SP_Ace: Stellar Parameters And Chemical abundances Estimator
NASA Astrophysics Data System (ADS)
Boeche, C.; Grebel, E. K.
2018-05-01
SP_Ace (Stellar Parameters And Chemical abundances Estimator) estimates the stellar parameters Teff, log g, [M/H], and elemental abundances. It employs 1D stellar atmosphere models in Local Thermodynamic Equilibrium (LTE). The code is highly automated and suitable for analyzing the spectra of large spectroscopic surveys with low or medium spectral resolution (R = 2000-20 000). A web service for calculating these values with the software is also available.
SP_Ace: a new code to derive stellar parameters and elemental abundances
NASA Astrophysics Data System (ADS)
Boeche, C.; Grebel, E. K.
2016-03-01
Context. Ongoing and future massive spectroscopic surveys will collect large numbers (106-107) of stellar spectra that need to be analyzed. Highly automated software is needed to derive stellar parameters and chemical abundances from these spectra. Aims: We developed a new method of estimating the stellar parameters Teff, log g, [M/H], and elemental abundances. This method was implemented in a new code, SP_Ace (Stellar Parameters And Chemical abundances Estimator). This is a highly automated code suitable for analyzing the spectra of large spectroscopic surveys with low or medium spectral resolution (R = 2000-20 000). Methods: After the astrophysical calibration of the oscillator strengths of 4643 absorption lines covering the wavelength ranges 5212-6860 Å and 8400-8924 Å, we constructed a library that contains the equivalent widths (EW) of these lines for a grid of stellar parameters. The EWs of each line are fit by a polynomial function that describes the EW of the line as a function of the stellar parameters. The coefficients of these polynomial functions are stored in a library called the "GCOG library". SP_Ace, a code written in FORTRAN95, uses the GCOG library to compute the EWs of the lines, constructs models of spectra as a function of the stellar parameters and abundances, and searches for the model that minimizes the χ2 deviation when compared to the observed spectrum. The code has been tested on synthetic and real spectra for a wide range of signal-to-noise and spectral resolutions. Results: SP_Ace derives stellar parameters such as Teff, log g, [M/H], and chemical abundances of up to ten elements for low to medium resolution spectra of FGK-type stars with precision comparable to the one usually obtained with spectra of higher resolution. Systematic errors in stellar parameters and chemical abundances are presented and identified with tests on synthetic and real spectra. Stochastic errors are automatically estimated by the code for all the parameters. A simple Web front end of SP_Ace can be found at http://dc.g-vo.org/SP_ACE while the source code will be published soon. Full Tables D.1-D.3 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/587/A2
NASA Astrophysics Data System (ADS)
Zhang, Chuan-Xin; Yuan, Yuan; Zhang, Hao-Wei; Shuai, Yong; Tan, He-Ping
2016-09-01
Considering features of stellar spectral radiation and sky surveys, we established a computational model for stellar effective temperatures, detected angular parameters and gray rates. Using known stellar flux data in some bands, we estimated stellar effective temperatures and detected angular parameters using stochastic particle swarm optimization (SPSO). We first verified the reliability of SPSO, and then determined reasonable parameters that produced highly accurate estimates under certain gray deviation levels. Finally, we calculated 177 860 stellar effective temperatures and detected angular parameters using data from the Midcourse Space Experiment (MSX) catalog. These derived stellar effective temperatures were accurate when we compared them to known values from literatures. This research makes full use of catalog data and presents an original technique for studying stellar characteristics. It proposes a novel method for calculating stellar effective temperatures and detecting angular parameters, and provides theoretical and practical data for finding information about radiation in any band.
LAMOST DR1: Stellar Parameters and Chemical Abundances with SP_Ace
NASA Astrophysics Data System (ADS)
Boeche, C.; Smith, M. C.; Grebel, E. K.; Zhong, J.; Hou, J. L.; Chen, L.; Stello, D.
2018-04-01
We present a new analysis of the LAMOST DR1 survey spectral database performed with the code SP_Ace, which provides the derived stellar parameters {T}{{eff}}, {log}g, [Fe/H], and [α/H] for 1,097,231 stellar objects. We tested the reliability of our results by comparing them to reference results from high spectral resolution surveys. The expected errors can be summarized as ∼120 K in {T}{{eff}}, ∼0.2 in {log}g, ∼0.15 dex in [Fe/H], and ∼0.1 dex in [α/Fe] for spectra with S/N > 40, with some differences between dwarf and giant stars. SP_Ace provides error estimations consistent with the discrepancies observed between derived and reference parameters. Some systematic errors are identified and discussed. The resulting catalog is publicly available at the LAMOST and CDS websites.
Second Cambridge Workshop on Cool Stars, Stellar Systems, and the Sun, volume 1
NASA Technical Reports Server (NTRS)
Giampapa, M. S. (Editor); Golub, L. (Editor)
1981-01-01
Solar and stellar atmospheric phenomena and their fundamental physical properties such as gravity, effective temperature and rotation rate, which provides the range in parameter space required to test various theoretical models were investigated. The similarity between solar activity and stellar activity is documented. Some of the topics discussed are: atmospheric structure, magnetic fields, solar and stellar activity, and evolution.
\\Space: A new code to estimate \\temp, \\logg, and elemental abundances
NASA Astrophysics Data System (ADS)
Boeche, C.
2016-09-01
\\Space is a FORTRAN95 code that derives stellar parameters and elemental abundances from stellar spectra. To derive these parameters, \\Space does not measure equivalent widths of lines nor it uses templates of synthetic spectra, but it employs a new method based on a library of General Curve-Of-Growths. To date \\Space works on the wavelength range 5212-6860 Å and 8400-8921 Å, and at the spectral resolution R=2000-20000. Extensions of these limits are possible. \\Space is a highly automated code suitable for application to large spectroscopic surveys. A web front end to this service is publicly available at http://dc.g-vo.org/SP_ACE together with the library and the binary code.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hekker, S.; Debosscher, J.; De Ridder, J.
2010-04-20
Oscillating stars in binary systems are among the most interesting stellar laboratories, as these can provide information on the stellar parameters and stellar internal structures. Here we present a red giant with solar-like oscillations in an eclipsing binary observed with the NASA Kepler satellite. We compute stellar parameters of the red giant from spectra and the asteroseismic mass and radius from the oscillations. Although only one eclipse has been observed so far, we can already determine that the secondary is a main-sequence F star in an eccentric orbit with a semi-major axis larger than 0.5 AU and orbital period longermore » than 75 days.« less
VizieR Online Data Catalog: LAMOST/SP_Ace DR1 catalog (Boeche+, 2018)
NASA Astrophysics Data System (ADS)
Boeche, C.; Smith, M. C.; Grebel, E. K.; Zhong, J.; Hou, J. L.; Chen, L.; Stello, D.
2018-04-01
The catalog contains stellar parameters including effective temperature (Teff), gravity (log g), metallicity [M/H], together with chemical abundances [Fe/H] and [alpha/H], derived with the code SP_Ace. It consists of 2,052,662 spectra, mostly Milky Way stars, from which 1,097,231 have measured parameters. The confidence intervals of the stellar parameters are expressed along with their upper and lower limits. Together with these main parameters we report other auxiliary information such as object designation, RA, DE, and other diagnostics as indicated in the table description. (1 data file).
New method to design stellarator coils without the winding surface
NASA Astrophysics Data System (ADS)
Zhu, Caoxiang; Hudson, Stuart R.; Song, Yuntao; Wan, Yuanxi
2018-01-01
Finding an easy-to-build coils set has been a critical issue for stellarator design for decades. Conventional approaches assume a toroidal ‘winding’ surface, but a poorly chosen winding surface can unnecessarily constrain the coil optimization algorithm, This article presents a new method to design coils for stellarators. Each discrete coil is represented as an arbitrary, closed, one-dimensional curve embedded in three-dimensional space. A target function to be minimized that includes both physical requirements and engineering constraints is constructed. The derivatives of the target function with respect to the parameters describing the coil geometries and currents are calculated analytically. A numerical code, named flexible optimized coils using space curves (FOCUS), has been developed. Applications to a simple stellarator configuration, W7-X and LHD vacuum fields are presented.
NASA Astrophysics Data System (ADS)
Rastorguev, A. S.; Utkin, N. D.; Chumak, O. V.
2017-08-01
Agekyan's λ-factor that allows for the effect of multiplicity of stellar encounters with large impact parameters has been used for the first time to directly calculate the diffusion coefficients in the phase space of a stellar system. Simple estimates show that the cumulative effect, i.e., the total contribution of distant encounters to the change in the velocity of a test star, given the multiplicity of stellar encounters, is finite, and the logarithmic divergence inherent in the classical description of diffusion is removed, as was shown previously byKandrup using a different, more complex approach. In this case, the expressions for the diffusion coefficients, as in the classical description, contain the logarithm of the ratio of two independent quantities: the mean interparticle distance and the impact parameter of a close encounter. However, the physical meaning of this logarithmic factor changes radically: it reflects not the divergence but the presence of two characteristic length scales inherent in the stellar medium.
Stellar Parameters in an Instant with Machine Learning. Application to Kepler LEGACY Targets
NASA Astrophysics Data System (ADS)
Bellinger, Earl P.; Angelou, George C.; Hekker, Saskia; Basu, Sarbani; Ball, Warrick H.; Guggenberger, Elisabet
2017-10-01
With the advent of dedicated photometric space missions, the ability to rapidly process huge catalogues of stars has become paramount. Bellinger and Angelou et al. [1] recently introduced a new method based on machine learning for inferring the stellar parameters of main-sequence stars exhibiting solar-like oscillations. The method makes precise predictions that are consistent with other methods, but with the advantages of being able to explore many more parameters while costing practically no time. Here we apply the method to 52 so-called "LEGACY" main-sequence stars observed by the Kepler space mission. For each star, we present estimates and uncertainties of mass, age, radius, luminosity, core hydrogen abundance, surface helium abundance, surface gravity, initial helium abundance, and initial metallicity as well as estimates of their evolutionary model parameters of mixing length, overshooting coeffcient, and diffusion multiplication factor. We obtain median uncertainties in stellar age, mass, and radius of 14.8%, 3.6%, and 1.7%, respectively. The source code for all analyses and for all figures appearing in this manuscript can be found electronically at
New method to design stellarator coils without the winding surface
Zhu, Caoxiang; Hudson, Stuart R.; Song, Yuntao; ...
2017-11-06
Finding an easy-to-build coils set has been a critical issue for stellarator design for decades. Conventional approaches assume a toroidal 'winding' surface, but a poorly chosen winding surface can unnecessarily constrain the coil optimization algorithm, This article presents a new method to design coils for stellarators. Each discrete coil is represented as an arbitrary, closed, one-dimensional curve embedded in three-dimensional space. A target function to be minimized that includes both physical requirements and engineering constraints is constructed. The derivatives of the target function with respect to the parameters describing the coil geometries and currents are calculated analytically. A numerical code,more » named flexible optimized coils using space curves (FOCUS), has been developed. Furthermore, applications to a simple stellarator configuration, W7-X and LHD vacuum fields are presented.« less
New method to design stellarator coils without the winding surface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Caoxiang; Hudson, Stuart R.; Song, Yuntao
Finding an easy-to-build coils set has been a critical issue for stellarator design for decades. Conventional approaches assume a toroidal 'winding' surface, but a poorly chosen winding surface can unnecessarily constrain the coil optimization algorithm, This article presents a new method to design coils for stellarators. Each discrete coil is represented as an arbitrary, closed, one-dimensional curve embedded in three-dimensional space. A target function to be minimized that includes both physical requirements and engineering constraints is constructed. The derivatives of the target function with respect to the parameters describing the coil geometries and currents are calculated analytically. A numerical code,more » named flexible optimized coils using space curves (FOCUS), has been developed. Furthermore, applications to a simple stellarator configuration, W7-X and LHD vacuum fields are presented.« less
Surface density: a new parameter in the fundamental metallicity relation of star-forming galaxies
NASA Astrophysics Data System (ADS)
Hashimoto, Tetsuya; Goto, Tomotsugu; Momose, Rieko
2018-04-01
Star-forming galaxies display a close relation among stellar mass, metallicity, and star formation rate (or molecular-gas mass). This is known as the fundamental metallicity relation (FMR) (or molecular-gas FMR), and it has a profound implication on models of galaxy evolution. However, there still remains a significant residual scatter around the FMR. We show here that a fourth parameter, the surface density of stellar mass, reduces the dispersion around the molecular-gas FMR. In a principal component analysis of 29 physical parameters of 41 338 star-forming galaxies, the surface density of stellar mass is found to be the fourth most important parameter. The new 4D fundamental relation forms a tighter hypersurface that reduces the metallicity dispersion to 50 per cent of that of the molecular-gas FMR. We suggest that future analyses and models of galaxy evolution should consider the FMR in a 4D space that includes surface density. The dilution time-scale of gas inflow and the star-formation efficiency could explain the observational dependence on surface density of stellar mass.
Constraints on modified gravity models from white dwarfs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banerjee, Srimanta; Singh, Tejinder P.; Shankar, Swapnil, E-mail: srimanta.banerjee@tifr.res.in, E-mail: swapnil.shankar@cbs.ac.in, E-mail: tpsingh@tifr.res.in
Modified gravity theories can introduce modifications to the Poisson equation in the Newtonian limit. As a result, we expect to see interesting features of these modifications inside stellar objects. White dwarf stars are one of the most well studied stars in stellar astrophysics. We explore the effect of modified gravity theories inside white dwarfs. We derive the modified stellar structure equations and solve them to study the mass-radius relationships for various modified gravity theories. We also constrain the parameter space of these theories from observations.
Scaling relations and the fundamental line of the local group dwarf galaxies
NASA Astrophysics Data System (ADS)
Woo, Joanna; Courteau, Stéphane; Dekel, Avishai
2008-11-01
We study the scaling relations between global properties of dwarf galaxies in the local group. In addition to quantifying the correlations between pairs of variables, we explore the `shape' of the distribution of galaxies in log parameter space using standardized principal component analysis, the analysis is performed first in the 3D structural parameter space of stellar mass M*, internal velocity V and characteristic radius R* (or surface brightness μ*). It is then extended to a 4D space that includes a stellar population parameter such as metallicity Z or star formation rate . We find that the local group dwarfs basically define a one-parameter `fundamental line' (FL), primarily driven by stellar mass, M*. A more detailed inspection reveals differences between the star formation properties of dwarf irregulars (dI's) and dwarf ellipticals (dE's), beyond the tendency of the latter to be more massive. In particular, the metallicities of dI's are typically lower by a factor of 3 at a given M* and they grow faster with increasing M*, showing a tighter FL in the 4D space for the dE's. The structural scaling relations of dI's resemble those of the more massive spirals, but the dI's have lower star formation rates for a given M* which also grow faster with increasing M*. On the other hand, the FL of the dE's departs from the fundamental plane of bigger ellipticals. While the one-parameter nature of the FL and the associated slopes of the scaling relations are consistent with the general predictions of supernova feedback from Dekel & Woo, the differences between the FL's of the dE's and the dI's remain a challenge and should serve as a guide for the secondary physical processes responsible for these two types.
NASA Astrophysics Data System (ADS)
Zakharov, Alexander
It is well-known that one can evaluate black hole (BH) parameters (including spin) analyz-ing trajectories of stars around BH. A bulk distribution of matter (dark matter (DM)+stellar cluster) inside stellar orbits modifies trajectories of stars, namely, generally there is a apoas-tron shift in direction which opposite to GR one, even now one could put constraints on DM distribution and BH parameters and constraints will more stringent in the future. Therefore, an analyze of bright star trajectories provides a relativistic test in a weak gravitational field approximation, but in the future one can test a strong gravitational field near the BH at the Galactic Center with the same technique due to a rapid progress in observational facilities. References A. Zakharov et al., Phys. Rev. D76, 062001 (2007). A.F. Zakharov et al., Space Sci. Rev. 148, 301313(2009).
Estimates of the atmospheric parameters of M-type stars: a machine-learning perspective
NASA Astrophysics Data System (ADS)
Sarro, L. M.; Ordieres-Meré, J.; Bello-García, A.; González-Marcos, A.; Solano, E.
2018-05-01
Estimating the atmospheric parameters of M-type stars has been a difficult task due to the lack of simple diagnostics in the stellar spectra. We aim at uncovering good sets of predictive features of stellar atmospheric parameters (Teff, log (g), [M/H]) in spectra of M-type stars. We define two types of potential features (equivalent widths and integrated flux ratios) able to explain the atmospheric physical parameters. We search the space of feature sets using a genetic algorithm that evaluates solutions by their prediction performance in the framework of the BT-Settl library of stellar spectra. Thereafter, we construct eight regression models using different machine-learning techniques and compare their performances with those obtained using the classical χ2 approach and independent component analysis (ICA) coefficients. Finally, we validate the various alternatives using two sets of real spectra from the NASA Infrared Telescope Facility (IRTF) and Dwarf Archives collections. We find that the cross-validation errors are poor measures of the performance of regression models in the context of physical parameter prediction in M-type stars. For R ˜ 2000 spectra with signal-to-noise ratios typical of the IRTF and Dwarf Archives, feature selection with genetic algorithms or alternative techniques produces only marginal advantages with respect to representation spaces that are unconstrained in wavelength (full spectrum or ICA). We make available the atmospheric parameters for the two collections of observed spectra as online material.
ACCELERATED FITTING OF STELLAR SPECTRA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ting, Yuan-Sen; Conroy, Charlie; Rix, Hans-Walter
2016-07-20
Stellar spectra are often modeled and fitted by interpolating within a rectilinear grid of synthetic spectra to derive the stars’ labels: stellar parameters and elemental abundances. However, the number of synthetic spectra needed for a rectilinear grid grows exponentially with the label space dimensions, precluding the simultaneous and self-consistent fitting of more than a few elemental abundances. Shortcuts such as fitting subsets of labels separately can introduce unknown systematics and do not produce correct error covariances in the derived labels. In this paper we present a new approach—Convex Hull Adaptive Tessellation (chat)—which includes several new ideas for inexpensively generating amore » sufficient stellar synthetic library, using linear algebra and the concept of an adaptive, data-driven grid. A convex hull approximates the region where the data lie in the label space. A variety of tests with mock data sets demonstrate that chat can reduce the number of required synthetic model calculations by three orders of magnitude in an eight-dimensional label space. The reduction will be even larger for higher dimensional label spaces. In chat the computational effort increases only linearly with the number of labels that are fit simultaneously. Around each of these grid points in the label space an approximate synthetic spectrum can be generated through linear expansion using a set of “gradient spectra” that represent flux derivatives at every wavelength point with respect to all labels. These techniques provide new opportunities to fit the full stellar spectra from large surveys with 15–30 labels simultaneously.« less
NASA Astrophysics Data System (ADS)
Horvath, Sarah; Myers, Sam; Ahlers, Johnathon; Barnes, Jason W.
2017-10-01
Stellar seismic activity produces variations in brightness that introduce oscillations into transit light curves, which can create challenges for traditional fitting models. These oscillations disrupt baseline stellar flux values and potentially mask transits. We develop a model that removes these oscillations from transit light curves by minimizing the significance of each oscillation in frequency space. By removing stellar variability, we prepare each light curve for traditional fitting techniques. We apply our model to $\\delta$-Scuti KOI-976 and demonstrate that our variability subtraction routine successfully allows for measuring bulk system characteristics using traditional light curve fitting. These results open a new window for characterizing bulk system parameters of planets orbiting seismically active stars.
The AMBRE Project: Stellar parameterisation of the ESO:UVES archived spectra
NASA Astrophysics Data System (ADS)
Worley, C. C.; de Laverny, P.; Recio-Blanco, A.; Hill, V.; Bijaoui, A.
2016-06-01
Context. The AMBRE Project is a collaboration between the European Southern Observatory (ESO) and the Observatoire de la Côte d'Azur (OCA) that has been established to determine the stellar atmospheric parameters for the archived spectra of four ESO spectrographs. Aims: The analysis of the UVES archived spectra for their stellar parameters was completed in the third phase of the AMBRE Project. From the complete ESO:UVES archive dataset that was received covering the period 2000 to 2010, 51 921 spectra for the six standard setups were analysed. These correspond to approximately 8014 distinct targets (that comprise stellar and non-stellar objects) by radial coordinate search. Methods: The AMBRE analysis pipeline integrates spectral normalisation, cleaning and radial velocity correction procedures in order that the UVES spectra can then be analysed automatically with the stellar parameterisation algorithm MATISSE to obtain the stellar atmospheric parameters. The synthetic grid against which the MATISSE analysis is carried out is currently constrained to parameters of FGKM stars only. Results: Stellar atmospheric parameters are reported for 12 403 of the 51 921 UVES archived spectra analysed in AMBRE:UVES. This equates to ~23.9% of the sample and ~3708 stars. Effective temperature, surface gravity, metallicity, and alpha element to iron ratio abundances are provided for 10 212 spectra (~19.7%), while effective temperature at least is provided for the remaining 2191 spectra. Radial velocities are reported for 36 881 (~71.0%) of the analysed archive spectra. While parameters were determined for 32 306 (62.2%) spectra these parameters were not considered reliable (and thus not reported to ESO) for reasons such as very low S/N, too poor radial velocity determination, spectral features too broad for analysis, and technical issues from the reduction. Similarly the parameters of a further 7212 spectra (13.9%) were also not reported to ESO based on quality criteria and error analysis which were determined within the automated parameterisation process. Those tests lead us to expect that multi-component stellar systems will return high errors in radial velocity and fitting to the synthetic spectra and therefore will not have parameters reported to ESO. Typical external errors of σTeff ~ 110 dex, σlog g ~ 0.18 dex, σ[ M/H ] ~ 0.13 dex, and σ[ α/ Fe ] ~ 0.05 dex with some variation between giants and dwarfs and between setups are reported. Conclusions: UVES is used to observe an extensive collection of stellar and non-stellar objects all of which have been included in the archived dataset provided to OCA by ESO. The AMBRE analysis extracts those objects that lie within the FGKM parameter space of the AMBRE slow-rotating synthetic spectra grid. Thus by homogeneous blind analysis AMBRE has successfully extracted and parameterised the targeted FGK stars (23.9% of the analysed sample) from within the ESO:UVES archive.
Observational Δν-ρ¯ Relation for δ Sct Stars using Eclipsing Binaries and Space Photometry
NASA Astrophysics Data System (ADS)
García Hernández, A.; Martín-Ruiz, S.; Monteiro, Mário J. P. F. G.; Suárez, J. C.; Reese, D. R.; Pascual-Granado, J.; Garrido, R.
2015-10-01
Delta Scuti (δ Sct) stars are intermediate-mass pulsators, whose intrinsic oscillations have been studied for decades. However, modeling their pulsations remains a real theoretical challenge, thereby even hampering the precise determination of global stellar parameters. In this work, we used space photometry observations of eclipsing binaries with a δ Sct component to obtain reliable physical parameters and oscillation frequencies. Using that information, we derived an observational scaling relation between the stellar mean density and a frequency pattern in the oscillation spectrum. This pattern is analogous to the solar-like large separation but in the low order regime. We also show that this relation is independent of the rotation rate. These findings open the possibility of accurately characterizing this type of pulsator and validate the frequency pattern as a new observable for δ Sct stars.
Stellar photometry with the Wide Field/Planetary Camera of the Hubble Space Telescope
NASA Astrophysics Data System (ADS)
Holtzman, Jon A.
1990-07-01
Simulations of Wide Field/Planetary Camera (WF/PC) images are analyzed in order to discover the most effective techniques for stellar photometry and to evaluate the accuracy and limitations of these techniques. The capabilities and operation of the WF/PC and the simulations employed in the study are described. The basic techniques of stellar photometry and methods to improve these techniques for the WF/PC are discussed. The correct parameters for star detection, aperture photometry, and point-spread function (PSF) fitting with the DAOPHOT software of Stetson (1987) are determined. Consideration is given to undersampling of the stellar images by the detector; variations in the PSF; and the crowding of the stellar images. It is noted that, with some changes DAOPHOT, is able to generate photometry almost to the level of photon statistics.
FliPer: checking the reliability of global seismic parameters from automatic pipelines
NASA Astrophysics Data System (ADS)
Bugnet, L.; García, R. A.; Davies, G. R.; Mathur, S.; Corsaro, E.
2017-12-01
Our understanding of stars through asteroseismic data analysis is limited by our ability to take advantage of the huge amount of observed stars provided by space missions such as CoRoT, \\keplerp, \\ktop, and soon TESS and PLATO. Global seismic pipelines provide global stellar parameters such as mass and radius using the mean seismic parameters, as well as the effective temperature. These pipelines are commonly used automatically on thousands of stars observed by K2 for 3 months (and soon TESS for at least ˜ 1 month). However, pipelines are not immune from misidentifying noise peaks and stellar oscillations. Therefore, new validation techniques are required to assess the quality of these results. We present a new metric called FliPer (Flicker in Power), which takes into account the average variability at all measured time scales. The proper calibration of \\powvar enables us to obtain good estimations of global stellar parameters such as surface gravity that are robust against the influence of noise peaks and hence are an excellent way to find faults in asteroseismic pipelines.
NASA Technical Reports Server (NTRS)
Haser, Stefan M.; Pauldrach, Adalbert W. A.; Lennon, Danny J.; Kudritzki, Rolf-Peter; Lennon, Maguerite; Puls, Joachim; Voels, Stephen A.
1997-01-01
Ultraviolet spectra of four O stars in the Magellanic Clouds obtained with the faint object spectrograph of the Hubble Space Telescope are analyzed with respect to their metallicity. The metal abundances are derived from the stellar parameters and the mass loss rate with a two step procedure: hydrodynamic radiation-driven wind models with metallicity as a free parameter are constructed to fit the observed wind momentum rate and thus yield a dynamical metallicity, and synthetic spectra are computed for different metal abundances and compared to the observed spectra in order to obtain a spectroscopic metallicity.
Multiphase environment of compact galactic nuclei: the role of the nuclear star cluster
NASA Astrophysics Data System (ADS)
Różańska, A.; Kunneriath, D.; Czerny, B.; Adhikari, T. P.; Karas, V.
2017-01-01
We study the conditions for the onset of thermal instability in the innermost regions of compact galactic nuclei, where the properties of the interstellar environment are governed by the interplay of quasi-spherical accretion on to a supermassive black hole (SMBH) and the heating/cooling processes of gas in a dense nuclear star cluster (NSC). Stellar winds are the source of material for radiatively inefficient (quasi-spherical, non-magnetized) inflow/outflow on to the central SMBH, where a stagnation point develops within the Bondi-type accretion. We study the local thermal equilibrium to determine the parameter space that allows cold and hot phases in mutual contact to co-exist. We include the effects of mechanical heating by stellar winds and radiative cooling/heating by the ambient field of the dense star cluster. We consider two examples: the NSC in the Milky Way central region (including the gaseous mini-spiral of Sgr A*), and the ultracompact dwarf galaxy M60-UCD1. We find that the two systems behave in different ways because they are placed in different areas of parameter space in the instability diagram: gas temperature versus dynamical ionization parameter. In the case of Sgr A*, stellar heating prevents the spontaneous formation of cold clouds. The plasma from stellar winds joins the hot X-ray emitting phase and forms an outflow. In M60-UCD1, our model predicts spontaneous formation of cold clouds in the inner part of the galaxy. These cold clouds may survive since the cooling time-scale is shorter than the inflow/outflow time-scale.
Inflow, Outflow, Yields, and Stellar Population Mixing in Chemical Evolution Models
NASA Astrophysics Data System (ADS)
Andrews, Brett H.; Weinberg, David H.; Schönrich, Ralph; Johnson, Jennifer A.
2017-02-01
Chemical evolution models are powerful tools for interpreting stellar abundance surveys and understanding galaxy evolution. However, their predictions depend heavily on the treatment of inflow, outflow, star formation efficiency (SFE), the stellar initial mass function, the SN Ia delay time distribution, stellar yields, and stellar population mixing. Using flexCE, a flexible one-zone chemical evolution code, we investigate the effects of and trade-offs between parameters. Two critical parameters are SFE and the outflow mass-loading parameter, which shift the knee in [O/Fe]-[Fe/H] and the equilibrium abundances that the simulations asymptotically approach, respectively. One-zone models with simple star formation histories follow narrow tracks in [O/Fe]-[Fe/H] unlike the observed bimodality (separate high-α and low-α sequences) in this plane. A mix of one-zone models with inflow timescale and outflow mass-loading parameter variations, motivated by the inside-out galaxy formation scenario with radial mixing, reproduces the two sequences better than a one-zone model with two infall epochs. We present [X/Fe]-[Fe/H] tracks for 20 elements assuming three different supernova yield models and find some significant discrepancies with solar neighborhood observations, especially for elements with strongly metallicity-dependent yields. We apply principal component abundance analysis to the simulations and existing data to reveal the main correlations among abundances and quantify their contributions to variation in abundance space. For the stellar population mixing scenario, the abundances of α-elements and elements with metallicity-dependent yields dominate the first and second principal components, respectively, and collectively explain 99% of the variance in the model. flexCE is a python package available at https://github.com/bretthandrews/flexCE.
Inflow, Outflow, Yields, and Stellar Population Mixing in Chemical Evolution Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrews, Brett H.; Weinberg, David H.; Schönrich, Ralph
Chemical evolution models are powerful tools for interpreting stellar abundance surveys and understanding galaxy evolution. However, their predictions depend heavily on the treatment of inflow, outflow, star formation efficiency (SFE), the stellar initial mass function, the SN Ia delay time distribution, stellar yields, and stellar population mixing. Using flexCE, a flexible one-zone chemical evolution code, we investigate the effects of and trade-offs between parameters. Two critical parameters are SFE and the outflow mass-loading parameter, which shift the knee in [O/Fe]–[Fe/H] and the equilibrium abundances that the simulations asymptotically approach, respectively. One-zone models with simple star formation histories follow narrow tracksmore » in [O/Fe]–[Fe/H] unlike the observed bimodality (separate high- α and low- α sequences) in this plane. A mix of one-zone models with inflow timescale and outflow mass-loading parameter variations, motivated by the inside-out galaxy formation scenario with radial mixing, reproduces the two sequences better than a one-zone model with two infall epochs. We present [X/Fe]–[Fe/H] tracks for 20 elements assuming three different supernova yield models and find some significant discrepancies with solar neighborhood observations, especially for elements with strongly metallicity-dependent yields. We apply principal component abundance analysis to the simulations and existing data to reveal the main correlations among abundances and quantify their contributions to variation in abundance space. For the stellar population mixing scenario, the abundances of α -elements and elements with metallicity-dependent yields dominate the first and second principal components, respectively, and collectively explain 99% of the variance in the model. flexCE is a python package available at https://github.com/bretthandrews/flexCE.« less
Inferring probabilistic stellar rotation periods using Gaussian processes
NASA Astrophysics Data System (ADS)
Angus, Ruth; Morton, Timothy; Aigrain, Suzanne; Foreman-Mackey, Daniel; Rajpaul, Vinesh
2018-02-01
Variability in the light curves of spotted, rotating stars is often non-sinusoidal and quasi-periodic - spots move on the stellar surface and have finite lifetimes, causing stellar flux variations to slowly shift in phase. A strictly periodic sinusoid therefore cannot accurately model a rotationally modulated stellar light curve. Physical models of stellar surfaces have many drawbacks preventing effective inference, such as highly degenerate or high-dimensional parameter spaces. In this work, we test an appropriate effective model: a Gaussian Process with a quasi-periodic covariance kernel function. This highly flexible model allows sampling of the posterior probability density function of the periodic parameter, marginalizing over the other kernel hyperparameters using a Markov Chain Monte Carlo approach. To test the effectiveness of this method, we infer rotation periods from 333 simulated stellar light curves, demonstrating that the Gaussian process method produces periods that are more accurate than both a sine-fitting periodogram and an autocorrelation function method. We also demonstrate that it works well on real data, by inferring rotation periods for 275 Kepler stars with previously measured periods. We provide a table of rotation periods for these and many more, altogether 1102 Kepler objects of interest, and their posterior probability density function samples. Because this method delivers posterior probability density functions, it will enable hierarchical studies involving stellar rotation, particularly those involving population modelling, such as inferring stellar ages, obliquities in exoplanet systems, or characterizing star-planet interactions. The code used to implement this method is available online.
Know the Planet, Know the Star: Precise Stellar Parameters with Kepler
NASA Astrophysics Data System (ADS)
Sandford, Emily; Kipping, David M.
2017-01-01
The Kepler space telescope has revolutionized exoplanetary science with unprecedentedly precise photometric measurements of the light curves of transiting planets. In addition to information about the planet and its orbit, encoded in each Kepler transiting planet light curve are certain properties of the host star, including the stellar density and the limb darkening profile. For planets with strong prior constraints on orbital eccentricity (planets to which we refer as “stellar anchors”), we may measure these stellar properties directly from the light curve. This method promises to aid greatly in the characterization of transiting planet host stars targeted by the upcoming NASA TESS mission and any long-period, singly-transiting planets discovered in the same systems. Using Bayesian inference, we fit a transit model, including a nonlinear limb darkening law, to a large sample of transiting planet hosts to measure their stellar properties. We present the results of our analysis, including posterior stellar density distributions for each stellar host, and show how the method yields superior precision to literature stellar properties in the majority of cases studied.
NASA Astrophysics Data System (ADS)
Grootes, M. W.; Tuffs, R. J.; Popescu, C. C.; Robotham, A. S. G.; Seibert, M.; Kelvin, L. S.
2014-02-01
We present a non-parametric cell-based method of selecting highly pure and largely complete samples of spiral galaxies using photometric and structural parameters as provided by standard photometric pipelines and simple shape fitting algorithms. The performance of the method is quantified for different parameter combinations, using purely human-based classifications as a benchmark. The discretization of the parameter space allows a markedly superior selection than commonly used proxies relying on a fixed curve or surface of separation. Moreover, we find structural parameters derived using passbands longwards of the g band and linked to older stellar populations, especially the stellar mass surface density μ* and the r-band effective radius re, to perform at least equally well as parameters more traditionally linked to the identification of spirals by means of their young stellar populations, e.g. UV/optical colours. In particular, the distinct bimodality in the parameter μ*, consistent with expectations of different evolutionary paths for spirals and ellipticals, represents an often overlooked yet powerful parameter in differentiating between spiral and non-spiral/elliptical galaxies. We use the cell-based method for the optical parameter set including re in combination with the Sérsic index n and the i-band magnitude to investigate the intrinsic specific star formation rate-stellar mass relation (ψ*-M*) for a morphologically defined volume-limited sample of local Universe spiral galaxies. The relation is found to be well described by ψ _* ∝ M_*^{-0.5} over the range of 109.5 ≤ M* ≤ 1011 M⊙ with a mean interquartile range of 0.4 dex. This is somewhat steeper than previous determinations based on colour-selected samples of star-forming galaxies, primarily due to the inclusion in the sample of red quiescent discs.
Fundamental Parameters of Main-Sequence Stars in an Instant with Machine Learning
NASA Astrophysics Data System (ADS)
Bellinger, Earl P.; Angelou, George C.; Hekker, Saskia; Basu, Sarbani; Ball, Warrick H.; Guggenberger, Elisabeth
2016-10-01
Owing to the remarkable photometric precision of space observatories like Kepler, stellar and planetary systems beyond our own are now being characterized en masse for the first time. These characterizations are pivotal for endeavors such as searching for Earth-like planets and solar twins, understanding the mechanisms that govern stellar evolution, and tracing the dynamics of our Galaxy. The volume of data that is becoming available, however, brings with it the need to process this information accurately and rapidly. While existing methods can constrain fundamental stellar parameters such as ages, masses, and radii from these observations, they require substantial computational effort to do so. We develop a method based on machine learning for rapidly estimating fundamental parameters of main-sequence solar-like stars from classical and asteroseismic observations. We first demonstrate this method on a hare-and-hound exercise and then apply it to the Sun, 16 Cyg A and B, and 34 planet-hosting candidates that have been observed by the Kepler spacecraft. We find that our estimates and their associated uncertainties are comparable to the results of other methods, but with the additional benefit of being able to explore many more stellar parameters while using much less computation time. We furthermore use this method to present evidence for an empirical diffusion-mass relation. Our method is open source and freely available for the community to use.6
Asteroseismic inversions in the Kepler era: application to the Kepler Legacy sample
NASA Astrophysics Data System (ADS)
Buldgen, Gaël; Reese, Daniel; Dupret, Marc-Antoine
2017-10-01
In the past few years, the CoRoT and Kepler missions have carried out what is now called the space photometry revolution. This revolution is still ongoing thanks to K2 and will be continued by the Tess and Plato2.0 missions. However, the photometry revolution must also be followed by progress in stellar modelling, in order to lead to more precise and accurate determinations of fundamental stellar parameters such as masses, radii and ages. In this context, the long-lasting problems related to mixing processes in stellar interior is the main obstacle to further improvements of stellar modelling. In this contribution, we will apply structural asteroseismic inversion techniques to targets from the Kepler Legacy sample and analyse how these can help us constrain the fundamental parameters and mixing processes in these stars. Our approach is based on previous studies using the SOLA inversion technique [1] to determine integrated quantities such as the mean density [2], the acoustic radius, and core conditions indicators [3], and has already been successfully applied to the 16Cyg binary system [4]. We will show how this technique can be applied to the Kepler Legacy sample and how new indicators can help us to further constrain the chemical composition profiles of stars as well as provide stringent constraints on stellar ages.
NASA Astrophysics Data System (ADS)
Parviainen, Hannu
2015-10-01
PyLDTk automates the calculation of custom stellar limb darkening (LD) profiles and model-specific limb darkening coefficients (LDC) using the library of PHOENIX-generated specific intensity spectra by Husser et al. (2013). It facilitates exoplanet transit light curve modeling, especially transmission spectroscopy where the modeling is carried out for custom narrow passbands. PyLDTk construct model-specific priors on the limb darkening coefficients prior to the transit light curve modeling. It can also be directly integrated into the log posterior computation of any pre-existing transit modeling code with minimal modifications to constrain the LD model parameter space directly by the LD profile, allowing for the marginalization over the whole parameter space that can explain the profile without the need to approximate this constraint by a prior distribution. This is useful when using a high-order limb darkening model where the coefficients are often correlated, and the priors estimated from the tabulated values usually fail to include these correlations.
Effects of binary stellar populations on direct collapse black hole formation
NASA Astrophysics Data System (ADS)
Agarwal, Bhaskar; Cullen, Fergus; Khochfar, Sadegh; Klessen, Ralf S.; Glover, Simon C. O.; Johnson, Jarrett
2017-06-01
The critical Lyman-Werner (LW) flux required for direct collapse blackholes (DCBH) formation, or Jcrit, depends on the shape of the irradiating spectral energy distribution (SED). The SEDs employed thus far have been representative of realistic single stellar populations. We study the effect of binary stellar populations on the formation of DCBH, as a result of their contribution to the LW radiation field. Although binary populations with ages > 10 Myr yield a larger LW photon output, we find that the corresponding values of Jcrit can be up to 100 times higher than single stellar populations. We attribute this to the shape of the binary SEDs as they produce a sub-critical rate of H- photodetaching 0.76 eV photons as compared to single stellar populations, reaffirming the role that H- plays in DCBH formation. This further corroborates the idea that DCBH formation is better understood in terms of a critical region in the H2-H- photodestruction rate parameter space, rather than a single value of LW flux.
Cosmic Rays near Proxima Centauri b
NASA Astrophysics Data System (ADS)
Sadovski, A. M.; Struminsky, A. B.; Belov, A.
2018-05-01
The discovery of a terrestrial planet orbiting Proxima Centauri has led to a lot of papers discussing the possible conditions on this planet. Since the main factors determining space weather in the Solar System are the solar wind and cosmic rays (CRs), it seems important to understand what the parameters of the stellar wind, Galactic and stellar CRs near exoplanets are. Based on the available data, we present our estimates of the stellar wind velocity and density, the possible CR fluxes and fluences near Proxima b. We have found that there are virtually no Galactic CRs near the orbit of Proxima b up to particle energies 1 TeV due to their modulation by the stellar wind. Nevertheless, more powerful and frequent flares on Proxima Centauri than those on the Sun can accelerate particles to maximum energies 3150 αβ GeV ( α, β < 1). Therefore, the intensity of stellar CRs in the astrosphere may turn out to be comparable to the intensity of low-energy CRs in the heliosphere.
Observational constraints on the inter-binary stellar flare hypothesis for the gamma-ray bursts
NASA Astrophysics Data System (ADS)
Rao, A. R.; Vahia, M. N.
1994-01-01
The Gamma Ray Observatory/Burst and Transient Source Experiment (GRO/BATSE) results on the Gamma Ray Bursts (GRBs) have given an internally consistent set of observations of about 260 GRBs which have been released for analysis by the BATSE team. Using this database we investigate our earlier suggestion (Vahia and Rao, 1988) that GRBs are inter-binary stellar flares from a group of objects classified as Magnetically Active Stellar Systems (MASS) which includes flare stars, RS CVn binaries and cataclysmic variables. We show that there exists an observationally consistent parameter space for the number density, scale height and flare luminosity of MASS which explains the complete log(N) - log(P) distribution of GRBs as also the observed isotropic distribution. We further use this model to predict anisotropy in the GRB distribution at intermediate luminosities. We make definite predictions under the stellar flare hypothesis that can be tested in the near future.
ASPCAP: THE APOGEE STELLAR PARAMETER AND CHEMICAL ABUNDANCES PIPELINE
DOE Office of Scientific and Technical Information (OSTI.GOV)
García Pérez, Ana E.; Majewski, Steven R.; Shane, Neville
2016-06-01
The Apache Point Observatory Galactic Evolution Experiment (APOGEE) has built the largest moderately high-resolution ( R ≈ 22,500) spectroscopic map of the stars across the Milky Way, and including dust-obscured areas. The APOGEE Stellar Parameter and Chemical Abundances Pipeline (ASPCAP) is the software developed for the automated analysis of these spectra. ASPCAP determines atmospheric parameters and chemical abundances from observed spectra by comparing observed spectra to libraries of theoretical spectra, using χ {sup 2} minimization in a multidimensional parameter space. The package consists of a fortran90 code that does the actual minimization and a wrapper IDL code for book-keeping and datamore » handling. This paper explains in detail the ASPCAP components and functionality, and presents results from a number of tests designed to check its performance. ASPCAP provides stellar effective temperatures, surface gravities, and metallicities precise to 2%, 0.1 dex, and 0.05 dex, respectively, for most APOGEE stars, which are predominantly giants. It also provides abundances for up to 15 chemical elements with various levels of precision, typically under 0.1 dex. The final data release (DR12) of the Sloan Digital Sky Survey III contains an APOGEE database of more than 150,000 stars. ASPCAP development continues in the SDSS-IV APOGEE-2 survey.« less
NASA Astrophysics Data System (ADS)
Dafonte, C.; Fustes, D.; Manteiga, M.; Garabato, D.; Álvarez, M. A.; Ulla, A.; Allende Prieto, C.
2016-10-01
Aims: We present an innovative artificial neural network (ANN) architecture, called Generative ANN (GANN), that computes the forward model, that is it learns the function that relates the unknown outputs (stellar atmospheric parameters, in this case) to the given inputs (spectra). Such a model can be integrated in a Bayesian framework to estimate the posterior distribution of the outputs. Methods: The architecture of the GANN follows the same scheme as a normal ANN, but with the inputs and outputs inverted. We train the network with the set of atmospheric parameters (Teff, log g, [Fe/H] and [α/ Fe]), obtaining the stellar spectra for such inputs. The residuals between the spectra in the grid and the estimated spectra are minimized using a validation dataset to keep solutions as general as possible. Results: The performance of both conventional ANNs and GANNs to estimate the stellar parameters as a function of the star brightness is presented and compared for different Galactic populations. GANNs provide significantly improved parameterizations for early and intermediate spectral types with rich and intermediate metallicities. The behaviour of both algorithms is very similar for our sample of late-type stars, obtaining residuals in the derivation of [Fe/H] and [α/ Fe] below 0.1 dex for stars with Gaia magnitude Grvs < 12, which accounts for a number in the order of four million stars to be observed by the Radial Velocity Spectrograph of the Gaia satellite. Conclusions: Uncertainty estimation of computed astrophysical parameters is crucial for the validation of the parameterization itself and for the subsequent exploitation by the astronomical community. GANNs produce not only the parameters for a given spectrum, but a goodness-of-fit between the observed spectrum and the predicted one for a given set of parameters. Moreover, they allow us to obtain the full posterior distribution over the astrophysical parameters space once a noise model is assumed. This can be used for novelty detection and quality assessment.
Minerva exoplanet detection sensitivity from simulated observations
NASA Astrophysics Data System (ADS)
McCrady, Nate; Nava, C.
2014-01-01
Small rocky planets induce radial velocity signals that are difficult to detect in the presence of stellar noise sources of comparable or larger amplitude. Minerva is a dedicated, robotic observatory that will attain 1 meter per second precision to detect these rocky planets in the habitable zone around nearby stars. We present results of an ongoing project investigating Minerva’s planet detection sensitivity as a function of observational cadence, planet mass, and orbital parameters (period, eccentricity, and argument of periastron). Radial velocity data is simulated with realistic observing cadence, accounting for weather patterns at Mt. Hopkins, Arizona. Instrumental and stellar noise are added to the simulated observations, including effects of oscillation, jitter, starspots and rotation. We extract orbital parameters from the simulated RV data using the RVLIN code. A Monte Carlo analysis is used to explore the parameter space and evaluate planet detection completeness. Our results will inform the Minerva observing strategy by providing a quantitative measure of planet detection sensitivity as a function of orbital parameters and cadence.
Estimation of distances to stars with stellar parameters from LAMOST
Carlin, Jeffrey L.; Liu, Chao; Newberg, Heidi Jo; ...
2015-06-05
Here, we present a method to estimate distances to stars with spectroscopically derived stellar parameters. The technique is a Bayesian approach with likelihood estimated via comparison of measured parameters to a grid of stellar isochrones, and returns a posterior probability density function for each star's absolute magnitude. We tailor this technique specifically to data from the Large Sky Area Multi-object Fiber Spectroscopic Telescope (LAMOST) survey. Because LAMOST obtains roughly 3000 stellar spectra simultaneously within each ~5-degree diameter "plate" that is observed, we can use the stellar parameters of the observed stars to account for the stellar luminosity function and targetmore » selection effects. This removes biasing assumptions about the underlying populations, both due to predictions of the luminosity function from stellar evolution modeling, and from Galactic models of stellar populations along each line of sight. Using calibration data of stars with known distances and stellar parameters, we show that our method recovers distances for most stars within ~20%, but with some systematic overestimation of distances to halo giants. We apply our code to the LAMOST database, and show that the current precision of LAMOST stellar parameters permits measurements of distances with ~40% error bars. This precision should improve as the LAMOST data pipelines continue to be refined.« less
Estimation of distances to stars with stellar parameters from LAMOST
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlin, Jeffrey L.; Liu, Chao; Newberg, Heidi Jo
Here, we present a method to estimate distances to stars with spectroscopically derived stellar parameters. The technique is a Bayesian approach with likelihood estimated via comparison of measured parameters to a grid of stellar isochrones, and returns a posterior probability density function for each star's absolute magnitude. We tailor this technique specifically to data from the Large Sky Area Multi-object Fiber Spectroscopic Telescope (LAMOST) survey. Because LAMOST obtains roughly 3000 stellar spectra simultaneously within each ~5-degree diameter "plate" that is observed, we can use the stellar parameters of the observed stars to account for the stellar luminosity function and targetmore » selection effects. This removes biasing assumptions about the underlying populations, both due to predictions of the luminosity function from stellar evolution modeling, and from Galactic models of stellar populations along each line of sight. Using calibration data of stars with known distances and stellar parameters, we show that our method recovers distances for most stars within ~20%, but with some systematic overestimation of distances to halo giants. We apply our code to the LAMOST database, and show that the current precision of LAMOST stellar parameters permits measurements of distances with ~40% error bars. This precision should improve as the LAMOST data pipelines continue to be refined.« less
VizieR Online Data Catalog: STAGGER-grid of 3D stellar models. V. (Chiavassa+, 2018)
NASA Astrophysics Data System (ADS)
Chiavassa, A.; Casagrande, L.; Collet, R.; Magic, Z.; Bigot, L.; Thevenin, F.; Asplund, M.
2018-01-01
Table B0: RHD simulations' stellar parameters, bolometric magnitude, and bolometric correction for Johnson-Cousins, 2MASS, SDSS (columns 13 to 17), and Gaia systems Table 4: RHD simulations' stellar parameters, bolometric magnitude, and bolometric correction for SkyMapper photometric system, and Stroemgren index b-y, m1=(v-b)-(b-y), and c1=(u-v)-(v-b) Table 5: RHD simulations' stellar parameters, bolometric magnitude, and bolometric correction for the HST-WFC3 in VEGA system Table 6: RHD simulations' stellar parameters, bolometric magnitude, and bolometric correction for the HST-WFC3 in ST system Table 7: RHD simulations' stellar parameters, bolometric magnitude, and bolometric correction for the HST-WFC3 in AB system (5 data files).
NASA Astrophysics Data System (ADS)
Marulli, F.; Bolzonella, M.; Branchini, E.; Davidzon, I.; de la Torre, S.; Granett, B. R.; Guzzo, L.; Iovino, A.; Moscardini, L.; Pollo, A.; Abbas, U.; Adami, C.; Arnouts, S.; Bel, J.; Bottini, D.; Cappi, A.; Coupon, J.; Cucciati, O.; De Lucia, G.; Fritz, A.; Franzetti, P.; Fumana, M.; Garilli, B.; Ilbert, O.; Krywult, J.; Le Brun, V.; Le Fèvre, O.; Maccagni, D.; Małek, K.; McCracken, H. J.; Paioro, L.; Polletta, M.; Schlagenhaufer, H.; Scodeggio, M.; Tasca, L. A. M.; Tojeiro, R.; Vergani, D.; Zanichelli, A.; Burden, A.; Di Porto, C.; Marchetti, A.; Marinoni, C.; Mellier, Y.; Nichol, R. C.; Peacock, J. A.; Percival, W. J.; Phleps, S.; Wolk, M.; Zamorani, G.
2013-09-01
Aims: We investigate the dependence of galaxy clustering on luminosity and stellar mass in the redshift range 0.5 < z < 1.1, using the first ~ 55 000 redshifts from the VIMOS Public Extragalactic Redshift Survey (VIPERS). Methods: We measured the redshift-space two-point correlation functions (2PCF), ξ(s) and ξ(rp,π) , and the projected correlation function, wp(rp), in samples covering different ranges of B-band absolute magnitudes and stellar masses. We considered both threshold and binned galaxy samples, with median B-band absolute magnitudes - 21.6 ≲ MB - 5log (h) ≲ - 19.5 and median stellar masses 9.8 ≲ log (M⋆ [h-2 M⊙]) ≲ 10.7. We assessed the real-space clustering in the data from the projected correlation function, which we model as a power law in the range 0.2 < rp [h-1 Mpc ] < 20. Finally, we estimated the galaxy bias as a function of luminosity, stellar mass, and redshift, assuming a flat Λ cold dark matter model to derive the dark matter 2PCF. Results: We provide the best-fit parameters of the power-law model assumed for the real-space 2PCF - the correlation length, r0, and the slope, γ - as well as the linear bias parameter, as a function of the B-band absolute magnitude, stellar mass, and redshift. We confirm and provide the tightest constraints on the dependence of clustering on luminosity at 0.5 < z < 1.1. We prove the complexity of comparing the clustering dependence on stellar mass from samples that are originally flux-limited and discuss the possible origin of the observed discrepancies. Overall, our measurements provide stronger constraints on galaxy formation models, which are now required to match, in addition to local observations, the clustering evolution measured by VIPERS galaxies between z = 0.5 and z = 1.1 for a broad range of luminosities and stellar masses. Based on observations collected at the European Southern Observatory, Paranal, Chile, under programmes 182.A-0886 (LP) at the Very Large Telescope, and also based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council (NRC) of Canada, the Institut National des Science de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii. This work is based in part on data products produced at TERAPIX and the Canadian Astronomy Data Centre as part of the Canada-France-Hawaii Telescope Legacy Survey, a collaborative project of NRC and CNRS. The VIPERS web site is http://vipers.inaf.it/
NASA Astrophysics Data System (ADS)
Stello, Dennis; Chaplin, William J.; Bruntt, Hans; Creevey, Orlagh L.; García-Hernández, Antonio; Monteiro, Mario J. P. F. G.; Moya, Andrés; Quirion, Pierre-Olivier; Sousa, Sergio G.; Suárez, Juan-Carlos; Appourchaux, Thierry; Arentoft, Torben; Ballot, Jerome; Bedding, Timothy R.; Christensen-Dalsgaard, Jørgen; Elsworth, Yvonne; Fletcher, Stephen T.; García, Rafael A.; Houdek, Günter; Jiménez-Reyes, Sebastian J.; Kjeldsen, Hans; New, Roger; Régulo, Clara; Salabert, David; Toutain, Thierry
2009-08-01
For distant stars, as observed by the NASA Kepler satellite, parallax information is currently of fairly low quality and is not complete. This limits the precision with which the absolute sizes of the stars and their potential transiting planets can be determined by traditional methods. Asteroseismology will be used to aid the radius determination of stars observed during NASA's Kepler mission. We report on the recent asteroFLAG hare-and-hounds Exercise#2, where a group of "hares" simulated data of F-K main-sequence stars that a group of "hounds" sought to analyze, aimed at determining the stellar radii. We investigated stars in the range 9 < V < 15, both with and without parallaxes. We further test different uncertainties in T eff, and compare results with and without using asteroseismic constraints. Based on the asteroseismic large frequency spacing, obtained from simulations of 4 yr time series data from the Kepler mission, we demonstrate that the stellar radii can be correctly and precisely determined, when combined with traditional stellar parameters from the Kepler Input Catalogue. The radii found by the various methods used by each independent hound generally agree with the true values of the artificial stars to within 3%, when the large frequency spacing is used. This is 5-10 times better than the results where seismology is not applied. These results give strong confidence that radius estimation can be performed to better than 3% for solar-like stars using automatic pipeline reduction. Even when the stellar distance and luminosity are unknown we can obtain the same level of agreement. Given the uncertainties used for this exercise we find that the input log g and parallax do not help to constrain the radius, and that T eff and metallicity are the only parameters we need in addition to the large frequency spacing. It is the uncertainty in the metallicity that dominates the uncertainty in the radius.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wünsch, R.; Palouš, J.; Ehlerová, S.
We study a model of rapidly cooling shocked stellar winds in young massive clusters and estimate the circumstances under which secondary star formation, out of the reinserted winds from a first stellar generation (1G), is possible. We have used two implementations of the model: a highly idealized, computationally inexpensive, spherically symmetric semi-analytic model, and a complex, three-dimensional radiation-hydrodynamic, simulation; they are in a good mutual agreement. The results confirm our previous findings that, in a cluster with 1G mass 10{sup 7} M {sub ⊙} and half-mass–radius 2.38 pc, the shocked stellar winds become thermally unstable, collapse into dense gaseous structuresmore » that partially accumulate inside the cluster, self-shield against ionizing stellar radiation, and form the second generation (2G) of stars. We have used the semi-analytic model to explore a subset of the parameter space covering a wide range of the observationally poorly constrained parameters: the heating efficiency, η {sub he}, and the mass loading, η {sub ml}. The results show that the fraction of the 1G stellar winds accumulating inside the cluster can be larger than 50% if η {sub he} ≲ 10%, which is suggested by the observations. Furthermore, for low η {sub he}, the model provides a self-consistent mechanism predicting 2G stars forming only in the central zones of the cluster. Finally, we have calculated the accumulated warm gas emission in the H30 α recombination line, analyzed its velocity profile, and estimated its intensity for super star clusters in interacting galaxies NGC4038/9 (Antennae) showing that the warm gas should be detectable with ALMA.« less
A NEW METHOD FOR DERIVING THE STELLAR BIRTH FUNCTION OF RESOLVED STELLAR POPULATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gennaro, M.; Brown, T. M.; Gordon, K. D.
We present a new method for deriving the stellar birth function (SBF) of resolved stellar populations. The SBF (stars born per unit mass, time, and metallicity) is the combination of the initial mass function (IMF), the star formation history (SFH), and the metallicity distribution function (MDF). The framework of our analysis is that of Poisson Point Processes (PPPs), a class of statistical models suitable when dealing with points (stars) in a multidimensional space (the measurement space of multiple photometric bands). The theory of PPPs easily accommodates the modeling of measurement errors as well as that of incompleteness. Our method avoidsmore » binning stars in the color–magnitude diagram and uses the whole likelihood function for each data point; combining the individual likelihoods allows the computation of the posterior probability for the population's SBF. Within the proposed framework it is possible to include nuisance parameters, such as distance and extinction, by specifying their prior distributions and marginalizing over them. The aim of this paper is to assess the validity of this new approach under a range of assumptions, using only simulated data. Forthcoming work will show applications to real data. Although it has a broad scope of possible applications, we have developed this method to study multi-band Hubble Space Telescope observations of the Milky Way Bulge. Therefore we will focus on simulations with characteristics similar to those of the Galactic Bulge.« less
FITspec: A New Algorithm for the Automated Fit of Synthetic Stellar Spectra for OB Stars
NASA Astrophysics Data System (ADS)
Fierro-Santillán, Celia R.; Zsargó, Janos; Klapp, Jaime; Díaz-Azuara, Santiago A.; Arrieta, Anabel; Arias, Lorena; Sigalotti, Leonardo Di G.
2018-06-01
In this paper we describe the FITspec code, a data mining tool for the automatic fitting of synthetic stellar spectra. The program uses a database of 27,000 CMFGEN models of stellar atmospheres arranged in a six-dimensional (6D) space, where each dimension corresponds to one model parameter. From these models a library of 2,835,000 synthetic spectra were generated covering the ultraviolet, optical, and infrared regions of the electromagnetic spectrum. Using FITspec we adjust the effective temperature and the surface gravity. From the 6D array we also get the luminosity, the metallicity, and three parameters for the stellar wind: the terminal velocity ({v}∞ ), the β exponent of the velocity law, and the clumping filling factor (F cl). Finally, the projected rotational velocity (v\\cdot \\sin i) can be obtained from the library of stellar spectra. Validation of the algorithm was performed by analyzing the spectra of a sample of eight O-type stars taken from the IACOB spectroscopic survey of Northern Galactic OB stars. The spectral lines used for the adjustment of the analyzed stars are reproduced with good accuracy. In particular, the effective temperatures calculated with the FITspec are in good agreement with those derived from spectral type and other calibrations for the same stars. The stellar luminosities and projected rotational velocities are also in good agreement with previous quantitative spectroscopic analyses in the literature. An important advantage of FITspec over traditional codes is that the time required for spectral analyses is reduced from months to a few hours.
Multiple Climate States of Habitable Exoplanets: The Role of Obliquity and Irradiance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kilic, C.; Raible, C. C.; Stocker, T. F., E-mail: stocker@climate.unibe.ch
Stable, steady climate states on an Earth-size planet with no continents are determined as a function of the tilt of the planet’s rotation axis (obliquity) and stellar irradiance. Using a general circulation model of the atmosphere coupled to a slab ocean and a thermodynamic sea ice model, two states, the Aquaplanet and the Cryoplanet, are found for high and low stellar irradiance, respectively. In addition, four stable states with seasonally and perennially open water are discovered if comprehensively exploring a parameter space of obliquity from 0° to 90° and stellar irradiance from 70% to 135% of the present-day solar constant.more » Within 11% of today’s solar irradiance, we find a rich structure of stable states that extends the area of habitability considerably. For the same set of parameters, different stable states result if simulations are initialized from an aquaplanet or a cryoplanet state. This demonstrates the possibility of multiple equilibria, hysteresis, and potentially rapid climate change in response to small changes in the orbital parameters. The dynamics of the atmosphere of an aquaplanet or a cryoplanet state is investigated for similar values of obliquity and stellar irradiance. The atmospheric circulation substantially differs in the two states owing to the relative strength of the primary drivers of the meridional transport of heat and momentum. At 90° obliquity and present-day solar constant, the atmospheric dynamics of an Aquaplanet state and one with an equatorial ice cover is analyzed.« less
Multiple Climate States of Habitable Exoplanets: The Role of Obliquity and Irradiance
NASA Astrophysics Data System (ADS)
Kilic, C.; Raible, C. C.; Stocker, T. F.
2017-08-01
Stable, steady climate states on an Earth-size planet with no continents are determined as a function of the tilt of the planet’s rotation axis (obliquity) and stellar irradiance. Using a general circulation model of the atmosphere coupled to a slab ocean and a thermodynamic sea ice model, two states, the Aquaplanet and the Cryoplanet, are found for high and low stellar irradiance, respectively. In addition, four stable states with seasonally and perennially open water are discovered if comprehensively exploring a parameter space of obliquity from 0° to 90° and stellar irradiance from 70% to 135% of the present-day solar constant. Within 11% of today’s solar irradiance, we find a rich structure of stable states that extends the area of habitability considerably. For the same set of parameters, different stable states result if simulations are initialized from an aquaplanet or a cryoplanet state. This demonstrates the possibility of multiple equilibria, hysteresis, and potentially rapid climate change in response to small changes in the orbital parameters. The dynamics of the atmosphere of an aquaplanet or a cryoplanet state is investigated for similar values of obliquity and stellar irradiance. The atmospheric circulation substantially differs in the two states owing to the relative strength of the primary drivers of the meridional transport of heat and momentum. At 90° obliquity and present-day solar constant, the atmospheric dynamics of an Aquaplanet state and one with an equatorial ice cover is analyzed.
PLUTO'S SEASONS: NEW PREDICTIONS FOR NEW HORIZONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young, L. A.
Since the last Pluto volatile transport models were published in 1996, we have (1) new stellar occultation data from 2002 and 2006-2012 that show roughly twice the pressure as the first definitive occultation from 1988, (2) new information about the surface properties of Pluto, (3) a spacecraft due to arrive at Pluto in 2015, and (4) a new volatile transport model that is rapid enough to allow a large parameter-space search. Such a parameter-space search coarsely constrained by occultation results reveals three broad solutions: a high-thermal inertia, large volatile inventory solution with permanent northern volatiles (PNVs; using the rotational northmore » pole convention); a lower thermal-inertia, smaller volatile inventory solution with exchanges of volatiles between hemispheres and a pressure plateau beyond 2015 (exchange with pressure plateau, EPP); and solutions with still smaller volatile inventories, with exchanges of volatiles between hemispheres and an early collapse of the atmosphere prior to 2015 (exchange with early collapse, EEC). PNV and EPP are favored by stellar occultation data, but EEC cannot yet be definitively ruled out without more atmospheric modeling or additional occultation observations and analysis.« less
RAVE-Gaia and the impact on Galactic archeology
NASA Astrophysics Data System (ADS)
Kunder, Andrea
2018-04-01
The new data release (DR5) of the RAdial Velocity Experiment (RAVE) includes radial velocities of 520,781 spectra of 457,588 individual stars, of which 215,590 individual stars are released in the Tycho-Gaia astrometric solution (TGAS) in Gaia DR1. Therefore, RAVE contains the largest TGAS overlap of the recent and ongoing Milky Way spectroscopic surveys. Most of the RAVE stars also contain stellar parameters (effective temperature, surface gravity, overall metallicity), as well as individual abundances for Mg, Al, Si, Ca, Ti, Fe, and Ni. Combining RAVE with TGAS brings the uncertainties in space velocities down by a factor of 2 for stars in the RAVE volume - 10 km s-1 uncertainties in space velocities are now able to be derived for the majority (70%) of the RAVE-TGAS sample, providing a powerful platform for chemo-dynamic analyses of the Milky Way. Here we discuss the RAVE-TGAS impact on Galactic archaeology as well as how the Gaia parallaxes can be used to break degeneracies within the RAVE spectral regime for an even better return in the derivation of stellar parameters and abundances.
Deriving stellar parameters with the SME software package
NASA Astrophysics Data System (ADS)
Piskunov, N.
2017-09-01
Photometry and spectroscopy are complementary tools for deriving accurate stellar parameters. Here I present one of the popular packages for stellar spectroscopy called SME with the emphasis on the latest developments and error assessment for the derived parameters.
NASA Astrophysics Data System (ADS)
Cabrera, J.; Csizmadia, Sz.; Montagnier, G.; Fridlund, M.; Ammler-von Eiff, M.; Chaintreuil, S.; Damiani, C.; Deleuil, M.; Ferraz-Mello, S.; Ferrigno, A.; Gandolfi, D.; Guillot, T.; Guenther, E. W.; Hatzes, A.; Hébrard, G.; Klagyivik, P.; Parviainen, H.; Pasternacki, Th.; Pätzold, M.; Sebastian, D.; Tadeu dos Santos, M.; Wuchterl, G.; Aigrain, S.; Alonso, R.; Almenara, J.-M.; Armstrong, J. D.; Auvergne, M.; Baglin, A.; Barge, P.; Barros, S. C. C.; Bonomo, A. S.; Bordé, P.; Bouchy, F.; Carpano, S.; Chaffey, C.; Deeg, H. J.; Díaz, R. F.; Dvorak, R.; Erikson, A.; Grziwa, S.; Korth, J.; Lammer, H.; Lindsay, C.; Mazeh, T.; Moutou, C.; Ofir, A.; Ollivier, M.; Pallé, E.; Rauer, H.; Rouan, D.; Samuel, B.; Santerne, A.; Schneider, J.
2015-07-01
Context. We present the discovery of two transiting extrasolar planets by the satellite CoRoT. Aims: We aim at a characterization of the planetary bulk parameters, which allow us to further investigate the formation and evolution of the planetary systems and the main properties of the host stars. Methods: We used the transit light curve to characterize the planetary parameters relative to the stellar parameters. The analysis of HARPS spectra established the planetary nature of the detections, providing their masses. Further photometric and spectroscopic ground-based observations provided stellar parameters (log g, Teff, v sin i) to characterize the host stars. Our model takes the geometry of the transit to constrain the stellar density into account, which when linked to stellar evolutionary models, determines the bulk parameters of the star. Because of the asymmetric shape of the light curve of one of the planets, we had to include the possibility in our model that the stellar surface was not strictly spherical. Results: We present the planetary parameters of CoRoT-28b, a Jupiter-sized planet (mass 0.484 ± 0.087 MJup; radius 0.955 ± 0.066 RJup) orbiting an evolved star with an orbital period of 5.208 51 ± 0.000 38 days, and CoRoT-29b, another Jupiter-sized planet (mass 0.85 ± 0.20 MJup; radius 0.90 ± 0.16 RJup) orbiting an oblate star with an orbital period of 2.850 570 ± 0.000 006 days. The reason behind the asymmetry of the transit shape is not understood at this point. Conclusions: These two new planetary systems have very interesting properties and deserve further study, particularly in the case of the star CoRoT-29. The CoRoT space mission, launched on December 27th 2006, was developed and is operated by CNES, with the contribution of Austria, Belgium, Brazil, ESA (RSSD and Science Programme), Germany, and Spain. Based on observations obtained with the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias, in time allocated by OPTICON and the Spanish Time Allocation Committee (CAT). The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement number RG226604 (OPTICON). This work makes use of observations from the LCOGT network.Appendices are available in electronic form at http://www.aanda.org
Algorithms for Stellar Perturbation Computations on Oort Cloud Comets
NASA Astrophysics Data System (ADS)
Rickman, Hans; Fouchard, Marc; Valsecchi, Giovanni B.; Froeschlé, Christiane
2005-12-01
We investigate different approximate methods of computing the perturbations on the orbits of Oort cloud comets caused by passing stars, by checking them against an accurate numerical integration using Everhart’s RA15 code. The scenario under study is the one relevant for long-term simulations of the cloud’s response to a predefined set of stellar passages. Our sample of stellar encounters simulates those experienced by the Solar System currently, but extrapolated over a time of 1010 years. We measure the errors of perihelion distance perturbations for high-eccentricity orbits introduced by several estimators including the classical impulse approximation and Dybczyński’s (1994, Celest. Mech. Dynam. Astron. 58, 1330 1338) method and we study how they depend on the encounter parameters (approach distance and relative velocity). We introduce a sequential variant of Dybczyński’s approach, cutting the encounter into several steps whereby the heliocentric motion of the comet is taken into account. For the scenario at hand this is found to offer an efficient means to obtain accurate results for practically any domain of the parameter space.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ouellette, Nathalie N.-Q.; Courteau, Stéphane; Holtzman, Jon A.
We present parameter distributions and fundamental scaling relations for 190 Virgo cluster galaxies in the SHIVir survey. The distribution of galaxy velocities is bimodal about V {sub circ} ∼ 125 km s{sup −1}, hinting at the existence of dynamically unstable modes in the inner regions of galaxies. An analysis of the Tully-Fisher relation (TFR) of late-type galaxies (LTGs) and the fundamental plane (FP) of early-type galaxies (ETGs) is presented, yielding a compendium of galaxy scaling relations. The slope and zero-point of the Virgo TFR match those of field galaxies, while scatter differences likely reflect distinct evolutionary histories. The velocities minimizingmore » scatter for the TFR and FP are measured at large apertures where the baryonic fraction becomes subdominant. While TFR residuals remain independent of any galaxy parameters, FP residuals (i.e., the FP “tilt”) correlate strongly with the dynamical-to-stellar mass ratio, yielding stringent galaxy formation constraints. We construct a stellar-to-total mass relation (STMR) for ETGs and LTGs and find linear but distinct trends over the range M {sub *} = 10{sup 8–11} M {sub ⊙}. Stellar-to-halo mass relations (SHMRs), which probe the extended dark matter halo, can be scaled down to masses estimated within the optical radius, showing a tight match with the Virgo STMR at low masses; possibly inadequate halo abundance matching prescriptions and broad radial scalings complicate this comparison at all masses. While ETGs appear to be more compact than LTGs of the same stellar mass in projected space, their mass-size relations in physical space are identical. The trends reported here may soon be validated through well-resolved numerical simulations.« less
CCFpams: Atmospheric stellar parameters from cross-correlation functions
NASA Astrophysics Data System (ADS)
Malavolta, Luca; Lovis, Christophe; Pepe, Francesco; Sneden, Christopher; Udry, Stephane
2017-07-01
CCFpams allows the measurement of stellar temperature, metallicity and gravity within a few seconds and in a completely automated fashion. Rather than performing comparisons with spectral libraries, the technique is based on the determination of several cross-correlation functions (CCFs) obtained by including spectral features with different sensitivity to the photospheric parameters. Literature stellar parameters of high signal-to-noise (SNR) and high-resolution HARPS spectra of FGK Main Sequence stars are used to calibrate the stellar parameters as a function of CCF areas.
A family of models for spherical stellar systems
NASA Technical Reports Server (NTRS)
Tremaine, Scott; Richstone, Douglas O.; Byun, Yong-Ik; Dressler, Alan; Faber, S. M.; Grillmair, Carl; Kormendy, John; Lauer, Tod R.
1994-01-01
We describe a one-parameter family of models of stable sperical stellar systems in which the phase-space distribution function depends only on energy. The models have similar density profiles in their outer parts (rho propotional to r(exp -4)) and central power-law density cusps, rho proportional to r(exp 3-eta), 0 less than eta less than or = 3. The family contains the Jaffe (1983) and Hernquist (1990) models as special cases. We evaluate the surface brightness profile, the line-of-sight velocity dispersion profile, and the distribution function, and discuss analogs of King's core-fitting formula for determining mass-to-light ratio. We also generalize the models to a two-parameter family, in which the galaxy contains a central black hole; the second parameter is the mass of the black hole. Our models can be used to estimate the detectability of central black holes and the velocity-dispersion profiles of galaxies that contain central cusps, with or without a central black hole.
Early 2017 observations of TRAPPIST-1 with Spitzer
NASA Astrophysics Data System (ADS)
Delrez, L.; Gillon, M.; Triaud, A. H. M. J.; Demory, B.-O.; de Wit, J.; Ingalls, J. G.; Agol, E.; Bolmont, E.; Burdanov, A.; Burgasser, A. J.; Carey, S. J.; Jehin, E.; Leconte, J.; Lederer, S.; Queloz, D.; Selsis, F.; Van Grootel, V.
2018-04-01
The recently detected TRAPPIST-1 planetary system, with its seven planets transiting a nearby ultracool dwarf star, offers the first opportunity to perform comparative exoplanetology of temperate Earth-sized worlds. To further advance our understanding of these planets' compositions, energy budgets, and dynamics, we are carrying out an intensive photometric monitoring campaign of their transits with the Spitzer Space Telescope. In this context, we present 60 new transits of the TRAPPIST-1 planets observed with Spitzer/Infrared Array Camera (IRAC) in 2017 February and March. We combine these observations with previously published Spitzer transit photometry and perform a global analysis of the resulting extensive data set. This analysis refines the transit parameters and provides revised values for the planets' physical parameters, notably their radii, using updated properties for the star. As part of our study, we also measure precise transit timings that will be used in a companion paper to refine the planets' masses and compositions using the transit timing variations method. TRAPPIST-1 shows a very low level of low-frequency variability in the IRAC 4.5-μm band, with a photometric RMS of only 0.11 per cent at a 123-s cadence. We do not detect any evidence of a (quasi-)periodic signal related to stellar rotation. We also analyse the transit light curves individually, to search for possible variations in the transit parameters of each planet due to stellar variability, and find that the Spitzer transits of the planets are mostly immune to the effects of stellar variations. These results are encouraging for forthcoming transmission spectroscopy observations of the TRAPPIST-1 planets with the James Webb Space Telescope.
Early type galaxies: Mapping out the two-dimensional space of galaxy star formation histories
NASA Astrophysics Data System (ADS)
Graves, Genevieve J.
Early type galaxies form a multi-parameter family, as evidenced by the two- dimensional (2-D) Fundamental Plane relationship. However, their star formation histories are often treated as a one-dimensional mass sequence. This dissertation presents a systematic study of the relationship between the multi- parameter structural properties of early type galaxies and their star formation histoires. We demonstrate that the stellar populations of early type galaxies span a 2-D space, which means that their star formation histories form a two- parameter family. This 2-D family is then mapped onto several familiar early type galaxy scaling relations, including the color-magnitude relation, the Fundamental Plane, and a cross-section through the Fundamental Plane. We find that the stellar population properties, and therefore the star formation histories of early type galaxies depend most strongly on galaxy velocity dispersion (s), rather than on luminosity ( L ), stellar mass ( M [low *] ), or dynamical mass ( M dyn ). Interestingly, stellar populations are independent of the radius ( R e ) of the galaxies. At fixed s, they show correlated residuals through the thickness of the Fundamental Plane (FP) in the surface-brightness ( I e ) dimension, such that low-surface-brightness galaxies are older, less metal-enriched, and more enhanced in Mg relative to Fe than their counterparts at the same s and R e on the FP midplane. Similarly, high- surface-brightness galaxies are younger, more metal-rich, and less Mg-enhanced than their counterparts on the FP midplane. These differences suggest that the duration of star formation varies through the thickness of the FP. If the dynamical mass-to-light ratios of early type galaxies ( M dyn /L ) were constant for all such galaxies, the FP would be equivalent to the plane predicted by the virial relation. However, the observed FP does not exactly match the virial plane. The FP is tilted from the virial plane, indicating that M dyn /L varies systematically across it. Furthermore the FP relation, although relatively tight, shows more scatter in surface brightness (at fixed s and R e ) than is predicted by observational errors. This finite thickness indicates that M dyn /L also varies at a fixed point on the FP. We observe that the stellar populations of early type galaxies vary through the thickness of the FP. These differences translate into variations in the stellar mass-to-light ratio ( M [low *] /L ) that contribute to both the tilt and the thickness of the FP. However, the mass-to-light variations due to stellar population differences are too small to explain either the tilt of the FP or its thickness. This implies that the tilt and thickness of the FP are driven by systematic variations in either the central dark matter fraction in galaxies or in the IMF with which they form stars. Furthermore, because star formation histories can be mapped onto locations in FP-space, the variations in central dark matter fraction or IMF differences must be correlated with differences in the galaxies' star formation histories.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leja, Joel; Johnson, Benjamin D.; Conroy, Charlie
2017-03-10
Broadband photometry of galaxies measures an unresolved mix of complex stellar populations, gas, and dust. Interpreting these data is a challenge for models: many studies have shown that properties derived from modeling galaxy photometry are uncertain by a factor of two or more, and yet answering key questions in the field now requires higher accuracy than this. Here, we present a new model framework specifically designed for these complexities. Our model, Prospector- α , includes dust attenuation and re-radiation, a flexible attenuation curve, nebular emission, stellar metallicity, and a six-component nonparametric star formation history. The flexibility and range of themore » parameter space, coupled with Monte Carlo Markov chain sampling within the Prospector inference framework, is designed to provide unbiased parameters and realistic error bars. We assess the accuracy of the model with aperture-matched optical spectroscopy, which was excluded from the fits. We compare spectral features predicted solely from fits to the broadband photometry to the observed spectral features. Our model predicts H α luminosities with a scatter of ∼0.18 dex and an offset of ∼0.1 dex across a wide range of morphological types and stellar masses. This agreement is remarkable, as the H α luminosity is dependent on accurate star formation rates, dust attenuation, and stellar metallicities. The model also accurately predicts dust-sensitive Balmer decrements, spectroscopic stellar metallicities, polycyclic aromatic hydrocarbon mass fractions, and the age- and metallicity-sensitive features D{sub n}4000 and H δ . Although the model passes all these tests, we caution that we have not yet assessed its performance at higher redshift or the accuracy of recovered stellar masses.« less
NASA Technical Reports Server (NTRS)
Madura, Thomas I.; Gull, Theodore R.; Owocki, Stanley P.; Okazaki, Atsuo T.; Russell, Christopher M. P.
2011-01-01
The extremely massive (> 90 Stellar Mass) and luminous (= 5 x 10(exp 6) Stellar Luminosity) star Eta Carinae, with its spectacular bipolar "Homunculus" nebula, comprises one of the most remarkable and intensely observed stellar systems in the Galaxy. However, many of its underlying physical parameters remain unknown. Multiwavelength variations observed to occur every 5.54 years are interpreted as being due to the collision of a massive wind from the primary star with the fast, less dense wind of a hot companion star in a highly elliptical (e approx. 0.9) orbit. Using three-dimensional (3-D) Smoothed Particle Hydrodynamics (SPH) simulations of the binary wind-wind collision, together with radiative transfer codes, we compute synthetic spectral images of [Fe III] emission line structures and compare them to existing Hubble Space Telescope/Space Telescope Imaging Spectrograph (HST/STIS) observations. We are thus able, for the first time, to tightly constrain the absolute orientation of the binary orbit on the sky. An orbit with an inclination of approx. 40deg, an argument of periapsis omega approx. 255deg, and a projected orbital axis with a position angle of approx. 312deg east of north provides the best fit to the observations, implying that the orbital axis is closely aligned in 3-D space with the Homunculus symmetry axis, and that the companion star orbits clockwise on the sky relative to the primary.
Photospheres of hot stars. IV - Spectral type O4
NASA Technical Reports Server (NTRS)
Bohannan, Bruce; Abbott, David C.; Voels, Stephen A.; Hummer, David G.
1990-01-01
The basic stellar parameters of a supergiant (Zeta Pup) and two main-sequence stars, 9 Sgr and HD 46223, at spectral class O4 are determined using line profile analysis. The stellar parameters are determined by comparing high signal-to-noise hydrogen and helium line profiles with those from stellar atmosphere models which include the effect of radiation scattered back onto the photosphere from an overlying stellar wind, an effect referred to as wind blanketing. At spectral class O4, the inclusion of wind-blanketing in the model atmosphere reduces the effective temperature by an average of 10 percent. This shift in effective temperature is also reflected by shifts in several other stellar parameters relative to previous O4 spectral-type calibrations. It is also shown through the analysis of the two O4 V stars that scatter in spectral type calibrations is introduced by assuming that the observed line profile reflects the photospheric stellar parameters.
Deriving stellar inclination of slow rotators using stellar activity signal
NASA Astrophysics Data System (ADS)
Dumusque, Xavier
2015-01-01
Stellar inclination is an important parameter for many astrophysical studies. In the context of exoplanets, this allows us to derive the true obliquity of a system if the projected stellar spin-planetary orbit angle can measured via the Rossiter-Mclaughlin effect. Although different techniques allow us to estimate stellar inclination for fast rotators, it becomes much more difficult when stars are rotating slower than 2-2.5 km.s-1. By using the new activity simulation SOAP 2.0 that can reproduce the photometric and spectroscopic variations induced by stellar activity, we are able to fit the activity variation of solar-type stars and derive their inclination. The case of the equator-on star HD189733 will be presented, as well as the case of Alpha Centauri B, which present an inclination of 45+9-19 degrees, implying that the earth-mass orbiting planet is not transiting if aligned with its host star. Other exemples will also demonstrate the power of the technique, that can infer a stellar inclination, even for slow rotators like Alpha Centauri B, that present a projected rotational velocity smaller than 1.15 km.s-1. In addition, the SOAP 2.0 simulation can be used to correct for the effect of activity when one major active region is dominating the RV signal. This could enhance the detection of small mass exoplanets orbiting slightly active stars.This project is funded by ETAEARTH (European Union Seventh Framework Programme (FP7/2007-2013) under Grant Agreement n. 313014), a transnational collaboration between European countries and the US (the Swiss Space Office, the Harvard Origin of Life Initiative, the Scottish Universities Physics Alliance, the University of Geneva, the Smithsonian Astrophysical Observatory, the Italian National Astrophysical Institute, the University of St. Andrews, Queens University Belfast, and the University of Edinburgh) setup to optimize the synergy between space-and ground-based data whose scientific potential for the characterization of extrasolar planets can only be fully exploited when analyzed together.
Hot Star Extension to the Hubble Space Telescope Stellar Spectral Library
NASA Astrophysics Data System (ADS)
Khan, Islam; Worthey, Guy
2017-01-01
CCD spectra of 36 stars were obtained from the Space Telescope Imaging Spectrograph (STIS) installed in the Hubble Space Telescope (HST) using three low resolution gratings - G230LB, G430L, and G750L, combined in processing to make single, continuous spectra from 0.2 to 1.0 micrometers. These spectra will be added to the Next Generation Stellar Library (NGSL) after completing the data analysis, reduction, and the required corrections. The stars include normal O-type stars, helium-burning stars, and post-asymptotic giant branch (PAGB) stars. Difficult steps in the data reduction process were removing the cosmic rays from the raw images and defringing of the G750L spectra using fringe flats. Most stars have detectable dust extinction. To aid in analysis, synthetic spectra were generated with various effective temperatures and surface gravities. A five parameter analytic model for the dust extinction correction was adopted. The parameters were varied in order to fit especially the ultraviolet portion of the observed and comparison synthetic spectra. Cross-correlation was used to bring the spectra to a common, final, zero velocity wavelength scale. Some star temperatures obtained from fitting synthetic versus observed spectra vary significantly from literature values. The dust extinction correction parameters also varied for several stars, mostly O stars, indicating variations in dust properties for different lines of sight. Analysis of scattered light effects showed that it was significant only for our two coolest stars.Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the data archive at the Space Telescope Science Institute. STScI is operated by the Association of Universities for Research in Astronomy, Inc. under NASA contract NAS 5-26555.Support for this work was provided by NASA through grant number HST-GO-14141 from the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555.
Recent advances in non-LTE stellar atmosphere models
NASA Astrophysics Data System (ADS)
Sander, Andreas A. C.
2017-11-01
In the last decades, stellar atmosphere models have become a key tool in understanding massive stars. Applied for spectroscopic analysis, these models provide quantitative information on stellar wind properties as well as fundamental stellar parameters. The intricate non-LTE conditions in stellar winds dictate the development of adequate sophisticated model atmosphere codes. The increase in both, the computational power and our understanding of physical processes in stellar atmospheres, led to an increasing complexity in the models. As a result, codes emerged that can tackle a wide range of stellar and wind parameters. After a brief address of the fundamentals of stellar atmosphere modeling, the current stage of clumped and line-blanketed model atmospheres will be discussed. Finally, the path for the next generation of stellar atmosphere models will be outlined. Apart from discussing multi-dimensional approaches, I will emphasize on the coupling of hydrodynamics with a sophisticated treatment of the radiative transfer. This next generation of models will be able to predict wind parameters from first principles, which could open new doors for our understanding of the various facets of massive star physics, evolution, and death.
NASA Astrophysics Data System (ADS)
Akeson, Rachel
Measuring the occurrence rate of extrasolar planets is one of the most fundamental constraints on our understanding of planets throughout the Galaxy. By studying planet populations across a wide parameter space in stellar age, type, metallicity, and multiplicity, we can inform planet formation, migration and evolution theories. The ground-based ELTs and the flagship space missions that NASA is planning in the next decades and beyond will be designed to make the first observations of potential biomarkers in the atmospheres of extrasolar planets understanding how common these planets and how they are distributed will be crucial for this effort. One of the most important results of the main Kepler mission was a measurement of the frequency of planets orbiting FGK dwarfs. Although that result is crucial for estimating the frequency of planetary systems orbiting middle-aged Sun-like stars, the majority of stars in the galaxy have lower masses. We propose to extend the Kepler occurrence rates to lower stellar masses by using publicly available data from the second-generation K2 mission to estimate the frequency of planets orbiting low-mass stars. The confluence of the lower temperature, smaller size, and relative abundance of M dwarfs makes them attractive and efficient targets for habitable planet detection and characterization. The archived K2 data contain nearly an order of magnitude more M dwarfs than the original Kepler data set ( 30,000 compared to 3700), allowing us to constrain occurrence rates both more precisely and with more granularity across the M dwarf parameter range. We will also take advantage of the wide variety of stellar environments sampled by the community-driven K2 mission to estimate the frequency of planets orbiting stars with a range of metallicities and ages. The K2 mission has observed several clusters across a wide range of ages, including the Upper Scorpius OB association (10My old), the Pleiades cluster (115My old), and the Hyades and Praesepe clusters (600My old). One goal of this proposal is to pinpoint when and if the planet occurrence rate converges with that of the Kepler field, whose stars have a median age of 4Gy. This will inform the timescales of the dominant formation and migration mechanisms, and improve our ability to discriminate between competing proposed theories. The proposed work encompasses the following tasks: (1) Generating and publishing a uniform, repeatable, robust catalogue of planet candidates using the publicly available K2 data comprising the first 33 months of observations; (2) Measuring the completeness (false negative rate) and reliability (false positive rate) of the resulting candidate catalogue; (3) Systematically and accurately characterizing the properties of the stellar sample (both exoplanet hosts and non-hosts); (4) Calculating the distribution of the underlying planet population across a wide range of stellar host parameters. The proposed work is relevant to several of NASA s strategic goals, including ascertaining the content, origin, and evolution of the solar system and the potential for life elsewhere , and discovering how the universe works, exploring how it began and evolved, and searching for life on planets around other stars . With respect to the Astrophysics Data Analysis Program call, the proposed work builds on the legacy of Kepler occurrence rate calculations by placing them in the wider context afforded by the publicly available K2 data.
