Sample records for stellar spots

  1. SOAP. A tool for the fast computation of photometry and radial velocity induced by stellar spots

    NASA Astrophysics Data System (ADS)

    Boisse, I.; Bonfils, X.; Santos, N. C.

    2012-09-01

    We define and put at the disposal of the community SOAP, Spot Oscillation And Planet, a software tool that simulates the effect of stellar spots and plages on radial velocimetry and photometry. This paper describes the tool release and provides instructions for its use. We present detailed tests with previous computations and real data to assess the code's performance and to validate its suitability. We characterize the variations of the radial velocity, line bisector, and photometric amplitude as a function of the main variables: projected stellar rotational velocity, filling factor of the spot, resolution of the spectrograph, linear limb-darkening coefficient, latitude of the spot, and inclination of the star. Finally, we model the spot distributions on the active stars HD 166435, TW Hya and HD 189733, which reproduce the observations. We show that the software is remarkably fast, allowing several evolutions in its capabilities that could be performed to study the next challenges in the exoplanetary field connected with the stellar variability. The tool is available at http://www.astro.up.pt/soap

  2. Non-radial pulsations and large-scale structure in stellar winds

    NASA Astrophysics Data System (ADS)

    Blomme, R.

    2009-07-01

    Almost all early-type stars show Discrete Absorption Components (DACs) in their ultraviolet spectral lines. These can be attributed to Co-rotating Interaction Regions (CIRs): large-scale spiral-shaped structures that sweep through the stellar wind. We used the Zeus hydrodynamical code to model the CIRs. In the model, the CIRs are caused by ``spots" on the stellar surface. Through the radiative acceleration these spots create fast streams in the stellar wind material. Where the fast and slow streams collide, a CIR is formed. By varying the parameters of the spots, we quantitatively fit the observed DACs in HD~64760. An important result from our work is that the spots do not rotate with the same velocity as the stellar surface. The fact that the cause of the CIRs is not fixed on the surface eliminates many potential explanations. The only remaining explanation is that the CIRs are due to the interference pattern of a number of non-radial pulsations.

  3. Cheetah: Starspot modeling code

    NASA Astrophysics Data System (ADS)

    Walkowicz, Lucianne; Thomas, Michael; Finkestein, Adam

    2014-12-01

    Cheetah models starspots in photometric data (lightcurves) by calculating the modulation of a light curve due to starspots. The main parameters of the program are the linear and quadratic limb darkening coefficients, stellar inclination, spot locations and sizes, and the intensity ratio of the spots to the stellar photosphere. Cheetah uses uniform spot contrast and the minimum number of spots needed to produce a good fit and ignores bright regions for the sake of simplicity.

  4. The Transit Light Source Effect: False Spectral Features and Incorrect Densities for M-dwarf Transiting Planets

    NASA Astrophysics Data System (ADS)

    Rackham, Benjamin V.; Apai, Dániel; Giampapa, Mark S.

    2018-02-01

    Transmission spectra are differential measurements that utilize stellar illumination to probe transiting exoplanet atmospheres. Any spectral difference between the illuminating light source and the disk-integrated stellar spectrum due to starspots and faculae will be imprinted in the observed transmission spectrum. However, few constraints exist for the extent of photospheric heterogeneities in M dwarfs. Here we model spot and faculae covering fractions consistent with observed photometric variabilities for M dwarfs and the associated 0.3–5.5 μm stellar contamination spectra. We find that large ranges of spot and faculae covering fractions are consistent with observations and corrections assuming a linear relation between variability amplitude, and covering fractions generally underestimate the stellar contamination. Using realistic estimates for spot and faculae covering fractions, we find that stellar contamination can be more than 10× larger than the transit depth changes expected for atmospheric features in rocky exoplanets. We also find that stellar spectral contamination can lead to systematic errors in radius and therefore the derived density of small planets. In the case of the TRAPPIST-1 system, we show that TRAPPIST-1's rotational variability is consistent with spot covering fractions {f}{spot}={8}-7+18 % and faculae covering fractions {f}{fac}={54}-46+16 % . The associated stellar contamination signals alter the transit depths of the TRAPPIST-1 planets at wavelengths of interest for planetary atmospheric species by roughly 1–15× the strength of planetary features, significantly complicating JWST follow-up observations of this system. Similarly, we find that stellar contamination can lead to underestimates of the bulk densities of the TRAPPIST-1 planets of {{Δ }}(ρ )=-{8}-20+7 % , thus leading to overestimates of their volatile contents.

  5. Spotted star light curve numerical modeling technique and its application to HII 1883 surface imaging

    NASA Astrophysics Data System (ADS)

    Kolbin, A. I.; Shimansky, V. V.

    2014-04-01

    We developed a code for imaging the surfaces of spotted stars by a set of circular spots with a uniform temperature distribution. The flux from the spotted surface is computed by partitioning the spots into elementary areas. The code takes into account the passing of spots behind the visible stellar limb, limb darkening, and overlapping of spots. Modeling of light curves includes the use of recent results of the theory of stellar atmospheres needed to take into account the temperature dependence of flux intensity and limb darkening coefficients. The search for spot parameters is based on the analysis of several light curves obtained in different photometric bands. We test our technique by applying it to HII 1883.

  6. THE INFORMATION CONTENT IN ANALYTIC SPOT MODELS OF BROADBAND PRECISION LIGHT CURVES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walkowicz, Lucianne M.; Basri, Gibor; Valenti, Jeff A.

    2013-04-01

    We present the results of numerical experiments to assess degeneracies in light curve models of starspots. Using synthetic light curves generated with the Cheetah starspot modeling code, we explore the extent to which photometric light curves constrain spot model parameters, including spot latitudes and stellar inclination. We also investigate the effects of spot parameters and differential rotation on one's ability to correctly recover rotation periods and differential rotation in the Kepler light curves. We confirm that in the absence of additional constraints on the stellar inclination, such as spectroscopic measurements of vsin i or occultations of starspots by planetary transits,more » the spot latitude and stellar inclination are difficult to determine uniquely from the photometry alone. We find that for models with no differential rotation, spots that appear on opposite hemispheres of the star may cause one to interpret the rotation period to be half of the true period. When differential rotation is included, the changing longitude separation between spots breaks the symmetry of the hemispheres and the correct rotation period is more likely to be found. The dominant period found via periodogram analysis is typically that of the largest spot. Even when multiple spots with periods representative of the star's differential rotation exist, if one spot dominates the light curve the signal of differential rotation may not be detectable from the periodogram alone. Starspot modeling is applicable to stars with a wider range of rotation rates than other surface imaging techniques (such as Doppler imaging), allows subtle signatures of differential rotation to be measured, and may provide valuable information on the distribution of stellar spots. However, given the inherent degeneracies and uncertainty present in starspot models, caution should be exercised in their interpretation.« less

  7. The Information Content in Analytic Spot Models of Broadband Precision Light Curves

    NASA Astrophysics Data System (ADS)

    Walkowicz, Lucianne M.; Basri, Gibor; Valenti, Jeff A.

    2013-04-01

    We present the results of numerical experiments to assess degeneracies in light curve models of starspots. Using synthetic light curves generated with the Cheetah starspot modeling code, we explore the extent to which photometric light curves constrain spot model parameters, including spot latitudes and stellar inclination. We also investigate the effects of spot parameters and differential rotation on one's ability to correctly recover rotation periods and differential rotation in the Kepler light curves. We confirm that in the absence of additional constraints on the stellar inclination, such as spectroscopic measurements of vsin i or occultations of starspots by planetary transits, the spot latitude and stellar inclination are difficult to determine uniquely from the photometry alone. We find that for models with no differential rotation, spots that appear on opposite hemispheres of the star may cause one to interpret the rotation period to be half of the true period. When differential rotation is included, the changing longitude separation between spots breaks the symmetry of the hemispheres and the correct rotation period is more likely to be found. The dominant period found via periodogram analysis is typically that of the largest spot. Even when multiple spots with periods representative of the star's differential rotation exist, if one spot dominates the light curve the signal of differential rotation may not be detectable from the periodogram alone. Starspot modeling is applicable to stars with a wider range of rotation rates than other surface imaging techniques (such as Doppler imaging), allows subtle signatures of differential rotation to be measured, and may provide valuable information on the distribution of stellar spots. However, given the inherent degeneracies and uncertainty present in starspot models, caution should be exercised in their interpretation.

  8. Testing stellar evolution models with detached eclipsing binaries

    NASA Astrophysics Data System (ADS)

    Higl, J.; Weiss, A.

    2017-12-01

    Stellar evolution codes, as all other numerical tools, need to be verified. One of the standard stellar objects that allow stringent tests of stellar evolution theory and models, are detached eclipsing binaries. We have used 19 such objects to test our stellar evolution code, in order to see whether standard methods and assumptions suffice to reproduce the observed global properties. In this paper we concentrate on three effects that contain a specific uncertainty: atomic diffusion as used for standard solar model calculations, overshooting from convective regions, and a simple model for the effect of stellar spots on stellar radius, which is one of the possible solutions for the radius problem of M dwarfs. We find that in general old systems need diffusion to allow for, or at least improve, an acceptable fit, and that systems with convective cores indeed need overshooting. Only one system (AI Phe) requires the absence of it for a successful fit. To match stellar radii for very low-mass stars, the spot model proved to be an effective approach, but depending on model details, requires a high percentage of the surface being covered by spots. We briefly discuss improvements needed to further reduce the freedom in modelling and to allow an even more restrictive test by using these objects.

  9. Minimal Data Fidelity for Successful detection of Stellar Features or Companions

    NASA Astrophysics Data System (ADS)

    Agarwal, S.; Wettlaufer, J. S.

    2017-12-01

    Technological advances in instrumentation have led to an exponential increase in exoplanet detection and scrutiny of stellar features such as spots and faculae. While the spots and faculae enable us to understand the stellar dynamics, exoplanets provide us with a glimpse into stellar evolution. While a clean set of data is always desirable, noise is ubiquitous in the data such as telluric, instrumental, or photonic, but combining this with increased spectrographic resolution compounds technological challenges. To account for these noise sources and resolution issues, using a temporal multifractal framework, we study data from the SOAP 2.0 tool, which simulates a stellar spectrum in the presence of a spot, a facula or a planet. Given these clean simulations, we vary the resolution as well as the signal-to- noise (S/N) ratio to obtain a lower limit on the resolution and S/N required to robustly detect features. We show that a spot and facula with a 1% coverage of the stellar disk can be robustly detected for a S/N (per resolution element) of 20 and 35 respectively for any resolution above 20,000, while a planet with an RV of 10ms-1 can be detected for a S/N (per resolution element) of 350. Rather than viewing noise as an impediment, this approach uses noise as a source of information.

  10. SOAP: A Tool for the Fast Computation of Photometry and Radial Velocity Induced by Stellar Spots

    NASA Astrophysics Data System (ADS)

    Boisse, I.; Bonfils, X.; Santos, N. C.; Figueira, P.

    2013-04-01

    Dark spots and bright plages are present on the surface of dwarf stars from spectral types F to M, even in their low-active phase (like the Sun). Their appearance and disappearance on the stellar photosphere, combined with the stellar rotation, may lead to errors and uncertainties in the characterization of planets both in radial velocity (RV) and photometry. Spot Oscillation and Planet (SOAP) is a tool offered to the community that enables to simulate spots and plages on rotating stars and computes their impact on RV and photometric measurements. This tool will help to understand the challenges related to the knowledge of stellar activity for the next decade: detect telluric planets in the habitable zone of their stars (from G to M dwarfs), understand the activity in the low-mass end of M dwarf (on which future projects, like SPIRou or CARMENES, will focus), limitation to the characterization of the exoplanetary atmosphere (from the ground or with Spitzer, JWST), search for planets around young stars. These can be simulated with SOAP in order to search for indices and corrections to the effect of activity.

  11. A MODEL FOR (QUASI-)PERIODIC MULTIWAVELENGTH PHOTOMETRIC VARIABILITY IN YOUNG STELLAR OBJECTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kesseli, Aurora Y.; Petkova, Maya A.; Wood, Kenneth

    We present radiation transfer models of rotating young stellar objects (YSOs) with hot spots in their atmospheres, inner disk warps, and other three-dimensional effects in the nearby circumstellar environment. Our models are based on the geometry expected from magneto-accretion theory, where material moving inward in the disk flows along magnetic field lines to the star and creates stellar hot spots upon impact. Due to rotation of the star and magnetosphere, the disk is variably illuminated. We compare our model light curves to data from the Spitzer YSOVAR project to determine if these processes can explain the variability observed at opticalmore » and mid-infrared wavelengths in young stars. We focus on those variables exhibiting “dipper” behavior that may be periodic, quasi-periodic, or aperiodic. We find that the stellar hot-spot size and temperature affects the optical and near-infrared light curves, while the shape and vertical extent of the inner disk warp affects the mid-IR light curve variations. Clumpy disk distributions with non-uniform fractal density structure produce more stochastic light curves. We conclude that magneto-accretion theory is consistent with certain aspects of the multiwavelength photometric variability exhibited by low-mass YSOs. More detailed modeling of individual sources can be used to better determine the stellar hot-spot and inner disk geometries of particular sources.« less

  12. GJ 1214: Rotation period, starspots, and uncertainty on the optical slope of the transmission spectrum

    NASA Astrophysics Data System (ADS)

    Mallonn, M.; Herrero, E.; Juvan, I. G.; Essen, C. von; Rosich, A.; Ribas, I.; Granzer, T.; Alexoudi, X.; Strassmeier, K. G.

    2018-06-01

    Aims: Brightness inhomogeneities in the stellar photosphere (dark spots or bright regions) affect the measurements of the planetary transmission spectrum. To investigate the star spots of the M dwarf GJ 1214, we conducted a multicolor photometric monitoring from 2012 to 2016. Methods: The time-series photometry was analyzed with the light curve inversion tool StarSim. Using the derived stellar surface properties from the light curve inversion, we modeled the impact of the star spots when unocculted by the transiting planet. We compared the photometric variability of GJ 1214 to published results of mid- to late M dwarfs from the MEarth sample. Results: The measured variability shows a periodicity of 125 ± 5 days, which we interpret as the signature of the stellar rotation period. This value overrules previous suggestions of a significantly shorter stellar rotation period. A light curve inversion of the monitoring data yields an estimation of the flux dimming of a permanent spot filling factor not contributing to the photometric variability, a temperature contrast of the spots of 370 K and persistent active longitudes. The derived surface maps over all five seasons were used to estimate the influence of the star spots on the transmission spectrum of the planet from 400 to 2000 nm. The monitoring data presented here do not support a recent interpretation of a measured transmission spectrum of GJ 1214b as to be caused by bright regions in the stellar photosphere. Instead, we list arguments as to why the effect of dark spots likely dominated over bright regions in the period of our monitoring. Furthermore, our photometry proves an increase in variability over at least four years, indicative for a cyclic activity behavior. The age of GJ 1214 is likely between 6 and 10 Gyr. Conclusions: The long-term photometry allows for a correction of unocculted spots. For an active star such as GJ 1214, there remains a degeneracy between occulted spots and the transit parameters used to build the transmission spectrum. This degeneracy can only be broken by high-precision transit photometry resolving the spot crossing signature in the transit light curve. Based on data obtained with the STELLA robotic telescopes in Tenerife, an AIP facility jointly operated by AIP and IAC.The photometry tables are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/614/A35

  13. Orbital Elements and Stellar Parameters of the Active Binary UX Arietis

    NASA Astrophysics Data System (ADS)

    Hummel, C. A.; Monnier, J. D.; Roettenbacher, R. M.; Torres, G.; Henry, G. W.; Korhonen, H.; Beasley, A.; Schaefer, G. H.; Turner, N. H.; Ten Brummelaar, T.; Farrington, C. D.; Sturmann, J.; Sturmann, L.; Baron, F.; Kraus, S.

    2017-08-01

    Stellar activity observed as large surface spots, radio flares, or emission lines is often found in binary systems. UX Arietis exhibits these signs of activity, originating on the K0 subgiant primary component. Our aim is to resolve the binary, measure the orbital motion, and provide accurate stellar parameters such as masses and luminosities to aid in the interpretation of the observed phenomena. Using the CHARA six-telescope optical long-baseline array on Mount Wilson, California, we obtained amplitudes and phases of the interferometric visibility on baselines up to 330 m in length, resolving the two components of the binary. We reanalyzed archival Center for Astrophysics spectra to disentangle the binary component spectra and the spectrum of the third component, which was resolved by speckle interferometry. We also obtained new spectra with the Nordic Optical Telescope, and we present new photometric data that we use to model stellar surface spot locations. Both interferometric visibilities and spectroscopic radial velocities are modeled with a spotted primary stellar surface using the Wilson-Devinney code. We fit the orbital elements to the apparent orbit and radial velocity data to derive the distance (52.1 ± 0.8 pc) and stellar masses ({M}{{P}}=1.30+/- 0.06 {M}⊙ , {M}{{S}}=1.14+/- 0.06 {M}⊙ ). The radius of the primary can be determined to be {R}{{P}}=5.6+/- 0.1 {R}⊙ and that of the secondary to be {R}{{S}}=1.6+/- 0.2 {R}⊙ . The equivalent spot coverage of the primary component was found to be 62% with an effective temperature 20% below that of the unspotted surface.

  14. Starspots and active regions on IN Com: UBVRI photometry and linear polarization

    NASA Astrophysics Data System (ADS)

    Alekseev, I. Yu.; Kozlova, O. V.

    2014-06-01

    The activity of the variable star IN Com is considered using the latest multicolor UBVRI photometry and linear polarimetric observations carried out during a decade. The photometric variability of the star is fully described using the zonal spottedness model developed at the Crimean Astrophysical Observatory (CrAO). Spotted regions cover up to 22% of the total stellar surface, with the difference in temperatures between the quiet photosphere and the spot umbra being 600 K. The spots are located at middle and low latitudes (40°-55°). The intrinsic broad-band linear polarization of IN Com and its rotational modulation in the U band due to local magnetic fields at the most spotted (active) stellar longitudes were detected for the first time.

  15. Time-scales of stellar rotational variability and starspot diagnostics

    NASA Astrophysics Data System (ADS)

    Arkhypov, Oleksiy V.; Khodachenko, Maxim L.; Lammer, Helmut; Güdel, Manuel; Lüftinger, Teresa; Johnstone, Colin P.

    2018-01-01

    The difference in stability of starspot distribution on the global and hemispherical scales is studied in the rotational spot variability of 1998 main-sequence stars observed by Kepler mission. It is found that the largest patterns are much more stable than smaller ones for cool, slow rotators, whereas the difference is less pronounced for hotter stars and/or faster rotators. This distinction is interpreted in terms of two mechanisms: (1) the diffusive decay of long-living spots in activity complexes of stars with saturated magnetic dynamos, and (2) the spot emergence, which is modulated by gigantic turbulent flows in convection zones of stars with a weaker magnetism. This opens a way for investigation of stellar deep convection, which is yet inaccessible for asteroseismology. Moreover, a subdiffusion in stellar photospheres was revealed from observations for the first time. A diagnostic diagram was proposed that allows differentiation and selection of stars for more detailed studies of these phenomena.

  16. Nuclear Star Formation in the Hot-Spot Galaxy NGC 2903

    NASA Technical Reports Server (NTRS)

    Alonso-Herrero, A.; Ryder, S. D.; Knapen, J. H.

    1994-01-01

    We present high-resolution near-infrared imaging obtained using adaptive optics and HST/NICMOS and ground-based spectroscopy of the hot-spot galaxy NGC 2903. Our near-infrared resolution imaging enables us to resolve the infrared hot spots into individual young stellar clusters or groups of these. The spatial distribution of the stellar clusters is not coincident with that of the bright H II regions, as revealed by the HST/NICMOS Pace image. Overall, the circumnuclear star formation in NGC 2903 shows a ring-like morphology with an approximate diameter of 625 pc. The SF properties of the stellar clusters and H II regions have been studied using the photometric and spectroscopic information in conjunction with evolutionary synthesis models. The population of bright stellar clusters shows a very narrow range of ages, 4 to 7 x 10(exp 6) yr after the peak of star formation, or absolute ages 6.5 to 9.5 x 10(exp 6) yr (for the assumed short-duration Gaussian bursts), and luminosities similar to the clusters found in the Antennae interacting galaxy. This population of young stellar clusters accounts for some 7 - 12% of the total stellar mass in the central 625 pc of NGC 2903. The H II regions in the ring of star formation have luminosities close to that of the super-giant H II region 30 Doradus, they are younger than the stellar clusters, and will probably evolve into bright infrared stellar clusters similar to those observed today. We find that the star formation efficiency in the central regions of NGC 2903 is higher than in normal galaxies, approaching the lower end of infrared luminous galaxies.

  17. PyTranSpot: A tool for multiband light curve modeling of planetary transits and stellar spots

    NASA Astrophysics Data System (ADS)

    Juvan, Ines G.; Lendl, M.; Cubillos, P. E.; Fossati, L.; Tregloan-Reed, J.; Lammer, H.; Guenther, E. W.; Hanslmeier, A.

    2018-02-01

    Several studies have shown that stellar activity features, such as occulted and non-occulted starspots, can affect the measurement of transit parameters biasing studies of transit timing variations and transmission spectra. We present PyTranSpot, which we designed to model multiband transit light curves showing starspot anomalies, inferring both transit and spot parameters. The code follows a pixellation approach to model the star with its corresponding limb darkening, spots, and transiting planet on a two dimensional Cartesian coordinate grid. We combine PyTranSpot with a Markov chain Monte Carlo framework to study and derive exoplanet transmission spectra, which provides statistically robust values for the physical properties and uncertainties of a transiting star-planet system. We validate PyTranSpot's performance by analyzing eleven synthetic light curves of four different star-planet systems and 20 transit light curves of the well-studied WASP-41b system. We also investigate the impact of starspots on transit parameters and derive wavelength dependent transit depth values for WASP-41b covering a range of 6200-9200 Å, indicating a flat transmission spectrum.

  18. Spotting stellar activity cycles in Gaia astrometry

    NASA Astrophysics Data System (ADS)

    Morris, Brett M.; Agol, Eric; Davenport, James R. A.; Hawley, Suzanne L.

    2018-06-01

    Astrometry from Gaia will measure the positions of stellar photometric centroids to unprecedented precision. We show that the precision of Gaia astrometry is sufficient to detect starspot-induced centroid jitter for nearby stars in the Tycho-Gaia Astrometric Solution (TGAS) sample with magnetic activity similar to the young G-star KIC 7174505 or the active M4 dwarf GJ 1243, but is insufficient to measure centroid jitter for stars with Sun-like spot distributions. We simulate Gaia observations of stars with 10 year activity cycles to search for evidence of activity cycles, and find that Gaia astrometry alone likely cannot detect activity cycles for stars in the TGAS sample, even if they have spot distributions like KIC 7174505. We review the activity of the nearby low-mass stars in the TGAS sample for which we anticipate significant detections of spot-induced jitter.

  19. Butterfly Diagram and Activity Cycles in HR 1099

    NASA Astrophysics Data System (ADS)

    Berdyugina, Svetlana V.; Henry, Gregory W.

    2007-04-01

    We analyze photometric data of the active RS CVn-type star HR 1099 for the years 1975-2006 with an inversion technique and reveal the nature of two activity cycles of 15-16 yr and 5.3+/-0.1 yr duration. The 16 yr cycle is related to variations of the total spot area and is coupled with the differential rotation, while the 5.3 yr cycle is caused by the symmetric redistribution of the spotted area between the opposite stellar hemispheres (flip-flop cycle). We recover long-lived active regions comprising two active longitudes that migrate in the orbital reference frame with a variable rate because of the differential rotation along with changes in the mean spot latitudes. The migration pattern is periodic with the 16 yr cycle. Combining the longitudinal migration of the active regions with a previously measured differential rotation law, we recover the first stellar butterfly diagram without an assumption about spot shapes. We find that mean latitudes of active regions at opposite longitudes change antisymmetrically in the course of the 16 yr cycle: while one active region migrates to the pole, the other approaches the equator. This suggests a precession of the global magnetic field with respect to the stellar rotational axis.

  20. The influence of convective blueshift on radial velocities of F, G, and K stars

    NASA Astrophysics Data System (ADS)

    Bauer, F. F.; Reiners, A.; Beeck, B.; Jeffers, S. V.

    2018-02-01

    Context. Apparent radial velocity (RV) signals induced by stellar surface features such as spots and plages can result in a false planet detection or hide the presence of an orbiting planet. Our ability to detect rocky exoplanets is currently limited by our understanding of such stellar signals. Aims: We model RV variations caused by active regions on the stellar surface of typical exoplanet-hosting stars of spectral type F, G, and K. We aim to understand how the stellar magnetic field strength, convective blueshift, and spot temperatures can influence RV signals caused by active regions. Methods: We use magneto-hydrodynamic (MHD) simulations for stars with spectral types F3V, a G2V, and a K5V. We quantify the impact of the magnetic field strength inside active regions on the RV measurement using the magnetic and non-magnetic FeI lines at 6165 Å and 6173 Å. We also quantify the impact of spot temperature and convective blueshift on the measured RV values. Results: Increasing the magnetic field strength increases the efficiency to suppress convection in active regions which results in an asymmetry between red- and blueshifted parts of the RV curves. A stronger suppression of convection also leads to an observed increase in RV amplitude for stronger magnetic fields. The MHD simulations predict convective motions to be faster in hotter stars. The suppression of faster convection leads to a stronger RV amplitude increase in hotter stars when the magnetic field is increased. While suppression of convection increases the asymmetry in RV curves,c a decreasing spot temperature counteracts this effect. When using observed temperatures for dark spots in our simulations we find that convective blueshift effects are negligible.

  1. Scattering linear polarization of late-type active stars

    NASA Astrophysics Data System (ADS)

    Yakobchuk, T. M.; Berdyugina, S. V.

    2018-05-01

    Context. Many active stars are covered in spots, much more so than the Sun, as indicated by spectroscopic and photometric observations. It has been predicted that star spots induce non-zero intrinsic linear polarization by breaking the visible stellar disk symmetry. Although small, this effect might be useful for star spot studies, and it is particularly significant for a future polarimetric atmosphere characterization of exoplanets orbiting active host stars. Aims: Using models for a center-to-limb variation of the intensity and polarization in presence of continuum scattering and adopting a simplified two-temperature photosphere model, we aim to estimate the intrinsic linear polarization for late-type stars of different gravity, effective temperature, and spottedness. Methods: We developed a code that simulates various spot configurations or uses arbitrary surface maps, performs numerical disk integration, and builds Stokes parameter phase curves for a star over a rotation period for a selected wavelength. It allows estimating minimum and maximum polarization values for a given set of stellar parameters and spot coverages. Results: Based on assumptions about photosphere-to-spot temperature contrasts and spot size distributions, we calculate the linear polarization for late-type stars with Teff = 3500 K-6000 K, log g = 1.0-5.0, using the plane-parallel and spherical atmosphere models. Employing random spot surface distribution, we analyze the relation between spot coverage and polarization and determine the influence of different input parameters on results. Furthermore, we consider spot configurations with polar spots and active latitudes and longitudes.

  2. Inferring probabilistic stellar rotation periods using Gaussian processes

    NASA Astrophysics Data System (ADS)

    Angus, Ruth; Morton, Timothy; Aigrain, Suzanne; Foreman-Mackey, Daniel; Rajpaul, Vinesh

    2018-02-01

    Variability in the light curves of spotted, rotating stars is often non-sinusoidal and quasi-periodic - spots move on the stellar surface and have finite lifetimes, causing stellar flux variations to slowly shift in phase. A strictly periodic sinusoid therefore cannot accurately model a rotationally modulated stellar light curve. Physical models of stellar surfaces have many drawbacks preventing effective inference, such as highly degenerate or high-dimensional parameter spaces. In this work, we test an appropriate effective model: a Gaussian Process with a quasi-periodic covariance kernel function. This highly flexible model allows sampling of the posterior probability density function of the periodic parameter, marginalizing over the other kernel hyperparameters using a Markov Chain Monte Carlo approach. To test the effectiveness of this method, we infer rotation periods from 333 simulated stellar light curves, demonstrating that the Gaussian process method produces periods that are more accurate than both a sine-fitting periodogram and an autocorrelation function method. We also demonstrate that it works well on real data, by inferring rotation periods for 275 Kepler stars with previously measured periods. We provide a table of rotation periods for these and many more, altogether 1102 Kepler objects of interest, and their posterior probability density function samples. Because this method delivers posterior probability density functions, it will enable hierarchical studies involving stellar rotation, particularly those involving population modelling, such as inferring stellar ages, obliquities in exoplanet systems, or characterizing star-planet interactions. The code used to implement this method is available online.

  3. A COMBINED SPECTROSCOPIC AND PHOTOMETRIC STELLAR ACTIVITY STUDY OF EPSILON ERIDANI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giguere, Matthew J.; Fischer, Debra A.; Zhang, Cyril X. Y.

    2016-06-20

    We present simultaneous ground-based radial velocity (RV) measurements and space-based photometric measurements of the young and active K dwarf Epsilon Eridani. These measurements provide a data set for exploring methods of identifying and ultimately distinguishing stellar photospheric velocities from Keplerian motion. We compare three methods we have used in exploring this data set: Dalmatian, an MCMC spot modeling code that fits photometric and RV measurements simultaneously; the FF′ method, which uses photometric measurements to predict the stellar activity signal in simultaneous RV measurements; and H α analysis. We show that our H α measurements are strongly correlated with the Microvariabilitymore » and Oscillations of STars telescope ( MOST ) photometry, which led to a promising new method based solely on the spectroscopic observations. This new method, which we refer to as the HH′ method, uses H α measurements as input into the FF′ model. While the Dalmatian spot modeling analysis and the FF′ method with MOST space-based photometry are currently more robust, the HH′ method only makes use of one of the thousands of stellar lines in the visible spectrum. By leveraging additional spectral activity indicators, we believe the HH′ method may prove quite useful in disentangling stellar signals.« less

  4. Spot distribution and fast surface evolution on Vega

    NASA Astrophysics Data System (ADS)

    Petit, P.; Hébrard, E. M.; Böhm, T.; Folsom, C. P.; Lignières, F.

    2017-11-01

    Spectral signatures of surface spots were recently discovered from high cadence observations of the A star Vega. We aim at constraining the surface distribution of these photospheric inhomogeneities and investigating a possible short-term evolution of the spot pattern. Using data collected over five consecutive nights, we employ the Doppler imaging method to reconstruct three different maps of the stellar surface, from three consecutive subsets of the whole time series. The surface maps display a complex distribution of dark and bright spots, covering most of the visible fraction of the stellar surface. A number of surface features are consistently recovered in all three maps, but other features seem to evolve over the time span of observations, suggesting that fast changes can affect the surface of Vega within a few days at most. The short-term evolution is observed as emergence or disappearance of individual spots, and may also show up as zonal flows, with low- and high-latitude belts rotating faster than intermediate latitudes. It is tempting to relate the surface brightness activity to the complex magnetic field topology previously reconstructed for Vega, although strictly simultaneous brightness and magnetic maps will be necessary to assess this potential link.

  5. THE DEPENDENCE OF STELLAR MASS AND ANGULAR MOMENTUM LOSSES ON LATITUDE AND THE INTERACTION OF ACTIVE REGION AND DIPOLAR MAGNETIC FIELDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garraffo, Cecilia; Drake, Jeremy J.; Cohen, Ofer

    Rotation evolution of late-type stars is dominated by magnetic braking and the underlying factors that control this angular momentum loss are important for the study of stellar spin-down. In this work, we study angular momentum loss as a function of two different aspects of magnetic activity using a calibrated Alfvén wave-driven magnetohydrodynamic wind model: the strengths of magnetic spots and their distribution in latitude. By driving the model using solar and modified solar surface magnetograms, we show that the topology of the field arising from the net interaction of both small-scale and large-scale field is important for spin-down rates andmore » that angular momentum loss is not a simple function of large scale magnetic field strength. We find that changing the latitude of magnetic spots can modify mass and angular momentum loss rates by a factor of two. The general effect that causes these differences is the closing down of large-scale open field at mid- and high-latitudes by the addition of the small-scale field. These effects might give rise to modulation of mass and angular momentum loss through stellar cycles, and present a problem for ab initio attempts to predict stellar spin-down based on wind models. For all the magnetogram cases considered here, from dipoles to various spotted distributions, we find that angular momentum loss is dominated by the mass loss at mid-latitudes. The spin-down torque applied by magnetized winds therefore acts at specific latitudes and is not evenly distributed over the stellar surface, though this aspect is unlikely to be important for understanding spin-down and surface flows on stars.« less

  6. Determination of physical parameters of magnetic active regions in stars with different evolutionary stages

    NASA Astrophysics Data System (ADS)

    Biazzo, K.

    2006-11-01

    Understanding stellar magnetic activity phenomena is of paramount importance for stellar evolution and for planetary systems formation and their atmosphere and climate. The dynamo process that generates magnetic fields in stars is well understood and there is still no comprehensive model of solar and stellar magnetic activity. Stellar activity is characterized by tracers such as spots, plages, flares and winds. These features are the fingerprints of magnetic field lines and their detailed analysis provides constraints for theoretical models. Our knowledge can only advance if the active stars besides the Sun are included in our study. Therefore, it is essential to accomplish comprehensive studies of active stars with a wide range of stellar parameters and a variety of activity phenomena. In this thesis, I concentrate on emergence of active regions at photospheric and chromospheric levels, namely spots and plages, in stars with different evolutionary stages. Spots are cool areas on the surface of the stars and are supposed to be the result of the blocking effect on convection caused by magnetic flux-tube emersion. Plages are bright areas linked to emersion of magnetic flux tubes from the sub-photospheric convective level. Starspot temperature represents an important parameter for the investigation of stellar magnetic activity, but its precise determination, relying only on light curve inversion techniques, is strongly hampered by the lack of solution uniqueness. Therefore, a method based on line-depth ratios as temperature discriminant has been developed. This technique is capable of resolving temperature differences less than 10 K. Moreover, combining temperature and light curve solutions, I am able to determine in a univocal way starspot temperature and area. Using the net Halpha emission as indicator of plage presence, I have also studied the spot and plage association. As a matter of fact, the residual Halpha profiles, obtained as the difference between the observed spectra and non-active templates, allows to study the chromospheric structures simultaneously to the photospheric ones. In addition, I have also detected the intensity of the HeI-D3 line to analyse the presence of surface features in the high chromosphere. The observations of both standard and target stars have been performed with different instruments. In particular, the spectra have been acquired at Catania Astrophysical Observatory (Italy), Observatoire de Haute-Provence (France) and Nordic Optical Observatory (Canarian Islands). The photometric observations have been obtained at Catania Astrophysical Observatory, Fairnborn Observatory (USA) and Ege University Observatory (Turkey). Finally, starspot and plage physical parameters have been obtained for sixteen stars of different effective temperature and gravity and different evolutionary stages. The main results can be summarized as follows: - starspot temperatures are more similar to solar penumbrae; - dwarf stars tend to have smaller spots compared to giant stars; - stars with higher gravity seem to have cooler (relative to their photosphere) spots compared to stars with lower gravity; - spatial association exists between surface inhomogeneities at different atmospheric levels.

  7. EXOPLANETARY DETECTION BY MULTIFRACTAL SPECTRAL ANALYSIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agarwal, Sahil; Wettlaufer, John S.; Sordo, Fabio Del

    2017-01-01

    Owing to technological advances, the number of exoplanets discovered has risen dramatically in the last few years. However, when trying to observe Earth analogs, it is often difficult to test the veracity of detection. We have developed a new approach to the analysis of exoplanetary spectral observations based on temporal multifractality, which identifies timescales that characterize planetary orbital motion around the host star and those that arise from stellar features such as spots. Without fitting stellar models to spectral data, we show how the planetary signal can be robustly detected from noisy data using noise amplitude as a source ofmore » information. For observation of transiting planets, combining this method with simple geometry allows us to relate the timescales obtained to primary and secondary eclipse of the exoplanets. Making use of data obtained with ground-based and space-based observations we have tested our approach on HD 189733b. Moreover, we have investigated the use of this technique in measuring planetary orbital motion via Doppler shift detection. Finally, we have analyzed synthetic spectra obtained using the SOAP 2.0 tool, which simulates a stellar spectrum and the influence of the presence of a planet or a spot on that spectrum over one orbital period. We have demonstrated that, so long as the signal-to-noise-ratio ≥ 75, our approach reconstructs the planetary orbital period, as well as the rotation period of a spot on the stellar surface.« less

  8. Spot evolution on the red giant star XX Triangulum. A starspot-decay analysis based on time-series Doppler imaging

    NASA Astrophysics Data System (ADS)

    Künstler, A.; Carroll, T. A.; Strassmeier, K. G.

