galaxiesmore » in the local universe. Galaxies at z < 0.6 appear to be smaller (≲0.1 dex) than galaxies in the local sample. The orientation of the stellar MFP is independent of redshift for massive quiescent galaxies at z < 0.6 and the zero-point evolves by ∼0.04 dex. Compact quiescent galaxies fall on the same relation as the extended objects. We confirm that compact quiescent galaxies are the tail of the size and mass distribution of the normal quiescent galaxy population.« less

  7. Innovations in compact stellarator coil design

    NASA Astrophysics Data System (ADS)

    Pomphrey, N.; Berry, L.; Boozer, A.; Brooks, A.; Hatcher, R. E.; Hirshman, S. P.; Ku, L.-P.; Miner, W. H.; Mynick, H. E.; Reiersen, W.; Strickler, D. J.; Valanju, P. M.

    2001-03-01

    Experimental devices for the study of the physics of high beta (β gtrsim 4%), low aspect ratio (A lesssim 4.5) stellarator plasmas require coils that will produce plasmas satisfying a set of physics goals, provide experimental flexibility and be practical to construct. In the course of designing a flexible coil set for the National Compact Stellarator Experiment, several innovations have been made that may be useful in future stellarator design efforts. These include: the use of singular value decomposition methods for obtaining families of smooth current potentials on distant coil winding surfaces from which low current density solutions may be identified; the use of a control matrix method for identifying which few of the many detailed elements of a stellarator boundary must be targeted if a coil set is to provide fields to control the essential physics of the plasma; the use of a genetic algorithm for choosing an optimal set of discrete coils from a continuum of potential contours; the evaluation of alternate coil topologies for balancing the trade-off between physics objectives and engineering constraints; the development of a new coil optimization code for designing modular coils and the identification of a `natural' basis for describing current sheet distributions.

  8. The Magnetic Field of the Class I Protostar WL 17

    NASA Astrophysics Data System (ADS)

    Johns-Krull, Christopher M.; Greene, T. P.; Doppmann, G.; Covey, K. R.

    2007-12-01

    Strong stellar magnetic fields are believed to truncate the inner accretion disks around young stars, redirecting the accreting material to the high latitude regions of the stellar surface. In the past few years, observations of strong stellar fields on Classical T Tauri stars [class II young stellar objects (YSOs)] with field strengths in general agreement with the predictions of magnetopsheric accretion theory have bolstered this picture. Currently, nothing is known about the magnetic field properties of younger, more embedded class I YSOs. It is during this protostellar evolutionary phase that stars accrete most of their final mass, but the physics governing this process remains poorly understood. Here, we use high resolution near infrared spectra obtained with NIRSPEC on Keck and with PHOENIX on Gemini South to measure the magnetic field properties of the class I protostar WL 17. We find clear signatures of a strong stellar magnetic field. Initial analysis of this data suggests a surface average field strength of 3.6 kG on the surface of WL 17. This is the highest mean surface field detected to date on any YSO. We present our field measurements and discuss how they fit with the general model of magnetospheric accretion in young stars.

  9. A Search for Water Maser Emission from Brown Dwarfs and Low-luminosity Young Stellar Objects

    NASA Astrophysics Data System (ADS)

    Gómez, José F.; Palau, Aina; Uscanga, Lucero; Manjarrez, Guillermo; Barrado, David

    2017-05-01

    We present a survey for water maser emission toward a sample of 44 low-luminosity young objects, comprising (proto-)brown dwarfs, first hydrostatic cores (FHCs), and other young stellar objects (YSOs) with bolometric luminosities lower than 0.4 L ⊙. Water maser emission is a good tracer of energetic processes, such as mass-loss and/or accretion, and is a useful tool to study these processes with very high angular resolution. This type of emission has been confirmed in objects with L bol ≳ 1 L ⊙. Objects with lower luminosities also undergo mass-loss and accretion, and thus, are prospective sites of maser emission. Our sensitive single-dish observations provided a single detection when pointing toward the FHC L1448 IRS 2E. However, follow-up interferometric observations showed water maser emission associated with the nearby YSO L1448 IRS 2 (a Class 0 protostar of L bol ≃ 3.6-5.3 L ⊙) and did not find any emission toward L1448 IRS 2E. The upper limits for water maser emission determined by our observations are one order of magnitude lower than expected from the correlation between water maser luminosities and bolometric luminosities found for YSOs. This suggests that this correlation does not hold at the lower end of the (sub)stellar mass spectrum. Possible reasons are that the slope of this correlation is steeper at L bol ≤ 1 L ⊙ or that there is an absolute luminosity threshold below which water maser emission cannot be produced. Alternatively, if the correlation still stands at low luminosity, the detection rates of masers would be significantly lower than the values obtained in higher-luminosity Class 0 protostars.

  10. Determination of the Limiting Magnitude

    NASA Technical Reports Server (NTRS)

    Kingery, Aaron; Blaauw, Rhiannon

    2017-01-01

    The limiting magnitude of an optical camera system is an important property to understand since it is used to find the completeness limit of observations. Limiting magnitude depends on the hardware and software of the system, current weather conditions, and the angular speed of the objects observed. If an object exhibits a substantial angular rate during the exposure, its light spreads out over more pixels than the stationary stars. This spreading causes the limiting magnitude to be brighter when compared to the stellar limiting magnitude. The effect, which begins to become important when the object moves a full width at half max during a single exposure or video frame. For targets with high angular speeds or camera systems with narrow field of view or long exposures, this correction can be significant, up to several magnitudes. The stars in an image are often used to measure the limiting magnitude since they are stationary, have known brightness, and are present in large numbers, making the determination of the limiting magnitude fairly simple. In order to transform stellar limiting magnitude to object limiting magnitude, a correction must be applied accounting for the angular velocity. This technique is adopted in meteor and other fast-moving object observations, as the lack of a statistically significant sample of targets makes it virtually impossible to determine the limiting magnitude before the weather conditions change. While the weather is the dominant factor in observing satellites, the limiting magnitude for meteors also changes throughout the night due to the motion of a meteor shower or sporadic source radiant across the sky. This paper presents methods for determining the limiting stellar magnitude and the conversion to the target limiting magnitude.

  11. IN-SYNC I: Homogeneous stellar parameters from high-resolution apogee spectra for thousands of pre-main sequence stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cottaar, Michiel; Meyer, Michael R.; Covey, Kevin R.

    2014-10-20

    Over two years, 8859 high-resolution H-band spectra of 3493 young (1-10 Myr) stars were gathered by the multi-object spectrograph of the APOGEE project as part of the IN-SYNC ancillary program of the SDSS-III survey. Here we present the forward modeling approach used to derive effective temperatures, surface gravities, radial velocities, rotational velocities, and H-band veiling from these near-infrared spectra. We discuss in detail the statistical and systematic uncertainties in these stellar parameters. In addition, we present accurate extinctions by measuring the E(J – H) of these young stars with respect to the single-star photometric locus in the Pleiades. Finally, wemore » identify an intrinsic stellar radius spread of about 25% for late-type stars in IC 348 using three (nearly) independent measures of stellar radius, namely, the extinction-corrected J-band magnitude, the surface gravity, and the Rsin i from the rotational velocities and literature rotation periods. We exclude that this spread is caused by uncertainties in the stellar parameters by showing that the three estimators of stellar radius are correlated, so that brighter stars tend to have lower surface gravities and larger Rsin i than fainter stars at the same effective temperature. Tables providing the spectral and photometric parameters for the Pleiades and IC 348 have been provided online.« less

  12. IN-SYNC I: Homogeneous Stellar Parameters from High-resolution APOGEE Spectra for Thousands of Pre-main Sequence Stars

    NASA Astrophysics Data System (ADS)

    Cottaar, Michiel; Covey, Kevin R.; Meyer, Michael R.; Nidever, David L.; Stassun, Keivan G.; Foster, Jonathan B.; Tan, Jonathan C.; Chojnowski, S. Drew; da Rio, Nicola; Flaherty, Kevin M.; Frinchaboy, Peter M.; Skrutskie, Michael; Majewski, Steven R.; Wilson, John C.; Zasowski, Gail

    2014-10-01

    Over two years, 8859 high-resolution H-band spectra of 3493 young (1-10 Myr) stars were gathered by the multi-object spectrograph of the APOGEE project as part of the IN-SYNC ancillary program of the SDSS-III survey. Here we present the forward modeling approach used to derive effective temperatures, surface gravities, radial velocities, rotational velocities, and H-band veiling from these near-infrared spectra. We discuss in detail the statistical and systematic uncertainties in these stellar parameters. In addition, we present accurate extinctions by measuring the E(J - H) of these young stars with respect to the single-star photometric locus in the Pleiades. Finally, we identify an intrinsic stellar radius spread of about 25% for late-type stars in IC 348 using three (nearly) independent measures of stellar radius, namely, the extinction-corrected J-band magnitude, the surface gravity, and the Rsin i from the rotational velocities and literature rotation periods. We exclude that this spread is caused by uncertainties in the stellar parameters by showing that the three estimators of stellar radius are correlated, so that brighter stars tend to have lower surface gravities and larger Rsin i than fainter stars at the same effective temperature. Tables providing the spectral and photometric parameters for the Pleiades and IC 348 have been provided online.

  13. Evolution of Optical Binary Fraction in Sparse Stellar Systems

    NASA Astrophysics Data System (ADS)

    Li, Zhongmu; Mao, Caiyan

    2018-05-01

    This work studies the evolution of the fraction of optical binary stars (OBF; not including components such as neutron stars and black holes), which is caused by stellar evolution, and the contributions of various binaries to OBF via the stellar population synthesis technique. It is shown that OBF decreases from 1 to about 0.81 for stellar populations with the Salpeter initial mass function (IMF), and to about 0.85 for the case of the Kroupa IMF, on a timescale of 15 Gyr. This result depends on metallicity, slightly. The contributions of binaries varying with mass ratio, orbital period, separation, spectral types of primary and secondary, contact degree, and pair type to OBF are calculated for stellar populations with different ages and metallicities. The contribution of different kinds of binaries to OBF depends on age and metallicity. The results can be used for estimating the global OBF of star clusters or galaxies from the fraction of a kind of binary. It is also helpful for estimating the primordial and future binary fractions of sparse stellar systems from the present observations. Our results are suitable for studying field stars, open clusters, and the outer part of globular clusters, because the OBF of such objects is affected by dynamical processes, relatively slightly, but they can also be used for giving some limits for other populations.

  14. The Stellar Imager (SI)"Vision Mission"

    NASA Technical Reports Server (NTRS)

    Carpenter, Ken; Danchi, W.; Leitner, J.; Liu, A.; Lyon, R.; Mazzuca, L.; Moe, R.; Chenette, D.; Karovska, M.; Allen, R.

    2004-01-01

    The Stellar Imager (SI) is a "Vision" mission in the Sun-Earth Connection (SEC) Roadmap, conceived for the purpose of understanding the effects of stellar magnetic fields, the dynamos that generate them, and the internal structure and dynamics of the stars in which they exist. The ultimate goal is to achieve the best possible forecasting of solar/stellar magnetic activity and its impact on life in the Universe. The science goals of SI require an ultra-high angular resolution, at ultraviolet wavelengths, on the order of 100 micro-arcsec and thus baselines on the order of 0.5 km. These requirements call for a large, multi-spacecraft (less than 20) imaging interferometer, utilizing precision formation flying in a stable environment, such as in a Lissajous orbit around the Sun-Earth L2 point. SI's resolution will make it an invaluable resource for many other areas of astrophysics, including studies of AGN s, supernovae, cataclysmic variables, young stellar objects, QSO's, and stellar black holes. ongoing mission concept and technology development studies for SI. These studies are designed to refine the mission requirements for the science goals, define a Design Reference Mission, perform trade studies of selected major technical and architectural issues, improve the existing technology roadmap, and explore the details of deployment and operations, as well as the possible roles of astronauts and/or robots in construction and servicing of the facility.

  15. The accelerating pace of star formation

    NASA Astrophysics Data System (ADS)

    Caldwell, Spencer; Chang, Philip

    2018-03-01

    We study the temporal and spatial distribution of star formation rates in four well-studied star-forming regions in local molecular clouds (MCs): Taurus, Perseus, ρ Ophiuchi, and Orion A. Using published mass and age estimates for young stellar objects in each system, we show that the rate of star formation over the last 10 Myr has been accelerating and is (roughly) consistent with a t2 power law. This is in line with previous studies of the star formation history of MCs and with recent theoretical studies. We further study the clustering of star formation in the Orion nebula cluster. We examine the distribution of young stellar objects as a function of their age by computing an effective half-light radius for these young stars subdivided into age bins. We show that the distribution of young stellar objects is broadly consistent with the star formation being entirely localized within the central region. We also find a slow radial expansion of the newly formed stars at a velocity of v = 0.17 km s-1, which is roughly the sound speed of the cold molecular gas. This strongly suggests the dense structures that form stars persist much longer than the local dynamical time. We argue that this structure is quasi-static in nature and is likely the result of the density profile approaching an attractor solution as suggested by recent analytic and numerical analysis.

  16. Arguments concerning Relativity and Cosmology.

    PubMed

    Klein, O

    1971-01-29

    In the first place I have reviewed the true foundation of Einstein's theory of general relativity, the so-called principle of equivalence, according to which there is no essential difference between "genuine" gravitation and inertial forces, well known from accelerated vehicles. By means of a comparison with Gaussian geometry of curved surfaces-the background of Riemannian geometry, the tool used by Einstein for the mathematical formulation of his theory-it is made clear that this principle is incompatible with the idea proposed by Mach and accepted by Einstein as an incitement to his attempt to describe the main situation in the universe as an analogy in three dimensions to the closed surface of a sphere. In the later attempts toward a mathematical description of the universe, where Einstein's cosmology was adapted to the discovery by Hubble that its observed part is expanding, the socalled cosmological postulate has been used as a kind of axiomatic background which, when analyzed, makes it probable that this expansion is shared by a very big, but still bounded system. This implies that our expanding metagalaxy is probably just one of a type of stellar objects in different phases of evolution, some expanding and some contracting. Some attempts toward the description of this evolution are sketched in the article with the hope that further investigation, theoretical and observational, may lead to an interesting advance in this part of astrophysics.

  17. [Y/Mg] stellar dating calibration

    NASA Astrophysics Data System (ADS)

    Titarenko, A.; Recio-Blanco, A.; de Laverny, P.; Hayden, M.; Guiglion, G.; Worley, C.

    2018-04-01

    Gaia DR1 has opened a new era of stellar age dating, that is crucial for many astrophysical objectives. In addition, the Gaia based isochrone fitting ages can be compared to other chemical clocks like the [Y/Mg] one (Nissen et al. 2015). In our work we have used ESO archived data of the AMBRE project (de Laverny et al. 2013) for UVES spectra, in order to evaluate the age [Y/Mg] abundance correlation for turn off stars. 310 turn off stars of the UVES-archive (setups 564 and 580) are included in the TGAS database. Isochrone fitting ages were derived. We have applied the GAUGUIN procedure for those stars to derive the Mg and the Y abundances. As the result we present the [Y/Mg] vs stellar age dependence for ~40 TO-stars.

  18. The Stellar Populations of Ultra-Compact Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Karick, Arna; Gregg, M. D.

    2006-12-01

    We have discovered an intracluster population of ultra-luminous compact stellar systems in the Fornax cluster. Originally coined "ultra-compact dwarf galaxies" (UCDs), these objects were thought to be remnant nuclei of tidally stripped dE,Ns. Subsequent searches in Fornax (2dF+VLT) have revealed many fainter UCDs; making them the most numerous galaxy type in the cluster and fueling controversy over their origin. UCDs may be the bright tail of the globular cluster (GCs) population associated with NGC1399. Alternatively they may be real intracluster GCs, resulting from hierarchical cluster formation and merging in intracluster space. Determining the stellar populations of these enigmatic objects is challenging. UCDs are unresolved from the ground but our HST/STIS+ACS imaging reveals faint halos around the brightest UCDs. Here we present deep u'g'r'i'z' images of the cluster core using the CTIO 4m Mosaic. Combined with GALEX/UV imaging and using SSP isochrones, UCDs appear to be old, red and unlike cluster dEs. In contrast, our recent IMACS and Keck/LRIS+ESI spectroscopy shows that UCDs are unlike GCs and have intermediate stellar populations with significant variations in their Mg and Hβ line strength indices. This work is supported by National Science Foundation Grant No. 0407445 and was done at the Institute of Geophysics and Planetary Physics, under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

  19. THE SAMI GALAXY SURVEY: TOWARD A UNIFIED DYNAMICAL SCALING RELATION FOR GALAXIES OF ALL TYPES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cortese, L.; Glazebrook, K.; Mould, J.

    2014-11-10

    We take advantage of the first data from the Sydney-AAO Multi-object Integral field Galaxy Survey to investigate the relation between the kinematics of gas and stars, and stellar mass in a comprehensive sample of nearby galaxies. We find that all 235 objects in our sample, regardless of their morphology, lie on a tight relation linking stellar mass (M {sub *}) to internal velocity quantified by the S {sub 0.5} parameter, which combines the contribution of both dispersion (σ) and rotational velocity (V {sub rot}) to the dynamical support of a galaxy (S{sub 0.5}=√(0.5 V{sub rot}{sup 2}+σ{sup 2})). Our results aremore » independent of the baryonic component from which σ and V {sub rot} are estimated, as the S {sub 0.5} of stars and gas agree remarkably well. This represents a significant improvement compared to the canonical M {sub *} versus V {sub rot} and M {sub *} versus σ relations. Not only is no sample pruning necessary, but also stellar and gas kinematics can be used simultaneously, as the effect of asymmetric drift is taken into account once V {sub rot} and σ are combined. Our findings illustrate how the combination of dispersion and rotational velocities for both gas and stars can provide us with a single dynamical scaling relation valid for galaxies of all morphologies across at least the stellar mass range 8.5 « less

  20. QUENCHING OF STAR FORMATION IN SLOAN DIGITAL SKY SURVEY GROUPS: CENTRALS, SATELLITES, AND GALACTIC CONFORMITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knobel, Christian; Lilly, Simon J.; Woo, Joanna

    2015-02-10

    We re-examine the fraction of low-redshift Sloan Digital Sky Survey satellites and centrals in which star formation has been quenched, using the environment quenching efficiency formalism that separates out the dependence of stellar mass. We show that the centrals of the groups containing the satellites are responding to the environment in the same way as their satellites (at least for stellar masses above 10{sup 10.3} M {sub ☉}), and that the well-known differences between satellites and the general set of centrals arise because the latter are overwhelmingly dominated by isolated galaxies. The widespread concept of ''satellite quenching'' as the causemore » of environmental effects in the galaxy population can therefore be generalized to ''group quenching''. We then explore the dependence of the quenching efficiency of satellites on overdensity, group-centric distance, halo mass, the stellar mass of the satellite, and the stellar mass and specific star formation rate (sSFR) of its central, trying to isolate the effect of these often interdependent variables. We emphasize the importance of the central sSFR in the quenching efficiency of the associated satellites, and develop the meaning of this ''galactic conformity'' effect in a probabilistic description of the quenching of galaxies. We show that conformity is strong, and that it varies strongly across parameter space. Several arguments then suggest that environmental quenching and mass quenching may be different manifestations of the same underlying process. The marked difference in the apparent mass dependencies of environment quenching and mass quenching which produces distinctive signatures in the mass functions of centrals and satellites will arise naturally, since, for satellites at least, the distributions of the environmental variables that we investigate in this work are essentially independent of the stellar mass of the satellite.« less

  1. Computer simulations of interferometric imaging with the VLT Interferometer and the AMBER instrument

    NASA Astrophysics Data System (ADS)

    Bloecker, Thomas; Hofmann, Karl-Heinz; Przygodda, Frank; Weigelt, Gerd

    2000-07-01

    We present computer simulations of interferometric imaging with the VLT interferometer and the AMBER instrument. These simulations include both the astrophysical modeling of a stellar object by radiative transfer calculations and the simulation of light propagation from the object to the detector (through atmosphere, telescopes, and the AMBER instrument), simulation of photon noise and detector read- out noise, and finally data processing of the interferograms. The results show the dependence of the visibility error bars on the following observational parameters: different seeing during the observation of object and reference star (Fried parameters r0,object equals 2.4 m, r0,ref. equals 2.5 m), different residual tip- tilt error ((delta) tt,object equals 2% of the Airy disk diameter, (delta) tt,ref. equals 0.1%), and object brightness (Kobject equals 3.5 mag and 11 mag, Kref. equals 3.5 mag). Exemplarily, we focus on stars in late stages of stellar evolution and study one of its key objects, the dusty supergiant IRC + 10420 that is rapidly evolving on human timescales. We show computer simulations of VLTI interferometry of IRC + 10420 with two ATs (wide-field mode, i.e. without fiber optics spatial filters) and discuss whether the visibility accuracy is sufficient to distinguish between different theoretical model predictions.

  2. The VLT Interferometer and its AMBER Instrument: Simulations of Interferometric Imaging in the Wide-Field Mode

    NASA Astrophysics Data System (ADS)

    Blöcker, T.; Hofmann, K.-H.; Przygodda, F.; Weigelt, G.

    We present computer simulations of interferometric imaging with the VLT interferometer and the AMBER instrument. These simulations include both the astrophysical modelling of a stellar object by radiative transfer calculations and the simulation of light propagation from the object to the detector (through atmosphere, telescopes, and the AMBER instrument), simulation of photon noise and detector read-out noise, and finally data processing of the interferograms. The results show the dependence of the visibility error bars on the following observational parameters: different seeing during the observation of object and reference star (Fried parameters r0,object and r0,ref. ranging between 0.9 m and 1.2 m), different residual tip-tilt error (δtt,object and δtt,ref. ranging between 0.1% and 20% of the Airy disk diameter), and object brightness (Kobject=3.5 mag to 13 mag, Kref.=3.5 mag). Exemplarily, we focus on stars in late stages of stellar evolution and study one of its key objects, the dusty supergiant IRC +10 420 that is rapidly evolving on human timescales. We show computer simulations of VLT interferometry of IRC +10 420 with two ATs (wide-field mode, i.e. without fiber optics spatial filters) and discuss whether the visibility accuracy is sufficient to distinguish between different theoretical model predictions.

  3. CHARRON: Code for High Angular Resolution of Rotating Objects in Nature

    NASA Astrophysics Data System (ADS)

    Domiciano de Souza, A.; Zorec, J.; Vakili, F.

    2012-12-01

    Rotation is one of the fundamental physical parameters governing stellar physics and evolution. At the same time, spectrally resolved optical/IR long-baseline interferometry has proven to be an important observing tool to measure many physical effects linked to rotation, in particular, stellar flattening, gravity darkening, differential rotation. In order to interpret the high angular resolution observations from modern spectro-interferometers, such as VLTI/AMBER and VEGA/CHARA, we have developed an interferometry-oriented numerical model: CHARRON (Code for High Angular Resolution of Rotating Objects in Nature). We present here the characteristics of CHARRON, which is faster (≃q10-30 s per model) and thus more adapted to model-fitting than the first version of the code presented by Domiciano de Souza et al. (2002).

  4. An IRAS/ISSA Survey of Bow Shocks Around Runaway Stars

    NASA Technical Reports Server (NTRS)

    Buren, David Van

    1995-01-01

    We searched for bow shock-like objects like those known around Oph and a Cam near the positions of 183 runaway stars. Based primarily on the presence and morphology of excess 60 micron emission we identify 56 new candidate bow shocks, for which we determine photometric and morphological parameters. Previously only a dozen or so were known. Well resolved structures are present around 25 stars. A comparison of the distribution of symmetry axes of the infrared nebulae with that of their proper motion vectors indicates that these two directions are very significantly aligned. The observed alignment strongly suggests that the structures we see arise from the interaction of stellar winds with the interstellar medium, justifying the identification of these far-infrared objects as stellar wind bow shocks.

  5. Statistical tests of peaks and periodicities in the observed redshift distribution of quasi-stellar objects

    NASA Astrophysics Data System (ADS)

    Duari, Debiprosad; Gupta, Patrick D.; Narlikar, Jayant V.

    1992-01-01

    An overview of statistical tests of peaks and periodicities in the redshift distribution of quasi-stellar objects is presented. The tests include the power-spectrum analysis carried out by Burbidge and O'Dell (1972), the generalized Rayleigh test, the Kolmogorov-Smirnov test, and the 'comb-tooth' test. The tests reveal moderate to strong evidence for periodicities of 0.0565 and 0.0127-0.0129. The confidence level of the periodicity of 0.0565 in fact marginally increases when redshifts are transformed to the Galactocentric frame. The same periodicity, first noticed in 1968, persists to date with a QSO population that has since grown about 30 times its original size. The prima facie evidence for periodicities in 1n(1 + z) is found to be of no great significance.

  6. A molecular Einstein ring: imaging a starburst disk surrounding a quasi-stellar object.

    PubMed

    Carilli, C L; Lewis, G F; Djorgovski, S G; Mahabal, A; Cox, P; Bertoldi, F; Omont, A

    2003-05-02

    Images of the molecular CO 2-1 line emission and the radio continuum emission from the redshift 4.12 gravitationally lensed quasi-stellar object (QSO) PSS J2322+1944 reveal an Einstein ring with a diameter of 1.5". These observations are modeled as a star-forming disk surrounding the QSO nucleus with a radius of 2 kiloparsecs. The implied massive star formation rate is 900 solar masses per year. At this rate, a substantial fraction of the stars in a large elliptical galaxy could form on a dynamical time scale of 108 years. The observation of active star formation in the host galaxy of a high-redshift QSO supports the hypothesis of coeval formation of supermassive black holes and stars in spheroidal galaxies.

  7. Stellar pulsations in beyond Horndeski gravity theories

    NASA Astrophysics Data System (ADS)

    Sakstein, Jeremy; Kenna-Allison, Michael; Koyama, Kazuya

    2017-03-01

    Theories of gravity in the beyond Horndeski class recover the predictions of general relativity in the solar system whilst admitting novel cosmologies, including late-time de Sitter solutions in the absence of a cosmological constant. Deviations from Newton's law are predicted inside astrophysical bodies, which allow for falsifiable, smoking-gun tests of the theory. In this work we study the pulsations of stars by deriving and solving the wave equation governing linear adiabatic oscillations to find the modified period of pulsation. Using both semi-analytic and numerical models, we perform a preliminary survey of the stellar zoo in an attempt to identify the best candidate objects for testing the theory. Brown dwarfs and Cepheid stars are found to be particularly sensitive objects and we discuss the possibility of using both to test the theory.

  8. Infrared astronomy research and high altitude observations

    NASA Technical Reports Server (NTRS)

    Jones, B.; Stein, W. A.; Willner, S. P.; Soifer, B. T.

    1984-01-01

    Highlights are presented of studies of the emission mechanisms in the 4 to 8 micron region of the spectrum using a circular variable filter wheel spectrometer with a PbSnTe photovoltaic detector. Investigations covered include the spectroscopy of planets, stellar atmospheres, highly obscured objects in molecular clouds, planetary nebulae, H2 regions, and extragalactic objects.

  9. The Maximum Mass of a Planet

    NASA Astrophysics Data System (ADS)

    Schlaufman, Kevin C.

    2018-06-01

    Giant planet occurrence is a steeply increasing function of FGK dwarf host star metallicity, and this is interpreted as support for the core-accretion model of giant planet formation. On the other hand, the occurrence of low-mass stellar companions to FGK dwarf stars does not appear to depend on stellar metallicity. The mass at which objects no longer prefer metal-rich FGK dwarf host stars can therefore be used to infer the maximum mass of objects that form like planets through core accretion. I'll show that objects more massive than about 10 M_Jup do not orbit metal-rich host stars and that this transition is coincident with a minimum in the occurrence rate of such objects. These facts suggest that the maximum mass of a celestial body formed through core accretion like a planet is less than 10 M_Jup. This observation can be used to infer the properties of protoplanetary disks and reveals that the Type I and Type II disk migration problems---two major issues for the modern model of planet formation---are not problems at all.

  10. NuSTAR Observations of X-Ray Flares from Young Stellar Objects

    NASA Astrophysics Data System (ADS)

    Vievering, Juliana; Glesener, Lindsay; Grefenstette, Brian; Smith, David

    2018-01-01

    Young stellar objects (YSOs), which tend to flare more frequently and at higher temperatures than what is typically observed on Sun-like stars, are excellent targets for studying the physical processes behind large flaring events. In the hard x-ray regime, radiation can penetrate through dense circumstellar material, and it is possible to measure thermal emission from hot plasma and to search for nonthermal emission from accelerated particles, which are key components for understanding the nature of energy release in these flares. Additionally, high-energy x-ray emission can ionize material in the disk, which may have implications for planet formation. To investigate hard x-ray emission from YSOs, three 50ks observations of a star-forming region called rho Ophiuchi have been taken with the Nuclear Spectroscopic Telescope Array (NuSTAR). Through use of direct focusing optics, NuSTAR provides unprecedented sensitivity in the hard x-ray regime, making these YSO observations the first of their kind. Multiple stellar flares have been identified in the data set; here we present the current spectral and timing analyses of the brightest of the these events, exploring the way energy is released as well as the effects of these large flares on the surrounding environment.

  11. Hubble Space Telescope/Near-Infrared Camera and Multi-Object Spectrometer Observations of the GLIMPSE9 Stellar Cluster

    NASA Astrophysics Data System (ADS)

    Messineo, Maria; Figer, Donald F.; Davies, Ben; Kudritzki, R. P.; Rich, R. Michael; MacKenty, John; Trombley, Christine

    2010-01-01

    We present Hubble Space Telescope/Near-Infrared Camera and Multi-Object Spectrometer photometry, and low-resolution K-band spectra of the GLIMPSE9 stellar cluster. The newly obtained color-magnitude diagram shows a cluster sequence with H - KS = ~1 mag, indicating an interstellar extinction A _K_s = 1.6 ± 0.2 mag. The spectra of the three brightest stars show deep CO band heads, which indicate red supergiants with spectral type M1-M2. Two 09-B2 supergiants are also identified, which yield a spectrophotometric distance of 4.2 ± 0.4 kpc. Presuming that the population is coeval, we derive an age between 15 and 27 Myr, and a total cluster mass of 1600 ± 400 M sun, integrated down to 1 M sun. In the vicinity of GLIMPSE9 are several H II regions and supernova remnants, all of which (including GLIMPSE9) are probably associated with a giant molecular cloud (GMC) in the inner galaxy. GLIMPSE9 probably represents one episode of massive star formation in this GMC. We have identified several other candidate stellar clusters of the same complex.

  12. The EB Factory: Fundamental Stellar Astrophysics with Eclipsing Binary Stars Discovered by Kepler

    NASA Astrophysics Data System (ADS)

    Stassun, Keivan

    Eclipsing binaries (EBs) are key laboratories for determining the fundamental properties of stars. EBs are therefore foundational objects for constraining stellar evolution models, which in turn are central to determinations of stellar mass functions, of exoplanet properties, and many other areas. The primary goal of this proposal is to mine the Kepler mission light curves for: (1) EBs that include a subgiant star, from which precise ages can be derived and which can thus serve as critically needed age benchmarks; and within these, (2) long-period EBs that include low-mass M stars or brown dwarfs, which are increa-singly becoming the focus of exoplanet searches, but for which there are the fewest available fundamental mass- radius-age benchmarks. A secondary goal of this proposal is to develop an end-to-end computational pipeline -- the Kepler EB Factory -- that allows automatic processing of Kepler light curves for EBs, from period finding, to object classification, to determination of EB physical properties for the most scientifically interesting EBs, and finally to accurate modeling of these EBs for detailed tests and benchmarking of theoretical stellar evolution models. We will integrate the most successful algorithms into a single, cohesive workflow environment, and apply this 'Kepler EB Factory' to the full public Kepler dataset to find and characterize new "benchmark grade" EBs, and will disseminate both the enhanced data products from this pipeline and the pipeline itself to the broader NASA science community. The proposed work responds directly to two of the defined Research Areas of the NASA Astrophysics Data Analysis Program (ADAP), specifically Research Area #2 (Stellar Astrophysics) and Research Area #9 (Astrophysical Databases). To be clear, our primary goal is the fundamental stellar astrophysics that will be enabled by the discovery and analysis of relatively rare, benchmark-grade EBs in the Kepler dataset. At the same time, to enable this goal will require bringing a suite of extant and new custom algorithms to bear on the Kepler data, and thus our development of the Kepler EB Factory represents a value-added product that will allow the widest scientific impact of the in-formation locked within the vast reservoir of the Kepler light curves.

  13. Social stars: Modeling the interactive lives of stars in dense clusters and binary systems in the era of time domain astronomy

    NASA Astrophysics Data System (ADS)

    MacLeod, Morgan Elowe

    This thesis uses computational modeling to study of phases of dramatic interaction that intersperse stellar lifetimes. In galactic centers stars trace dangerously wandering orbits dictated by the combined gravitational force of a central, supermassive black hole and all of the surrounding stars. In binary systems, stars' evolution -- which causes their radii to increase substantially -- can bring initially non-interacting systems into contact. Moments of strong stellar interaction transform stars, their subsequent evolution, and the stellar environments they inhabit. In tidal disruption events, a star is partially or completely destroyed as tidal forces from a supermassive black hole overwhelm the star's self gravity. A portion of the stellar debris falls back to the black hole powering a luminous flare as it accretes. This thesis studies the relative event rates and properties of tidal disruption events for stars across the stellar evolutionary spectrum. Tidal disruptions of giant stars occur with high specific frequency; these objects' extended envelopes make them vulnerable to disruption. More-compact white dwarf stars are tidally disrupted relatively rarely. Their transients are also of very different duration and luminosity. Giant star disruptions power accretion flares with timescales of tens to hundreds of years; white dwarf disruption flares take hours to days. White dwarf tidal interactions can additionally trigger thermonuclear burning and lead to transients with signatures similar to type I supernovae. In binary star systems, a phase of hydrodynamic interaction called a common envelope episode occurs when one star evolves to swallow its companion. Dragged by the surrounding gas, the companion star spirals through the envelope to tighter orbits. This thesis studies accretion and flow morphologies during this phase. Density gradients across the gravitationally-focussed material lead to a strong angular momentum barrier to accretion during common envelope. Typical accretion efficiencies are in the range of 1 percent the Hoyle-Lyttleton accretion rate. This implies that compact objects embedded in common envelopes do not grow significantly during this phase, increasing their mass by at most a few percent. This thesis models the properties of a recent stellar-merger powered transient to derive constraints on this long-uncertain phase of binary star evolution.

  14. AKARI Near-infrared Spectroscopy of the Extended Green Object G318.05+0.09: Detection of CO Fundamental Ro-vibrational Emission

    NASA Astrophysics Data System (ADS)

    Onaka, Takashi; Mori, Tamami; Sakon, Itsuki; Ardaseva, Aleksandra

    2016-10-01

    We present the results of near-infrared (2.5-5.4 μm) long-slit spectroscopy of the extended green object (EGO) G318.05+0.09 with AKARI. Two distinct sources are found in the slit. The brighter source has strong red continuum emission with H2O ice, CO2 ice, and CO gas and ice absorption features at 3.0, 4.25 μm, 4.67 μm, respectively, while the other greenish object shows peculiar emission that has double peaks at around 4.5 and 4.7 μm. The former source is located close to the ultra compact H II region IRAS 14498-5856 and is identified as an embedded massive young stellar object (YSO). The spectrum of the latter source can be interpreted by blueshifted (-3000 ˜ -6000 km s-1) optically thin emission of the fundamental ro-vibrational transitions (v=1{--}0) of CO molecules with temperatures of 12000-3700 K without noticeable H2 and H I emission. We discuss the nature of this source in terms of outflow associated with the young stellar object and supernova ejecta associated with a supernova remnant.

  15. Imaging Young Stellar Objects with VLTi/PIONIER

    NASA Astrophysics Data System (ADS)

    Kluska, J.; Malbet, F.; Berger, J.-P.; Benisty, M.; Lazareff, B.; Le Bouquin, J.-B.; Baron, F.; Dominik, C.; Isella, A.; Juhasz, A.; Kraus, S.; Lachaume, R.; Ménard, F.; Millan-Gabet, R.; Monnier, J.; Pinte, C.; Soulez, F.; Tallon, M.; Thi, W.-F.; Thiébaut, É.; Zins, G.

    2014-04-01

    Optical interferometry imaging is designed to help us to reveal complex astronomical sources without a prior model. Among these complex objects are the young stars and their environments, which have a typical morphology with a point-like source, surrounded by circumstellar material with unknown morphology. To image them, we have developed a numerical method that removes completely the stellar point source and reconstructs the rest of the image, using the differences in the spectral behavior between the star and its circumstellar material. We aim to reveal the first Astronomical Units of these objects where many physical phenomena could interplay: the dust sublimation causing a puffed-up inner rim, a dusty halo, a dusty wind or an inner gaseous component. To investigate more deeply these regions, we carried out the first Large Program survey of HAeBe stars with two main goals: statistics on the geometry of these objects at the first astronomical unit scale and imaging their very close environment. The images reveal the environment, which is not polluted by the star and allows us to derive the best fit for the flux ratio and the spectral slope. We present the first images from this survey and the application of the imaging method on other astronomical objects.

  16. The rate and latency of star formation in dense, massive clumps in the Milky Way

    NASA Astrophysics Data System (ADS)

    Heyer, M.; Gutermuth, R.; Urquhart, J. S.; Csengeri, T.; Wienen, M.; Leurini, S.; Menten, K.; Wyrowski, F.

    2016-04-01

    Context. Newborn stars form within the localized, high density regions of molecular clouds. The sequence and rate at which stars form in dense clumps and the dependence on local and global environments are key factors in developing descriptions of stellar production in galaxies. Aims: We seek to observationally constrain the rate and latency of star formation in dense massive clumps that are distributed throughout the Galaxy and to compare these results to proposed prescriptions for stellar production. Methods: A sample of 24 μm-based Class I protostars are linked to dust clumps that are embedded within molecular clouds selected from the APEX Telescope Large Area Survey of the Galaxy. We determine the fraction of star-forming clumps, f∗, that imposes a constraint on the latency of star formation in units of a clump's lifetime. Protostellar masses are estimated from models of circumstellar environments of young stellar objects from which star formation rates are derived. Physical properties of the clumps are calculated from 870 μm dust continuum emission and NH3 line emission. Results: Linear correlations are identified between the star formation rate surface density, ΣSFR, and the quantities ΣH2/τff and ΣH2/τcross, suggesting that star formation is regulated at the local scales of molecular clouds. The measured fraction of star forming clumps is 23%. Accounting for star formation within clumps that are excluded from our sample due to 24 μm saturation, this fraction can be as high as 31%, which is similar to previous results. Dense, massive clumps form primarily low mass (<1-2 M⊙) stars with emergent 24 μm fluxes below our sensitivity limit or are incapable of forming any stars for the initial 70% of their lifetimes. The low fraction of star forming clumps in the Galactic center relative to those located in the disk of the Milky Way is verified. Full Tables 2-4 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/588/A29

  17. The critical evaluation of stellar data

    NASA Technical Reports Server (NTRS)

    Underhill, A. B.; Mead, J. M.; Nagy, T. A.

    1977-01-01

    The paper discusses the importance of evaluating a catalog of stellar data, whether it is an old catalog being made available in machine-readable form, or a new catalog written expressly in machine-readable form, and discusses some principles to be followed in the evaluation of such data. A procedure to be followed when checking out an astronomical catalog on magnetic tape is described. A cross index system which relates the different identification numbers of a star or other astronomical object as they appear in different catalogs in machine-readable form is described.

  18. The X-Ray View of Young Stellar Objects

    NASA Astrophysics Data System (ADS)

    Guedel, Manuel

    2007-08-01

    X-rays offer ideal access to high-energy phenomena in young, accreting stars. The energy released in magnetic flares has profound effects on the stellar environment. Star-disk magnetic reconnection has been suggested as a possible origin of bipolar jets. Such jets from have been detected at X-ray wavelengths, offering new diagnostics for the energy release and jet shock physics. Finally, eruptive phenomena of FU Ori and EX Lup-type stars have been monitored in X-rays. I will discuss observations and suggest simple models for high-energy eruptive phenomena in young stars.

  19. Compact Objects In Binary Systems: Formation and Evolution of X-ray Binaries and Tides in Double White Dwarfs

    NASA Astrophysics Data System (ADS)

    Valsecchi, Francesca

    Binary star systems hosting black holes, neutron stars, and white dwarfs are unique laboratories for investigating both extreme physical conditions, and stellar and binary evolution. Black holes and neutron stars are observed in X-ray binaries, where mass accretion from a stellar companion renders them X-ray bright. Although instruments like Chandra have revolutionized the field of X-ray binaries, our theoretical understanding of their origin and formation lags behind. Progress can be made by unravelling the evolutionary history of observed systems. As part of my thesis work, I have developed an analysis method that uses detailed stellar models and all the observational constraints of a system to reconstruct its evolutionary path. This analysis models the orbital evolution from compact-object formation to the present time, the binary orbital dynamics due to explosive mass loss and a possible kick at core collapse, and the evolution from the progenitor's Zero Age Main Sequence to compact-object formation. This method led to a theoretical model for M33 X-7, one of the most massive X-ray binaries known and originally marked as an evolutionary challenge. Compact objects are also expected gravitational wave (GW) sources. In particular, double white dwarfs are both guaranteed GW sources and observed electromagnetically. Although known systems show evidence of tidal deformation and a successful GW astronomy requires realistic models of the sources, detached double white dwarfs are generally approximated to point masses. For the first time, I used realistic models to study tidally-driven periastron precession in eccentric binaries. I demonstrated that its imprint on the GW signal yields constrains on the components' masses and that the source would be misclassified if tides are neglected. Beyond this adiabatic precession, tidal dissipation creates a sink of orbital angular momentum. Its efficiency is strongest when tides are dynamic and excite the components' free oscillation modes. Accounting for this effect will determine whether our interpretation of current and future observations will constrain the sources' true physical properties. To investigate dynamic tides I have developed CAFein, a novel code that calculates forced non-adiabatic stellar oscillations using a highly stable and efficient numerical method.

  20. Theory of Bipolar Outflows from Accreting Hot Stars

    NASA Astrophysics Data System (ADS)

    Konigl, A.

    1996-05-01

    There is a growing number of observational indicators for the presence of bipolar outflows in massive, young stellar objects that are still accreting mass as part of their formation process. In particular, there is evidence that the outflows from these objects can attain higher velocities and kinetic luminosities than their lower-mass counterparts. Furthermore, the higher-mass objects appear to smoothly continue the correlation found in T Tauri stars between outflow and accretion signatures, and in several cases there are direct clues to the existence of a disk from optical and infrared spectroscopy. These results suggest that the disk--outflow connection found in low-mass pre--main-sequence stars extends to more massive objects, and that a similar physical mechanism may drive the outflows in both cases. In this presentation, I first critically examine the observational basis for this hypothesis, considering, among other things, the possibility that several low-luminosity outflows might occasionally masquerade as a single flow from a luminous object, and the effects that the radiation field of a hot star could have on the spectroscopic diagnostics of an accretion-driven outflow. I then go on to consider how the commonly invoked centrifugally driven wind models of bipolar outflows in low-mass stars would be affected by the various physical processes (such as photoionization, photoevaporation, radiation pressure, and stellar wind ram pressure) that operate in higher-mass stars. I conclude by mentioning some of the tantalizing questions that one could hope to address as this young field of research continues to develop (for example: is there a high-mass analog of the FU Orionis outburst phenomenon? Could one use observations of progressively more massive, and hence less convective, stars to elucidate the role of stellar magnetic fields in the accretion and outflow processes? Would it be possible to observationally identify massive stars that have reached the main sequence while they were still accreting? Does the evolution of protostellar disks differ in low-mass and high-mass objects?).

  1. Intermediate-Mass Black Holes

    NASA Astrophysics Data System (ADS)

    Miller, M. Coleman; Colbert, E. J. M.