Stellar Parameter Determination With J-Plus Using Artificial Neural Networks
NASA Astrophysics Data System (ADS)
Whitten, Devin D.
2017-10-01
The J-PLUS narrow-band filter system provides a unique opportunity for the determination of stellar parameters and chemical abundances from photometry alone. Mapping stellar magnitudes to estimates of surface temperature, [Fe/H], and [C/Fe] is an excellent application of machine learning and in particular, artificial neural networks (ANN). The logistics and performance of this ANN methodology is explored with the J-PLUS Early Data Release, as well as the potential impact of stellar parameters from J-PLUS on the field of Galactic chemical evolution.
THE SPACE WEATHER OF PROXIMA CENTAURI b
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garraffo, C.; Drake, J. J.; Cohen, O., E-mail: cgaraffo@cfa.harvard.edu
A planet orbiting in the “habitable zone” of our closest neighboring star, Proxima Centauri, has recently been discovered, and the next natural question is whether or not Proxima b is “habitable.” Stellar winds are likely a source of atmospheric erosion that could be particularly severe in the case of M dwarf habitable zone planets that reside close to their parent star. Here, we study the stellar wind conditions that Proxima b experiences over its orbit. We construct 3D MHD models of the wind and magnetic field around Proxima Centauri using a surface magnetic field map for a star of themore » same spectral type and scaled to match the observed ∼600 G surface magnetic field strength of Proxima. We examine the wind conditions and dynamic pressure over different plausible orbits that sample the constrained parameters of the orbit of Proxima b. For all the parameter space explored, the planet is subject to stellar wind pressures of more than 2000 times those experienced by Earth from the solar wind. During an orbit, Proxima b is also subject to pressure changes of 1–3 orders of magnitude on timescales of a day. Its magnetopause standoff distance consequently undergoes sudden and periodic changes by a factor of 2–5. Proxima b will traverse the interplanetary current sheet twice each orbit, and likely crosses into regions of subsonic wind quite frequently. These effects should be taken into account in any physically realistic assessment or prediction of its atmospheric reservoir, characteristics, and loss.« less
Theoretical Near-IR Spectra for Surface Abundance Studies of Massive Stars
NASA Technical Reports Server (NTRS)
Sonneborn, George; Bouret, J.
2011-01-01
We present initial results of a study of abundance and mass loss properties of O-type stars based on theoretical near-IR spectra computed with state-of-the-art stellar atmosphere models. The James Webb Space Telescope (JWST) will be a powerful tool to obtain high signal-to-noise ratio near-IR (1-5 micron) spectra of massive stars in different environments of local galaxies. Our goal is to analyze model near-IR spectra corresponding to those expected from NIRspec on JWST in order to map the wind properties and surface composition across the parameter range of 0 stars and to determine projected rotational velocities. As a massive star evolves, internal coupling, related mixing, and mass loss impact its intrinsic rotation rate. These three parameters form an intricate loop, where enhanced rotation leads to more mixing which in turn changes the mass loss rate, the latter thus affecting the rotation rate. Since the effects of rotation are expected to be much more pronounced at low metallicity, we pay special attention to models for massive stars in the the Small Magellanic Cloud. This galaxy provides a unique opportunity to probe stellar evolution, and the feedback of massive stars on galactic evol.ution in conditions similar to the epoch of maximal star formation. Plain-Language Abstract: We present initial results of a study of abundance and mass loss properties of massive stars based on theoretical near-infrared (1-5 micron) spectra computed with state-of-the-art stellar atmosphere models. This study is to prepare for observations by the James Webb Space Telescope.
Photodynamical modeling of hierarchical stellar system KOI-126
NASA Astrophysics Data System (ADS)
Earl, Nicholas Michael
The power and precision of the Kepler space telescope has provided the astrophysical field with a valuable insight into the dynamics of extra-solar systems. KOI-126 represents the first eclipsing hierarchical triple stellar system identified in the Kepler mission's photometry. The dynamics of the system are such that ascertaining the parameters of each body accurately (better than a few percent) is possible from the photometry alone. This allows determination of the characteristics while avoiding biases inherent in traditional studies of low-mass eclipsing systems. The parameter set for KOI-126 was originally reported on by Carter et al. and is uniquely composed of a low-mass binary, KOI-126 B and KOI-126 C. This pair orbits a third, more massive star KOI-126 A. The original analysis employed a full dynamical-photometric model, utilizing a Levenberg-Marquardt algorithm and least-squares minimization, to fit the short-cadence (i.e. successive 58.84 second cadence exposures) photometric data from the Kepler spacecraft captured over a period of 247 days. The updated catalog of short-cadence data now covers a span of 1,300 days. In light of the new data, and the valuable contribution accurately sampled fully-convective stars offer to theoretical stellar models, it is therefore relevant to refine the parameters of this system. Furthermore, with the ubiquity of multi-stellar systems, a well documented, portable, scalable computer modeling code for N-body systems is introduced. Thus, a new analysis is done on KOI-126 using this parallelized dynamical-photometric modeling package written in Python, based on Carter et al.'s original code, titled Pynamic. Pynamic allows the use of several fitting algorithms, but in this analysis utilizes the affine-invariant Markov chain Monte Carlo ensemble.
The Cannon: A data-driven approach to Stellar Label Determination
NASA Astrophysics Data System (ADS)
Ness, M.; Hogg, David W.; Rix, H.-W.; Ho, Anna. Y. Q.; Zasowski, G.
2015-07-01
New spectroscopic surveys offer the promise of stellar parameters and abundances (“stellar labels”) for hundreds of thousands of stars; this poses a formidable spectral modeling challenge. In many cases, there is a subset of reference objects for which the stellar labels are known with high(er) fidelity. We take advantage of this with The Cannon, a new data-driven approach for determining stellar labels from spectroscopic data. The Cannon learns from the “known” labels of reference stars how the continuum-normalized spectra depend on these labels by fitting a flexible model at each wavelength; then, The Cannon uses this model to derive labels for the remaining survey stars. We illustrate The Cannon by training the model on only 542 stars in 19 clusters as reference objects, with {T}{eff}, {log} g, and [{Fe}/{{H}}] as the labels, and then applying it to the spectra of 55,000 stars from APOGEE DR10. The Cannon is very accurate. Its stellar labels compare well to the stars for which APOGEE pipeline (ASPCAP) labels are provided in DR10, with rms differences that are basically identical to the stated ASPCAP uncertainties. Beyond the reference labels, The Cannon makes no use of stellar models nor any line-list, but needs a set of reference objects that span label-space. The Cannon performs well at lower signal-to-noise, as it delivers comparably good labels even at one-ninth the APOGEE observing time. We discuss the limitations of The Cannon and its future potential, particularly, to bring different spectroscopic surveys onto a consistent scale of stellar labels.
Stellar Wind Retention and Expulsion in Massive Star Clusters
NASA Astrophysics Data System (ADS)
Naiman, J. P.; Ramirez-Ruiz, E.; Lin, D. N. C.
2018-05-01
Mass and energy injection throughout the lifetime of a star cluster contributes to the gas reservoir available for subsequent episodes of star formation and the feedback energy budget responsible for ejecting material from the cluster. In addition, mass processed in stellar interiors and ejected as winds has the potential to augment the abundance ratios of currently forming stars, or stars which form at a later time from a retained gas reservoir. Here we present hydrodynamical simulations that explore a wide range of cluster masses, compactnesses, metallicities and stellar population age combinations in order to determine the range of parameter space conducive to stellar wind retention or wind powered gas expulsion in star clusters. We discuss the effects of the stellar wind prescription on retention and expulsion effectiveness, using MESA stellar evolutionary models as a test bed for exploring how the amounts of wind retention/expulsion depend upon the amount of mixing between the winds from stars of different masses and ages. We conclude by summarizing some implications for gas retention and expulsion in a variety of compact (σv ≳ 20 kms-1) star clusters including young massive star clusters (105 ≲ M/M⊙ ≲ 107, age ≲ 500 Myrs), intermediate age clusters (105 ≲ M/M⊙ ≲ 107, age ≈ 1 - 4 Gyrs), and globular clusters (105 ≲ M/M⊙ ≲ 107, age ≳ 10 Gyrs).
Taylor, Stephen R; Simon, Joseph; Sampson, Laura
2017-05-05
We introduce a technique for gravitational-wave analysis, where Gaussian process regression is used to emulate the strain spectrum of a stochastic background by training on population-synthesis simulations. This leads to direct Bayesian inference on astrophysical parameters. For pulsar timing arrays specifically, we interpolate over the parameter space of supermassive black-hole binary environments, including three-body stellar scattering, and evolving orbital eccentricity. We illustrate our approach on mock data, and assess the prospects for inference with data similar to the NANOGrav 9-yr data release.
NASA Astrophysics Data System (ADS)
Rybizki, Jan; Just, Andreas; Rix, Hans-Walter
2017-09-01
Elemental abundances of stars are the result of the complex enrichment history of their galaxy. Interpretation of observed abundances requires flexible modeling tools to explore and quantify the information about Galactic chemical evolution (GCE) stored in such data. Here we present Chempy, a newly developed code for GCE modeling, representing a parametrized open one-zone model within a Bayesian framework. A Chempy model is specified by a set of five to ten parameters that describe the effective galaxy evolution along with the stellar and star-formation physics: for example, the star-formation history (SFH), the feedback efficiency, the stellar initial mass function (IMF), and the incidence of supernova of type Ia (SN Ia). Unlike established approaches, Chempy can sample the posterior probability distribution in the full model parameter space and test data-model matches for different nucleosynthetic yield sets. It is essentially a chemical evolution fitting tool. We straightforwardly extend Chempy to a multi-zone scheme. As an illustrative application, we show that interesting parameter constraints result from only the ages and elemental abundances of the Sun, Arcturus, and the present-day interstellar medium (ISM). For the first time, we use such information to infer the IMF parameter via GCE modeling, where we properly marginalize over nuisance parameters and account for different yield sets. We find that 11.6+ 2.1-1.6% of the IMF explodes as core-collapse supernova (CC-SN), compatible with Salpeter (1955, ApJ, 121, 161). We also constrain the incidence of SN Ia per 103M⊙ to 0.5-1.4. At the same time, this Chempy application shows persistent discrepancies between predicted and observed abundances for some elements, irrespective of the chosen yield set. These cannot be remedied by any variations of Chempy's parameters and could be an indication of missing nucleosynthetic channels. Chempy could be a powerful tool to confront predictions from stellar nucleosynthesis with far more complex abundance data sets and to refine the physical processes governing the chemical evolution of stellar systems.
``Simplest Molecule'' Clarifies Modern Physics II. Relativistic Quantum Mechanics
NASA Astrophysics Data System (ADS)
Harter, William; Reimer, Tyle
2015-05-01
A ``simplest molecule'' consisting of CW- laser beam pairs helps to clarify relativity from poster board - I. In spite of a seemingly massless evanescence, an optical pair also clarifies classical and quantum mechanics of relativistic matter and antimatter. Logical extension of (x,ct) and (ω,ck) geometry gives relativistic action functions of Hamiltonian, Lagrangian, and Poincare that may be constructed in a few ruler-and-compass steps to relate relativistic parameters for group or phase velocity, momentum, energy, rapidity, stellar aberration, Doppler shifts, and DeBroglie wavelength. This exposes hyperbolic and circular trigonometry as two sides of one coin connected by Legendre contact transforms. One is Hamiltonian-like with a longitudinal rapidity parameter ρ (log of Doppler shift). The other is Lagrange-like with a transverse angle parameter σ (stellar aberration). Optical geometry gives recoil in absorption, emission, and resonant Raman-Compton acceleration and distinguishes Einstein rest mass, Galilean momentum mass, and Newtonian effective mass. (Molecular photons appear less bullet-like and more rocket-like.) In conclusion, modern space-time physics appears as a simple result of the more self-evident Evenson's axiom: ``All colors go c.''
"simplest Molecule" Clarifies Modern Physics II. Relativistic Quantum Mechanics
NASA Astrophysics Data System (ADS)
Reimer, T. C.; Harter, W. G.
2014-06-01
A "simplest molecule" consisting of CW-laser beam pairs helps to clarify relativity in Talk I. In spite of a seemingly massless evanescence, an optical pair also clarifies classical and quantum mechanics of relativistic matter and anti-matter. *Logical extension of (x,ct) and (ω,ck) geometry gives relativistic action functions of Hamiltonian, Lagrangian, and Poincare that may be constructed in a few ruler-and-compass steps to relate relativistic parameters for group or phase velocity, momentum, energy, rapidity, stellar aberration, Doppler shifts, and DeBroglie wavelength. This exposes hyperbolic and circular trigonometry as two sides of one coin connected by Legendre contact transforms. One is Hamiltonian-like with a longitudinal rapidity parameter ρ (log of Doppler shift). The other is Lagrange-like with a transverse angle parameter σ (stellar aberration). Optical geometry gives recoil in absorption, emission, and resonant Raman-Compton acceleration and distinguishes Einstein rest mass, Galilean momentum mass, and Newtonian effective mass. (Molecular photons appear less bullet-like and more rocket-like.) In conclusion, modern space-time physics appears as a simple result of the more self-evident Evenson's axiom: "All colors go c."
NASA Astrophysics Data System (ADS)
Ghezzi, Luan; Montet, Benjamin T.; Johnson, John Asher
2018-06-01
Exoplanet surveys of evolved stars have provided increasing evidence that the formation of giant planets depends not only on stellar metallicity ([Fe/H]) but also on the mass ({M}\\star ). However, measuring accurate masses for subgiants and giants is far more challenging than it is for their main-sequence counterparts, which has led to recent concerns regarding the veracity of the correlation between stellar mass and planet occurrence. In order to address these concerns, we use HIRES spectra to perform a spectroscopic analysis on a sample of 245 subgiants and derive new atmospheric and physical parameters. We also calculate the space velocities of this sample in a homogeneous manner for the first time. When reddening corrections are considered in the calculations of stellar masses and a ‑0.12 {M}ȯ offset is applied to the results, the masses of the subgiants are consistent with their space velocity distributions, contrary to claims in the literature. Similarly, our measurements of their rotational velocities provide additional confirmation that the masses of subgiants with {M}\\star ≥slant 1.6 M ⊙ (the “retired A stars”) have not been overestimated in previous analyses. Using these new results for our sample of evolved stars, together with an updated sample of FGKM dwarfs, we confirm that giant planet occurrence increases with both stellar mass and metallicity up to 2.0 M ⊙. We show that the probability of formation of a giant planet is approximately a one-to-one function of the total amount of metals in the protoplanetary disk {M}\\star {10}[{Fe/{{H}}]}. This correlation provides additional support for the core accretion mechanism of planet formation.
Space Weather: Linking Stellar Explosions to the Human Endeavor
NASA Astrophysics Data System (ADS)
Knipp, Delores
2017-06-01
Arguably humans have flourished as a result of stellar explosions; we are, after all, stardust. Nonetheless, rapid technology advances of the last 200 years sometimes put society and individuals on a collision course with the natural variability of stellar and solar atmospheres. Human space exploration, routine satellite navigation system applications, aviation safety, and electric power grids are examples of such vulnerable endeavors. In this presentation I will outline how global society relies on ‘normal’ solar and stellar emissions, yet becomes susceptible to extremes of these emissions. The imprints of these astronomical-terrestrial interactions abound. In particular, I will highlight ways in which stellar/solar bursts link with our space-atmosphere-interaction region, producing multi-year patterns in cosmic ray detection, gorgeous aurora, and deep concern for good order and function of global community.
The Detectability of Radio Auroral Emission from Proxima b
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burkhart, Blakesley; Loeb, Abraham
Magnetically active stars possess stellar winds whose interactions with planetary magnetic fields produce radio auroral emission. We examine the detectability of radio auroral emission from Proxima b, the closest known exosolar planet orbiting our nearest neighboring star, Proxima Centauri. Using the radiometric Bode’s law, we estimate the radio flux produced by the interaction of Proxima Centauri’s stellar wind and Proxima b’s magnetosphere for different planetary magnetic field strengths. For plausible planetary masses, Proxima b could produce radio fluxes of 100 mJy or more in a frequency range of 0.02–3 MHz for planetary magnetic field strengths of 0.007–1 G. According tomore » recent MHD models that vary the orbital parameters of the system, this emission is expected to be highly variable. This variability is due to large fluctuations in the size of Proxima b’s magnetosphere as it crosses the equatorial streamer regions of dense stellar wind and high dynamic pressure. Using the MHD model of Garraffo et al. for the variation of the magnetosphere radius during the orbit, we estimate that the observed radio flux can vary nearly by an order of magnitude over the 11.2-day period of Proxima b. The detailed amplitude variation depends on the stellar wind, orbital, and planetary magnetic field parameters. We discuss observing strategies for proposed future space-based observatories to reach frequencies below the ionospheric cutoff (∼10 MHz), which would be required to detect the signal we investigate.« less
NASA Astrophysics Data System (ADS)
Sharma, Sanjib; Stello, Dennis; Buder, Sven; Kos, Janez; Bland-Hawthorn, Joss; Asplund, Martin; Duong, Ly; Lin, Jane; Lind, Karin; Ness, Melissa; Huber, Daniel; Zwitter, Tomaz; Traven, Gregor; Hon, Marc; Kafle, Prajwal R.; Khanna, Shourya; Saddon, Hafiz; Anguiano, Borja; Casey, Andrew R.; Freeman, Ken; Martell, Sarah; De Silva, Gayandhi M.; Simpson, Jeffrey D.; Wittenmyer, Rob A.; Zucker, Daniel B.
2018-01-01
The Transiting Exoplanet Survey Satellite (TESS) will provide high-precision time series photometry for millions of stars with at least a half-hour cadence. Of particular interest are the circular regions of 12° radius centred around the ecliptic poles that will be observed continuously for a full year. Spectroscopic stellar parameters are desirable to characterize and select suitable targets for TESS, whether they are focused on exploring exoplanets, stellar astrophysics or Galactic archaeology. Here, we present spectroscopic stellar parameters (Teff, log g, [Fe/H], v sin i, vmicro) for about 16 000 dwarf and subgiant stars in TESS' southern continuous viewing zone. For almost all the stars, we also present Bayesian estimates of stellar properties including distance, extinction, mass, radius and age using theoretical isochrones. Stellar surface gravity and radius are made available for an additional set of roughly 8500 red giants. All our target stars are in the range 10 < V < 13.1. Among them, we identify and list 227 stars belonging to the Large Magellanic Cloud. The data were taken using the High Efficiency and Resolution Multi-Element Spectrograph (HERMES; R ∼ 28 000) at the Anglo-Australian Telescope as part of the TESS-HERMES survey. Comparing our results with the TESS Input Catalogue (TIC) shows that the TIC is generally efficient in separating dwarfs and giants, but it has flagged more than 100 cool dwarfs (Teff < 4800 K) as giants, which ought to be high-priority targets for the exoplanet search. The catalogue can be accessed via http://www.physics.usyd.edu.au/tess-hermes/, or at Mikulski Archive for Space Telescopes (MAST).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trampedach, Regner; Asplund, Martin; Collet, Remo
2013-05-20
Present grids of stellar atmosphere models are the workhorses in interpreting stellar observations and determining their fundamental parameters. These models rely on greatly simplified models of convection, however, lending less predictive power to such models of late-type stars. We present a grid of improved and more reliable stellar atmosphere models of late-type stars, based on deep, three-dimensional (3D), convective, stellar atmosphere simulations. This grid is to be used in general for interpreting observations and improving stellar and asteroseismic modeling. We solve the Navier Stokes equations in 3D and concurrent with the radiative transfer equation, for a range of atmospheric parameters,more » covering most of stellar evolution with convection at the surface. We emphasize the use of the best available atomic physics for quantitative predictions and comparisons with observations. We present granulation size, convective expansion of the acoustic cavity, and asymptotic adiabat as functions of atmospheric parameters.« less
Prospects for Chemically Tagging Stars in the Galaxy
NASA Astrophysics Data System (ADS)
Ting, Yuan-Sen; Conroy, Charlie; Goodman, Alyssa
2015-07-01
It is now well-established that the elemental abundance patterns of stars hold key clues not only to their formation, but also to the assembly histories of galaxies. One of the most exciting possibilities is the use of stellar abundance patterns as “chemical tags” to identify stars that were born in the same molecular cloud. In this paper, we assess the prospects of chemical tagging as a function of several key underlying parameters. We show that in the fiducial case of 104 distinct cells in chemical space and {10}5-{10}6 stars in the survey, one can expect to detect ∼ {10}2-{10}3 groups that are ≥slant 5σ overdensities in the chemical space. However, we find that even very large overdensities in chemical space do not guarantee that the overdensity is due to a single set of stars from a common birth cloud. In fact, for our fiducial model parameters, the typical 5σ overdensity is comprised of stars from a wide range of clusters with the most dominant cluster contributing only 25% of the stars. The most important factors limiting the identification of disrupted clusters via chemical tagging are the number of chemical cells in the chemical space and the survey sampling rate of the underlying stellar population. Both of these factors can be improved through strategic observational plans. While recovering individual clusters through chemical tagging may prove challenging, we show, in agreement with previous work, that different CMFs imprint different degrees of clumpiness in chemical space. These differences provide the opportunity to statistically reconstruct the slope and high-mass cutoff of CMF and its evolution through cosmic time.
Impact of baryonic physics on intrinsic alignments
Tenneti, Ananth; Gnedin, Nickolay Y.; Feng, Yu
2017-01-11
We explore the effects of specific assumptions in the subgrid models of star formation and stellar and AGN feedback on intrinsic alignments of galaxies in cosmological simulations of "MassiveBlack-II" family. Using smaller volume simulations, we explored the parameter space of the subgrid star formation and feedback model and found remarkable robustness of the observable statistical measures to the details of subgrid physics. The one observational probe most sensitive to modeling details is the distribution of misalignment angles. We hypothesize that the amount of angular momentum carried away by the galactic wind is the primary physical quantity that controls the orientationmore » of the stellar distribution. Finally, our results are also consistent with a similar study by the EAGLE simulation team.« less
New theory of stellar convection without the mixing-length parameter: new stellar atmosphere model
NASA Astrophysics Data System (ADS)
Pasetto, Stefano; Chiosi, Cesare; Cropper, Mark; Grebel, Eva K.
2018-01-01
Stellar convection is usually described by the mixing-length theory, which makes use of the mixing-length scale factor to express the convective flux, velocity, and temperature gradients of the convective elements and stellar medium. The mixing-length scale is proportional to the local pressure scale height of the star, and the proportionality factor (i.e. mixing-length parameter) is determined by comparing the stellar models to some calibrator, i.e. the Sun. No strong arguments exist to suggest that the mixing-length parameter is the same in all stars and all evolutionary phases and because of this, all stellar models in the literature are hampered by this basic uncertainty. In a recent paper [1] we presented a new theory that does not require the mixing length parameter. Our self-consistent analytical formulation of stellar convection determines all the properties of stellar convection as a function of the physical behavior of the convective elements themselves and the surrounding medium. The new theory of stellar convection is formulated starting from a conventional solution of the Navier-Stokes/Euler equations expressed in a non-inertial reference frame co-moving with the convective elements. The motion of stellar convective cells inside convective-unstable layers is fully determined by a new system of equations for convection in a non-local and time-dependent formalism. The predictions of the new theory are compared with those from the standard mixing-length paradigm with positive results for atmosphere models of the Sun and all the stars in the Hertzsprung-Russell diagram.
Kepler eclipsing binaries with δ Scuti components and tidally induced heartbeat stars
NASA Astrophysics Data System (ADS)
Guo, Zhao; Gies, Douglas R.; Matson, Rachel A.
δ Scuti stars are generally fast rotators and their pulsations are not in the asymptotic regime, so the interpretation of their pulsation spectra is a very difficult task. Binary stars, especially eclipsing systems, offer us the opportunity to constrain the space of fundamental stellar parameters. Firstly, we show the results of KIC9851944 and KIC4851217 as two case studies. We found the signature of the large frequency separation in the pulsational spectrum of both stars. The observed mean stellar density and the large frequency separation obey the linear relation in the log-log space as found by Suarez et al. (2014) and García Hernández et al. (2015). Second, we apply the simple `one-layer model' of Moreno & Koenigsberger (1999) to the prototype heartbeat star KOI-54. The model naturally reproduces the tidally induced high frequency oscillations and their frequencies are very close to the observed frequency at 90 and 91 times the orbital frequency.
A COMPARISON OF STELLAR ELEMENTAL ABUNDANCE TECHNIQUES AND MEASUREMENTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hinkel, Natalie R.; Young, Patrick A.; Pagano, Michael D.
2016-09-01
Stellar elemental abundances are important for understanding the fundamental properties of a star or stellar group, such as age and evolutionary history, as well as the composition of an orbiting planet. However, as abundance measurement techniques have progressed, there has been little standardization between individual methods and their comparisons. As a result, different stellar abundance procedures determine measurements that vary beyond the quoted error for the same elements within the same stars. The purpose of this paper is to better understand the systematic variations between methods and offer recommendations for producing more accurate results in the future. We invited amore » number of participants from around the world (Australia, Portugal, Sweden, Switzerland, and the United States) to calculate 10 element abundances (C, O, Na, Mg, Al, Si, Fe, Ni, Ba, and Eu) using the same stellar spectra for four stars (HD 361, HD 10700, HD 121504, and HD 202206). Each group produced measurements for each star using (1) their own autonomous techniques, (2) standardized stellar parameters, (3) a standardized line list, and (4) both standardized parameters and a line list. We present the resulting stellar parameters, absolute abundances, and a metric of data similarity that quantifies the homogeneity of the data. We conclude that standardization of some kind, particularly stellar parameters, improves the consistency between methods. However, because results did not converge as more free parameters were standardized, it is clear there are inherent issues within the techniques that need to be reconciled. Therefore, we encourage more conversation and transparency within the community such that stellar abundance determinations can be reproducible as well as accurate and precise.« less
ZASPE: A Code to Measure Stellar Atmospheric Parameters and their Covariance from Spectra
NASA Astrophysics Data System (ADS)
Brahm, Rafael; Jordán, Andrés; Hartman, Joel; Bakos, Gáspár
2017-05-01
We describe the Zonal Atmospheric Stellar Parameters Estimator (zaspe), a new algorithm, and its associated code, for determining precise stellar atmospheric parameters and their uncertainties from high-resolution echelle spectra of FGK-type stars. zaspe estimates stellar atmospheric parameters by comparing the observed spectrum against a grid of synthetic spectra only in the most sensitive spectral zones to changes in the atmospheric parameters. Realistic uncertainties in the parameters are computed from the data itself, by taking into account the systematic mismatches between the observed spectrum and the best-fitting synthetic one. The covariances between the parameters are also estimated in the process. zaspe can in principle use any pre-calculated grid of synthetic spectra, but unbiased grids are required to obtain accurate parameters. We tested the performance of two existing libraries, and we concluded that neither is suitable for computing precise atmospheric parameters. We describe a process to synthesize a new library of synthetic spectra that was found to generate consistent results when compared with parameters obtained with different methods (interferometry, asteroseismology, equivalent widths).
Modeling the Gravitational Potential of a Cosmological Dark Matter Halo with Stellar Streams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanderson, Robyn E.; Hartke, Johanna; Helmi, Amina, E-mail: robyn@astro.columbia.edu
2017-02-20
Stellar streams result from the tidal disruption of satellites and star clusters as they orbit a host galaxy, and can be very sensitive probes of the gravitational potential of the host system. We select and study narrow stellar streams formed in a Milky-Way-like dark matter halo of the Aquarius suite of cosmological simulations, to determine if these streams can be used to constrain the present day characteristic parameters of the halo’s gravitational potential. We find that orbits integrated in both spherical and triaxial static Navarro–Frenk–White potentials reproduce the locations and kinematics of the various streams reasonably well. To quantify thismore » further, we determine the best-fit potential parameters by maximizing the amount of clustering of the stream stars in the space of their actions. We show that using our set of Aquarius streams, we recover a mass profile that is consistent with the spherically averaged dark matter profile of the host halo, although we ignored both triaxiality and time evolution in the fit. This gives us confidence that such methods can be applied to the many streams that will be discovered by the Gaia mission to determine the gravitational potential of our Galaxy.« less
The Influence of Coronal Mass Ejections on the Mass-loss Rates of Hot-Jupiters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cherenkov, A.; Bisikalo, D.; Fossati, L.
Hot-Jupiters are subject to extreme radiation and plasma flows coming from their host stars. Past ultraviolet Hubble Space Telescope observations, supported by hydrodynamic models, confirmed that these factors lead to the formation of an extended envelope, part of which lies beyond the Roche lobe. We use gas-dynamic simulations to study the impact of time variations in the parameters of the stellar wind, namely that of coronal mass ejections (CMEs), on the envelope of the typical hot-Jupiter HD 209458b. We consider three CMEs characterized by different velocities and densities, taking their parameters from typical CMEs observed for the Sun. The perturbationsmore » in the ram-pressure of the stellar wind during the passage of each CME tear off most of the envelope that is located beyond the Roche lobe. This leads to a substantial increase of the mass-loss rates during the interaction with the CME. We find that the mass lost by the planet during the whole crossing of a CME is of ≈10{sup 15} g, regardless of the CME taken into consideration. We also find that over the course of 1 Gyr, the mass lost by the planet because of CME impacts is comparable to that lost because of high-energy stellar irradiation.« less
A Gaia DR2 Mock Stellar Catalog
NASA Astrophysics Data System (ADS)
Rybizki, Jan; Demleitner, Markus; Fouesneau, Morgan; Bailer-Jones, Coryn; Rix, Hans-Walter; Andrae, René
2018-07-01
We present a mock catalog of Milky Way stars, matching in volume and depth the content of the Gaia data release 2 (GDR2). We generated our catalog using Galaxia, a tool to sample stars from a Besançon Galactic model, together with a realistic 3D dust extinction map. The catalog mimics the complete GDR2 data model and contains most of the entries in the Gaia source catalog: five-parameter astrometry, three-band photometry, radial velocities, stellar parameters, and associated scaled nominal uncertainty estimates. In addition, we supplemented the catalog with extinctions and photometry for non-Gaia bands. This catalog can be used to prepare GDR2 queries in a realistic runtime environment, and it can serve as a Galactic model against which to compare the actual GDR2 data in the space of observables. The catalog is hosted through the virtual observatory GAVO’s Heidelberg data center (http://dc.g-vo.org/tableinfo/gdr2mock.main) service, and thus can be queried using ADQL as for GDR2 data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Da Rio, Nicola; Robberto, Massimo, E-mail: ndario@rssd.esa.int
We present the Tool for Astrophysical Data Analysis (TA-DA), a new software aimed to greatly simplify and improve the analysis of stellar photometric data in comparison with theoretical models, and allow the derivation of stellar parameters from multi-band photometry. Its flexibility allows one to address a number of such problems: from the interpolation of stellar models, or sets of stellar physical parameters in general, to the computation of synthetic photometry in arbitrary filters or units; from the analysis of observed color-magnitude diagrams to a Bayesian derivation of stellar parameters (and extinction) based on multi-band data. TA-DA is available as amore » pre-compiled Interactive Data Language widget-based application; its graphical user interface makes it considerably user-friendly. In this paper, we describe the software and its functionalities.« less
Recovering Galaxy Properties Using Gaussian Process SED Fitting
NASA Astrophysics Data System (ADS)
Iyer, Kartheik; Awan, Humna
2018-01-01
Information about physical quantities like the stellar mass, star formation rates, and ages for distant galaxies is contained in their spectral energy distributions (SEDs), obtained through photometric surveys like SDSS, CANDELS, LSST etc. However, noise in the photometric observations often is a problem, and using naive machine learning methods to estimate physical quantities can result in overfitting the noise, or converging on solutions that lie outside the physical regime of parameter space.We use Gaussian Process regression trained on a sample of SEDs corresponding to galaxies from a Semi-Analytic model (Somerville+15a) to estimate their stellar masses, and compare its performance to a variety of different methods, including simple linear regression, Random Forests, and k-Nearest Neighbours. We find that the Gaussian Process method is robust to noise and predicts not only stellar masses but also their uncertainties. The method is also robust in the cases where the distribution of the training data is not identical to the target data, which can be extremely useful when generalized to more subtle galaxy properties.
The Stellar IMF from Isothermal MHD Turbulence
NASA Astrophysics Data System (ADS)
Haugbølle, Troels; Padoan, Paolo; Nordlund, Åke
2018-02-01
We address the turbulent fragmentation scenario for the origin of the stellar initial mass function (IMF), using a large set of numerical simulations of randomly driven supersonic MHD turbulence. The turbulent fragmentation model successfully predicts the main features of the observed stellar IMF assuming an isothermal equation of state without any stellar feedback. As a test of the model, we focus on the case of a magnetized isothermal gas, neglecting stellar feedback, while pursuing a large dynamic range in both space and timescales covering the full spectrum of stellar masses from brown dwarfs to massive stars. Our simulations represent a generic 4 pc region within a typical Galactic molecular cloud, with a mass of 3000 M ⊙ and an rms velocity 10 times the isothermal sound speed and 5 times the average Alfvén velocity, in agreement with observations. We achieve a maximum resolution of 50 au and a maximum duration of star formation of 4.0 Myr, forming up to a thousand sink particles whose mass distribution closely matches the observed stellar IMF. A large set of medium-size simulations is used to test the sink particle algorithm, while larger simulations are used to test the numerical convergence of the IMF and the dependence of the IMF turnover on physical parameters predicted by the turbulent fragmentation model. We find a clear trend toward numerical convergence and strong support for the model predictions, including the initial time evolution of the IMF. We conclude that the physics of isothermal MHD turbulence is sufficient to explain the origin of the IMF.
NASA Astrophysics Data System (ADS)
Cowley, William I.; Caputi, Karina I.; Deshmukh, Smaran; Ashby, Matthew L. N.; Fazio, Giovanni G.; Le Fèvre, Olivier; Fynbo, Johan P. U.; Ilbert, Olivier; McCracken, Henry J.; Milvang-Jensen, Bo; Somerville, Rachel S.
2018-01-01
The Spitzer Matching Survey of the UltraVISTA ultra-deep Stripes (SMUVS) provides unparalleled depth at 3.6 and 4.5 μm over ∼0.66 deg2 of the COSMOS field, allowing precise photometric determinations of redshift and stellar mass. From this unique data set we can connect galaxy samples, selected by stellar mass, to their host dark matter halos for 1.5< z< 5.0, filling in a large hitherto unexplored region of the parameter space. To interpret the observed galaxy clustering, we use a phenomenological halo model, combined with a novel method to account for uncertainties arising from the use of photometric redshifts. We find that the satellite fraction decreases with increasing redshift and that the clustering amplitude (e.g., comoving correlation length/large-scale bias) displays monotonic trends with redshift and stellar mass. Applying ΛCDM halo mass accretion histories and cumulative abundance arguments for the evolution of stellar mass content, we propose pathways for the coevolution of dark matter and stellar mass assembly. Additionally, we are able to estimate that the halo mass at which the ratio of stellar-to-halo mass is maximized is {10}{12.5-0.08+0.10} {M}ȯ at z∼ 2.5. This peak halo mass is here inferred for the first time from stellar mass-selected clustering measurements at z≳ 2, and it implies a mild evolution of this quantity for z≲ 3, consistent with constraints from abundance-matching techniques.
NASA Technical Reports Server (NTRS)
Wood, Brian E.; Alexander, William R.; Linsky, Jeffrey L.
1996-01-01
We present new observations of the Ly alpha lines of Epsilon Indi (K5 5) and A Andromedae (G8 4-3 + ?) These data were obtained by the Goddard High Resolution Spectrograph (GHRS) on the Hubble Space Telescope. Analysis of the interstellar H 1 and D 1 absorption lines reveals that the velocities and temperatures inferred from the H 1 lines are inconsistent with the parameters inferred from the D 1 lines, unless the H 1 absorption is assumed to be produced by two absorption components. One absorption component is produced by interstellar material. For both lines of sight observed, the velocity of this component is consistent with the velocity predicted by the local flow vector. For the Epsilon Indi data, the large velocity separation between the stellar emission and the interstellar absorption allows us to measure the H 1 column density independent of the shape of the intrinsic stellar Ly alpha profile. This approach permits us to quote an accurate column density and to assess its uncertainty with far more confidence than in previous analyses, for which the errors were dominated by uncertainties in the assumed stellar profiles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neilson, Hilding R.; Lester, John B.; Baron, Fabien
2016-10-20
One of the great challenges of understanding stars is measuring their masses. The best methods for measuring stellar masses include binary interaction, asteroseismology, and stellar evolution models, but these methods are not ideal for red giant and supergiant stars. In this work, we propose a novel method for inferring stellar masses of evolved red giant and supergiant stars using interferometric and spectrophotometric observations combined with spherical model stellar atmospheres to measure what we call the stellar mass index, defined as the ratio between the stellar radius and mass. The method is based on the correlation between different measurements of angularmore » diameter, used as a proxy for atmospheric extension, and fundamental stellar parameters. For a given star, spectrophotometry measures the Rosseland angular diameter while interferometric observations generally probe a larger limb-darkened angular diameter. The ratio of these two angular diameters is proportional to the relative extension of the stellar atmosphere, which is strongly correlated to the star’s effective temperature, radius, and mass. We show that these correlations are strong and can lead to precise measurements of stellar masses.« less
Imaging the Surfaces of Stars from Space
NASA Astrophysics Data System (ADS)
Carpenter, Kenneth; Rau, Gioia
2018-04-01
Imaging of Stellar Surfacess has been dominated to-date by ground-based observations, but space-based facilities offer tremendous potential for extending the wavelength coverage and ultimately the resolution of such efforts. We review the imaging accomplished so far from space and then talk about exciting future prospects. The earliest attempts from space indirectly produced surface maps via the Doppler Imaging Technique, using UV spectra obtained with the International Ultraviolet Explorer (IUE). Later, the first direct UV images were obtained with the Hubble Space Telescope (HST), of Mira and Betelgeuse, using the Faint Object Camera (FOC). We will show this work and then investigate prospects for IR imaging with the James Webb Space Telescope (JWST). The real potential of space-based Imaging of Stellar Surfacess, however, lies in the future, when large-baseline Fizeau interferometers, such as the UV-optical Stellar Imager (SI) Vision Mission, with a 30-element array and 500m max baseline, are flown. We describe SI and its science goals, which include 0.1 milli-arcsec spectral Imaging of Stellar Surfacess and the probing of internal structure and flows via asteroseismology.
NASA Technical Reports Server (NTRS)
Bozza, V.; Shvartzvald, Y.; Udalski, A.; Novati, S.Calchi; Bond, I. A.; Han, C.; Hundertmark, M.; Poleski, R.; Pawlak, M.; Szymanski, M. K.;
2016-01-01
Spitzer microlensing parallax observations of OGLE-2015-BLG-1212 decisively break a degeneracy between planetary and binary solutions that is somewhat ambiguous when only ground-based data are considered. Only eight viable models survive out of an initial set of 32 local minima in the parameter space. These models clearly indicate that the lens is a stellar binary system possibly located within the bulge of our Galaxy, ruling out the planetary alternative. We argue that several types of discrete degeneracies can be broken via such space-based parallax observations.
Global Relationships Among the Physical Properties of Stellar Systems.
NASA Astrophysics Data System (ADS)
Burstein, David; Bender, Ralf; Faber, S.; Nolthenius, R.
1997-10-01
The Κ-space three-dimensional parameter system was originally defined to examine the physical properties of dynamically hot elliptical galaxies and bulges (DRGs). The axes of Κ-space are proportional to the logarithm of galaxy mass, mass-to-light ratio, and a third quantity that is mainly surface brightness. In this paper we define self-consistent Κ parameters for disk galaxies, galaxy groups and clusters, and globular clusters and use them to project an integrated view of the major classes of self-gravitating, equilibrium stellar systems in the universe. Each type of stellar system is found to populate its own fundamental plane in Κ-space. At least six different planes are found: (1) the original fundamental plane for DRGs; (2) a nearly-parallel plane slightly offset for Sa-Sc spirals; (3) a plane with different tilt but similar zero point for Scd-Irr galaxies; (4) a plane parallel to the DRG plane but offset by a factor of 10 in mass-to-light ratio for rich galaxy clusters; (5) a plane for galaxy groups that bridges the gap between rich clusters and galaxies; and (6) a plane for Galactic globular clusters. We propose the term "cosmic metaplane" to describe this ensemble of interrelated and interconnected fundamental planes. The projection Κ1-Κ3 (M/L vs M) views all planes essentially edge-on. Planes share the common characteristic that M/L is either constant or increasing with mass. The Κ1-Κ2 projection views all of these planes close to face-on, while Κ2-Κ3 shows variable slopes for different groups owing to the slightly different tilts of the individual planes. The Tully-Fisher relation is the correct compromise projection to view the spiral-irregular planes nearly edge on, analogous to the Dπ-σ relation for DRGs. No stellar system yet violates the rule first found from the study of DRGs, namely, Κ1+Κ2 constant, here chosen to be 8. In physical terms, this says that the maximum global luminosity density of stellar systems varies as M-4/3. Galaxies march away from this "zone of exclusion" (ZOE) in Κ12 as a function of Hubble type: DRGs are closest, with Sm-Irr's being furthest away. The distribution of systems in Κ-space is generally consistent with predictions of galaxy formation via hierarchical clustering and merging. The cosmic metaplane is simply the cosmic virial plane common to all self-gravitating stellar systems, tilted and displaced in mass-to-light ratio for various types of systems due to differences in stellar population and amount of baryonic dissipation. Hierarchical clustering from an n =-1.8 power-law density fluctuation spectrum (plus dissipation) comes close to reproducing the slope of the ZOE, and the progressive displacement of Hubble types from this line is consistent with the formation of early-type galaxies from higher n-σ fluctuations than late Hubble types. The M/L values for galaxy groups containing only a few, mostly spiral galaxies, vary the strongest with M. Moreover, it is these groups that bridge the gap between the two planes defined by the brightest galaxies and the lowest mass rich clusters, giving the cosmic metaplane its striking appearance. Why this is so is but one of four key questions raised by our study. The second question is why the slopes of individual Hubble types in the Κ1-Κ2 lie plane parallel the ZOE. At face value, this appears to suggest less dissipation of massive galaxies within their dark halos compared to lower-mass galaxies of the same Hubble type. The third is why we find isotropic stellar systems only within an effective mass range of 109.5-11.75 Msun. This would seem to imply that dissipation only results in galaxy components flattened by rotation in a limited mass range. The fourth question, perhaps the most basic of all, is how does M/L vary so smoothly with M among all stellar systems so as to give the individual tilts of the various fundamental planes, yet preserve the overall appearance of a metaplane? The answer to this last question must await a more thorough knowledge of how galaxies relate to many parameters, including: their environment, structure, angular momentum acquisition, density, dark matter concentration, the physics of star formation in general, and the formation of the initial mass function in particular. The present investigation is limited by existing data to the B passband and is strongly magnitude-limited, not volume-limited. Rare or hard-to-discover galaxy types, such as R II galaxies, starburst galaxies and low-surface-brightness galaxies, are missing or are under-represented, and use of the B band over-emphasizes stellar population differences. A volume-limited Κ-space survey based on Κ-band photometry and complete to low surface brightness and faint magnitudes is highly desirable but requires data yet to be obtained.
Basic research in solar physics
NASA Technical Reports Server (NTRS)
Linsky, Jeffrey L.
1991-01-01
This grant, dating back more than 20 years has supported a variety of investigations of the chromospheres and coronae of the Sun and related cool stars by the Principal Investigator, his postdocs and graduate students, and colleagues at other institutions. This work involved studies of radiative transfer and spectral line formation theory, and the application of these techniques to the analysis of spectra obtained from space and ground-based observatories in the optical, ultraviolet, x-ray and radio portions of the spectrum. Space observations have included the analysis of spectra from OSO-7, Skylab, SMM, and the HRTS rocket experiments. Recent work has concentrated on the interaction of magnetic fields, plasma and radiation in the outer atmospheres of the Sun and other magnetically active stars with different fundamental parameters. Our study of phenomena common to the Sun and stars, the 'solar-stellar connection', can elucidate the fundamental physics, because spatially-resolved observations of the Sun provide us with the 'groundtruth,' while interpretation of stellar data permit us to isolate those parameters critical to stellar activity. Recently, we have studied the differences in physical properties between solar regions of high magnetic flux density and the surrounding plasma. High-resolution CN and CO spectroheliograms have been used to model the thermal inhomogeneities driven by unstable CO cooling, and we have analyzed spatially resolved UV spectra from HRTS to model the thermal structure and energy balance of small-scale structures. The study of nonlinear relations between atmospheric radiative losses and the photospheric magnetic flux density has been continued. We have also proposed a new model for the decay of plages by random walk diffusion of magnetic flux. Our analysis of phenomena common to the Sun and stars included the application of available spectroscopic diagnostics, establishing evidence that the atmospheres of the least active stars are heated at a 'basal' rate that is also found in the centers of solar supergranules, and using the Doppler-imaging technique to measure the position, size, and brightness of stellar active regions. We are computing multi-component models for solar and stellar atmospheres, and models for coronal loops and for the transition-region down flows. The study of solar and stellar flares permits us to assess the role of turbulent energy transport, to pinpoint the mechanism behind Type I radio bursts, to determine whether plasma radiation or cyclotron maser is responsible for microwave flares on M dwarfs, and to extend our knowledge of the basic physics pertinent to cyclotron-maser processes operating on the Sun.
Optimized Strategies for Detecting Extrasolar Space Weather
NASA Astrophysics Data System (ADS)
Hallinan, Gregg
2018-06-01
Fully understanding the implications of space weather for the young solar system, as well as the wider population of planet-hosting stars, requires remote sensing of space weather in other stellar systems. Solar coronal mass ejections can be accompanied by bright radio bursts at low frequencies (typically <100 MHz), that are produced as the resulting shockwave propagates through the corona and interplanetary medium.; searches for similar emissions are ongoing from nearby stellar systems. Exoplanets that encounter CMEs can increase in radio luminosity by orders of magnitude at kHz-MHz frequencies. A detection of this radio emission allows the direct measurement of the magnetic field strength of the planet, informing on whether the atmosphere of the planet can survive the intense magnetic activity of its host star. However, both stellar and planetary radio emission are highly variable and optimal strategies for detection of these emissions requires the capability to monitor 1000s of nearby stellar/planetary systems simultaneously. I will discuss optimized strategies for both ground and space-based experiments to take advantage of the highly variable nature of the radio emissions powered by extrasolar space weather to enable detection of stellar CMEs and planetary magnetospheres.
Out-of-transit Refracted Light in the Atmospheres of Transiting and Non-transiting Exoplanets
NASA Astrophysics Data System (ADS)
Dalba, Paul A.
2017-10-01
Before an exoplanet transit, atmospheric refraction bends light into the line of sight of an observer. The refracted light forms a stellar mirage—a distorted secondary image of the host star. I model this phenomenon and the resultant out-of-transit flux increase across a comprehensive exoplanetary parameter space. At visible wavelengths, Rayleigh scattering limits the detectability of stellar mirages in most exoplanetary systems with semimajor axes ≲ 6 {au}. A notable exception is almost any planet orbiting a late M or ultra-cool dwarf star at ≳ 0.5 {au}, where the maximum relative flux increase is >50 parts per million. Based partly on previous work, I propose that the importance of refraction in an exoplanet system is governed by two angles: the orbital distance divided by the stellar radius and the total deflection achieved by a ray in the optically thin portion of the atmosphere. Atmospheric lensing events caused by non-transiting exoplanets, which allow for exoplanet detection and atmospheric characterization, are also investigated. I derive the basic formalism to determine the total signal-to-noise ratio of an atmospheric lensing event, with application to Kepler data. It is unlikely that out-of-transit refracted light signals are clearly present in Kepler data due to Rayleigh scattering and the bias toward short-period exoplanets. However, observations at long wavelengths (e.g., the near-infrared) are significantly more likely to detect stellar mirages. Lastly, I discuss the potential for the Transiting Exoplanet Survey Satellite to detect refracted light and consider novel science cases enabled by refracted light spectra from the James Webb Space Telescope.
Machine learning in APOGEE. Unsupervised spectral classification with K-means
NASA Astrophysics Data System (ADS)
Garcia-Dias, Rafael; Allende Prieto, Carlos; Sánchez Almeida, Jorge; Ordovás-Pascual, Ignacio
2018-05-01
Context. The volume of data generated by astronomical surveys is growing rapidly. Traditional analysis techniques in spectroscopy either demand intensive human interaction or are computationally expensive. In this scenario, machine learning, and unsupervised clustering algorithms in particular, offer interesting alternatives. The Apache Point Observatory Galactic Evolution Experiment (APOGEE) offers a vast data set of near-infrared stellar spectra, which is perfect for testing such alternatives. Aims: Our research applies an unsupervised classification scheme based on K-means to the massive APOGEE data set. We explore whether the data are amenable to classification into discrete classes. Methods: We apply the K-means algorithm to 153 847 high resolution spectra (R ≈ 22 500). We discuss the main virtues and weaknesses of the algorithm, as well as our choice of parameters. Results: We show that a classification based on normalised spectra captures the variations in stellar atmospheric parameters, chemical abundances, and rotational velocity, among other factors. The algorithm is able to separate the bulge and halo populations, and distinguish dwarfs, sub-giants, RC, and RGB stars. However, a discrete classification in flux space does not result in a neat organisation in the parameters' space. Furthermore, the lack of obvious groups in flux space causes the results to be fairly sensitive to the initialisation, and disrupts the efficiency of commonly-used methods to select the optimal number of clusters. Our classification is publicly available, including extensive online material associated with the APOGEE Data Release 12 (DR12). Conclusions: Our description of the APOGEE database can help greatly with the identification of specific types of targets for various applications. We find a lack of obvious groups in flux space, and identify limitations of the K-means algorithm in dealing with this kind of data. Full Tables B.1-B.4 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/612/A98
Color-Space Outliers in DPOSS: Quasars and Peculiar Objects
NASA Astrophysics Data System (ADS)
Djorgovski, S. G.; Gal, R. R.; Mahabal, A.; Brunner, R.; Castro, S. M.; Odewahn, S. C.; de Carvalho, R. R.; DPOSS Team
2000-12-01
The processing of DPOSS, a digital version of the POSS-II sky atlas, is now nearly complete. The resulting Palomar--Norris Sky Catalog (PNSC) is expected to contain > 5 x 107 galaxies and > 109 stars, including large numbers of quasars and other unresolved sources. For objects morphologically classified as stellar (i.e., PSF-like), colors and magnitudes provide the only additional source of discriminating information. We investigate the distribution of objects in the parameter space of (g-r) and (r-i) colors as a function of magnitude. Normal stars form a well-defined (temperature) sequence in this parameter space, and we explore the nature of the objects which deviate significantly from this stellar locus. The causes of the deviations include: non-thermal or peculiar spectra, interagalactic absorption (for high-z quasars), presence of strong emission lines in one or more of the bandpasses, or strong variability (because the plates are taken at widely separated epochs). In addition to minor contamination by misclassified compact galaxies, we find the following: (1) Quasars at z > 4; to date, ~ 100 of these objects have been found, and used for a variety of follow-up studies. They are made publicly available immediately after discovery, through http://astro.caltech.edu/ ~george/z4.qsos. (2) Type-2 quasars in the redshift interval z ~ 0.31 - 0.38. (3) Other quasars, starburst and emission-line galaxies, and emission-line stars. (4) Objects with highly peculiar spectra, some or all of which may be rare subtypes of BAL QSOs. (5) Highly variable stars and optical transients, some of which may be GRB ``orphan afterglows''. To date, systematic searches have been made only for (1) and (2); other types of objects were found serendipitously. However, we plan to explore systematically all of the statistically significant outliers in this parameter space. This illustrates the potential of large digital sky surveys for discovery of rare types of objects, both known (e.g., high-z quasars) and as yet unknown.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nemov, V. V.; Kasilov, S. V.; Institut für Theoretische Physik—Computational Physics, Technische Universität Graz, Fusion@ÖAW, Petersgasse 16, A-8010 Graz
An approach for the direct computation of collisionless losses of high energy charged particles is developed for stellarator magnetic fields given in real space coordinates. With this approach, the corresponding computations can be performed for magnetic fields with three-dimensional inhomogeneities in the presence of stochastic regions as well as magnetic islands. A code, which is based on this approach, is applied to various stellarator configurations. It is found that the life time of fast particles obtained in real-space coordinates can be smaller than that obtained in magnetic coordinates.
Connections between Star Cluster Populations and Their Host Galaxy Nuclear Rings
NASA Astrophysics Data System (ADS)
Ma, Chao; de Grijs, Richard; Ho, Luis C.
2018-04-01
Nuclear rings are excellent laboratories for probing diverse phenomena such as the formation and evolution of young massive star clusters and nuclear starbursts, as well as the secular evolution and dynamics of their host galaxies. We have compiled a sample of 17 galaxies with nuclear rings, which are well resolved by high-resolution Hubble and Spitzer Space Telescope imaging. For each nuclear ring, we identified the ring star cluster population, along with their physical properties (ages, masses, and extinction values). We also determined the integrated ring properties, including the average age, total stellar mass, and current star formation rate (SFR). We find that Sb-type galaxies tend to have the highest ring stellar mass fraction with respect to the host galaxy, and this parameter is correlated with the ring’s SFR surface density. The ring SFRs are correlated with their stellar masses, which is reminiscent of the main sequence of star-forming galaxies. There are striking correlations between star-forming properties (i.e., SFR and SFR surface density) and nonaxisymmetric bar parameters, appearing to confirm previous inferences that strongly barred galaxies tend to have lower ring SFRs, although the ring star formation histories turn out to be significantly more complicated. Nuclear rings with higher stellar masses tend to be associated with lower cluster mass fractions, but there is no such relation for the ages of the rings. The two youngest nuclear rings in our sample, NGC 1512 and NGC 4314, which have the most extreme physical properties, represent the young extremity of the nuclear ring age distribution.
Shining a light on galactic outflows: photoionized outflows
NASA Astrophysics Data System (ADS)
Chisholm, John; Tremonti, Christy A.; Leitherer, Claus; Chen, Yanmei; Wofford, Aida
2016-04-01
We study the ionization structure of galactic outflows in 37 nearby, star-forming galaxies with the Cosmic Origins Spectrograph on the Hubble Space Telescope. We use the O I, Si II, Si III, and Si IV ultraviolet absorption lines to characterize the different ionization states of outflowing gas. We measure the equivalent widths, line widths, and outflow velocities of the four transitions, and find shallow scaling relations between them and galactic stellar mass and star formation rate. Regardless of the ionization potential, lines of similar strength have similar velocities and line widths, indicating that the four transitions can be modelled as a comoving phase. The Si equivalent width ratios (e.g. Si IV/Si II) have low dispersion, and little variation with stellar mass; while ratios with O I and Si vary by a factor of 2 for a given stellar mass. Photoionization models reproduce these equivalent width ratios, while shock models under predict the relative amount of high ionization gas. The photoionization models constrain the ionization parameter (U) between -2.25 < log (U) < -1.5, and require that the outflow metallicities are greater than 0.5 Z⊙. We derive ionization fractions for the transitions, and show that the range of ionization parameters and stellar metallicities leads to a factor of 1.15-10 variation in the ionization fractions. Historically, mass outflow rates are calculated by converting a column density measurement from a single metal ion into a total hydrogen column density using an ionization fraction, thus mass outflow rates are sensitive to the assumed ionization structure of the outflow.
NASA Astrophysics Data System (ADS)
Wu, Tao; Li, Yan
2017-09-01
Asteroseismology is a useful tool that is usually used to probe stellar interiors and to determine stellar fundamental parameters, such as stellar mass, radius, and surface gravity. In order to probe stellar interiors, making comparisons between observations and models is usually used with the {χ }2-minimization method. The work of Wu & Li reported that the best parameter determined by the {χ }2-matching process is the acoustic radius for pure p-mode oscillations. In the present work, based on the theoretical calculations of Wu & Li, we will independently analyze the seismic observations of KIC 6225718 to determine its fundamental parameters and to investigate its interior properties. First, in order to test the method, we use it in the Sun to determine its fundamental parameters and to investigate interiors. Second, we independently determine the fundamental parameters of KIC 6225718 without any other non-seismic constraint. Therefore, those determined fundamental parameters are independent of those determined by other methods. They can be regarded as independent references in other analyses. Finally, we analyze the stellar internal structure and find that KIC 6225718 has a convective core with the size of 0.078-0.092 {R}⊙ . Its overshooting parameter {f}{ov} in the core is around 0.010. In addition, its center hydrogen {X}{{c}} is about 0.264-0.355.
The Universal Stellar Mass-Stellar Metallicity Relation for Dwarf Galaxies
NASA Astrophysics Data System (ADS)
Kirby, Evan N.; Cohen, Judith G.; Guhathakurta, Puragra; Cheng, Lucy; Bullock, James S.; Gallazzi, Anna
2013-12-01
We present spectroscopic metallicities of individual stars in seven gas-rich dwarf irregular galaxies (dIrrs), and we show that dIrrs obey the same mass-metallicity relation as the dwarf spheroidal (dSph) satellites of both the Milky Way and M31: Z_* \\propto M_*^{0.30+/- 0.02}. The uniformity of the relation is in contradiction to previous estimates of metallicity based on photometry. This relationship is roughly continuous with the stellar mass-stellar metallicity relation for galaxies as massive as M * = 1012 M ⊙. Although the average metallicities of dwarf galaxies depend only on stellar mass, the shapes of their metallicity distributions depend on galaxy type. The metallicity distributions of dIrrs resemble simple, leaky box chemical evolution models, whereas dSphs require an additional parameter, such as gas accretion, to explain the shapes of their metallicity distributions. Furthermore, the metallicity distributions of the more luminous dSphs have sharp, metal-rich cut-offs that are consistent with the sudden truncation of star formation due to ram pressure stripping. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.
Dark matter contraction and stellar-mass-to-light ratio gradients in massive early-type galaxies
NASA Astrophysics Data System (ADS)
Oldham, Lindsay J.; Auger, Matthew W.
2018-05-01
We present models for the dark and luminous mass structure of 12 strong lensing early-type galaxies. We combine pixel-based modelling of multiband Hubble Space Telescope imaging with Jeans modelling of kinematics obtained from Keck/ESI spectra to disentangle the dark and luminous contributions to the mass. Assuming a generalised NFW (gNFW) profile for the dark matter halo and a spatially constant stellar-mass-to-light ratio ϒ⋆ for the baryonic mass, we infer distributions for ϒ⋆ consistent with initial mass functions (IMFs) that are heavier than the Milky Way's (with a global mean mismatch parameter relative to a Chabrier IMF μαc = 1.80 ± 0.14) and halo inner density slopes that span a large range but are generally cuspier than the dark-matter-only prediction (μ _{γ ^' }} = 2.01_{-0.22}^{+0.19}). We investigate possible reasons for overestimating the halo slope, including the neglect of spatially varying stellar-mass-to-light ratios and/or stellar orbital anisotropy, and find that a quarter of the systems prefer radially declining stellar-mass-to-light ratio gradients, but that the overall effect on our inference on the halo slope is small. We suggest a coherent explanation of these results in the context of inside-out galaxy growth, and that the relative importance of different baryonic processes in shaping the dark halo may depend on halo environment.
PREFACE: Stellar Atmospheres in the Gaia Era - Preface
NASA Astrophysics Data System (ADS)
Lobel, Alex; De Greve, Jean-Pierre; Van Rensbergen, Walter
2011-12-01
Volume 328 (2011) of the Journal of Physics: Conference Series provides a record of the invited and contributed talks, and of the posters presented at the GREAT-ESF workshop entitled `Stellar Atmospheres in the Gaia Era: Quantitative Spectroscopy and Comparative Spectrum Modelling' (http://great-esf.oma.be and mirrored at http://spectri.freeshell.org/great-esf). The conference was held on 23-24 June 2011 at the Vrije Universiteit Brussel, Belgium. 47 scientists from 11 countries around the world attended the workshop. The ESA-Gaia satellite (launch mid 2013) will observe a billion stellar objects in the Galaxy and provide spectrophotometric and high-resolution spectra of an unprecedented number of stars observed with a space-based instrument. The confrontation of these data with theoretical models will significantly advance our understanding of the physics of stellar atmospheres. New stellar populations such as previously unknown emission line stars will be discovered, and fundamental questions such as the basic scenarios of stellar evolution will be addressed with Gaia data. The 33 presentations and 4 main discussion sessions at the workshop addressed important topics in spectrum synthesis methods and detailed line profile calculations urgently needed for accurate modelling of stellar spectra. It brought together leading scientists and students of the stellar physics communities investigating hot and cool star spectra. The scientific programme of the workshop consisted of 23 oral (6 invited) and 10 poster presentations about cool stars (first day; Comparative Spectrum Modelling and Quantitative Spectroscopy of Cool Stars), and hot stars (second day; Quantitative Spectroscopy of Hot Stars). The hot and cool stars communities use different spectrum modelling codes for determining basic parameters such as the effective temperature, surface gravity, iron abundance, and the chemical composition of stellar atmospheres. The chaired sessions of the first day highlighted new research results with spectral synthesis codes developed for cool stars, while the second day focused on codes applied for modeling the spectra of hot stars. The workshop addressed five major topics in stellar atmospheres research: Spectrum synthesis codes Radiation hydrodynamics codes Atmospheric parameters, abundance, metallicity, and chemical tagging studies Large spectroscopic surveys New atomic database The workshop presentations discussed various important scientific issues by comparing detailed model spectra to identify differences that can influence and bias the resulting atmospheric parameters. Theoretical line-blanketed model spectra were compared in detail to high-resolution spectroscopic observations. Stellar spectra computed (i.e., in the Gaia Radial Velocity Spectrometer wavelength range) with 1-D model atmosphere structures were mutually compared, but also to 3-D models from advanced radiation hydrodynamics codes. Atmospheric parameters derived from spectrum synthesis calculations assuming Local Thermodynamic Equilibrium (LTE) were evaluated against more sophisticated non-LTE models of metal-poor stars and the extended atmospheres of giants and supergiants. The workshop presented an overview of high-resolution synthetic spectral libraries of model spectra computed with the synthesis codes. The spectral model grids will be utilized to derive stellar parameters with the Discrete Source Classifier Algorithms currently under development in the Gaia DPAC consortium (http://www.rssd.esa.int/index.php?project=GAIA&page=DPAC_Introduction). They are implemented for training Gaia data analysis algorithms for the classification of a wide variety of hot and cool star types; FGK and M stars, OB stars, white dwarfs, red supergiants, peculiar A and B stars, carbon stars, ultra cool dwarfs, various types of emission line stars, Be stars, Wolf-Rayet stars, etc. A substantial number of oral and poster presentations discussed different techniques for measuring the abundance of various chemical elements from stellar spectra. The presented methods utilize spectra observed with large spectral dispersion, for example for accurately measuring iron, carbon, and nitrogen abundances. These methods are important for ongoing development and testing of automated and supervised algorithms for determining detailed chemical composition in tagging studies of large (chemo-dynamical) spectroscopic surveys planned to complement the Gaia (astrometric and kinematic) census of the Galaxy. The complete scientific programme is available here. The workshop website also offers the presentation viewgraphs (in PDF format) and some nice photographs of the talks and poster breaks http://great-esf.oma.be/program.php.
Program Package for the Analysis of High Resolution High Signal-To-Noise Stellar Spectra
NASA Astrophysics Data System (ADS)
Piskunov, N.; Ryabchikova, T.; Pakhomov, Yu.; Sitnova, T.; Alekseeva, S.; Mashonkina, L.; Nordlander, T.
2017-06-01
The program package SME (Spectroscopy Made Easy), designed to perform an analysis of stellar spectra using spectral fitting techniques, was updated due to adding new functions (isotopic and hyperfine splittins) in VALD and including grids of NLTE calculations for energy levels of few chemical elements. SME allows to derive automatically stellar atmospheric parameters: effective temperature, surface gravity, chemical abundances, radial and rotational velocities, turbulent velocities, taking into account all the effects defining spectral line formation. SME package uses the best grids of stellar atmospheres that allows us to perform spectral analysis with the similar accuracy in wide range of stellar parameters and metallicities - from dwarfs to giants of BAFGK spectral classes.
VizieR Online Data Catalog: California-Kepler Survey (CKS). III. Planet radii (Fulton+, 2017)
NASA Astrophysics Data System (ADS)
Fulton, B. J.; Petigura, E. A.; Howard, A. W.; Isaacson, H.; Marcy, G. W.; Cargile, P. A.; Hebb, L.; Weiss, L. M.; Johnson, J. A.; Morton, T. D.; Sinukoff, E.; Crossfield, I. J. M.; Hirsch, L. A.
2017-11-01
We adopt the stellar sample and the measured stellar parameters from the California-Kepler Survey (CKS) program (Petigura et al. 2017, Cat. J/AJ/154/107; Paper I). The measured values of Teff, logg, and [Fe/H] are based on a detailed spectroscopic characterization of Kepler Object of Interest (KOI) host stars using observations from Keck/HIRES. In Johnson et al. 2017 (Cat J/AJ/154/108; Paper II), we associated those stellar parameters from Paper I to Dartmouth isochrones (Dotter et al. 2008ApJS..178...89D) to derive improved stellar radii and masses, allowing us to recalculate planetary radii using the light-curve parameters from Mullally et al. 2015 (Cat. J/ApJS/217/31). (1 data file).
Modelling Stellar Optical and Mid-Ultraviolet Spectra from First Principles
NASA Astrophysics Data System (ADS)
Peterson, R. C.; Carney, B. W.; Dorman, B.; Green, E. M.; Landsman, W.; Liebert, J.; O'Connell, R. W.; Rood, R. T.; Schiavon, R. P.
2004-05-01
We present comparisons of theoretical and observational high-resolution spectra for a half-dozen stars of a wide range of temperature and abundance, from A star to K giant. These show the fits achieved to date by our ab initio spectral calculations. These comparisons form the first phase of our three-year Hubble Treasury program GO-9455/9974, aimed at providing mid-ultraviolet spectral templates to improve the determination of the age and metallicity of old stellar systems. From matches such as these, we have modified the input atomic-line parameters and guessed the identifications of spectral lines missing from the calculations, as described by Peterson, Dorman, & Rood (2001, ApJ, 559, 372). With this new line list, we now match well the optical spectra of stars of all line strengths. We have begun to calculate a grid of optical indices from the theoretical spectra. In the mid-UV, while the fits at solar abundance are much improved, we are still missing very weak absorption lines near 2650Å and 2900Å. This will be addressed as additional mid-ultraviolet spectra are taken for a larger range of stellar targets during Cycle 13. Support for this work includes grants GO-9455 and GO-9974 from the Hubble Space Telescope Science Institute, and an award from the NASA-OSS Long Term Space Astrophysics program.
Modelling resonances and orbital chaos in disk galaxies. Application to a Milky Way spiral model
NASA Astrophysics Data System (ADS)
Michtchenko, T. A.; Vieira, R. S. S.; Barros, D. A.; Lépine, J. R. D.
2017-01-01
Context. Resonances in the stellar orbital motion under perturbations from the spiral arm structure can play an important role in the evolution of the disks of spiral galaxies. The epicyclic approximation allows the determination of the corresponding resonant radii on the equatorial plane (in the context of nearly circular orbits), but is not suitable in general. Aims: We expand the study of resonant orbits by analysing stellar motions perturbed by spiral arms with Gaussian-shaped groove profiles without any restriction on the stellar orbital configurations, and we expand the concept of Lindblad (epicyclic) resonances for orbits with large radial excursions. Methods: We define a representative plane of initial conditions, which covers the whole phase space of the system. Dynamical maps on representative planes of initial conditions are constructed numerically in order to characterize the phase-space structure and identify the precise location of the co-rotation and Lindblad resonances. The study is complemented by the construction of dynamical power spectra, which provide the identification of fundamental oscillatory patterns in the stellar motion. Results: Our approach allows a precise description of the resonance chains in the whole phase space, giving a broader view of the dynamics of the system when compared to the classical epicyclic approach. We generalize the concept of Lindblad resonances and extend it to cases of resonant orbits with large radial excursions, even for objects in retrograde motion. The analysis of the solar neighbourhood shows that, depending on the current azimuthal phase of the Sun with respect to the spiral arms, a star with solar kinematic parameters (SSP) may evolve in dynamically distinct regions, either inside the stable co-rotation resonance or in a chaotic zone. Conclusions: Our approach contributes to quantifying the domains of resonant orbits and the degree of chaos in the whole Galactic phase-space structure. It may serve as a starting point to apply these techniques to the investigation of clumps in the distribution of stars in the Galaxy, such as kinematic moving groups.
O-star parameters from line profiles of wind-blanketed model atmospheres
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voels, S.A.
1989-01-01
The basic stellar parameters (i.e. effective temperature, gravity, helium content, bolometric correction, etc...) of several O-stars are determined by matching high signal-to-noise observed line profiles of optical hydrogen and helium line transitions with theoretical line profiles from a core-halo model of the stellar atmosphere. The core-halo atmosphere includes the effect of radiation backscattered from a stellar wind by incorporating the stellar wind model of Abbott and Lucy as a reflective upper boundary condition in the Mihalas atmosphere model. Three of the four supergiants analyzed showed an enhanced surface abundance of helium. Using a large sample of equivalent width data frommore » Conti a simple argument is made that surface enhancement of helium may be a common property of the most luminous supergiants. The stellar atmosphere theory is sufficient to determine the stellar parameters only if careful attention is paid to the detection and exclusion of lines which are not accurately modeled by the physical processes included. It was found that some strong lines which form entirely below the sonic point are not well modeled due to effects of atmospheric extension. For spectral class 09.5, one of these lines is the classification line He I {lambda}4471{angstrom}. For supergiant, the gravity determined could be systematically low by up to 0.05 dex as the radiation pressure due to lines is neglected. Within the error ranges, the stellar parameters determined, including helium abundance, agree with those from the stellar evolution calculations of Maeder and Maynet.« less
Testing Dissipative Magnetosphere Model Light Curves and Spectra with Fermi Pulsars
NASA Technical Reports Server (NTRS)
Brambilla, Gabriele; Kalapotharakos, Constantinos; Harding, Alice K.; Kazanas, Demosthenes
2015-01-01
We explore the emission properties of a dissipative pulsar magnetosphere model introduced by Kalapotharakos et al. comparing its high-energy light curves and spectra, due to curvature radiation, with data collected by the Fermi LAT. The magnetosphere structure is assumed to be near the force-free solution. The accelerating electric field, inside the light cylinder (LC), is assumed to be negligible, while outside the LC it rescales with a finite conductivity (sigma). In our approach we calculate the corresponding high-energy emission by integrating the trajectories of test particles that originate from the stellar surface, taking into account both the accelerating electric field components and the radiation reaction forces. First, we explore the parameter space assuming different value sets for the stellar magnetic field, stellar period, and conductivity. We show that the general properties of the model are in a good agreement with observed emission characteristics of young gamma-ray pulsars, including features of the phase-resolved spectra. Second, we find model parameters that fit each pulsar belonging to a group of eight bright pulsars that have a published phase-resolved spectrum. The sigma values that best describe each of the pulsars in this group show an increase with the spin-down rate (E? ) and a decrease with the pulsar age, expected if pair cascades are providing the magnetospheric conductivity. Finally, we explore the limits of our analysis and suggest future directions for improving such models.
VizieR Online Data Catalog: Be star rotational velocities distribution (Zorec+, 2016)
NASA Astrophysics Data System (ADS)
Zorec, J.; Fremat, Y.; Domiciano de Souza, A.; Royer, F.; Cidale, L.; Hubert, A.-M.; Semaan, T.; Martayan, C.; Cochetti, Y. R.; Arias, M. L.; Aidelman, Y.; Stee, P.
2016-06-01
Table 1 contains apparent fundamental parameters of the 233 Galactic Be stars. For each Be star is given the HD number, the effective temperature, effective surface gravity and bolometric luminosity. They correspond to the parameters of a plan parallel model of stellar atmosphere that fits the energy distribution of the stellar apparent hemisphere rotationally deformed. In Table 1 are also given the color excess E(B-V) and the vsini rotation parameter determined with model atmospheres of rigidly rotating stars. For each parameter is given the 1sigma uncertainty. In the notes are given the authors that produced some reported the data or the methods used to obtain the data. Table 4 contains parent-non-rotating-counterpart fundamental parameters of 233 Be stars: effective temperature, effective surface gravity, bolometric luminosity in solar units, stellar mass in solar units, fractional main-sequence stellar age, pnrc-apparent rotational velocity, critical velocity, ratio of centrifugal-force to gravity in the equator, inclination angle of the rotational axis. (2 data files).
Implementation of the Global Parameters Determination in Gaia's Astrometric Solution (AGIS)
NASA Astrophysics Data System (ADS)
Raison, F.; Olias, A.; Hobbs, D.; Lindegren, L.
2010-12-01
Gaia is ESA’s space astrometry mission with a foreseen launch date in early 2012. Its main objective is to perform a stellar census of the 1000 Million brightest objects in our galaxy (completeness to V=20 mag) from which an astrometric catalog of micro-arcsec level accuracy will be constructed. A key element in this endeavor is the Astrometric Global Iterative Solution (AGIS). A core part of AGIS is to determine the accurate spacecraft attitude, geometric instrument calibration and astrometric model parameters for a well-behaved subset of all the objects (the ‘primary stars’). In addition, a small number of global parameters will be estimated, one of these being PPN γ. We present here the implementation of the algorithms dedicated to the determination of the global parameters.
Correlations among Galaxy Properties from the Sloan Digital Sky Survey
NASA Astrophysics Data System (ADS)
Li, Zhongmu; Mao, Caiyan
2013-07-01
Galaxies are complex systems with many properties. Correlations among galaxy properties can supply important clues for studying the formation and evolution of galaxies. Using principal component analysis and least-squares fitting, this paper investigates the correlations among galactic parameters involving more properties (color, morphology, stellar population, and absolute magnitude) than previous studies. We use a volume-limited sample (whole sample) of 75,423 galaxies that was selected from the Sloan Digital Sky Survey Data Release 2 and divided into two subsamples (blue and red samples) using a critical color of (g - r) = 0.70 mag. In addition to recovering some previous results, we also obtain some new results. First, all separators for dividing galaxies into two groups can be related via good parameter-first principal component (PC1) correlations. A critical PC1 that indicates whether or not stellar age (or the evolution of a stellar population over time) is important can be used to separate galaxies. This suggests that a statistical parameter, PC1, is helpful in understanding the physical separators of galaxies. In addition, stellar age is shown to be unimportant for red galaxies, while both stellar age and mass are dominating parameters of blue galaxies. This suggests that the various numbers of dominating parameters of galaxies may result from the use of different samples. Finally, some parameters are shown to be correlated, and quantitative fits for a few correlations are obtained, e.g., log(t) = 8.57 + 1.65 (g - r) for the age (log t) and color (g - r) of blue galaxies and log (M *) = 4.31 - 0.30 M r for the stellar mass (log M *) and absolute magnitude (M r) of red galaxies. The median relationships between various parameter pairs are also presented for comparison.
VizieR Online Data Catalog: Analytical model for irradiated atmospheres (Parmentier+, 2014)
NASA Astrophysics Data System (ADS)
Parmentier, V.; Guillot, G.
2013-11-01
The model have six parameters to describe the opacities: - Kappa(N) is the Rosseland mean opacity at each levels of the atmosphere it does not have to be constant with depth - Gp is the ratio of the thermal Plank mean opacity to the thermal Rosseland mean opacity - Beta is the width ratio of the two thermal bands in the frequency space - Gv1 is the ratio of the visible opacity in the first visible band to the thermal Rosseland mean opacity - Gv2 is the ratio of the visible opacity in the second visible band to the thermal Rosseland mean opacity - Betav is the width ratio of the two visible band in the frequency space Additional parameters describe the physical setting: - Tirr is the irradiation temperature, given by the stellar flux - mu is the angle between the vertical direction and the stellar direction - Tint is the internal temperature, given by the internal luminosity - P(i) are the pressure levels where the temperature is computed - grav is the gravity of the planet - N is the number of atmospheric levels The code and all the outputs uses SI units. Installation and use : to install the code use the command "make". The input parameters must be changed inside the file PaperI.f90. It is necessary to compile the code again each time. The subroutine Tprofile.f90 can be directly implemented into one's code. To launch the code, launch the executable file NonGrey. The output is in the file PTprofile.csv (4 data files).
Stargate: An Open Stellar Catalog for NASA Exoplanet Exploration
NASA Astrophysics Data System (ADS)
Tanner, Angelle
NASA is invested in a number of space- and ground-based efforts to find extrasolar planets around nearby stars with the ultimate goal of discovering an Earth 2.0 viable for searching for bio-signatures in its atmosphere. With both sky-time and funding resources extremely precious it is crucial that the exoplanet community has the most efficient and functional tools for choosing which stars to observe and then deriving the physical properties of newly discovered planets via the properties of their host stars. Historically, astronomers have utilized a piecemeal set of archives such as SIMBAD, the Washington Double Star Catalog, various exoplanet encyclopedias and electronic tables from the literature to cobble together stellar and planetary parameters in the absence of corresponding images and spectra. The mothballed NStED archive was in the process of collecting such data on nearby stars but its course may have changed if it comes back to NASA mission specific targets and NOT a volume limited sample of nearby stars. This means there is void. A void in the available set of tools many exoplanet astronomers would appreciate to create comprehensive lists of the stellar parameters of stars in our local neighborhood. Also, we need better resources for downloading adaptive optics images and published spectra to help confirm new discoveries and find ideal target stars. With so much data being produced by the stellar and exoplanet community we have decided to propose for the creation of an open access archive in the spirit of the open exoplanet catalog and the Kepler Community Follow-up Program. While we will highly regulate and constantly validate the data being placed into our archive the open nature of its design is intended to allow the database to be updated quickly and have a level of versatility which is necessary in today's fast moving, big data exoplanet community. Here, we propose to develop the Stargate Open stellar catalog for NASA exoplanet exploration.
[Atmospheric parameter estimation for LAMOST/GUOSHOUJING spectra].
Lu, Yu; Li, Xiang-Ru; Yang, Tan
2014-11-01
It is a key task to estimate the atmospheric parameters from the observed stellar spectra in exploring the nature of stars and universe. With our Large Sky Area Multi-Object Fiber Spectroscopy Telescope (LAMOST) which begun its formal Sky Survey in September 2012, we are obtaining a mass of stellar spectra in an unprecedented speed. It has brought a new opportunity and a challenge for the research of galaxies. Due to the complexity of the observing system, the noise in the spectrum is relatively large. At the same time, the preprocessing procedures of spectrum are also not ideal, such as the wavelength calibration and the flow calibration. Therefore, there is a slight distortion of the spectrum. They result in the high difficulty of estimating the atmospheric parameters for the measured stellar spectra. It is one of the important issues to estimate the atmospheric parameters for the massive stellar spectra of LAMOST. The key of this study is how to eliminate noise and improve the accuracy and robustness of estimating the atmospheric parameters for the measured stellar spectra. We propose a regression model for estimating the atmospheric parameters of LAMOST stellar(SVM(lasso)). The basic idea of this model is: First, we use the Haar wavelet to filter spectrum, suppress the adverse effects of the spectral noise and retain the most discrimination information of spectrum. Secondly, We use the lasso algorithm for feature selection and extract the features of strongly correlating with the atmospheric parameters. Finally, the features are input to the support vector regression model for estimating the parameters. Because the model has better tolerance to the slight distortion and the noise of the spectrum, the accuracy of the measurement is improved. To evaluate the feasibility of the above scheme, we conduct experiments extensively on the 33 963 pilot surveys spectrums by LAMOST. The accuracy of three atmospheric parameters is log Teff: 0.006 8 dex, log g: 0.155 1 dex, [Fe/H]: 0.104 0 dex.
Asteroseismic Diagram for Subgiants and Red Giants
NASA Astrophysics Data System (ADS)
Gai, Ning; Tang, Yanke; Yu, Peng; Dou, Xianghua
2017-02-01
Asteroseismology is a powerful tool for constraining stellar parameters. NASA’s Kepler mission is providing individual eigenfrequencies for a huge number of stars, including thousands of red giants. Besides the frequencies of acoustic modes, an important breakthrough of the Kepler mission is the detection of nonradial gravity-dominated mixed-mode oscillations in red giants. Unlike pure acoustic modes, mixed modes probe deeply into the interior of stars, allowing the stellar core properties and evolution of stars to be derived. In this work, using the gravity-mode period spacing and the large frequency separation, we construct the ΔΠ1-Δν asteroseismic diagram from models of subgiants and red giants with various masses and metallicities. The relationship ΔΠ1-Δν is able to constrain the ages and masses of the subgiants. Meanwhile, for red giants with masses above 1.5 M ⊙, the ΔΠ1-Δν asteroseismic diagram can also work well to constrain the stellar age and mass. Additionally, we calculate the relative “isochrones” τ, which indicate similar evolution states especially for similar mass stars, on the ΔΠ1-Δν diagram.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Xian; Amaro-Seoane, Pau, E-mail: xian.chen@pku.edu.cn, E-mail: pau@ice.cat
The formation of compact stellar-mass binaries is a difficult, but interesting problem in astrophysics. There are two main formation channels: in the field via binary star evolution, or in dense stellar systems via dynamical interactions. The Laser Interferometer Gravitational-wave Observatory (LIGO) has detected black hole binaries (BHBs) via their gravitational radiation. These detections provide us with information about the physical parameters of the system. It has been claimed that when the Laser Interferometer Space Antenna (LISA) is operating, the joint observation of these binaries with LIGO will allow us to derive the channels that lead to their formation. However, wemore » show that for BHBs in dense stellar systems dynamical interactions could lead to high eccentricities such that a fraction of the relativistic mergers are not audible to LISA. A non-detection by LISA puts a lower limit of about 0.005 on the eccentricity of a BHB entering the LIGO band. On the other hand, a deci-Hertz observatory, like DECIGO or Tian Qin, would significantly enhance the chances of a joint detection and shed light on the formation channels of these binaries.« less
WHITE DWARFS IN LOCAL STAR STREAMS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fuchs, Burkhard; Dettbarn, Christian
2011-01-15
We have studied the fine structure of the phase space distribution of white dwarfs in the solar neighborhood. White dwarfs have kinematics that are typical for the stellar population of the old thin disk of the Milky Way. Using a projection of the space velocities of stars onto vertical angular momentum components and eccentricities of the stellar orbits we demonstrate that stellar streams can be identified in the phase space distribution of the white dwarfs. These correspond to the well-known Sirius, Pleiades, and Hercules star streams. Membership of white dwarfs, which represent the oldest population in the Galaxy, in thesemore » streams lends support to the interpretation that the streams owe their existence to dynamical resonance effects of the stars with Galactic spiral arms or the Galactic bar, because these indiscriminately affect all stellar populations.« less
Stellar Wakes from Dark Matter Subhalos
NASA Astrophysics Data System (ADS)
Buschmann, Malte; Kopp, Joachim; Safdi, Benjamin R.; Wu, Chih-Liang
2018-05-01
We propose a novel method utilizing stellar kinematic data to detect low-mass substructure in the Milky Way's dark matter halo. By probing characteristic wakes that a passing dark matter subhalo leaves in the phase-space distribution of ambient halo stars, we estimate sensitivities down to subhalo masses of ˜107 M⊙ or below. The detection of such subhalos would have implications for dark matter and cosmological models that predict modifications to the halo-mass function at low halo masses. We develop an analytic formalism for describing the perturbed stellar phase-space distributions, and we demonstrate through idealized simulations the ability to detect subhalos using the phase-space model and a likelihood framework. Our method complements existing methods for low-mass subhalo searches, such as searches for gaps in stellar streams, in that we can localize the positions and velocities of the subhalos today.
NASA Astrophysics Data System (ADS)
Reese, D. R.; Chaplin, W. J.; Davies, G. R.; Miglio, A.; Antia, H. M.; Ball, W. H.; Basu, S.; Buldgen, G.; Christensen-Dalsgaard, J.; Coelho, H. R.; Hekker, S.; Houdek, G.; Lebreton, Y.; Mazumdar, A.; Metcalfe, T. S.; Silva Aguirre, V.; Stello, D.; Verma, K.
2016-07-01
Context. Detailed oscillation spectra comprising individual frequencies for numerous solar-type stars and red giants are either currently available, e.g. courtesy of the CoRoT, Kepler, and K2 missions, or will become available with the upcoming NASA TESS and ESA PLATO 2.0 missions. The data can lead to a precise characterisation of these stars thereby improving our understanding of stellar evolution, exoplanetary systems, and the history of our galaxy. Aims: Our goal is to test and compare different methods for obtaining stellar properties from oscillation frequencies and spectroscopic constraints. Specifically, we would like to evaluate the accuracy of the results and reliability of the associated error bars, and to see where there is room for improvement. Methods: In the context of the SpaceInn network, we carried out a hare-and-hounds exercise in which one group, the hares, simulated observations of oscillation spectra for a set of ten artificial solar-type stars, and a number of hounds applied various methods for characterising these stars based on the data produced by the hares. Most of the hounds fell into two main groups. The first group used forward modelling (I.e. applied various search/optimisation algorithms in a stellar parameter space) whereas the second group relied on acoustic glitch signatures. Results: Results based on the forward modelling approach were accurate to 1.5% (radius), 3.9% (mass), 23% (age), 1.5% (surface gravity), and 1.8% (mean density), as based on the root mean square difference. Individual hounds reached different degrees of accuracy, some of which were substantially better than the above average values. For the two 1M⊙ stellar targets, the accuracy on the age is better than 10% thereby satisfying the requirements for the PLATO 2.0 mission. High stellar masses and atomic diffusion (which in our models does not include the effects of radiative accelerations) proved to be sources of difficulty. The average accuracies for the acoustic radii of the base of the convection zone, the He II ionisation, and the Γ1 peak located between the two He ionisation zones were 17%, 2.4%, and 1.9%, respectively. The results from the forward modelling were on average more accurate than those from the glitch fitting analysis as the latter seemed to be affected by aliasing problems for some of the targets. Conclusions: Our study indicates that forward modelling is the most accurate way of interpreting the pulsation spectra of solar-type stars. However, given its model-dependent nature, this method needs to be complemented by model-independent results from, e.g. glitch analysis. Furthermore, our results indicate that global rather than local optimisation algorithms should be used in order to obtain robust error bars.