    2015-06-01

    Context. Solar spots appear to decay linearly proportional to their size. The decay rate of solar spots is directly related to magnetic diffusivity, which itself is a key quantity for the length of a magnetic-activity cycle. Is a linear spot decay also seen on other stars, and is this in agreement with the large range of solar and stellar activity cycle lengths? Aims: We investigate the evolution of starspots on the rapidly-rotating (Prot≈24 d) K0 giant XX Tri, using consecutive time-series Doppler images. Our aim is to obtain a well-sampled movie of the stellar surface over many years, and thereby detect and quantify a starspot decay law for further comparison with the Sun. Methods: We obtained continuous high-resolution and phase-resolved spectroscopy with the 1.2-m robotic STELLA telescope on Tenerife over six years, and these observations are ongoing. For each observing season, we obtained between 5 to 7 independent Doppler images, one per stellar rotation, making up a total of 36 maps. All images were reconstructed with our line-profile inversion code iMap. A wavelet analysis was implemented for denoising the line profiles. To quantify starspot area decay and growth, we match the observed images with simplified spot models based on a Monte Carlo approach. Results: It is shown that the surface of XX Tri is covered with large high-latitude and even polar spots and with occasional small equatorial spots. Just over the course of six years, we see a systematically changing spot distribution with various timescales and morphology, such as spot fragmentation and spot merging as well as spot decay and formation. An average linear decay of D = -0.022 ± 0.002 SH/day is inferred. We found evidence of an active longitude in phase toward the (unseen) companion star. Furthermore, we detect a weak solar-like differential rotation with a surface shear of α = 0.016 ± 0.003. From the decay rate, we determine a turbulent diffusivity of ηT = (6.3 ± 0.5) × 1014 cm2/s and predict a magnetic activity cycle of ≈26 ± 6 yr. Finally, we present a short movie of the spatially resolved surface of XX Tri. Based on data obtained with the STELLA robotic telescopes in Tenerife, an AIP facility jointly operated with IAC.Appendices and the movie are available in electronic form at http://www.aanda.org

  9. Kepler and Ground-Based Transits of the exo-Neptune HAT-P-11b

    NASA Technical Reports Server (NTRS)

    Deming, Drake; Sada, Pedro V.; Jackson, Brian; Peterson, Steven W.; Agol, Eric; Knutson, Heather A.; Jennings, Donald E.; Haase, Plynn; Bays, Kevin

    2011-01-01

    We analyze 26 archival Kepler transits of the exo-Neptune HAT-P-11b, supplemented by ground-based transits observed in the blue (B band) and near-IR (J band). Both the planet and host star are smaller than previously believed; our analysis yields Rp = 4.31 R xor 0.06 R xor and Rs = 0.683 R solar mass 0.009 R solar mass, both about 3 sigma smaller than the discovery values. Our ground-based transit data at wavelengths bracketing the Kepler bandpass serve to check the wavelength dependence of stellar limb darkening, and the J-band transit provides a precise and independent constraint on the transit duration. Both the limb darkening and transit duration from our ground-based data are consistent with the new Kepler values for the system parameters. Our smaller radius for the planet implies that its gaseous envelope can be less extensive than previously believed, being very similar to the H-He envelope of GJ 436b and Kepler-4b. HAT-P-11 is an active star, and signatures of star spot crossings are ubiquitous in the Kepler transit data. We develop and apply a methodology to correct the planetary radius for the presence of both crossed and uncrossed star spots. Star spot crossings are concentrated at phases 0.002 and +0.006. This is consistent with inferences from Rossiter-McLaughlin measurements that the planet transits nearly perpendicular to the stellar equator. We identify the dominant phases of star spot crossings with active latitudes on the star, and infer that the stellar rotational pole is inclined at about 12 deg 5 deg to the plane of the sky. We point out that precise transit measurements over long durations could in principle allow us to construct a stellar Butterfly diagram to probe the cyclic evolution of magnetic activity on this active K-dwarf star.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deming, Drake; Jackson, Brian; Jennings, Donald E.

    We analyze 26 archival Kepler transits of the exo-Neptune HAT-P-11b, supplemented by ground-based transits observed in the blue (B band) and near-IR (J band). Both the planet and host star are smaller than previously believed; our analysis yields R{sub p} = 4.31 R{sub +} {+-} 0.06 R{sub +} and R{sub s} = 0.683 R{sub sun} {+-} 0.009 R{sub sun}, both about 3{sigma} smaller than the discovery values. Our ground-based transit data at wavelengths bracketing the Kepler bandpass serve to check the wavelength dependence of stellar limb darkening, and the J-band transit provides a precise and independent constraint on the transitmore » duration. Both the limb darkening and transit duration from our ground-based data are consistent with the new Kepler values for the system parameters. Our smaller radius for the planet implies that its gaseous envelope can be less extensive than previously believed, being very similar to the H-He envelope of GJ 436b and Kepler-4b. HAT-P-11 is an active star, and signatures of star spot crossings are ubiquitous in the Kepler transit data. We develop and apply a methodology to correct the planetary radius for the presence of both crossed and uncrossed star spots. Star spot crossings are concentrated at phases -0.002 and +0.006. This is consistent with inferences from Rossiter-McLaughlin measurements that the planet transits nearly perpendicular to the stellar equator. We identify the dominant phases of star spot crossings with active latitudes on the star, and infer that the stellar rotational pole is inclined at about 12{sup 0} {+-} 5{sup 0} to the plane of the sky. We point out that precise transit measurements over long durations could in principle allow us to construct a stellar Butterfly diagram to probe the cyclic evolution of magnetic activity on this active K-dwarf star.« less

  11. The Spotted Active Binary UX Arietis

    NASA Astrophysics Data System (ADS)

    Hummel, Christian

    2018-04-01

    UX Arietis is one of the most active members of the RS CVn class of binaries in which spin-up of a sub-giant/giant star by a close companion led to the creation of magnetic fields which in turn are responsible for the radio and X-ray flares of UX Ariestis as well as its photometric variability. We observed this binary with the MIRC beam combiner at the CHARA array and made images of a single large spot rotating in and out of view over a month in 2012. A precise orbit was derived using the Wilson-Devinney code to account for the effect of the spot on the measured visibilities. Archival and new radial velocities taken at the NOT were also corrected for spot activity and allowed us to determine precise stellar masses and luminosities for the components. Consistency with the predicted locations in the HR-diagram is achieved after a careful analysis of the effect of spots. The orbit can be used to establish the relative locations of the stellar components at times when radio observations by Ros and Massi (2007) with the VLBA detected two radio components moving around each other. We tentatively conclude that radio emission in UX Arietis flows along magnetic flux tubes between the stars.

  12. Antisolar differential rotation with surface lithium enrichment on the single K-giant V1192 Orionis

    NASA Astrophysics Data System (ADS)

    Kővári, Zs.; Strassmeier, K. G.; Carroll, T. A.; Oláh, K.; Kriskovics, L.; Kővári, E.; Kovács, O.; Vida, K.; Granzer, T.; Weber, M.

    2017-10-01

    Context. Stars with about 1-2 solar masses at the red giant branch (RGB) represent an intriguing period of stellar evolution, I.e. when the convective envelope interacts with the fast-rotating core. During these mixing episodes freshly synthesized lithium can come up to the stellar surface along with high angular momentum material. This high angular momentum may alter the surface rotation pattern. Aims: The single rapidly rotating K-giant V1192 Ori is revisited to determine its surface differential rotation, lithium abundance, and basic stellar properties such as a precise rotation period. The aim is to independently verify the antisolar differential rotation of the star and possibly find a connection to the surface lithium abundance. Methods: We applied time-series Doppler imaging to a new multi-epoch data set. Altogether we reconstructed 11 Doppler images from spectroscopic data collected with the STELLA robotic telescope between 2007-2016. We used our inversion code iMap to reconstruct all stellar surface maps. We extracted the differential rotation from these images by tracing systematic spot migration as a function of stellar latitude from consecutive image cross-correlations. Results: The position of V1192 Ori in the Hertzsprung-Russell diagram suggests that the star is in the helium core-burning phase just leaving the RGB bump. We measure A(Li)NLTE = 1.27, I.e. a value close to the anticipated transition value of 1.5 from Li-normal to Li-rich giants. Doppler images reveal extended dark areas arranged quasi-evenly along an equatorial belt. No cool polar spot is found during the investigated epoch. Spot displacements clearly suggest antisolar surface differential rotation with α = - 0.11 ± 0.02 shear coefficient. Conclusions: The surface Li enrichment and the peculiar surface rotation pattern may indicate a common origin. Based on data obtained with the STELLA robotic observatory in Tenerife, an AIP facility jointly operated by AIP and IAC.

  13. HARPS-N OBSERVES THE SUN AS A STAR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dumusque, Xavier; Glenday, Alex; Phillips, David F.

    Radial velocity (RV) perturbations induced by stellar surface inhomogeneities including spots, plages and granules currently limit the detection of Earth-twins using Doppler spectroscopy. Such stellar noise is poorly understood for stars other than the Sun because their surface is unresolved. In particular, the effects of stellar surface inhomogeneities on observed stellar radial velocities are extremely difficult to characterize, and thus developing optimal correction techniques to extract true stellar radial velocities is extremely challenging. In this paper, we present preliminary results of a solar telescope built to feed full-disk sunlight into the HARPS-N spectrograph, which is in turn calibrated with anmore » astro-comb. This setup enables long-term observation of the Sun as a star with state-of-the-art sensitivity to RV changes. Over seven days of observing in 2014, we show an average 50 cm s{sup −1} RV rms over a few hours of observation. After correcting observed radial velocities for spot and plage perturbations using full-disk photometry of the Sun, we lower by a factor of two the weekly RV rms to 60 cm s{sup −1}. The solar telescope is now entering routine operation, and will observe the Sun every clear day for several hours. We will use these radial velocities combined with data from solar satellites to improve our understanding of stellar noise and develop optimal correction methods. If successful, these new methods should enable the detection of Venus over the next two to three years, thus demonstrating the possibility of detecting Earth-twins around other solar-like stars using the RV technique.« less

  14. STELLAR MAGNETIC CYCLES IN THE SOLAR-LIKE STARS KEPLER-17 AND KEPLER-63

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Estrela, Raissa; Valio, Adriana, E-mail: rlf.estrela@gmail.com, E-mail: avalio@craam.mackenzie.br

    2016-11-01

    The stellar magnetic field plays a crucial role in the star internal mechanisms, as in the interactions with its environment. The study of starspots provides information about the stellar magnetic field and can characterize the cycle. Moreover, the analysis of solar-type stars is also useful to shed light onto the origin of the solar magnetic field. The objective of this work is to characterize the magnetic activity of stars. Here, we studied two solar-type stars, Kepler-17 and Kepler-63, using two methods to estimate the magnetic cycle length. The first one characterizes the spots (radius, intensity, and location) by fitting themore » small variations in the light curve of a star caused by the occultation of a spot during a planetary transit. This approach yields the number of spots present in the stellar surface and the flux deficit subtracted from the star by their presence during each transit. The second method estimates the activity from the excess in the residuals of the transit light curves. This excess is obtained by subtracting a spotless model transit from the light curve and then integrating all the residuals during the transit. The presence of long-term periodicity is estimated in both time series. With the first method, we obtained P {sub cycle} = 1.12 ± 0.16 year (Kepler-17) and P {sub cycle} = 1.27 ± 0.16 year (Kepler-63), and for the second approach the values are 1.35 ± 0.27 year and 1.27 ± 0.12 year, respectively. The results of both methods agree with each other and confirm their robustness.« less

  15. Spot temperatures and area coverages on active dwarf stars

    NASA Technical Reports Server (NTRS)

    Sarr, Steven H.; Neff, James E.

    1990-01-01

    Two active K dwarfs are examined to determine the temperatures of the stars and to estimate the locations and sizes of cool spots on the stellar surfaces. Two wavelength regions with TiO absorption bands at different temperature sensitivities are modeled simultaneously using the method developed by Huenemoerder and Ramsey (1987). The spectrum of BD +26deg730 shows excess absorption in the TiO band, and the absence of the 8860 A band in HD 82558 indicates that its spots are warmer than those of BD +26deg730.

  16. Stellar Differential Rotation of F-Stars Using DI and ZDI: The Case of HR1817

    NASA Astrophysics Data System (ADS)

    Marsden, Stephen

    2018-04-01

    The measure of surface differential rotation via the motion of spots and/or magnetic features on the stellar surface is a critical part of understanding the stellar dynamo. Here we present several epochs of (Zeeman) Doppler imaging of the young late-F star HR1817 from 2001 until 2011. These results show that HR1817 exhibits a high shear of its surface features, significantly above the solar value. It would appear that F stars, with thin convective zones, have surface differential rotation rates much higher than that of low mass stars.

  17. Surprisingly different star-spot distributions on the near equal-mass equal-rotation-rate stars in the M dwarf binary GJ 65 AB

    NASA Astrophysics Data System (ADS)

    Barnes, J. R.; Jeffers, S. V.; Haswell, C. A.; Jones, H. R. A.; Shulyak, D.; Pavlenko, Ya. V.; Jenkins, J. S.

    2017-10-01

    We aim to understand how stellar parameters such as mass and rotation impact the distribution of star-spots on the stellar surface. To this purpose, we have used Doppler imaging to reconstruct the surface brightness distributions of three fully convective M dwarfs with similar rotation rates. We secured high cadence spectral time series observations of the 5.5 au separation binary GJ 65, comprising GJ 65A (M5.5V, Prot = 0.24 d) and GJ 65B (M6V, Prot = 0.23 d). We also present new observations of GJ 791.2A (M4.5V, Prot = 0.31 d). Observations of each star were made on two nights with UVES, covering a wavelength range from 0.64 - 1.03μm. The time series spectra reveal multiple line distortions that we interpret as cool star-spots and which are persistent on both nights suggesting stability on the time-scale of 3 d. Spots are recovered with resolutions down to 8.3° at the equator. The global spot distributions for GJ 791.2A are similar to observations made a year earlier. Similar high latitude and circumpolar spot structure is seen on GJ 791.2A and GJ 65A. However, they are surprisingly absent on GJ 65B, which instead reveals more extensive, larger, spots concentrated at intermediate latitudes. All three stars show small amplitude latitude-dependent rotation that is consistent with solid body rotation. We compare our measurements of differential rotation with previous Doppler imaging studies and discuss the results in the wider context of other observational estimates and recent theoretical predictions.

  18. The Active Latitudes of HAT-P-11

    NASA Astrophysics Data System (ADS)

    Morris, Brett; Hebb, Leslie; Davenport, James R. A.; Hawley, Suzanne L.

    2017-01-01

    Transiting planets map the brightness of their host stars, as the flux lost during exoplanet transits is proportional to the integrated flux occulted by the planet. We analyze four years of Kepler short-cadence photometry of HAT-P-11 - an active K4 dwarf with a 29 day rotation period, orbited by a hot-Neptune. Due to its highly-misaligned orbit, the planet occults most stellar latitudes during each transit, and the latitude distribution of spots is encoded in the transit light curves. We model each spot occultation in transit to create a spot map of HAT-P-11, which reveals two active latitudes near ±17 degrees. We investigate whether the spot distribution changes in time, and we compare the spot latitude distributions of HAT-P-11 and the Sun throughout the solar activity cycle.

  19. A Photometric Study of the Contact Binary System FU Dra

    NASA Astrophysics Data System (ADS)

    Kaitchuck, R. H.; Hill, R. L.; Corn, A. P.; Gevirtz, J.; Levell, K. L.; Valenti, T. L.

    2006-12-01

    This paper reports new four-filter CCD observations of the contact binary FU Dra. The Wilson and Devinney model was used to simultaneously fit these light curves and published radial velocity data. The stellar masses, sizes, and densities were calculated. Five additional models involving dark spots, hot spots, and accretion heating were considered as explanations for the light curve asymmetry known as the "O'Connell effect" in FU Dra. No conclusive spot model choice could be made but the Liu and Yang model for accretion heating is an unlikely explanation for the O'Connell effect in FU Dra.

  20. APOKASC 2.0: Asteroseismology and Spectroscopy for Cool Stars

    NASA Astrophysics Data System (ADS)

    Pinsonneault, Marc H.; Elsworth, Yvonne P.; APOKASC

    2017-01-01

    The APOGEE survey has obtained and analyzed high resolution H band spectra of more than 10,000 cool dwarfs and giants in the original Kepler fields. The APOKASC effort combines this data with asteroseismology and star spot studies, resulting in more than 7,000 stellar mass estimates for dwarfs and giants with high quality abundances, temperatures, and surface gravities. We highlight the main results from this effort so far, which include a tight correlation between surface abundances in giants and stellar mass, precise absolute gravity calibrations, and the discovery of unexpected stellar populations, such as young alpha-enhanced stars. We discuss grid modeling estimates for stellar masses and compare the absolute asteroseismic mass scale to calibrators in star clusters and the halo Directions for future efforts are discussed.

  1. Long-Term Spectral Variability of the Spotted Star IN Com

    NASA Astrophysics Data System (ADS)

    Alekseev, I. Yu.; Kozlova, O. V.; Gorda, S. Yu.; Avvakumova, E. A.; Kozhevnikova, A. V.

    2017-06-01

    We present long-term (2004-2016) spectral observations (R = 20000) of IN Com in the regions of Hα, Hβ and He I 5876 Å lines. The unique feature of the stellar spectrum is the presence of the extended two-component emission with limits up to ± 400 km s-1 in the Hα line. Emission parameters show the rotation modulation with the stellar rotation period and a significant variability on the long-term scale. Similar emission is also observed in Hβ and He I 5876 Å lines. Our results allow us to conclude that observational emission profiles are formed in optically thin hot gas. It is a result of presence of a circumstellar gas disk around IN Com. Its size is not exceed several stellar radii. The matter for the disk is supported by stellar wind. Detected variability of Hα emission parameters shows evident relation with UBVRI photometric activity of the star. This fact allowed us to link the long-term spectral variability with cycles of stellar activity of IN Com.

  2. Imaging of stellar surfaces with the Occamian approach and the least-squares deconvolution technique

    NASA Astrophysics Data System (ADS)

    Järvinen, S. P.; Berdyugina, S. V.

    2010-10-01

    Context. We present in this paper a new technique for the indirect imaging of stellar surfaces (Doppler imaging, DI), when low signal-to-noise spectral data have been improved by the least-squares deconvolution (LSD) method and inverted into temperature maps with the Occamian approach. We apply this technique to both simulated and real data and investigate its applicability for different stellar rotation rates and noise levels in data. Aims: Our goal is to boost the signal of spots in spectral lines and to reduce the effect of photon noise without loosing the temperature information in the lines. Methods: We simulated data from a test star, to which we added different amounts of noise, and employed the inversion technique based on the Occamian approach with and without LSD. In order to be able to infer a temperature map from LSD profiles, we applied the LSD technique for the first time to both the simulated observations and theoretical local line profiles, which remain dependent on temperature and limb angles. We also investigated how the excitation energy of individual lines effects the obtained solution by using three submasks that have lines with low, medium, and high excitation energy levels. Results: We show that our novel approach enables us to overcome the limitations of the two-temperature approximation, which was previously employed for LSD profiles, and to obtain true temperature maps with stellar atmosphere models. The resulting maps agree well with those obtained using the inversion code without LSD, provided the data are noiseless. However, using LSD is only advisable for poor signal-to-noise data. Further, we show that the Occamian technique, both with and without LSD, approaches the surface temperature distribution reasonably well for an adequate spatial resolution. Thus, the stellar rotation rate has a great influence on the result. For instance, in a slowly rotating star, closely situated spots are usually recovered blurred and unresolved, which affects the obtained temperature range of the map. This limitation is critical for small unresolved cool spots and is common for all DI techniques. Finally the LSD method was carried out for high signal-to-noise observations of the young active star V889 Her: the maps obtained with and without LSD are found to be consistent. Conclusions: Our new technique provides meaningful information on the temperature distribution on the stellar surfaces, which was previously inaccessible in DI with LSD. Our approach can be easily adopted for any other multi-line techniques.

  3. What Makes Red Giants Tick? Linking Tidal Forces, Activity, and Solar-Like Oscillations via Eclipsing Binaries

    NASA Astrophysics Data System (ADS)

    Rawls, Meredith L.; Gaulme, Patrick; McKeever, Jean; Jackiewicz, Jason

    2016-01-01

    Thanks to advances in asteroseismology, red giants have become astrophysical laboratories for studying stellar evolution and probing the Milky Way. However, not all red giants show solar-like oscillations. It has been proposed that stronger tidal interactions from short-period binaries and increased magnetic activity on spotty giants are linked to absent or damped solar-like oscillations, yet each star tells a nuanced story. In this work, we characterize a subset of red giants in eclipsing binaries observed by Kepler. The binaries exhibit a range of orbital periods, solar-like oscillation behavior, and stellar activity. We use orbital solutions together with a suite of modeling tools to combine photometry and spectroscopy in a detailed analysis of tidal synchronization timescales, star spot activity, and stellar evolution histories. These red giants offer an unprecedented opportunity to test stellar physics and are important benchmarks for ensemble asteroseismology.

  4. Imaging Active Giants and Comparisons to Doppler Imaging

    NASA Astrophysics Data System (ADS)

    Roettenbacher, Rachael

    2018-04-01

    In the outer layers of cool, giant stars, stellar magnetism stifles convection creating localized starspots, analogous to sunspots. Because they frequently cover much larger regions of the stellar surface than sunspots, starspots of giant stars have been imaged using a variety of techniques to understand, for example, stellar magnetism, differential rotation, and spot evolution. Active giants have been imaged using photometric, spectroscopic, and, only recently, interferometric observations. Interferometry has provided a way to unambiguously see stellar surfaces without the degeneracies experienced by other methods. The only facility presently capable of obtaining the sub-milliarcsecond resolution necessary to not only resolve some giant stars, but also features on their surfaces is the Center for High-Angular Resolution Astronomy (CHARA) Array. Here, an overview will be given of the results of imaging active giants and details on the recent comparisons of simultaneous interferometric and Doppler images.

  5. Bow shocks in a newly discovered maser source in IRAS 20231+3440

    NASA Astrophysics Data System (ADS)

    Ogbodo, C. S.; Burns, R. A.; Handa, T.; Omodaka, T.; Nakagawa, A.; Nagayama, T.; Honma, M.; Chibueze, J. O.; Ubachukwu, A. A.; Eze, R. N. C.

    2017-08-01

    From measuring the annual parallax of water masers over 1.5 yr with VLBI Exploration of Radio Astrometry, we present the trigonometric parallax and corresponding distance of another newly identified water maser source in the region of IRAS 20231+3440 as π = 0.611 ± 0.022 mas and D = 1.64 ± 0.06 kpc, respectively. We measured the absolute proper motions of all the newly detected maser spots (30 spots) and presented two pictures describing the possible spatial distribution of the water maser as the morphology marks out an arc of masers whose average proper motion velocity in the jet direction was 14.26 km s-1. As revealed by the ALLWISE composite image and by applying the colour-colour method of young stellar objects (YSO) identification and classification on photometric archived data, we identified the driving source of the north maser group to be a class I, young stellar object. To further probe the nature of the progenitor, we used the momentum rate maximum value (1.2 × 10-4 M⊙ yr-1 km s-1) of the outflow to satisfy that the progenitor under investigation is a low-mass young stellar object concurrently forming alongside an intermediate-mass YSO ˜60 000 au (˜37 arcsec) away from it.

  6. Line-depth-ratio temperatures for the close binary ν Octantis: new evidence supporting the conjectured circumstellar retrograde planet

    NASA Astrophysics Data System (ADS)

    Ramm, D. J.

    2015-06-01

    We explore the possibly that either star-spots or pulsations are the cause of a periodic radial velocity (RV) signal (P ˜ 400 d) from the K-giant binary ν Octantis (P ˜ 1050 d, e ˜ 0.25), alternatively conjectured to have a retrograde planet. Our study is based on temperatures derived from 22 line-depth ratios (LDRs) for ν Oct and 20 calibration stars. Empirical evidence and stability modelling provide unexpected support for the planet since other standard explanations (star-spots, pulsations and additional stellar masses) each have credibility problems. However, the proposed system presents formidable challenges to planet formation and stability theories: it has by far the smallest stellar separation of any claimed planet-harbouring binary (a_{_bin} ˜ 2.6 au) and an equally unbelievable separation ratio (a_{_pl}/a_{_bin} ˜ 0.5), hence the necessity that the circumstellar orbit be retrograde. The LDR analysis of 215 ν Oct spectra acquired between 2001 and 2007, from which the RV perturbation was first revealed, have no significant periodicity at any frequency. The LDRs recover the original 21 stellar temperatures with an average accuracy of 45 ± 25 K. The 215 ν Oct temperatures have a standard deviation of only 4.2 K. Assuming the host primary is not pulsating, the temperatures converted to magnitude differences strikingly mimic the very stable photometric Hipparcos observations 15 years previously, implying the long-term stability of the star and demonstrating a novel use of LDRs as a photometric gauge. Our results provide substantial new evidence that conventional star-spots and pulsations are unlikely causes of the RV perturbation. The controversial system deserves continued attention, including with higher resolving-power spectra for bisector and LDR analyses.

  7. Time-series photometric spot modeling. 2: Fifteen years of photometry of the bright RS CVn binary HR 7275

    NASA Technical Reports Server (NTRS)

    Strassmeier, K. G.; Hall, D. S.; Henry, G. W.

    1994-01-01

    We present a time-dependent spot modeling analysis of 15 consecutive years of V-band photometry of the long-period (P(sub orb) = 28.6 days) RS CVn binary HR 7275. This baseline in time is one of the longest, uninterrupted intervals a spotted star has been observed. The spot modeling analysis yields a total of 20 different spots throughout the time span of our observations. The distribution of the observed spot migration rates is consistent with solar-type differential rotation and suggests a lower limit of the differential-rotation coefficient of 0.022 +/-0.004. The observed, maximum lifetime of a single spot (or spot group) is 4.5 years, the minimum lifetime is approximately one year, but an average spot lives for 2.2 years. If we assume that the mechanical shear by differential rotation sets the upper limit to the spot lifetime, the observed maximum lifetime in turn sets an upper limit to the differential-rotation coefficient, namely 0.04 +/- 0.01. This would be differential rotation just 5 to 8 times less than the solar value and one of the strongest among active binaries. We found no conclusive evidence for the existence of a periodic phenomenon that could be attributed to a stellar magnetic cycle.

  8. Interferometry of chemically peculiar stars: theoretical predictions versus modern observing facilities

    NASA Astrophysics Data System (ADS)

    Shulyak, D.; Paladini, C.; Causi, G. Li; Perraut, K.; Kochukhov, O.

    2014-09-01

    By means of numerical experiments we explore the application of interferometry to the detection and characterization of abundance spots in chemically peculiar (CP) stars using the brightest star ε UMa as a case study. We find that the best spectral regions to search for spots and stellar rotation signatures are in the visual domain. The spots can clearly be detected already at a first visibility lobe and their signatures can be uniquely disentangled from that of rotation. The spots and rotation signatures can also be detected in near-infrared at low spectral resolution but baselines longer than 180 m are needed for all potential CP candidates. According to our simulations, an instrument like VEGA (or its successor e.g. Fibered and spectrally Resolved Interferometric Equipment New Design) should be able to detect, in the visual, the effect of spots and spots+rotation, provided that the instrument is able to measure V2 ≈ 10-3, and/or closure phase. In infrared, an instrument like AMBER but with longer baselines than the ones available so far would be able to measure rotation and spots. Our study provides necessary details about strategies of spot detections and the requirements for modern and planned interferometric facilities essential for CP star research.

  9. Convection in Cool Stars, as Seen Through Kepler's Eyes

    NASA Astrophysics Data System (ADS)

    Bastien, Fabienne A.

    2015-01-01

    Stellar surface processes represent a fundamental limit to the detection of extrasolar planets with the currently most heavily-used techniques. As such, considerable effort has gone into trying to mitigate the impact of these processes on planet detection, with most studies focusing on magnetic spots. Meanwhile, high-precision photometric planet surveys like CoRoT and Kepler have unveiled a wide variety of stellar variability at previously inaccessible levels. We demonstrate that these newly revealed variations are not solely magnetically driven but also trace surface convection through light curve ``flicker.'' We show that ``flicker'' not only yields a simple measurement of surface gravity with a precision of ˜0.1 dex, but it may also improve our knowledge of planet properties, enhance radial velocity planet detection and discovery, and provide new insights into stellar evolution.

  10. Long-term Spot-Coverage Variations of 13 BY Dra G-K Dwarfs

    NASA Astrophysics Data System (ADS)

    Alekseev, I. Yu.; Kozhevnikova, A. V.

    2018-06-01

    The results of spot-coverage modeling for 13 active G-K dwarf stars based on many-year photometric observations are presented. The results of UBV RI observations of eight stars performed at the Crimean Astrophysical Observatory were used together with data from the literature in this analysis. The spot-coverage parameters for 13 selected BY Dra active red dwarfs have been redetermined to improve the zonal spot-coverage model for the stellar photospheres, which currently allows for the presence of two active longitudes. Time variations of the spot-activity characteristics of these systems were analyzed with the aim of searching for possible cyclic variations. All the stars, with the exception of OU Gem and BE Cet, show fairly strong correlations between variations in the spot latitudes and spot areas, with absolute values of the correlation coefficients, R(< ϕ>, S), ranging from 0.38 to 0.92. For five stars, an anti-correlation between the mean latitude and area of the spots was found ( R(< ϕ>, S) from-0.24 to-0.73). This behavior may reflect the drift of spots toward the equator in the course of their development. Eight stars feature positive correlations, i.e. the spots drift towards the pole as their areas increase. Nine stars demonstrate activity cycles, which are reflected in photometric variations as well as variations of the spot areas and mean latitudes. The periods of the latitude drift of the spots are found for five stars; the magnitudes of the spot-latitude drift rates are lower than the corresponding value for sunspots by a factor of 1.5-3.

  11. The Oblique Orbit of WASP-107b from K2 Photometry

    NASA Astrophysics Data System (ADS)

    Dai, Fei; Winn, Joshua N.

    2017-05-01

    Observations of nine transits of WASP-107 during the K2 mission reveal three separate occasions when the planet crossed in front of a starspot. The data confirm the stellar rotation period to be 17 days—approximately three times the planet’s orbital period—and suggest that large spots persist for at least one full rotation. If the star had a low obliquity, at least two additional spot crossings should have been observed. They were not observed, giving evidence for a high obliquity. We use a simple geometric model to show that the obliquity is likely in the range 40°-140°, I.e., both spin-orbit alignment and anti-alignment can be ruled out. WASP-107 thereby joins the small collection of relatively low-mass stars with a high obliquity. Most such stars have been observed to have low obliquities; all of the exceptions, including WASP-107, involve planets with relatively wide orbits (“warm Jupiters,” with {a}{{\\min }}/{R}\\star ≳ 8). This demonstrates a connection between stellar obliquity and planet properties, in contradiction to some theories for obliquity excitation.

  12. Xi Per [O7.5 III(n)((f))]: DACs, NRPs and Now Co-rotating Hot Spots with MOST

    NASA Astrophysics Data System (ADS)

    Ramiaramanantsoa, Tahina; Moffat, A.; Chene, A.-N.; Desforges, S.; Henrichs, H.; MOST Science Team

    2013-06-01

    We have used the MOST (Microvariability and Oscillations of Stars) microsatellite to obtain four weeks of contiguous high-precision broadband visual photometry in Nov 2011 along with several simultaneous nights of ground-based medium-resolution high signal-to-noise optical spectroscopic monitoring of the O7.5III star xi Persei. This star is well known from previous work to show prominent DACs (Discrete Absorption Components) on times-scales of about two days from UV spectroscopy and NRP (Non Radial Pulsation) with one (l=3) p-mode oscillation of period 3.5 hours from optical spectroscopy. Our MOST-orbit (101 min) binned photometry fails to reveal any coherent pulsations above the 0.1 mmag 3-sigma noise level for periods of hours, while several prominent Fourier peaks emerge at the 1 mmag level in the two-day period range. These longer-period variations are unlikely due to pulsations; rather we deduce from our simulations based upon a simple spot model that we are seeing the photometric modulation of several co-rotating hot spots on the stellar surface, whose lifetimes vary yet they all rotate at the same (probable) period of 4 days, i.e. the best-estimated stellar rotation period. We are in the process of examining if our new optical spectra at a cadence of ~ 5 minutes and signal-to-noise ~ 150 reveal any periodicities on hour and day timescales. This may be the first reported case of co-rotating hot spots on an O star, with important implications for drivers of the DACs (resulting from CIRs, Corotating Interaction Regions) and possible generation via a subsurface convection zone.

  13. Acne at The Bottom Of The Main Sequence

    NASA Astrophysics Data System (ADS)

    Barnes, John; Haswell, C.; Jenkins, J.; Jeffers, S.; Jones, H. R. A.; Lohr, M.; Pavlenko, Y.

    2016-08-01

    Starspots are an important manifestation of stellar activity and yet their distribution patterns on the lowest mass stars is not well known. Time series spectra of fully convective M dwarfs taken in the red-optical with UVES reveal numerous line profile distortions which are interpreted as starspots. We derive Doppler images for four M4.5V - M9V stars and find that contrast ratios corresponding to photosphere-spot temperature differences of only 200-300 K are sufficient to model the timeseries spectra. Although more starspot structure is found at high latitudes, spots are reconstructed at a range of phases and latitudes with mean spot filling factors of only a few per cent. The occurrence of low-contrast spots at predominantly high latitudes is in general likely to be responsible for the low amplitude photometric variability seen in late-M dwarfs. The recovered starspot patterns are used to assess their effect on precision radial velocity surveys aimed at detecting planets around this population of stars.

  14. Observations of Isotope Fractionation in Prestellar Cores: Interstellar Origin of Meteoritic Hot Spot?

    NASA Technical Reports Server (NTRS)

    Milam, S. N.; Charnley, S. B.

    2011-01-01

    Isotopically fractionated material is found in many solar system objects, including meteorites and comets. It is thought, in some cases, to trace interstellar material that was incorporated into the solar system without undergoing significant processing. Here, we show the results of models and observations of the nitrogen and carbon fractionation in proto-stellar cores.

  15. Light curve solutions of the eccentric binaries KIC 10992733, KIC 5632781, KIC 10026136 and their out-of-eclipse variability

    NASA Astrophysics Data System (ADS)

    Kjurkchieva, Diana; Vasileva, Doroteya

    2018-01-01

    We determined the orbits and stellar parameters of three eccentric eclipsing binaries by light curve solutions of their Kepler data. KIC 10992733 and KIC 5632781 undergo total eclipses while KIC 10026136 reveals partial eclipses. The components of the targets are G and K stars. KIC 10992733 exhibited variations which were attributed to variable visibility of spot(s) on asynchronously rotating component. KIC 5632781 and KIC 1002613 reveal tidally-induced features at periastron, i.e. they might be considered as eclipsing heartbeat stars. The characteristics of the periastron features (shape, width and amplitude) confirm the theoretical predictions.

  16. Modelling the Surface Distribution of Magnetic Activity on Sun-Like Stars

    NASA Astrophysics Data System (ADS)

    Isik, Emre

    2018-04-01

    With the advent of high-precision space-borne stellar photometry and prospects for direct imaging, it is timely and essential to improve our understanding of stellar magnetic activity in rotational time scales. We present models for 'younger suns' with rotation and flux emergence rates between 1 and 16 times the solar rate. The models provide latitudinal distributions and tilt angles of bipolar magnetic regions, using flux tube rise simulations. Using these emergence patterns, we model the subsequent surface flux transport, to predict surface distributions of star-spots. Based on these models, we present preliminary results from our further modelling of the observed azimuthal magnetic fields, which strengthen for more rapidly rotating Sun-like stars.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanchis-Ojeda, Roberto; Winn, Joshua N.; Albrecht, Simon

    We present the discovery and characterization of a giant planet orbiting the young Sun-like star Kepler-63 (KOI-63, m{sub Kp} = 11.6, T{sub eff} = 5576 K, M{sub *} = 0.98 M{sub ☉}). The planet transits every 9.43 days, with apparent depth variations and brightening anomalies caused by large starspots. The planet's radius is 6.1 ± 0.2 R{sub ⊕}, based on the transit light curve and the estimated stellar parameters. The planet's mass could not be measured with the existing radial-velocity data, due to the high level of stellar activity, but if we assume a circular orbit, then we can placemore » a rough upper bound of 120 M{sub ⊕} (3σ). The host star has a high obliquity (ψ = 104°), based on the Rossiter-McLaughlin effect and an analysis of starspot-crossing events. This result is valuable because almost all previous obliquity measurements are for stars with more massive planets and shorter-period orbits. In addition, the polar orbit of the planet combined with an analysis of spot-crossing events reveals a large and persistent polar starspot. Such spots have previously been inferred using Doppler tomography, and predicted in simulations of magnetic activity of young Sun-like stars.« less

  18. Light curve solutions of the eclipsing eccentric binaries KIC 8111622, KIC 10518735, KIC 8196180 and their out-of-eclipse variability

    NASA Astrophysics Data System (ADS)

    Kjurkchieva, Diana P.; Vasileva, Doroteya L.

    2018-02-01

    We determined the orbits and stellar parameters of three eccentric eclipsing binaries by light curve solutions of their Kepler data. KIC 8111622 and KIC 10518735 undergo total eclipses while KIC 8196180 reveals partial eclipses. The target components are G and K stars, excluding the primary of KIC 8196180 which is early F star. KIC 8196180 reveals well-visible tidally-induced feature at periastron, i.e. it is an eclipsing heartbeat star. The characteristics of the observed periastron feature (shape, width and amplitude) confirm the theoretical predictions. There are additional out-of-eclipse variations of KIC 8196180 with the orbital period which may be explained by spot activity of synchronously rotating component. Besides worse visible periastron feature KIC 811162 exhibits small-amplitude light variations whose period is around 2.3 times shorter than the orbital one. These oscillations were attributed to spot(s) on asynchronously rotating component.

  19. Analysis of surface structures of chemically peculiar stars with modern and future interferometers

    NASA Astrophysics Data System (ADS)

    Shulyak, D.; Perraut, K.; Paladini, Claudia; Li Causi, G.; Sacuto, Stephane; Kochukhov, O.