    2004-01-01

    The mathematical simplicity of black holes, combined with their links to some of the most energetic events in the universe, means that black holes are key objects for fundamental physics and astrophysics. Until recently, it was generally believed that black holes in nature appear in two broad mass ranges: stellar-mass (M~3 20 M⊙), which are produced by the core collapse of massive stars, and supermassive (M~106 1010 M⊙), which are found in the centers of galaxies and are produced by a still uncertain combination of processes. In the last few years, however, evidence has accumulated for an intermediate-mass class of black holes, with M~102 104 M⊙. If such objects exist they have important implications for the dynamics of stellar clusters, the formation of supermassive black holes, and the production and detection of gravitational waves. We review the evidence for intermediate-mass black holes and discuss future observational and theoretical work that will help clarify numerous outstanding questions about these objects.

  2. Intermediate-Mass Black Holes

    NASA Astrophysics Data System (ADS)

    Coleman Miller, M.; Colbert, E. J. M.

    The mathematical simplicity of black holes, combined with their links to some of the most energetic events in the universe, means that black holes are key objects for fundamental physics and astrophysics. Until recently, it was generally believed that black holes in nature appear in two broad mass ranges: stellar-mass (M~3-20 M⊙), which are produced by the core collapse of massive stars, and supermassive (M~106-1010 M⊙), which are found in the centers of galaxies and are produced by a still uncertain combination of processes. In the last few years, however, evidence has accumulated for an intermediate-mass class of black holes, with M~102-104 M⊙. If such objects exist they have important implications for the dynamics of stellar clusters, the formation of supermassive black holes, and the production and detection of gravitational waves. We review the evidence for intermediate-mass black holes and discuss future observational and theoretical work that will help clarify numerous outstanding questions about these objects.

  3. Digging deeper into the Southern skies: A compact Milky Way companion discovered in first-year Dark Energy Survey data

    DOE PAGES

    Luque, E.

    2016-02-09

    Here, the Dark Energy Survey (DES) is a 5000 sq. degree survey in the southern hemisphere, which is rapidly reducing the existing north-south asymmetry in the census of MW satellites and other stellar substructure. We use the first-year DES data down to previously unprobed photometric depths to search for stellar systems in the Galactic halo, therefore complementing the previous analysis of the same data carried out by our group earlier this year. Our search is based on a matched filter algorithm that produces stellar density maps consistent with stellar population models of various ages, metallicities, and distances over the surveymore » area. The most conspicuous density peaks in these maps have been identified automatically and ranked according to their significance and recurrence for different input models. We report the discovery of one additional stellar system besides those previously found by several authors using the same first-year DES data. The object is compact, and consistent with being dominated by an old and metal-poor population. DES J0034-4902 is found at high significance and appears in the DES images as a compact concentration of faint blue point sources at ~ 87 {kpc}.« less

  4. Snapshots in X-ray binary evolution: Using Hα Emitters and post-starburst galaxies to study the age-dependence of XRB populations

    NASA Astrophysics Data System (ADS)

    Basu-Zych, Antara; Hornschemeier, Ann; Fragkos, Anastasios; Lehmer, Bret; Zezas, Andreas; Yukita, Mihoko; Tzanavaris, Panayiotis

    2018-01-01

    The X-ray emission in galaxies, due to X-ray binaries (XRBs), appears to depend on global galaxy properties such as stellar mass (M*), star formation rate (SFR), metallicity, and stellar age. This poster will present unique galaxy populations with well-defined stellar ages to test current relations and models. Specifically, Hα emitters (HAEs), which are nearby analogs of galaxies in the early universe, trace how XRBs form and evolve in young, metal-poor environments. We find that HAEs have lower X-ray luminosities per SFR and metallicity compared to other normal galaxies. At such young ages (<10Myr), XRBs may not have fully formed. Therefore, these observations provide constraints for the expected X-ray emission from XRBs in the early Universe. Post-starburst galaxies, selected by the strength of the Hδ equivalent width (> 500 Å), probe the XRB population related to stellar ages of 0.1-1 Gyr. At these ages, the donor star is expected to be an A-star whose mass is ~2 M⊙ and similar to that of the compact object, which may potentially lead to high mass transfer rates and high X-ray luminosities. Together, these samples offer important constraints for the evolution of XRBs with stellar age.

  5. Stellar and gaseous disc structures in cosmological galaxy equilibrium models

    NASA Astrophysics Data System (ADS)

    Rathaus, Ben; Sternberg, Amiel

    2016-05-01

    We present `radially resolved equilibrium models' for the growth of stellar and gaseous discs in cosmologically accreting massive haloes. Our focus is on objects that evolve to redshifts z ˜ 2. We solve the time-dependent equations that govern the radially dependent star formation rates, inflows and outflows from and to the inter- and circumgalactic medium, and inward radial gas flows within the discs. The stellar and gaseous discs reach equilibrium configurations on dynamical time-scales much shorter than variations in the cosmological dark matter halo growth and baryonic accretions rates. We show analytically that mass and global angular momentum conservation naturally give rise to exponential gas and stellar discs over many radial length-scales. As expected, the gaseous discs are more extended as set by the condition Toomre Q < 1 for star formation. The discs rapidly become baryon dominated. For massive, 5 × 1012 M⊙ haloes at redshift z = 2, we reproduced the typical observed star formation rates of ˜100 M⊙ yr-1, stellar masses ˜9 × 1010 M⊙, gas contents ˜1011 M⊙, half-mass sizes of 4.5 and 5.8 kpc for the stars and gas, and characteristic surface densities of 500 and 400 M⊙ pc-2 for the stars and gas.

  6. Digging deeper into the Southern skies: A compact Milky Way companion discovered in first-year Dark Energy Survey data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luque, E.

    Here, the Dark Energy Survey (DES) is a 5000 sq. degree survey in the southern hemisphere, which is rapidly reducing the existing north-south asymmetry in the census of MW satellites and other stellar substructure. We use the first-year DES data down to previously unprobed photometric depths to search for stellar systems in the Galactic halo, therefore complementing the previous analysis of the same data carried out by our group earlier this year. Our search is based on a matched filter algorithm that produces stellar density maps consistent with stellar population models of various ages, metallicities, and distances over the surveymore » area. The most conspicuous density peaks in these maps have been identified automatically and ranked according to their significance and recurrence for different input models. We report the discovery of one additional stellar system besides those previously found by several authors using the same first-year DES data. The object is compact, and consistent with being dominated by an old and metal-poor population. DES J0034-4902 is found at high significance and appears in the DES images as a compact concentration of faint blue point sources at ~ 87 {kpc}.« less

  7. Know the Planet, Know the Star: Precise Stellar Densities from Kepler Transit Light Curves

    NASA Astrophysics Data System (ADS)

    Sandford, Emily; Kipping, David

    2017-12-01

    The properties of a transiting planet’s host star are written in its transit light curve. The light curve can reveal the stellar density ({ρ }* ) and the limb-darkening profile in addition to the characteristics of the planet and its orbit. For planets with strong prior constraints on orbital eccentricity, we may measure these stellar properties directly from the light curve; this method promises to aid greatly in the characterization of transiting planet host stars targeted by the upcoming NASA Transiting Exoplanet Survey Satellite mission and any long-period, singly transiting planets discovered in the same systems. Using Bayesian inference, we fit a transit model, including a nonlinear limb-darkening law, to 66 Kepler transiting planet hosts to measure their stellar properties. We present posterior distributions of ρ *, limb-darkening coefficients, and other system parameters for these stars. We measure densities to within 5% for the majority of our target stars, with the dominant precision-limiting factor being the signal-to-noise ratio of the transits. Of our measured stellar densities, 95% are in 3σ or better agreement with previously published literature values. We make posterior distributions for all of our target Kepler objects of interest available online at 10.5281/zenodo.1028515.

  8. Ionized Absorbers in AGN

    NASA Technical Reports Server (NTRS)

    Mathur, S.

    1999-01-01

    As a part of this program, we observed three AGN:PKS2251 + 113, PG0043 = 039 and PLH909. Two objects show signatures of absorbtion in their UV spectra. Based on our earlier modeling of X-ray warm absorbents, we expected to observe X-ray observation in these objects. The third, PLH909, is known to have soft excess in EINSTEIN data. Attachment: "Exploratory ASCA observation of broad absorption line quasi-stellar objects".

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaidos, Eric, E-mail: gaidos@hawaii.edu

    A key goal of the Kepler mission is the discovery of Earth-size transiting planets in ''habitable zones'' where stellar irradiance maintains a temperate climate on an Earth-like planet. Robust estimates of planet radius and irradiance require accurate stellar parameters, but most Kepler systems are faint, making spectroscopy difficult and prioritization of targets desirable. The parameters of 2035 host stars were estimated by Bayesian analysis and the probabilities p{sub HZ} that 2738 candidate or confirmed planets orbit in the habitable zone were calculated. Dartmouth Stellar Evolution Program models were compared to photometry from the Kepler Input Catalog, priors for stellar mass,more » age, metallicity and distance, and planet transit duration. The analysis yielded probability density functions for calculating confidence intervals of planet radius and stellar irradiance, as well as p{sub HZ}. Sixty-two planets have p{sub HZ} > 0.5 and a most probable stellar irradiance within habitable zone limits. Fourteen of these have radii less than twice the Earth; the objects most resembling Earth in terms of radius and irradiance are KOIs 2626.01 and 3010.01, which orbit late K/M-type dwarf stars. The fraction of Kepler dwarf stars with Earth-size planets in the habitable zone ({eta}{sub Circled-Plus }) is 0.46, with a 95% confidence interval of 0.31-0.64. Parallaxes from the Gaia mission will reduce uncertainties by more than a factor of five and permit definitive assignments of transiting planets to the habitable zones of Kepler stars.« less

  10. New White Dwarfs and Cataclysmic Variables from the FBS

    NASA Astrophysics Data System (ADS)

    Mickaelian, Areg M.

    The Second part of the First Byurakan Survey (FBS) is the continuation of the Markarian Survey and is aimed at discovery of UVX stellar objects: QSOs Seyferts white dwarfs hot subdwarfs cataclysmic variables etc. +33o<δ<+45o and +61o<δ<+90o regions at |b|>15o has been covered so far. 1103 blue stellar objects have been selected including 716 new ones. Observations with the Byurakan 2.6m SAO (Russia) 6m and Haute-Provence 1.93m telescopes revealed more than 50 new white dwarfs and 7 cataclysmic variables including a new bright (V=12.6) novalike cataclysmic variable of SW Sex subclass RXS J16437+3402 found by cross-correlation of ROSAT/USNO objects and further inspection of the FBS spectra and having a period within the period ``gap"" for such objects. The white dwarfs are being studied to reveal pulsating ones (ZZ Ceti stars) magnetic WDs polars (AM Her type objects) planetary nebulae nuclei (DO stars PG 1159 type objects) etc. Polarimetric observations have been undertaken as well: FBS 1704+347 is found to be a possible polar and FBS 1815+381 a variable magnetic WD. The total number of WDs is estimated to be 270 in the whole sample (24%) and cataclysmic variables - 35 (3%)

  11. Making Sense of Atmospheric Models and Fundamental Stellar Properties at the Bottom of the Main Sequence

    NASA Astrophysics Data System (ADS)

    Dieterich, Sergio; Henry, Todd; Jao, W.-C.; Washington, Robert; Silverstein, Michele; Winters, J.; RECONS

    2018-01-01

    We present a detailed comparison of atmospheric model predictions and photometric observations for late M and L dwarfs. We discuss which wavelength regions are best for determining the fundamental properties of these cool stellar and substellar atmospheres and use this analysis to refine the HR diagram for the hydrogen burning limit first presented in 2014. We also add several new objects to the HR diagram and find little qualitative difference in the HR diagram's overall morphology when compared to our 2014 results. The L2 dwarf 2MASS 0523-1403 remains the smallest hydrogen burning star for which we calculated a radius, thus likely indicating the end of the stellar main sequence. This work is supported by the NSF Astronomy and Astrophysics Postdoctoral Fellowship program through grant AST-1400680.

  12. LAMOST DR1: Stellar Parameters and Chemical Abundances with SP_Ace

    NASA Astrophysics Data System (ADS)

    Boeche, C.; Smith, M. C.; Grebel, E. K.; Zhong, J.; Hou, J. L.; Chen, L.; Stello, D.

    2018-04-01

    We present a new analysis of the LAMOST DR1 survey spectral database performed with the code SP_Ace, which provides the derived stellar parameters {T}{{eff}}, {log}g, [Fe/H], and [α/H] for 1,097,231 stellar objects. We tested the reliability of our results by comparing them to reference results from high spectral resolution surveys. The expected errors can be summarized as ∼120 K in {T}{{eff}}, ∼0.2 in {log}g, ∼0.15 dex in [Fe/H], and ∼0.1 dex in [α/Fe] for spectra with S/N > 40, with some differences between dwarf and giant stars. SP_Ace provides error estimations consistent with the discrepancies observed between derived and reference parameters. Some systematic errors are identified and discussed. The resulting catalog is publicly available at the LAMOST and CDS websites.

  13. Galactic archaeology for amateur astronomers: RR Lyrae stars as tracers of the Milky Way formation

    NASA Astrophysics Data System (ADS)

    Carballo-Bello, Julio A.; Martínez-Delgado, David; Fliri, Jürgen

    2011-06-01

    Cosmological models predict that large galaxies like the Milky Way formed from the accretion of smaller stellar systems. The most spectacular of these merger events are stellar tidal streams, rivers of stars and dark matter that envelop the discs of spiral galaxies. We present a research project for a collaboration with amateur astronomers in the study of the formation process of our Galaxy. The main objective is the search for RR Lyrae variable stars in the known stellar streams (Sagitarius, Monoceros, Orphan, etc) a project that can be carried out using small telescopes. The catalogue of candidate variable stars were selected from SDSS data based in colour criteria and it will be sent to interested amateur astronomers who wish to participate in scientific research in one of the most active and competitive topics in Galactic astronomy.

  14. Imaging the Surfaces of Stars from Space

    NASA Astrophysics Data System (ADS)

    Carpenter, Kenneth; Rau, Gioia

    2018-04-01

    Imaging of Stellar Surfacess has been dominated to-date by ground-based observations, but space-based facilities offer tremendous potential for extending the wavelength coverage and ultimately the resolution of such efforts. We review the imaging accomplished so far from space and then talk about exciting future prospects. The earliest attempts from space indirectly produced surface maps via the Doppler Imaging Technique, using UV spectra obtained with the International Ultraviolet Explorer (IUE). Later, the first direct UV images were obtained with the Hubble Space Telescope (HST), of Mira and Betelgeuse, using the Faint Object Camera (FOC). We will show this work and then investigate prospects for IR imaging with the James Webb Space Telescope (JWST). The real potential of space-based Imaging of Stellar Surfacess, however, lies in the future, when large-baseline Fizeau interferometers, such as the UV-optical Stellar Imager (SI) Vision Mission, with a 30-element array and 500m max baseline, are flown. We describe SI and its science goals, which include 0.1 milli-arcsec spectral Imaging of Stellar Surfacess and the probing of internal structure and flows via asteroseismology.

  15. Infrared spectra of rotating protostars

    NASA Technical Reports Server (NTRS)

    Adams, F. C.; Shu, F. H.

    1986-01-01

    Earlier calculations of the infrared emission expected from stars in the process of being made are corrected to include the most important observable effects of rotation and generalized. An improved version of the spherical model of a previous paper is developed, and the corresponding emergent spectral energy distributions are calculated for the theoretically expected mass infall rate in the cores of cool and quiescent molecular clouds. The dust grain opacity model and the temperature profile parameterization are improved. It is shown that the infrared spectrum of the IRAS source 04264+2426, which is associated with a Herbig-Haro object, can be adequately represented in terms of a rotating and accreting protostar. This strengthens the suggestion that collimated outflows in young stellar objects originate when a stellar wind tries to emerge and reverse the swirling pattern of infall which gave birth to the central star.

  16. Stellar pulsations in beyond Horndeski gravity theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakstein, Jeremy; Kenna-Allison, Michael; Koyama, Kazuya, E-mail: sakstein@physics.upenn.edu, E-mail: mka1g13@soton.ac.uk, E-mail: kazuya.koyama@port.ac.uk

    Theories of gravity in the beyond Horndeski class recover the predictions of general relativity in the solar system whilst admitting novel cosmologies, including late-time de Sitter solutions in the absence of a cosmological constant. Deviations from Newton's law are predicted inside astrophysical bodies, which allow for falsifiable, smoking-gun tests of the theory. In this work we study the pulsations of stars by deriving and solving the wave equation governing linear adiabatic oscillations to find the modified period of pulsation. Using both semi-analytic and numerical models, we perform a preliminary survey of the stellar zoo in an attempt to identify themore » best candidate objects for testing the theory. Brown dwarfs and Cepheid stars are found to be particularly sensitive objects and we discuss the possibility of using both to test the theory.« less

  17. Jet activity in the symbiotic variable R Aquarii

    NASA Technical Reports Server (NTRS)

    Michalitsianos, A. G.; Hollis, J. M.; Kafatos, M.

    1986-01-01

    Low-resolution ultraviolet spectra of the R Aquarii jet have been obtained with the International Ultraviolet Explorer (IUE). The most recent IUE observations indicate the ionization state of the jet is increasing. Subarcsecond, Very Large Array observations of R Aquarii have resolved the radio-continuum structure into discrete parcels of emission that are extended and nearly collinear. R Aquarii provides evidence that indicates stellar jet activity is not unique to objects associated with high-energy emission processes alone. Rather, the nature of the aligned radio-optical features that comprise the R Aquarii jet indicate that directional mass expulsion, in the form of discrete-collimated ejecta, probably reflect a general, underlying, physical process associated with a wide variety of peculiar stellar objects. As such, the R Aquarii jet constitutes a prototype for jet activity in composite or peculiar emission stars.

  18. EXors and the stellar birthline

    NASA Astrophysics Data System (ADS)

    Moody, Mackenzie S. L.; Stahler, Steven W.

    2017-04-01

    We assess the evolutionary status of EXors. These low-mass, pre-main-sequence stars repeatedly undergo sharp luminosity increases, each a year or so in duration. We place into the HR diagram all EXors that have documented quiescent luminosities and effective temperatures, and thus determine their masses and ages. Two alternate sets of pre-main-sequence tracks are used, and yield similar results. Roughly half of EXors are embedded objects, I.e., they appear observationally as Class I or flat-spectrum infrared sources. We find that these are relatively young and are located close to the stellar birthline in the HR diagram. Optically visible EXors, on the other hand, are situated well below the birthline. They have ages of several Myr, typical of classical T Tauri stars. Judging from the limited data at hand, we find no evidence that binarity companions trigger EXor eruptions; this issue merits further investigation. We draw several general conclusions. First, repetitive luminosity outbursts do not occur in all pre-main-sequence stars, and are not in themselves a sign of extreme youth. They persist, along with other signs of activity, in a relatively small subset of these objects. Second, the very existence of embedded EXors demonstrates that at least some Class I infrared sources are not true protostars, but very young pre-main-sequence objects still enshrouded in dusty gas. Finally, we believe that the embedded pre-main-sequence phase is of observational and theoretical significance, and should be included in a more complete account of early stellar evolution.

  19. Baryonic dark matter

    NASA Technical Reports Server (NTRS)

    Silk, Joseph

    1991-01-01

    Both canonical primordial nucleosynthesis constraints and large-scale structure measurements, as well as observations of the fundamental cosmological parameters, appear to be consistent with the hypothesis that the universe predominantly consists of baryonic dark matter (BDM). The arguments for BDM to consist of compact objects that are either stellar relics or substellar objects are reviewed. Several techniques for searching for halo BDM are described.

  20. Research study on stellar X-ray imaging experiment, volume 2

    NASA Technical Reports Server (NTRS)

    Wilson, H. H.; Vanspeybroeck, L. P.

    1972-01-01

    A review of the scientific objectives of an integrated X-ray orbiting telescope facility is presented. A set of observations to be conducted to achieve the objectives of the research are described. The techniques and equipment used in the experiment are defined. The configuration of the facility and the specifications of the test equipment are included.

  1. Experiment requirements document for reflight of the small helium-cooled infrared telescope experiment

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The four astronomical objectives addressed include: the measurement and mapping of extended low surface brightness infrared emission from the galaxy; the measurement of diffuse emission from intergalactic material and/or galaxies and quasi-stellar objects; the measurement of the zodiacal dust emission; and the measurement of a large number of discrete infrared sources.

  2. Dark stars: a review.

    PubMed

    Freese, Katherine; Rindler-Daller, Tanja; Spolyar, Douglas; Valluri, Monica

    2016-06-01

    Dark stars are stellar objects made (almost entirely) of hydrogen and helium, but powered by the heat from dark matter annihilation, rather than by fusion. They are in hydrostatic and thermal equilibrium, but with an unusual power source. Weakly interacting massive particles (WIMPs), among the best candidates for dark matter, can be their own antimatter and can annihilate inside the star, thereby providing a heat source. Although dark matter constitutes only [Formula: see text]0.1% of the stellar mass, this amount is sufficient to power the star for millions to billions of years. Thus, the first phase of stellar evolution in the history of the Universe may have been dark stars. We review how dark stars come into existence, how they grow as long as dark matter fuel persists, and their stellar structure and evolution. The studies were done in two different ways, first assuming polytropic interiors and more recently using the MESA stellar evolution code; the basic results are the same. Dark stars are giant, puffy (∼10 AU) and cool (surface temperatures  ∼10 000 K) objects. We follow the evolution of dark stars from their inception at  ∼[Formula: see text] as they accrete mass from their surroundings to become supermassive stars, some even reaching masses  >[Formula: see text] and luminosities  >[Formula: see text], making them detectable with the upcoming James Webb Space Telescope. Once the dark matter runs out and the dark star dies, it may collapse to a black hole; thus dark stars may provide seeds for the supermassive black holes observed throughout the Universe and at early times. Other sites for dark star formation may exist in the Universe today in regions of high dark matter density such as the centers of galaxies. The current review briefly discusses dark stars existing today, but focuses on the early generation of dark stars.

  3. Dark stars: a review

    NASA Astrophysics Data System (ADS)

    Freese, Katherine; Rindler-Daller, Tanja; Spolyar, Douglas; Valluri, Monica

    2016-06-01

    Dark stars are stellar objects made (almost entirely) of hydrogen and helium, but powered by the heat from dark matter annihilation, rather than by fusion. They are in hydrostatic and thermal equilibrium, but with an unusual power source. Weakly interacting massive particles (WIMPs), among the best candidates for dark matter, can be their own antimatter and can annihilate inside the star, thereby providing a heat source. Although dark matter constitutes only ≲ 0.1% of the stellar mass, this amount is sufficient to power the star for millions to billions of years. Thus, the first phase of stellar evolution in the history of the Universe may have been dark stars. We review how dark stars come into existence, how they grow as long as dark matter fuel persists, and their stellar structure and evolution. The studies were done in two different ways, first assuming polytropic interiors and more recently using the MESA stellar evolution code; the basic results are the same. Dark stars are giant, puffy (˜10 AU) and cool (surface temperatures  ˜10 000 K) objects. We follow the evolution of dark stars from their inception at  ˜1{{M}⊙} as they accrete mass from their surroundings to become supermassive stars, some even reaching masses  >{{10}6}{{M}⊙} and luminosities  >{{10}10}{{L}⊙} , making them detectable with the upcoming James Webb Space Telescope. Once the dark matter runs out and the dark star dies, it may collapse to a black hole; thus dark stars may provide seeds for the supermassive black holes observed throughout the Universe and at early times. Other sites for dark star formation may exist in the Universe today in regions of high dark matter density such as the centers of galaxies. The current review briefly discusses dark stars existing today, but focuses on the early generation of dark stars.

  4. Periastron shifts of stellar orbits near the Galactic Center

    NASA Astrophysics Data System (ADS)

    Rubilar, G. F.; Eckart, A.

    2001-07-01

    The presence of a 2.9+/-0.4 million solar mass object in the central stellar cluster of the Milky Way has recently been demonstrated via measurements of the stellar proper motions and radial velocities. This mass is located at the position of the compact radio source Sagittarius A* (Sgr A*) at a distance of Ro=8.0 kpc and is most likely present in the form of a massive black hole (BH). Some of the stars have a projected distance to Sgr A* of <=0.005 pc and have proper motion velocities of up to 1400 km s-1. Recent measurements indicate that their orbits show significant curvatures indicating that the stars indeed orbit the central compact object. Detailed measurements of the stellar orbits close to Sgr A* will allow us to precisely determine the distribution of this mass. With an increased point source sensitivity due to the combination of large telescope apertures, adaptive optics, and - in the very near future - NIR interferometry it is likely that stars with orbital time scales of the order of one year will be detected. Theses sources, however, will most likely not be on simple Keplerian orbits. The effects of measurable prograde relativistic and retrograde Newtonian periastron shifts will result in rosetta shaped orbits. A substantial Newtonian periastron rotation can already be expected if only a few percent of the central mass are extended. We discuss the conditions under which an extended mass can (over-) compensate the relativistic periastron shift. We also demonstrate that measuring a single periastron shift is not sufficient to determine the distribution of an extended mass component. A periastron shift will allow us to determine the inclination of the stellar orbits and to derive inclination corrected shift values. These have to be acquired for three stars on orbits with different energy or angular momentum in order to unambiguously solve for the compactness, extent and shape of any extended mass contribution.

  5. The first 62 AGNs observed with SDSS-IV MaNGA - I. Their characterization and definition of a control sample

    NASA Astrophysics Data System (ADS)

    Rembold, Sandro B.; Shimoia, Jáderson S.; Storchi-Bergmann, Thaisa; Riffel, Rogério; Riffel, Rogemar A.; Mallmann, Nícolas D.; do Nascimento, Janaína C.; Moreira, Thales N.; Ilha, Gabriele S.; Machado, Alice D.; Cirolini, Rafael; da Costa, Luiz N.; Maia, Marcio A. G.; Santiago, Basílio X.; Schneider, Donald P.; Wylezalek, Dominika; Bizyaev, Dmitry; Pan, Kaike; Müller-Sánchez, Francisco

    2017-12-01

    We report the characterization of the first 62 Mapping Nearby Galaxies at the Apache Point Observatory active galactic nuclei (AGNs) hosts and the definition of a control sample of non-active galaxies. This control sample was selected in order to match the AGN hosts in terms of stellar mass, redshift, visual morphology and inclination. The stellar masses are in the range 9.4

  6. NoSOCS in SDSS - VI. The environmental dependence of AGN in clusters and field in the local Universe

    NASA Astrophysics Data System (ADS)

    Lopes, P. A. A.; Ribeiro, A. L. B.; Rembold, S. B.

    2017-11-01

    We investigated the variation in the fraction of optical active galactic nuclei (AGNs) hosts with stellar mass, as well as their local and global environments. Our sample is composed of cluster members and field galaxies at z ≤ 0.1 and we consider only strong AGN. We find a strong variation in the AGN fraction (FAGN) with stellar mass. The field population comprises a higher AGN fraction compared to the global cluster population, especially for objects with log M* > 10.6. Hence, we restricted our analysis to more massive objects. We detected a smooth variation in the FAGN with local stellar mass density for cluster objects, reaching a plateau in the field environment. As a function of cluster-centric distance we verify that FAGN is roughly constant for R > R200, but show a steep decline inwards. We have also verified the dependence of the AGN population on cluster velocity dispersion, finding a constant behaviour for low mass systems (σP ≲ 650-700 km s-1). However, there is a strong decline in FAGN for higher mass clusters (>700 km s-1). When comparing the FAGN in clusters with or without substructure, we only find different results for objects at large radii (R > R200), in the sense that clusters with substructure present some excess in the AGN fraction. Finally, we have found that the phase-space distribution of AGN cluster members is significantly different than other populations. Due to the environmental dependence of FAGN and their phase-space distribution, we interpret AGN to be the result of galaxy interactions, favoured in environments where the relative velocities are low, typical of the field, low mass groups or cluster outskirts.

  7. Young Stellar Objects in Lynds 1641: Disks and Accretion

    NASA Astrophysics Data System (ADS)

    Fang, Min; Kim, Jinyoung Serena; van Boekel, Roy; Sicilia-Aguilar, Aurora; Henning, Thomas; Flaherty, Kevin

    2013-07-01

    We investigate the young stellar objects (YSOs) in the Lynds 1641 (L1641) cloud using multi-wavelength data including Spitzer, WISE, 2MASS, and XMM covering 1390 YSOs across a range of evolutionary stages. In addition, we targeted a sub-sample of YSOs for optical spectroscopy with the MMT/Hectospec and the MMT/Hectochelle. We use this data, along with archival photometric data, to derive spectral types, masses, ages and extinction values. We also use the H_alpha and H_beta lines to derive accretion rates. We calculate the disk fraction as N(II)/N(II+III), where N(II) and N(III) are numbers of Class\\ II and Class\\ III sources, respectively, and obtain a disk fraction of 50% in L1641. We find that the disk frequency is almost constant as a function of stellar mass with a slight peak at log(M_*/M_sun) -0.25. The analysis of multi-epoch data indicates that the accretion variability of YSOs cannot explain the two orders of magnitude of scatter for YSOs with similar masses in the M_acc vs. M_* plot. Forty-six new transition disk objects are confirmed in our spectroscopic survey and we find that the fraction of transition disks that are actively accreting is lower than for optically thick disks (40-45% vs. 77-79% respectively). We confirm our previous result that the accreting YSOs with transition disks have a similar median accretion rate to normal optically thick disks. Analyzing the age distributions of various populations, we find that the diskless YSOs are statistically older than the YSOs with optically-thick disks and the transition disk objects have a median age which is intermediate between the two populations.

  8. Young Stellar Objects in Lynds 1641: Disks, Accretion, and Star Formation History

    NASA Astrophysics Data System (ADS)

    Fang, Min; Kim, Jinyoung Serena; van Boekel, Roy; Sicilia-Aguilar, Aurora; Henning, Thomas; Flaherty, Kevin

    2013-07-01

    We investigate the young stellar objects (YSOs) in the Lynds 1641 (L1641) cloud using multi-wavelength data including Spitzer, WISE, the Two Micron All Sky Survey, and XMM covering ~1390 YSOs across a range of evolutionary stages. In addition, we targeted a sub-sample of YSOs for optical spectroscopy with the MMT/Hectospec and the MMT/Hectochelle. We use these data, along with archival photometric data, to derive spectral types, extinction values, masses, ages, and accretion rates. We obtain a disk fraction of ~50% in L1641. The disk frequency is almost constant as a function of stellar mass with a slight peak at log (M */M ⊙) ≈ -0.25. The analysis of multi-epoch spectroscopic data indicates that the accretion variability of YSOs cannot explain the two orders of magnitude of scatter for YSOs with similar masses. Forty-six new transition disk (TD) objects are confirmed in this work, and we find that the fraction of accreting TDs is lower than for optically thick disks (40%-45% versus 77%-79%, respectively). We confirm our previous result that the accreting TDs have a median accretion rate similar to normal optically thick disks. We confirm that two star formation modes (isolated versus clustered) exist in L1641. We find that the diskless YSOs are statistically older than the YSOs with optically thick disks and the TD objects have a median age that is intermediate between those of the other two populations. We tentatively study the star formation history in L1641 based on the age distribution and find that star formation started to be active 2-3 Myr ago.

  9. Vigorous star formation in a bulge-dominated extremely red object at z= 1.34

    NASA Astrophysics Data System (ADS)

    Cotter, Garret; Simpson, Chris; Bolton, Rosemary C.

    2005-06-01

    We present near-infrared (near-IR) spectroscopy of three extremely red objects (EROs) using the OHS/CISCO spectrograph at the Subaru Telescope. One target exhibits a strong emission line, which we identify as Hα at z= 1.34. Using new and existing ground-based optical and near-IR imaging, and archival Hubble Space Telescope imaging, we argue that this target is essentially an elliptical galaxy, with an old stellar population of around 4 × 1011Msolar, but having a dust-enshrouded star-forming component with a star formation rate (SFR) of some 50-100Msolar yr-1. There is no evidence that the galaxy contains an active galactic nucleus. Analysis of a further two targets, which do not exhibit any features in our near-IR spectra, suggests that one is a quiescent galaxy in the redshift range 1.2 < z < 1.6, but that the other cannot be conclusively categorized as either star-forming or quiescent. Even though our first target has many of the properties of an old elliptical, the ongoing star formation means that it cannot have formed all of its stellar population at high redshift. While we cannot infer any robust values for the SFR in ellipticals at z > 1 from this one object, we argue that the presence of an object with such a high SFR in such a small sample suggests that a non-negligible fraction of the elliptical galaxy population may have formed a component of their stellar population at redshifts z~ 1-2. We suggest that this is evidence for ongoing star formation in the history of elliptical galaxies.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orange, N. Brice; Chesny, David L.; Gendre, Bruce

    Solar variability investigations that include magnetic energy coupling are paramount to solving many key solar/stellar physics problems, particularly for understanding the temporal variability of magnetic energy redistribution and heating processes. Using three years of observations from the Solar Dynamics Observatory ’ s Atmospheric Imaging Assembly and Heliosemic Magnetic Imager, we measured radiative and magnetic fluxes from gross features and at full-disk scales, respectively. Magnetic energy coupling analyses support radiative flux descriptions via the plasma heating connectivity of dominant (magnetic) and diffuse components, specifically of the predominantly closed-field corona. Our work shows that this relationship favors an energetic redistribution efficiency acrossmore » large temperature gradients, and potentially sheds light on the long-standing issue of diffuse unresolved low corona emission. The close connection between magnetic energy redistribution and plasma conditions revealed by this work lends significant insight into the field of stellar physics, as we have provided possible means for probing distant sources in currently limited and/or undetectable radiation distributions.« less

  11. Prediction of transits of Solar system objects in Kepler/K2 images: an extension of the Virtual Observatory service SkyBoT

    NASA Astrophysics Data System (ADS)

    Berthier, J.; Carry, B.; Vachier, F.; Eggl, S.; Santerne, A.

    2016-05-01

    All the fields of the extended space mission Kepler/K2 are located within the ecliptic. Many Solar system objects thus cross the K2 stellar masks on a regular basis. We aim at providing to the entire community a simple tool to search and identify Solar system objects serendipitously observed by Kepler. The sky body tracker (SkyBoT) service hosted at Institut de mécanique céleste et de calcul des éphémérides provides a Virtual Observatory compliant cone search that lists all Solar system objects present within a field of view at a given epoch. To generate such a list in a timely manner, ephemerides are pre-computed, updated weekly, and stored in a relational data base to ensure a fast access. The SkyBoT web service can now be used with Kepler. Solar system objects within a small (few arcminutes) field of view are identified and listed in less than 10 s. Generating object data for the entire K2 field of view (14°) takes about a minute. This extension of the SkyBoT service opens new possibilities with respect to mining K2 data for Solar system science, as well as removing Solar system objects from stellar photometric time series.

  12. HST/WFPC2 Photometry in the 30 Doradus Nebula Beyond R136

    NASA Astrophysics Data System (ADS)

    Barbá, R. H.; Walborn, N. R.

    30 Doradus is the nearest and hence best resolved extragalactic starburst. Knowledge of its stellar content is vital to the interpretation of more distant starbursts, as well as to fundamental astrophysical problems such as the IMF, stellar mass limits, stellar evolution, and the structure of giant H II regions. In spite of the relative proximity of 30 Dor, it is essential to apply the highest possible spatial resolution to disentangle compact multiple systems and groups, which are characteristic of massive young regions and a source of systematic errors in astrophysical inferences if they are not resolved. Recents studies of the stellar content of 30 Doradus with HST/WFPC2 have concentrated on the central cluster core, R136 (Hunter et al. 1995, 1996, 1997; Nota et al. 1998). Followup HST/FOS spectroscopy was performed in and around R136 to a radius of about 15 arcsec, and the most spectacular concentration of the most massive young stars known was discovered (Massey & Hunter 1998; Heap et al. 1998). However, R136 and its immediate surroundings account for only a third to a half of the ionization of 30 Dor. Other very massive stars and stellar systems are distributed throughout the several-arcminute extent of the Nebula. They include objects both older and younger than R136; there is evidence that the formation of the latter has been triggered by the energetic activity of R136. So far, these important surrounding populations have been investigated only with groundbased observations (Parker 1993; Walborn & Blades 1997). In the latter spectral classification study, five spatially and/or temporally distinct stellar components were isolated within the Nebula. But numerous multiple systems remain unresolved in these populations, particularly in the younger ones. In this paper, we report HST/WFPC2 photometry of the 30 Doradus stellar content surrounding R136, with emphasis on the numerous multiple systems and compact clusterings found there. Of particular interest are systems in the bright nebular filaments where current massive-star formation is taking place, as revealed by both groundbased and HST/NICMOS infrared images. Special attention is given to the objects included in the above groundbased spectral-classification studies. Magnitudes and colors are derived for the newly resolved components of the multiple systems, while their ages and evolutionary status will be inferred insofar as possible. However, it is well known that the effective temperatures and masses of hot stars are degenerate when derived from photometry alone. Hence, this project is viewed as preparation for followup spatially resolved spectroscopy with HST/STIS, in order to advance our knowledge of the entire stellar content of 30 Doradus to the current state of the art, as is warranted by its unique status.

  13. Rare isotopes and the sound of dilute nuclear matter

    NASA Astrophysics Data System (ADS)

    Papakonstantinou, P.

    2018-04-01

    Dilute baryonic matter, at densities below the normal saturation density of symmetric matter, is found on the crust of neutron stars and in collapsing supernova matter, its properties determining the evolution of those stellar objects. It is also readily found on the surface of ordinary and exotic atomic nuclei and lives fleetingly in the form of space-extended resonances of excited nucleons. Liminal states of nuclear matter, between saturation and full evaporation or clusterization, are manifest in the structure of symmetric nuclei through clustering and of very asymmetric rare species in haloes and the neutron skin; they stand literally at the threshold of a nucleus's response to hadronic probes, including processes which hinder or enable fusion. In this contribution I focus on excited states, and in particular exotic or not-so-exotic dipole excitation modes of N = Z nuclei and neutron-rich species, including new theoretical results on threshold strength. Modes of special interest are vibrations of and within diffuse surface layers and alpha-cluster oscillations. The modeling of such processes is relevant, directly or indirectly, for the description of reactions at astrophysical energies.

  14. The kinematic dynamo problem, part I: analytical treatment with the Bullard-Gellman formalism

    NASA Astrophysics Data System (ADS)

    Glane, Sebastian; Reich, Felix A.; Müller, Wolfgang H.

    2018-03-01

    This paper is dedicated to the description of kinematic dynamo action in a sphere and its analytical treatment with the uc(Bullard)-uc(Gellman) formalism. One goal of dynamo theory is to answer the question: Can magnetic fields of stellar objects be generated or sustained due to (fluid) motion in the interior? uc(Bullard) and uc(Gellman) were among the first to study this question, leading the way for many subsequent studies, cf. Bullard (Philos Trans R Soc A 247(928):213-278, 1954). In their publication the differential equations resulting from a toroidal-poloidal decomposition of the velocity and magnetic field are stated without an in-depth discussion of the employed methods and computation steps. This study derives the necessary formalism in a compact and concise manner by using an operator-based approach. The focus lies on the mathematical steps and necessary properties of the considered formalism. Prior to that a derivation of the induction equation is presented based on rational continuum electrodynamics. As an example of the formalism the decay of two magnetic fields is analyzed.

  15. Jumbo Jellyfish or Massive Star?

    NASA Image and Video Library

    2010-06-17

    Some might see a blood-red jellyfish, while others might see a pair of lips. In fact, the red-colored object in this new image from NASA Wide-field Infrared Survey Explorer is a sphere of stellar innards.

  16. Not enough stellar mass objects to fill the Galactic halo?

    NASA Astrophysics Data System (ADS)

    Milsztajn, A.

    2000-05-01

    The Universe contains a lot more than meets the eye. Sophisticated experiments search diligently for this invisible dark matter. Here the author describes the latest results to emerge from the microlensing technique.

  17. The sagittarius tidal stream and the shape of the galactic stellar halo

    NASA Astrophysics Data System (ADS)

    Newby, Matthew T.

    The stellar halo that surrounds our Galaxy contains clues to understanding galaxy formation, cosmology, stellar evolution, and the nature of dark matter. Gravitationally disrupted dwarf galaxies form tidal streams, which roughly trace orbits through the Galactic halo. The Sagittarius (Sgr) dwarf tidal debris is the most dominant of these streams, and its properties place important constraints on the distribution of mass (including dark matter) in the Galaxy. Stars not associated with substructures form the "smooth" component of the stellar halo, the origin of which is still under investigation. Characterizing halo substructures such as the Sgr stream and the smooth halo provides valuable information on the formation history and evolution of our galaxy, and places constraints on cosmological models. This thesis is primarily concerned with characterizing the 3-dimensional stellar densities of the Sgr tidal debris system and the smooth stellar halo, using data from the Sloan Digital Sky Survey (SDSS). F turnoff stars are used to infer distances, as they are relatively bright, numerous, and distributed about a single intrinsic brightness (magnitude). The inherent spread in brightnesses of these stars is overcome through the use of the recently-developed technique of statistical photometric parallax, in which the bulk properties of a stellar population are used to create a probability distribution for a given star's distance. This was used to build a spatial density model for the smooth stellar halo and tidal streams. The free parameters in this model are then fit to SDSS data with a maximum likelihood technique, and the parameters are optimized by advanced computational methods. Several computing platforms are used in this study, including the RPI SUR Bluegene and the Milkyway home volunteer computing project. Fits to the Sgr stream in 18 SDSS data stripes were performed, and a continuous density profile is found for the major Sgr stream. The stellar halo is found to be strongly oblate (flattening parameter q=0.53). A catalog of stars consistent with this density profile is produced as a template for matching future disruption models. The results of this analysis favor a description of the Sgr debris system that includes more than one dwarf galaxy progenitor, with the major streams above and below the Galactic disk being separate substructures. Preliminary results for the minor tidal stream characterizations are presented and discussed. Additionally, a more robust characterization of halo turnoff star brightnesses is performed, and it is found that increasing color errors with distance result in a previously unaccounted for incompleteness in star counts as the SDSS magnitude limit is approached. These corrections are currently in the process of being implemented on MilkyWay home.

  18. Formation of the heliospheric boundaries and the induced dynamics of the solar system: a multifluid view

    NASA Astrophysics Data System (ADS)

    Fahr, Hans-Jörg

    2000-05-01

    In many papers in the literature it is shown that wind-driving stars with a peculiar motion relative to the ambient interstellar medium within dynamical time periods form a dynamically adapted astropause as separatrix between the stellar wind plasma and the surrounding interstellar plasma. As we shall show in this chapter stars with an adapted astropause are subject to thrust forces finally acting on the wing-generating central body and thus influencing the stellar motion. Thereby the actual magnitude of the resulting thrust force depends on the actual counterflow configuration of stellar and interstellar winds determined by the particular kinematic situation, i.e. the instantaneous Mach number of the motion relative to the ambient medium. We shall study the sensitivity of this configuration to whether the interstellar flow is sub- or supersonic. The resulting net force is shown to vary in a non-monotonic way with the actual peculiar velocity. For subsonic motions this force generally has an accelerating nature, i.e. operating like a rocket thrust motor, whereas for supersonic motions at supercritical Mach numbers μS≥μS,c, to the contrary, it is of a decelerating nature. For an adequate description of a time-dependent circumstellar flow configuration, we shall use an analytic, hydrodynamic modeling of the counterflow configuration representing the case of a stellar wind system in subsonic or supersonic motion with respect to the local interstellar medium. For the purpose of analytical treatability we assume irrotational and incompressible flows downstream of the inner and outer shocks and give quantitative numbers for forces acting on the central star. We also describe long-period evolutions of star motions and give typical acceleration time periods for different types of wind-driving stars. As we shall emphasize here the dynamical influence of these thrust forces onto the central stellar body requires an understanding of how the presence of the counterflowing interstellar plasma is communicated upstream in the supersonic stellar wind up to the origin of this wind, the stellar corona. The answer we shall give is based on the multifluid character of the relevant counterflow situation invalidating the conventional mono-Mach-number concept of hydrodynamical flows. In fact stellar winds can only be described by a poly-Mach-number concept, with stellar-wind protons being supersonic, with pick-up ions being marginally sonic, and with electrons and anomalous cosmic ray particles being strongly subsonic. We shall present solutions for multifluid counterflow configurations based on computational simulations in which a consistent picture of the interaction of all these different species is given. Our final conclusion is that already the solar wind when passing over the Earth's orbit tells us about the interstellar medium beyond the heliopause.