Library of Giant Planet Reflection Spectra for WFirst and Future Space Telescopes
NASA Astrophysics Data System (ADS)
Smith, Adam J. R. W.; Fortney, Jonathan; Morley, Caroline; Batalha, Natasha E.; Lewis, Nikole K.
2018-01-01
Future large space space telescopes will be able to directly image exoplanets in optical light. The optical light of a resolved planet is due to stellar flux reflected by Rayleigh scattering or cloud scattering, with absorption features imprinted due to molecular bands in the planetary atmosphere. To aid in the design of such missions, and to better understand a wide range of giant planet atmospheres, we have built a library of model giant planet reflection spectra, for the purpose of determining effective methods of spectral analysis as well as for comparison with actual imaged objects. This library covers a wide range of parameters: objects are modeled at ten orbital distances between 0.5 AU and 5.0 AU, which ranges from planets too warm for water clouds, out to those that are true Jupiter analogs. These calculations include six metalicities between solar and 100x solar, with a variety of different cloud thickness parameters, and across all possible phase angles.
BONNSAI: correlated stellar observables in Bayesian methods
NASA Astrophysics Data System (ADS)
Schneider, F. R. N.; Castro, N.; Fossati, L.; Langer, N.; de Koter, A.
2017-02-01
In an era of large spectroscopic surveys of stars and big data, sophisticated statistical methods become more and more important in order to infer fundamental stellar parameters such as mass and age. Bayesian techniques are powerful methods because they can match all available observables simultaneously to stellar models while taking prior knowledge properly into account. However, in most cases it is assumed that observables are uncorrelated which is generally not the case. Here, we include correlations in the Bayesian code Bonnsai by incorporating the covariance matrix in the likelihood function. We derive a parametrisation of the covariance matrix that, in addition to classical uncertainties, only requires the specification of a correlation parameter that describes how observables co-vary. Our correlation parameter depends purely on the method with which observables have been determined and can be analytically derived in some cases. This approach therefore has the advantage that correlations can be accounted for even if information for them are not available in specific cases but are known in general. Because the new likelihood model is a better approximation of the data, the reliability and robustness of the inferred parameters are improved. We find that neglecting correlations biases the most likely values of inferred stellar parameters and affects the precision with which these parameters can be determined. The importance of these biases depends on the strength of the correlations and the uncertainties. For example, we apply our technique to massive OB stars, but emphasise that it is valid for any type of stars. For effective temperatures and surface gravities determined from atmosphere modelling, we find that masses can be underestimated on average by 0.5σ and mass uncertainties overestimated by a factor of about 2 when neglecting correlations. At the same time, the age precisions are underestimated over a wide range of stellar parameters. We conclude that accounting for correlations is essential in order to derive reliable stellar parameters including robust uncertainties and will be vital when entering an era of precision stellar astrophysics thanks to the Gaia satellite.
Radial velocities of K-M dwarfs and local stellar kinematics
NASA Astrophysics Data System (ADS)
Sperauskas, J.; Bartašiūtė, S.; Boyle, R. P.; Deveikis, V.; Raudeliūnas, S.; Upgren, A. R.
2016-12-01
Aims: The goal of this paper is to present complete radial-velocity data for the spectroscopically selected McCormick sample of nearby K-M dwarfs and, based on these and supplementary data, to determine the space-velocity distributions of late-type stars in the solar neighborhood. Methods: We analyzed nearly 3300 measurements of radial velocities for 1049 K-M dwarfs, that we obtained during the past decade with a CORAVEL-type instrument, with a primary emphasis on detecting and eliminating from kinematic calculations the spectroscopic binaries and binary candidates. Combining radial-velocity data with Hipparcos/Tycho-2 astrometry we calculated the space-velocity components and parameters of the galactic orbits in a three-component model potential for the stars in the sample, that we use for kinematical analysis and for the identification of possible candidate members of nearby stellar kinematic groups. Results: We present the catalog of our observations of radial velocities for 959 stars which are not suspected of velocity variability, along with the catalog of U,V,W velocities and Galactic orbital parameters for a total of 1088 K-M stars which are used in the present kinematic analysis. Of these, 146 stars were identified as possible candidate members of the known nearby kinematic groups and suspected subgroups. The distributions of space-velocity components, orbital eccentricities, and maximum distances from the Galactic plane are consistent with the presence of young, intermediate-age and old populations of the thin disk and a small fraction ( 3%) of stars with the thick disk kinematics. The kinematic structure gives evidence that the bulk of K-M type stars in the immediate solar vicinity represents a dynamically relaxed stellar population. The star MCC 869 is found to be on a retrograde Galactic orbit (V = -262 km s-1) of low inclination (4°) and can be a member of stellar stream of some dissolved structure. The Sun's velocity with respect to the Local Standard of Rest, derived from the distributions of space-velocity components, is (U⊙,V⊙,W⊙) = (9.0 ± 1.4,13.1 ± 0.6,7.2 ± 0.8) km s-1. The radial solar motion derived via the Strömberg's relation, V⊙ = 14.2 ± 0.8 km s-1, agrees within the errors with the value obtained directly from the V distribution of stars on nearly circular orbits. Full Tables 2, 4, 5, 7, and a table of the individual RV measurements are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/596/A116
NASA Astrophysics Data System (ADS)
Weisz, Daniel R.; Fouesneau, Morgan; Hogg, David W.; Rix, Hans-Walter; Dolphin, Andrew E.; Dalcanton, Julianne J.; Foreman-Mackey, Daniel T.; Lang, Dustin; Johnson, L. Clifton; Beerman, Lori C.; Bell, Eric F.; Gordon, Karl D.; Gouliermis, Dimitrios; Kalirai, Jason S.; Skillman, Evan D.; Williams, Benjamin F.
2013-01-01
We present a probabilistic approach for inferring the parameters of the present-day power-law stellar mass function (MF) of a resolved young star cluster. This technique (1) fully exploits the information content of a given data set; (2) can account for observational uncertainties in a straightforward way; (3) assigns meaningful uncertainties to the inferred parameters; (4) avoids the pitfalls associated with binning data; and (5) can be applied to virtually any resolved young cluster, laying the groundwork for a systematic study of the high-mass stellar MF (M >~ 1 M ⊙). Using simulated clusters and Markov Chain Monte Carlo sampling of the probability distribution functions, we show that estimates of the MF slope, α, are unbiased and that the uncertainty, Δα, depends primarily on the number of observed stars and on the range of stellar masses they span, assuming that the uncertainties on individual masses and the completeness are both well characterized. Using idealized mock data, we compute the theoretical precision, i.e., lower limits, on α, and provide an analytic approximation for Δα as a function of the observed number of stars and mass range. Comparison with literature studies shows that ~3/4 of quoted uncertainties are smaller than the theoretical lower limit. By correcting these uncertainties to the theoretical lower limits, we find that the literature studies yield langαrang = 2.46, with a 1σ dispersion of 0.35 dex. We verify that it is impossible for a power-law MF to obtain meaningful constraints on the upper mass limit of the initial mass function, beyond the lower bound of the most massive star actually observed. We show that avoiding substantial biases in the MF slope requires (1) including the MF as a prior when deriving individual stellar mass estimates, (2) modeling the uncertainties in the individual stellar masses, and (3) fully characterizing and then explicitly modeling the completeness for stars of a given mass. The precision on MF slope recovery in this paper are lower limits, as we do not explicitly consider all possible sources of uncertainty, including dynamical effects (e.g., mass segregation), unresolved binaries, and non-coeval populations. We briefly discuss how each of these effects can be incorporated into extensions of the present framework. Finally, we emphasize that the technique and lessons learned are applicable to more general problems involving power-law fitting. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the Data Archive at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.
Searching for dark absorption with direct detection experiments
Bloch, Itay M.; Essig, Rouven; Tobioka, Kohsaku; ...
2017-06-16
We consider the absorption by bound electrons of dark matter in the form of dark photons and axion-like particles, as well as of dark photons from the Sun, in current and next-generation direct detection experiments. Experiments sensitive to electron recoils can detect such particles with masses between a few eV to more than 10 keV. For dark photon dark matter, we update a previous bound based on XENON10 data and derive new bounds based on data from XENON100 and CDMSlite. We find these experiments to disfavor previously allowed parameter space. Moreover, we derive sensitivity projections for SuperCDMS at SNOLAB formore » silicon and germanium targets, as well as for various possible experiments with scintillating targets (cesium iodide, sodium iodide, and gallium arsenide). The projected sensitivity can probe large new regions of parameter space. For axion-like particles, the same current direction detection data improves on previously known direct-detection constraints but does not bound new parameter space beyond known stellar cooling bounds. However, projected sensitivities of the upcoming SuperCDMS SNOLAB using germanium can go beyond these and even probe parameter space consistent with possible hints from the white dwarf luminosity function. We find similar results for dark photons from the sun. For all cases, direct-detection experiments can have unprecedented sensitivity to dark-sector particles.« less
Searching for dark absorption with direct detection experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bloch, Itay M.; Essig, Rouven; Tobioka, Kohsaku
We consider the absorption by bound electrons of dark matter in the form of dark photons and axion-like particles, as well as of dark photons from the Sun, in current and next-generation direct detection experiments. Experiments sensitive to electron recoils can detect such particles with masses between a few eV to more than 10 keV. For dark photon dark matter, we update a previous bound based on XENON10 data and derive new bounds based on data from XENON100 and CDMSlite. We find these experiments to disfavor previously allowed parameter space. Moreover, we derive sensitivity projections for SuperCDMS at SNOLAB formore » silicon and germanium targets, as well as for various possible experiments with scintillating targets (cesium iodide, sodium iodide, and gallium arsenide). The projected sensitivity can probe large new regions of parameter space. For axion-like particles, the same current direction detection data improves on previously known direct-detection constraints but does not bound new parameter space beyond known stellar cooling bounds. However, projected sensitivities of the upcoming SuperCDMS SNOLAB using germanium can go beyond these and even probe parameter space consistent with possible hints from the white dwarf luminosity function. We find similar results for dark photons from the sun. For all cases, direct-detection experiments can have unprecedented sensitivity to dark-sector particles.« less
Comparative Modelling of the Spectra of Cool Giants
NASA Technical Reports Server (NTRS)
Lebzelter, T.; Heiter, U.; Abia, C.; Eriksson, K.; Ireland, M.; Neilson, H.; Nowotny, W; Maldonado, J; Merle, T.; Peterson, R.;
2012-01-01
Our ability to extract information from the spectra of stars depends on reliable models of stellar atmospheres and appropriate techniques for spectral synthesis. Various model codes and strategies for the analysis of stellar spectra are available today. Aims. We aim to compare the results of deriving stellar parameters using different atmosphere models and different analysis strategies. The focus is set on high-resolution spectroscopy of cool giant stars. Methods. Spectra representing four cool giant stars were made available to various groups and individuals working in the area of spectral synthesis, asking them to derive stellar parameters from the data provided. The results were discussed at a workshop in Vienna in 2010. Most of the major codes currently used in the astronomical community for analyses of stellar spectra were included in this experiment. Results. We present the results from the different groups, as well as an additional experiment comparing the synthetic spectra produced by various codes for a given set of stellar parameters. Similarities and differences of the results are discussed. Conclusions. Several valid approaches to analyze a given spectrum of a star result in quite a wide range of solutions. The main causes for the differences in parameters derived by different groups seem to lie in the physical input data and in the details of the analysis method. This clearly shows how far from a definitive abundance analysis we still are.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cottaar, Michiel; Meyer, Michael R.; Covey, Kevin R.
2014-10-20
Over two years, 8859 high-resolution H-band spectra of 3493 young (1-10 Myr) stars were gathered by the multi-object spectrograph of the APOGEE project as part of the IN-SYNC ancillary program of the SDSS-III survey. Here we present the forward modeling approach used to derive effective temperatures, surface gravities, radial velocities, rotational velocities, and H-band veiling from these near-infrared spectra. We discuss in detail the statistical and systematic uncertainties in these stellar parameters. In addition, we present accurate extinctions by measuring the E(J – H) of these young stars with respect to the single-star photometric locus in the Pleiades. Finally, wemore » identify an intrinsic stellar radius spread of about 25% for late-type stars in IC 348 using three (nearly) independent measures of stellar radius, namely, the extinction-corrected J-band magnitude, the surface gravity, and the Rsin i from the rotational velocities and literature rotation periods. We exclude that this spread is caused by uncertainties in the stellar parameters by showing that the three estimators of stellar radius are correlated, so that brighter stars tend to have lower surface gravities and larger Rsin i than fainter stars at the same effective temperature. Tables providing the spectral and photometric parameters for the Pleiades and IC 348 have been provided online.« less
NASA Astrophysics Data System (ADS)
Cottaar, Michiel; Covey, Kevin R.; Meyer, Michael R.; Nidever, David L.; Stassun, Keivan G.; Foster, Jonathan B.; Tan, Jonathan C.; Chojnowski, S. Drew; da Rio, Nicola; Flaherty, Kevin M.; Frinchaboy, Peter M.; Skrutskie, Michael; Majewski, Steven R.; Wilson, John C.; Zasowski, Gail
2014-10-01
Over two years, 8859 high-resolution H-band spectra of 3493 young (1-10 Myr) stars were gathered by the multi-object spectrograph of the APOGEE project as part of the IN-SYNC ancillary program of the SDSS-III survey. Here we present the forward modeling approach used to derive effective temperatures, surface gravities, radial velocities, rotational velocities, and H-band veiling from these near-infrared spectra. We discuss in detail the statistical and systematic uncertainties in these stellar parameters. In addition, we present accurate extinctions by measuring the E(J - H) of these young stars with respect to the single-star photometric locus in the Pleiades. Finally, we identify an intrinsic stellar radius spread of about 25% for late-type stars in IC 348 using three (nearly) independent measures of stellar radius, namely, the extinction-corrected J-band magnitude, the surface gravity, and the Rsin i from the rotational velocities and literature rotation periods. We exclude that this spread is caused by uncertainties in the stellar parameters by showing that the three estimators of stellar radius are correlated, so that brighter stars tend to have lower surface gravities and larger Rsin i than fainter stars at the same effective temperature. Tables providing the spectral and photometric parameters for the Pleiades and IC 348 have been provided online.
An application of deep learning in the analysis of stellar spectra
NASA Astrophysics Data System (ADS)
Fabbro, S.; Venn, K. A.; O'Briain, T.; Bialek, S.; Kielty, C. L.; Jahandar, F.; Monty, S.
2018-04-01
Spectroscopic surveys require fast and efficient analysis methods to maximize their scientific impact. Here, we apply a deep neural network architecture to analyse both SDSS-III APOGEE DR13 and synthetic stellar spectra. When our convolutional neural network model (StarNet) is trained on APOGEE spectra, we show that the stellar parameters (temperature, gravity, and metallicity) are determined with similar precision and accuracy as the APOGEE pipeline. StarNet can also predict stellar parameters when trained on synthetic data, with excellent precision and accuracy for both APOGEE data and synthetic data, over a wide range of signal-to-noise ratios. In addition, the statistical uncertainties in the stellar parameter determinations are comparable to the differences between the APOGEE pipeline results and those determined independently from optical spectra. We compare StarNet to other data-driven methods; for example, StarNet and the Cannon 2 show similar behaviour when trained with the same data sets; however, StarNet performs poorly on small training sets like those used by the original Cannon. The influence of the spectral features on the stellar parameters is examined via partial derivatives of the StarNet model results with respect to the input spectra. While StarNet was developed using the APOGEE observed spectra and corresponding ASSET synthetic data, we suggest that this technique is applicable to other wavelength ranges and other spectral surveys.
Stellar Wakes from Dark Matter Subhalos.
Buschmann, Malte; Kopp, Joachim; Safdi, Benjamin R; Wu, Chih-Liang
2018-05-25
We propose a novel method utilizing stellar kinematic data to detect low-mass substructure in the Milky Way's dark matter halo. By probing characteristic wakes that a passing dark matter subhalo leaves in the phase-space distribution of ambient halo stars, we estimate sensitivities down to subhalo masses of ∼10^{7} M_{⊙} or below. The detection of such subhalos would have implications for dark matter and cosmological models that predict modifications to the halo-mass function at low halo masses. We develop an analytic formalism for describing the perturbed stellar phase-space distributions, and we demonstrate through idealized simulations the ability to detect subhalos using the phase-space model and a likelihood framework. Our method complements existing methods for low-mass subhalo searches, such as searches for gaps in stellar streams, in that we can localize the positions and velocities of the subhalos today.
NASA Astrophysics Data System (ADS)
Bensby, T.; Feltzing, S.; Oey, M. S.
2014-02-01
Aims: The aim of this paper is to explore and map the age and abundance structure of the stars in the nearby Galactic disk. Methods: We have conducted a high-resolution spectroscopic study of 714 F and G dwarf and subgiant stars in the Solar neighbourhood. The star sample has been kinematically selected to trace the Galactic thin and thick disks to their extremes, the metal-rich stellar halo, sub-structures in velocity space such as the Hercules stream and the Arcturus moving group, as well as stars that cannot (kinematically) be associated with either the thin disk or the thick disk. The determination of stellar parameters and elemental abundances is based on a standard analysis using equivalent widths and one-dimensional, plane-parallel model atmospheres calculated under the assumption of local thermodynamical equilibrium (LTE). The spectra have high resolution (R = 40 000-110 000) and high signal-to-noise (S/N = 150-300) and were obtained with the FEROS spectrograph on the ESO 1.5 m and 2.2 m telescopes, the SOFIN and FIES spectrographs on the Nordic Optical Telescope, the UVES spectrograph on the ESO Very Large Telescope, the HARPS spectrograph on the ESO 3.6 m telescope, and the MIKE spectrograph on the Magellan Clay telescope. The abundances from individual Fe i lines were were corrected for non-LTE effects in every step of the analysis. Results: We present stellar parameters, stellar ages, kinematical parameters, orbital parameters, and detailed elemental abundances for O, Na, Mg, Al, Si, Ca, Ti, Cr, Fe, Ni, Zn, Y, and Ba for 714 nearby F and G dwarf stars. Our data show that there is an old and α-enhanced disk population, and a younger and less α-enhanced disk population. While they overlap greatly in metallicity between -0.7 < [Fe/H] ≲ +0.1, they show a bimodal distribution in [α/Fe]. This bimodality becomes even clearer if stars where stellar parameters and abundances show larger uncertainties (Teff ≲ 5400 K) are discarded, showing that it is important to constrain the data set to a narrow range in the stellar parameters if small differences between stellar populations are to be revealed. In addition, we find that the α-enhanced population has orbital parameters placing the stellar birthplaces in the inner Galactic disk while the low-α stars mainly come from the outer Galactic disk, fully consistent with the recent claims of a short scale-length for the α-enhanced Galactic thick disk. We have also investigated the properties of the Hercules stream and the Arcturus moving group and find that neither of them presents chemical or age signatures that could suggest that they are disrupted clusters or extragalactic accretion remnants from ancient merger events. Instead, they are most likely dynamical features originating within the Galaxy. We have also discovered that a standard 1D, LTE analysis, utilising ionisation and excitation balance of Fe i and Fe ii lines produces a flat lower main sequence. As the exact cause for this effect is unclear we chose to apply an empirical correction. Turn-off stars and more evolved stars appear to be unaffected. This paper includes data gathered with the 6.5 m Magellan Telescopes located at the Las Campanas Observatory, Chile; the Nordic Optical Telescope (NOT) on La Palma, Spain; the Very Large Telescope (VLT) at the European Southern Observatory (ESO) on Paranal, Chile (ESO Proposal ID 69.B-0277 and 72.B-0179); the ESO 1.5 m, 2.2 m, and 3.6 m telescopes on La Silla, Chile (ESO Proposal ID 65.L-0019, 67.B-0108, 76.B-0416, 82.B-0610); and data from the UVES Paranal Observatory Project (ESO DDT Program ID 266.D-5655).Full Tables C.1-C.3 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/562/A71Appendices are available in electronic form at http://www.aanda.org
Optimizing Methods of Obtaining Stellar Parameters for the H3 Survey
NASA Astrophysics Data System (ADS)
Ivory, KeShawn; Conroy, Charlie; Cargile, Phillip
2018-01-01
The Stellar Halo at High Resolution with Hectochelle Survey (H3) is in the process of observing and collecting stellar parameters for stars in the Milky Way's halo. With a goal of measuring radial velocities for fainter stars, it is crucial that we have optimal methods of obtaining this and other parameters from the data from these stars.The method currently developed is The Payne, named after Cecilia Payne-Gaposchkin, a code that uses neural networks and Markov Chain Monte Carlo methods to utilize both spectra and photometry to obtain values for stellar parameters. This project was to investigate the benefit of fitting both spectra and spectral energy distributions (SED). Mock spectra using the parameters of the Sun were created and noise was inserted at various signal to noise values. The Payne then fit each mock spectrum with and without a mock SED also generated from solar parameters. The result was that at high signal to noise, the spectrum dominated and the effect of fitting the SED was minimal. But at low signal to noise, the addition of the SED greatly decreased the standard deviation of the data and resulted in more accurate values for temperature and metallicity.
Investigation of physical parameters in stellar flares observed by GINGA
NASA Technical Reports Server (NTRS)
Stern, Robert A.
1994-01-01
This program involves analysis and interpretation of results from GINGA Large Area Counter (LAC) observations from a group of large stellar x-ray flares. All LAC data are re-extracted using the standard Hayashida method of LAC background subtraction and analyzed using various models available with the XSPEC spectral fitting program. Temperature-emission measure histories are available for a total of 5 flares observed by GINGA. These will be used to compare physical parameters of these flares with solar and stellar flare models.
Investigation of physical parameters in stellar flares observed by GINGA
NASA Technical Reports Server (NTRS)
Stern, Robert A.
1994-01-01
This program involves analysis and interpretation of results from GINGA Large Area Counter (LAC) observations from a group of large stellar X-ray flares. All LAC data are re-extracted using the standard Hayashida method of LAC background subtraction and analyzed using various models available with the XSPEC spectral fitting program.Temperature-emission measure histories are available for a total of 5 flares observed by GINGA. These will be used to compare physical parameters of these flares with solar and stellar flare models.
Analysis of Co-spatial UV-optical HST/STIS Spectra of Planetary Nebula NGC 3242
NASA Astrophysics Data System (ADS)
Miller, Timothy R.; Henry, Richard B. C.; Balick, Bruce; Kwitter, Karen B.; Dufour, Reginald J.; Shaw, Richard A.; Corradi, Romano L. M.
2016-10-01
This project sought to consider two important aspects of the planetary nebula NGC 3242 using new long-slit HST/STIS spectra. First, we investigated whether this object is chemically homogeneous by spatially dividing the slit into different regions and calculating the abundances of each region. The major result is that the elements of He, C, O, and Ne are chemically homogeneous within uncertainties across the regions probed, implying that the stellar outflow was well-mixed. Second, we constrained the stellar properties using photoionization models computed by CLOUDY and tested the effects of three different density profiles on these parameters. The three profiles tested were a constant density profile, a Gaussian density profile, and a Gaussian with a power-law density profile. The temperature and luminosity were not affected significantly by the choice of density structure. The values for the stellar temperature and luminosity from our best-fit model are {89.7}-4.7+7.3 kK and log(L/L ⊙) = {3.36}-0.22+0.28, respectively. Comparing to evolutionary models on an HR diagram, this corresponds to an initial and final mass of {0.95}-0.09+0.35{M}⊙ and {0.56}-0.01+0.01{M}⊙ , respectively. Based on observations with the NASA/ESA Hubble Space Telescope obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Incorporated, under NASA contract NAS5-26555.
Accretion Disks and the Formation of Stellar Systems
NASA Astrophysics Data System (ADS)
Kratter, Kaitlin Michelle
2011-02-01
In this thesis, we examine the role of accretion disks in the formation of stellar systems, focusing on young massive disks which regulate the flow of material from the parent molecular core down to the star. We study the evolution of disks with high infall rates that develop strong gravitational instabilities. We begin in chapter 1 with a review of the observations and theory which underpin models for the earliest phases of star formation and provide a brief review of basic accretion disk physics, and the numerical methods that we employ. In chapter 2 we outline the current models of binary and multiple star formation, and review their successes and shortcomings from a theoretical and observational perspective. In chapter 3 we begin with a relatively simple analytic model for disks around young, high mass stars, showing that instability in these disks may be responsible for the higher multiplicity fraction of massive stars, and perhaps the upper mass to which they grow. We extend these models in chapter 4 to explore the properties of disks and the formation of binary companions across a broad range of stellar masses. In particular, we model the role of global and local mechanisms for angular momentum transport in regulating the relative masses of disks and stars. We follow the evolution of these disks throughout the main accretion phase of the system, and predict the trajectory of disks through parameter space. We follow up on the predictions made in our analytic models with a series of high resolution, global numerical experiments in chapter 5. Here we propose and test a new parameterization for describing rapidly accreting, gravitationally unstable disks. We find that disk properties and system multiplicity can be mapped out well in this parameter space. Finally, in chapter 6, we address whether our studies of unstable disks are relevant to recently detected massive planets on wide orbits around their central stars.
NASA Astrophysics Data System (ADS)
Montes, D.; González-Peinado, R.; Tabernero, H. M.; Caballero, J. A.; Marfil, E.; Alonso-Floriano, F. J.; Cortés-Contreras, M.; González Hernández, J. I.; Klutsch, A.; Moreno-Jódar, C.
2018-05-01
We investigated almost 500 stars distributed among 193 binary or multiple systems made of late-F, G-, or early-K primaries and late-K or M dwarf companion candidates. For all of them, we compiled or measured coordinates, J-band magnitudes, spectral types, distances, and proper motions. With these data, we established a sample of 192 physically bound systems. In parallel, we carried out observations with HERMES/Mercator and obtained high-resolution spectra for the 192 primaries and five secondaries. We used these spectra and the automatic STEPAR code for deriving precise stellar atmospheric parameters: Teff, log g, ξ, and chemical abundances for 13 atomic species, including [Fe/H]. After computing Galactocentric space velocities for all the primary stars, we performed a kinematic analysis and classified them in different Galactic populations and stellar kinematic groups of very different ages, which match our own metallicity determinations and isochronal age estimations. In particular, we identified three systems in the halo and 33 systems in the young Local Association, Ursa Major and Castor moving groups, and IC 2391 and Hyades Superclusters. We finally studied the exoplanet-metallicity relation in our 193 primaries and made a list 13 M-dwarf companions with very high metallicity that can be the targets of new dedicated exoplanet surveys. All in all, our dataset will be of great help for future works on the accurate determination of metallicity of M dwarfs.
Two-component Jaffe models with a central black hole - I. The spherical case
NASA Astrophysics Data System (ADS)
Ciotti, Luca; Ziaee Lorzad, Azadeh
2018-02-01
Dynamical properties of spherically symmetric galaxy models where both the stellar and total mass density distributions are described by the Jaffe (1983) profile (with different scalelengths and masses) are presented. The orbital structure of the stellar component is described by Osipkov-Merritt anisotropy, and a black hole (BH) is added at the centre of the galaxy; the dark matter halo is isotropic. First, the conditions required to have a nowhere negative and monotonically decreasing dark matter halo density profile are derived. We then show that the phase-space distribution function can be recovered by using the Lambert-Euler W function, while in absence of the central BH only elementary functions appears in the integrand of the inversion formula. The minimum value of the anisotropy radius for consistency is derived in terms of the galaxy parameters. The Jeans equations for the stellar component are solved analytically, and the projected velocity dispersion at the centre and at large radii are also obtained analytically for generic values of the anisotropy radius. Finally, the relevant global quantities entering the Virial Theorem are computed analytically, and the fiducial anisotropy limit required to prevent the onset of Radial Orbit Instability is determined as a function of the galaxy parameters. The presented models, even though highly idealized, represent a substantial generalization of the models presented in Ciotti, and can be useful as starting point for more advanced modelling, the dynamics and the mass distribution of elliptical galaxies.
Spectroscopic Investigation of TW Dra: Improved Stellar and System Parameters
NASA Astrophysics Data System (ADS)
Tkachenko, A.; Lehmann, H.; Mkrtichian, D.
2010-12-01
We investigate the Algol-type system TW Dra by means of the new computer program Shellspec07_inverse which is specially designed for the fine-tuning of stellar and system parameters of eclipsing binaries. We derive precise atmospheric and system parameters of TW Dra with an accuracy comparable to that expected from photometric data, and give a short comparison of our results with previous determinations.
UNCOVERING DRIVERS OF DISK ASSEMBLY: BULGELESS GALAXIES AND THE STELLAR MASS TULLY-FISHER RELATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Sarah H.; Sullivan, Mark; Ellis, Richard S., E-mail: smiller@astro.caltech.edu
2013-01-01
In order to determine what processes govern the assembly history of galaxies with rotating disks, we examine the stellar mass Tully-Fisher (TF) relation over a wide range in redshift partitioned according to whether or not galaxies contain a prominent bulge. Using our earlier Keck spectroscopic sample, for which bulge/total parameters are available from analyses of Hubble Space Telescope images, we find that bulgeless disk galaxies with z > 0.8 present a significant offset from the local (TF) relation whereas, at all redshifts probed, those with significant bulges fall along the local relation. Our results support the suggestion that bulge growthmore » may somehow expedite the maturing of disk galaxies onto the (TF) relation. We discuss a variety of physical hypotheses that may explain this result in the context of kinematic observations of star-forming galaxies at redshifts z = 0 and z > 2.« less
The Stellar Imager (SI) Project: Resolving Stellar Surfaces, Interiors, and Magnetic Activity
NASA Technical Reports Server (NTRS)
Carpenter, Kenneth G.; Schrijver, K.; Karovska, M.
2007-01-01
The Stellar Imager (SI) is a UV/Optical. Space-Based Interferometer designed to enable 0.1 milli-arcsec (mas) spectral imaging of stellar surfaces and, via asteroseismology, stellar interiors and of the Universe in general. The ultra-sharp images of SI will revolutionize our view of many dynamic astrophysical processes by transforming point sources into extended sources, and snapshots into evolving views. The science of SI focuses on the role of magnetism in the Universe, particularly on magnetic activity on the surfaces of stars like the Sun. Its prime goal is to enable long-term forecasting of solar activity and the space weather that it drives. SI will also revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magneto-hydrodynamically controlled processes in the Universe. In this paper we discuss the science goals, technology needs, and baseline design of the SI mission.
James Webb Space Telescope Observations of Stellar Occultations by Solar System Bodies and Rings
NASA Technical Reports Server (NTRS)
Santos-Sanz, P.; French, R. G.; Pinilla-Alonso, N.; Stansberry, J.; Lin, Z-Y.; Zhang, Z-W.; Vilenius, E.; Mueller, Th.; Ortiz, J. L.; Braga-Ribas, F.;
2016-01-01
In this paper, we investigate the opportunities provided by the James Webb Space Telescope (JWST) for significant scientific advances in the study of Solar System bodies and rings using stellar occultations. The strengths and weaknesses of the stellar occultation technique are evaluated in light of JWST's unique capabilities. We identify several possible JWST occultation events by minor bodies and rings and evaluate their potential scientific value. These predictions depend critically on accurate a priori knowledge of the orbit of JWST near the Sun–Earth Lagrange point 2 (L2). We also explore the possibility of serendipitous stellar occultations by very small minor bodies as a byproduct of other JWST observing programs. Finally, to optimize the potential scientific return of stellar occultation observations, we identify several characteristics of JWST's orbit and instrumentation that should be taken into account during JWST's development.
IAXO, next-generation of helioscopes
Giannotti, M.; Ruz, J.; Vogel, J. K.
2017-09-27
The International Axion Observatory (IAXO) is a forth generation axion helioscope designed to detect solar axions and axion-like particles (ALPs) with a coupling to the photon gaγ down to a few 10 -12 GeV -1, 1.5 orders of magnitude beyond the current best astrophysical and experimental upper bounds. This range includes parameter values invoked in the context of the observed anomalies in light propagation over astronomical distances and to explain the excessive cooling observed in a number of stellar objects. Here we review the status of the IAXO project and of its potential to probe the most physically motivated regionsmore » of the axion/ALPs parameter space.« less
Asteroseismology of hybrid δ Scuti-γ Doradus pulsating stars
NASA Astrophysics Data System (ADS)
Sánchez Arias, J. P.; Córsico, A. H.; Althaus, L. G.
2017-01-01
Context. Hybrid δ Scuti-γ Doradus pulsating stars show acoustic (p) oscillation modes typical of δ Scuti variable stars, and gravity (g) pulsation modes characteristic of γ Doradus variable stars simultaneously excited. Observations from space missions such as MOST, CoRoT, and Kepler have revealed a large number of hybrid δ Scuti-γ Doradus pulsators, thus paving the way for an exciting new channel of asteroseismic studies. Aims: We perform detailed asteroseismological modelling of five hybrid δ Scuti-γ Doradus stars. Methods: A grid-based modeling approach was employed to sound the internal structure of the target stars using stellar models ranging from the zero-age main sequence to the terminal-age main sequence, varying parameters such as stellar mass, effective temperature, metallicity and core overshooting. Their adiabatic radial (ℓ = 0) and non-radial (ℓ = 1,2,3) p and g mode periods were computed. Two model-fitting procedures were used to search for asteroseismological models that best reproduce the observed pulsation spectra of each target star. Results: We derive the fundamental parameters and the evolutionary status of five hybrid δ Scuti-γ Doradus variable stars recently observed by the CoRoT and Kepler space missions: CoRoT 105733033, CoRoT 100866999, KIC 11145123, KIC 9244992, and HD 49434. The asteroseismological model for each star results from different criteria of model selection, in which we take full advantage of the richness of periods that characterises the pulsation spectra for this kind of star.
An astrosphere around the blue supergiant κ Cas: possible explanation of its filamentary structure
NASA Astrophysics Data System (ADS)
Katushkina, O. A.; Alexashov, D. B.; Gvaramadze, V. V.; Izmodenov, V. V.
2018-01-01
High-resolution mid-infrared observations carried out by the Spitzer Space Telescope allowed one to resolve the fine structure of many astrospheres. In particular, they showed that the astrosphere around the B0.7 Ia star κ Cas (HD 2905) has a clear-cut arc structure with numerous cirrus-like filaments beyond it. Previously, we suggested a physical mechanism for the formation of such filamentary structures. Namely, we showed theoretically that they might represent the non-monotonic spatial distribution of the interstellar dust in astrospheres (viewed as filaments) caused by interaction of the dust grains with the interstellar magnetic field disturbed in the astrosphere due to colliding of the stellar and interstellar winds. In this paper, we invoke this mechanism to explain the structure of the astrosphere around κ Cas. We performed 3D magnetohydrodynamic modelling of the astrosphere for realistic parameters of the stellar wind and space velocity. The dust dynamics and the density distribution in the astrosphere were calculated in the framework of a kinetic model. It is found that the model results with the classical MRN (Mathis, Rumpl & Nordsieck 1977) size distribution of dust in the interstellar medium do not match the observations, and that the observed filamentary structure of the astrosphere can be reproduced only if the dust is composed mainly of big (μm-sized) grains. Comparison of the model results with observations allowed us to estimate parameters (number density and magnetic field strength) of the surrounding interstellar medium.
Summary of spacecraft technology, systems reliability, and tracking data acquisition
NASA Technical Reports Server (NTRS)
1973-01-01
Goddard activities are reported for 1973. An eight-year flight schedule for projected space missions is presented. Data acquired by spacecraft in the following disciplines are described: stellar ultraviolet, stellar X-rays, stellar gamma rays, solar radiation, radio astronomy, particles/fields, magnetosphere, aurora, and the upper atmosphere.
Colour pairs for constraining the age and metallicity of stellar populations
NASA Astrophysics Data System (ADS)
Li, Zhongmu; Han, Zhanwen
2008-04-01
Using a widely used stellar-population synthesis model, we study the possibility of using pairs of AB system colours to break the well-known stellar age-metallicity degeneracy and to give constraints on two luminosity-weighted stellar-population parameters (age and metallicity). We present the relative age and metallicity sensitivities of the AB system colours that relate to the u,B,g,V,r,R,i, I,z,J,H and K bands, and we quantify the ability of various colour pairs to break the age-metallicity degeneracy. Our results suggest that a few pairs of colours can be used to constrain the above two stellar-population parameters. This will be very useful for exploring the stellar populations of distant galaxies. In detail, colour pairs [(r-K), (u-R)] and [(r-K), (u-r)] are shown to be the best pairs for estimating the luminosity-weighted stellar ages and metallicities of galaxies. They can constrain two stellar-population parameters on average with age uncertainties less than 3.89 Gyr and metallicity uncertainties less than 0.34 dex for typical colour uncertainties. The typical age uncertainties for young populations (age < 4.6 Gyr) and metal-rich populations (Z >= 0.001) are small (about 2.26 Gyr) while those for old populations (age >= 4.6 Gyr) and metal-poor populations (Z < 0.001) are much larger (about 6.88 Gyr). However, the metallicity uncertainties for metal-poor populations (about 0.0024) are much smaller than for other populations (about 0.015). Some other colour pairs can also possibly be used for constraining the two parameters. On the whole, the estimation of stellar-population parameters is likely to be reliable only for early-type galaxies with small colour errors and globular clusters, because such objects contain less dust. In fact, no galaxy is totally dust-free and early-type galaxies are also likely have some dust [e.g. E(B- V) ~ 0.05], which can change the stellar ages by about 2.5 Gyr and metallicities (Z) by about 0.015. When we compare the photometric estimates with previous spectroscopic estimates, we find some differences, especially when comparing the stellar ages determined by two methods. The differences mainly result from the young populations of galaxies. Therefore, it is difficult to obtain the absolute values of stellar ages and metallicities, but the results are useful for obtaining some relative values. In addition, our results suggest that colours relating to both UBVRIJHK and ugriz magnitudes are much better than either UBVRIJHK or ugriz colours for breaking the well-known degeneracy. The results also show that the stellar ages and metallicities of galaxies observed by the Sloan Digital Sky Survey and the Two-Micron All-Sky Survey can be estimated via photometry data. The data are available at the Centre de Données astronomiques de Strabourg (CDS) or on request to the authors. E-mail: zhongmu.li@gmail.com
Redshift evolution of the dynamical properties of massive galaxies from SDSS-III/BOSS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beifiori, Alessandra; Saglia, Roberto P.; Bender, Ralf
2014-07-10
We study the redshift evolution of the dynamical properties of ∼180, 000 massive galaxies from SDSS-III/BOSS combined with a local early-type galaxy sample from SDSS-II in the redshift range 0.1 ≤ z ≤ 0.6. The typical stellar mass of this sample is M{sub *} ∼2 × 10{sup 11} M{sub ☉}. We analyze the evolution of the galaxy parameters effective radius, stellar velocity dispersion, and the dynamical to stellar mass ratio with redshift. As the effective radii of BOSS galaxies at these redshifts are not well resolved in the Sloan Digital Sky Survey (SDSS) imaging we calibrate the SDSS size measurementsmore » with Hubble Space Telescope/COSMOS photometry for a sub-sample of galaxies. We further apply a correction for progenitor bias to build a sample which consists of a coeval, passively evolving population. Systematic errors due to size correction and the calculation of dynamical mass are assessed through Monte Carlo simulations. At fixed stellar or dynamical mass, we find moderate evolution in galaxy size and stellar velocity dispersion, in agreement with previous studies. We show that this results in a decrease of the dynamical to stellar mass ratio with redshift at >2σ significance. By combining our sample with high-redshift literature data, we find that this evolution of the dynamical to stellar mass ratio continues beyond z ∼ 0.7 up to z > 2 as M{sub dyn}/M{sub *} ∼(1 + z){sup –0.30±0.12}, further strengthening the evidence for an increase of M{sub dyn}/M{sub *} with cosmic time. This result is in line with recent predictions from galaxy formation simulations based on minor merger driven mass growth, in which the dark matter fraction within the half-light radius increases with cosmic time.« less
Stellar helium burning in other universes: A solution to the triple alpha fine-tuning problem
NASA Astrophysics Data System (ADS)
Adams, Fred C.; Grohs, Evan
2017-01-01
Motivated by the possible existence of other universes, with different values for the fundamental constants, this paper considers stellar models in universes where 8Be is stable. Many previous authors have noted that stars in our universe would have difficulty producing carbon and other heavy elements in the absence of the well-known 12C resonance at 7.6 MeV. This resonance is necessary because 8Be is unstable in our universe, so that carbon must be produced via the triple alpha reaction to achieve the requisite abundance. Although a moderate change in the energy of the resonance (200-300 keV) will indeed affect carbon production, an even smaller change in the binding energy of beryllium (∼100 keV) would allow 8Be to be stable. A stable isotope with A = 8 would obviate the need for the triple alpha process in general, and the 12C resonance in particular, for carbon production. This paper explores the possibility that 8Be can be stable in other universes. Simple nuclear considerations indicate that bound states can be realized, with binding energy ∼ 0.1 - 1 MeV, if the fundamental constants vary by a ∼ few - 10 %. In such cases, 8Be can be synthesized through helium burning, and 12C can be produced later through nuclear burning of beryllium. This paper focuses on stellar models that burn helium into beryllium; once the universe in question has a supply of stable beryllium, carbon production can take place during subsequent evolution in the same star or in later stellar generations. Using both a semi-analytic stellar structure model as well as a state-of-the-art stellar evolution code, we find that viable stellar configurations that produce beryllium exist over a wide range of parameter space. Finally, we demonstrate that carbon can be produced during later evolutionary stages.
NASA Astrophysics Data System (ADS)
Aigrain, S.; Collier Cameron, A.; Ollivier, M.; Pont, F.; Jorda, L.; Almenara, J. M.; Alonso, R.; Barge, P.; Bordé, P.; Bouchy, F.; Deeg, H.; de La Reza, R.; Deleuil, M.; Dvorak, R.; Erikson, A.; Fridlund, M.; Gondoin, P.; Gillon, M.; Guillot, T.; Hatzes, A.; Lammer, H.; Lanza, A. F.; Léger, A.; Llebaria, A.; Magain, P.; Mazeh, T.; Moutou, C.; Paetzold, M.; Pinte, C.; Queloz, D.; Rauer, H.; Rouan, D.; Schneider, J.; Wuchter, G.; Zucker, S.
2008-09-01
CoRoT, the first space-based transit search, provides ultra-high-precision light curves with continuous time-sampling over periods of up to 5 months. This allows the detection of transiting planets with relatively long periods, and the simultaneous study of the host star's photometric variability. In this Letter, we report the discovery of the transiting giant planet CoRoT-Exo-4b and use the CoRoT light curve to perform a detailed analysis of the transit and determine the stellar rotation period. The CoRoT light curve was pre-processed to remove outliers and correct for orbital residuals and artefacts due to hot pixels on the detector. After removing stellar variability about each transit, the transit light curve was analysed to determine the transit parameters. A discrete autocorrelation function method was used to derive the rotation period of the star from the out-of-transit light curve. We determine the periods of the planetary orbit and star's rotation of 9.20205 ± 0.00037 and 8.87 ± 1.12 days respectively, which is consistent with this being a synchronised system. We also derive the inclination, i = 90.00_-0.085+0.000 in degrees, the ratio of the orbital distance to the stellar radius, a/Rs = 17.36-0.25+0.05, and the planet-to-star radius ratio R_p/R_s=0.1047-0.0022+0.0041. We discuss briefly the coincidence between the orbital period of the planet and the stellar rotation period and its possible implications for the system's migration and star-planet interaction history. The CoRoT space mission, launched on December 27th 2006, has been developed and is operated by CNES, with the contribution of Austria, Belgium, Brazil, ESA, Germany, and Spain. The first CoRoT data will be available to the public in February 2009 from the CoRoT archive: http://idoc-corot.ias.u-psud.fr/ Figures 1, 4 and 5 are only available in electronic form at http://www.aanda.org
The Local Stellar Velocity Field via Vector Spherical Harmonics
NASA Technical Reports Server (NTRS)
Makarov, V. V.; Murphy, D. W.
2007-01-01
We analyze the local field of stellar tangential velocities for a sample of 42,339 nonbinary Hipparcos stars with accurate parallaxes, using a vector spherical harmonic formalism.We derive simple relations between the parameters of the classical linear model (Ogorodnikov-Milne) of the local systemic field and low-degree terms of the general vector harmonic decomposition. Taking advantage of these relationships, we determine the solar velocity with respect to the local stars of (V(sub X), V(sub Y), V(sub Z)) = (10.5, 18.5, 7.3) +/- 0.1 km s(exp -1) not for the asymmetric drift with respect to the local standard of rest. If only stars more distant than 100 pc are considered, the peculiar solar motion is (V(sub X), V(sub Y), V(sub Z)) = (9.9, 15.6, 6.9) +/- 0.2 km s(exp -1). The adverse effects of harmonic leakage, which occurs between the reflex solar motion represented by the three electric vector harmonics in the velocity space and higher degree harmonics in the proper-motion space, are eliminated in our analysis by direct subtraction of the reflex solar velocity in its tangential components for each star...
Deviations from a uniform period spacing of gravity modes in a massive star.
Degroote, Pieter; Aerts, Conny; Baglin, Annie; Miglio, Andrea; Briquet, Maryline; Noels, Arlette; Niemczura, Ewa; Montalban, Josefina; Bloemen, Steven; Oreiro, Raquel; Vucković, Maja; Smolders, Kristof; Auvergne, Michel; Baudin, Frederic; Catala, Claude; Michel, Eric
2010-03-11
The life of a star is dominantly determined by the physical processes in the stellar interior. Unfortunately, we still have a poor understanding of how the stellar gas mixes near the stellar core, preventing precise predictions of stellar evolution. The unknown nature of the mixing processes as well as the extent of the central mixed region is particularly problematic for massive stars. Oscillations in stars with masses a few times that of the Sun offer a unique opportunity to disentangle the nature of various mixing processes, through the distinct signature they leave on period spacings in the gravity mode spectrum. Here we report the detection of numerous gravity modes in a young star with a mass of about seven solar masses. The mean period spacing allows us to estimate the extent of the convective core, and the clear periodic deviation from the mean constrains the location of the chemical transition zone to be at about 10 per cent of the radius and rules out a clear-cut profile.
Spitzer Lensing Cluster Legacy Survey
NASA Astrophysics Data System (ADS)
Soifer, Tom; Armus, Lee; Bradac, Marusa; Capak, Peter; Coe, Dan; Siana, Brian; Treu, Tommaso; Vieira, Joaquin
2015-11-01
Cluster-scale gravitational lenses act as cosmic telescopes, enabling the study of otherwise unobservable galaxies. They are critical in answering the questions such as what is the star formation history at z > 7, and whether these galaxies can reionize the Universe. Accurate knowledge of stellar masses, ages, and star formation rates at this epoch requires measuring both rest-frame UV and optical light, which only Spitzer and HST can probe at z>7-11 for a large enough sample of typical galaxies. To address this cosmic puzzle, we propose a program that obtains shallow Spitzer/IRAC imaging of a large sample of cluster lenses, followed by deep imaging of those clusters with the largest number of z > 7 candidate galaxies. This proposal will be a valuable Legacy complement to the existing IRAC deep surveys, and it will open up a new parameter space by probing the ordinary yet magnified population. Furthermore, it will enable the measurements of the stellar mass of the galaxy cluster population, thereby allowing us to chart the build-up of the cluster red sequence from z~1 to the present and to determine the physical processes responsible for this stellar mass growth.
Asteroseismic Diagram for Subgiants and Red Giants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gai, Ning; Tang, Yanke; Yu, Peng
Asteroseismology is a powerful tool for constraining stellar parameters. NASA’s Kepler mission is providing individual eigenfrequencies for a huge number of stars, including thousands of red giants. Besides the frequencies of acoustic modes, an important breakthrough of the Kepler mission is the detection of nonradial gravity-dominated mixed-mode oscillations in red giants. Unlike pure acoustic modes, mixed modes probe deeply into the interior of stars, allowing the stellar core properties and evolution of stars to be derived. In this work, using the gravity-mode period spacing and the large frequency separation, we construct the ΔΠ{sub 1}–Δ ν asteroseismic diagram from models ofmore » subgiants and red giants with various masses and metallicities. The relationship ΔΠ{sub 1}–Δ ν is able to constrain the ages and masses of the subgiants. Meanwhile, for red giants with masses above 1.5 M {sub ⊙}, the ΔΠ{sub 1}–Δ ν asteroseismic diagram can also work well to constrain the stellar age and mass. Additionally, we calculate the relative “isochrones” τ , which indicate similar evolution states especially for similar mass stars, on the ΔΠ{sub 1}–Δ ν diagram.« less
NASA Astrophysics Data System (ADS)
Andreasen, D. T.; Sousa, S. G.; Tsantaki, M.; Teixeira, G. D. C.; Mortier, A.; Santos, N. C.; Suárez-Andrés, L.; Delgado-Mena, E.; Ferreira, A. C. S.
2017-04-01
Context. Thanks to the importance that the star-planet relation has to our understanding of the planet formation process, the precise determination of stellar parameters for the ever increasing number of discovered extrasolar planets is of great relevance. Furthermore, precise stellar parameters are needed to fully characterize the planet properties. It is thus important to continue the efforts to determine, in the most uniform way possible, the parameters for stars with planets as new discoveries are announced. Aims: In this paper we present new precise atmospheric parameters for a sample of 50 stars with planets. The results are presented in the catalogue: SWEET-Cat. Methods: Stellar atmospheric parameters and masses for the 50 stars were derived assuming local thermodynamic equilibrium and using high-resolution and high signal-to-noise spectra. The methodology used is based on the measurement of equivalent widths with ARES2 for a list of iron lines. The line abundances were derived using MOOG. We then used the curve of growth analysis to determine the parameters. We implemented a new minimization procedure which significantly improves the computational time. Results: The stellar parameters for the 50 stars are presented and compared with previously determined literature values. For SWEET-Cat, we compile values for the effective temperature, surface gravity, metallicity, and stellar mass for almost all the planet host stars listed in the Extrasolar Planets Encyclopaedia. This data will be updated on a continuous basis. The data can be used for statistical studies of the star-planet correlation, and for the derivation of consistent properties for known planets. Based on observations collected at the La Silla Observatory, ESO (Chile), with FEROS/2.2 m (run 2014B/020), with UVES/VLT at the Cerro Paranal Observatory (runs ID 092.C-0695, 093.C-0219, 094.C-0367, 095.C-0324, and 096.C-0092), and with FIES/NOT at Roque de los Muchachos (Spain; runs ID 14AF14 and 53-202).The compiled SWEET-Cat is available online, http://https://www.astro.up.pt/resources/sweet-cat/
Improved methods for the measurement and analysis of stellar magnetic fields
NASA Technical Reports Server (NTRS)
Saar, Steven H.
1988-01-01
The paper presents several improved methods for the measurement of magnetic fields on cool stars which take into account simple radiative transfer effects and the exact Zeeman patterns. Using these methods, high-resolution, low-noise data can be fitted with theoretical line profiles to determine the mean magnetic field strength in stellar active regions and a model-dependent fraction of the stellar surface (filling factor) covered by these regions. Random errors in the derived field strength and filling factor are parameterized in terms of signal-to-noise ratio, wavelength, spectral resolution, stellar rotation rate, and the magnetic parameters themselves. Weak line blends, if left uncorrected, can have significant systematic effects on the derived magnetic parameters, and thus several methods are developed to compensate partially for them. The magnetic parameters determined by previous methods likely have systematic errors because of such line blends and because of line saturation effects. Other sources of systematic error are explored in detail. These sources of error currently make it difficult to determine the magnetic parameters of individual stars to better than about + or - 20 percent.
Direct Imaging of Stellar Surfaces: Results from the Stellar Imager (SI) Vision Mission Study
NASA Technical Reports Server (NTRS)
Carpenter, Kenneth; Schrijver, Carolus; Karovska, Margarita
2006-01-01
The Stellar Imager (SI) is a UV-Optical, Space-Based Interferometer designed to enable 0.1 milli-arcsecond (mas) spectral imaging of stellar surfaces and stellar interiors (via asteroseismology) and of the Universe in general. SI is identified as a "Flagship and Landmark Discovery Mission'' in the 2005 Sun Solar System Connection (SSSC) Roadmap and as a candidate for a "Pathways to Life Observatory'' in the Exploration of the Universe Division (EUD) Roadmap (May, 2005). The ultra-sharp images of the Stellar Imager will revolutionize our view of many dynamic astrophysical processes: The 0.1 mas resolution of this deep-space telescope will transform point sources into extended sources, and snapshots into evolving views. SI's science focuses on the role of magnetism in the Universe, particularly on magnetic activity on the surfaces of stars like the Sun. SI's prime goal is to enable long-term forecasting of solar activity and the space weather that it drives in support of the Living With a Star program in the Exploration Era. SI will also revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magneto-hydrodynamically controlled processes in the Universe. In this paper we will discuss the results of the SI Vision Mission Study, elaborating on the science goals of the SI Mission and a mission architecture that could meet those goals.
Clustering in the stellar abundance space
NASA Astrophysics Data System (ADS)
Boesso, R.; Rocha-Pinto, H. J.
2018-03-01
We have studied the chemical enrichment history of the interstellar medium through an analysis of the n-dimensional stellar abundance space. This work is a non-parametric analysis of the stellar chemical abundance space. The main goal is to study the stars from their organization within this abundance space. Within this space, we seek to find clusters (in a statistical sense), that is, stars likely to share similar chemo-evolutionary history, using two methods: the hierarchical clustering and the principal component analysis. We analysed some selected abundance surveys available in the literature. For each sample, we labelled the group of stars according to its average abundance curve. In all samples, we identify the existence of a main enrichment pattern of the stars, which we call chemical enrichment flow. This flow is set by the structured and well-defined mean rate at which the abundances of the interstellar medium increase, resulting from the mixture of the material ejected from the stars and stellar mass-loss and interstellar medium gas. One of the main results of our analysis is the identification of subgroups of stars with peculiar chemistry. These stars are situated in regions outside of the enrichment flow in the abundance space. These peculiar stars show a mismatch in the enrichment rate of a few elements, such as Mg, Si, Sc and V, when compared to the mean enrichment rate of the other elements of the same stars. We believe that the existence of these groups of stars with peculiar chemistry may be related to the accretion of planetary material on to stellar surfaces or may be due to production of the same chemical element by different nucleosynthetic sites.
Automated asteroseismic peak detections
NASA Astrophysics Data System (ADS)
García Saravia Ortiz de Montellano, Andrés; Hekker, S.; Themeßl, N.
2018-05-01
Space observatories such as Kepler have provided data that can potentially revolutionize our understanding of stars. Through detailed asteroseismic analyses we are capable of determining fundamental stellar parameters and reveal the stellar internal structure with unprecedented accuracy. However, such detailed analyses, known as peak bagging, have so far been obtained for only a small percentage of the observed stars while most of the scientific potential of the available data remains unexplored. One of the major challenges in peak bagging is identifying how many solar-like oscillation modes are visible in a power density spectrum. Identification of oscillation modes is usually done by visual inspection that is time-consuming and has a degree of subjectivity. Here, we present a peak-detection algorithm especially suited for the detection of solar-like oscillations. It reliably characterizes the solar-like oscillations in a power density spectrum and estimates their parameters without human intervention. Furthermore, we provide a metric to characterize the false positive and false negative rates to provide further information about the reliability of a detected oscillation mode or the significance of a lack of detected oscillation modes. The algorithm presented here opens the possibility for detailed and automated peak bagging of the thousands of solar-like oscillators observed by Kepler.
New science from the phase space of old stellar systems
NASA Astrophysics Data System (ADS)
Varri, Anna Lisa; Breen, Philip G.; Heggie, Douglas C.; Tiongco, Maria; Vesperini, Enrico
2017-06-01
Our traditional interpretative picture of the internal dynamics of globular clusters has been recently revolutionized by a series of discoveries about their chemical, structural, and kinematic properties. The empirical evidence that their velocity space is much more complex than usually expected encourages us to use them as refreshingly novel phase space laboratories for some long-forgotten aspects of collisional gravitational dynamics. Such a realization, coupled with the discovery that the stars in clusters were not all born at once in a single population, makes them new, challenging chemodynamical puzzles.Thanks to the proper motions of thousands of stars that will be available from the Gaia mission, we are about to enter a new ''golden age'' for the study of the dynamics of this class of stellar systems, as the full phase space of several Galactic globular clusters will be soon unlocked for the first time. In this context, I will present the highlights of a more realistic dynamical paradigm for these intriguing stellar systems, with emphasis on the role of angular momentum, velocity anisotropy and external tidal field. Such a fundamental understanding of the emerging phase space complexity of globulars will allow us to address many open questions about their rich dynamical evolution, their elusive stellar populations and putative black holes, and their role within the history of our Galaxy.
The Future of Stellar Populations Studies in the Milky Way and the Local Group
NASA Astrophysics Data System (ADS)
Majewski, Steven R.
2010-04-01
The last decade has seen enormous progress in understanding the structure of the Milky Way and neighboring galaxies via the production of large-scale digital surveys of the sky like 2MASS and SDSS, as well as specialized, counterpart imaging surveys of other Local Group systems. Apart from providing snaphots of galaxy structure, these “cartographic” surveys lend insights into the formation and evolution of galaxies when supplemented with additional data (e.g., spectroscopy, astrometry) and when referenced to theoretical models and simulations of galaxy evolution. These increasingly sophisticated simulations are making ever more specific predictions about the detailed chemistry and dynamics of stellar populations in galaxies. To fully exploit, test and constrain these theoretical ventures demands similar commitments of observational effort as has been plied into the previous imaging surveys to fill out other dimensions of parameter space with statistically significant intensity. Fortunately the future of large-scale stellar population studies is bright with a number of grand projects on the horizon that collectively will contribute a breathtaking volume of information on individual stars in Local Group galaxies. These projects include: (1) additional imaging surveys, such as Pan-STARRS, SkyMapper and LSST, which, apart from providing deep, multicolor imaging, yield time series data useful for revealing variable stars (including critical standard candles, like RR Lyrae variables) and creating large-scale, deep proper motion catalogs; (2) higher accuracy, space-based astrometric missions, such as Gaia and SIM-Lite, which stand to provide critical, high precision dynamical data on stars in the Milky Way and its satellites; and (3) large-scale spectroscopic surveys provided by RAVE, APOGEE, HERMES, LAMOST, and the Gaia spectrometer, which will yield not only enormous numbers of stellar radial velocities, but extremely comprehensive views of the chemistry of stellar populations. Meanwhile, previously dust-obscured regions of the Milky Way will continue to be systematically exposed via large infrared surveys underway or on the way, such as the various GLIMPSE surveys from Spitzer's IRAC instrument, UKIDSS, APOGEE, JASMINE and WISE.
The AMBRE Project: Stellar parameterisation of the ESO:FEROS archived spectra
NASA Astrophysics Data System (ADS)
Worley, C. C.; de Laverny, P.; Recio-Blanco, A.; Hill, V.; Bijaoui, A.; Ordenovic, C.
2012-06-01
Context. The AMBRE Project is a collaboration between the European Southern Observatory (ESO) and the Observatoire de la Côte d'Azur (OCA) that has been established in order to carry out the determination of stellar atmospheric parameters for the archived spectra of four ESO spectrographs. Aims: The analysis of the FEROS archived spectra for their stellar parameters (effective temperatures, surface gravities, global metallicities, alpha element to iron ratios and radial velocities) has been completed in the first phase of the AMBRE Project. From the complete ESO:FEROS archive dataset that was received, a total of 21 551 scientific spectra have been identified, covering the period 2005 to 2010. These spectra correspond to 6285 stars. Methods: The determination of the stellar parameters was carried out using the stellar parameterisation algorithm, MATISSE (MATrix Inversion for Spectral SynthEsis), which has been developed at OCA to be used in the analysis of large scale spectroscopic studies in galactic archaeology. An analysis pipeline has been constructed that integrates spectral normalisation, cleaning and radial velocity correction procedures in order that the FEROS spectra could be analysed automatically with MATISSE to obtain the stellar parameters. The synthetic grid against which the MATISSE analysis is carried out is currently constrained to parameters of FGKM stars only. Results: Stellar atmospheric parameters, effective temperature, surface gravity, metallicity and alpha element abundances, were determined for 6508 (30.2%) of the FEROS archived spectra (~3087 stars). Radial velocities were determined for 11 963 (56%) of the archived spectra. 2370 (11%) spectra could not be analysed within the pipeline due to very low signal-to-noise ratios or missing spectral orders. 12 673 spectra (58.8%) were analysed in the pipeline but their parameters were discarded based on quality criteria and error analysis determined within the automated process. The majority of these rejected spectra were found to have broad spectral features, as probed both by the direct measurement of the features and cross-correlation function breadths, indicating that they may be hot and/or fast rotating stars, which are not considered within the adopted reference synthetic spectra grid. The current configuration of the synthetic spectra grid is devoted to slow-rotating FGKM stars. Hence non-standard spectra (binaries, chemically peculiar stars etc.) that could not be identified may pollute the analysis.
STELLAR ENCOUNTER RATE IN GALACTIC GLOBULAR CLUSTERS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bahramian, Arash; Heinke, Craig O.; Sivakoff, Gregory R.
2013-04-01
The high stellar densities in the cores of globular clusters cause significant stellar interactions. These stellar interactions can produce close binary mass-transferring systems involving compact objects and their progeny, such as X-ray binaries and radio millisecond pulsars. Comparing the numbers of these systems and interaction rates in different clusters drives our understanding of how cluster parameters affect the production of close binaries. In this paper we estimate stellar encounter rates ({Gamma}) for 124 Galactic globular clusters based on observational data as opposed to the methods previously employed, which assumed 'King-model' profiles for all clusters. By deprojecting cluster surface brightness profilesmore » to estimate luminosity density profiles, we treat 'King-model' and 'core-collapsed' clusters in the same way. In addition, we use Monte Carlo simulations to investigate the effects of uncertainties in various observational parameters (distance, reddening, surface brightness) on {Gamma}, producing the first catalog of globular cluster stellar encounter rates with estimated errors. Comparing our results with published observations of likely products of stellar interactions (numbers of X-ray binaries, numbers of radio millisecond pulsars, and {gamma}-ray luminosity) we find both clear correlations and some differences with published results.« less
Palmese, A.; Lahav, O.; Banerji, M.; ...
2016-08-20
We derive the stellar mass fraction in the galaxy cluster RXC J2248.7-4431 observed with the Dark Energy Survey (DES) during the Science Verification period. We compare the stellar mass results from DES (5 filters) with those from the Hubble Space Telescope CLASH (17 filters). When the cluster spectroscopic redshift is assumed, we show that stellar masses from DES can be estimated within 25% of CLASH values. We compute the stellar mass contribution coming from red and blue galaxies, and study the relation between stellar mass and the underlying dark matter using weak lensing studies with DES and CLASH. An analysismore » of the radial profiles of the DES total and stellar mass yields a stellar-to-total fraction of f*=7.0+-2.2x10^-3 within a radius of r_200c~3 Mpc. Our analysis also includes a comparison of photometric redshifts and star/galaxy separation efficiency for both datasets. We conclude that space-based small field imaging can be used to calibrate the galaxy properties in DES for the much wider field of view. The technique developed to derive the stellar mass fraction in galaxy clusters can be applied to the ~100 000 clusters that will be observed within this survey. The stacking of all the DES clusters would reduce the errors on f* estimates and deduce important information about galaxy evolution.« less
NASA Astrophysics Data System (ADS)
Palmese, A.; Lahav, O.; Banerji, M.; Gruen, D.; Jouvel, S.; Melchior, P.; Aleksić, J.; Annis, J.; Diehl, H. T.; Hartley, W. G.; Jeltema, T.; Romer, A. K.; Rozo, E.; Rykoff, E. S.; Seitz, S.; Suchyta, E.; Zhang, Y.; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Capozzi, D.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Crocce, M.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; Desai, S.; Dietrich, J. P.; Doel, P.; Estrada, J.; Evrard, A. E.; Flaugher, B.; Frieman, J.; Gerdes, D. W.; Goldstein, D. A.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; James, D. J.; Kuehn, K.; Kuropatkin, N.; Li, T. S.; Lima, M.; Maia, M. A. G.; Marshall, J. L.; Miller, C. J.; Miquel, R.; Nord, B.; Ogando, R.; Plazas, A. A.; Roodman, A.; Sanchez, E.; Scarpine, V.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Tucker, D.; Vikram, V.
2016-12-01
We derive the stellar mass fraction in the galaxy cluster RXC J2248.7-4431 observed with the Dark Energy Survey (DES) during the Science Verification period. We compare the stellar mass results from DES (five filters) with those from the Hubble Space Telescope Cluster Lensing And Supernova Survey (CLASH; 17 filters). When the cluster spectroscopic redshift is assumed, we show that stellar masses from DES can be estimated within 25 per cent of CLASH values. We compute the stellar mass contribution coming from red and blue galaxies, and study the relation between stellar mass and the underlying dark matter using weak lensing studies with DES and CLASH. An analysis of the radial profiles of the DES total and stellar mass yields a stellar-to-total fraction of f⋆ = (6.8 ± 1.7) × 10-3 within a radius of r200c ≃ 2 Mpc. Our analysis also includes a comparison of photometric redshifts and star/galaxy separation efficiency for both data sets. We conclude that space-based small field imaging can be used to calibrate the galaxy properties in DES for the much wider field of view. The technique developed to derive the stellar mass fraction in galaxy clusters can be applied to the ˜100 000 clusters that will be observed within this survey and yield important information about galaxy evolution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palmese, A.; Lahav, O.; Banerji, M.
We derive the stellar mass fraction in the galaxy cluster RXC J2248.7-4431 observed with the Dark Energy Survey (DES) during the Science Verification period. We compare the stellar mass results from DES (5 filters) with those from the Hubble Space Telescope CLASH (17 filters). When the cluster spectroscopic redshift is assumed, we show that stellar masses from DES can be estimated within 25% of CLASH values. We compute the stellar mass contribution coming from red and blue galaxies, and study the relation between stellar mass and the underlying dark matter using weak lensing studies with DES and CLASH. An analysismore » of the radial profiles of the DES total and stellar mass yields a stellar-to-total fraction of f*=7.0+-2.2x10^-3 within a radius of r_200c~3 Mpc. Our analysis also includes a comparison of photometric redshifts and star/galaxy separation efficiency for both datasets. We conclude that space-based small field imaging can be used to calibrate the galaxy properties in DES for the much wider field of view. The technique developed to derive the stellar mass fraction in galaxy clusters can be applied to the ~100 000 clusters that will be observed within this survey. The stacking of all the DES clusters would reduce the errors on f* estimates and deduce important information about galaxy evolution.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palmese, A.; Lahav, O.; Banerji, M.
We derive the stellar mass fraction in the galaxy cluster RXC J2248.7-4431 observed with the Dark Energy Survey (DES) during the Science Verification period. We compare the stellar mass results from DES (five filters) with those from the Hubble Space Telescope Cluster Lensing And Supernova Survey (CLASH; 17 filters). When the cluster spectroscopic redshift is assumed, we show that stellar masses from DES can be estimated within 25 per cent of CLASH values. We compute the stellar mass contribution coming from red and blue galaxies, and study the relation between stellar mass and the underlying dark matter using weak lensingmore » studies with DES and CLASH. An analysis of the radial profiles of the DES total and stellar mass yields a stellar-to-total fraction of f(star) = (6.8 +/- 1.7) x 10(-3) within a radius of r(200c) similar or equal to 2 Mpc. Our analysis also includes a comparison of photometric redshifts and star/galaxy separation efficiency for both data sets. We conclude that space-based small field imaging can be used to calibrate the galaxy properties in DES for the much wider field of view. The technique developed to derive the stellar mass fraction in galaxy clusters can be applied to the similar to 100 000 clusters that will be observed within this survey and yield important information about galaxy evolution.« less
Stellar and wind parameters of massive stars from spectral analysis
NASA Astrophysics Data System (ADS)
Araya, I.; Curé, M.
2017-07-01
The only way to deduce information from stars is to decode the radiation it emits in an appropriate way. Spectroscopy can solve this and derive many properties of stars. In this work we seek to derive simultaneously the stellar and wind characteristics of A and B supergiant stars. Our stellar properties encompass the effective temperature, the surface gravity, the stellar radius, the micro-turbulence velocity, the rotational velocity and, finally, the chemical composition. For wind properties we consider the mass-loss rate, the terminal velocity and the line-force parameters (α, k and δ) obtained from the standard line-driven wind theory. To model the data we use the radiative transport code Fastwind considering the newest hydrodynamical solutions derived with Hydwind code, which needs stellar and line-force parameters to obtain a wind solution. A grid of spectral models of massive stars is created and together with the observed spectra their physical properties are determined through spectral line fittings. These fittings provide an estimation about the line-force parameters, whose theoretical calculations are extremely complex. Furthermore, we expect to confirm that the hydrodynamical solutions obtained with a value of δ slightly larger than ˜ 0.25, called δ-slow solutions, describe quite reliable the radiation line-driven winds of A and late B supergiant stars and at the same time explain disagreements between observational data and theoretical models for the Wind-Momentum Luminosity Relationship (WLR).
Stellar and wind parameters of massive stars from spectral analysis
NASA Astrophysics Data System (ADS)
Araya, Ignacio; Curé, Michel
2017-11-01
The only way to deduce information from stars is to decode the radiation it emits in an appropriate way. Spectroscopy can solve this and derive many properties of stars. In this work we seek to derive simultaneously the stellar and wind characteristics of a wide range of massive stars. Our stellar properties encompass the effective temperature, the surface gravity, the stellar radius, the micro-turbulence velocity, the rotational velocity and the Si abundance. For wind properties we consider the mass-loss rate, the terminal velocity and the line-force parameters α, k and δ (from the line-driven wind theory). To model the data we use the radiative transport code Fastwind considering the newest hydrodynamical solutions derived with Hydwind code, which needs stellar and line-force parameters to obtain a wind solution. A grid of spectral models of massive stars is created and together with the observed spectra their physical properties are determined through spectral line fittings. These fittings provide an estimation about the line-force parameters, whose theoretical calculations are extremely complex. Furthermore, we expect to confirm that the hydrodynamical solutions obtained with a value of δ slightly larger than ~ 0.25, called δ-slow solutions, describe quite reliable the radiation line-driven winds of A and late B supergiant stars and at the same time explain disagreements between observational data and theoretical models for the Wind-Momentum Luminosity Relationship (WLR).
NASA Astrophysics Data System (ADS)
Gao, Wei; Li, Xiang-ru
2017-07-01
The multi-task learning takes the multiple tasks together to make analysis and calculation, so as to dig out the correlations among them, and therefore to improve the accuracy of the analyzed results. This kind of methods have been widely applied to the machine learning, pattern recognition, computer vision, and other related fields. This paper investigates the application of multi-task learning in estimating the stellar atmospheric parameters, including the surface temperature (Teff), surface gravitational acceleration (lg g), and chemical abundance ([Fe/H]). Firstly, the spectral features of the three stellar atmospheric parameters are extracted by using the multi-task sparse group Lasso algorithm, then the support vector machine is used to estimate the atmospheric physical parameters. The proposed scheme is evaluated on both the Sloan stellar spectra and the theoretical spectra computed from the Kurucz's New Opacity Distribution Function (NEWODF) model. The mean absolute errors (MAEs) on the Sloan spectra are: 0.0064 for lg (Teff /K), 0.1622 for lg (g/(cm · s-2)), and 0.1221 dex for [Fe/H]; the MAEs on the synthetic spectra are 0.0006 for lg (Teff /K), 0.0098 for lg (g/(cm · s-2)), and 0.0082 dex for [Fe/H]. Experimental results show that the proposed scheme has a rather high accuracy for the estimation of stellar atmospheric parameters.
The stellar wind as a key to the understanding of the spectral activity of IN Com
NASA Astrophysics Data System (ADS)
Kozlova, O. V.; Alekseev, I. Yu.
2014-06-01
We present long-term spectral observations ( R = 20000) of IN Com in the region of the Hα, Hβ, and He I 5876 lines. One distinguishing characteristic of the stellar spectrum is the presence in the Hα line of an extended two-component emission with limits up to ±400 km/s. Emission parameters show the rotation modulation with the stellar rotation period and a significant variability on the long-term scale. Similar emissions are also observed in the Hβ and He I 5876 lines. Our results allow us to conclude that observational emission profiles are formed in an optically thin hot gas. This is a result of the presence of a circumstellar gas disk around IN Com. Its size does not exceed several stellar radii. The material for the disk is supported by the stellar wind from IN Com. The detected variability of Hα-emission parameters shows a clear connection with the photopolarimetric activity of the star. This fact allows us to associate the long-term spectral variability with cycles of stellar activity of IN Com.
NASA Astrophysics Data System (ADS)
McDermid, Richard M.; Cappellari, Michele; Alatalo, Katherine; Bayet, Estelle; Blitz, Leo; Bois, Maxime; Bournaud, Frédéric; Bureau, Martin; Crocker, Alison F.; Davies, Roger L.; Davis, Timothy A.; de Zeeuw, P. T.; Duc, Pierre-Alain; Emsellem, Eric; Khochfar, Sadegh; Krajnović, Davor; Kuntschner, Harald; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Scott, Nicholas; Serra, Paolo; Weijmans, Anne-Marie; Young, Lisa M.
2014-09-01
We report on empirical trends between the dynamically determined stellar initial mass function (IMF) and stellar population properties for a complete, volume-limited sample of 260 early-type galaxies from the ATLAS3D project. We study trends between our dynamically derived IMF normalization αdyn ≡ (M/L)stars/(M/L)Salp and absorption line strengths, and interpret these via single stellar population-equivalent ages, abundance ratios (measured as [α/Fe]), and total metallicity, [Z/H]. We find that old and alpha-enhanced galaxies tend to have on average heavier (Salpeter-like) mass normalization of the IMF, but stellar population does not appear to be a good predictor of the IMF, with a large range of αdyn at a given population parameter. As a result, we find weak αdyn-[α/Fe] and αdyn -Age correlations and no significant αdyn -[Z/H] correlation. The observed trends appear significantly weaker than those reported in studies that measure the IMF normalization via the low-mass star demographics inferred through stellar spectral analysis.
Early-Type Galaxy Star Formation Histories in Different Environments
NASA Astrophysics Data System (ADS)
Fitzpatrick, Patrick; Graves, G.
2014-01-01
We use very high-S/N stacked spectra of ˜29,000 nearby quiescent early-type galaxies (ETGs) from the Sloan Digital Sky Survey (SDSS) to investigate variations in their star formation histories (SFHs) with environment at fixed position along and perpendicular to the Fundamental Plane (FP). We separate galaxies in the three-dimensional FP space defined by galaxy effective radius Re, central stellar velocity dispersion σ, and surface brightness residual from the FP, ΔIe. We use the SDSS group catalogue of Yang et al. to further separate galaxies into three categories by their “identities” within their respective dark matter halos: central “Brightest Group Galaxies” (BGGs); Satellites; and Isolateds (those which are “most massive” in a dark matter halo with no Satellites). Within each category, we construct high-S/N mean stacked spectra to determine mean singleburst ages, [Fe/H], and [Mg/Fe] based on the stellar population synthesis models of R. Schiavon. This allows us to study variations in the stellar population properties (SPPs) with local group environment at fixed structure (i.e., fixed position in FP-space). We find that the SFHs of quiescent ETGs are almost entirely determined by their structural parameters σ and ΔIe. Any variation with local group environment at fixed structure is only slight: Satellites have the oldest stellar populations, 0.02 dex older than BGGs and 0.04 dex older than Isolateds; BGGs have the highest Fe-enrichments, 0.01 dex higher than Isolateds and 0.02 dex higher than Satellites; there are no differences in Mg-enhancement between BGGs, Isolateds, and Satellites. Our observation that, to zeroth-order, the SFHs of quiescent ETGs are fully captured by their structures places important qualitative constraints on the degree to which late-time evolutionary processes (those which occur after a galaxy’s initial formation and main star-forming lifetime) can alter their SFHs/structures.
Shining a light on star formation driven outflows: the physical conditions within galactic outflows
NASA Astrophysics Data System (ADS)
Chisholm, John P.; Tremonti, Christina A.; Leitherer, Claus; Wofford, Aida; Chen, Yanmei
2016-01-01
Stellar feedback drives energy and momentum into the surrounding gas, which drives gas and metals out of galaxies through a galactic outflow. Unfortunately, galactic outflows are difficult to observe and characterize because they are extremely diffuse, and contain gas at many different temperatures. Here we present results from a sample of 37 nearby (z < 0.27) star forming galaxies observed in the ultraviolet with the Cosmic Origins Spectrograph on the Hubble Space Telescope. The sample covers over three decades in stellar mass and star formation rate, probing different morphologies such as dwarf irregulars and high-mass merging systems. Using four different UV absorption lines (O I, Si II, Si III and Si IV) that trace a wide range of temperatures (ionization potentials between 13.6 eV and 45 eV), we find shallow correlations between the outflow velocity or the equivalent width of absorption lines with stellar mass or star formation rate. Absorption lines probing different temperature phases have similar centroid velocities and line widths, indicating that they are comoving. Using the equivalent width ratios of the four different transitions, we find the ratios to be consistent with photo-ionized outflows, with moderately strong ionization parameters. By constraining the ionization mechanism we model the ionization fractions for each transition, but find the ionization fractions depend crucially on input model parameters. The shallow velocity scalings imply that low-mass galaxies launch outflows capable of escaping their galactic potential, while higher mass galaxies retain all of their gas, unless they undergo a merger.
Physical Parameters of Erupting Luminous Blue Variables: NGC 2363-V1 Caught in the Act
NASA Astrophysics Data System (ADS)
Drissen, Laurent; Crowther, Paul A.; Smith, Linda J.; Robert, Carmelle; Roy, Jean-René; Hillier, D. John
2001-01-01
A quantitative study of the luminous blue variable NGC 2363-V1 in the Magellanic galaxy NGC 2366 (D=3.44 Mpc) is presented, based on ultraviolet and optical Hubble Space Telescope STIS spectroscopy. Contemporary WFPC2 and William Herschel Telescope imaging reveals a modest V-band brightness increase of ~0.2 mag per year between 1996 January-1997 November, reaching V=17.4 mag, corresponding to MV=-10.4 mag. Subsequently, V1 underwent a similar decrease in V-band brightness, together with a UV brightening of 0.35 mag from 1997 November to 1999 November. The optical spectrum of V1 is dominated by H emission lines, with Fe II, He I and Na I also detected. In the ultraviolet, a forest of Fe absorption features and numerous absorption lines typical of mid-B supergiants (such as Si II, Si III, Si IV, C III, C IV) are observed. From a spectral analysis with the non-LTE, line-blanketed code of Hillier & Miller, we derive stellar parameters of T*=11 kK, R*=420 Rsolar, log (L/Lsolar)=6.35 during 1997 November, and T*=13 kK, R*=315 Rsolar, log (L/Lsolar)=6.4 for 1999 July. The wind properties of V1 are also exceptional, with M~=4.4×10-4Msolar yr-1 and v∞~=300 km s-1, allowing for a clumped wind (filling factor=0.3) and assuming H/He~4 by number. The presence of Fe lines in the UV and optical spectrum of V1 permits an estimate of the heavy elemental abundance of NGC 2363 from our spectral synthesis. Although some deficiencies remain, allowance for charge exchange reactions in our calculations supports a SMC-like metallicity, that has previously been determined for NGC 2363 from nebular oxygen diagnostics. Considering a variety of possible progenitor stars, V1 has definitely undergone a giant eruption, with a substantial increase in stellar luminosity, radius, and almost certainly mass-loss rate, such that its stellar radius increased at an average rate of ~4 km s-1 during 1992 October-1995 February. The stellar properties of V1 are compared to other LBVs, including η Car and HD 5980 during its brief eruption in 1994 September, the latter newly analyzed here. The mass-loss rate of the HD 5980 eruptor compares closely with V1, but its bolometric luminosity was a factor ~6 times larger. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555.
Feathering instability of spiral arms. II. Parameter study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Wing-Kit, E-mail: wklee@asiaa.sinica.edu.tw; Institute of Astronomy and Astrophysics, Academia Sinica, Taipei 115, Taiwan
2014-09-10
We report the results of a parameter study of the feathering stability in the galactic spiral arms. A two-dimensional, razor-thin magnetized self-gravitating gas disk with an imposed two-armed stellar spiral structure is considered. Using the formulation developed previously by Lee and Shu, a linear stability analysis of the spiral shock is performed in a localized Cartesian geometry. Results of the parameter study of the base state with a spiral shock are also presented. The single-mode feathering instability that leads to growing perturbations may explain the feathering phenomenon found in nearby spiral galaxies. The self-gravity of the gas, characterized by itsmore » average surface density, is an important parameter that (1) shifts the spiral shock farther downstream and (2) increases the growth rate and decreases the characteristic spacing of the feathering structure due to the instability. On the other hand, while the magnetic field suppresses the velocity fluctuation associated with the feathers, it does not strongly affect their growth rate. Using a set of typical parameters of the grand-design spiral galaxy M51 at 2 kpc from the center, the spacing of the feathers with the maximum growth rate is found to be 530 pc, which agrees with the previous observational studies.« less
BinMag: Widget for comparing stellar observed with theoretical spectra
NASA Astrophysics Data System (ADS)
Kochukhov, O.
2018-05-01
BinMag examines theoretical stellar spectra computed with Synth/SynthMag/Synmast/Synth3/SME spectrum synthesis codes and compare them to observations. An IDL widget program, BinMag applies radial velocity shift and broadening to the theoretical spectra to account for the effects of stellar rotation, radial-tangential macroturbulence, instrumental smearing. The code can also simulate spectra of spectroscopic binary stars by appropriate coaddition of two synthetic spectra. Additionally, BinMag can be used to measure equivalent width, fit line profile shapes with analytical functions, and to automatically determine radial velocity and broadening parameters. BinMag interfaces with the Synth3 (ascl:1212.010) and SME (ascl:1202.013) codes, allowing the user to determine chemical abundances and stellar atmospheric parameters from the observed spectra.
Asteroseismology with FRESIP: A meter class space telescope
NASA Technical Reports Server (NTRS)
Milford, Peter
1994-01-01
The requirements for asteroseismology and searching for occulting inner planets are similar. The FRESIP mission will be suited to making asteroseismology measurements. Recommendation: Use 30-60 second integrations from one or more CCD's in the FRESIP mosaic, sampled continuously for the entire mission to measure stellar non-radial oscillations with amplitudes of parts per million and frequencies of 0.1 to 10 MHz. These measurements lead to determination of stellar interior helium abundances, rotation rates, depth of convection zones and measuring stellar cycle frequency changes for a variety of stellar types, enabling major advances in stellar structure and evolutionary theories.
NASA Technical Reports Server (NTRS)
Barrett, Todd K.; Sandler, David G.
1993-01-01
An artificial-neural-network method, first developed for the measurement and control of atmospheric phase distortion, using stellar images, was used to estimate the optical aberration of the Hubble Space Telescope. A total of 26 estimates of distortion was obtained from 23 stellar images acquired at several secondary-mirror axial positions. The results were expressed as coefficients of eight orthogonal Zernike polynomials: focus through third-order spherical. For all modes other than spherical the measured aberration was small. The average spherical aberration of the estimates was -0.299 micron rms, which is in good agreement with predictions obtained when iterative phase-retrieval algorithms were used.
NASA Astrophysics Data System (ADS)
Sousa, S. G.; Santos, N. C.; Mortier, A.; Tsantaki, M.; Adibekyan, V.; Delgado Mena, E.; Israelian, G.; Rojas-Ayala, B.; Neves, V.
2015-04-01
Aims: In this work we derive new precise and homogeneous parameters for 37 stars with planets. For this purpose, we analyze high resolution spectra obtained by the NARVAL spectrograph for a sample composed of bright planet host stars in the northern hemisphere. The new parameters are included in the SWEET-Cat online catalogue. Methods: To ensure that the catalogue is homogeneous, we use our standard spectroscopic analysis procedure, ARES+MOOG, to derive effective temperatures, surface gravities, and metallicities. These spectroscopic stellar parameters are then used as input to compute the stellar mass and radius, which are fundamental for the derivation of the planetary mass and radius. Results: We show that the spectroscopic parameters, masses, and radii are generally in good agreement with the values available in online databases of exoplanets. There are some exceptions, especially for the evolved stars. These are analyzed in detail focusing on the effect of the stellar mass on the derived planetary mass. Conclusions: We conclude that the stellar mass estimations for giant stars should be managed with extreme caution when using them to compute the planetary masses. We report examples within this sample where the differences in planetary mass can be as high as 100% in the most extreme cases. Based on observations obtained at the Telescope Bernard Lyot (USR5026) operated by the Observatoire Midi-Pyrénées and the Institut National des Science de l'Univers of the Centre National de la Recherche Scientifique of France (Run ID L131N11 - OPTICON_2013A_027).
A Bayesian approach to the modelling of α Cen A
NASA Astrophysics Data System (ADS)
Bazot, M.; Bourguignon, S.; Christensen-Dalsgaard, J.
2012-12-01
Determining the physical characteristics of a star is an inverse problem consisting of estimating the parameters of models for the stellar structure and evolution, and knowing certain observable quantities. We use a Bayesian approach to solve this problem for α Cen A, which allows us to incorporate prior information on the parameters to be estimated, in order to better constrain the problem. Our strategy is based on the use of a Markov chain Monte Carlo (MCMC) algorithm to estimate the posterior probability densities of the stellar parameters: mass, age, initial chemical composition, etc. We use the stellar evolutionary code ASTEC to model the star. To constrain this model both seismic and non-seismic observations were considered. Several different strategies were tested to fit these values, using either two free parameters or five free parameters in ASTEC. We are thus able to show evidence that MCMC methods become efficient with respect to more classical grid-based strategies when the number of parameters increases. The results of our MCMC algorithm allow us to derive estimates for the stellar parameters and robust uncertainties thanks to the statistical analysis of the posterior probability densities. We are also able to compute odds for the presence of a convective core in α Cen A. When using core-sensitive seismic observational constraints, these can rise above ˜40 per cent. The comparison of results to previous studies also indicates that these seismic constraints are of critical importance for our knowledge of the structure of this star.