    2014-07-01

    Interferometry is a very powerful observational technique known in astronomy for many decades. Its application to main-sequence stars, however, is still limited to only brightest objects. In this work we aim to explore the application of interferometry to a special class of main-sequence stars known as chemically peculiar (CP) stars. These stars demonstrate surface chemical abundance inhomogeneities (spots) that usually cover a considerable part of the stellar surface and induce a pronounced spectral and photometric variability. Interferometry thus has a potential to naturally resolve such spots in single stars, providing unique complementary information about spots sizes and contrasts. By means of numerical experiments we derive the actual interferometric requirements essential for the CP stars research that can be addressed in future instrument development. The first comparison between theoretical predictions and already available observations will also be discussed.

  20. Photospheric Acne at The Bottom of the Main-Sequence: Doppler Images of M4.5 - M9V Stars

    NASA Astrophysics Data System (ADS)

    Barnes, John R.; Haswell, Carole A.; Jeffers, Sandra V.; Jones, Hugh R. A.; Pavlenko, Yakiv V.; Lohr, Marcus E.; Jenkins, James S.

    2016-07-01

    Starspots are an important manifestation of stellar activity and yet their distribution patterns on the lowest mass stars is notwell known. Time series spectra of fullyconvective M dwarfs taken in the red-optical with UVES reveal numerous line profiledistortions which are interpreted as starspots. New Doppler images of HU Del (GJ 791.2A; M4.5V), BL Ceti (GJ 65A; M5.5V)and UV Ceti (GJ 65B; M6V) attwoepochs separated by three nights are presented. We find that contrastratioscorrespondingto photosphere-spot temperature differences of only 100-400 Kare sufficient to model the time series spectra of M4.5V - M9Vstars. Starspotsare reconstructed at a range of phases and latitudes with mean spot filling factors of only a few per cent.The distribution and low-contrast of the spots/spot-groups that we recover are likely to be responsible for the low amplitudephotometric variability seen in late-M dwarfs. The stability of the spot patterns in the two sets of timeseries observationsenables us to measure the latitude dependent differential rotation, which we find to be consistent with zero.

  1. Spectroscopic Evidence for Nonuniform Starspot Properties on II Pegasi

    NASA Technical Reports Server (NTRS)

    ONeal, Douglas; Saar, Steven H.; Neff, James E.

    1998-01-01

    We present spectroscopic evidence for Multiple Spot temperatures on the RS CVn star II Pegasi (HD 224085). We model the strengths of the 7055 and 8860 A TiO absorption bands in the spectrum of II Peg using weighted sums of inactive comparison spectra: a K star to represent the nonspotted photosphere and an M star to represent the spots. The best fit yields independent measurements of the starspot filling factor (f(sub s) and mean spot temperature (T(sub s)) averaged over the visible hemisphere of the star. During three-fourths of a rotation of II Peg in late 1996, we measure a constant f(sub s) approximately equals 55% +/- 5%. However, (T(sub s) varies from 3350 +/- 60 to 3550 +/- 70 K. We compute (T(sub s) for two simple models: (1) a star with two distinct spot temperatures, and (2) a star with different umbral/penumbral area ratios. The changing (T(sub s) correlates with emission strengths of H(alpha) and the Ca II infrared triplet in the sense that cooler (T(sub s) accompanies weaker emission. We explore possible implications of these results for the physical properties of the spots on II Peg and for stellar surface structure in general.

  2. THE HOT-JUPITER KEPLER-17b: DISCOVERY, OBLIQUITY FROM STROBOSCOPIC STARSPOTS, AND ATMOSPHERIC CHARACTERIZATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Desert, Jean-Michel; Charbonneau, David; Ballard, Sarah

    2011-11-01

    This paper reports the discovery and characterization of the transiting hot giant exoplanet Kepler-17b. The planet has an orbital period of 1.486 days, and radial velocity measurements from the Hobby-Eberly Telescope show a Doppler signal of 419.5{sup +13.3}{sub -15.6} m s{sup -1}. From a transit-based estimate of the host star's mean density, combined with an estimate of the stellar effective temperature T{sub eff} = 5630 {+-} 100 from high-resolution spectra, we infer a stellar host mass of 1.06 {+-} 0.07 M{sub Sun} and a stellar radius of 1.02 {+-} 0.03 R{sub Sun }. We estimate the planet mass and radiusmore » to be M{sub P} = 2.45 {+-} 0.11 M{sub J} and R{sub P} = 1.31 {+-} 0.02 R{sub J}. The host star is active, with dark spots that are frequently occulted by the planet. The continuous monitoring of the star reveals a stellar rotation period of 11.89 days, eight times the planet's orbital period; this period ratio produces stroboscopic effects on the occulted starspots. The temporal pattern of these spot-crossing events shows that the planet's orbit is prograde and the star's obliquity is smaller than 15 Degree-Sign . We detected planetary occultations of Kepler-17b with both the Kepler and Spitzer Space Telescopes. We use these observations to constrain the eccentricity, e, and find that it is consistent with a circular orbit (e < 0.011). The brightness temperatures of the planet's infrared bandpasses are T{sub 3.6{mu}m} = 1880 {+-} 100 K and T{sub 4.5{mu}m} = 1770 {+-} 150 K. We measure the optical geometric albedo A{sub g} in the Kepler bandpass and find A{sub g} = 0.10 {+-} 0.02. The observations are best described by atmospheric models for which most of the incident energy is re-radiated away from the day side.« less

  3. Roche tomography of cataclysmic variables - VIII. The irradiated and spotted dwarf nova, SS Cygni

    NASA Astrophysics Data System (ADS)

    Hill, C. A.; Smith, Robert Connon; Hebb, L.; Szkody, P.

    2017-12-01

    We present the results of our spectroscopic study of the dwarf nova SS Cyg, using Roche tomography to map the stellar surface and derive the system parameters. Given that this technique takes into account the inhomogeneous brightness distribution on the surface of the secondary star, our derived parameters are (in principle) the most robust yet found for this system. Furthermore, our surface maps reveal that the secondary star is highly spotted, with strongly asymmetric irradiation on the inner hemisphere. Moreover, by constructing Doppler tomograms of several Balmer emission lines, we find strong asymmetric emission from the irradiated secondary star, and an asymmetric accretion disc that exhibits spiral structures.

  4. Are solar brightness variations faculae- or spot-dominated?

    NASA Astrophysics Data System (ADS)

    Shapiro, A. I.; Solanki, S. K.; Krivova, N. A.; Yeo, K. L.; Schmutz, W. K.

    2016-05-01

    Context. Regular spaceborne measurements have revealed that solar brightness varies on multiple timescales, variations on timescales greater than a day being attributed to a surface magnetic field. Independently, ground-based and spaceborne measurements suggest that Sun-like stars show a similar, but significantly broader pattern of photometric variability. Aims: To understand whether the broader pattern of stellar variations is consistent with the solar paradigm, we assess relative contributions of faculae and spots to solar magnetically-driven brightness variability. We investigate how the solar brightness variability and its facular and spot contributions depend on the wavelength, timescale of variability, and position of the observer relative to the ecliptic plane. Methods: We performed calculations with the SATIRE model, which returns solar brightness with daily cadence from solar disc area coverages of various magnetic features. We took coverages as seen by an Earth-based observer from full-disc SoHO/MDI and SDO/HMI data and projected them to mimic out-of-ecliptic viewing by an appropriate transformation. Results: Moving the observer away from the ecliptic plane increases the amplitude of 11-year variability as it would be seen in Strömgren (b + y)/2 photometry, but decreases the amplitude of the rotational brightness variations as it would appear in Kepler and CoRoT passbands. The spot and facular contributions to the 11-year solar variability in the Strömgren (b + y)/2 photometry almost fully compensate each other so that the Sun appears anomalously quiet with respect to its stellar cohort. Such a compensation does not occur on the rotational timescale. Conclusions: The rotational solar brightness variability as it would appear in the Kepler and CoRoT passbands from the ecliptic plane is spot-dominated, but the relative contribution of faculae increases for out-of-ecliptic viewing so that the apparent brightness variations are faculae-dominated for inclinations less than about I = 45°. Over the course of the 11-year activity cycle, the solar brightness variability is faculae-dominated shortwards of 1.2 μm independently of the inclination.

  5. Long-term stellar variability

    NASA Astrophysics Data System (ADS)

    Pagano, Isabella

    2010-02-01

    Stars with significant subsurface convection zones develop magnetic loop structures that, arising from the surface upward to the external atmospheres, cause flux variability detectable throughout the whole electromagnetic spectrum. In fact, diagnostics of magnetic activity are in radio wavelengths, where gyrosincrotron radiation arises from the quiescent and flaring corona; in the optical region, where important signatures are the Balmer lines, the Ca ii IRT and H&K lines; in the UV and X ray domains, the latter mainly due to coronal thermal plasma. The zoo of different magnetic features observed for the Sun - spots, faculae, flares, CMEs - are characterized by different temporal evolution and energetics, both in quantity and quality. As a consequence, the time scale of variability, the amount of involved energy and the quality of the involved photons are used as fingerprints in interpreting the observed stellar variability in the framework of the solar-stellar analogy. Here I review main results from long-term multiwavelength observations of cool star atmospheres, with emphasis to similarities and differences with the solar case.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blobaum, K M

    This month's issue has the following articles: (1) Fifty Years of Stellar Laser Research - Commentary by Edward I. Moses; (2) A Stellar Performance - By combining computational models with test shot data, scientists at the National Ignition Facility have demonstrated that the laser is spot-on for ignition; (3) Extracting More Power from the Wind - Researchers are investigating how atmospheric turbulence affects power production from wind turbines; (4) Date for a Heart Cell - Carbon-14 dating reveals that a significant number of heart muscle cells are regenerated over the course of our lives; and (5) Unique Marriage of Biologymore » and Semiconductors - A new device featuring a layer of fat surrounding a thin silicon wire takes advantage of the communication properties of both biomolecules and semiconductors.« less

  7. Testing the recovery of stellar rotation signals from Kepler light curves using a blind hare-and-hounds exercise

    NASA Astrophysics Data System (ADS)

    Aigrain, S.; Llama, J.; Ceillier, T.; Chagas, M. L. das; Davenport, J. R. A.; García, R. A.; Hay, K. L.; Lanza, A. F.; McQuillan, A.; Mazeh, T.; de Medeiros, J. R.; Nielsen, M. B.; Reinhold, T.

    2015-07-01

    We present the results of a blind exercise to test the recoverability of stellar rotation and differential rotation in Kepler light curves. The simulated light curves lasted 1000 d and included activity cycles, Sun-like butterfly patterns, differential rotation and spot evolution. The range of rotation periods, activity levels and spot lifetime were chosen to be representative of the Kepler data of solar-like stars. Of the 1000 simulated light curves, 770 were injected into actual quiescent Kepler light curves to simulate Kepler noise. The test also included five 1000-d segments of the Sun's total irradiance variations at different points in the Sun's activity cycle. Five teams took part in the blind exercise, plus two teams who participated after the content of the light curves had been released. The methods used included Lomb-Scargle periodograms and variants thereof, autocorrelation function and wavelet-based analyses, plus spot modelling to search for differential rotation. The results show that the `overall' period is well recovered for stars exhibiting low and moderate activity levels. Most teams reported values within 10 per cent of the true value in 70 per cent of the cases. There was, however, little correlation between the reported and simulated values of the differential rotation shear, suggesting that differential rotation studies based on full-disc light curves alone need to be treated with caution, at least for solar-type stars. The simulated light curves and associated parameters are available online for the community to test their own methods.

  8. Detection of magnetic field in the B2 star ρ Ophiuchi A with ESO FORS2

    NASA Astrophysics Data System (ADS)

    Pillitteri, I.; Fossati, L.; Castro Rodriguez, N.; Oskinova, L.; Wolk, S. J.

    2018-02-01

    Circumstantial evidence suggests that magnetism and enhanced X-ray emission are likely correlated in early B-type stars: similar fractions of them ( 10%) are strong and hard X-ray sources and possess strong magnetic fields. It is also known that some B-type stars have spots on their surface. Yet up to now no X-ray activity associated with spots on early-type stars was detected. In this Letter we report the detection of a magnetic field on the B2V star ρ Oph A. Previously, we assessed that the X-ray activity of this star is associated with a surface spot, herewith we establish its magnetic origin. We analyze spectra of ρ Oph A obtained with the FORS2 spectrograph at ESO Very Large Telescope (VLT) at two epochs, and detect a longitudinal component of the magnetic field of the order of 500 G in one of the datasets. The detection of the magnetic field only at one epoch can be explained by stellar rotation which is also invoked to explain observed periodic X-ray activity. From archival HARPS ESO VLT high resolution spectra we derived the fundamental stellar parameters of ρ Oph A and further constrained its age. We conclude that ρ Oph A provides strong evidence for the presence of active X-ray emitting regions on young magnetized early type stars. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programmes 099.D-0067(A) and 078.C-0403(A).

  9. Modelling the RV jitter of early-M dwarfs using tomographic imaging

    NASA Astrophysics Data System (ADS)

    Hébrard, É. M.; Donati, J.-F.; Delfosse, X.; Morin, J.; Moutou, C.; Boisse, I.

    2016-09-01

    In this paper, we show how tomographic imaging (Zeeman-Doppler imaging, ZDI) can be used to characterize stellar activity and magnetic field topologies, ultimately allowing us to filter out the radial velocity (RV) activity jitter of M dwarf moderate rotators. This work is based on spectropolarimetric observations of a sample of five weakly active early-M dwarfs (GJ 205, GJ 358, GJ 410, GJ 479, GJ 846) with HARPS-Pol and NARVAL. These stars have v sin I and RV jitters in the range 1-2 km s-1 and 2.7-10.0 m s-1 rms, respectively. Using a modified version of ZDI applied to sets of phase-resolved least-squares deconvolved profiles of unpolarized spectral lines, we are able to characterize the distribution of active regions at the stellar surfaces. We find that dark spots cover less than 2 per cent of the total surface of the stars of our sample. Our technique is efficient at modelling the rotationally modulated component of the activity jitter, and succeeds at decreasing the amplitude of this component by typical factors of 2-3 and up to 6 in optimal cases. From the rotationally modulated time series of circularly polarized spectra and with ZDI, we also reconstruct the large-scale magnetic field topology. These fields suggest that bistability of dynamo processes observed in active M dwarfs may also be at work for moderately active M dwarfs. Comparing spot distributions with field topologies suggest that dark spots causing activity jitter concentrate at the magnetic pole and/or equator, to be confirmed with future data on a larger sample.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nutzman, Philip A.; Fabrycky, Daniel C.; Fortney, Jonathan J., E-mail: pnutzman@ucolick.org

    Spectroscopic follow-up of dozens of transiting planets has revealed the degree of alignment between the equators of stars and the orbits of the planets they host. Here we determine a method, applicable to spotted stars, that can reveal the same information from the photometric discovery data, with no need for follow-up. A spot model fit to the global light curve, parameterized by the spin orientation of the star, predicts when the planet will transit the spots. Observing several spot crossings during different transits then leads to constraints on the spin-orbit alignment. In cases where stellar spots are small, the stellarmore » inclination, i{sub s} , and hence the true alignment, rather than just the sky projection, can be obtained. This method has become possible with the advent of space telescopes such as CoRoT and Kepler, which photometrically monitor transiting planets over a nearly continuous, long time baseline. We apply our method to CoRoT-2 and find the projected spin-orbit alignment angle, {lambda} = 4.{sup 0}7 {+-} 12.{sup 0}3, in excellent agreement with a previous determination that employed the Rossiter-McLaughlin effect. The large spots of the parent star, CoRoT-2, limit our precision on i{sub s} : 84{sup 0} {+-} 36{sup 0}, where i{sub s} < 90{sup 0}(> 90{sup 0}) indicates that the rotation axis is tilted toward (away from) the line of sight.« less

  11. The Surface of V410 Tauri

    NASA Astrophysics Data System (ADS)

    Rice, J. B.; Strassmeier, K. G.; Kopf, M.

    2011-02-01

    We present Doppler images of the weak-lined T Tauri star V410 Tau obtained with two different Doppler-imaging codes. The images are consistent and show a cool extended spot, symmetric about the pole, at a temperature approximately 750 K below the average photospheric value. Smaller cool spots are found fairly uniformly distributed at latitudes below the polar cap with temperatures about 450 K below the average photospheric temperature. Resolution on the stellar surface is limited to about 7° of arc, so structure within these spots is not visible. Also at lower latitudes are hotter features with temperatures up to 1000 K above the photosphere. A trial Doppler image using a TiO molecular feature reproduced the cool polar cap at a temperature about 100 K below the value from the atomic line images. The equatorial features, however, were not properly reproduced since Doppler imaging relies on information in the wings of lines for reconstructing equatorial features, and for V410 Tau these molecular band lines overlap. In 1993, V410 Tau had a large photometric amplitude resulting from the concentration of cool spots on the hemisphere of the star visible at phase 0°, a phenomenon known as preferred longitude. In contrast, the small photometric amplitude observed currently is due to a strong symmetric polar spot and the uniform distribution in longitude of equatorial cool and warm spots. This redistribution of surface features may be the beginning of a slow "flip-flop" for V410 Tau where spot locations alternate between preferred longitudes. Flare events linked to two of the hotter spots in the Doppler image were observed.

  12. Long-Term Starspot Activity of Some Chromospherically Active Rs CVn and BY Dra Stars

    NASA Astrophysics Data System (ADS)

    Kozhevnikova, Alla; Ilya, Alekseev

    2016-10-01

    We present results of our long-term photometric observations of a sample of 15 chromospherically active BY Dra and RS CVn-type stars. Observations were carried out at a 70-cm telescope and multichannel photometer of Kourovka Astronomical Observatory of Ural Federal University and at a 1.25-m telescope of Crimean Astrophysical Observatory from 2003 to 2015 in Johnson B, V, R, I bands. We also use the previously published photometric data for all these stars to find the meaning of historical star's brightness, that we assume as a brightness of unspotted photosphere. Using a renewed zonal spot model for spotted stellar photospheres we determined spot parameters for all observational seasons, as our as published ones, that were spanning almost over 45 years for some stars (e.g. CG Cyg, WY Cnc, EV Lac, V 1396 Cyg). It is shown that the spots were located at low and middle latitudes up to 58 deg., are cooler than the surrounding photosphere by 200 - 2000 K according to the spectral class. The spotted area varied from season to season, comprising 13%-47% of the surface area of the star. Almost half of the stars display drifts of their spots towards the equator and poles during certain time intervals; however, the speeds of the spots' latitude drifts are lower than the analogous speeds for sunspots, by factors of 1.5-4, on average. Activity cycles lasting from 5 to 40 years have been determined or confirmed for majority of the studied stars. As a rule, cycles are expressed in synchronous variations of spot areas, spot latitudes and average photometric star's brightness.

  13. MACULA: Fast Modeling of Rotational Modulations of Spotty Stars

    NASA Astrophysics Data System (ADS)

    Kipping, David

    2015-08-01

    Rotational modulations are frequently observed on stars observed by photometry surveys such as Kepler, with periodicities ranging from days to months and amplitudes of sub-parts-per-million to several percent. These variations may be studied to reveal important stellar properties such as rotational periods, inclinations and gradients of differential rotation. However, inverting the disk-integrated flux into a solution for spot number, sizes, contrasts, etc is highly degenerate and thereby necessitating an exhaustive search of the parameter space. In recognition of this, the software MACULA is designed to be a fast forward model of circular, grey spots on rotating stars, including effects such as differential rotation, spot evolution and even spot penumbra/umbra. MACULA seeks to achieve computational efficiency by using a wholly analytic description of the disk-integrated flux, which is described in Kipping (2012), leading to a computational improvement of three orders-of-magnitude over its numerical counterparts. As part of the hack day, I'll show how to simulate light curves with MACULA and provide examples with visualizations. I will also discuss the on-going development of the code, which will head towards modeling spot crossing events and radial velocity jitter and I encourage discussions amongst the participants on analytic methods to this end.

  14. No Sun-like dynamo on the active star ζ Andromedae from starspot asymmetry.

    PubMed

    Roettenbacher, R M; Monnier, J D; Korhonen, H; Aarnio, A N; Baron, F; Che, X; Harmon, R O; Kővári, Zs; Kraus, S; Schaefer, G H; Torres, G; Zhao, M; ten Brummelaar, T A; Sturmann, J; Sturmann, L

    2016-05-12

    Sunspots are cool areas caused by strong surface magnetic fields that inhibit convection. Moreover, strong magnetic fields can alter the average atmospheric structure, degrading our ability to measure stellar masses and ages. Stars that are more active than the Sun have more and stronger dark spots than does the Sun, including on the rotational pole. Doppler imaging, which has so far produced the most detailed images of surface structures on other stars, cannot always distinguish the hemisphere in which the starspots are located, especially in the equatorial region and if the data quality is not optimal. This leads to problems in investigating the north-south distribution of starspot active latitudes (those latitudes with more starspot activity); this distribution is a crucial constraint of dynamo theory. Polar spots, whose existence is inferred from Doppler tomography, could plausibly be observational artefacts. Here we report imaging of the old, magnetically active star ζ Andromedae using long-baseline infrared interferometry. In our data, a dark polar spot is seen in each of two observation epochs, whereas lower-latitude spot structures in both hemispheres do not persist between observations, revealing global starspot asymmetries. The north-south symmetry of active latitudes observed on the Sun is absent on ζ And, which hosts global spot patterns that cannot be produced by solar-type dynamos.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanchis-Ojeda, Roberto; Winn, Joshua N.

    We present the analysis of four months of Kepler photometry of the K4V star HAT-P-11, including 26 transits of its 'super-Neptune' planet. The transit data exhibit numerous anomalies which we interpret as passages of the planet over dark starspots. These spot-crossing anomalies preferentially occur at two specific phases of the transit. These phases can be understood as the intersection points between the transit chord and the active latitudes of the host star, where starspots are most abundant. Based on the measured characteristics of spot-crossing anomalies and previous observations of the Rossiter-McLaughlin effect, we find two solutions for the stellar obliquitymore » {psi} and active latitude l: either {psi} = 106{sup +15}{sub -11} and l = 19.7{sup +1.5}{sub -2.2}, or {psi} = 97{sup +8}{sub -4} and l = 67{sup +2}{sub -4} (all in degrees). If the active latitude changes with time analogous to the 'butterfly diagram' of the Sun's activity cycle, future observations should reveal changes in the preferred phases of spot-crossing anomalies.« less

  16. Anomalous accretion activity and the spotted nature of the DQ Tau binary system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bary, Jeffrey S.; Petersen, Michael S.

    2014-09-01

    We report the detection of an anomalous accretion flare in the tight eccentric pre-main-sequence binary system DQ Tau. In a multi-epoch survey consisting of randomly acquired low- to moderate-resolution near-infrared spectra obtained over a period of almost 10 yr, we detect a significant and simultaneous brightening of four standard accretion indicators (Ca II infrared triplet, the Paschen and Brackett series H I lines, and He I 1.083 μm), on back-to-back nights (φ = 0.372 and 0.433) with the flare increasing in strength as the system approached apastron (φ = 0.5). The mass accretion rate measured for the anomalous flare ismore » nearly an order of magnitude stronger than the average quiescent rate. While previous observations established that frequent, periodic accretion flares phased with periastron passages occur in this system, these data provide evidence that orbitally modulated accretion flares occur near apastron, when the stars make their closest approach to the circumbinary disk. The timing of the flare suggests that this outburst is due to interactions of the stellar cores (or the highly truncated circumstellar disks) with material in non-axisymmetric structures located at the inner edge of the circumbinary disk. We also explore the optical/infrared spectral type mismatch previously observed for T Tauri stars (TTSs) and successfully model the shape of the spectra from 0.8 to 1.0 μm and the strengths of the TiO and FeH bands as manifestations of large cool spots on the surfaces of the stellar companions in DQ Tau. These findings illustrate that a complete model of near-infrared spectra of many TTSs must include parameters for spot filling factors and temperatures.« less

  17. Investigating an SPI and Measuring Baseline FUV Variability in the GJ 436 Hot-Neptune System

    NASA Astrophysics Data System (ADS)

    Loyd, R. O.

    2017-08-01

    Closely-orbiting, massive planets can measurably affect the activity of their host star through tides, magnetic disturbances, or even mass transfer. Observations of these star planet interactions (SPIs) provide a window into stellar and planetary physics that may eventually lead to constraints on planetary magnetic fields. Recently, the MUSCLES Treasury Survey of 11 exoplanet host stars revealed correlations providing the first-ever evidence of SPIs in M dwarf systems. This evidence additionally suggests that N V 1238,1242 Angstrom emission best traces SPIs, a feature that merits further investigation. To this end, we propose an experiment using the M dwarf + hot Neptune system GJ 436 that will also benefit upcoming transit observations. GJ 436 is ideal for an SPI experiment because (1) escaped gas from its known rapidly evaporating hot Neptune could be funneled onto the star and (2) it displays a tentative SPI signal in existing, incomplete N V observations. The proposed experiment will complete these N V observations to constrain a model of modulation in N V flux resulting from a stellar hot spot induced by the planet. The results will provide evidence for or against hot spot SPIs producing the correlations observed in the MUSCLES Survey. Furthemore, the acquired data will establish a broader FUV baseline to constrain day-timescale variability and facular emission in FUV lines, needed for the interpretation of upcoming transit observations of GJ 436b. For this reason, we waive our proprietary rights to the data. Establishing GJ 436's baseline FUV variability and testing the hot spot hypothesis are only possible through the FUV capabilities of HST.

  18. Signature of non-isotropic distribution of stellar rotation inclination angles in the Praesepe cluster

    NASA Astrophysics Data System (ADS)

    Kovacs, Geza

    2018-04-01

    The distribution of the stellar rotation axes of 113 main sequence stars in the open cluster Praesepe are examined by using current photometric rotation periods, spectroscopic rotation velocities, and estimated stellar radii. Three different samples of stellar rotation data on spotted stars from the Galactic field and two independent samples of planetary hosts are used as control samples to support the consistency of the analysis. Considering the high completeness of the Praesepe sample and the behavior of the control samples, we find that the main sequence F - K stars in this cluster are susceptible to rotational axis alignment. Using a cone model, the most likely inclination angle is 76° ± 14° with a half opening angle of 47° ± 24°. Non-isotropic distribution of the inclination angles is preferred over the isotropic distribution, except if the rotation velocities used in this work are systematically overestimated. We found no indication of this being the case on the basis of the currently available data. Data are only available at the CDS, together with the other two compiled datasets used in this paper, via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/612/L2

  19. MOST detects corotating bright spots on the mid-O-type giant ξ Persei

    NASA Astrophysics Data System (ADS)

    Ramiaramanantsoa, Tahina; Moffat, Anthony F. J.; Chené, André-Nicolas; Richardson, Noel D.; Henrichs, Huib F.; Desforges, Sébastien; Antoci, Victoria; Rowe, Jason F.; Matthews, Jaymie M.; Kuschnig, Rainer; Weiss, Werner W.; Sasselov, Dimitar; Rucinski, Slavek M.; Guenther, David B.

    2014-06-01

    We have used the MOST (Microvariability and Oscillations of STars) microsatellite to obtain four weeks of contiguous high-precision broad-band visual photometry of the O7.5III(n)((f)) star ξ Persei in 2011 November. This star is well known from previous work to show prominent DACs (discrete absorption components) on time-scales of about 2 d from UV spectroscopy and non-radial pulsation with one (l = 3) p-mode oscillation with a period of 3.5 h from optical spectroscopy. Our MOST-orbit (101.4 min) binned photometry fails to reveal any periodic light variations above the 0.1 mmag 3σ noise level for periods of a few hours, while several prominent Fourier peaks emerge at the 1 mmag level in the two-day period range. These longer period variations are unlikely due to pulsations, including gravity modes. From our simulations based upon a simple spot model, we deduce that we are seeing the photometric modulation of several corotating bright spots on the stellar surface. In our model, the starting times (random) and lifetimes (up to several rotations) vary from one spot to another yet all spots rotate at the same period of 4.18 d, the best-estimated rotation period of the star. This is the first convincing reported case of corotating bright spots on an O star, with important implications for drivers of the DACs (resulting from corotating interaction regions) with possible bright-spot generation via a breakout at the surface of a global magnetic field generated by a subsurface convection zone.

  20. A Photometric Study of the Eclipsing Binary Star PY Boötis

    NASA Astrophysics Data System (ADS)

    Michaels, E. J.

    2016-12-01

    Presented here are the first precision multi-band CCD photometry of the eclipsing binary star PY Boötis. Best-fit stellar models were determined by analyzing the light curves with the Wilson-Devinney program. Asymmetries in the light curves were interpreted as resulting from magnetic activity which required spots to be included in the model. The resulting model is consistent with a W-type contact eclipsing binary having total eclipses.

  1. Photometric Variations of Solar-type Stars: Results of the Cloudcroft Survey

    NASA Technical Reports Server (NTRS)

    Giampapa, M. S.

    1984-01-01

    The results of a synoptic program to search for the occurrence of photometric variability in solar type stars as seen in continuum band photometry are summarized. The survey disclosed the existence of photometric variability in solar type stars that is related to the presence of spots on the stellar surface. The observed variability detected in solar type stars is at enhanced levels compared to that observed for the Sun.

  2. The relative impact of photoionizing radiation and stellar winds on different environments

    NASA Astrophysics Data System (ADS)

    Haid, S.; Walch, S.; Seifried, D.; Wünsch, R.; Dinnbier, F.; Naab, T.

    2018-05-01

    Photoionizing radiation and stellar winds from massive stars deposit energy and momentum into the interstellar medium (ISM). They might disperse the local ISM, change its turbulent multi-phase structure, and even regulate star formation. Ionizing radiation dominates the massive stars' energy output, but the relative effect of winds might change with stellar mass and the properties of the ambient ISM. We present simulations of the interaction of stellar winds and ionizing radiation of 12, 23, and 60 M⊙ stars within a cold neutral (CNM, n0 = 100 cm-3), warm neutral (WNM, n0 = 1, 10 cm-3) or warm ionized (WIM, n0 = 0.1 cm-3) medium. The FLASH simulations adopt the novel tree-based radiation transfer algorithm TREERAY. With the On-the-Spot approximation and a temperature-dependent recombination coefficient, it is coupled to a chemical network with radiative heating and cooling. In the homogeneous CNM, the total momentum injection ranges from 1.6× 104 to 4× 105 M⊙ km s-1 and is always dominated by the expansion of the ionized HII region. In the WIM, stellar winds dominate (2× 102 to 5× 103 M⊙ km s-1), while the input from radiation is small (˜ 102 M⊙ km s-1). The WNM (n0 = 1 cm-3) is a transition regime. Energetically, stellar winds couple more efficiently to the ISM (˜ 0.1 percent of wind luminosity) than radiation (< 0.001 percent of ionizing luminosity). For estimating the impact of massive stars, the strongly mass-dependent ratios of wind to ionizing luminosity and the properties of the ambient medium have to be considered.

  3. Young Stellar Grouping in Cygnus X

    NASA Image and Video Library

    2017-12-08

    Cygnus X hosts many young stellar groupings. The combined outflows and ultraviolet radiation from the region's numerous massive stars have heated and pushed gas away from the clusters, producing cavities of hot, lower-density gas. In this 8-micron infrared image, ridges of denser gas mark the boundaries of the cavities. Bright spots within these ridges show where stars are forming today. Credit: NASA/IPAC/MSX To read more go to: www.nasa.gov/mission_pages/GLAST/news/cygnus-cocoon.html NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  4. Distinguishing the albedo of exoplanets from stellar activity

    NASA Astrophysics Data System (ADS)

    Serrano, L. M.; Barros, S. C. C.; Oshagh, M.; Santos, N. C.; Faria, J. P.; Demangeon, O.; Sousa, S. G.; Lendl, M.

    2018-03-01

    Context. Light curves show the flux variation from the target star and its orbiting planets as a function of time. In addition to the transit features created by the planets, the flux also includes the reflected light component of each planet, which depends on the planetary albedo. This signal is typically referred to as phase curve and could be easily identified if there were no additional noise. As well as instrumental noise, stellar activity, such as spots, can create a modulation in the data, which may be very difficult to distinguish from the planetary signal. Aims: We analyze the limitations imposed by the stellar activity on the detection of the planetary albedo, considering the limitations imposed by the predicted level of instrumental noise and the short duration of the obervations planned in the context of the CHEOPS mission. Methods: As initial condition, we have assumed that each star is characterized by just one orbiting planet. We built mock light curves that included a realistic stellar activity pattern, the reflected light component of the planet and an instrumental noise level, which we have chosen to be at the same level as predicted for CHEOPS. We then fit these light curves to try to recover the reflected light component, assuming the activity patterns can be modeled with a Gaussian process. Results: We estimate that at least one full stellar rotation is necessary to obtain a reliable detection of the planetary albedo. This result is independent of the level of noise, but it depends on the limitation of the Gaussian process to describe the stellar activity when the light curve time-span is shorter than the stellar rotation. As an additional result, we found that with a 6.5 magnitude star and the noise level of CHEOPS, it is possible to detect the planetary albedo up to a lower limit of Rp = 0.03 R*. Finally, in presence of typical CHEOPS gaps in the simulations, we confirm that it is still possible to obtain a reliable albedo.

  5. SOAP 2.0: a tool to estimate the photometric and radial velocity variations induced by stellar spots and plages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dumusque, X.; Boisse, I.; Santos, N. C., E-mail: xdumusque@cfa.harvard.edu

    2014-12-01

    This paper presents SOAP 2.0, a new version of the Spot Oscillation And Planet (SOAP) code that estimates in a simple way the photometric and radial velocity (RV) variations induced by active regions. The inhibition of the convective blueshift (CB) inside active regions is considered, as well as the limb brightening effect of plages, a quadratic limb darkening law, and a realistic spot and plage contrast ratio. SOAP 2.0 shows that the activity-induced variation of plages is dominated by the inhibition of the CB effect. For spots, this effect becomes significant only for slow rotators. In addition, in the casemore » of a major active region dominating the activity-induced signal, the ratio between the FWHM and the RV peak-to-peak amplitudes of the cross correlation function can be used to infer the type of active region responsible for the signal for stars with v sin i ≤8 km s{sup –1}. A ratio smaller than three implies a spot, while a larger ratio implies a plage. Using the observation of HD 189733, we show that SOAP 2.0 manages to reproduce the activity variation as well as previous simulations when a spot is dominating the activity-induced variation. In addition, SOAP 2.0 also reproduces the activity variation induced by a plage on the slowly rotating star α Cen B, which is not possible using previous simulations. Following these results, SOAP 2.0 can be used to estimate the signal induced by spots and plages, but also to correct for it when a major active region is dominating the RV variation.« less

  6. Probing the low-stellar-mass domain with Kepler and APOGEE observations of eclipsing binaries

    NASA Astrophysics Data System (ADS)

    Prsa, Andrej; Hambleton, Kelly

    2018-01-01

    Observations of low-mass stars (M < 0.5 Msun) have been shown to systematically disagree with the predictions of stellar evolutionary models, where observed radii can be inflated by as much as 5-15% as compared to model predictions. One of the proposed explanations for this discrepancy that is gaining traction are stellar magnetic fields impeding the onset of convection and the subsequent bloating of the star. Here we present modeling analysis results of two benchmark eclipsing binaries, KIC 3003991 and KIC 2445134, with low mass companions (M ~ 0.2 MSun and M ~ 0.5 MSun, respectively). The models are based on Kepler photometry and APOGEE spectroscopy. APOGEE is a part of the Sloan spectroscopic survey that observes in the near-infrared, providing greater sensitivity towards fainter, red companions. We combine the binary modeling software PHOEBE with emcee, an affine invariant Markov chain Monte Carlo sampler; celerite, a Gaussian process library; and our own codes to create a modeling suite capable of modeling correlated noise, shot noise, nuisance astrophysical signals (such as spots) and the full set of eclipsing binary parameters. The results are obtained within a probabilistic framework, with robust mass and radius uncertainties ~1-4%. We overplot the derived masses, radii and temperatures over evolutionary models and note stellar size bloating w.r.t. model predictions for both systems. This work has been funded by the NSF grant #1517460.

  7. High-precision photometry by telescope defocussing - VIII. WASP-22, WASP-41, WASP-42 and WASP-55

    NASA Astrophysics Data System (ADS)

    Southworth, John; Tregloan-Reed, J.; Andersen, M. I.; Calchi Novati, S.; Ciceri, S.; Colque, J. P.; D'Ago, G.; Dominik, M.; Evans, D. F.; Gu, S.-H.; Herrera-Cordova, A.; Hinse, T. C.; Jørgensen, U. G.; Juncher, D.; Kuffmeier, M.; Mancini, L.; Peixinho, N.; Popovas, A.; Rabus, M.; Skottfelt, J.; Tronsgaard, R.; Unda-Sanzana, E.; Wang, X.-B.; Wertz, O.; Alsubai, K. A.; Andersen, J. M.; Bozza, V.; Bramich, D. M.; Burgdorf, M.; Damerdji, Y.; Diehl, C.; Elyiv, A.; Figuera Jaimes, R.; Haugbølle, T.; Hundertmark, M.; Kains, N.; Kerins, E.; Korhonen, H.; Liebig, C.; Mathiasen, M.; Penny, M. T.; Rahvar, S.; Scarpetta, G.; Schmidt, R. W.; Snodgrass, C.; Starkey, D.; Surdej, J.; Vilela, C.; von Essen, C.; Wang, Y.