  19. Correlated NanoSIMS, TEM, and XANES Studies of Presolar Grains

    NASA Astrophysics Data System (ADS)

    Groopman, Evan Edward

    The objective of this thesis is to describe the correlated study of individual presolar grains via Nano-scale Secondary Ion Mass Spectrometry (NanoSIMS), Transmission Electron Microscopy (TEM), and Scanning Transmission X-ray Microscopy (STXM) utilizing X-ray Absorption Near Edge Structure (XANES), with a focus on connecting these correlated laboratory studies to astrophysical phenomena. The correlated isotopic, chemical, and microstructural studies of individual presolar grains provide the most detailed description of their formation environments, and help to inform astrophysical models and observations of stellar objects. As a part of this thesis I have developed and improved upon laboratory techniques for micromanipulating presolar grains and embedding them in resin for ultramicrotomy after NanoSIMS analyses and prior to TEM characterization. The new methods have yielded a 100% success rate and allow for the specific correlation of microstructural and isotopic properties of individual grains. Knowing these properties allows for inferences to be made regarding the condensation sequences and the origins of the stellar material that condensed to form these grains. NanoSIMS studies of ultramicrotomed sections of presolar graphite grains have revealed complex isotopic heterogeneities that appear to be primary products of the grains' formation environments and not secondary processing during the grains' lifetimes. Correlated excesses in 15N and 18O were identified as being carried by TiC subgrains within presolar graphite grains from supernovae (SNe). These spatially-correlated isotopic anomalies pinpoint the origin of the material that formed these grains: the inner He/C zone. Complex microstructures and isotopic heterogeneities also provide evidence for mixing in globular SN ejecta, which is corroborated by models and telescopic observations. In addition to these significant isotopic discoveries, I have also observed the first reported nanocrystalline core surrounded by turbostratic graphite within a low-density SN graphite grain. Nanocrystalline cores consisting of randomly-oriented 2-4 nm sheets of graphene and surrounded by concentric shells of graphite have been observed in high-density presolar graphite grains from Asymptotic Giant Branch stars, whose grains are typically microstructurally distinct from SN graphite grains. These vastly different stellar environments briefly formed similar nanocrystalline structures before diverging in the structure of their mantling graphite to be typical of AGB and SN grains. While relatively few correlated NanoSIMS and TEM studies have been performed previously, which this research thesis aims to expand, my collaborators and I also endeavored to add a third correlated technique, STXM/XANES, which had previously not been applied to presolar grains. XANES allows for the investigation of molecular bonds, which we used to help infer physical and chemical properties of stellar ejecta. I investigated the C K-edge and Ti L-edge of molecular bonds in both presolar graphite grains and their TiC subgrains. The presolar graphite grains, while overwhelmingly composed of aromatic C molecules, host a wide variety of minor organic molecules. Considering the large isotopic anomalies in the grains, these minor components are not likely due to contamination. I also investigated the valence state of Ti in Ti-rich subgrains and plan to work towards illuminating the effect that V in solid solution has upon the TiC bonds.

  20. Phase transitions, interparticle correlations, and elementary processes in dense plasmas

    NASA Astrophysics Data System (ADS)

    Ichimaru, Setsuo

    2017-12-01

    Astrophysical dense plasmas are those we find in the interiors, surfaces, and outer envelopes of stellar objects such as neutron stars, white dwarfs, the Sun, and giant planets. Condensed plasmas in the laboratory settings include those in ultrahigh-pressure metal-physics experiments undertaken for realization of metallic hydrogen. We review basic physics issues studied in the past 60 some years on the phase transitions, the interparticle correlations, and the elementary processes in dense plasmas, through survey on scattering of electromagnetic waves, equations of state, phase diagrams, transport processes, stellar and planetary magnetisms, and thermo- and pycnonuclear reactions.

  1. Picture gallery: A structured presentation of OAO-2 photometric data supported by UBV, ANS, and TD1 observations

    NASA Technical Reports Server (NTRS)

    Koornneed, J.; Meade, M. R.; Wesselius, P. R.; Code, A. D.; Vanduinen, R.

    1981-01-01

    Stellar fluxes for 531 stars in the wavelength range lambda 5500-1330A lambda are presented in the form of graphs. The stars are divided into 52 different categories on the basis of their spectral types and objects within one category are shown together. The agreement between the various ultraviolet photometric systems for early type stars is generally better than 0.10 mag. Stars with known and/or observed variability have been grouped separately. A list of stars with observed photometric properties which are indicative of stellar or interstellar anomalies is also provided.

  2. Precision Astrophysics Experiments with the Kepler Satellite

    NASA Astrophysics Data System (ADS)

    Jackiewicz, Jason

    2012-10-01

    Long photometric observations from space of tens of thousands of stars, such as those provided by Kepler, offer unique opportunities to carry out ensemble astrophysics as well as detailed studies of individual objects. One of the primary tools at our disposal for understanding pulsating stars is asteroseismology, which uses observed stellar oscillation frequencies to determine interior properties. This can provide very strict constraints on theories of stellar evolution, structure, and the population characteristics of stars in the Milky Way galaxy. This talk will focus on several of the exciting insights Kepler has enabled through asteroseismology of stars across the H-R diagram.

  3. Stellar interferometers and hypertelescopes: new insights on an angular spatial frequency approach to their non-invariant imaging

    NASA Astrophysics Data System (ADS)

    Dettwiller, L.; Lépine, T.

    2017-12-01

    A general and pure wave theory of image formation for all types of stellar interferometers, including hypertelescopes, is developed in the frame of Fresnel's paraxial approximations of diffraction. For a hypertelescope, we show that the severe lack of translation invariance leads to multiple and strong spatial frequency heterodyning, which codes the very high frequencies detected by the hypertelescope into medium spatial frequencies and introduces a moiré-type ambiguity for extended objects. This explains mathematically the disappointing appearance of poor resolution observed in some image simulations for hypertelescopes.

  4. Neutron tori around Kerr black holes

    NASA Technical Reports Server (NTRS)

    Witt, H. J.; Jaroszynski, M.; Haensel, P.; Paczynski, B.; Wambsganss, J.

    1994-01-01

    Models of stationary, axisymmetric, non-self-gravitating tori around stellar mass Kerr black holes are calculated. Such objects may form as a result of a merger between two neutron stars, a neutron star and a stellar mass black hole, or a 'failed supernova' collapse of a single rapidly rotating star. We explore a large range of parameters: the black hole mass and angular momentum, the torus mass, angular momentum and entropy. Physical conditions within the tori are similar to those in young and hot neutron stars, but their topology is different, and the range of masses and energies is much larger.

  5. Inferring Binary and Trinary Stellar Populations in Photometric and Astrometric Surveys

    NASA Astrophysics Data System (ADS)

    Widmark, Axel; Leistedt, Boris; Hogg, David W.

    2018-04-01

    Multiple stellar systems are ubiquitous in the Milky Way but are often unresolved and seen as single objects in spectroscopic, photometric, and astrometric surveys. However, modeling them is essential for developing a full understanding of large surveys such as Gaia and connecting them to stellar and Galactic models. In this paper, we address this problem by jointly fitting the Gaia and Two Micron All Sky Survey photometric and astrometric data using a data-driven Bayesian hierarchical model that includes populations of binary and trinary systems. This allows us to classify observations into singles, binaries, and trinaries, in a robust and efficient manner, without resorting to external models. We are able to identify multiple systems and, in some cases, make strong predictions for the properties of their unresolved stars. We will be able to compare such predictions with Gaia Data Release 4, which will contain astrometric identification and analysis of binary systems.

  6. A study of the stellar population in the Chamaeleon dark clouds

    NASA Technical Reports Server (NTRS)

    Gauvin, Lisa S.; Strom, Karen M.

    1992-01-01

    The properties of the stellar population in the Chamaeleon dark clouds are discussed. Spectral energy distributions, based on the extant photometric and spectroscopic data base and IRAS fluxes measured from coadded data taken at the position of each star, and spectral types allow placement of the stars in an H-R diagram. The age and mass distributions and the luminosity function for the Chamaeleon stars are compared to those in the Taurus-Auriga dark clouds and are found to be similar. A small subsample (eight of 36) of the Chamaeleon stars show unusual spectral energy distributions which seem best interpreted as arising from circumstellar disks whose inner regions (R(in)) is less than 30-50 stellar radii) area devoid of material. The X-ray properties of this sample of premain-sequence objects are compared to those of other premain-sequence samples, as well as to the Hyades and the Pleiades main-sequence stars.

  7. Target Selection for the SDSS-IV APOGEE-2 Survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zasowski, G.; Cohen, R. E.; Carlberg, J. K.

    APOGEE-2 is a high-resolution, near-infrared spectroscopic survey observing ∼3 × 10{sup 5} stars across the entire sky. It is the successor to APOGEE and is part of the Sloan Digital Sky Survey IV (SDSS-IV). APOGEE-2 is expanding on APOGEE’s goals of addressing critical questions of stellar astrophysics, stellar populations, and Galactic chemodynamical evolution using (1) an enhanced set of target types and (2) a second spectrograph at Las Campanas Observatory in Chile. APOGEE-2 is targeting red giant branch and red clump stars, RR Lyrae, low-mass dwarf stars, young stellar objects, and numerous other Milky Way and Local Group sources across the entiremore » sky from both hemispheres. In this paper, we describe the APOGEE-2 observational design, target selection catalogs and algorithms, and the targeting-related documentation included in the SDSS data releases.« less

  8. John Ellard Gore: "Giant Suns and Miniature Stars"

    NASA Astrophysics Data System (ADS)

    Holberg, Jay B.

    2007-12-01

    The Irish amateur astronomer John Ellard Gore (1845-1910) was a founding member of the British Astronomical Association and a prolific author of popular astronomy between 1880 and 1910. He is perhaps best remembered for his books `The Visible Universe’ (1893), an English language translation of Camille Flammarion's `Popular Astronomy’ (1894) and his contributions to Agnes Clerk's `Astronomy’ (1898). I consider a little known investigation that Gore undertook into the question of stellar `sizes’ using binary stars. This led him to the realization of the existence of "Giant Suns” as well as "Miniature Stars” the latter included the sun. Gore also considered the existence of hyper-dense compact objects, now known as white dwarfs. Unfortunately Gore rejected the reality of the latter stellar types. Gore based his conclusions on a formula developed by fellow Irish astronomer W.H.S. Monck, who was reaching similar conclusions about Giant stars through the study of stellar motions.

  9. Cataclysmic variables based on the stellar spectral survey LAMOST DR3

    NASA Astrophysics Data System (ADS)

    Han, Xianming L.; Zhang, Li-Yun; Shi, Jian-Rong; Pi, Qing-Feng; Lu, Hong-Peng; Zhao, Li-Bo; Terheide, Rachel K.; Jiang, Lin-Yang

    2018-06-01

    Big data in the form of stellar spectra from the spectroscopic survey associated with the Large Sky Area Multi-object Fiber Spectroscopic Telescope (LAMOST) are important for studying properties of cataclysmic variables (CVs). By cross matching the catalogs of CVs compiled with LAMOST DR3, acquired from October 2011 to July 2015, we obtained the first spectroscopic catalog for CVs observed by LAMOST with high signal to noise ratio, above 8. By integrating line profiles, their equivalent widths (EWs) of the Hα, Hβ, Hγ and Hδ, as well as He I 5876 and 6678 Å lines, were calculated. There were 74 stellar spectra from 48 known CVs and three spectra from three new CV candidates. At the same time, we also collected their previously published EWs. Thirty-three objects had repeated spectra and 30 stars showed spectral variability in the Hα line. Moreover, we carried out photometric follow-up studies for five CVs (UU Aqr, TT Tri, PX And, BP Lyn and RW Tri). We obtained nine new light curves and revised their linear ephemerides. For RW Tri, there is a possible oscillation with an amplitude of 0.0031(2) days and a period of 47.6 ± 0.4 years, which might be caused by a third body (brown dwarf) or magnetic activity cycle.

  10. First Images from the PIONIER/VLTI optical interferometry imaging survey of Herbig Ae/Be stars

    NASA Astrophysics Data System (ADS)

    Kluska, Jacques; Malbet, Fabien; Berger, Jean-Philippe; Benisty, Myriam; Lazareff, Bernard; Le Bouquin, Jean-Baptiste; Baron, Fabien; Dominik, Carsten; Isella, Andrea; Juhasz, Attila; Kraus, Stefan; Lachaume, Régis; Ménard, François; Millan-Gabet, Rafael; Monnier, John; Pinte, Christophe; Thi, Wing-Fai; Thiébaut, Eric; Zins, Gérard

    2013-07-01

    The morphology of the close environment of herbig stars is being revealed step by step and appears to be quite complex. Many physical phenomena could interplay : the dust sublimation causing a puffed-up inner rim, a dusty halo, a dusty wind or an inner gaseous component. To investigate more deeply these regions, getting images at the first Astronomical Unit scale is crucial. This has become possible with near infrared instruments on the VLTi. We are carrying out the first Large Program survey of HAeBe stars with statistics on the geometry of these objects at the first astronomical unit scale and the first images of the very close environment of some of them. We have developed a new numerical method specific to young stellar objects which removes the stellar component reconstructing an image of the environment only. To do so we are using the differences in the spectral behaviour between the star and its environment. The images reveal the environement which is not polluted by the star and allow us to derive the best fit for the flux ratio and the spectral slope between the two components (stellar and environmental). We present the results of the survey with some statistics and the frist images of Herbig stars made by PIONIER on the VLTi.

  11. Search for pulsations in M dwarfs in the Kepler short-cadence data base

    NASA Astrophysics Data System (ADS)

    Rodríguez, E.; Rodríguez-López, C.; López-González, M. J.; Amado, P. J.; Ocando, S.; Berdiñas, Z. M.

    2016-04-01

    The results of a search for stellar pulsations in M dwarf stars in the Kepler short-cadence (SC) data base are presented. This investigation covers all the cool and dwarf stars in the list of Dressing & Charbonneau, which were also observed in SC mode by the Kepler satellite. The sample has been enlarged via selection of stellar parameters (temperature, surface gravity and radius) with available Kepler Input Catalogue values together with JHK and riz photometry. In total, 87 objects observed by the Kepler mission in SC mode were selected and analysed using Fourier techniques. The detection threshold is below 10 μmag for the brightest objects and below 20 μmag for about 40 per cent of the stars in the sample. However, no significant signal in the [˜10,100] cd-1 frequency domain that can be reliably attributable to stellar pulsations has been detected. The periodograms have also been investigated for solar-like oscillations in the >100 cd-1 region, but with unsuccessful results too. Despite these inconclusive photometric results, M dwarfs pulsation amplitudes may still be detected in radial velocity searches. State-of-the-art coming instruments, like CARMENES near-infrared high-precision spectrograph, will play a key role in the possible detection.

  12. A Search for Water Maser Emission from Brown Dwarfs and Low-luminosity Young Stellar Objects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gómez, José F.; Manjarrez, Guillermo; Palau, Aina

    We present a survey for water maser emission toward a sample of 44 low-luminosity young objects, comprising (proto-)brown dwarfs, first hydrostatic cores (FHCs), and other young stellar objects (YSOs) with bolometric luminosities lower than 0.4 L {sub ⊙}. Water maser emission is a good tracer of energetic processes, such as mass-loss and/or accretion, and is a useful tool to study these processes with very high angular resolution. This type of emission has been confirmed in objects with L {sub bol} ≳ 1 L {sub ⊙}. Objects with lower luminosities also undergo mass-loss and accretion, and thus, are prospective sites of maser emission.more » Our sensitive single-dish observations provided a single detection when pointing toward the FHC L1448 IRS 2E. However, follow-up interferometric observations showed water maser emission associated with the nearby YSO L1448 IRS 2 (a Class 0 protostar of L {sub bol} ≃ 3.6–5.3 L {sub ⊙}) and did not find any emission toward L1448 IRS 2E. The upper limits for water maser emission determined by our observations are one order of magnitude lower than expected from the correlation between water maser luminosities and bolometric luminosities found for YSOs. This suggests that this correlation does not hold at the lower end of the (sub)stellar mass spectrum. Possible reasons are that the slope of this correlation is steeper at L {sub bol} ≤ 1 L {sub ⊙} or that there is an absolute luminosity threshold below which water maser emission cannot be produced. Alternatively, if the correlation still stands at low luminosity, the detection rates of masers would be significantly lower than the values obtained in higher-luminosity Class 0 protostars.« less

  13. Spitzer SAGE-Spec: Near infrared spectroscopy, dust shells, and cool envelopes in extreme Large Magellanic Cloud asymptotic giant branch stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blum, R. D.; Srinivasan, S.; Kemper, F.

    2014-11-01

    K-band spectra are presented for a sample of 39 Spitzer Infrared Spectrograph (IRS) SAGE-Spec sources in the Large Magellanic Cloud. The spectra exhibit characteristics in very good agreement with their positions in the near-infrared—Spitzer color-magnitude diagrams and their properties as deduced from the Spitzer IRS spectra. Specifically, the near-infrared spectra show strong atomic and molecular features representative of oxygen-rich and carbon-rich asymptotic giant branch stars, respectively. A small subset of stars was chosen from the luminous and red extreme ''tip'' of the color-magnitude diagram. These objects have properties consistent with dusty envelopes but also cool, carbon-rich ''stellar'' cores. Modest amountsmore » of dust mass loss combine with the stellar spectral energy distribution to make these objects appear extreme in their near-infrared and mid-infrared colors. One object in our sample, HV 915, a known post-asymptotic giant branch star of the RV Tau type, exhibits CO 2.3 μm band head emission consistent with previous work that demonstrates that the object has a circumstellar disk.« less

  14. A quantitative analysis of IRAS maps of molecular clouds

    NASA Technical Reports Server (NTRS)

    Wiseman, Jennifer J.; Adams, Fred C.

    1994-01-01

    We present an analysis of IRAS maps of five molecular clouds: Orion, Ophiuchus, Perseus, Taurus, and Lupus. For the classification and description of these astrophysical maps, we use a newly developed technique which considers all maps of a given type to be elements of a pseudometric space. For each physical characteristic of interest, this formal system assigns a distance function (a pseudometric) to the space of all maps: this procedure allows us to measure quantitatively the difference between any two maps and to order the space of all maps. We thus obtain a quantitative classification scheme for molecular clouds. In this present study we use the IRAS continuum maps at 100 and 60 micrometer(s) to produce column density (or optical depth) maps for the five molecular cloud regions given above. For this sample of clouds, we compute the 'output' functions which measure the distribution of density, the distribution of topological components, the self-gravity, and the filamentary nature of the clouds. The results of this work provide a quantitative description of the structure in these molecular cloud regions. We then order the clouds according to the overall environmental 'complexity' of these star-forming regions. Finally, we compare our results with the observed populations of young stellar objects in these clouds and discuss the possible environmental effects on the star-formation process. Our results are consistent with the recently stated conjecture that more massive stars tend to form in more 'complex' environments.

  15. 2MASS J11151597+1937266: A Young, Dusty, Isolated, Planetary-mass Object with a Potential Wide Stellar Companion

    NASA Astrophysics Data System (ADS)

    Theissen, Christopher A.; Burgasser, Adam J.; Bardalez Gagliuffi, Daniella C.; Hardegree-Ullman, Kevin K.; Gagné, Jonathan; Schmidt, Sarah J.; West, Andrew A.

    2018-01-01

    We present 2MASS J11151597+1937266, a recently identified low-surface-gravity L dwarf, classified as an L2γ based on Sloan Digital Sky Survey optical spectroscopy. We confirm this spectral type with near-infrared spectroscopy, which provides further evidence that 2MASS J11151597+1937266 is a low-surface-gravity L dwarf. This object also shows significant excess mid-infrared flux, indicative of circumstellar material; and its strong Hα emission (EWHα = 560 ± 82 Å) is an indicator of enhanced magnetic activity or weak accretion. Comparison of its spectral energy distribution to model photospheres yields an effective temperature of {1724}-38+184 {{K}}. We also provide a revised distance estimate of 37 ± 6 pc using a spectral type–luminosity relationship for low-surface-gravity objects. The three-dimensional galactic velocities and positions of 2MASS J11151597+1937266 do not match any known young association or moving group. Assuming a probable age in the range of 5–45 Myr, the model-dependent estimated mass of this object is between 7 and 21 M Jup, making it a potentially isolated planetary-mass object. We also identify a candidate co-moving, young stellar companion, 2MASS J11131089+2110086.

  16. SLUG - stochastically lighting up galaxies - III. A suite of tools for simulated photometry, spectroscopy, and Bayesian inference with stochastic stellar populations

    NASA Astrophysics Data System (ADS)

    Krumholz, Mark R.; Fumagalli, Michele; da Silva, Robert L.; Rendahl, Theodore; Parra, Jonathan

    2015-09-01

    Stellar population synthesis techniques for predicting the observable light emitted by a stellar population have extensive applications in numerous areas of astronomy. However, accurate predictions for small populations of young stars, such as those found in individual star clusters, star-forming dwarf galaxies, and small segments of spiral galaxies, require that the population be treated stochastically. Conversely, accurate deductions of the properties of such objects also require consideration of stochasticity. Here we describe a comprehensive suite of modular, open-source software tools for tackling these related problems. These include the following: a greatly-enhanced version of the SLUG code introduced by da Silva et al., which computes spectra and photometry for stochastically or deterministically sampled stellar populations with nearly arbitrary star formation histories, clustering properties, and initial mass functions; CLOUDY_SLUG, a tool that automatically couples SLUG-computed spectra with the CLOUDY radiative transfer code in order to predict stochastic nebular emission; BAYESPHOT, a general-purpose tool for performing Bayesian inference on the physical properties of stellar systems based on unresolved photometry; and CLUSTER_SLUG and SFR_SLUG, a pair of tools that use BAYESPHOT on a library of SLUG models to compute the mass, age, and extinction of mono-age star clusters, and the star formation rate of galaxies, respectively. The latter two tools make use of an extensive library of pre-computed stellar population models, which are included in the software. The complete package is available at http://www.slugsps.com.

  17. Little or no star formation in the central 30 pc of Seyfert 2s from STIS observations

    NASA Astrophysics Data System (ADS)

    Sarzi, Marc

    2011-11-01

    We present a study of the stellar populations in the central parsecs of a sample of 22 Seyfert 2 galaxies, based on a careful separation of nebular emission and stellar light in high-spatial resolution HST-STIS spectra. 14% of the surveyed nuclei display stellar populations of intermediate age, ~1-2~Gyr old, whereas the remaining targets appear to be evenly split between objects showing only very old stellar populations and nuclei requiring also an additional blue featureless component, which we initially characterise by means of very young, few-Myr-old stars. The small fraction of stellar population of intermediate age seems to argue against the presence of such a young component, however, since the short lifetime of O-stars would imply recurrent star-formation episodes and the build-up over the last 1-2~Gyr of a detectable intermediate-age population. Additionally, the doing of correlations between the luminosity of such a blue component and the strength of the nebular emission from highly-ionised species or broad-line regions, together with the general absence of Wolf-Rayet features, further indicate that the featureless continuum arises generally from the central engine rather than from star-forming regions. We discuss our results in the framework of the unification paradigm and of models for star formation close to supermassive black holes.

  18. X-Shooter study of accretion in Chamaeleon I

    NASA Astrophysics Data System (ADS)

    Manara, C. F.; Fedele, D.; Herczeg, G. J.; Teixeira, P. S.

    2016-01-01

    We present the analysis of 34 new VLT/X-Shooter spectra of young stellar objects in the Chamaeleon I star-forming region, together with four more spectra of stars in Taurus and two in Chamaeleon II. The broad wavelength coverage and accurate flux calibration of our spectra allow us to estimate stellar and accretion parameters for our targets by fitting the photospheric and accretion continuum emission from the Balmer continuum down to ~700 nm. The dependence of accretion on stellar properties for this sample is consistent with previous results from the literature. The accretion rates for transitional disks are consistent with those of full disks in the same region. The spread of mass accretion rates at any given stellar mass is found to be smaller than in many studies, but is larger than that derived in the Lupus clouds using similar data and techniques. Differences in the stellar mass range and in the environmental conditions between our sample and that of Lupus may account for the discrepancy in scatter between Chamaeleon I and Lupus. Complete samples in Chamaeleon I and Lupus are needed to determine whether the difference in scatter of accretion rates and the lack of evolutionary trends are not influenced by sample selection. This work is based on observations made with ESO Telescopes at the Paranal Observatory under programme ID 084.C-1095 and 094.C-0913.

  19. ClassLess: A Comprehensive Database of Young Stellar Objects

    NASA Astrophysics Data System (ADS)

    Hillenbrand, Lynne; Baliber, Nairn

    2015-01-01

    We have designed and constructed a database housing published measurements of Young Stellar Objects (YSOs) within ~1 kpc of the Sun. ClassLess, so called because it includes YSOs in all stages of evolution, is a relational database in which user interaction is conducted via HTML web browsers, queries are performed in scientific language, and all data are linked to the sources of publication. Each star is associated with a cluster (or clusters), and both spatially resolved and unresolved measurements are stored, allowing proper use of data from multiple star systems. With this fully searchable tool, myriad ground- and space-based instruments and surveys across wavelength regimes can be exploited. In addition to primary measurements, the database self consistently calculates and serves higher level data products such as extinction, luminosity, and mass. As a result, searches for young stars with specific physical characteristics can be completed with just a few mouse clicks.

  20. Uranus occults SAO158687. [stellar occultation and planetary parametric observation

    NASA Technical Reports Server (NTRS)

    Elliot, J. L.; Veverka, J.; Millis, R. L.

    1977-01-01

    Experience gained in obtaining atmospheric parameters, oblatenesses, and diameters of Jupiter and Mars from recent stellar occultations by these planets is used to predict what can be learned from the March 1977 occultation of the star SAO158687 by Uranus. The spectra of this star and Uranus are compared to indicate the relative instrument intensities of the two objects, the four passbands where the relative intensities are most nearly equal are listed, and expected photon fluxes from the star are computed on the assumption that it has UBVRI colors appropriate for a K5 main-sequence object. It is shown that low photon noise errors can be achieved by choosing appropriate passbands for observation, and the rms error expected for the Uranus temperature profiles obtained from the occultation light curves is calculated. It is suggested that observers of this occultation should record their data digitally for optimum time resolution.

  1. CCD photometry of Andromeda IV - Dwarf irregular galaxy or M31 open cluster?

    NASA Technical Reports Server (NTRS)

    Jones, Joseph H.

    1993-01-01

    CCD photometry of Andromeda IV was obtained during discretionary time in August of 1989 at the Canada-France-Hawaii Telescope on Mauna Kea and the data were reduced at CFHT during the summer of 1991. And IV has been catalogued both as a dwarf galaxy and as an open star cluster in M31. The color-magnitude diagrams presented indicate that this object has a young population of stars with a narrow age range, consistent with the characteristics of an open star cluster or stellar association. A radial velocity measurement taken from the literature and analyzed with respect to the rotation curve of M31 indicates this object resides in the disk of the Andromeda Galaxy, strengthening the conclusion that it is indeed a very large open star cluster or a densely populated stellar association rather than a dwarf irregular galaxy.

  2. Francesco and masers

    NASA Astrophysics Data System (ADS)

    Menten, K. M.

    Masers in general are signposts of interesting astronomical sources and phenomena. In particular, they are found in the immediate environment of young stellar objects. Abundant observational evidence suggests that H_2O masers arise in the outflows from such sources in their earliest evolutionary phases and are in fact powered by accretion. As such they are intimately connected with the core of Francesco Palla's science. And indeed, H_2O masers were at the start and an essential component of a highly successful research program initiated by Francesco, the identification and characterization of a significant sample of massive young stellar objects. An overview is given of the sustained H_2O maser research program conducted over many years with the Medicina 32-meter radio telescope, in which Francesco played a vital part. Last, but not least, with Steven Stahler, Francesco co-authored an excellent chapter on interstellar masers that formed a part of The Formation of Stars, their classic textbook of the field.

  3. LITHIUM DEPLETION IS A STRONG TEST OF CORE-ENVELOPE RECOUPLING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Somers, Garrett; Pinsonneault, Marc H., E-mail: somers@astronomy.ohio-state.edu

    2016-09-20

    Rotational mixing is a prime candidate for explaining the gradual depletion of lithium from the photospheres of cool stars during the main sequence. However, previous mixing calculations have relied primarily on treatments of angular momentum transport in stellar interiors incompatible with solar and stellar data in the sense that they overestimate the internal differential rotation. Instead, recent studies suggest that stars are strongly differentially rotating at young ages but approach a solid body rotation during their lifetimes. We modify our rotating stellar evolution code to include an additional source of angular momentum transport, a necessary ingredient for explaining the openmore » cluster rotation pattern, and examine the consequences for mixing. We confirm that core-envelope recoupling with a ∼20 Myr timescale is required to explain the evolution of the mean rotation pattern along the main sequence, and demonstrate that it also provides a more accurate description of the Li depletion pattern seen in open clusters. Recoupling produces a characteristic pattern of efficient mixing at early ages and little mixing at late ages, thus predicting a flattening of Li depletion at a few Gyr, in agreement with the observed late-time evolution. Using Li abundances we argue that the timescale for core-envelope recoupling during the main sequence decreases sharply with increasing mass. We discuss the implications of this finding for stellar physics, including the viability of gravity waves and magnetic fields as agents of angular momentum transport. We also raise the possibility of intrinsic differences in initial conditions in star clusters using M67 as an example.« less

  4. Nuclear Astrophysics At ISAC With DRAGON

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D'Auria, John M.

    2005-05-24

    The unique DRAGON (recoil mass separator) facility is now available to provide measurements of radiative capture reactions involving short-lived exotic reactants which are considered important in explosive stellar scenarios such as novae and X-ray bursts. A description of the first study completed, the 1H(21Na,22Mg){gamma} reaction, will be summarized and updated. In addition, the planned program for DRAGON will be presented along with a summary of the upgrade of the ISAC Radioactive Beams laboratory.

  5. Directory of astronomical data files

    NASA Technical Reports Server (NTRS)

    1978-01-01

    This Directory of Astronomical Data Files was prepared by the Data Task Force of the Interagency Coordination Committee for Astronomy (ICCA) in cooperation with the National Space Science Data Center (NSSDC). The purpose of the Directory is to provide a listing which will enable a user to locate stellar and extragalactic data sources keyed along with sufficient descriptive information to permit him to assess the value of the files for his use as well as the status and availability of the compilations.

  6. Documentation for the machine-readable version of the Perth 75: A Catalogue of Positions of 2589 FK4 and FK4S Stars (Nikoloff and Hog 1982)

    NASA Technical Reports Server (NTRS)

    Warren, W. H., Jr.

    1984-01-01

    Detailed descriptions of the data and format of the machine-readable astronomical catalog are given. The machine version is identical in data content to the published edition, but minor modifications in the data format were made in order to effect uniformity with machine versions of other astronomical catalogs. Stellar motions and positions at epoch and equinox 1950.0 are reported.

  7. The violent interstellar medium in Milky-Way like disk galaxies

    NASA Astrophysics Data System (ADS)

    Karoline Walch, Stefanie

    2015-08-01

    Molecular clouds are cold, dense, and turbulent filamentary structures that condense out of the multi-phase interstellar medium. They are also the sites of star formation. The minority of new-born stars is massive, but these stars are particularly important for the fate of their parental molecular clouds as their feedback drives turbulence and regulates star formation.I will present results from the SILCC project (SImulating the Life Cycle of molecular Clouds), in which we study the formation and dispersal of molecular clouds within the multi-phase ISM using high-performance, three-dimensional simulations of representative pieces of disk galaxies. Apart from stellar feedback, self-gravity, an external stellar potential, and magnetic fields, we employ an accurate description of gas heating and cooling as well as a small chemical network including molecule formation and (self-)shielding from the interstellar radiation field. We study the impact of the supernova rate and the positioning of the supernova explosions with respect to the molecular gas in a well defined set of simulations. This allows us to draw conclusions on structure of the multi-phase ISM, the amount of molecular gas formed, and the onset of galactic outflows. Furthermore, we show how important stellar wind feedback is for regulating star formation in these disks.

  8. Catalog of SAS-2 gamma-ray observations (Fichtel, et al. 1990)

    NASA Technical Reports Server (NTRS)

    Warren, Wayne H., Jr.

    1990-01-01

    The machine-readable version of the catalog, as it is currently being distributed from the Astronomical Data Center, is described. The SAS-2 gamma ray catalog contains fluxes measured with the high energy gamma ray telescope flown aboard the second NASA Small Astronomy Satellite. The objects measured include various types of galaxies, quasi-stellar, and BL Lacertae objects, and pulsars. The catalog contains separate files for galaxies, pulsars, other objects, notes, and references.

  9. X-shooter spectroscopy of young stellar objects in Lupus. Atmospheric parameters, membership, and activity diagnostics

    NASA Astrophysics Data System (ADS)

    Frasca, A.; Biazzo, K.; Alcalá, J. M.; Manara, C. F.; Stelzer, B.; Covino, E.; Antoniucci, S.

    2017-06-01

    Aims: A homogeneous determination of basic stellar parameters of young stellar object (YSO) candidates is needed to confirm their pre-main sequence evolutionary stage and membership to star forming regions (SFRs), and to get reliable values of the quantities related to chromospheric activity and accretion. Methods: We used the code ROTFIT and synthetic BT-Settl spectra for the determination of the atmospheric parameters (Teff and log g), veiling (r), radial (RV), and projected rotational velocity (vsini) from X-shooter spectra of 102 YSO candidates (95 of infrared Class II and seven Class III) in the Lupus SFR. The spectral subtraction of inactive templates, rotationally broadened to match the vsini of the targets, enabled us to measure the line fluxes for several diagnostics of both chromospheric activity and accretion, such as Hα, Hβ, Ca II, and Na I lines. Results: We have shown that 13 candidates can be rejected as Lupus members based on their discrepant RV with respect to Lupus and/or the very low log g values. At least 11 of them are background giants, two of which turned out to be lithium-rich giants. Regarding the members, we found that all Class III sources have Hα fluxes that are compatible with a pure chromospheric activity, while objects with disks lie mostly above the boundary between chromospheres and accretion. Young stellar objects with transitional disks display both high and low Hα fluxes. We found that the line fluxes per unit surface are tightly correlated with the accretion luminosity (Lacc) derived from the Balmer continuum excess. This rules out that the relationships between Lacc and line luminosities found in previous works are simply due to calibration effects. We also found that the Ca II-IRT flux ratio, FCaII8542/FCaII8498, is always small, indicating an optically thick emission source. The latter can be identified with the accretion shock near the stellar photosphere. The Balmer decrement reaches instead, for several accretors, high values typical of optically thin emission, suggesting that the Balmer emission originates in different parts of the accretion funnels with a smaller optical depth. Based on observations collected at the Very Large Telescope of the European Southern Observatory at Paranal, under programs 084.C-0269(A), 085.C-0238(A), 086.C-0173(A), 087.C-0244(A), 089.C-0143(A), 095.C-0134(A), 097.C-0349(A), and archive data of programmes 085.C-0764(A) and 093.C-0506(A). Tables 1-3 are also available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/602/A33

  10. The Lithium Depletion Boundary and the Age of the Hyades Cluster

    NASA Astrophysics Data System (ADS)

    Martín, Eduardo L.; Lodieu, Nicolas; Pavlenko, Yakiv; Béjar, Víctor J. S.

    2018-03-01

    Determination of the lithium depletion boundary (LDB), i.e., the observational limit below which the cores of very low-mass objects do not reach high enough temperatures for Li destruction, has been used to obtain ages for several open clusters and stellar associations younger than 200 Myr—which until now has been considered the practical upper limit on the range of applicability of this method. In this work, we show that the LDB method can be extended to significant older ages than previously thought. Intermediate resolution optical spectra of six L-type candidate members in the Hyades cluster obtained using Optical System for Imaging and Low Resolution Integrated Spectroscopy at the 10.4 m Gran Telescopio Canarias are presented. The {Li} {{I}} 670.8 nm resonance doublet is clearly detected only in the two faintest and coolest of these objects, which are classified as L3.5 to L4 brown dwarf (BD) cluster members with luminosities around 10‑4 solar. Lithium depletion factors are estimated for our targets with the aid of synthetic spectra and they are compared with predictions from evolutionary models. An LDB age of 650 ± 70 Myr for the Hyades provides a consistent description of our data using a set of state-of-the-art evolutionary models for BDs calculated by Baraffe et al. Based on data obtained at the Gran Telescopio Canarias.

  11. UV Astronomy: Stars from Birth to Death

    NASA Astrophysics Data System (ADS)

    Gómez de Castro, Ana I.; Barstow, Martin A.

    The Joint Discussion on UV Astronmy: Stars from Birth to Death was held during the IAU General Assembly of 2006, in August 2006. It was aimed to provide a forum where the accomplishments of UV astrophysics could be highlighted and a new roadmap for the future discussed. This meeting focussed in particular on stellar astrophysics. The understanding of stellar physics is at the very base of our understanding of the Universe. The chemical evolution of the Universe is controlled by stars. Supernovae are prime distance indicators that have allowed to measure the evolution of the curvature of the Universe and to detect the existence of dark energy. The development of life sustaining system depends strongly on the evolution of stars like our Sun. Some of the most extreme forms of matter in the Universe, the densest and more strongly magnetized, are the magnetars, debris of stellar evolution. The excellent contributions presented in this Joint Discussion dealt with the many aspects of stellar astrophysics from the analysis of dissipative processes in the atmosphere of cool stars and their impact on the evolution of the planetary systems to the study of the atmospheres and winds of the hot massive stars or the determination of the abundances in white dwarfs. The physics of disks, its role in the evolution of binary systems, and the formation of supernovae were among the main topics treated in the meeting. We should also not forget the role of starbursts and, in general, high mass stars in the chemical evolution of galaxies. The metallicity gradient in the Galaxy is traced in the UV spectrum of planetary nebulae. The evolution of young planetary disks and the role of the central stars in the photoevaporation of the giant gaseous planets that have been detected recently. The book contains a summary of the numerous and high quality contributions to this Joint Discussion classified in five chapters: * Chapter 1: Star Formation and Young Stellar Objects * Chapter 2: Life in Main Sequence * Chapter 3: Star Death * Chapter 4: Compact Objects * Chapter 5: The impact of stellar astrophysics in understanding the formation of life sustainable systems; That correspond to the five sessions held during the meeting. A summary of the current status of UV astronomy and the discussions that took place during the XXVIth I. A. U. General Assembly can be found in Highlights of Astronomy, Volume 14.

  12. Stellar structure and compact objects before 1940: Towards relativistic astrophysics

    NASA Astrophysics Data System (ADS)

    Bonolis, Luisa

    2017-06-01

    Since the mid-1920s, different strands of research used stars as "physics laboratories" for investigating the nature of matter under extreme densities and pressures, impossible to realize on Earth. To trace this process this paper is following the evolution of the concept of a dense core in stars, which was important both for an understanding of stellar evolution and as a testing ground for the fast-evolving field of nuclear physics. In spite of the divide between physicists and astrophysicists, some key actors working in the cross-fertilized soil of overlapping but different scientific cultures formulated models and tentative theories that gradually evolved into more realistic and structured astrophysical objects. These investigations culminated in the first contact with general relativity in 1939, when J. Robert Oppenheimer and his students George Volkoff and Hartland Snyder systematically applied the theory to the dense core of a collapsing neutron star. This pioneering application of Einstein's theory to an astrophysical compact object can be regarded as a milestone in the path eventually leading to the emergence of relativistic astrophysics in the early 1960s.

  13. Exploring a Massive Starburst in the Epoch of Reionization

    NASA Astrophysics Data System (ADS)

    Marrone, Daniel; Aravena, M.; Chapman, S.; De Breuck, C.; Gonzalez, A.; Hezavehe, S.; Litke, K.; Ma, J.; Malkan, M.; Spilker, J.; Stalder, B.; Stark, D.; Strandet, M.; Tang, M.; Vieira, J.; Weiss, A.; Welikala, N.

    2016-08-01

    We request deep multi-band imaging of a unique dusty galaxy in the Epoch of Reionization (EoR), selected via its millimeter-wavelength dust emission in the 2500-square-degree South Pole Telescope survey. Spectroscopically confirmed to lie at z=6.900, this galaxy has a large dust mass and is likely one of the most rapidly star-forming objects in the EoR. Using Gemini-S, we have identified z-band emission from this object that could be UV continuum emission at z=6.9 or from a foreground lens. Interpretation of this object, and a complete understanding of its meaning for the census of star formation in the EoR, requires that we establish the presence or absence of gravitational lensing. The dust mass observed in this source is also unexpectedly large for its era, and measurements of the assembled stellar population, through the UV-continuum slope and restframe optical color, will help characterize the stellar mass and dust properties in this very early galaxy, the most spectacular galaxy yet discovered by the SPT.

  14. On the Newtonian and Spin-induced Perturbations Felt by the Stars Orbiting around the Massive Black Hole in the Galactic Center

    NASA Astrophysics Data System (ADS)

    Zhang, Fupeng; Iorio, Lorenzo

    2017-01-01

    The S-stars discovered in the Galactic center are expected to provide unique dynamical tests of the Kerr metric of the massive black hole (MBH) that they orbit. In order to obtain unbiased measurements of its spin and the related relativistic effects, a comprehensive understanding of the gravitational perturbations of the stars and stellar remnants around the MBH is quite essential. Here, we study the perturbations on the observables of a typical target star, I.e., the apparent orbital motion and the redshift, due to both the spin-induced relativistic effects and the Newtonian attractions of a single object or a cluster of disturbing objects. We find that, in most cases, the Newtonian perturbations on the observables are mainly attributed to the perturbed orbital period of the target star rather than the Newtonian orbital precessions. Looking at the currently detected star S2/S0-2, we find that its spin-induced effects are very likely obscured by the gravitational perturbations from the star S0-102 alone. We also investigate and discuss the Newtonian perturbations on a hypothetical S-star located inside the orbits of those currently detected. By considering a number of possible stellar distributions near the central MBH, we find that the spin-induced effects on the apparent position and redshift dominate over the stellar perturbations for target stars with orbital semimajor axis smaller than 100-400 au if the MBH is maximally spinning. Our results suggest that, in principle, the stellar perturbations can be removed because they have morphologies distinct from those of the relativistic Kerr-type signatures.

  15. Stellar Mass-gap as a Probe of Halo Assembly History and Concentration: Youth Hidden among Old Fossils

    NASA Astrophysics Data System (ADS)

    Deason, A. J.; Conroy, C.; Wetzel, A. R.; Tinker, J. L.

    2013-11-01

    We investigate the use of the halo mass-gap statistic—defined as the logarithmic difference in mass between the host halo and its most massive satellite subhalo—as a probe of halo age and concentration. A cosmological N-body simulation is used to study N ~ 25, 000 group/cluster-sized halos in the mass range 1012.5 < M halo/M ⊙ < 1014.5. In agreement with previous work, we find that halo mass-gap is related to halo formation time and concentration. On average, older and more highly concentrated halos have larger halo mass-gaps, and this trend is stronger than the mass-concentration relation over a similar dynamic range. However, there is a large amount of scatter owing to the transitory nature of the satellite subhalo population, which limits the use of the halo mass-gap statistic on an object-by-object basis. For example, we find that 20% of very large halo mass-gap systems (akin to "fossil groups") are young and have likely experienced a recent merger between a massive satellite subhalo and the central subhalo. We relate halo mass-gap to the observable stellar mass-gap via abundance matching. Using a galaxy group catalog constructed from the Sloan Digital Sky Survey Data Release 7, we find that the star formation and structural properties of galaxies at fixed mass show no trend with stellar mass-gap. This is despite a variation in halo age of ≈2.5 Gyr over ≈1.2 dex in stellar mass-gap. Thus, we find no evidence to suggest that the halo formation history significantly affects galaxy properties.