VizieR Online Data Catalog: Abundances and stellar parameters of LAMOST stars (Lee+, 2015)
NASA Astrophysics Data System (ADS)
Lee, Y. S.; Beers, T. C.; Carlin, J. L.; Newberg, H. J.; Hou, Y.; Li, G.; Luo, A.-L.; Wu, Y.; Yang, M.; Zhang, H.; Zhang, W.; Zhang, Y.
2016-04-01
By performing a coordinate match with the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST; see DR1 in Luo et al. 2015, cat. V/146) stellar database, we selected stars with LAMOST spectra in common with stars having available spectroscopy from the Apache Point Observatory Galactic Evolution Experiment (APOGEE; Majewski et al. 2015, submitted), the RAdial Velocity Experiment (RAVE; see Kordopatis et al. 2013, cat. III/272), and the Sloan Extension for Galactic Understanding and Exploration (SEGUE; see Yanny et al. 2009, cat. J/AJ/137/4377). The LAMOST Experiment for Galactic Understanding and Exploration (LEGUE) survey is an ongoing spectroscopic survey being conducted with the Guoshoujing telescope in northeast China. This telescope employs a fixed 4-m Schmidt-type reflector with 4000 optical fibers in the focal plane to obtain spectra of astronomical objects in a 5° field of view. The LEGUE and SEGUE surveys have very similar spectral coverage and resolving power (R~1800). The LAMOST stellar targets mostly comprise stars brighter than r< 17, whereas the SEGUE stars range from r=14 to r=21. SEGUE-1 was executed during the second phase of the Sloan Digital Sky Survey (SDSS-II). This effort was continued as SEGUE-2 during the third phase of SDSS (SDSS-III). APOGEE was designed to obtain high-resolution near-infrared spectra (in the H-band between 1.51 and 1.70μm). The spectra obtained by APOGEE have a resolving power R~22500 and high S/N (>100). APOGEE-1 was a sub-survey of SDSS-III, and is now completed. Its extension, APOGEE-2, is presently underway as part of SDSS-IV. The RAVE survey was designed to observe about a million stars in the southern hemisphere, and obtain optical spectra over the wavelength range 8410-8795Å, the region of the CaII triplet, at a resolving power R~7500. SEGUE-1 and SEGUE-2 have employed the SEGUE Stellar Parameter Pipeline (SSPP; Lee et al. 2008, cat. J/AJ/136/2050; Allende Prieto et al. 2008, cat. J/AJ/136/2070; Smolinski et al. 2011, cat. J/AJ/141/89; Lee et al. 2011, cat. J/AJ/141/90) to derive the stellar atmospheric parameters and available elemental abundance ratios. We modified and upgraded SSPP so that it can process the LAMOST stellar spectra and derive the fundamental stellar parameters as well as the α-element abundances ([α/Fe]) and carbon-to-iron ratios ([C/Fe]) for these stars. The derived atmospheric parameters and chemical abundances obtained by SSPP for LAMOST stars are then compared with those from the stars also observed by SEGUE, APOGEE, and RAVE. Table1 lists the LAMOST stars with appropriate stellar parameters from APOGEE, RAVE, and SEGUE. It also lists the LAMOST/SEGUE Stellar Parameter Pipeline (LSSPP) parameters and abundances. We do not report [α/Fe] and [C/Fe] for stars with S/N<20 and the range outside of Teff=4400-6700K in the table. (1 data file).
Masses and luminosities for 342 stars from the PennState-Toruń Centre for Astronomy Planet Search
NASA Astrophysics Data System (ADS)
Adamczyk, M.; Deka-Szymankiewicz, B.; Niedzielski, A.
2016-03-01
Aims: We present revised basic astrophysical stellar parameters: the masses, luminosities, ages, and radii for 342 stars from the PennState-Toruń Centre for Astronomy Planet Search. For 327 stars the atmospheric parameters were already available in the literature. For the other 15 objects we also present spectroscopic atmospheric parameters: the effective temperatures, surface gravities, and iron abundances. Methods: Spectroscopic atmospheric parameters were obtained with a standard spectroscopic analysis procedure, using ARES and MOOG, or TGVIT codes. To refine the stellar masses, ages, and luminosities, we applied a Bayesian method. Results: The revised stellar masses for 342 stars and their uncertainties are generally lower than previous estimates. Atmospheric parameters for 13 objects are determined here for the first time. Table 3 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/587/A119
NASA Astrophysics Data System (ADS)
Cheng, Liantao; Zhang, Fenghui; Kang, Xiaoyu; Wang, Lang
2018-05-01
In evolutionary population synthesis (EPS) models, we need to convert stellar evolutionary parameters into spectra via interpolation in a stellar spectral library. For theoretical stellar spectral libraries, the spectrum grid is homogeneous on the effective-temperature and gravity plane for a given metallicity. It is relatively easy to derive stellar spectra. For empirical stellar spectral libraries, stellar parameters are irregularly distributed and the interpolation algorithm is relatively complicated. In those EPS models that use empirical stellar spectral libraries, different algorithms are used and the codes are often not released. Moreover, these algorithms are often complicated. In this work, based on a radial basis function (RBF) network, we present a new spectrum interpolation algorithm and its code. Compared with the other interpolation algorithms that are used in EPS models, it can be easily understood and is highly efficient in terms of computation. The code is written in MATLAB scripts and can be used on any computer system. Using it, we can obtain the interpolated spectra from a library or a combination of libraries. We apply this algorithm to several stellar spectral libraries (such as MILES, ELODIE-3.1 and STELIB-3.2) and give the integrated spectral energy distributions (ISEDs) of stellar populations (with ages from 1 Myr to 14 Gyr) by combining them with Yunnan-III isochrones. Our results show that the differences caused by the adoption of different EPS model components are less than 0.2 dex. All data about the stellar population ISEDs in this work and the RBF spectrum interpolation code can be obtained by request from the first author or downloaded from http://www1.ynao.ac.cn/˜zhangfh.
Stellar activity and coronal heating: an overview of recent results
Testa, Paola; Saar, Steven H.; Drake, Jeremy J.
2015-01-01
Observations of the coronae of the Sun and of solar-like stars provide complementary information to advance our understanding of stellar magnetic activity, and of the processes leading to the heating of their outer atmospheres. While solar observations allow us to study the corona at high spatial and temporal resolution, the study of stellar coronae allows us to probe stellar activity over a wide range of ages and stellar parameters. Stellar studies therefore provide us with additional tools for understanding coronal heating processes, as well as the long-term evolution of solar X-ray activity. We discuss how recent studies of stellar magnetic fields and coronae contribute to our understanding of the phenomenon of activity and coronal heating in late-type stars. PMID:25897087
Tutorial: Asteroseismic Data Analysis with DIAMONDS
NASA Astrophysics Data System (ADS)
Corsaro, Enrico
Since the advent of the space-based photometric missions such as CoRoT and NASA's Kepler, asteroseismology has acquired a central role in our understanding about stellar physics. The Kepler spacecraft, especially, is still releasing excellent photometric observations that contain a large amount of information not yet investigated. For exploiting the full potential of these data, sophisticated and robust analysis tools are now essential, so that further constraining of stellar structure and evolutionary models can be obtained. In addition, extracting detailed asteroseismic properties for many stars can yield new insights on their correlations to fundamental stellar properties and dynamics. After a brief introduction to the Bayesian notion of probability, I describe the code Diamonds for Bayesian parameter estimation and model comparison by means of the nested sampling Monte Carlo (NSMC) algorithm. NSMC constitutes an efficient and powerful method, in replacement to standard Markov chain Monte Carlo, very suitable for high-dimensional and multimodal problems that are typical of detailed asteroseismic analyses, such as the fitting and mode identification of individual oscillation modes in stars (known as peak-bagging). Diamonds is able to provide robust results for statistical inferences involving tens of individual oscillation modes, while at the same time preserving a considerable computational efficiency for identifying the solution. In the tutorial, I will present the fitting of the stellar background signal and the peak-bagging analysis of the oscillation modes in a red-giant star, providing an example to use Bayesian evidence for assessing the peak significance of the fitted oscillation peaks.
The Stellar Imager (SI) - A Mission to Resolve Stellar Surfaces, Interiors, and Magnetic Activity
NASA Technical Reports Server (NTRS)
Christensen-Dalsgaard, Jorgen; Carpenter, Kenneth G.; Schrijver, Carolus J.; Karovska, Margarita
2012-01-01
The Stellar Imager (SI) is a space-based, UV/Optical Interferometer (UVOI) designed to enable 0.1 milli-arcsecond (mas) spectral imaging of stellar surfaces and of the Universe in general. It will also probe via asteroseismology flows and structures in stellar interiors. SI will enable the development and testing of a predictive dynamo model for the Sun, by observing patterns of surface activity and imaging of the structure and differential rotation of stellar interiors in a population study of Sun-like stars to determine the dependence of dynamo action on mass, internal structure and flows, and time. SI's science focuses on the role of magnetism in the Universe and will revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magnetohydrodynamically controlled processes in the Universe. SI is a "LandmarklDiscovery Mission" in the 2005 Heliophysics Roadmap, an implementation of the UVOI in the 2006 Astrophysics Strategic Plan, and a NASA Vision Mission ("NASA Space Science Vision Missions" (2008), ed. M. Allen). We present here the science goals of the SI Mission, a mission architecture that could meet those goals, and the technology development needed to enable this mission
Luque, E.; Pieres, A.; Santiago, B.; ...
2017-02-17
We report the discovery of two new candidate stellar systems in the constellation of Cetus using the data from the first two years of the Dark Energy Survey (DES). The objects, DES J0111–1341 and DES J0225+0304, are located at a heliocentric distance of ~25 kpc and appear to have old and metal-poor populations. Their distances to the Sagittarius orbital plane, ~1.73 kpc (DES J0111–1341) and ~0.50 kpc (DES J0225+0304), indicate that they are possibly associated with the Sagittarius dwarf stream. The half-light radius (rh ≃ 4.55 pc) and luminosity (MV ≃ +0.3) of DES J0111–1341 are consistent with it beingmore » an ultrafaint stellar cluster, while the half-light radius (rh ≃ 18.55 pc) and luminosity (MV ≃ –1.1) of DES J0225+0304 place it in an ambiguous region of size–luminosity space between stellar clusters and dwarf galaxies. Determinations of the characteristic parameters of the Sagittarius stream, metallicity spread (–2.18 ≲ [Fe/H] ≲ –0.95) and distance gradient (23 kpc ≲ D⊙ ≲ 29 kpc), within the DES footprint in the Southern hemisphere, using the same DES data, also indicate a possible association between these systems. If these objects are confirmed through spectroscopic follow-up to be gravitationally bound systems and to share a Galactic trajectory with the Sagittarius stream, DES J0111–1341 and DES J0225+0304 would be the first ultrafaint stellar systems associated with the Sagittarius stream. Moreover, DES J0225+0304 would also be the first confirmed case of an ultrafaint satellite of a satellite.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knobel, Christian; Lilly, Simon J.; Woo, Joanna
2015-02-10
We re-examine the fraction of low-redshift Sloan Digital Sky Survey satellites and centrals in which star formation has been quenched, using the environment quenching efficiency formalism that separates out the dependence of stellar mass. We show that the centrals of the groups containing the satellites are responding to the environment in the same way as their satellites (at least for stellar masses above 10{sup 10.3} M {sub ☉}), and that the well-known differences between satellites and the general set of centrals arise because the latter are overwhelmingly dominated by isolated galaxies. The widespread concept of ''satellite quenching'' as the causemore » of environmental effects in the galaxy population can therefore be generalized to ''group quenching''. We then explore the dependence of the quenching efficiency of satellites on overdensity, group-centric distance, halo mass, the stellar mass of the satellite, and the stellar mass and specific star formation rate (sSFR) of its central, trying to isolate the effect of these often interdependent variables. We emphasize the importance of the central sSFR in the quenching efficiency of the associated satellites, and develop the meaning of this ''galactic conformity'' effect in a probabilistic description of the quenching of galaxies. We show that conformity is strong, and that it varies strongly across parameter space. Several arguments then suggest that environmental quenching and mass quenching may be different manifestations of the same underlying process. The marked difference in the apparent mass dependencies of environment quenching and mass quenching which produces distinctive signatures in the mass functions of centrals and satellites will arise naturally, since, for satellites at least, the distributions of the environmental variables that we investigate in this work are essentially independent of the stellar mass of the satellite.« less
NASA Astrophysics Data System (ADS)
Luque, E.; Pieres, A.; Santiago, B.; Yanny, B.; Vivas, A. K.; Queiroz, A.; Drlica-Wagner, A.; Morganson, E.; Balbinot, E.; Marshall, J. L.; Li, T. S.; Neto, A. Fausti; da Costa, L. N.; Maia, M. A. G.; Bechtol, K.; Kim, A. G.; Bernstein, G. M.; Dodelson, S.; Whiteway, L.; Diehl, H. T.; Finley, D. A.; Abbott, T.; Abdalla, F. B.; Allam, S.; Annis, J.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Burke, D. L.; Rosell, A. Carnero; Kind, M. Carrasco; Carretero, J.; Cunha, C. E.; D'Andrea, C. B.; Desai, S.; Doel, P.; Evrard, A. E.; Flaugher, B.; Fosalba, P.; Gerdes, D. W.; Goldstein, D. A.; Gruen, D.; Gruendl, R. A.; Gutierrez, G.; James, D. J.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Martini, P.; Miquel, R.; Nord, B.; Ogando, R.; Plazas, A. A.; Romer, A. K.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Walker, A. R.
2017-06-01
We report the discovery of two new candidate stellar systems in the constellation of Cetus using the data from the first two years of the Dark Energy Survey (DES). The objects, DES J0111-1341 and DES J0225+0304, are located at a heliocentric distance of ˜25 kpc and appear to have old and metal-poor populations. Their distances to the Sagittarius orbital plane, ˜1.73 kpc (DES J0111-1341) and ˜0.50 kpc (DES J0225+0304), indicate that they are possibly associated with the Sagittarius dwarf stream. The half-light radius (rh ≃ 4.55 pc) and luminosity (MV ≃ +0.3) of DES J0111-1341 are consistent with it being an ultrafaint stellar cluster, while the half-light radius (rh ≃ 18.55 pc) and luminosity (MV ≃ -1.1) of DES J0225+0304 place it in an ambiguous region of size-luminosity space between stellar clusters and dwarf galaxies. Determinations of the characteristic parameters of the Sagittarius stream, metallicity spread (-2.18 ≲ [Fe/H] ≲ -0.95) and distance gradient (23 kpc ≲ D⊙ ≲ 29 kpc), within the DES footprint in the Southern hemisphere, using the same DES data, also indicate a possible association between these systems. If these objects are confirmed through spectroscopic follow-up to be gravitationally bound systems and to share a Galactic trajectory with the Sagittarius stream, DES J0111-1341 and DES J0225+0304 would be the first ultrafaint stellar systems associated with the Sagittarius stream. Furthermore, DES J0225+0304 would also be the first confirmed case of an ultrafaint satellite of a satellite.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luque, E.; Pieres, A.; Santiago, B.
We report the discovery of two new candidate stellar systems in the constellation of Cetus using the data from the first two years of the Dark Energy Survey (DES). The objects, DES J0111–1341 and DES J0225+0304, are located at a heliocentric distance of ~25 kpc and appear to have old and metal-poor populations. Their distances to the Sagittarius orbital plane, ~1.73 kpc (DES J0111–1341) and ~0.50 kpc (DES J0225+0304), indicate that they are possibly associated with the Sagittarius dwarf stream. The half-light radius (rh ≃ 4.55 pc) and luminosity (MV ≃ +0.3) of DES J0111–1341 are consistent with it beingmore » an ultrafaint stellar cluster, while the half-light radius (rh ≃ 18.55 pc) and luminosity (MV ≃ –1.1) of DES J0225+0304 place it in an ambiguous region of size–luminosity space between stellar clusters and dwarf galaxies. Determinations of the characteristic parameters of the Sagittarius stream, metallicity spread (–2.18 ≲ [Fe/H] ≲ –0.95) and distance gradient (23 kpc ≲ D⊙ ≲ 29 kpc), within the DES footprint in the Southern hemisphere, using the same DES data, also indicate a possible association between these systems. If these objects are confirmed through spectroscopic follow-up to be gravitationally bound systems and to share a Galactic trajectory with the Sagittarius stream, DES J0111–1341 and DES J0225+0304 would be the first ultrafaint stellar systems associated with the Sagittarius stream. Moreover, DES J0225+0304 would also be the first confirmed case of an ultrafaint satellite of a satellite.« less
Long-Term Spectral Variability of the Spotted Star IN Com
NASA Astrophysics Data System (ADS)
Alekseev, I. Yu.; Kozlova, O. V.; Gorda, S. Yu.; Avvakumova, E. A.; Kozhevnikova, A. V.
2017-06-01
We present long-term (2004-2016) spectral observations (R = 20000) of IN Com in the regions of Hα, Hβ and He I 5876 Å lines. The unique feature of the stellar spectrum is the presence of the extended two-component emission with limits up to ± 400 km s-1 in the Hα line. Emission parameters show the rotation modulation with the stellar rotation period and a significant variability on the long-term scale. Similar emission is also observed in Hβ and He I 5876 Å lines. Our results allow us to conclude that observational emission profiles are formed in optically thin hot gas. It is a result of presence of a circumstellar gas disk around IN Com. Its size is not exceed several stellar radii. The matter for the disk is supported by stellar wind. Detected variability of Hα emission parameters shows evident relation with UBVRI photometric activity of the star. This fact allowed us to link the long-term spectral variability with cycles of stellar activity of IN Com.
StePar: an automatic code for stellar parameter determination
NASA Astrophysics Data System (ADS)
Tabernero, H. M.; González Hernández, J. I.; Montes, D.
2013-05-01
We introduce a new automatic code (StePar) for determinig stellar atmospheric parameters (T_{eff}, log{g}, ξ and [Fe/H]) in an automated way. StePar employs the 2002 version of the MOOG code (Sneden 1973) and a grid of Kurucz ATLAS9 plane-paralell model atmospheres (Kurucz 1993). The atmospheric parameters are obtained from the EWs of 263 Fe I and 36 Fe II lines (obtained from Sousa et al. 2008, A&A, 487, 373) iterating until the excitation and ionization equilibrium are fullfilled. StePar uses a Downhill Simplex method that minimizes a quadratic form composed by the excitation and ionization equilibrium conditions. Atmospheric parameters determined by StePar are independent of the stellar parameters initial-guess for the problem star, therefore we employ the canonical solar values as initial input. StePar can only deal with FGK stars from F6 to K4, also it can not work with fast rotators, veiled spectra, very metal poor stars or Signal to noise ratio below 30. Optionally StePar can operate with MARCS models (Gustafson et al. 2008, A&A, 486, 951) instead of Kurucz ATLAS9 models, additionally Turbospectrum (Alvarez & Plez 1998, A&A, 330, 1109) can replace the MOOG code and play its role during the parameter determination. StePar has been used to determine stellar parameters for some studies (Tabernero et al. 2012, A&A, 547, A13; Wisniewski et al. 2012, AJ, 143, 107). In addition StePar is being used to obtain parameters for FGK stars from the GAIA-ESO Survey.
[A New Distance Metric between Different Stellar Spectra: the Residual Distribution Distance].
Liu, Jie; Pan, Jing-chang; Luo, A-li; Wei, Peng; Liu, Meng
2015-12-01
Distance metric is an important issue for the spectroscopic survey data processing, which defines a calculation method of the distance between two different spectra. Based on this, the classification, clustering, parameter measurement and outlier data mining of spectral data can be carried out. Therefore, the distance measurement method has some effect on the performance of the classification, clustering, parameter measurement and outlier data mining. With the development of large-scale stellar spectral sky surveys, how to define more efficient distance metric on stellar spectra has become a very important issue in the spectral data processing. Based on this problem and fully considering of the characteristics and data features of the stellar spectra, a new distance measurement method of stellar spectra named Residual Distribution Distance is proposed. While using this method to measure the distance, the two spectra are firstly scaled and then the standard deviation of the residual is used the distance. Different from the traditional distance metric calculation methods of stellar spectra, when used to calculate the distance between stellar spectra, this method normalize the two spectra to the same scale, and then calculate the residual corresponding to the same wavelength, and the standard error of the residual spectrum is used as the distance measure. The distance measurement method can be used for stellar classification, clustering and stellar atmospheric physical parameters measurement and so on. This paper takes stellar subcategory classification as an example to test the distance measure method. The results show that the distance defined by the proposed method is more effective to describe the gap between different types of spectra in the classification than other methods, which can be well applied in other related applications. At the same time, this paper also studies the effect of the signal to noise ratio (SNR) on the performance of the proposed method. The result show that the distance is affected by the SNR. The smaller the signal-to-noise ratio is, the greater impact is on the distance; While SNR is larger than 10, the signal-to-noise ratio has little effect on the performance for the classification.
A Unified tool to estimate Distances, Ages, and Masses (UniDAM) from spectrophotometric data
NASA Astrophysics Data System (ADS)
Mints, Alexey; Hekker, Saskia
2017-08-01
Context. Galactic archaeology, the study of the formation and evolution of the Milky Way by reconstructing its past from its current constituents, requires precise and accurate knowledge of stellar parameters for as many stars as possible. To achieve this, a number of large spectroscopic surveys have been undertaken and are still ongoing. Aims: So far consortia carrying out the different spectroscopic surveys have used different tools to determine stellar parameters of stars from their derived effective temperatures (Teff), surface gravities (log g), and metallicities ([Fe/H]); the parameters can be combined with photometric, astrometric, interferometric, or asteroseismic information. Here we aim to homogenise the stellar characterisation by applying a unified tool to a large set of publicly available spectrophotometric data. Methods: We used spectroscopic data from a variety of large surveys combined with infrared photometry from 2MASS and AllWISE and compared these in a Bayesian manner with PARSEC isochrones to derive probability density functions (PDFs) for stellar masses, ages, and distances. We treated PDFs of pre-helium-core burning, helium-core burning, and post helium-core burning solutions as well as different peaks in multimodal PDFs (I.e. each unimodal sub-PDF) of the different evolutionary phases separately. Results: For over 2.5 million stars we report mass, age, and distance estimates for each evolutionary phase and unimodal sub-PDF. We report Gaussian, skewed, Gaussian, truncated Gaussian, modified truncated exponential distribution or truncated Student's t-distribution functions to represent each sub-PDF, allowing us to reconstruct detailed PDFs. Comparisons with stellar parameter estimates from the literature show good agreement within uncertainties. Conclusions: We present UniDAM, the unified tool applicable to spectrophotometric data of different surveys, to obtain a homogenised set of stellar parameters. The unified tool and the tables with results are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/604/A108
NASA Astrophysics Data System (ADS)
Roediger, Joel C.; Courteau, Stéphane; Graves, Genevieve; Schiavon, Ricardo P.
2014-01-01
We present an extensive literature compilation of age, metallicity, and chemical abundance pattern information for the 41 Galactic globular clusters (GGCs) studied by Schiavon et al. Our compilation constitutes a notable improvement over previous similar work, particularly in terms of chemical abundances. Its primary purpose is to enable detailed evaluations of and refinements to stellar population synthesis models designed to recover the above information for unresolved stellar systems based on their integrated spectra. However, since the Schiavon sample spans a wide range of the known GGC parameter space, our compilation may also benefit investigations related to a variety of astrophysical endeavors, such as the early formation of the Milky Way, the chemical evolution of GGCs, and stellar evolution and nucleosynthesis. For instance, we confirm with our compiled data that the GGC system has a bimodal metallicity distribution and is uniformly enhanced in the α elements. When paired with the ages of our clusters, we find evidence that supports a scenario whereby the Milky Way obtained its globular clusters through two channels: in situ formation and accretion of satellite galaxies. The distributions of C, N, O, and Na abundances and the dispersions thereof per cluster corroborate the known fact that all GGCs studied so far with respect to multiple stellar populations have been found to harbor them. Finally, using data on individual stars, we verify that stellar atmospheres become progressively polluted by CN(O)-processed material after they leave the main sequence. We also uncover evidence which suggests that the α elements Mg and Ca may originate from more than one nucleosynthetic production site. We estimate that our compilation incorporates all relevant analyses from the literature up to mid-2012. As an aid to investigators in the fields named above, we provide detailed electronic tables of the data upon which our work is based at http://www.astro.queensu.ca/people/Stephane_Courteau/roediger2013/index.html.
Atomic Data for Stellar Astrophysics: from the UV to the IR
NASA Technical Reports Server (NTRS)
Wahlgren, Glenn M.
2011-01-01
The study of stars and stellar evolution relies heavily on the analysis of stellar spectra. The need for atomic line data from the ultraviolet (UV) to the infrared (lR) regions is greater now than ever. In the past twenty years, the time since the launch of the Hubble Space Telescope, great progress has been made in acquiring atomic data for UV transitions. The optical wavelength region, now expanded by progress in detector technology, continues to provide motivation for new atomic data. In addition, investments in new instrumentation for ground-based and space observatories has lead to the availability of high-quality spectra at IR wavelengths, where the need for atomic data is most critical. In this review, examples are provided of the progress made in generating atomic data for stellar studies, with a look to the future for addressing the accuracy and completeness of atomic data for anticipated needs.
Spectral Analysis of B Stars: An Application of Bayesian Statistics
NASA Astrophysics Data System (ADS)
Mugnes, J.-M.; Robert, C.
2012-12-01
To better understand the processes involved in stellar physics, it is necessary to obtain accurate stellar parameters (effective temperature, surface gravity, abundances…). Spectral analysis is a powerful tool for investigating stars, but it is also vital to reduce uncertainties at a decent computational cost. Here we present a spectral analysis method based on a combination of Bayesian statistics and grids of synthetic spectra obtained with TLUSTY. This method simultaneously constrains the stellar parameters by using all the lines accessible in observed spectra and thus greatly reduces uncertainties and improves the overall spectrum fitting. Preliminary results are shown using spectra from the Observatoire du Mont-Mégantic.
A new relativistic stellar model with anisotropic fluid in Karmarkar space-time
NASA Astrophysics Data System (ADS)
Singh, Ksh. Newton; Pant, Neeraj; Troconis, O.
2017-02-01
We are presenting a new class of well-behaved solutions in embedding class-I. We proceed our calculations by assuming a new type of grr metric potential and solved for the other metric gtt using Karmarkar condition. The necessary condition that any solutions of Einstein's field equations to be class-I is to satisfy Karmarkar condition and sufficient condition is to satisfy Pandey-Sharma condition i.e. R2323 ≠ 0. The solution also satisfies strong energy condition, null energy condition, dominant energy condition and weak energy condition. The obtained compactness parameter is within Buchdahl limit i.e. 2 M / R ≤ 8 / 9. The solution also satisfies the causality condition and can represent stable stellar fluid system as the adiabatic index Γ > 4 / 3 and the stability factor holds - 1 ≤ vt2- vr2 ≤ 0 good. Finally, we have tuned our solution for two compact stars PSR J1614-2230 and 4U1608-52 which are well-behaved in all respects.
NASA Astrophysics Data System (ADS)
Aidelman, Y.; Cidale, L. S.; Zorec, J.; Panei, J. A.
2015-05-01
Context. The knowledge of accurate values of effective temperature, surface gravity, and luminosity of stars in open clusters is very important not only to derive cluster distances and ages but also to discuss the stellar structure and evolution. Unfortunately, stellar parameters are still very scarce. Aims: Our goal is to study five open clusters to derive stellar parameters of the B and Be star population and discuss the cluster properties. In a near future, we intend to gather a statistically relevant samples of Be stars to discuss their origin and evolution. Methods: We use the Barbier-Chalonge-Divan spectrophotometric system, based on the study of low-resolution spectra around the Balmer discontinuity, since it is independent of the interstellar and circumstellar extinction and provides accurate Hertzsprung-Russell diagrams and stellar parameters. Results: We determine stellar fundamental parameters, such as effective temperatures, surface gravities, spectral types, luminosity classes, absolute and bolometric magnitudes and colour gradient excesses of the stars in the field of Collinder 223, Hogg 16, NGC 2645, NGC 3114, and NGC 6025. Additional information, mainly masses and ages of cluster stellar populations, is obtained using stellar evolution models. In most cases, stellar fundamental parameters have been derived for the first time. We also discuss the derived cluster properties of reddening, age and distance. Conclusions: Collinder 223 cluster parameters are overline{E(B-V) = 0.25 ± 0.03} mag and overline{(mv - M_v)0 = 11.21 ± 0.25} mag. In Hogg 16, we clearly distinguish two groups of stars (Hogg 16a and Hogg 16b) with very different mean true distance moduli (8.91 ± 0.26 mag and 12.51 ± 0.38 mag), mean colour excesses (0.26 ± 0.03 mag and 0.63 ± 0.08 mag), and spectral types (B early-type and B late-/A-type stars, respectively). The farthest group could be merged with Collinder 272. NGC 2645 is a young cluster (<14 Myr) with overline{E(B-V) = 0.58 ± 0.05} mag and overline{(mv - M_v)0 = 12.18 ± 0.30} mag. The cluster parameters of NGC 3114 are overline{E(B-V) = 0.10 ± 0.01} mag and overline{(mv - M_v)0 = 9.20 ± 0.15} mag. This cluster presents an important population of Be star, but it is difficult to define the cluster membership of stars because of the high contamination by field stars or the possible overlapping with a nearby cluster. Finally, we derive the following cluster parameters of NGC 6025: overline{E(B-V) = 0.34 ± 0.02} mag, overline{(mv - M_v)0 = 9.25 ± 0.17} mag, and an age between 40 Myr and 69 Myr. In all the cases, new Be candidate stars are reported based on the appearance of a second Balmer discontinuity. Observations taken at CASLEO, operating under agreement of CONICET and the Universities of La Plata, Córdoba and San Juan, Argentina.
Lu, Yu; Benson, Andrew; Wetzel, Andrew; ...
2017-08-31
Dwarf galaxies are known to have remarkably low star formation efficiency due to strong feedback. Adopting the dwarf galaxies of the Milky Way (MW) as a laboratory, we explore a flexible semi-analytic galaxy formation model to understand how the feedback processes shape the satellite galaxies of the MW. Using Markov Chain Monte Carlo, we exhaustively search a large parameter space of the model and rigorously show that the general wisdom of strong outflows as the primary feedback mechanism cannot simultaneously explain the stellar mass function and the mass–metallicity relation of the MW satellites. An extended model that assumes that amore » fraction of baryons is prevented from collapsing into low-mass halos in the first place can be accurately constrained to simultaneously reproduce those observations. Here, the inference suggests that two different physical mechanisms are needed to explain the two different data sets. In particular, moderate outflows with weak halo mass dependence are needed to explain the mass–metallicity relation, and prevention of baryons falling into shallow gravitational potentials of low-mass halos (e.g., "pre-heating") is needed to explain the low stellar mass fraction for a given subhalo mass.« less
On the Feasibility of Intense Radial Velocity Surveys for Earth-twin Discoveries
NASA Astrophysics Data System (ADS)
Hall, Richard D.; Thompson, Samantha J.; Handley, Will; Queloz, Didier
2018-06-01
This work assesses the potential capability of the next generation of high-precision Radial Velocity (RV) instruments for Earth-twin exoplanet detection. From the perspective of the importance of data sampling, the Terra Hunting Experiment aims to do this through an intense series of nightly RV observations over a long baseline on a carefully selected target list, via the brand-new instrument HARPS3. This paper describes an end-to-end simulation of generating and processing such data to help us better understand the impact of uncharacterised stellar noise in the recovery of Earth-mass planets with orbital periods of the order of many months. We consider full Keplerian systems, realistic simulated stellar noise, instrument white noise, and location-specific weather patterns for our observation schedules. We use Bayesian statistics to assess various planetary models fitted to the synthetic data, and compare the successful planet recovery of the Terra Hunting Experiment schedule with a typical reference survey. We find that the Terra Hunting Experiment can detect Earth-twins in the habitable zones of solar-type stars, in single and multi-planet systems, and in the presence of stellar signals. Also that it out-performs a typical reference survey on accuracy of recovered parameters, and that it performs comparably to an uninterrupted space-based schedule.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Yu; Benson, Andrew; Wetzel, Andrew
2017-09-01
Dwarf galaxies are known to have remarkably low star formation efficiency due to strong feedback. Adopting the dwarf galaxies of the Milky Way (MW) as a laboratory, we explore a flexible semi-analytic galaxy formation model to understand how the feedback processes shape the satellite galaxies of the MW. Using Markov Chain Monte Carlo, we exhaustively search a large parameter space of the model and rigorously show that the general wisdom of strong outflows as the primary feedback mechanism cannot simultaneously explain the stellar mass function and the mass–metallicity relation of the MW satellites. An extended model that assumes that amore » fraction of baryons is prevented from collapsing into low-mass halos in the first place can be accurately constrained to simultaneously reproduce those observations. The inference suggests that two different physical mechanisms are needed to explain the two different data sets. In particular, moderate outflows with weak halo mass dependence are needed to explain the mass–metallicity relation, and prevention of baryons falling into shallow gravitational potentials of low-mass halos (e.g., “pre-heating”) is needed to explain the low stellar mass fraction for a given subhalo mass.« less
The Data-Driven Approach to Spectroscopic Analyses
NASA Astrophysics Data System (ADS)
Ness, M.
2018-01-01
I review the data-driven approach to spectroscopy, The Cannon, which is a method for deriving fundamental diagnostics of galaxy formation of precise chemical compositions and stellar ages, across many stellar surveys that are mapping the Milky Way. With The Cannon, the abundances and stellar parameters from the multitude of stellar surveys can be placed directly on the same scale, using stars in common between the surveys. Furthermore, the information that resides in the data can be fully extracted, this has resulted in higher precision stellar parameters and abundances being delivered from spectroscopic data and has opened up new avenues in galactic archeology, for example, in the determination of ages for red giant stars across the Galactic disk. Coupled with Gaia distances, proper motions, and derived orbit families, the stellar age and individual abundance information delivered at the precision obtained with the data-driven approach provides very strong constraints on the evolution of and birthplace of stars in the Milky Way. I will review the role of data-driven spectroscopy as we enter the era where we have both the data and the tools to build the ultimate conglomerate of galactic information as well as highlight further applications of data-driven models in the coming decade.
Stark broadening parameters and transition probabilities of persistent lines of Tl II
NASA Astrophysics Data System (ADS)
de Andrés-García, I.; Colón, C.; Fernández-Martínez, F.
2018-05-01
The presence of singly ionized thallium in the stellar atmosphere of the chemically peculiar star χ Lupi was reported by Leckrone et al. in 1999 by analysis of its stellar spectrum obtained with the Goddard High Resolution Spectrograph (GHRS) on board the Hubble Space Telescope. Atomic data about the spectral line of 1307.50 Å and about the hyperfine components of the spectral lines of 1321.71 Å and 1908.64 Å were taken from different sources and used to analyse the isotopic abundance of thallium II in the star χ Lupi. From their results the authors concluded that the photosphere of the star presents an anomalous isotopic composition of Tl II. A study of the atomic parameters of Tl II and of the broadening by the Stark effect of its spectral lines (and therefore of the possible overlaps of these lines) can help to clarify the conclusions about the spectral abundance of Tl II in different stars. In this paper we present calculated values of the atomic transition probabilities and Stark broadening parameters for 49 spectral lines of Tl II obtained by using the Cowan code including core polarization effects and the Griem semiempirical approach. Theoretical values of radiative lifetimes for 11 levels (eight with experimental values in the bibliography) are calculated and compared with the experimental values in order to test the quality of our results. Theoretical trends of the Stark width and shift parameters versus the temperature for spectral lines of astrophysical interest are displayed. Trends of our calculated Stark width for the isoelectronic sequence Tl II-Pb III-Bi IV are also displayed.
NASA Astrophysics Data System (ADS)
Kelley, Luke Zoltan; Blecha, Laura; Hernquist, Lars; Sesana, Alberto; Taylor, Stephen R.
2017-11-01
Pulsar timing arrays (PTAs) around the world are using the incredible consistency of millisecond pulsars to measure low-frequency gravitational waves from (super)massive black hole (MBH) binaries. We use comprehensive MBH merger models based on cosmological hydrodynamic simulations to predict the spectrum of the stochastic gravitational wave background (GWB). We use real time-of-arrival specifications from the European, NANOGrav, Parkes, and International PTA (IPTA) to calculate realistic times to detection of the GWB across a wide range of model parameters. In addition to exploring the parameter space of environmental hardening processes (in particular: stellar scattering efficiencies), we have expanded our models to include eccentric binary evolution which can have a strong effect on the GWB spectrum. Our models show that strong stellar scattering and high characteristic eccentricities enhance the GWB strain amplitude near the PTA-sensitive `sweet-spot' (near the frequency f = 1 yr-1), slightly improving detection prospects in these cases. While the GWB amplitude is degenerate between cosmological and environmental parameters, the location of a spectral turnover at low frequencies (f ≲ 0.1 yr-1) is strongly indicative of environmental coupling. At high frequencies (f ≳ 1 yr-1), the GWB spectral index can be used to infer the number density of sources and possibly their eccentricity distribution. Even with merger models that use pessimistic environmental and eccentricity parameters, if the current rate of PTA expansion continues, we find that the IPTA is highly likely to make a detection within about 10 yr.
NASA Astrophysics Data System (ADS)
Lastennet, E.; Lignières, F.; Buser, R.; Lejeune, T.; Lüftinger, T.; Cuisinier, F.; van't Veer-Menneret, C.
2001-09-01
We present a sample of 9 nearby F-type stars with detailed spectroscopic analyses to investigate the Basel Stellar Library (BaSeL) in two photometric systems simultaneously, Johnson UBV and Stromgren uvby. The sample corresponds to potential targets of the central seismology programme of the COROT (COnvection & ROtation) space experiment, which have been recently observed at Observatoire de Haute-Provence (OHP, France). The atmospheric parameters Teff, [Fe/H], and log g obtained from the BaSeL models are compared with spectroscopic determinations as well as with results of other photometric calibrations (the TEMPLOGG method and the catalogue of Marsakov & Shevelev, 1995). Moreover, new rotational velocity determinations are also derived from the spectroscopic analysis and compared with previous results compiled in the SIMBAD database. For a careful interpretation of the BaSeL solutions, we computed confidence regions around the best chi^2-estimates and projected them on Teff-[Fe/H], Teff-log g, and log g-[Fe/H] diagrams. In order to simultaneously and accurately determine the stellar parameters Teff, [Fe/H] and log g, we suggest to use the combination of the synthetic BaSeL indices B-V, U-B and b-y (rather than the full photometric information available for these stars: B-V, U-B, b-y, m1 and c1) and we present complete results in 3 different diagrams, along with the results of other methods (photometric and spectroscopic). All the methods presented give consistent solutions, and the agreement between TEMPLOGG and BaSeL for the hottest stars of the sample could be especially useful in view of the well-known difficulty of spectroscopic determinations for fast rotating stars. Finally, we present current and future developments of the BaSeL models for a systematic application to all the COROT targets.
NASA Astrophysics Data System (ADS)
Lastennet, E.; Lignières, F.; Buser, R.; Lejeune, T.; Lüftinger, T.; Cuisinier, F.; van't Veer-Menneret, C.
2001-12-01
We present a sample of 9 nearby F-type stars with detailed spectroscopic analyses to investigate the Basel Stellar Library (BaSeL) in two photometric systems simultaneously, Johnson UBV and Strömgren uvby. The sample corresponds to potential targets of the central seismology programme of the COROT (COnvection & ROtation) space experiment, which have been recently observed at Observatoire de Haute-Provence (OHP, France). The atmospheric parameters Teff, [Fe/H], and log g obtained from the BaSeL models are compared with spectroscopic determinations as well as with results of other photometric calibrations (the TEMPLOGG method and the catalogue of Marsakov & Shevelev, 1995). Moreover, new rotational velocity determinations are also derived from the spectroscopic analysis and compared with previous results compiled in the SIMBAD database. For a careful interpretation of the BaSeL solutions, we computed confidence regions around the best χ2-estimates and projected them on Teff-[Fe/H], Teff-log g, and log g-[Fe/H] diagrams. In order to simultaneously and accurately determine the stellar parameters Teff, [Fe/H] and log g, we suggest to use the combination of the synthetic BaSeL indices B-V, U-B and b-y (rather than the full photometric information available for these stars: B-V, U-B, b-y, m1 and c1) and we present complete results in 3 different diagrams, along with the results of other methods (photometric and spectroscopic). All the methods presented give consistent solutions, and the agreement between TEMPLOGG and BaSeL for the hottest stars of the sample could be especially useful in view of the well-known difficulty of spectroscopic determinations for fast rotating stars. Finally, we present current and future developments of the BaSeL models for a systematic application to all the COROT targets.
NASA Astrophysics Data System (ADS)
Muzzin, Adam; Marchesini, Danilo; Stefanon, Mauro; Franx, Marijn; Milvang-Jensen, Bo; Dunlop, James S.; Fynbo, J. P. U.; Brammer, Gabriel; Labbé, Ivo; van Dokkum, Pieter
2013-05-01
We present a catalog covering 1.62 deg2 of the COSMOS/UltraVISTA field with point-spread function (PSF) matched photometry in 30 photometric bands. The catalog covers the wavelength range 0.15-24 μm including the available GALEX, Subaru, Canada-France-Hawaii Telescope, VISTA, and Spitzer data. Catalog sources have been selected from the DR1 UltraVISTA Ks band imaging that reaches a depth of K s, tot = 23.4 AB (90% completeness). The PSF-matched catalog is generated using position-dependent PSFs ensuring accurate colors across the entire field. Also included is a catalog of photometric redshifts (z phot) for all galaxies computed with the EAZY code. Comparison with spectroscopy from the zCOSMOS 10k bright sample shows that up to z ~ 1.5 the z phot are accurate to Δz/(1 + z) = 0.013, with a catastrophic outlier fraction of only 1.6%. The z phot also show good agreement with the z phot from the NEWFIRM Medium Band Survey out to z ~ 3. A catalog of stellar masses and stellar population parameters for galaxies determined using the FAST spectral energy distribution fitting code is provided for all galaxies. Also included are rest-frame U - V and V - J colors, L 2800 and L IR. The UVJ color-color diagram confirms that the galaxy bi-modality is well-established out to z ~ 2. Star-forming galaxies also obey a star-forming "main sequence" out to z ~ 2.5, and this sequence evolves in a manner consistent with previous measurements. The COSMOS/UltraVISTA Ks -selected catalog covers a unique parameter space in both depth, area, and multi-wavelength coverage and promises to be a useful tool for studying the growth of the galaxy population out to z ~ 3-4. .
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muzzin, Adam; Franx, Marijn; Labbe, Ivo
2013-05-01
We present a catalog covering 1.62 deg{sup 2} of the COSMOS/UltraVISTA field with point-spread function (PSF) matched photometry in 30 photometric bands. The catalog covers the wavelength range 0.15-24 {mu}m including the available GALEX, Subaru, Canada-France-Hawaii Telescope, VISTA, and Spitzer data. Catalog sources have been selected from the DR1 UltraVISTA K{sub s} band imaging that reaches a depth of K {sub s,tot} = 23.4 AB (90% completeness). The PSF-matched catalog is generated using position-dependent PSFs ensuring accurate colors across the entire field. Also included is a catalog of photometric redshifts (z {sub phot}) for all galaxies computed with the EAZYmore » code. Comparison with spectroscopy from the zCOSMOS 10k bright sample shows that up to z {approx} 1.5 the z {sub phot} are accurate to {Delta}z/(1 + z) = 0.013, with a catastrophic outlier fraction of only 1.6%. The z {sub phot} also show good agreement with the z {sub phot} from the NEWFIRM Medium Band Survey out to z {approx} 3. A catalog of stellar masses and stellar population parameters for galaxies determined using the FAST spectral energy distribution fitting code is provided for all galaxies. Also included are rest-frame U - V and V - J colors, L {sub 2800} and L {sub IR}. The UVJ color-color diagram confirms that the galaxy bi-modality is well-established out to z {approx} 2. Star-forming galaxies also obey a star-forming 'main sequence' out to z {approx} 2.5, and this sequence evolves in a manner consistent with previous measurements. The COSMOS/UltraVISTA K{sub s} -selected catalog covers a unique parameter space in both depth, area, and multi-wavelength coverage and promises to be a useful tool for studying the growth of the galaxy population out to z {approx} 3-4.« less
Data reduction and calibration for LAMOST survey
NASA Astrophysics Data System (ADS)
Luo, Ali; Zhang, Jiannan; Chen, Jianjun; Song, Yihan; Wu, Yue; Bai, Zhongrui; Wang, Fengfei; Du, Bing; Zhang, Haotong
2014-01-01
There are three data pipelines for LAMOST survey. The raw data is reduced to one dimension spectra by the data reduction pipeline(2D pipeline), the extracted spectra are classified and measured by the spectral analysis pipeline(1D pipeline), while stellar parameters are measured by LASP pipeline. (a) The data reduction pipeline. The main tasks of the data reduction pipeline include bias calibration, flat field, spectra extraction, sky subtraction, wavelength calibration, exposure merging and wavelength band connection. (b) The spectra analysis pipeline. This pipeline is designed to classify and identify objects from the extracted spectra and to measure their redshift (or radial velocity). The PCAZ (Glazebrook et al. 1998) method is applied to do the classification and redshift measurement. (c) Stellar parameters LASP. Stellar parameters pipeline (LASP) is to estimate stellar atmospheric parameters, e.g. effective temperature Teff, surface gravity log g, and metallicity [Fe/H], for F, G and K type stars. To effectively determine those fundamental stellar measurements, three steps with different methods are employed. The first step utilizes the line indices to approximately define the effective temperature range of the analyzed star. Secondly, a set of the initial approximate values of the three parameters are given based on template fitting method. Finally, we exploit ULySS (Koleva et al. 2009) to give the final values of parameters through minimizing the χ 2 value between the observed spectrum and a multidimensional grid of model spectra which is generated by an interpolating of ELODIE library. There are two other classification for A type star and M type star. For A type star, standard MK system is employed (Gray et al. 2009) to give each object temperature class and luminosity type. For M type star, they are classified into subclasses by an improved Hammer method, and metallicity of each objects is also given. During the pilot survey, algorithms were improved and the pipelines were tested. The products of LAMOST survey will include extracted and calibrated spectra in FITS format, a catalog of FGK stars with stellar parameters, a catalog of M dwarf with subclass and metallicity, and a catalog of A type star with MK classification. A part of the pilot survey data, including about 319 000 high quality spectra with SNR > 10, a catalog of stellar parameters of FGK stars and another catalog of a subclass of M type stars have been released to the public in August 2012 (Luo et al. 2012). The general survey started from October 2012, and completed the first year survey. The formal data release one (DR1) is being prepared, which will include both pilot survey and first year general survey, and planed to be released under the LAMOST data policy.
Case A and B evolution towards electron capture supernova
NASA Astrophysics Data System (ADS)
Siess, L.; Lebreuilly, U.
2018-06-01
Context. Most super-asymptotic giant branch (SAGB) stars are expected to end their life as oxygen-neon white dwarfs rather than electron capture supernovae (ECSN). The reason is ascribed to the ability of the second dredge-up to significantly reduce the mass of the He core and of the efficient AGB winds to remove the stellar envelope before the degenerate core reaches the critical mass for the activation of electron capture reactions. Aims: In this study, we investigate the formation of ECSN through case A and case B mass transfer. In these scenarios, when Roche lobe overflow stops, the primary has become a helium star. With a small envelope left, the second dredge-up is prevented, potentially opening new paths to ECSN. Methods: We compute binary models using our stellar evolution code BINSTAR. We consider three different secondary masses of 8, 9, and 10 M⊙ and explore the parameter space, varying the companion mass, orbital period, and input physics. Results: Assuming conservative mass transfer, with our choice of secondary masses all case A systems enter contact either during the main sequence or as a consequence of reversed mass transfer when the secondary overtakes its companion during core helium burning. Case B systems are able to produce ECSN progenitors in a relatively small range of periods (3 ≲ P(d) ≤ 30) and primary masses (10.9 ≤ M/M⊙≤ 11.5). Changing the companion mass has little impact on the primary's fate as long as the mass ratio M1/M2 remains less than 1.4-1.5, above which evolution to contact becomes unavoidable. We also find that allowing for systemic mass loss substantially increases the period interval over which ECSN can occur. This change in the binary physics does not however affect the primary mass range. We finally stress that the formation of ECSN progenitors through case A and B mass transfer is very sensitive to adopted binary and stellar physics. Conclusions: Close binaries provide additional channels for ECSN but the parameter space is rather constrained likely making ECSN a rare event.
NASA Technical Reports Server (NTRS)
Massaglia, S.; Ferrari, A.; Bodo, G.; Kalkofen, W.; Rosner, R.
1985-01-01
The stability of current-driven filamentary modes in magnetic flux tubes embedded in a plane-parallel atmosphere in LTE and in hydrostatic equilibrium is discussed. Within the tube, energy transport by radiation only is considered. The dominant contribution to the opacity is due to H- ions and H atoms (in the Paschen continuum). A region in the parameter space of the equilibrium configuration in which the instability is effective is delimited, and the relevance of this process for the formation of structured coronae in late-type stars and accretion disks is discussed.
Exploring the climate of Proxima B with the Met Office Unified Model
NASA Astrophysics Data System (ADS)
Boutle, Ian A.; Mayne, Nathan J.; Drummond, Benjamin; Manners, James; Goyal, Jayesh; Hugo Lambert, F.; Acreman, David M.; Earnshaw, Paul D.
2017-05-01
We present results of simulations of the climate of the newly discovered planet Proxima Centauri B, performed using the Met Office Unified Model (UM). We examine the responses of both an "Earth-like" atmosphere and simplified nitrogen and trace carbon dioxide atmosphere to the radiation likely received by Proxima Centauri B. Additionally, we explore the effects of orbital eccentricity on the planetary conditions using a range of eccentricities guided by the observational constraints. Overall, our results are in agreement with previous studies in suggesting Proxima Centauri B may well have surface temperatures conducive to the presence of liquid water. Moreover, we have expanded the parameter regime over which the planet may support liquid water to higher values of eccentricity (≳0.1) and lower incident fluxes (881.7 W m-2) than previous work. This increased parameter space arises because of the low sensitivity of the planet to changes in stellar flux, a consequence of the stellar spectrum and orbital configuration. However, we also find interesting differences from previous simulations, such as cooler mean surface temperatures for the tidally-locked case. Finally, we have produced high-resolution planetary emission and reflectance spectra, and highlight signatures of gases vital to the evolution of complex life on Earth (oxygen, ozone and carbon dioxide).
Estimating metallicities with isochrone fits to photometric data of open clusters
NASA Astrophysics Data System (ADS)
Monteiro, H.; Oliveira, A. F.; Dias, W. S.; Caetano, T. C.
2014-10-01
The metallicity is a critical parameter that affects the correct determination of stellar cluster's fundamental characteristics and has important implications in Galactic and Stellar evolution research. Fewer than 10% of the 2174 currently catalogued open clusters have their metallicity determined in the literature. In this work we present a method for estimating the metallicity of open clusters via non-subjective isochrone fitting using the cross-entropy global optimization algorithm applied to UBV photometric data. The free parameters distance, reddening, age, and metallicity are simultaneously determined by the fitting method. The fitting procedure uses weights for the observational data based on the estimation of membership likelihood for each star, which considers the observational magnitude limit, the density profile of stars as a function of radius from the center of the cluster, and the density of stars in multi-dimensional magnitude space. We present results of [Fe/H] for well-studied open clusters based on distinct UBV data sets. The [Fe/H] values obtained in the ten cases for which spectroscopic determinations were available in the literature agree, indicating that our method provides a good alternative to estimating [Fe/H] by using an objective isochrone fitting. Our results show that the typical precision is about 0.1 dex.
Magellan/M2FS Spectroscopy of Tucana 2 and Grus 1
NASA Astrophysics Data System (ADS)
Walker, Matthew G.; Mateo, Mario; Olszewski, Edward W.; Koposov, Sergey; Belokurov, Vasily; Jethwa, Prashin; Nidever, David L.; Bonnivard, Vincent; Bailey, John I., III; Bell, Eric F.; Loebman, Sarah R.
2016-03-01
We present results from spectroscopic observations with the Michigan/Magellan Fiber System (M2FS) of 147 stellar targets along the line of sight to the newly discovered “ultrafaint” stellar systems Tucana 2 (Tuc 2) and Grus 1 (Gru 1). Based on simultaneous estimates of line of sight velocity and stellar-atmospheric parameters, we identify 8 and 7 stars as probable members of Tuc 2 and and Gru 1, respectively. Our sample for Tuc 2 is sufficient to resolve an internal velocity dispersion of {8.6}-2.7+4.4 km s-1 about a mean of -{129.1}-3.5+3.5 km s-1 (solar rest frame), and to estimate a mean metallicity of [Fe/H] = -{2.23}-0.12+0.18. These results place Tuc 2 on chemodynamical scaling relations followed by dwarf galaxies, suggesting a dominant dark matter component with dynamical mass {2.7}-1.3+3.1× {10}6 {M}⊙ enclosed within the central ˜160 pc, and dynamical mass-to-light ratio {1913}-950+2234 {M}⊙ /{L}V,⊙ . For Gru 1 we estimate a mean velocity of -{140.5}-1.6+2.4 km s-1 and a mean metallicity of [Fe/H] = -{1.42}-0.42+0.55 but our sample does not resolve Gru 1's velocity dispersion. The radial coordinates of Tuc 2 and Gru 1 in Galactic phase space suggest that their orbits are among the most energetic within a distance of ≲ 300 {{kpc}}. Moreover, their proximity to each other in this space arises naturally if both objects are trailing the Large Magellanic Cloud. This paper presents data gathered with the Magellan Telescopes at Las Campanas Observatory, Chile.
Applications of the k – ω Model in Stellar Evolutionary Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yan, E-mail: ly@ynao.ac.cn
The k – ω model for turbulence was first proposed by Kolmogorov. A new k – ω model for stellar convection was developed by Li, which could reasonably describe turbulent convection not only in the convectively unstable zone, but also in the overshooting regions. We revised the k – ω model by improving several model assumptions (including the macro-length of turbulence, convective heat flux, and turbulent mixing diffusivity, etc.), making it applicable not only for convective envelopes, but also for convective cores. Eight parameters are introduced in the revised k – ω model. It should be noted that the Reynoldsmore » stress (turbulent pressure) is neglected in the equation of hydrostatic support. We applied it into solar models and 5 M {sub ⊙} stellar models to calibrate the eight model parameters, as well as to investigate the effects of the convective overshooting on the Sun and intermediate mass stellar models.« less
The Stellar Imager (SI) - A Mission to Resolve Stellar Surfaces, Interiors, and Magnetic Activity
NASA Astrophysics Data System (ADS)
Christensen-Dalsgaard, Jørgen; Carpenter, Kenneth G.; Schrijver, Carolus J.; Karovska, Margarita; Si Team
2011-01-01
The Stellar Imager (SI) is a space-based, UV/Optical Interferometer (UVOI) designed to enable 0.1 milli-arcsecond (mas) spectral imaging of stellar surfaces and of the Universe in general. It will also probe via asteroseismology flows and structures in stellar interiors. SI will enable the development and testing of a predictive dynamo model for the Sun, by observing patterns of surface activity and imaging of the structure and differential rotation of stellar interiors in a population study of Sun-like stars to determine the dependence of dynamo action on mass, internal structure and flows, and time. SI's science focuses on the role of magnetism in the Universe and will revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magneto-hydrodynamically controlled processes in the Universe. SI is a "Landmark/Discovery Mission" in the 2005 Heliophysics Roadmap, an implementation of the UVOI in the 2006 Astrophysics Strategic Plan, and a NASA Vision Mission ("NASA Space Science Vision Missions" (2008), ed. M. Allen). We present here the science goals of the SI Mission, a mission architecture that could meet those goals, and the technology development needed to enable this mission. Additional information on SI can be found at: http://hires.gsfc.nasa.gov/si/.
The Stellar Imager (SI) - A Mission to Resolve Stellar Surfaces, Interiors, and Magnetic Activity
NASA Astrophysics Data System (ADS)
Carpenter, K. G.; Schrijver, C. J.; Karovska, M.; Si Vision Mission Team
2009-09-01
The Stellar Imager (SI) is a UV/Optical, Space-Based Interferometer designed to enable 0.1 milli-arcsecond (mas) spectral imaging of stellar surfaces and, via asteroseismology, stellar interiors and of the Universe in general. The ultra-sharp images of the Stellar Imager will revolutionize our view of many dynamic astrophysical processes by transforming point sources into extended sources, and snapshots into evolving views. SI's science focuses on the role of magnetism in the Universe, particularly on magnetic activity on the surfaces of stars like the Sun. SI's prime goal is to enable long-term forecasting of solar activity and the space weather that it drives. SI will also revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magneto-hydrodynamically controlled processes in the Universe. SI is included as a ``Flagship and Landmark Discovery Mission'' in the 2005 NASA Sun Solar System Connection (SSSC) Roadmap and as a candidate for a ``Pathways to Life Observatory'' in the NASA Exploration of the Universe Division (EUD) Roadmap (May, 2005). In this paper we discuss the science goals and technology needs of, and the baseline design for, the SI Mission (http://hires.gsfc.nasa.gov/si/) and its ability to image the Biggest, Baddest, Coolest Stars.
The Stellar Imager (SI) - A Mission to Resolve Stellar Surfaces, Interiors, and Magnetic Activity
NASA Technical Reports Server (NTRS)
Carpenter, Kenneth; Schrijver, Carolus J.; Karovska, Margarita
2007-01-01
The Stellar Imager (SI) is a UV/Optical, Space-Based Interferometer designed to enable 0.1 milli-arcsecond (mas) spectral imaging of stellar surfaces and, via asteroseismology, stellar interiors and of the Universe in general. The ultra-sharp images of the Stellar Imager will revolutionize our view of many dynamic astrophysical processes by transforming point sources into extended sources, and snapshots into evolving views. SI's science focuses on the role of magnetism in the Universe, particularly on magnetic activity on the surfaces of stars like the Sun. SI's prime goal is to enable long-term forecasting of solar activity and the space weather that it drives. SI will also revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magneto-hydrodynamically controlled processes in the Universe. SI is included as a 'Flagship and Landmark Discovery Mission' in the 2005 NASA Sun Solar System Connection (SSSC) Roadmap and as a candidate for a 'Pathways to Life Observatory' in the NASA Exploration of the Universe Division (EUD) Roadmap (May, 2005). In this paper we discuss the science goals and technology needs of, and the baseline design for, the SI Mission (http://hires.gsfc.nasa.gov/si/) its ability to image the 'Biggest, Baddest, Coolest Stars'.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, John Asher; Cargile, Phillip A.; Sinukoff, Evan
We present stellar and planetary properties for 1305 Kepler Objects of Interest hosting 2025 planet candidates observed as part of the California- Kepler Survey. We combine spectroscopic constraints, presented in Paper I, with stellar interior modeling to estimate stellar masses, radii, and ages. Stellar radii are typically constrained to 11%, compared to 40% when only photometric constraints are used. Stellar masses are constrained to 4%, and ages are constrained to 30%. We verify the integrity of the stellar parameters through comparisons with asteroseismic studies and Gaia parallaxes. We also recompute planetary radii for 2025 planet candidates. Because knowledge of planetarymore » radii is often limited by uncertainties in stellar size, we improve the uncertainties in planet radii from typically 42% to 12%. We also leverage improved knowledge of stellar effective temperature to recompute incident stellar fluxes for the planets, now precise to 21%, compared to a factor of two when derived from photometry.« less
Error Modeling of Multibaseline Optical Truss: Part 1: Modeling of System Level Performance
NASA Technical Reports Server (NTRS)
Milman, Mark H.; Korechoff, R. E.; Zhang, L. D.
2004-01-01
Global astrometry is the measurement of stellar positions and motions. These are typically characterized by five parameters, including two position parameters, two proper motion parameters, and parallax. The Space Interferometry Mission (SIM) will derive these parameters for a grid of approximately 1300 stars covering the celestial sphere to an accuracy of approximately 4uas, representing a two orders of magnitude improvement over the most precise current star catalogues. Narrow angle astrometry will be performed to a 1uas accuracy. A wealth of scientific information will be obtained from these accurate measurements encompassing many aspects of both galactic (and extragalactic science. SIM will be subject to a number of instrument errors that can potentially degrade performance. Many of these errors are systematic in that they are relatively static and repeatable with respect to the time frame and direction of the observation. This paper and its companion define the modeling of the, contributing factors to these errors and the analysis of how they impact SIM's ability to perform astrometric science.
NASA Technical Reports Server (NTRS)
Haubold, Hans J. (Editor); Torres, Sergio (Editor)
1994-01-01
The conference primarily covered astrophysical and astronomical topics on stellar and solar modeling and processes, high magnetic field influence on stellar spectra, cosmological topics utilizing Cosmic Background Explorer (COBE) data and radioastronomic mapping as well as cosmic gravitational instability calculations, astrometry of open clusters amd solar gravitational focusing, extremely energetic gamma rays, interacting binaries, and balloon-borne instrumentation. Other papers proposed an active Search for Extraterrestrial Intelligence (SETI) communication scheme to neighboring solar-like systems and more direct involvement of and with the public in astronomy and space exploration projects.
Fundamental parameters of exoplanets and their host stars
NASA Astrophysics Data System (ADS)
Coughlin, Jeffrey Langer
For much of human history we have wondered how our solar system formed, and whether there are any other planets like ours around other stars. Only in the last 20 years have we had direct evidence for the existence of exoplanets, with the number of known exoplanets dramatically increasing in recent years, especially with the success of the Kepler mission. Observations of these systems are becoming increasingly more precise and numerous, thus allowing for detailed studies of their masses, radii, densities, temperatures, and atmospheric compositions. However, one cannot accurately study exoplanets without examining their host stars in equal detail, and understanding what assumptions must be made to calculate planetary parameters from the directly derived observational parameters. In this thesis, I present observations and models of the primary transits and secondary eclipses of transiting exoplanets from both the ground and Kepler in order to better study their physical characteristics and search for additional exoplanets. I then identify, observe, and model new eclipsing binaries to better understand the stellar mass-radius relationship and stellar limb-darkening, compare these observations to the predictions of stellar models, and attempt to define to what extent these fundamental stellar characteristics can impact derived planetary parameters. I also present novel techniques for the direct determination of exoplanet masses and stellar inclinations via multi-wavelength astrometry, the ground-based photometric observation of stars at sub-millimagnitude precision, the reduction of Kepler photometry from pixel-level data, the extraction of radial velocities from spectroscopic observations, and the automatic identification, period analysis, and modeling of eclipsing binaries and transiting planets in large datasets.
Revived STIS. II. Properties of Stars in the Next Generation Spectral Library
NASA Technical Reports Server (NTRS)
Heap, Sara R.; Lindler, D.
2010-01-01
Spectroscopic surveys of galaxies at high redshift will bring the rest-frame ultraviolet into view of large, ground-based telescopes. The UV-blue spectral region is rich in diagnostics, but these diagnostics have not yet been calibrated in terms of the properties of the responsible stellar population(s). Such calibrations are now possible with Hubble's Next Generation Spectral Library (NGSL). The NGSL contains UV-optical spectra (0.2 - 1.0 microns) of 374 stars having a wide range in temperature, luminosity, and metallicity. We will describe our work to derive basic stellar parameters from NGSL spectra using modern model spectra and to use these stellar parameters to develop UV-blue spectral diagnostics.
NASA Astrophysics Data System (ADS)
Choi, Jieun; Dotter, Aaron; Conroy, Charlie; Ting, Yuan-Sen
2018-06-01
The effective temperature (T eff) distribution of stellar evolution models along the red giant branch (RGB) is sensitive to a number of parameters including the overall metallicity, elemental abundance patterns, the efficiency of convection, and the treatment of the surface boundary condition (BC). Recently there has been interest in using observational estimates of the RGB T eff to place constraints on the mixing length parameter, α MLT, and possible variation with metallicity. Here we use 1D Modules for Experiments in Stellar Astrophysics (MESA) stellar evolution models to explore the sensitivity of the RGB T eff to the treatment of the surface BC. We find that different surface BCs can lead to ±100 K metallicity-dependent offsets on the RGB relative to one another in spite of the fact that all models can reproduce the properties of the Sun. Moreover, for a given atmosphere T–τ relation, we find that the RGB T eff is also sensitive to the optical depth at which the surface BC is applied in the stellar model. Nearly all models adopt the photosphere as the location of the surface BC, but this choice is somewhat arbitrary. We compare our models to stellar parameters derived from the APOGEE-Kepler sample of first ascent red giants and find that systematic uncertainties in the models due to treatment of the surface BC place a limit of ≈100 K below which it is not possible to make firm conclusions regarding the fidelity of the current generation of stellar models.
A Pipeline for the Analysis of APOGEE Spectra Based on Equivalent Widths
NASA Astrophysics Data System (ADS)
Arfon Williams, Rob; Bosley, Corinne; Jones, Hayden; Schiavon, Ricardo P.; Allende-Prieto, Carlos; Bizyaev, Dmitry; Carrera, Ricardo; Cunha, Katia M. L.; Nguyen, Duy; Feuillet, Diane; Frinchaboy, Peter M.; García Pérez, Ana; Hasselquist, Sten; Hayden, Michael R.; Hearty, Fred R.; Holtzman, Jon A.; Johnson, Jennifer; Majewski, Steven R.; Meszaros, Szabolcs; Nidever, David L.; Shetrone, Matthew D.; Smith, Verne V.; Sobeck, Jennifer; Troup, Nicholas William; Wilson, John C.; Zasowski, Gail
2015-01-01
The Apache Point Galactic Evolution Experiment (APOGEE) forms part of the third Sloan Digital Sky Survey and has obtained high resolution, high signal-to-noise infrared spectra for ~1.3 x 105 stars across the galactic bulge, disc and halo. From these, stellar parameters are derived together with abundances for various elements using the APOGEE Stellar Parameters and Chemical Abundance Pipeline (ASPCAP). In this poster we report preliminary results from application of an alternative stellar parameters and abundances pipeline, based on measurements of equivalent widths of absorption lines in APOGEE spectra. The method is based on a sequential grid inversion algorithm, originally designed for the derivation of ages and elemental abundances of stellar populations from line indices in their integrated spectra. It allows for the rapid processing of large spectroscopic data sets from both current and future surveys, such as APOGEE and APOGEE 2, and it is easily adaptable for application to other very large data sets that are being/will be generated by other massive surveys of the stellar populations of the Galaxy. It will also allow the cross checking of ASPCAP results using an independent method. In this poster we present preliminary results showing estimates of effective temperature and iron abundance [Fe/H] for a subset of the APOGEE sample, comparing with DR12 numbers produced by the ASPCAP pipeline.
Cosmic ray-modified stellar winds. I - Solution topologies and singularities
NASA Technical Reports Server (NTRS)
Ko, C. M.; Webb, G. M.
1987-01-01
In the present two-fluid hydrodynamical model for stellar wind flow modification due to its interaction with Galactic cosmic rays, these rays are coupled to the stellar wind by either hydromagnetic wave scattering or background flow irregularity propagation. The background flow is modified by the cosmic rays via their pressure gradient. The system of equations used possesses a line of singularities in (r, u, P sub c)-space, or a two-dimensional hypersurface of singularities in (r, u, P sub c, dP sub c/dr)-space, where r, u, and P sub c are respectively the radial distance from the star, the radial wind flow speed, and the cosmic ray pressure. The singular points may be nodes, foci, or saddle points.
ERIC Educational Resources Information Center
MOSAIC, 1977
1977-01-01
Explores possibility of extra-terrestrial life, reviewing current hypotheses regarding where in space life would most likely occur. Discusses astrometry and spectroscopy as methods for determining stellar motions. Describes United States and Soviet projects for receiving stellar communications. Relates origin of life on earth to observed high…
Science with the space-based interferometer LISA. V. Extreme mass-ratio inspirals
NASA Astrophysics Data System (ADS)
Babak, Stanislav; Gair, Jonathan; Sesana, Alberto; Barausse, Enrico; Sopuerta, Carlos F.; Berry, Christopher P. L.; Berti, Emanuele; Amaro-Seoane, Pau; Petiteau, Antoine; Klein, Antoine
2017-05-01
The space-based Laser Interferometer Space Antenna (LISA) will be able to observe the gravitational-wave signals from systems comprised of a massive black hole and a stellar-mass compact object. These systems are known as extreme-mass-ratio inspirals (EMRIs) and are expected to complete ˜1 04- 1 05 cycles in band, thus allowing exquisite measurements of their parameters. In this work, we attempt to quantify the astrophysical uncertainties affecting the predictions for the number of EMRIs detectable by LISA, and find that competing astrophysical assumptions produce a variance of about three orders of magnitude in the expected intrinsic EMRI rate. However, we find that irrespective of the astrophysical model, at least a few EMRIs per year should be detectable by the LISA mission, with up to a few thousands per year under the most optimistic astrophysical assumptions. We also investigate the precision with which LISA will be able to extract the parameters of these sources. We find that typical fractional statistical errors with which the intrinsic parameters (redshifted masses, massive black hole spin and orbital eccentricity) can be recovered are ˜10-6- 10-4 . Luminosity distance (which is required to infer true masses) is inferred to about 10% precision and sky position is localized to a few square degrees, while tests of the multipolar structure of the Kerr metric can be performed to percent-level precision or better.
NASA Astrophysics Data System (ADS)
Bradac, Marusa; Coe, Dan; Huang, Kuang-Han; Salmon, Brett; Hoag, Austin; Bradley, Larry; Ryan, Russell; Dawson, Will; Zitrin, Adi; Jones, Christine; Sharon, Keren; Trentu, Michele; Stark, Daniel; Bouwens, Rychard; Oesch, Pascal; Lam, Daniel; Patricia Carasco Nunez, Daniela; Paterno-Mahler, Rachel; Strait, Victoria
2017-10-01
When did galaxies start forming stars? What is the role of distant galaxies in galaxy formation models and epoch of reionization? Recent observations indicate at least two critical puzzles in these studies. (1) First galaxies might have started forming stars earlier than previously thought (<400Myr after the Big Bang). (2) It is still unclear what is their star formation history and whether these galaxies can reionize the Universe. Accurate knowledge of stellar masses, ages, and star formation rates at this epoch requires measuring both rest-frame UV and optical light, which only Spitzer and HST can probe at z 6-11 for a large enough sample of typical galaxies. To address this cosmic puzzle, we propose Spitzer imaging of the fields behind the most powerful cosmic telescopes selected using HST, Spitzer, and Planck data from the RELICS and SRELICS programs (Reionization Lensing Cluster Survey; 41 clusters, 190 HST orbits, 550 Spitzer hours). This proposal will be a valuable Legacy complement to the existing IRAC deep surveys, and it will open up a new parameter space by probing the ordinary yet magnified population with much improved sample variance. The program will allow us to study stellar properties of a large number, 20 galaxies at z 6-11. Deep Spitzer data will be crucial to unambiguously measure their stellar properties (age, SFR, M*). Finally this proposal is a unique opportunity to establish the presence (or absence) of an unusually early established stellar population, as was recently observed in MACS1149JD at z 9. If confirmed, this result will require a paradigm shift in our understanding of the earliest star formation.
NASA Astrophysics Data System (ADS)
Bradac, Marusa; Coe, Dan; Huang, Kuang-Han; Salmon, Brett; Hoag, Austin; Bradley, Larry; Ryan, Russell; Dawson, Will; Zitrin, Adi; Jones, Christine; Sharon, Keren; Trenti, Michele; Stark, Daniel; Bouwens, Rychard; Oesch, Pascal; Lam, Daniel; Carrasco Nunez, Daniela Patricia
2017-04-01
When did galaxies start forming stars? What is the role of distant galaxies in galaxy formation models and epoch of reionization? Recent observations indicate at least two critical puzzles in these studies. (1) First galaxies might have started forming stars earlier than previously thought (<400Myr after the Big Bang). (2) It is still unclear what is their star formation history and whether these galaxies can reionize the Universe. Accurate knowledge of stellar masses, ages, and star formation rates at this epoch requires measuring both rest-frame UV and optical light, which only Spitzer and HST can probe at z 6-11 for a large enough sample of typical galaxies. To address this cosmic puzzle, we propose Spitzer imaging of the fields behind 3 most powerful cosmic telescopes selected using HST, Spitzer, and Planck data from the RELICS and SRELICS programs (Reionization Lensing Cluster Survey; 41 clusters, 190 HST orbits, 390 Spitzer hours). This proposal will be a valuable Legacy complement to the existing IRAC deep surveys, and it will open up a new parameter space by probing the ordinary yet magnified population with much improved sample variance. The program will allow us to study stellar properties of a large number, 30 galaxies at z 6-11. Deep Spitzer data will be crucial to unambiguously measure their stellar properties (age, SFR, M*). Finally this proposal will establish the presence (or absence) of an unusually early established stellar population, as was recently observed in MACS1149JD at z 9. If confirmed in a larger sample, this result will require a paradigm shift in our understanding of the earliest star formation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Chengyuan; De Grijs, Richard; Deng, Licai, E-mail: joshuali@pku.edu.cn, E-mail: grijs@pku.edu.cn
2014-04-01
Using a combination of high-resolution Hubble Space Telescope/Wide-Field and Planetary Camera-2 observations, we explore the physical properties of the stellar populations in two intermediate-age star clusters, NGC 1831 and NGC 1868, in the Large Magellanic Cloud based on their color-magnitude diagrams. We show that both clusters exhibit extended main-sequence turn offs. To explain the observations, we consider variations in helium abundance, binarity, age dispersions, and the fast rotation of the clusters' member stars. The observed narrow main sequence excludes significant variations in helium abundance in both clusters. We first establish the clusters' main-sequence binary fractions using the bulk of themore » clusters' main-sequence stellar populations ≳ 1 mag below their turn-offs. The extent of the turn-off regions in color-magnitude space, corrected for the effects of binarity, implies that age spreads of order 300 Myr may be inferred for both clusters if the stellar distributions in color-magnitude space were entirely due to the presence of multiple populations characterized by an age range. Invoking rapid rotation of the population of cluster members characterized by a single age also allows us to match the observed data in detail. However, when taking into account the extent of the red clump in color-magnitude space, we encounter an apparent conflict for NGC 1831 between the age dispersion derived from that based on the extent of the main-sequence turn off and that implied by the compact red clump. We therefore conclude that, for this cluster, variations in stellar rotation rate are preferred over an age dispersion. For NGC 1868, both models perform equally well.« less
Convective Overshoot in Stellar Interior
NASA Astrophysics Data System (ADS)
Zhang, Q. S.
2015-07-01
In stellar interiors, the turbulent thermal convection transports matters and energy, and dominates the structure and evolution of stars. The convective overshoot, which results from the non-local convective transport from the convection zone to the radiative zone, is one of the most uncertain and difficult factors in stellar physics at present. The classical method for studying the convective overshoot is the non-local mixing-length theory (NMLT). However, the NMLT bases on phenomenological assumptions, and leads to contradictions, thus the NMLT was criticized in literature. At present, the helioseismic studies have shown that the NMLT cannot satisfy the helioseismic requirements, and have pointed out that only the turbulent convection models (TCMs) can be accepted. In the first part of this thesis, models and derivations of both the NMLT and the TCM were introduced. In the second part, i.e., the work part, the studies on the TCM (theoretical analysis and applications), and the development of a new model of the convective overshoot mixing were described in detail. In the work of theoretical analysis on the TCM, the approximate solution and the asymptotic solution were obtained based on some assumptions. The structure of the overshoot region was discussed. In a large space of the free parameters, the approximate/asymptotic solutions are in good agreement with the numerical results. We found an important result that the scale of the overshoot region in which the thermal energy transport is effective is 1 HK (HK is the scale height of turbulence kinetic energy), which does not depend on the free parameters of the TCM. We applied the TCM and a simple overshoot mixing model in three cases. In the solar case, it was found that the temperature gradient in the overshoot region is in agreement with the helioseismic requirements, and the profiles of the solar lithium abundance, sound speed, and density of the solar models are also improved. In the low-mass stars of open clusters Hyades, Praesepe, NGC6633, NGC752, NGC3680, and M67, using the model and parameter same to the solar case to deal with the convective envelope overshoot mixing, the lithium abundances on the surface of the stellar models were consistent with the observations. In the case of the binary HY Vir, the same model and parameter also make the radii and effective temperatures of HY Vir stars with convective cores be consistent with the observations. Based on the implications of the above results, we found that the simple overshoot mixing model may need to be improved significantly. Motivated by those implications, we established a new model of the overshoot mixing based on the fluid dynamic equations, and worked out the diffusion coefficient of convective mixing. The diffusion coefficient shows different behaviors in convection zone and overshoot region. In the overshoot region, the buoyancy does negative works on flows, thus the fluid flows around the equilibrium location, which leads to a small scale and low efficiency of overshoot mixing. The physical properties are significantly different from the classical NMLT, and consistent with the helioseismic studies and numerical simulations. The new model was tested in stellar evolution, and its parameter was calibrated.
SED Modeling of 20 Massive Young Stellar Objects
NASA Astrophysics Data System (ADS)
Tanti, Kamal Kumar
In this paper, we present the spectral energy distributions (SEDs) modeling of twenty massive young stellar objects (MYSOs) and subsequently estimated different physical and structural/geometrical parameters for each of the twenty central YSO outflow candidates, along with their associated circumstellar disks and infalling envelopes. The SEDs for each of the MYSOs been reconstructed by using 2MASS, MSX, IRAS, IRAC & MIPS, SCUBA, WISE, SPIRE and IRAM data, with the help of a SED Fitting Tool, that uses a grid of 2D radiative transfer models. Using the detailed analysis of SEDs and subsequent estimation of physical and geometrical parameters for the central YSO sources along with its circumstellar disks and envelopes, the cumulative distribution of the stellar, disk and envelope parameters can be analyzed. This leads to a better understanding of massive star formation processes in their respective star forming regions in different molecular clouds.
Stellar streams and the galaxies they reside in
NASA Astrophysics Data System (ADS)
Pearson, Sarah
2018-01-01
As galaxies collide, as smaller galaxies are disrupted by larger galaxies, or as clusters of stars orbit a galaxy, a gravitational tidal interaction unfolds and the systems tear apart into distinct morphological and kinematic structures. In my thesis, I have exploited these structures to understand various components of galaxies, such as the baryon cycle in dwarf galaxy interactions (Pearson et al. 2016, Pearson et al. 2017b). In this talk, I will focus on my thesis work related to the stellar stream emerging from the old, globular cluster, Palomar 5 (Pal 5), orbiting our own Milky Way. As the stellar stream members were once closely tied together in energy and angular momentum space, we can use their distribution in phase space to trace back where they were once located and what affected them along their paths. In particular, I will show that the mere existence of Pal 5’s thin stream can rule out a moderately triaxial potential model of our Galaxy (Pearson et al. 2015) and that the debris of Pal 5-like streams will spread much further in space in a triaxial potential (a mechanism which I dubbed “stream fanning”) . Additionally, I will show that the Milky Way's Galactic bar, can punch holes in stellar streams and explain the recently discovered length asymmetry between Pal 5’s leading and trailing arm (Pearson et al. 2017a). These holes grow and have locations along stellar streams dependent on the Galactic bar orientation, mass and rotational speed, which provides an intriguing methodology for studying our own Milky Way’s Galactic bar in more detail. The fact that the bar can create under densities in stellar streams, further demonstrates that we should be careful when interpreting gaps in stellar streams as indirect evidence of the existence of dark matter subhalos in our Galaxy.
NASA Technical Reports Server (NTRS)
Carpenter, Kenneth
2007-01-01
The Stellar Imager (SI) is one of NASA's "Vision Missions" - concepts for future, space-based, strategic missions that could enormously increase our capabilities for observing the Cosmos. SI is designed as a UV/Optical Interferometer which will enable 0.1 milli-arcsecond (mas) spectral imaging of stellar surfaces and, via asteroseismology, stellar interiors and of the Universe in general. The ultra-sharp images of the Stellar Imager will revolutionize our view of many dynamic astrophysical processes by transforming point sources into extended sources, and snapshots into evolving views. SI, with a characteristic angular resolution of 0.1 milli-arcseconds at 2000 Angstroms, represents an advance in image detail of several hundred times over that provided by the Hubble Space Telescope. The Stellar Imager will zoom in on what today-with few exceptions - we only know as point sources, revealing processes never before seen, thus providing a tool as fundamental to astrophysics as the microscope is to the study of life on Earth. SI's science focuses on the role of magnetism in the Universe, particularly on magnetic activity on the surfaces of stars like the Sun. It's prime goal is to enable long-term forecasting of solar activity and the space weather that it drives, in support of the Living With a Star program in the Exploration Era. SI will also revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magneto-hydrodynamically controlled processes in the Universe. Stellar Imager is included as a "Flagship and Landmark Discovery Mission" in the 2005 Sun Solar System Connection (SSSC) Roadmap and as a candidate for a "Pathways to Life Observatory" in the Exploration of the Universe Division (EUD) Roadmap (May, 2005) and as such is a candidate mission for the 2025-2030 timeframe. An artist's drawing of the current "baseline" concept for SI is presented.
UVMag: Space UV and visible spectropolarimetry
NASA Astrophysics Data System (ADS)
Pertenais, Martin; Neiner, Coralie; Parès, Laurent P.; Petit, Pascal; Snik, Frans; van Harten, Gerard
2014-07-01
UVMag is a project of a space mission equipped with a high-resolution spectropolarimeter working in the UV and visible range. This M-size mission will be proposed to ESA at its M4 call. The main goal of UVMag is to measure the magnetic fields, winds and environment of all types of stars to reach a better understanding of stellar formation and evolution and of the impact of stellar environment on the surrounding planets. The groundbreaking combination of UV and visible spectropolarimetric observations will allow the scientists to study the stellar surface and its environment simultaneously. The instrumental challenge for this mission is to design a high-resolution space spectropolarimeter measuring the full- Stokes vector of the observed star in a huge spectral domain from 117 nm to 870 nm. This spectral range is the main difficulty because of the dispersion of the optical elements and of birefringence issues in the FUV. As the instrument will be launched into space, the polarimetric module has to be robust and therefore use if possible only static elements. This article presents the different design possibilities for the polarimeter at this point of the project.
Improving 1D Stellar Models with 3D Atmospheres
NASA Astrophysics Data System (ADS)
Mosumgaard, Jakob Rørsted; Silva Aguirre, Víctor; Weiss, Achim; Christensen-Dalsgaard, Jørgen; Trampedach, Regner
2017-10-01
Stellar evolution codes play a major role in present-day astrophysics, yet they share common issues. In this work we seek to remedy some of those by the use of results from realistic and highly detailed 3D hydrodynamical simulations of stellar atmospheres. We have implemented a new temperature stratification extracted directly from the 3D simulations into the Garching Stellar Evolution Code to replace the simplified atmosphere normally used. Secondly, we have implemented the use of a variable mixing-length parameter, which changes as a function of the stellar surface gravity and temperature - also derived from the 3D simulations. Furthermore, to make our models consistent, we have calculated new opacity tables to match the atmospheric simulations. Here, we present the modified code and initial results on stellar evolution using it.
Chemical element transport in stellar evolution models
Cassisi, Santi
2017-01-01
Stellar evolution computations provide the foundation of several methods applied to study the evolutionary properties of stars and stellar populations, both Galactic and extragalactic. The accuracy of the results obtained with these techniques is linked to the accuracy of the stellar models, and in this context the correct treatment of the transport of chemical elements is crucial. Unfortunately, in many respects calculations of the evolution of the chemical abundance profiles in stars are still affected by sometimes sizable uncertainties. Here, we review the various mechanisms of element transport included in the current generation of stellar evolution calculations, how they are implemented, the free parameters and uncertainties involved, the impact on the models and the observational constraints. PMID:28878972
Chemical element transport in stellar evolution models.
Salaris, Maurizio; Cassisi, Santi
2017-08-01
Stellar evolution computations provide the foundation of several methods applied to study the evolutionary properties of stars and stellar populations, both Galactic and extragalactic. The accuracy of the results obtained with these techniques is linked to the accuracy of the stellar models, and in this context the correct treatment of the transport of chemical elements is crucial. Unfortunately, in many respects calculations of the evolution of the chemical abundance profiles in stars are still affected by sometimes sizable uncertainties. Here, we review the various mechanisms of element transport included in the current generation of stellar evolution calculations, how they are implemented, the free parameters and uncertainties involved, the impact on the models and the observational constraints.
Formation Flying and the Stellar Imager Mission Concept
NASA Technical Reports Server (NTRS)
Carpenter, Kenneth G.
2003-01-01
The Stellar Imager (SI) is envisioned as a space-based, W-optical interferometer composed of 10 or more one-meter class elements distributed with a maximum baseline of 0.5 km. image stars and binaries with sufficient resolution to enable long-term studies of stellar magnetic activity patterns, for comparison with those on the sun. It will also support asteroseismology (acoustic imaging) to probe stellar internal structure, differential rotation, and large-scale circulations. SI will enable us to understand the various effects of the magnetic fields of stars, the dynamos that generate these fields, and the internal structure and dynamics of the stars. The ultimate goal of the mission is to achieve the best-possible forecasting of solar activity as a driver of climate and space weather on time scales ranging from months up to decades, and an understanding of the impact of stellar magnetic activity on life in the Universe. In this paper we briefly describe the scientific goals of the mission, the performance requirements needed to address these goals, and the "enabling technology" development efforts required, with specific attention for this meeting to the formation-flying aspects. It is designed to
A COMBINED SPECTROSCOPIC AND PHOTOMETRIC STELLAR ACTIVITY STUDY OF EPSILON ERIDANI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giguere, Matthew J.; Fischer, Debra A.; Zhang, Cyril X. Y.