    2016-04-01

    We present 13 high-precision and four additional light curves of four bright southern-hemisphere transiting planetary systems: WASP-22, WASP-41, WASP-42 and WASP-55. In the cases of WASP-42 and WASP-55, these are the first follow-up observations since their discovery papers. We present refined measurements of the physical properties and orbital ephemerides of all four systems. No indications of transit timing variations were seen. All four planets have radii inflated above those expected from theoretical models of gas-giant planets; WASP-55 b is the most discrepant with a mass of 0.63 MJup and a radius of 1.34 RJup. WASP-41 shows brightness anomalies during transit due to the planet occulting spots on the stellar surface. Two anomalies observed 3.1 d apart are very likely due to the same spot. We measure its change in position and determine a rotation period for the host star of 18.6 ± 1.5 d, in good agreement with a published measurement from spot-induced brightness modulation, and a sky-projected orbital obliquity of λ = 6 ± 11°. We conclude with a compilation of obliquity measurements from spot-tracking analyses and a discussion of this technique in the study of the orbital configurations of hot Jupiters.

  8. Thermal infrared observations of Mars (7.5-12.8 microns) during the 1990 opposition

    NASA Technical Reports Server (NTRS)

    Roush, T. L.; Witteborn, F.; Lucy, P. G.; Graps, A.; Pollack, J. B.

    1991-01-01

    Thirteen spectra of Mars, in the 7.5 to 12.8 micron wavelength were obtained on 7 Dec. 1990 from the Infrared Telescope Facility (IRTF). For these observations, a grating with an ultimate resolving power of 120 to 250 was used and wavelengths were calibrated for each grating setting by comparison with the absorption spectrum of polystyrene measured prior to each set of observations. By sampling the Nyquist limit at the shortest wavelengths, an effective resolving power of about 120 over the entire wavelength range was achieved. A total of four grating settings were required to cover the entire wavelength region. A typical observing sequence consisted of: (1) positioning the grating in one of the intervals; (2) calibrating the wavelength of positions; and (3) obtaining spectra for a number of spots on Mars. Several observations of the nearby stellar standard star, alpha Tauri, were also acquired throughout the night. Each Mars spectrum represents an average of 4 to 6 measurements of the individual Mars spots. As a result of this observing sequence, the viewing geometry for a given location or spot on Mars does not change, but the actual location of the spot on Mars's surface varies somewhat between the different grating settings. Other aspects of the study are presented.

  9. The appearance of highly relativistic, spherically symmetric stellar winds

    NASA Technical Reports Server (NTRS)

    Abramowicz, Marek A.; Novikov, Igor D.; Paczynski, Bohdan

    1991-01-01

    A nonluminous, steady state, spherically symmetric, relativistic wind, with the opacity dominated by electron scattering appears against a bright background as a dark circle with the radius rd. A luminous wind would appear as a bright spot with a radius rl = rd/2 pi gamma exp 3, where gamma is the Lorentz factor of the wind. The bright wind photosphere is convex for v equal to or less than 2c/3, and appears concave for higher outflow velocities.

  10. Asteroseismology - The impact of solar space observations

    NASA Technical Reports Server (NTRS)

    Hudson, H. S.

    1993-01-01

    Observations from space relevant to solar global properties (oscillations, magnetic activity, etc.) are helpful both scientifically and technically in preparing for stellar observations. This paper summarizes the results from the main previous experiments (ACRIM, SOUP, and IPHIR), and also gives an initial technical report from the SXT instrument on board Yohkoh, launched in August 1991. The solar observations to date demonstrate the existence of several mechanisms for low-level variability: spots, faculae, the photospheric network, granulation, and p-mode oscillations. The observations of oscillations have been particularly helpful in setting limits on solar interior rotation. In addition to the solar processes, stars of other types may have different mechanisms of variability. These may include the analogs of coronal holes or solar flares, modes of oscillation not detected in the sun, collisions with small bodies, duplicity, and probably mechanisms not invented yet but related in interesting ways to stellar convection and magnetism.

  11. Bright Localized Near-Infrared Emission at 1-4 AU in the AB Aurigae Disk Revealed by IOTA Closure Phases

    NASA Astrophysics Data System (ADS)

    Millan-Gabet, R.; Monnier, J. D.; Berger, J.-P.; Traub, W. A.; Schloerb, F. P.; Pedretti, E.; Benisty, M.; Carleton, N. P.; Haguenauer, P.; Kern, P.; Labeye, P.; Lacasse, M. G.; Malbet, F.; Perraut, K.; Pearlman, M.; Thureau, N.

    2006-07-01

    We report on the detection of localized off-center emission at 1-4 AU in the circumstellar environment of the young stellar object AB Aurigae. We used closure-phase measurements in the near-infrared that were made at the long-baseline interferometer IOTA, the first obtained on a young stellar object using this technique. When probing sub-AU scales, all closure phases are close to zero degrees, as expected given the previously determined size of the AB Aurigae inner-dust disk. However, a clear closure-phase signal of -3.5d +/- 0.5d is detected on one triangle containing relatively short baselines, requiring a high degree of non-point symmetry from emission at larger (AU-sized) scales in the disk. We have not identified any alternative explanation for these closure-phase results, and we demonstrate that a ``disk hot spot'' model can fit our data. We speculate that such detected asymmetric near-infrared emission might arise as a result of localized viscous heating due to a gravitational instability in the AB Aurigae disk, or to the presence of a close stellar companion or accreting substellar object.

  12. Line-dependent veiling in very active classical T Tauri stars

    NASA Astrophysics Data System (ADS)

    Rei, A. C. S.; Petrov, P. P.; Gameiro, J. F.

    2018-02-01

    Context. The T Tauri stars with active accretion disks show veiled photospheric spectra. This is supposedly due to non-photospheric continuum radiated by hot spots beneath the accretion shocks at stellar surface and/or chromospheric emission lines radiated by the post-shocked gas. The amount of veiling is often considered as a measure of the mass-accretion rate. Aim. We analysed high-resolution photospheric spectra of accreting T Tauri stars LkHα 321, V1331 Cyg, and AS 353A with the aim of clarifying the nature of the line-dependent veiling. Each of these objects shows a strong emission line spectrum and powerful wind features indicating high rates of accretion and mass loss. Methods: Equivalent widths of hundreds of weak photospheric lines were measured in the observed spectra of high quality and compared with those in synthetic spectra of appropriate models of stellar atmospheres. Results: The photospheric spectra of the three T Tauri stars are highly veiled. We found that the veiling is strongly line-dependent: larger in stronger photospheric lines and weak or absent in the weakest ones. No dependence of veiling on excitation potential within 0 to 5 eV was found. Different physical processes responsible for these unusual veiling effects are discussed in the framework of the magnetospheric accretion model. Conclusions: The observed veiling has two origins: (1) an abnormal structure of stellar atmosphere heated up by the accreting matter, and (2) a non-photospheric continuum radiated by a hot spot with temperature lower than 10 000 K. The true level of the veiling continuum can be derived by measuring the weakest photospheric lines with equivalent widths down to ≈10 mÅ. A limited spectral resolution and/or low signal-to-noise ratio results in overestimation of the veiling continuum. In the three very active stars, the veiling continuum is a minor contributor to the observed veiling, while the major contribution comes from the line-dependent veiling.

  13. Starspot evolution, differential rotation, and magnetic cycles in the chromospherically active binaries lambda andromedae, sigma Geminorum, II Pegasi, and V711 Tauri

    NASA Technical Reports Server (NTRS)

    Henry, Gregory W.; Eaton, Joel A.; Hamer, Jamesia; Hall, Douglas S.

    1995-01-01

    We have analyzed 15-19 yr of photoelectric photometry, obtained manually and with automated telescopes, of the chromospherically active binaries lambda And, sigma Gem, II Peg, and V711 Tau. These observations let us identify individual dark starspots on the stellar surfaces from periodic dimming of the starlight, follow the evolution of these spots, and search for long-term cyclic changes in the properties of these starspots that might reveal magnetic cycles analogous to the Sun's 11 yr sunspot cycle. We developed a computer code to fit a simple two-spot model to our observed light curves that allows us to extract the most easily determinable and most reliable spot parameters from the light curves, i.e., spot longitudes and radii. We then used these measured properties to identify individual spots and to chart their life histories by constructing migration and amplitude curves. We identified and followed 11 spots in lambda And, 16 in sigma Gem, 12 in II Peg, and 15 in V711 Tau. Lifetimes of individual spots ranged from a few months to longer than 6 yr. Differential rotation coefficients, estimated from the observed range of spot rotation periods for each star and defined by equation (2), were 0.04 for lambda And, 0.038 for sigma Gem, 0.005 for II Peg, and 0.006 for V711 Tau, versus 0.19 for the Sun. We searched for cyclic changes in mean brightness, B-V color index, and spot rotation period as evidence for long-term cycles. Of these, long-term variability in mean brightness appears to offer the best evidence for such cycles in these four stars. Cycles of 11.1 yr for lambda And, 8.5 yr for sigma Gem, 11 yr for II Peg, and 16 yr V711 Tau are implied by these mean brightness changes. Cyclic changes in spot rotation period were found in lambda And and possibly II Peg. Errors in B-V were too large for any long-term changes to be detectable.

  14. CSI 2264: Accretion process in classical T Tauri stars in the young cluster NGC 2264

    NASA Astrophysics Data System (ADS)

    Sousa, A. P.; Alencar, S. H. P.; Bouvier, J.; Stauffer, J.; Venuti, L.; Hillenbrand, L.; Cody, A. M.; Teixeira, P. S.; Guimarães, M. M.; McGinnis, P. T.; Rebull, L.; Flaccomio, E.; Fürész, G.; Micela, G.; Gameiro, J. F.

    2016-02-01

    Context. NGC 2264 is a young stellar cluster (~3 Myr) with hundreds of low-mass accreting stars that allow a detailed analysis of the accretion process taking place in the pre-main sequence. Aims: Our goal is to relate the photometric and spectroscopic variability of classical T Tauri stars to the physical processes acting in the stellar and circumstellar environment, within a few stellar radii from the star. Methods: NGC 2264 was the target of a multiwavelength observational campaign with CoRoT, MOST, Spitzer, and Chandra satellites and photometric and spectroscopic observations from the ground. We classified the CoRoT light curves of accreting systems according to their morphology and compared our classification to several accretion diagnostics and disk parameters. Results: The morphology of the CoRoT light curve reflects the evolution of the accretion process and of the inner disk region. Accretion burst stars present high mass-accretion rates and optically thick inner disks. AA Tau-like systems, whose light curves are dominated by circumstellar dust obscuration, show intermediate mass-accretion rates and are located in the transition of thick to anemic disks. Classical T Tauri stars with spot-like light curves correspond mostly to systems with a low mass-accretion rate and low mid-IR excess. About 30% of the classical T Tauri stars observed in the 2008 and 2011 CoRoT runs changed their light-curve morphology. Transitions from AA Tau-like and spot-like to aperiodic light curves and vice versa were common. The analysis of the Hα emission line variability of 58 accreting stars showed that 8 presented a periodicity that in a few cases was coincident with the photometric period. The blue and red wings of the Hα line profiles often do not correlate with each other, indicating that they are strongly influenced by different physical processes. Classical T Tauri stars have a dynamic stellar and circumstellar environment that can be explained by magnetospheric accretion and outflow models, including variations from stable to unstable accretion regimes on timescales of a few years. Full Tables 2 and 3 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/586/A47

  15. Starspots and Activity of the Flare Star GJ 1243

    NASA Astrophysics Data System (ADS)

    Savanov, I. S.; Dmitrienko, E. S.

    2018-04-01

    The photometric variability of the uniqueMdwarf flare star GJ 1243 (KIC 9726699) is investigated using the most complete set of observationalmaterial obtained with the Kepler Space Telescope. The analysis is based on 49 487 individual brightness measurements obtained during an interval of 1460 days (nearly four years). The periodicity of the brightness variations with the period P phot = 0.59261 ± 0.00060d is confirmed. The temperature inhomogeneities on the stellar surface reconstructed from the light curve are used to drive maps of these surface-temperature inhomogeneities (of the filling factor f). The resulting maps are used to determine the positions of active regions. Analysis of the surface-temperature maps for GJ 1243 led to the conclusion that the positions of spots on the stellar surface displayed appreciable evolution during the analyzed time interval. The maximum value for the lower limit on the differentialrotation parameter ΔΩ is 0.0022 rad/day. This more accurate estimate of ΔΩ is lower than the values presented earlier by Davenport et al. [1] (0.0058 and 0.0036 rad/day), due to the more accurate account of variations in the positions of the most active longitude in the current study. However, the differentialrotation estimate obtained in [1] using a method based on fitting the evolution of spots using twodimensional Gaussian functions essentially coincides with the new estimate presented here. The fractional area of the total spotted surface S of the star during the observing interval considered varied from 7 to 2%. The amplitude of the brightness variability of the star slowly decreased, varying in the range 1.6-0.5%. Overall, the position of GJ 1243 in spottedness-age, spottedness-rotation period, and spottedness-Rossby number diagrams agrees very well with the general character of the dependences displayed in earlier studies of M dwarfs.

  16. A Kepler study of starspot lifetimes with respect to light-curve amplitude and spectral type

    NASA Astrophysics Data System (ADS)

    Giles, Helen A. C.; Collier Cameron, Andrew; Haywood, Raphaëlle D.

    2017-12-01

    Wide-field high-precision photometric surveys such as Kepler have produced reams of data suitable for investigating stellar magnetic activity of cooler stars. Starspot activity produces quasi-sinusoidal light curves whose phase and amplitude vary as active regions grow and decay over time. Here we investigate, first, whether there is a correlation between the size of starspots - assumed to be related to the amplitude of the sinusoid - and their decay time-scale and, secondly, whether any such correlation depends on the stellar effective temperature. To determine this, we computed the auto-correlation functions of the light curves of samples of stars from Kepler and fitted them with apodised periodic functions. The light-curve amplitudes, representing spot size, were measured from the root-mean-squared scatter of the normalized light curves. We used a Monte Carlo Markov Chain to measure the periods and decay time-scales of the light curves. The results show a correlation between the decay time of starspots and their inferred size. The decay time also depends strongly on the temperature of the star. Cooler stars have spots that last much longer, in particular for stars with longer rotational periods. This is consistent with current theories of diffusive mechanisms causing starspot decay. We also find that the Sun is not unusually quiet for its spectral type - stars with solar-type rotation periods and temperatures tend to have (comparatively) smaller starspots than stars with mid-G or later spectral types.

  17. Kepler AutoRegressive Planet Search

    NASA Astrophysics Data System (ADS)

    Feigelson, Eric

    NASA's Kepler mission is the source of more exoplanets than any other instrument, but the discovery depends on complex statistical analysis procedures embedded in the Kepler pipeline. A particular challenge is mitigating irregular stellar variability without loss of sensitivity to faint periodic planetary transits. This proposal presents a two-stage alternative analysis procedure. First, parametric autoregressive ARFIMA models, commonly used in econometrics, remove most of the stellar variations. Second, a novel matched filter is used to create a periodogram from which transit-like periodicities are identified. This analysis procedure, the Kepler AutoRegressive Planet Search (KARPS), is confirming most of the Kepler Objects of Interest and is expected to identify additional planetary candidates. The proposed research will complete application of the KARPS methodology to the prime Kepler mission light curves of 200,000: stars, and compare the results with Kepler Objects of Interest obtained with the Kepler pipeline. We will then conduct a variety of astronomical studies based on the KARPS results. Important subsamples will be extracted including Habitable Zone planets, hot super-Earths, grazing-transit hot Jupiters, and multi-planet systems. Groundbased spectroscopy of poorly studied candidates will be performed to better characterize the host stars. Studies of stellar variability will then be pursued based on KARPS analysis. The autocorrelation function and nonstationarity measures will be used to identify spotted stars at different stages of autoregressive modeling. Periodic variables with folded light curves inconsistent with planetary transits will be identified; they may be eclipsing or mutually-illuminating binary star systems. Classification of stellar variables with KARPS-derived statistical properties will be attempted. KARPS procedures will then be applied to archived K2 data to identify planetary transits and characterize stellar variability.

  18. The Stellar Obliquity, Planet Mass, and Very Low Albedo of Qatar-2 from K2 Photometry

    NASA Astrophysics Data System (ADS)

    Dai, Fei; Winn, Joshua N.; Yu, Liang; Albrecht, Simon

    2017-01-01

    The Qatar-2 transiting exoplanet system was recently observed in short-cadence mode by Kepler as part of K2 Campaign 6. We identify dozens of starspot-crossing events, when the planet eclipses a relatively dark region of the stellar photosphere. The observed patterns of these events demonstrate that the planet always transits over the same range of stellar latitudes and, therefore, that the stellar obliquity is less than about 10°. We support this conclusion with two different modeling approaches: one based on explicit identification and timing of the events and the other based on fitting the light curves with a spotted-star model. We refine the transit parameters and measure the stellar rotation period (18.5 ± 1.9 days), which corresponds to a “gyrochronological” age of 1.4 ± 0.3 Gyr. Coherent flux variations with the same period as the transits are well modeled as the combined effects of ellipsoidal light variations (15.4 ± 4.8 ppm) and Doppler boosting (14.6 ± 5.1 ppm). The magnitudes of these effects correspond to a planetary mass of 2.6+/- 0.9 {M}{Jup} and 3.9+/- 1.5 {M}{Jup}, respectively. Both of these independent mass estimates agree with the mass determined by the spectroscopic Doppler technique (2.487+/- 0.086 {M}{Jup}). No occultations are detected, giving a 2σ upper limit of 0.06 on the planet’s visual geometric albedo. We find no evidence for orbital decay, although we are only able to place a weak lower bound on the relevant tidal quality factor: {Q}\\star \\prime > 1.5× {10}4 (95% confidence).

  19. Starspots

    NASA Astrophysics Data System (ADS)

    Strassmeier, Klaus G.

    2009-09-01

    Starspots are created by local magnetic fields on the surfaces of stars, just as sunspots. Their fields are strong enough to suppress the overturning convective motion and thus block or redirect the flow of energy from the stellar interior outwards to the surface and consequently appear as locally cool and therefore dark regions against an otherwise bright photosphere (Biermann in Astronomische Nachrichten 264:361, 1938; Z Astrophysik 25:135, 1948). As such, starspots are observable tracers of the yet unknown internal dynamo activity and allow a glimpse into the complex internal stellar magnetic field structure. Starspots also enable the precise measurement of stellar rotation which is among the key ingredients for the expected internal magnetic topology. But whether starspots are just blown-up sunspot analogs, we do not know yet. This article is an attempt to review our current knowledge of starspots. A comparison of a white-light image of the Sun (G2V, 5 Gyr) with a Doppler image of a young solar-like star (EK Draconis; G1.5V, age 100 Myr, rotation 10 × Ω Sun) and with a mean-field dynamo simulation suggests that starspots can be of significantly different appearance and cannot be explained with a scaling of the solar model, even for a star of same mass and effective temperature. Starspots, their surface location and migration pattern, and their link with the stellar dynamo and its internal energy transport, may have far reaching impact also for our understanding of low-mass stellar evolution and formation. Emphasis is given in this review to their importance as activity tracers in particular in the light of more and more precise exoplanet detections around solar-like, and therefore likely spotted, host stars.

  20. The seven sisters DANCe. II. Proper motions and the lithium rotation-activity connection for G and K Pleiades

    NASA Astrophysics Data System (ADS)

    Barrado, D.; Bouy, H.; Bouvier, J.; Moraux, E.; Sarro, L. M.; Bertin, E.; Cuillandre, J.-C.; Stauffer, J. R.; Lillo-Box, J.; Pollock, A.

    2016-12-01

    Context. Stellar clusters open the window to understanding stellar evolution and, in particular, the change with time and the dependence on mass of different stellar properties. As such, stellar clusters act as laboratories where different theories can be tested. Aims: We try to understand the origin of the connection between lithium depletion in F, G, and K stars, rotation and activity in the Pleiades open cluster. Methods: We have collected all the relevant data in the literature, including information regarding rotation period, binarity, and activity, and cross-matched this data with proper motions, multiwavelength photometry, and membership probability from the DANCe database. To avoid biases, we only included single members of the Pleiades with probabilities larger than 75% in the discussion. Results: The analysis confirms that there is a strong link between activity, rotation, and the lithium equivalent width excess, especially for the range Lum(bol) = 0.5-0.2L⊙ (about K2-K7 spectral types or 0.75-0.95 M⊙). Conclusions: It is not possible to disentangle these effects, but we cannot exclude that the observed lithium overabundance is partially an observational effect from enhanced activity owing to a large coverage by stellar spots induced by high rotation rates. Since a bona fide lithium enhancement is present in young, fast rotators, both activity and rotation should play a role in the lithium problem. Tables 1-3 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/596/A113

  1. BVR{sub c}I{sub c} observations and analyses on V2421 Cygni, a precontact W UMa binary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samec, R. G.; Shebs, Travis S.; Faulkner, D. R.

    2014-01-01

    We present the first precision BVRI light curves, synthetic light curve solutions, and a period study for the high amplitude solar type binary, V2421 Cygni. The light curves have the appearance of an Algol (EA) type; however, it is made up of dwarf solar type components in a detached mode with a period of only 0.6331 days with an amplitude of about a full magnitude, i.e., it is a precontact W UMa binary. Flare-like disruptions occur in the light curves following the primary and secondary eclipses possibly due to the line-of-sight track of a gas stream. An associated stream spotmore » and splash spot cause bright equatorial spots on the stellar surface of the primary star. The more massive star is the gainer, making this system a classic, albeit dwarf, Algol.« less

  2. Exploring the optical contrast effect in strong atomic lines for exoplanets transiting active stars

    NASA Astrophysics Data System (ADS)

    Cauley, Paul W.; Redfield, Seth

    2017-01-01

    Transmission spectroscopy is a powerful tool for detecting and characterizing planetary atmospheres. Non-photospheric features on the stellar disk, however, can contaminate the planetary signal: during transit the observed spectrum is weighted towards the features not currently being occulted by the planet. This contrast effect can mimic absorption in the planetary atmosphere for strong atomic lines such as Na I, Ca II, and the hydrogen Balmer lines. While the contrast effect is negligible for quiet stars, contributions to the transmission signal from active stellar surfaces can produce ~1% changes in the line core. It is therefore critical that these contrast signals be differentiated from true absorption features in the planetary atmosphere. Here we present our work on simulating the contrast effect for an active stellar surface. We discuss the particular case of HD 189733 b, a well-studied hot Jupiter orbiting an active K-dwarf, due to the plethora of atomic absorption signals reported in its atmosphere.Specifically, we focus on Hα to address recent suggestions that the measured in-transit signals are a result of stellar activity. In the contrast model we include center-to-limb variations and calculate limb darkening parameters as a function of wavelength across the line of interest. The model includes contributions to the spectrum from spots, faculae and plages, filaments, and the bare stellar photosphere. Stellar rotation is also included. We find that it is very difficult to reproduce the measured in-transit Hα signals for reasonable active region parameters. In addition, it is difficult to create an in-transit contrast signature that lasts for the duration of the transit unless the planet is crossing an active latitudinal belt and is always obscuring active regions. This suggests that the Hα measurements arise predominantly in the planetary atmosphere. However, the contrast effect likely contributes to these signals. Furthermore, our results could be modified if the active regions of HD 189733 b have drastically different characteristics than solar active regions. Further observations of transits across active stars will aid in disentangling the planetary signals from the stellar.

  3. Discovery of starspots on Vega. First spectroscopic detection of surface structures on a normal A-type star

    NASA Astrophysics Data System (ADS)

    Böhm, T.; Holschneider, M.; Lignières, F.; Petit, P.; Rainer, M.; Paletou, F.; Wade, G.; Alecian, E.; Carfantan, H.; Blazère, A.; Mirouh, G. M.

    2015-05-01

    Context. The theoretically studied impact of rapid rotation on stellar evolution needs to be compared with these results of high-resolution spectroscopy-velocimetry observations. Early-type stars present a perfect laboratory for these studies. The prototype A0 star Vega has been extensively monitored in recent years in spectropolarimetry. A weak surface magnetic field was detected, implying that there might be a (still undetected) structured surface. First indications of the presence of small amplitude stellar radial velocity variations have been reported recently, but the confirmation and in-depth study with the highly stabilized spectrograph SOPHIE/OHP was required. Aims: The goal of this article is to present a thorough analysis of the line profile variations and associated estimators in the early-type standard star Vega (A0) in order to reveal potential activity tracers, exoplanet companions, and stellar oscillations. Methods: Vega was monitored in quasi-continuous high-resolution echelle spectroscopy with the highly stabilized velocimeter SOPHIE/OHP. A total of 2588 high signal-to-noise spectra was obtained during 34.7 h on five nights (2 to 6 of August 2012) in high-resolution mode at R = 75 000 and covering the visible domain from 3895-6270 Å. For each reduced spectrum, least square deconvolved equivalent photospheric profiles were calculated with a Teff = 9500 and log g = 4.0 spectral line mask. Several methods were applied to study the dynamic behaviour of the profile variations (evolution of radial velocity, bisectors, vspan, 2D profiles, amongst others). Results: We present the discovery of a spotted stellar surface on an A-type standard star (Vega) with very faint spot amplitudes ΔF/Fc ~ 5 × 10-4. A rotational modulation of spectral lines with a period of rotation P = 0.68 d has clearly been exhibited, unambiguously confirming the results of previous spectropolarimetric studies. Most of these brightness inhomogeneities seem to be located in lower equatorial latitudes. Either a very thin convective layer can be responsible for magnetic field generation at small amplitudes, or a new mechanism has to be invoked to explain the existence of activity tracing starspots. At this stage it is difficult to disentangle a rotational from a stellar pulsational origin for the existing higher frequency periodic variations. Conclusions: This first strong evidence that standard A-type stars can show surface structures opens a new field of research and ask about a potential link with the recently discovered weak magnetic field discoveries in this category of stars. Based on observations obtained with the SOPHIE spectrograph at the 2 m OHP telescope operated by the Institut National des Sciences de l'Univers (INSU) of the Centre National de la Recherche Scientifique of France (CNRS).

  4. Starspots on V711 Tauri /HR 1099/

    NASA Astrophysics Data System (ADS)

    Dorren, J. D.; Siah, M. J.; Guinan, E. F.; McCook, G. P.

    1981-04-01

    Hα (λ6563) intermediate- and narrowband light curves of the RS CVn-type binary system V711 Tau (HR 1099) were obtained in 1977-1978 at Biruni Observatory and in 1977-1978 and late 1979 at Villanova Observatory, where a λ7790 light curve was also obtained in 1977-1978. The light curves are quasisinusoidal, with a period approximately equal to the spectroscopic period. A significant change in the λ6585 light curve occurred between the two observing seasons, with an increase in amplitude from 0.075 to 0.125 mag, a change of shape, and an advance in the phases of maximum and minimum light by 0.3 phase. Flaring activity in Hα was observed, on time scales from minutes to days. We fitted our light curves and V-band light curves obtained at the same time using the starspot model of Torres and Ferraz Mello. We the observed light variations are due to the synchronous rotation of spots on the heavier member of the binary system, which has been shown to be the chromospherically active star. The orbital inclination was assumed to be 35°. Radiant fluxes were taken from spectrophotometric tables. Owing to the broad wavelength coverage in 1977-1978, it was possible to determine the spot temperature to be ˜1800 K cooler than the photosphere, and hence to fix the spot area. A simple model with two circular spots of 26° radius at the same latitude, +48°, adequately reproduces the 1977-1978 light curves. The 1979 observations can be reproduced in detail by a model with two slightly larger circular spots of 31°.5 radius at latitude +15°. The spots cover about 14% of the total stellar surface in 1979. The fits also provide an explanation of the presence of an observed phase dependence in the Hα emission in 1979 but not in 1977-1978. There is a strong suggestion that a spot cycle is in progress in V711 Tau.

  5. SOAP 2.0: A Tool to Estimate the Photometric and Radial Velocity Variations Induced by Stellar Spots and Plages

    NASA Astrophysics Data System (ADS)

    Dumusque, X.; Boisse, I.; Santos, N. C.

    2014-12-01

    This paper presents SOAP 2.0, a new version of the Spot Oscillation And Planet (SOAP) code that estimates in a simple way the photometric and radial velocity (RV) variations induced by active regions. The inhibition of the convective blueshift (CB) inside active regions is considered, as well as the limb brightening effect of plages, a quadratic limb darkening law, and a realistic spot and plage contrast ratio. SOAP 2.0 shows that the activity-induced variation of plages is dominated by the inhibition of the CB effect. For spots, this effect becomes significant only for slow rotators. In addition, in the case of a major active region dominating the activity-induced signal, the ratio between the FWHM and the RV peak-to-peak amplitudes of the cross correlation function can be used to infer the type of active region responsible for the signal for stars with v sin i <=8 km s-1. A ratio smaller than three implies a spot, while a larger ratio implies a plage. Using the observation of HD 189733, we show that SOAP 2.0 manages to reproduce the activity variation as well as previous simulations when a spot is dominating the activity-induced variation. In addition, SOAP 2.0 also reproduces the activity variation induced by a plage on the slowly rotating star α Cen B, which is not possible using previous simulations. Following these results, SOAP 2.0 can be used to estimate the signal induced by spots and plages, but also to correct for it when a major active region is dominating the RV variation. . The work in this paper is based on observations made with the MOST satellite, the HARPS instrument on the ESO 3.6 m telescope at La Silla Observatory (Chile), and the SOPHIE instrument at the Observatoire de Haute Provence (France).

  6. Vigorous atmospheric motion in the red supergiant star Antares.

    PubMed

    Ohnaka, K; Weigelt, G; Hofmann, K-H

    2017-08-16

    Red supergiant stars represent a late stage of the evolution of stars more massive than about nine solar masses, in which they develop complex, multi-component atmospheres. Bright spots have been detected in the atmosphere of red supergiants using interferometric imaging. Above the photosphere of a red supergiant, the molecular outer atmosphere extends up to about two stellar radii. Furthermore, the hot chromosphere (5,000 to 8,000 kelvin) and cool gas (less than 3,500 kelvin) of a red supergiant coexist at about three stellar radii. The dynamics of such complex atmospheres has been probed by ultraviolet and optical spectroscopy. The most direct approach, however, is to measure the velocity of gas at each position over the image of stars as in observations of the Sun. Here we report the mapping of the velocity field over the surface and atmosphere of the nearby red supergiant Antares. The two-dimensional velocity field map obtained from our near-infrared spectro-interferometric imaging reveals vigorous upwelling and downdrafting motions of several huge gas clumps at velocities ranging from about -20 to +20 kilometres per second in the atmosphere, which extends out to about 1.7 stellar radii. Convection alone cannot explain the observed turbulent motions and atmospheric extension, suggesting that an unidentified process is operating in the extended atmosphere.

  7. Stability of Stellar Periods in the Hyades and Taurus

    NASA Astrophysics Data System (ADS)

    Rebull, Luisa M.; Stauffer, John R.; K2 Clusters Team

    2018-06-01

    K2 has opened to us the study of high-precision light curves from which we can derive stellar rotation periods. We have presented period distributions for the Pleiades, Praesepe, Upper Sco and Rho Oph. But, how stable are the periods we are deriving from them? Early ground-based work in Orion (Rebull 2001) suggested that, for the youngest stars, about half the stars had sufficiently different spot distributions in two consecutive years such that periods could not be recovered in the second year. However, now that we have K2, precision and diurnal windowing functions are no longer really much of a concern. For a handful of stars in Hyades and Taurus, the K2 spacecraft monitored them for two non-consecutive 70d windows (campaigns 4, 2015 Feb and 13, 2017 Mar). In this poster, we examine whether or not the light curves are similar in the two epochs, and how accurately the same period can be recovered.

  8. Insights on the Spectral Signatures of Stellar Activity and Planets from PCA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, Allen B.; Fischer, Debra A.; Cisewski, Jessi

    Photospheric velocities and stellar activity features such as spots and faculae produce measurable radial velocity signals that currently obscure the detection of sub-meter-per-second planetary signals. However, photospheric velocities are imprinted differently in a high-resolution spectrum than are Keplerian Doppler shifts. Photospheric activity produces subtle differences in the shapes of absorption lines due to differences in how temperature or pressure affects the atomic transitions. In contrast, Keplerian Doppler shifts affect every spectral line in the same way. With a high enough signal-to-noise (S/N) and resolution, statistical techniques can exploit differences in spectra to disentangle the photospheric velocities and detect lower-amplitude exoplanetmore » signals. We use simulated disk-integrated time-series spectra and principal component analysis (PCA) to show that photospheric signals introduce spectral line variability that is distinct from that of Doppler shifts. We quantify the impact of instrumental resolution and S/N for this work.« less

  9. Differential rotation of stars with multiple transiting planets

    NASA Astrophysics Data System (ADS)

    Netto, Yuri; Valio, Adriana

    2017-10-01

    If a star hosts a planet in an orbit such that it eclipses the star periodically, can be estimated the rotation profile of this star. If planets in multiplanetary system occult different stellar areas, spots in more than one latitude of the stellar disc can be detected. The monitored study of theses starspots in different latitudes allow us to infer the rotation profile of the star. We use the model described in Silva (2003) to characterize the starspots of Kepler-210, an active star with two planets. Kepler-210 is a late K star with an estimated age of 350 +/- 50 Myrs, average rotation period of 12.33 days, mass of 0.63 M⊙ and radius of 0.69 R⊙. The planets that eclipses this star have radii of 0.0498 R s and 0.0635 R s with orbital periods of 2.4532 +/- 0.0007 days and 7.9725 +/- 0.0014 days, respectively, where R s is the star radius.

  10. Optical, IUE, and ROSAT observations of the eclipsing nova-like variable V347 Puppis (LB 1800)

    NASA Technical Reports Server (NTRS)

    Mauche, Christopher W.; Raymond, John C.; Buckley, David A. H.; Mouchet, Martine; Bonnell, Jerry; Sullivan, Denis J.; Bonnet-Bidaud, Jean-Marc; Bunk, Wolfram H.

    1994-01-01

    Using time-resolved optical spectroscopy and UBVRI and high-speed photometry obtained at Mount Stromlo Observatory, Mount John University Observatory, and the South African Astronomical Observatory; International Ultraviolet Explorer (IUE) ultraviolet spectroscopy; and Roentgen Satellite (ROSAT) survey X-ray fluxes, we present a study of the accretion disk, hot spot, and emission line regions in the bright eclipsing nova-like variable V347 Pup (LB 1800). In the optical and UV, V347 Pup is a strong emission line source with a continuum spectrum which is remarkably red for a high-M cataclysmic variable. Consistent with its high inclination, we interpret the continuum spectrum as the superposition of the spectrum of the cool (T(sub eff) approximately 7000 K) outer edge and the hot (T(sub eff) approximately 100,000 K) inner regions of a self-eclipsed accretion disk. For the assumed parameters, the model matches the level and shape of the observed spectrum for an inclination of approximately 88 and a distance of approximately 300 pc. The prominent hump in the optical and UV light curves just before eclipse manifests the presence of the hot spot where the accretion stream strikes the edge of the disk. The wavelength dependence of the amplitude of the hump is best modeled by a spot having an effective temperature of approximately 25,000 K and an area of approximately 3 x 10(exp 18) sq cm if the spot radiates like a blackbody, or an effective temperatue of approximately 14,000 K and an area of approximately 3 x 10(exp 19) sq cm if it radiates with a stellar spectrum. In either case, the hot spot produces only one-tenth of the predicted luminosity for the assumed mass-transfer rate of 10(exp -8) solar mass/yr. Either the hot spot is 'buried' in the edge of the accretion disk, or a significant fraction of its luminosity is radiated away in lines. The difference in azimuth between the peak of the hump and the dynamically expected location of the hot spot suggests that the spot's emitting surface is rotated forward by approximately 36 deg relative to the edge of the disk.

  11. Optical, IUE, and ROSAT observations of the eclipsing nova-like variable V347 Puppis (LB 1800)

    NASA Astrophysics Data System (ADS)

    Mauche, Christopher W.; Raymond, John C.; Buckley, David A. H.; Mouchet, Martine; Bonnell, Jerry; Sullivan, Denis J.; Bonnet-Bidaud, Jean-Marc; Bunk, Wolfram H.

    1994-03-01

    Using time-resolved optical spectroscopy and UBVRI and high-speed photometry obtained at Mount Stromlo Observatory, Mount John University Observatory, and the South African Astronomical Observatory; International Ultraviolet Explorer (IUE) ultraviolet spectroscopy; and Roentgen Satellite (ROSAT) survey X-ray fluxes, we present a study of the accretion disk, hot spot, and emission line regions in the bright eclipsing nova-like variable V347 Pup (LB 1800). In the optical and UV, V347 Pup is a strong emission line source with a continuum spectrum which is remarkably red for a high-M cataclysmic variable. Consistent with its high inclination, we interpret the continuum spectrum as the superposition of the spectrum of the cool (Teff approximately 7000 K) outer edge and the hot (Teff approximately 100,000 K) inner regions of a self-eclipsed accretion disk. For the assumed parameters, the model matches the level and shape of the observed spectrum for an inclination of approximately 88 and a distance of approximately 300 pc. The prominent hump in the optical and UV light curves just before eclipse manifests the presence of the hot spot where the accretion stream strikes the edge of the disk. The wavelength dependence of the amplitude of the hump is best modeled by a spot having an effective temperature of approximately 25,000 K and an area of approximately 3 x 1018 sq cm if the spot radiates like a blackbody, or an effective temperatue of approximately 14,000 K and an area of approximately 3 x 1019 sq cm if it radiates with a stellar spectrum. In either case, the hot spot produces only one-tenth of the predicted luminosity for the assumed mass-transfer rate of 10-8 solar mass/yr. Either the hot spot is 'buried' in the edge of the accretion disk, or a significant fraction of its luminosity is radiated away in lines. The difference in azimuth between the peak of the hump and the dynamically expected location of the hot spot suggests that the spot's emitting surface is rotated forward by approximately 36 deg relative to the edge of the disk.