  16. Stellar variability and its implications for photometric planet detection with Kepler

    NASA Astrophysics Data System (ADS)

    Batalha, N. M.; Jenkins, J.; Basri, G. S.; Borucki, W. J.; Koch, D. G.

    2002-01-01

    Kepler is one of three candidates for the next NASA Discovery Mission and will survey the extended solar neighborhood to detect and characterize hundreds of terrestrial (and larger) planets in or near the habitable zone. Its strength lies in its ability to detect large numbers of Earth-sized planets - planets which produced a 10-4 change in relative stellar brightness during a transit across the disk of a sun-like parent star. Such a detection requires high instrumental relative precision and is facilitated by observing stars which are photometrically quiet on hourly timescales. Probing stellar variability across the HR diagram, one finds that many of the photometrically quietest stars are the F and G dwarfs. The Hipparcos photometric database shows the lowest photometric variances among stars of this spectral class. Our own Sun is a prime example with RMS variations over a few rotational cycles of typically (3 - 4)×10-4 (computed from VIRGO/DIARAD data taken Jan-Mar 2001). And variability on the hourly time scales crucial for planet detection is significantly smaller: just (2 - 5)×10-5. This bodes well for planet detection programs such as Kepler and Eddington. With significant numbers of photometrically quiet solar-type stars, Earth-sized planets should be readily identified provided they are abundant in the solar neighborhood. In support of the Kepler science objectives, we have initiated a study of stellar variability and its implications for planet detection. Herein, we summarize existing observational and theoretrical work with the objective of determining the percentage of stars in the Kepler field of view expected to be photometrically stable at a level which allows for Earth-sized planet detection.

  17. STELLAR MASS-GAP AS A PROBE OF HALO ASSEMBLY HISTORY AND CONCENTRATION: YOUTH HIDDEN AMONG OLD FOSSILS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deason, A. J.; Conroy, C.; Wetzel, A. R.

    We investigate the use of the halo mass-gap statistic—defined as the logarithmic difference in mass between the host halo and its most massive satellite subhalo—as a probe of halo age and concentration. A cosmological N-body simulation is used to study N ∼ 25, 000 group/cluster-sized halos in the mass range 10{sup 12.5} < M{sub halo}/M{sub ☉} < 10{sup 14.5}. In agreement with previous work, we find that halo mass-gap is related to halo formation time and concentration. On average, older and more highly concentrated halos have larger halo mass-gaps, and this trend is stronger than the mass-concentration relation over amore » similar dynamic range. However, there is a large amount of scatter owing to the transitory nature of the satellite subhalo population, which limits the use of the halo mass-gap statistic on an object-by-object basis. For example, we find that 20% of very large halo mass-gap systems (akin to {sup f}ossil groups{sup )} are young and have likely experienced a recent merger between a massive satellite subhalo and the central subhalo. We relate halo mass-gap to the observable stellar mass-gap via abundance matching. Using a galaxy group catalog constructed from the Sloan Digital Sky Survey Data Release 7, we find that the star formation and structural properties of galaxies at fixed mass show no trend with stellar mass-gap. This is despite a variation in halo age of ≈2.5 Gyr over ≈1.2 dex in stellar mass-gap. Thus, we find no evidence to suggest that the halo formation history significantly affects galaxy properties.« less

  18. ON THE NEWTONIAN AND SPIN-INDUCED PERTURBATIONS FELT BY THE STARS ORBITING AROUND THE MASSIVE BLACK HOLE IN THE GALACTIC CENTER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Fupeng; Iorio, Lorenzo, E-mail: zhangfp7@mail.sysu.edu.cn, E-mail: lorenzo.iorio@libero.it

    2017-01-10

    The S-stars discovered in the Galactic center are expected to provide unique dynamical tests of the Kerr metric of the massive black hole (MBH) that they orbit. In order to obtain unbiased measurements of its spin and the related relativistic effects, a comprehensive understanding of the gravitational perturbations of the stars and stellar remnants around the MBH is quite essential. Here, we study the perturbations on the observables of a typical target star, i.e., the apparent orbital motion and the redshift, due to both the spin-induced relativistic effects and the Newtonian attractions of a single object or a cluster ofmore » disturbing objects. We find that, in most cases, the Newtonian perturbations on the observables are mainly attributed to the perturbed orbital period of the target star rather than the Newtonian orbital precessions. Looking at the currently detected star S2/S0-2, we find that its spin-induced effects are very likely obscured by the gravitational perturbations from the star S0-102 alone. We also investigate and discuss the Newtonian perturbations on a hypothetical S-star located inside the orbits of those currently detected. By considering a number of possible stellar distributions near the central MBH, we find that the spin-induced effects on the apparent position and redshift dominate over the stellar perturbations for target stars with orbital semimajor axis smaller than 100–400 au if the MBH is maximally spinning. Our results suggest that, in principle, the stellar perturbations can be removed because they have morphologies distinct from those of the relativistic Kerr-type signatures.« less

  19. The JCMT Gould Belt Survey: A First Look at SCUBA-2 Observations of the Lupus I Molecular Cloud

    NASA Astrophysics Data System (ADS)

    Mowat, C.; Hatchell, J.; Rumble, D.; Kirk, H.; Buckle, J.; Berry, D. S.; Broekhoven-Fiene, H.; Currie, M. J.; Jenness, T.; Johnstone, D.; Mottram, J. C.; Pattle, K.; Tisi, S.; Di Francesco, J.; Hogerheijde, M. R.; Ward-Thompson, D.; Bastien, P.; Bresnahan, D.; Butner, H.; Chen, M.; Chrysostomou, A.; Coudé, S.; Davis, C. J.; Drabek-Maunder, E.; Duarte-Cabral, A.; Fich, M.; Fiege, J.; Friberg, P.; Friesen, R.; Fuller, G. A.; Graves, S.; Greaves, J.; Holland, W.; Joncas, G.; Kirk, J. M.; Knee, L. B. G.; Mairs, S.; Marsh, K.; Matthews, B. C.; Moriarty-Schieven, G.; Rawlings, J.; Retter, B.; Richer, J.; Robertson, D.; Rosolowsky, E.; Sadavoy, S.; Thomas, H.; Tothill, N.; Viti, S.; White, G. J.; Wouterloot, J.; Yates, J.; Zhu, M.

    2017-05-01

    This paper presents observations of the Lupus I molecular cloud at 450 and 850 μm with Submillimetre Common User Bolometer Array (SCUBA-2) as part of the James Clerk Maxwell Telescope Gould Belt Survey (JCMT GBS). Nine compact sources, assumed to be the discs of young stellar objects (YSOs), 12 extended protostellar, pre-stellar and starless cores, and one isolated, low-luminosity protostar, are detected in the region. Spectral energy distributions, including submillimetre fluxes, are produced for 15 YSOs, and each is fitted with the models of Robitaille et al. The proportion of Class 0/I protostars is higher than that seen in other Gould Belt regions such as Ophiuchus and Serpens. Circumstellar disc masses are calculated for more evolved sources, while protostellar envelope masses are calculated for protostars. Up to four very low luminosity objects are found; a large fraction when compared to other Spitzer c2d regions. One YSO has a disc mass greater than the minimum mass solar nebula. 12 starless/protostellar cores are detected by SCUBA-2 and their masses are calculated. The stability of these cores is examined using both the thermal Jeans mass and a turbulent virial mass when possible. Two cores in Lupus I are super-Jeans and contain no known YSOs. One of these cores has a virial parameter of 1.1 ± 0.4, and could therefore be pre-stellar. The high ratio of Class 0/I to Class III YSOs (1:1), and the presence of a pre-stellar core candidate, provides support for the hypothesis that a shock recently triggered star formation in Lupus I.

  20. Physical properties of distant red galaxies in the COSMOS/UltraVISTA field

    NASA Astrophysics Data System (ADS)

    Ma, Zhongyang; Fang, Guanwen; Kong, Xu; Fan, Lulu

    2015-10-01

    We present a study on physical properties for a large distant red galaxy (DRG) sample, using the K-selected multi-band photometry catalog of the COSMOS/UltraVISTA field and the CANDELS near-infrared data. Our sample includes 4485 DRGs with (J - K)AB > 1.16 and KAB < 23.4 mag, and 132 DRGs have HST/WFC3 morphological measurements. The results of nonparametric measurements of DRG morphology are consistent with our rest-frame UVJ color classification; quiescent DRGs are generally compact while star-forming DRGs tend to have extended structures. We find the star formation rate (SFR) and the stellar mass of star-forming DRGs present tight "main sequence" relations in all redshift bins. Moreover, the specific SFR (sSFR) of DRGs increases with redshift in all stellar mass bins and DRGs with higher stellar masses generally have lower sSFRs, which indicates that galaxies were much more active on average in the past, and star formation contributes more to the mass growth of low-mass galaxies than to high-mass galaxies. The infrared-derived SFR dominates the total SFR of DRGs which occupy the high-mass range, implying that the J - K color criterion effectively selects massive and dusty galaxies. DRGs with higher M* generally have redder (U - V)rest colors, and the (U - V)rest colors of DRGs become bluer at higher redshifts, suggesting high-mass galaxies have higher internal dust extinctions or older stellar ages and they evolve with time. Finally, we find that DRGs have different overlap among extremely red objects, BzK galaxies, IRAC-selected extremely red objects, and high-z ultraluminous infrared galaxies, indicating that DRGs are not a special population and they can also be selected by other color criteria.

  1. The Low-mass Population in the Young Cluster Stock 8: Stellar Properties and Initial Mass Function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jose, Jessy; Herczeg, Gregory J.; Fang, Qiliang

    The evolution of H ii regions/supershells can trigger a new generation of stars/clusters at their peripheries, with environmental conditions that may affect the initial mass function, disk evolution, and star formation efficiency. In this paper we study the stellar content and star formation processes in the young cluster Stock 8, which itself is thought to be formed during the expansion of a supershell. We present deep optical photometry along with JHK and 3.6 and 4.5 μ m photometry from UKIDSS and Spitzer -IRAC. We use multicolor criteria to identify the candidate young stellar objects in the region. Using evolutionary models,more » we obtain a median log(age) of ∼6.5 (∼3.0 Myr) with an observed age spread of ∼0.25 dex for the cluster. Monte Carlo simulations of the population of Stock 8, based on estimates for the photometric uncertainty, differential reddening, binarity, and variability, indicate that these uncertainties introduce an age spread of ∼0.15 dex. The intrinsic age spread in the cluster is ∼0.2 dex. The fraction of young stellar objects surrounded by disks is ∼35%. The K -band luminosity function of Stock 8 is similar to that of the Trapezium cluster. The initial mass function (IMF) of Stock 8 has a Salpeter-like slope at >0.5 M {sub ⊙} and flattens and peaks at ∼0.4 M {sub ⊙}, below which it declines into the substellar regime. Although Stock 8 is surrounded by several massive stars, there seems to be no severe environmental effect in the form of the IMF due to the proximity of massive stars around the cluster.« less

  2. Compact Stellar Groups in the 30 Doradus Nebula and their Nebular Environment

    NASA Astrophysics Data System (ADS)

    Walborn, Nolan

    1997-07-01

    We propose to further knowledge of the stellar content of 30 Doradus by examining the images of all OB stars in a current, major ground-based spectral-classification study, using the archival WFPC2 {and possibly PC1} data. It is expected, and indeed already known in a few cases, that many of them will be compact multiple systems resolved by WFPC. It is essential to account for such structure in luminosity, mass, and evolutionary inferences. We shall derive the most accurate possible photometric results for the resulting components, and we shall propose spatially resolved HST spectroscopy of them in Cycle 8. It should be emphasized that we are not addressing R136, the subject of other programs, but the rich, massive population throughout the Nebula beyond the central core, especially to the north and west where there is evidence for a younger generation, whose formation was possibly triggered by the energetic activity of the core. In addition, preliminary inspection of some of the WFPC2 data has shown many intricate structures in the ambient dust and ionized gas, including possible pre-stellar objects, which we shall describe and relate to the associated stellar component and known IR sources as appropriate.

  3. Gemini/GNIRS infrared spectroscopy of the Wolf-Rayet stellar wind in Cygnus X-3

    NASA Astrophysics Data System (ADS)

    Koljonen, K. I. I.; Maccarone, T. J.

    2017-12-01

    The microquasar Cygnus X-3 was observed several times with the Gemini North Infrared Spectrograph while the source was in the hard X-ray state. We describe the observed 1.0-2.4 μm spectra as arising from the stellar wind of the companion star and suggest its classification as a WN 4-6 Wolf-Rayet star. We attribute the orbital variations of the emission line profiles to the variations in the ionization structure of the stellar wind caused by the intense X-ray emission from the compact object. The strong variability observed in the line profiles will affect the mass function determination. We are unable to reproduce earlier results, from which the mass function for the Wolf-Rayet star was derived. Instead, we suggest that the system parameters are difficult to obtain from the infrared spectra. We find that the near-infrared continuum and the line spectra can be represented with non-LTE Wolf-Rayet atmosphere models if taking into account the effects arising from the peculiar ionization structure of the stellar wind in an approximative manner. From the representative models we infer the properties of the Wolf-Rayet star and discuss possible mass ranges for the binary components.

  4. The Multiplicity of Wolf-Rayet Stars

    NASA Technical Reports Server (NTRS)

    Wallace, Debra J.

    2004-01-01

    The most massive stars drastically reconfigure their surroundings via their strong stellar winds and powerful ionizing radiation. With this mass fueling their large luminosities, these stars are frequently used as standard candles in distance determination, and as tracers of stellar evolution in different regions and epochs. In their dieing burst, some of the once massive stars will enter a Wolf-Rayet (WR) phase lasting approx.10% of the stellar lifetime. This phase is particularly useful for study because these stars have strong spectroscopic signatures that allow them to be easily identified at great distances. But how accurate are these identifications? Increasingly, the relatively nearby stars we once assumed to be single are revealing themselves to be binary or multiple. New techniques, such as high-resolution imaging and interferometry, are changing our knowledge of these objects. I will discuss recent results in the literature and how this affects the binary distribution of WR stars. I will also discuss the implications of binary vs. single star evolution on evolution through the WR phase. Finally, I will discuss the implications of these revised numbers on both massive stellar evolution itself, and the impact that this has on the role of WR stars as calibrators.

  5. Identification of Young Stellar Variables with KELT for K2 . I. Taurus Dippers and Rotators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez, Joseph E.; Cargile, Phillip A.; Ansdell, Megan

    One of the most well-studied young stellar associations, Taurus–Auriga, was observed by the extended Kepler mission, K2 , in the spring of 2017. K2 Campaign 13 (C13) is a unique opportunity to study many stars in this young association at high photometric precision and cadence. Using observations from the Kilodegree Extremely Little Telescope (KELT) survey, we identify “dippers,” aperiodic and periodic variables among K2 C13 target stars. This release of the KELT data (light curve data in e-tables) provides the community with long-time baseline observations to assist in the understanding of the more exotic variables in the association. Transient-like phenomenamore » on timescales of months to years are known characteristics in the light curves of young stellar objects, making contextual pre- and post- K2 observations critical to understanding their underlying processes. We are providing a comprehensive set of the KELT light curves for known Taurus–Auriga stars in K2 C13. The combined data sets from K2 and KELT should permit a broad array of investigations related to star formation, stellar variability, and protoplanetary environments.« less

  6. Fomalhaut’s Stellar Companions as the Driver of its Morphology

    NASA Astrophysics Data System (ADS)

    Kaib, Nathan; White, Ethan; Izidoro, Andre

    2018-01-01

    Fomalhaut A is among the most well-studied nearby stars and has been discovered to possess a putative planetary object as well as a remarkable eccentric dust belt. This eccentric dust belt has often been interpreted as the dynamical signature of one or more planets that elude direct detection. However, the system also contains two other stellar companions residing ~100,000 AU from Fomalhaut A. Using numerical simulations of the system's dynamical evolution, we find that close encounters between Fomalhaut A and B are expected, with a ~25% probability that the two stars have passed within at least 400 AU of each other at some point. Although the outcomes of such encounter histories are extremely varied, these close encounters nearly always excite the eccentricity of Fomalhaut A's dust belt and occasionally yield morphologies very similar to the observed belt. With these results, we argue that close encounters with Fomalhaut A's stellar companions should be considered a plausible mechanism to explain its eccentric belt, especially in the absence of detected planets capable of sculpting the belt's morphology. More broadly, we can also conclude from this work that very wide binary stars may often generate asymmetries in the stellar debris disks they host.

  7. A massive galaxy in its core formation phase three billion years after the Big Bang

    NASA Astrophysics Data System (ADS)

    Nelson, Erica; van Dokkum, Pieter; Franx, Marijn; Brammer, Gabriel; Momcheva, Ivelina; Schreiber, Natascha Förster; da Cunha, Elisabete; Tacconi, Linda; Bezanson, Rachel; Kirkpatrick, Allison; Leja, Joel; Rix, Hans-Walter; Skelton, Rosalind; van der Wel, Arjen; Whitaker, Katherine; Wuyts, Stijn

    2014-09-01

    Most massive galaxies are thought to have formed their dense stellar cores in early cosmic epochs. Previous studies have found galaxies with high gas velocity dispersions or small apparent sizes, but so far no objects have been identified with both the stellar structure and the gas dynamics of a forming core. Here we report a candidate core in the process of formation 11 billion years ago, at redshift z = 2.3. This galaxy, GOODS-N-774, has a stellar mass of 100 billion solar masses, a half-light radius of 1.0 kiloparsecs and a star formation rate of solar masses per year. The star-forming gas has a velocity dispersion of 317 +/- 30 kilometres per second. This is similar to the stellar velocity dispersions of the putative descendants of GOODS-N-774, which are compact quiescent galaxies at z ~ 2 (refs 8, 9, 10, 11) and giant elliptical galaxies in the nearby Universe. Galaxies such as GOODS-N-774 seem to be rare; however, from the star formation rate and size of this galaxy we infer that many star-forming cores may be heavily obscured, and could be missed in optical and near-infrared surveys.

  8. A massive galaxy in its core formation phase three billion years after the Big Bang.

    PubMed

    Nelson, Erica; van Dokkum, Pieter; Franx, Marijn; Brammer, Gabriel; Momcheva, Ivelina; Schreiber, Natascha Förster; da Cunha, Elisabete; Tacconi, Linda; Bezanson, Rachel; Kirkpatrick, Allison; Leja, Joel; Rix, Hans-Walter; Skelton, Rosalind; van der Wel, Arjen; Whitaker, Katherine; Wuyts, Stijn

    2014-09-18

    Most massive galaxies are thought to have formed their dense stellar cores in early cosmic epochs. Previous studies have found galaxies with high gas velocity dispersions or small apparent sizes, but so far no objects have been identified with both the stellar structure and the gas dynamics of a forming core. Here we report a candidate core in the process of formation 11 billion years ago, at redshift z = 2.3. This galaxy, GOODS-N-774, has a stellar mass of 100 billion solar masses, a half-light radius of 1.0 kiloparsecs and a star formation rate of solar masses per year. The star-forming gas has a velocity dispersion of 317 ± 30 kilometres per second. This is similar to the stellar velocity dispersions of the putative descendants of GOODS-N-774, which are compact quiescent galaxies at z ≈ 2 (refs 8-11) and giant elliptical galaxies in the nearby Universe. Galaxies such as GOODS-N-774 seem to be rare; however, from the star formation rate and size of this galaxy we infer that many star-forming cores may be heavily obscured, and could be missed in optical and near-infrared surveys.

  9. VizieR Online Data Catalog: Abundances and stellar parameters of LAMOST stars (Lee+, 2015)

    NASA Astrophysics Data System (ADS)

    Lee, Y. S.; Beers, T. C.; Carlin, J. L.; Newberg, H. J.; Hou, Y.; Li, G.; Luo, A.-L.; Wu, Y.; Yang, M.; Zhang, H.; Zhang, W.; Zhang, Y.

    2016-04-01

    By performing a coordinate match with the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST; see DR1 in Luo et al. 2015, cat. V/146) stellar database, we selected stars with LAMOST spectra in common with stars having available spectroscopy from the Apache Point Observatory Galactic Evolution Experiment (APOGEE; Majewski et al. 2015, submitted), the RAdial Velocity Experiment (RAVE; see Kordopatis et al. 2013, cat. III/272), and the Sloan Extension for Galactic Understanding and Exploration (SEGUE; see Yanny et al. 2009, cat. J/AJ/137/4377). The LAMOST Experiment for Galactic Understanding and Exploration (LEGUE) survey is an ongoing spectroscopic survey being conducted with the Guoshoujing telescope in northeast China. This telescope employs a fixed 4-m Schmidt-type reflector with 4000 optical fibers in the focal plane to obtain spectra of astronomical objects in a 5° field of view. The LEGUE and SEGUE surveys have very similar spectral coverage and resolving power (R~1800). The LAMOST stellar targets mostly comprise stars brighter than r< 17, whereas the SEGUE stars range from r=14 to r=21. SEGUE-1 was executed during the second phase of the Sloan Digital Sky Survey (SDSS-II). This effort was continued as SEGUE-2 during the third phase of SDSS (SDSS-III). APOGEE was designed to obtain high-resolution near-infrared spectra (in the H-band between 1.51 and 1.70μm). The spectra obtained by APOGEE have a resolving power R~22500 and high S/N (>100). APOGEE-1 was a sub-survey of SDSS-III, and is now completed. Its extension, APOGEE-2, is presently underway as part of SDSS-IV. The RAVE survey was designed to observe about a million stars in the southern hemisphere, and obtain optical spectra over the wavelength range 8410-8795Å, the region of the CaII triplet, at a resolving power R~7500. SEGUE-1 and SEGUE-2 have employed the SEGUE Stellar Parameter Pipeline (SSPP; Lee et al. 2008, cat. J/AJ/136/2050; Allende Prieto et al. 2008, cat. J/AJ/136/2070; Smolinski et al. 2011, cat. J/AJ/141/89; Lee et al. 2011, cat. J/AJ/141/90) to derive the stellar atmospheric parameters and available elemental abundance ratios. We modified and upgraded SSPP so that it can process the LAMOST stellar spectra and derive the fundamental stellar parameters as well as the α-element abundances ([α/Fe]) and carbon-to-iron ratios ([C/Fe]) for these stars. The derived atmospheric parameters and chemical abundances obtained by SSPP for LAMOST stars are then compared with those from the stars also observed by SEGUE, APOGEE, and RAVE. Table1 lists the LAMOST stars with appropriate stellar parameters from APOGEE, RAVE, and SEGUE. It also lists the LAMOST/SEGUE Stellar Parameter Pipeline (LSSPP) parameters and abundances. We do not report [α/Fe] and [C/Fe] for stars with S/N<20 and the range outside of Teff=4400-6700K in the table. (1 data file).

  10. Computer simulations of interferometric imaging with the Very Large Telescope Interferometer and its Astronomical Multibeam Recombiner instrument

    NASA Astrophysics Data System (ADS)

    Przygodda, Frank; Bloecker, Thomas; Hofmann, Karl-Heinz; Weigelt, Gerd

    2001-05-01

    We present computer simulations of interferometric imaging with the Very Large Telescope Interferometer (VLTI) of the European Southern Observatory and the Astronomical Multibeam Recombiner (AMBER) phase-closure instrument. These simulations include both the astrophysical modeling of a stellar object by radiative-transfer calculations and the simulation of light propagation from the object to the detector (through atmosphere, telescopes, and the AMBER instrument), simulation of photon noise and detector readout noise, and finally data processing of the interferograms. The results show the dependence of the visibility error bars on the following observational parameters: different seeing during the observation of object and reference star (Fried parameters r0,object and r0,ref ranging between 0.9 and 1.2 m), different residual tip-tilt error ((delta) tt,object and (delta) tt,ref ranging between 0.1% and 20% of the Airy-disk diameter), and object brightness (Kobject equals 0.7 to 10.2 mag, Kref equals 0.7 mag). As an example, we focus on stars in late stages of stellar evolution and study one of the key objects of that kind, the dusty super-giant IRC + 10420, which is rapidly evolving on human time scales. We show computer simulations of VLT interferometer (visibility and phase-closure measurements) of IRC + 10420 with two and three auxiliary telescopes (in AMBER wide-field mode, i.e., without fiber optic spatial filters) and discuss whether the visibility accuracy is sufficient to distinguish between different theoretical model predictions.

  11. 1981N1 - A Neptune arc?

    NASA Technical Reports Server (NTRS)

    Hubbard, W. B.

    1986-01-01

    An object in the vicinity of Neptune detected in 1981 by simultaneous stellar occultation measurements at observatories near Tucson, Arizona, was interpreted as a new Neptune satellite. A reinterpretation suggests that it may have instead been a Neptune arc similar to one observed in 1984. The 1981 object, however, did not occult the star during simultaneous observations at Flagstaff, Arizona. This result constrains possible arc geometries.

  12. One-meter Schmidt telescope of the Byurakan Astrophysical Observatory: New capabilities

    NASA Astrophysics Data System (ADS)

    Dodonov, S. N.; Kotov, S. S.; Movsesyan, T. A.; Gevorkyan, M.

    2017-10-01

    In 2013-2015 the Laboratory of spectroscopy and photometry of extragalactic objects (LS-PEO) of the Special Astrophysical Observatory together with Armenian specialists upgraded the 1-m Schmidt telescope of the Byurakan Astrophysical Observatory of the National Academy of Sciences of Armenia. We completely redesigned the control system of the telescope: we replaced the actuating mechanisms, developed telescope control software, and made the guiding system. We reworked and prepared a 4k × 4k Apogee (USA) liquid-cooled CCD with RON 11.1 e -, a pixel size of 0.″868, and field of view of about 1□°, and in October 2015 mounted it in the focus of the telescope. The detector is equipped with a turret bearing 20 intermediate-band filters ( FWHM = 250 Å) uniformly covering the 4000-9000 Å wavelength range, five broadband filters ( u, g, r, i, z SDSS), and three narrow-band filters (5000 Å, 6560 Å and 6760 Å, FWHM = 100 Å). During the first year of test operation of the 1-m telescope we performed pilot observations within the framework of three programs: search for young stellar objects, AGNevolution, and stellar composition of galaxy disks.We confirmed the possibility of efficiently selecting of young objects using observations performed in narrow-band H α and [SII] filters and the intermediate-band 7500 Å filter. Three-hours long exposures with SDSS g-, r-, and i-band filters allow us to reach the surface brightness level of 28m/□″ when investigating the stellar content of galaxy disks for a sample of nine galaxies. We used observations performed with the 1-m telescope in five broadband (SDSS u, g, r, i, and z) and 15 intermediate-band filters (4000-7500 Å) to construct a sample of quasar candidates with 0.5 < z < 5 (330 objects) in about one-sq. degree SA68 field complete down to R AB = 23m. Spectroscopic observations of 29 objects (19.m5 < R < 22m) carried out at the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences confirmed the quasar nature of 28 objects.

  13. INTO THE LAIR: GRAVITATIONAL-WAVE SIGNATURES OF DARK MATTER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macedo, Caio F. B.; Cardoso, Vitor; Crispino, Luis C. B.

    The nature and properties of dark matter (DM) are both outstanding issues in physics. Besides clustering in halos, the universal character of gravity implies that self-gravitating compact DM configurations-predicted by various models-might be spread throughout the universe. Their astrophysical signature can be used to probe fundamental particle physics, or to test alternative descriptions of compact objects in active galactic nuclei. Here, we discuss the most promising dissection tool of such configurations: the inspiral of a compact stellar-size object and consequent gravitational-wave (GW) emission. The inward motion of this ''test probe'' encodes unique information about the nature of the supermassive configuration.more » When the probe travels through some compact region we show, within a Newtonian approximation, that the quasi-adiabatic inspiral is mainly driven by DM accretion and by dynamical friction, rather than by radiation reaction. When accretion dominates, the frequency and amplitude of the GW signal produced during the latest stages of the inspiral are nearly constant. In the exterior region we study a model in which the inspiral is driven by GW and scalar-wave emission, described at a fully relativistic level. Resonances in the energy flux appear whenever the orbital frequency matches the effective mass of the DM particle, corresponding to the excitation of the central object's quasinormal frequencies. Unexpectedly, these resonances can lead to large dephasing with respect to standard inspiral templates, to such an extent as to prevent detection with matched filtering techniques. We discuss some observational consequences of these effects for GW detection.« less

  14. Colour pairs for constraining the age and metallicity of stellar populations

    NASA Astrophysics Data System (ADS)

    Li, Zhongmu; Han, Zhanwen

    2008-04-01

    Using a widely used stellar-population synthesis model, we study the possibility of using pairs of AB system colours to break the well-known stellar age-metallicity degeneracy and to give constraints on two luminosity-weighted stellar-population parameters (age and metallicity). We present the relative age and metallicity sensitivities of the AB system colours that relate to the u,B,g,V,r,R,i, I,z,J,H and K bands, and we quantify the ability of various colour pairs to break the age-metallicity degeneracy. Our results suggest that a few pairs of colours can be used to constrain the above two stellar-population parameters. This will be very useful for exploring the stellar populations of distant galaxies. In detail, colour pairs [(r-K), (u-R)] and [(r-K), (u-r)] are shown to be the best pairs for estimating the luminosity-weighted stellar ages and metallicities of galaxies. They can constrain two stellar-population parameters on average with age uncertainties less than 3.89 Gyr and metallicity uncertainties less than 0.34 dex for typical colour uncertainties. The typical age uncertainties for young populations (age < 4.6 Gyr) and metal-rich populations (Z >= 0.001) are small (about 2.26 Gyr) while those for old populations (age >= 4.6 Gyr) and metal-poor populations (Z < 0.001) are much larger (about 6.88 Gyr). However, the metallicity uncertainties for metal-poor populations (about 0.0024) are much smaller than for other populations (about 0.015). Some other colour pairs can also possibly be used for constraining the two parameters. On the whole, the estimation of stellar-population parameters is likely to be reliable only for early-type galaxies with small colour errors and globular clusters, because such objects contain less dust. In fact, no galaxy is totally dust-free and early-type galaxies are also likely have some dust [e.g. E(B- V) ~ 0.05], which can change the stellar ages by about 2.5 Gyr and metallicities (Z) by about 0.015. When we compare the photometric estimates with previous spectroscopic estimates, we find some differences, especially when comparing the stellar ages determined by two methods. The differences mainly result from the young populations of galaxies. Therefore, it is difficult to obtain the absolute values of stellar ages and metallicities, but the results are useful for obtaining some relative values. In addition, our results suggest that colours relating to both UBVRIJHK and ugriz magnitudes are much better than either UBVRIJHK or ugriz colours for breaking the well-known degeneracy. The results also show that the stellar ages and metallicities of galaxies observed by the Sloan Digital Sky Survey and the Two-Micron All-Sky Survey can be estimated via photometry data. The data are available at the Centre de Données astronomiques de Strabourg (CDS) or on request to the authors. E-mail: zhongmu.li@gmail.com

  15. Stellar Vampires Unmasked

    NASA Astrophysics Data System (ADS)

    2006-10-01

    Astronomers have found possible proofs of stellar vampirism in the globular cluster 47 Tucanae. Using ESO's Very Large Telescope, they found that some hot, bright, and apparently young stars in the cluster present less carbon and oxygen than the majority of their sisters. This indicates that these few stars likely formed by taking their material from another star. "This is the first detection of a chemical signature clearly pointing to a specific scenario to form so-called 'Blue straggler stars' in a globular cluster", said Francesco Ferraro, from the Astronomy Department of Bologna University (Italy) and lead-author of the paper presenting the results. Blue stragglers are unexpectedly young-looking stars found in stellar aggregates, such as globular clusters, which are known to be made up of old stars. These enigmatic objects are thought to be created in either direct stellar collisions or through the evolution and coalescence of a binary star system in which one star 'sucks' material off the other, rejuvenating itself. As such, they provide interesting constraints on both binary stellar evolution and star cluster dynamics. To date, the unambiguous signatures of either stellar traffic accidents or stellar vampirism have not been observed, and the formation mechanisms of Blue stragglers are still a mystery. The astronomers used ESO's Very Large Telescope to measure the abundance of chemical elements at the surface of 43 Blue straggler stars in the globular cluster 47 Tucanae [1]. They discovered that six of these Blue straggler stars contain less carbon and oxygen than the majority of these peculiar objects. Such an anomaly indicates that the material at the surface of the blue stragglers comes from the deep interiors of a parent star [2]. Such deep material can reach the surface of the blue straggler only during the mass transfer process occurring between two stars in a binary system. Numerical simulations indeed show that the coalescence of stars should not result in anomalous abundances. ESO PR Photo 37/06 ESO PR Photo 37/06 Abundances in Blue Straggler Stars In the core of a globular cluster, stars are packed extremely close to each other: more than 4000 stars are found in the innermost light-year-sized cube of 47 Tucanae. Thus, stellar collisions are thought to be very frequent and the collision channel for the formation of blue stragglers should be extremely efficient. The chemical signature detected by these observations demonstrates that also the binary mass-transfer scenario is fully active even in a high-density cluster like 47 Tuc. "Our discovery is therefore a fundamental step toward the solution of the long-standing mystery of blue straggler formation in globular clusters," said Ferraro. Measurements of so many faint stars are only possible since the advent of 8-m class telescopes equipped with multiplexing capability spectrographs. In this case, the astronomers used the FLAMES/Giraffe instrument that allows the simultaneous observation of up to 130 targets at a time, making it ideally suited for surveying individual stars in closely populated fields.

  16. Open-Filter Optical SSA Analysis Considerations

    NASA Astrophysics Data System (ADS)

    Lambert, J.

    2016-09-01

    Optical Space Situational Awareness (SSA) sensors used for space object detection and orbit refinement measurements are typically operated in an "open-filter" mode without any spectral filters to maximize sensitivity and signal-to-noise. These same optical brightness measurements are often also employed for size determination (e.g., for orbital debris), object correlation, and object status change. These functions, especially when performed using multiple sensors, are highly dependent on sensor calibration for measurement accuracy. Open-filter SSA sensors are traditionally calibrated against the cataloged visual magnitudes of solar-type stars which have similar spectral distributions as the illuminating source, the Sun. The stellar calibration is performed to a high level of accuracy, a few hundredths of a magnitude, by observing many stars over a range of elevation angles to determine sensor, telescope, and atmospheric effects. However, space objects have individual color properties which alter the reflected solar illumination producing spectral distributions which differ from those of the calibration stars. When the stellar calibrations are applied to the space object measurements, visual magnitude values are obtained which are systematically biased. These magnitudes combined with the unknown Bond albedos of the space objects result in systematically biased size determinations which will differ between sensors. Measurements of satellites of known sizes and surface materials have been analyzed to characterize these effects. The results have combined into standardized Bond albedos to correct the measured magnitudes into object sizes. However, the actual albedo values will vary between objects and represent a mean correction subject to some uncertainty. The objective of this discussion is to characterize the sensor spectral biases that are present in open-filter optical observations and examine the resulting brightness and albedo uncertainties that should accompany object size, correlation, or status change determinations, especially in the SSA analyses of individual space objects using data from multiple sensors.

  17. The SILCC project - III. Regulation of star formation and outflows by stellar winds and supernovae

    NASA Astrophysics Data System (ADS)

    Gatto, Andrea; Walch, Stefanie; Naab, Thorsten; Girichidis, Philipp; Wünsch, Richard; Glover, Simon C. O.; Klessen, Ralf S.; Clark, Paul C.; Peters, Thomas; Derigs, Dominik; Baczynski, Christian; Puls, Joachim

    2017-04-01

    We study the impact of stellar winds and supernovae on the multiphase interstellar medium using three-dimensional hydrodynamical simulations carried out with FLASH. The selected galactic disc region has a size of (500 pc)2 × ±5 kpc and a gas surface density of 10 M⊙ pc-2. The simulations include an external stellar potential and gas self-gravity, radiative cooling and diffuse heating, sink particles representing star clusters, stellar winds from these clusters that combine the winds from individual massive stars by following their evolution tracks, and subsequent supernova explosions. Dust and gas (self-) shielding is followed to compute the chemical state of the gas with a chemical network. We find that stellar winds can regulate star (cluster) formation. Since the winds suppress the accretion of fresh gas soon after the cluster has formed, they lead to clusters that have lower average masses (102-104.3 M⊙) and form on shorter time-scales (10-3-10 Myr). In particular, we find an anticorrelation of cluster mass and accretion time-scale. Without winds, the star clusters easily grow to larger masses for ˜5 Myr until the first supernova explodes. Overall, the most massive stars provide the most wind energy input, while objects beginning their evolution as B-type stars contribute most of the supernova energy input. A significant outflow from the disc (mass loading ≳1 at 1 kpc) can be launched by thermal gas pressure if more than 50 per cent of the volume near the disc mid-plane can be heated to T > 3 × 105 K. Stellar winds alone cannot create a hot volume-filling phase. The models that are in best agreement with observed star formation rates drive either no outflows or weak outflows.

  18. Mass-loss rates, ionization fractions, shock velocities, and magnetic fields of stellar jets

    NASA Technical Reports Server (NTRS)

    Hartigan, Patrick; Morse, Jon A.; Raymond, John

    1994-01-01

    In this paper we calculate emission-line ratios from a series of planar radiative shock models that cover a wide range of shock velocities, preshock densities, and magnetic fields. The models cover the initial conditions relevant to stellar jets, and we show how to estimate the ionization fractions and shock velocities in jets directly from observations of the strong emission lines in these flows. The ionization fractions in the HH 34, HH 47, and HH 111 jets are approximately 2%, considerably smaller than previous estimates, and the shock velocities are approximately 30 km/s. For each jet the ionization fractions were found from five different line ratios, and the estimates agree to within a factor of approximately 2. The scatter in the estimates of the shock velocities is also small (+/- 4 km/s). The low ionization fractions of stellar jets imply that the observed electron densities are much lower than the total densities, so the mass-loss rates in these flows are correspondingly higher (approximately greater than 2 x 10(exp -7) solar mass/yr). The mass-loss rates in jets are a significant fraction (1%-10%) of the disk accretion rates onto young stellar objects that drive the outflows. The momentum and energy supplied by the visible portion of a typical stellar jet are sufficient to drive a weak molecular outflow. Magnetic fields in stellar jets are difficult to measure because the line ratios from a radiative shock with a magnetic field resemble those of a lower velocity shock without a field. The observed line fluxes can in principle indicate the strength of the field if the geometry of the shocks in the jet is well known.

  19. Stellar Population Properties of Ultracompact Dwarfs in M87: A Mass–Metallicity Correlation Connecting Low-metallicity Globular Clusters and Compact Ellipticals

    NASA Astrophysics Data System (ADS)

    Zhang, Hong-Xin; Puzia, Thomas H.; Peng, Eric W.; Liu, Chengze; Côté, Patrick; Ferrarese, Laura; Duc, Pierre-Alain; Eigenthaler, Paul; Lim, Sungsoon; Lançon, Ariane; Muñoz, Roberto P.; Roediger, Joel; Sánchez-Janssen, Ruben; Taylor, Matthew A.; Yu, Jincheng

    2018-05-01

    We derive stellar population parameters for a representative sample of ultracompact dwarfs (UCDs) and a large sample of massive globular clusters (GCs) with stellar masses ≳ 106 M ⊙ in the central galaxy M87 of the Virgo galaxy cluster, based on model fitting to the Lick-index measurements from both the literature and new observations. After necessary spectral stacking of the relatively faint objects in our initial sample of 40 UCDs and 118 GCs, we obtain 30 sets of Lick-index measurements for UCDs and 80 for GCs. The M87 UCDs have ages ≳ 8 Gyr and [α/Fe] ≃ 0.4 dex, in agreement with previous studies based on smaller samples. The literature UCDs, located in lower-density environments than M87, extend to younger ages and smaller [α/Fe] (at given metallicities) than M87 UCDs, resembling the environmental dependence of the stellar nuclei of dwarf elliptical galaxies (dEs) in the Virgo cluster. The UCDs exhibit a positive mass–metallicity relation (MZR), which flattens and connects compact ellipticals at stellar masses ≳ 108 M ⊙. The Virgo dE nuclei largely follow the average MZR of UCDs, whereas most of the M87 GCs are offset toward higher metallicities for given stellar masses. The difference between the mass–metallicity distributions of UCDs and GCs may be qualitatively understood as a result of their different physical sizes at birth in a self-enrichment scenario or of galactic nuclear cluster star formation efficiency being relatively low in a tidal stripping scenario for UCD formation. The existing observations provide the necessary but not sufficient evidence for tidally stripped dE nuclei being the dominant contributors to the M87 UCDs.

  20. Demonstration of a Novel Method for Measuring Mass-loss Rates for Massive Stars

    NASA Astrophysics Data System (ADS)

    Kobulnicky, Henry A.; Chick, William T.; Povich, Matthew S.

    2018-03-01

    The rate at which massive stars eject mass in stellar winds significantly influences their evolutionary path. Cosmic rates of nucleosynthesis, explosive stellar phenomena, and compact object genesis depend on this poorly known facet of stellar evolution. We employ an unexploited observational technique for measuring the mass-loss rates of O and early-B stars. Our approach, which has no adjustable parameters, uses the principle of pressure equilibrium between the stellar wind and the ambient interstellar medium for a high-velocity star generating an infrared bow shock nebula. Results for 20 bow-shock-generating stars show good agreement with two sets of theoretical predictions for O5–O9.5 main-sequence stars, yielding \\dot{M} = 1.3 × 10‑6 to 2 × 10‑9 {M}ȯ {yr}}-1. Although \\dot{M} values derived for this sample are smaller than theoretical expectations by a factor of about two, this discrepancy is greatly reduced compared to canonical mass-loss methods. Bow-shock-derived mass-loss rates are factors of 10 smaller than Hα-based measurements (uncorrected for clumping) for similar stellar types and are nearly an order of magnitude larger than P4+ and some other diagnostics based on UV absorption lines. Ambient interstellar densities of at least several cm‑3 appear to be required for formation of a prominent infrared bow shock nebula. Measurements of \\dot{M} for early-B stars are not yet compelling owing to the small number in our sample and the lack of clear theoretical predictions in the regime of lower stellar luminosities. These results may constitute a partial resolution of the extant “weak-wind problem” for late-O stars. The technique shows promise for determining mass-loss rates in the weak-wind regime.

  1. [The radial velocity measurement accuracy of different spectral type low resolution stellar spectra at different signal-to-noise ratio].

    PubMed

    Wang, Feng-Fei; Luo, A-Li; Zhao, Yong-Heng

    2014-02-01

    The radial velocity of the star is very important for the study of the dynamics structure and chemistry evolution of the Milky Way, is also an useful tool for looking for variable or special objects. In the present work, we focus on calculating the radial velocity of different spectral types of low-resolution stellar spectra by adopting a template matching method, so as to provide effective and reliable reference to the different aspects of scientific research We choose high signal-to-noise ratio (SNR) spectra of different spectral type stellar from the Sloan Digital Sky Survey (SDSS), and add different noise to simulate the stellar spectra with different SNR. Then we obtain theradial velocity measurement accuracy of different spectral type stellar spectra at different SNR by employing a template matching method. Meanwhile, the radial velocity measurement accuracy of white dwarf stars is analyzed as well. We concluded that the accuracy of radial velocity measurements of early-type stars is much higher than late-type ones. For example, the 1-sigma standard error of radial velocity measurements of A-type stars is 5-8 times as large as K-type and M-type stars. We discuss the reason and suggest that the very narrow lines of late-type stars ensure the accuracy of measurement of radial velocities, while the early-type stars with very wide Balmer lines, such as A-type stars, become sensitive to noise and obtain low accuracy of radial velocities. For the spectra of white dwarfs stars, the standard error of radial velocity measurement could be over 50 km x s(-1) because of their extremely wide Balmer lines. The above conclusion will provide a good reference for stellar scientific study.