2016-06-20
We present simultaneous ground-based radial velocity (RV) measurements and space-based photometric measurements of the young and active K dwarf Epsilon Eridani. These measurements provide a data set for exploring methods of identifying and ultimately distinguishing stellar photospheric velocities from Keplerian motion. We compare three methods we have used in exploring this data set: Dalmatian, an MCMC spot modeling code that fits photometric and RV measurements simultaneously; the FF′ method, which uses photometric measurements to predict the stellar activity signal in simultaneous RV measurements; and H α analysis. We show that our H α measurements are strongly correlated with the Microvariabilitymore » and Oscillations of STars telescope ( MOST ) photometry, which led to a promising new method based solely on the spectroscopic observations. This new method, which we refer to as the HH′ method, uses H α measurements as input into the FF′ model. While the Dalmatian spot modeling analysis and the FF′ method with MOST space-based photometry are currently more robust, the HH′ method only makes use of one of the thousands of stellar lines in the visible spectrum. By leveraging additional spectral activity indicators, we believe the HH′ method may prove quite useful in disentangling stellar signals.« less
Direct UV/Optical Imaging of Stellar Surfaces: The Stellar Imager (SI) Vision Mission
NASA Technical Reports Server (NTRS)
Carpenter, Kenneth G.; Lyon, Richard G.; Schrijver, Carolus; Karovska, Margarita; Mozurkewich, David
2007-01-01
The Stellar Imager (SI) is a UV/optical, space-based interferometer designed to enable 0.1 milli-arcsecond (mas) spectral imaging of stellar surfaces and, via asteroseismology, stellar interiors and of the Universe in general. SI's science focuses on the role of magnetism in the Universe, particularly on magnetic activity on the surfaces of stars like the Sun. SI's prime goal is to enable long-term forecasting of solar activity and the space weather that it drives, in support of the Living with a Star program in the Exploration Era. SI will also revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magneto-hydrodynamically controlled processes in thc Universe. SI is a "Flagship and Landmark Discovery Mission" in the 2005 Sun Solar System Connection (SSSC) Roadmap and a candidate for a "Pathways to Life Observatory" in the Exploration of the Universe Division (EUD) Roadmap. We discuss herein the science goals of the SI Mission, a mission architecture that could meet those goals, and the technologies needed to enable this mission. Additional information on SI can be found at: http://hires.gsfc.nasa.gov/si/.
The Stellar Imager (SI) Mission Concept
NASA Technical Reports Server (NTRS)
Carpenter, Kenneth G.; Schrijver, Carolus J.; Lyon, Richard G.; Mundy, Lee G.; Allen, Ronald J.; Armstrong, Thomas; Danchi, William C.; Karovska, Margarita; Marzouk, Joe; Mazzuca, Lisa M.;
2002-01-01
The Stellar Imager (SI) is envisioned as a space-based, UV-optical interferometer composed of 10 or more one-meter class elements distributed with a maximum baseline of 0.5 km. It is designed to image stars and binaries with sufficient resolution to enable long-term studies of stellar magnetic activity patterns, for comparison with those on the sun. It will also support asteroseismology (acoustic imaging) to probe stellar internal structure, differential rotation, and large-scale circulations. SI will enable us to understand the various effects of the magnetic fields of stars, the dynamos that generate these fields, and the internal structure and dynamics of the stars. The ultimate goal of the mission is to achieve the best-possible forecasting of solar activity as a driver of climate and space weather on time scales ranging from months up to decades, and an understanding of the impact of stellar magnetic activity on life in the Universe. In this paper we describe the scientific goals of the mission, the performance requirements needed to address these goals, the "enabling technology" development efforts being pursued, and the design concepts now under study for the full mission and a possible pathfinder mission.
AME - Asteroseismology Made Easy. Estimating stellar properties by using scaled models
NASA Astrophysics Data System (ADS)
Lundkvist, Mia; Kjeldsen, Hans; Silva Aguirre, Victor
2014-06-01
Context. Stellar properties and, in particular stellar radii of exoplanet host stars, are essential for measuring the properties of exoplanets, therefore it is becoming increasingly important to be able to supply reliable stellar radii fast. Grid-modelling is an obvious choice for this, but that only offers a low degree of transparency to non-specialists. Aims: Here we present a new, easy, fast, and transparent method of obtaining stellar properties for stars exhibiting solar-like oscillations. The method, called Asteroseismology Made Easy (AME), can determine stellar masses, mean densities, radii, and surface gravities, as well as estimate ages. We present AME as a visual and powerful tool that could be useful, in particular, in light of the large number of exoplanets being found. Methods: AME consists of a set of figures from which the stellar parameters can be deduced. These figures are made from a grid of stellar evolutionary models that cover masses ranging from 0.7 M⊙ to 1.6 M⊙ in steps of 0.1 M⊙ and metallicities in the interval -0.3 dex ≤ [Fe/H] ≤ +0.3 dex in increments of 0.1 dex. The stellar evolutionary models are computed using the Modules for Experiments in Stellar Astrophysics (MESA) code with simple input physics. Results: We have compared the results from AME with results for three groups of stars: stars with radii determined from interferometry (and measured parallaxes), stars with radii determined from measurements of their parallaxes (and calculated angular diameters), and stars with results based on modelling their individual oscillation frequencies. We find that a comparison of the radii from interferometry to those from AME yields a weighted mean of the fractional differences of just 2%. This is also the level of deviation that we find when we compare the parallax-based radii to the radii determined from AME. Conclusions: The comparison between independently determined stellar parameters and those found using AME show that our method can provide reliable stellar masses, radii, and ages, with median uncertainties in the order of 4%, 2%, and 25%, respectively. http://sac.au.dk/scientific-data/ame
Tutorial: Measuring Stellar Atmospheric Parameters with ARES+MOOG
NASA Astrophysics Data System (ADS)
Sousa, Sérgio G.; Andreasen, Daniel T.
The technical aspects of using an Equivalent Width (EW) method for the derivation of spectroscopic stellar parameters with ares+ moog are described herein. While the science background to this method can be found in numerous references, the goal here is to provide a user-friendly guide to the several codes and scripts used in the tutorial presented at the School. All the required data have been made available online at the following repository: https://github.com/sousasag/school_codes.
Stellar C III Emissions as a New Classification Parameter for (WC) Central Stars
NASA Technical Reports Server (NTRS)
Feibelman, W. A.
1999-01-01
We report detection of stellar C III lambda 1909 emission in International Ultraviolet Explorer (IUE) echelle spectra of early-type [WC] planetary nebula central stars (CSPNs). Additionally, stellar C III emission at lambda 2297 is observed in early- and late-type [WC) CSPNS. Inclusion of these C III features for abundance determinations may resolve a conflict of underabundance of C/O for early type [WC2] - [WC4] CSPNS. A linear dependence on stellar C III lambda 2297 equivalent widths can be used to indicate a new classification of type [WCUV] central stars.
Stellar Parameters for Trappist-1
NASA Astrophysics Data System (ADS)
Van Grootel, Valérie; Fernandes, Catarina S.; Gillon, Michael; Jehin, Emmanuel; Manfroid, Jean; Scuflaire, Richard; Burgasser, Adam J.; Barkaoui, Khalid; Benkhaldoun, Zouhair; Burdanov, Artem; Delrez, Laetitia; Demory, Brice-Olivier; de Wit, Julien; Queloz, Didier; Triaud, Amaury H. M. J.
2018-01-01
TRAPPIST-1 is an ultracool dwarf star transited by seven Earth-sized planets, for which thorough characterization of atmospheric properties, surface conditions encompassing habitability, and internal compositions is possible with current and next-generation telescopes. Accurate modeling of the star is essential to achieve this goal. We aim to obtain updated stellar parameters for TRAPPIST-1 based on new measurements and evolutionary models, compared to those used in discovery studies. We present a new measurement for the parallax of TRAPPIST-1, 82.4 ± 0.8 mas, based on 188 epochs of observations with the TRAPPIST and Liverpool Telescopes from 2013 to 2016. This revised parallax yields an updated luminosity of {L}* =(5.22+/- 0.19)× {10}-4 {L}ȯ , which is very close to the previous estimate but almost two times more precise. We next present an updated estimate for TRAPPIST-1 stellar mass, based on two approaches: mass from stellar evolution modeling, and empirical mass derived from dynamical masses of equivalently classified ultracool dwarfs in astrometric binaries. We combine them using a Monte-Carlo approach to derive a semi-empirical estimate for the mass of TRAPPIST-1. We also derive estimate for the radius by combining this mass with stellar density inferred from transits, as well as an estimate for the effective temperature from our revised luminosity and radius. Our final results are {M}* =0.089+/- 0.006 {M}ȯ , {R}* =0.121+/- 0.003 {R}ȯ , and {T}{eff} = 2516 ± 41 K. Considering the degree to which the TRAPPIST-1 system will be scrutinized in coming years, these revised and more precise stellar parameters should be considered when assessing the properties of TRAPPIST-1 planets.
VizieR Online Data Catalog: IN-SYNC. I. APOGEE stellar parameters (Cottaar+, 2014)
NASA Astrophysics Data System (ADS)
Cottaar, M.; Covey, K. R.; Meyer, M. R.; Nidever, D. L.; Stassun, K. G.; Foster, J. B.; Tan, J. C.; Chojnowski, S. D.; da Rio, N.; Flaherty, K. M.; Frinchaboy, P. M.; Skrutskie, M.; Majewski, S. R.; Wilson, J. C.; Zasowski, G.
2015-06-01
The spectra were collected with APOGEE's multi-object, high-resolution (R~22500) spectrograph with a spectral range covering much of the H band from 1.51 to 1.69um, which is fiber-fed from the Sloan 2.5m telescope. We provide two companion tables to this paper, which contain the derived stellar parameters for the stars in IC 348 and the Pleiades. The first table contains one row per star with the mean spectral and photometric parameters. The second table contains one row per epoch with the spectral parameters measured at that epoch. In both tables we provide the uncertainties computed by Equation (5). (2 data files).
NASA Astrophysics Data System (ADS)
Dullo, Bililign T.; Graham, Alister W.
2014-11-01
New surface brightness profiles from 26 early-type galaxies with suspected partially depleted cores have been extracted from the full radial extent of Hubble Space Telescope images. We have carefully quantified the radial stellar distributions of the elliptical galaxies using the core-Sérsic model whereas for the lenticular galaxies a core-Sérsic bulge plus an exponential disc model gives the best representation. We additionally caution about the use of excessive multiple Sérsic functions for decomposing galaxies and compare with past fits in the literature. The structural parameters obtained from our fitted models are, in general, in good agreement with our initial study using radially limited (R ≲ 10 arcsec) profiles, and are used here to update several `central' as well as `global' galaxy scaling relations. We find near-linear relations between the break radius Rb and the spheroid luminosity L such that Rb ∝ L1.13±0.13, and with the supermassive black hole mass MBH such that R_b∝ M_BH^{0.83 ± 0.21}. This is internally consistent with the notion that major, dry mergers add the stellar and black hole mass in equal proportion, i.e. MBH ∝ L. In addition, we observe a linear relation R_b∝ R_e^{0.98 ± 0.15} for the core-Sérsic elliptical galaxies - where Re is the galaxies' effective half-light radii - which is collectively consistent with the approximately linear, bright-end of the curved L-Re relation. Finally, we measure accurate stellar mass deficits Mdef that are in general 0.5-4 MBH, and we identify two galaxies (NGC 1399, NGC 5061) that, due to their high Mdef/MBH ratio, may have experienced oscillatory core-passage by a (gravitational radiation)-kicked black hole. The galaxy scaling relations and stellar mass deficits favour core-Sérsic galaxy formation through a few `dry' major merger events involving supermassive black holes such that M_def ∝ M_BH^{3.70 ± 0.76}, for MBH ≳ 2 × 108 M⊙.
STAR CLUSTER FORMATION WITH STELLAR FEEDBACK AND LARGE-SCALE INFLOW
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matzner, Christopher D.; Jumper, Peter H., E-mail: matzner@astro.utoronto.ca
2015-12-10
During star cluster formation, ongoing mass accretion is resisted by stellar feedback in the form of protostellar outflows from the low-mass stars and photo-ionization and radiation pressure feedback from the massive stars. We model the evolution of cluster-forming regions during a phase in which both accretion and feedback are present and use these models to investigate how star cluster formation might terminate. Protostellar outflows are the strongest form of feedback in low-mass regions, but these cannot stop cluster formation if matter continues to flow in. In more massive clusters, radiation pressure and photo-ionization rapidly clear the cluster-forming gas when itsmore » column density is too small. We assess the rates of dynamical mass ejection and of evaporation, while accounting for the important effect of dust opacity on photo-ionization. Our models are consistent with the census of protostellar outflows in NGC 1333 and Serpens South and with the dust temperatures observed in regions of massive star formation. Comparing observations of massive cluster-forming regions against our model parameter space, and against our expectations for accretion-driven evolution, we infer that massive-star feedback is a likely cause of gas disruption in regions with velocity dispersions less than a few kilometers per second, but that more massive and more turbulent regions are too strongly bound for stellar feedback to be disruptive.« less
NASA Astrophysics Data System (ADS)
Marziani, Paola; Sulentic, J. W.; Dultzin, D.; Negrete, A.; del Olmo, A.; Martínez-Carballo, M. A.; Stirpe, G. M.; D'Onofrio, M.; Perea, J.
2016-10-01
The 4D eigenvector 1 parameter space defined by Sulentic et al. may be seen as a surrogate H-R diagram for quasars. As in the stellar H-R diagram, a source sequence can be easily identified. In the case of quasars, the main sequence appears to be mainly driven by Eddington ratio. A transition Eddington ratio may in part explain the striking observational differences between quasars at opposite ends of the main sequence. The eigenvector-1 approach opens the door towards properly contextualized models of quasar physics, geometry and kinematics. We review some of the progress that has been made over the past 15 years, and point out still unsolved issues.
Modeling the Infrared Spectra of Earth-Analog Exoplanets
NASA Astrophysics Data System (ADS)
Nixon, C.
2014-04-01
As a preparation for future observations with the James Webb Space Telescope (JWST) and other facilities, we have undertaken to model the infrared spectra of Earth-like exoplanets. Two atmospheric models were used: the modern (low CO2) and archean (high CO2) predictive models of the Kasting group at Penn state. Several model parameters such as distance to star, and stellar type (visible-UV spectrum spectrum) were adjusted, and the models reconverged. Subsequently, the final model atmospheres were input to a radiative transfer code (NEMESIS) and the results intercompared to search for the most significant spectral changes. Implications for exoplanet spectrum detectivity will be discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bizyaev, D. V.; Kautsch, S. J.; Mosenkov, A. V.
We present a catalog of true edge-on disk galaxies automatically selected from the Seventh Data Release of the Sloan Digital Sky Survey (SDSS). A visual inspection of the g, r, and i images of about 15,000 galaxies allowed us to split the initial sample of edge-on galaxy candidates into 4768 (31.8% of the initial sample) genuine edge-on galaxies, 8350 (55.7%) non-edge-on galaxies, and 1865 (12.5%) edge-on galaxies not suitable for simple automatic analysis because these objects either show signs of interaction and warps, or nearby bright stars project on it. We added more candidate galaxies from RFGC, EFIGI, RC3, andmore » Galaxy Zoo catalogs found in the SDSS footprints. Our final sample consists of 5747 genuine edge-on galaxies. We estimate the structural parameters of the stellar disks (the stellar disk thickness, radial scale length, and central surface brightness) in the galaxies by analyzing photometric profiles in each of the g, r, and i images. We also perform simplified three-dimensional modeling of the light distribution in the stellar disks of edge-on galaxies from our sample. Our large sample is intended to be used for studying scaling relations in the stellar disks and bulges and for estimating parameters of the thick disks in different types of galaxies via the image stacking. In this paper, we present the sample selection procedure and general description of the sample.« less
The SEGUE Stellar Parameter Pipeline. II. Validation with Galactic Globular and Open Clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Y.S.; Beers, T.C.; Sivarani, T.
2007-10-01
The authors validate the performance and accuracy of the current SEGUE (Sloan Extension for Galactic Understanding and Exploration) Stellar Parameter Pipeline (SSPP), which determines stellar atmospheric parameters (effective temperature, surface gravity, and metallicity) by comparing derived overall metallicities and radial velocities from selected likely members of three globular clusters (M 13, M 15, and M 2) and two open clusters (NGC 2420 and M 67) to the literature values. Spectroscopic and photometric data obtained during the course of the original Sloan Digital Sky Survey (SDSS-1) and its first extension (SDSS-II/SEGUE) are used to determine stellar radial velocities and atmospheric parametermore » estimates for stars in these clusters. Based on the scatter in the metallicities derived for the members of each cluster, they quantify the typical uncertainty of the SSPP values, {sigma}([Fe/H]) = 0.13 dex for stars in the range of 4500 K {le} T{sub eff} {le} 7500 K and 2.0 {le} log g {le} 5.0, at least over the metallicity interval spanned by the clusters studied (-2.3 {le} [Fe/H] < 0). The surface gravities and effective temperatures derived by the SSPP are also compared with those estimated from the comparison of the color-magnitude diagrams with stellar evolution models; they find satisfactory agreement. At present, the SSPP underestimates [Fe/H] for near-solar-metallicity stars, represented by members of M 67 in this study, by {approx} 0.3 dex.« less
Non-LTE analysis of the Ofpe/WN9 star HDE 269227 (R84)
NASA Technical Reports Server (NTRS)
Schmutz, Werner; Leitherer, Claus; Hubeny, Ivan; Vogel, Manfred; Hamann, Wolf-Rainer
1991-01-01
The paper presents the results of a spectral analysis of the Ofpe/WN9 star HD 269227 (R84), which assumes a spherically expanding atmosphere to find solutions for equations of radiative transfer. The spectra of hydrogen and helium were predicted with a non-LTE model. Six stellar parameters were determined for R84. The shape of the velocity law is empirically found, since it can be probed from the terminal velocity of the wind. The six stellar parameters are further employed in a hydrodynamic model where stellar wind is assumed to be directed by radiation pressure, duplicating the mass-loss rate and the terminal wind velocity. The velocity laws found by computation and analysis are found to agree, supporting the theory of radiation-driven stellar wind. R84 is surmised to be a post-red supergiant which lost half of its initial mass, possibly during the red-supergiant phase. This mass loss is also suggested by its spectroscopic similarity to S Doradus.
ABUNDANCES IN THE LOCAL REGION. I. G AND K GIANTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luck, R. Earle, E-mail: rel2@case.edu
2015-09-15
Parameters and abundances for 1133 stars of spectral types F, G, and K of luminosity class III have been derived. In terms of stellar parameters, the primary point of interest is the disagreement between gravities derived with masses determined from isochrones, and gravities determined from an ionization balance. This is not a new result per se, but the size of this sample emphasizes the severity of the problem. A variety of arguments led to the selection of the ionization-balance gravity as the working value. The derived abundances indicate that the giants in the solar region have Sun-like total abundances andmore » abundance ratios. Stellar evolution indicators have also been investigated with the Li abundances and the [C/Fe] and C/O ratios, indicating that standard processing has been operating in these stars. The more salient result for stellar evolution is that the [C/Fe] data across the red-giant clump indicates the presence of mass-dependent mixing in accord with standard stellar evolution predictions.« less
Simulating Convection in Stellar Envelopes
NASA Astrophysics Data System (ADS)
Tanner, Joel
2014-01-01
Understanding convection in stellar envelopes, and providing a mathematical description of it, would represent a substantial advance in stellar astrophysics. As one of the largest sources of uncertainty in stellar models, existing treatments of convection fail to account for many of the dynamical effects of convection, such as turbulent pressure and asymmetry in the velocity field. To better understand stellar convection, we must be able to study and examine it in detail, and one of the best tools for doing so is numerical simulation. Near the stellar surface, both convective and radiative process play a critical role in determining the structure and gas dynamics. By following these processes from first principles, convection can be simulated self-consistently and accurately, even in regions of inefficient energy transport where existing descriptions of convection fail. Our simulation code includes two radiative transfer solvers that are based on different assumptions and approximations. By comparing simulations that differ only in their respective radiative transfer methods, we are able to isolate the effect that radiative efficiency has on the structure of the superadiabatic layer. We find the simulations to be in good general agreement, but they show distinct differences in the thermal structure in the superadiabatic layer and atmosphere. Using the code to construct a grid of three-dimensional radiation hydrodynamic simulations, we investigate the link between convection and various chemical compositions. The stellar parameters correspond to main-sequence stars at several surface gravities, and span a range in effective temperatures (4500 < Teff < 6400). Different chemical compositions include four metallicities (Z = 0.040, 0.020, 0.010, 0.001), three helium abundances (Y = 0.1, 0.2, 0.3) and several levels of alpha-element enhancement. Our grid of simulations shows that various convective properties, such as velocity and the degree of superadiabaticity, are sensitive to changes in opacity which are in response to adjustments to the metallicity and helium abundance. We find that increasing the metallicity forces the location of the transition region to lower densities and pressures, and results in larger mean and turbulent velocities throughout the superadiabatic region. We also quantify the degree of convective overshoot in the atmosphere, and show that it increases with metallicity as well. The signature of helium differs from that of metallicity in the manner in which the photospheric velocity distribution is affected. We also find that helium abundance and surface gravity behave largely in similar ways, but differ in the way they affect the mean molecular weight. A simple model for spectral line formation suggests that the bisectors and absolute Doppler shifts of spectral lines depend on the helium abundance. We look at the effect of alpha-element enhancement and find that it has a considerably smaller effect on the convective dynamics in the superadiabatic layer compared to that of helium abundance. Improving the treatment of convection in stellar models remains one of the primary applications of RHD simulations. A simple and direct way to introduce the effect of 3D convection into 1D stellar models is through the surface boundary condition. Usually the atmospheric structure of a stellar model is defined beforehand in the form of a T-tau relation, and is kept fixed at chemical compositions and stages of evolution. Extracting mean atmospheric stratifications from simulations provides a means of introducing surface boundary conditions to stellar models that self-consistently include the effects of realistic convection and overshoot. We apply data from simulations to stellar models in this manner to measure how realistic atmospheric stratifications relate to the value of the mixing length parameter in calibrated stellar models. Moving beyond improving the surface boundary condition, we also explore a method for calibrating the mixing length parameter, which is relevant for improving the adiabatic structure of sub-photospheric convection. Since the MLT treatment of convection defines the thermal structure of the atmosphere and SAL arbitrarily, one strategy for calibrating the mixing length parameter is to tune it so that it matches the thermodynamics of the simulations. In particular, we consider adjusting the mixing length parameter such that the specific entropy of the model matches that of an equivalent simulation eliminates the need to arbitrarily set the parameter, and in principle will produce stellar models with more accurate radii. By examining simulations along contours in the log(g)-log(Teff) plane that correspond to the convective envelope adiabats, the variation in convective properties can be reduced to a simplified form that is more convenient for use in stellar models.
Old stellar populations. 5: Absorption feature indices for the complete LICK/IDS sample of stars
NASA Technical Reports Server (NTRS)
Worthey, Guy; Faber, S. M.; Gonzalez, J. Jesus; Burstein, D.
1994-01-01
Twenty-one optical absorption features, 11 of which have been previously defined, are automatically measured in a sample of 460 stars. Following Gorgas et al., the indices are summarized in fitting functions that give index strengths as functions of stellar temperature, gravity, and (Fe/H). This project was carried out with the purpose of predicting index strengths in the integrated light of stellar populations of different ages and metallicities, but the data should be valuable for stellar studies in the Galaxy as well. Several of the new indices appear to be promising indicators of metallicity for old stellar populations. A complete list of index data and atmospheric parameters is available in computer-readable form.
Recent advances in stellarator optimization
Gates, D. A.; Boozer, A. H.; Brown, T.; ...
2017-10-27
Computational optimization has revolutionized the field of stellarator design. To date, optimizations have focused primarily on optimization of neoclassical confinement and ideal MHD stability, although limited optimization of other parameters has also been performed. Here, we outline a select set of new concepts for stellarator optimization that, when taken as a group, present a significant step forward in the stellarator concept. One of the criticisms that has been leveled at existing methods of design is the complexity of the resultant field coils. Recently, a new coil optimization code—COILOPT++, which uses a spline instead of a Fourier representation of the coils,—wasmore » written and included in the STELLOPT suite of codes. The advantage of this method is that it allows the addition of real space constraints on the locations of the coils. The code has been tested by generating coil designs for optimized quasi-axisymmetric stellarator plasma configurations of different aspect ratios. As an initial exercise, a constraint that the windings be vertical was placed on large major radius half of the non-planar coils. Further constraints were also imposed that guaranteed that sector blanket modules could be removed from between the coils, enabling a sector maintenance scheme. Results of this exercise will be presented. New ideas on methods for the optimization of turbulent transport have garnered much attention since these methods have led to design concepts that are calculated to have reduced turbulent heat loss. We have explored possibilities for generating an experimental database to test whether the reduction in transport that is predicted is consistent with experimental observations. Thus, a series of equilibria that can be made in the now latent QUASAR experiment have been identified that will test the predicted transport scalings. Fast particle confinement studies aimed at developing a generalized optimization algorithm are also discussed. A new algorithm developed for the design of the scraper element on W7-X is presented along with ideas for automating the optimization approach.« less
Recent advances in stellarator optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gates, D. A.; Boozer, A. H.; Brown, T.
Computational optimization has revolutionized the field of stellarator design. To date, optimizations have focused primarily on optimization of neoclassical confinement and ideal MHD stability, although limited optimization of other parameters has also been performed. Here, we outline a select set of new concepts for stellarator optimization that, when taken as a group, present a significant step forward in the stellarator concept. One of the criticisms that has been leveled at existing methods of design is the complexity of the resultant field coils. Recently, a new coil optimization code—COILOPT++, which uses a spline instead of a Fourier representation of the coils,—wasmore » written and included in the STELLOPT suite of codes. The advantage of this method is that it allows the addition of real space constraints on the locations of the coils. The code has been tested by generating coil designs for optimized quasi-axisymmetric stellarator plasma configurations of different aspect ratios. As an initial exercise, a constraint that the windings be vertical was placed on large major radius half of the non-planar coils. Further constraints were also imposed that guaranteed that sector blanket modules could be removed from between the coils, enabling a sector maintenance scheme. Results of this exercise will be presented. New ideas on methods for the optimization of turbulent transport have garnered much attention since these methods have led to design concepts that are calculated to have reduced turbulent heat loss. We have explored possibilities for generating an experimental database to test whether the reduction in transport that is predicted is consistent with experimental observations. Thus, a series of equilibria that can be made in the now latent QUASAR experiment have been identified that will test the predicted transport scalings. Fast particle confinement studies aimed at developing a generalized optimization algorithm are also discussed. A new algorithm developed for the design of the scraper element on W7-X is presented along with ideas for automating the optimization approach.« less
NASA Technical Reports Server (NTRS)
Price, Sedona H.; Kriek, Mariska; Brammer, Gabriel B; Conroy, Charlie; Schreiber, Natascha M. Foerster; Franx, Marijn; Fumagalli, Mattia; Lundren, Britt; Momcheva, Ivelina; Nelson, Erica J.;
2013-01-01
The nature of dust in distant galaxies is not well understood, and until recently few direct dust measurements have been possible. We investigate dust in distant star-forming galaxies using near-infrared grism spectra of the 3D-HST survey combined with archival multi-wavelength photometry. These data allow us to make a direct comparison between dust towards star-forming regions (measured using Balmer decrements) and the integrated dust properties (derived by comparing spectral energy distributions [SEDs] with stellar population and dust models) for a statistically significant sample of distant galaxies. We select a sample of 163 galaxies between 1.36< or = z< or = 1.5 with H(alpha) SNR > or = 5 and measure Balmer decrements from stacked spectra. First, we stack spectra in bins of integrated stellar dust attenuation, and find that there is extra dust extinction towards star-forming regions (AV,HII is 1.81 times the integrated AV, star), though slightly lower than found for low-redshift starburst galaxies. Next, we stack spectra in bins of specific star formation rate (log sSFR), star formation rate (log SFR), and stellar mass (logM*). We find that on average AV,HII increases with SFR and mass, but decreases with increasing sSFR. The amount of extra extinction also decreases with increasing sSFR and decreasing stellar mass. Our results are consistent with the two-phase dust model - in which galaxies contain both a diffuse and a stellar birth cloud dust component - as the extra extinction will increase once older stars outside the star-forming regions become more dominant. Finally, using our Balmer decrements we derive dust-corrected H(alpha) SFRs, and find evidence that SED fitting produces incorrect SFRs if very rapidly declining SFHs are included in the explored parameter space. Subject headings: dust, extinction- galaxies: evolution- galaxies: high-redshift
NASA Astrophysics Data System (ADS)
Guérou, Adrien; Emsellem, Eric; McDermid, Richard M.; Côté, Patrick; Ferrarese, Laura; Blakeslee, John P.; Durrell, Patrick R.; MacArthur, Lauren A.; Peng, Eric W.; Cuillandre, Jean-Charles; Gwyn, Stephen
2015-05-01
We present Gemini Multi Object Spectrograph integral-field unit (GMOS-IFU) data of eight compact, low-mass early-type galaxies (ETGs) in the Virgo cluster. We analyze their stellar kinematics and stellar population and present two-dimensional maps of these properties covering the central 5″ × 7″ region. We find a large variety of kinematics, from nonrotating to highly rotating objects, often associated with underlying disky isophotes revealed by deep images from the Next Generation Virgo Cluster Survey. In half of our objects, we find a centrally concentrated younger and more metal-rich stellar population. We analyze the specific stellar angular momentum through the λR parameter and find six fast rotators and two slow rotators, one having a thin counterrotating disk. We compare the local galaxy density and stellar populations of our objects with those of 39 more extended low-mass Virgo ETGs from the SMAKCED survey and 260 massive (M > 1010 {{M}⊙ }) ETGs from the ATLAS3D sample. The compact low-mass ETGs in our sample are located in high-density regions, often close to a massive galaxy, and have, on average, older and more metal-rich stellar populations than less compact low-mass galaxies. We find that the stellar population parameters follow lines of constant velocity dispersion in the mass-size plane, smoothly extending the comparable trends found for massive ETGs. Our study supports a scenario where low-mass compact ETGs have experienced long-lived interactions with their environment, including ram-pressure stripping and gravitational tidal forces, that may be responsible for their compact nature.
Testing general relativity's no-hair theorem with x-ray observations of black holes
NASA Astrophysics Data System (ADS)
Hoormann, Janie K.; Beheshtipour, Banafsheh; Krawczynski, Henric
2016-02-01
Despite its success in the weak gravity regime, general relativity (GR) has yet to be verified in the regime of strong gravity. In this paper, we present the results of detailed ray-tracing simulations aiming at clarifying if the combined information from x-ray spectroscopy, timing, and polarization observations of stellar mass and supermassive black holes can be used to test GR's no-hair theorem. The latter states that stationary astrophysical black holes are described by the Kerr family of metrics, with the black hole mass and spin being the only free parameters. We use four "non-Kerr metrics," some phenomenological in nature and others motivated by alternative theories of gravity, and study the observational signatures of deviations from the Kerr metric. Particular attention is given to the case when all the metrics are set to give the same innermost stable circular orbit in quasi-Boyer-Lindquist coordinates. We give a detailed discussion of similarities and differences of the observational signatures predicted for black holes in the Kerr metric and the non-Kerr metrics. We emphasize that even though some regions of the parameter space are nearly degenerate even when combining the information from all observational channels, x-ray observations of very rapidly spinning black holes can be used to exclude large regions of the parameter space of the alternative metrics. Although it proves difficult to distinguish between the Kerr and non-Kerr metrics for some portions of the parameter space, the observations of very rapidly spinning black holes like Cyg X-1 can be used to rule out large regions for several black hole metrics.
The WAGGS project - I. The WiFeS Atlas of Galactic Globular cluster Spectra
NASA Astrophysics Data System (ADS)
Usher, Christopher; Pastorello, Nicola; Bellstedt, Sabine; Alabi, Adebusola; Cerulo, Pierluigi; Chevalier, Leonie; Fraser-McKelvie, Amelia; Penny, Samantha; Foster, Caroline; McDermid, Richard M.; Schiavon, Ricardo P.; Villaume, Alexa
2017-07-01
We present the WiFeS Atlas of Galactic Globular cluster Spectra, a library of integrated spectra of Milky Way and Local Group globular clusters. We used the WiFeS integral field spectrograph on the Australian National University 2.3 m telescope to observe the central regions of 64 Milky Way globular clusters and 22 globular clusters hosted by the Milky Way's low-mass satellite galaxies. The spectra have wider wavelength coverage (3300-9050 Å) and higher spectral resolution (R = 6800) than existing spectral libraries of Milky Way globular clusters. By including Large and Small Magellanic Cloud star clusters, we extend the coverage of parameter space of existing libraries towards young and intermediate ages. While testing stellar population synthesis models and analysis techniques is the main aim of this library, the observations may also further our understanding of the stellar populations of Local Group globular clusters and make possible the direct comparison of extragalactic globular cluster integrated light observations with well-understood globular clusters in the Milky Way. The integrated spectra are publicly available via the project website.
A Multiwavelength Study of POX 52, a Dwarf Seyfert Galaxy with an Intermediate-Mass Black Hole
NASA Astrophysics Data System (ADS)
Barth, Aaron
2004-07-01
We propose a comprehensive optical, UV, and X-ray investigation of the unique galaxy POX 52. POX 52 is a Seyfert 1 galaxy with unprecedented properties: its host galaxy appears to be a dwarf elliptical, and its stellar velocity dispersion is only 36 km/s. The stellar velocity dispersion and the broad emission-line widths both suggest a black hole mass of order 10^5 solar masses, placing POX 52 in a region of AGN parameter space that is almost completely unexplored at present. We request ACS/HRC imaging to perform a definitive measurement of the host galaxy structure; STIS UV and optical spectroscopy to study the nonstellar continuum and the structure of the broad-line region; and Chandra ACS imaging to detect the X-ray emission from the nucleus and investigate its spectral and variability properties. The results of this program will give a detailed understanding of the host galaxy and accretion properties of one of the very few known black holes in the mass range around 10^5 solar masses.
Evolution of the Fraction of Clumpy Galaxies at 0.2 < z < 1.0 in the COSMOS Field
NASA Astrophysics Data System (ADS)
Murata, K. L.; Kajisawa, M.; Taniguchi, Y.; Kobayashi, M. A. R.; Shioya, Y.; Capak, P.; Ilbert, O.; Koekemoer, A. M.; Salvato, M.; Scoville, N. Z.
2014-05-01
Using the Hubble Space Telescope/Advanced Camera for Surveys data in the COSMOS field, we systematically searched clumpy galaxies at 0.2 < z < 1.0 and investigated the fraction of clumpy galaxies and its evolution as a function of stellar mass, star formation rate (SFR), and specific SFR (SSFR). The fraction of clumpy galaxies in star-forming galaxies with M star > 109.5 M ⊙ decreases with time from ~0.35 at 0.8 < z < 1.0 to ~0.05 at 0.2 < z < 0.4, irrespective of the stellar mass, although the fraction tends to be slightly lower for massive galaxies with M star > 1010.5 M ⊙ at each redshift. On the other hand, the fraction of clumpy galaxies increases with increasing both SFR and SSFR in all the redshift ranges we investigated. In particular, we found that the SSFR dependences of the fractions are similar among galaxies with different stellar masses, and the fraction at a given SSFR does not depend on the stellar mass in each redshift bin. The evolution of the fraction of clumpy galaxies from z ~ 0.9 to z ~ 0.3 seems to be explained by such SSFR dependence of the fraction and the evolution of SSFRs of star-forming galaxies. The fraction at a given SSFR also appears to decrease with time, but this can be due to the effect of the morphological k correction. We suggest that these results are understood by the gravitational fragmentation model for the formation of giant clumps in disk galaxies, where the gas mass fraction is a crucial parameter. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555. Also based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under NASA contract 1407. Also based on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan; the XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA; the European Southern Observatory under Large Program 175.A-0839, Chile; Kitt Peak National Observatory, Cerro Tololo Inter-American Observatory and the National Optical Astronomy Observatory, which are operated by the Association of Universities for Research in Astronomy, Inc. (AURA), under cooperative agreement with the National Science Foundation; and the Canada-France-Hawaii Telescope with MegaPrime/MegaCam operated as a joint project by the CFHT Corporation, CEA/DAPNIA, the NRC and CADC of Canada, the CNRS of France, TERAPIX, and the University of Hawaii.
Extracting galactic structure parameters from multivariated density estimation
NASA Technical Reports Server (NTRS)
Chen, B.; Creze, M.; Robin, A.; Bienayme, O.
1992-01-01
Multivariate statistical analysis, including includes cluster analysis (unsupervised classification), discriminant analysis (supervised classification) and principle component analysis (dimensionlity reduction method), and nonparameter density estimation have been successfully used to search for meaningful associations in the 5-dimensional space of observables between observed points and the sets of simulated points generated from a synthetic approach of galaxy modelling. These methodologies can be applied as the new tools to obtain information about hidden structure otherwise unrecognizable, and place important constraints on the space distribution of various stellar populations in the Milky Way. In this paper, we concentrate on illustrating how to use nonparameter density estimation to substitute for the true densities in both of the simulating sample and real sample in the five-dimensional space. In order to fit model predicted densities to reality, we derive a set of equations which include n lines (where n is the total number of observed points) and m (where m: the numbers of predefined groups) unknown parameters. A least-square estimation will allow us to determine the density law of different groups and components in the Galaxy. The output from our software, which can be used in many research fields, will also give out the systematic error between the model and the observation by a Bayes rule.
THE NON-UNIVERSALITY OF THE LOW-MASS END OF THE IMF IS ROBUST AGAINST THE CHOICE OF SSP MODEL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spiniello, C.; Trager, S. C.; Koopmans, L. V. E.
2015-04-20
We perform a direct comparison of two state-of-the art single stellar population (SSP) models that have been used to demonstrate the non-universality of the low-mass end of the initial mass function (IMF) slope. The two public versions of the SSP models are restricted to either solar abundance patterns or solar metallicity, too restrictive if one aims to disentangle elemental enhancements, metallicity changes, and IMF variations in massive early-type galaxies (ETGs) with star formation histories different from those in the solar neighborhood. We define response functions (to metallicity and α-abundance) to extend the parameter space for each set of models. Wemore » compare these extended models with a sample of Sloan Digital Sky Survey (SDSS) ETG spectra with varying velocity dispersions. We measure equivalent widths of optical IMF-sensitive stellar features to examine the effect of the underlying model assumptions and ingredients, such as stellar libraries or isochrones, on the inference of the IMF slope down to ∼0.1 M{sub ⊙}. We demonstrate that the steepening of the low-mass end of the IMF based on a non-degenerate set of spectroscopic optical indicators is robust against the choice of the stellar population model. Although the models agree in a relative sense (i.e., both imply more bottom-heavy IMFs for more massive systems), we find non-negligible differences in the absolute values of the IMF slope inferred at each velocity dispersion by using the two different models. In particular, we find large inconsistencies in the quantitative predictions of the IMF slope variations and abundance patterns when sodium lines are used. We investigate the possible reasons for these inconsistencies.« less
NASA Astrophysics Data System (ADS)
Bradac, Marusa; Coe, Dan; Strait, Victoria; Salmon, Brett; Hoag, Austin; Bradley, Larry; Ryan, Russell; Dawson, Will; Zitrin, Adi; Jones, Christine; Sharon, Keren; Trenti, Michele; Stark, Daniel; Oesch, Pascal; Lam, Danel; Carrasco Nunez, Daniela Patricia; Paterno-Mahler, Rachel; Frye, Brenda
2018-05-01
When did galaxies start forming stars? What is the role of distant galaxies in galaxy formation models and epoch of reionization? Recent observations indicate at least two critical puzzles in these studies. (1) First galaxies might have started forming stars earlier than previously thought (<400Myr after the Big Bang). (2) It is still unclear what is their star formation history and whether these galaxies can reionize the Universe. Accurate knowledge of stellar masses, ages, and star formation rates at this epoch requires measuring both rest-frame UV and optical light, which only Spitzer and HST can probe at z 6-11 for a large enough sample of typical galaxies. To address this cosmic puzzle, we propose to complete deep Spitzer imaging of the fields behind the 10 most powerful cosmic telescopes selected using HST, Spitzer, and Planck data from the RELICS and SRELICS programs (Reionization Lensing Cluster Survey; 41 clusters, 190 HST orbits, 440 Spitzer hours). 6 clusters out of 10 are still lacking deep data. This proposal will be a valuable Legacy complement to the existing IRAC deep surveys, and it will open up a new parameter space by probing the ordinary yet magnified population with much improved sample variance. The program will allow us to study stellar properties of a large number, 60 galaxies at z 6-11. Deep Spitzer data will be crucial to unambiguously measure their stellar properties (age, SFR, M*). Finally this proposal will establish the presence (or absence) of an unusually early established stellar population, as was recently observed in MACS1149JD at z 9. If confirmed in a larger sample, this result will require a paradigm shift in our understanding of the earliest star formation.
The Perseus Cluster: Bridging the Extremes of Stellar Systems
NASA Astrophysics Data System (ADS)
Harris, William
2017-08-01
The Perseus cluster (Abell 426) at d=75 Mpc is as massive and diverse as Virgo and Coma and displays a rich laboratory for studying galaxy evolution. Its massive X-ray halo gas component and its high proportion of large early-type galaxies point to a long history of dynamical interaction amongst the cluster members. The central supergiant, NGC 1275, is perhaps the most active galaxy in the local universe, with a spectacular network of H-alpha filaments, cooling flows, feedback, and prominent star formation in plain view. We propose to use the Globular Cluster (GC) populations in the Perseus region with two-band imaging to pursue three connected goals: the stellar Intracluster Medium (ICM); its Ultra-Diffuse Galaxies (UDGs); and the GC populations in the Perseus core galaxies. Our analysis of a few HST/ACS Archival images covering the Perseus core strongly indicates that a substantial Intragalactic GC component is present. Our newly discovered sample of UDGs in Perseus covers the entire parameter space of these intriguing galaxies and will be thoroughly sampled in our study: are they 'failed' underluminous galaxies with high masses, or are they a mixed bag? For all our goals, the GC populations will act as powerful tracers of the dominant old stellar populations - their metallicity distributions and total populations in the ICM, the UDGs, and the three largest E galaxies in Perseus. As a bonus, we expect to find 200 new Ultra-Compact Dwarfs (UCDs) and half a dozen rare compact ellipticals (cEs). The scientific payoffs will include a broader understanding of the nature and history of all these types of galaxies and their stripped stellar material.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bianchi, Luciana; Efremova, Boryana; Hodge, Paul
We present a comprehensive study of young stellar populations in six dwarf galaxies in or near the Local Group: Phoenix, Pegasus, Sextans A, Sextans B, WLM, and NGC 6822. Their star-forming regions, selected from GALEX wide-field far-UV imaging, were imaged (at sub-pc resolution) with the WFPC2 camera on board the Hubble Space Telescope (HST) in six bandpasses from far-UV to I to detect and characterize their hot massive star content. This study is part of HST treasury survey program HST-GO-11079; the general data characteristics and reduction procedures are detailed in this paper and results are presented for the first sixmore » galaxies. From a total of 180 HST images, we provide catalogs of the multi-band stellar photometry and derive the physical parameters of massive stars by analyzing it with model-atmosphere colors. We use the results to infer ages, number of massive stars, extinction, and spatial characteristics of the young stellar populations. The hot massive star content varies largely across our galaxy sample, from an inconspicuous presence in Phoenix and Pegasus to the highest relative abundance of young massive stars in Sextans A and WLM. Albeit to a largely varying extent, most galaxies show a very young population (a few Myrs, except for Phoenix), and older ones (a few 10{sup 7} years in Sextans A, Sextans B, NGC 6822, and WLM, {approx}10{sup 8}yr in Phoenix and Pegasus), suggesting discrete bursts of recent star formation in the mapped regions. The hot massive star content (indicative of the young populations) broadly correlates with the total galaxy stellar mass represented by the integrated optical magnitude, although it varies by a factor of {approx}3 between Sextans A, WLM, and Sextans B, which have similar M{sub V}. Extinction properties are also derived.« less
Star formation in the outskirts of DDO 154: A top-light IMF in a nearly dormant disc
NASA Astrophysics Data System (ADS)
Watts, Adam B.; Meurer, Gerhardt R.; Lagos, Claudia D. P.; Bruzzese, Sarah M.; Kroupa, Pavel; Jerabkova, Tereza
2018-04-01
We present optical photometry of Hubble Space Telescope (HST) ACS/WFC data of the resolved stellar populations in the outer disc of the dwarf irregular galaxy DDO 154. The photometry reveals that young main sequence stars are almost absent from the outermost HI disc. Instead, most are clustered near the main stellar component of the galaxy. We constrain the stellar initial mass function (IMF) by comparing the luminosity function of the main sequence stars to simulated stellar populations assuming a constant star formation rate over the dynamical timescale. The best-fitting IMF is deficient in high mass stars compared to a canonical Kroupa IMF, with a best-fit slope α = -2.45 and upper mass limit MU = 16 M⊙. This top-light IMF is consistent with predictions of the Integrated Galaxy-wide IMF theory. Combining the HST images with HI data from The HI Nearby Galaxy Survey Treasury (THINGS) we determine the star formation law (SFL) in the outer disc. The fit has a power law exponent N = 2.92 ± 0.22 and zero point A = 4.47 ± 0.65 × 10-7 M⊙ yr-1 kpc-2. This is depressed compared to the Kennicutt-Schmidt Star Formation Law, but consistent with weak star formation observed in diffuse HI environments. Extrapolating the SFL over the outer disc implies that there could be significant star formation occurring that is not detectable in Hα. Last, we determine the Toomre stability parameter Q of the outer disc of DDO 154 using the THINGS HI rotation curve and velocity dispersion map. 72% of the HI in our field has Q ≤ 4 and this incorporates 96% of the observed MS stars. Hence 28% of the HI in the field is largely dormant.
Evolution of the fraction of clumpy galaxies at 0.2 < z < 1.0 in the cosmos field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murata, K. L.; Kajisawa, M.; Taniguchi, Y.
2014-05-01
Using the Hubble Space Telescope/Advanced Camera for Surveys data in the COSMOS field, we systematically searched clumpy galaxies at 0.2 < z < 1.0 and investigated the fraction of clumpy galaxies and its evolution as a function of stellar mass, star formation rate (SFR), and specific SFR (SSFR). The fraction of clumpy galaxies in star-forming galaxies with M {sub star} > 10{sup 9.5} M {sub ☉} decreases with time from ∼0.35 at 0.8 < z < 1.0 to ∼0.05 at 0.2 < z < 0.4, irrespective of the stellar mass, although the fraction tends to be slightly lower for massivemore » galaxies with M {sub star} > 10{sup 10.5} M {sub ☉} at each redshift. On the other hand, the fraction of clumpy galaxies increases with increasing both SFR and SSFR in all the redshift ranges we investigated. In particular, we found that the SSFR dependences of the fractions are similar among galaxies with different stellar masses, and the fraction at a given SSFR does not depend on the stellar mass in each redshift bin. The evolution of the fraction of clumpy galaxies from z ∼ 0.9 to z ∼ 0.3 seems to be explained by such SSFR dependence of the fraction and the evolution of SSFRs of star-forming galaxies. The fraction at a given SSFR also appears to decrease with time, but this can be due to the effect of the morphological k correction. We suggest that these results are understood by the gravitational fragmentation model for the formation of giant clumps in disk galaxies, where the gas mass fraction is a crucial parameter.« less
VizieR Online Data Catalog: 3.6um S4G Galactic bars characterization (Diaz-Garcia+, 2016)
NASA Astrophysics Data System (ADS)
Diaz-Garcia, S.; Salo, H.; Laurikainen, E.; Herrera-Endoqui, M.
2015-11-01
Here, we provide the bar strength measurements of a sample of ~600 barred galaxies drawn from the Spitzer Survey of Stellar Structure in Galaxies (Sheth et al., 2010, Cat. J/PASP/122/1397). Bars were identified based on the morphological classifications by Buta et al. (2015, Cat. J/ApJS/217/32). Besides, we provide a parameterization of the stellar contribution to the rotation curve and an estimate to the stellar-to-halo mass ratio within the optical radius for a sample of 1345 non-highly inclined galaxies (i<65°). The radial force profiles and rotation curve decomposition models of each of these galaxies are also given. Table A1 contains fundamental parameters of the galaxies such as the total stellar mass and distances (values for all the S4G sample are calculated in Munoz-Mateos et al., 2015ApJS..219....3M). Besides, we provide an estimate of the scale-heights and optical radii. We also list the inclination-corrected HI maximum velocities, the parameters of the stellar and halo components of the rotation curves, and the estimates of the halo-to-stellar mass ratios within the optical disk. In Table A2 it is given the gravitational torque parameters and radii, with and without spiral arms and halo correction. In Table A3 it is provided the maximum normalized Fourier amplitudes and radii (for the m = 2, 4, 6 and 8 components) and the bar ellipticities (from Herrera-Endoqui et al., 2015A&A...582A..86H) deprojected to the disk plane using the orientation parameters from S4G Pipeline 4 (Salo et al., 2015, Cat. J/ApJS/219/4). The evaluation of the gravitational torques and m=2 Fourier amplitude at the bar radius is also listed in both tables. In the directory "rfp" we provide the gravitational torque radial profiles, with and without spiral arms and halo correction, even Fourier amplitudes and m=2 phase of 1345 non-highly inclined disk S4G galaxies ("radialforce_profiles.dat"). Likewise, for the same sample, in the directory "rcdm" we tabulate the rotation curve decomposition model ("rotationcurve_decomposition.dat"), with the stellar component inferred from the 3.6~μm imaging and the halo component estimated using the universal rotation curve models). (5 data files).
Anisotropic strange star with Tolman V potential
NASA Astrophysics Data System (ADS)
Shee, Dibyendu; Deb, Debabrata; Ghosh, Shounak; Ray, Saibal; Guha, B. K.
In this paper, we present a strange stellar model using Tolman V-type metric potential employing simplest form of the MIT bag equation of state (EOS) for the quark matter. We consider that the stellar system is spherically symmetric, compact and made of an anisotropic fluid. Choosing different values of n we obtain exact solutions of the Einstein field equations and finally conclude that for a specific value of the parameter n = 1/2, we find physically acceptable features of the stellar object. Further, we conduct different physical tests, viz., the energy condition, generalized Tolman-Oppeheimer-Volkoff (TOV) equation, Herrera’s cracking concept, etc., to confirm the physical validity of the presented model. Matching conditions provide expressions for different constants whereas maximization of the anisotropy parameter provides bag constant. By using the observed data of several compact stars, we derive exact values of some of the physical parameters and exhibit their features in tabular form. It is to note that our predicted value of the bag constant satisfies the report of CERN-SPS and RHIC.
NASA Astrophysics Data System (ADS)
Cisneros, Sophia
2013-04-01
We present a new, heuristic, two-parameter model for predicting the rotation curves of disc galaxies. The model is tested on (22) randomly chosen galaxies, represented in 35 data sets. This Lorentz Convolution [LC] model is derived from a non-linear, relativistic solution of a Kerr-type wave equation, where small changes in the photon's frequencies, resulting from the curved space time, are convolved into a sequence of Lorentz transformations. The LC model is parametrized with only the diffuse, luminous stellar and gaseous masses reported with each data set of observations used. The LC model predicts observed rotation curves across a wide range of disk galaxies. The LC model was constructed to occupy the same place in the explanation of rotation curves that Dark Matter does, so that a simple investigation of the relation between luminous and dark matter might be made, via by a parameter (a). We find the parameter (a) to demonstrate interesting structure. We compare the new model prediction to both the NFW model and MOND fits when available.
NASA Astrophysics Data System (ADS)
Zhu, Guangtun Ben; Barrera-Ballesteros, Jorge K.; Heckman, Timothy M.; Zakamska, Nadia L.; Sánchez, Sebastian F.; Yan, Renbin; Brinkmann, Jonathan
2017-07-01
We revisit the relation between the stellar surface density, the gas surface density and the gas-phase metallicity of typical disc galaxies in the local Universe with the SDSS-IV/MaNGA survey, using the star formation rate surface density as an indicator for the gas surface density. We show that these three local parameters form a tight relationship, confirming previous works (e.g. by the PINGS and CALIFA surveys), but with a larger sample. We present a new local leaky-box model, assuming star-formation history and chemical evolution is localized except for outflowing materials. We derive closed-form solutions for the evolution of stellar surface density, gas surface density and gas-phase metallicity, and show that these parameters form a tight relation independent of initial gas density and time. We show that, with canonical values of model parameters, this predicted relation match the observed one well. In addition, we briefly describe a pathway to improving the current semi-analytic models of galaxy formation by incorporating the local leaky-box model in the cosmological context, which can potentially explain simultaneously multiple properties of Milky Way-type disc galaxies, such as the size growth and the global stellar mass-gas metallicity relation.
Mourard, Denis; Bério, Philippe; Perraut, Karine; Clausse, Jean-Michel; Creevey, Orlagh; Martinod, Marc-Antoine; Meilland, Anthony; Millour, Florentin; Nardetto, Nicolas
2017-05-01
High angular resolution studies of stars in the optical domain have highly progressed in recent years. After the results obtained with the visible instrument Visible spEctroGraph and polArimeter (VEGA) on the Center for High Angular Resolution Astronomy (CHARA) array and the recent developments on adaptive optics and fibered interferometry, we have started the design and study of a new six-telescope visible combiner with single-mode fibers. It is designed as a low spectral resolution instrument for the measurement of the angular diameter of stars to make a major step forward in terms of magnitude and precision with respect to the present situation. For a large sample of bright stars, a medium spectral resolution mode will allow unprecedented spectral imaging of stellar surfaces and environments for higher accuracy on stellar/planetary parameters. To reach the ultimate performance of the instrument in terms of limiting magnitude (Rmag≃8 for diameter measurements and Rmag≃4 to 5 for imaging), Stellar Parameters and Images with a Cophased Array (SPICA) includes the development of a dedicated fringe tracking system in the H band to reach "long" (200 ms to 30 s) exposures of the fringe signal in the visible.
NASA Astrophysics Data System (ADS)
Crida, Aurélien; Ligi, Roxanne; Dorn, Caroline; Lebreton, Yveline
2018-06-01
The characterization of exoplanets relies on that of their host star. However, stellar evolution models cannot always be used to derive the mass and radius of individual stars, because many stellar internal parameters are poorly constrained. Here, we use the probability density functions (PDFs) of directly measured parameters to derive the joint PDF of the stellar and planetary mass and radius. Because combining the density and radius of the star is our most reliable way of determining its mass, we find that the stellar (respectively planetary) mass and radius are strongly (respectively moderately) correlated. We then use a generalized Bayesian inference analysis to characterize the possible interiors of 55 Cnc e. We quantify how our ability to constrain the interior improves by accounting for correlation. The information content of the mass–radius correlation is also compared with refractory element abundance constraints. We provide posterior distributions for all interior parameters of interest. Given all available data, we find that the radius of the gaseous envelope is 0.08+/- 0.05{R}p. A stronger correlation between the planetary mass and radius (potentially provided by a better estimate of the transit depth) would significantly improve interior characterization and reduce drastically the uncertainty on the gas envelope properties.
Binary stellar winds. [flow and magnetic field geometry
NASA Technical Reports Server (NTRS)
Siscoe, G. L.; Heinemann, M. A.
1974-01-01
Stellar winds from a binary star pair will interact with each other along a contact discontinuity. We discuss qualitatively the geometry of the flow and field resulting from this interaction in the simplest case where the stars and winds are identical. We consider the shape of the critical surface (defined as the surface where the flow speed is equal to the sound speed) as a function of stellar separation and the role of shock waves in the flow field. The effect of stellar spin and magnetic sectors on the field configuration is given. The relative roles of mass loss and magnetic torque in the evolution of orbital parameters is discussed.
Binary stellar winds. [flow and magnetic field interactions
NASA Technical Reports Server (NTRS)
Siscoe, G. L.; Heinemann, M. A.
1974-01-01
Stellar winds from a binary star will interact with each other along a contact discontinuity. We discuss qualitatively the geometry of the flow and field resulting from this interaction in the simplest case where the stars and winds are identical. We consider the shape of the critical surface (defined as the surface where the flow speed is equal to the sound speed) as a function of stellar separation and the role of shock waves in the flow field. The effect of stellar spin and magnetic sectors on the field configuration is given. The relative roles of mass loss and magnetic torque in the evolution of orbital parameters are discussed.
Determining the Stellar Initial Mass by Means of the 17O/18O Ratio on the AGB
NASA Astrophysics Data System (ADS)
De Nutte, Rutger; Decin, Leen; Olofsson, Hans; de Koter, Alex; Karakas, Amanda; Lombaert, Robin; Milam, Stefanie; Ramstedt, Sofia; Stancliffe, Richard; Homan, Ward; Van de Sande, Marie
2016-07-01
This poster presentsnewly obtainedcircumstellar 12C17O and 12C18O line observations, from which theline intensity are then related directly tothe 17O/18O surface abundance ratiofor a sample of nine AGB stars covering the three spectral types ().These ratios are evaluated in relation to a fundamental stellar evolution parameters: the stellar initial mass. The17O/18O ratio is shown to function as an effective method of determining the initial stellar mass. Through comparison with predictions bystellar evolution models, accurate initial mass estimates are calculated for all nine sources.
CALIBRATION OF SEMI-ANALYTIC MODELS OF GALAXY FORMATION USING PARTICLE SWARM OPTIMIZATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruiz, Andrés N.; Domínguez, Mariano J.; Yaryura, Yamila
2015-03-10
We present a fast and accurate method to select an optimal set of parameters in semi-analytic models of galaxy formation and evolution (SAMs). Our approach compares the results of a model against a set of observables applying a stochastic technique called Particle Swarm Optimization (PSO), a self-learning algorithm for localizing regions of maximum likelihood in multidimensional spaces that outperforms traditional sampling methods in terms of computational cost. We apply the PSO technique to the SAG semi-analytic model combined with merger trees extracted from a standard Lambda Cold Dark Matter N-body simulation. The calibration is performed using a combination of observedmore » galaxy properties as constraints, including the local stellar mass function and the black hole to bulge mass relation. We test the ability of the PSO algorithm to find the best set of free parameters of the model by comparing the results with those obtained using a MCMC exploration. Both methods find the same maximum likelihood region, however, the PSO method requires one order of magnitude fewer evaluations. This new approach allows a fast estimation of the best-fitting parameter set in multidimensional spaces, providing a practical tool to test the consequences of including other astrophysical processes in SAMs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, Xi; Maccio, Andrea V.; Dutton, Aaron A.
2013-04-10
In this paper, we combine high-resolution N-body simulations with a semi-analytical model of galaxy formation to study the effects of a possible warm dark matter (WDM) component on the observable properties of galaxies. We compare three WDM models with a dark matter (DM) mass of 0.5, 0.75, and 2.0 keV with the standard cold dark matter case. For a fixed set of parameters describing the baryonic physics, the WDM models predict fewer galaxies at low (stellar) masses, as expected due to the suppression of power on small scales, while no substantial difference is found at the high-mass end. However, thesemore » differences in the stellar mass function vanish when a different set of parameters is used to describe the (largely unknown) galaxy formation processes. We show that it is possible to break this degeneracy between DM properties and the parameterization of baryonic physics by combining observations on the stellar mass function with the Tully-Fisher relation (the relation between stellar mass and the rotation velocity at large galactic radii as probed by resolved H I rotation curves). WDM models with a too warm candidate (m{sub {nu}} < 0.75 keV) cannot simultaneously reproduce the stellar mass function and the Tully-Fisher relation. We conclude that accurate measurements of the galaxy stellar mass function and the link between galaxies and DM halos down to the very low mass end can give very tight constraints on the nature of DM candidates.« less
NASA Astrophysics Data System (ADS)
Welker, C.; Dubois, Y.; Devriendt, J.; Pichon, C.; Kaviraj, S.; Peirani, S.
2017-02-01
Building galaxy merger trees from a state-of-the-art cosmological hydrodynamical simulation, Horizon-AGN, we perform a statistical study of how mergers and diffuse stellar mass acquisition processes drive galaxy morphologic properties above z > 1. By diffuse mass acquisition here, we mean both accretion of stars by unresolved mergers (relative stellar mass growth smaller than 4.5 per cent) as well as in situ star formation when no resolved mergers are detected along the main progenitor branch of a galaxy. We investigate how stellar densities, galaxy sizes and galaxy morphologies (defined via shape parameters derived from the inertia tensor of the stellar density) depend on mergers of different mass ratios. We investigate how stellar densities, effective radii and shape parameters derived from the inertia tensor depend on mergers of different mass ratios. We find strong evidence that diffuse stellar accretion and in situ formation tend to flatten small galaxies over cosmic time, leading to the formation of discs. On the other hand, mergers, and not only the major ones, exhibit a propensity to puff up and destroy stellar discs, confirming the origin of elliptical galaxies. We confirm that mergers grow galaxy sizes more efficiently than diffuse processes (r_{0.5}∝ M_s^{0.85} and r_{0.5}∝ M_s^{0.1} on average, respectively) and we also find that elliptical galaxies are more susceptible to grow in size through mergers than disc galaxies with a size-mass evolution r_{0.5}∝ M_s^{1.2} instead of r_{0.5}∝ M_s^{-0.5}-M^{0.5} for discs depending on the merger mass ratio. The gas content drives the size-mass evolution due to merger with a faster size growth for gas-poor galaxies r_{0.5}∝ M_s2 than for gas-rich galaxies r0.5 ∝ Ms.
The Stellar Mass-Halo Mass Relation for Low-mass X-Ray Groups At 0.5< z< 1 in the CDFS With CSI
NASA Astrophysics Data System (ADS)
Patel, Shannon G.; Kelson, Daniel D.; Williams, Rik J.; Mulchaey, John S.; Dressler, Alan; McCarthy, Patrick J.; Shectman, Stephen A.
2015-02-01
Since z˜ 1, the stellar mass density locked in low-mass groups and clusters has grown by a factor of ˜8. Here, we make the first statistical measurements of the stellar mass content of low-mass X-ray groups at 0.5\\lt z\\lt 1, enabling the calibration of stellar-to-halo mass scales for wide-field optical and infrared surveys. Groups are selected from combined Chandra and XMM-Newton X-ray observations in the Chandra Deep Field South. These ultra-deep observations allow us to identify bona fide low-mass groups at high redshift and enable measurements of their total halo masses. We compute aggregate stellar masses for these halos using galaxies from the Carnegie-Spitzer-IMACS (CSI) spectroscopic redshift survey. Stars comprise ˜3%-4% of the total mass of group halos with masses {{10}12.8}\\lt {{M}200}/{{M}⊙ }\\lt {{10}13.5} (about the mass of Fornax and one-fiftieth the mass of Virgo). Complementing our sample with higher mass halos at these redshifts, we find that the stellar-to-halo mass ratio decreases toward higher halo masses, consistent with other work in the local and high redshift universe. The observed scatter about the stellar-halo mass relation is σ ˜ 0.25 dex, which is relatively small and suggests that total group stellar mass can serve as a rough proxy for halo mass. We find no evidence for any significant evolution in the stellar-halo mass relation since z≲ 1. Quantifying the stellar content in groups since this epoch is critical given that hierarchical assembly leads to such halos growing in number density and hosting increasing shares of quiescent galaxies. This Letter includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile. This research is based on observations made with the NASA/ESA Hubble Space Telescope obtained at the Space Telescope Science Institute. STScI is operated by the Association of Universities for Research in Astronomy, Inc. under NASA contract NAS 5-26555.
NASA Astrophysics Data System (ADS)
Chadid, Merieme; Vernin, Jean; Abe, Lyu; Agabi, Karim; Jumper, George; Preston, George W.; Sneden, Chris; Liu, Liyong; Yao, Yongqiang; Wang, H.-S.; Aristidi, Éric; Rivet, J.-P.; Carbillet, Marcel; Giordano, Ch.; Bondoux, E.; Moggio, L.; Trinquet, H.
2016-08-01
In this invited paper, we implement a new way to study the stellar oscillations, pulsations and their evolutionary properties with long uninterrupted and continuous precision observations over 150 days from the ground, and without the regular interruptions imposed by the earth rotation. PAIX-First Robotic Antarctica Polar Mission- gives a new insight to cope with unresolved stellar enigma and stellar oscillation challenges and offers a great opportunity to benefit from an access to the best astronomical site on Earth -DomeC-. The project is made of low cost commercial components, and achieves astrophysical measurement time-series of stellar physics fields, challenging photometry from space that shows large gaps in terms of flexibility during the observing runs, the choice of targets, the repair of failures and the inexorable high costs. PAIX has yet more advantages than space missions in observing in UBV RI bands and then collecting unprecedented simultaneous multicolor light curves of several targets. We give a brief history of the Astronomy in Antarctica and describe the first polar robotized mission PAIX and the outcome of stellar physics from the heart of Antarctica during several polar nights. We briefly discuss our first results and perspectives on the pulsating stars and its evolution from Antarctica, especially the connection between temporal hydrodynamic phenomena and cyclic modulations. Finally, we highlight the impact of PAIX on the stellar physics study and the remaining challenges to successfully accomplish the Universe explorations under extreme conditions.
Observational properties of massive black hole binary progenitors
NASA Astrophysics Data System (ADS)
Hainich, R.; Oskinova, L. M.; Shenar, T.; Marchant, P.; Eldridge, J. J.; Sander, A. A. C.; Hamann, W.-R.; Langer, N.; Todt, H.
2018-01-01
Context. The first directly detected gravitational waves (GW 150914) were emitted by two coalescing black holes (BHs) with masses of ≈ 36 M⊙ and ≈ 29 M⊙. Several scenarios have been proposed to put this detection into an astrophysical context. The evolution of an isolated massive binary system is among commonly considered models. Aims: Various groups have performed detailed binary-evolution calculations that lead to BH merger events. However, the question remains open as to whether binary systems with the predicted properties really exist. The aim of this paper is to help observers to close this gap by providing spectral characteristics of massive binary BH progenitors during a phase where at least one of the companions is still non-degenerate. Methods: Stellar evolution models predict fundamental stellar parameters. Using these as input for our stellar atmosphere code (Potsdam Wolf-Rayet), we compute a set of models for selected evolutionary stages of massive merging BH progenitors at different metallicities. Results: The synthetic spectra obtained from our atmosphere calculations reveal that progenitors of massive BH merger events start their lives as O2-3V stars that evolve to early-type blue supergiants before they undergo core-collapse during the Wolf-Rayet phase. When the primary has collapsed, the remaining system will appear as a wind-fed high-mass X-ray binary. Based on our atmosphere models, we provide feedback parameters, broad band magnitudes, and spectral templates that should help to identify such binaries in the future. Conclusions: While the predicted parameter space for massive BH binary progenitors is partly realized in nature, none of the known massive binaries match our synthetic spectra of massive BH binary progenitors exactly. Comparisons of empirically determined mass-loss rates with those assumed by evolution calculations reveal significant differences. The consideration of the empirical mass-loss rates in evolution calculations will possibly entail a shift of the maximum in the predicted binary-BH merger rate to higher metallicities, that is, more candidates should be expected in our cosmic neighborhood than previously assumed.
Period Estimation for Sparsely-sampled Quasi-periodic Light Curves Applied to Miras
NASA Astrophysics Data System (ADS)
He, Shiyuan; Yuan, Wenlong; Huang, Jianhua Z.; Long, James; Macri, Lucas M.
2016-12-01
We develop a nonlinear semi-parametric Gaussian process model to estimate periods of Miras with sparsely sampled light curves. The model uses a sinusoidal basis for the periodic variation and a Gaussian process for the stochastic changes. We use maximum likelihood to estimate the period and the parameters of the Gaussian process, while integrating out the effects of other nuisance parameters in the model with respect to a suitable prior distribution obtained from earlier studies. Since the likelihood is highly multimodal for period, we implement a hybrid method that applies the quasi-Newton algorithm for Gaussian process parameters and search the period/frequency parameter space over a dense grid. A large-scale, high-fidelity simulation is conducted to mimic the sampling quality of Mira light curves obtained by the M33 Synoptic Stellar Survey. The simulated data set is publicly available and can serve as a testbed for future evaluation of different period estimation methods. The semi-parametric model outperforms an existing algorithm on this simulated test data set as measured by period recovery rate and quality of the resulting period-luminosity relations.
Comparative modelling of the spectra of cool giants⋆⋆⋆
NASA Astrophysics Data System (ADS)
Lebzelter, T.; Heiter, U.; Abia, C.; Eriksson, K.; Ireland, M.; Neilson, H.; Nowotny, W.; Maldonado, J.; Merle, T.; Peterson, R.; Plez, B.; Short, C. I.; Wahlgren, G. M.; Worley, C.; Aringer, B.; Bladh, S.; de Laverny, P.; Goswami, A.; Mora, A.; Norris, R. P.; Recio-Blanco, A.; Scholz, M.; Thévenin, F.; Tsuji, T.; Kordopatis, G.; Montesinos, B.; Wing, R. F.
2012-11-01
Context. Our ability to extract information from the spectra of stars depends on reliable models of stellar atmospheres and appropriate techniques for spectral synthesis. Various model codes and strategies for the analysis of stellar spectra are available today. Aims: We aim to compare the results of deriving stellar parameters using different atmosphere models and different analysis strategies. The focus is set on high-resolution spectroscopy of cool giant stars. Methods: Spectra representing four cool giant stars were made available to various groups and individuals working in the area of spectral synthesis, asking them to derive stellar parameters from the data provided. The results were discussed at a workshop in Vienna in 2010. Most of the major codes currently used in the astronomical community for analyses of stellar spectra were included in this experiment. Results: We present the results from the different groups, as well as an additional experiment comparing the synthetic spectra produced by various codes for a given set of stellar parameters. Similarities and differences of the results are discussed. Conclusions: Several valid approaches to analyze a given spectrum of a star result in quite a wide range of solutions. The main causes for the differences in parameters derived by different groups seem to lie in the physical input data and in the details of the analysis method. This clearly shows how far from a definitive abundance analysis we still are. Based on observations obtained at the Bernard Lyot Telescope (TBL, Pic du Midi, France) of the Midi-Pyrénées Observatory, which is operated by the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique of France.Tables 6-11 are only available in electronic form at http://www.aanda.orgThe spectra of stars 1 to 4 used in the experiment presented here are only availalbe at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/547/A108
Stellar Streams Discovered in the Dark Energy Survey
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shipp, N.; et al.
We perform a search for stellar streams around the Milky Way using the first three years of multi-band optical imaging data from the Dark Energy Survey (DES). We use DES data coveringmore » $$\\sim 5000$$ sq. deg. to a depth of $g > 23.5$ with a relative photometric calibration uncertainty of $$< 1 \\%$$. This data set yields unprecedented sensitivity to the stellar density field in the southern celestial hemisphere, enabling the detection of faint stellar streams to a heliocentric distance of $$\\sim 50$$ kpc. We search for stellar streams using a matched-filter in color-magnitude space derived from a synthetic isochrone of an old, metal-poor stellar population. Our detection technique recovers four previously known thin stellar streams: Phoenix, ATLAS, Tucana III, and a possible extension of Molonglo. In addition, we report the discovery of eleven new stellar streams. In general, the new streams detected by DES are fainter, more distant, and lower surface brightness than streams detected by similar techniques in previous photometric surveys. As a by-product of our stellar stream search, we find evidence for extra-tidal stellar structure associated with four globular clusters: NGC 288, NGC 1261, NGC 1851, and NGC 1904. The ever-growing sample of stellar streams will provide insight into the formation of the Galactic stellar halo, the Milky Way gravitational potential, as well as the large- and small-scale distribution of dark matter around the Milky Way.« less
Star Classification for the Kepler Input Catalog: From Images to Stellar Parameters
NASA Astrophysics Data System (ADS)
Brown, T. M.; Everett, M.; Latham, D. W.; Monet, D. G.
2005-12-01
The Stellar Classification Project is a ground-based effort to screen stars within the Kepler field of view, to allow removal of stars with large radii (and small potential transit signals) from the target list. Important components of this process are: (1) An automated photometry pipeline estimates observed magnitudes both for target stars and for stars in several calibration fields. (2) Data from calibration fields yield extinction-corrected AB magnitudes (with g, r, i, z magnitudes transformed to the SDSS system). We merge these with 2MASS J, H, K magnitudes. (3) The Basel grid of stellar atmosphere models yields synthetic colors, which are transformed to our photometric system by calibration against observations of stars in M67. (4) We combine the r magnitude and stellar galactic latitude with a simple model of interstellar extinction to derive a relation connecting {Teff, luminosity} to distance and reddening. For models satisfying this relation, we compute a chi-squared statistic describing the match between each model and the observed colors. (5) We create a merit function based on the chi-squared statistic, and on a Bayesian prior probability distribution which gives probability as a function of Teff, luminosity, log(Z), and height above the galactic plane. The stellar parameters ascribed to a star are those of the model that maximizes this merit function. (6) Parameter estimates are merged with positional and other information from extant catalogs to yield the Kepler Input Catalog, from which targets will be chosen. Testing and validation of this procedure are underway, with encouraging initial results.
NASA Astrophysics Data System (ADS)
Casey, Andrew R.; Hawkins, Keith; Hogg, David W.; Ness, Melissa; Rix, Hans-Walter; Kordopatis, Georges; Kunder, Andrea; Steinmetz, Matthias; Koposov, Sergey; Enke, Harry; Sanders, Jason; Gilmore, Gerry; Zwitter, Tomaž; Freeman, Kenneth C.; Casagrande, Luca; Matijevič, Gal; Seabroke, George; Bienaymé, Olivier; Bland-Hawthorn, Joss; Gibson, Brad K.; Grebel, Eva K.; Helmi, Amina; Munari, Ulisse; Navarro, Julio F.; Reid, Warren; Siebert, Arnaud; Wyse, Rosemary
2017-05-01
The orbits, atmospheric parameters, chemical abundances, and ages of individual stars in the Milky Way provide the most comprehensive illustration of galaxy formation available. The Tycho-Gaia Astrometric Solution (TGAS) will deliver astrometric parameters for the largest ever sample of Milky Way stars, though its full potential cannot be realized without the addition of complementary spectroscopy. Among existing spectroscopic surveys, the RAdial Velocity Experiment (RAVE) has the largest overlap with TGAS (≳200,000 stars). We present a data-driven re-analysis of 520,781 RAVE spectra using The Cannon. For red giants, we build our model using high-fidelity APOGEE stellar parameters and abundances for stars that overlap with RAVE. For main sequence and sub-giant stars, our model uses stellar parameters from the K2/EPIC. We derive and validate effective temperature T eff, surface gravity log g, and chemical abundances of up to seven elements (O, Mg, Al, Si, Ca, Fe, and Ni). We report a total of 1,685,851 elemental abundances with a typical precision of 0.07 dex, a substantial improvement over previous RAVE data releases. The synthesis of RAVE-on and TGAS is the most powerful data set for chemo-dynamic analyses of the Milky Way ever produced.
A study of environmental effects on galaxy spin using MaNGA data
NASA Astrophysics Data System (ADS)
Lee, Jong Chul; Hwang, Ho Seong; Chung, Haeun
2018-06-01
We investigate environmental effects on galaxy spin using the recent public data of Mapping Nearby Galaxies at APO (MaNGA) integral field spectroscopic survey containing ˜2800 galaxies. We measure the spin parameter of 1830 galaxies through the analysis of two-dimensional stellar kinematic maps within the effective radii, and obtain their large-scale (background mass density from 20 nearby galaxies) and small-scale (distance to and morphology of the nearest neighbour galaxy) environmental parameters for 1529 and 1767 galaxies, respectively. We first examine the mass dependence of galaxy spin, and find that the spin parameter of early-type galaxies decreases with stellar mass at log (M*/M⊙) ≳ 10, consistent with the results from previous studies. We then divide the galaxies into three subsamples using their stellar masses to minimize the mass effects on galaxy spin. The spin parameters of galaxies in each subsample do not change with background mass density, but do change with distance to and morphology of the nearest neighbour. In particular, the spin parameter of late-type galaxies decreases as early-type neighbours approach within the virial radius. These results suggest that the large-scale environments hardly affect the galaxy spin, but the small-scale environments such as hydrodynamic galaxy-galaxy interactions can play a substantial role in determining galaxy spin.
NASA Technical Reports Server (NTRS)
Lesteven, Soizick
1992-01-01
The astronomical database SIMBAD developed at the Centre de donnees astronomiques de Strasbourg presently contains 760,000 objects (stellar and non-stellar). It has the unique characteristic of being structured specifically for astronomical objects. All types of heterogeneous data (bibliographic references, measurements, and sets of identification) are connected with each object. The attributes that define quality of the database include the following. Reliability: cross-identification should not rely upon just exact values object coordinates. It also means that information attached to one simple object should be consistent. The existing data must be controlled in order to start with a reliable base and to cross-identify new data assuring the quality as data grows. Exhaustivity: delays between publication of new informations and their inclusion in the database should be as short as possible. The integrity of the database has to be maintained as data accumulates. Taking the amount of data into consideration and the rate of new data production, it is necessary to use automatic methods. One of the possibilities is to use multivariate data analysis. The factor-space is a n-dimensional relevancy space which is described by the n-axes representing a set of n subject matter headings; the words and phrases can be used to scale the axes and the documents are then a vector average of the terms within them. The application reported herein is based on the NASA-STI bibliographical database. The selected data concern astronomy, astrophysics, and space radiation (102,963 references from 1975 to 1991 included 8070 keywords). The F-space is built from this bibliographical data. By comparing the F-space position obtained from the NASA-STI keywords with the F-space position obtained from the SIMBAD references, the authors will be able to show whether it is possible to retrieve information with a restricted set of words only. If the comparison is valid, this will be a way to enter bibliographic information in the SIMBAD quality control process. Furthermore, it is possible to connect the physical measurements of stars from SIMBAD to literature concerning these stars from the NASA-STI abstracts. The physical properties of stars (e.g. UBV colors) are not randomly distributed. Stars are distributed among different clusters in a physical parameter space. The authors will show that there are some relations between this classification and the literature concerning these objects clusters in a factor space. They will investigate the nature of the relationship between the SIMBAD measurements and the bibliography. These would be new relationships that are not pre-established by an astronomer. In addition, the bibliography could be neutral information that can be used in combination with the measured parameters.
WILSON-BAPPU EFFECT: EXTENDED TO SURFACE GRAVITY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Sunkyung; Kang, Wonseok; Lee, Jeong-Eun
2013-10-01
In 1957, Wilson and Bappu found a tight correlation between the stellar absolute visual magnitude (M{sub V} ) and the width of the Ca II K emission line for late-type stars. Here, we revisit the Wilson-Bappu relationship (WBR) to claim that the WBR can be an excellent indicator of stellar surface gravity of late-type stars as well as a distance indicator. We have measured the width (W) of the Ca II K emission line in high-resolution spectra of 125 late-type stars obtained with the Bohyunsan Optical Echelle Spectrograph and adopted from the Ultraviolet and Visual Echelle Spectrograph archive. Based onmore » our measurement of the emission line width (W), we have obtained a WBR of M{sub V} = 33.76 - 18.08 log W. In order to extend the WBR to being a surface gravity indicator, stellar atmospheric parameters such as effective temperature (T{sub eff}), surface gravity (log g), metallicity ([Fe/H]), and micro-turbulence ({xi}{sub tur}) have been derived from self-consistent detailed analysis using the Kurucz stellar atmospheric model and the abundance analysis code, MOOG. Using these stellar parameters and log W, we found that log g = -5.85 log W+9.97 log T{sub eff} - 23.48 for late-type stars.« less
The Herschel Virgo Cluster Survey. XIX. Physical properties of low luminosity FIR sources at z < 0.5
NASA Astrophysics Data System (ADS)
Pappalardo, Ciro; Bizzocchi, Luca; Fritz, Jacopo; Boselli, Alessandro; Boquien, Mederic; Boissier, Samuel; Baes, Maarten; Ciesla, Laure; Bianchi, Simone; Clemens, Marcel; Viaene, Sebastien; Bendo, George J.; De Looze, Ilse; Smith, Matthew W. L.; Davies, Jonathan
2016-05-01
Context. The star formation rate is a crucial parameter for the investigation galaxy evolution. At low redshift the cosmic star formation rate density declines smoothly, and massive active galaxies become passive, reducing their star formation activity. This implies that the bulk of the star formation rate density at low redshift is mainly driven by low mass objects. Aims: We investigate the properties of a sample of low luminosity far-infrared sources selected at 250 μm. We have collected data from ultraviolet to far-infrared in order to perform a multiwavelengths analysis. The main goal is to investigate the correlation between star formation rate, stellar mass, and dust mass for a galaxy population with a wide range in dust content and stellar mass, including the low mass regime that most probably dominates the star formation rate density at low redshift. Methods: We define a main sample of ~800 sources with full spectral energy distribution coverage between 0.15 <λ< 500 μm and an extended sample with ~5000 sources in which we remove the constraints on the ultraviolet and near-infrared bands. We analyze both samples with two different spectral energy distribution fitting methods: MAGPHYS and CIGALE, which interpret a galaxy spectral energy distribution as a combination of different simple stellar population libraries and dust emission templates. Results: In the star formation rate versus stellar mass plane our samples occupy a region included between local spirals and higher redshift star forming galaxies. These galaxies represent the population that at z< 0.5 quenches their star formation activity and reduces their contribution to the cosmic star formation rate density. The subsample of galaxies with the higher masses (M∗> 3 × 1010 M⊙) do not lie on the main sequence, but show a small offset as a consequence of the decreased star formation. Low mass galaxies (M∗< 1 × 1010 M⊙) settle in the main sequence with star formation rate and stellar mass consistent with local spirals. Conclusions: Deep Herschel data allow the identification of a mixed galaxy population with galaxies still in an assembly phase or galaxies at the beginning of their passive evolution. We find that the dust luminosity is the parameter that allow us to discriminate between these two galaxy populations. The median spectral energy distribution shows that even at low star formation rate our galaxy sample has a higher mid-infrared emission than previously predicted. Herschel is an ESA space observatory with science instruments provided by a European-led principal investigator consortia and with an important participation from NASA.
NASA Astrophysics Data System (ADS)
Frasca, A.; Molenda-Żakowicz, J.; De Cat, P.; Catanzaro, G.; Fu, J. N.; Ren, A. B.; Luo, A. L.; Shi, J. R.; Wu, Y.; Zhang, H. T.
2016-10-01
Aims: A comprehensive and homogeneous determination of stellar parameters for the stars observed by the Kepler space telescope is necessary for statistical studies of their properties. As a result of the large number of stars monitored by Kepler, the largest and more complete databases of stellar parameters published to date are multiband photometric surveys. The LAMOST-Kepler survey, whose spectra are analyzed in the present paper, was the first large spectroscopic project, which started in 2011 and aimed at filling that gap. In this work we present the results of our analysis, which is focused on selecting spectra with emission lines and chromospherically active stars by means of the spectral subtraction of inactive templates. The spectroscopic determination of the atmospheric parameters for a large number of stars is a by-product of our analysis. Methods: We have used a purposely developed version of the code ROTFIT for the determination of the stellar parameters by exploiting a wide and homogeneous collection of real star spectra, namely the Indo US library. We provide a catalog with the atmospheric parameters (Teff, log g, and [Fe/H]), radial velocity (RV), and an estimate of the projected rotation velocity (vsini). For cool stars (Teff≤ 6000 K), we also calculated the Hα and Ca II-IRT fluxes, which are important proxies of chromospheric activity. Results: We have derived the RV and atmospheric parameters for 61 753 spectra of 51 385 stars. The average uncertainties, which we estimate from the stars observed more than once, are about 12 km s-1, 1.3%, 0.05 dex, and 0.06 dex for RV, Teff, log g, and [Fe/H], respectively, although they are larger for the spectra with a very low signal-to-noise ratio. Literature data for a few hundred stars (mainly from high-resolution spectroscopy) were used to peform quality control of our results. The final accuracy of the RV is about 14 km s-1. The accuracy of the Teff, log g, and [Fe/H] measurements is about 3.5%, 0.3 dex, and 0.2 dex, respectively. However, while the Teff values are in very good agreement with the literature, we noted some issues with the determination of [Fe/H] of metal poor stars and the tendency, for log g, to cluster around the values typical for main-sequence and red giant stars. We propose correction relations based on these comparisons and we show that this does not have a significant effect on the determination of the chromospheric fluxes. The RV distribution is asymmetric and shows an excess of stars with negative RVs that are larger at low metallicities. Despite the rather low LAMOST resolution, we were able to identify interesting and peculiar objects, such as stars with variable RV, ultrafast rotators, and emission-line objects. Based on the Hα and Ca II-IRT fluxes, we found 442 chromospherically active stars, one of which is a likely accreting object. The availability of precise rotation periods from the Kepler photometry allowed us to study the dependency of these chromospheric fluxes on the rotation rate for a very large sample of field stars. Based on observations collected with the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) located at the Xinglong observatory, China.Full Tables A.3 and A.4 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/594/A39
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaidos, Eric, E-mail: gaidos@hawaii.edu
A key goal of the Kepler mission is the discovery of Earth-size transiting planets in ''habitable zones'' where stellar irradiance maintains a temperate climate on an Earth-like planet. Robust estimates of planet radius and irradiance require accurate stellar parameters, but most Kepler systems are faint, making spectroscopy difficult and prioritization of targets desirable. The parameters of 2035 host stars were estimated by Bayesian analysis and the probabilities p{sub HZ} that 2738 candidate or confirmed planets orbit in the habitable zone were calculated. Dartmouth Stellar Evolution Program models were compared to photometry from the Kepler Input Catalog, priors for stellar mass,more » age, metallicity and distance, and planet transit duration. The analysis yielded probability density functions for calculating confidence intervals of planet radius and stellar irradiance, as well as p{sub HZ}. Sixty-two planets have p{sub HZ} > 0.5 and a most probable stellar irradiance within habitable zone limits. Fourteen of these have radii less than twice the Earth; the objects most resembling Earth in terms of radius and irradiance are KOIs 2626.01 and 3010.01, which orbit late K/M-type dwarf stars. The fraction of Kepler dwarf stars with Earth-size planets in the habitable zone ({eta}{sub Circled-Plus }) is 0.46, with a 95% confidence interval of 0.31-0.64. Parallaxes from the Gaia mission will reduce uncertainties by more than a factor of five and permit definitive assignments of transiting planets to the habitable zones of Kepler stars.« less
NASA Astrophysics Data System (ADS)
Sand, D. J.; Seth, A. C.; Crnojević, D.; Spekkens, K.; Strader, J.; Adams, E. A. K.; Caldwell, N.; Guhathakurta, P.; Kenney, J.; Randall, S.; Simon, J. D.; Toloba, E.; Willman, B.