  12. CSI 2264: CHARACTERIZING YOUNG STARS IN NGC 2264 WITH STOCHASTICALLY VARYING LIGHT CURVES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stauffer, John; Rebull, Luisa; Carey, Sean

    2016-03-15

    We provide CoRoT and Spitzer light curves and other supporting data for 17 classical T Tauri stars in NGC 2264 whose CoRoT light curves exemplify the “stochastic” light curve class as defined in 2014 by Cody et al. The most probable physical mechanism to explain the optical variability within this light curve class is time-dependent mass accretion onto the stellar photosphere, producing transient hot spots. Where we have appropriate spectral data, we show that the veiling variability in these stars is consistent in both amplitude and timescale with the optical light curve morphology. The veiling variability is also well-correlated with the strengthmore » of the He i 6678 Å emission line, predicted by models to arise in accretion shocks on or near the stellar photosphere. Stars with accretion burst light curve morphology also have variable mass accretion. The stochastic and accretion burst light curves can both be explained by a simple model of randomly occurring flux bursts, with the stochastic light curve class having a higher frequency of lower amplitude events. Members of the stochastic light curve class have only moderate mass accretion rates. Their Hα profiles usually have blueshifted absorption features, probably originating in a disk wind. The lack of periodic signatures in the light curves suggests that little of the variability is due to long-lived hot spots rotating into or out of our line of sight; instead, the primary driver of the observed photometric variability is likely to be instabilities in the inner disk that lead to variable mass accretion.« less

  13. The Young Solar Analogs Project

    NASA Astrophysics Data System (ADS)

    Lambert, Ryan; Gray, Richard, , Dr.

    2014-03-01

    The ultimate goal of the Young Solar Analogs Project is to give insight into the conditions in the early solar system when life was first forming on the earth and to assess the challenges the young, active sun presented to that early life. To achieve this, we have been monitoring since 2007 the stellar activity of 31 young solar-type stars with ages between 0.3 and 1.5 Gyrs. Many of these stars exhibit star spot cycles like the sun, but in a few cases we are seeing evidence for a previously unknown type of star spot cycle. Some vary chaotically. We have detected the presence of differential rotation in several stars. We have also detected a number of powerful flares both photometrically and spectroscopically. Optical irradiance changes in these stars can be as high as 10% in a single year; such solar variability would have led to catastropic climate change on the early earth. We would like to thank NSF for their generous donations to this project.

  14. A New Stellar Outburst Associated with the Magnetic Activities of the K-type Dwarf in a White Dwarf Binary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qian, S.-B.; Han, Z.-T.; Zhang, B.

    1SWASP J162117.36+441254.2 was originally classified as an EW-type binary with a period of 0.20785 days. However, it was detected to have undergone a stellar outburst on 2016 June 3. Although the system was later classified as a cataclysmic variable (CV) and the event was attributed as a dwarf nova outburst, the physical reason is still unknown. This binary has been monitored photometrically since 2016 April 19, and many light curves were obtained before, during, and after the outburst. Those light and color curves observed before the outburst indicate that the system is a special CV. The white dwarf is notmore » accreting material from the secondary and there are no accretion disks surrounding the white dwarf. By comparing the light curves obtained from 2016 April 19 to those from September 14, it was found that magnetic activity of the secondary is associated with the outburst. We show strong evidence that the L {sub 1} region on the secondary was heavily spotted before and after the outburst and thus quench the mass transfer, while the outburst is produced by a sudden mass accretion of the white dwarf. These results suggest that J162117 is a good astrophysical laboratory to study stellar magnetic activity and its influences on CV mass transfer and mass accretion.« less

  15. A New Stellar Outburst Associated with the Magnetic Activities of the K-type Dwarf in a White Dwarf Binary

    NASA Astrophysics Data System (ADS)

    Qian, S.-B.; Han, Z.-T.; Zhang, B.; Zejda, M.; Michel, R.; Zhu, L.-Y.; Zhao, E.-G.; Liao, W.-P.; Tian, X.-M.; Wang, Z.-H.

    2017-10-01

    1SWASP J162117.36+441254.2 was originally classified as an EW-type binary with a period of 0.20785 days. However, it was detected to have undergone a stellar outburst on 2016 June 3. Although the system was later classified as a cataclysmic variable (CV) and the event was attributed as a dwarf nova outburst, the physical reason is still unknown. This binary has been monitored photometrically since 2016 April 19, and many light curves were obtained before, during, and after the outburst. Those light and color curves observed before the outburst indicate that the system is a special CV. The white dwarf is not accreting material from the secondary and there are no accretion disks surrounding the white dwarf. By comparing the light curves obtained from 2016 April 19 to those from September 14, it was found that magnetic activity of the secondary is associated with the outburst. We show strong evidence that the L 1 region on the secondary was heavily spotted before and after the outburst and thus quench the mass transfer, while the outburst is produced by a sudden mass accretion of the white dwarf. These results suggest that J162117 is a good astrophysical laboratory to study stellar magnetic activity and its influences on CV mass transfer and mass accretion.

  16. Long-Term Quadrature Light Variability in Early Type Interacting Binary Systems

    NASA Astrophysics Data System (ADS)

    Peters, Geraldine J.; Wilson, R. E.; Vaccaro, T. R.

    2014-01-01

    Four years of Kepler observations have revealed a phenomenon in the light curves of short-period Algol-type eclipsing binaries that has never been reported from ground-based photometry. These systems display unequal brightness at their quadrature phases that numerically reverses over a time scale of about 100-400 days. We call these systems L/T (leading hemisphere/ trailing hemisphere) variables. Twenty-one such systems have so far been identified in the Kepler database and at least three classes of L/T behavior have been identified. The prototype is WX Draconis (A8V + K0IV, P=1.80 d) which shows L/ T light variations of 2-3%. The primary is a delta Scuti star with a dominant pulsation period of 41 m. The Kepler light curves are being analyzed with the 2013 version of the Wilson-Devinney (WD) program that includes major improvements in modeling star spots (i.e. spot motions due to drift and stellar rotation and spot growth and decay). Preliminary analysis of the WX Dra data suggests that the L/T variability can be fit with either an accretion hot spot on the primary (T = 2.3 T_phot) that jumps in longitude or a magnetic cool spotted region on the secondary. If the latter model is correct the dark region must occupy at least 20% of the surface of the facing hemisphere of the secondary if it is completely black, or a larger area if not completely black. In both hot and cool spot scenarios magnetic fields must play a role in the activity. Echelle spectra were recently secured with the KPNO 4-m telescope to determine the mass ratios of the L/T systems and their spectral types. This information will allow us to assess whether the hot or cool spot model explains the L/T activity. Progress toward this goal will be presented. Support from NASA grants NNX11AC78G and NNX12AE44G and USC’s Women in Science and Engineering (WiSE) program is greatly appreciated.

  17. Star–Disk Interactions in Multiband Photometric Monitoring of the Classical T Tauri Star GI Tau

    NASA Astrophysics Data System (ADS)

    Guo, Zhen; Herczeg, Gregory J.; Jose, Jessy; Fu, Jianning; Chiang, Po-Shih; Grankin, Konstantin; Michel, Raúl; Kesh Yadav, Ram; Liu, Jinzhong; Chen, Wen-ping; Li, Gang; Xue, Huifang; Niu, Hubiao; Subramaniam, Annapurni; Sharma, Saurabh; Prasert, Nikom; Flores-Fajardo, Nahiely; Castro, Angel; Altamirano, Liliana

    2018-01-01

    The variability of young stellar objects is mostly driven by star–disk interactions. In long-term photometric monitoring of the accreting T Tauri star GI Tau, we detect extinction events with typical depths of {{Δ }}V∼ 2.5 mag that last for days to months and often appear to occur stochastically. In 2014–2015, extinctions that repeated with a quasi-period of 21 days over several months are the first empirical evidence of slow warps predicted by magnetohydrodynamic simulations to form at a few stellar radii away from the central star. The reddening is consistent with {R}V=3.85+/- 0.5 and, along with an absence of diffuse interstellar bands, indicates that some dust processing has occurred in the disk. The 2015–2016 multiband light curve includes variations in spot coverage, extinction, and accretion, each of which results in different traces in color–magnitude diagrams. This light curve is initially dominated by a month-long extinction event and a return to the unocculted brightness. The subsequent light curve then features spot modulation with a 7.03 day period, punctuated by brief, randomly spaced extinction events. The accretion rate measured from U-band photometry ranges from 1.3× {10}-8 to 1.1× {10}-10 M ⊙ yr‑1 (excluding the highest and lowest 5% of high- and low- accretion rate outliers), with an average of 4.7 × {10}-9 M ⊙ yr‑1. A total of 50% of the mass is accreted during bursts of > 12.8× {10}-9 M ⊙ yr{}-1, which indicates limitations on analyses of disk evolution using single-epoch accretion rates.

  18. Stellar activity with LAMOST - II. Chromospheric activity in open clusters

    NASA Astrophysics Data System (ADS)

    Fang, Xiang-Song; Zhao, Gang; Zhao, Jing-Kun; Bharat Kumar, Yerra

    2018-05-01

    We use the LAMOST spectra of member stars in Pleiades, M34, Praesepe, and Hyades to study how chromospheric activity varies as a function of mass and rotation at different age. We measured excess equivalent widths of H α, H β, and Ca II K based on estimated chromospheric contributions from old and inactive field dwarfs, and excess luminosities are obtained by normalizing bolometric luminosity, for more than 700 late-type stars in these open clusters. Results indicate two activity sequences in cool spot coverage and H α excess emission among GK dwarfs in Pleiades and M dwarfs in Praesepe and Hyades, paralleling with well-known rotation sequences. A weak dependence of chromospheric emission on rotation exists among ultrafast rotators in saturated regime with Rossby number Ro ≲ 0.1. In the unsaturated regime, chromospheric and coronal emission show similar dependence on Ro, but with a shift towards larger Ro, indicating chromospheric emission gets easily saturated than coronal emission, and/or convective turnover time-scales based on X-ray data do not work well with chromospheric emission. More interestingly, our analysis shows fully convective slow rotators obey the rotation-chromospheric activity relation similar to hotter stars, confirming the previous finding. We found correlations among H α, H β, and Ca II K emissions, in which H α losses are more important than Ca II K for cooler and more active stars. In addition, a weak correlation is seen between chromospheric emission and photospheric activity that shows dependence on stellar spectral type and activity level, which provides some clues on how spot configuration varies as a function of mass and activity level.

  19. REFINED SYSTEM PARAMETERS AND TTV STUDY OF TRANSITING EXOPLANETARY SYSTEM HAT-P-20

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Leilei; Gu, Shenghong; Wang, Xiaobin

    2017-01-01

    We report new photometric observations of the transiting exoplanetary system HAT-P-20, obtained using CCD cameras at Yunnan Observatories and Ho Koon Nature Education cum Astronomical Centre, China, from 2010 to 2013, and Observatori Ca l’Ou, Sant Marti Sesgueioles, Spain, from 2013 to 2015. The observed data are corrected for systematic errors according to the coarse de-correlation and SYSREM algorithms, so as to enhance the signal of the transit events. In order to consistently model the star spots and transits of this exoplanetary system, we develop a highly efficient tool STMT based on the analytic models of Mandel and Agol andmore » Montalto et al. The physical parameters of HAT-P-20 are refined by homogeneously analyzing our new data, the radial velocity data, and the earlier photometric data in the literature with the Markov chain Monte Carlo technique. New radii and masses of both host star and planet are larger than those in the discovery paper due to the discrepancy of the radius among K-dwarfs between predicted values by standard stellar models and empirical calibration from observations. Through the analysis of all available mid-transit times calculated with the normal model and spotted model, we conclude that the periodic transit timing variations in these transit events revealed by employing the normal model are probably induced by spot crossing events. From the analysis of the distribution of occulted spots by HAT-P-20b, we constrain the misaligned architecture between the planetary orbit and the spin of the host star.« less

  20. Radial Velocity Survey of T Tauri Stars in Taurus-Auriga

    NASA Astrophysics Data System (ADS)

    Crockett, Christopher; Mahmud, N.; Huerta, M.; Prato, L.; Johns-Krull, C.; Hartigan, P.; Jaffe, D.

    2009-01-01

    Is the frequency of giant planet companions to young stars similar to that seen around old stars? Is the "brown dwarf desert" a product of how low-mass companion objects form, or of how they evolve? Some models indicate that both giant planets and brown dwarfs should be common at young ages within 3 AU of a primary star, but migration induced by massive disks drive brown dwarfs into the parent stars, leaving behind proportionally more giant planets. Our radial velocity survey of young stars will provide a census of the young giant planet and brown dwarf population in Taurus-Auriga. In this poster we present our progress in quantifying how spurious radial velocity signatures are caused by stellar activity and in developing models to help distinguish between companion induced and spot induced radial velocity variations. Early results stress the importance of complementary observations in both visible light and NIR. We present our technique to determine radial velocities by fitting telluric features and model stellar features to our observed spectra. Finally, we discuss ongoing observations at McDonald Observatory, KPNO, and the IRTF, and several new exoplanet host candidates.

  1. Gamma-ray bursts appear simpler than expected?

    NASA Astrophysics Data System (ADS)

    Chardonnet, P.; Filina, A. A.; Popov, M. V.; Chechetkin, V. M.; Baranov, A. A.

    The cosmic gamma-ray bursts are certainly an enigma in astrophysics. The "standard fireball" scenario developed during many years has provided a possible explanation of this phenomenon. The aim of this work is simply to explore a new possible interpretation by developing a coherent scenario inside the global picture of stellar evolution. At the basis of our scenario is the fact that maybe we have not fully understood how the core of a pair instability supernovae explode. In such a way, we have proposed a new paradigm assuming that the core of such massive star, instead of doing a symmetrical explosion, is completely fragmented in hot spots of burning nuclear matter. We have tested our scenario using some observational data like GRB spectrum, light curves, Amati relation and GRB-SN connection, and for each set of data we have proposed a possible physical interpretation. We have also suggested some possible tests of this scenario by measurement at high redshift. If this scenario is correct, it tells us simply that cosmic gamma-ray bursts are simply a missing link in stellar evolution.

  2. Cosmic gamma-ray bursts from primordial stars: A new renaissance in astrophysics?

    NASA Astrophysics Data System (ADS)

    Chardonnet, Pascal; Filina, Anastasia; Chechetkin, Valery; Popov, Mikhail; Baranov, Andrey

    2015-10-01

    The cosmic gamma-ray bursts are certainly an enigma in astrophysics. The “standard fireball” scenario developed during many years has provided a possible explanation of this phenomena. The aim of this work is simply to explore a new possible interpretation by developing a coherent scenario inside the global picture of stellar evolution. At the basis of our scenario, is the fact that maybe we have not fully understood how the core of a pair instability supernova explodes. In such way, we have proposed a new paradigm assuming that the core of such massive star, instead of doing a symmetrical explosion, is completely fragmented in hot spots of burning nuclear matter. We have tested our scenario with observational data like GRB spectra, lightcurves, Amati relation and GRB-SN connection, and for each set of data we have proposed a possible physical interpretation. We have also suggested some possible test of this scenario by measurement at high redshifts. If this scenario is correct, it tells us simply that the cosmic gamma-ray bursts are a missing link in stellar evolution, related to an unusual explosion.

  3. Seismic constraints on rotation of Sun-like star and mass of exoplanet.

    PubMed

    Gizon, Laurent; Ballot, Jérome; Michel, Eric; Stahn, Thorsten; Vauclair, Gérard; Bruntt, Hans; Quirion, Pierre-Olivier; Benomar, Othman; Vauclair, Sylvie; Appourchaux, Thierry; Auvergne, Michel; Baglin, Annie; Barban, Caroline; Baudin, Fréderic; Bazot, Michaël; Campante, Tiago; Catala, Claude; Chaplin, William; Creevey, Orlagh; Deheuvels, Sébastien; Dolez, Noël; Elsworth, Yvonne; García, Rafael; Gaulme, Patrick; Mathis, Stéphane; Mathur, Savita; Mosser, Benoît; Régulo, Clara; Roxburgh, Ian; Salabert, David; Samadi, Réza; Sato, Kumiko; Verner, Graham; Hanasoge, Shravan; Sreenivasan, Katepalli R

    2013-08-13

    Rotation is thought to drive cyclic magnetic activity in the Sun and Sun-like stars. Stellar dynamos, however, are poorly understood owing to the scarcity of observations of rotation and magnetic fields in stars. Here, inferences are drawn on the internal rotation of a distant Sun-like star by studying its global modes of oscillation. We report asteroseismic constraints imposed on the rotation rate and the inclination of the spin axis of the Sun-like star HD 52265, a principal target observed by the CoRoT satellite that is known to host a planetary companion. These seismic inferences are remarkably consistent with an independent spectroscopic observation (rotational line broadening) and with the observed rotation period of star spots. Furthermore, asteroseismology constrains the mass of exoplanet HD 52265b. Under the standard assumption that the stellar spin axis and the axis of the planetary orbit coincide, the minimum spectroscopic mass of the planet can be converted into a true mass of 1.85(-0.42)(+0.52)M(Jupiter), which implies that it is a planet, not a brown dwarf.

  4. Mass Loss from Stars: Prospects with ALMA and Other Radio Interferometers

    NASA Astrophysics Data System (ADS)

    Richards, Anita

    2018-04-01

    We can now fully resolve a small sample of stars, in general spotty and/or aspherical, with radii larger (as a function of observing wavelength) than the optical or NIR photosphere R*, requiring the full capabilities of ALMA, e-MERLIN, the NG-VLA or SKA with long baselines. ALMA results has confirmed the presence of continuum hot-spots as well as molecular absorption, against surpisingly large stellar diameters. These studies can be used to investigate the transport of mass and energy through the layers above the photosphere, timescales depending on whether radiative, ionisation/recombination effects, or bulk transport dominate. Maser properties can be measured with an order of magnitude higher resolutiong than thermal lines. The clumpiness of the wind could be related to local ejection of mass from the stellar surface. Models now provide the tools to reconstruct physical conditions from multiple maser lines, and could reveal changes associated with the formation of dust and the transition from complicated infall and outflow near the star, to the radially accelerating wind. I will concentrate on practical aspects of current and potential high-resolution observations to these ends.

  5. Seismic constraints on rotation of Sun-like star and mass of exoplanet

    PubMed Central

    Gizon, Laurent; Ballot, Jérome; Michel, Eric; Stahn, Thorsten; Vauclair, Gérard; Bruntt, Hans; Quirion, Pierre-Olivier; Benomar, Othman; Vauclair, Sylvie; Appourchaux, Thierry; Auvergne, Michel; Baglin, Annie; Barban, Caroline; Baudin, Fréderic; Bazot, Michaël; Campante, Tiago; Catala, Claude; Chaplin, William; Creevey, Orlagh; Deheuvels, Sébastien; Dolez, Noël; Elsworth, Yvonne; García, Rafael; Gaulme, Patrick; Mathis, Stéphane; Mathur, Savita; Mosser, Benoît; Régulo, Clara; Roxburgh, Ian; Salabert, David; Samadi, Réza; Sato, Kumiko; Verner, Graham; Hanasoge, Shravan; Sreenivasan, Katepalli R.

    2013-01-01

    Rotation is thought to drive cyclic magnetic activity in the Sun and Sun-like stars. Stellar dynamos, however, are poorly understood owing to the scarcity of observations of rotation and magnetic fields in stars. Here, inferences are drawn on the internal rotation of a distant Sun-like star by studying its global modes of oscillation. We report asteroseismic constraints imposed on the rotation rate and the inclination of the spin axis of the Sun-like star HD 52265, a principal target observed by the CoRoT satellite that is known to host a planetary companion. These seismic inferences are remarkably consistent with an independent spectroscopic observation (rotational line broadening) and with the observed rotation period of star spots. Furthermore, asteroseismology constrains the mass of exoplanet HD 52265b. Under the standard assumption that the stellar spin axis and the axis of the planetary orbit coincide, the minimum spectroscopic mass of the planet can be converted into a true mass of , which implies that it is a planet, not a brown dwarf. PMID:23898183

  6. A survey of TiOλ567 nm absorption in solar-type stars

    NASA Astrophysics Data System (ADS)

    Azizi, Fatemeh; Mirtorabi, Mohammad Taghi

    2018-04-01

    Molecular absorption bands are estimators of stellar activity and spot cycles on magnetically active stars. We have previously introduced a new colour index that compares absorption strength of the titanium oxide (TiO) at 567 nm with nearby continuum. In this paper, we implement this index to measure long-term activity variations and the statistical properties of the index in a sample of 302 solar-type stars from the High Accuracy Radial Velocity Planet search Spectrograph planet search programme. The results indicate a pattern of change in star's activity, covers a range of periods from 2 yr up to 17 yr.

  7. IRAS observations of chromospherically active dwarf stars

    NASA Technical Reports Server (NTRS)

    Tsikoudi, Vassiliki

    1989-01-01

    Far-infrared observations of chromospherically active, spotted, and plage stars in the dF7-dk7 spectral range are examined. Most (75 percent) of the stars have detectable 12-micron fluxes, and 50 percent of them have 25-micron emission. The 12-micron luminosity, L(12), is found to be in the range of 1.5-13 x 10 to the 30th ergs/s and to comprise only 0.2-0.5 percent of the star's total luminosity, L(bol). The present work extends to earlier spectral types and higher stellar luminosities the L(12) vs L(bol) relationship noted previously for late-type active dwarfs (K5-M5).

  8. New Hubble Observations of Supernova 1987A Trace Shock Wave

    NASA Image and Video Library

    2017-12-08

    Image release September 2, 2010 ABOUT THIS IMAGE: This image shows the entire region around supernova 1987A. The most prominent feature in the image is a ring with dozens of bright spots. A shock wave of material unleashed by the stellar blast is slamming into regions along the ring's inner regions, heating them up, and causing them to glow. The ring, about a light-year across, was probably shed by the star about 20,000 years before it exploded. An international team of astronomers using the Hubble Space Telescope reports a significant brightening of the emissions from Supernova 1987A. The results, which appear in this week's Science magazine, are consistent with theoretical predictions about how supernovae interact with their immediate galactic environment. The team observed the supernova remnant in optical, ultraviolet, and near-infrared light. They studied the interaction between the ejecta from the stellar explosion and a glowing 6-trillion-mile-diameter ring of gas encircling the supernova remnant. The gas ring was probably shed some 20,000 years before the supernova exploded. Shock waves resulting from the impact of the ejecta onto the ring have brightened 30 to 40 pearl-like "hot spots" in the ring. These blobs likely will grow and merge together in the coming years to form a continuous, glowing circle. "We are seeing the effect a supernova can have in the surrounding galaxy, including how the energy deposited by these stellar explosions changes the dynamics and chemistry of the environment," said University of Colorado at Boulder Research Associate Kevin France of the Center for Astrophysics and Space Astronomy. "We can use these new data to understand how supernova processes regulate the evolution of galaxies." Discovered in 1987, Supernova 1987A is the closest exploding star to Earth to be detected since 1604 and it resides in the nearby Large Magellanic Cloud, a dwarf galaxy adjacent to our own Milky Way Galaxy. Credit: NASA, ESA, K. France (University of Colorado, Boulder), and P. Challis and R. Kirshner (Harvard-Smithsonian Center for Astrophysics) NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe. Follow us on Twitter Join us on Facebook

  9. Precision modelling of M dwarf stars: the magnetic components of CM Draconis

    NASA Astrophysics Data System (ADS)

    MacDonald, J.; Mullan, D. J.

    2012-04-01

    The eclipsing binary CM Draconis (CM Dra) contains two nearly identical red dwarfs of spectral class dM4.5. The masses and radii of the two components have been reported with unprecedentedly small statistical errors: for M, these errors are 1 part in 260, while for R, the errors reported by Morales et al. are 1 part in 130. When compared with standard stellar models with appropriate mass and age (≈4 Gyr), the empirical results indicate that both components are discrepant from the models in the following sense: the observed stars are larger in R ('bloated'), by several standard deviations, than the models predict. The observed luminosities are also lower than the models predict. Here, we attempt at first to model the two components of CM Dra in the context of standard (non-magnetic) stellar models using a systematic array of different assumptions about helium abundances (Y), heavy element abundances (Z), opacities and mixing length parameter (α). We find no 4-Gyr-old models with plausible values of these four parameters that fit the observed L and R within the reported statistical error bars. However, CM Dra is known to contain magnetic fields, as evidenced by the occurrence of star-spots and flares. Here we ask: can inclusion of magnetic effects into stellar evolution models lead to fits of L and R within the error bars? Morales et al. have reported that the presence of polar spots results in a systematic overestimate of R by a few per cent when eclipses are interpreted with a standard code. In a star where spots cover a fraction f of the surface area, we find that the revised R and L for CM Dra A can be fitted within the error bars by varying the parameter α. The latter is often assumed to be reduced by the presence of magnetic fields, although the reduction in α as a function of B is difficult to quantify. An alternative magnetic effect, namely inhibition of the onset of convection, can be readily quantified in terms of a magnetic parameter δ≈B2/4πγpgas (where B is the strength of the local vertical magnetic field). In the context of δ models in which B is not allowed to exceed a 'ceiling' of 106 G, we find that the revised R and L can also be fitted, within the error bars, in a finite region of the f-δ plane. The permitted values of δ near the surface leads us to estimate that the vertical field strength on the surface of CM Dra A is about 500 G, in good agreement with independent observational evidence for similar low-mass stars. Recent results for another binary with parameters close to those of CM Dra suggest that metallicity differences cannot be the dominant explanation for the bloating of the two components of CM Dra.

  10. Quasi-Periodic Long-Term Quadrature Light Variability in Early Type Interacting Binary Systems

    NASA Astrophysics Data System (ADS)

    Peters, Geraldine Joan

    2015-08-01

    Four years of Kepler observations have revealed a class of Algol-type binaries in which the relative brightness of the quadrature light varies from > 1 to <1 on a time scale of about 100-400 days. The behavior pattern is quasi-periodic. We call these systems L/T (leading hemisphere/ trailing hemisphere) variables. Although L/T inequality in eclipsing binaries has been noted from ground-based photometry by several observers since the early 1950s, the regular or quasi-regular switching between maxima is new. Twenty L/T systems have so far been found in the Kepler database and at least three classes of L/T behavior have been identified. In this presentation I will give an update on the L/T phenomenon gleaned from the Kepler and K2 databases. The Kepler and K2 light curves are being analyzed with the 2015 version of the Wilson-Devinney (WD) program that includes major improvements in modeling star spots (i.e. spot motions due to drift and stellar rotation and spot growth and decay). The prototype L/T variable is WX Draconis (A8V + K0IV, P=1.80 d) which shows L/ T light variations of 2-3%. The primary is a delta Scuti star with a dominant pulsation period of 41 m. Preliminary analysis of the WX Dra data suggests that the L/T variability can be fit with either an accretion hot spot on the primary (T = 2.3 Tphot) that jumps in longitude or a magnetic cool spotted region on the secondary. If the latter model is correct the dark region must occupy at least 20% of the surface of the facing hemisphere of the secondary if it is completely black, or a larger area if not completely black. In both hot and cool spot scenarios magnetic fields must play a role in the activity. Support from NASA grants NNX11AC78G and NNX12AE44G and USC’s Women in Science and Engineering (WiSE) program is greatly appreciated.

  11. Magnetic Doppler imaging considering atmospheric structure modifications due to local abundances: a luxury or a necessity?

    NASA Astrophysics Data System (ADS)

    Kochukhov, O.; Wade, G. A.; Shulyak, D.

    2012-04-01

    Magnetic Doppler imaging is currently the most powerful method of interpreting high-resolution spectropolarimetric observations of stars. This technique has provided the very first maps of stellar magnetic field topologies reconstructed from time series of full Stokes vector spectra, revealing the presence of small-scale magnetic fields on the surfaces of Ap stars. These studies were recently criticised by Stift et al., who claimed that magnetic inversions are not robust and are seriously undermined by neglecting a feedback on the Stokes line profiles from the local atmospheric structure in the regions of enhanced metal abundance. We show that Stift et al. misinterpreted published magnetic Doppler imaging results and consistently neglected some of the most fundamental principles behind magnetic mapping. Using state-of-the-art opacity sampling model atmosphere and polarized radiative transfer codes, we demonstrate that the variation of atmospheric structure across the surface of a star with chemical spots affects the local continuum intensity but is negligible for the normalized local Stokes profiles except for the rare situation of a very strong line in an extremely Fe-rich atmosphere. For the disc-integrated spectra of an Ap star with extreme abundance variations, we find that the assumption of a mean model atmosphere leads to moderate errors in Stokes I but is negligible for the circular and linear polarization spectra. Employing a new magnetic inversion code, which incorporates the horizontal variation of atmospheric structure induced by chemical spots, we reconstructed new maps of magnetic field and Fe abundance for the bright Ap star α2 CVn. The resulting distribution of chemical spots changes insignificantly compared to the previous modelling based on a single model atmosphere, while the magnetic field geometry does not change at all. This shows that the assertions by Stift et al. are exaggerated as a consequence of unreasonable assumptions and extrapolations, as well as methodological flaws and inconsistencies of their analysis. Our discussion proves that published magnetic inversions based on a mean stellar atmosphere are highly robust and reliable, and that the presence of small-scale magnetic field structures on the surfaces of Ap stars is indeed real. Incorporating horizontal variations of atmospheric structure in Doppler imaging can marginally improve reconstruction of abundance distributions for stars showing very large iron overabundances. But this costly technique is unnecessary for magnetic mapping with high-resolution polarization spectra.

  12. Glimpses of stellar surfaces. II. Origins of the photometric modulations and timing variations of KOI-1452

    NASA Astrophysics Data System (ADS)

    Ioannidis, P.; Schmitt, J. H. M. M.

    2016-10-01

    The deviations of the mid-transit times of an exoplanet from a linear ephemeris are usually the result of gravitational interactions with other bodies in the system. However, these types of transit timing variations (TTV) can also be introduced by the influences of star spots on the shape of the transit profile. Here we use the method of unsharp masking to investigate the photometric light curves of planets with ambiguous TTV to compare the features in their O-C diagram with the occurrence and in-transit positions of spot-crossing events. This method seems to be particularly useful for the examination of transit light curves with only small numbers of in-transit data points, I.e., the long cadence light curves from Kepler satellite. As a proof of concept we apply this method to the light curve and the estimated eclipse timing variations of the eclipsing binary KOI-1452, for which we prove their non-gravitational nature. Furthermore, we use the method to study the rotation properties of the primary star of the system KOI-1452 and show that the spots responsible for the timing variations rotate with different periods than the most prominent periods of the system's light curve. We argue that the main contribution in the measured photometric variability of KOI-1452 originates in g-mode oscillations, which makes the primary star of the system a γ-Dor type variable candidate.

  13. V405 ANDROMEDA REVISITED

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ribeiro, T.; Baptista, R.; Kafka, S.

    We present a multi-epoch time-resolved high-resolution optical spectroscopy study of the short-period (P{sub orb} = 11.2 hr) eclipsing M0V+M5V RS CVn binary V405 Andromeda. By means of indirect imaging techniques, namely Doppler imaging, we study the surface activity features of the M0V component of the system. A modified version of a Doppler imaging code, which takes into account the tidal distortion of the surface of the star, is applied to the multi-epoch data set in order to provide indirect images of the stellar surface. The multi-epoch surface brightness distributions show a low intensity 'belt' of spots at latitudes {+-}40{sup 0}more » and a noticeable absence of high latitude features or polar spots on the primary star of V405 Andromeda. They also reveal slow evolution of the spot distribution over {approx}4 yr. An entropy landscape procedure is used in order to find the set of binary parameters that lead to the smoothest surface brightness distributions. As a result, we find M{sub 1} = 0.51 {+-} 0.03 M{sub sun}, M{sub 2} = 0.21 {+-} 0.01 M{sub sun}, R{sub 1} = 0.71 {+-} 0.01 R{sub sun}, and an inclination i = 65{sup 0} {+-} 1{sup 0}. The resulting systemic velocity is distinct for different epochs, raising the possibility of the existence of a third body in the system.« less

  14. The Spot Variability and Related Brightness variations of the Solar Type PreContact W UMa Binary System V1001 Cas

    NASA Astrophysics Data System (ADS)

    Samec, Ronald George; Koenke, Sam S.; Faulkner, Danny R.

    2015-08-01

    A new classification of eclipsing binary has emerged, Pre Contact WUMa Binaries (PCWB’s, Samec et al. 2012). These solar-type systems are usually detached or semidetached with one or both components under filling their critical Roche lobes. They usually have EA or EB-type light curves (unequal eclipse depths, indicating components with substantially different temperatures). The accepted scenario for these W UMa binaries is that they are undergoing steady but slow angular momentum losses due to magnetic braking as stellar winds blow radially away on stiff bipolar field lines. These binaries are believed to come into stable contact and eventually coalesce into blue straggler type, single, fast rotating A-type stars (Guinan and Bradstreet,1988). High precision 2012 and 2009 light curves are compared for the very short period (~0.43d) Precontact W UMa Binary (PCWB), V1001 Cassiopeia. This is the shortest period PCWB found so far. Its short period, similar to the majority of W UMa’s, in contrast to its distinct Algol-type light curve, make it a very rare and interesting system. Our solutions of light curves separated by some three years give approximately the same physical parameters. However the spots radically change, in temperature, area and position causing a distinctive variation in the shape of the light curves. We conclude that spots are very active on this solar type dwarf system and that it may mimic its larger cousins, the RS CVn binaries.

  15. Multi-band high resolution spectroscopy rules out the hot Jupiter BD+20 1790b. First data from the GIARPS Commissioning

    NASA Astrophysics Data System (ADS)

    Carleo, I.; Benatti, S.; Lanza, A. F.; Gratton, R.; Claudi, R.; Desidera, S.; Mace, G. N.; Messina, S.; Sanna, N.; Sissa, E.; Ghedina, A.; Ghinassi, F.; Guerra, J.; Harutyunyan, A.; Micela, G.; Molinari, E.; Oliva, E.; Tozzi, A.; Baffa, C.; Baruffolo, A.; Bignamini, A.; Buchschacher, N.; Cecconi, M.; Cosentino, R.; Endl, M.; Falcini, G.; Fantinel, D.; Fini, L.; Fugazza, D.; Galli, A.; Giani, E.; González, C.; González-Álvarez, E.; González, M.; Hernandez, N.; Hernandez Diaz, M.; Iuzzolino, M.; Kaplan, K. F.; Kidder, B. T.; Lodi, M.; Malavolta, L.; Maldonado, J.; Origlia, L.; Ventura, H. Perez; Puglisi, A.; Rainer, M.; Riverol, L.; Riverol, C.; San Juan, J.; Scuderi, S.; Seemann, U.; Sokal, K. R.; Sozzetti, A.; Sozzi, M.

    2018-05-01

    Context. Stellar activity is currently challenging the detection of young planets via the radial velocity (RV) technique. Aims: We attempt to definitively discriminate the nature of the RV variations for the young active K5 star BD+20 1790, for which visible (VIS) RV measurements show divergent results on the existence of a substellar companion. Methods: We compare VIS data with high precision RVs in the near-infrared (NIR) range by using the GIANO-B and IGRINS spectrographs. In addition, we present for the first time simultaneous VIS-NIR observations obtained with GIARPS (GIANO-B and HARPS-N) at Telescopio Nazionale Galileo (TNG). Orbital RVs are achromatic, so the RV amplitude does not change at different wavelengths, while stellar activity induces wavelength-dependent RV variations, which are significantly reduced in the NIR range with respect to the VIS. Results: The NIR radial velocity measurements from GIANO-B and IGRINS show an average amplitude of about one quarter with respect to previously published VIS data, as expected when the RV jitter is due to stellar activity. Coeval multi-band photometry surprisingly shows larger amplitudes in the NIR range, explainable with a mixture of cool and hot spots in the same active region. Conclusions: In this work, the claimed massive planet around BD+20 1790 is ruled out by our data. We exploited the crucial role of multi-wavelength spectroscopy when observing young active stars: thanks to facilities like GIARPS that provide simultaneous observations, this method can reach its maximum potential.

  16. GLOBULAR CLUSTERS AS CRADLES OF LIFE AND ADVANCED CIVILIZATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stefano, R. Di; Ray, A., E-mail: rdistefano@cfa.harvard.edu, E-mail: akr@tifr.res.in

    2016-08-10

    Globular clusters are ancient stellar populations in compact dense ellipsoids. There is no star formation and there are no core-collapse supernovae, but several lines of evidence suggest that globular clusters are rich in planets. If so, and if advanced civilizations can develop there, then the distances between these civilizations and other stars would be far smaller than typical distances between stars in the Galactic disk, facilitating interstellar communication and travel. The potent combination of long-term stability and high stellar densities provides a globular cluster opportunity. Yet the very proximity that promotes interstellar travel also brings danger, as stellar interactions canmore » destroy planetary systems. We find, however, that large portions of many globular clusters are “sweet spots,” where habitable-zone planetary orbits are stable for long times. Globular clusters in our own and other galaxies are, therefore, among the best targets for searches for extraterrestrial intelligence (SETI). We use the Drake equation to compare the likelihood of advanced civilizations in globular clusters to that in the Galactic disk. We also consider free-floating planets, since wide-orbit planets can be ejected to travel through the cluster. Civilizations spawned in globular clusters may be able to establish self-sustaining outposts, reducing the probability that a single catastrophic event will destroy the civilization. Although individual civilizations may follow different evolutionary paths, or even be destroyed, the cluster may continue to host advanced civilizations once a small number have jumped across interstellar space. Civilizations residing in globular clusters could therefore, in a sense, be immortal.« less

  17. Globular Clusters as Cradles of Life and Advanced Civilizations

    NASA Astrophysics Data System (ADS)

    Di Stefano, R.; Ray, A.