  2. The First APOKASC Catalog of Kepler Dwarf and Subgiant Stars

    NASA Astrophysics Data System (ADS)

    Serenelli, Aldo; Johnson, Jennifer; Huber, Daniel; Pinsonneault, Marc; Ball, Warrick H.; Tayar, Jamie; Silva Aguirre, Victor; Basu, Sarbani; Troup, Nicholas; Hekker, Saskia; Kallinger, Thomas; Stello, Dennis; Davies, Guy R.; Lund, Mikkel N.; Mathur, Savita; Mosser, Benoit; Stassun, Keivan G.; Chaplin, William J.; Elsworth, Yvonne; García, Rafael A.; Handberg, Rasmus; Holtzman, Jon; Hearty, Fred; García-Hernández, D. A.; Gaulme, Patrick; Zamora, Olga

    2017-12-01

    We present the first APOKASC catalog of spectroscopic and asteroseismic data for dwarfs and subgiants. Asteroseismic data for our sample of 415 objects have been obtained by the Kepler mission in short (58.5 s) cadence, and light curves span from 30 up to more than 1000 days. The spectroscopic parameters are based on spectra taken as part of the Apache Point Observatory Galactic Evolution Experiment and correspond to Data Release 13 of the Sloan Digital Sky Survey. We analyze our data using two independent {T}{eff} scales, the spectroscopic values from DR13 and those derived from SDSS griz photometry. We use the differences in our results arising from these choices as a test of systematic temperature uncertainties and find that they can lead to significant differences in the derived stellar properties. Determinations of surface gravity ({log}g), mean density (< ρ > ), radius (R), mass (M), and age (τ) for the whole sample have been carried out by means of (stellar) grid-based modeling. We have thoroughly assessed random and systematic error sources in the spectroscopic and asteroseismic data, as well as in the grid-based modeling determination of the stellar quantities provided in the catalog. We provide stellar properties determined for each of the two {T}{eff} scales. The median combined (random and systematic) uncertainties are 2% (0.01 dex; {log}g), 3.4% (< ρ > ), 2.6% (R), 5.1% (M), and 19% (τ) for the photometric {T}{eff} scale and 2% ({log}g), 3.5% (< ρ > ), 2.7% (R), 6.3% (M), and 23% (τ) for the spectroscopic scale. We present comparisons with stellar quantities in the asteroseismic catalog by Chaplin et al. that highlight the importance of having metallicity measurements for determining stellar parameters accurately. Finally, we compare our results with those coming from a variety of sources, including stellar radii determined from TGAS parallaxes and asteroseismic analyses based on individual frequencies. We find a very good agreement for all inferred quantities. The latter comparison, in particular, gives strong support to the determination of stellar quantities based on global seismology, a relevant result for future missions such as TESS and PLATO.

  3. From protostellar to pre-main-sequence evolution

    NASA Astrophysics Data System (ADS)

    D'Antona, F.

    I summarize the status of pre-main-sequence evolutionary tracks starting from the first steps dating back to the concept of Hayashi track. Understanding of the dynamical protostellar phase in the vision of Palla & Stahler, who introduced the concept of the deuterium burning thermostat and of stellar birthline, provided for a long time a link between the dynamical and hydrostatic evolution. Disk accretion however changed considerably the view, but re-introducing some ambiguities which must still be solved. The limitations and uncertainties in the mass and age determination from models for young stellar objects are summarized, but the burning of light elements is still a powerful observational signature.

  4. The Journey of Interstellar Dust

    NASA Technical Reports Server (NTRS)

    Dwek, Eliahu

    2007-01-01

    Interstellar dust particles undergo a complex journey in space. It commences with their formation in stellar outflows or outbursts, but may end in very different ways. Their fates range from sudden "death by destruction" promptly after their formation to maturity and inclusion in protoplanetary objects in stellar nursery homes. Throughout this journey dust grains are subjected to a host of interstellar processes in different astrophysical environments which leave their imprint on the dust and affects their surrounding environment. In this review I will summarize our current knowledge of the field, emphasizing what we still need to know to gain a full understanding of interstellar dust grains and their journey through the ISM.

  5. Quantitative UV spectroscopy of early O stars on the Magellanic Clouds: The determination of the stellar metallicities

    NASA Technical Reports Server (NTRS)

    Haser, Stefan M.; Pauldrach, Adalbert W. A.; Lennon, Danny J.; Kudritzki, Rolf-Peter; Lennon, Maguerite; Puls, Joachim; Voels, Stephen A.

    1997-01-01

    Ultraviolet spectra of four O stars in the Magellanic Clouds obtained with the faint object spectrograph of the Hubble Space Telescope are analyzed with respect to their metallicity. The metal abundances are derived from the stellar parameters and the mass loss rate with a two step procedure: hydrodynamic radiation-driven wind models with metallicity as a free parameter are constructed to fit the observed wind momentum rate and thus yield a dynamical metallicity, and synthetic spectra are computed for different metal abundances and compared to the observed spectra in order to obtain a spectroscopic metallicity.

  6. Gravitational-Wave Astronomy

    NASA Technical Reports Server (NTRS)

    Kelly, Bernard J.

    2010-01-01

    Einstein's General Theory of Relativity is our best classical description of gravity, and informs modern astronomy and astrophysics at all scales: stellar, galactic, and cosmological. Among its surprising predictions is the existence of gravitational waves -- ripples in space-time that carry energy and momentum away from strongly interacting gravitating sources. In my talk, I will give an overview of the properties of this radiation, recent breakthroughs in computational physics allowing us to calculate the waveforms from galactic mergers, and the prospect of direct observation with interferometric detectors such as LIGO and LISA.

  7. Mid-infrared interferometry towards the massive young stellar object CRL 2136: inside the dust rim

    NASA Astrophysics Data System (ADS)

    de Wit, W. J.; Hoare, M. G.; Oudmaijer, R. D.; Nürnberger, D. E. A.; Wheelwright, H. E.; Lumsden, S. L.

    2011-02-01

    Context. Establishing the importance of circumstellar disks and their properties is crucial to fully understand massive star formation. Aims: We aim to spatially resolve the various components that make-up the accretion environment of a massive young stellar object (⪉100 AU), and reproduce the emission from near-infrared to millimeter wavelengths using radiative transfer codes. Methods: We apply mid-infrared spectro-interferometry to the massive young stellar object CRL 2136. The observations were performed with the Very Large Telescope Interferometer and the MIDI instrument at a 42 m baseline probing angular scales of 50 milli-arcseconds. We model the observed visibilities in parallel with diffraction-limited images at both 24.5 μm and in the N-band (with resolutions of 0.6´´and 0.3´´, respectively), as well as the spectral energy distribution. Results: The arcsec-scale spatial information reveals the well-resolved emission from the dusty envelope. By simultaneously modelling the spatial and spectral data, we find that the bulk of the dust emission occurs at several dust sublimation radii (approximately 170 AU). This reproduces the high mid-infrared fluxes and at the same time the low visibilities observed in the MIDI data for wavelengths longward of 8.5 μm. However, shortward of this wavelength the visibility data show a sharp up-turn indicative of compact emission. We discuss various potential sources of this emission. We exclude a dust disk being responsible for the observed spectral imprint on the visibilities. A cool supergiant star and an accretion disk are considered and both shown to be viable origins of the compact mid-infrared emission. Conclusions: We propose that CRL 2136 is embedded in a dusty envelope, which truncates at several times the dust sublimation radius. A dust torus is manifest in the equatorial region. We find that the spectro-interferometric N-band signal can be reproduced by either a gaseous disk or a bloated central star. If the disk extends to the stellar surface, it accretes at a rate of 3.0 × 10-3 M⊙ yr-1. Based on observations with the VLTI, proposal 381.C-0607.

  8. MHD Stability in Compact Stellarators

    NASA Astrophysics Data System (ADS)

    Fu, Guoyong

    1999-11-01

    A key issue for current carrying compact stellarators(S.P. Hirshman et al., "Physics of compact stellarators", Phys. Plasmas 6, 1858 (1999).) is the stability of ideal MHD modes. We present recent stability results of external kink modes, ballooning mode, and vertical modes in Quasi-axisymmetric Stellarators (QAS)( A. Reiman et al, "Physics issue in the design of a high beta Quasi-Axisymmetric Stellarator" the 17th IAEA Fusion Energy conference, (Yokohama, Japan, October 1998), Paper ICP/06.) as well as Quasi-Omnigeneous Stellarators (QOS)^2. The 3D stability code Terpsichore(W. A. Cooper et al., Phys. Plasmas 3, 275 (1996)) is used in this study. The vertical stability in a current carrying stellarator is studied for the first time. The vertical mode is found to be stabilized by externally generated poloidal flux(G.Y. Fu et al., "Stability of vertical mode in a current carrying stellarator"., to be submitted). Physically, this is because the external poloidal flux enhances the field line bending energy relative to the current drive term in the MHD energy principle, δ W. A simple stability criteria is derived in the limit of large aspect ratio and constant current density. For wall at infinite distance from the plasma, the amount of external flux needed for stabilization is given by f=(κ^2-κ)/(κ^2+1) where κ is the axisymmetric elongation and f is the fraction of the external rotational transform at the plasma edge. A systematic parameter study shows that the external kink in QAS can be stabilized at high beta ( ~ 5%) without a conducting wall by combination of edge magnetic shear and 3D shaping(G. Y. Fu et al., "MHD stability calculations of high-beta Quasi-Axisymmetric Stellarators", the 17th IAEA Fusion Energy conference, (Yokohama, Japan, October 1998), paper THP1/07.). The optimal shaping is obtained by using an optimizer with kink stability included in its objective function. The physics mechanism for the kink modes is studied by examining relative contributions of individual terms in δ W. It is found the external kinks are mainly driven by the parallel current. The pressure contributes significantly to the overall drive through the curvature term and the Pfirsch-Schluter current. These results demonstrate potential of QAS and QOS for disruption-free operations at high-beta without a close-fitting conducting wall and feedback stabilization.

  9. The nature of very low luminosity objects (VeLLOs)

    NASA Astrophysics Data System (ADS)

    Vorobyov, Eduard I.; Elbakyan, Vardan; Dunham, Michael M.; Guedel, Manuel

    2017-04-01

    Aims: The nature of very low luminosity objects (VeLLOs) with the internal luminosity Lobj ≤ 0.1 L⊙ is investigated by means of numerical modeling coupling the core collapse simulations with the stellar evolution calculations. Methods: The gravitational collapse of a large sample of model cores in the mass range 0.1-2.0 M⊙ is investigated. Numerical simulations were started at the pre-stellar phase and terminated at the end of the embedded phase when 90% of the initial core mass had been accreted onto the forming protostar plus disk system. The disk formation and evolution was studied using numerical hydrodynamics simulations, while the formation and evolution of the central star was calculated using a stellar evolution code. Three scenarios for mass accretion from the disk onto the star were considered: hybrid accretion in which a fraction of accreted energy absorbed by the protostar depends on the accretion rate, hot accretion wherein a fraction of accreted energy is constant, and cold accretion wherein all accretion energy is radiated away. Results: Our conclusions on the nature of VeLLOs depend crucially on the character of protostellar accretion. In the hybrid accretion scenario, most VeLLOs (90.6%) are expected to be the first hydrostatic cores (FHSCs) and only a small fraction (9.4%) are true protostars. In the hot accretion scenario, all VeLLOs are FHSCs due to overly high photospheric luminosity of protostars. In the cold accretion scenario, on the contrary, the majority of VeLLOs belong to the Class I phase of stellar evolution. The reason is that the stellar photospheric luminosity, which sets the floor for the total internal luminosity of a young star, is lower in cold accretion, thus enabling more VeLLOs in the protostellar stage. VeLLOs are relatively rare objects occupying 7%-11% of the total duration of the embedded phase and their masses do not exceed 0.3 M⊙. When compared with published observations inferring a fraction of VeLLOs in the protostellar stage of 6.25%, we find that cold accretion provides a much better fit to observations than hybrid accretion (5.7% for cold accretion vs. 0.7% for hybrid accretion). Both accretion scenarios predict more VeLLOs in the Class I phase than in the Class 0 phase, in contrast to observations. Finally, when accretion variability with episodic bursts is artificially filtered out from our numerically derived accretion rates, the fraction of VeLLOs in the protostellar stage drops significantly, suggesting a causal link between the two phenomena.

  10. Preservice Elementary Teachers Increase Descriptive Science Vocabulary by Making Descriptive Adjective Object Boxes

    ERIC Educational Resources Information Center

    Rule, Audrey C.; Crisafulli, Sherry; DeCare, Heather; DeLeo, Tonya; Eastman, Keri; Farrell, Liz; Geblein, Jennifer; Gioia, Chelsea; Joyce, Ashley; Killian, Kali; Knoop, Kelly; LaRocca, Alison; Meyer, Katie; Miller, Julianne; Roth, Vicki; Throo, Julie; Van Arsdale, Jim; Walker, Malissa

    2007-01-01

    Descriptive vocabulary is needed for communication and mental processing of science observations. Elementary preservice teachers in a science methods class at a mid-sized public college in central New York State increased their descriptive vocabularies through a course assignment of making a descriptive adjective object box. This teaching material…

  11. The impact of realistic models of mass segregation on the event rate of extreme-mass ratio inspirals and cusp re-growth

    NASA Astrophysics Data System (ADS)

    Amaro-Seoane, Pau; Preto, Miguel

    2011-05-01

    One of the most interesting sources of gravitational waves (GWs) for LISA is the inspiral of compact objects on to a massive black hole (MBH), commonly referred to as an 'extreme-mass ratio inspiral' (EMRI). The small object, typically a stellar black hole, emits significant amounts of GW along each orbit in the detector bandwidth. The slowly, adiabatic inspiral of these sources will allow us to map spacetime around MBHs in detail, as well as to test our current conception of gravitation in the strong regime. The event rate of this kind of source has been addressed many times in the literature and the numbers reported fluctuate by orders of magnitude. On the other hand, recent observations of the Galactic centre revealed a dearth of giant stars inside the inner parsec relative to the numbers theoretically expected for a fully relaxed stellar cusp. The possibility of unrelaxed nuclei (or, equivalently, with no or only a very shallow cusp, or core) adds substantial uncertainty to the estimates. Having this timely question in mind, we run a significant number of direct-summation N-body simulations with up to half a million particles to calibrate a much faster orbit-averaged Fokker-Planck code. We show that, under quite generic initial conditions, the time required for the growth of a relaxed, mass segregated stellar cusp is shorter than a Hubble time for MBHs with M• <~ 5 × 106 Modot (i.e. nuclei in the range of LISA). We then investigate the regime of strong mass segregation (SMS) for models with two different stellar mass components. Given the most recent stellar mass normalization for the inner parsec of the Galactic centre, SMS has the significant impact of boosting the EMRI rates by a factor of ~10 in comparison to what would result from a 7/4-Bahcall and Wolf cusp resulting in ~250 events per Gyr per Milky Way type galaxy. Such an intrinsic rate should translate roughly into ~102-7 × 102 sbh's (EMRIs detected by LISA over a mission lifetime of 2 or 5 years, respectively), depending on the detailed assumptions regarding LISA detection capabilities.

  12. Chemical evolution and stellar populations in the Sagittarius dwarf Spheroidal Galaxy

    NASA Astrophysics Data System (ADS)

    Sbordone, L.; Bonifacio, P.; Giuffrida, G.; Marconi, G.; Monaco, L.; Zaggia, S.

    2007-05-01

    The closest neighbour of the Milky Way (MW), the Sagittarius dwarf Spheroidal Galaxy (Sgr dSph) is being tidally destroyed by the interaction with our Galaxy, losing its stellar content along a huge stream clearly detectable within the Halo. This makes the Sgr dSph an ideal laboratory to study at the same time the chemical evolution of dwarf galaxies and their role in building bigger structures such as the MW. Since some years we are studying the stellar populations of the Sgr main body and stream, with particular attention to their detailed chemical composition. We collected detailed abundances (up to 22 elements, O to Eu) for 27 stars in the Sgr dSph main body, 5 in the associated globular cluster Terzan 7, and 12 more in the trailing Sgr tidal arm (UVES@VLT and SARG@TNG data). We are also conducting a large FLAMES@VLT chemical and dynamical analysis aimed at obtaining metallicities, alpha-elements content and radial velocities from automated analysis of the spectra. Finally, we just completed the first large scale photometric and spectroscopic survey of the stellar populations across all the dSph main body extension with VIMOS@VLT, aimed at exploring the variations in stellar populations and at deriving radial velocity memberships for future high resolution spectroscopic analysis. The picture emerging from all these studies portraits a large and extremely complex object, with signs of a long and still unclear evolution. Metallicity varies across three orders of magnitude ([Fe/H] from -3 to 0), CMDs change surprisingly from the core to the outskirts of the galaxy, and the chemical composition of the most metal rich objects show a very characteristic signature, with underabundant alpha elements, deficient Na, underabundant Fe-peak Mn, Co, Ni, Cu and Zn, and strongly enhanced n-capture elements La and Nd. This highly peculiar "signature" can also be effectively used to recognized stripped populations lost by Sgr in favour of the MW system, as clearly showed by the globular Palomar 12, which shows the same chemical anomalies detected in Sgr dSph.

  13. Intracluster age gradients in numerous young stellar clusters

    NASA Astrophysics Data System (ADS)

    Getman, K. V.; Feigelson, E. D.; Kuhn, M. A.; Bate, M. R.; Broos, P. S.; Garmire, G. P.

    2018-05-01

    The pace and pattern of star formation leading to rich young stellar clusters is quite uncertain. In this context, we analyse the spatial distribution of ages within 19 young (median t ≲ 3 Myr on the Siess et al. time-scale), morphologically simple, isolated, and relatively rich stellar clusters. Our analysis is based on young stellar object (YSO) samples from the Massive Young Star-Forming Complex Study in Infrared and X-ray and Star Formation in Nearby Clouds surveys, and a new estimator of pre-main sequence (PMS) stellar ages, AgeJX, derived from X-ray and near-infrared photometric data. Median cluster ages are computed within four annular subregions of the clusters. We confirm and extend the earlier result of Getman et al. (2014): 80 per cent of the clusters show age trends where stars in cluster cores are younger than in outer regions. Our cluster stacking analyses establish the existence of an age gradient to high statistical significance in several ways. Time-scales vary with the choice of PMS evolutionary model; the inferred median age gradient across the studied clusters ranges from 0.75 to 1.5 Myr pc-1. The empirical finding reported in the present study - late or continuing formation of stars in the cores of star clusters with older stars dispersed in the outer regions - has a strong foundation with other observational studies and with the astrophysical models like the global hierarchical collapse model of Vázquez-Semadeni et al.

  14. Observations of Pre-Stellar Cores

    NASA Astrophysics Data System (ADS)

    Tafalla, M.

    2005-08-01

    Our understanding of the physical and chemical structure of pre-stellar cores, the simplest star-forming sites, has significantly improved since the last IAU Symposium on Astrochemistry (South Korea, 1999). Research done over these years has revealed that major molecular species like CO and CS systematically deplete onto dust grains in the interior of pre-stellar cores, while species like N2H+ and NH3 survive in the gas phase and can usually be detected toward the core centers. Such a selective behavior of molecular species gives rise to a differentiated (onion-like) chemical composition, and manifests itself in molecular maps as a dichotomy between centrally peaked and ring-shaped distributions. From the point of view of star-formation studies, the identification of molecular inhomogeneities in cores helps to resolve past discrepancies between observations made using different tracers, and brings the possibility of self-consistent modelling of the core internal structure. Here I present recent work on determining the physical and chemical structure of two pre-stellar cores, L1498 and L1517B, using observations in a large number of molecules and Monte Carlo radiative transfer analysis. These two cores are typical examples of the pre-stellar core population, and their chemical composition is characterized by the presence of large `freeze out holes' in most molecular species. In contrast with these chemically processed objects, a new population of chemically young cores has begun to emerge. The characteristics of its most extreme representative, L1521E, are briefly reviewed.

  15. Integral-field kinematics and stellar populations of early-type galaxies out to three half-light radii

    NASA Astrophysics Data System (ADS)

    Boardman, Nicholas Fraser; Weijmans, Anne-Marie; van den Bosch, Remco; Kuntschner, Harald; Emsellem, Eric; Cappellari, Michele; de Zeeuw, Tim; Falcón-Barroso, Jesus; Krajnović, Davor; McDermid, Richard; Naab, Thorsten; van de Ven, Glenn; Yildirim, Akin

    2017-11-01

    We observed 12 nearby H I-detected early-type galaxies (ETGs) of stellar mass ˜1010 M⊙ ≤ M* ≤ ˜1011 M⊙ with the Mitchell Integral-Field Spectrograph, reaching approximately three half-light radii in most cases. We extracted line-of-sight velocity distributions for the stellar and gaseous components. We find little evidence of transitions in the stellar kinematics of the galaxies in our sample beyond the central effective radius, with centrally fast-rotating galaxies remaining fast-rotating and centrally slow-rotating galaxies likewise remaining slow-rotating. This is consistent with these galaxies having not experienced late dry major mergers; however, several of our objects have ionized gas that is misaligned with respect to their stars, suggesting some kind of past interaction. We extract Lick index measurements of the commonly used H β, Fe5015, Mg b, Fe5270 and Fe5335 absorption features, and we find most galaxies to have flat H β gradients and negative Mg b gradients. We measure gradients of age, metallicity and abundance ratio for our galaxies using spectral fitting, and for the majority of our galaxies find negative age and metallicity gradients. We also find the stellar mass-to-light ratios to decrease with radius for most of the galaxies in our sample. Our results are consistent with a view in which intermediate-mass ETGs experience mostly quiet evolutionary histories, but in which many have experienced some kind of gaseous interaction in recent times.

  16. The SAMI Galaxy Survey: spatially resolving the main sequence of star formation

    NASA Astrophysics Data System (ADS)

    Medling, Anne M.; Cortese, Luca; Croom, Scott M.; Green, Andrew W.; Groves, Brent; Hampton, Elise; Ho, I.-Ting; Davies, Luke J. M.; Kewley, Lisa J.; Moffett, Amanda J.; Schaefer, Adam L.; Taylor, Edward; Zafar, Tayyaba; Bekki, Kenji; Bland-Hawthorn, Joss; Bloom, Jessica V.; Brough, Sarah; Bryant, Julia J.; Catinella, Barbara; Cecil, Gerald; Colless, Matthew; Couch, Warrick J.; Drinkwater, Michael J.; Driver, Simon P.; Federrath, Christoph; Foster, Caroline; Goldstein, Gregory; Goodwin, Michael; Hopkins, Andrew; Lawrence, J. S.; Leslie, Sarah K.; Lewis, Geraint F.; Lorente, Nuria P. F.; Owers, Matt S.; McDermid, Richard; Richards, Samuel N.; Sharp, Robert; Scott, Nicholas; Sweet, Sarah M.; Taranu, Dan S.; Tescari, Edoardo; Tonini, Chiara; van de Sande, Jesse; Walcher, C. Jakob; Wright, Angus

    2018-04-01

    We present the ˜800 star formation rate maps for the Sydney-AAO Multi-object Integral field spectrograph (SAMI) Galaxy Survey based on H α emission maps, corrected for dust attenuation via the Balmer decrement, that are included in the SAMI Public Data Release 1. We mask out spaxels contaminated by non-stellar emission using the [O III]/H β, [N II]/H α, [S II]/H α, and [O I]/H α line ratios. Using these maps, we examine the global and resolved star-forming main sequences of SAMI galaxies as a function of morphology, environmental density, and stellar mass. Galaxies further below the star-forming main sequence are more likely to have flatter star formation profiles. Early-type galaxies split into two populations with similar stellar masses and central stellar mass surface densities. The main-sequence population has centrally concentrated star formation similar to late-type galaxies, while galaxies >3σ below the main sequence show significantly reduced star formation most strikingly in the nuclear regions. The split populations support a two-step quenching mechanism, wherein halo mass first cuts off the gas supply and remaining gas continues to form stars until the local stellar mass surface density can stabilize the reduced remaining fuel against further star formation. Across all morphologies, galaxies in denser environments show a decreased specific star formation rate from the outside in, supporting an environmental cause for quenching, such as ram-pressure stripping or galaxy interactions.

  17. Exploring the brown dwarf desert: new substellar companions from the SDSS-III MARVELS survey

    NASA Astrophysics Data System (ADS)

    Grieves, Nolan; Ge, Jian; Thomas, Neil; Ma, Bo; Sithajan, Sirinrat; Ghezzi, Luan; Kimock, Ben; Willis, Kevin; De Lee, Nathan; Lee, Brian; Fleming, Scott W.; Agol, Eric; Troup, Nicholas; Paegert, Martin; Schneider, Donald P.; Stassun, Keivan; Varosi, Frank; Zhao, Bo; Jian, Liu; Li, Rui; Porto de Mello, Gustavo F.; Bizyaev, Dmitry; Pan, Kaike; Dutra-Ferreira, Letícia; Lorenzo-Oliveira, Diego; Santiago, Basílio X.; da Costa, Luiz N.; Maia, Marcio A. G.; Ogando, Ricardo L. C.; del Peloso, E. F.

    2017-06-01

    Planet searches using the radial velocity technique show a paucity of companions to solar-type stars within ˜5 au in the mass range of ˜10-80 MJup. This deficit, known as the brown dwarf desert, currently has no conclusive explanation. New substellar companions in this region help assess the reality of the desert and provide insight to the formation and evolution of these objects. Here, we present 10 new brown dwarf and 2 low-mass stellar companion candidates around solar-type stars from the Multi-object APO Radial Velocity Exoplanet Large-Area Survey (MARVELS) of the Sloan Digital Sky Survey III. These companions were selected from processed MARVELS data using the latest University of Florida Two Dimensional pipeline, which shows significant improvement and reduction of systematic errors over previous pipelines. The 10 brown dwarf companions range in mass from ˜13 to 76 MJup and have orbital radii of less than 1 au. The two stellar companions have minimum masses of ˜98 and 100 MJup. The host stars of the MARVELS brown dwarf sample have a mean metallicity of [Fe/H] = 0.03 ± 0.08 dex. Given our stellar sample we estimate the brown dwarf occurrence rate around solar-type stars with periods less than ˜300 d to be ˜0.56 per cent.

  18. Elemental Abundances of Kepler Objects of Interest in APOGEE. I. Two Distinct Orbital Period Regimes Inferred from Host Star Iron Abundances

    NASA Astrophysics Data System (ADS)

    Wilson, Robert F.; Teske, Johanna; Majewski, Steven R.; Cunha, Katia; Smith, Verne; Souto, Diogo; Bender, Chad; Mahadevan, Suvrath; Troup, Nicholas; Allende Prieto, Carlos; Stassun, Keivan G.; Skrutskie, Michael F.; Almeida, Andrés; García-Hernández, D. A.; Zamora, Olga; Brinkmann, Jonathan

    2018-02-01

    The Apache Point Observatory Galactic Evolution Experiment (APOGEE) has observed ∼600 transiting exoplanets and exoplanet candidates from Kepler (Kepler Objects of Interest, KOIs), most with ≥18 epochs. The combined multi-epoch spectra are of high signal-to-noise ratio (typically ≥100) and yield precise stellar parameters and chemical abundances. We first confirm the ability of the APOGEE abundance pipeline, ASPCAP, to derive reliable [Fe/H] and effective temperatures for FGK dwarf stars—the primary Kepler host stellar type—by comparing the ASPCAP-derived stellar parameters with those from independent high-resolution spectroscopic characterizations for 221 dwarf stars in the literature. With a sample of 282 close-in (P< 100 days) KOIs observed in the APOGEE KOI goal program, we find a correlation between orbital period and host star [Fe/H] characterized by a critical period, {P}{crit}={8.3}-4.1+0.1 days, below which small exoplanets orbit statistically more metal-enriched host stars. This effect may trace a metallicity dependence of the protoplanetary disk inner radius at the time of planet formation or may be a result of rocky planet ingestion driven by inward planetary migration. We also consider that this may trace a metallicity dependence of the dust sublimation radius, but we find no statistically significant correlation with host {T}{eff} and orbital period to support such a claim.

  19. Young stellar population and star formation history ofW4 HII region/Cluster Complex

    NASA Astrophysics Data System (ADS)

    Panwar, Neelam

    2018-04-01

    The HII region/cluster complex has been a subject of numerous investigations to study the feedback effect of massive stars on their surroundings. Massive stars not only alter the morphology of the parental molecular clouds, but also influence star formation, circumstellar disks and the mass function of low-mass stars in their vicinity. However, most of the studies of low-mass stellar content of the HII regions are limited only to the nearby regions. We study the star formation in the W4 HII region using deep optical observations obtained with the archival data from Canada - France - Hawaii Telescope, Two-Micron All Sky Survey, Spitzer, Herschel and Chandra. We investigate the spatial distribution of young stellar objects in the region, their association with the remnant molecular clouds, and search for the clustering to establish the sites of recent star formation. Our analysis suggests that the influence of massive stars on circumstellar disks is significant only to thei! r immediate neighborhood. The spatial correlation of the young stars with the distribution of gas and dust of the complex indicate that the clusters would have formed in a large filamentary cloud. The observing facilities at the 3.6-m Devasthal Optical Telescope (DOT), providing high-resolution spectral and imaging capabilities, will fulfill the major objectives in the study of HII regions.

  20. Analyzing the Formation of Ultra-compact Dwarfs through Stellar Populations

    NASA Astrophysics Data System (ADS)

    Seshadri, Anish; Wang, Carolyn; Romanowsky, Aaron J.; Martin-navarro, Ignacio

    2017-01-01

    Since their discovery in 1999, ultra-compact dwarfs (UCDs) have been the subjects of intense study. Their small size, yet tremendous mass, brings into question their place among celestial objects. Are they galaxies or globular clusters? The answer to this question could come from analyzing how they formed. Thus, the goal of this project is to test one of the theories for the formation of UCDs, the theory of tidal stripping.This project approaches the issue by looking at dwarf galaxies currently in the process of stripping to understand formation history. Over twenty such dwarf galaxies were identified and their stellar populations analyzed. Using modeling techniques on spectroscopic and photometric data, the age, metallicity, and color of each object was identified. By objectively categorizing each object into a stage of evolution in the process of tidal stripping, a virtual timeline was built for the formation of UCDs. Data for each object were plotted vs. stage of formation, with pristine dwarfs and UCDs signifying the endpoints. Trends in the data revealed a natural progression over all stages of evolution, showing that tidally stripped dwarfs likely represent an intermediate stage in the formation of UCDs.This research was supported by NSF Grant AST-1515084. Most of this work was carried out by high school students working under the auspices of the Science Internship Program at UC Santa Cruz.

  1. Roentgen Satellite (ROSAT)

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The Objectives of NASA's participation in the ROSAT mission are to: a) measure the spatial, spectral, and temporal characteristics of discrete cosmic sources including normal stars, collapsed stellar objects, and active galactic nuclei; b) perform spectroscopic mapping of extended X-ray sources including supernova remnants, galaxies, and clusters of galaxies; and c) conduct the above observations of cosmic sources with unprecedented sensitivity and spatial resolution over the 0.1 - 2.0 keV energy band.

  2. Pulkovo Observatory: An essay on its history and scientific activity

    NASA Technical Reports Server (NTRS)

    Dadaev, A. N.

    1978-01-01

    A history of the observatory and of the development of astronomy in Russia during the past 150 years is presented. Scientific activity was traced from the earliest objectives of precise stellar coordinates to the problems of radio variabilities of quasars.

  3. HSX as an example of a resilient non-resonant divertor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bader, A.; Boozer, A. H.; Hegna, C. C.

    This study describes an initial description of the resilient divertor properties of quasi-symmetric (QS) stellarators using the HSX (Helically Symmetric eXperiment) configuration as a test-case. Divertors in high-performance QS stellarators will need to be resilient to changes in plasma configuration that arise due to evolution of plasma pressure profiles and bootstrap currents for divertor design. Resiliency is tested by examining the changes in strike point patterns from the field line following, which arise due to configurational changes. A low strike point variation with high configuration changes corresponds to high resiliency. The HSX edge displays resilient properties with configuration changes arisingmore » from the (1) wall position, (2) plasma current, and (3) external coils. The resilient behavior is lost if large edge islands intersect the wall structure. The resilient edge properties are corroborated by heat flux calculations from the fully 3-D plasma simulations using EMC3-EIRENE. Additionally, the strike point patterns are found to correspond to high curvature regions of magnetic flux surfaces.« less

  4. HSX as an example of a resilient non-resonant divertor

    DOE PAGES

    Bader, A.; Boozer, A. H.; Hegna, C. C.; ...

    2017-03-16

    This study describes an initial description of the resilient divertor properties of quasi-symmetric (QS) stellarators using the HSX (Helically Symmetric eXperiment) configuration as a test-case. Divertors in high-performance QS stellarators will need to be resilient to changes in plasma configuration that arise due to evolution of plasma pressure profiles and bootstrap currents for divertor design. Resiliency is tested by examining the changes in strike point patterns from the field line following, which arise due to configurational changes. A low strike point variation with high configuration changes corresponds to high resiliency. The HSX edge displays resilient properties with configuration changes arisingmore » from the (1) wall position, (2) plasma current, and (3) external coils. The resilient behavior is lost if large edge islands intersect the wall structure. The resilient edge properties are corroborated by heat flux calculations from the fully 3-D plasma simulations using EMC3-EIRENE. Additionally, the strike point patterns are found to correspond to high curvature regions of magnetic flux surfaces.« less

  5. The Hibernating Stellar Magnet

    NASA Astrophysics Data System (ADS)

    2008-09-01

    First Optically Active Magnetar-Candidate Discovered Astronomers have discovered a most bizarre celestial object that emitted 40 visible-light flashes before disappearing again. It is most likely to be a missing link in the family of neutron stars, the first case of an object with an amazingly powerful magnetic field that showed some brief, strong visible-light activity. Hibernating Stellar Magnet ESO PR Photo 31/08 The Hibernating Stellar Magnet This weird object initially misled its discoverers as it showed up as a gamma-ray burst, suggesting the death of a star in the distant Universe. But soon afterwards, it exhibited some unique behaviour that indicates its origin is much closer to us. After the initial gamma-ray pulse, there was a three-day period of activity during which 40 visible-light flares were observed, followed by a brief near-infrared flaring episode 11 days later, which was recorded by ESO's Very Large Telescope. Then the source became dormant again. "We are dealing with an object that has been hibernating for decades before entering a brief period of activity", explains Alberto J. Castro-Tirado, lead author of a paper in this week's issue of Nature. The most likely candidate for this mystery object is a 'magnetar' located in our own Milky Way galaxy, about 15 000 light-years away towards the constellation of Vulpecula, the Fox. Magnetars are young neutron stars with an ultra-strong magnetic field a billion billion times stronger than that of the Earth. "A magnetar would wipe the information from all credit cards on Earth from a distance halfway to the Moon," says co-author Antonio de Ugarte Postigo. "Magnetars remain quiescent for decades. It is likely that there is a considerable population in the Milky Way, although only about a dozen have been identified." Some scientists have noted that magnetars should be evolving towards a pleasant retirement as their magnetic fields decay, but no suitable source had been identified up to now as evidence for this evolutionary scheme. The newly discovered object, known as SWIFT J195509+261406 and showing up initially as a gamma-ray burst (GRB 070610), is the first candidate. The magnetar hypothesis for this object is reinforced by another analysis, based on another set of data, appearing in the same issue of Nature.

  6. Anisotropic strange star with Tolman V potential

    NASA Astrophysics Data System (ADS)

    Shee, Dibyendu; Deb, Debabrata; Ghosh, Shounak; Ray, Saibal; Guha, B. K.

    In this paper, we present a strange stellar model using Tolman V-type metric potential employing simplest form of the MIT bag equation of state (EOS) for the quark matter. We consider that the stellar system is spherically symmetric, compact and made of an anisotropic fluid. Choosing different values of n we obtain exact solutions of the Einstein field equations and finally conclude that for a specific value of the parameter n = 1/2, we find physically acceptable features of the stellar object. Further, we conduct different physical tests, viz., the energy condition, generalized Tolman-Oppeheimer-Volkoff (TOV) equation, Herrera’s cracking concept, etc., to confirm the physical validity of the presented model. Matching conditions provide expressions for different constants whereas maximization of the anisotropy parameter provides bag constant. By using the observed data of several compact stars, we derive exact values of some of the physical parameters and exhibit their features in tabular form. It is to note that our predicted value of the bag constant satisfies the report of CERN-SPS and RHIC.

  7. Results from the APOGEE IN-SYNC Orion: parameters and radial velocities for thousands of young stars in the Orion Complex.

    NASA Astrophysics Data System (ADS)

    Da Rio, Nicola; SDSS Apogee IN-SYNC ancillary program Team

    2015-01-01

    I will present the results of our characterization of the dynamical status of the young stellar population in the Orion A star forming region. This is based on radial velocity measurements obtained within the SDSS-III Apogee IN-SYNC Orion Survey, which obtained high-resolution spectroscopy of ~3000 objects in the region, from the dense Orion Nebula Cluster - the prototypical nearby region of active massive star formation - to the low-density environments of the L1641 region. We find evidence for kinematic subclustering along the star forming filament, where the stellar component remains kinematically associated to the gas; in the ONC we find that the stellar population is supervirial and currently expanding. We rule out the existence of a controversial candidate foreground cluster to the south of the ONC. These results, complemented with an analysis of the spatial structure of the population, enables critical tests of theories that describe the formation and early evolution of Orion and young clusters in general.

  8. Mapping out the origins of compact stellar systems

    NASA Astrophysics Data System (ADS)

    Romanowsky, Aaron J.; Brodie, Jean P.; SAGES Collaboration

    2017-03-01

    We present a suite of extragalactic explorations of the origins and nature of globular clusters (GCs) and ultra-compact dwarfs (UCDs), and the connections between them. An example of GC metallicity bimodality is shown to reflect underlying, distinct metal-poor and metal-rich stellar halo populations. Metallicity-matching methods are used to trace the birth sites and epochs of GCs in giant E/S0s, pointing to clumpy disk galaxies at z ~ 3 for the metal-rich GCs, and to a combination of accreted and in-situ formation modes at z ~ 5-6 for the metal-poor GCs. An increasingly diverse zoo of compact stellar systems is being discovered, including objects that bridge the gaps between UCDs and faint fuzzies, and between UCDs and compact ellipticals. Many of these have properties pointing to origins as the stripped nuclei of larger galaxies, and a smoking-gun example is presented of an ω Cen-like star cluster embedded in a tidal stream.

  9. A COMPREHENSIVE SEARCH FOR STELLAR BOWSHOCK NEBULAE IN THE MILKY WAY: A CATALOG OF 709 MID-INFRARED SELECTED CANDIDATES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobulnicky, Henry A.; Chick, William T.; Schurhammer, Danielle P.

    2016-12-01

    We identify 709 arc-shaped mid-infrared nebula in 24 μ m Spitzer Space Telescope or 22 μ m Wide Field Infrared Explorer surveys of the Galactic Plane as probable dusty interstellar bowshocks powered by early-type stars. About 20% are visible at 8 μ m or at shorter mid-infrared wavelengths. The vast majority (660) have no previous identification in the literature. These extended infrared sources are strongly concentrated near the Galactic mid-plane, with an angular scale height of ∼0.°6. All host a symmetrically placed star implicated as the source of a stellar wind sweeping up interstellar material. These are candidate “runaway” starsmore » potentially having high velocities in the reference frame of the local medium. Among the 286 objects with measured proper motions, we find an unambiguous excess with velocity vectors aligned with the infrared morphology—kinematic evidence that many of these are “runaway” stars with large peculiar motions responsible for the bowshock signature. We discuss a population of “in situ” bowshocks (∼103 objects) that face giant H ii regions where the relative motions between the star and ISM may be caused by bulk outflows from an overpressured bubble. We also identify ∼58 objects that face 8 μ m bright-rimmed clouds and apparently constitute a sub-class of in situ bowshocks where the stellar wind interacts with a photoevaporative flow (PEF) from an eroding molecular cloud interface (i.e., “PEF bowshocks”). Orientations of the arcuate nebulae exhibit a correlation over small angular scales, indicating that external influences such as H ii regions are responsible for producing some bowshock nebulae. However, the vast majority of the nebulae in this sample appear to be isolated (499 objects) from obvious external influences.« less

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barbosa, C. L.; Blum, R. D.; Damineli, A.

    In this paper we present the results of a mid-infrared study of G49.5-0.4, or W51A, part of the massive starbirth complex W51. Combining public data from the Spitzer IRAC camera, and Gemini mid-infrared camera T-ReCS at 7.73, 9.69, 12.33, and 24.56 μ m, with a spatial resolution of ∼0.″5, we have identified the mid-infrared counterparts of eight ultracompact H ii regions, showing that two radio sources are deeply embedded in molecular clouds and another is a cloud of ionized gas. From the T-ReCS data we have unveiled the central core of the W51 region, revealing massive young stellar candidates. Wemore » modeled the spectral energy distribution of the detected sources. The results suggest that the embedded objects are sources with spectral types ranging from B3 to O5, but the majority of the fits indicate stellar objects with B1 spectral types. We also present an extinction map of IRS 2, showing that a region with lower extinction corresponds to the region where a proposed jet of gas has impacted the foreground cloud. From this map, we also derived the total extinction toward the enigmatic source IRS 2E, which amounts to ∼60 mag in the V band. We calculated the color temperature due to thermal emission of the circumstellar dust of the detected sources; the temperatures are in the interval of ∼100–150 K, which corresponds to the emission of dust located at 0.1 pc from the central source. Finally, we show a possible mid-infrared counterpart of a detected source at millimeter wavelengths that was found by Zapata et al. to be a massive young stellar object undergoing a high accretion rate.« less

  11. First Keck Nulling Observations of a Young Stellar Object: Probing the Circumstellar Environment of the Herbig Ae star MWC 325

    NASA Technical Reports Server (NTRS)

    Ragland, S.; Ohnaka, K.; Hillenbrand, L.; Ridgway, S. T.; Colavita, M. M.; Akeson, R. L.; Cotton, W.; Danichi, W. C.; Hrynevych, M.; Milan-Gabet, R.; hide

    2012-01-01

    We present the first N-band nulling plus K- and L-band V(sup 2) observations of a young stellar object, MWC325, taken with the 85 m baseline Keck Interferometer. The Keck nuller was designed for the study of faint dust signatures associated with debris disks, but it also has a unique capability for studying the temperature and density distribution of denser disks found around young stellar objects. Interferometric observations of MWC 325 at K, L and N encompass a factor of five in spectral range and thus, especially when spectrally dispersed within each band, enable characterization of the structure of the inner disk regions where planets form. Fitting our observations with geometric models such as a uniform disk or a Gaussian disk show that the apparent size increases monotonically with wavelength in the 2-12 micrometer wavelength region, confirming the widely held assumption based on radiative transfer models, now with spatially resolved measurements over broad wavelength range, that disks are extended with a temperature gradient. The effective size is a factor of about 1.3 and 2 larger in the Lband and N-band, respectively, compared to that in the K-band. The existing interferometric measurements and the spectral energy distribution can be reproduced by a flat disk or a weakly shadowed nearly flat-disk model, with only slight flaring in the outer regions of the disk, consisting of representative "sub-micron" (0.1 micron) and "micron" (2 micron) grains of a 50:50 ratio of silicate and graphite. This is marked contrast with the disks previously found in other Herbig Ae/Be stars suggesting a wide variety in the disk properties among Herbig Ae/Be stars.

  12. THE YOUNG STELLAR OBJECT POPULATION IN THE VELA-D MOLECULAR CLOUD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strafella, F.; Maruccia, Y.; Maiolo, B.