2017-07-01
We analyze the optical counterpart to the ultra-compact high velocity cloud AGC 226067, utilizing imaging taken with the Advanced Camera for Surveys (ACS) on the Hubble Space Telescope. The color-magnitude diagram of the main body of AGC 226067 reveals an exclusively young stellar population, with an age of ˜7-50 Myr, and is consistent with a metallicity of [Fe/H] ˜ -0.3 as previous work has measured via H II region spectroscopy. Additionally, the color-magnitude diagram is consistent with a distance of D ≈ 17 Mpc, suggesting an association with the Virgo cluster. A secondary stellar system located ˜1.‧6 (˜8 kpc) away in projection has a similar stellar population. The lack of an old red giant branch (≳5 Gyr) is contrasted with a serendipitously discovered Virgo dwarf in the ACS field of view (Dw J122147+132853), and the total diffuse light from AGC 226067 is consistent with the luminosity function of the resolved ˜7-50 Myr stellar population. The main body of AGC 226067 has a M V = -11.3 ± 0.3, or M stars = 5.4 ± 1.3 × 104 M ⊙ given the stellar population. We searched 20 deg2 of imaging data adjacent to AGC 226067 in the Virgo Cluster, and found two similar stellar systems dominated by a blue stellar population, far from any massive galaxy counterpart—if this population has star-formation properties that are similar to those of AGC 226067, it implies ˜0.1 M ⊙ yr-1 in Virgo intracluster star formation. Given its unusual stellar population, AGC 226067 is likely a stripped remnant and is plausibly the result of compressed gas from the ram pressure stripped M86 subgroup (˜350 kpc away in projection) as it falls into the Virgo Cluster.
Spectroscopy Made Easy: Evolution
NASA Astrophysics Data System (ADS)
Piskunov, Nikolai; Valenti, Jeff A.
2017-01-01
Context. The Spectroscopy Made Easy (SME) package has become a popular tool for analyzing stellar spectra, often in connection with large surveys or exoplanet research. SME has evolved significantly since it was first described in 1996, but many of the original caveats and potholes still haunt users. The main drivers for this paper are complexity of the modeling task, the large user community, and the massive effort that has gone into SME. Aims: We do not intend to give a comprehensive introduction to stellar atmospheres, but will describe changes to key components of SME: the equation of state, opacities, and radiative transfer. We will describe the analysis and fitting procedure and investigate various error sources that affect inferred parameters. Methods: We review the current status of SME, emphasizing new algorithms and methods. We describe some best practices for using the package, based on lessons learned over two decades of SME usage. We present a new way to assess uncertainties in derived stellar parameters. Results: Improvements made to SME, better line data, and new model atmospheres yield more realistic stellar spectra, but in many cases systematic errors still dominate over measurement uncertainty. Future enhancements are outlined.
"Iron-Clad" Evidence For Spinning Black Hole
NASA Astrophysics Data System (ADS)
2003-09-01
Telltale X-rays from iron may reveal if black holes are spinning or not, according to astronomers using NASA's Chandra X-ray Observatory and the European Space Agency's XMM-Newton Observatory. The gas flows and bizarre gravitational effects observed near stellar black holes are similar to those seen around supermassive black holes. Stellar black holes, in effect, are convenient `scale models' of their much larger cousins. Black holes come in at least two different sizes. Stellar black holes are between five and 20 times the mass of the Sun. At the other end of the size scale, supermassive black holes contain millions or billions times the mass of our Sun. The Milky Way contains both a supermassive black hole at its center, as well as a number of stellar black holes sprinkled throughout the Galaxy. At a press conference at the "Four Years of Chandra" symposium in Huntsville, Ala., Jon Miller of the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass. discussed recent results on the X-ray spectra, or distribution of X-rays with energy, from the iron atoms in gas around three stellar black holes in the Milky Way. "Discovering the high degree of correspondence between stellar and supermassive black holes is a real breakthrough," said Miller. "Because stellar black holes are smaller, everything happens about a million times faster, so they can be used as a test-bed for theories of how spinning black holes affect the space and matter around them." X-rays from a stellar black hole are produced when gas from a nearby companion star is heated to tens of millions of degrees as it swirls toward the black hole. Iron atoms in this gas produce distinctive X-ray signals that can be used to study the orbits of particles around the black hole. For example, the gravity of a black hole can shift the X-rays to lower energies. "The latest work provides the most precise measurements yet of the X-ray spectra for stellar black holes," said Miller. "These data help rule out competing explanations that do not require extreme gravitational effects, and provide the best look yet at the geometry of the space-time around a stellar black hole created by the death of a massive star." The orbit of a particle near a black hole depends on the curvature of space around the black hole, which also depends on how fast the black hole is spinning. A spinning black hole drags space around with it and allows atoms to orbit closer to the black hole than is possible for a non-spinning black hole. The latest Chandra data from Cygnus X-1, the first stellar-size black hole discovered, show that the gravitational effects on the signal from the iron atoms can only be due to relativistic effects, and that some of the atoms are no closer than 100 miles to the black hole. There was no evidence that the Cygnus X-1 black hole is spinning. The XMM-Newton data from the black hole, XTE J1650-500, show a very similar distribution of iron atom X-rays with one important exception. More low energy X-rays from iron atoms are observed, an indication that some X-rays are coming from deep in the gravitational well around the black hole, as close as 20 miles to the black hole event horizon. This black hole must be spinning rapidly. Chandra observations of a third stellar black hole, GX 339-4, have revealed that it is also spinning rapidly, and clouds of warm absorbing gas appear to be flowing away from the black hole at speeds of about three hundred thousand miles per hour. Such warm gas flows have been observed in the vicinity of supermassive black holes. Previous observations of some supermassive black holes by Japan's ASCA satellite, XMM-Newton and Chandra have indicated that they may also be rotating rapidly. The latest results presented by Miller indicate that the peculiar geometry of space around spinning stellar-mass black holes and supermassive black holes is remarkably similar. Stellar and supermassive black holes may be similar in other ways. Powerful jets of high-energy particles have been detected around both types of black holes. Why do some stellar black holes spin rapidly and others not? One possibility is that differences in spin are imparted at birth when a massive star collapses. Another possibility is that the spin rate depends on how long the black hole has been devouring matter from its companion star, a process that makes the black hole spin faster. Black holes with more rapid spin, XTE J1650-500 and GX 339-4, have low-mass companion stars. These relatively long-lived stars may have been feeding the black hole for longer, allowing it to spin up to faster rates. Cygnus X-1 with its short-lived companion star may not have not time to spin up. Miller is a National Science Foundation Astronomy & Astrophysics Postdoctoral Fellow. His primary collaborators in this work were Walter Lewin if the Massachusetts Institute of Technology in Cambridge, Andrew Fabian of the University of Cambridge, UK, and Chris Reynolds of the University of Maryland, College Park. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the Office of Space Science, NASA Headquarters, Washington. Northrop Grumman of Redondo Beach, Calif., formerly TRW, Inc., was the prime development contractor for the observatory. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass.
Scaling Stellar Mass Estimates of Dwarf Galaxies
NASA Astrophysics Data System (ADS)
Carr, Brandon Michael; McQuinn, Kristen B.; Cannon, John M.; Dalcanton, Julianne; Dolphin, Andrew E.; Skillman, Evan D.; Williams, Benjamin F.; van Zee, Liese
2017-01-01
Hubble Space Telescope (HST) optical imaging of resolved stellar populations has been used to constrain the star formation history (SFH) and chemical evolution of many nearby dwarf galaxies. However, even for dwarf galaxies, the angle subtended by nearby systems can be greater than the HST field of view. Thus, estimates of stellar mass from the HST footprint do not accurately represent the total mass of the system, impacting how SFH results can be used in holistic comparisons of galaxy properties. Here, we use the SFHs of dwarfs combined with stellar population synthesis models to determine mass-to-light ratios for individual galaxies, and compare these values with measured infrared luminosities from Spitzer IRAC data. In this way, we determine what fraction of mass is not included in the HST field of view. To test our methodology, we focus on dwarfs whose stellar disks are contained within the HST observations. Then, we also apply this method to galaxies with larger angular sizes to scale the stellar masses accordingly.
Photometric Follow-up of Eclipsing Binary Candidates from KELT and Kepler
NASA Astrophysics Data System (ADS)
Garcia Soto, Aylin; Rodriguez, Joseph E.; Bieryla, Allyson; KELT survey
2018-01-01
Eclipsing binaries (EBs) are incredibly valuable, as they provide the opportunity to precisely measure fundamental stellar parameters without the need for stellar models. Therefore, we can use EBs to directly test stellar evolution models. Constraining the stellar properties of stars is important since they directly influence our understanding of any planets orbiting them. Using the Harvard University's Clay 0.4m telescope and Fred Lawrence Whipple Observatory’s 1.2m telescope on Mount Hopkins, Arizona, we conducted follow-up multi-band photometric observations of EB candidates from the Kilodegree Extremely Little Telescope (KELT) survey and the Kepler mission. We will present our follow-up observations and AstroImageJ analysis on these 5 EB systems.
Application of the Haar Wavelet to the Analysis of Plasma and Atmospheric Fluctuations
NASA Astrophysics Data System (ADS)
Maslov, S. A.; Kharchevsky, A. A.; Smirnov, V. A.
2017-12-01
The parameters of turbulence measured by means of a Doppler reflectometer at the plasma periphery in an L-2M stellarator and in atmospheric vortices (typhoons and tornadoes) are investigated using the wavelet methods with involvement of the Haar function. The periods of time taken for the transition (a bound of parameters) to occur in the L-2M stellarator plasma and in atmospheric processes are estimated. It is shown that high-and low-frequency oscillations of certain parameters, in particular, pressure, that occur in atmospheric vortices decay or increase at different moments of time, whereas the density fluctuation amplitudes that occur in plasma at different frequencies vary in a synchronous manner.
Astrophysical laser operating in the OI 8446-Åline in the Weigelt blobs of η Carinae
NASA Astrophysics Data System (ADS)
Johansson, S.; Letokhov, V. S.
2005-12-01
Within the framework of a simple model of photophysical processes in the Weigelt blobs in the vicinity of the luminous blue variable (LBV) star η Carinae, we explain the presence of the fluorescent
WFIRST: Microlensing Analysis Data Challenge
NASA Astrophysics Data System (ADS)
Street, Rachel; WFIRST Microlensing Science Investigation Team
2018-01-01
WFIRST will produce thousands of high cadence, high photometric precision lightcurves of microlensing events, from which a wealth of planetary and stellar systems will be discovered. However, the analysis of such lightcurves has historically been very time consuming and expensive in both labor and computing facilities. This poses a potential bottleneck to deriving the full science potential of the WFIRST mission. To address this problem, the WFIRST Microlensing Science Investigation Team designing a series of data challenges to stimulate research to address outstanding problems of microlensing analysis. These range from the classification and modeling of triple lens events to methods to efficiently yet thoroughly search a high-dimensional parameter space for the best fitting models.
NASA Astrophysics Data System (ADS)
Pinheiro da Silva, L.; Rolland, G.; Lapeyrere, V.; Auvergne, M.
2008-03-01
Convection, Rotation and planetary Transits (CoRoT) is a space mission dedicated to stellar seismology and the search for extrasolar planets. Both scientific programs are based on very high precision photometry and require long, uninterrupted observations. The instrument is based on an afocal telescope and a wide-field camera, consisting of four E2V-4280 CCD devices. This set is mounted on a recurrent platform for insertion in low Earth orbit. The CoRoT satellite has been recently launched for a nominal mission duration of three years. In this work, we discuss the impact of space radiation on CoRoT CCDs, in sight of the in-flight characterization results obtained during the satellite's commissioning phase, as well as the very first observational data. We start by describing the population of trapped particles at the satellite altitude, and by presenting a theoretical prediction for the incoming radiation fluxes seen by the CCDs behind shielding. Empirical results regarding particle impact rates and their geographical distribution are then presented and discussed. The effect of particle impacts is also statistically characterized, with respect to the ionizing energy imparted to the CCDs and the size of impact trails. Based on these results, we discuss the effects of space radiation on precise and time-resolved stellar photometry from space. Finally, we present preliminary results concerning permanent radiation damage on CoRoT CCDs, as extrapolated from the data available at the beginning of the satellite's lifetime.
Constraining convective regions with asteroseismic linear structural inversions
NASA Astrophysics Data System (ADS)
Buldgen, G.; Reese, D. R.; Dupret, M. A.
2018-01-01
Context. Convective regions in stellar models are always associated with uncertainties, for example, due to extra-mixing or the possible inaccurate position of the transition from convective to radiative transport of energy. Such inaccuracies have a strong impact on stellar models and the fundamental parameters we derive from them. The most promising method to reduce these uncertainties is to use asteroseismology to derive appropriate diagnostics probing the structural characteristics of these regions. Aims: We wish to use custom-made integrated quantities to improve the capabilities of seismology to probe convective regions in stellar interiors. By doing so, we hope to increase the number of indicators obtained with structural seismic inversions to provide additional constraints on stellar models and the fundamental parameters we determine from theoretical modeling. Methods: First, we present new kernels associated with a proxy of the entropy in stellar interiors. We then show how these kernels can be used to build custom-made integrated quantities probing convective regions inside stellar models. We present two indicators suited to probe convective cores and envelopes, respectively, and test them on artificial data. Results: We show that it is possible to probe both convective cores and envelopes using appropriate indicators obtained with structural inversion techniques. These indicators provide direct constraints on a proxy of the entropy of the stellar plasma, sensitive to the characteristics of convective regions. These constraints can then be used to improve the modeling of solar-like stars by providing an additional degree of selection of models obtained from classical forward modeling approaches. We also show that in order to obtain very accurate indicators, we need ℓ = 3 modes for the envelope but that the core-conditions indicator is more flexible in terms of the seismic data required for its use.
History of Hubble Space Telescope (HST)
1997-09-08
This NASA Hubble Space Telescope (HST) image of the Trifid Nebula reveals a stellar nursery being torn apart by a nearby massive star. Embryonic stars are forming within an ill-fated cloud of dust and gas, which is destined to be eaten away by the glare from the massive neighbor. The cloud is about 8 light years away from the nebula' s central star. This stellar activity is a beautiful example of how the life cycle of stars like our Sun is intimately cornected with their more powerful siblings. Residing in the constellation Sagittarius, the Trifid Nebula is about 9,000 light years from Earth.
Reference Frames in Relativistic Space-Time
NASA Astrophysics Data System (ADS)
Soffel, M.; Herold, H.; Ruder, H.; Schneider, M.
Three fundamental concepts of reference frames in relativistic space-time are confronted: 1. the gravitation compass, 2. the stellar compass and 3. the inertial compass. It is argued that under certain conditions asymptotically fixed (stellar) reference frames can be introduced with the same rigour as local Fermi frames, thereby eliminating one possible psychological reason why the importance of Fermi frames frequently has been overestimated in the past. As applications of these three concepts the authors discuss: 1. a relativistic definition of the geoid, 2. a relativistic astrometric problem and 3. the post-Newtonian theory of a laser gyroscope fixed to the Earth's surface.
NASA Astrophysics Data System (ADS)
Law, Ka-Hei; Gordon, Karl D.; Misselt, Karl A.
2018-06-01
Understanding the properties of stellar populations and interstellar dust has important implications for galaxy evolution. In normal star-forming galaxies, stars and the interstellar medium dominate the radiation from ultraviolet (UV) to infrared (IR). In particular, interstellar dust absorbs and scatters UV and optical light, re-emitting the absorbed energy in the IR. This is a strongly nonlinear process that makes independent studies of the UV-optical and IR susceptible to large uncertainties and degeneracies. Over the years, UV to IR spectral energy distribution (SED) fitting utilizing varying approximations has revealed important results on the stellar and dust properties of galaxies. Yet the approximations limit the fidelity of the derived properties. There is sufficient computer power now available that it is now possible to remove these approximations and map out of landscape of galaxy SEDs using full dust radiative transfer. This improves upon previous work by directly connecting the UV, optical, and IR through dust grain physics. We present the DIRTYGrid, a grid of radiative transfer models of SEDs of dusty stellar populations in galactic environments designed to span the full range of physical parameters of galaxies. Using the stellar and gas radiation input from the stellar population synthesis model PEGASE, our radiative transfer model DIRTY self-consistently computes the UV to far-IR/sub-mm SEDs for each set of parameters in our grid. DIRTY computes the dust absorption, scattering, and emission from the local radiation field and a dust grain model, thereby physically connecting the UV-optical to the IR. We describe the computational method and explain the choices of parameters in DIRTYGrid. The computation took millions of CPU hours on supercomputers, and the SEDs produced are an invaluable tool for fitting multi-wavelength data sets. We provide the complete set of SEDs in an online table.
NASA Astrophysics Data System (ADS)
Houdebine, E. R.; Mullan, D. J.; Paletou, F.; Gebran, M.
2016-05-01
The reliable determination of rotation-activity correlations (RACs) depends on precise measurements of the following stellar parameters: T eff, parallax, radius, metallicity, and rotational speed v sin I. In this paper, our goal is to focus on the determination of these parameters for a sample of K and M dwarfs. In a future paper (Paper II), we will combine our rotational data with activity data in order to construct RACs. Here, we report on a determination of effective temperatures based on the (R-I) C color from the calibrations of Mann et al. and Kenyon & Hartmann for four samples of late-K, dM2, dM3, and dM4 stars. We also determine stellar parameters (T eff, log(g), and [M/H]) using the principal component analysis-based inversion technique for a sample of 105 late-K dwarfs. We compile all effective temperatures from the literature for this sample. We determine empirical radius-[M/H] correlations in our stellar samples. This allows us to propose new effective temperatures, stellar radii, and metallicities for a large sample of 612 late-K and M dwarfs. Our mean radii agree well with those of Boyajian et al. We analyze HARPS and SOPHIE spectra of 105 late-K dwarfs, and we have detected v sin I in 92 stars. In combination with our previous v sin I measurements in M and K dwarfs, we now derive P/sin I measures for a sample of 418 K and M dwarfs. We investigate the distributions of P/sin I, and we show that they are different from one spectral subtype to another at a 99.9% confidence level. Based on observations available at Observatoire de Haute Provence and the European Southern Observatory databases and on Hipparcos parallax measurements.
The Starchive: An open access, open source archive of nearby and young stars and their planets
NASA Astrophysics Data System (ADS)
Tanner, Angelle; Gelino, Chris; Elfeki, Mario
2015-12-01
Historically, astronomers have utilized a piecemeal set of archives such as SIMBAD, the Washington Double Star Catalog, various exoplanet encyclopedias and electronic tables from the literature to cobble together stellar and exo-planetary parameters in the absence of corresponding images and spectra. As the search for planets around young stars through direct imaging, transits and infrared/optical radial velocity surveys blossoms, there is a void in the available set of to create comprehensive lists of the stellar parameters of nearby stars especially for important parameters such as metallicity and stellar activity indicators. For direct imaging surveys, we need better resources for downloading existing high contrast images to help confirm new discoveries and find ideal target stars. Once we have discovered new planets, we need a uniform database of stellar and planetary parameters from which to look for correlations to better understand the formation and evolution of these systems. As a solution to these issues, we are developing the Starchive - an open access stellar archive in the spirit of the open exoplanet catalog, the Kepler Community Follow-up Program and many others. The archive will allow users to download various datasets, upload new images, spectra and metadata and will contain multiple plotting tools to use in presentations and data interpretations. While we will highly regulate and constantly validate the data being placed into our archive the open nature of its design is intended to allow the database to be expanded efficiently and have a level of versatility which is necessary in today's fast moving, big data community. Finally, the front-end scripts will be placed on github and users will be encouraged to contribute new plotting tools. Here, I will introduce the community to the content and expected capabilities of the archive and query the audience for community feedback.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Houdebine, E. R.; Mullan, D. J.; Paletou, F.
The reliable determination of rotation–activity correlations (RACs) depends on precise measurements of the following stellar parameters: T {sub eff}, parallax, radius, metallicity, and rotational speed v sin i . In this paper, our goal is to focus on the determination of these parameters for a sample of K and M dwarfs. In a future paper (Paper II), we will combine our rotational data with activity data in order to construct RACs. Here, we report on a determination of effective temperatures based on the ( R – I ){sub C} color from the calibrations of Mann et al. and Kenyon andmore » Hartmann for four samples of late-K, dM2, dM3, and dM4 stars. We also determine stellar parameters ( T {sub eff}, log( g ), and [M/H]) using the principal component analysis–based inversion technique for a sample of 105 late-K dwarfs. We compile all effective temperatures from the literature for this sample. We determine empirical radius–[M/H] correlations in our stellar samples. This allows us to propose new effective temperatures, stellar radii, and metallicities for a large sample of 612 late-K and M dwarfs. Our mean radii agree well with those of Boyajian et al. We analyze HARPS and SOPHIE spectra of 105 late-K dwarfs, and we have detected v sin i in 92 stars. In combination with our previous v sin i measurements in M and K dwarfs, we now derive P /sin i measures for a sample of 418 K and M dwarfs. We investigate the distributions of P /sin i , and we show that they are different from one spectral subtype to another at a 99.9% confidence level.« less
NASA Astrophysics Data System (ADS)
Sweet, Sarah M.; Fisher, David; Glazebrook, Karl; Obreschkow, Danail; Lagos, Claudia; Wang, Liang
2018-06-01
We present the relation between stellar specific angular momentum j *, stellar mass M *, and bulge-to-total light ratio β for The H I Nearby Galaxy Survey, the Calar Alto Legacy Integral Field Area Survey, and Romanowsky & Fall data sets, exploring the existence of a fundamental plane between these parameters, as first suggested by Obreschkow & Glazebrook. Our best-fit M *–j * relation yields a slope of α = 1.03 ± 0.11 with a trivariate fit including β. When ignoring the effect of β, the exponent α = 0.56 ± 0.06 is consistent with α = 2/3 that is predicted for dark matter halos. There is a linear β–j */M * relation for β ≲ 0.4, exhibiting a general trend of increasing β with decreasing j */M *. Galaxies with β ≳ 0.4 have higher j * than predicted by the relation. Pseudobulge galaxies have preferentially lower β for a given j */M * than galaxies that contain classical bulges. Pseudobulge galaxies follow a well-defined track in β–j */M * space, consistent with Obreschkow & Glazebrook, while galaxies with classical bulges do not. These results are consistent with the hypothesis that while growth in either bulge type is linked to a decrease in j */M *, the mechanisms that build pseudobulges seem to be less efficient at increasing bulge mass per decrease in specific angular momentum than those that build classical bulges.
The Local Stellar Velocity Field via Vector Spherical Harmonics
NASA Technical Reports Server (NTRS)
Markarov, V. V.; Murphy, D. W.
2007-01-01
We analyze the local field of stellar tangential velocities for a sample of 42,339 nonbinary Hipparcos stars with accurate parallaxes, using a vector spherical harmonic formalism. We derive simple relations between the parameters of the classical linear model (Ogorodnikov-Milne) of the local systemic field and low-degree terms of the general vector harmonic decomposition. Taking advantage of these relationships, we determine the solar velocity with respect to the local stars of (V(sub X), V(sub Y), V(sub Z)) (10.5, 18.5, 7.3) +/- 0.1 km s(exp -1) not corrected for the asymmetric drift with respect to the local standard of rest. If only stars more distant than 100 pc are considered, the peculiar solar motion is (V(sub X), V(sub Y), V(sub Z)) (9.9, 15.6, 6.9) +/- 0.2 km s(exp -1). The adverse effects of harmonic leakage, which occurs between the reflex solar motion represented by the three electric vector harmonics in the velocity space and higher degree harmonics in the proper-motion space, are eliminated in our analysis by direct subtraction of the reflex solar velocity in its tangential components for each star. The Oort parameters determined by a straightforward least-squares adjustment in vector spherical harmonics are A=14.0 +/- 1.4, B=13.1 +/- 1.2, K=1.1 +/- 1.8, and C=2.9 +/- 1.4 km s(exp -1) kpc(exp -1). The physical meaning and the implications of these parameters are discussed in the framework of a general linear model of the velocity field. We find a few statistically significant higher degree harmonic terms that do not correspond to any parameters in the classical linear model. One of them, a third-degree electric harmonic, is tentatively explained as the response to a negative linear gradient of rotation velocity with distance from the Galactic plane, which we estimate at approximately -20 km s(exp -1) kpc(exp -1). A similar vertical gradient of rotation velocity has been detected for more distant stars representing the thick disk (z greater than 1 kpc), but here we surmise its existence in the thin disk at z less than 200 pc. The most unexpected and unexplained term within the Ogorodnikov-Milne model is the first-degree magnetic harmonic, representing a rigid rotation of the stellar field about the axis -Y pointing opposite to the direction of rotation. This harmonic comes out with a statistically robust coefficient of 6.2 +/- 0.9 km s(exp -1) kpc(exp -1) and is also present in the velocity field of more distant stars. The ensuing upward vertical motion of stars in the general direction of the Galactic center and the downward motion in the anticenter direction are opposite to the vector field expected from the stationary Galactic warp model.
NASA Astrophysics Data System (ADS)
Manara, C. F.; Testi, L.; Herczeg, G. J.; Pascucci, I.; Alcalá, J. M.; Natta, A.; Antoniucci, S.; Fedele, D.; Mulders, G. D.; Henning, T.; Mohanty, S.; Prusti, T.; Rigliaco, E.
2017-08-01
The dependence of the mass accretion rate on the stellar properties is a key constraint for star formation and disk evolution studies. Here we present a study of a sample of stars in the Chamaeleon I star-forming region carried out using spectra taken with the ESO VLT/X-shooter spectrograph. The sample is nearly complete down to stellar masses (M⋆) 0.1 M⊙ for the young stars still harboring a disk in this region. We derive the stellar and accretion parameters using a self-consistent method to fit the broadband flux-calibrated medium resolution spectrum. The correlation between accretion luminosity to stellar luminosity, and of mass accretion rate to stellar mass in the logarithmic plane yields slopes of 1.9 ± 0.1 and 2.3 ± 0.3, respectively. These slopes and the accretion rates are consistent with previous results in various star-forming regions and with different theoretical frameworks. However, we find that a broken power-law fit, with a steeper slope for stellar luminosity lower than 0.45 L⊙ and for stellar masses lower than 0.3 M⊙ is slightly preferred according to different statistical tests, but the single power-law model is not excluded. The steeper relation for lower mass stars can be interpreted as a faster evolution in the past for accretion in disks around these objects, or as different accretion regimes in different stellar mass ranges. Finally, we find two regions on the mass accretion versus stellar mass plane that are empty of objects: one region at high mass accretion rates and low stellar masses, which is related to the steeper dependence of the two parameters we derived. The second region is located just above the observational limits imposed by chromospheric emission, at M⋆ 0.3 - 0.4 M⊙. These are typical masses where photoevaporation is known to be effective. The mass accretion rates of this region are 10-10M⊙/yr, which is compatible with the value expected for photoevaporation to rapidly dissipate the inner disk. This work is based on observations made with ESO Telescopes at the Paranal Observatory under programme ID 090.C-0253 and 095.C-0378.
Hunting Faint Dwarf Galaxies in the Field Using Integrated Light Surveys
NASA Astrophysics Data System (ADS)
Danieli, Shany; van Dokkum, Pieter; Conroy, Charlie
2018-03-01
We discuss the approach of searching the lowest mass dwarf galaxies, ≲ {10}6 {M}ȯ , in the general field, using integrated light surveys. By exploring the limiting surface brightness-spatial resolution (μ eff,lim‑θ) parameter space, we suggest that faint field dwarfs in the Local Volume, between 3 and 10 Mpc, are expected to be detected very effectively and in large numbers using integrated light photometric surveys, complementary to the classical star counts method. We use a sample of dwarf galaxies in the Local Group to construct relations between their photometric and structural parameters, M *–μ eff,V and M *–R eff. We use these relations, along with assumed functional forms for the halo mass function and the stellar mass–halo mass (SMHM) relation, to calculate the lowest detectable stellar masses in the Local Volume and the expected number of galaxies as a function of the limiting surface brightness and spatial resolution. The number of detected galaxies depends mostly on the limiting surface brightness for distances >3 Mpc, while spatial resolution starts to play a role for galaxies at distances >8 Mpc. Surveys with μ eff,lim ∼ 30 mag arcsec‑2 should be able to detect galaxies with stellar masses down to ∼104 M ⊙ in the Local Volume. Depending on the form of the SMHM relation, the expected number of dwarf galaxies with distances between 3 and 10 Mpc is 0.04–0.35 per square degree, assuming a limiting surface brightness of ∼29–30 mag arcsec‑2 and a spatial resolution <4″. We plan to search for a population of low-mass dwarf galaxies in the field by performing a blank wide field photometric survey with the Dragonfly Telephoto Array, an imaging system optimized for the detection of extended ultra low surface brightness structures.
HD 140283: A Star in the Solar Neighborhood that Formed Shortly after the Big Bang
NASA Astrophysics Data System (ADS)
Bond, Howard E.; Nelan, Edmund P.; VandenBerg, Don A.; Schaefer, Gail H.; Harmer, Dianne
2013-03-01
HD 140283 is an extremely metal-deficient and high-velocity subgiant in the solar neighborhood, having a location in the Hertzsprung-Russell diagram where absolute magnitude is most sensitive to stellar age. Because it is bright, nearby, unreddened, and has a well-determined chemical composition, this star avoids most of the issues involved in age determinations for globular clusters. Using the Fine Guidance Sensors on the Hubble Space Telescope, we have measured a trigonometric parallax of 17.15 ± 0.14 mas for HD 140283, with an error one-fifth of that determined by the Hipparcos mission. Employing modern theoretical isochrones, which include effects of helium diffusion, revised nuclear reaction rates, and enhanced oxygen abundance, we use the precise distance to infer an age of 14.46 ± 0.31 Gyr. The quoted error includes only the uncertainty in the parallax, and is for adopted surface oxygen and iron abundances of [O/H] = -1.67 and [Fe/H] = -2.40. Uncertainties in the stellar parameters and chemical composition, especially the oxygen content, now contribute more to the error budget for the age of HD 140283 than does its distance, increasing the total uncertainty to about ±0.8 Gyr. Within the errors, the age of HD 140283 does not conflict with the age of the Universe, 13.77 ± 0.06 Gyr, based on the microwave background and Hubble constant, but it must have formed soon after the big bang. Based in part on observations made with the NASA/ESA Hubble Space Telescope, obtained by the Space Telescope Science Institute. STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bellini, A.; Anderson, J.; Marel, R. P. van der
2015-09-01
Numerous observational studies have revealed the ubiquitous presence of multiple stellar populations in globular clusters and cast many difficult challenges for the study of the formation and dynamical history of these stellar systems. In this Letter we present the results of a study of the kinematic properties of multiple populations in NGC 2808 based on high-precision Hubble Space Telescope proper-motion measurements. In a recent study, Milone et al. identified five distinct populations (A–E) in NGC 2808. Populations D and E coincide with the helium-enhanced populations in the middle and the blue main sequences (mMS and bMS) previously discovered by Piottomore » et al.; populations A–C correspond to the redder main sequence that, in Piotto et al., was associated with the primordial stellar population. Our analysis shows that, in the outermost regions probed (between about 1.5 and 2 times the cluster half-light radius), the velocity distribution of populations D and E is radially anisotropic (the deviation from an isotropic distribution is significant at the ∼3.5σ level). Stars of populations D and E have a smaller tangential velocity dispersion than those of populations A–C, while no significant differences are found in the radial velocity dispersion. We present the results of a numerical simulation showing that the observed differences between the kinematics of these stellar populations are consistent with the expected kinematic fingerprint of the diffusion toward the cluster outer regions of stellar populations initially more centrally concentrated.« less
sunstardb: A Database for the Study of Stellar Magnetism and the Solar-stellar Connection
NASA Astrophysics Data System (ADS)
Egeland, Ricky
2018-05-01
The “solar-stellar connection” began as a relatively small field of research focused on understanding the processes that generate magnetic fields in stars and sometimes lead to a cyclic pattern of long-term variability in activity, as demonstrated by our Sun. This area of study has recently become more broadly pertinent to questions of exoplanet habitability and exo-space weather, as well as stellar evolution. In contrast to other areas of stellar research, individual stars in the solar-stellar connection often have a distinct identity and character in the literature, due primarily to the rarity of the decades-long time-series that are necessary for studying stellar activity cycles. Furthermore, the underlying stellar dynamo is not well understood theoretically, and is thought to be sensitive to several stellar properties, e.g., luminosity, differential rotation, and the depth of the convection zone, which in turn are often parameterized by other more readily available properties. Relevant observations are scattered throughout the literature and existing stellar databases, and consolidating information for new studies is a tedious and laborious exercise. To accelerate research in this area I developed sunstardb, a relational database of stellar properties and magnetic activity proxy time-series keyed by individual named stars. The organization of the data eliminates the need for the problematic catalog cross-matching operations inherent when building an analysis data set from heterogeneous sources. In this article I describe the principles behind sunstardb, the data structures and programming interfaces, as well as use cases from solar-stellar connection research.
Stellar parameters and H α line profile variability of Be stars in the BeSOS survey
NASA Astrophysics Data System (ADS)
Arcos, C.; Kanaan, S.; Chávez, J.; Vanzi, L.; Araya, I.; Curé, M.
2018-03-01
The Be phenomenon is present in about 20 per cent of B-type stars. Be stars show variability on a broad range of time-scales, which in most cases is related to the presence of a circumstellar disc of variable size and structure. For this reason, a time-resolved survey is highly desirable in order to understand the mechanisms of disc formation, which are still poorly understood. In addition, a complete observational sample would improve the statistical significance of the study of stellar and disc parameters. The `Be Stars Observation Survey' (BeSOS) is a survey containing reduced spectra obtained using the Pontifica Universidad Católica High Echelle Resolution Optical Spectrograph (PUCHEROS) with a spectral resolution of 17 000 in the range 4260-7300 Å. BeSOS's main objective is to offer consistent spectroscopic and time-resolved data obtained with one instrument. The user can download or plot the data and obtain stellar parameters directly from the website. We also provide a star-by-star analysis based on photometric, spectroscopic and interferometric data, as well as general information about the whole BeSOS sample. Recently, BeSOS led to the discovery of a new Be star HD 42167 and facilitated study of the V/R variation of HD 35165 and HD 120324, the steady disc of HD 110335 and the Be shell status of HD 127972. Optical spectra used in this work, as well as the stellar parameters derived, are available online at http://besos.ifa.uv.cl.
VizieR Online Data Catalog: Stellar models. 0.85
NASA Astrophysics Data System (ADS)
Charbonnel, C.; Decressin, T.; Lagarde, N.; Gallet, F.; Palacios, A.; Auriere, M.; Konstantinova-Antova, R.; Mathis, S.; Anderson, R. I.; Dintrans, B.
2018-02-01
Grid of stellar models and convective turnover timescale for four metallicities (Z= 0.0001, 0.002, 0.004, and 0.014) in the mass range from 0.85 to 6.0Mȯ. The models are computed either with standard prescriptions or including both thermohaline convection and rotation-induced mixing. For the whole grid, we provide the usual stellar parameters (luminosity, effective temperature, lifetimes, ...), together with the turnover timescale estimated a different heights in the convective envelope and their corresponding Rossby number. (4 data files).
Revealing Stellar Surface Structure Behind Transiting Exoplanets
NASA Astrophysics Data System (ADS)
Dravins, Dainis
2018-04-01
During exoplanet transits, successive stellar surface portions become hidden and differential spectroscopy between various transit phases provide spectra of small surface segments temporarily hidden behind the planet. Line profile changes across the stellar disk offer diagnostics for hydrodynamic modeling, while exoplanet analyses require stellar background spectra to be known along the transit path. Since even giant planets cover only a small fraction of any main-sequence star, very precise observations are required, as well as averaging over numerous spectral lines with similar parameters. Spatially resolved Fe I line profiles across stellar disks have now been retrieved for HD209458 (G0V) and HD189733A (K1V), using data from the UVES and HARPS spectrometers. Free from rotational broadening, spatially resolved profiles are narrower and deeper than in integrated starlight. During transit, the profiles shift towards longer wavelengths, illustrating both stellar rotation at the latitude of transit and the prograde orbital motion of the exoplanets. This method will soon become applicable to more stars, once additional bright exoplanet hosts have been found.
Astrophysics with Microarcsecond Accuracy Astrometry
NASA Technical Reports Server (NTRS)
Unwin, Stephen C.
2008-01-01
Space-based astrometry promises to provide a powerful new tool for astrophysics. At a precision level of a few microarcsonds, a wide range of phenomena are opened up for study. In this paper we discuss the capabilities of the SIM Lite mission, the first space-based long-baseline optical interferometer, which will deliver parallaxes to 4 microarcsec. A companion paper in this volume will cover the development and operation of this instrument. At the level that SIM Lite will reach, better than 1 microarcsec in a single measurement, planets as small as one Earth can be detected around many dozen of the nearest stars. Not only can planet masses be definitely measured, but also the full orbital parameters determined, allowing study of system stability in multiple planet systems. This capability to survey our nearby stellar neighbors for terrestrial planets will be a unique contribution to our understanding of the local universe. SIM Lite will be able to tackle a wide range of interesting problems in stellar and Galactic astrophysics. By tracing the motions of stars in dwarf spheroidal galaxies orbiting our Milky Way, SIM Lite will probe the shape of the galactic potential history of the formation of the galaxy, and the nature of dark matter. Because it is flexibly scheduled, the instrument can dwell on faint targets, maintaining its full accuracy on objects as faint as V=19. This paper is a brief survey of the diverse problems in modern astrophysics that SIM Lite will be able to address.
NASA Technical Reports Server (NTRS)
Walborn, Nolan R.; Lennon, Daniel J.; Haser, Stephan M.; Kudritzki, Rolf-Peter; Voels, Stephen A.
1995-01-01
Hubble Space Telescope/Faint Object Spectrograph (HST/FOS) and European Space Observatory (ESO) 3.6-m/CASPEC observations have been made of 18 stars ranging in spectral type from O3 through B0.5 Ia, half of them in each of the Large and Small Magellanic Clouds, in order to investigate massive stellar winds and evolution as a function of metallicity. The spectroscopic data are initially presented and described here in an atlas format. The relative weakness of the stellar-wind features in the SMC early O V spectra, due to their metal deficiency, is remarkable. Because of their unsaturated profiles, discrete absorption components can be detected in many of them, which is generally not possible in LMC and Galactic counterparts at such early types, or even in SMC giants and supergiants. On the other hand, an O3 III spectrum in the SMC has a weak C IV but strong N V wind profile, possibly indicating the presence of processed material. Wind terminal velocities are also given and intercompared between similar spectral types in the two galaxies. In general, the terminal velocities of the SMC stars are smaller, in qualitative agreement with the predictions of radiation-driven wind theory. Further analyses in progress will provide atmospheric and wind parameters for these stars, which will be relevant to evolutionary models and the interpretation of composite starburst spectra.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dierickx, Marion I. P.; Loeb, Abraham, E-mail: mdierickx@cfa.harvard.edu, E-mail: aloeb@cfa.harvard.edu
The extensive span of the Sagittarius (Sgr) stream makes it a promising tool for studying the gravitational potential of the Milky Way (MW). Characterizing its stellar kinematics can constrain halo properties and provide a benchmark for the paradigm of galaxy formation from cold dark matter. Accurate models of the disruption dynamics of the Sgr progenitor are necessary to employ this tool. Using a combination of analytic modeling and N -body simulations, we build a new model of the Sgr orbit and resulting stellar stream. In contrast to previous models, we simulate the full infall trajectory of the Sgr progenitor frommore » the time it first crossed the MW virial radius 8 Gyr ago. An exploration of the parameter space of initial phase-space conditions yields tight constraints on the angular momentum of the Sgr progenitor. Our best-fit model is the first to accurately reproduce existing data on the 3D positions and radial velocities of the debris detected 100 kpc away in the MW halo. In addition to replicating the mapped stream, the simulation also predicts the existence of several arms of the Sgr stream extending to hundreds of kiloparsecs. The two most distant stars known in the MW halo coincide with the predicted structure. Additional stars in the newly predicted arms can be found with future data from the Large Synoptic Survey Telescope. Detecting a statistical sample of stars in the most distant Sgr arms would provide an opportunity to constrain the MW potential out to unprecedented Galactocentric radii.« less
Advances in high energy astronomy from space
NASA Technical Reports Server (NTRS)
Giacconi, R.
1972-01-01
Observational techniques, derived through space technology, and examples of what can be learned from X-ray observations of a few astronomical objects are given. Astronomical phenomena observed include the sun, stellar objects, and galactic objects.
VizieR Online Data Catalog: WDMS from LAMOST DR1 (Ren+, 2014)
NASA Astrophysics Data System (ADS)
Ren, J. J.; Rebassa-Mansergas, A.; Luo, A. L.; Zhao, Y. H.; Xiang, M. S.; Liu, X. W.; Zhao, G.; Jin, G.; Zhang, Y.
2014-08-01
The ascii data of all LAMOST DR1 DA/M binary spectra are presented. The complete table of stellar parameters, magnitudes, radial velocities of the LAMOST DA/M binaries are also provided. The stellar parameters table includes the white dwarf stellar parameters (effective temperature, surface gravity and mass), spectral type of the companions and distance when available, however only those with a S/N higher 12 (second column) are considered in the analysis of the paper. Spectral types of -1 imply that no values are available. For completeness, the table also include 181 systems that are not considered by us as DA/M binaries but that show blue and red components in their spectra. These are flagged as 1 in the last column. The magnitudes table includes the SDSS or Xuyi magnitudes (when available) and coordinates. The radial velocities includes the NaI 8183.27,8194.81 absorption doublet and Halpha emission radial velocities and errors, as well as the Heliocentric Julian dates and the telescope used for obtaining the spectra (either LAMOST or SDSS). (4 data files).
FAST: Fitting and Assessment of Synthetic Templates
NASA Astrophysics Data System (ADS)
Kriek, Mariska; van Dokkum, Pieter G.; Labbé, Ivo; Franx, Marijn; Illingworth, Garth D.; Marchesini, Danilo; Quadri, Ryan F.; Aird, James; Coil, Alison L.; Georgakakis, Antonis
2018-03-01
FAST (Fitting and Assessment of Synthetic Templates) fits stellar population synthesis templates to broadband photometry and/or spectra. FAST is compatible with the photometric redshift code EAzY (ascl:1010.052) when fitting broadband photometry; it uses the photometric redshifts derived by EAzY, and the input files (for examply, photometric catalog and master filter file) are the same. FAST fits spectra in combination with broadband photometric data points or simultaneously fits two components, allowing for an AGN contribution in addition to the host galaxy light. Depending on the input parameters, FAST outputs the best-fit redshift, age, dust content, star formation timescale, metallicity, stellar mass, star formation rate (SFR), and their confidence intervals. Though some of FAST's functions overlap with those of HYPERZ (ascl:1108.010), it differs by fitting fluxes instead of magnitudes, allows the user to completely define the grid of input stellar population parameters and easily input photometric redshifts and their confidence intervals, and calculates calibrated confidence intervals for all parameters. Note that FAST is not a photometric redshift code, though it can be used as one.
Galaxy Formation in Sterile Neutrino Dark Matter Models
NASA Astrophysics Data System (ADS)
Menci, N.; Grazian, A.; Lamastra, A.; Calura, F.; Castellano, M.; Santini, P.
2018-02-01
We investigate galaxy formation in models with dark matter (DM) constituted by sterile neutrinos. Given their large parameter space, defined by the combinations of sterile neutrino mass {m}ν and mixing parameter {\\sin }2(2θ ) with active neutrinos, we focus on models with {m}ν =7 {keV}, consistent with the tentative 3.5 keV line detected in several X-ray spectra of clusters and galaxies. We consider (1) two resonant production models with {\\sin }2(2θ )=5 × {10}-11 and {\\sin }2(2θ )=2 × {10}-10, to cover the range of mixing parameters consistent with the 3.5 keV line; (2) two scalar-decay models, representative of the two possible cases characterizing such a scenario: a freeze-in and a freeze-out case. We also consider thermal warm DM with particle mass {m}X=3 {keV}. Using a semianalytic model, we compare the predictions for the different DM scenarios with a wide set of observables. We find that comparing the predicted evolution of the stellar mass function, the abundance of satellites of Milky Way–like galaxies, and the global star formation history of galaxies with observations does not allow us to disentangle the effects of the baryonic physics from those related to the different DM models. On the other hand, the distribution of the stellar-to-halo mass ratios, the abundance of faint galaxies in the UV luminosity function at z≳ 6, and the specific star formation and age distribution of local, low-mass galaxies constitute potential probes for the DM scenarios considered. We discuss how future observations with upcoming facilities will enable us to rule out or to strongly support DM models based on sterile neutrinos.
NASA Astrophysics Data System (ADS)
Carpenter, Kenneth G.; Schrijver, Carolus J.; Karovska, Margarita
2009-04-01
The Stellar Imager (SI) is a space-based, UV/Optical Interferometer (UVOI) designed to enable 0.1 milli-arcsecond (mas) spectral imaging of stellar surfaces and of the Universe in general. It will also probe via asteroseismology flows and structures in stellar interiors. SI’s science focuses on the role of magnetism in the Universe and will revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magneto-hydrodynamically controlled processes, such as accretion, in the Universe. The ultra-sharp images of SI will revolutionize our view of many dynamic astrophysical processes by transforming point sources into extended sources, and snapshots into evolving views. SI is a “Flagship and Landmark Discovery Mission” in the 2005 Heliophysics Roadmap and a potential implementation of the UVOI in the 2006 Science Program for NASA’s Astronomy and Physics Division. We present here the science goals of the SI Mission, a mission architecture that could meet those goals, and the technology development needed to enable this mission. Additional information on SI can be found at: http://hires.gsfc.nasa.gov/si/
NASA Technical Reports Server (NTRS)
Carpenter, Kenneth G.; Schrijver, Carolus J.; Karovska, Margarita
2008-01-01
The Stellar Imager (SI) is a space-based, UV/ Optical Interferometer (UVOI) designed to enable 0.1 milliarcsecond (mas) spectral imaging of stellar surfaces and of the Universe in general. It will also probe via asteroseismology flows and structures in stellar interiors. SI's science focuses on the role of magnetism in the Universe and will revolutionize our understanding, of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magneto-hydrodynamically controlled processes, such as accretion, in the Universe. The ultra-sharp images of SI will revolutionize our view of many dynamic astrophysical processes by transforming point sources into extended sources, and snapshots into evolving views. SI is a "Flagship and Landmark Discovery Mission" in the 2005 Heliophysics Roadmap and a potential implementation of the UVOI in the 2006 Science Program for NASA's Astronomy and Physics Division. We present here the science goals of the SI Mission, a mission architecture that could meet those goals, and the technology development needed to enable this missin. Additional information on SI can be found at: http://hires.gsfc.nasa.gov/si/.
Laboratory Analysis of Silicate Stardust Grains of Diverse Stellar Origins
NASA Technical Reports Server (NTRS)
Nguyen, Ann N.; Keller, Lindsay P.; Nakamura-Messenger, Keiko
2016-01-01
Silicate dust is ubiquitous in a multitude of environments across the cosmos, including evolved oxygen-rich stars, interstellar space, protoplanetary disks, comets, and asteroids. The identification of bona fide silicate stardust grains in meteorites, interplanetary dust particles, micrometeorites, and dust returned from comet Wild 2 by the Stardust spacecraft has revolutionized the study of stars, interstellar space, and the history of dust in the Galaxy. These stardust grains have exotic isotopic compositions that are records of nucleosynthetic processes that occurred in the depths of their now extinct parent stars. Moreover, the chemical compositions and mineralogies of silicate stardust are consequences of the physical and chemical nature of the stellar condensation environment, as well as secondary alteration processes that can occur in interstellar space, the solar nebula, and on the asteroid or comet parent body in which they were incorporated. In this talk I will discuss our use of advanced nano-scale instrumentation in the laboratory to conduct coordinated isotopic, chemical, and mineralogical analyses of silicate stardust grains from AGB stars, supernovae, and novae. By analyzing the isotopic compositions of multiple elements in individual grains, we have been able to constrain their stellar sources, explore stellar nucleosynthetic and mixing processes, and Galactic chemical evolution. Through our mineralogical studies, we have found these presolar silicate grains to have wide-ranging chemical and mineral characteristics. This diversity is the result of primary condensation characteristics and in some cases secondary features imparted by alteration in space and in our Solar System. The laboratory analysis of actual samples of stars directly complements astronomical observations and astrophysical models and offers an unprecedented level of detail into the lifecycles of dust in the Galaxy.
NASA Astrophysics Data System (ADS)
Krot, Alexander
In this work, we consider a statistical theory of gravitating spheroidal bodies to derive and develop the universal stellar law for extrasolar systems. Previously, the statistical theory for a cosmogonic body forming (so-called spheroidal body)has been proposed [1-3]. This theory starts from the conception for forming a spheroidal body inside a gas-dust protoplanetary nebula; it permits us to derive the form of distribution functions, mass density, gravitational potentials and strengths both for immovable and rotating spheroidal bodies as well as to find the distribution function of specific angular momentum[1-3]. If we start from the conception for forming a spheroidal body as a protostar (in particular, proto-Sun) inside a prestellar (presolar) nebula then the derived distribution functions of particle (as well as the mass density of an immovable spheroidal body) characterizes the first stage of evolution: from a prestellar molecular cloud (the presolar nebula) to the forming core of protostar (the proto-Sun) together with its shell as a stellar nebula (the solar nebula). This work derives the equation of state of an ideal stellar substance based on conception of gravitating spheroidal body. Using this equation, we obtain the universal stellar law (USL) for the planetary systems connecting temperature, size and mass of each of stars. This work also considers the Solar corona in the connection with USL. Then it is accounting under calculation of the ratio of temperature of the Solar corona to effective temperature of the Sun’ surfaceand modification of USL. To test justice of the modified USLfor different types of stars, the temperature of stellar corona is estimated. The prediction of parameters of stars is carrying out by means of the modified USL,as well as the Hertzsprung-Russell’s dependence [5-7]is derivedby means of USL directly. This paper also shows that knowledge of some characteristics for multi-planet extrasolar systems refines own parameters of stars. In this connection, comparison with estimations of temperatures using of the regression dependences for multi-planet extrasolar systems [8] testifies the obtained results entirely. References 1. Krot, A.M.:2009, A statistical approach to investigate the formation of the solar system. Chaos, Solitons and Fractals41(3), 1481-1500. 2. Krot, A.M.:2012, A models of forming planets and distribution of planetary distances and orbits in the solar system based on the statistical theory of spheroidal bodies. In:Solar System: Structure, Formation and Exploration, ch.9 (Ed. by Matteo de Rossi). New York, Nova Science Publishers, pp. 201-264. - ISBN: 978-1-62100-057-0. 3. Krot, A. M.:2012, A statistical theory of formation of gravitating cosmogonicbodies. Minsk,Bel. Navuka, 4. 448 p. - ISBN 978-985-08-1442-5 [monograph in Russian]. 5. Eddington, A.S.: 1916,On the radiative equilibrium of the stars.Mon. Not. Roy. Astron. Soc.84 (7), 525-528. 6. Jeans, J.: 1929, Astronomy and cosmogony. Cambridge, University Press. 7. Chandrasekhar, S.:1939, An introduction to the study of stellar structure.Cambridge, University Press. 8. Pintr, P., Peřinová, V., Lukš, A., Pathak, A.:2013, Statistical and regression analyses of detected extrasolar systems. Planetary and Space Science, 75(1), 37-45.
Measuring stellar granulation during planet transits
NASA Astrophysics Data System (ADS)
Chiavassa, A.; Caldas, A.; Selsis, F.; Leconte, J.; Von Paris, P.; Bordé, P.; Magic, Z.; Collet, R.; Asplund, M.
2017-01-01
Context. Stellar activity and convection-related surface structures might cause bias in planet detection and characterization that use these transits. Surface convection simulations help to quantify the granulation signal. Aims: We used realistic three-dimensional (3D) radiative hydrodynamical (RHD) simulations from the Stagger grid and synthetic images computed with the radiative transfer code Optim3D to model the transits of three prototype planets: a hot Jupiter, a hot Neptune, and a terrestrial planet. Methods: We computed intensity maps from RHD simulations of the Sun and a K-dwarf star at different wavelength bands from optical to far-infrared that cover the range of several ground- and space-based telescopes which observe exoplanet transits. We modeled the transit using synthetic stellar-disk images obtained with a spherical-tile imaging method and emulated the temporal variation of the granulation intensity generating random images covering a granulation time-series of 13.3 h. We measured the contribution of the stellar granulation on the light curves during the planet transit. Results: We identified two types of granulation noise that act simultaneously during the planet transit: (I) the intrinsic change in the granulation pattern with timescale (e.g., 10 min for solar-type stars assumed in this work) is smaller than the usual planet transit ( hours as in our prototype cases); and (II) the fact that the transiting planet occults isolated regions of the photosphere that differ in local surface brightness as a result of convective-related surface structures. First, we showed that our modeling approach returns granulation timescale fluctuations that are comparable with what has been observed for the Sun. Then, our statistical approach shows that the granulation pattern of solar and K-dwarf-type stars have a non-negligible effect of the light curve depth during the transit, and, consequentially on the determination of the planet transit parameters such as the planet radius (up to 0.90% and 0.47% for terrestrial and gaseous planets, respectively). We also showed that larger (or smaller) orbital inclination angles with respect to values corresponding to transit at the stellar center display a shallower transit depth and longer ingress and egress times, but also granulation fluctuations that are correlated to the center-to-limb variation: they increase (or decrease) the value of the inclination, which amplifies the fluctuations. The granulation noise appears to be correlated among the different wavelength ranges either in the visible or in the infrared regions. Conclusions: The prospects for planet detection and characterization with transiting methods are excellent with access to large amounts of data for stars. The granulation has to be considered as an intrinsic uncertainty (as a result of stellar variability) on the precise measurements of exoplanet transits of planets. The full characterization of the granulation is essential for determining the degree of uncertainty on the planet parameters. In this context, the use of 3D RHD simulations is important to measure the convection-related fluctuations. This can be achieved by performing precise and continuous observations of stellar photometry and radial velocity, as we explained with RHD simulations, before, after, and during the transit periods.
Study of charged stellar structures in f(R, T) gravity
NASA Astrophysics Data System (ADS)
Sharif, M.; Siddiqa, Aisha
2017-12-01
This paper explores charged stellar structures whose pressure and density are related through polytropic equation of state ( p=ωρ^{σ}; ω is polytropic constant, p is pressure, ρ denotes density and σ is polytropic exponent) in the scenario of f(R,T) gravity (where R is the Ricci scalar and T is the trace of energy-momentum tensor). The Einstein-Maxwell field equations are solved together with the hydrostatic equilibrium equation for f(R,T)=R+2λ T where λ is the coupling constant, also called model parameter. We discuss different features of such configurations (like pressure, mass and charge) using graphical behavior for two values of σ. It is found that the effects of model parameter λ on different quantities remain the same for both cases. The energy conditions are satisfied and stellar configurations are stable in each case.
Optical metrology for Starlight Separated Spacecraft Stellar Interferometry Mission
NASA Technical Reports Server (NTRS)
Dubovitsky, S.; Lay, O. P.; Peters, R. D.; Abramovici, A.; Asbury, C. G.; Kuhnert, A. C.; Mulder, J. L.
2002-01-01
We describe a high-precision inter-spacecraft metrology system designed for NASA 's StarLight mission, a space-based separated-spacecraft stellar interferometer. It consists of dual-target linear metrology, based on a heterodyne interferometer with carrier phase modulation, and angular metrology designed to sense the pointing of the laser beam and provides bearing information. The dual-target operation enables one metrology beam to sense displacement of two targets independently. We present the current design, breadboard implementation of the Metrology Subsystem in a stellar interferometer testbed and the present state of development of flight qualifiable subsystem components.
NASA Astrophysics Data System (ADS)
Wheeler, J. Craig
2014-08-01
Preface; 1. Setting the stage: star formation and hydrogen burning in single stars; 2. Stellar death: the inexorable grip of gravity; 3. Dancing with stars: binary stellar evolution; 4. Accretion disks: flat stars; 5. White Dwarfs: quantum dots; 6. Supernovae: stellar catastrophes; 7. Supernova 1987A: lessons and enigmas; 8. Neutron stars: atoms with attitude; 9. Black holes in theory: into the abyss; 10. Black holes in fact: exploring the reality; 11. Gamma-ray bursts, black holes and the universe: long, long ago and far, far away; 12. Supernovae and the universe; 13. Worm holes and time machines: tunnels in space and time; 14. Beyond: the frontiers; Index.
NASA Astrophysics Data System (ADS)
Wheeler, J. Craig
2007-01-01
Preface; 1. Setting the stage: star formation and hydrogen burning in single stars; 2. Stellar death: the inexorable grip of gravity; 3. Dancing with stars: binary stellar evolution; 4. Accretion disks: flat stars; 5. White Dwarfs: quantum dots; 6. Supernovae: stellar catastrophes; 7. Supernova 1987A: lessons and enigmas; 8. Neutron stars: atoms with attitude; 9. Black holes in theory: into the abyss; 10. Black holes in fact: exploring the reality; 11. Gamma-ray bursts, black holes and the universe: long, long ago and far, far away; 12. Supernovae and the universe; 13. Worm holes and time machines: tunnels in space and time; 14. Beyond: the frontiers; Index.
The shape of dark matter haloes - IV. The structure of stellar discs in edge-on galaxies
NASA Astrophysics Data System (ADS)
Peters, S. P. C.; de Geyter, G.; van der Kruit, P. C.; Freeman, K. C.
2017-01-01
We present optical and near-infrared archival observations of eight edge-on galaxies. These observations are used to model the stellar content of each galaxy using the FITSKIRT software package. Using FITSKIRT, we can self-consistently model a galaxy in each band simultaneously while treating for dust. This allows us to measure accurately both the scalelength and scaleheight of the stellar disc, plus the shape parameters of the bulge. By combining these data with the previously reported integrated magnitudes of each galaxy, we can infer their true luminosities. We have successfully modelled seven out of the eight galaxies in our sample. We find that stellar discs can be modelled correctly, but we have not been able to model the stellar bulge reliably. Our sample consists for the most part of slowly rotating galaxies and we find that the average dust layer is much thicker than is reported for faster rotating galaxies.
Modular Spectral Inference Framework Applied to Young Stars and Brown Dwarfs
NASA Technical Reports Server (NTRS)
Gully-Santiago, Michael A.; Marley, Mark S.
2017-01-01
In practice, synthetic spectral models are imperfect, causing inaccurate estimates of stellar parameters. Using forward modeling and statistical inference, we derive accurate stellar parameters for a given observed spectrum by emulating a grid of precomputed spectra to track uncertainties. Spectral inference as applied to brown dwarfs re: Synthetic spectral models (Marley et al 1996 and 2014) via the newest grid spans a massive multi-dimensional grid applied to IGRINS spectra, improving atmospheric models for JWST. When applied to young stars(10Myr) with large starpots, they can be measured spectroscopically, especially in the near-IR with IGRINS.
VizieR Online Data Catalog: Seismology and spectroscopy of CoRoGEE red giants (Anders+, 2017)
NASA Astrophysics Data System (ADS)
Anders, F.; Chiappini, C.; Rodrigues, T. S.; Miglio, A.; Montalban, J.; Mosser, B.; Girardi, L.; Valentini, M.; Noels, A.; Morel, T.; Johnson, J. A.; Schultheis, M.; Baudin, F.; de Assis Peralta, R.; Hekker, S.; Themessl, N.; Kallinger, T.; Garcia, R. A.; Mathur, S.; Baglin, A.; Santiago, B. X.; Martig, M.; Minchev, I.; Steinmetz, M.; da Costa, L. N.; Maia, M. A. G.; Allende Prieto, C.; Cunha, K.; Beers, T. C.; Epstein, C.; Garcia Perez, A. E.; Garcia-Hernandez, D. A.; Harding, P.; Holtzman, J.; Majewski, S. R.; Meszaros, Sz.; Nidever, D.; Pan, K.; Pinsonneault, M.; Schiavon, R. P.; Schneider, D. P.; Shetrone, M. D.; Stassun, K.; Zamora, O.; Zasowski, G.
2016-08-01
For the 606 successfully observed stars, asteroseismic parameters from CoRoT, spectroscopic data from APOGEE (SDSS DR12), wide-band photometry from OBSCAT, APASS, SDSS, 2MASS, and WISE are presented. Additional information from the EXODAT archive, stellar parameters from PARAM (Rodrigues et al. 2014MNRAS.445.2758R), cross-matches to the APOGEE red-clump catalogue (Bovy et al. 2014ApJ...790..127B), the UCAC-4 catalogue (Zacharias et al., 2013, Cat. I/322), and derived stellar kinematics are also included. (2 data files).
Programs and Perspectives of Visible Long Baseline Interferometry VEGA/CHARA
NASA Astrophysics Data System (ADS)
Mourard, D.; Nardetto, N.; Ligi, R.; Perraut, K.
VEGA/CHARA is a visible spectro-interferometer installed on the CHARA Array at Mount Wilson Observatory. Combining high spectral resolution (6,000 or 30,000) and high angular resolution (0.3 mas), VEGA/CHARA opens a wide class of astrophysical topics in the stellar physics domain. Circumstellar environments and fundamental parameters with a high precision could be studied. We will present a review of recent results and discuss the programs currently engaged in the field of pulsating stars and more generally for the fundamental stellar parameters. Details could be found at http://www-n.oca.eu/vega/en/publications/index.htm.
The GALAH Survey: Second Data Release
NASA Astrophysics Data System (ADS)
Buder, Sven; Asplund, Martin; Duong, Ly; Kos, Janez; Lind, Karin; Ness, Melissa K.; Sharma, Sanjib; Bland-Hawthorn, Joss; Casey, Andrew R.; De Silva, Gayandhi M.; D'Orazi, Valentina; Freeman, Ken C.; Lewis, Geraint F.; Lin, Jane; Martell, Sarah L.; Schlesinger, Katharine J.; Simpson, Jeffrey D.; Zucker, Daniel B.; Zwitter, Tomaž; Amarsi, Anish M.; Anguiano, Borja; Carollo, Daniela; Casagrande, Luca; Čotar, Klemen; Cottrell, Peter L.; Da Costa, Gary; Gao, Xudong D.; Hayden, Michael R.; Horner, Jonathan; Ireland, Michael J.; Kafle, Prajwal R.; Munari, Ulisse; Nataf, David M.; Nordlander, Thomas; Stello, Dennis; Ting, Yuan-Sen; Traven, Gregor; Watson, Fred; Wittenmyer, Robert A.; Wyse, Rosemary F. G.; Yong, David; Zinn, Joel C.; Žerjal, Maruša
2018-05-01
The Galactic Archaeology with HERMES (GALAH) survey is a large-scale stellar spectroscopic survey of the Milky Way, designed to deliver complementary chemical information to a large number of stars covered by the Gaia mission. We present the GALAH second public data release (GALAH DR2) containing 342,682 stars. For these stars, the GALAH collaboration provides stellar parameters and abundances for up to 23 elements to the community. Here we present the target selection, observation, data reduction and detailed explanation of how the spectra were analysed to estimate stellar parameters and element abundances. For the stellar analysis, we have used a multi-step approach. We use the physics-driven spectrum synthesis of Spectroscopy Made Easy (SME) to derive stellar labels (Teff, log g, [Fe/H], [X/Fe], vmic, vsin i, A_{K_S}) for a representative training set of stars. This information is then propagated to the whole sample with the data-driven method of The Cannon. Special care has been exercised in the spectral synthesis to only consider spectral lines that have reliable atomic input data and are little affected by blending lines. Departures from local thermodynamic equilibrium (LTE) are considered for several key elements, including Li, O, Na, Mg, Al, Si, and Fe, using 1D MARCS stellar atmosphere models. Validation tests including repeat observations, Gaia benchmark stars, open and globular clusters, and K2 asteroseismic targets lend confidence to our methods and results. Combining the GALAH DR2 catalogue with the kinematic information from Gaia will enable a wide range of Galactic Archaeology studies, with unprecedented detail, dimensionality, and scope.
ERIC Educational Resources Information Center
Stubbs, Harry C.
1979-01-01
Reviews six new children's science books. Five of the reviewed books deal separately with the topics of the space shuttle project, cosmology and stellar evolution, space, forest fires, and the electromagnetic spectrum; one is a book of geography puzzles. (GT)
Atmospheric stellar parameters from cross-correlation functions
NASA Astrophysics Data System (ADS)
Malavolta, L.; Lovis, C.; Pepe, F.; Sneden, C.; Udry, S.
2017-08-01
The increasing number of spectra gathered by spectroscopic sky surveys and transiting exoplanet follow-up has pushed the community to develop automated tools for atmospheric stellar parameters determination. Here we present a novel approach that allows the measurement of temperature (Teff), metallicity ([Fe/H]) and gravity (log g) within a few seconds and in a completely automated fashion. Rather than performing comparisons with spectral libraries, our technique is based on the determination of several cross-correlation functions (CCFs) obtained by including spectral features with different sensitivity to the photospheric parameters. We use literature stellar parameters of high signal-to-noise (SNR), high-resolution HARPS spectra of FGK main-sequence stars to calibrate Teff, [Fe/H] and log g as a function of CCF parameters. Our technique is validated using low-SNR spectra obtained with the same instrument. For FGK stars we achieve a precision of σ _{{T_eff}} = 50 K, σlog g = 0.09 dex and σ _{{{[Fe/H]}}} =0.035 dex at SNR = 50, while the precision for observation with SNR ≳ 100 and the overall accuracy are constrained by the literature values used to calibrate the CCFs. Our approach can easily be extended to other instruments with similar spectral range and resolution or to other spectral range and stars other than FGK dwarfs if a large sample of reference stars is available for the calibration. Additionally, we provide the mathematical formulation to convert synthetic equivalent widths to CCF parameters as an alternative to direct calibration. We have made our tool publicly available.
An Extension of the EDGES Survey: Stellar Populations in Dark Matter Halos
NASA Astrophysics Data System (ADS)
van Zee, Liese
The formation and evolution of galactic disks is one of the key questions in extragalactic astronomy today. We plan to use archival data from GALEX, Spitzer, and WISE to investigate the growth and evolution of the stellar component in a statistical sample of nearby galaxies. Data covering a broad wavelength range are critical for measurement of current star formation activity, stellar populations, and stellar distributions in nearby galaxies. In order to investigate the timescales associated with the growth of galactic disks, we will (1) investigate the structure of the underlying stellar distribution, (2) measure the ratio of current-to-past star formation activity as a function of radius, and (3) investigate the growth of the stellar disk as a function of baryon fraction and total dynamical mass. The proposed projects leverage the existing deep wide field-of-view near infrared imaging observations obtained with the Spitzer Space Telescope as part of the EDGES Survey, a Cycle 8 Exploration Science Program. The proposed analysis of multiwavelength imaging observations of a well-defined statistical sample will place strong constraints on hierarchical models of galaxy formation and evolution and will further our understanding of the stellar component of nearby galaxies.
NASA Astrophysics Data System (ADS)
Zanotti, Olindo; Rezzolla, Luciano; Font, José A.
2003-05-01
We present general relativistic hydrodynamics simulations of constant specific angular momentum tori orbiting a Schwarzschild black hole. These tori are expected to form as a result of stellar gravitational collapse, binary neutron star merger or disruption, can reach very high rest-mass densities and behave effectively as neutron stars but with a toroidal topology (i.e. `toroidal neutron stars'). Here our attention is focused on the dynamical response of these objects to axisymmetric perturbations. We show that upon the introduction of perturbations, these systems either become unstable to the runaway instability or exhibit a regular oscillatory behaviour, resulting in a quasi-periodic variation of the accretion rate as well as of the mass quadrupole. The latter, in particular, is responsible for the emission of intense gravitational radiation for which the signal-to-noise ratio at the detector is comparable to or larger than the typical one expected in stellar-core collapse, making these new sources of gravitational waves potentially detectable. We discuss a systematic investigation of the parameter space in both the linear and non-linear regimes, providing estimates of how the gravitational radiation emitted depends on the mass of the torus and on the strength of the perturbation.
Massive Black Hole Binary Mergers and their Gravitational Waves
NASA Astrophysics Data System (ADS)
Kelley, Luke Zoltan; Blecha, Laura; Hernquist, Lars; Sesana, Alberto
2017-01-01
Gravitational Waves (GW) from stellar-mass BH binaries have recently been observed by LIGO, but GW from their supermassive counterparts have remained elusive. Recent upper limits from Pulsar Timing Arrays (PTA) have excluded significant portions of the predicted parameter space. Most previous studies, however, have assumed that most or all Massive Black Hole (MBH) Binaries merge effectively and quickly. I will present results derived—for the first time—from cosmological, hydrodynamic simulations with self-consistently coevolved populations of MBH particles. We perform post-processing simulations of the MBH merger process, using realistic galactic environments, including models of dynamical friction, stellar scattering, gas drag from a circumbinary disk, and GW emission—with no assumptions of merger fractions or timescales. We find that despite only the most massive systems merging effectively (and still on gigayear timescales), the GW Background is only just below current detection limits with PTA. Our models suggest that PTA should make detections within the next decade, and will provide information about MBH binary populations, environments, and even eccentricities. I’ll also briefly discuss prospects for observations of dual-AGN, and the possible importance of MBH triples in the merger process.
Analysis of Error Sources in STEP Astrometry
NASA Astrophysics Data System (ADS)
Liu, S. Y.; Liu, J. C.; Zhu, Z.
2017-11-01
The space telescope Search for Terrestrial Exo-Planets (STEP) employed a method of sub-pixel technology which ensures that the astrometric accuracy of telescope on the focal plane is at the order of 1 μas. This kind of astrometric precision is promising to detect earth-like planets beyond the solar system. In this paper, we analyze the influence of some key factors, including errors in the stellar proper motions, parallax, the optical center of the system, and the velocities and positions of the satellite, on the detection of exo-planets. We propose a relative angular distance method to evaluate the non-linear terms in stellar distance caused by possibly existing exo-planets. This method could avoid the direct influence of measured errors of the position and proper motion of the reference stars. Supposing that there are eight reference stars in the same field of view and a star with a planet system, we simulate their five-year observational data, and use the least square method to get the parameters of the planet orbit. Our results show that the method is robust to detect terrestrial planets based on the 1 μas precision of STEP.
NASA Astrophysics Data System (ADS)
Pasha, Imad; Kriek, Mariska; Johnson, Benjamin; Conroy, Charlie
2018-01-01
Using a novel, MCMC-driven inference framework, we have modeled the stellar and dust emission of 32 composite spectral energy distributions (SEDs), which span from the near-ultraviolet (NUV) to far infrared (FIR). The composite SEDs were originally constructed in a previous work from the photometric catalogs of the NEWFIRM Medium-Band Survey, in which SEDs of individual galaxies at 0.5 < z < 2.0 were iteratively matched and sorted into types based on their rest-frame UV-to-NIR photometry. In a subsequent work, MIPS 24 μm was added for each SED type, and in this work, PACS 100 μm, PACS160 μm, SPIRE 25 μm, and SPIRE 350 μm photometry have been added to extend the range of the composite SEDs into the FIR. We fit the composite SEDs with the Prospector code, which utilizes an MCMC sampling to explore the parameter space for models created by the Flexible Stellar Population Synthesis (FSPS) code, in order to investigate how specific star formation rate (sSFR), dust temperature, and other galaxy properties vary with SED type.This work is also being used to better constrain the SPS models within FSPS.
NASA Astrophysics Data System (ADS)
Ivanov, P. B.; Papaloizou, J. C. B.
2011-10-01
In this paper we extend the theory of close encounters of a giant planet on a parabolic orbit with a central star developed in our previous work (Ivanov and Papaloizou in MNRAS 347:437, 2004; MNRAS 376:682, 2007) to include the effects of tides induced on the central star. Stellar rotation and orbits with arbitrary inclination to the stellar rotation axis are considered. We obtain results both from an analytic treatment that incorporates first order corrections to normal mode frequencies arising from stellar rotation and numerical treatments that are in satisfactory agreement over the parameter space of interest. These results are applied to the initial phase of the tidal circularisation problem. We find that both tides induced in the star and planet can lead to a significant decrease of the orbital semi-major axis for orbits having periastron distances smaller than 5-6 stellar radii with tides in the star being much stronger for retrograde orbits compared to prograde orbits. Assuming that combined action of dynamic and quasi-static tides could lead to the total circularisation of orbits this corresponds to observed periods up to 4-5 days. We use the simple Skumanich law to characterise the rotational history of the star supposing that the star has its rotational period equal to one month at the age of 5 Gyr. The strength of tidal interactions is characterised by circularisation time scale, t ev , which is defined as a typical time scale of evolution of the planet's semi-major axis due to tides. This is considered as a function of orbital period P obs , which the planet obtains after the process of tidal circularisation has been completed. We find that the ratio of the initial circularisation time scales corresponding to prograde and retrograde orbits, respectively, is of order 1.5-2 for a planet of one Jupiter mass having P obs ~ 4 days. The ratio grows with the mass of the planet, being of order five for a five Jupiter mass planet with the same P orb . Note, however, this result might change for more realistic stellar rotation histories. Thus, the effect of stellar rotation may provide a bias in the formation of planetary systems having planets on close orbits around their host stars, as a consequence of planet-planet scattering, which favours systems with retrograde orbits. The results reported in the paper may also be applied to the problem of tidal capture of stars in young stellar clusters.
The VIMOS Ultra Deep Survey. Luminosity and stellar mass dependence of galaxy clustering at z 3
NASA Astrophysics Data System (ADS)
Durkalec, A.; Le Fèvre, O.; Pollo, A.; Zamorani, G.; Lemaux, B. C.; Garilli, B.; Bardelli, S.; Hathi, N.; Koekemoer, A.; Pforr, J.; Zucca, E.
2018-04-01
We present a study of the dependence of galaxy clustering on luminosity and stellar mass in the redshift range 2 < z < 3.5 using 3236 galaxies with robust spectroscopic redshifts from the VIMOS Ultra Deep Survey (VUDS), covering a total area of 0.92 deg2. We measured the two-point real-space correlation function wp(rp) for four volume-limited subsamples selected by stellar mass and four volume-limited subsamples selected by MUV absolute magnitude. We find that the scale-dependent clustering amplitude r0 significantly increases with increasing luminosity and stellar mass. For the least luminous galaxies (MUV < -19.0), we measured a correlation length r0 = 2.87 ± 0.22 h-1 Mpc and slope γ = 1.59 ± 0.07, while for the most luminous (MUV < -20.2) r0 = 5.35 ± 0.50 h-1 Mpc and γ = 1.92 ± 0.25. These measurements correspond to a strong relative bias between these two subsamples of Δb/b* = 0.43. Fitting a five-parameter halo occupation distribution (HOD) model, we find that the most luminous (MUV < -20.2) and massive (M⋆ > 1010 h-1 M⊙) galaxies occupy the most massive dark matter haloes with ⟨Mh⟩ = 1012.30 h-1 M⊙. Similar to the trends observed at lower redshift, the minimum halo mass Mmin depends on the luminosity and stellar mass of galaxies and grows from Mmin = 109.73 h-1 M⊙ to Mmin = 1011.58 h-1 M⊙ from the faintest to the brightest among our galaxy sample, respectively. We find the difference between these halo masses to be much more pronounced than is observed for local galaxies of similar properties. Moreover, at z 3, we observe that the masses at which a halo hosts, on average, one satellite and one central galaxy is M1 ≈ 4Mmin over all luminosity ranges, which is significantly lower than observed at z 0; this indicates that the halo satellite occupation increases with redshift. The luminosity and stellar mass dependence is also reflected in the measurements of the large-scale galaxy bias, which we model as bg,HOD (>L) = 1.92 + 25.36(L/L*)7.01. We conclude our study with measurements of the stellar-to-halo mass ratio (SHMR). We observe a significant model-observation discrepancy for low-mass galaxies, suggesting a higher than expected star formation efficiency of these galaxies. Based on data obtained with the European Southern Observatory Very Large Telescope, Paranal, Chile, under Large Programme 185.A-0791.
Diverse stellar haloes in nearby Milky Way mass disc galaxies
NASA Astrophysics Data System (ADS)
Harmsen, Benjamin; Monachesi, Antonela; Bell, Eric F.; de Jong, Roelof S.; Bailin, Jeremy; Radburn-Smith, David J.; Holwerda, Benne W.
2017-04-01
We have examined the resolved stellar populations at large galactocentric distances along the minor axis (from 10 kpc up to between 40 and 75 kpc), with limited major axis coverage, of six nearby highly inclined Milky Way (MW) mass disc galaxies using Hubble Space Telescope data from the Galaxy haloes, Outer discs, Substructure, Thick discs, and Star clusters (GHOSTS) survey. We select red giant branch stars to derive stellar halo density profiles. The projected minor axis density profiles can be approximated by power laws with projected slopes of -2 to -3.7 and a diversity of stellar halo masses of 1-6 × 109 M⊙, or 2-14 per cent of the total galaxy stellar masses. The typical intrinsic scatter around a smooth power-law fit is 0.05-0.1 dex owing to substructure. By comparing the minor and major axis profiles, we infer projected axis ratios c/a at ˜25 kpc between 0.4and0.75. The GHOSTS stellar haloes are diverse, lying between the extremes charted out by the (rather atypical) haloes of the MW and M31. We find a strong correlation between the stellar halo metallicities and the stellar halo masses. We compare our results with cosmological models, finding good agreement between our observations and accretion-only models where the stellar haloes are formed by the disruption of dwarf satellites. In particular, the strong observed correlation between stellar halo metallicity and mass is naturally reproduced. Low-resolution hydrodynamical models have unrealistically high stellar halo masses. Current high-resolution hydrodynamical models appear to predict stellar halo masses somewhat higher than observed but with reasonable metallicities, metallicity gradients, and density profiles.
Measuring the mass distribution in stellar systems
NASA Astrophysics Data System (ADS)
Tremaine, Scott
2018-06-01
One of the fundamental tasks of dynamical astronomy is to infer the distribution of mass in a stellar system from a snapshot of the positions and velocities of its stars. The usual approach to this task (e.g. Schwarzschild's method) involves fitting parametrized forms of the gravitational potential and the phase-space distribution to the data. We review the practical and conceptual difficulties in this approach and describe a novel statistical method for determining the mass distribution that does not require determining the phase-space distribution of the stars. We show that this new estimator out-performs other distribution-free estimators for the harmonic and Kepler potentials.
A Study of Imaging Interferometer Simulators
NASA Technical Reports Server (NTRS)
Allen, Ronald J.
2002-01-01
Several new space science mission concepts under development at NASA-GSFC for astronomy are intended to carry out synthetic imaging using Michelson interferometers or direct (Fizeau) imaging with sparse apertures. Examples of these mission concepts include the Stellar Imager (SI), the Space Infrared Interferometric Telescope (SPIRIT), the Submillimeter Probe of the Evolution of Cosmic Structure (SPECS), and the Fourier-Kelvin Stellar Interferometer (FKSI). We have been developing computer-based simulators for these missions. These simulators are aimed at providing a quantitative evaluation of the imaging capabilities of the mission by modelling the performance on different realistic targets in terms of sensitivity, angular resolution, and dynamic range. Both Fizeau and Michelson modes of operation can be considered. Our work is based on adapting a computer simulator called imSIM, which was initially written for the Space Interferometer Mission in order to simulate the imaging mode of new missions such as those listed. In a recent GSFC-funded study we have successfully written a preliminary version of a simulator SISIM for the Stellar Imager and carried out some preliminary studies with it. In a separately funded study we have also been applying these methods to SPECS/SPIRIT.
NASA Astrophysics Data System (ADS)
Michel, Eric; Belkacem, Kevin; Samadi, Reza; Assis Peralta, Raphael de; Renié, Christian; Abed, Mahfoudh; Lin, Guangyuan; Christensen-Dalsgaard, Jørgen; Houdek, Günter; Handberg, Rasmus; Gizon, Laurent; Burston, Raymond; Nagashima, Kaori; Pallé, Pere; Poretti, Ennio; Rainer, Monica; Mistò, Angelo; Panzera, Maria Rosa; Roth, Markus
2017-10-01
The growing amount of seismic data available from space missions (SOHO, CoRoT, Kepler, SDO,…) but also from ground-based facilities (GONG, BiSON, ground-based large programmes…), stellar modelling and numerical simulations, creates new scientific perspectives such as characterizing stellar populations in our Galaxy or planetary systems by providing model-independent global properties of stars such as mass, radius, and surface gravity within several percent accuracy, as well as constraints on the age. These applications address a broad scientific community beyond the solar and stellar one and require combining indices elaborated with data from different databases (e.g. seismic archives and ground-based spectroscopic surveys). It is thus a basic requirement to develop a simple and effcient access to these various data resources and dedicated tools. In the framework of the European project SpaceInn (FP7), several data sources have been developed or upgraded. The Seismic Plus Portal has been developed, where synthetic descriptions of the most relevant existing data sources can be found, as well as tools allowing to localize existing data for given objects or period and helping the data query. This project has been developed within the Virtual Observatory (VO) framework. In this paper, we give a review of the various facilities and tools developed within this programme. The SpaceInn project (Exploitation of Space Data for Innovative Helio- and Asteroseismology) has been initiated by the European Helio- and Asteroseismology Network (HELAS).
NASA Astrophysics Data System (ADS)
Harmanec, Petr; Prša, Andrej
2011-08-01
The increasing precision of astronomical observations of stars and stellar systems is gradually getting to a level where the use of slightly different values of the solar mass, radius, and luminosity, as well as different values of fundamental physical constants, can lead to measurable systematic differences in the determination of basic physical properties. An equivalent issue with an inconsistent value of the speed of light was resolved by adopting a nominal value that is constant and has no error associated with it. Analogously, we suggest that the systematic error in stellar parameters may be eliminated by (1) replacing the solar radius R⊙ and luminosity L⊙ by the nominal values that are by definition exact and expressed in SI units: and ; (2) computing stellar masses in terms of M⊙ by noting that the measurement error of the product GM⊙ is 5 orders of magnitude smaller than the error in G; (3) computing stellar masses and temperatures in SI units by using the derived values and ; and (4) clearly stating the reference for the values of the fundamental physical constants used. We discuss the need and demonstrate the advantages of such a paradigm shift.
Extreme value statistics for two-dimensional convective penetration in a pre-main sequence star
NASA Astrophysics Data System (ADS)
Pratt, J.; Baraffe, I.; Goffrey, T.; Constantino, T.; Viallet, M.; Popov, M. V.; Walder, R.; Folini, D.
2017-08-01
Context. In the interior of stars, a convectively unstable zone typically borders a zone that is stable to convection. Convective motions can penetrate the boundary between these zones, creating a layer characterized by intermittent convective mixing, and gradual erosion of the density and temperature stratification. Aims: We examine a penetration layer formed between a central radiative zone and a large convection zone in the deep interior of a young low-mass star. Using the Multidimensional Stellar Implicit Code (MUSIC) to simulate two-dimensional compressible stellar convection in a spherical geometry over long times, we produce statistics that characterize the extent and impact of convective penetration in this layer. Methods: We apply extreme value theory to the maximal extent of convective penetration at any time. We compare statistical results from simulations which treat non-local convection, throughout a large portion of the stellar radius, with simulations designed to treat local convection in a small region surrounding the penetration layer. For each of these situations, we compare simulations of different resolution, which have different velocity magnitudes. We also compare statistical results between simulations that radiate energy at a constant rate to those that allow energy to radiate from the stellar surface according to the local surface temperature. Results: Based on the frequency and depth of penetrating convective structures, we observe two distinct layers that form between the convection zone and the stable radiative zone. We show that the probability density function of the maximal depth of convective penetration at any time corresponds closely in space with the radial position where internal waves are excited. We find that the maximal penetration depth can be modeled by a Weibull distribution with a small shape parameter. Using these results, and building on established scalings for diffusion enhanced by large-scale convective motions, we propose a new form for the diffusion coefficient that may be used for one-dimensional stellar evolution calculations in the large Péclet number regime. These results should contribute to the 321D link.
Stellar Inertial Navigation Workstation
NASA Technical Reports Server (NTRS)
Johnson, W.; Johnson, B.; Swaminathan, N.
1989-01-01
Software and hardware assembled to support specific engineering activities. Stellar Inertial Navigation Workstation (SINW) is integrated computer workstation providing systems and engineering support functions for Space Shuttle guidance and navigation-system logistics, repair, and procurement activities. Consists of personal-computer hardware, packaged software, and custom software integrated together into user-friendly, menu-driven system. Designed to operate on IBM PC XT. Applied in business and industry to develop similar workstations.
Abundance anomalies in RGB stars as probes of galactic chemical evolution
NASA Astrophysics Data System (ADS)
Charbonnel, C.; Palacios, A.
During the last two decades, extensive spectroscopic studies have revealed chemical abundance anomalies exhibited by low mass RGB stars which bring a new light on some important aspects of stellar nucleosynthesis and chemical evolution. We underline the differences between field and globular cluster populations and discuss their possible origin both in terms of primordial pollution and stellar internal nucleosynthesis and mixing. We suggest some tests to help to understand the influence of metallicity and of a dense environment on abundance anomalies in connection with the second parameter problem and with the stellar yields.
The sagittarius tidal stream and the shape of the galactic stellar halo
NASA Astrophysics Data System (ADS)
Newby, Matthew T.
The stellar halo that surrounds our Galaxy contains clues to understanding galaxy formation, cosmology, stellar evolution, and the nature of dark matter. Gravitationally disrupted dwarf galaxies form tidal streams, which roughly trace orbits through the Galactic halo. The Sagittarius (Sgr) dwarf tidal debris is the most dominant of these streams, and its properties place important constraints on the distribution of mass (including dark matter) in the Galaxy. Stars not associated with substructures form the "smooth" component of the stellar halo, the origin of which is still under investigation. Characterizing halo substructures such as the Sgr stream and the smooth halo provides valuable information on the formation history and evolution of our galaxy, and places constraints on cosmological models. This thesis is primarily concerned with characterizing the 3-dimensional stellar densities of the Sgr tidal debris system and the smooth stellar halo, using data from the Sloan Digital Sky Survey (SDSS). F turnoff stars are used to infer distances, as they are relatively bright, numerous, and distributed about a single intrinsic brightness (magnitude). The inherent spread in brightnesses of these stars is overcome through the use of the recently-developed technique of statistical photometric parallax, in which the bulk properties of a stellar population are used to create a probability distribution for a given star's distance. This was used to build a spatial density model for the smooth stellar halo and tidal streams. The free parameters in this model are then fit to SDSS data with a maximum likelihood technique, and the parameters are optimized by advanced computational methods. Several computing platforms are used in this study, including the RPI SUR Bluegene and the Milkyway home volunteer computing project. Fits to the Sgr stream in 18 SDSS data stripes were performed, and a continuous density profile is found for the major Sgr stream. The stellar halo is found to be strongly oblate (flattening parameter q=0.53). A catalog of stars consistent with this density profile is produced as a template for matching future disruption models. The results of this analysis favor a description of the Sgr debris system that includes more than one dwarf galaxy progenitor, with the major streams above and below the Galactic disk being separate substructures. Preliminary results for the minor tidal stream characterizations are presented and discussed. Additionally, a more robust characterization of halo turnoff star brightnesses is performed, and it is found that increasing color errors with distance result in a previously unaccounted for incompleteness in star counts as the SDSS magnitude limit is approached. These corrections are currently in the process of being implemented on MilkyWay home.