    2016-08-01

    Globular clusters are ancient stellar populations in compact dense ellipsoids. There is no star formation and there are no core-collapse supernovae, but several lines of evidence suggest that globular clusters are rich in planets. If so, and if advanced civilizations can develop there, then the distances between these civilizations and other stars would be far smaller than typical distances between stars in the Galactic disk, facilitating interstellar communication and travel. The potent combination of long-term stability and high stellar densities provides a globular cluster opportunity. Yet the very proximity that promotes interstellar travel also brings danger, as stellar interactions can destroy planetary systems. We find, however, that large portions of many globular clusters are “sweet spots,” where habitable-zone planetary orbits are stable for long times. Globular clusters in our own and other galaxies are, therefore, among the best targets for searches for extraterrestrial intelligence (SETI). We use the Drake equation to compare the likelihood of advanced civilizations in globular clusters to that in the Galactic disk. We also consider free-floating planets, since wide-orbit planets can be ejected to travel through the cluster. Civilizations spawned in globular clusters may be able to establish self-sustaining outposts, reducing the probability that a single catastrophic event will destroy the civilization. Although individual civilizations may follow different evolutionary paths, or even be destroyed, the cluster may continue to host advanced civilizations once a small number have jumped across interstellar space. Civilizations residing in globular clusters could therefore, in a sense, be immortal.

  18. Li I AND K I SCATTER IN COOL PLEIADES DWARFS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, Jeremy R.; Schuler, Simon C.; Hobbs, L. M.

    2010-02-20

    We utilize high-resolution (R {approx} 60,000), high signal-to-noise ratio ({approx}100) spectroscopy of 17 cool Pleiades dwarfs to examine the confounding star-to-star scatter in the lambda6707 Li I line strengths in this young cluster. Our Pleiades, selected for their small projected rotational velocity and modest chromospheric emission, evince substantial scatter in the line strengths of lambda6707 Li I feature that is absent in the lambda7699 K I resonance line. The Li I scatter is not correlated with that in the high-excitation lambda7774 O I feature, and the magnitude of the former is greater than the latter despite the larger temperature sensitivitymore » of the O I feature. These results suggest that systematic errors in line strength measurements due to blending, color (or color-based T{sub eff}) errors, or line formation effects related to an overlying chromosphere are not the principal source of Li I scatter in our stars. There do exist analytic spot models that can produce, via line formation effects, the observed Li scatter without introducing scatter in the K I line strengths or the color-magnitude diagram. However, these models predict factor of >=3 differences in abundances derived from the subordinate lambda6104 and resonance lambda6707 Li I features; we find no difference in the abundances determined from these two features. These analytic spot models also predict CN line strengths significantly larger than we observe in our spectra. The simplest explanation of the Li, K, CN, and photometric data is that there must be a real abundance component to the Pleiades Li dispersion. We suggest that this real abundance component is the manifestation of relic differences in erstwhile pre-main-sequence Li burning caused by effects of surface activity on stellar structure. We discuss observational predictions of these effects, which may be related to other anomalous stellar phenomena.« less

  19. EK Draconis. Magnetic activity in the photosphere and chromosphere

    NASA Astrophysics Data System (ADS)

    Järvinen, S. P.; Berdyugina, S. V.; Korhonen, H.; Ilyin, I.; Tuominen, I.

    2007-09-01

    Context: As a young solar analogue, EK Draconis provides an opportunity to study the magnetic activity of the infant Sun. Aims: We present three new surface temperature maps of EK Draconis and compare them with previous results obtained from long-term photometry. Furthermore, we determined a set of stellar parameters and compared the determined values with the corresponding solar values. Methods: Atmospheric parameters were determined by comparing observed and synthetic spectra calculated with stellar atmosphere models. Surface temperature maps were obtained using the Occamian approach inversion technique. The differential rotation of EK Dra was estimated using two different methods. Results: A detailed model atmosphere analysis of high resolution spectra of EK Dra has yielded a self-consistent set of atmospheric parameters: T_eff = 5750 K, log g = 4.5, [M/H] = 0.0, ξt = 1.6 km s-1. The evolutionary models imply that the star is slightly more massive than the Sun and has an age between 30-50 Myr, which agrees with the determined lithium abundance of log N(Li) = 3.02. Moreover, the atmospheric parameters, as well as the wings of the Ca ii 8662 Å, indicate that the photosphere of EK Dra is very similar to the one of the present Sun, while their chromospheres differ. There also seems to be a correlation between magnetic features seen in the photosphere and chromosphere. The temperature images reveal spots of only 500 K cooler than the quiet photosphere. The mean spot latitude varies with time. The obtained differential rotation is very small, but the sign of it supports solar type differential rotation on EK Dra. Based on observations made with the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias. Table [see full text] and Figs. [see full text] and [see full text] are only available in electronic form at http://www.aanda.org

  20. The recondite intricacies of Zeeman Doppler mapping

    NASA Astrophysics Data System (ADS)

    Stift, M. J.; Leone, F.; Cowley, C. R.

    2012-02-01

    We present a detailed analysis of the reliability of abundance and magnetic maps of Ap stars obtained by Zeeman Doppler mapping (ZDM). It is shown how they can be adversely affected by the assumption of a mean stellar atmosphere instead of appropriate 'local' atmospheres corresponding to the actual abundances in a given region. The essence of the difficulties was already shown by Chandrasekhar's picket-fence model. The results obtained with a suite of Stokes codes written in the ADA programming language and based on modern line-blanketed atmospheres are described in detail. We demonstrate that the high metallicity values claimed to have been found in chemically inhomogeneous (horizontally and vertically) Ap star atmospheres would lead to local temperature structures, continuum and line intensities, and line shapes that differ significantly from those predicted by a mean stellar atmosphere. Unfortunately, past applications of ZDM have consistently overlooked the intricate aspects of metallicity with their all-pervading effects. The erroneous assumption of a mean atmosphere for a spotted star can lead to phase-dependent errors of uncomfortably large proportions at varying wavelengths both in the Stokes I and V profiles, making precise mapping of abundances and magnetic field vectors largely impossible. The relation between core and wings of the Hβ line changes, too, with possible repercussions on the determination of gravity and effective temperature. Finally, a ZDM analysis of the synthetic Stokes spectra of a spotted star reveals the disturbing differences between the respective abundance maps based on a mean atmosphere on the one hand, and on appropriate 'local' atmospheres on the other. We then discuss what this all means for published ZDM results. Our discussion makes it clear that realistic local atmospheres must be used, especially if credible small-scale structures are to be obtained. Recondite: dealing with very profound, difficult or abstruse subject matter; requiring special knowledge to be understood ().

  1. The rotation of very low mass objects

    NASA Astrophysics Data System (ADS)

    Scholz, Alexander

    2004-10-01

    This dissertation contains an investigation of the rotation of very low mass objects, i.e. Brown Dwarfs and stars with masses <0.4 MS. Today, it is well-established that there are large populations of such VLM objects in open clusters and in the field, but our knowledge about their physical properties and evolution is still very limited. Contrary to their solar-mass siblings, VLM objects are fully convective throughout their evolution. Thus, they are not able to form a large-scale magnetic field like for example the sun. The magnetic field, in turn, is crucial for the regulation of rotation: Magnetic interaction between star and circumstellar disk ("disk-locking") and angular momentum losses through stellar winds have dominant influence on the rotational evolution. Thus, we can expect major differences in the rotational behaviour of VLM objects and solar-mass stars. The best method to investigate stellar rotation is to measure rotation periods. If a star exhibits surface features which are asymmetrically distributed, its brightness may be modulated with the rotation period. Thus, this dissertation is based on the analysis of photometric time series. Open clusters are an ideal environment for such a project, since they enable one to follow many objects at the same time. Additionally, they allow one to investigate the age and mass dependence of rotation, because distance and age of the clusters are known in good approximation. For this thesis, five open clusters were observed, which span an age range from 3 to 750 Myr. In three of them (SigmaOri, EpsilonOri, IC4665), VLM objects were identified by means of colour magnitude diagrams. The candidate lists for these three regions comprise at least 100 objects, for which photometry in at least three wavelength bands is available. About a fifth to a third of these candidates could be contaminating field stars in the fore- or background of the clusters. For the remaining two clusters (Pleiades and Praesepe), objects from the literature were selected as targets for the variability study. Masses for all these candidates were estimated by comparing the photometry with stellar evolutionary tracks. For each of the clusters, at least one photometric monitoring campaign was carried out; three of them were observed twice. Subsequently, the magnitudes of the VLM objects were measured relative to non-variable stars in the same fields. The difference image analysis procedure was used to improve the precision for two time series. That way, a photometric precision between 5 and 20 mmag was reached for the brightest stars. A comparison of several period search techniques showed that periodogram analysis delivers by far the best results for the available time series data. Beside the Scargle and CLEAN periodogram, the period search includes several independent and robust control procedures, to assure the reliability of the results. Additionally, a test to identify even non-periodic variability was implemented. For 87 candidates, a photometric rotation period was determined, 80 of these objects have masses <0.4 MS. Thus, this work increases the number of known VLM rotation periods in the age range between 3 and 750 Myr by a factor of 14. Altogether, about 30-50% of the candidates are variable. In the two youngest clusters, several objects show variability with very high amplitudes between 0.2 and 1.1 mag. Their lightcurves contain in the most cases a periodic component, but additionally irregular brightness variations. For two VLM stars, a flare event was detected. The origin of the periodic variability is surface features co-rotating with the objects. In most cases, these surface features are cool magnetically induced spots. From the lightcurves, it can be concluded that the spot properties change on timescales of at most two or three weeks. The amplitudes of the lightcurves are in the VLM regime by a factor of 2.4 smaller than for solar-mass stars, indicating a change of the spot properties with mass. The best explanation for this phenomenon is a more symmetric spot distribution on VLM objects. Additionally, it is probable that the contrast between spots and photospheric environment is smaller than for more massive stars. The lightcurves of the highly variable objects in the youngest clusters cannot be understood only with cool spots. This kind of variability resembles very much the photometric behaviour of classical T Tauri stars, i.e. stars which accrete matter from a circumstellar disk. Thus, it is likely that the highly variable VLM objects possess accretion disks as well. This interpretation is confirmed by near-infrared photometry and optical spectroscopy. For VLM objects in the SigmaOri cluster, a disk frequency of 6-14% was estimated. From this value and the age of SigmaOri it follows that VLM objects loose their disk on shorter timescales than solar-mass stars, which could be an indication for a formation through ejection from a multiple system. This result, however, needs confirmation, since the derived disk frequency should only be considered as a lower limit. The majority of the periodic variable objects rotate with periods <2 d. Slow rotators, with periods longer than 2d, are rare, in contrast to solar-mass stars. For M<0.3 MS, a tendency of faster rotation with decreasing object mass is observed. The origin of this tendency lies very probably in the earliest phases of the rotational evolution. The lower limit of the periods is, within the statistical uncertainties, nearly independent of age and ranges from three to six hours. On the other hand, the upper period limit clearly evolves with time. Between ages of 3 and 100 Myr, it declines from at least ten days to about two days. Afterwards, it increases again up to at least four days. To investigate this behaviour in more detail, simple models were constructed which simulate the basic mechanisms of angular momentum regulation. It turns out that the basic aspects of the rotational evolution can be understood if one takes into account the contraction of the objects and exponential rotational braking through stellar winds. On the contrary, for solar-mass stars the angular momentum losses through stellar winds can be described with the Skumanich law, which predicts a period increase proportional to the squareroot of time. This Skumanich law is not applicable in the VLM regime. Moreover, in the considered age range, the influence of "disk-locking" is negligible. Many of these results can be understood by taking into account the fact that VLM objects are fully convective and cannot possess a large-scale magnetic field. This basic physical property could be responsible for the fast rotation, the breakdown of the Skumanich law, the exponential braking of the rotation, and a more symmetric spot distribution. Thus, main results of this thesis can be ascribed to the internal structure of VLM objects.

  2. SuperWASP J015100.23-100524.2: A SPOTTED SHALLOW-CONTACT BINARY BELOW THE PERIOD LIMIT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qian, S. B.; Zhang, B.; He, J. J.

    2015-10-15

    SuperWASP J015100.23-100524.2 (hereafter J015100) is an eclipsing binary with an orbital period of 0.d2145 that is below the short-period limit of contact binary stars. Complete light curves of J015100 in B, V, R, and I bands are presented and are analyzed with the Wilson–Devinney method. It has been discovered that J015100 is a shallow-contact binary (f = 14.6(±2.7)%) with a mass ratio of 3.128. It is a W-type contact binary where the less massive component is about 130 K hotter than the more massive one. The asymmetries of light curves are explained as one dark spot on the more massivemore » component. The detection of J015100 as a contact binary below the period limit suggests that contact binaries below this limit are not rapidly destroyed. This shallow-contact system may be formed from a detached short-period binary similar to DV Psc (Sp. = K4/K5; P = 0.d30855) via orbital shrinkage due to angular momentum loss through magnetic stellar wind.« less

  3. Two spotted and magnetic early B-type stars in the young open cluster NGC 2264 discovered by MOST and ESPaDOnS

    NASA Astrophysics Data System (ADS)

    Fossati, L.; Zwintz, K.; Castro, N.; Langer, N.; Lorenz, D.; Schneider, F. R. N.; Kuschnig, R.; Matthews, J. M.; Alecian, E.; Wade, G. A.; Barnes, T. G.; Thoul, A. A.

    2014-02-01

    Star clusters are known as superb tools for understanding stellar evolution. In a quest for understanding the physical origin of magnetism and chemical peculiarity in about 7% of the massive main-sequence stars, we analysed two of the ten brightest members of the ~10 Myr old Galactic open cluster NGC 2264, the early B-dwarfs HD 47887 and HD 47777. We find accurate rotation periods of 1.95 and 2.64 days, respectively, from MOST photometry. We obtained ESPaDOnS spectropolarimetric observations, through which we determined stellar parameters, detailed chemical surface abundances, projected rotational velocities, and the inclination angles of the rotation axis. Because we found only small (<5 km s-1) radial velocity variations, most likely caused by spots, we can rule out that HD 47887 and HD 47777 are close binaries. Finally, using the least-squares deconvolution technique, we found that both stars possess a large-scale magnetic field with an average longitudinal field strength of about 400 G. From a simultaneous fit of the stellar parameters we determine the evolutionary masses of HD 47887 and HD 47777 to be 9.4+0.6-0.7 M⊙ and 7.6+0.5-0.5 M⊙. Interestingly, HD 47777 shows a remarkable helium underabundance, typical of helium-weak chemically peculiar stars, while the abundances of HD 47887 are normal, which might imply that diffusion is operating in the lower mass star but not in the slightly more massive one. Furthermore, we argue that the rather slow rotation, as well as the lack of nitrogen enrichment in both stars, can be consistent with both the fossil and the binary hypothesis for the origin of the magnetic field. However, the presence of two magnetic and apparently single stars near the top of the cluster mass-function may speak in favour of the latter. Based on data from the MOST satellite, a Canadian Space Agency mission, jointly operated by Microsatellite Systems Canada Inc. (MSCI), formerly part of Dynacon, Inc., the University of Toronto Institute for Aerospace Studies and the University of British Columbia with the assistance of the University of Vienna.Based on observations obtained at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council of Canada, the Institut National des Science de l'Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii.

  4. Near infrared observations of S155. evidence of induced star formation?

    NASA Astrophysics Data System (ADS)

    Hunt, L. K.; Lisi, F.; Felli, M.; Tofani, G.

    At the interface of the giant molecular cloud Cepheus OB3, S155 represents one of the most interesting examples of bright rim produced by the ionization of a nearby O-star. The interaction between the ionized HII region S155 and the hot molecular core Cepheus B may constitute the ideal site for new stars, according to the sequential star-formation theory. Past observations of molecular lines have shown the evidence of a hot spot in the cloud core, probably a compact region associated to a young stellar object. New J,H,K images recently obtained with the ARNICA array at the TIRGO telescope give evidence of stars with strong near-infrared excess, which must represent the newest generation of young stars.

  5. Chromospheric Heating in Late-Type Stars: Evidence for Magnetic and Nonmagnetic Surface Structure

    NASA Technical Reports Server (NTRS)

    Cuntz, Manfred

    1996-01-01

    The aim of this paper is to evaluate recent observational and theoretical results concerning the physics of chromospheric heating as inferred from IUE, HST-GHRS and ROSAT data. These results are discussed in conjunction with theoretical model calculations based on acoustic and magnetic heating to infer some conclusions about the magnetic and non-magnetic surface structure of cool luminous stars. I find that most types of stars may exhibit both magnetic and nonmagnetic structures. Candidates for pure nonmagnetic surface structure include M-type giants and super-giants. M-type supergiants are also ideal candidates for identifying direct links between the appearance of hot spots on the stellar surface (perhaps caused by large convective bubbles) and temporarily increased chromospheric heating and emission.

  6. Hubble Space Telescope Eclipse Observations of the Nova Like Cataclysmic Variable UX Ursae Majoris

    NASA Technical Reports Server (NTRS)

    Knigge, Christian; Long, Knox S.; Wade, Richard A.; Baptista, Raymundo; Horne, Keith; Hubeny, Ivan; Rutten, Rene G. M.

    1998-01-01

    We present and analyze Hubble Space Telescope observations of the eclipsing nova-like cataclysmic variable UX UMa obtained with the Faint Object Spectrograph. Two eclipses each were observed with the G160L grating (covering the ultraviolet waveband) in 1994 August and with the PRISM (covering the near-ultraviolet to near-infrared) in November of the same year. The system was about 50% brighter in November than in August, which, if due to a change in the accretion rate, indicates a fairly substantial increase in Mass accretion by about 50%. The eclipse light curves are qualitatively consistent with the gradual occultation of an accretion disk with a radially decreasing temperature distribution. The light curves also exhibit asymmetries about mideclipse that are likely due to a bright spot at the disk edge. Bright-spot spectra have been constructed by differencing the mean spectra observed at pre- and posteclipse orbital phases. These difference spectra contain ultraviolet absorption lines and show the Balmer jump in emission. This suggests that part of the bright spot may be optically thin in the continuum and vertically extended enough to veil the inner disk and/or the outflow from UX UMa in some spectral lines. Model disk spectra constructed as ensembles of stellar atmospheres provide poor descriptions of the observed posteclipse spectra, despite the fact that UX UMa's light should be dominated by the disk at this time. Suitably scaled single temperature model stellar atmospheres with T(sub eff) approximately equals 12,500-14,500 K actually provide a better match to both the ultraviolet and optical posteclipse spectra. Evidently, great care must be taken in attempts to derive accretion rates from comparisons of disk models to observations. One way to reconcile disk models with the observed posteclipse spectra is to postulate the presence of a significant amount of optically thin material in the system. Such an optically thin component might be associated with the transition region ("chromosphere") between the disk photosphere and the fast wind from the system whose presence has been suggested by Knigge and Drew. In any event, the wind/ chromosphere is likely to be the region in which many, if not most, of the UV lines are formed. This is clear from the plethora of emission lines that appear in the mideclipse spectra, some of which appear as absorption features in spectra taken at out-of-eclipse orbital phases.

  7. Haffner 16 Redux: Revisiting a Young Cluster in the Outer Galaxy

    NASA Astrophysics Data System (ADS)

    Davidge, T. J.

    2017-08-01

    Images and spectra recorded with the Gemini Multi-Object Spectrograph on Gemini South are used to investigate the stellar content of the open cluster Haffner 16. The (I\\prime ,g\\prime -I\\prime ) color-magnitude diagram (CMD) constructed from these data extends over 10 mag in I\\prime , sampling the cluster main sequence (MS) and 5 mag of the pre-MS (PMS). The fraction of unresolved equal mass binaries among PMS stars is estimated to be 0.6 ± 0.1. The isochrones do not track the PMS on the CMD, in the sense that the PMS has a shallower slope on the CMD than predicted by the models. Still, a dip in star counts, which is associated with the relaxation of PMS stars onto the MS, is identified near I\\prime =17. The depth and brightness of this feature—as well as the morphology of the cluster MS on the CMD—are matched by models with a slightly sub-solar metallicity that have an age of ˜20 Myr and a distance modulus of 12.3 ± 0.2. A light profile of Haffner 16 is constructed in the W1 filter ({λ }{cen}=3.4 μ {{m}}), which suggests that the cluster is surrounded by a diffuse stellar halo. Spectra of candidate cluster MS and PMS stars selected according to location on the CMD are presented. The spectra show characteristics that are suggestive of a sub-solar metallicity. Hα emission is common among objects on the PMS locus on the CMD near I\\prime =18. It is suggested that the location of the Haffner 16 PMS on the CMD is affected by large-scale cool spot activity, likely induced by rapid stellar rotation.

  8. Dynamics of SiO Masers around VX Sgr

    NASA Astrophysics Data System (ADS)

    Su, J. B.; Shen, Z.-Q.; Chen, X.; Jiang, D. R.

    2018-01-01

    We performed Very Long Baseline Array (VLBA) observations of SiO masers (v=1,v=2,J=1\\to 0) toward VX Sgr from 2006 July to 2008 August. With the application of a phase reference technique, the accurate relative positions of maser spots at the two transitions can be acquired. The relative positions enable us to obtain more matched masers in the same coordinate frame to better study the dynamics of the maser shell. We adopt two different methods to investigate the global motions of the maser shell, which is found to expand in a decelerated manner. At the beginning of this process, the decelerative force can be interpreted as a force dominated by the gravitational attraction of the star. However, in the later epochs, the deceleration has a smaller magnitude, suggesting that an outward force is combating the stellar gravity. In addition, we construct a model of a rotating and expanding maser shell. The consistency of the model and observations at the first two epochs suggests approximate Keplerian rotation of the shell with a period of 46.9 years. However, other explanations, such as an axisymmetric outflow, are also possible. We also find two matched maser spots with double-peak spectra moving at a velocity of 6.8 km s‑1. The special spectra provide direct observational evidence that the motion of a maser spot reflects the real gas stream, rather than changes in physical conditions. Finally, the distance to VX Sgr is calculated to be 1.10 ± 0.11 kpc using a statistical parallax method. This value is within the range reported in the literature.

  9. Probing Motion of Fast Radio Burst Sources by Timing Strongly Lensed Repeaters

    NASA Astrophysics Data System (ADS)

    Dai, Liang; Lu, Wenbin

    2017-09-01

    Given the possible repetitive nature of fast radio bursts (FRBs), their cosmological origin, and their high occurrence, detection of strongly lensed sources due to intervening galaxy lenses is possible with forthcoming radio surveys. We show that if multiple images of a repeating source are resolved with VLBI, using a method independent of lens modeling, accurate timing could reveal non-uniform motion, either physical or apparent, of the emission spot. This can probe the physical nature of FRBs and their surrounding environments, constraining scenarios including orbital motion around a stellar companion if FRBs require a compact star in a special system, and jet-medium interactions for which the location of the emission spot may randomly vary. The high timing precision possible for FRBs (˜ms) compared with the typical time delays between images in galaxy lensing (≳10 days) enables the measurement of tiny fractional changes in the delays (˜ {10}-9) and hence the detection of time-delay variations induced by relative motions between the source, the lens, and the Earth. We show that uniform cosmic peculiar velocities only cause the delay time to drift linearly, and that the effect from the Earth’s orbital motion can be accurately subtracted, thus enabling a search for non-trivial source motion. For a timing accuracy of ˜1 ms and a repetition rate (of detected bursts) of ˜0.05 per day of a single FRB source, non-uniform displacement ≳0.1-1 au of the emission spot perpendicular to the line of sight is detectable if repetitions are seen over a period of hundreds of days.

  10. Detached dust shell around Wolf-Rayet star WR60-6 in the young stellar cluster VVV CL036

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borissova, J.; Amigo, P.; Kurtev, R.

    The discovery of a detached dust shell around the Wolf-Rayet (WR) star WR60-6 in the young stellar cluster VVV CL036 is reported. This shell is uncovered through the Spitzer-MIPS 24 μm image, where it appears brightest, and it is invisible at shorter wavelengths. Using new APEX observations and other data available from the literature, we have estimated some of the shell parameters: the inner and outer radii of 0.15 and 0.90 pc, respectively; the overall systemic velocity of the molecular {sup 12}CO(3 → 2) emission of –45.7 ± 2.3 km s{sup –1}; an expansion velocity of the gas of 16.3more » ± 1 km s{sup –1}; the dust temperature and opacity of 122 ± 12 K and 1.04, respectively; and an age of 2.8 × 10{sup 4} yr. The WR star displays some cyclic variability. The mass computed for the WR60-6 nebula indicates that the material was probably ejected during its previous stages of evolution. In addition, we have identified a bright spot very close to the shell, which can be associated with the Midcourse Space Experiment source G312.13+00.20.« less

  11. THE GJ1214 SUPER-EARTH SYSTEM: STELLAR VARIABILITY, NEW TRANSITS, AND A SEARCH FOR ADDITIONAL PLANETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berta, Zachory K.; Charbonneau, David; Bean, Jacob

    2011-07-20

    The super-Earth GJ1214b transits a nearby M dwarf that exhibits a 1% intrinsic variability in the near-infrared. Here, we analyze new observations to refine the physical properties of both the star and planet. We present three years of out-of-transit photometric monitoring of the stellar host GJ1214 from the MEarth Observatory and find the rotation period to be long, most likely an integer multiple of 53 days, suggesting low levels of magnetic activity and an old age for the system. We show that such variability will not pose significant problems to ongoing studies of the planet's atmosphere with transmission spectroscopy. Wemore » analyze two high-precision transit light curves from ESO's Very Large Telescope (VLT) along with seven others from the MEarth and Fred Lawrence Whipple Observatory 1.2 m telescopes, finding physical parameters for the planet that are consistent with previous work. The VLT light curves show tentative evidence for spot occultations during transit. Using two years of MEarth light curves, we place limits on additional transiting planets around GJ1214 with periods out to the habitable zone of the system. We also improve upon the previous photographic V-band estimate for the star, finding V = 14.71 {+-} 0.03.« less

  12. THE TOP 10 SPITZER YOUNG STELLAR OBJECTS IN 30 DORADUS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walborn, Nolan R.; Barba, Rodolfo H.; Sewilo, Marta M., E-mail: walborn@stsci.edu, E-mail: rbarba@dfuls.cl, E-mail: mmsewilo@pha.jhu.edu

    2013-04-15

    The most luminous Spitzer point sources in the 30 Doradus triggered second generation are investigated coherently in the 3-8 {mu}m region. Remarkable diversity and complexity in their natures are revealed. Some are also among the brightest JHK sources, while others are not. Several of them are multiple when examined at higher angular resolutions with Hubble Space Telescope NICMOS and WFPC2/WFC3 as available, or with VISTA/VMC otherwise. One is a dusty compact H II region near the far northwestern edge of the complex, containing a half-dozen bright I-band sources. Three others appear closely associated with luminous WN stars and causal connectionsmore » are suggested. Some are in the heads of dust pillars oriented toward R136, as previously discussed from the NICMOS data. One resides in a compact cluster of much fainter sources, while another appears monolithic at the highest resolutions. Surprisingly, one is the brighter of the two extended ''mystery spots'' associated with Knot 2 of Walborn et al. Masses are derived from young stellar object models for unresolved sources and lie in the 10-30 M{sub Sun} range. Further analysis of the IR sources in this unique region will advance understanding of triggered massive star formation, perhaps in some unexpected and unprecedented ways.« less

  13. Nonlinear Dynamics and Chaos in Astrophysics: A Festschrift in Honor of George Contopoulos

    NASA Astrophysics Data System (ADS)

    Buchler, J. Robert; Gottesman, Stephen T.; Kandrup, Henry E.

    1998-12-01

    The annals of the New York Academy of Sciences is a compilation of work in the area of nonlinear dynamics and chaos in Astrophysics. Sections included are: From Quasars to Extraordinary N-body Problems; Dynamical Spectra and the Onset of Chaos; Orbital Complexity, Short-Time Lyapunov Exponents, and Phase Space Transport in Time-Independent Hamiltonian Systems; Bifurcations of Periodic Orbits in Axisymmetric Scalefree Potentials; Irregular Period-Tripling Bifurcations in Axisymmetric Scalefree Potentials; Negative Energy Modes and Gravitational Instability of Interpenetrating Fluids; Invariants and Labels in Lie-Poisson Systems; From Jupiter's Great Red Spot to the Structure of Galaxies: Statistical Mechanics of Two-Dimensional Vortices and Stellar Systems; N-Body Simulations of Galaxies and Groups of Galaxies with the Marseille GRAPE Systems; On Nonlinear Dynamics of Three-Dimensional Astrophysical Disks; Satellites as Probes of the Masses of Spiral Galaxies; Chaos in the Centers of Galaxies; Counterrotating Galaxies and Accretion Disks; Global Spiral Patterns in Galaxies: Complexity and Simplicity; Candidates for Abundance Gradients at Intermediate Red-Shift Clusters; Scaling Regimes in the Distribution of Galaxies; Recent Progress in the Study of One-Dimensional Gravitating Systems; Modeling the Time Variability of Black Hole Candidates; Stellar Oscillons; Chaos in Cosmological Hamiltonians; and Phase Space Transport in Noisy Hamiltonian Systems.

  14. Discovery of a Group of Receding, Variable Halo Stars toward Norma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakrabarti, Sukanya; Sargent, Benjamin; Lipnicky, Andrew

    2017-08-01

    We present results from spectroscopic observations of a trio of Cepheid candidates identified from K {sub s} -band light curves toward Norma. The spectra show that these stars are moving with a large and similar radial velocity—the heliocentric velocities are 171 ± 32 km s{sup −1}, 164 ± 37 km s{sup −1}, and 173 ± 20 km s{sup −1}. The average radial velocity is ∼169 km s{sup −1}, which is large and distinct from typical stars in the Galaxy’s stellar disk. Given the radial velocities and associated 1 σ error, we find that the combined probability that these three starsmore » are foreground Milky Way disk stars is ∼7 × 10{sup −4}%, and the probability that these are large-amplitude spotted stars in a binary is ∼10{sup −5}%. These objects at l ∼ 333° and b ∼ −1° are therefore associated with the stellar halo. The identification of these sources as Type I Cepheids is not certain, and thus the distances of these sources are not yet well established. Assuming the 3.6 μ m period–luminosity relation of Type I Cepheids gives a distance of ∼78 kpc for these sources.« less

  15. KOI-1003: A New Spotted, Eclipsing RS CVn Binary in the Kepler Field

    NASA Astrophysics Data System (ADS)

    Roettenbacher, Rachael M.; Kane, Stephen R.; Monnier, John D.; Harmon, Robert O.

    2016-12-01

    Using the high-precision photometry from the Kepler space telescope, thousands of stars with stellar and planetary companions have been observed. The characterization of stars with companions is not always straightforward and can be contaminated by systematic and stellar influences on the light curves. Here, through a detailed analysis of starspots and eclipses, we identify KOI-1003 as a new, active RS CVn star—the first identified with data from Kepler. The Kepler light curve of this close binary system exhibits the system’s primary transit, secondary eclipse, and starspot evolution of two persistent active longitudes. The near equality of the system’s orbital and rotation periods indicates the orbit and primary star’s rotation are nearly synchronized ({P}{orb}=8.360613+/- 0.000003 {days}; {P}{rot}˜ 8.23 {days}). By assuming the secondary star is on the main sequence, we suggest the system consists of a {1.45}-0.19+0.11 {M}⊙ subgiant primary and a {0.59}-0.04+0.03 {M}⊙ main-sequence companion. Our work gives a distance of 4400 ± 600 pc and an age of t={3.0}+2.0-0.5 {Gyr}, parameters which are discrepant with previous studies that included the star as a member of the open cluster NGC 6791.

  16. The NASA-UC-UH Eta-Earth program. IV. A low-mass planet orbiting an M dwarf 3.6 PC from Earth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howard, Andrew W.; Marcy, Geoffrey W.; Isaacson, Howard

    We report the discovery of a low-mass planet orbiting Gl 15 A based on radial velocities from the Eta-Earth Survey using HIRES at Keck Observatory. Gl 15 Ab is a planet with minimum mass Msin i = 5.35 ± 0.75 M {sub ⊕}, orbital period P = 11.4433 ± 0.0016 days, and an orbit that is consistent with circular. We characterize the host star using a variety of techniques. Photometric observations at Fairborn Observatory show no evidence for rotational modulation of spots at the orbital period to a limit of ∼0.1 mmag, thus supporting the existence of the planet. Wemore » detect a second RV signal with a period of 44 days that we attribute to rotational modulation of stellar surface features, as confirmed by optical photometry and the Ca II H and K activity indicator. Using infrared spectroscopy from Palomar-TripleSpec, we measure an M2 V spectral type and a sub-solar metallicity ([M/H] = –0.22, [Fe/H] = –0.32). We measure a stellar radius of 0.3863 ± 0.0021 R {sub ☉} based on interferometry from CHARA.« less

  17. Physical properties, star-spot activity, orbital obliquity and transmission spectrum of the Qatar-2 planetary system from multicolour photometry

    NASA Astrophysics Data System (ADS)

    Mancini, L.; Southworth, J.; Ciceri, S.; Tregloan-Reed, J.; Crossfield, I.; Nikolov, N.; Bruni, I.; Zambelli, R.; Henning, Th.

    2014-09-01

    We present 17 high-precision light curves of five transits of the planet Qatar-2 b, obtained from four defocused 2 m-class telescopes. Three of the transits were observed simultaneously in the Sloan g'r'i'z' passbands using the seven-beam Gamma Ray Burst Optical and Near-Infrared Detector imager on the MPG/ESO 2.2-m telescope. A fourth was observed simultaneously in Gunn grz using the Centro Astronómico Hispano Alemán 2.2-m telescope with Bonn University Simultaneous Camera, and in r using the Cassini 1.52-m telescope. Every light curve shows small anomalies due to the passage of the planetary shadow over a cool spot on the surface of the host star. We fit the light curves with the PRISM+GEMC model to obtain the photometric parameters of the system and the position, size and contrast of each spot. We use these photometric parameters and published spectroscopic measurements to obtain the physical properties of the system to high precision, finding a larger radius and lower density for both star and planet than previously thought. By tracking the change in position of one star-spot between two transit observations, we measure the orbital obliquity of Qatar-2 b to be λ = 4.3° ± 4.5°, strongly indicating an alignment of the stellar spin with the orbit of the planet. We calculate the rotation period and velocity of the cool host star to be 11.5 ± 0.2 d and 3.28 ± 0.04 km s-1 at a colatitude of 74°. We assemble the planet's transmission spectrum over the 386-976 nm wavelength range and search for variations of the measured radius of Qatar-2 b as a function of wavelength. Our analysis highlights a possible H2/He Rayleigh scattering in the blue.

  18. A synthetic diagnostic for beam emission spectroscopy in the helically symmetric experiment stellarator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dobbins, T. J., E-mail: tdobbins@wisc.edu; Kumar, S. T. A.; Anderson, D. T.

    The Helically Symmetric Experiment (HSX) has a number of active spectroscopy diagnostics. Due to the relatively large beam width compared to the plasma minor radius, it is difficult to achieve good spatial resolution at the core of the HSX plasma. This is due to the fact that the optical sightline cuts through many flux surfaces with varying field vectors within the beam. In order to compare the experimental results with theoretical models it is important to accurately model the beam width effects. A synthetic diagnostic has been developed for this purpose. This synthetic diagnostic calculates the effect of spot sizemore » and beam width on the measurements of quantities of interest, including radial electric field, flow velocity, and Stark polarization.« less

  19. A synthetic diagnostic for beam emission spectroscopy in the helically symmetric experiment stellarator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dobbins, T. J.; Kumar, S. T. A.; Anderson, D. T.

    The Helically Symmetric Experiment (HSX) has a number of active spectroscopy diagnostics. Due to the relatively large beam width compared to the plasma minor radius, it is difficult to achieve good spatial resolution at the core of the HSX plasma. This is due to the fact that the optical sightline cuts through many flux surfaces with varying field vectors within the beam. It is important to accurately model the beam width effects in order to compare the experimental results with theoretical models. We've developed a synthetic diagnostic for this purpose. This synthetic diagnostic calculates the effect of spot size andmore » beam width on the measurements of quantities of interest, including radial electric field, flow velocity, and Stark polarization.« less

  20. A synthetic diagnostic for beam emission spectroscopy in the helically symmetric experiment stellarator

    DOE PAGES

    Dobbins, T. J.; Kumar, S. T. A.; Anderson, D. T.