    2015-01-10

    We investigate the young stellar population in the Vela Molecular Ridge, Cloud-D, a star-forming region observed by both the Spitzer/NASA and Herschel/ESA space telescopes. The point-source, band-merged, Spitzer-IRAC catalog complemented with MIPS photometry previously obtained is used to search for candidate young stellar objects (YSOs), also including sources detected in less than four IRAC bands. Bona fide YSOs are selected by using appropriate color-color and color-magnitude criteria aimed at excluding both Galactic and extragalactic contaminants. The derived star formation rate and efficiency are compared with the same quantities characterizing other star-forming clouds. Additional photometric data, spanning from the near-IR tomore » the submillimeter, are used to evaluate both bolometric luminosity and temperature for 33 YSOs located in a region of the cloud observed by both Spitzer and Herschel. The luminosity-temperature diagram suggests that some of these sources are representative of Class 0 objects with bolometric temperatures below 70 K and luminosities of the order of the solar luminosity. Far-IR observations from the Herschel/Hi-GAL key project for a survey of the Galactic plane are also used to obtain a band-merged photometric catalog of Herschel sources intended to independently search for protostars. We find 122 Herschel cores located on the molecular cloud, 30 of which are protostellar and 92 of which are starless. The global protostellar luminosity function is obtained by merging the Spitzer and Herschel protostars. Considering that 10 protostars are found in both the Spitzer and Herschel lists, it follows that in the investigated region we find 53 protostars and that the Spitzer-selected protostars account for approximately two-thirds of the total.« less

  13. Stellar Occultations by Large TNOs on 2012: The February 3rd by (208996) 2003 AZ84, and the February 17th by (50000) Quaoar

    NASA Astrophysics Data System (ADS)

    Braga Ribas, Felipe; Sicardy, B.; Ortiz, J. L.; Duffard, R.; Camargo, J. I. B.; Lecacheux, J.; Colas, F.; Vachier, F.; Tanga, P.; Sposetti, S.; Brosch, N.; Kaspi, S.; Manulis, I.; Baug, T.; Chandrasekhar, T.; Ganesh, S.; Jain, J.; Mohan, V.; Sharma, A.; Garcia-Lozano, R.; Klotz, A.; Frappa, E.; Jehin, E.; Assafin, M.; Vieira Martins, R.; Behrend, R.; Roques, F.; Widemann, T.; Morales, N.; Thirouin, A.; Mahasena, P.; Benkhaldoun, Z.; Daassou, A.; Rinner, C.; Ofek, E. O.

    2012-10-01

    On February 2012, two stellar occultation's by large Trans-neptunian Objects (TNO's) were observed by our group. On the 3rd, an event by (208996) 2003 AZ84 was recorded from Mont Abu Observatory and IUCAA Girawali Observatory in India and from Weizmann Observatory in Israel. On the 17th, a stellar occultation by (50000) Quaoar was observed from south France and Switzerland. Both occultations are the second observed by our group for each object, and will be used to improve the results obtained on the previous events. The occultation by 2003 AZ84 is the first multi-chord event recorded for this object. From the single chord event on January 8th 2011, Braga-Ribas et al. 2011 obtained a lower limit of 573 +/- 21 km. From the 2012 occultation the longest chord has a size of 662 +/- 50 km. The other chords will permit to determine the size and shape of the TNO, and derive other physical parameters, such as the geometric albedo. The Quaoar occultation was observed from south of France (Observatoire de la Côte d'Azur, TAROT telescope and Valensole) and from Gnosca, Switzerland. Unfortunately, all three sites in France are almost at the same Quaoar's latitude, so in practice, we have two chords that can be used to fit Quaoar's limb. The resulting fit will be compared with the results obtained by Braga-Ribas et al. 2011. Braga-Ribas F., Sicardy B., et al. 2011, EPSC-DPS2011, 1060.Ribas F., Sicardy B., et al. 2011, EPSC-DPS2011, 1060.

  14. Sub-1% accuracy in fundamental stellar parameters from triply eclipsing systems

    NASA Astrophysics Data System (ADS)

    Prsa, Andrej

    The current state-of-the-art level of accuracy in fundamental stellar parameters from eclipsing binary stars is 2-3%. Here we propose to use eclipsing triple stars to reduce the error bars by an entire order of magnitude, i.e. to 0.2-0.3%. This can be done because a presence of the third component breaks most of the degeneracy inherent in binary systems between the inclination and stellar sizes. We detail the feasibility arguments and foresee that these results will provide exceptional benchmark objects for stringent tests of stellar evolution and population models. The formation channel of close binary stars (with separations of several stellar radii) is a matter of debate. It is clear that close binaries cannot form in situ because (1) the physical radius of a star shrinks by a large factor between birth and the main sequence, yet many main-sequence stars have companions orbiting at a distance of only a few stellar radii, and (2) in current theories of planet formation, the region within 0.1 AU of a protostar is too hot and rarefied for a Jupiter-mass planet to form, yet many hot jupiters are observed at such distances. Current theories of dynamic orbital evolution attribute orbital shrinking to Kozai cycles and tidal friction, which are long-lasting, perturbative effects that take Gyrs to shrink orbits by 1-2 orders of magnitude. This implies that, if a binary star system has a tertiary companion, it will be in a hierarchical structure, and any disruptive orbital encounters should be exceedingly rare after a certain period. The Kepler satellite observed continuously over 2800 eclipsing binary stars over 4 years of its mission lifetime. The ultra-high precision photometry and essentially uninterrupted time coverage enables us to time the eclipses to a 6 second precision. Because of the well understood physics that governs the orbital motion of two bodies around the center of mass, the expected times of eclipses can be predicted to a fraction of a second. When other physical processes interplay, such as apsidal motion, mass transfer or third body interactions, the times of eclipses deviate from predictions: they either come early or late. These deviations are called eclipse timing variations (ETVs) and can range from a few seconds to a few hours. Our team measured ETVs for the entire Kepler data-set of eclipsing binaries and found 516 that demonstrate significant deviations. Of those, 16 show strong interactions between the binary system and the tertiary component that significantly affects the binary orbit within a single encounter. This observed rate of dynamical perturbation events is unexpectedly high and at odds with current theories. We propose to study these objects in great detail: (1) to apply a developed photodynamical code to model multiple body interactions; (2) to fully solve orbital dynamics of these interacting bodies using all available Kepler data, deriving masses of all objects to better than 1%; (3) to measure the occurrence rate of strong orbital interactions in multiple systems and compare it to the predicted rates; (4) to hypothesize and simulate additional evolution channels that could potentially lead to such a high occurrence rate of disruptive events; and (5) to integrate these systems over time and test whether this dynamic evolution can cause efficient orbital tightening and the creation of short period binaries. The team consists of a PI who has experience with Kepler satellite's idiosyncrasies, two postdoctoral fellows, one graduate student, and six undergraduate students that will invest their summer months to learn about multiple body interactions. The proposed study has far-reaching research goals in stellar and planetary science astrophysics, a strong educational/training component and is aligned with NASA's objectives as outlined in the NRA call. Kepler is the only instrument that can provide the accuracy and temporal coverage required for the execution of this project.

  15. Globulettes as Seeds of Brown Dwarfs and Free-Floating Planetary-Mass Objects

    NASA Astrophysics Data System (ADS)

    Gahm, G. F.; Grenman, T.; Fredriksson, S.; Kristen, H.

    2007-04-01

    Some H II regions surrounding young stellar clusters contain tiny dusty clouds, which on photos look like dark spots or teardrops against a background of nebular emission. From our collection of Hα images of 10 H II regions gathered at the Nordic Optical Telescope, we found 173 such clouds, which we call "globulettes," since they are much smaller than normal globules and form a distinct class of objects. Many globulettes are quite isolated and located far from the molecular shells and elephant trunks associated with the regions. Others are attached to the trunks (or shells), suggesting that globulettes may form as a consequence of erosion of these larger structures. None of our objects appear to contain stellar objects. The globulettes were measured for position, dimension, and orientation, and we find that most objects are smaller than 10 kAU. The Rosette Nebula and IC 1805 are particularly rich in globulettes, for which the size distributions peak at mean radii of ~2.5 kAU, similar to what was found by Reipurth and coworkers and De Marco and coworkers for similar objects in other regions. We estimate total mass and density distributions for each object from extinction measures and conclude that a majority contain <13 MJ, corresponding to planetary-mass objects. We then estimate the internal thermal and potential energies and find, when also including the effects from the outer pressure, that a large fraction of the globulettes could be unstable and would contract on short timescales, <10 6 yr. In addition, the radiation pressure and ram pressure exerted on the side facing the clusters would stimulate contraction. Since the globulettes are not screened from stellar light by dust clouds farther in, one would expect photoevaporation to dissolve the objects. However, surprisingly few objects show bright rims or teardrop forms. We calculate the expected lifetimes against photoevaporation. These lifetimes scatter around 4 × 106 yr, much longer than estimated in previous studies and also much longer than the free-fall time. We conclude that a large number of our globulettes have time to form central low-mass objects long before the ionization front, driven by the impinging Lyman photons, has penetrated far into the globulette. Hence, the globulettes may be one source in the formation of brown dwarfs and free-floating planetary-mass objects in the galaxy. Based on observations made with the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias.

  16. Massive Stars and the Energy Balance of the Interstellar Medium. 1; The Impact of an Isolated 60 M. Star

    NASA Technical Reports Server (NTRS)

    Freyer, Tim; Hensler, Gerhard; Yorke, Harold W.

    2003-01-01

    We present results of numerical simulations carried out with a two-dimensional radiation hydrodynamics code in order to study the impact of massive stars on their surrounding interstellar medium. This first paper deals with the evolution of the circumstellar gas around an isolated 60 M. star. The interaction of the photo- ionized H II region with the stellar wind bubble forms a variety of interesting structures like shells, clouds, fingers, and spokes. These results demonstrate that complex structures found in H II regions are not necessarily relics from the time before the gas became ionized but may result from dynamical processes during the course of the H II region evolution. We have also analyzed the transfer and deposit of the stellar wind and radiation energy into the circumstellar medium until the star explodes as a supernova. Although the total mechanical wind energy supplied by the star is negligible compared to the accumulated energy of the Lyman continuum photons, the kinetic energy imparted to the circumstellar gas over the star s lifetime is 4 times higher than for a comparable windless simulation. Furthermore, the thermal energy of warm photoionized gas is lower by some 55%). Our results document the necessity to consider both ionizing radiation and stellar winds for an appropriate description of the interaction of OB stars with their circumstellar environment.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conroy, Charlie; Van Dokkum, Pieter G.; Villaume, Alexa

    It is now well-established that the stellar initial mass function (IMF) can be determined from the absorption line spectra of old stellar systems, and this has been used to measure the IMF and its variation across the early-type galaxy population. Previous work focused on measuring the slope of the IMF over one or more stellar mass intervals, implicitly assuming that this is a good description of the IMF and that the IMF has a universal low-mass cutoff. In this work we consider more flexible IMFs, including two-component power laws with a variable low-mass cutoff and a general non-parametric model. Wemore » demonstrate with mock spectra that the detailed shape of the IMF can be accurately recovered as long as the data quality is high (S/N ≳ 300 Å{sup −1}) and cover a wide wavelength range (0.4–1.0 μ m). We apply these flexible IMF models to a high S/N spectrum of the center of the massive elliptical galaxy NGC 1407. Fitting the spectrum with non-parametric IMFs, we find that the IMF in the center shows a continuous rise extending toward the hydrogen-burning limit, with a behavior that is well-approximated by a power law with an index of −2.7. These results provide strong evidence for the existence of extreme (super-Salpeter) IMFs in the cores of massive galaxies.« less

  18. Identifying Bright X-Ray Beasts

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-10-01

    Ultraluminous X-ray sources (ULXs) are astronomical sources of X-rays that, while dimmer than active galactic nuclei, are nonetheless brighter than any known stellar process. What are these beasts and why do they shine so brightly?Exceeding the LimitFirst discovered in the 1980s, ULXs are rare sources that have nonetheless been found in all types of galaxies. Though the bright X-ray radiation seems likely to be coming from compact objects accreting gas, theres a problem with this theory: ULXs outshine the Eddington luminosity for stellar-mass compact objects. This means that a stellar-mass object couldnt emit this much radiation isotropically without blowing itself apart.There are two alternative explanations commonly proposed for ULXs:Rather than being accreting stellar-mass compact objects, they are accreting intermediate-mass black holes. A hypothetical black hole of 100 solar masses or more would have a much higher Eddington luminosity than a stellar-mass black hole, making the luminosities that we observe from ULXs feasible.An example of one of the common routes the authors find for a binary system to become a ULX. In this case, the binary begins as two main sequence stars. As one star evolves off the main sequence, the binary undergoes a common envelope phase and a stage of mass transfer. The star ends its life as a supernova, and the resulting neutron star then accretes matter from the main sequence star as a ULX. [Wiktorowicz et al. 2017]They are ordinary X-ray binaries (a stellar-mass compact object accreting matter from a companion star), but they are undergoing a short phase of extreme accretion. During this time, their emission is beamed into jets, making them appear brighter than the Eddington luminosity.Clues from a New DiscoveryA few years ago, a new discovery shed some light on ULXs: M82 X-2, a pulsing ULX. Two more pulsing ULXs have been discovered since then, demonstrating that at least some ULXs contain pulsars i.e., neutron stars as the accreting object. This provided strong support for the second model of ULXs as X-ray binaries with super-Eddington luminosity.But could this model in fact account for all ULXs? A team of authors led by Grzegorz Wiktorowicz (Kavli Institute for Theoretical Physics, UC Santa Barbara and Warsaw University, Poland) says yes.Time evolution of the number of ULXs since the beginning of star formation, for a star formation burst (left panels) and continuous star formation (right panels), and for solar-metallicity (top panels) and low-metallicity (bottom panels) environments. The heavy solid line shows ULXs with black-hole accretors, the dashed line ULXs with neutron-star accretors, and the solid line the total. [Wiktorowicz et al. 2017]No Exotic Objects NeededWiktorowicz and collaborators performed a massive suite of simulations made possible by donated computer time from the Universe@Home project to examine how 20 million binary systems evolve into X-ray binaries. They then determined the number and nature of the ones that could appear as ULXs to us. The authors results show that the vast majority of the observed population of ULXs can be accounted for with super-Eddington compact binaries, without needing to invoke intermediate-mass black holes.Wiktorowicz and collaborators demonstrate that in environments with short star-formation bursts, black-hole accretors are the most common ULX source in the early periods after the burst, but neutron-star accretors dominate the ULX population after a few 100 Myr. In the case of prolonged and continuous star formation, neutron-star accretors dominate ULXs if the environment is solar metallicity, whereas black-hole accretors dominate in low-metallicity environments.The authors results present very clear and testable relations between the companion and donor star evolutionary stage and the age of the system, which we will hopefully be able to use to test this model with future observations of ULXs.CitationGrzegorz Wiktorowicz et al 2017 ApJ 846 17. doi:10.3847/1538-4357/aa821d

  19. Hierarchical Probabilistic Inference of the Color-Magnitude Diagram and Shrinkage of Stellar Distance Uncertainties

    NASA Astrophysics Data System (ADS)

    Leistedt, Boris; Hogg, David W.

    2017-12-01

    We present a hierarchical probabilistic model for improving geometric stellar distance estimates using color-magnitude information. This is achieved with a data-driven model of the color-magnitude diagram, not relying on stellar models but instead on the relative abundances of stars in color-magnitude cells, which are inferred from very noisy magnitudes and parallaxes. While the resulting noise-deconvolved color-magnitude diagram can be useful for a range of applications, we focus on deriving improved stellar distance estimates relying on both parallax and photometric information. We demonstrate the efficiency of this approach on the 1.4 million stars of the Gaia TGAS sample that also have AAVSO Photometric All Sky Survey magnitudes. Our hierarchical model has 4 million parameters in total, most of which are marginalized out numerically or analytically. We find that distance estimates are significantly improved for the noisiest parallaxes and densest regions of the color-magnitude diagram. In particular, the average distance signal-to-noise ratio (S/N) and uncertainty improve by 19% and 36%, respectively, with 8% of the objects improving in S/N by a factor greater than 2. This computationally efficient approach fully accounts for both parallax and photometric noise and is a first step toward a full hierarchical probabilistic model of the Gaia data.

  20. A Deep NuSTAR Survey of M31: Compact object types in our Nearest Neighbor Galaxy

    NASA Astrophysics Data System (ADS)

    Hornschemeier, Ann E.; Wik, Daniel R.; Yukita, Mihoko; Ptak, Andrew; Venters, Tonia M.; Lehmer, Bret; Maccarone, Thomas J.; Zezas, Andreas; Harrison, Fiona; Stern, Daniel; Williams, Benjamin F.; Vulic, Neven

    2017-08-01

    X-ray binaries (XRBs) trace young and old stellar populations in galaxies, and thus star formation rate and star formation history/stellar mass. X-ray emission from XRBs may be responsible for significant amounts of heating of the early Intergalactic Medium at Cosmic Dawn and may also play a significant role in reionization. Until recently, the E>10 keV (hard X-ray) emission from these populations could only be studied for XRBs in our own galaxy, where it is often difficult to measure accurate distances and thus luminosities. We have observed M31 in 4 NuSTAR fields for a total exposure of 1.4 Ms, covering the young stellar population in a swath of the disk (within the footprint of the Panchromatic Hubble Andromeda Treasury (PHAT) Survey) and older populations in the bulge. We detected more than 100 sources in the 4-25 keV band, where hard band (12-25 keV) emission has allowed us to discriminate between black holes and neutron stars in different accretion states. The luminosity function of the hard band detected sources are compared to Swift/BAT and INTEGRAL-derived luminosity functions of the Milky Way population, which reveals an excess of luminous sources in M31 when correcting for star formation rate and stellar mass.

  1. A MULTIPLICITY CENSUS OF INTERMEDIATE-MASS STARS IN SCORPIUS-CENTAURUS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janson, Markus; Lafreniere, David; Jayawardhana, Ray

    2013-08-20

    Stellar multiplicity properties have been studied for the lowest and the highest stellar masses, but intermediate-mass stars from F-type to late A-type have received relatively little attention. Here, we report on a Gemini/NICI snapshot imaging survey of 138 such stars in the young Scorpius-Centaurus (Sco-Cen) region, for the purpose of studying multiplicity with sensitivity down to planetary masses at wide separations. In addition to two brown dwarfs and a companion straddling the hydrogen-burning limit which we reported previously, here we present 26 new stellar companions and determine a multiplicity fraction within 0.''1-5.''0 of 21% {+-} 4%. Depending on the adoptedmore » semimajor axis distribution, our results imply a total multiplicity in the range of {approx}60%-80%, which further supports the known trend of a smooth continuous increase in the multiplicity fraction as a function of primary stellar mass. A surprising feature in the sample is a distinct lack of nearly equal-mass binaries, for which we discuss possible reasons. The survey yielded no additional companions below or near the deuterium-burning limit, implying that their frequency at >200 AU separations is not quite as high as might be inferred from previous detections of such objects within the Sco-Cen region.« less

  2. The Mass-Size Relation of Quenched, Quiescent Galaxies in the WISP Survey

    NASA Astrophysics Data System (ADS)

    Pahl, Anthony; Scarlata, Claudia; Rutkowski, Michael J.; Zanella, Anita; Bagley, Micaela B.; Colbert, James W.; Baronchelli, Ivano; Henry, Alaina L.; Hathi, Nimish P.; Teplitz, Harry I.; Rafelski, Marc; Dai, Yu Sophia; Malkan, Matthew Arnold; Mehta, Vihang; Beck, Melanie

    2016-01-01

    The relation between the stellar mass and size, if measured for galaxies of similar types, can be a useful tool for studying galactic evolution. We study the mass-size relation of quenched, quiescent galaxies to determine the effect of star-formation history on the growth of these objects over time. The WFC3 Infrared Spectroscopic Parallels (WISP) survey is a large HST IR grism survey of over 385 fields of ~4 arcmin2 each, and it is ideal for studying the star-formation rate with its broad spectral coverage. Using a subset of these fields with deep IR data and measurements across both filters (28 fields), we perform a color selection and identify 83 quenched galaxies with a median z~1.6. With GALFIT, we measure their effective radius and sersic index on the 2-D surface brightness distribution in the F110W band. We perform fitting of grism spectra of the observed galaxies to derive redshift, stellar mass and age for all galaxies. We combine the size, stellar mass, and stellar age determinations to investigate whether the evolution of the mass-size relation over time is primarily driven by the entrance of newly quenched galaxies or by processes affecting the individual quenched galaxies.

  3. A Massive Galaxy in Its Core Formation Phase Three Billion Years After the Big Bang

    NASA Technical Reports Server (NTRS)

    Nelson, Erica; van Dokkum, Pieter; Franx, Marijn; Brammer, Gabriel; Momcheva, Ivelina; Schreiber, Natascha M. Forster; da Cunha, Elisabete; Tacconi, Linda; Bezanson, Rachel; Kirkpatrick, Allison; hide

    2014-01-01

    Most massive galaxies are thought to have formed their dense stellar cores at early cosmic epochs. However, cores in their formation phase have not yet been observed. Previous studies have found galaxies with high gas velocity dispersions or small apparent sizes but so far no objects have been identified with both the stellar structure and the gas dynamics of a forming core. Here we present a candidate core in formation 11 billion years ago, at z = 2.3. GOODS-N-774 has a stellar mass of 1.0 × 10 (exp 11) solar mass, a half-light radius of 1.0 kpc, and a star formation rate of 90 (sup +45 / sub -20) solar mass/yr. The star forming gas has a velocity dispersion 317 plus or minus 30 km/s, amongst the highest ever measured. It is similar to the stellar velocity dispersions of the putative descendants of GOODS-N-774, compact quiescent galaxies at z is approximately equal to 2 (exp 8-11) and giant elliptical galaxies in the nearby Universe. Galaxies such as GOODS-N-774 appear to be rare; however, from the star formation rate and size of the galaxy we infer that many star forming cores may be heavily obscured, and could be missed in optical and near-infrared surveys.

  4. A supermassive black hole in an ultra-compact dwarf galaxy.

    PubMed

    Seth, Anil C; van den Bosch, Remco; Mieske, Steffen; Baumgardt, Holger; den Brok, Mark; Strader, Jay; Neumayer, Nadine; Chilingarian, Igor; Hilker, Michael; McDermid, Richard; Spitler, Lee; Brodie, Jean; Frank, Matthias J; Walsh, Jonelle L

    2014-09-18

    Ultra-compact dwarf galaxies are among the densest stellar systems in the Universe. These systems have masses of up to 2 × 10(8) solar masses, but half-light radii of just 3-50 parsecs. Dynamical mass estimates show that many such dwarfs are more massive than expected from their luminosity. It remains unclear whether these high dynamical mass estimates arise because of the presence of supermassive black holes or result from a non-standard stellar initial mass function that causes the average stellar mass to be higher than expected. Here we report adaptive optics kinematic data of the ultra-compact dwarf galaxy M60-UCD1 that show a central velocity dispersion peak exceeding 100 kilometres per second and modest rotation. Dynamical modelling of these data reveals the presence of a supermassive black hole with a mass of 2.1 × 10(7) solar masses. This is 15 per cent of the object's total mass. The high black hole mass and mass fraction suggest that M60-UCD1 is the stripped nucleus of a galaxy. Our analysis also shows that M60-UCD1's stellar mass is consistent with its luminosity, implying a large population of previously unrecognized supermassive black holes in other ultra-compact dwarf galaxies.

  5. On the stability and collisions in triple stellar systems

    NASA Astrophysics Data System (ADS)

    He, Matthias Y.; Petrovich, Cristobal

    2018-02-01

    A significant fraction of main-sequence (MS) stars are part of a triple system. We study the long-term stability and dynamical outcomes of triple stellar systems using a large number of long-term direct N-body integrations with relativistic precession. We find that the previously proposed stability criteria by Eggleton & Kiseleva and Mardling & Aarseth predict the stability against ejections reasonably well for a wide range of parameters. Assuming that the triple stellar systems follow orbital and mass distributions from FGK binary stars in the field, we find that ˜ 1 per cent and ˜ 0.5 per cent of the triple systems lead to a direct head-on collision (impact velocity ˜ escape velocity) between MS stars and between a MS star and a stellar-mass compact object, respectively. We conclude that triple interactions are the dominant channel for direct collisions involving a MS star in the field with a rate of one event every ˜100 years in the Milky Way. We estimate that the fraction of triple systems that form short-period binaries is up to ˜ 23 per cent with only up to ˜ 13 per cent being the result of three-body interactions with tidal dissipation, which is consistent with previous work using a secular code.

  6. Rotational evolution of slow-rotator sequence stars

    NASA Astrophysics Data System (ADS)

    Lanzafame, A. C.; Spada, F.

    2015-12-01

    Context. The observed relationship between mass, age and rotation in open clusters shows the progressive development of a slow-rotator sequence among stars possessing a radiative interior and a convective envelope during their pre-main sequence and main-sequence evolution. After 0.6 Gyr, most cluster members of this type have settled on this sequence. Aims: The observed clustering on this sequence suggests that it corresponds to some equilibrium or asymptotic condition that still lacks a complete theoretical interpretation, and which is crucial to our understanding of the stellar angular momentum evolution. Methods: We couple a rotational evolution model, which takes internal differential rotation into account, with classical and new proposals for the wind braking law, and fit models to the data using a Monte Carlo Markov chain (MCMC) method tailored to the problem at hand. We explore to what extent these models are able to reproduce the mass and time dependence of the stellar rotational evolution on the slow-rotator sequence. Results: The description of the evolution of the slow-rotator sequence requires taking the transfer of angular momentum from the radiative core to the convective envelope into account. We find that, in the mass range 0.85-1.10 M⊙, the core-envelope coupling timescale for stars in the slow-rotator sequence scales as M-7.28. Quasi-solid body rotation is achieved only after 1-2 Gyr, depending on stellar mass, which implies that observing small deviations from the Skumanich law (P ∝ √{t}) would require period data of older open clusters than is available to date. The observed evolution in the 0.1-2.5 Gyr age range and in the 0.85-1.10 M⊙ mass range is best reproduced by assuming an empirical mass dependence of the wind angular momentum loss proportional to the convective turnover timescale and to the stellar moment of inertia. Period isochrones based on our MCMC fit provide a tool for inferring stellar ages of solar-like main-sequence stars from their mass and rotation period that is largely independent of the wind braking model adopted. These effectively represent gyro-chronology relationships that take the physics of the two-zone model for the stellar angular momentum evolution into account.

  7. The Mass of the Milky Way via HST Proper Motions of Satellite Objects

    NASA Astrophysics Data System (ADS)

    Sohn, Sangmo Tony; van der Marel, Roeland

    2018-01-01

    The Universe evolves hierarchically with small structures merging and falling in to form bigger structures. Due to its proximity, the Milky Way (MW) is the best place to witness and study these hierarchical processes in action as evidenced by e.g., the many stellar streams found in MW halo. Stellar systems in the MW halo have therefore become the benchmark for testing many aspects of cosmological theories. Despite the advances in both observational and theoretical areas in the last decade or so, the total mass and mass profile of the MW still remain poorly constrained, mainly due to the limited information on the transverse motions of satellite objects in the MW halo. As part of our HSTPROMO collaboration, we have been measuring proper motions of stars, globular clusters, and satellite galaxies in the MW halo to remedy this situation. In this contribution, I will present results from our recent studies, and report our progress of ongoing projects.

  8. Stare and chase of space debris targets using real-time derived pointing data

    NASA Astrophysics Data System (ADS)

    Steindorfer, Michael A.; Kirchner, Georg; Koidl, Franz; Wang, Peiyuan; Antón, Alfredo; Fernández Sánchez, Jaime; Merz, Klaus

    2017-09-01

    We successfully demonstrate Stare & Chase: Space debris laser ranging to uncooperative targets has been achieved without a priori knowledge of any orbital information. An analog astronomy CCD with a standard objective, piggyback mounted on our 50 cm Graz SLR receive telescope, 'stares' into the sky in a fixed direction. The CCD records the stellar background within a field of view of approx. 7°. From the stellar X/Y positions on the sensor a plate solving algorithm determines the pointing data of the image center with an accuracy of approx. 15 arc seconds. If a sunlit target passes through this field of view, its equatorial coordinates are calculated, stored and a Consolidated Prediction Format (CPF) file is created in near real time. The derived CPF data is used to start laser ranging ('chase' the object) within the same pass to retrieve highly accurate distance information. A comparison of Stare & Chase CPFs with standard TLE predictions shows the possibilities and limits of this method.

  9. On the Li and Be tests for brown dwarfs

    NASA Technical Reports Server (NTRS)

    Nelson, L. A.; Rappaport, S.; Chiang, E.

    1993-01-01

    We present the results of stellar evolution calculations which show quantitatively how the measured abundances of Li and Be in low-mass stellar objects can be used to discriminate between brown dwarfs and low-mass main-sequence stars. The evolution of B, although less useful, is also studied. We define a transition mass range, below which at least 50 percent of the light element remains at the end of nuclear burning, and above which no more than 10 percent remains. We find that the transition mass range for Li burning is 0.059-0.062 solar mass, while for Be the range is 0.075-0.077 solar mass. Using these results, we then examine the factors (e.g., age and luminosity) that affect our ability to identify low-luminosity objects as brown dwarfs. In particular, we show that the Li test would be well suited for brown dwarf candidates located in nearby open clusters with ages in the range of 2 x 10 exp 8 to 5 x 10 exp 8 yr.

  10. MONET, HET and SALT and asteroseismological observations and theory in Göttingen

    NASA Astrophysics Data System (ADS)

    Schuh, S.; Hessman, F. V.; Dreizler, S.; Kollatschny, W.; Glatzel, W.

    2007-06-01

    The Göttingen stellar astrophysics group, headed by Stefan Dreizler, conducts research on extrasolar planets and their host stars, on lower-main sequence stars, and on evolved compact objects, in particular hot white dwarfs (including PG 1159 objects, magnetic WDs and cataclysmic variables), and subdwarf B stars. In addition to sophisticated NLTE spectral analyses of these stars, which draw on the extensive stellar atmosphere modelling experience of the group, we actively develop and apply a variety of photometric monitoring and time-resolved spectroscopic techniques to address time-dependent phenomena. With the new instrumentational developments described below, we plan to continue the study of variable white dwarfs (GW Vir, DB and ZZ Ceti variables) and in particular sdB EC 14026 and PG 1617 pulsators which already constitute a main focus, partly within the Whole Earth Telescope (WET/DARC), http://www.physics.udel.edu/~jlp/darc/) collaboration, on a new level. Additional interest is directed towards strange mode instabilities in Wolf Rayet stars.

  11. A stellar audit: the computation of encounter rates for 47 Tucanae and omega Centauri

    NASA Astrophysics Data System (ADS)

    Davies, Melvyn B.; Benz, Willy

    1995-10-01

    Using King-Mitchie models, we compute encounter rates between the various stellar species in the globular clusters omega Cen and 47 Tuc. We also compute event rates for encounters between single stars and a population of primordial binaries. Using these rates, and what we have learnt from hydrodynamical simulations of encounters performed earlier, we compute the production rates of objects such as low-mass X-ray binaries (LMXBs), smothered neutron stars and blue stragglers (massive main-sequence stars). If 10 per cent of the stars are contained in primordial binaries, the production rate of interesting objects from encounters involving these binaries is as large as that from encounters between single stars. For example, encounters involving binaries produce a significant number of blue stragglers in both globular cluster models. The number of smothered neutron stars may exceed the number of LMXBs by a factor of 5-20, which may help to explain why millisecond pulsars are observed to outnumber LMXBs in globular clusters.

  12. SIGNATURES OF LONG-LIVED SPIRAL PATTERNS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinez-Garcia, Eric E.; Gonzalez-Lopezlira, Rosa A., E-mail: ericmartinez@inaoep.mx, E-mail: martinez@astro.unam.mx, E-mail: r.gonzalez@crya.unam.mx

    2013-03-10

    Azimuthal age/color gradients across spiral arms are a signature of long-lived spirals. From a sample of 19 normal (or weakly barred) spirals where we have previously found azimuthal age/color gradient candidates, 13 objects were further selected if a two-armed grand-design pattern survived in a surface density stellar mass map. Mass maps were obtained from optical and near-infrared imaging, by comparison with a Monte Carlo library of stellar population synthesis models that allowed us to obtain the mass-to-light ratio in the J band, (M/L){sub J}, as a function of (g - i) versus (i - J) color. The selected spirals weremore » analyzed with Fourier methods in search of other signatures of long-lived modes related to the gradients, such as the gradient divergence toward corotation, and the behavior of the phase angle of the two-armed spiral in different wavebands, as expected from theory. The results show additional signatures of long-lived spirals in at least 50% of the objects.« less

  13. HST imaging of quasi-stellar objects with WFPC2

    NASA Technical Reports Server (NTRS)

    Hutchings, J. B.; Holtzman, Jon; Sparks, W. B.; Morris, S. C.; Hanisch, R. J.; Mo, J.

    1994-01-01

    Early images were taken with the optically corrected WFPC2 camera of the Hubble Space Telescope of the low-redshift quasars(QSOs) 1229+204 and 2141+175, which are radio-quiet and radio-loud, respectively. We discuss image restoration on the data. The objects were chosen on the basis of structure seen with 0.5 sec resolution with the Canada-France-Hawaii-Telescope (CFHT) high-resolution camera (HRCAM). 1229+204 was known to be a barred spiral with an asymmetrical extra blue feature: this is now resolved into a ring of knots which are probably young stellar populations in the tidal debris of a small gas-rich companion. There are also shell-like structures along the bar. 2141+175 has a faint smooth curved tidal arm without knots which extends on both sides of a compact elliptical-shaped central galaxy. There is also a short jetlike feature emerging from the nucleus. We discuss the properties and implications of these morphological details.

  14. The stellar population of the Lupus clouds

    NASA Technical Reports Server (NTRS)

    Hughes, Joanne; Hartigan, Patrick; Krautter, Joachim; Kelemen, Janos

    1994-01-01

    We present photometric and spectroscopic observations of the H alpha emission stars in the Lupus dark cloud complex. We estimate the effective temperatures of the stars from their spectral types and calculate the reddening towards each object from the (R-I) colors. From these data, we derive mass and age distributions for the Lupus stars using a new set of pre-main sequence evolutionar tracks. We compare the results for the Lupus stars with those for a similar population of young stellar objects in Taurus-Auriga and Chamaeleon and with the initial mass function for field stars in the solar neighborhood. From the H-R diagrams, Lupus appears to contain older stars than Taurus. The Lupus dark clouds form a greater proportion of low mass stars than the Taurus complex. Also, the proportion of low mass stars in Lupus is higher than that predicted by the Miller-Scalo initial mass function, and the lowest mass stars in Lupus are less active than similar T Tauri stars in other regions.

  15. A HST/WFC3 Search for Substellar Companions in the Orion Nebula Cluster

    NASA Astrophysics Data System (ADS)

    Strampelli, Giovanni Maria; Aguilar, Jonathan; Aparicio, Antonio; Piotto, Giampaolo; Pueyo, Laurent; Robberto, Massimo

    2018-01-01

    We present new results relative to the population of substellar binaries in the Orion Nebula Cluster. We reprocessed HST/WFC3 data using an analysis technique developed to detect close companions in the wings of the stellar PSFs, based on the PyKLIP implementation of the KLIP PSF subtraction algorithm. Starting from a sample of ~1200 stars selected over the range J=11-15 mag, we were able to uncover ~80 candidate companions in the magnitude range J=16-23 mag. We use the presence of the 1.4 micron H2O absorption feature in the companion photosphere to discriminate 32 bona-fide substellar candidates from a population of reddened background objects. We derive an estimate of the companion mass assuming a 2Myr isochrone and the reddening of their primary. With 8 stellar companions, 19 brown dwarfs and 5 planetary mass objects, our study provide us with an unbiased sample of companions at the low-mass end of the IMF, probing the transition from binary to planetary systems.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vdovin V.L.

    In this report we describe theory and 3D full wave code description for the wave excitation, propagation and absorption in 3-dimensional (3D) stellarator equilibrium high beta plasma in ion cyclotron frequency range (ICRF). This theory forms a basis for a 3D code creation, urgently needed for the ICRF heating scenarios development for the operated LHD, constructed W7-X, NCSX and projected CSX3 stellarators, as well for re evaluation of ICRF scenarios in operated tokamaks and in the ITER . The theory solves the 3D Maxwell-Vlasov antenna-plasma-conducting shell boundary value problem in the non-orthogonal flux coordinates ({Psi}, {theta}, {var_phi}), {Psi} being magneticmore » flux function, {theta} and {var_phi} being the poloidal and toroidal angles, respectively. All basic physics, like wave refraction, reflection and diffraction are self consistently included, along with the fundamental ion and ion minority cyclotron resonances, two ion hybrid resonance, electron Landau and TTMP absorption. Antenna reactive impedance and loading resistance are also calculated and urgently needed for an antenna -generator matching. This is accomplished in a real confining magnetic field being varying in a plasma major radius direction, in toroidal and poloidal directions, through making use of the hot dense plasma wave induced currents with account to the finite Larmor radius effects. We expand the solution in Fourier series over the toroidal ({var_phi}) and poloidal ({theta}) angles and solve resulting ordinary differential equations in a radial like {Psi}-coordinate by finite difference method. The constructed discretization scheme is divergent-free one, thus retaining the basic properties of original equations. The Fourier expansion over the angle coordinates has given to us the possibility to correctly construct the ''parallel'' wave number k{sub //}, and thereby to correctly describe the ICRF waves absorption by a hot plasma. The toroidal harmonics are tightly coupled with each other due to magnetic field inhomogeneity of stellarators in toroidal direction. This is drastically different from axial symmetric plasma of the tokamaks. The inclusion in the problem major radius variation of magnetic field can strongly modify earlier results obtained for the straight helical, especially for high beta plasma, due to location modification of the two ion hybrid resonance layers. For the NCSX, LHD, W7-AS and W7-X like magnetic field topology inclusion in our theory of a major radius inhomogeneity of the magnetic field is a key element for correct description of RF power deposition profiles at all. The theory is developed in a manner that includes tokamaks and magnetic mirrors as the particular cases through general metric tensor (provided by an equilibrium solver) treatment of the wave equations. We describe that newly developed stellarator ICRF 3D full wave code PSTELION, based on theory described in this report. Applications to tokamaks, ITER, stellarators and benchmarking with 2D TORIC and 3D AORSA codes are given in included subreports« less

  17. ESA Swarm Mission - Level 1b Products

    NASA Astrophysics Data System (ADS)

    Tøffner-Clausen, Lars; Floberghagen, Rune; Mecozzi, Riccardo; Menard, Yvon

    2014-05-01

    Swarm, a three-satellite constellation to study the dynamics of the Earth's magnetic field and its interactions with the Earth system, has been launched in November 2013. The objective of the Swarm mission is to provide the best ever survey of the geomagnetic field and its temporal evolution, which will bring new insights into the Earth system by improving our understanding of the Earth's interior and environment. The Level 1b Products of the Swarm mission contain time-series of the quality screened, calibrated, corrected, and fully geo-localized measurements of the magnetic field intensity, the magnetic field vector (provided in both instrument and Earth-fixed frames), the plasma density, temperature, and velocity. Additionally, quality screened and pre-calibrated measurements of the nongravitational accelerations are provided. Geo-localization is performed by 24- channel GPS receivers and by means of unique, three head Advanced Stellar Compasses for high-precision satellite attitude information. The Swarm Level 1b data will be provided in daily products separately for each of the three Swarm spacecrafts. This poster will present detailed lists of the contents of the Swarm Level 1b Products and brief descriptions of the processing algorithms used in the generation of these data.

  18. A Tactile Carina Nebula

    NASA Astrophysics Data System (ADS)

    Grice, Noreen A.; Mutchler, M.

    2010-01-01

    Astronomy was once considered a science restricted to fully sighted participants. But in the past two decades, accessible books with large print/Braille and touchable pictures have brought astronomy and space science to the hands and mind's eye of students, regardless of their visual ability. A new universally-designed tactile image featuring the Hubble mosaic of the Carina Nebula is being presented at this conference. The original dataset was obtained with Hubble's Advanced Camera for Surveys (ACS) hydrogen-alpha filter in 2005. It became an instant icon after being infused with additional color information from ground-based CTIO data, and released as Hubble's 17th anniversary image. Our tactile Carina Nebula promotes multi-mode learning about the entire life-cycle of stars, which is dramatically illustrated in this Hubble mosaic. When combined with descriptive text in print and Braille, the visual and tactile components seamlessly reach both sighted and blind populations. Specific touchable features of the tactile image identify the shapes and orientations of objects in the Carina Nebula that include star-forming regions, jets, pillars, dark and light globules, star clusters, shocks/bubbles, the Keyhole Nebula, and stellar death (Eta Carinae). Visit our poster paper to touch the Carina Nebula!

  19. X-ray sources associated with young stellar objects in the star formation region CMa R1

    NASA Astrophysics Data System (ADS)

    Santos-Silva, Thais; Gregorio-Hetem, Jane; Montmerle, Thierry

    2013-07-01

    In previous works we studied the star formation scenario in the molecular cloud Canis Major R1 (CMa R1), derived from the existence of young stellar population groups near the Be stars Z CMa and GU CMa. Using data from the ROSAT X-ray satellite, having a field-of-view of ~ 1° in diameter, Gregorio-Hetem et al. (2009) discovered in this region young stellar objects mainly grouped in two clusters of different ages, with others located in between. In order to investigate the nature of these objects and to test a possible scenario of sequential star formation in this region, four fields (each 30 arcmin diameter, with some overlap) have been observed with the XMM-Newton satellite, with a sensitivity about 10 times better than ROSAT. The XMM-Newton data are currently under analysis. Preliminary results indicate the presence of about 324 sources, most of them apparently having one or more near-infrared counterparts showing typical colors of young stars. The youth of the X-ray sources was also confirmed by X-ray hardness ratio diagrams (XHRD), in different energy bands, giving an estimate of their Lx/Lbol ratios. In addition to these results, we present a detailed study of the XMM field covering the cluster near Z CMa. Several of these sources were classified as T Tauri and Herbig Ae/Be stars, using optical spectroscopy obtained with Gemini telescopes, in order to validate the use of XHRD applied to the entire sample. This classification is also used to confirm the relation between the luminosities in the near-infrared and X-ray bands expected for the T Tauri stars in CMa R1. In the present work we show the results of the study based on the spectra of about 90 sources found nearby Z CMa. We checked that the X-ray spectra (0.3 to 10 keV) of young objects is different from that observed in field stars and extragalactic objects. Some of the candidates also have light curve showing flares that are typical of T Tauri stars, which confirms the young nature of these X-ray sources.

  20. New Capabilities of One-Meter Schmidt Telescope of the Byurakan Astrophysical Observatory after modernization

    NASA Astrophysics Data System (ADS)

    Movsessian, T. A.; Dodonov, S. N.; Gabrielyan, V. V.; Kotov, S. S.; Gevorgyan, M. H.

    2017-12-01

    Within the framework of cooperation between Byurakan Astrophysical Observatory and Special Astrophysical Observatory during 2013-2015 y the 1-m Schmidt telescope of the Byurakan Astrophysical was upgraded. We completely redesigned the control system of the telescope: we replaced the actuating mechanisms, developed telescope control software, and made the guiding system. In the Special Astrophysical Observatory, the 4k×4k Apogee (USA) liquid-cooled CCD was reworked and prepared. Detector was mounted in the focus of the telescope and provides 1-degree field of view with pixel-size of 0.868, and RON 11e-. The detector is equipped with a turret with 5 holes for filters. The 20 intermediate-band filters (FWHM= 250A) uniformly covering the 4000&-9000Å wavelength range, five broadband filters (u, g, r, i, z SDSS), and three narrow-band filters. During the first year of test operation of the 1-m telescope we performed pilot observations within the framework of three programs: search for young stellar objects, AGN evolution, and stellar composition of galaxy disks. We confirmed the possibility of efficiently selecting of young objects using observations performed in narrow-band Hα and [S II] filters and the intermediate-band 7500Å filter. Three-hours long exposures with SDSS g, r, and i band filters allow us to reach the surface brightness level of 28m from square arcsecond when investigating the stellar content of galaxy disks for a sample of nine galaxies. We used observations performed with the 1-m telescope in five broadband (SDSS u, g, r, i, and z) and 15 intermediate-band filters (4000-7500Å) to construct a sample of quasar candidates with 0.5

  1. A Survey for Circumstellar Disks around Young Substellar Objects

    NASA Astrophysics Data System (ADS)

    Liu, Michael C.; Najita, Joan; Tokunaga, Alan T.