NASA Astrophysics Data System (ADS)
Themeßl, N.; Hekker, S.; Southworth, J.; Beck, P. G.; Pavlovski, K.; Tkachenko, A.; Angelou, G. C.; Ball, W. H.; Barban, C.; Corsaro, E.; Elsworth, Y.; Handberg, R.; Kallinger, T.
2018-05-01
The internal structures and properties of oscillating red-giant stars can be accurately inferred through their global oscillation modes (asteroseismology). Based on 1460 days of Kepler observations we perform a thorough asteroseismic study to probe the stellar parameters and evolutionary stages of three red giants in eclipsing binary systems. We present the first detailed analysis of individual oscillation modes of the red-giant components of KIC 8410637, KIC 5640750 and KIC 9540226. We obtain estimates of their asteroseismic masses, radii, mean densities and logarithmic surface gravities by using the asteroseismic scaling relations as well as grid-based modelling. As these red giants are in double-lined eclipsing binaries, it is possible to derive their independent dynamical masses and radii from the orbital solution and compare it with the seismically inferred values. For KIC 5640750 we compute the first spectroscopic orbit based on both components of this system. We use high-resolution spectroscopic data and light curves of the three systems to determine up-to-date values of the dynamical stellar parameters. With our comprehensive set of stellar parameters we explore consistencies between binary analysis and asteroseismic methods, and test the reliability of the well-known scaling relations. For the three red giants under study, we find agreement between dynamical and asteroseismic stellar parameters in cases where the asteroseismic methods account for metallicity, temperature and mass dependence as well as surface effects. We are able to attain agreement from the scaling laws in all three systems if we use Δνref, emp = 130.8 ± 0.9 μHz instead of the usual solar reference value.
NASA Astrophysics Data System (ADS)
Boylan-Kolchin, Michael
2018-06-01
Metal-poor globular clusters (GCs) are both numerous and ancient, which indicates that they may be important contributors to ionizing radiation in the reionization era. Starting from the observed number density and stellar mass function of old GCs at z = 0, I compute the contribution of GCs to ultraviolet luminosity functions (UVLFs) in the high-redshift Universe (10 ≳ z ≳ 4). Even under absolutely minimal assumptions - no disruption of GCs and no reduction in GC stellar mass from early times to the present - GC star formation contributes non-negligibly to the UVLF at luminosities that are accessible to the Hubble Space Telescope (HST; M1500 ≈ -17). If the stellar masses of GCs were significantly higher in the past, as is predicted by most models explaining GC chemical anomalies, then GCs dominate the UV emission from many galaxies in existing deep-field observations. On the other hand, it is difficult to reconcile observed UVLFs with models requiring stellar masses at birth that exceed present-day stellar masses by more than a factor of 5. The James Webb Space Telescope (JWST) will be able to directly detect individual GCs at z ˜ 6 in essentially all bright galaxies, and many galaxies below the knee of the UVLF, for most of the scenarios considered here. The properties of a subset of high-redshift sources with -19 ≲ M_{1500} ≲ -14 in HST lensing fields indicate that they may actually be GCs in formation.
NASA Technical Reports Server (NTRS)
McWilliams, Sean T.; Lang, Ryan N.; Baker, John G.; Thorpe, James Ira
2011-01-01
We investigate the capability of LISA to measure the sky position of equal-mass, nonspinning black hole binaries, including for the first time the entire inspiral-merger-ringdown signal, the effect of the LISA orbits, and the complete three-channel LISA response. For an ensemble of systems near the peak of LISA's sensitivity band, with total rest mass of 2 x l0(exp 6) Stellar Mass at a redshift of z = 1 with random orientations and sky positions, we find median sky localization errors of approximately approx. 3 arcminutes. This is comparable to the field of view of powerful electromagnetic telescopes, such as the James Webb Space Telescope, that could be used to search for electromagnetic signals associated with merging black holes. We investigate the way in which parameter errors decrease with measurement time, focusing specifically on the additional information provided during the merger-ringdown segment of the signal. We find that this information improves all parameter estimates directly, rather than through diminishing correlations with any subset of well-determined parameters.
PERIOD ESTIMATION FOR SPARSELY SAMPLED QUASI-PERIODIC LIGHT CURVES APPLIED TO MIRAS
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Shiyuan; Huang, Jianhua Z.; Long, James
2016-12-01
We develop a nonlinear semi-parametric Gaussian process model to estimate periods of Miras with sparsely sampled light curves. The model uses a sinusoidal basis for the periodic variation and a Gaussian process for the stochastic changes. We use maximum likelihood to estimate the period and the parameters of the Gaussian process, while integrating out the effects of other nuisance parameters in the model with respect to a suitable prior distribution obtained from earlier studies. Since the likelihood is highly multimodal for period, we implement a hybrid method that applies the quasi-Newton algorithm for Gaussian process parameters and search the period/frequencymore » parameter space over a dense grid. A large-scale, high-fidelity simulation is conducted to mimic the sampling quality of Mira light curves obtained by the M33 Synoptic Stellar Survey. The simulated data set is publicly available and can serve as a testbed for future evaluation of different period estimation methods. The semi-parametric model outperforms an existing algorithm on this simulated test data set as measured by period recovery rate and quality of the resulting period–luminosity relations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sand, D. J.; Crnojević, D.; Seth, A. C.
We analyze the optical counterpart to the ultra-compact high velocity cloud AGC 226067, utilizing imaging taken with the Advanced Camera for Surveys (ACS) on the Hubble Space Telescope . The color–magnitude diagram of the main body of AGC 226067 reveals an exclusively young stellar population, with an age of ∼7–50 Myr, and is consistent with a metallicity of [Fe/H] ∼ −0.3 as previous work has measured via H ii region spectroscopy. Additionally, the color–magnitude diagram is consistent with a distance of D ≈ 17 Mpc, suggesting an association with the Virgo cluster. A secondary stellar system located ∼1.′6 (∼8 kpc)more » away in projection has a similar stellar population. The lack of an old red giant branch (≳5 Gyr) is contrasted with a serendipitously discovered Virgo dwarf in the ACS field of view (Dw J122147+132853), and the total diffuse light from AGC 226067 is consistent with the luminosity function of the resolved ∼7–50 Myr stellar population. The main body of AGC 226067 has a M {sub V} = −11.3 ± 0.3, or M {sub stars} = 5.4 ± 1.3 × 10{sup 4} M {sub ⊙} given the stellar population. We searched 20 deg{sup 2} of imaging data adjacent to AGC 226067 in the Virgo Cluster, and found two similar stellar systems dominated by a blue stellar population, far from any massive galaxy counterpart—if this population has star-formation properties that are similar to those of AGC 226067, it implies ∼0.1 M {sub ⊙} yr{sup −1} in Virgo intracluster star formation. Given its unusual stellar population, AGC 226067 is likely a stripped remnant and is plausibly the result of compressed gas from the ram pressure stripped M86 subgroup (∼350 kpc away in projection) as it falls into the Virgo Cluster.« less
NASA Astrophysics Data System (ADS)
Sand, David J.
2017-01-01
As part of a comprehensive archival search for optical counterparts to ultra-compact high-velocity clouds (UCHVCs), our team has uncovered five Local Volume dwarf galaxies, two of which were not previously known. Among these was AGC 226067, also known as ALFALFA-Dw1, which appeared to be made up of several HI and blue optical clumps based on ground-based data, with at least one HII region. Here we present Hubble Space Telescope Advanced Camera for Surveys data of AGC 226067. The data show that AGC 226067 is made up of a ~7-30 Myr old stellar population with a [Fe/H]~-0.6. Further, there is no evidence for an old stellar population associated with the system, down to a limit of MV>-8. Based on this and the position of AGC 226067 in the outskirts of the M86 subgroup of the Virgo cluster we present various arguments for the origin of this strange stellar system.
Catalyzed D-D stellarator reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheffield, John; Spong, Donald A.
The advantages of using the catalyzed deuterium-deuterium (D-D) approach for a fusion reactor—lower and less energetic neutron flux and no need for a tritium breeding blanket—have been evaluated in previous papers, giving examples of both tokamak and stellarator reactors. This paper presents an update for the stellarator example, taking account of more recent empirical transport scaling results and design studies of lower-aspect-ratio stellarators. We use a modified version of the Generic Magnetic Fusion Reactor model to cost a stellarator-type reactor. Recently, this model has been updated to reflect the improved science and technology base and costs in the magnetic fusionmore » program. Furthermore, it is shown that an interesting catalyzed D-D, stellarator power plant might be possible if the following parameters could be achieved: R/ ≈ 4, required improvement factor to ISS04 scaling, F R = 0.9 to 1.15, ≈ 8.0% to 11.5%, Z eff ≈ 1.45 plus a relativistic temperature correction, fraction of fast ions lost ≈ 0.07, B m ≈ 14 to 16 T, and R ≈ 18 to 24 m.« less
Catalyzed D-D stellarator reactor
Sheffield, John; Spong, Donald A.
2016-05-12
The advantages of using the catalyzed deuterium-deuterium (D-D) approach for a fusion reactor—lower and less energetic neutron flux and no need for a tritium breeding blanket—have been evaluated in previous papers, giving examples of both tokamak and stellarator reactors. This paper presents an update for the stellarator example, taking account of more recent empirical transport scaling results and design studies of lower-aspect-ratio stellarators. We use a modified version of the Generic Magnetic Fusion Reactor model to cost a stellarator-type reactor. Recently, this model has been updated to reflect the improved science and technology base and costs in the magnetic fusionmore » program. Furthermore, it is shown that an interesting catalyzed D-D, stellarator power plant might be possible if the following parameters could be achieved: R/ ≈ 4, required improvement factor to ISS04 scaling, F R = 0.9 to 1.15, ≈ 8.0% to 11.5%, Z eff ≈ 1.45 plus a relativistic temperature correction, fraction of fast ions lost ≈ 0.07, B m ≈ 14 to 16 T, and R ≈ 18 to 24 m.« less
Stellar and Planetary Parameters for K2 's Late-type Dwarf Systems from C1 to C5
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martinez, Arturo O.; Crossfield, Ian J. M.; Peacock, Sarah
The NASA K2 mission uses photometry to find planets transiting stars of various types. M dwarfs are of high interest since they host more short-period planets than any other type of main-sequence star and transiting planets around M dwarfs have deeper transits compared to other main-sequence stars. In this paper, we present stellar parameters from K and M dwarfs hosting transiting planet candidates discovered by our team. Using the SOFI spectrograph on the European Southern Observatory’s New Technology Telescope, we obtained R ≈ 1000 J -, H -, and K -band (0.95–2.52 μ m) spectra of 34 late-type K2 planetmore » and candidate planet host systems and 12 bright K4–M5 dwarfs with interferometrically measured radii and effective temperatures. Out of our 34 late-type K2 targets, we identify 27 of these stars as M dwarfs. We measure equivalent widths of spectral features, derive calibration relations using stars with interferometric measurements, and estimate stellar radii, effective temperatures, masses, and luminosities for the K2 planet hosts. Our calibrations provide radii and temperatures with median uncertainties of 0.059 R {sub ⊙} (16.09%) and 160 K (4.33%), respectively. We then reassess the radii and equilibrium temperatures of known and candidate planets based on our spectroscopically derived stellar parameters. Since a planet’s radius and equilibrium temperature depend on the parameters of its host star, our study provides more precise planetary parameters for planets and candidates orbiting late-type stars observed with K2 . We find a median planet radius and an equilibrium temperature of approximately 3 R {sub ⊕} and 500 K, respectively, with several systems (K2-18b and K2-72e) receiving near-Earth-like levels of incident irradiation.« less
NASA Astrophysics Data System (ADS)
Mortier, A.; Sousa, S. G.; Adibekyan, V. Zh.; Brandão, I. M.; Santos, N. C.
2014-12-01
Context. Precise stellar parameters (effective temperature, surface gravity, metallicity, stellar mass, and radius) are crucial for several reasons, amongst which are the precise characterization of orbiting exoplanets and the correct determination of galactic chemical evolution. The atmospheric parameters are extremely important because all the other stellar parameters depend on them. Using our standard equivalent-width method on high-resolution spectroscopy, good precision can be obtained for the derived effective temperature and metallicity. The surface gravity, however, is usually not well constrained with spectroscopy. Aims: We use two different samples of FGK dwarfs to study the effect of the stellar surface gravity on the precise spectroscopic determination of the other atmospheric parameters. Furthermore, we present a straightforward formula for correcting the spectroscopic surface gravities derived by our method and with our linelists. Methods: Our spectroscopic analysis is based on Kurucz models in local thermodynamic equilibrium, performed with the MOOG code to derive the atmospheric parameters. The surface gravity was either left free or fixed to a predetermined value. The latter is either obtained through a photometric transit light curve or derived using asteroseismology. Results: We find first that, despite some minor trends, the effective temperatures and metallicities for FGK dwarfs derived with the described method and linelists are, in most cases, only affected within the errorbars by using different values for the surface gravity, even for very large differences in surface gravity, so they can be trusted. The temperatures derived with a fixed surface gravity continue to be compatible within 1 sigma with the accurate results of the infrared flux method (IRFM), as is the case for the unconstrained temperatures. Secondly, we find that the spectroscopic surface gravity can easily be corrected to a more accurate value using a linear function with the effective temperature. Tables 1 and 2 are available in electronic form at http://www.aanda.org
NASA Astrophysics Data System (ADS)
Byler, Nell
2017-08-01
Stellar Population Synthesis (SPS) models are routinely used to interpret extragalactic observations at all redshifts. Currently, the dominant source of uncertainty in SPS modeling lies in the degeneracies associated with synthesizing and fitting complex stellar populations to observed galaxy spectra. To remedy this, we propose an empirical calibration of SPS models using resolved stellar population observations from Hubble Space Telescope (HST) to constrain the stellar masses, ages, and star formation histories (SFHs) in regions matched to 2D spectroscopic observations from MaNGA. We will take advantage of the state of the art observations from the Panchromatic Hubble Andromeda Treasury (PHAT), which maps the dust content, history of chemical enrichment, and history of star formation across the disk of M31 in exquisite detail. Recently, we have coupled these observations with an unprecedented, spatially-resolved suite of IFU observations from MaNGA. With these two comprehensive data sets we can use the true underlying stellar properties from PHAT to properly interpret the aperture-matched integrated spectra from MaNGA. Our MaNGA observations target 20 regions within the PHAT footprint that fully sample the available range in metallicity, SFR, dust content, and stellar density. This transformative dataset will establish a comprehensive link between resolved stellar populations and the inferred properties of unresolved stellar populations across astrophysically important environments. The net data product will be a library of galaxy spectra matched to the true underlying stellar properties, a comparison set that has lasting legacy value for the extragalactic community.
Theory of Stellar Oscillations
NASA Astrophysics Data System (ADS)
Cunha, Margarida S.
In recent years, astronomers have witnessed major progresses in the field of stellar physics. This was made possible thanks to the combination of a solid theoretical understanding of the phenomena of stellar pulsations and the availability of a tremendous amount of exquisite space-based asteroseismic data. In this context, this chapter reviews the basic theory of stellar pulsations, considering small, adiabatic perturbations to a static, spherically symmetric equilibrium. It starts with a brief discussion of the solar oscillation spectrum, followed by the setting of the theoretical problem, including the presentation of the equations of hydrodynamics, their perturbation, and a discussion of the functional form of the solutions. Emphasis is put on the physical properties of the different types of modes, in particular acoustic (p-) and gravity (g-) modes and their propagation cavities. The surface (f-) mode solutions are also discussed. While not attempting to be comprehensive, it is hoped that the summary presented in this chapter addresses the most important theoretical aspects that are required for a solid start in stellar pulsations research.
X-ray insights into star and planet formation.
Feigelson, Eric D
2010-04-20
Although stars and planets form in cold environments, X-rays are produced in abundance by young stars. This review examines the implications of stellar X-rays for star and planet formation studies, highlighting the contributions of NASA's (National Aeronautics and Space Administration) Chandra X-ray Observatory. Seven topics are covered: X-rays from protostellar outflow shocks, X-rays from the youngest protostars, the stellar initial mass function, the structure of young stellar clusters, the fate of massive stellar winds, X-ray irradiation of protoplanetary disks, and X-ray flare effects on ancient meteorites. Chandra observations of star-forming regions often show dramatic star clusters, powerful magnetic reconnection flares, and parsec-scale diffuse plasma. X-ray selected samples of premain sequence stars significantly advance studies of star cluster formation, the stellar initial mass function, triggered star-formation processes, and protoplanetary disk evolution. Although X-rays themselves may not play a critical role in the physics of star formation, they likely have important effects on protoplanetary disks by heating and ionizing disk gases.
Comparisons between stellar models and reliability of the theoretical models
NASA Astrophysics Data System (ADS)
Lebreton, Yveline; Montalbán, Josefina
2010-07-01
The high quality of the asteroseismic data provided by space missions such as CoRoT (Michel et al. in The CoRoT Mission, ESA Spec. Publ. vol. 1306, p. 39, 2006) or expected from new operating missions such as Kepler (Christensen-Dalsgaard et al. in Commun. Asteroseismol. 150:350, 2007) requires the capacity of stellar evolution codes to provide accurate models whose numerical precision is better than the expected observational errors (i.e. below 0.1 μHz on the frequencies in the case of CoRoT). We present a review of some thorough comparisons of stellar models produced by different evolution codes, involved in the CoRoT/ESTA activities (Monteiro in Evolution and Seismic Tools for Stellar Astrophysics, 2009). We examine the numerical aspects of the computations as well as the effects of different implementations of the same physics on the global quantities, physical structure and oscillations properties of the stellar models. We also discuss a few aspects of the input physics.
Optimization of the current potential for stellarator coils
NASA Astrophysics Data System (ADS)
Boozer, Allen H.
2000-02-01
Stellarator plasma confinement devices have no continuous symmetries, which makes the design of appropriate coils far more subtle than for axisymmetric devices such as tokamaks. The modern method for designing coils for stellarators was developed by Peter Merkel [P. Merkel, Nucl. Fusion 27, 867 (1987)]. Although his method has yielded a number of successful stellarator designs, Merkel's method has a systematic tendency to give coils with a larger current than that required to produce a stellarator plasma with certain properties. In addition, Merkel's method does not naturally lead to a coil set with the flexibility to produce a number of interesting plasma configurations. The issues of coil efficiency and flexibility are addressed in this paper by a new method of optimizing the current potential, the first step in Merkel's method. The new method also allows the coil design to be based on a freer choice for the plasma-coil separation and to be constrained so space is preserved for plasma access.
Probing the Dusty Stellar Populations of the Local Volume Galaxies with JWST/MIRI
NASA Astrophysics Data System (ADS)
Jones, Olivia C.; Meixner, Margaret; Justtanont, Kay; Glasse, Alistair
2017-05-01
The Mid-Infrared Instrument (MIRI) for the James Webb Space Telescope (JWST) will revolutionize our understanding of infrared stellar populations in the Local Volume. Using the rich Spitzer-IRS spectroscopic data set and spectral classifications from the Surveying the Agents of Galaxy Evolution (SAGE)-Spectroscopic survey of more than 1000 objects in the Magellanic Clouds, the Grid of Red Supergiant and Asymptotic Giant Branch Star Model (grams), and the grid of YSO models by Robitaille et al., we calculate the expected flux densities and colors in the MIRI broadband filters for prominent infrared stellar populations. We use these fluxes to explore the JWST/MIRI colors and magnitudes for composite stellar population studies of Local Volume galaxies. MIRI color classification schemes are presented; these diagrams provide a powerful means of identifying young stellar objects, evolved stars, and extragalactic background galaxies in Local Volume galaxies with a high degree of confidence. Finally, we examine which filter combinations are best for selecting populations of sources based on their JWST colors.
X-ray insights into star and planet formation
Feigelson, Eric D.
2010-01-01
Although stars and planets form in cold environments, X-rays are produced in abundance by young stars. This review examines the implications of stellar X-rays for star and planet formation studies, highlighting the contributions of NASA’s (National Aeronautics and Space Administration) Chandra X-ray Observatory. Seven topics are covered: X-rays from protostellar outflow shocks, X-rays from the youngest protostars, the stellar initial mass function, the structure of young stellar clusters, the fate of massive stellar winds, X-ray irradiation of protoplanetary disks, and X-ray flare effects on ancient meteorites. Chandra observations of star-forming regions often show dramatic star clusters, powerful magnetic reconnection flares, and parsec-scale diffuse plasma. X-ray selected samples of premain sequence stars significantly advance studies of star cluster formation, the stellar initial mass function, triggered star-formation processes, and protoplanetary disk evolution. Although X-rays themselves may not play a critical role in the physics of star formation, they likely have important effects on protoplanetary disks by heating and ionizing disk gases. PMID:20404197
Optimization of the current potential for stellarator coils
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boozer, Allen H.; Max-Planck-Institut fuer Plasmaphysik, EURATOM-Association, D-85748 Garching,
2000-02-01
Stellarator plasma confinement devices have no continuous symmetries, which makes the design of appropriate coils far more subtle than for axisymmetric devices such as tokamaks. The modern method for designing coils for stellarators was developed by Peter Merkel [P. Merkel, Nucl. Fusion 27, 867 (1987)]. Although his method has yielded a number of successful stellarator designs, Merkel's method has a systematic tendency to give coils with a larger current than that required to produce a stellarator plasma with certain properties. In addition, Merkel's method does not naturally lead to a coil set with the flexibility to produce a number ofmore » interesting plasma configurations. The issues of coil efficiency and flexibility are addressed in this paper by a new method of optimizing the current potential, the first step in Merkel's method. The new method also allows the coil design to be based on a freer choice for the plasma-coil separation and to be constrained so space is preserved for plasma access. (c) 2000 American Institute of Physics.« less
Suppressed Far-UV Stellar Activity and Low Planetary Mass Loss in the WASP-18 System
NASA Astrophysics Data System (ADS)
Fossati, L.; Koskinen, T.; France, K.; Cubillos, P. E.; Haswell, C. A.; Lanza, A. F.; Pillitteri, I.
2018-03-01
WASP-18 hosts a massive, very close-in Jupiter-like planet. Despite its young age (<1 Gyr), the star presents an anomalously low stellar activity level: the measured {log}{R}HK}{\\prime } activity parameter lies slightly below the basal level; there is no significant time-variability in the {log}{R}HK}{\\prime } value; there is no detection of the star in the X-rays. We present results of far-UV observations of WASP-18 obtained with COS on board of Hubble Space Telescope aimed at explaining this anomaly. From the star’s spectral energy distribution, we infer the extinction (E(B-V) ≈ 0.01 mag) and then the interstellar medium (ISM) column density for a number of ions, concluding that ISM absorption is not the origin of the anomaly. We measure the flux of the four stellar emission features detected in the COS spectrum (C II, C III, C IV, Si IV). Comparing the C II/C IV flux ratio measured for WASP-18 with that derived from spectra of nearby stars with known age, we see that the far-UV spectrum of WASP-18 resembles that of old (>5 Gyr), inactive stars, in stark contrast with its young age. We conclude that WASP-18 has an intrinsically low activity level, possibly caused by star–planet tidal interaction, as suggested by previous studies. Re-scaling the solar irradiance reference spectrum to match the flux of the Si IV line, yields an XUV integrated flux at the planet orbit of 10.2 erg s‑1 cm‑2. We employ the rescaled XUV solar fluxes to models of the planetary upper atmosphere, deriving an extremely low thermal mass-loss rate of 10‑20 M J Gyr‑1. For such high-mass planets, thermal escape is not energy limited, but driven by Jeans escape. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from MAST at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program #13859. Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under programme ID 092.D-0587.
Dust spectral energy distributions of nearby galaxies: an insight from the Herschel Reference Survey
NASA Astrophysics Data System (ADS)
Ciesla, L.; Boquien, M.; Boselli, A.; Buat, V.; Cortese, L.; Bendo, G. J.; Heinis, S.; Galametz, M.; Eales, S.; Smith, M. W. L.; Baes, M.; Bianchi, S.; De Looze, I.; di Serego Alighieri, S.; Galliano, F.; Hughes, T. M.; Madden, S. C.; Pierini, D.; Rémy-Ruyer, A.; Spinoglio, L.; Vaccari, M.; Viaene, S.; Vlahakis, C.
2014-05-01
Although it accounts only for a small fraction of the baryonic mass, dust has a profound impact on the physical processes at play in galaxies. Thus, to understand the evolution of galaxies, it is essential not only to characterize dust properties per se, but also in relation to global galaxy properties. To do so, we derive the dust properties of galaxies in a volume limited, K-band selected sample, the Herschel Reference Survey (HRS). We gather infrared photometric data from 8 μm to 500 μm from Spitzer, WISE, IRAS, and Herschel for all of the HRS galaxies. Draine & Li (2007, ApJ, 663, 866) models are fit to the data from which the stellar contribution has been carefully removed. We find that our photometric coverage is sufficient to constrain all of the parameters of the Draine & Li models and that a strong constraint on the 20-60 μm range is mandatory to estimate the relative contribution of the photo-dissociation regions to the infrared spectral energy distribution (SED). The SED models tend to systematically underestimate the observed 500 μm flux densities, especially for low-mass systems. We provide the output parameters for all of the galaxies, i.e., the minimum intensity of the interstellar radiation field, the fraction of polycyclic aromatic hydrocarbon (PAH), the relative contribution of PDR and evolved stellar population to the dust heating, the dust mass, and the infrared luminosity. For a subsample of gas-rich galaxies, we analyze the relations between these parameters and the main integrated properties of galaxies, such as stellar mass, star formation rate, infraredluminosity, metallicity, Hα and H-band surface brightness, and the far-ultraviolet attenuation. A good correlation between the fraction of PAH and the metallicity is found, implying a weakening of the PAH emission in galaxies with low metallicities and, thus, low stellar masses. The intensity of the diffuse interstellar radiation field and the H-band and Hα surface brightnesses are correlated, suggesting that the diffuse dust component is heated by both the young stars in star-forming regions and the diffuse evolved population. We use these results to provide a new set of infrared templates calibrated with Herschel observations on nearby galaxies and a mean SED template to provide the z = 0 reference for cosmological studies. For the same purpose, we place our sample on the SFR - M∗ diagram. The templates are compared to the most popular infrared SED libraries, enlightening a large discrepancy between all of them in the 20-100 μm range. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Table 4 and appendices are available in electronic form at http://www.aanda.org
NASA Astrophysics Data System (ADS)
Li, Cheng; Wang, Lixin; Jing, Y. P.
2013-01-01
It was recently suggested that compared to its stellar mass (M *), the central stellar velocity dispersion (σ*) of a galaxy might be a better indicator for its host dark matter halo mass. Here we test this hypothesis by estimating the dark matter halo mass for central galaxies in groups as a function of M * and σ*. For this we have estimated the redshift-space cross-correlation function (CCF) between the central galaxies at given M * and σ* and a reference galaxy sample, from which we determine both the projected CCF, wp (rp ), and the velocity dispersion profile. A halo mass is then obtained from the average velocity dispersion within the virial radius. At fixed M *, we find very weak or no correlation between halo mass and σ*. In contrast, strong mass dependence is clearly seen even when σ* is limited to a narrow range. Our results thus firmly demonstrate that the stellar mass of central galaxies is still a good (if not the best) indicator for dark matter halo mass, better than the stellar velocity dispersion. The dependence of galaxy clustering on σ* at fixed M *, as recently discovered by Wake et al., may be attributed to satellite galaxies, for which the tidal stripping occurring within halos has stronger effect on stellar mass than on central stellar velocity dispersion.
NASA Astrophysics Data System (ADS)
Kallinger, T.; Weiss, W. W.; Beck, P. G.; Pigulski, A.; Kuschnig, R.; Tkachenko, A.; Pakhomov, Y.; Ryabchikova, T.; Lüftinger, T.; Palle, , P. L.; Semenko, E.; Handler, G.; Koudelka, O.; Matthews, J. M.; Moffat, A. F. J.; Pablo, H.; Popowicz, A.; Rucinski, S.; Wade, G. A.; Zwintz, K.
2017-07-01
Context. Stellar rotation affects the transport of chemical elements and angular momentum and is therefore a key process during stellar evolution, which is still not fully understood. This is especially true for massive OB-type stars, which are important for the chemical enrichment of the Universe. It is therefore important to constrain the physical parameters and internal angular momentum distribution of massive OB-type stars to calibrate stellar structure and evolution models. Stellar internal rotation can be probed through asteroseismic studies of rotationally split non radial oscillations but such results are still quite rare, especially for stars more massive than the Sun. The slowly pulsating B9V star HD 201433 is known to be part of a single-lined spectroscopic triple system, with two low-mass companions orbiting with periods of about 3.3 and 154 days. Aims: Our goal is to measure the internal rotation profile of HD 201433 and investigate the tidal interaction with the close companion. Methods: We used probabilistic methods to analyse the BRITE - Constellation photometry and radial velocity measurements, to identify a representative stellar model, and to determine the internal rotation profile of the star. Results: Our results are based on photometric observations made by BRITE - Constellation and the Solar Mass Ejection Imager on board the Coriolis satellite, high-resolution spectroscopy, and more than 96 yr of radial velocity measurements. We identify a sequence of nine frequency doublets in the photometric time series, consistent with rotationally split dipole modes with a period spacing of about 5030 s. We establish that HD 201433 is in principle a solid-body rotator with a very slow rotation period of 297 ± 76 days. Tidal interaction with the inner companion has, however, significantly accelerated the spin of the surface layers by a factor of approximately one hundred. The angular momentum transfer onto the surface of HD 201433 is also reflected by the statistically significant decrease of the orbital period of about 0.9 s during the last 96 yr. Conclusions: Combining the asteroseismic inferences with the spectroscopic measurements and the orbital analysis of the inner binary system, we conclude that tidal interactions between the central SPB star and its inner companion have almost circularised the orbit. They have, however, not yet aligned all spins of the system and have just begun to synchronise rotation. Based on data collected by the BRITE - Constellation satellite mission, built, launched and operated thanks to support from the Austrian Aeronautics and Space Agency and the University of Vienna, the Canadian Space Agency (CSA), and the Foundation for Polish Science & Technology (FNiTP MNiSW) and National Science Centre (NCN), the Hermes spectrograph mounted on the 1.2 m Mercator Telescope at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias, and the Solar Mass Ejection Imager, which is a joint project of the University of California San Diego, Boston College, the University of Birmingham (UK), and the Air Force Research Laboratory.
Orbital Elements and Stellar Parameters of the Active Binary UX Arietis
NASA Astrophysics Data System (ADS)
Hummel, C. A.; Monnier, J. D.; Roettenbacher, R. M.; Torres, G.; Henry, G. W.; Korhonen, H.; Beasley, A.; Schaefer, G. H.; Turner, N. H.; Ten Brummelaar, T.; Farrington, C. D.; Sturmann, J.; Sturmann, L.; Baron, F.; Kraus, S.
2017-08-01
Stellar activity observed as large surface spots, radio flares, or emission lines is often found in binary systems. UX Arietis exhibits these signs of activity, originating on the K0 subgiant primary component. Our aim is to resolve the binary, measure the orbital motion, and provide accurate stellar parameters such as masses and luminosities to aid in the interpretation of the observed phenomena. Using the CHARA six-telescope optical long-baseline array on Mount Wilson, California, we obtained amplitudes and phases of the interferometric visibility on baselines up to 330 m in length, resolving the two components of the binary. We reanalyzed archival Center for Astrophysics spectra to disentangle the binary component spectra and the spectrum of the third component, which was resolved by speckle interferometry. We also obtained new spectra with the Nordic Optical Telescope, and we present new photometric data that we use to model stellar surface spot locations. Both interferometric visibilities and spectroscopic radial velocities are modeled with a spotted primary stellar surface using the Wilson-Devinney code. We fit the orbital elements to the apparent orbit and radial velocity data to derive the distance (52.1 ± 0.8 pc) and stellar masses ({M}{{P}}=1.30+/- 0.06 {M}⊙ , {M}{{S}}=1.14+/- 0.06 {M}⊙ ). The radius of the primary can be determined to be {R}{{P}}=5.6+/- 0.1 {R}⊙ and that of the secondary to be {R}{{S}}=1.6+/- 0.2 {R}⊙ . The equivalent spot coverage of the primary component was found to be 62% with an effective temperature 20% below that of the unspotted surface.
NASA Astrophysics Data System (ADS)
Roeck, Benjamin
2015-12-01
The detailed study of the different stellar populations which can be observed in galaxies is one of the most promising methods to shed light on the evolutionary histories of galaxies. So far, stellar population analysis has been carried out mainly in the optical wavelength range. The infrared spectral range, on the other hand, has been poorly studied so far, although it provides very important insights, particularly into the cooler stellar populations which are present in galaxies. However, in the last years, space telescopes like the Spitzer Space Telescope or the Wide-field Infrared Survey Explorer and instruments like the spectrograph X-Shooter on the Very Large Telescope have collected more and more photometric and spectroscopic data in this wavelength range. In order to analyze these observations, it is necessary to dispose of reliable and accurate stellar population models in the infrared. Only a small number of stellar population models in the infrared exist in the literature. They are mostly based on theoretical stellar libraries and very often cover only the near-infrared wavelength range at a rather low resolution. Hence, we developed new single-burst stellar population models between 8150 and 50000Å which are exclusively based on 180 spectra from the empirical Infrared Telescope Facility stellar library. We computed our single stellar population models for two different sets of isochrones and various types of initial mass functions of different slopes. Since the stars of the Infrared Telescope Facility library present only a limited coverage of the stellar atmospheric parameter space, our models are of sufficient quality only for ages larger than 1 Gyr and metallicities between [Fe/H] = 0.40 and 0.26. By combining our single stellar population models in the infrared with the extended medium-resolution Isaac Newton Telescope library of empirical spectra in the optical spectral range, we created the first single stellar population models covering the whole optical and infrared wavelength range between 3500 and 50000Å which are almost completely based on spectra of observed stars (apart from two gaps which were fitted with theoretical stellar spectra) . We analyze the behaviour of the near-infrared (J - K) and the Spitzer ([3.6]-[4.5]) colour calculated from our models. For ages older than 3 Gyr, both colours depend only slightly on age and metallicity. However, for younger ages, both colours become redder which is caused by the asymptotic giant branch stars contributing significantly to the light in the infrared at ages between 0.1 and 3 Gyr. Furthermore, we find a satisfactory agreement between the optical and near-infrared colours measured from our models and the colours observed from various samples of globular clusters and early-type x galaxies. However, our model predictions are only able to reproduce correctly the Spitzer ([3.6]-[4.5]) colours of older, more massive galaxies that resemble a single-burst population. Younger, less massive and more metal-poor galaxies show redder colours than our models. This mismatch can be explained by a more extended star formation history of these galaxies which includes a metal-poor or/and young population. The Spitzer ([3.6]-[4.5]) colours derived from our models also agree very well with those from most other models available in this wavelength range as long as they also correctly take into account a strong CO absorption band situated at 4.5 μm. The model predictions for colours in the near-infrared, such as (J - K), differ more between the different sets of models, depending on the underlying prescriptions for the asymptotic giant branch stellar evolutionary phase. Compared to other authors, we adopt only a moderate contribution of asymptotic giant branch stars to our models. Our stellar population models allow us also to determine mass-to-light ratios in different infrared bands. Consequently, we can confirm that the massto- light ratio determined in the Spitzer [3.6] μm band changes much less as a function of both age and metallicity than it does in the optical bands. However, it shows a non-negligible sensitivity to the initial mass function. Our models are of sufficient resolution to measure line strength indices up to the L-band. Hence, we redefined many indices in the near-infrared and identified new indicators for age, metallicity and the slope of the initial mass function. The equivalent widths of many indices which we computed from our stellar population models cannot be used to trace the large indices measured from observed early-type galaxies. While in the literature, this disagreement between the predicted and the observed line strength indices is usually attributed to a much enhanced contribution of asymptotic giant branch stars, we present a number of evidences which are at odds with such a view. Therefore, we propose an alternative scenario. We argue that a different abundance pattern in the early-type galaxies compared to that of the Milky Way which is characterized by an enhanced [C/Fe] ratio is able to account for this mismatch. The differences in the carbon enhancement between the galaxies can be attributed to the duration of their episodes of star formation which seem to be driven by galactic environment. In denser environments like in galaxy clusters, star formation takes place on a shorter characteristic timescale than in isolated galaxies. Hence, contrary to the situation in clusters, in isolated galaxies, the massive expulsion of carbon into the interstellar medium occurs before star formation has finished. Therefore, in the latter ones carbon is incorporated into the new generation of stars leading to enhanced carbon abundances with respect to cluster galaxies of a similar mass. We show that if we additionally include the effect of a bottom-heavy initial mass function in the case of the most massive early-type galaxies and assume enhanced abundance ratios for some other elements like sodium, we are able to simultaneously reproduce all of the studied line strength indices. Our analysis also shows that an active galactic nucleus does not seem to have any impact on the line strength indices which we measure for central stellar populations.
Stellar Parameters, Chemical composition and Models of chemical evolution
NASA Astrophysics Data System (ADS)
Mishenina, T.; Pignatari, M.; Côté, B.; Thielemann, F.-K.; Soubiran, C.; Basak, N.; Gorbaneva, T.; Korotin, S. A.; Kovtyukh, V. V.; Wehmeyer, B.; Bisterzo, S.; Travaglio, C.; Gibson, B. K.; Jordan, C.; Paul, A.; Ritter, C.; Herwig, F.
2018-04-01
We present an in-depth study of metal-poor stars, based high resolution spectra combined with newly released astrometric data from Gaia, with special attention to observational uncertainties. The results are compared to those of other studies, including Gaia benchmark stars. Chemical evolution models are discussed, highlighting few puzzles that are still affecting our understanding of stellar nucleosynthesis and of the evolution of our Galaxy.
S stars in the Gaia era: stellar parameters and nucleosynthesis
NASA Astrophysics Data System (ADS)
van Eck, Sophie; Karinkuzhi, Drisya; Shetye, Shreeya; Jorissen, Alain; Goriely, Stéphane; Siess, Lionel; Merle, Thibault; Plez, Bertrand
2018-04-01
S stars are s-process and C-enriched (0.5
IUE observations of interstellar hydrogen and deuterium toward Alpha Centauri B
NASA Technical Reports Server (NTRS)
Landsman, W. B.; Murthy, J.; Henry, R. C.; Moos, H. W.; Linsky, J. L.
1986-01-01
A high dispersion profile is presented of the Lyman-alpha emission toward Alpha Cen B as recorded in two images taken with the IUE spacecraft. The spectra were examined with a three-parameter Gaussian or five-parameter solar-type profile to derive the intrinsic background stellar emission. Voight absorption profiles were calculated for the intervening H I and D I gas. A uniform, thermally broadened medium was assumed, with the calculations being based on the free stellar parameters of density, velocity dispersion and the bulk velocity of H I, and the density of D I. The use of a small aperture is shown to have been effective in eliminating geocoronal and interplanetary diffuse Ly-alpha contamination. The H I absorption profile toward Alpha Cen B is found to be equivalent to that toward Alpha Cen A, indicating that the H I profiles derived are essentially independent of stellar emission. Less success, however, was attained in obtaining any definitive D I profile, although an asymmetry in the blue and red wings of the Lyman-alpha emissions did show the presence of absorption by interstellar deuterium and allow setting a lower limit of 0.00001 for the D I/H I ratio.
NASA Astrophysics Data System (ADS)
Cignoni, M.; Sacchi, E.; Aloisi, A.; Tosi, M.; Calzetti, D.; Lee, J. C.; Sabbi, E.; Adamo, A.; Cook, D. O.; Dale, D. A.; Elmegreen, B. G.; Gallagher, J. S., III; Gouliermis, D. A.; Grasha, K.; Grebel, E. K.; Hunter, D. A.; Johnson, K. E.; Messa, M.; Smith, L. J.; Thilker, D. A.; Ubeda, L.; Whitmore, B. C.
2018-03-01
We use Hubble Space Telescope observations from the Legacy Extragalactic UV Survey to reconstruct the recent star formation histories (SFHs) of three actively star-forming dwarf galaxies, NGC 4449, Holmberg II, and NGC 1705, from their UV color–magnitude diagrams (CMDs). We apply a CMD fitting technique using two independent sets of stellar isochrones, PARSEC-COLIBRI and MIST, to assess the uncertainties related to stellar evolution modeling. Irrespective of the adopted stellar models, all three dwarfs are found to have had almost constant star formation rates (SFRs) in the last 100–200 Myr, with modest enhancements (a factor of ∼2) above the 100 Myr averaged SFR. Significant differences among the three dwarfs are found in terms of the overall SFR, the timing of the most recent peak, and the SFR/area. The initial mass function of NGC 1705 and Holmberg II is consistent with a Salpeter slope down to ≈5 M ⊙, whereas it is slightly flatter, s = ‑2.0, in NGC 4449. The SFHs derived with the two different sets of stellar models are consistent with each other, except for some quantitative details, attributable to their input assumptions. They also share the drawback that all synthetic diagrams predict a clear separation in color between the upper main-sequence and helium-burning stars, which is not apparent in the data. Since neither differential reddening, which is significant in NGC 4449, nor unresolved binaries appear to be sufficient to fill the gap, we suggest this calls for a revision of both sets of stellar evolutionary tracks. Based on observations obtained with the NASA/ESA Hubble Space Telescope at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy under NASA Contract NAS 5-26555.
Unveiling the stellar halo with TGAS
NASA Astrophysics Data System (ADS)
Veljanoski, Jovan; Posti, L.; Helmi, A.; Breddels, M. A.
2018-04-01
The detailed study of the Galactic stellar halo may hold the key to unlocking the assembly history of the Milky Way. Here, we present a machine learning model for selecting metal poor stars from the TGAS catalogue using 5 dimensional phase-space information, coupled with optical and near-IR photometry. We characterise the degree of substructure in our halo sample in the Solar neighbourhood by measuring the velocity correlation function.
NASA Astrophysics Data System (ADS)
Mosser, B.; Samadi, R.; Belkacem, K.
2013-11-01
The space-borne missions CoRoT and Kepler are indiscreet. With their asteroseismic programs, they tell us what is hidden deep inside the stars. Waves excited just below the stellar surface travel throughout the stellar interior and unveil many secrets: how old is the star, how big, how massive, how fast (or slow) its core is dancing. This paper intends to paparazze the red giants according to the seismic pictures we have from their interiors.
NASA Technical Reports Server (NTRS)
Sabbi, E.; Anderson, J.; Lennon, D. J.; van der Marel, R. P.; Aloisi, A.; Boyer, Martha L.; Cignoni, M.; De Marchi, G.; De Mink, S. E.; Evans, C. J.;
2013-01-01
The Hubble Tarantula Treasury Project (HTTP) is an ongoing panchromatic imaging survey of stellar populations in the Tarantula Nebula in the Large Magellanic Cloud that reaches into the sub-solar mass regime (<0.5 Stellar Mass). HTTP utilizes the capability of the Hubble Space Telescope to operate the Advanced Camera for Surveys and the Wide Field Camera 3 in parallel to study this remarkable region in the near-ultraviolet, optical, and near-infrared spectral regions, including narrow-band H(alpha) images. The combination of all these bands provides a unique multi-band view. The resulting maps of the stellar content of the Tarantula Nebula within its main body provide the basis for investigations of star formation in an environment resembling the extreme conditions found in starburst galaxies and in the early universe. Access to detailed properties of individual stars allows us to begin to reconstruct the temporal and spatial evolution of the stellar skeleton of the Tarantula Nebula over space and time on a sub-parsec scale. In this first paper we describe the observing strategy, the photometric techniques, and the upcoming data products from this survey and present preliminary results obtained from the analysis of the initial set of near-infrared observations.
Models of gravitational lens candidates from Space Warps CFHTLS
NASA Astrophysics Data System (ADS)
Küng, Rafael; Saha, Prasenjit; Ferreras, Ignacio; Baeten, Elisabeth; Coles, Jonathan; Cornen, Claude; Macmillan, Christine; Marshall, Phil; More, Anupreeta; Oswald, Lucy; Verma, Aprajita; Wilcox, Julianne K.
2018-03-01
We report modelling follow-up of recently discovered gravitational-lens candidates in the Canada France Hawaii Telescope Legacy Survey. Lens modelling was done by a small group of specially interested volunteers from the Space Warps citizen-science community who originally found the candidate lenses. Models are categorized according to seven diagnostics indicating (a) the image morphology and how clear or indistinct it is, (b) whether the mass map and synthetic lensed image appear to be plausible, and (c) how the lens-model mass compares with the stellar mass and the abundance-matched halo mass. The lensing masses range from ˜1011 to >1013 M⊙. Preliminary estimates of the stellar masses show a smaller spread in stellar mass (except for two lenses): a factor of a few below or above ˜1011 M⊙. Therefore, we expect the stellar-to-total mass fraction to decline sharply as lensing mass increases. The most massive system with a convincing model is J1434+522 (SW 05). The two low-mass outliers are J0206-095 (SW 19) and J2217+015 (SW 42); if these two are indeed lenses, they probe an interesting regime of very low star formation efficiency. Some improvements to the modelling software (SpaghettiLens), and discussion of strategies regarding scaling to future surveys with more and frequent discoveries, are included.
NASA Astrophysics Data System (ADS)
Carpenter, Kenneth G.; Karovska, Margarita; Lyon, Richard G.; Mozurkewich, D.; Schrijver, Carolus
2009-08-01
Stellar Imager (SI) is a space-based, UV/Optical Interferometer (UVOI) with over 200x the resolution of HST. It will enable 0.1 milli-arcsec spectral imaging of stellar surfaces and the Universe in general and open an enormous new "discovery space" for astrophysics with its combination of high angular resolution, dynamic imaging, and spectral energy resolution. SI's goal is to study the role of magnetism in the Universe and revolutionize our understanding of: 1) Solar/Stellar Magnetic Activity and their impact on Space Weather, Planetary Climates, and Life, 2) Magnetic and Accretion Processes and their roles in the Origin & Evolution of Structure and in the Transport of Matter throughout the Universe, 3) the close-in structure of Active Galactic Nuclei and their winds, and 4) Exo-Solar Planet Transits and Disks. SI is a "Landmark/Discovery Mission" in 2005 Heliophysics Roadmap and a candidate UVOI in the 2006 Astrophysics Strategic Plan and is targeted for launch in the mid-2020's. It is a NASA Vision Mission and has been recommended for further study in a 2008 NRC report on missions potentially enabled/enhanced by an Ares V launch. In this paper, we discuss the science goals and required capabilities of SI, the baseline architecture of the mission assuming launch on one or more Delta rockets, and then the potential significant enhancements to the SI science and mission architecture that would be made possible by a launch in the larger volume Ares V payload fairing, and by servicing options under consideration in the Constellation program.
NASA Technical Reports Server (NTRS)
Carpenter, Kenneth G.; Lyon, Richard G.; Karovska, Margarita; Mozurkwich, D.; Schrijver, Carolus
2009-01-01
Stellar Imager (SI) is a space-based, UV/Optical Interferometer (UVOI) with over 200x the resolution of HST. It will enable 0.1 milli-aresec spectral imaging of stellar surfaces and the Universe in general and open an enormous new "discovery space" for astrophysics with its combination of high angular resolution, dynamic imaging , and spectral energy resolution. SI's goal is to study the role of magnetism in the Universe and revolutionize our understanding of 1) Solar/Stellar Magnetic Activity and their impact on Space Weather, Planetary Climates, and Life, 2) Magnetic and Accretion Processes and their roles in the Origin & Evolution of Structure and in the Transport of Matter throughout the Universe, 3) the close-in structure of Active Galactic Nuclei and their winds, and 4) Exo-Solar Planet Transits and Disks. SI is a "Landmark-Discovery Mission" in 2005 Heliophysics Roadmap and a candidate UVOI in the 2006 Astrophysics Strategic Plan and is targeted for launch in the mid-2020's. It is a NASA Vision Mission and has been recommended for further study in a 2008 NRC report on missions potentially enabled/enhanced by an Ares V launch. In this paper, we discuss the science goals and required capabilities of SI, the baseline architecture of the mission assuming launch on one or more Delta rockets, and then the potential significant enhancements to the SI science and mission architecture that would be made possible by a launch in the larger volume Ares V payload fairing, and by servicing options under consideration in the Constellation program.
An analysis of the massless planet approximation in transit light curve models
NASA Astrophysics Data System (ADS)
Millholland, Sarah; Ruch, Gerry
2015-08-01
Many extrasolar planet transit light curve models use the approximation of a massless planet. They approximate the planet as orbiting elliptically with the host star at the orbit’s focus instead of depicting the planet and star as both orbiting around a common center of mass. This approximation should generally be very good because the transit is a small fraction of the full-phase curve and the planet to stellar mass ratio is typically very small. However, to fully examine the legitimacy of this approximation, it is useful to perform a robust, all-parameter space-encompassing statistical comparison between the massless planet model and the more accurate model.Towards this goal, we establish two questions: (1) In what parameter domain is the approximation invalid? (2) If characterizing an exoplanetary system in this domain, what is the error of the parameter estimates when using the simplified model? We first address question (1). Given each parameter vector in a finite space, we can generate the simplified and more complete model curves. Associated with these model curves is a measure of the deviation between them, such as the root mean square (RMS). We use Gibbs sampling to generate a sample that is distributed according to the RMS surface. The high-density regions in the sample correspond to a large deviation between the models. To determine the domains of these high-density areas, we first employ the Ordering Points to Identify the Clustering Structure (OPTICS) algorithm. We then characterize the subclusters by performing the Patient Rule Induction Method (PRIM) on the transformed Principal Component spaces of each cluster. This process yields descriptors of the parameter domains with large discrepancies between the models.To consider question (2), we start by generating synthetic transit curve observations in the domains specified by the above analysis. We then derive the best-fit parameters of these synthetic light curves according to each model and examine the quality of agreement between the estimated parameters. Taken as a whole, these steps allow for a thorough analysis of the validity of the massless planet approximation.
Spectroscopy of Dwarf Stars Around the North Celestial Pole
NASA Astrophysics Data System (ADS)
Mikolaitis, Šarūnas; Tautvaišienė, Gražina; Drazdauskas, Arnas; Minkevičiūtė, Renata; Klebonas, Lukas; Bagdonas, Vilius; Pakšienė, Erika; Janulis, Rimvydas
2018-07-01
New space missions (e.g., NASA-TESS and ESA-PLATO) will perform an in-depth analysis of bright stars in large fields of the celestial sphere searching for extraterrestrial planets and investigating their host-stars. Asteroseismic observations will search for exoplanet-hosting stars with solar-like oscillations. In order to achieve all the goals, a full characterization of the stellar objects is important. However, accurate atmospheric parameters are available for less than 30% of bright dwarf stars of the solar neighborhood. In this study we observed high-resolution (R = 60,000) spectra for all bright (V < 8 mag) and cooler than F5 spectral class dwarf stars in the northern-most field of the celestial sphere with radius of 20° from the α(2000) = 161.°03 and δ(2000) = 86.°60 that is a center of one of the preliminary ESO-PLATO fields. Spectroscopic atmospheric parameters were determined for 140 slowly rotating stars, for 73% of them for the first time. The majority (83%) of the investigated stars are in the TESS object lists and all of them are in the preliminary PLATO field. Our results have no systematic differences when compared with other recent studies. We have 119 stars in common with the Geneva–Copenhagen Survey, where stellar parameters were determined photometrically, and find a 14 ± 125 K difference in effective temperatures, 0.01 ± 0.16 in log g, and ‑0.02 ± 0.09 dex in metallicities. Comparing our results for 39 stars with previous high-resolution spectral determinations, we find only a 7 ± 73 K difference in effective temperatures, 0.02 ± 0.09 in log g, and ‑0.02 ± 0.09 dex in metallicities. We also determined basic kinematic and orbital parameters for this sample of stars. From the kinematical point of view, almost all our stars belong to the thin disk substructure of the Milky Way. The derived galactocentric metallicity gradient is ‑0.066 ± 0.024 dex kpc‑1 (2.5σ significance) and the vertical metallicity gradient is ‑0.102 ± 0.099 dex kpc‑1 (1σ significance) that comply with the latest inside-out thin disk formation models, including those with stellar migration taken into account. Based on observations collected with the 1.65 m telescope and VUES spectrograph at the Molėtai Astronomical Observatory of Institute of Theoretical Physics and Astronomy, Vilnius University, for the SPFOT survey.
Star formation in the outskirts of DDO 154: a top-light IMF in a nearly dormant disc
NASA Astrophysics Data System (ADS)
Watts, Adam B.; Meurer, Gerhardt R.; Lagos, Claudia D. P.; Bruzzese, Sarah M.; Kroupa, Pavel; Jerabkova, Tereza
2018-07-01
We present optical photometry of Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS)/Wide Field Camera (WFC) data of the resolved stellar populations in the outer disc of the dwarf irregular galaxy DDO 154. The photometry reveals that young main sequence (MS) stars are almost absent from the outermost H I disc. Instead, most are clustered near the main stellar component of the galaxy. We constrain the stellar initial mass function (IMF) by comparing the luminosity function of the MS stars to simulated stellar populations, assuming a constant star formation rate over the dynamical time-scale. The best-fitting IMF is deficient in high-mass stars compared to a canonical Kroupa IMF, with a best-fitting slope α = -2.45 and upper mass limit MU = 16 M⊙. This top-light IMF is consistent with predictions of the integrated galactic IMF theory. Combining the HST images with H I data from The H I Nearby Galaxy Survey (THINGS), we determine the star formation law (SFL) in the outer disc. The fit has a power-law exponent N = 2.92 ± 0.22 and zero-point A = 4.47 ± 0.65 × 10-7 M⊙ yr-1 kpc-2. This is depressed compared to the Kennicutt-Schmidt SFL, but consistent with weak star formation observed in diffuse H I environments. Extrapolating the SFL over the outer disc implies that there could be significant star formation occurring that is not detectable in H α. Last, we determine the Toomre stability parameter Q of the outer disc of DDO 154 using the THINGS H I rotation curve and velocity dispersion map. 72 per cent of the H I in our field has Q ≤ 4 and this incorporates 96 per cent of the observed MS stars. Hence, 28 per cent of the H I in the field is largely dormant.
NASA Astrophysics Data System (ADS)
Beatty, Thomas G.; Stevens, Daniel J.; Collins, Karen A.; Colón, Knicole D.; James, David J.; Kreidberg, Laura; Pepper, Joshua; Rodriguez, Joseph E.; Siverd, Robert J.; Stassun, Keivan G.; Kielkopf, John F.
2017-07-01
Using the Spitzer Space Telescope, we observed a transit at 3.6 μm of KELT-11b. We also observed three partial planetary transits from the ground. We simultaneously fit these observations, ground-based photometry from Pepper et al., radial velocity data from Pepper et al., and a spectral energy distribution (SED) model using catalog magnitudes and the Hipparcos parallax to the system. The only significant difference between our results and those of Pepper et al. is that we find the orbital period to be shorter by 37 s, 4.73610 ± 0.00003 versus 4.73653 ± 0.00006 days, and we measure a transit center time of {{BJD}}{TDB} 2457483.4310 ± 0.0007, which is 42 minutes earlier than predicted. Using our new photometry, we precisely measure the density of the star KELT-11 to 4%. By combining the parallax and catalog magnitudes of the system, we are able to measure the radius of KELT-11b essentially empirically. Coupled with the stellar density, this gives a parallactic mass and radius of 1.8 {M}⊙ and 2.9 {R}⊙ , which are each approximately 1σ higher than the adopted model-estimated mass and radius. If we conduct the same fit using the expected parallax uncertainty from the final Gaia data release, this difference increases to 4σ. The differences between the model and parallactic masses and radii for KELT-11 demonstrate the role that precise Gaia parallaxes, coupled with simultaneous photometric, radial velocity, and SED fitting, can play in determining stellar and planetary parameters. With high-precision photometry of transiting planets and high-precision Gaia parallaxes, the parallactic mass and radius uncertainties of stars become 1% and 3%, respectively. TESS is expected to discover 60-80 systems where these measurements will be possible. These parallactic mass and radius measurements have uncertainties small enough that they may provide observational input into the stellar models themselves.
Revised Stellar Properties of Kepler Targets for the Q1-17 (DR25) Transit Detection Run
NASA Astrophysics Data System (ADS)
Mathur, Savita; Huber, Daniel; Batalha, Natalie M.; Ciardi, David R.; Bastien, Fabienne A.; Bieryla, Allyson; Buchhave, Lars A.; Cochran, William D.; Endl, Michael; Esquerdo, Gilbert A.; Furlan, Elise; Howard, Andrew; Howell, Steve B.; Isaacson, Howard; Latham, David W.; MacQueen, Phillip J.; Silva, David R.
2017-04-01
The determination of exoplanet properties and occurrence rates using Kepler data critically depends on our knowledge of the fundamental properties (such as temperature, radius, and mass) of the observed stars. We present revised stellar properties for 197,096 Kepler targets observed between Quarters 1–17 (Q1-17), which were used for the final transiting planet search run by the Kepler Mission (Data Release 25, DR25). Similar to the Q1–16 catalog by Huber et al., the classifications are based on conditioning published atmospheric parameters on a grid of Dartmouth isochrones, with significant improvements in the adopted method and over 29,000 new sources for temperatures, surface gravities, or metallicities. In addition to fundamental stellar properties, the new catalog also includes distances and extinctions, and we provide posterior samples for each stellar parameter of each star. Typical uncertainties are ∼27% in radius, ∼17% in mass, and ∼51% in density, which is somewhat smaller than previous catalogs because of the larger number of improved {log}g constraints and the inclusion of isochrone weighting when deriving stellar posterior distributions. On average, the catalog includes a significantly larger number of evolved solar-type stars, with an increase of 43.5% in the number of subgiants. We discuss the overall changes of radii and masses of Kepler targets as a function of spectral type, with a particular focus on exoplanet host stars.
NASA Astrophysics Data System (ADS)
Ferreras, I.; Hopkins, A. M.; Gunawardhana, M. L. P.; Sansom, A. E.; Owers, M. S.; Driver, S.; Davies, L.; Robotham, A.; Taylor, E. N.; Konstantopoulos, I.; Brough, S.; Norberg, P.; Croom, S.; Loveday, J.; Wang, L.; Bremer, M.
2017-06-01
The merging history of galaxies can be traced with studies of dynamically close pairs. These consist of a massive primary galaxy and a less massive secondary (or satellite) galaxy. The study of the stellar populations of secondary (lower mass) galaxies in close pairs provides a way to understand galaxy growth by mergers. Here we focus on systems involving at least one massive galaxy - with stellar mass above 1011M⊙ in the highly complete Galaxy and Mass Assembly (GAMA) survey. Our working sample comprises 2692 satellite galaxy spectra (0.1 ≤ z ≤ 0.3). These spectra are combined into high S/N stacks, and binned according to both an 'internal' parameter, the stellar mass of the satellite galaxy (I.e. the secondary), and an 'external' parameter, selecting either the mass of the primary in the pair, or the mass of the corresponding dark matter halo. We find significant variations in the age of the populations with respect to environment. At fixed mass, satellites around the most massive galaxies are older and possibly more metal-rich, with age differences ˜1-2 Gyr within the subset of lower mass satellites (˜1010 M⊙). These variations are similar when stacking with respect to the halo mass of the group where the pair is embedded. The population trends in the lower mass satellites are consistent with the old stellar ages found in the outer regions of massive galaxies.
The First APOKASC Catalog of Kepler Dwarf and Subgiant Stars
NASA Astrophysics Data System (ADS)
Serenelli, Aldo; Johnson, Jennifer; Huber, Daniel; Pinsonneault, Marc; Ball, Warrick H.; Tayar, Jamie; Silva Aguirre, Victor; Basu, Sarbani; Troup, Nicholas; Hekker, Saskia; Kallinger, Thomas; Stello, Dennis; Davies, Guy R.; Lund, Mikkel N.; Mathur, Savita; Mosser, Benoit; Stassun, Keivan G.; Chaplin, William J.; Elsworth, Yvonne; García, Rafael A.; Handberg, Rasmus; Holtzman, Jon; Hearty, Fred; García-Hernández, D. A.; Gaulme, Patrick; Zamora, Olga
2017-12-01
We present the first APOKASC catalog of spectroscopic and asteroseismic data for dwarfs and subgiants. Asteroseismic data for our sample of 415 objects have been obtained by the Kepler mission in short (58.5 s) cadence, and light curves span from 30 up to more than 1000 days. The spectroscopic parameters are based on spectra taken as part of the Apache Point Observatory Galactic Evolution Experiment and correspond to Data Release 13 of the Sloan Digital Sky Survey. We analyze our data using two independent {T}{eff} scales, the spectroscopic values from DR13 and those derived from SDSS griz photometry. We use the differences in our results arising from these choices as a test of systematic temperature uncertainties and find that they can lead to significant differences in the derived stellar properties. Determinations of surface gravity ({log}g), mean density (< ρ > ), radius (R), mass (M), and age (τ) for the whole sample have been carried out by means of (stellar) grid-based modeling. We have thoroughly assessed random and systematic error sources in the spectroscopic and asteroseismic data, as well as in the grid-based modeling determination of the stellar quantities provided in the catalog. We provide stellar properties determined for each of the two {T}{eff} scales. The median combined (random and systematic) uncertainties are 2% (0.01 dex; {log}g), 3.4% (< ρ > ), 2.6% (R), 5.1% (M), and 19% (τ) for the photometric {T}{eff} scale and 2% ({log}g), 3.5% (< ρ > ), 2.7% (R), 6.3% (M), and 23% (τ) for the spectroscopic scale. We present comparisons with stellar quantities in the asteroseismic catalog by Chaplin et al. that highlight the importance of having metallicity measurements for determining stellar parameters accurately. Finally, we compare our results with those coming from a variety of sources, including stellar radii determined from TGAS parallaxes and asteroseismic analyses based on individual frequencies. We find a very good agreement for all inferred quantities. The latter comparison, in particular, gives strong support to the determination of stellar quantities based on global seismology, a relevant result for future missions such as TESS and PLATO.
FAMA: An automatic code for stellar parameter and abundance determination
NASA Astrophysics Data System (ADS)
Magrini, Laura; Randich, Sofia; Friel, Eileen; Spina, Lorenzo; Jacobson, Heather; Cantat-Gaudin, Tristan; Donati, Paolo; Baglioni, Roberto; Maiorca, Enrico; Bragaglia, Angela; Sordo, Rosanna; Vallenari, Antonella
2013-10-01
Context. The large amount of spectra obtained during the epoch of extensive spectroscopic surveys of Galactic stars needs the development of automatic procedures to derive their atmospheric parameters and individual element abundances. Aims: Starting from the widely-used code MOOG by C. Sneden, we have developed a new procedure to determine atmospheric parameters and abundances in a fully automatic way. The code FAMA (Fast Automatic MOOG Analysis) is presented describing its approach to derive atmospheric stellar parameters and element abundances. The code, freely distributed, is written in Perl and can be used on different platforms. Methods: The aim of FAMA is to render the computation of the atmospheric parameters and abundances of a large number of stars using measurements of equivalent widths (EWs) as automatic and as independent of any subjective approach as possible. It is based on the simultaneous search for three equilibria: excitation equilibrium, ionization balance, and the relationship between log n(Fe i) and the reduced EWs. FAMA also evaluates the statistical errors on individual element abundances and errors due to the uncertainties in the stellar parameters. The convergence criteria are not fixed "a priori" but are based on the quality of the spectra. Results: In this paper we present tests performed on the solar spectrum EWs that assess the method's dependency on the initial parameters and we analyze a sample of stars observed in Galactic open and globular clusters. The current version of FAMA is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/558/A38
On the history of the solar wind discovery
NASA Astrophysics Data System (ADS)
Obridko, V. N.; Vaisberg, O. L.
2017-03-01
The discovery of the solar wind has been an outstanding achievement in heliophysics and space physics. The solar wind plays a crucial role in the processes taking place in the Solar System. In recent decades, it has been recognized as the main factor that controls the terrestrial effects of space weather. The solar wind is an unusual plasma laboratory of giant scale with a fantastic diversity of parameters and operating modes, and devoid of influence from the walls of laboratory plasma systems. It is also the only kind of stellar wind accessible for direct study. The history of this discovery is quite dramatic. Like many remarkable discoveries, it had several predecessors. However, the honor of a discovery usually belongs to a scientist who was able to more fully explain the phenomenon. Such a man is deservedly considered the US theorist Eugene Parker, who discovered the solar wind, as we know it today, almost "with the point of his pen". In 2017, we will celebrate the 90th anniversary birthday of Eugene Parker.
Proposals of observations with the space telescope in the domain of astrometry
NASA Astrophysics Data System (ADS)
Fresneau, A.
The use of the Hubble Space Telescope for astrometry is advertised at the same level as for photometry, spectroscopy, or polarimetry. The prime instrument to be used for that goal is one of the three fine guidance sensors. The interferometric design of the stellar sensor is adequate for stellar diameter measurements (>0.01 arcsec) close binaries separation determination (<0.1 arcsec) and differential astrometry on targets in a field of view of 60 square arcmin and in the visual magnitude range from 3 to 18. Moving targets brighter than 14 with an apparent motion slower than 150 arcsec per hour can be tracked at the same level of accuracy.
Inferring the gravitational potential of the Milky Way with a few precisely measured stars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Price-Whelan, Adrian M.; Johnston, Kathryn V.; Hendel, David
2014-10-10
The dark matter halo of the Milky Way is expected to be triaxial and filled with substructure. It is hoped that streams or shells of stars produced by tidal disruption of stellar systems will provide precise measures of the gravitational potential to test these predictions. We develop a method for inferring the Galactic potential with tidal streams based on the idea that the stream stars were once close in phase space. Our method can flexibly adapt to any form for the Galactic potential: it works in phase-space rather than action-space and hence relies neither on our ability to derive actionsmore » nor on the integrability of the potential. Our model is probabilistic, with a likelihood function and priors on the parameters. The method can properly account for finite observational uncertainties and missing data dimensions. We test our method on synthetic data sets generated from N-body simulations of satellite disruption in a static, multi-component Milky Way, including a triaxial dark matter halo with observational uncertainties chosen to mimic current and near-future surveys of various stars. We find that with just eight well-measured stream stars, we can infer properties of a triaxial potential with precisions of the order of 5%-7%. Without proper motions, we obtain 10% constraints on most potential parameters and precisions around 5%-10% for recovering missing phase-space coordinates. These results are encouraging for the goal of using flexible, time-dependent potential models combined with larger data sets to unravel the detailed shape of the dark matter distribution around the Milky Way.« less
NASA Astrophysics Data System (ADS)
Longair, Malcolm S.
2013-04-01
Part I. Stars and Stellar Evolution up to the Second World War: 1. The legacy of the nineteenth century; 2. The classification of stellar spectra; 3. Stellar structure and evolution; 4. The end points of stellar evolution; Part II. The Large-Scale Structure of the Universe, 1900-1939: 5. The Galaxy and the nature of spiral nebulae; 6. The origins of astrophysical cosmology; Part III. The Opening up of the Electromagnetic Spectrum: 7. The opening up of the electromagnetic spectrum and the new astronomies; Part IV. The Astrophysics of Stars and Galaxies since 1945: 8. Stars and stellar evolution; 9. The physics of the interstellar medium; 10. The physics of galaxies and clusters of galaxies; 11. High-energy astrophysics; Part V. Astrophysical Cosmology since 1945: 12. Astrophysical cosmology; 13. The determination of cosmological parameters; 14. The evolution of galaxies and active galaxies with cosmic epoch; 15. The origin of galaxies and the large-scale structure of the Universe; 16. The very early Universe; References; Name index; Object index; Subject index.
Research of autonomous celestial navigation based on new measurement model of stellar refraction
NASA Astrophysics Data System (ADS)
Yu, Cong; Tian, Hong; Zhang, Hui; Xu, Bo
2014-09-01
Autonomous celestial navigation based on stellar refraction has attracted widespread attention for its high accuracy and full autonomy.In this navigation method, establishment of accurate stellar refraction measurement model is the fundament and key issue to achieve high accuracy navigation. However, the existing measurement models are limited due to the uncertainty of atmospheric parameters. Temperature, pressure and other factors which affect the stellar refraction within the height of earth's stratosphere are researched, and the varying model of atmosphere with altitude is derived on the basis of standard atmospheric data. Furthermore, a novel measurement model of stellar refraction in a continuous range of altitudes from 20 km to 50 km is produced by modifying the fixed altitude (25 km) measurement model, and equation of state with the orbit perturbations is established, then a simulation is performed using the improved Extended Kalman Filter. The results show that the new model improves the navigation accuracy, which has a certain practical application value.
Robust Modeling of Stellar Triples in PHOEBE
NASA Astrophysics Data System (ADS)
Conroy, Kyle E.; Prsa, Andrej; Horvat, Martin; Stassun, Keivan G.
2017-01-01
The number of known mutually-eclipsing stellar triple and multiple systems has increased greatly during the Kepler era. These systems provide significant opportunities to both determine fundamental stellar parameters of benchmark systems to unprecedented precision as well as to study the dynamical interaction and formation mechanisms of stellar and planetary systems. Modeling these systems to their full potential, however, has not been feasible until recently. Most existing available codes are restricted to the two-body binary case and those that do provide N-body support for more components make sacrifices in precision by assuming no stellar surface distortion. We have completely redesigned and rewritten the PHOEBE binary modeling code to incorporate support for triple and higher-order systems while also robustly modeling data with Kepler precision. Here we present our approach, demonstrate several test cases based on real data, and discuss the current status of PHOEBE's support for modeling these types of systems. PHOEBE is funded in part by NSF grant #1517474.
Non-radial pulsations and large-scale structure in stellar winds
NASA Astrophysics Data System (ADS)
Blomme, R.
2009-07-01
Almost all early-type stars show Discrete Absorption Components (DACs) in their ultraviolet spectral lines. These can be attributed to Co-rotating Interaction Regions (CIRs): large-scale spiral-shaped structures that sweep through the stellar wind. We used the Zeus hydrodynamical code to model the CIRs. In the model, the CIRs are caused by ``spots" on the stellar surface. Through the radiative acceleration these spots create fast streams in the stellar wind material. Where the fast and slow streams collide, a CIR is formed. By varying the parameters of the spots, we quantitatively fit the observed DACs in HD~64760. An important result from our work is that the spots do not rotate with the same velocity as the stellar surface. The fact that the cause of the CIRs is not fixed on the surface eliminates many potential explanations. The only remaining explanation is that the CIRs are due to the interference pattern of a number of non-radial pulsations.
A WISE CENSUS OF YOUNG STELLAR OBJECTS IN CANIS MAJOR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fischer, William J.; Padgett, Deborah L.; Sewiło, Marta
With the Wide-field Infrared Survey Explorer (WISE), we searched for young stellar objects (YSOs) in a 100 deg{sup 2} region centered on the lightly studied Canis Major star-forming region. Applying stringent magnitude cuts to exclude the majority of extragalactic contaminants, we find 144 Class I candidates and 335 Class II candidates. The sensitivity to Class II candidates is limited by their faintness at the distance to Canis Major (assumed as 1000 pc). More than half the candidates (53%) are found in 16 groups of more than four members, including four groups with more than 25 members each. The ratio ofmore » Class II to Class I objects, N {sub II}/ N {sub I}, varies from 0.4 to 8.3 in just the largest four groups. We compare our results to those obtainable with combined Two Micron All Sky Survey and post-cryogenic Spitzer Space Telescope data; the latter approach recovers missing Class II sources. Via a comparison to protostars characterized with the Herschel Space Observatory , we propose new WISE color criteria for flat-spectrum and Class 0 protostars, finding 80 and 7 of these, respectively. The distribution of YSOs in CMa OB1 is consistent with supernova-induced star formation, although the diverse N {sub II}/ N {sub I} ratios are unexpected if this parameter traces age and the YSOs are due to the same supernova. Less massive clouds feature larger N {sub II}/ N {sub I} ratios, suggesting that initial conditions play a role in determining this quantity.« less
NASA Astrophysics Data System (ADS)
Coughlin, J. L.; López-Morales, Mercedes
2012-05-01
Astrometric measurements of stellar systems are becoming significantly more precise and common, with many ground- and space-based instruments and missions approaching 1 μas precision. We examine the multi-wavelength astrometric orbits of exoplanetary systems via both analytical formulae and numerical modeling. Exoplanets have a combination of reflected and thermally emitted light that causes the photocenter of the system to shift increasingly farther away from the host star with increasing wavelength. We find that, if observed at long enough wavelengths, the planet can dominate the astrometric motion of the system, and thus it is possible to directly measure the orbits of both the planet and star, and thus directly determine the physical masses of the star and planet, using multi-wavelength astrometry. In general, this technique works best for, though is certainly not limited to, systems that have large, high-mass stars and large, low-mass planets, which is a unique parameter space not covered by other exoplanet characterization techniques. Exoplanets that happen to transit their host star present unique cases where the physical radii of the planet and star can be directly determined via astrometry alone. Planetary albedos and day-night contrast ratios may also be probed via this technique due to the unique signature they impart on the observed astrometric orbits. We develop a tool to examine the prospects for near-term detection of this effect, and give examples of some exoplanets that appear to be good targets for detection in the K to N infrared observing bands, if the required precision can be achieved.
EXPLORING DATA-DRIVEN SPECTRAL MODELS FOR APOGEE M DWARFS
NASA Astrophysics Data System (ADS)
Lua Birky, Jessica; Hogg, David; Burgasser, Adam J.; Jessica Birky
2018-01-01
The Cannon (Ness et al. 2015; Casey et al. 2016) is a flexible, data-driven spectral modeling and parameter inference framework, demonstrated on high-resolution Apache Point Galactic Evolution Experiment (APOGEE; λ/Δλ~22,500, 1.5-1.7µm) spectra of giant stars to estimate stellar labels (Teff, logg, [Fe/H], and chemical abundances) to precisions higher than the model-grid pipeline. The lack of reliable stellar parameters reported by the APOGEE pipeline for temperatures less than ~3550K, motivates extension of this approach to M dwarf stars. Using a training set of 51 M dwarfs with spectral types ranging M0-M9 obtained from SDSS optical spectra, we demonstrate that the Cannon can infer spectral types to a precision of +/-0.6 types, making it an effective tool for classifying high-resolution near-infrared spectra. We discuss the potential for extending this work to determine the physical stellar labels Teff, logg, and [Fe/H].This work is supported by the SDSS Faculty and Student (FAST) initiative.
NASA Astrophysics Data System (ADS)
Abdelsalhin, Tiziano; Maselli, Andrea; Ferrari, Valeria
2018-04-01
The LIGO/Virgo Collaboration has recently announced the direct detection of gravitational waves emitted in the coalescence of a neutron star binary. This discovery allows, for the first time, to set new constraints on the behavior of matter at supranuclear density, complementary with those coming from astrophysical observations in the electromagnetic band. In this paper we demonstrate the feasibility of using gravitational signals to solve the relativistic inverse stellar problem, i.e., to reconstruct the parameters of the equation of state (EoS) from measurements of the stellar mass and tidal Love number. We perform Bayesian inference of mock data, based on different models of the star internal composition, modeled through piecewise polytropes. Our analysis shows that the detection of a small number of sources by a network of advanced interferometers would allow to put accurate bounds on the EoS parameters, and to perform a model selection among the realistic equations of state proposed in the literature.
The V-band Empirical Mass-luminosity Relation for Main Sequence Stars
NASA Astrophysics Data System (ADS)
Xia, Fang; Fu, Yan-Ning
2010-07-01
Stellar mass is an indispensable parameter in the studies of stellar physics and stellar dynamics. On the one hand, the most reliable way to determine the stellar dynamical mass is via orbital determinations of binaries. On the other hand, however, most stellar masses have to be estimated by using the mass luminosity relation (MLR). Therefore, it is important to obtain the empirical MLR through fitting the data of stellar dynamical mass and luminosity. The effect of metallicity can make this relation disperse in the V-band, but studies show that this is mainly limited to the case when the stellar mass is less than 0.6M⊙ Recently, many relevant data have been accumulated for main sequence stars with larger masses, which make it possible to significantly improve the corresponding MLR. Using a fitting method which can reasonably assign weights to the observational data including two quantities with different dimensions, we obtain a V-band MLR based on the dynamical masses and luminosities of 203 main sequence stars. In comparison with the previous work, the improved MLR is statistically significant, and the relative error of mass estimation reaches about 5%. Therefore, our MLR is useful not only in the studies of statistical nature, but also in the studies of concrete stellar systems, such as the long-term dynamical study and the short-term positioning study of a specific multiple star system.
The V Band Empirical Mass-Luminosity Relation for Main Sequence Stars
NASA Astrophysics Data System (ADS)
Xia, F.; Fu, Y. N.
2010-01-01
Stellar mass is an indispensable parameter in the studies of stellar physics and stellar dynamics. On the one hand, the most reliable way to determine the stellar dynamical mass is via orbital determination of binaries. On the other hand, however, most stellar masses have to be estimated by using the mass-luminosity relation (MLR). Therefore, it is important to obtain the empirical MLR through fitting the data of stellar dynamical mass and luminosity. The effect of metallicity can make this relation disperse in the V-band, but studies show that this is mainly limited to the case when the stellar mass is less than 0.6M⊙. Recently, many relevant data have been accumulated for main sequence stars with larger mass, which make it possible to significantly improve the corresponding MLR. Using a fitting method which can reasonably assign weight to the observational data including two quantities with different dimensions, we obtain a V-band MLR based on the dynamical masses and luminosities of 203 main sequence stars. Compared with the previous work, the improved MLR is statistically significant, and the relative error of mass estimation reaches about 5%. Therefore, our MLR is useful not only in studies of statistical nature, but also in studies of concrete stellar systems, such as the long-term dynamical study and the short-term positioning study of a specific multiple star system.
Uncertainties in Galactic Chemical Evolution Models
Cote, Benoit; Ritter, Christian; Oshea, Brian W.; ...
2016-06-15
Here we use a simple one-zone galactic chemical evolution model to quantify the uncertainties generated by the input parameters in numerical predictions for a galaxy with properties similar to those of the Milky Way. We compiled several studies from the literature to gather the current constraints for our simulations regarding the typical value and uncertainty of the following seven basic parameters: the lower and upper mass limits of the stellar initial mass function (IMF), the slope of the high-mass end of the stellar IMF, the slope of the delay-time distribution function of Type Ia supernovae (SNe Ia), the number ofmore » SNe Ia per M ⊙ formed, the total stellar mass formed, and the final mass of gas. We derived a probability distribution function to express the range of likely values for every parameter, which were then included in a Monte Carlo code to run several hundred simulations with randomly selected input parameters. This approach enables us to analyze the predicted chemical evolution of 16 elements in a statistical manner by identifying the most probable solutions along with their 68% and 95% confidence levels. Our results show that the overall uncertainties are shaped by several input parameters that individually contribute at different metallicities, and thus at different galactic ages. The level of uncertainty then depends on the metallicity and is different from one element to another. Among the seven input parameters considered in this work, the slope of the IMF and the number of SNe Ia are currently the two main sources of uncertainty. The thicknesses of the uncertainty bands bounded by the 68% and 95% confidence levels are generally within 0.3 and 0.6 dex, respectively. When looking at the evolution of individual elements as a function of galactic age instead of metallicity, those same thicknesses range from 0.1 to 0.6 dex for the 68% confidence levels and from 0.3 to 1.0 dex for the 95% confidence levels. The uncertainty in our chemical evolution model does not include uncertainties relating to stellar yields, star formation and merger histories, and modeling assumptions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cote, Benoit; Ritter, Christian; Oshea, Brian W.
Here we use a simple one-zone galactic chemical evolution model to quantify the uncertainties generated by the input parameters in numerical predictions for a galaxy with properties similar to those of the Milky Way. We compiled several studies from the literature to gather the current constraints for our simulations regarding the typical value and uncertainty of the following seven basic parameters: the lower and upper mass limits of the stellar initial mass function (IMF), the slope of the high-mass end of the stellar IMF, the slope of the delay-time distribution function of Type Ia supernovae (SNe Ia), the number ofmore » SNe Ia per M ⊙ formed, the total stellar mass formed, and the final mass of gas. We derived a probability distribution function to express the range of likely values for every parameter, which were then included in a Monte Carlo code to run several hundred simulations with randomly selected input parameters. This approach enables us to analyze the predicted chemical evolution of 16 elements in a statistical manner by identifying the most probable solutions along with their 68% and 95% confidence levels. Our results show that the overall uncertainties are shaped by several input parameters that individually contribute at different metallicities, and thus at different galactic ages. The level of uncertainty then depends on the metallicity and is different from one element to another. Among the seven input parameters considered in this work, the slope of the IMF and the number of SNe Ia are currently the two main sources of uncertainty. The thicknesses of the uncertainty bands bounded by the 68% and 95% confidence levels are generally within 0.3 and 0.6 dex, respectively. When looking at the evolution of individual elements as a function of galactic age instead of metallicity, those same thicknesses range from 0.1 to 0.6 dex for the 68% confidence levels and from 0.3 to 1.0 dex for the 95% confidence levels. The uncertainty in our chemical evolution model does not include uncertainties relating to stellar yields, star formation and merger histories, and modeling assumptions.« less
Gravitational-wave cosmography with LISA and the Hubble tension
NASA Astrophysics Data System (ADS)
Kyutoku, Koutarou; Seto, Naoki
2017-04-01
We propose that stellar-mass binary black holes like GW150914 will become a tool to explore the local Universe within ˜100 Mpc in the era of the Laser Interferometer Space Antenna (LISA). High calibration accuracy and annual motion of LISA could enable us to localize up to ≈60 binaries more accurately than the error volume of ≈100 Mpc3 without electromagnetic counterparts under moderately optimistic assumptions. This accuracy will give us a fair chance to determine the host object solely by gravitational waves. By combining the luminosity distance extracted from gravitational waves with the cosmological redshift determined from the host, the local value of the Hubble parameter will be determined up to a few % without relying on the empirically constructed distance ladder. Gravitational-wave cosmography would pave the way for resolution of the disputed Hubble tension, where the local and global measurements disagree in the value of the Hubble parameter at 3.4 σ level, which amounts to ≈9 %.
NASA Astrophysics Data System (ADS)
Ghezzi, Luan; Dutra-Ferreira, Letícia; Lorenzo-Oliveira, Diego; Porto de Mello, Gustavo F.; Santiago, Basílio X.; De Lee, Nathan; Lee, Brian L.; da Costa, Luiz N.; Maia, Marcio A. G.; Ogando, Ricardo L. C.; Wisniewski, John P.; González Hernández, Jonay I.; Stassun, Keivan G.; Fleming, Scott W.; Schneider, Donald P.; Mahadevan, Suvrath; Cargile, Phillip; Ge, Jian; Pepper, Joshua; Wang, Ji; Paegert, Martin
2014-12-01
Studies of Galactic chemical, and dynamical evolution in the solar neighborhood depend on the availability of precise atmospheric parameters (effective temperature T eff, metallicity [Fe/H], and surface gravity log g) for solar-type stars. Many large-scale spectroscopic surveys operate at low to moderate spectral resolution for efficiency in observing large samples, which makes the stellar characterization difficult due to the high degree of blending of spectral features. Therefore, most surveys employ spectral synthesis, which is a powerful technique, but relies heavily on the completeness and accuracy of atomic line databases and can yield possibly correlated atmospheric parameters. In this work, we use an alternative method based on spectral indices to determine the atmospheric parameters of a sample of nearby FGK dwarfs and subgiants observed by the MARVELS survey at moderate resolving power (R ~ 12,000). To avoid a time-consuming manual analysis, we have developed three codes to automatically normalize the observed spectra, measure the equivalent widths of the indices, and, through a comparison of those with values calculated with predetermined calibrations, estimate the atmospheric parameters of the stars. The calibrations were derived using a sample of 309 stars with precise stellar parameters obtained from the analysis of high-resolution FEROS spectra, permitting the low-resolution equivalent widths to be directly related to the stellar parameters. A validation test of the method was conducted with a sample of 30 MARVELS targets that also have reliable atmospheric parameters derived from the high-resolution spectra and spectroscopic analysis based on the excitation and ionization equilibria method. Our approach was able to recover the parameters within 80 K for T eff, 0.05 dex for [Fe/H], and 0.15 dex for log g, values that are lower than or equal to the typical external uncertainties found between different high-resolution analyses. An additional test was performed with a subsample of 138 stars from the ELODIE stellar library, and the literature atmospheric parameters were recovered within 125 K for T eff, 0.10 dex for [Fe/H], and 0.29 dex for log g. These precisions are consistent with or better than those provided by the pipelines of surveys operating with similar resolutions. These results show that the spectral indices are a competitive tool to characterize stars with intermediate resolution spectra. Based on observations obtained with the 2.2 m MPG telescope at the European Southern Observatory (La Silla, Chile), under the agreement ESO-Observatório Nacional/MCT, and the Sloan Digital Sky Survey, which is owned and operated by the Astrophysical Research Consortium.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heckman, Timothy; Borthakur, Sanchayeeta; Wild, Vivienne
We report on observations made with the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope ( HST ) using background quasi-stellar objects to probe the circum-galactic medium (CGM) around 17 low-redshift galaxies that are undergoing or have recently undergone a strong starburst (the COS-Burst program). The sightlines extend out to roughly the virial radius of the galaxy halo. We construct control samples of normal star-forming low-redshift galaxies from the COS/ HST archive that match the starbursts in terms of galaxy stellar mass and impact parameter. We find clear evidence that the CGM around the starbursts differs systematically compared tomore » the control galaxies. The Ly α , Si iii, C iv, and possibly O vi absorption lines are stronger as a function of impact parameter, and the ratios of the equivalent widths of C iv/Ly α and Si iii/Ly α are both higher than in normal star-forming galaxies. We also find that the widths and the velocity offsets (relative to v {sub sys}) of the Ly α absorption lines are significantly larger in the CGM of the starbursts, implying velocities of the absorbing material that are roughly twice the halo virial velocity. We show that these properties can be understood as a consequence of the interaction between a starburst-driven wind and the preexisting CGM. These results underscore the importance of winds driven from intensely star-forming galaxies in helping drive the evolution of galaxies and the intergalactic medium. They also offer a new probe of the properties of starburst-driven winds and of the CGM itself.« less
The Interior Angular Momentum of Core Hydrogen Burning Stars from Gravity-mode Oscillations
NASA Astrophysics Data System (ADS)
Aerts, C.; Van Reeth, T.; Tkachenko, A.