    2016-08-03

    The Helically Symmetric Experiment (HSX) has a number of active spectroscopy diagnostics. Due to the relatively large beam width compared to the plasma minor radius, it is difficult to achieve good spatial resolution at the core of the HSX plasma. This is due to the fact that the optical sightline cuts through many flux surfaces with varying field vectors within the beam. It is important to accurately model the beam width effects in order to compare the experimental results with theoretical models. We've developed a synthetic diagnostic for this purpose. This synthetic diagnostic calculates the effect of spot size andmore » beam width on the measurements of quantities of interest, including radial electric field, flow velocity, and Stark polarization.« less

  1. First Spectroscopic Detection of Surface Structures on a Normal A-Type Star - The Case of Vega

    NASA Astrophysics Data System (ADS)

    Böhm, Torsten

    2018-04-01

    For the first time the existence of spots on the surface of the intermediate mass star Vega has been shown. This unexpected result sets new important constraints on the stellar evolution of intermediate mass stars and in particular on the magnetic field generation mechanisms. Vega (α Lyrae) is an intermediate mass star (spectral class A0) in rapid rotation (Prot = 0.68 d). Since more than 150 years it is a stability reference for photometry. Despite the fact that very small sporadic light variations had been announced in the past, no periodicity had been detected in its light curve. In 2009 a very faint magnetic field has been detected on Vega (Lignières et al., 2009, A&A, 500L, 41) and subsequently also on other stars of the same spectral class (A). While the solar magnetic field is generated by a dynamo mechanism in its convective envelope, the origin of magnetic field in stars exempt of convective envelopes, such as Vega, remains mysterious. One of the characteristics of the solar dynamo is its temporal variability revealed by the appearance or disappearance of solar spots. Are there similar structures on the surface of Vega? 2015 A&A, 577, 64. & Nature Research Highlights

  2. A DARK SPOT ON A MASSIVE WHITE DWARF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kilic, Mukremin; Gianninas, Alexandros; Curd, Brandon

    We present the serendipitous discovery of eclipse-like events around the massive white dwarf SDSS J152934.98+292801.9 (hereafter J1529+2928). We selected J1529+2928 for time-series photometry based on its spectroscopic temperature and surface gravity, which place it near the ZZ Ceti instability strip. Instead of pulsations, we detect photometric dips from this white dwarf every 38 minutes. Follow-up optical spectroscopy observations with Gemini reveal no significant radial velocity variations, ruling out stellar and brown dwarf companions. A disintegrating planet around this white dwarf cannot explain the observed light curves in different filters. Given the short period, the source of the photometric dips mustmore » be a dark spot that comes into view every 38 minutes due to the rotation of the white dwarf. Our optical spectroscopy does not show any evidence of Zeeman splitting of the Balmer lines, limiting the magnetic field strength to B < 70 kG. Since up to 15% of white dwarfs display kG magnetic fields, such eclipse-like events should be common around white dwarfs. We discuss the potential implications of this discovery on transient surveys targeting white dwarfs, like the K2 mission and the Large Synoptic Survey Telescope.« less

  3. Multifrequency observations of AB Doradus. X-ray flaring and rotational modulation of a young star

    NASA Astrophysics Data System (ADS)

    Vilhu, O.; Tsuru, T.; Collier Cameron, A.; Budding, E.; Banks, T.; Slee, B.; Ehrenfreund, P.; Foing, B. H.

    1993-11-01

    X-ray observations of AB Doradus, performed by the Large Area Counter (LAC) instrument of the GINGA satellite on January 1990, are reported. The observations covered 5 rotations of the star (2.6 days) during which 4 flares were detected. When added to the previously observed EINSTEIN and EXOSAT flares, a total of 7 X-ray flares in AB Dor have been observed so far. The flares seem to cluster around rotational phases 0.1-0.25 and 0.6-0.75 although the statistics are poor. The mean flare energies were around (1-3) x 1034 erg with peak luminosities (4-6) x 1030 ergs/s. The flaring loops were compact (ne = 1012/cu cm) and extended (1-2) x 1010 cm above the surface. Flare masses (1018 g) and frequencies (two per day) are similar to prominence-like cloud formations discovered previously in the star. The flare spectra can be best-fitted either by thermal Bremstrahlung with kT = 3-6 keV or with a power-law, with photon index gamma = 2.2-2.6. During the strongest flare peaks AB Dor is a 10 mCrab source with a Crab-like spectrum. The 3 sigma upper limit for the 6.7 keV iron line during the flares is somewhat smaller than predicted by thin plasma models. We discuss the possibility of lowering the equivalent width by an extra non-thermal continuum due to mildly relativistic electrons. Simultaneous 8.4 GHz observations during flare No. 1 gave only a marginal detection, constraining the magnetic field strength to less than 50 Gauss if the total X-ray continuum is non-thermal in origin. The sensitivity was not good enough to detect any clear modulation in the X-ray light curve, folded over the 0.514 d rotation period. Simultaneous 8.4 GHz observations were performed with the 64 m antenna of the Australia Telescope National Facility at Parkes and reveal a clear variability with two maxima at phases 0.0 (spot A) and 0.5 (spot B). Nearly simultaneous optical photometry can be modeled by a cool extended photospheric spot at the phase 0.0 (spot A). Simultaneous H-alpha photometry revealed a transient H-alpha absorption feature above the spot A, trapped in co-rotation with the stellar magnetic field. All these multifrequency data can be understood by a geometrical two spot model. The geometry seems to have been permanent during the past 10 years, although the relative contributions of the two poles vary and the spots are not necessarily fixed into 180 degrees apart all the time.

  4. Correlation between SiO v = 3 J = 1 → 0 maser excitation and the light curve of a long-period variable star

    NASA Astrophysics Data System (ADS)

    Oyadomari, Miyako; Imai, Hiroshi; Nagayama, Takumi; Oyama, Tomoaki; Matsumoto, Naoko; Nakashima, Jun-ichi; Cho, Se-Hyung

    2018-06-01

    In order to understand the excitation mechanisms of silicon monoxide (SiO) masers around long-period variables (LPVs), we have investigated distributions of the SiO v = 2 and v = 3 J = 1 → 0 masers around 12 LPVs by very long baseline interferometry (VLBI) observations with the VLBI Exploration of Radio Astrometry (VERA) and the Nobeyama 45 m telescopes. VLBI fringes of the v = 3 maser emission were detected for five LPVs. The composite maps of the v = 2 and v = 3 masers were made for T Cep, W Hya, WX Psc, and R Leo using the spectral line phase-referencing technique. The v = 2 maser spots were distributed in a ring-like form around the central stars, while it is difficult to recognize any specific morphology in the v = 3 maser distributions due to the small number of v = 3 spots detected. However in T Cep, we find that the distribution of the v = 3 maser spots correlates well with the v = 2 masers within a few milliarcseconds (0.2-0.3 au) in position and 1 km s-1 in line-of-sight velocity at the light curve phase of ϕ = 0.28 (ϕ = 0.0 and 1.0 correspond to the visible light maxima). This correlation implies that the mechanism of line-overlapping between the mid-infrared lines of H2O and SiO molecules works in T Cep at ϕ = 0.28. We discuss the possibility that the line-overlapping may work at the limited duration from the maximum to the minimum of the stellar light curve.

  5. Optical Flares and a Long-lived Dark Spot on a Cool Shallow Contact Binary

    NASA Astrophysics Data System (ADS)

    Qian, S.-B.; Wang, J.-J.; Zhu, L.-Y.; Snoonthornthum, B.; Wang, L.-Z.; Zhao, E. G.; Zhou, X.; Liao, W.-P.; Liu, N.-P.

    2014-05-01

    W UMa-type stars are contact systems where both cool components fill the critical Roche lobes and share a common convective envelope. Long and unbroken time-series photometry is expected to play an important role in their origin and activity. The newly discovered short-period W UMa-type star, CSTAR 038663, was monitored continuously by Chinese Small Telescope ARray (CSTAR) in Antarctica during the winters of 2008 and 2010. There were 15 optical flares recorded in the i band during the winter of 2010. This was the first time such flares were detected from a W UMa-type star. By analyzing the nearly unbroken photometric data from 2008, it is discovered that CSTAR 038663 is a W-type shallow contact binary system (f = 10.6(± 2.9)%) with a high mass ratio of q = 1.12(± 0.01), where the less massive component is slightly hotter than the more massive one. The asymmetric light curves are explained by the presence of a dark spot on the more massive component. Its temperature is about 800 K lower than the stellar photosphere and it covers 2.1% of the total photospheric surface. The lifetime of the dark spot is longer than 116 days. Using 725 eclipse times, we found that the observed-calculated (O-C) curve may show a cyclic variation that is explained by the presence of a close-in third body. Both the shallow contact configuration and the extremely high mass ratio suggest that CSTAR 038663 is presently evolving into a contact system with little mass transfer. The formation and evolution is driven by the loss of angular momentum via magnetic braking, and the close-in companion star is expected to play an important role, removing angular momentum from the central eclipsing binary.

  6. Correlation between SiO v = 3 J = 1 → 0 maser excitation and the light curve of a long-period variable star

    NASA Astrophysics Data System (ADS)

    Oyadomari, Miyako; Imai, Hiroshi; Nagayama, Takumi; Oyama, Tomoaki; Matsumoto, Naoko; Nakashima, Jun-ichi; Cho, Se-Hyung

    2018-03-01

    In order to understand the excitation mechanisms of silicon monoxide (SiO) masers around long-period variables (LPVs), we have investigated distributions of the SiO v = 2 and v = 3 J = 1 → 0 masers around 12 LPVs by very long baseline interferometry (VLBI) observations with the VLBI Exploration of Radio Astrometry (VERA) and the Nobeyama 45 m telescopes. VLBI fringes of the v = 3 maser emission were detected for five LPVs. The composite maps of the v = 2 and v = 3 masers were made for T Cep, W Hya, WX Psc, and R Leo using the spectral line phase-referencing technique. The v = 2 maser spots were distributed in a ring-like form around the central stars, while it is difficult to recognize any specific morphology in the v = 3 maser distributions due to the small number of v = 3 spots detected. However in T Cep, we find that the distribution of the v = 3 maser spots correlates well with the v = 2 masers within a few milliarcseconds (0.2-0.3 au) in position and 1 km s-1 in line-of-sight velocity at the light curve phase of ϕ = 0.28 (ϕ = 0.0 and 1.0 correspond to the visible light maxima). This correlation implies that the mechanism of line-overlapping between the mid-infrared lines of H2O and SiO molecules works in T Cep at ϕ = 0.28. We discuss the possibility that the line-overlapping may work at the limited duration from the maximum to the minimum of the stellar light curve.

  7. Photospheric activity of the Sun with VIRGO and GOLF. Comparison with standard activity proxies

    NASA Astrophysics Data System (ADS)

    Salabert, D.; García, R. A.; Jiménez, A.; Bertello, L.; Corsaro, E.; Pallé, P. L.

    2017-12-01

    We study the variability of solar activity using new photospheric proxies originally developed for the analysis of stellar magnetism with the CoRoT and Kepler photometric observations. These proxies were obtained by tracking the temporal modulations in the observations associated with the spots and magnetic features as the Sun rotates. We analyzed 21 yr of observations, spanning solar cycles 23 and 24, collected by the space-based photometric VIRGO and radial velocity GOLF instruments on board the SoHO satellite. We then calculated the photospheric activity proxy Sph is for each of the three VIRGO photometers and the associated Svel proxy from the radial velocity GOLF observations. Comparisons with several standard solar activity proxies sensitive to different layers of the Sun demonstrate that these new activity proxies, Sph and Svel, provide a new manner to monitor solar activity. We show that both the long- and short-term magnetic variabilities respectively associated with the 11-yr cycle and the quasi-biennial oscillation are well monitored, and that the magnetic field interaction between the subsurface, photosphere, and chromosphere of the Sun was modified between Cycle 24 and Cycle 23. Furthermore, the photometric proxies show a wavelength dependence of the response function of the solar photosphere among the three channels of the VIRGO photometers, providing inputs for the study of the stellar magnetism of Sun-like stars.

  8. Devastated Stellar Neighborhood

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image from NASA's Spitzer Space Telescope shows the nasty effects of living near a group of massive stars: radiation and winds from the massive stars (white spot in center) are blasting planet-making material away from stars like our sun. The planetary material can be seen as comet-like tails behind three stars near the center of the picture. The tails are pointing away from the massive stellar furnaces that are blowing them outward.

    The picture is the best example yet of multiple sun-like stars being stripped of their planet-making dust by massive stars.

    The sun-like stars are about two to three million years old, an age when planets are thought to be growing out of surrounding disks of dust and gas. Astronomers say the dust being blown from the stars is from their outer disks. This means that any Earth-like planets forming around the sun-like stars would be safe, while outer planets like Uranus might be nothing more than dust in the wind.

    This image shows a portion of the W5 star-forming region, located 6,500 light-years away in the constellation Cassiopeia. It is a composite of infrared data from Spitzer's infrared array camera and multiband imaging photometer. Light with a wavelength of 3.5 microns is blue, while light from the dust of 24 microns is orange-red.

  9. Stellar Incubators Seen Cooking up Stars

    NASA Image and Video Library

    2005-01-12

    This image composite compares visible-light and infrared views from NASA's Spitzer Space Telescope of the glowing Trifid Nebula, a giant star-forming cloud of gas and dust located 5,400 light-years away in the constellation Sagittarius. Visible-light images of the Trifid taken with NASA's Hubble Space Telescope, Baltimore, Md. (inside left, figure 1) and the National Optical Astronomy Observatory, Tucson, Ariz., (outside left, figure 1) show a murky cloud lined with dark trails of dust. Data of this same region from the Institute for Radioastronomy millimeter telescope in Spain revealed four dense knots, or cores, of dust (outlined by yellow circles), which are "incubators" for embryonic stars. Astronomers thought these cores were not yet ripe for stars, until Spitzer spotted the warmth of rapidly growing massive embryos tucked inside. http://photojournal.jpl.nasa.gov/catalog/PIA07226

  10. Stellar Work of Art

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Poster Version

    This painterly portrait of a star-forming cloud, called NGC 346, is a combination of multiwavelength light from NASA's Spitzer Space Telescope (infrared), the European Southern Observatory's New Technology Telescope (visible), and the European Space Agency's XMM-Newton space telescope (X-ray).

    The infrared observations highlight cold dust in red, visible data show glowing gas in green, and X-rays show very warm gas in blue. Ordinary stars appear as blue spots with white centers, while young stars enshrouded in dust appear as red spots with white centers.

    The colorful picture demonstrates that stars in this region are being created by two different types of triggered star formation one involving wind, and the other, radiation. Triggered star formation occurs when massive stars spur new, smaller stars into existence. The first radiation-based mechanism is demonstrated near the center of the cloud. There, radiation from the massive stars is eating away at the surrounding dust cloud, creating shock waves that compress gas and dust into new stars. This compressed material appears as an arc-shaped orange-red filament, while the new stars within this filament are still blanketed with dust and cannot be seen.

    The second wind-based mechanism is at play higher up in the cloud. The isolated, pinkish blob of stars at the upper left was triggered by winds from a massive star located to the left of it. This massive star blew up in a supernova explosion 50,000 years ago, but before it died, its winds pushed gas and dust together into new stars. While this massive star cannot be seen in the image, a bubble created when it exploded can be seen near the large, white spot with a blue halo at the upper left (this white spot is actually a collection of three stars).

    NGC 346 is the brightest star-forming region in the Small Magellanic Cloud, an irregular dwarf galaxy that orbits our Milky Way galaxy, 210,000 light-years away.

  11. KIC 6048106: an Algol-type eclipsing system with long-term magnetic activity and hybrid pulsations - I. Binary modelling

    NASA Astrophysics Data System (ADS)

    Samadi Ghadim, A.; Lampens, P.; Jassur, M.

    2018-03-01

    The A-F-type stars and pulsators (δ Scuti-γ Dor) are in a critical regime where they experience a transition from radiative to convective transport of energy in their envelopes. Such stars can pulsate in both gravity and acoustic modes. Hence, the knowledge of their fundamental parameters along with their observed pulsation characteristics can help in improving the stellar models. When residing in a binary system, these pulsators provide more accurate and less model-dependent stellar parameters than in the case of their single counterparts. We present a light-curve model for the eclipsing system KIC 6048106 based on the Kepler photometry and the code PHOEBE. We aim to obtain accurate physical parameters and tough constraints for the stellar modelling of this intermediate-mass hybrid pulsator. We performed a separate modelling of three light-curve segments which show a distinct behaviour due to a difference in activity. We also analysed the Kepler Eclipse Time Variations (ETVs). KIC 6048106 is an Algol-type binary with F5-K5 components, a near-circular orbit and a 1.56-d period undergoing variations of the order of Δ P/P˜eq 3.60× 10^{-7} in 287 ± 7 d. The primary component is a main-sequence star with M1 = 1.55 ± 0.11 M⊙, R1 = 1.57 ± 0.12 R⊙. The secondary is a much cooler subgiant with M2 = 0.33 ± 0.07 M⊙, R2 = 1.77 ± 0.16 R⊙. Many small near-polar spots are active on its surface. The second quadrature phase shows a brightness modulation on a time-scale 290 ± 7 d, in good agreement with the ETV modulation. This study reveals a stable binary configuration along with clear evidence of a long-term activity of the secondary star.

  12. Stellar Interlopers Caught Speeding Through Space

    NASA Technical Reports Server (NTRS)

    2009-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 1 Figure 2 Figure 3 Figure 4 Click on individual image for larger view

    Resembling comets streaking across the sky, these four speedy stars are plowing through regions of dense interstellar gas and creating brilliant arrowhead structures and trailing tails of glowing gas.

    These bright arrowheads, or bow shocks, can be seen in these four images taken with NASA's Hubble Space Telescope. The bow shocks form when the stars' powerful stellar winds, streams of matter flowing from the stars, slam into surrounding dense gas. The phenomenon is similar to that seen when a speeding boat pushes through water on a lake.

    The stars in these images are among 13 runaway stars spotted by Hubble's Advanced Camera for Surveys. The stars appear to be young, just millions of years old. Their ages are based on their colors and the presence of strong stellar winds, a signature of youthful stars.

    Depending on their distance from Earth, the bullet-nosed bow shocks could be 100 billion to a trillion miles wide (the equivalent of 17 to 170 solar system diameters, measured out to Neptune's orbit). The bow shocks indicate that the stars are moving fast, more than 180,000 kilometers an hour (more than 112,000 miles an hour) with respect to the dense gas they are plowing through. They are traveling roughly five times faster than typical young stars, relative to their surroundings.

    The high-speed stars have traveled far from their birth places. Assuming their youthful phase lasts only a million years and they are moving at roughly 180,000 kilometers an hour, the stars have journeyed 160 light-years.

    The Hubble observations were taken between October 2005 and July 2006.

  13. Magnetic activity and differential rotation in the young Sun-like stars KIC 7985370 and KIC 7765135

    NASA Astrophysics Data System (ADS)

    Fröhlich, H.-E.; Frasca, A.; Catanzaro, G.; Bonanno, A.; Corsaro, E.; Molenda-Żakowicz, J.; Klutsch, A.; Montes, D.

    2012-07-01

    Aims: We present a detailed study of the two Sun-like stars KIC 7985370 and KIC 7765135, to determine their activity level, spot distribution, and differential rotation. Both stars were previously discovered by us to be young stars and were observed by the NASA Kepler mission. Methods: The fundamental stellar parameters (vsini, spectral type, Teff, log g, and [Fe/H]) were derived from optical spectroscopy by comparison with both standard-star and synthetic spectra. The spectra of the targets allowed us to study the chromospheric activity based on the emission in the core of hydrogen Hα and Ca ii infrared triplet (IRT) lines, which was revealed by the subtraction of inactive templates. The high-precision Kepler photometric data spanning over 229 days were then fitted with a robust spot model. Model selection and parameter estimation were performed in a Bayesian manner, using a Markov chain Monte Carlo method. Results: We find that both stars are Sun-like (of G1.5 V spectral type) and have an age of about 100-200 Myr, based on their lithium content and kinematics. Their youth is confirmed by their high level of chromospheric activity, which is comparable to that displayed by the early G-type stars in the Pleiades cluster. The Balmer decrement and flux ratio of their Ca ii-IRT lines suggest that the formation of the core of these lines occurs mainly in optically thick regions that are analogous to solar plages. The spot model applied to the Kepler photometry requires at least seven persistent spots in the case of KIC 7985370 and nine spots in the case of KIC 7765135 to provide a satisfactory fit to the data. The assumption of the longevity of the star spots, whose area is allowed to evolve with time, is at the heart of our spot-modelling approach. On both stars, the surface differential rotation is Sun-like, with the high-latitude spots rotating slower than the low-latitude ones. We found, for both stars, a rather high value of the equator-to-pole differential rotation (dΩ ≈ 0.18 rad d-1), which disagrees with the predictions of some mean-field models of differential rotation for rapidly rotating stars. Our results agree instead with previous works on solar-type stars and other models that predict a higher latitudinal shear, increasing with equatorial angular velocity, that can vary during the magnetic cycle. Based on public Kepler data, on observations made with the Italian Telescopio Nazionale Galileo (TNG) operated by the Fundación Galileo Galilei - INAF at the Observatorio del Roque del los Muchachos, La Palma (Canary Islands), on observations collected at the 2.2-m telescope of the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto (Almería, Spain), operated jointly by the Max-Planck-Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC), and on observations collected at the Catania Astrophysical Observatory (Italy).

  14. The Hidden Magnetic Field of the Young Neutron Star in Kesteven 79

    NASA Astrophysics Data System (ADS)

    Shabaltas, Natalia; Lai, Dong

    2012-04-01

    Recent observations of the central compact object in the Kesteven 79 supernova remnant show that this neutron star (NS) has a weak dipole magnetic field (a few × 1010 G) but an anomalously large (~64%) pulse fraction in its surface X-ray emission. We explore the idea that a substantial sub-surface magnetic field exists in the NS crust, which produces diffuse hot spots on the stellar surface due to anisotropic heat conduction, and gives rise to the observed X-ray pulsation. We develop a general-purpose method, termed "Temperature Template with Full Transport" (TTFT), that computes the synthetic pulse profile of surface X-ray emission from NSs with arbitrary magnetic field and surface temperature distributions, taking into account magnetic atmosphere opacities, beam pattern, vacuum polarization, and gravitational light bending. We show that a crustal toroidal magnetic field of order a few × 1014 G or higher, varying smoothly across the crust, can produce sufficiently distinct surface hot spots to generate the observed pulse fraction in the Kes 79 NS. This result suggests that substantial sub-surface magnetic fields, much stronger than the "visible" dipole fields, may be buried in the crusts of some young NSs, and such hidden magnetic fields can play an important role in their observational manifestations. The general TTFT tool we have developed can also be used for studying radiation from other magnetic NSs.

  15. First photometric analysis of magnetic activity and orbital period variations for the semi-detached binary BU Vulpeculae

    NASA Astrophysics Data System (ADS)

    Wang, Jingjing; Zhang, Bin; Yu, Jing; Liu, Liang; Tian, Xiaoman

    2018-06-01

    Four sets of multi-color CCD photometric observations of the close binary BU Vul were carried out for four successive months in 2010. From our observations, there are obvious variations and asymmetry of light curves on the timescale of a month, indicating high-level stellar spot activity on the surface of at least one component. The Wilson-Devinney (2010) program was used to determine the photometric solutions, which suggest that BU Vul is a semi-detached binary with the cool, less massive component filling with the critical Roche lobe. The solutions also reveal that the spots on the primary and the secondary have changed and drifted in 2010 July, August, and September. Based on analysis of the O - C curves of BU Vul, its orbital period shows a cyclic oscillation (T3 = 22.4 yr, A3 = 0.0029 d) superimposed on a secular increase. The continuous increase is possibly a result of mass transfer from the less massive component to the more massive one at a rate of dM/dt = -2.95 × 10-9 M⊙ yr-1. The cyclic variation maybe be caused by the presence of a tertiary companion with extremely low luminosity. Combined with the distortions of the light curve on 2009 November 4, we infer that BU Vul has two additional companions in a quadruple system.

  16. Dating the Stars Next Door: Ages and Coronal X-Ray Activities of Local K-Type Stars

    NASA Astrophysics Data System (ADS)

    Katynski, Marcus; Guinan, Edward F.; Engle, Scott G.

    2016-01-01

    Age is one of the most difficult (but important) basic stellar physical property to determine. One possible means to estimate stellar age is from rotational period; it is known that as cool stars age, they lose angular momentum from magnetic braking and slow-down. Thus, good Rotation-Age relationships exist, which are calibrated with stars possessing reliable ages from: evolutionary tracks and/or memberships in clusters/moving groups or binary star systems. Further, ages of older stars can be estimated from (low) metal abundances and kinematics (high space motions). More recently, age determinations from asteroseismology are also becoming more reliable. Except for the many G, K, M stars in the Kepler/K2 fields, rotational periods are difficult to measure photometrically for older, less active stars since star spots and active regions are smaller & less prominent. Thus measuring the coronal X-ray activity of a star is an appealing alternative. Coronal X-ray emission is generated by the stellar dynamo, and so is directly related to the stars' rotation (and age). Measurement of X-ray fluxes (or upper limits) have been made for most of the nearby stars (within ~20 pc) with data available in the HEASARC archives. During the 1990's the ROSAT X-Ray Satellite carried out an all-sky survey of thousands of X-ray sources, including hundreds of nearby stars, producing a large archival database. Using these and other available X-ray data from XMM-Newton & Chandra, we explore the relation between coronal X-ray activity and stellar age of all stars within 10 pc (32.6 LY), with special emphasis on dK and early dM stars that make up ~85% of the sample. Here we report the progress made in determination the ages these nearby stars. We focused on nearby dK-stars, due to their long lifetimes (>20 Gyr) and habitable zones that lie ~0.5 -1.5 AU from their host stars. They appear to be ideal candidates for hosting potentially habitable planets, making them interesting targets. We present a progress report on this project of "dating" nearby stars. This research is supported by grants from NSF/RUI and NASA (Chandra and HST).

  17. Variability at the edge: highly accreting objects in Taurus

    NASA Astrophysics Data System (ADS)

    Abraham, Peter; Kospal, Agnes; Szabo, Robert

    2017-04-01

    In Kepler K2, Campaign 13, we will obtain 80-days-long optical light curves of seven highly accreting T Tauri stars in the benchmark Taurus star forming region. Here we propose to monitor our sample simultaneously with Kepler and Spitzer, to be able to separate variability patterns related to different physical processes. Monitoring our targets with Spitzer during the final 11 days of the K2 campaign, we will clean the light curves from non-accretion effects (rotating stellar spots, dips due to passing dust structures), and construct, for the first time, a variability curve which reflects the time-dependent accretion only. We will then study and understand how time-dependent mass accretion affects the density and temperature structure of the protoplanetary disk, which sets the initial conditions for planet formation. The proposed work cannot be done without the unparalleled precision of Kepler and Spitzer. This unique and one-time opportunity motivated our DDT proposal.

  18. KIC 9451096: Magnetic Activity, Flares and Differential Rotation

    NASA Astrophysics Data System (ADS)

    Özdarcan, O.; Yoldaş, E.; Dal, H. A.

    2018-04-01

    We present a spectroscopic and photometric analysis of KIC 9451096. The combined spectroscopic and photometric modelling shows that the system is a detached eclipsing binary in a circular orbit and composed of F5V + K2V components. Subtracting the best-fitting light curve model from the whole long cadence data reveals additional low (mmag) amplitude light variations in time and occasional flares, suggesting a low, but still remarkable level of magnetic spot activity on the K2V component. Analyzing the rotational modulation of the light curve residuals enables us to estimate the differential rotation coefficient of the K2V component as k = 0.069 ± 0.008, which is 3 times weaker compared with the solar value of k = 0.19, assuming a solar type differential rotation. We find the stellar flare activity frequency for the K2V component as 0.000368411 h-1 indicating a low magnetic activity level.

  19. Beyond the Kepler/K2 bright limit: variability in the seven brightest members of the Pleiades

    NASA Astrophysics Data System (ADS)

    White, T. R.; Pope, B. J. S.; Antoci, V.; Pápics, P. I.; Aerts, C.; Gies, D. R.; Gordon, K.; Huber, D.; Schaefer, G. H.; Aigrain, S.; Albrecht, S.; Barclay, T.; Barentsen, G.; Beck, P. G.; Bedding, T. R.; Fredslund Andersen, M.; Grundahl, F.; Howell, S. B.; Ireland, M. J.; Murphy, S. J.; Nielsen, M. B.; Silva Aguirre, V.; Tuthill, P. G.

    2017-11-01

    The most powerful tests of stellar models come from the brightest stars in the sky, for which complementary techniques, such as astrometry, asteroseismology, spectroscopy and interferometry, can be combined. The K2 mission is providing a unique opportunity to obtain high-precision photometric time series for bright stars along the ecliptic. However, bright targets require a large number of pixels to capture the entirety of the stellar flux, and CCD saturation, as well as restrictions on data storage and bandwidth, limit the number and brightness of stars that can be observed. To overcome this, we have developed a new photometric technique, which we call halo photometry, to observe very bright stars using a limited number of pixels. Halo photometry is simple, fast and does not require extensive pixel allocation, and will allow us to use K2 and other photometric missions, such as TESS, to observe very bright stars for asteroseismology and to search for transiting exoplanets. We apply this method to the seven brightest stars in the Pleiades open cluster. Each star exhibits variability; six of the stars show what are most likely slowly pulsating B-star pulsations, with amplitudes ranging from 20 to 2000 ppm. For the star Maia, we demonstrate the utility of combining K2 photometry with spectroscopy and interferometry to show that it is not a `Maia variable', and to establish that its variability is caused by rotational modulation of a large chemical spot on a 10 d time-scale.

  20. Hydrogen Balmer Line Broadening in Solar and Stellar Flares

    NASA Technical Reports Server (NTRS)

    Kowalski, Adam F.; Allred, Joel C.; Uitenbroek, Han; Tremblay, Pier-Emmanuel; Brown, Stephen; Carlsson, Mats; Osten, Rachel A.; Wisniewski, John P.; Hawley, Suzanne L.

    2017-01-01

    The broadening of the hydrogen lines during flares is thought to result from increased charge (electron, proton) density in the flare chromosphere. However, disagreements between theory and modeling prescriptions have precluded an accurate diagnostic of the degree of ionization and compression resulting from flare heating in the chromosphere. To resolve this issue, we have incorporated the unified theory of electric pressure broadening of the hydrogen lines into the non-LTE radiative-transfer code RH. This broadening prescription produces a much more realistic spectrum of the quiescent, A0 star Vega compared to the analytic approximations used as a damping parameter in the Voigt profiles. We test recent radiative-hydrodynamic (RHD) simulations of the atmospheric response to high nonthermal electron beam fluxes with the new broadening prescription and find that the Balmer lines are overbroadened at the densest times in the simulations. Adding many simultaneously heated and cooling model loops as a 'multithread' model improves the agreement with the observations. We revisit the three component phenomenological flare model of the YZ CMi Megaflare using recent and new RHD models. The evolution of the broadening, line flux ratios, and continuum flux ratios are well-reproduced by a multithread model with high-flux nonthermal electron beam heating, an extended decay phase model, and a 'hot spot' atmosphere heated by an ultra relativistic electron beam with reasonable filling factors: approximately 0.1%, 1%, and 0.1% of the visible stellar hemisphere, respectively. The new modeling motivates future work to understand the origin of the extended gradual phase emission.

  1. Stellar 'Incubators' Seen Cooking up Stars

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Figure 1

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 2Figure 3Figure 4Figure 5

    This image composite compares visible-light and infrared views from NASA's Spitzer Space Telescope of the glowing Trifid Nebula, a giant star-forming cloud of gas and dust located 5,400 light-years away in the constellation Sagittarius.

    Visible-light images of the Trifid taken with NASA's Hubble Space Telescope, Baltimore, Md. (inside left, figure 1) and the National Optical Astronomy Observatory, Tucson, Ariz., (outside left, figure 1) show a murky cloud lined with dark trails of dust. Data of this same region from the Institute for Radioastronomy millimeter telescope in Spain revealed four dense knots, or cores, of dust (outlined by yellow circles), which are 'incubators' for embryonic stars. Astronomers thought these cores were not yet ripe for stars, until Spitzer spotted the warmth of rapidly growing massive embryos tucked inside.

    These embryos are indicated with arrows in the false-color Spitzer picture (right, figure 1), taken by the telescope's infrared array camera. The same embryos cannot be seen in the visible-light pictures (left, figure 1). Spitzer found clusters of embryos in two of the cores and only single embryos in the other two. This is one of the first times that multiple embryos have been observed in individual cores at this early stage of stellar development.

  2. Brown Dwarfs and Giant Planets Around Young Stars

    NASA Astrophysics Data System (ADS)

    Mahmud, Naved; Crockett, C.; Johns-Krull, C.; Prato, L.; Hartigan, P.; Jaffe, D.; Beichman, C.

    2011-01-01

    How dry is the brown dwarf (BD) desert at young ages? Previous radial velocity (RV) surveys have revealed that the frequency of BDs as close companions to solar-age stars in the field is extraordinarily low compared to the frequency of close planetary and stellar companions. Is this a formation or an evolutionary effect? Do close-in BDs form at lower rates, or are they destroyed by migration via interactions with a massive circumstellar disk, followed by assimilation into the parent star? To answer these questions, we are conducting an RV survey of 130 T Tauri stars in Taurus-Auriga (a few Myr old) and a dozen stars in the Pleiades (100 Myr old) to search for stellar reflex motions resulting from close substellar companions. Our goal is to measure the frequency of BDs at young ages. Detecting a higher frequency of BDs in young systems relative to the field will provide evidence for the migration theory as well as set limits on the migration timescale. Two additional goals are (1) to investigate the effect of star spots in young stars on RV observations, and (2) to detect the youngest-known giant exoplanet. We present results from the first few years of this survey. Strikingly, after completing observations of a third of our sample, we have yet to detect a single BD. Thus we can set limits on the dryness of the BD desert at young ages and shed light on the mysterious early lives of these objects.

  3. New insights on the AU-scale circumstellar structure of FU Orionis

    NASA Astrophysics Data System (ADS)

    Malbet, F.; Lachaume, R.; Berger, J.-P.; Colavita, M. M.; di Folco, E.; Eisner, J. A.; Lane, B. F.; Millan-Gabet, R.; Ségransan, D.; Traub, W. A.

    2005-07-01

    We report new near-infrared, long-baseline interferometric observations at the AU scale of the pre-main-sequence star FU Orionis with the PTI, IOTA and VLTI interferometers. This young stellar object has been observed on 42 nights over a period of 6 years from 1998 to 2003. We have obtained 287 independent measurements of the fringe visibility with 6 different baselines ranging from 20 to 110 m in length, in the H and K bands. Our data resolves FU Ori at the AU scale, and provides new constraints at shorter baselines and shorter wavelengths. Our extensive (u,v)-plane coverage, coupled with the published spectral energy distribution data, allows us to test the accretion disk scenario. We find that the most probable explanation for these observations is that FU Ori hosts an active accretion disk whose temperature law is consistent with standard models and with an accretion rate of dot M= (6.3 ± 0.6) × 10-5 (Mstar/M⊙)-1 M⊙ yr-1. We are able to constrain the geometry of the disk, including an inclination of 55-7+5 deg and a position angle of 47-11 0+7 deg. In addition, a 10 percent peak-to-peak oscillation is detected in the data (at the two-sigma level) from the longest baselines, which we interpret as a possible disk hot-spot or companion. The still somewhat limited (u, v) sampling and substantial measurement uncertainty prevent us from constraining the location of the spot with confidence, since many solutions yield a statistically acceptable fit. However, the oscillation in our best data set is best explained with an unresolved spot located at a projected distance of 10 ± 1 AU at the 130 ± 1 deg position angle and with a magnitude difference of Δ K ≈ 3.9 ± 0.2 and Δ H ≈ 3.6 ± 0.2 mag moving away from the center at a rate of 1.2 ± 0.6 AU yr-1. Although this bright spot on the surface of the disk could be tracing some thermal instabilities in the disk, we propose to interpret this spot as the signature of a companion of the central FU Ori system on an extremely eccentric orbit. We speculate that the close encounter of this putative companion and the central star could be the explanation of the initial photometric rise of the luminosity of this object.

  4. Li I and K I Scatter in Cool Pleiades Dwarfs

    NASA Astrophysics Data System (ADS)

    King, Jeremy R.; Schuler, Simon C.; Hobbs, L. M.; Pinsonneault, Marc H.

    2010-02-01

    We utilize high-resolution (R ~ 60,000), high signal-to-noise ratio (~100) spectroscopy of 17 cool Pleiades dwarfs to examine the confounding star-to-star scatter in the λ6707 Li I line strengths in this young cluster. Our Pleiades, selected for their small projected rotational velocity and modest chromospheric emission, evince substantial scatter in the line strengths of λ6707 Li I feature that is absent in the λ7699 K I resonance line. The Li I scatter is not correlated with that in the high-excitation λ7774 O I feature, and the magnitude of the former is greater than the latter despite the larger temperature sensitivity of the O I feature. These results suggest that systematic errors in line strength measurements due to blending, color (or color-based T eff) errors, or line formation effects related to an overlying chromosphere are not the principal source of Li I scatter in our stars. There do exist analytic spot models that can produce, via line formation effects, the observed Li scatter without introducing scatter in the K I line strengths or the color-magnitude diagram. However, these models predict factor of >=3 differences in abundances derived from the subordinate λ6104 and resonance λ6707 Li I features; we find no difference in the abundances determined from these two features. These analytic spot models also predict CN line strengths significantly larger than we observe in our spectra. The simplest explanation of the Li, K, CN, and photometric data is that there must be a real abundance component to the Pleiades Li dispersion. We suggest that this real abundance component is the manifestation of relic differences in erstwhile pre-main-sequence Li burning caused by effects of surface activity on stellar structure. We discuss observational predictions of these effects, which may be related to other anomalous stellar phenomena. Based on observations obtained with the High Resolution Spectrograph on the Hobby-Eberly Telescope, which is operated by McDonald Observatory on behalf of the University of Texas at Austin, Pennsylvania State University, Stanford University, the Ludwig-Maximillians-Universitaet, Munich, and the George-August-Universitaet, Goettingen. Public Access time was available on the Hobby-Eberly Telescope through an agreement with the National Science Foundation.