    2003-03-01

    We have completed the first systematic survey for disks around spectroscopically identified young brown dwarfs and very low mass stars. For a sample of 38 very cool objects in IC 348 and Taurus, we have obtained L'-band (3.8 μm) imaging with sufficient sensitivity to detect objects with and without disks. The sample should be free of selection biases for our purposes. Our targets span spectral types from M6 to M9.5, corresponding to masses of ~15-100 MJup and ages of <~5 Myr, based on current models. None appear to be binaries at 0.4" resolution (55-120 AU). Using the objects' measured spectral types and extinctions, we find that most of our sample (77%+/-15%) possess intrinsic IR excesses, indicative of circum(sub)stellar disks. Because the excesses are modest, conventional analyses using only IR colors would have missed most of the sources with excesses. Such analyses inevitably underestimate the disk fraction and will be less reliable for young brown dwarfs than for T Tauri stars. The observed IR excesses are correlated with Hα emission, consistent with a common accretion disk origin. In the same star-forming regions, we find that disks around brown dwarfs and T Tauri stars are contemporaneous; assuming coevality, this demonstrates that the inner regions of substellar disks are at least as long-lived as stellar disks and evolve slowly for the first ~3 Myr. The disk frequency appears to be independent of mass. However, some objects in our sample, including the very coolest (lowest mass) ones, lack IR excesses and may be diskless. The observed excesses can be explained by disk reprocessing of starlight alone; the implied accretion rates are at least an order of magnitude below typical values for classical T Tauri stars. The observed distribution of IR excesses suggests inner disk holes with radii of >~2R*, consistent with the idea that such holes arise from disk-magnetosphere interactions. Altogether, the frequency and properties of young circumstellar disks appear to be similar from the stellar regime down to the substellar and planetary-mass regime. This provides prima facie evidence of a common origin for most stars and brown dwarfs.

  2. The Effects of Admixed Dark Matter on Accretion Induced Collapse

    NASA Astrophysics Data System (ADS)

    Leung, Shing-Chi; Chu, Ming-Chung; Lin, Lap-Ming; Nomoto, Ken'ichi

    About 90% mass of matter in the universe is dark matter (DM) and most of its properties remain poorly constrained since it does not interact with electromagnetic and strong forces. To constrain the properties of DM, studying its effects on stellar objects is one of the methods. In [Leung et al., Phys. Rev. D 87, 123506 (2013); Leung et al., Astrophys. J. 812, 110 (2015)] we have shown that the dark matter admixture can significantly lower the Chandrasekhar mass of a white dwarf and also its corresponding explosion as a Type Ia supernova (SNe Ia). This type of objects may explain some observed sub-luminous SNe Ia. Depending on their stellar evolution path and interactions with companion stars, such objects can also undergo a direct collapse to form neutron stars (NSs) instead of explosion. Here we present results of one-dimensional hydrodynamics simulations of a NS with admixed DM. The DM is assumed to be asymmetric and in the form of an ideal degenerate Fermi gas. We study how the admixture of DM affects the collapse dynamics, its neutrino signals and the properties of the proto-NS. Possible observational signals are also discussed.

  3. Throwing Icebergs at White Dwarfs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephan, Alexander P.; Naoz, Smadar; Zuckerman, B., E-mail: alexpstephan@astro.ucla.edu

    White dwarfs (WDs) have atmospheres that are expected to consist nearly entirely of hydrogen and helium, since heavier elements will sink out of sight on short timescales. However, observations have revealed atmospheric pollution by heavier elements in about a quarter to a half of all WDs. While most of the pollution can be accounted for with asteroidal or dwarf planetary material, recent observations indicate that larger planetary bodies, as well as icy and volatile material from Kuiper belt analog objects, are also viable sources of pollution. The commonly accepted pollution mechanisms, namely scattering interactions between planetary bodies orbiting the WDs,more » can hardly account for pollution by objects with large masses or long-period orbits. Here we report on a mechanism that naturally leads to the emergence of massive body and icy and volatile material pollution. This mechanism occurs in wide binary stellar systems, where the mass loss of the planets’ host stars during post main sequence stellar evolution can trigger the Eccentric Kozai–Lidov mechanism. This mechanism leads to large eccentricity excitations, which can bring massive and long-period objects close enough to the WDs to be accreted. We find that this mechanism readily explains and is consistent with observations.« less

  4. Growth of a Massive Young Stellar Object Fed by a Gas Flow from a Companion Gas Clump

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xi; Shen, Zhiqiang; Ren, Zhiyuan

    We present a Submillimeter Array (SMA) observation toward the young massive double-core system G350.69-0.49. This system consists of a northeast (NE) diffuse gas bubble and a southwest (SW) massive young stellar object (MYSO), both clearly seen in the Spitzer images. The SMA observations reveal a gas flow between the NE bubble and the SW MYSO in a broad velocity range from 5 to 30 km s{sup −1} with respect to the system velocity. The gas flow is well confined within the interval between the two objects and traces a significant mass transfer from the NE gas bubble to the SWmore » massive core. The transfer flow can supply the material accreted onto the SW MYSO at a rate of 4.2×10{sup −4} M{sub ⊙} yr{sup −1}. The whole system therefore suggests a mode for the mass growth in the MYSO from a gas transfer flow launched from its companion gas clump, despite the driving mechanism of the transfer flow not being fully determined from the current data.« less

  5. A CANDIDATE PLANETARY-MASS OBJECT WITH A PHOTOEVAPORATING DISK IN ORION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Min; Kim, Jinyoung Serena; Apai, Dániel

    2016-12-20

    In this work, we report the discovery of a candidate planetary-mass object with a photoevaporating protoplanetary disk, Proplyd 133-353, which is near the massive star θ {sup 1} Ori C at the center of the Orion Nebula Cluster (ONC). The object was known to have extended emission pointing away from θ {sup 1} Ori C, indicating ongoing external photoevaporation. Our near-infrared spectroscopic data and the location on the H–R diagram suggest that the central source of Proplyd 133-353 is substellar (∼M9.5) and has a mass probably less than 13 Jupiter mass and an age younger than 0.5 Myr. Proplyd 133-353more » shows a similar ratio of X-ray luminosity to stellar luminosity to other young stars in the ONC with a similar stellar luminosity and has a similar proper motion to the mean one of confirmed ONC members. We propose that Proplyd 133-353 formed in a very low-mass dusty cloud or an evaporating gas globule near θ {sup 1} Ori C as a second generation of star formation, which can explain both its young age and the presence of its disk.« less

  6. Nebula Models of Non-Equilibrium Mineralogy: Wark-Lovering Rims

    NASA Technical Reports Server (NTRS)

    Cuzzi, J. N.; Petaev, M.; Krot, A. N.

    2005-01-01

    Introduction: The meteorite record contains several examples of minerals that would not persist if allowed to come to equilibrium with a cooling gas of solar composition. This includes all minerals in CAIs and AOAs. Their survival is generally ascribed to physical removal of the object from the gas (isolation into a large parent object, or ejection by a stellar wind), but could also result from outward radial diffusion into cooler regions, which we discuss here. Accretion of CAIs into planetesimals has also been relied on to preserve them against loss into the sun. However, this suggestion faces several objections. Simple outward diffusion in turbulence has recently been modeled in some detail, and can preserve CAIs against loss into the sun [2]. Naturally, outward radial diffusion in turbulence is slower than immediate ejection by a stellar wind, which occurs on an orbital timescale. Here we ask whether these different transport mechanisms can be distinguished by nonequilibrium mineralogy, which provides a sort of clock. Our application here is to one aspect of CAI mineralogy - the Wark-Lovering rims (WLR); even more specifically, to alteration of one layer in the WLR sequence from melilite (Mel) to anorthite (An).

  7. On the physical nature of globular cluster candidates in the Milky Way bulge

    NASA Astrophysics Data System (ADS)

    Piatti, Andrés E.

    2018-06-01

    We present results from 2MASS JKs photometry on the physical reality of recently reported globular cluster (GC) candidates in the Milky Way (MW) bulge. We relied our analysis on photometric membership probabilities that allowed us to distinguish real stellar aggregates from the composite field star population. When building colour-magnitude diagrams and stellar density maps for stars at different membership probability levels, the genuine GC candidate populations are clearly highlighted. We then used the tip of the red giant branch (RGB) as distance estimator, resulting in heliocentric distances that place many of the objects in regions near the MW bulge, where no GC had been previously recognized. Some few GC candidates resulted to be MW halo/disc objects. Metallicities estimated from the standard RGB method are in agreement with the values expected according to the position of the GC candidates in the Galaxy. Finally, we derived, for the first time, their structural parameters. We found that the studied objects have core, half-light, and tidal radii in the ranges spanned by the population of known MW GCs. Their internal dynamical evolutionary stages will be described properly when their masses are estimated.

  8. Study of stellar structures in f(R,T) gravity

    NASA Astrophysics Data System (ADS)

    Sharif, M.; Siddiqa, Aisha

    This paper is devoted to study the compact objects whose pressure and density are related through polytropic equation-of-state (EoS) and MIT bag model (for quark stars) in the background of f(R,T) gravity. We solve the field equations together with the hydrostatic equilibrium equation numerically for the model f(R,T) = R + αR2 + λT and discuss physical properties of the resulting solution. It is observed that for both types of stars (polytropic and quark stars), the effects of model parameters α and λ remain the same. We also obtain that the energy conditions are satisfied and stellar configurations are stable for both EoS.

  9. Northern Hemisphere observations of ICRF sources on the USNO stellar catalogue frame

    NASA Astrophysics Data System (ADS)

    Fienga, A.; Andrei, A. H.

    2004-06-01

    The most recent USNO stellar catalogue, the USNO B1.0 (Monet et al. \\cite{Monet03}), provides positions for 1 042 618 261 objects, with a published astrometric accuracy of 200 mas and five-band magnitudes with a 0.3 mag accuracy. Its completeness is believed to be up to magnitude 21th in V-band. Such a catalogue would be a very good tool for astrometric reduction. This work investigates the accuracy of the USNO B1.0 link to ICRF and give an estimation of its internal and external accuracies by comparison with different catalogues, and by computation of ICRF sources using USNO B1.0 star positions.

  10. The sn stars - Magnetically controlled stellar winds among the helium-weak stars

    NASA Technical Reports Server (NTRS)

    Shore, Steven N.; Brown, Douglas N.; Sonneborn, George

    1987-01-01

    The paper reports observations of magnetically controlled stellar mass outflows in three helium-weak sn stars: HD 21699 = HR 1063; HD 5737 = Alpha Scl; and HD 79158 = 36 Lyn. IUE observations show that the C IV resonance doublet is variable on the rotational timescale but that there are no other strong-spectrum variations in the UV. Magnetic fields, which reverse sign on the rotational timescale, are present in all three stars. This phenomenology is interpreted in terms of jetlike mass loss above the magnetic poles, and these objects are discussed in the context of a general survey of the C IV and Si IV profiles of other more typical helium-weak stars.

  11. VizieR Online Data Catalog: IN-SYNC. I. APOGEE stellar parameters (Cottaar+, 2014)

    NASA Astrophysics Data System (ADS)

    Cottaar, M.; Covey, K. R.; Meyer, M. R.; Nidever, D. L.; Stassun, K. G.; Foster, J. B.; Tan, J. C.; Chojnowski, S. D.; da Rio, N.; Flaherty, K. M.; Frinchaboy, P. M.; Skrutskie, M.; Majewski, S. R.; Wilson, J. C.; Zasowski, G.

    2015-06-01

    The spectra were collected with APOGEE's multi-object, high-resolution (R~22500) spectrograph with a spectral range covering much of the H band from 1.51 to 1.69um, which is fiber-fed from the Sloan 2.5m telescope. We provide two companion tables to this paper, which contain the derived stellar parameters for the stars in IC 348 and the Pleiades. The first table contains one row per star with the mean spectral and photometric parameters. The second table contains one row per epoch with the spectral parameters measured at that epoch. In both tables we provide the uncertainties computed by Equation (5). (2 data files).

  12. Exploring the Sun with ALMA

    NASA Astrophysics Data System (ADS)

    Bastian, T. S.; Bárta, M.; Brajša, R.; Chen, B.; Pontieu, B. D.; Gary, D. E.; Fleishman, G. D.; Hales, A. S.; Iwai, K.; Hudson, H.; Kim, S.; Kobelski, A.; Loukitcheva, M.; Shimojo, M.; Skokić, I.; Wedemeyer, S.; White, S. M.; Yan, Y.

    2018-03-01

    The Atacama Large Millimeter/submillimeter Array (ALMA) Observatory opens a new window onto the Universe. The ability to perform continuum imaging and spectroscopy of astrophysical phenomena at millimetre and submillimetre wavelengths with unprecedented sensitivity opens up new avenues for the study of cosmology and the evolution of galaxies, the formation of stars and planets, and astrochemistry. ALMA also allows fundamentally new observations to be made of objects much closer to home, including the Sun. The Sun has long served as a touchstone for our understanding of astrophysical processes, from the nature of stellar interiors, to magnetic dynamos, non-radiative heating, stellar mass loss, and energetic phenomena such as solar flares. ALMA offers new insights into all of these processes.

  13. Ultraviolet spectrometer experiment for the Voyager mission

    NASA Technical Reports Server (NTRS)

    Broadfoot, A. L.; Sandel, B. R.; Shemansky, D. E.; Atreya, S. K.; Donahue, T. M.; Moos, H. W.; Bertaux, J. L.; Blamont, J. E.; Ajello, J. M.; Strobel, D. F.

    1977-01-01

    An objective grating spectrometer covering the wavelength range of 500 to 1700 A with a 10-A resolution is employed for the Voyager ultraviolet spectrometer experiment. In determining the composition and structure of the atmospheres of Saturn, Jupiter and several satellites, the ultraviolet spectrometer will rely on airglow mode observations to measure radiation from the atmospheres due to resonant scattering of solar flux, and the occultation mode for assessments of the atmospheric extinction of solar or stellar radiation as the spacecraft enters shadow zones. Since it is capable of prolonged stellar observations in the 500 to 1000 A wavelength range, the spectrometer is expected to make important contributions to exploratory studies of UV sources.

  14. The nature, origin and evolution of embedded star clusters

    NASA Technical Reports Server (NTRS)

    Lada, Charles J.; Lada, Elizabeth A.

    1991-01-01

    The recent development of imaging infrared array cameras has enabled the first systematic studies of embedded protoclusters in the galaxy. Initial investigations suggest that rich embedded clusters are quite numerous and that a significant fraction of all stars formed in the galaxy may begin their lives in such stellar systems. These clusters contain extremely young stellar objects and are important laboratories for star formation research. However, observational and theoretical considerations suggest that most embedded clusters do not survive emergence from molecular clouds as bound clusters. Understanding the origin, nature, and evolution of embedded clusters requires understanding the intimate physical relation between embedded clusters and the dense molecular cloud cores from which they form.

  15. GOSSIP: SED fitting code

    NASA Astrophysics Data System (ADS)

    Franzetti, Paolo; Scodeggio, Marco

    2012-10-01

    GOSSIP fits the electro-magnetic emission of an object (the SED, Spectral Energy Distribution) against synthetic models to find the simulated one that best reproduces the observed data. It builds-up the observed SED of an object (or a large sample of objects) combining magnitudes in different bands and eventually a spectrum; then it performs a chi-square minimization fitting procedure versus a set of synthetic models. The fitting results are used to estimate a number of physical parameters like the Star Formation History, absolute magnitudes, stellar mass and their Probability Distribution Functions.

  16. Asymmetric MHD outflows/jets from accreting T Tauri stars

    NASA Astrophysics Data System (ADS)

    Dyda, S.; Lovelace, R. V. E.; Ustyugova, G. V.; Lii, P. S.; Romanova, M. M.; Koldoba, A. V.

    2015-06-01

    Observations of jets from young stellar objects reveal the asymmetric outflows from some sources. A large set of 2.5D magnetohydrodynamic simulations was carried out for axisymmetric viscous/diffusive disc accretion to rotating magnetized stars for the purpose of assessing the conditions where the outflows are asymmetric relative to the equatorial plane. We consider initial magnetic fields that are symmetric about the equatorial plane and consist of a radially distributed field threading the disc (disc field) and a stellar dipole field. (1) For pure disc-fields the symmetry or asymmetry of the outflows is affected by the mid-plane plasma β of the disc. For discs with small plasma β, outflows are symmetric to within 10 per cent over time-scales of hundreds of inner disc orbits. For higher β discs, the coupling of the upper and lower coronal plasmas is broken, and quasi-periodic field motion leads to asymmetric episodic outflows. (2) Accreting stars with a stellar dipole field and no disc-field exhibit episodic, two component outflows - a magnetospheric wind and an inner disc wind. Both are characterized by similar velocity profiles but the magnetospheric wind has densities ≳ 10 times that of the disc wind. (3) Adding a disc field parallel to the stellar dipole field enhances the magnetospheric winds but suppresses the disc wind. (4) Adding a disc field which is antiparallel to the stellar dipole field in the disc suppresses the magnetospheric and disc winds. Our simulations reproduce some key features of observations of asymmetric outflows of T Tauri stars.

  17. X-ray stars observed in LAMOST spectral survey

    NASA Astrophysics Data System (ADS)

    Lu, Hong-peng; Zhang, Li-yun; Han, Xianming L.; Shi, Jianrong

    2018-05-01

    X-ray stars have been studied since the beginning of X-ray astronomy. Investigating and studying the chromospheric activity from X-ray stellar optical spectra is highly significant in providing insights into stellar magnetic activity. The big data of LAMOST survey provides an opportunity for researching stellar optical spectroscopic properties of X-ray stars. We inferred the physical properties of X-ray stellar sources from the analysis of LAMOST spectra. First, we cross-matched the X-ray stellar catalogue (12254 X-ray stars) from ARXA with LAMOST data release 3 (DR3), and obtained 984 good spectra from 713 X-ray sources. We then visually inspected and assigned spectral type to each spectrum and calculated the equivalent width (EW) of Hα line using the Hammer spectral typing facility. Based on the EW of Hα line, we found 203 spectra of 145 X-ray sources with Hα emission above the continuum. For these spectra we also measured the EWs of Hβ, Hγ, Hδ and Ca ii IRT lines of these spectra. After removing novae, planetary nebulae and OB-type stars, we found there are 127 X-ray late-type stars with Hα line emission. By using our spectra and results from the literature, we found 53 X-ray stars showing Hα variability; these objects are Classical T Tauri stars (CTTs), cataclysmic variables (CVs) or chromospheric activity stars. We also found 18 X-ray stars showing obvious emissions in the Ca ii IRT lines. Of the 18 X-ray stars, 16 are CTTs and 2 are CVs. Finally, we discussed the relationships between the EW of Hα line and X-ray flux.

  18. Testing Models of Stellar Structure and Evolution I. Comparison with Detached Eclipsing Binaries

    NASA Astrophysics Data System (ADS)

    del Burgo, C.; Allende Prieto, C.

    2018-05-01

    We present the results of an analysis aimed at testing the accuracy and precision of the PARSEC v1.2S library of stellar evolution models, combined with a Bayesian approach, to infer stellar parameters. We mainly employ the online DEBCat catalogue by Southworth, a compilation of detached eclipsing binary systems with published measurements of masses and radii to ˜ 2 per cent precision. We select a sample of 318 binary components, with masses between 0.10 and 14.5 solar units, and distances between 1.3 pc and ˜ 8 kpc for Galactic objects and ˜ 44-68 kpc for the extragalactic ones. The Bayesian analysis applied takes on input effective temperature, radius, and [Fe/H], and their uncertainties, returning theoretical predictions for other stellar parameters. From the comparison with dynamical masses, we conclude inferred masses are precisely derived for stars on the main-sequence and in the core-helium-burning phase, with respective uncertainties of 4 per cent and 7 per cent, on average. Subgiants and red giants masses are predicted within 14 per cent, and early asymptotic giant branch stars within 24 per cent. These results are helpful to further improve the models, in particular for advanced evolutionary stages for which our understanding is limited. We obtain distances and ages for the binary systems and compare them, whenever possible, with precise literature estimates, finding excellent agreement. We discuss evolutionary effects and the challenges associated with the inference of stellar ages from evolutionary models. We also provide useful polynomial fittings to theoretical zero-age main-sequence relations.

  19. Testing stellar proper motions of TGAS stars using data from the HSOY, UCAC5 and PMA catalogues

    NASA Astrophysics Data System (ADS)

    Fedorov, P. N.; Akhmetov, V. S.; Velichko, A. B.

    2018-05-01

    We analyse the stellar proper motions from the Tycho-Gaia Astrometric Solution (TGAS) and those from the ground-based HSOY, UCAC5 and PMA catalogues derived by combining them with Gaia DR1 space data. Assuming that systematic differences in stellar proper motions of the two catalogues are caused by a mutual rigid-body rotation of the reference catalogue systems, we analyse components of the rotation vector between the systems. We found that the ωy component of the rotation vector is ˜1.5 mas yr-1 and it depends non-linearly on stellar magnitude for the objects of 9.5-11.5 mag used in all three comparisons of the catalogues HSOY, UCAC5 and PMA with respect to TGAS. We found that the Tycho-2 stars in TGAS appeared to have an inexplicable dependence of proper motion on stellar magnitude. We showed that the proper motions of the TGAS stars derived using AGIS differ from those obtained by the conventional (classical) method. Moreover, the application of both methods has not revealed such a difference between the proper motions of the Hipparcos and TGAS stars. An analysis of the systematic differences between the proper motions of the TGAS stars derived by the classical method and the proper motions of the HSOY, UCAC5 and PMA stars shows that the ωy component here does not depend on the magnitude. This indicates unambiguously that there is a magnitude error in the proper motions of the Tycho-2 stars derived with the AGIS.

  20. Formation of stellar clusters in magnetized, filamentary infrared dark clouds

    NASA Astrophysics Data System (ADS)

    Li, Pak Shing; Klein, Richard I.; McKee, Christopher F.

    2018-01-01

    Star formation in a filamentary infrared dark cloud (IRDC) is simulated over the dynamic range of 4.2 pc to 28 au for a period of 3.5 × 105 yr, including magnetic fields and both radiative and outflow feedback from the protostars. At the end of the simulation, the star formation efficiency is 4.3 per cent and the star formation rate per free-fall time is εff ≃ 0.04, within the range of observed values. The total stellar mass increases as ∼t2, whereas the number of protostars increases as ∼t1.5. We find that the density profile around most of the simulated protostars is ∼ρ ∝ r-1.5. At the end of the simulation, the protostellar mass function approaches the Chabrier stellar initial mass function. We infer that the time to form a star of median mass 0.2 M⊙ is about 1.4 × 105 yr from the median mass accretion rate. We find good agreement among the protostellar luminosities observed in the large sample of Dunham et al., our simulation and a theoretical estimate, and we conclude that the classical protostellar luminosity problem is resolved. The multiplicity of the stellar systems in the simulation agrees, to within a factor of 2, with observations of Class I young stellar objects; most of the simulated multiple systems are unbound. Bipolar protostellar outflows are launched using a subgrid model, and extend up to 1 pc from their host star. The mass-velocity relation of the simulated outflows is consistent with both observation and theory.

  1. First Magnetic Field Detection on a Class I Protostar

    NASA Astrophysics Data System (ADS)

    Johns-Krull, Christopher M.; Greene, Thomas P.; Doppmann, Greg W.; Covey, Kevin R.

    2009-08-01

    Strong stellar magnetic fields are believed to truncate the inner accretion disks around young stars, redirecting the accreting material to the high latitude regions of the stellar surface. In the past few years, observations of strong stellar fields on T Tauri stars with field strengths in general agreement with the predictions of magnetospheric accretion theory have bolstered this picture. Currently, nothing is known about the magnetic field properties of younger, more embedded Class I young stellar objects. It is believed that protostars accrete much of their final mass during the Class I phase, but the physics governing this process remains poorly understood. Here, we use high-resolution near-infrared spectra obtained with NIRSPEC on Keck and with Phoenix on Gemini South to measure the magnetic field properties of the Class I protostar WL 17. We find clear signatures of a strong stellar magnetic field. Analysis of this data suggests a surface average field strength of 2.9 ± 0.43 kG on WL 17. We present our field measurements and discuss how they fit with the general model of magnetospheric accretion in young stars. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência e Tecnologia (Brazil), and SECYT (Argentina). The Phoenix data were obtained under the program: GS-2006A-C-12.

  2. On the Formation of Massive Stars

    NASA Technical Reports Server (NTRS)

    Yorke, Harold W.; Sonnhalter, Cordula

    2002-01-01

    We calculate numerically the collapse of slowly rotating, nonmagnetic, massive molecular clumps of masses 30,60, and 120 Stellar Mass, which conceivably could lead to the formation of massive stars. Because radiative acceleration on dust grains plays a critical role in the clump's dynamical evolution, we have improved the module for continuum radiation transfer in an existing two-dimensional (axial symmetry assumed) radiation hydrodynamic code. In particular, rather than using "gray" dust opacities and "gray" radiation transfer, we calculate the dust's wavelength-dependent absorption and emission simultaneously with the radiation density at each wavelength and the equilibrium temperatures of three grain components: amorphous carbon particles. silicates, and " dirty ice " -coated silicates. Because our simulations cannot spatially resolve the innermost regions of the molecular clump, however, we cannot distinguish between the formation of a dense central cluster or a single massive object. Furthermore, we cannot exclude significant mass loss from the central object(s) that may interact with the inflow into the central grid cell. Thus, with our basic assumption that all material in the innermost grid cell accretes onto a single object. we are able to provide only an upper limit to the mass of stars that could possibly be formed. We introduce a semianalytical scheme for augmenting existing evolutionary tracks of pre-main-sequence protostars by including the effects of accretion. By considering an open outermost boundary, an arbitrary amount of material could, in principal, be accreted onto this central star. However, for the three cases considered (30, 60, and 120 Stellar Mass originally within the computation grid), radiation acceleration limited the final masses to 3 1.6, 33.6, and 42.9 Stellar Mass, respectively, for wavelength-dependent radiation transfer and to 19.1, 20.1, and 22.9 Stellar Mass. for the corresponding simulations with gray radiation transfer. Our calculations demonstrate that massive stars can in principle be formed via accretion through a disk. The accretion rate onto the central source increases rapidly after one initial free-fall time and decreases monotonically afterward. By enhancing the nonisotropic character of the radiation field, the accretion disk reduces the effects of radiative acceleration in the radial direction - a process we call the "flashlight effect." The flashlight effect is further amplified in our case by including the effects of frequency-dependent radiation transfer. We conclude with the warning that a careful treatment of radiation transfer is a mandatory requirement for realistic simulations of the formation of massive stars.

  3. A Fuzzy Description Logic with Automatic Object Membership Measurement

    NASA Astrophysics Data System (ADS)

    Cai, Yi; Leung, Ho-Fung

    In this paper, we propose a fuzzy description logic named f om -DL by combining the classical view in cognitive psychology and fuzzy set theory. A formal mechanism used to determine object memberships automatically in concepts is also proposed, which is lacked in previous work fuzzy description logics. In this mechanism, object membership is based on the defining properties of concept definition and properties in object description. Moreover, while previous works cannot express the qualitative measurements of an object possessing a property, we introduce two kinds of properties named N-property and L-property, which are quantitative measurements and qualitative measurements of an object possessing a property respectively. The subsumption and implication of concepts and properties are also explored in our work. We believe that it is useful to the Semantic Web community for reasoning the fuzzy membership of objects for concepts in fuzzy ontologies.

  4. Stellar populations in the Carina region. The Galactic plane at l = 291°

    NASA Astrophysics Data System (ADS)

    Molina-Lera, J. A.; Baume, G.; Gamen, R.; Costa, E.; Carraro, G.

    2016-08-01

    Context. Previous studies of the Carina region have revealed its complexity and richness as well as a significant number of early-type stars. However, in many cases, these studies only concentrated on the central region (Trumpler 14/16) or were not homogeneous. This latter aspect, in particular, is crucial because very different ages and distances for key clusters have been claimed in recent years. Aims: The aim of this work is to study in detail an area of the Galactic plane in Carina, eastward η Carina. We analyze the properties of different stellar populations and focus on a sample of open clusters and their population of young stellar objects and highly reddened early stars. We also studied the stellar mass distribution in these clusters and the possible scenario of their formation. Finally, we outline the Galactic spiral structure in this direction. Methods: We obtained deep and homogeneous photometric data (UBVIKC) for six young open clusters: NGC 3752, Trumpler 18, NGC 3590, Hogg 10, 11, and 12, located in Carina at l ~ 291°, and their adjacent stellar fields, which we complemented with spectroscopic observations of a few selected targets. We also culled additional information from the literature, which includes stellar spectral classifications and near-infrared photometry from 2MASS. We finally developed a numerical code that allowed us to perform a homogeneous and systematic analysis of the data. Our results provide more reliable estimates of distances, color excesses, masses, and ages of the stellar populations in this direction. Results: We estimate the basic parameters of the studied clusters and find that they identify two overdensities of young stellar populations located at about 1.8 kpc and 2.8 kpc, with EB - V ~ 0.1 - 0.6. We find evidence of pre-main-sequence populations inside them, with an apparent coeval stellar formation in the most conspicuous clusters. We also discuss apparent age and distance gradients in the direction NW-SE. We study the mass distributions of the covered clusters and several others in the region (which we took form the literature). They consistently show a canonical IMF slope (the Salpeter one). We discover and characterise an abnormally reddened massive stellar population, scattered between 6.6 and 11 kpc. Spectroscopic observations of ten stars of this latter population show that all selected targets were massive OB stars. Their location is consistent with the position of the Carina-Sagittarius spiral arm. The catalogue is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/592/A149

  5. Testing a one-dimensional prescription of dynamical shear mixing with a two-dimensional hydrodynamic simulation

    NASA Astrophysics Data System (ADS)

    Edelmann, P. V. F.; Röpke, F. K.; Hirschi, R.; Georgy, C.; Jones, S.

    2017-07-01

    Context. The treatment of mixing processes is still one of the major uncertainties in 1D stellar evolution models. This is mostly due to the need to parametrize and approximate aspects of hydrodynamics in hydrostatic codes. In particular, the effect of hydrodynamic instabilities in rotating stars, for example, dynamical shear instability, evades consistent description. Aims: We intend to study the accuracy of the diffusion approximation to dynamical shear in hydrostatic stellar evolution models by comparing 1D models to a first-principle hydrodynamics simulation starting from the same initial conditions. Methods: We chose an initial model calculated with the stellar evolution code GENEC that is just at the onset of a dynamical shear instability but does not show any other instabilities (e.g., convection). This was mapped to the hydrodynamics code SLH to perform a 2D simulation in the equatorial plane. We compare the resulting profiles in the two codes and compute an effective diffusion coefficient for the hydro simulation. Results: Shear instabilities develop in the 2D simulation in the regions predicted by linear theory to become unstable in the 1D stellar evolution model. Angular velocity and chemical composition is redistributed in the unstable region, thereby creating new unstable regions. After a period of time, the system settles in a symmetric, steady state, which is Richardson stable everywhere in the 2D simulation, whereas the instability remains for longer in the 1D model due to the limitations of the current implementation in the 1D code. A spatially resolved diffusion coefficient is extracted by comparing the initial and final profiles of mean atomic mass. Conclusions: The presented simulation gives a first insight on hydrodynamics of shear instabilities in a real stellar environment and even allows us to directly extract an effective diffusion coefficient. We see evidence for a critical Richardson number of 0.25 as regions above this threshold remain stable for the course of the simulation. The movie of the simulation is available at http://www.aanda.org

  6. A MegaCam Survey of Outer Halo Satellites. I. Description of the Survey

    NASA Astrophysics Data System (ADS)

    Muñoz, Ricardo R.; Côté, Patrick; Santana, Felipe A.; Geha, Marla; Simon, Joshua D.; Oyarzún, Grecco A.; Stetson, Peter B.; Djorgovski, S. G.

    2018-06-01

    We describe a deep, systematic imaging study of satellites in the outer halo of the Milky Way. Our sample consists of 58 stellar overdensities—i.e., substructures classified as either globular clusters, classical dwarf galaxies, or ultra-faint dwarf galaxies—that are located at Galactocentric distances of R GC ≥ 25 kpc (outer halo) and out to ∼400 kpc. This includes 44 objects for which we have acquired deep, wide-field, g- and r-band imaging with the MegaCam mosaic cameras on the 3.6 m Canada–France–Hawaii Telescope and the 6.5 m Magellan-Clay telescope. These data are supplemented by archival imaging, or published gr photometry, for an additional 14 objects, most of which were discovered recently in the Dark Energy Survey (DES). We describe the scientific motivation for our survey, including sample selection, observing strategy, data reduction pipeline, calibration procedures, and the depth and precision of the photometry. The typical 5σ point-source limiting magnitudes for our MegaCam imaging—which collectively covers an area of ≈52 deg2—are g lim ≃ 25.6 and r lim ≃ 25.3 AB mag. These limits are comparable to those from the coadded DES images and are roughly a half-magnitude deeper than will be reached in a single visit with the Large Synoptic Survey Telescope. Our photometric catalog thus provides the deepest and most uniform photometric database of Milky Way satellites available for the foreseeable future. In other papers in this series, we have used these data to explore the blue straggler populations in these objects, their density distributions, star formation histories, scaling relations, and possible foreground structures.

  7. Predicting gravitational lensing by stellar remnants

    NASA Astrophysics Data System (ADS)

    Harding, Alexander J.; Stefano, R. Di; Lépine, S.; Urama, J.; Pham, D.; Baker, C.

    2018-03-01

    Gravitational lensing provides a means to measure mass that does not rely on detecting and analysing light from the lens itself. Compact objects are ideal gravitational lenses, because they have relatively large masses and are dim. In this paper, we describe the prospects for predicting lensing events generated by the local population of compact objects, consisting of 250 neutron stars, five black holes, and ≈35 000 white dwarfs. By focusing on a population of nearby compact objects with measured proper motions and known distances from us, we can measure their masses by studying the characteristics of any lensing event they generate. Here, we concentrate on shifts in the position of a background source due to lensing by a foreground compact object. With Hubble Space Telescope, JWST, and Gaia, measurable centroid shifts caused by lensing are relatively frequent occurrences. We find that 30-50 detectable events per decade are expected for white dwarfs. Because relatively few neutron stars and black holes have measured distances and proper motions, it is more difficult to compute realistic rates for them. However, we show that at least one isolated neutron star has likely produced detectable events during the past several decades. This work is particularly relevant to the upcoming data releases by the Gaia mission and also to data that will be collected by JWST. Monitoring predicted microlensing events will not only help to determine the masses of compact objects, but will also potentially discover dim companions to these stellar remnants, including orbiting exoplanets.

  8. Forming isolated brown dwarfs by turbulent fragmentation

    NASA Astrophysics Data System (ADS)

    Lomax, O.; Whitworth, A. P.; Hubber, D. A.

    2016-05-01

    We use Smoothed Particle Hydrodynamics to explore the circumstances under which an isolated very low mass pre-stellar core can be formed by colliding turbulent flows and collapse to form a brown dwarf. Our simulations suggest that the flows need not be very fast, but do need to be very strongly convergent, I.e. the gas must flow in at comparable speeds from all sides, which seems rather unlikely. We therefore revisit the object Oph-B11, which André et al. have identified as a pre-stellar core with mass between ˜0.020 M⊙ and ˜0.030 M⊙. We re-analyse the observations using a Markov-chain Monte Carlo method that allows us (I) to include the uncertainties on the distance, temperature and dust mass opacity, and (II) to consider different Bayesian prior distributions of the mass. We estimate that the posterior probability that Oph-B11 has a mass below the hydrogen-burning limit at ˜0.075 M⊙, is between 0.66 and 0.86 . We conclude that, if Oph-B11 is destined to collapse, it probably will form a brown dwarf. However, the flows required to trigger this appear to be so contrived that it is difficult to envisage this being the only way, or even a major way, of forming isolated brown dwarfs. Moreover, Oph-B11 could easily be a transient, bouncing, prolate core, seen end-on; there could, indeed should, be many such objects masquerading as very low mass pre-stellar cores.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Annis, J.

    The collapse of a stellar core is expected to produce gravitational waves (GWs), neutrinos, and in most cases a luminous supernova. Sometimes, however, the optical event could be significantly less luminous than a supernova and a direct collapse to a black hole, where the star just disappears, is possible. The GW event GW150914 was detected by the LIGO Virgo Collaboration via a burst analysis that gave localization contours enclosing the Large Magellanic Cloud (LMC). Shortly thereafter, we used DECam to observe 102 deg 2 of the localization area, including 38 deg 2 on the LMC for a missing supergiant search.more » We construct a complete catalog of LMC luminous red supergiants, the best candidates to undergo invisible core collapse, and collected catalogs of other candidates: less luminous red supergiants, yellow supergiants, blue supergiants, luminous blue variable stars, and Wolf–Rayet stars. Of the objects in the imaging region, all are recovered in the images. The timescale for stellar disappearance is set by the free-fall time, which is a function of the stellar radius. Our observations at 4 and 13 days after the event result in a search sensitive to objects of up to about 200 solar radii. We conclude that it is unlikely that GW150914 was caused by the core collapse of a relatively compact supergiant in the LMC, consistent with the LIGO Collaboration analyses of the gravitational waveform as best interpreted as a high mass binary black hole merger. Lastly, we discuss how to generalize this search for future very nearby core-collapse candidates.« less

  10. The Gaseous Disks of Young Stellar Objects

    NASA Technical Reports Server (NTRS)

    Glassgold, A. E.

    2006-01-01

    Disks represent a crucial stage in the formation of stars and planets. They are novel astrophysical systems with attributes intermediate between the interstellar medium and stars. Their physical properties are inhomogeneous and are affected by hard stellar radiation and by dynamical evolution. Observing disk structure is difficult because of the small sizes, ranging from as little as 0.05 AU at the inner edge to 100-1000 AU at large radial distances. Nonetheless, substantial progress has been made by observing the radiation emitted by the dust from near infrared to mm wavelengths, i.e., the spectral energy distribution of an unresolved disk. Many fewer results are available for the gas, which is the main mass component of disks over much of their lifetime. The inner disk gas of young stellar objects (henceforth YSOs) have been studied using the near infrared rovibrational transitions of CO and a few other molecules, while the outer regions have been explored with the mm and sub-mm lines of CO and other species. Further progress can be expected in understanding the physical properties of disks from observations with sub-mm arrays like SMA, CARMA and ALMA, with mid infrared measurements using Spitzer, and near infrared spectroscopy with large ground-based telescopes. Intense efforts are also being made to model the observations using complex thermal-chemical models. After a brief review of the existing observations and modeling results, some of the weaknesses of the models will be discussed, including the absence of good laboratory and theoretical calculations for essential microscopic processes.

  11. Galactic Starburst NGC 3603 from X-Rays to Radio

    NASA Technical Reports Server (NTRS)

    Moffat, A. F. J.; Corcoran, M. F.; Stevens, I. R.; Skalkowski, G.; Marchenko, S. V.; Muecke, A.; Ptak, A.; Koribalski, B. S.; Brenneman, L.; Mushotzky, R.; hide

    2002-01-01

    NGC 3603 is the most massive and luminous visible starburst region in the Galaxy. We present the first Chandra/ACIS-I X-ray image and spectra of this dense, exotic object, accompanied by deep cm-wavelength ATCA radio image at similar or less than 1 inch spatial resolution, and HST/ground-based optical data. At the S/N greater than 3 level, Chandra detects several hundred X-ray point sources (compared to the 3 distinct sources seen by ROSAT). At least 40 of these sources are definitely associated with optically identified cluster O and WR type members, but most are not. A diffuse X-ray component is also seen out to approximately 2 feet (4 pc) form the center, probably arising mainly from the large number of merging/colliding hot stellar winds and/or numerous faint cluster sources. The point-source X-ray fluxes generally increase with increasing bolometric brightnesses of the member O/WR stars, but with very large scatter. Some exceptionally bright stellar X-ray sources may be colliding wind binaries. The radio image shows (1) two resolved sources, one definitely non-thermal, in the cluster core near where the X-ray/optically brightest stars with the strongest stellar winds are located, (2) emission from all three known proplyd-like objects (with thermal and non-thermal components, and (3) many thermal sources in the peripheral regions of triggered star-formation. Overall, NGC 3603 appears to be a somewhat younger and hotter, scaled-down version of typical starbursts found in other galaxies.

  12. Variability Properties of Four Million Sources in the TESS Input Catalog Observed with the Kilodegree Extremely Little Telescope Survey

    NASA Astrophysics Data System (ADS)

    Oelkers, Ryan J.; Rodriguez, Joseph E.; Stassun, Keivan G.; Pepper, Joshua; Somers, Garrett; Kafka, Stella; Stevens, Daniel J.; Beatty, Thomas G.; Siverd, Robert J.; Lund, Michael B.; Kuhn, Rudolf B.; James, David; Gaudi, B. Scott

    2018-01-01

    The Kilodegree Extremely Little Telescope (KELT) has been surveying more than 70% of the celestial sphere for nearly a decade. While the primary science goal of the survey is the discovery of transiting, large-radii planets around bright host stars, the survey has collected more than 106 images, with a typical cadence between 10–30 minutes, for more than four million sources with apparent visual magnitudes in the approximate range 7< V< 13. Here, we provide a catalog of 52,741 objects showing significant large-amplitude fluctuations likely caused by stellar variability, as well as 62,229 objects identified with likely stellar rotation periods. The detected variability ranges in rms-amplitude from ∼3 mmag to ∼2.3 mag, and the detected periods range from ∼0.1 to ≳2000 days. We provide variability upper limits for all other ∼4,000,000 sources. These upper limits are principally a function of stellar brightness, but we achieve typical 1σ sensitivity on 30 min timescales down to ∼5 mmag at V∼ 8, and down to ∼43 mmag at V∼ 13. We have matched our catalog to the TESS Input catalog and the AAVSO Variable Star Index to precipitate the follow-up and classification of each source. The catalog is maintained as a living database on the Filtergraph visualization portal at the URL https://filtergraph.com/kelt_vars.

  13. X-RAY EMISSION FROM MAGNETIC MASSIVE STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nazé, Yaël; Petit, Véronique; Rinbrand, Melanie

    2014-11-01

    Magnetically confined winds of early-type stars are expected to be sources of bright and hard X-rays. To clarify the systematics of the observed X-ray properties, we have analyzed a large series of Chandra and XMM-Newton observations, corresponding to all available exposures of known massive magnetic stars (over 100 exposures covering ∼60% of stars compiled in the catalog of Petit et al.). We show that the X-ray luminosity is strongly correlated with the stellar wind mass-loss rate, with a power-law form that is slightly steeper than linear for the majority of the less luminous, lower- M-dot B stars and flattens formore » the more luminous, higher- M-dot O stars. As the winds are radiatively driven, these scalings can be equivalently written as relations with the bolometric luminosity. The observed X-ray luminosities, and their trend with mass-loss rates, are well reproduced by new MHD models, although a few overluminous stars (mostly rapidly rotating objects) exist. No relation is found between other X-ray properties (plasma temperature, absorption) and stellar or magnetic parameters, contrary to expectations (e.g., higher temperature for stronger mass-loss rate). This suggests that the main driver for the plasma properties is different from the main determinant of the X-ray luminosity. Finally, variations of the X-ray hardnesses and luminosities, in phase with the stellar rotation period, are detected for some objects and they suggest that some temperature stratification exists in massive stars' magnetospheres.« less

  14. A Dual Power Law Distribution for the Stellar Initial Mass Function

    NASA Astrophysics Data System (ADS)

    Hoffmann, Karl Heinz; Essex, Christopher; Basu, Shantanu; Prehl, Janett

    2018-05-01

    We introduce a new dual power law (DPL) probability distribution function for the mass distribution of stellar and substellar objects at birth, otherwise known as the initial mass function (IMF). The model contains both deterministic and stochastic elements, and provides a unified framework within which to view the formation of brown dwarfs and stars resulting from an accretion process that starts from extremely low mass seeds. It does not depend upon a top down scenario of collapsing (Jeans) masses or an initial lognormal or otherwise IMF-like distribution of seed masses. Like the modified lognormal power law (MLP) distribution, the DPL distribution has a power law at the high mass end, as a result of exponential growth of mass coupled with equally likely stopping of accretion at any time interval. Unlike the MLP, a power law decay also appears at the low mass end of the IMF. This feature is closely connected to the accretion stopping probability rising from an initially low value up to a high value. This might be associated with physical effects of ejections sometimes (i.e., rarely) stopping accretion at early times followed by outflow driven accretion stopping at later times, with the transition happening at a critical time (therefore mass). Comparing the DPL to empirical data, the critical mass is close to the substellar mass limit, suggesting that the onset of nuclear fusion plays an important role in the subsequent accretion history of a young stellar object.