2017-09-01
A major uncertainty in the theory of stellar evolution is the angular momentum distribution inside stars and its change during stellar life. We compose a sample of 67 stars in the core hydrogen burning phase with a {log} g value from high-resolution spectroscopy, as well as an asteroseismic estimate of the near-core rotation rate derived from gravity-mode oscillations detected in space photometry. This assembly includes 8 B-type stars and 59 AF-type stars, covering a mass range from 1.4 to 5 M ⊙, I.e., it concerns intermediate-mass stars born with a well-developed convective core. The sample covers projected surface rotation velocities v\\sin I\\in [9,242] km s-1 and core rotation rates up to 26 μHz, which corresponds to 50% of the critical rotation frequency. We find deviations from rigid rotation to be moderate in the single stars of this sample. We place the near-core rotation rates in an evolutionary context and find that the core rotation must drop drastically before or during the short phase between the end of the core hydrogen burning and the onset of core helium burning. We compute the spin parameter, which is the ratio of twice the rotation rate to the mode frequency (also known as the inverse Rossby number), for 1682 gravity modes and find the majority (95%) to occur in the sub-inertial regime. The 10 stars with Rossby modes have spin parameters between 14 and 30, while the gravito-inertial modes cover the range from 1 to 15.
Stellar Populations. A User Guide from Low to High Redshift
NASA Astrophysics Data System (ADS)
Greggio, Laura; Renzini, Alvio
2011-09-01
This textbook is meant to illustrate the specific role played by stellar population diagnostics in our attempt to understand galaxy formation and evolution. The book starts with a rather unconventional summary of the results of stellar evolution theory (Chapter 1), as they provide the basis for the construction of synthetic stellar populations. Current limitations of stellar models are highlighted, which arise from the necessity to parametrize all those physical processes that involve bulk mass motions, such as convection, mixing, mass loss, etc. Chapter 2 deals with the foundations of the theory of synthetic stellar populations, and illustrates their energetics and metabolic functions, providing basic tools that will be used in subsequent chapters. Chapters 3 and 4 deal with resolved stellar populations, first addressing some general problems encountered in photometric studies of stellar fields. Then some highlights are presented illustrating our current capacity of measuring stellar ages in Galactic globular clusters, in the Galactic bulge and in nearby galaxies. Chapter 5 is dedicated to the exemplification of synthetic spectra of simple as well as composite stellar populations, drawing attention to those spectral features that may depend on less secure results of stellar evolution models. Chapter 6 illustrates how synthetic stellar populations are used to derive basic galaxy properties, such as star formation rates, stellar masses, ages and metallicities, and does so for galaxies at low as well as at high redshifts. Chapter 7 is dedicated to supernovae, distinguishing them in core collapse and thermonuclear cases, describing the evolution of their rates for various star formation histories, and estimating the supernova productivity of stellar populations and their chemical yields. In Chapter 8 the stellar initial mass function (IMF) is discussed, first showing how even apparently small IMF variations may have large effects on the demo! graphy of stellar populations, and then using galaxies at low ! and high redshifts and clusters of galaxies to set tight constraints on possible IMF variations in space or time. In Chapter 9 a phenomenological model of galaxy evolution is presented which illustrates a concrete application of the stellar population tools described in the previous chapters. Finally, Chapter 10 is dedicated to the chemical evolution on the scale of galaxies, clusters of galaxies and the whole Universe.
NASA Technical Reports Server (NTRS)
Marr, Greg C.
2003-01-01
The Triana spacecraft was designed to be launched by the Space Shuttle. The nominal Triana mission orbit will be a Sun-Earth L1 libration point orbit. Using the NASA Goddard Space Flight Center's Orbit Determination Error Analysis System (ODEAS), orbit determination (OD) error analysis results are presented for all phases of the Triana mission from the first correction maneuver through approximately launch plus 6 months. Results are also presented for the science data collection phase of the Fourier Kelvin Stellar Interferometer Sun-Earth L2 libration point mission concept with momentum unloading thrust perturbations during the tracking arc. The Triana analysis includes extensive analysis of an initial short arc orbit determination solution and results using both Deep Space Network (DSN) and commercial Universal Space Network (USN) statistics. These results could be utilized in support of future Sun-Earth libration point missions.
Cheetah: Starspot modeling code
NASA Astrophysics Data System (ADS)
Walkowicz, Lucianne; Thomas, Michael; Finkestein, Adam
2014-12-01
Cheetah models starspots in photometric data (lightcurves) by calculating the modulation of a light curve due to starspots. The main parameters of the program are the linear and quadratic limb darkening coefficients, stellar inclination, spot locations and sizes, and the intensity ratio of the spots to the stellar photosphere. Cheetah uses uniform spot contrast and the minimum number of spots needed to produce a good fit and ignores bright regions for the sake of simplicity.
The Stellar Imager (SI) Mission Concept: Imaging the Surfaces and Interiors of Other Stars
NASA Technical Reports Server (NTRS)
Carpenter, Kenneth G.; Oegerle, William R. (Technical Monitor)
2002-01-01
The Stellar Imager (SI) is envisioned as a space-based, uv-optical interferometer composed of 10 or more one-meter class elements distributed with a maximum. baseline of 0.5-km and providing a resolution of 60 micro-arcseconds at 1550 A. It will image stars and binaries with one hundred to one thousand resolution elements on their surface and enable long-term studies of stellar magnetic activity patterns and their evolution with time, for comparison with those on the sun. It will also sound their interiors through asteroseismology to image internal structure, differential rotation, and large-scale circulations. SI will enable us to understand the various effects of magnetic fields of stars, the dynamos that generate these fields, and the internal structure and dynamic the stars in which these dynamos operate. The ultimate goal of the mission is to achieve the best-possible forecasting of solar activity as a driver of climate and space weather on times scales ranging from months up to decades, and an understanding of the impact of stellar magnetic activity on life in the universe. The road to that goal will revolutionize our understanding of stars and stellar systems, the building blocks of the universe. Fitting naturally within the NASA and ESA long-term time lines, SI complements defined missions, and with them will show us entire other solar systems, from the central star to their orbiting planets. in this paper we describe the scientific goals of the mission, the performance requirements needed to address those goals, and the design concepts now under study.
Origin of the Galaxy Mass-Metallicity-Star Formation Relation
NASA Astrophysics Data System (ADS)
Harwit, Martin; Brisbin, Drew
2015-02-01
We describe an equilibrium model that links the metallicity of low-redshift galaxies to stellar evolution models. It enables the testing of different stellar initial mass functions and metal yields against observed galaxy metallicities. We show that the metallicities of more than 80,000 Sloan Digital Sky Survey galaxies in the low-redshift range 0.07 <= z <= 0.3 considerably constrain stellar evolution models that simultaneously relate galaxy stellar mass, metallicity, and star formation rates to the infall rate of low-metallicity extragalactic gas and outflow of enriched matter. A feature of our model is that it encompasses both the active star forming phases of a galaxy and epochs during which the same galaxy may lie fallow. We show that the galaxy mass-metallicity-star formation relation can be traced to infall of extragalactic gas mixing with native gas from host galaxies to form stars of observed metallicities, the most massive of which eject oxygen into extragalactic space. Most consequential among our findings is that, on average, extragalactic infall accounts for one half of the gas required for star formation, a ratio that is remarkably constant across galaxies with stellar masses ranging at least from M* = 2 × 109 to 6 × 1010 M ⊙. This leads us to propose that star formation is initiated when extragalactic infall roughly doubles the mass of marginally stable interstellar clouds. The processes described may also account quantitatively for the metallicity of extragalactic space, though to check this the fraction of extragalactic baryons will need to be more firmly established.
MEASURING REDDENING WITH SLOAN DIGITAL SKY SURVEY STELLAR SPECTRA AND RECALIBRATING SFD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schlafly, Edward F.; Finkbeiner, Douglas P.
2011-08-20
We present measurements of dust reddening using the colors of stars with spectra in the Sloan Digital Sky Survey. We measure reddening as the difference between the measured and predicted colors of a star, as derived from stellar parameters from the Sloan Extension for Galactic Understanding and Exploration Stellar Parameter Pipeline. We achieve uncertainties of 56, 34, 25, and 29 mmag in the colors u - g, g - r, r - i, and i - z, per star, though the uncertainty varies depending on the stellar type and the magnitude of the star. The spectrum-based reddening measurements confirm ourmore » earlier 'blue tip' reddening measurements, finding reddening coefficients different by -3%, 1%, 1%, and 2% in u - g, g - r, r - i, and i - z from those found by the blue tip method, after removing a 4% normalization difference. These results prefer an R{sub V} = 3.1 Fitzpatrick reddening law to O'Donnell or Cardelli et al. reddening laws. We provide a table of conversion coefficients from the Schlegel et al. (SFD) maps of E(B - V) to extinction in 88 bandpasses for four values of R{sub V} , using this reddening law and the 14% recalibration of SFD first reported by Schlafly et al. and confirmed in this work.« less
Disentangling Time-series Spectra with Gaussian Processes: Applications to Radial Velocity Analysis
NASA Astrophysics Data System (ADS)
Czekala, Ian; Mandel, Kaisey S.; Andrews, Sean M.; Dittmann, Jason A.; Ghosh, Sujit K.; Montet, Benjamin T.; Newton, Elisabeth R.
2017-05-01
Measurements of radial velocity variations from the spectroscopic monitoring of stars and their companions are essential for a broad swath of astrophysics; these measurements provide access to the fundamental physical properties that dictate all phases of stellar evolution and facilitate the quantitative study of planetary systems. The conversion of those measurements into both constraints on the orbital architecture and individual component spectra can be a serious challenge, however, especially for extreme flux ratio systems and observations with relatively low sensitivity. Gaussian processes define sampling distributions of flexible, continuous functions that are well-motivated for modeling stellar spectra, enabling proficient searches for companion lines in time-series spectra. We introduce a new technique for spectral disentangling, where the posterior distributions of the orbital parameters and intrinsic, rest-frame stellar spectra are explored simultaneously without needing to invoke cross-correlation templates. To demonstrate its potential, this technique is deployed on red-optical time-series spectra of the mid-M-dwarf binary LP661-13. We report orbital parameters with improved precision compared to traditional radial velocity analysis and successfully reconstruct the primary and secondary spectra. We discuss potential applications for other stellar and exoplanet radial velocity techniques and extensions to time-variable spectra. The code used in this analysis is freely available as an open-source Python package.
The fundamental stellar parameters of FGK stars in the SEEDS survey Norman, OK 73071, USA
NASA Astrophysics Data System (ADS)
Rich, Evan A.; Wisniewski, John P.; McElwain, Michael W.; Hashimoto, Jun; Kudo, Tomoyuki; Kusakabe, Nobuhiko; Okamoto, Yoshiko K.; Abe, Lyu; Akiyama, Eiji; Brandner, Wolfgang; Brandt, Timothy D.; Cargile, Phillip; Carson, Joseph C.; Currie, Thayne M.; Egner, Sebastian; Feldt, Markus; Fukagawa, Misato; Goto, Miwa; Grady, Carol A.; Guyon, Olivier; Hayano, Yutaka; Hayashi, Masahiko; Hayashi, Saeko S.; Hebb, Leslie; Hełminiak, Krzysztof G.; Henning, Thomas; Hodapp, Klaus W.; Ishii, Miki; Iye, Masanori; Janson, Markus; Kandori, Ryo; Knapp, Gillian R.; Kuzuhara, Masayuki; Kwon, Jungmi; Matsuo, Taro; Mayama, Satoshi; Miyama, Shoken; Momose, Munetake; Morino, Jun-Ichi; Moro-Martin, Amaya; Nakagawa, Takao; Nishimura, Tetsuo; Oh, Daehyeon; Pyo, Tae-Soo; Schlieder, Joshua; Serabyn, Eugene; Sitko, Michael L.; Suenaga, Takuya; Suto, Hiroshi; Suzuki, Ryuji; Takahashi, Yasuhiro H.; Takami, Michihiro; Takato, Naruhisa; Terada, Hiroshi; Thalmann, Christian; Tomono, Daigo; Turner, Edwin L.; Watanabe, Makoto; Yamada, Toru; Takami, Hideki; Usuda, Tomonori; Tamura, Motohide
2017-12-01
Large exoplanet surveys have successfully detected thousands of exoplanets to-date. Utilizing these detections and non-detections to constrain our understanding of the formation and evolution of planetary systems also requires a detailed understanding of the basic properties of their host stars. We have determined the basic stellar properties of F, K and G stars in the Strategic Exploration of Exoplanets and Disks with Subaru (SEEDS) survey from Echelle spectra taken at the Apache Point Observatory's 3.5m telescope. Using ROBOSPECT to extract line equivalent widths and Temperature Gravity microtrubulent Velocity ITerations to calculate the fundamental parameters, we have computed Teff, log(g), vt, [Fe/H], chromospheric activity and the age for our sample. Our methodology was calibrated against previously published results for a portion of our sample. The distribution of [Fe/H] in our sample is consistent with that typical of the Solar neighbourhood. Additionally, we find the ages of most of our sample are <500 Myr, but note that we cannot determine robust ages from significantly older stars via chromospheric activity age indicators. The future meta-analysis of the frequency of wide stellar and sub-stellar companions imaged via the SEEDS survey will utilize our results to constrain the occurrence of detected comoving companions with the properties of their host stars.
A non-local mixing-length theory able to compute core overshooting
NASA Astrophysics Data System (ADS)
Gabriel, M.; Belkacem, K.
2018-04-01
Turbulent convection is certainly one of the most important and thorny issues in stellar physics. Our deficient knowledge of this crucial physical process introduces a fairly large uncertainty concerning the internal structure and evolution of stars. A striking example is overshoot at the edge of convective cores. Indeed, nearly all stellar evolutionary codes treat the overshooting zones in a very approximative way that considers both its extent and the profile of the temperature gradient as free parameters. There are only a few sophisticated theories of stellar convection such as Reynolds stress approaches, but they also require the adjustment of a non-negligible number of free parameters. We present here a theory, based on the plume theory as well as on the mean-field equations, but without relying on the usual Taylor's closure hypothesis. It leads us to a set of eight differential equations plus a few algebraic ones. Our theory is essentially a non-mixing length theory. It enables us to compute the temperature gradient in a shrinking convective core and its overshooting zone. The case of an expanding convective core is also discussed, though more briefly. Numerical simulations have quickly improved during recent years and enabling us to foresee that they will probably soon provide a model of convection adapted to the computation of 1D stellar models.
NASA Astrophysics Data System (ADS)
Sander, A. A. C.; Hamann, W.-R.; Todt, H.; Hainich, R.; Shenar, T.
2017-07-01
Context. For more than two decades, stellar atmosphere codes have been used to derive the stellar and wind parameters of massive stars. Although they have become a powerful tool and sufficiently reproduce the observed spectral appearance, they can hardly be used for more than measuring parameters. One major obstacle is their inconsistency between the calculated radiation field and the wind stratification due to the usage of prescribed mass-loss rates and wind-velocity fields. Aims: We present the concepts for a new generation of hydrodynamically consistent non-local thermodynamical equilibrium (non-LTE) stellar atmosphere models that allow for detailed studies of radiation-driven stellar winds. As a first demonstration, this new kind of model is applied to a massive O star. Methods: Based on earlier works, the PoWR code has been extended with the option to consistently solve the hydrodynamic equation together with the statistical equations and the radiative transfer in order to obtain a hydrodynamically consistent atmosphere stratification. In these models, the whole velocity field is iteratively updated together with an adjustment of the mass-loss rate. Results: The concepts for obtaining hydrodynamically consistent models using a comoving-frame radiative transfer are outlined. To provide a useful benchmark, we present a demonstration model, which was motivated to describe the well-studied O4 supergiant ζPup. The obtained stellar and wind parameters are within the current range of literature values. Conclusions: For the first time, the PoWR code has been used to obtain a hydrodynamically consistent model for a massive O star. This has been achieved by a profound revision of earlier concepts used for Wolf-Rayet stars. The velocity field is shaped by various elements contributing to the radiative acceleration, especially in the outer wind. The results further indicate that for more dense winds deviations from a standard β-law occur.
Winds in hot main-sequence stars near the static limit
NASA Technical Reports Server (NTRS)
Morrison, Nancy D.
1995-01-01
This project began with the acquisition of short-wavelength, high-dispersion IUE spectra of selected late O- and early B-type stars that are near the main sequence in open clusters and associations. The profiles of the resonance lines of N(V), Si(IV), and C(IV) were studied, and we found that the C(IV) lines are the most sensitive indicators of mass loss (stellar winds) in stars of this type. The mass loss manifests itself as an extension of the short-wavelength absorption wing of the doublet, while there is no P Cygni-type emission on the long-wavelength side of the line profile. We investigated whether the short-wavelength extension could be caused by blended lines of other ionic species formed in the photosphere. Although blending is present and introduces uncertainty into the estimation of the precise location on the main sequence of the onset of the mass-loss signature, it is a crucial issue only in a few marginal cases. Mass loss certainly overwhelms blending in its influence on the spectrum between spectral types B0 and B1 (effective temperatures in the range 25,000-27,000 K). We defined a parameter called P(sub w), to describe the degree of asymmetry of the C(IV) resonance-line profile, and we studied the dependence of this parameter on the fundamental stellar parameters. For this purpose, we derived new estimates of the stellar T(eff) and log g from a non-LTE, line-blanketed model-atmosphere analysis of these stars (Grigsby, Morrison, and Anderson 1992). In order to estimate the stellar luminosities, we performed an exhaustive search of the literature for the most reliable available estimates of the distances of the clusters and associations to which the program stars belong. The dependence of P(sub w) on stellar temperature and luminosity is also studied.
Convective-core Overshoot and Suppression of Oscillations: Constraints from Red Giants in NGC 6811
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arentoft, T.; Brogaard, K.; Jessen-Hansen, J.
Using data from the NASA spacecraft Kepler , we study solar-like oscillations in red giant stars in the open cluster NGC 6811. We determine oscillation frequencies, frequency separations, period spacings of mixed modes, and mode visibilities for eight cluster giants. The oscillation parameters show that these stars are helium-core-burning red giants. The eight stars form two groups with very different oscillation power spectra; the four stars with the lowest Δ ν values display rich sets of mixed l = 1 modes, while this is not the case for the four stars with higher Δ ν . For the four starsmore » with lowest Δ ν , we determine the asymptotic period spacing of the mixed modes, Δ P , which together with the masses we derive for all eight stars suggest that they belong to the so-called secondary clump. Based on the global oscillation parameters, we present initial theoretical stellar modeling that indicates that we can constrain convective-core overshoot on the main sequence and in the helium-burning phase for these ∼2 M {sub ⊙} stars. Finally, our results indicate less mode suppression than predicted by recent theories for magnetic suppression of certain oscillation modes in red giants.« less
Homogeneous Characterization of Transiting Exoplanet Systems
NASA Astrophysics Data System (ADS)
Gomez Maqueo Chew, Yilen; Faedi, Francesca; Hebb, Leslie; Pollacco, Don; Stassun, Keivan; Ghezzi, Luan; Cargile, Phillip; Barros, Susana; Smalley, Barry; Mack, Claude
2012-02-01
We aim to obtain a homogeneous set of high resolution, high signal- to-noise (S/N) spectra for a large and diverse sample of stars with transiting planets, using the Kitt Peak 4-m echelle spectrograph for bright Northern targets (7.7
Fermi-LAT upper limits on gamma-ray emission from colliding wind binaries
Werner, Michael; Reimer, O.; Reimer, A.; ...
2013-07-09
Here, colliding wind binaries (CWBs) are thought to give rise to a plethora of physical processes including acceleration and interaction of relativistic particles. Observation of synchrotron radiation in the radio band confirms there is a relativistic electron population in CWBs. Accordingly, CWBs have been suspected sources of high-energy γ-ray emission since the COS-B era. Theoretical models exist that characterize the underlying physical processes leading to particle acceleration and quantitatively predict the non-thermal energy emission observable at Earth. Furthermore, we strive to find evidence of γ-ray emission from a sample of seven CWB systems: WR 11, WR 70, WR 125, WRmore » 137, WR 140, WR 146, and WR 147. Theoretical modelling identified these systems as the most favourable candidates for emitting γ-rays. We make a comparison with existing γ-ray flux predictions and investigate possible constraints. We used 24 months of data from the Large Area Telescope (LAT) on-board the Fermi Gamma Ray Space Telescope to perform a dedicated likelihood analysis of CWBs in the LAT energy range. As a result, we find no evidence of γ-ray emission from any of the studied CWB systems and determine corresponding flux upper limits. For some CWBs the interplay of orbital and stellar parameters renders the Fermi-LAT data not sensitive enough to constrain the parameter space of the emission models. In the cases of WR140 and WR147, the Fermi -LAT upper limits appear to rule out some model predictions entirely and constrain theoretical models over a significant parameter space. A comparison of our findings to the CWB η Car is made.« less
Stellar Imager - Observing the Universe in High Definition
NASA Technical Reports Server (NTRS)
Carpenter, Kenneth
2009-01-01
Stellar Imager (SI) is a space-based, UV Optical Interferometer (UVOI) with over 200x the resolution of HST. It will enable 0.1 milli-arcsec spectral imaging of stellar surfaces and the Universe in general and open an enormous new 'discovery space' for Astrophysics with its combination of high angular resolution, dynamic imaging, and spectral energy resolution. SI's goal is to study the role of magnetism in the Universe and revolutionize our understanding of: 1) Solar/Stellar Magnetic Activity and their impact on Space Weather, Planetary Climates. and Life, 2) Magnetic and Accretion Processes and their roles in the Origin and Evolution of Structure and in the Transport of Matter throughout the Universe, 3) the close-in structure of Active Galactic Nuclei and their winds, and 4) Exo-Solar Planet Transits and Disks. The SI mission is targeted for the mid 2020's - thus significant technology development in the upcoming decade is critical to enabling it and future spacebased sparse aperture telescope and distributed spacecraft missions. The key technology needs include: 1) precision formation flying of many spacecraft, 2) precision metrology over km-scales, 3) closed-loop control of many-element, sparse optical arrays, 4) staged-control systems with very high dynamic ranges (nm to km-scale). It is critical that the importance of timely development of these capabilities is called out in the upcoming Astrophysics and Heliophysics Decadal Surveys, to enable the flight of such missions in the following decade. S1 is a 'Landmark/Discovery Mission' in 2005 Heliophysics Roadmap and a candidate UVOI in the 2006 Astrophysics Strategic Plan. It is a NASA Vision Mission ('NASA Space Science Vision Missions' (2008), ed. M. Allen) and has also been recommended for further study in the 2008 NRC interim report on missions potentially enabled enhanced by an Ares V' launch, although a incrementally-deployed version could be launched using smaller rockets.
Lyα emitters in the GOODS-S field. A powerful pure nebular SED with N IV] emission at z = 5.563
NASA Astrophysics Data System (ADS)
Raiter, A.; Fosbury, R. A. E.; Teimoorinia, H.
2010-02-01
Context. The Great Observatories Origins Deep Survey (GOODS) has provided us with one of the deepest multi-wavelength views of the distant universe. The combination of multi-band photometry and optical spectroscopy has resulted in the identification of sources whose redshifts extend to values in excess of six. Amongst these distant sources are Lyα emitters whose nature must be deduced by clearly identifying the different components that contribute to the measured SED. Aims: From a sample of Lyα emitters in the GOODS-S field with uncontaminated photometry and optical (red) spectroscopy, we select a spatially compact object at a redshift of 5.563 (Lyα) that shows a second emission line, identified as N IV] 1486 Å. The SED is modelled in a way that accounts for both the N IV] line emission and the photometry in a self-consistent way. Methods: The photoionization code CLOUDY is used to calculate a range of nebular models as a function of stellar ionizing source temperature, ionization parameter, density and nebular metallicity. We compare the theoretical and observed magnitudes and search for the model parameters that also reproduce the observed N IV] luminosity and equivalent width. Results: A nebular model with a hot blackbody ionizing source of around 100 kK and a nebular metallicity of ~5% of solar is able to fit the observed SED and, in particular, explain the large apparent Balmer break which is inferred from the pure stellar population model fitting conventionally applied to multi-band photometric observations. In our model, an apparent spectral break is produced by strong [O III] 4959, 5007 Å emission falling in one of the IR bands (IRAC1 in this case). A lower limit on the total baryonic mass of a model of this type is 3.2 ×10^8~M⊙. Conclusions: It is argued that objects with Lyα emission at high redshift that show an apparent Balmer break may have their SED dominated by nebular emission and so could possibly be identified with very young starbursting galaxies rather than massive evolved stellar populations. Detailed studies of these emission nebulæ with large telescopes will provide a unique insight into very early chemical evolution. Based on observations made at the European Southern Observatory, Paranal, Chile (ESO programme 170.A-0788) The Great Observatories Origins Deep Survey: ESO Public Observations of the SIRTF Legacy/HST Treasury/Chandra Deep Field South.); on observations obtained with the NASA/ESA Hubble Space Telescope obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy (AURA), Inc.; and on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA.
NASA Astrophysics Data System (ADS)
Obreja, Aura; Macciò, Andrea V.; Moster, Benjamin; Dutton, Aaron A.; Buck, Tobias; Wang, Gregory S. Stinson Liang
2018-04-01
We present the first results of applying Gaussian Mixture Models in the stellar kinematic space of normalized angular momentum and binding energy on NIHAO high resolution galaxies to separate the stars into multiple components. We exemplify this method using a simulated Milky Way analogue, whose stellar component hosts: thin and thick discs, classical and pseudo bulges, and a stellar halo. The properties of these stellar structures are in good agreement with observational expectations in terms of sizes, shapes and rotational support. Interestingly, the two kinematic discs show surface mass density profiles more centrally concentrated than exponentials, while the bulges and the stellar halo are purely exponential. We trace back in time the Lagrangian mass of each component separately to study their formation history. Between z ˜ 3 and the end of halo virialization, z ˜ 1.3, all components lose a fraction of their angular momentum. The classical bulge loses the most (˜95%) and the thin disc the least (˜60%). Both bulges formed their stars in-situ at high redshift, while the thin disc formed ˜98% in-situ, but with a constant SFR ˜ 1.5M⊙yr-1 over the last ˜ 11 Gyr. Accreted stars (6% of total stellar mass) are mainly incorporated to the thick disc or the stellar halo, which formed ex-situ 8% and 45% of their respective masses. Our analysis pipeline is freely available at https://github.com/aobr/gsf.
On the analysis of large data sets
NASA Astrophysics Data System (ADS)
Ruch, Gerald T., Jr.
We present a set of tools and techniques for performing detailed comparisons between computational models with high dimensional parameter spaces and large sets of archival data. By combining a principal component analysis of a large grid of samples from the model with an artificial neural network, we create a powerful data visualization tool as well as a way to robustly recover physical parameters from a large set of experimental data. Our techniques are applied in the context of circumstellar disks, the likely sites of planetary formation. An analysis is performed applying the two layer approximation of Chiang et al. (2001) and Dullemond et al. (2001) to the archive created by the Spitzer Space Telescope Cores to Disks Legacy program. We find two populations of disk sources. The first population is characterized by the lack of a puffed up inner rim while the second population appears to contain an inner rim which casts a shadow across the disk. The first population also exhibits a trend of increasing spectral index while the second population exhibits a decreasing trend in the strength of the 20 mm silicate emission feature. We also present images of the giant molecular cloud W3 obtained with the Infrared Array Camera (IRAC) and the Multiband Imaging Photometer (MIPS) on board the Spitzer Space Telescope. The images encompass the star forming regions W3 Main, W3(OH), and a region that we refer to as the Central Cluster which encloses the emission nebula IC 1795. We present a star count analysis of the point sources detected in W3. The star count analysis shows that the stellar population of the Central Cluster, when compared to that in the background, contains an over density of sources. The Central Cluster also contains an excess of sources with colors consistent with Class II Young Stellar Objects (YSOs). A analysis of the color-color diagrams also reveals a large number of Class II YSOs in the Central Cluster. Our results suggest that an earlier epoch of star formation created the Central Cluster, created a cavity, and triggered the active star formation in the W3 Main and W3(OH) regions. We also detect a new outflow and its candidate exciting star.
Unbound Young Stellar Systems: Star Formation on the Loose
NASA Astrophysics Data System (ADS)
Gouliermis, Dimitrios A.
2018-07-01
Unbound young stellar systems, the loose ensembles of physically related young bright stars, trace the typical regions of recent star formation in galaxies. Their morphologies vary from small few pc-size associations of newly formed stars to enormous few kpc-size complexes composed of stars few 100 Myr old. These stellar conglomerations are located within the disks and along the spiral arms and rings of star-forming disk galaxies, and they are the active star-forming centers of dwarf and starburst galaxies. Being associated with star-forming regions of various sizes, these stellar structures trace the regions where stars form at various length- and timescales, from compact clusters to whole galactic disks. Stellar associations, the prototypical unbound young systems, and their larger counterparts, stellar aggregates, and stellar complexes, have been the focus of several studies for quite a few decades, with special interest on their demographics, classification, and structural morphology. The compiled surveys of these loose young stellar systems demonstrate that the clear distinction of these systems into well-defined classes is not as straightforward as for stellar clusters, due to their low densities, asymmetric shapes and variety in structural parameters. These surveys also illustrate that unbound stellar structures follow a clear hierarchical pattern in the clustering of their stars across various scales. Stellar associations are characterized by significant sub-structure with bound stellar clusters being their most compact parts, while associations themselves are the brighter denser parts of larger stellar aggregates and stellar complexes, which are members of larger super-structures up to the scale of a whole star-forming galaxy. This structural pattern, which is usually characterized as self-similar or fractal, appears to be identical to that of star-forming giant molecular clouds and interstellar gas, driven mainly by turbulence cascade. In this short review, I make a concise compilation of our understanding of unbound young stellar systems across various environments in the local universe, as it is developed during the last 60 years. I present a factual assessment of the clustering behavior of star formation, as revealed from the assembling pattern of stars across loose stellar structures and its relation to the interstellar medium and the environmental conditions. I also provide a consistent account of the processes that possibly play important role in the formation of unbound stellar systems, compiled from both theoretical and observational investigations on the field.
NASA Astrophysics Data System (ADS)
Calcaferro, Leila M.; Córsico, Alejandro H.; Althaus, Leandro G.
2017-11-01
Context. Many pulsating low-mass white dwarf stars have been detected in the past years in the field of our Galaxy. Some of them exhibit multiperiodic brightness variation, therefore it is possible to probe their interiors through asteroseismology. Aims: We present a detailed asteroseismological study of all the known low-mass variable white dwarf stars based on a complete set of fully evolutionary models that are representative of low-mass He-core white dwarf stars. Methods: We employed adiabatic radial and nonradial pulsation periods for low-mass white dwarf models with stellar masses ranging from 0.1554 to 0.4352 M⊙ that were derived by simulating the nonconservative evolution of a binary system consisting of an initially 1 M⊙ zero-age main-sequence (ZAMS) star and a 1.4 M⊙ neutron star companion. We estimated the mean period spacing for the stars under study (where this was possible), and then we constrained the stellar mass by comparing the observed period spacing with the average of the computed period spacings for our grid of models. We also employed the individual observed periods of every known pulsating low-mass white dwarf star to search for a representative seismological model. Results: We found that even though the stars under analysis exhibit few periods and the period fits show multiplicity of solutions, it is possible to find seismological models whose mass and effective temperature are in agreement with the values given by spectroscopy for most of the cases. Unfortunately, we were not able to constrain the stellar masses by employing the observed period spacing because, in general, only few periods are exhibited by these stars. In the two cases where we were able to extract the period spacing from the set of observed periods, this method led to stellar mass values that were substantially higher than expected for this type of stars. Conclusions: The results presented in this work show the need for further photometric searches, on the one hand, and that some improvements of the theoretical models are required on the other hand in order to place the asteroseismological results on a firmer ground.
The stability of stratified spatially periodic shear flows at low Péclet number
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garaud, Pascale, E-mail: pgaraud@ucsc.edu; Gallet, Basile; Bischoff, Tobias
2015-08-15
This work addresses the question of the stability of stratified, spatially periodic shear flows at low Péclet number but high Reynolds number. This little-studied limit is motivated by astrophysical systems, where the Prandtl number is often very small. Furthermore, it can be studied using a reduced set of “low-Péclet-number equations” proposed by Lignières [“The small-Péclet-number approximation in stellar radiative zones,” Astron. Astrophys. 348, 933–939 (1999)]. Through a linear stability analysis, we first determine the conditions for instability to infinitesimal perturbations. We formally extend Squire’s theorem to the low-Péclet-number equations, which shows that the first unstable mode is always two-dimensional. Wemore » then perform an energy stability analysis of the low-Péclet-number equations and prove that for a given value of the Reynolds number, above a critical strength of the stratification, any smooth periodic shear flow is stable to perturbations of arbitrary amplitude. In that parameter regime, the flow can only be laminar and turbulent mixing does not take place. Finding that the conditions for linear and energy stability are different, we thus identify a region in parameter space where finite-amplitude instabilities could exist. Using direct numerical simulations, we indeed find that the system is subject to such finite-amplitude instabilities. We determine numerically how far into the linearly stable region of parameter space turbulence can be sustained.« less
Particle Dark Matter constraints: the effect of Galactic uncertainties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benito, Maria; Bernal, Nicolás; Iocco, Fabio
2017-02-01
Collider, space, and Earth based experiments are now able to probe several extensions of the Standard Model of particle physics which provide viable dark matter candidates. Direct and indirect dark matter searches rely on inputs of astrophysical nature, such as the local dark matter density or the shape of the dark matter density profile in the target in object. The determination of these quantities is highly affected by astrophysical uncertainties. The latter, especially those for our own Galaxy, are ill-known, and often not fully accounted for when analyzing the phenomenology of particle physics models. In this paper we present amore » systematic, quantitative estimate of how astrophysical uncertainties on Galactic quantities (such as the local galactocentric distance, circular velocity, or the morphology of the stellar disk and bulge) propagate to the determination of the phenomenology of particle physics models, thus eventually affecting the determination of new physics parameters. We present results in the context of two specific extensions of the Standard Model (the Singlet Scalar and the Inert Doublet) that we adopt as case studies for their simplicity in illustrating the magnitude and impact of such uncertainties on the parameter space of the particle physics model itself. Our findings point toward very relevant effects of current Galactic uncertainties on the determination of particle physics parameters, and urge a systematic estimate of such uncertainties in more complex scenarios, in order to achieve constraints on the determination of new physics that realistically include all known uncertainties.« less
Participación científica del Nodo La Plata en el Proyecto VVV
NASA Astrophysics Data System (ADS)
Baume, G.; Fernández Lajús, E.; Feinstein, C.; Gamen, R.; Fariña, C.
We present here the main research lines related to the survey Vista Variables in the Vía Láctea (VVV) being carried out at "Node La Plata". These lines involve the study of stellar clusters and eclipsing systems. In this frame- work raises the following studies: a) An preliminar analysis of a group of embedded stellar clusters located in the fourth Galactic quadrant by estimat- ing their fundamental parameters using VVV data supplemented with data from other published catalogs. b) The provided methodology for the deter- mination of the eclipsing binary stars parameters for those ones detected in the survey from their light curves, including also extrasolar planets transits. FULL TEXT IN SPANISH
The history of star formation in nearby dwarf galaxies
NASA Astrophysics Data System (ADS)
Weisz, Daniel Ray
2010-11-01
We present detailed analysis of color-magnitude diagrams (CMDs) of resolved stellar populations in nearby dwarf galaxies based on observations taken with the Hubble Space Telescope (HST). From the positions of individual stars on a CMD, we are able to derive the star formation histories (SFHs), i.e., the star formation rate (SFR) as a function of time and metallicity, of the observed stellar populations. Specifically, we apply this technique to a number of nearby dwarf galaxies to better understand the mechanisms driving their evolution. The ACS Nearby Galaxy Survey Treasury program (ANGST) provides multi-color photometry of resolved stars in ˜ 60 nearby dwarf galaxies from images taken with HST. This sample contains 12 dSph, 5 dwarf spiral, 28 dIrr, 12 dSph/dIrr (transition), and 3 tidal dwarf galaxies. The sample spans a range of ˜ 10 in MB and covers a wide range of environments, from highly interacting to truly isolated. From the best fit lifetime SFHs we find three significant results: (1) the average dwarf galaxy formed ˜ 60% of its stars by z ˜ 2 and 70% of its stars by z ˜ 1, regardless of morphological type, (2) the only statistically significant difference between the SFHs of different morphological types is within the most recent 1 Gyr (excluding tidal dwarf galaxies), and (3) the SFHs are complex and the mean values are inconsistent with simple SFH models, e.g., single epoch SF or constant SFH. We then present the recent ( ≲ 1 Gyr) SFHs of nine M81 Group Dwarf Galaxies. Comparing the SFHs, birthrate parameters, fraction of stars formed per time interval, and spatial distribution of stellar components as a function of luminosity, we find only minor differences in SF characteristics among the M81 Group dIs despite a wide range of physical properties. We extend our comparison to select dIs in the Local Group (LG), with similar quality photometry, and again find only minor differences in SF parameters. The lack of a clear trend in SF parameters over a wide range of diverse environments suggests that SF in low mass systems may be dominated by stochastic processes. The fraction of stars formed per time interval for an average M81 Group and LG dI is consistent with a constant SFH. However, individual galaxies can show significant departures from a constant SFH. Thus, we find this result underlines the importance of stochastic SF in dIs. Comparing the recent SFHs and spatial locations of young stars with observations of the neutral interstellar medium (HI), we are able to gain new insight into the physics of stellar 'feedback'. We first make this type of comparison in IC 2754, a luminous dwarf irregular galaxy in the M81 Group with a ˜ 1 kpc supergiant HI shell. We find two significant episodes of SF inside the SGS from 200--300 Myr and ˜ 25 Myr ago. Comparing the timing of the SF events to the dynamic age of the SGS and the energetics from the HI and SF, we find compelling evidence that stellar feedback is responsible for creating the SGS and triggering secondary SF around its rim. We then conduct an extensive analysis of HI holes in M81 Group dwarf irregular galaxy, Holmberg II. From the deep photometry, we construct the CMDs and measure the SFHs for stars contained in HI holes from two independent holes catalogs, as well as select control fields, i.e., similar sized regions that span a range of HI column densities. The CMDs reveal young (< 200 Myr) stellar populations inside all HI holes, which contain very few bright OB stars with ages less than 10 Myr, indicating they are not reliable tracers of HI hole locations while the recent SFHs confirm multiple episodes of star formation within most holes. Converting the recent SFHs into stellar feedback energies, we find that enough energy has been generated to have created all holes. However, the required energy is not always produced over a time scale that is less than the estimated kinematic age of the hole. A similar analysis of stars in the control fields finds that the stellar populations of the control fields and HI holes are statistically indistinguishable. However, because we are only sensitive to holes ˜ 100 pc in diameter, we cannot tell if there are smaller holes inside the control fields. The combination of the CMDs, recent SFHs, and locations of young stars shows that the stellar populations inside HI holes are not coherent, single-aged, stellar clusters, as previously suggested, but rather multi-age populations distributed across each hole. From a comparison of the modeled and observed integrated magnitudes, and the locations and energetics of stars inside of HI holes, we propose a potential new model: a viable mechanism for creating the observed HI holes in Ho II is stellar feedback from multiple generations of SF spread out over tens or hundreds of Myr, and thus, the concept of an age for an HI hole is intrinsically ambiguous. (Abstract shortened by UMI.)
The Influence of Atomic Diffusion on Stellar Ages and Chemical Tagging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dotter, Aaron; Conroy, Charlie; Cargile, Phillip
2017-05-10
In the era of large stellar spectroscopic surveys, there is an emphasis on deriving not only stellar abundances but also the ages for millions of stars. In the context of Galactic archeology, stellar ages provide a direct probe of the formation history of the Galaxy. We use the stellar evolution code MESA to compute models with atomic diffusion—with and without radiative acceleration—and extra mixing in the surface layers. The extra mixing consists of both density-dependent turbulent mixing and envelope overshoot mixing. Based on these models we argue that it is important to distinguish between initial, bulk abundances (parameters) and current,more » surface abundances (variables) in the analysis of individual stellar ages. In stars that maintain radiative regions on evolutionary timescales, atomic diffusion modifies the surface abundances. We show that when initial, bulk metallicity is equated with current, surface metallicity in isochrone age analysis, the resulting stellar ages can be systematically overestimated by up to 20%. The change of surface abundances with evolutionary phase also complicates chemical tagging, which is the concept that dispersed star clusters can be identified through unique, high-dimensional chemical signatures. Stars from the same cluster, but in different evolutionary phases, will show different surface abundances. We speculate that calibration of stellar models may allow us to estimate not only stellar ages but also initial abundances for individual stars. In the meantime, analyzing the chemical properties of stars in similar evolutionary phases is essential to minimize the effects of atomic diffusion in the context of chemical tagging.« less
NASA Astrophysics Data System (ADS)
Lian, Jianhui; Thomas, Daniel; Maraston, Claudia; Goddard, Daniel; Parikh, Taniya; Fernández-Trincado, J. G.; Roman-Lopes, Alexandre; Rong, Yu; Tang, Baitian; Yan, Renbin
2018-05-01
In our previous work, we found that only two scenarios are capable of reproducing the observed integrated mass-metallicity relations for the gas and stellar components of local star-forming galaxies simultaneously. One scenario invokes a time-dependent metal outflow loading factor with stronger outflows at early times. The other scenario uses a time-dependent initial mass function (IMF) slope with a steeper IMF at early times. In this work, we extend our study to investigate the radial profile of gas and stellar metallicity in local star-forming galaxies using spatially resolved spectroscopic data from the SDSS-IV MaNGA survey. We find that most galaxies show negative gradients in both gas and stellar metallicity with steeper gradients in stellar metallicity. The stellar metallicity gradients tend to be mass dependent with steeper gradients in more massive galaxies while no clear mass dependence is found for the gas metallicity gradient. Then we compare the observations with the predictions from a chemical evolution model of the radial profiles of gas and stellar metallicities. We confirm that the two scenarios proposed in our previous work are also required to explain the metallicity gradients. Based on these two scenarios, we successfully reproduce the radial profiles of gas metallicity, stellar metallicity, stellar mass surface density, and star formation rate surface density simultaneously. The origin of the negative gradient in stellar metallicity turns out to be driven by either radially dependent metal outflow or IMF slope. In contrast, the radial dependence of the gas metallicity is less constrained because of the degeneracy in model parameters.
BayeSED: A General Approach to Fitting the Spectral Energy Distribution of Galaxies
NASA Astrophysics Data System (ADS)
Han, Yunkun; Han, Zhanwen
2014-11-01
We present a newly developed version of BayeSED, a general Bayesian approach to the spectral energy distribution (SED) fitting of galaxies. The new BayeSED code has been systematically tested on a mock sample of galaxies. The comparison between the estimated and input values of the parameters shows that BayeSED can recover the physical parameters of galaxies reasonably well. We then applied BayeSED to interpret the SEDs of a large Ks -selected sample of galaxies in the COSMOS/UltraVISTA field with stellar population synthesis models. Using the new BayeSED code, a Bayesian model comparison of stellar population synthesis models has been performed for the first time. We found that the 2003 model by Bruzual & Charlot, statistically speaking, has greater Bayesian evidence than the 2005 model by Maraston for the Ks -selected sample. In addition, while setting the stellar metallicity as a free parameter obviously increases the Bayesian evidence of both models, varying the initial mass function has a notable effect only on the Maraston model. Meanwhile, the physical parameters estimated with BayeSED are found to be generally consistent with those obtained using the popular grid-based FAST code, while the former parameters exhibit more natural distributions. Based on the estimated physical parameters of the galaxies in the sample, we qualitatively classified the galaxies in the sample into five populations that may represent galaxies at different evolution stages or in different environments. We conclude that BayeSED could be a reliable and powerful tool for investigating the formation and evolution of galaxies from the rich multi-wavelength observations currently available. A binary version of the BayeSED code parallelized with Message Passing Interface is publicly available at https://bitbucket.org/hanyk/bayesed.
BayeSED: A GENERAL APPROACH TO FITTING THE SPECTRAL ENERGY DISTRIBUTION OF GALAXIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Yunkun; Han, Zhanwen, E-mail: hanyk@ynao.ac.cn, E-mail: zhanwenhan@ynao.ac.cn
2014-11-01
We present a newly developed version of BayeSED, a general Bayesian approach to the spectral energy distribution (SED) fitting of galaxies. The new BayeSED code has been systematically tested on a mock sample of galaxies. The comparison between the estimated and input values of the parameters shows that BayeSED can recover the physical parameters of galaxies reasonably well. We then applied BayeSED to interpret the SEDs of a large K{sub s} -selected sample of galaxies in the COSMOS/UltraVISTA field with stellar population synthesis models. Using the new BayeSED code, a Bayesian model comparison of stellar population synthesis models has beenmore » performed for the first time. We found that the 2003 model by Bruzual and Charlot, statistically speaking, has greater Bayesian evidence than the 2005 model by Maraston for the K{sub s} -selected sample. In addition, while setting the stellar metallicity as a free parameter obviously increases the Bayesian evidence of both models, varying the initial mass function has a notable effect only on the Maraston model. Meanwhile, the physical parameters estimated with BayeSED are found to be generally consistent with those obtained using the popular grid-based FAST code, while the former parameters exhibit more natural distributions. Based on the estimated physical parameters of the galaxies in the sample, we qualitatively classified the galaxies in the sample into five populations that may represent galaxies at different evolution stages or in different environments. We conclude that BayeSED could be a reliable and powerful tool for investigating the formation and evolution of galaxies from the rich multi-wavelength observations currently available. A binary version of the BayeSED code parallelized with Message Passing Interface is publicly available at https://bitbucket.org/hanyk/bayesed.« less
Correcting Estimates of the Occurrence Rate of Earth-like Exoplanets for Stellar Multiplicity
NASA Astrophysics Data System (ADS)
Cantor, Elliot; Dressing, Courtney D.; Ciardi, David R.; Christiansen, Jessie
2018-06-01
One of the most prominent questions in the exoplanet field has been determining the true occurrence rate of potentially habitable Earth-like planets. NASA’s Kepler mission has been instrumental in answering this question by searching for transiting exoplanets, but follow-up observations of Kepler target stars are needed to determine whether or not the surveyed Kepler targets are in multi-star systems. While many researchers have searched for companions to Kepler planet host stars, few studies have investigated the larger target sample. Regardless of physical association, the presence of nearby stellar companions biases our measurements of a system’s planetary parameters and reduces our sensitivity to small planets. Assuming that all Kepler target stars are single (as is done in many occurrence rate calculations) would overestimate our search completeness and result in an underestimate of the frequency of potentially habitable Earth-like planets. We aim to correct for this bias by characterizing the set of targets for which Kepler could have detected Earth-like planets. We are using adaptive optics (AO) imaging to reveal potential stellar companions and near-infrared spectroscopy to refine stellar parameters for a subset of the Kepler targets that are most amenable to the detection of Earth-like planets. We will then derive correction factors to correct for the biases in the larger set of target stars and determine the true frequency of systems with Earth-like planets. Due to the prevalence of stellar multiples, we expect to calculate an occurrence rate for Earth-like exoplanets that is higher than current figures.
Testing Models of Stellar Structure and Evolution I. Comparison with Detached Eclipsing Binaries
NASA Astrophysics Data System (ADS)
del Burgo, C.; Allende Prieto, C.
2018-05-01
We present the results of an analysis aimed at testing the accuracy and precision of the PARSEC v1.2S library of stellar evolution models, combined with a Bayesian approach, to infer stellar parameters. We mainly employ the online DEBCat catalogue by Southworth, a compilation of detached eclipsing binary systems with published measurements of masses and radii to ˜ 2 per cent precision. We select a sample of 318 binary components, with masses between 0.10 and 14.5 solar units, and distances between 1.3 pc and ˜ 8 kpc for Galactic objects and ˜ 44-68 kpc for the extragalactic ones. The Bayesian analysis applied takes on input effective temperature, radius, and [Fe/H], and their uncertainties, returning theoretical predictions for other stellar parameters. From the comparison with dynamical masses, we conclude inferred masses are precisely derived for stars on the main-sequence and in the core-helium-burning phase, with respective uncertainties of 4 per cent and 7 per cent, on average. Subgiants and red giants masses are predicted within 14 per cent, and early asymptotic giant branch stars within 24 per cent. These results are helpful to further improve the models, in particular for advanced evolutionary stages for which our understanding is limited. We obtain distances and ages for the binary systems and compare them, whenever possible, with precise literature estimates, finding excellent agreement. We discuss evolutionary effects and the challenges associated with the inference of stellar ages from evolutionary models. We also provide useful polynomial fittings to theoretical zero-age main-sequence relations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dalessandro, E.; Lapenna, E.; Mucciarelli, A.
We used a combination of optical and near-UV Hubble Space Telescope photometry and FLAMES/ESO-VLT high-resolution spectroscopy to characterize the stellar content of the old and massive globular cluster (GC) NGC 121 in the Small Magellanic Cloud (SMC). We report on the detection of multiple stellar populations, the first case in the SMC stellar cluster system. This result enforces the emerging scenario in which the presence of multiple stellar populations is a distinctive-feature of old and massive GCs regardless of the environment, as far as the light-element distribution is concerned. We find that second-generation (SG) stars are more centrally concentrated thanmore » first-generation (FG) ones. More interestingly, at odds with what is typically observed in Galactic GCs, we find that NGC 121 is the only cluster so far to be dominated by FG stars that account for more than 65% of the total cluster mass. In the framework where GCs were born with 90%–95% of FG stars, this observational finding would suggest that either NGC 121 experienced a milder stellar mass-loss with respect to Galactic GCs or it formed a smaller fraction of SG stars.« less
Probing the Dusty Stellar Populations of the Local Volume Galaxies with JWST /MIRI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, Olivia C.; Meixner, Margaret; Justtanont, Kay
The Mid-Infrared Instrument (MIRI) for the James Webb Space Telescope ( JWST ) will revolutionize our understanding of infrared stellar populations in the Local Volume. Using the rich Spitzer -IRS spectroscopic data set and spectral classifications from the Surveying the Agents of Galaxy Evolution (SAGE)–Spectroscopic survey of more than 1000 objects in the Magellanic Clouds, the Grid of Red Supergiant and Asymptotic Giant Branch Star Model (grams), and the grid of YSO models by Robitaille et al., we calculate the expected flux densities and colors in the MIRI broadband filters for prominent infrared stellar populations. We use these fluxes tomore » explore the JWST /MIRI colors and magnitudes for composite stellar population studies of Local Volume galaxies. MIRI color classification schemes are presented; these diagrams provide a powerful means of identifying young stellar objects, evolved stars, and extragalactic background galaxies in Local Volume galaxies with a high degree of confidence. Finally, we examine which filter combinations are best for selecting populations of sources based on their JWST colors.« less
Asteroseismic Constraints on the Models of Hot B Subdwarfs: Convective Helium-Burning Cores
NASA Astrophysics Data System (ADS)
Schindler, Jan-Torge; Green, Elizabeth M.; Arnett, W. David
2017-10-01
Asteroseismology of non-radial pulsations in Hot B Subdwarfs (sdB stars) offers a unique view into the interior of core-helium-burning stars. Ground-based and space-borne high precision light curves allow for the analysis of pressure and gravity mode pulsations to probe the structure of sdB stars deep into the convective core. As such asteroseismological analysis provides an excellent opportunity to test our understanding of stellar evolution. In light of the newest constraints from asteroseismology of sdB and red clump stars, standard approaches of convective mixing in 1D stellar evolution models are called into question. The problem lies in the current treatment of overshooting and the entrainment at the convective boundary. Unfortunately no consistent algorithm of convective mixing exists to solve the problem, introducing uncertainties to the estimates of stellar ages. Three dimensional simulations of stellar convection show the natural development of an overshooting region and a boundary layer. In search for a consistent prescription of convection in one dimensional stellar evolution models, guidance from three dimensional simulations and asteroseismological results is indispensable.
Progress Toward Attractive Stellarators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neilson, G H; Brown, T G; Gates, D A
The quasi-axisymmetric stellarator (QAS) concept offers a promising path to a more compact stellarator reactor, closer in linear dimensions to tokamak reactors than previous stellarator designs. Concept improvements are needed, however, to make it more maintainable and more compatible with high plant availability. Using the ARIES-CS design as a starting point, compact stellarator designs with improved maintenance characteristics have been developed. While the ARIES-CS features a through-the-port maintenance scheme, we have investigated configuration changes to enable a sector-maintenance approach, as envisioned for example in ARIES AT. Three approaches are reported. The first is to make tradeoffs within the QAS designmore » space, giving greater emphasis to maintainability criteria. The second approach is to improve the optimization tools to more accurately and efficiently target the physics properties of importance. The third is to employ a hybrid coil topology, so that the plasma shaping functions of the main coils are shared more optimally, either with passive conductors made of high-temperature superconductor or with local compensation coils, allowing the main coils to become simpler. Optimization tools are being improved to test these approaches.« less
Cosmological constraints on pseudo-Nambu-Goldstone bosons
NASA Technical Reports Server (NTRS)
Frieman, Joshua A.; Jaffe, Andrew H.
1991-01-01
Particle physics models with pseudo-Nambu-Goldstone bosons (PNGBs) are characterized by two mass scales: a global spontaneous symmetry breaking scale, f, and a soft (explicit) symmetry breaking scale, Lambda. General model insensitive constraints were studied on this 2-D parameter space arising from the cosmological and astrophysical effects of PNGBs. In particular, constraints were studied arising from vacuum misalignment and thermal production of PNGBs, topological defects, and the cosmological effects of PNGB decay products, as well as astrophysical constraints from stellar PNGB emission. Bounds on the Peccei-Quinn axion scale, 10(exp 10) GeV approx. = or less than f sub pq approx. = or less than 10(exp 10) to 10(exp 12) GeV, emerge as a special case, where the soft breaking scale is fixed at Lambda sub QCD approx. = 100 MeV.
NASA Astrophysics Data System (ADS)
Caritá, Lucas Antonio; Rodrigues, Irapuan; Puerari, Ivânio; Schiavo, Luiz Eduardo Camargo Aranha
2018-04-01
The Smaller Alignment Index (SALI) is a mathematical tool, not yet conventional, for chaos detection in the phase space of Hamiltonian Dynamical Systems. The SALI values has temporal behaviors very specific to ordered or chaotic motions, what makes the distinction between order and chaos easily observable in these systems. In this paper, this method will be applied to the stability study of stellar orbits immersed in gravitational potential of barred galaxies, since the motion of a test particle in a rotating barred galaxy model is given by a Hamiltonian function. Extracting four parameter sets from the Manos and Athanassoula (2011) work and elaborating a different initial conditions set for each case, we were able to introduce another point of view of their stability study for two degrees of freedom. We have also introduced two new extreme models that corroborates with the conclusions that more axisymmetric bars create an environment with less chaos and that more massive bars create an environment with more chaos. Separate studies were carried out for prograde and retrograde orbits that showed that the retrograde orbits seem more conducive to chaos. To perform all the orbits integrations we used the LP-VIcode program.
Detached dust shell around Wolf-Rayet star WR60-6 in the young stellar cluster VVV CL036
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borissova, J.; Amigo, P.; Kurtev, R.
The discovery of a detached dust shell around the Wolf-Rayet (WR) star WR60-6 in the young stellar cluster VVV CL036 is reported. This shell is uncovered through the Spitzer-MIPS 24 μm image, where it appears brightest, and it is invisible at shorter wavelengths. Using new APEX observations and other data available from the literature, we have estimated some of the shell parameters: the inner and outer radii of 0.15 and 0.90 pc, respectively; the overall systemic velocity of the molecular {sup 12}CO(3 → 2) emission of –45.7 ± 2.3 km s{sup –1}; an expansion velocity of the gas of 16.3more » ± 1 km s{sup –1}; the dust temperature and opacity of 122 ± 12 K and 1.04, respectively; and an age of 2.8 × 10{sup 4} yr. The WR star displays some cyclic variability. The mass computed for the WR60-6 nebula indicates that the material was probably ejected during its previous stages of evolution. In addition, we have identified a bright spot very close to the shell, which can be associated with the Midcourse Space Experiment source G312.13+00.20.« less
Low-redshift Lyman continuum leaking galaxies with high [O III]/[O II] ratios
NASA Astrophysics Data System (ADS)
Izotov, Y. I.; Worseck, G.; Schaerer, D.; Guseva, N. G.; Thuan, T. X.; Fricke, K. J.; Verhamme, A.; Orlitová, I.
2018-05-01
We present observations with the Cosmic Origins Spectrograph onboard the Hubble Space Telescope of five star-forming galaxies at redshifts z in the range 0.2993 - 0.4317 and with high emission-line flux ratios O32 = [O III]λ5007/[O II]λ3727 ˜ 8 - 27 aiming to detect the Lyman continuum (LyC) emission. We detect LyC emission in all galaxies with the escape fractions fesc(LyC) in a range of 2 - 72 per cent. A narrow Lyα emission line with two peaks in four galaxies and with three peaks in one object is seen in medium-resolution COS spectra with a velocity separation between the peaks Vsep varying from ˜153 km s-1 to ˜ 345 km s-1. We find a general increase of the LyC escape fraction with increasing O32 and decreasing stellar mass M⋆, but with a large scatter of fesc(LyC). A tight anti-correlation is found between fesc(LyC) and Vsep making Vsep a good parameter for the indirect determination of the LyC escape fraction. We argue that one possible source driving the escape of ionizing radiation is stellar winds and radiation from hot massive stars.
Calibrated Tully-fisher Relations For Improved Photometric Estimates Of Disk Rotation Velocities
NASA Astrophysics Data System (ADS)
Reyes, Reinabelle; Mandelbaum, R.; Gunn, J. E.; Pizagno, J.
2011-01-01
We present calibrated scaling relations (also referred to as Tully-Fisher relations or TFRs) between rotation velocity and photometric quantities-- absolute magnitude, stellar mass, and synthetic magnitude (a linear combination of absolute magnitude and color)-- of disk galaxies at z 0.1. First, we selected a parent disk sample of 170,000 galaxies from SDSS DR7, with redshifts between 0.02 and 0.10 and r band absolute magnitudes between -18.0 and -22.5. Then, we constructed a child disk sample of 189 galaxies that span the parameter space-- in absolute magnitude, color, and disk size-- covered by the parent sample, and for which we have obtained kinematic data. Long-slit spectroscopy were obtained from the Dual Imaging Spectrograph (DIS) at the Apache Point Observatory 3.5 m for 99 galaxies, and from Pizagno et al. (2007) for 95 galaxies (five have repeat observations). We find the best photometric estimator of disk rotation velocity to be a synthetic magnitude with a color correction that is consistent with the Bell et al. (2003) color-based stellar mass ratio. The improved rotation velocity estimates have a wide range of scientific applications, and in particular, in combination with weak lensing measurements, they enable us to constrain the ratio of optical-to-virial velocity in disk galaxies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Triana, S. A.; Moravveji, E.; Pápics, P. I.
The internal angular momentum distribution of a star is the key to determining its evolution. Fortunately, stellar internal rotation can be probed through studies of rotationally split nonradial oscillation modes. In particular, the detection of nonradial gravity modes (g modes) in massive young stars has recently become feasible thanks to the Kepler space mission. Our goal is to derive the internal rotation profile of the Kepler B8V star KIC 10526294 through asteroseismology. We interpret the observed rotational splittings of its dipole g modes using four different approaches based on the best seismic models of the star and their rotational kernels.more » We show that these kernels can resolve differential rotation within the radiative envelope if a smooth rotational profile is assumed and if the observational errors are small. Based on Kepler data, we find that the rotation rate near the core-envelope boundary is well constrained to 163 ± 89 nHz. The seismic data are consistent with rigid rotation but a profile with counter-rotation within the envelope has a statistical advantage over constant rotation. Our study should be repeated for other massive stars with a variety of stellar parameters in order to determine the physical conditions that control the internal rotation profile of young massive stars, with the aim of improving the input physics of their models.« less
KOI-1003: A New Spotted, Eclipsing RS CVn Binary in the Kepler Field
NASA Astrophysics Data System (ADS)
Roettenbacher, Rachael M.; Kane, Stephen R.; Monnier, John D.; Harmon, Robert O.
2016-12-01
Using the high-precision photometry from the Kepler space telescope, thousands of stars with stellar and planetary companions have been observed. The characterization of stars with companions is not always straightforward and can be contaminated by systematic and stellar influences on the light curves. Here, through a detailed analysis of starspots and eclipses, we identify KOI-1003 as a new, active RS CVn star—the first identified with data from Kepler. The Kepler light curve of this close binary system exhibits the system’s primary transit, secondary eclipse, and starspot evolution of two persistent active longitudes. The near equality of the system’s orbital and rotation periods indicates the orbit and primary star’s rotation are nearly synchronized ({P}{orb}=8.360613+/- 0.000003 {days}; {P}{rot}˜ 8.23 {days}). By assuming the secondary star is on the main sequence, we suggest the system consists of a {1.45}-0.19+0.11 {M}⊙ subgiant primary and a {0.59}-0.04+0.03 {M}⊙ main-sequence companion. Our work gives a distance of 4400 ± 600 pc and an age of t={3.0}+2.0-0.5 {Gyr}, parameters which are discrepant with previous studies that included the star as a member of the open cluster NGC 6791.
An Analytical Method To Compute Comet Cloud Formation Efficiency And Its Application
NASA Astrophysics Data System (ADS)
Brasser, Ramon; Duncan, M. J.
2007-07-01
A quick analytical method is presented for calculating comet cloud formation efficiency in the case of a single planet or multiple-planet system for planets that are not too eccentric (e_p < 0.2). A method to calculate the fraction of comets that stay under the control of each planet is also presented. The location of the planet(s) in mass-semi-major axis space to form a comet cloud is constrained based on the conditions developed by Tremaine (1993) together with estimates of the likelihood of passing comets between planets; and, in the case of a single, eccentric planet, the additional constraint that it is, by itself, able to accelerate material to lower values of Tisserand parameter within the age of the stellar system without sweeping up the majority of the material beforehand. For a single planet, it turns out the efficiency is mainly a function of planetary mass and semi-major axis of the planet and density of the stellar environment. The theory has been applied to some extrasolar systems and compared to numerical simulations for both these systems and the Solar system, as well as a diffusion scheme based on the energy kick distribution of Everhart (1968). Results agree well with analytical predictions.
Mid-infrared Integrated-light Photometry Of LMC Star Clusters
NASA Astrophysics Data System (ADS)
Pessev, Peter; Goudfrooij, P.; Puzia, T.; Chandar, R.
2008-03-01
Massive star clusters (Galactic Globular Clusters and Populous Clusters in the Magellanic Clouds) are the best available approximation of Simple Stellar Populations (SSPs). Since the stellar populations in these nearby objects are studied in details, they provide fundamental age/metallicity templates for interpretation of the galaxy properties, testing and calibration of the SSP Models. Magellanic Cloud clusters are particularly important since they populate a region of the age/metallicity parameter space that is not easily accessible in our Galaxy. We present the first Mid-IR integrated-light measurements for six LMC clusters based on our Spitzer IRAC imaging program. Since we are targeting a specific group of intermediate-age clusters, our imaging goes deeper compared to SAGE-LMC survey data. We present a literature compilation of clusters' properties along with multi-wavelength integrated light photometry database spanning from the optical (Johnson U band) to the Mid-IR (IRAC Channel 4). This data provides an important empirical baseline for the interpretation of galaxy colors in the Mid-IR (especially high-z objects whose integrated-light is dominated by TP-AGB stars emission). It is also a valuable tool to check the SSP model predictions in the intermediate-age regime and provides calibration data for the next generation of SSP models.
Recent Advances in Stellarator Optimization
NASA Astrophysics Data System (ADS)
Gates, David; Brown, T.; Breslau, J.; Landreman, M.; Lazerson, S. A.; Mynick, H.; Neilson, G. H.; Pomphrey, N.
2016-10-01
Computational optimization has revolutionized the field of stellarator design. To date, optimizations have focused primarily on optimization of neoclassical confinement and ideal MHD stability, although limited optimization of other parameters has also been performed. One criticism that has been levelled at this method of design is the complexity of the resultant field coils. Recently, a new coil optimization code, COILOPT + + , was written and included in the STELLOPT suite of codes. The advantage of this method is that it allows the addition of real space constraints on the locations of the coils. As an initial exercise, a constraint that the windings be vertical was placed on large major radius half of the non-planar coils. Further constraints were also imposed that guaranteed that sector blanket modules could be removed from between the coils, enabling a sector maintenance scheme. Results of this exercise will be presented. We have also explored possibilities for generating an experimental database that could check whether the reduction in turbulent transport that is predicted by GENE as a function of local shear would be consistent with experiments. To this end, a series of equilibria that can be made in the now latent QUASAR experiment have been identified. This work was supported by U.S. DoE Contract #DE-AC02-09CH11466.
The devil is in the tails: the role of globular cluster mass evolution on stream properties
NASA Astrophysics Data System (ADS)
Balbinot, Eduardo; Gieles, Mark
2018-02-01
We present a study of the effects of collisional dynamics on the formation and detectability of cold tidal streams. A semi-analytical model for the evolution of the stellar mass function was implemented and coupled to a fast stellar stream simulation code, as well as the synthetic cluster evolution code EMACSS for the mass evolution as a function of a globular cluster orbit. We find that the increase in the average mass of the escaping stars for clusters close to dissolution has a major effect on the observable stream surface density. As an example, we show that Palomar 5 would have undetectable streams (in an SDSS-like survey) if it was currently three times more massive, despite the fact that a more massive cluster loses stars at a higher rate. This bias due to the preferential escape of low-mass stars is an alternative explanation for the absence of tails near massive clusters, than a dark matter halo associated with the cluster. We explore the orbits of a large sample of Milky Way globular clusters and derive their initial masses and remaining mass fraction. Using properties of known tidal tails, we explore regions of parameter space that favour the detectability of a stream. A list of high-probability candidates is discussed.
NASA Astrophysics Data System (ADS)
Ogle, Patrick M.; Lanz, Lauranne; Nader, Cyril; Helou, George
2016-02-01
We report the discovery of spiral galaxies that are as optically luminous as elliptical brightest cluster galaxies, with r-band monochromatic luminosity Lr = 8-14L* (4.3-7.5 × 1044 erg s-1). These super spiral galaxies are also giant and massive, with diameter D = 57-134 kpc and stellar mass Mstars = 0.3-3.4 × 1011M⊙. We find 53 super spirals out of a complete sample of 1616 SDSS galaxies with redshift z < 0.3 and Lr > 8L*. The closest example is found at z = 0.089. We use existing photometry to estimate their stellar masses and star formation rates (SFRs). The SDSS and Wide-field Infrared Survey Explorer colors are consistent with normal star-forming spirals on the blue sequence. However, the extreme masses and rapid SFRs of 5-65 M⊙ yr-1 place super spirals in a sparsely populated region of parameter space, above the star-forming main sequence of disk galaxies. Super spirals occupy a diverse range of environments, from isolation to cluster centers. We find four super spiral galaxy systems that are late-stage major mergers—a possible clue to their formation. We suggest that super spirals are a remnant population of unquenched, massive disk galaxies. They may eventually become massive lenticular galaxies after they are cut off from their gas supply and their disks fade.
K2-29 b/WASP-152 b: AN ALIGNED AND INFLATED HOT JUPITER IN A YOUNG VISUAL BINARY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santerne, A.; Barros, S. C. C.; Mena, E. Delgado
In the present paper we report the discovery of a new hot Jupiter, K2-29 b, first detected by the Super-WASP observatory and then by the K2 space mission during its campaign 4. The planet has a period of 3.25 days, a mass of 0.73 ± 0.04 M {sub ♃}, and a radius of 1.19 ± 0.02 R {sub ♃}. The host star is a relatively bright ( V = 12.5) G7 dwarf with a nearby K5V companion. Based on stellar rotation and the abundance of lithium, we find that the system might be as young as ∼450 Myr. The observationmore » of the Rossiter–McLaughlin effect shows that the planet is aligned with respect to the stellar spin. Given the deep transit (20 mmag), the magnitude of the star and the presence of a nearby stellar companion, the planet is a good target for both space- and ground-based transmission spectroscopy, in particular in the near-infrared where both stars are relatively bright.« less
Geoscience laser altimeter system-stellar reference system
NASA Astrophysics Data System (ADS)
Millar, Pamela S.; Sirota, J. Marcos
1998-01-01
GLAS is an EOS space-based laser altimeter being developed to profile the height of the Earth's ice sheets with ~15 cm single shot accuracy from space under NASA's Mission to Planet Earth (MTPE). The primary science goal of GLAS is to determine if the ice sheets are increasing or diminishing for climate change modeling. This is achieved by measuring the ice sheet heights over Greenland and Antarctica to 1.5 cm/yr over 100 km×100 km areas by crossover analysis (Zwally 1994). This measurement performance requires the instrument to determine the pointing of the laser beam to ~5 urad (1 arcsecond), 1-sigma, with respect to the inertial reference frame. The GLAS design incorporates a stellar reference system (SRS) to relate the laser beam pointing angle to the star field with this accuracy. This is the first time a spaceborne laser altimeter is measuring pointing to such high accuracy. The design for the stellar reference system combines an attitude determination system (ADS) with a laser reference system (LRS) to meet this requirement. The SRS approach and expected performance are described in this paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fisher, David B.; Drory, Niv; Fabricius, Maximilian H.
2009-05-20
We study star formation rates (SFRs) and stellar masses in bulges of nearby disk galaxies. For this we construct a new SFR indicator that linearly combines data from the Spitzer Space Telescope and the Galaxy Evolution Explorer. All bulges are found to be forming stars irrespective of bulge type (pseudobulge or classical bulge). At present-day SFR the median pseudobulge could have grown the present-day stellar mass in 8 Gyr. Classical bulges have the lowest specific SFR implying a growth times that are longer than a Hubble time, and thus the present-day SFR does not likely play a major role inmore » the evolution of classical bulges. In almost all galaxies in our sample the specific SFR (SFR per unit stellar mass) of the bulge is higher than that of the outer disk. This suggests that almost all galaxies are increasing their B/T through internal star formation. The SFR in pseudobulges correlates with their structure. More massive pseudobulges have higher SFR density, this is consistent with that stellar mass being formed by moderate, extended star formation. Bulges in late-type galaxies have similar SFRs as pseudobulges in intermediate-type galaxies, and are similar in radial size. However, they are deficient in mass; thus, they have much shorter growth times, {approx}2 Gyr. We identify a class of bulges that have nuclear morphology similar to pseudobulges, significantly lower specific SFR than pseudobulges, and are closer to classical bulges in structural parameter correlations. These are possibly composite objects, evolved pseudobulges or classical bulges experiencing transient, enhanced nuclear star formation. Our results are consistent with a scenario in which bulge growth via internal star formation is a natural, and near ubiquitous phenomenon in disk galaxies. Those galaxies with large classical bulges are not affected by the in situ bulge growth, likely because the majority of their stellar mass comes from some other phenomenon. Yet, those galaxies without a classical bulge, over long periods of extended star formation are able to growth a pseudobulge. Though cold accretion is not ruled out, for pseudobulge galaxies an addition of stellar mass from mergers or accretion is not required to explain the bulge mass. In this sense, galaxies with pseudobulges may very well be bulgeless (or 'quasi-bulgeless') galaxies, and galaxies with classical bulges are galaxies in which both internal evolution and hierarchical merging are responsible for the bulge mass by fractions that vary from galaxy to galaxy.« less
Stark broadening of resonant Cr II 3d5-3d44p spectral lines in hot stellar atmospheres
NASA Astrophysics Data System (ADS)
Simić, Z.; Dimitrijević, M. S.; Sahal-Bréchot, S.
2013-07-01
New Stark broadening parameters of interest for the astrophysical, laboratory and technological plasma modelling, investigations and analysis for nine resonant Cr II multiplets have been determined within the semiclassical perturbation approach. In order to demonstrate one possibility for their usage in astrophysical plasma research, obtained results have been applied to the analysis of the Stark broadening influence on stellar spectral line shapes.
Astronaut Paul Weitz works with UV Stellar Astronomy Experiment
1973-03-01
S73-20716 (1 March 1973) --- Astronaut Paul J. Weitz, pilot of the first manned Skylab mission, works with the UV Stellar Astronomy Experiment S019 in the forward compartment of the Skylab Orbital Workshop (OWS) trainer during Skylab training at Johnson Space Center. The equipment consists of a reflecting telescope, a 35mm camera and an additional mirror. It is mounted in an anti-solar scientific airlock in the side of the OWS. Photo credit: NASA
New astronomy space experiments with television scanning.
NASA Technical Reports Server (NTRS)
Davis, R. J.
1971-01-01
Application of data from the Celescope Catalog of Ultraviolet Observations to various problems of stellar and interstellar astrophysics. These include refinements in the incorporation of line blanketing in theoretical stellar-atmosphere models, variations in the law of interstellar extinction from one region of the sky to another, and selection and identification of various types of peculiar stars for further investigation. In addition, the data were analyzed to determine the photometric and astrometric accuracy of the Celescope equipment.
Identification of young stellar variables with KELT for K2 - II. The Upper Scorpius association
NASA Astrophysics Data System (ADS)
Ansdell, Megan; Oelkers, Ryan J.; Rodriguez, Joseph E.; Gaidos, Eric; Somers, Garrett; Mamajek, Eric; Cargile, Phillip A.; Stassun, Keivan G.; Pepper, Joshua; Stevens, Daniel J.; Beatty, Thomas G.; Siverd, Robert J.; Lund, Michael B.; Kuhn, Rudolf B.; James, David; Gaudi, B. Scott
2018-01-01
High-precision photometry from space-based missions such as K2 and Transiting Exoplanet Survey Satellite enables detailed studies of young star variability. However, because space-based observing campaigns are often short (e.g. 80 d for K2), complementary long-baseline photometric surveys are critical for obtaining a complete understanding of young star variability, which can change on time-scales of minutes to years. We therefore present and analyse light curves of members of the Upper Scorpius association made over 5.5 yr by the ground-based Kilodegree Extremely Little Telescope (KELT), which complement the high-precision observations of this region taken by K2 during its Campaigns 2 and 15. We show that KELT data accurately identify the periodic signals found with high-precision K2 photometry, demonstrating the power of ground-based surveys in deriving stellar rotation periods of young stars. We also use KELT data to identify sources exhibiting variability that is likely related to circumstellar material and/or stellar activity cycles; these signatures are often unseen in the short-term K2 data, illustrating the importance of long-term monitoring surveys for studying the full range of young star variability. We provide the KELT light curves as electronic tables in an ongoing effort to establish legacy time series data sets for young stellar clusters.
Short-period terrestrial planets and radial velocity stellar jitter.
NASA Astrophysics Data System (ADS)
Dumusque, Xavier
2015-01-01
Stellar jitter is the main limitation to ultra-precise radial velocity (RV) measurements. It currently precludes our ability to detect a planet like the Earth. Short-period terrestrial planets present first the advantage of inducing a stronger RV signal. In addition, the signal produced by these planets have a period completely different than stellar activity. This allows us, when the observational strategy is adequate, to decorrelate the planetary signal from the jitter induced by the star using filtering techniques. I will show the examples of Kepler-78b and Corot-7b, where the amplitude of the planetary signal can be detected, despite the stellar activity jitter that is 5 and 3 times larger, respectively. The cases of Alpha Cen Bb will also be reviewed, with a new reduction of the published data that increases the significance of the planetary signal.This project is funded by ETAEARTH, a transnational collaboration between European countries and the US (the Swiss Space Office, the Harvard Origin of Life Initiative, the Scottish Universities Physics Alliance, the University of Geneva, the Smithsonian Astrophysical Observatory, the Italian National Astrophysical Institute, the University of St. Andrews, Queens University Belfast, and the University of Edinburgh) setup to optimize the synergy between space-and ground-based data whose scientific potential for the characterization of extrasolar planets can only be fully exploited when analyzed together.
NASA Technical Reports Server (NTRS)
Margon, Bruce; Canizares, Claude; Catura, Richard C.; Clark, George W.; Fichtel, Carl E.; Friedman, Herbert; Giacconi, Riccardo; Grindlay, Jonathan E.; Helfand, David J.; Holt, Stephen S.
1991-01-01
The following subject areas are covered: (1) important scientific problems for high energy astrophysics (stellar activity, the interstellar medium in galaxies, supernovae and endpoints of stellar evolution, nucleosynthesis, relativistic plasmas and matter under extreme conditions, nature of gamma-bursts, identification of black holes, active nuclei, accretion physics, large-scale structures, intracluster medium, nature of dark matter, and the X- and gamma-ray background); (2) the existing experimental programs (Advanced X-Ray Astrophysics Facility (AXAF), Gamma Ray Observatory (GRO), X-Ray Timing Explorer (XTE), High Energy Transient Experiment (HETE), U.S. participation in foreign missions, and attached Shuttle and Space Station Freedom payloads); (3) major missions for the 1990's; (4) a new program of moderate missions; (5) new opportunities for small missions; (6) technology development issues; and (7) policy issues.
NASA Astrophysics Data System (ADS)
Lee, Duane M.; Johnston, Kathryn V.; Sen, Bodhisattva; Jessop, Will
2015-03-01
Observational studies of halo stars during the past two decades have placed some limits on the quantity and nature of accreted dwarf galaxy contributions to the Milky Way (MW) stellar halo by typically utilizing stellar phase-space information to identify the most recent halo accretion events. In this study we tested the prospects of using 2D chemical abundance ratio distributions (CARDs) found in stars of the stellar halo to determine its formation history. First, we used simulated data from 11 “MW-like” halos to generate satellite template sets (STSs) of 2D CARDs of accreted dwarf satellites, which are composed of accreted dwarfs from various mass regimes and epochs of accretion. Next, we randomly drew samples of ˜103-4 mock observations of stellar chemical abundance ratios ([α/Fe], [Fe/H]) from those 11 halos to generate samples of the underlying densities for our CARDs to be compared to our templates in our analysis. Finally, we used the expectation-maximization algorithm to derive accretion histories in relation to the STS used and the sample size. For certain STSs used we typically can identify the relative mass contributions of all accreted satellites to within a factor of two. We also find that this method is particularly sensitive to older accretion events involving low-luminosity dwarfs, e.g., ultra-faint dwarfs—precisely those events that are too ancient to be seen by phase-space studies of stars and too faint to be seen by high-z studies of the early universe. Since our results only exploit two chemical dimensions and near-future surveys promise to provide ˜6-9 dimensions, we conclude that these new high-resolution spectroscopic surveys of the stellar halo will allow us to recover its accretion history—and the luminosity function of infalling dwarf galaxies—across cosmic time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Duane M.; Johnston, Kathryn V.; Sen, Bodhisattva
Observational studies of halo stars during the past two decades have placed some limits on the quantity and nature of accreted dwarf galaxy contributions to the Milky Way (MW) stellar halo by typically utilizing stellar phase-space information to identify the most recent halo accretion events. In this study we tested the prospects of using 2D chemical abundance ratio distributions (CARDs) found in stars of the stellar halo to determine its formation history. First, we used simulated data from 11 “MW-like” halos to generate satellite template sets (STSs) of 2D CARDs of accreted dwarf satellites, which are composed of accreted dwarfsmore » from various mass regimes and epochs of accretion. Next, we randomly drew samples of ∼10{sup 3–4} mock observations of stellar chemical abundance ratios ([α/Fe], [Fe/H]) from those 11 halos to generate samples of the underlying densities for our CARDs to be compared to our templates in our analysis. Finally, we used the expectation-maximization algorithm to derive accretion histories in relation to the STS used and the sample size. For certain STSs used we typically can identify the relative mass contributions of all accreted satellites to within a factor of two. We also find that this method is particularly sensitive to older accretion events involving low-luminosity dwarfs, e.g., ultra-faint dwarfs—precisely those events that are too ancient to be seen by phase-space studies of stars and too faint to be seen by high-z studies of the early universe. Since our results only exploit two chemical dimensions and near-future surveys promise to provide ∼6–9 dimensions, we conclude that these new high-resolution spectroscopic surveys of the stellar halo will allow us to recover its accretion history—and the luminosity function of infalling dwarf galaxies—across cosmic time.« less
NASA Astrophysics Data System (ADS)
Paraskevi Moschou, Sofia; Sokolov, Igor; Cohen, Ofer; Drake, Jeremy J.; Borovikov, Dmitry; Alvarado-Gomez, Julian D.; Garraffo, Cecilia
2018-06-01
Due to their favorable atmospheric window radio waves are a useful tool for ground-based observations of astrophysical systems throughout a plethora of scales, from cosmological down to planetary ones. A wide range of physical mechanisms, from thermal processes to eruptive events linked to magnetic reconnection, can generate emission in radio frequencies. Radio waves have the distinct characteristic that they follow curved paths as they propagate in stratified environments, such as the solar corona, due to their dependence on the refraction index. Low frequency radio rays in particular are affected the most by refraction.Solar radio observations are of particular importance, since it is possible to spatially resolve the Sun and its corona and gain insights on highly dynamic and complex radio-emitting phenomena. The multi-scale problem of particle acceleration and energy partition between CMEs, flares and SEPs requires both MHD and kinetic considerations to account for the emission and mass propagation through the interplanetary space.Radio observations can play a significant role in the rapidly developing area of exoplanetary research and provide insights on the stellar environments of those systems. Even though a large number of flares has been observed for different stellar types, nevertheless there is a lack of stellar CME observations. Currently, the most promising method to incontrovertibly observe stellar CMEs is through Type II radio bursts. Low frequency radio emission can also be produced by the interaction of a magnetized planet with the stellar wind of the host star.The above mentioned characteristics of radio-waves make their integration into numerical simulations imperative for capturing and disentangling the complex radio emitting processes along the actual radio paths and provide the observers with detection limits for future Earth- and space-based missions. Radio synthetic imaging tools incorporated in realistic computational codes are already available for solar radio-emitting processes with different physical and observational characteristics.
Which evolutionary status does the Blue Large-Amplitude Pulsators stay at?
NASA Astrophysics Data System (ADS)
Wu, Tao; Li, Yan
2018-05-01
Asteroseismology is a very useful tool for exploring the stellar interiors and evolutionary status and for determining stellar fundamental parameters, such as stellar mass, radius, surface gravity, and the stellar mean density. In the present work, we use it to preliminarily analyze the 14 new-type pulsating stars: Blue Large-Amplitude Pulsators (BLAPs) which is observed by OGLE project, to roughly analyze their evolutionary status. We adopt the theory of single star evolution and artificially set the mass loss rate of \\dot{M}=-2× 10^{-4} M_{⊙}/year and mass loss beginning at the radius of R = 40 R_{⊙} on red giant branch to generate a series of theoretical models. Based on these theoretical models and the corresponding observations, we find that those BLAP stars are more likely to be the core helium burning stars. Most of them are in the middle and late phase of the helium burning.
Dynamics of ultraharmonic resonances in spiral galaxies
NASA Technical Reports Server (NTRS)
Artymowicz, Pawel; Lubow, Stephen H.
1992-01-01
The mildly nonlinear response of a fluid disk with pressure, viscosity, and self-gravity to spiral stellar forcing is considered as a model of the interstellar medium in spiral galaxies. Nonlinear effects are analyzed through a quasi-linear flow analysis ordered by successive powers of a dimensionless spiral perturbing force, which is the ratio of imposed nonaxisymmetric gravitational to axisymmetric gravitational forces. Waves with mn arms are launched from a position where the wavenumber of a free wave matches n times the wavenumber of the spiral forcing. The launched short wave in the gas is an interarm feature that is more tightly wrapped than the stellar wave. The gas wave extracts energy and angular momentum from the stellar wave, causing it to damp. The application of the results to the stellar disk alone reveals even stronger damping, as stars undergo Landau damping of the short wave. For parameters in M81, damping times are less than 10 exp 9 yr.
An X-shooter survey of star forming regions: Low-mass stars and sub-stellar objects
NASA Astrophysics Data System (ADS)
Alcalá, J. M.; Stelzer, B.; Covino, E.; Cupani, G.; Natta, A.; Randich, S.; Rigliaco, E.; Spezzi, L.; Testi, L.; Bacciotti, F.; Bonito, R.; Covino, S.; Flaccomio, E.; Frasca, A.; Gandolfi, D.; Leone, F.; Micela, G.; Nisini, B.; Whelan, E.
2011-03-01
We present preliminary results of our X-shooter survey in star forming regions. In this contribution we focus on sub-samples of young stellar and sub-stellar objects (YSOs) in the Lupus star forming region and in the TW Hya association. We show that the X-shooter spectra are suitable for conducting several parallel studies such as YSO + disk fundamental parameters, accretion and outflow activity in the very low-mass (VLM) and sub-stellar regimes, as well as magnetic activity in young VLM YSOs, and Li abundance determinations. The capabilities of X-shooter in terms of wide spectral coverage, resolution and limiting magnitudes, allow us to assess simultaneously the accretion/outflow, magnetic activity, and disk diagnostics, from the UV and optical to the near-IR, avoiding ambiguities due to possible YSO variability. Based on observations collected at the European Southern Observatory, Chile, under Programmes 084.C-0269 and 085.C-0238.
Hubble Space Telescope Observations of M32: The Color-Magnitude Diagram
NASA Technical Reports Server (NTRS)
Grillmair, C. J.; Lauer, T. R.; Worthey, G.; Faber, S. M.; Freedman, W. L.; Madore, B. F.; Ajhar, E. A.; Baum, W. A.; Holtzman, J. A.; Lynds, C. R.;
1996-01-01
We present a V--I color-magnitude diagram for a region 1'--2' the center of M32 based on Hubble Space Telescope WFPC2 images. The broad color-luminosity distribution of red giants shows that the stellar population comprises stars with a wide range in metallicity.
The great observatories for space astrophysics
NASA Technical Reports Server (NTRS)
Harwit, M.; Neal, V.
1986-01-01
Motivated by the ancient urge to observe, measure, compute, and understand the nature of the Universe, the available advanced technology is used to place entire observatories into space for investigations across the spectrum. Stellar evolution, development and nature of the Universe, planetary exploration, technology, NASA's role, and careers in asronomy are displayed.