  15. Interferometry in the Era of Very Large Telescopes

    NASA Technical Reports Server (NTRS)

    Barry, Richard K.

    2010-01-01

    Research in modern stellar interferometry has focused primarily on ground-based observatories, with very long baselines or large apertures, that have benefited from recent advances in fringe tracking, phase reconstruction, adaptive optics, guided optics, and modern detectors. As one example, a great deal of effort has been put into development of ground-based nulling interferometers. The nulling technique is the sparse aperture equivalent of conventional coronography used in filled aperture telescopes. In this mode the stellar light itself is suppressed by a destructive fringe, effectively enhancing the contrast of the circumstellar material located near the star. Nulling interferometry has helped to advance our understanding of the astrophysics of many distant objects by providing the spatial resolution necessary to localize the various faint emission sources near bright objects. We illustrate the current capabilities of this technique by describing the first scientific results from the Keck Interferometer Nuller that combines the light from the two largest optical telescopes in the world including new, unpublished measurements of exozodiacal dust disks. We discuss prospects in the near future for interferometry in general, the capabilities of secondary masking interferometry on very large telescopes, and of nulling interferometry using outriggers on very large telescopes. We discuss future development of a simplified space-borne NIR nulling architecture, the Fourier-Kelvin Stellar Interferometer, capable of detecting and characterizing an Earth twin in the near future and how such a mission would benefit from the optical wavelength coverage offered by large, ground-based instruments.

  16. The stellar population and initial mass function of NGC 1399 with MUSE

    NASA Astrophysics Data System (ADS)

    Vaughan, Sam P.; Davies, Roger L.; Zieleniewski, Simon; Houghton, Ryan C. W.

    2018-06-01

    We present spatially resolved measurements of the stellar initial mass function (IMF) in NGC 1399, the largest elliptical galaxy in the Fornax Cluster. Using data from the Multi Unit Spectroscopic Explorer (MUSE) and updated state-of-the-art stellar population synthesis models from Conroy et al. (2018), we use full spectral fitting to measure the low-mass IMF, as well as a number of individual elemental abundances, as a function of radius in this object. We find that the IMF in NGC 1399 is heavier than the Milky Way in its centre and remains radially constant at a super-salpeter slope out to 0.7 Re. At radii larger than this, the IMF slope decreases to become marginally consistent with a Milky Way IMF just beyond Re. The inferred central V-band M/L ratio is in excellent agreement with the previously reported dynamical M/L measurement from Houghton et al. (2006). The measured radial form of the M/L ratio may be evidence for a two-phase formation in this object, with the central regions forming differently to the outskirts. We also report measurements of a spatially resolved filament of ionised gas extending 4"(404 pc at DL = 21.1 Mpc) from the centre of NGC 1399, with very narrow equivalent width and low velocity dispersion (65 ± 14 kms-1). The location of the emission, combined with an analysis of the emission line ratios, leads us to conclude that NGC 1399's AGN is the source of ionising radiation.

  17. Accretion signatures in the X-shooter spectrum of the substellar companion to SR12

    NASA Astrophysics Data System (ADS)

    Santamaría-Miranda, Alejandro; Cáceres, Claudio; Schreiber, Matthias R.; Hardy, Adam; Bayo, Amelia; Parsons, Steven G.; Gromadzki, Mariusz; Aguayo Villegas, Aurora Belén

    2018-04-01

    About a dozen substellar companions orbiting young stellar objects or pre-main sequence stars at several hundred au have been identified in the last decade. These objects are interesting both due to the uncertainties surrounding their formation, and because their large separation from the host star offers the potential to study the atmospheres of young giant planets and brown dwarfs. Here, we present X-shooter spectroscopy of SR 12 C, a ˜2 Myr young brown dwarf orbiting SR 12 at an orbital separation of 1083 au. We determine the spectral type, gravity, and effective temperature via comparison with models and observational templates of young brown dwarfs. In addition, we detect and characterize accretion using several accretion tracers. We find SR 12 C to be a brown dwarf of spectral type L0 ± 1, log g = 4 ± 0.5, an effective temperature of 2600 ± 100 K. Our spectra provide clear evidence for accretion at a rate of ˜10-10 M⊙ yr-1. This makes SR 12 one of the few sub-stellar companions with a reliable estimate for its accretion rate. A comparison of the ages and accretion rates of sub-stellar companions with young isolated brown dwarfs does not reveal any significant differences. If further accretion rate measurements of a large number of substellar companions can confirm this trend, this would hint towards a similar formation mechanism for substellar companions at large separations and isolated brown dwarfs.

  18. A CCD Spectrometer for One Dollar

    NASA Astrophysics Data System (ADS)

    Beaver, J.; Robert, D.

    2011-09-01

    We describe preliminary tests on a very low-cost system for obtaining stellar spectra for instructional use in an introductory astronomy laboratory. CCD imaging with small telescopes is now commonplace and relatively inexpensive. Giving students direct experience taking stellar spectra, however, is much more difficult, and the equipment can easily be out of reach for smaller institutions, especially if one wants to give the experience to large numbers of students. We have performed preliminary tests on an extremely low-cost (about $1.00) objective grating that can be coupled with an existing CCD camera or commercial digital single-lens reflex (DSLR) camera and a small telescope typical of introductory astronomy labs. With this equipment we believe it is possible for introductory astronomy students to take stellar spectra that are of high enough quality to distinguish between many MK spectral classes, or to determine standard B and V magnitudes. We present observational tests of this objective grating used on an 8" Schmidt-Cassegrain with a low-end, consumer DSLR camera. Some low-cost strategies for reducing the raw data are compared, with an eye toward projects ranging from individual undergraduate research projects to use by many students in a non-majors introductory astronomy lab. Toward this end we compare various trade offs between complexity of the observing and data reduction processes and the usefulness of the final results. We also describe some undergraduate astronomy education projects that this system could potentially be used for. Some of these projects could involve data-sharing collaborations between students at different institutions.

  19. Deep SOAR follow-up photometry of two Milky Way outer-halo companions discovered with Dark Energy Survey

    NASA Astrophysics Data System (ADS)

    Luque, E.; Santiago, B.; Pieres, A.; Marshall, J. L.; Pace, A. B.; Kron, R.; Drlica-Wagner, A.; Queiroz, A.; Balbinot, E.; Ponte, M. dal; Neto, A. Fausti; da Costa, L. N.; Maia, M. A. G.; Walker, A. R.; Abdalla, F. B.; Allam, S.; Annis, J.; Bechtol, K.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Rosell, A. Carnero; Kind, M. Carrasco; Carretero, J.; Crocce, M.; Davis, C.; Doel, P.; Eifler, T. F.; Flaugher, B.; García-Bellido, J.; Gerdes, D. W.; Gruen, D.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; James, D. J.; Kuehn, K.; Kuropatkin, N.; Miquel, R.; Nichol, R. C.; Plazas, A. A.; Sanchez, E.; Scarpine, V.; Schindler, R.; Sevilla-Noarbe, I.; Smith, M.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Tarle, G.; Thomas, D.

    2018-04-01

    We report the discovery of a new star cluster, DES 3, in the constellation of Indus, and deeper observations of the previously identified satellite DES J0222.7-5217 (Eridanus III). DES 3 was detected as a stellar overdensity in first-year Dark Energy Survey data, and confirmed with deeper photometry from the 4.1 metre Southern Astrophysical Research (SOAR) telescope. The new system was detected with a relatively high significance and appears in the DES images as a compact concentration of faint blue point sources. We determine that DES 3 is located at a heliocentric distance of ≃ 76.2 kpc and it is dominated by an old (≃ 9.8 Gyr) and metal-poor ([Fe/H] ≃ -1.84) population. While the age and metallicity values of DES 3 are comparable to typical globular clusters (objects with a high stellar density, stellar mass of ˜105M⊙ and luminosity MV ˜ -7.3), its half-light radius (rh ˜ 6.87 pc) and luminosity (MV ˜ -1.7) are more indicative of faint star cluster. Based on the angular size, DES 3, with a value of rh ˜ 0{^'.}31, is among the smallest faint star clusters known to date. Furthermore, using deeper imaging of DES J0222.7-5217 taken with the SOAR telescope, we update structural parameters and perform the first isochrone modeling. Our analysis yields the first age (≃ 12.6 Gyr) and metallicity ([Fe/H] ≃ -2.01) estimates for this object. The half-light radius (rh ≃ 11.24 pc) and luminosity (MV ≃ -2.4) of DES J0222.7-5217 suggest that it is likely a faint star cluster. The discovery of DES 3 indicates that the census of stellar systems in the Milky Way is still far from complete, and demonstrates the power of modern wide-field imaging surveys to improve our knowledge of the Galaxy's satellite population.

  20. Portable Telescopic Observations of the 3 June 2017 Stellar Occultation by New Horizons Kuiper Extended Mission Target (486958) 2014 MU69

    NASA Astrophysics Data System (ADS)

    Verbiscer, Anne J.; Buie, Marc W.; Porter, Simon Bernard; Tamblyn, Peter; Terrell, Dirk; Benecchi, Susan; Parker, Alex; Soto, Alejandro; Wasserman, Lawrence H.; Young, Eliot F.; Zangari, Amanda Marie; New Horizons MU69 Occultation Team

    2017-10-01

    The New Horizons spacecraft will encounter the cold classical Kuiper Belt Object (486958) 2014 MU69 on 1 January 2019. Because it is extremely faint (V mag ~27), MU69 has only been directly observed by the Hubble Space Telescope since its discovery (by HST) in 2014 (Spencer et al. 2015 EPSC 10, 417S). Current knowledge of the physical properties of MU69 is therefore limited to its red color (F606W-F814W = 0.99 ± 0.18, Benecchi et al. 2017) and a crude estimate on its size (20-40 km) based on association with other cold classical KBO visible albedos (0.04-0.15). Stellar occultations are powerful tools with which to measure the size and shape of objects whose distance and faintness precludes any spatially resolved observations. Here we report the results of a stellar occultation of a g’=15.33 magnitude star by MU69 on 3 June 2017. The shadow path crossed both southern Africa and South America. We deployed 12 portable telescopes from Mendoza, Argentina and 13 portable telescopes from Clanwilliam, Western Cape, South Africa. Although 24 of these 25 telescopes successfully observed the occultation star at the predicted event time, no solid body detection appeared in any of the acquired lightcurves. Following the successful detection of MU69 by stellar occultation on 17 July 2017, revised predictions of the location of the shadow path on 3 June now allow the lightcurves obtained on 3 June to place important constraints on the environment surrounding MU69 as well as upper limits on the size of any small satellites in the regions probed. This work would not have been possible without the financial support of NASA, the New Horizons Project, the astrometric support of the Gaia mission, and logistical support from the South African Astronomical Observatory, the US Embassies in Buenos Aires and Pretoria and the US Consulate in Cape Town.

  1. The two components of the evolved massive binary LZ Cephei. Testing the effects of binarity on stellar evolution

    NASA Astrophysics Data System (ADS)

    Mahy, L.; Martins, F.; Machado, C.; Donati, J.-F.; Bouret, J.-C.

    2011-09-01

    Aims: We present an in-depth study of the two components of the binary system LZ Cep to constrain the effects of binarity on the evolution of massive stars. Methods: We analyzed a set of high-resolution, high signal-to-noise ratio optical spectra obtained over the orbital period of the system to perform a spectroscopic disentangling and derive an orbital solution. We subsequently determine the stellar properties of each component by means of an analysis with the CMFGEN atmosphere code. Finally, with the derived stellar parameters, we model the Hipparcos photometric light curve using the program NIGHTFALL to obtain the orbit inclination and the stellar masses. Results: LZ Cep is a O 9III+ON 9.7V binary. It is as a semi-detached system in which either the primary or the secondary star almost fills up its Roche lobe. The dynamical masses are about 16.0 M⊙ (primary) and 6.5 M⊙ (secondary). The latter is lower than the typical mass of late-type O stars. The secondary component is chemically more evolved than the primary (which barely shows any sign of CNO processing), with strong helium and nitrogen enhancements as well as carbon and oxygen depletions. These properties (surface abundances and mass) are typical of Wolf-Rayet stars, although the spectral type is ON 9.7V. The luminosity of the secondary is consistent with that of core He-burning objects. The preferred, tentative evolutionary scenario to explain the observed properties involves mass transfer from the secondary - which was initially more massive- towards the primary. The secondary is now almost a core He-burning object, probably with only a thin envelope of H-rich and CNO processed material. A very inefficient mass transfer is necessary to explain the chemical appearance of the primary. Alternative scenarios are discussed but they are affected by greater uncertainties.

  2. AGN host galaxy mass function in COSMOS. Is AGN feedback responsible for the mass-quenching of galaxies?

    NASA Astrophysics Data System (ADS)

    Bongiorno, A.; Schulze, A.; Merloni, A.; Zamorani, G.; Ilbert, O.; La Franca, F.; Peng, Y.; Piconcelli, E.; Mainieri, V.; Silverman, J. D.; Brusa, M.; Fiore, F.; Salvato, M.; Scoville, N.

    2016-04-01

    We investigate the role of supermassive black holes in the global context of galaxy evolution by measuring the host galaxy stellar mass function (HGMF) and the specific accretion rate, that is, λSAR, the distribution function (SARDF), up to z ~ 2.5 with ~1000 X-ray selected AGN from XMM-COSMOS. Using a maximum likelihood approach, we jointly fit the stellar mass function and specific accretion rate distribution function, with the X-ray luminosity function as an additional constraint. Our best-fit model characterizes the SARDF as a double power-law with mass-dependent but redshift-independent break, whose low λSAR slope flattens with increasing redshift while the normalization increases. This implies that for a given stellar mass, higher λSAR objects have a peak in their space density at earlier epoch than the lower λSAR objects, following and mimicking the well-known AGN cosmic downsizing as observed in the AGN luminosity function. The mass function of active galaxies is described by a Schechter function with an almost constant M∗⋆ and a low-mass slope α that flattens with redshift. Compared to the stellar mass function, we find that the HGMF has a similar shape and that up to log (M⋆/M⊙) ~ 11.5, the ratio of AGN host galaxies to star-forming galaxies is basically constant (~10%). Finally, the comparison of the AGN HGMF for different luminosity and specific accretion rate subclasses with a previously published phenomenological model prediction for the "transient" population, which are galaxies in the process of being mass-quenched, reveals that low-luminosity AGN do not appear to be able to contribute significantly to the quenching and that at least at high masses, that is, M⋆ > 1010.7 M⊙, feedback from luminous AGN (log Lbol ≳ 46 [erg/s]) may be responsible for the quenching of star formation in the host galaxy.

  3. The supernova: A stellar spectacle

    NASA Technical Reports Server (NTRS)

    Straka, W. C.

    1976-01-01

    The life of a star, the supernova, related objects and their importance in astronomy and science in general are discussed. Written primarily for science teachers of secondary school chemistry, physics, and earth sciences, the booklet contains a glossary, reference sources, suggested topics for discussion, and projects for individual or group assignment.

  4. Size and Albedo of Kuiper Belt Object 55636 from a Stellar Occultation

    DTIC Science & Technology

    2010-06-01

    Santa Barbara, California 93117, USA. 10University of Hawai’i, Hilo , Hawai’i 96720-4091, USA. 11Department of Terrestrial Magnetism, Carnegie Institution...Jewitt, D. Hawaii Kuiper belt variability project: an update. Earth Moon Planets 92, 207–219 (2003). 11. Grundy, W., Noll, K. & Stephens, D

  5. The Boomerang Nebula - The Coldest Region of the Universe

    NASA Technical Reports Server (NTRS)

    Sahai, Raghvendra; Nyman, Lars-Ake

    1997-01-01

    In this letter, we report such observations of the Boomerang Nebula which show it to be a unique object, consisiting of an ultra-cold and extremely massive molecular envolope, expanding at very high speed. The extreeme physical characteristics of the Boomerang Nebula reported here have never been seen before in any AGB or post-AGB object, and should spur new theoretical and obesrvational efforts to understand the nature of the mass-loss processes occurring during later stellar evolution.

  6. A full 1---40 micron spectral energy distribution for the Becklin-Neugebauer object: Placing constraints on disk size for a runaway massive young stellar object

    NASA Astrophysics Data System (ADS)

    Shuping, Ralph; Keller, Luke D.; Adams, Joseph D.; Petkova, Maya; Wood, Kenneth; Herter, Terry; Sloan, Greg; Jaffe, Daniel Thomas; Greene, Thomas P.; Ennico, Kimberly

    2017-01-01

    The Becklin-Neugebauer (BN) Object—one of the brightest infrared obejcts in the sky—is a highly luminous young stellar object (YSO) deeply embedded in Orion Molecular Cloud 1 (OMC-1), which sits behind the Orion Nebula (M42). The BN object is likely a 8—15 M⊙ star and has no obvious optical counterpart due to high visual extinction on the line of sight. Furthermore, recent radio studies show that BN is moving towards the northwest at approximately 26 km/s with respect to the Orion Nebula Cluster (ONC), which may indicate that BN was dynamically ejected from either the Trapezium or from within OMC-1 itself. Near-IR polarimetry suggests that BN is surrounded by a large (R=800 AU) disk, which is surprising since a close encounter leading to an ejection would likely disrupt and/or truncate a disk of this size. In this poster presentation, we present new SOFIA-FORCAST grism spectroscopy of BN from 10—40 μm. In conjunction with previous SOFIA-FORCAST photometry and data form the literature, we present the full 1—40 μm SED of BN which we compare to theoretical models using the HOCHUNK-3D radiative equilibrium code. We report constraints on disk parameters and discuss implications for dynamical ejection scenarios.

  7. VERY LOW MASS STELLAR AND SUBSTELLAR COMPANIONS TO SOLAR-LIKE STARS FROM MARVELS. I. A LOW-MASS RATIO STELLAR COMPANION TO TYC 4110-01037-1 IN A 79 DAY ORBIT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wisniewski, John P.; Agol, Eric; Barnes, Rory

    TYC 4110-01037-1 has a low-mass stellar companion, whose small mass ratio and short orbital period are atypical among binary systems with solar-like (T{sub eff} {approx}< 6000 K) primary stars. Our analysis of TYC 4110-01037-1 reveals it to be a moderately aged ({approx}<5 Gyr) solar-like star having a mass of 1.07 {+-} 0.08 M{sub Sun} and radius of 0.99 {+-} 0.18 R{sub Sun }. We analyze 32 radial velocity (RV) measurements from the SDSS-III MARVELS survey as well as 6 supporting RV measurements from the SARG spectrograph on the 3.6 m Telescopio Nazionale Galileo telescope obtained over a period of {approx}2more » years. The best Keplerian orbital fit parameters were found to have a period of 78.994 {+-} 0.012 days, an eccentricity of 0.1095 {+-} 0.0023, and a semi-amplitude of 4199 {+-} 11 m s{sup -1}. We determine the minimum companion mass (if sin i = 1) to be 97.7 {+-} 5.8 M{sub Jup}. The system's companion to host star mass ratio, {>=}0.087 {+-} 0.003, places it at the lowest end of observed values for short period stellar companions to solar-like (T{sub eff} {approx}< 6000 K) stars. One possible way to create such a system would be if a triple-component stellar multiple broke up into a short period, low q binary during the cluster dispersal phase of its lifetime. A candidate tertiary body has been identified in the system via single-epoch, high contrast imagery. If this object is confirmed to be comoving, we estimate it would be a dM4 star. We present these results in the context of our larger-scale effort to constrain the statistics of low-mass stellar and brown dwarf companions to FGK-type stars via the MARVELS survey.« less

  8. Compact stars in the braneworld: A new branch of stellar configurations with arbitrarily large mass

    NASA Astrophysics Data System (ADS)

    Lugones, Germán; Arbañil, José D. V.

    2017-03-01

    We study the properties of compact stars in the Randall-Sundrum type-II braneworld (BW) model. To this end, we solve the braneworld generalization of the stellar structure equations for a static fluid distribution with spherical symmetry considering that the spacetime outside the star is described by a Schwarzschild metric. First, the stellar structure equations are integrated employing the so-called causal limit equation of state (EOS), which is constructed using a well-established EOS at densities below a fiducial density, and the causal EOS P =ρ above it. It is a standard procedure in general relativistic stellar structure calculations to use such EOSs for obtaining a limit in the mass radius diagram, known as the causal limit, above which no stellar configurations are possible if the EOS fulfills the condition that the sound velocity is smaller than the speed of light. We find that the equilibrium solutions in the braneworld model can violate the general relativistic causal limit, and for sufficiently large mass they approach asymptotically to the Schwarzschild limit M =2 R . Then, we investigate the properties of hadronic and strange quark stars using two typical EOSs: a nonlinear relativistic mean-field model for hadronic matter and the Massachusetts Institute of Technology (MIT) bag model for quark matter. For masses below ˜1.5 M⊙- 2 M⊙ , the mass versus radius curves show the typical behavior found within the frame of general relativity. However, we also find a new branch of stellar configurations that can violate the general relativistic causal limit and that, in principle, may have an arbitrarily large mass. The stars belonging to this new branch are supported against collapse by the nonlocal effects of the bulk on the brane. We also show that these stars are always stable under small radial perturbations. These results support the idea that traces of extra dimensions might be found in astrophysics, specifically through the analysis of masses and radii of compact objects.

  9. Kepler AutoRegressive Planet Search: Motivation & Methodology

    NASA Astrophysics Data System (ADS)

    Caceres, Gabriel; Feigelson, Eric; Jogesh Babu, G.; Bahamonde, Natalia; Bertin, Karine; Christen, Alejandra; Curé, Michel; Meza, Cristian

    2015-08-01

    The Kepler AutoRegressive Planet Search (KARPS) project uses statistical methodology associated with autoregressive (AR) processes to model Kepler lightcurves in order to improve exoplanet transit detection in systems with high stellar variability. We also introduce a planet-search algorithm to detect transits in time-series residuals after application of the AR models. One of the main obstacles in detecting faint planetary transits is the intrinsic stellar variability of the host star. The variability displayed by many stars may have autoregressive properties, wherein later flux values are correlated with previous ones in some manner. Auto-Regressive Moving-Average (ARMA) models, Generalized Auto-Regressive Conditional Heteroskedasticity (GARCH), and related models are flexible, phenomenological methods used with great success to model stochastic temporal behaviors in many fields of study, particularly econometrics. Powerful statistical methods are implemented in the public statistical software environment R and its many packages. Modeling involves maximum likelihood fitting, model selection, and residual analysis. These techniques provide a useful framework to model stellar variability and are used in KARPS with the objective of reducing stellar noise to enhance opportunities to find as-yet-undiscovered planets. Our analysis procedure consisting of three steps: pre-processing of the data to remove discontinuities, gaps and outliers; ARMA-type model selection and fitting; and transit signal search of the residuals using a new Transit Comb Filter (TCF) that replaces traditional box-finding algorithms. We apply the procedures to simulated Kepler-like time series with known stellar and planetary signals to evaluate the effectiveness of the KARPS procedures. The ARMA-type modeling is effective at reducing stellar noise, but also reduces and transforms the transit signal into ingress/egress spikes. A periodogram based on the TCF is constructed to concentrate the signal of these periodic spikes. When a periodic transit is found, the model is displayed on a standard period-folded averaged light curve. We also illustrate the efficient coding in R.

  10. [Atmospheric parameter estimation for LAMOST/GUOSHOUJING spectra].

    PubMed

    Lu, Yu; Li, Xiang-Ru; Yang, Tan

    2014-11-01

    It is a key task to estimate the atmospheric parameters from the observed stellar spectra in exploring the nature of stars and universe. With our Large Sky Area Multi-Object Fiber Spectroscopy Telescope (LAMOST) which begun its formal Sky Survey in September 2012, we are obtaining a mass of stellar spectra in an unprecedented speed. It has brought a new opportunity and a challenge for the research of galaxies. Due to the complexity of the observing system, the noise in the spectrum is relatively large. At the same time, the preprocessing procedures of spectrum are also not ideal, such as the wavelength calibration and the flow calibration. Therefore, there is a slight distortion of the spectrum. They result in the high difficulty of estimating the atmospheric parameters for the measured stellar spectra. It is one of the important issues to estimate the atmospheric parameters for the massive stellar spectra of LAMOST. The key of this study is how to eliminate noise and improve the accuracy and robustness of estimating the atmospheric parameters for the measured stellar spectra. We propose a regression model for estimating the atmospheric parameters of LAMOST stellar(SVM(lasso)). The basic idea of this model is: First, we use the Haar wavelet to filter spectrum, suppress the adverse effects of the spectral noise and retain the most discrimination information of spectrum. Secondly, We use the lasso algorithm for feature selection and extract the features of strongly correlating with the atmospheric parameters. Finally, the features are input to the support vector regression model for estimating the parameters. Because the model has better tolerance to the slight distortion and the noise of the spectrum, the accuracy of the measurement is improved. To evaluate the feasibility of the above scheme, we conduct experiments extensively on the 33 963 pilot surveys spectrums by LAMOST. The accuracy of three atmospheric parameters is log Teff: 0.006 8 dex, log g: 0.155 1 dex, [Fe/H]: 0.104 0 dex.

  11. Testing Envelope Models of Young Stellar Objects with Submillimeter Continuum and Molecular-Line Observations

    NASA Astrophysics Data System (ADS)

    Hogerheijde, Michiel R.; Sandell, Göran

    2000-05-01

    Theoretical models of star formation make predictions about the density and velocity structure of the envelopes surrounding isolated, low-mass young stars. This paper tests such models through high-quality submillimeter continuum imaging of four embedded young stellar objects in Taurus and previously obtained molecular-line data. Observations carried out with the Submillimeter Continuum Bolometer Array on the James Clerk Maxwell Telescope at 850 and 450 μm of L1489 IRS, L1535 IRS, L1527 IRS, and TMC 1 reveal ~2000 AU elongated structures embedded in extended envelopes. The density distribution in these envelopes is equally well fitted by a radial power-law of index p=1.0-2.0 or with a collapse model such as that of Shu. This inside-out collapse model predicts 13CO, C18O, HCO+, and H13CO+ line profiles that closely match observed spectra toward three of our four sources. This shows that the inside-out collapse model offers a good description of YSO envelopes, but also that reliable constraints on its parameters require independent measurements of the density and the velocity structure, e.g., through continuum and line observations. For the remaining source, L1489 IRS, we find that a model consisting of a 2000 AU radius, rotating, disklike structure better describes the data. Possibly, this source is in transition between the embedded class I and the optically revealed T Tauri phases. The spectral index of the dust emissivity decreases from β=1.5-2.0 in the extended envelope to 1.0+/-0.2 in the central peaks, indicating grain growth or high optical depth on small scales. The observations of L1527 IRS reveal warm (>~30 K) material outlining, and presumably heated by, its bipolar outflow. This material comprises <~0.2 Msolar, comparable to the amount of swept-up CO but only 10% of the total envelope mass. Two apparently starless cores are found at ~10,000 AU from L1489 IRS and L1535 IRS. They are cold, 10-15 K, contain 0.5-3.0 Msolar, and have flat density distributions characterized by a Gaussian of ~10,000 AU FWHM. The proximity of these cores shows that star formation in truly isolated cores is rare even in Taurus.

  12. Selections from 2017: Mapping the Universe with SDSS-IV

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-12-01

    Editors note:In these last two weeks of 2017, well be looking at a few selections that we havent yet discussed on AAS Nova from among the most-downloaded paperspublished in AAS journals this year. The usual posting schedule will resume in January.Sloan Digital Sky Survey IV: Mapping the Milky Way, Nearby Galaxies, and the Distant UniversePublished June2017Main takeaway:The incredibly prolific Sloan Digital Sky Survey has provided photometric observations of around 500 million objects and spectra for more than 3 million objects. The survey has now entered its fourth iteration, SDSS-IV, with the first public data release made in June 2016. A publication led by Michael Blanton (New York University) describes the facilities used for SDSS-IV, its science goals, and itsthree coreprograms.Why its interesting:Since data collection began in 2000, SDSS has been one of the premier surveysproviding imaging and spectroscopy for objects in both the near and distant universe.SDSS has measured spectra not only for the stars in our own Milky Way, but also for galaxies that lie more than 7 billion light-years distant making itan extremelyuseful and powerful tool for mapping our universe.What SDSS-IV is looking for:SDSS image of an example MaNGA target galaxy (left), with some of the many things we can learn about it shown in the right and bottom panels: stellar velocity dispersion, stellar mean velocity, stellar population age, metallicity, etc. [Blanton et al. 2017]SDSS-IV containsthree core programs:Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2)provides high-resolution near-infrared spectra of hundreds of thousands of Milky-Way stars with the goal ofimproving our understanding of the history of the Milky Way and of stellar astrophysics.Mapping Nearby Galaxies at Apache Point Observatory (MaNGA)obtains spatially resolved spectra for thousands of nearby galaxiesto better understand the evolutionary histories of galaxies and what regulates their star formation.Extended Baryon Oscillation Spectroscopic Survey (eBOSS)mapsthe galaxy, quasar, and neutral gas distributions at redshifts out to z = 3.5to better understand dark matter, dark energy, the properties of neutrinos, and inflation.CitationMichael R. Blanton et al 2017 AJ 154 28. doi:10.3847/1538-3881/aa7567

  13. Early phases in the stellar and substellar formation and evolution. Infrared and submillimeter data in the Barnard 30 dark cloud

    NASA Astrophysics Data System (ADS)

    Barrado, D.; de Gregorio Monsalvo, I.; Huélamo, N.; Morales-Calderón, M.; Bayo, A.; Palau, A.; Ruiz, M. T.; Rivière-Marichalar, P.; Bouy, H.; Morata, Ó.; Stauffer, J. R.; Eiroa, C.; Noriega-Crespo, A.

    2018-04-01

    Aims: The early evolutionary stage of brown dwarfs (BDs) is not very well characterized, especially during the embedded phase. Our goal is to gain insight into the dominant formation mechanism of very low-mass objects and BDs. Methods: We have conducted deep observations at 870 μm obtained with the LABOCA bolometer at the APEX telescope in order to identify young submillimeter (submm) sources in the Barnard 30 dark cloud. We have complemented these data with multi-wavelength observations from the optical to the far-IR and compiled complete spectral energy distributions in order to identify the counterparts, characterize the sources and to assess their membership to the association and stellar or substellar status based on the available photometric information. Results: We have identified 34 submm sources and a substantial number of possible and probable Barnard 30 members within each individual APEX/LABOCA beam. They can be classified into three distinct groups. First, 15 of these 34 have a clear optical or IR counterpart to the submm peak and nine of them are potential proto-BD candidates. Moreover, a substantial number of them could be multiple systems. A second group of 13 sources comprises candidate members with significant infrared excesses located away from the central submm emission. All of them include BD candidates, some displaying IR excess, but their association with submm emission is unclear. In addition, we have found six starless cores and, based on the total dust mass estimate, three might be pre-substellar (or pre-BDs) cores. Finally, the complete characterization of our APEX/LABOCA sources, focusing on those detected at 24 and/or 70 μm, indicates that in our sample of 34 submm sources there are, at least: two WTTs, four CTTs, five young stellar objects, eight proto-BD candidates (with another three dubious cases), and one very low luminosity objects. Conclusions: Our findings provide additional evidence concerning the BD formation mechanism, which seems to be a downsized version of the stellar formation. Tables 3-7 and reduced images (FITS files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/vol/page

  14. The physical properties of Lyα emitting galaxies: not just primeval galaxies?

    NASA Astrophysics Data System (ADS)

    Pentericci, L.; Grazian, A.; Fontana, A.; Castellano, M.; Giallongo, E.; Salimbeni, S.; Santini, P.

    2009-02-01

    Aims: We have analyzed a sample of Lyman break galaxies from z ~ 3.5 to z ~ 6 selected from the GOODS-S field as B, V, and i-dropouts, and with spectroscopic observations showing that they have the Lyα line in emission. Our main aim is to investigate their physical properties and their dependence on the emission line characteristic and to shed light on the relation between galaxies with Lyα emission and the general LBG population. Methods: The objects were selected from their optical continuum colors and then spectroscopically confirmed by the GOODS collaboration and other campaigns. From the public spectra we derived the main properties of the Lyα emission such as total flux and rest frame EW. We then used complete photometry, from U band to mid-infrared from the GOODS-MUSIC database, and through standard spectro-photometric techniques we derived the physical properties of the galaxies, such as total stellar mass, stellar ages, star formation rates, and dust content. Finally we investigated the relation between emission line and physical properties. Results: Although most galaxies are fit by young stellar populations, a small but non negligible fraction has SEDs that cannot be represented well by young models and require considerably older stellar component, up to ~1 Gyr. There is no apparent relation between age and EW: some of the oldest galaxies have high line EW, and should be also selected in narrow-band surveys. Therefore not all Lyα emitting galaxies are primeval galaxies in the very early stages of formation, as is commonly assumed. We also find a range of stellar populations, with masses from 5 × 108 M_⊙ to 5 × 1010 M_⊙ and SFR from few to 60 M_⊙ yr-1. Although there is no net correlation between mass and EW, we find a significant lack of massive galaxies with high EW, which could be explained if the most massive galaxies were either dustier and/or if they contained more neutral gas than less massive objects. Finally we find that more than half of the galaxies contain small but non negligible amounts of dust: the mean E(B-V) derived from the SED fit and the EW are well-correlated, although with a large scatter, as already found at lower redshift.

  15. The distribution of stars around the Milky Way's central black hole. II. Diffuse light from sub-giants and dwarfs

    NASA Astrophysics Data System (ADS)

    Schödel, R.; Gallego-Cano, E.; Dong, H.; Nogueras-Lara, F.; Gallego-Calvente, A. T.; Amaro-Seoane, P.; Baumgardt, H.

    2018-01-01

    Context. This is the second of three papers that search for the predicted stellar cusp around the Milky Way's central black hole, Sagittarius A*, with new data and methods. Aims: We aim to infer the distribution of the faintest stellar population currently accessible through observations around Sagittarius A*. Methods: We used adaptive optics assisted high angular resolution images obtained with the NACO instrument at the ESO VLT. Through optimised PSF fitting we removed the light from all detected stars above a given magnitude limit. Subsequently we analysed the remaining, diffuse light density. Systematic uncertainties were constrained by the use of data from different observing epochs and obtained with different filters. We show that it is necessary to correct for the diffuse emission from the mini-spiral, which would otherwise lead to a systematically biased light density profile. We used a Paschen α map obtained with the Hubble Space Telescope for this purpose. Results: The azimuthally averaged diffuse surface light density profile within a projected distance of R ≲ 0.5 pc from Sagittarius A* can be described consistently by a single power law with an exponent of Γ = 0.26 ± 0.02stat ± 0.05sys, similar to what has been found for the surface number density of faint stars in Paper I. Conclusions: The analysed diffuse light arises from sub-giant and main-sequence stars with Ks ≈ 19-22 with masses of 0.8-1.5 M⊙. These stars can be old enough to be dynamically relaxed. The observed power-law profile and its slope are consistent with the existence of a relaxed stellar cusp around the Milky Way's central black hole. We find that a Nuker law provides an adequate description of the nuclear cluster's intrinsic shape (assuming spherical symmetry). The 3D power-law slope near Sgr A* is γ = 1.13 ± 0.03model ± 0.05sys. The stellar density decreases more steeply beyond a break radius of about 3 pc, which corresponds roughly to the radius of influence of the massive black hole. At a distance of 0.01 pc from the black hole, we estimate a stellar mass density of 2.6 ± 0.3 × 107 M⊙ pc-3 and a total enclosed stellar mass of 180 ± 30 M⊙. These estimates assume a constant mass-to-light ratio and do not take stellar remnants into account. The fact that a flat projected surface density is observed for old giants at projected distances R ≲ 0.3 pc implies that some mechanism may have altered their appearance or distribution.

  16. The SAMI Galaxy Survey: instrument specification and target selection

    NASA Astrophysics Data System (ADS)

    Bryant, J. J.; Owers, M. S.; Robotham, A. S. G.; Croom, S. M.; Driver, S. P.; Drinkwater, M. J.; Lorente, N. P. F.; Cortese, L.; Scott, N.; Colless, M.; Schaefer, A.; Taylor, E. N.; Konstantopoulos, I. S.; Allen, J. T.; Baldry, I.; Barnes, L.; Bauer, A. E.; Bland-Hawthorn, J.; Bloom, J. V.; Brooks, A. M.; Brough, S.; Cecil, G.; Couch, W.; Croton, D.; Davies, R.; Ellis, S.; Fogarty, L. M. R.; Foster, C.; Glazebrook, K.; Goodwin, M.; Green, A.; Gunawardhana, M. L.; Hampton, E.; Ho, I.-T.; Hopkins, A. M.; Kewley, L.; Lawrence, J. S.; Leon-Saval, S. G.; Leslie, S.; McElroy, R.; Lewis, G.; Liske, J.; López-Sánchez, Á. R.; Mahajan, S.; Medling, A. M.; Metcalfe, N.; Meyer, M.; Mould, J.; Obreschkow, D.; O'Toole, S.; Pracy, M.; Richards, S. N.; Shanks, T.; Sharp, R.; Sweet, S. M.; Thomas, A. D.; Tonini, C.; Walcher, C. J.

    2015-03-01

    The SAMI Galaxy Survey will observe 3400 galaxies with the Sydney-AAO Multi-object Integral-field spectrograph (SAMI) on the Anglo-Australian Telescope in a 3-yr survey which began in 2013. We present the throughput of the SAMI system, the science basis and specifications for the target selection, the survey observation plan and the combined properties of the selected galaxies. The survey includes four volume-limited galaxy samples based on cuts in a proxy for stellar mass, along with low-stellar-mass dwarf galaxies all selected from the Galaxy And Mass Assembly (GAMA) survey. The GAMA regions were selected because of the vast array of ancillary data available, including ultraviolet through to radio bands. These fields are on the celestial equator at 9, 12 and 14.5 h, and cover a total of 144 deg2 (in GAMA-I). Higher density environments are also included with the addition of eight clusters. The clusters have spectroscopy from 2-degree Field Galaxy Redshift Survey (2dFGRS) and Sloan Digital Sky Survey (SDSS) and photometry in regions covered by the SDSS and/or VLT Survey Telescope/ATLAS. The aim is to cover a broad range in stellar mass and environment, and therefore the primary survey targets cover redshifts 0.004 < z < 0.095, magnitudes rpet < 19.4, stellar masses 107-1012 M⊙, and environments from isolated field galaxies through groups to clusters of ˜1015 M⊙.

  17. Stellar-based calibration in the far infrared with application to IRAS Band 4

    NASA Technical Reports Server (NTRS)

    Kirby, D. J.; Rieke, G. H.; Lebofsky, L. A.

    1994-01-01

    Because stars emit very small portions of their outputs in the far infrared, using them as calibrators requires precise measurement and correction for filter leaks at shorter wavelengths. Therefore, it is common to base far infrared calibrations on planetary objects such as asteriods. However, asteroids are complex geological bodies whose thermal properties depend on their evolutionary histories as well as on their gross parameters such as mass and composition, making them difficult to model as calibrators. We propose a new method for measuring filter leaks that can be carried out using the end-to-end detector system and therefore allows reliable use of stellar calibrators. We illustrate this method by showing that the Infrared Astronomy Satellite (IRAS) 100 micrometers (Band 4) filters had a short wavelength leak of 14.3% +/- 3.6% on stars similar to alpha Boo, but that there is no detectable leak in the 60 micrometers (Band 3) filters. We derive a calibration for Band 4 from stellar colors in a way that is closely analogous to the calibrations of Bands 1, 2, and 3. With correction for the leak, the stellar-based calibration is virtually identical to the original calibration based on asteroids; this result requires that the spectra of the asteriods for the original calibration differ from greybody behavior between 60 and 100 micrometers by about 10%.

  18. A high stellar velocity dispersion for a compact massive galaxy at redshift z = 2.186.

    PubMed

    van Dokkum, Pieter G; Kriek, Mariska; Franx, Marijn

    2009-08-06

    Recent studies have found that the oldest and most luminous galaxies in the early Universe are surprisingly compact, having stellar masses similar to present-day elliptical galaxies but much smaller sizes. This finding has attracted considerable attention, as it suggests that massive galaxies have grown in size by a factor of about five over the past ten billion years (10 Gyr). A key test of these results is a determination of the stellar kinematics of one of the compact galaxies: if the sizes of these objects are as extreme as has been claimed, their stars are expected to have much higher velocities than those in present-day galaxies of the same mass. Here we report a measurement of the stellar velocity dispersion of a massive compact galaxy at redshift z = 2.186, corresponding to a look-back time of 10.7 Gyr. The velocity dispersion is very high at km s(-1), consistent with the mass and compactness of the galaxy inferred from photometric data. This would indicate significant recent structural and dynamical evolution of massive galaxies over the past 10 Gyr. The uncertainty in the dispersion was determined from simulations that include the effects of noise and template mismatch. However, we cannot exclude the possibility that some subtle systematic effect may have influenced the analysis, given the low signal-to-noise ratio of our spectrum.

  19. Double-lined M dwarf eclipsing binaries from Catalina Sky Survey and LAMOST

    NASA Astrophysics Data System (ADS)

    Lee, Chien-Hsiu; Lin, Chien-Cheng

    2017-02-01

    Eclipsing binaries provide a unique opportunity to determine fundamental stellar properties. In the era of wide-field cameras and all-sky imaging surveys, thousands of eclipsing binaries have been reported through light curve classification, yet their basic properties remain unexplored due to the extensive efforts needed to follow them up spectroscopically. In this paper we investigate three M2-M3 type double-lined eclipsing binaries discovered by cross-matching eclipsing binaries from the Catalina Sky Survey with spectroscopically classified M dwarfs from the Large Sky Area Multi-Object Fiber Spectroscopic Telescope survey data release one and two. Because these three M dwarf binaries are faint, we further acquire radial velocity measurements using GMOS on the Gemini North telescope with R˜ 4000, enabling us to determine the mass and radius of individual stellar components. By jointly fitting the light and radial velocity curves of these systems, we derive the mass and radius of the primary and secondary components of these three systems, in the range between 0.28-0.42M_⊙ and 0.29-0.67R_⊙, respectively. Future observations with a high resolution spectrograph will help us pin down the uncertainties in their stellar parameters, and render these systems benchmarks to study M dwarfs, providing inputs to improving stellar models in the low mass regime, or establishing an empirical mass-radius relation for M dwarf stars.

  20. Relations between stellar mass and electron temperature-based metallicity for star-forming galaxies in a wide mass range

    NASA Astrophysics Data System (ADS)

    Shi, Wei-Bin; Liang, Yan-Chun; Shao, Xu; Liu, Xiao-Wei; Zhao, Gang; Hammer, Francois; Zhang, Yong; Flores, Hector; Ruan, Gui-Ping; Zhou, Li

    2014-07-01

    We select 947 star-forming galaxies from SDSS-DR7 with [O III]λ4363 emission lines detected at a signal-to-noise ratio larger than 5σ. Their electron temperatures and direct oxygen abundances are then determined. We compare the results from different methods. t2, the electron temperature in the low ionization region, estimated from t3, that in the high ionization region, is compared using three analysis relations between t2 - t3. These show obvious differences, which result in some different ionic oxygen abundances. The results of t3, t2, O++/H+ and O+/H+ derived by using methods from IRAF and literature are also compared. The ionic abundances O++/H+ are higher than O+/H+ for most cases. The different oxygen abundances derived from Te and the strong-line ratios show a clear discrepancy, which is more obvious following increasing stellar mass and strong-line ratio R23. The sample of galaxies from SDSS with detected [O III]λ4363 have lower metallicites and higher star formation rates, so they may not be typical representatives of the whole population of galaxies. Adopting data objects from Andrews & Martini, Liang et al. and Lee et al. data, we derive new relations of stellar mass and metallicity for star-forming galaxies in a much wider stellar mass range: from 106 Msolar to 1011 Msolar.

Top