  5. CSI 2264: Characterizing Young Stars in NGC 2264 with Stochastically Varying Light Curves

    NASA Astrophysics Data System (ADS)

    Stauffer, John; Cody, Ann Marie; Rebull, Luisa; Hillenbrand, Lynne A.; Turner, Neal J.; Carpenter, John; Carey, Sean; Terebey, Susan; Morales-Calderón, María; Alencar, Silvia H. P.; McGinnis, Pauline; Sousa, Alana; Bouvier, Jerome; Venuti, Laura; Hartmann, Lee; Calvet, Nuria; Micela, Giusi; Flaccomio, Ettore; Song, Inseok; Gutermuth, Rob; Barrado, David; Vrba, Frederick J.; Covey, Kevin; Herbst, William; Gillen, Edward; Medeiros Guimarães, Marcelo; Bouy, Herve; Favata, Fabio

    2016-03-01

    We provide CoRoT and Spitzer light curves and other supporting data for 17 classical T Tauri stars in NGC 2264 whose CoRoT light curves exemplify the “stochastic” light curve class as defined in 2014 by Cody et al. The most probable physical mechanism to explain the optical variability within this light curve class is time-dependent mass accretion onto the stellar photosphere, producing transient hot spots. Where we have appropriate spectral data, we show that the veiling variability in these stars is consistent in both amplitude and timescale with the optical light curve morphology. The veiling variability is also well-correlated with the strength of the He I 6678 Å emission line, predicted by models to arise in accretion shocks on or near the stellar photosphere. Stars with accretion burst light curve morphology also have variable mass accretion. The stochastic and accretion burst light curves can both be explained by a simple model of randomly occurring flux bursts, with the stochastic light curve class having a higher frequency of lower amplitude events. Members of the stochastic light curve class have only moderate mass accretion rates. Their Hα profiles usually have blueshifted absorption features, probably originating in a disk wind. The lack of periodic signatures in the light curves suggests that little of the variability is due to long-lived hot spots rotating into or out of our line of sight; instead, the primary driver of the observed photometric variability is likely to be instabilities in the inner disk that lead to variable mass accretion. Based on data from the Spitzer and CoRoT missions, as well as the Canada-France-Hawaii Telescope (CFHT) MegaCam CCD, and the European Southern Observatory Very Large Telescope, Paranal Chile, under program 088.C-0239. The CoRoT space mission was developed and is operated by the French space agency CNES, with particpiation of ESA’s RSSD and Science Programmes, Austria, Belgium, Brazil, Germany, and Spain. MegaCam is a joint project of CFHT and CEA/DAPNIA, which is operated by the National Research Council (NRC) of Canada, the Institute National des Sciences de l’Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii.

  6. Redshifted X-rays from the material accreting onto TW Hydrae: Evidence of a low-latitude accretion spot

    NASA Astrophysics Data System (ADS)

    Argiroffi, C.; Drake, J. J.; Bonito, R.; Orlando, S.; Peres, G.; Miceli, M.

    2017-10-01

    Context. High resolution spectroscopy, providing constraints on plasma motions and temperatures, is a powerful means to investigate the structure of accretion streams in classical T Tauri stars (CTTS). In particular, the accretion shock region, where the accreting material is heated to temperatures of a few million degrees as it continues its inward bulk motion, can be probed by X-ray spectroscopy. Aims: In an attempt to detect for the first time the motion of this X-ray-emitting post-shock material, we searched for a Doppler shift in the deep Chandra High Energy Transmission Grating observation of the CTTS TW Hya. This test should unveil the nature of this X-ray emitting plasma component in CTTS and constrain the accretion stream geometry. Methods: We searched for a Doppler shift in the X-ray emission from TW Hya with two different methods: by measuring the position of a selected sample of emission lines and by fitting the whole TW Hya X-ray spectrum, allowing the line-of-sight velocity to vary. Results: We found that the plasma at T 2 - 4 MK has a line-of-sight velocity of 38.3 ± 5.1 km s-1 with respect to the stellar photosphere. This result definitively confirms that this X-ray-emitting material originates in the post-shock region, at the base of the accretion stream, and not in coronal structures. The comparison of the observed velocity along the line of sight, 38.3 ± 5.1 km s-1, with the inferred intrinsic velocity of the post shock of TW Hya, vpost ≈ 110 - 120 km s-1, indicates that the footpoints of the accretion streams on TW Hya are located at low latitudes on the stellar surface. Conclusions: Our results indicate that complex magnetic field geometries, such as those of TW Hya, permit low-latitude accretion spots. Moreover, since on TW Hya the redshift of the soft X-ray emission is very similar to that of the narrow component of the C iv resonance doublet at 1550 Å, then the plasma at 2 - 4 MK and that at 0.1 MK likely originate in the same post-shock regions.

  7. Magnetic field structure in single late-type giants: the effectively single giant V390 Aurigae

    NASA Astrophysics Data System (ADS)

    Konstantinova-Antova, R.; Aurière, M.; Petit, P.; Charbonnel, C.; Tsvetkova, S.; Lèbre, A.; Bogdanovski, R.

    2012-05-01

    Aims: We have studied the active giant V390 Aur using spectropolarimetry to obtain direct and simultaneous measurements of the magnetic field and the activity indicators to obtain a precise insight of its activity. Methods: We used the spectropolarimeter NARVAL at the Bernard Lyot Telescope (Observatoire du Pic du Midi, France) to obtain a series of Stokes I and Stokes V profiles. Using the least-squares deconvolution (LSD) technique we were able to detect the Zeeman signature of the magnetic field in each of our 13 observations and to measure its longitudinal component. Using the wide wavelength range of the spectra we were able to monitor the CaII K&H and IR triplet, as well as the Hα lines, which are activity indicators. To reconstruct the magnetic field geometry of V390 Aur on the basis of modelling the Stokes V profiles, we applied the Zeeman Doppler imaging (ZDI) inversion method and present a map for the magnetic field. Based on the obtained spectra, we also refined the fundamental parameters of the star and the Li abundance using MARCS model atmospheres. Results: The ZDI revealed a structure in the radial magnetic field consisting of a polar magnetic spot of positive polarity and several negative spots at lower latitude. A high latitude belt is present on the azimuthal field map, indicative of a toroidal field close to the surface. Similar features are observed in some RS CVn and FK Com -type stars. It was found that the photometric period cannot fit the behaviour of the activity indicators formed in the chromosphere. Their behaviour suggests slower rotation compared to the photosphere, but our dataset is too short for us to be able to estimate their exact periods. All these results can be explained in terms of an α - ω dynamo operation, taking into account the stellar structure and rotation properties of V390 Aur that we studied with up-to-date stellar models computed at solar metallicity with the code STAREVOL. The calculated Rossby number also points to a very efficient dynamo. Based on data obtained using the Bernard Lyot Telescope at Observatoire du Pic du Midi, CNRS and Université Paul Sabatier, France.

  8. HD 129333: The Sun in its infancy

    NASA Technical Reports Server (NTRS)

    Dorren, J. David; Guinan, Edward F.

    1994-01-01

    HD 129333 is a remarkable young, nearby solar-type G star which offers a unique opportunity of studying the properties of the Sun at a time very shortly after in arrived on the main sequence. Its space motion suggest that it is a member of the Pleiades moving group, with an age of approximately 70 Myr; its lithium abundance is consistent with this. HD 129333 has the highest level of Ca II emission of any G star which is not a member of a close binary. Our observations in 1983 showed it to have low-amplitude (5%) light variations implying a rotation period of about 2.7 days, or about 10 times faster than the Sun. Modeling of the photometric variations on the assumption that they are due to starspots yields a spot temperature about 500 K cooler than the photosphere, and a coverage of about 6% of the stellar surface area. ROSAT observations in 1990 revealed the star to be an X-ray source, with an X-ray luminosity in the 0.2 to 2.4 keV range about 300 times that of the Sun. We have used International Ultraviolet Explorer (IUE) observations in conjuction with ground-based photometry to examine the magnetic activity of this star. The IUE emission-line fluxes reveal a level of chromospheric activity 3 to 20 times greater than the Sun's. The transition-region activity is 20 to 100 times that of the Sun. The activity level of HD 129333 is consistent with the Skumanich law relating activity to age, and with the rotation-activity relation, although it may be near saturation level. This star can yield valuable information about the magnetic dynamo of the young Sun, as well as about stellar dynamos in general. The 1988 IUE observations covered four phases of its rotational cycle. A phase dependence of the Mg II h and k emission flux suggests a close association of chromospheric plages with starspot regions at that time. Systematic variations in the mean brightness of HD 129333 between 1983 and 1993, and in the UV emission fluxes, indicate the presence of an activity cycle of an estimated 12 years' duration. HD 129333 is the first solar-type star other than RS CVn binaries for which luminosity variations provide evidence for a spot cycle. Unlike the Sun, which is brighter at activity maximum HD 129333 appears to be fainter when more heavily spotted. Although evolutionary models for the Sun suggest that it was about 30% less luminous at age 70 Myr, they give no information about the UV flux. Accordingly, we have used the 1988 IUE observations of HD 129333 to construct a model spectrum of the infant Sun, which can be used to provide a quantitative estimate of the UV flux in the early solar system.

  9. HUBBLE SPACE TELESCOPE CAPTURES FIRST DIRECT IMAGE OF A STAR

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This is the first direct image of a star other than the Sun, made with NASA's Hubble Space Telescope. Called Alpha Orionis, or Betelgeuse, it is a red supergiant star marking the shoulder of the winter constellation Orion the Hunter (diagram at right). The Hubble image reveals a huge ultraviolet atmosphere with a mysterious hot spot on the stellar behemoth's surface. The enormous bright spot, more than ten times the diameter of Earth, is at least 2,000 Kelvin degrees hotter than the surface of the star. The image suggests that a totally new physical phenomenon may be affecting the atmospheres of some stars. Follow-up observations will be needed to help astronomers understand whether the spot is linked to oscillations previously detected in the giant star, or whether it moves systematically across the star's surface under the grip of powerful magnetic fields. The observations were made by Andrea Dupree of the Harvard- Smithsonian Center for Astrophysics in Cambridge, MA, and Ronald Gilliland of the Space Telescope Science Institute in Baltimore, MD, who announced their discovery today at the 187th meeting of the American Astronomical Society in San Antonio, Texas. The image was taken in ultraviolet light with the Faint Object Camera on March 3, 1995. Hubble can resolve the star even though the apparent size is 20,000 times smaller than the width of the full Moon -- roughly equivalent to being able to resolve a car's headlights at a distance of 6,000 miles. Betelgeuse is so huge that, if it replaced the Sun at the center of our Solar System, its outer atmosphere would extend past the orbit of Jupiter (scale at lower left). Credit: Andrea Dupree (Harvard-Smithsonian CfA), Ronald Gilliland (STScI), NASA and ESA Image files in GIF and JPEG format and captions may be accessed on Internet via anonymous ftp from oposite.stsci.edu in /pubinfo.

  10. Activity of the M8 Dwarf TRAPPIST-1

    NASA Astrophysics Data System (ADS)

    Dmitrienko, E. S.; Savanov, I. S.

    2018-06-01

    The results of an analysis of observations of the cool (M8) dwarf TRAPPIST-1 obtained on the Kepler Space Telescope (the K2 continuation mission) are presented. TRAPPIST-1 possesses a planetary system containing at least seven planets. In all, the observations consist of 105 584 individual brightness measurements made over a total duration of 79 days. Brightness power spectra computed for TRAPPIST-1 exhibit a peak corresponding to P 0 = 3.296 ± 0.007 d . There are also two peaks with lower significances at P 1 = 2.908 d and P 2 = 2.869 d , which cannot be explained by the presence of differential rotation. The observational material available for TRAPPIST-1 is subdivided into 21 datasets, each covering one stellar rotation period. Each of the individual light curves was used to construct a map of the star's temperature inhomogeneities. On average, the total spotted area of TRAPPIST-1 was S = 5% of the entire visible area. The difference between the angular rotation rates at the equator and at the pole is estimated to be ΔΩ = 0.006. The new results obtained together with data from the literature are used to investigate the properties of this unique star and compare them to the properties of other cool dwarfs. Special attention is paid to the star's evolutionary status (its age). All age estimates for TRAPPIST-1 based on its activity characteristics (rotation, spot coverage, UV and X-ray flux, etc.) indicate that the star is young.

  11. Radiative accretion shocks along nonuniform stellar magnetic fields in classical T Tauri stars

    NASA Astrophysics Data System (ADS)

    Orlando, S.; Bonito, R.; Argiroffi, C.; Reale, F.; Peres, G.; Miceli, M.; Matsakos, T.; Stehlé, C.; Ibgui, L.; de Sa, L.; Chièze, J. P.; Lanz, T.

    2013-11-01

    Context. According to the magnetospheric accretion model, hot spots form on the surface of classical T Tauri stars (CTTSs) in regions where accreting disk material impacts the stellar surface at supersonic velocity, generating a shock. Aims: We investigate the dynamics and stability of postshock plasma that streams along nonuniform stellar magnetic fields at the impact region of accretion columns. We study how the magnetic field configuration and strength determine the structure, geometry, and location of the shock-heated plasma. Methods: We model the impact of an accretion stream onto the chromosphere of a CTTS by 2D axisymmetric magnetohydrodynamic simulations. Our model considers the gravity, the radiative cooling, and the magnetic-field-oriented thermal conduction (including the effects of heat flux saturation). We explore different configurations and strengths of the magnetic field. Results: The structure, stability, and location of the shocked plasma strongly depend on the configuration and strength of the magnetic field. In the case of weak magnetic fields (plasma β ≳ 1 in the postshock region), a large component of B may develop perpendicular to the stream at the base of the accretion column, which limits the sinking of the shocked plasma into the chromosphere and perturbs the overstable shock oscillations induced by radiative cooling. An envelope of dense and cold chromospheric material may also develop around the shocked column. For strong magnetic fields (β < 1 in the postshock region close to the chromosphere), the field configuration determines the position of the shock and its stand-off height. If the field is strongly tapered close to the chromosphere, an oblique shock may form well above the stellar surface at the height where the plasma β ≈ 1. In general, we find that a nonuniform magnetic field makes the distribution of emission measure vs. temperature of the postshock plasma at T > 106 K lower than when there is uniform magnetic field. Conclusions: The initial magnetic field strength and configuration in the region of impact of the stream are expected to influence the chromospheric absorption and, therefore, the observability of the shock-heated plasma in the X-ray band. In addition, the field strength and configuration also influence the energy balance of the shocked plasma with its emission measure at T > 106 K, which is lower than expected for a uniform field. The above effects contribute to underestimating the mass accretion rates derived in the X-ray band. Movies are available in electronic form at http://www.aanda.org

  12. Rotation, differential rotation, and gyrochronology of active Kepler stars

    NASA Astrophysics Data System (ADS)

    Reinhold, Timo; Gizon, Laurent

    2015-11-01

    Context. In addition to the discovery of hundreds of exoplanets, the high-precision photometry from the CoRoT and Kepler satellites has led to measurements of surface rotation periods for tens of thousands of stars, which can potentially be used to infer stellar ages via gyrochronology. Aims: Our main goal is to derive ages of thousands of field stars using consistent rotation period measurements derived by different methods. Multiple rotation periods are interpreted as surface differential rotation (DR). We study the dependence of DR with rotation period and effective temperature. Methods: We reanalyze a previously studied sample of 24 124 Kepler stars using different approaches based on the Lomb-Scargle periodogram. Each quarter (Q1-Q14) is treated individually using a prewhitening approach. Additionally, the full time series and their different segments are analyzed. Results: For more than 18 500 stars our results are consistent with the rotation periods from McQuillan et al. (2014, ApJS, 211, 24). Of these, more than 12 300 stars show multiple significant peaks, which we interpret as DR. Dependencies of the DR with rotation period and effective temperature could be confirmed, e.g., the relative DR increases with rotation period. Gyrochronology ages between 100 Myr and 10 Gyr were derived for more than 17 000 stars using different gyrochronology relations, most of them with uncertainties dominated by period variations. We find a bimodal age distribution for Teff between 3200-4700 K. The derived ages reveal an empirical activity-age relation using photometric variability as stellar activity proxy. Additionally, we found 1079 stars with extremely stable (mostly short) periods. Half of these periods may be associated with rotation stabilized by non-eclipsing companions, the other half might be due to pulsations. Conclusions: The derived gyrochronology ages are well constrained since more than ~93.0% of the stars seem to be younger than the Sun where calibration is most reliable. Explaining the bimodality in the age distribution is challenging, and limits accurate stellar age predictions. The relation between activity and age is interesting, and requires further investigation. The existence of cool stars with almost constant rotation period over more than three years of observation might be explained by synchronization with stellar companions, or a dynamo mechanism keeping the spot configurations extremely stable. Full Tables 2 and 4 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/583/A65

  13. Evaluating Gaia performances on eclipsing binaries. IV. Orbits and stellar parameters for SV Cam, BS Dra and HP Dra

    NASA Astrophysics Data System (ADS)

    Milone, E. F.; Munari, U.; Marrese, P. M.; Williams, M. D.; Zwitter, T.; Kallrath, J.; Tomov, T.

    2005-10-01

    This is the fourth in a series of papers that aim both to provide reasonable orbits for a number of eclipsing binaries and to evaluate the expected performance of Gaia of these objects and the accuracy that is achievable in the determination of such fundamental stellar parameters as mass and radius. In this paper, we attempt to derive the orbits and physical parameters for three eclipsing binaries in the mid-F to mid-G spectral range. As for previous papers, only the H_P, V_T, BT photometry from the Hipparcos/Tycho mission and ground-based radial velocities from spectroscopy in the region 8480-8740 Å are used in the analyses. These data sets simulate the photometric and spectroscopic data that are expected to be obtained by Gaia, the approved ESA Cornerstone mission to be launched in 2011. The systems targeted in this paper are SV Cam, BS Dra and HP Dra. SV Cam and BS Dra have been studied previously, allowing comparisons of the derived parameters with those from full scale and devoted ground-based investigations. HP Dra has no published orbital solution. SV Cam has a β Lyrae type light curve and the others have Algol-like light curves. SV Cam has the complication of light curve anomalies, usually attributed to spots; BS Dra has non-solar metallicity, and HP Dra appears to have a small eccentricity and a sizeable time derivative in the argument of the periastron. Thus all three provide interesting and different test cases.

  14. Exploration of the environments of nearby stars with the NICMOS coronagraph: instrumental performance considerations

    NASA Astrophysics Data System (ADS)

    Schneider, Glenn; Thompson, Rodger I.; Smith, Bradford A.; Terrile, Richard J.

    1998-08-01

    The Near IR Camera and Multi-Object Spectrometer (NICMOS), installed into the Hubble Space Telescope (HST) in February 1997, incorporates a coronagraphic imaging capability. The coronagraph is comprised of two optical elements. The camera 2 field divider mirror, upon which the HST f/24 input beam is imaged, includes a 170 micrometers diameter hole which contains approximately 93 percent of the encircled energy from a stellar Point Spread Function (PSF) at a wavelength of 1.6 micrometers . The coronagraphic hole lowers both the diffracted energy in the surrounding region by reducing the high spatial frequency components of the occulted core of the PSF< and down stream scattering. The geometrical radius of this occulting spot, when re-imaged through the camera 2 f/45 optics, is approximately 4 pixels at the detector focal plane. An oversized cold pupil-plane mask, with radial structures co-aligned with the HST secondary mirror spider, acts over the whole 19.1 inch by 19.2 field to further reduce the diffracted energy in the direction of the spider vanes. The absolute performance levels of the coronagraph were ascertained during the servicing mission observatory verification program. Using a differential imaging strategy we expect to achieve statistically significant detectors of sub-stellar companions at 1.6 micrometers with a (Delta) H of approximately 10 and separations as close as 0.5 inch. The NICMOS environments of nearby stars programs is exploiting this capability in systematic surveys of nearby, and young stars searching for brown dwarfs and giant planets, and protoplanetary disks around main-sequence stars.

  15. The gravitational wave background from massive black hole binaries in Illustris: spectral features and time to detection with pulsar timing arrays

    NASA Astrophysics Data System (ADS)

    Kelley, Luke Zoltan; Blecha, Laura; Hernquist, Lars; Sesana, Alberto; Taylor, Stephen R.

    2017-11-01

    Pulsar timing arrays (PTAs) around the world are using the incredible consistency of millisecond pulsars to measure low-frequency gravitational waves from (super)massive black hole (MBH) binaries. We use comprehensive MBH merger models based on cosmological hydrodynamic simulations to predict the spectrum of the stochastic gravitational wave background (GWB). We use real time-of-arrival specifications from the European, NANOGrav, Parkes, and International PTA (IPTA) to calculate realistic times to detection of the GWB across a wide range of model parameters. In addition to exploring the parameter space of environmental hardening processes (in particular: stellar scattering efficiencies), we have expanded our models to include eccentric binary evolution which can have a strong effect on the GWB spectrum. Our models show that strong stellar scattering and high characteristic eccentricities enhance the GWB strain amplitude near the PTA-sensitive `sweet-spot' (near the frequency f = 1 yr-1), slightly improving detection prospects in these cases. While the GWB amplitude is degenerate between cosmological and environmental parameters, the location of a spectral turnover at low frequencies (f ≲ 0.1 yr-1) is strongly indicative of environmental coupling. At high frequencies (f ≳ 1 yr-1), the GWB spectral index can be used to infer the number density of sources and possibly their eccentricity distribution. Even with merger models that use pessimistic environmental and eccentricity parameters, if the current rate of PTA expansion continues, we find that the IPTA is highly likely to make a detection within about 10 yr.

  16. GALAXY ZOO: THE FUNDAMENTALLY DIFFERENT CO-EVOLUTION OF SUPERMASSIVE BLACK HOLES AND THEIR EARLY- AND LATE-TYPE HOST GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schawinski, Kevin; Urry, C. Megan; Virani, Shanil

    We use data from the Sloan Digital Sky Survey and visual classifications of morphology from the Galaxy Zoo project to study black hole growth in the nearby universe (z < 0.05) and to break down the active galactic nucleus (AGN) host galaxy population by color, stellar mass, and morphology. We find that the black hole growth at luminosities L[O{sub III}]>10{sup 40} erg s{sup -1} in early- and late-type galaxies is fundamentally different. AGN host galaxies as a population have a broad range of stellar masses (10{sup 10}-10{sup 11} M{sub sun}), reside in the green valley of the color-mass diagram andmore » their central black holes have median masses around 10{sup 6.5} M{sub sun}. However, by comparing early- and late-type AGN host galaxies to their non-active counterparts, we find several key differences: in early-type galaxies, it is preferentially the galaxies with the least massive black holes that are growing, while in late-type galaxies, it is preferentially the most massive black holes that are growing. The duty cycle of AGNs in early-type galaxies is strongly peaked in the green valley below the low-mass end (10{sup 10} M{sub sun}) of the red sequence at stellar masses where there is a steady supply of blue cloud progenitors. The duty cycle of AGNs in late-type galaxies on the other hand peaks in massive (10{sup 11} M{sub sun}) green and red late-types which generally do not have a corresponding blue cloud population of similar mass. At high-Eddington ratios (L/L{sub Edd}>0.1), the only population with a substantial fraction of AGNs are the low-mass green valley early-type galaxies. Finally, the Milky Way likely resides in the 'sweet spot' on the color-mass diagram where the AGN duty cycle of late-type galaxies is highest. We discuss the implications of these results for our understanding of the role of AGNs in the evolution of galaxies.« less

  17. Transit Timing Observations from Kepler. IX. Catalog of the Full Long-cadence Data Set

    NASA Astrophysics Data System (ADS)

    Holczer, Tomer; Mazeh, Tsevi; Nachmani, Gil; Jontof-Hutter, Daniel; Ford, Eric B.; Fabrycky, Daniel; Ragozzine, Darin; Kane, Mackenzie; Steffen, Jason H.

    2016-07-01

    We present a new transit timing catalog of 2599 Kepler Objects of Interest (KOIs), using the PDC-MAP long-cadence light curves that include the full 17 quarters of the mission (ftp://wise-ftp.tau.ac.il/pub/tauttv/TTV/ver_112). The goal is to produce an easy-to-use catalog that can stimulate further analyses of interesting systems. For 779 KOIs with high enough S/N, we derived the timing, duration, and depth of 69,914 transits. For 1820 KOIs with lower SNR, we derived only the timing of 225,273 transits. After removal of outlier timings, we derived various statistics for each KOI that were used to indicate significant variations. Including systems found by previous works, we have detected 260 KOIs that showed significant TTVs with long-term variations (>100 days), and another 14 KOIs with periodic modulations shorter than 100 days and small amplitudes. For five of those, the periodicity is probably due to the crossing of rotating stellar spots by the transiting planets.

  18. Investigating the Spectroscopic Variability of Magentically Active M Dwarfs In SDSS.

    NASA Astrophysics Data System (ADS)

    Ventura, Jean-Paul; Schmidt, Sarah J.; Cruz, Kelle; Rice, Emily; Cid, Aurora

    2018-01-01

    Magnetic activity, a wide range of observable phenomena produced in the outer atmospheres of stars is, currently, not well understood for M dwarfs. In higher mass stars, magnetic activity is powered by a dynamo process involving the differential rotation of a star’s inner regions. This process generates a magnetic field, heats up regions in the chromosphere and produces Hα emission line radiation from collisional excitation. Using spectroscopic data from the Sloan Digital Sky Survey (SDSS), I compare Hα emission line strengths for a subsample of 12,000 photometric variability selected M dwarfs from Pan-STARRS1 with those of a known non-variable sample. Presumably, the photometric variability originates from the occurrence of star spots at the stellar surface, which are the result of an intense magnetic field and associated chromospheric heating. We proceed with this work in order to test whether the photometric variability of the sample correlates with chromospheric Hα emission features. If not, we explore alternate reasons for that photometric variability (e.g. binarity or transiting planetary companions)

  19. On the orbital period of the magnetic cataclysmic variable HU Aquarii

    NASA Astrophysics Data System (ADS)

    Vogel, J.; Schwope, A.; Schwarz, R.; Kanbach, G.; Dhillon, V. S.; Marsh, T. R.

    2008-02-01

    We present an analysis of ULTRACAM light curves of the magnetic cataclysmic variable HU Aquarii which were taken at the VLT in May 2005. Since the light curves were serendipitously obtained during a low state, they allowed us to determine the binary and the stellar parameters with high accuracy. The light curve was decomposed into the components originating from the accretion spot, the photosphere surrounding it and the white dwarf itself, which allowed us to extract the eclipse light curve for the pure white dwarf. Combined with high-time resolution observations with different instruments over a 12 year baseline it was possible to get exact eclipse timings of the white dwarf and thus establish a significant deviation from a linear ephemeris. If described by a quadratic term, the period decreases by -1.13×10-11 ss-1. Interpreting this change in period as a pure angular momentum loss (AML) effect, the rate of J˙ = -4.9×1035 erg is much too high to be explained by gravitational radiation alone.

  20. The spectra of the chemically peculiar stars

    NASA Astrophysics Data System (ADS)

    Hack, M.

    The spectral properties of the chemically peculiar (CP) stars and the information which is obtainable from them are reviewed. The identification and classification of CP stars in the basis of their spectra is discussed with particular emphasis on the He-rich stars and CNO stars, and recent classification systems based on narrow-band photometry, low-resolution spectrometry or UV spectra are considered. Attention is given to continuum flux distributions, particularly the infrared excesses and UV deficiencies, and the stellar properties (effective temperature and gravity, line blocking, discontinuities, mass and radius) that may be derived from them, and to the magnetic field measurements and evidence for spotted element distributions that may be inferred from spectral surface composition analyses made using LTE model atmospheres are considered which involve both large sample of stars and individual stars, and statistical studies of rotation, magnetic braking and membership in binary systems and clusters are indicated. Finally, UV and X-ray evidence for chromospheres and coronas in some CP stars is noted.

  1. A revised distance to IRAS 16293-2422 from VLBA astrometry of associated water masers

    NASA Astrophysics Data System (ADS)

    Dzib, S. A.; Ortiz-León, G. N.; Hernández-Gómez, A.; Loinard, L.; Mioduszewski, A. J.; Claussen, M.; Menten, K. M.; Caux, E.; Sanna, A.

    2018-06-01

    IRAS 16293-2422 is a very well-studied young stellar system seen in projection towards the L1689N cloud in the Ophiuchus complex. However, its distance is still uncertain; there is a range of values from 120 pc to 180 pc. Our goal is to measure the trigonometric parallax of this young star by means of H2O maser emission. We use archival data from 15 epochs of VLBA observations of the 22.2 GHz water maser line. By modeling the displacement on the sky of the H2O maser spots, we derived a trigonometric parallax of 7.1 ± 1.3 mas, corresponding to a distance of 141-21+30 pc. This new distance is in good agreement with recent values obtained for other magnetically active young stars in the L1689 cloud. We relate the kinematics of these masers with the outflows and the recent ejections powered by source A in the system.

  2. The magnetic field and the evolution of element spots on the surface of the HgMn eclipsing binary ARAur

    NASA Astrophysics Data System (ADS)

    Hubrig, S.; Savanov, I.; Ilyin, I.; González, J. F.; Korhonen, H.; Lehmann, H.; Schöller, M.; Granzer, T.; Weber, M.; Strassmeier, K. G.; Hartmann, M.; Tkachenko, A.

    2010-10-01

    The system ARAur is a young late B-type double-lined eclipsing binary with a primary star of HgMn peculiarity. We applied the Doppler imaging method to reconstruct the distribution of Fe and Y over the surface of the primary using spectroscopic time series obtained in 2005 and from 2008 October to 2009 February. The results show a remarkable evolution of the element distribution and overabundances. Measurements of the magnetic field with the moment technique using several elements reveal the presence of a longitudinal magnetic field of the order of a few hundred gauss in both stellar components and a quadratic field of the order of 8kG on the surface of the primary star. Based on observations obtained at the 2.56-m Nordic Optical Telescope on La Palma, the Karl-Schwarzschild-Observatorium in Tautenburg and the STELLA robotic telescope on Tenerife. E-mail: shubrig@aip.de

  3. Capturing Neutrinos from a Star's Final Hours

    NASA Astrophysics Data System (ADS)

    Hensley, Kerry

    2018-04-01

    What happens on the last day of a massive stars life? In the hours before the star collapses and explodes as a supernova, the rapid evolution of material in its core creates swarms of neutrinos. Observing these neutrinos may help us understand the final stages of a massive stars life but theyve never been detected.A view of some of the 1,520 phototubes within the MiniBooNE neutrino detector. Observations from this and other detectors are helping to illuminate the nature of the mysterious neutrino. [Fred Ullrich/FNAL]Silent Signposts of Stellar EvolutionThe nuclear fusion that powers stars generates tremendous amounts of energy. Much of this energy is emitted as photons, but a curious and elusive particle the neutrino carries away most of the energy in the late stages of stellar evolution.Stellar neutrinos can be created through two processes: thermal processesand beta processes. Thermal processes e.g.,pair production, in which a particle/antiparticle pair are created depend on the temperature and pressure of the stellar core. Beta processes i.e.,when a proton converts to a neutron, or vice versa are instead linked to the isotopic makeup of the stars core. This means that, if we can observe them, beta-process neutrinos may be able to tell us about the last steps of stellar nucleosynthesis in a dying star.But observing these neutrinos is not so easilydone. Neutrinos arenearly massless, neutral particles that interact only feebly with matter; out of the whopping 1060neutrinos released in a supernova explosion, even the most sensitive detectors only record the passage of just a few. Do we have a chance of detectingthe beta-process neutrinos that are released in the final few hours of a stars life, beforethe collapse?Neutrino luminosities leading up to core collapse. Shortly before collapse, the luminosity of beta-process neutrinos outshines that of any other neutrino flavor or origin. [Adapted from Patton et al. 2017]Modeling Stellar CoresTo answer this question, Kelly Patton (University of Washington) and collaborators first used a stellar evolution model to explore neutrino production in massive stars. They modeled the evolution of two massive stars 15 and 30 times the mass of our Sun from the onset of nuclear fusion to the moment of collapse.The authors found that in the last few hours before collapse, during which the material in the stars cores is rapidly upcycled into heavier elements, the flux from beta-process neutrinos rivals that of thermal neutrinos and even exceeds it at high energies. So now we know there are many beta-process neutrinos but can we spot them?Neutrino and antineutrino fluxes at Earth from the last 2 hours of a 30-solar-mass stars life compared to the flux from background sources. The rows represent calculations using two different neutrino mass hierarchies. Click to enlarge. [Patton et al. 2017]Observing Elusive NeutrinosFor an imminent supernova at a distance of 1 kiloparsec, the authors find that the presupernova electron neutrino flux rises above the background noise from the Sun, nuclear reactors, and radioactive decay within the Earth in the final two hours before collapse.Based on these calculations, current and future neutrino observatories should be able to detect tens of neutrinos from a supernova within 1 kiloparsec, about 30% of which would be beta-process neutrinos. As the distance to the star increases, the time and energy window within which neutrinos can be observed gradually narrows, until it closes for stars at a distance of about 30 kiloparsecs.Are there any nearby supergiants soon to go supernova so these predictions can be tested? At a distance of only 650 light-years, the red supergiant star Betelgeuse should produce detectable neutrinos when it explodes an exciting opportunity for astronomers in the far future!CitationKelly M. Patton et al 2017ApJ8516. doi:10.3847/1538-4357/aa95c4

  4. Exploring the engines of molecular outflows. Radio continuum and H_2_O maser observations.

    NASA Astrophysics Data System (ADS)

    Tofani, G.; Felli, M.; Taylor, G. B.; Hunter, T. R.

    1995-09-01

    We present A-configuration VLA observations of the 22GHz H_2_O maser line and 8.4GHz continuum emission of 22 selected CO bipolar outflows associated with water masers. These observations allow us to study the region within 10^4^AU of the engine powering the outflow. The positions of the maser spots are compared with those of ultra-compact (UC) continuum sources found in our observations, with IRAS data and with data from the literature on the molecular outflows. Weak unresolved continuum sources are found in several cases associated with the maser. Most probably they represent the ionized envelope surrounding the young stellar object (YSO) which powers the maser and the outflow. These weak radio continuum sources are not necessarily associated with the IRAS sources, which are more representative of the global emission from the star forming region. A comparison of the velocity pattern of the CO outflow with those of the maser spots detected with the VLA is also made. Asymmetries in the H_2_O velocities are found on opposite sides of the YSO, suggesting that the outflow acceleration begins from the YSO itself. In a few cases we find evidence for two outflows in different evolutionary stages. The H_2_O masers in these sources are always found at the centre of the younger outflow. The degree of variability of each maser is derived from single dish observations obtained with the Medicina radiotelescope before and after the VLA observations. Velocity drifts of some features are interpreted as acceleration of the maser.

  5. Modeling molecular hydrogen emission in M dwarf exoplanetary systems

    NASA Astrophysics Data System (ADS)

    Evonosky, William; France, Kevin; Kruczek, Nick E.; Youngblood, Allison; Measurements of the Ultraviolet Spectral Characteristics of Low-mass Exoplanet host Stars (MUSCLES)

    2017-01-01

    Exoplanets orbiting low-mass stars are prime candidates for atmospheric characterization due to their astronomical abundance and short orbital periods. These planets orbit stars that are often more active than main sequence solar-type stars. They are exposed to differing levels of ultraviolet radiation which can cause traditional “biosignature” gases to be generated abiotically, potentially causing false-positive identifications of life. We modeled the recently discovered molecular hydrogen emission in the ultraviolet spectra (1350 - 1650 Å) as arising from the stellar surface, excited by radiation generated in the upper chromosphere. The model was compared with observed hydrogen emission from the “Measurements of the Ultraviolet Spectral Characteristics of Low-mass Exoplanet host Stars” (MUSCLES) survey by conducting a grid search and implementing a chi-squared minimization routine. We considered only progressions from the [1, 4] and [1, 7] first excited electronic levels. Our modeling procedure varied the atomic hydrogen column density (in the chromosphere) as well as the photospheric molecular hydrogen column density and temperature. The model required as an input a reconstructed intrinsic Lyman α profile which served as the pumping radiation for the molecular hydrogen. We found that an atomic hydrogen column density of log10N(H I) = 14.13 ± 0.16 cm-2 represents a breaking point above which there is not enough Lyman α flux available to excite a significant molecular hydrogen population into the [1, 7] state. We also present H2 temperatures which may suggest that star spots on low mass stars persist longer, and encompass more area than star spots on solar-type stars.

  6. Modeling Molecular Hydrogen Emission in M-Dwarf Exoplanetary Systems

    NASA Astrophysics Data System (ADS)

    Evonosky, W. R.; France, K.; Kruczek, N.; Youngblood, A.

    2016-12-01

    Exoplanets orbiting low-mass stars are prime candidates for atmospheric characterization due to their astronomical abundance and short orbital periods. These planets orbit stars that are often more active than main sequence solar-type stars. They are exposed to differing levels of ultraviolet radiation which can cause traditional "biosignature" gases to be generated abiotically, potentially causing false-positive identifications of life. We modeled the recently discovered molecular hydrogen emission in the ultraviolet spectra (1350 - 1650 Å) as arising from the stellar surface, excited by radiation generated in the upper chromosphere. The model was compared with observed hydrogen emission from the "Measurements of the Ultraviolet Spectral Characteristics of Low-mass Exoplanet host Stars" (MUSCLES) survey by conducting a grid search and implementing a chi-squared minimization routine. We considered only progressions from the [1, 4] and [1, 7] first excited electronic levels. Our modeling procedure varied the atomic hydrogen column density (in the chromosphere) as well as the photospheric molecular hydrogen column density and temperature. The model required as an input a reconstructed intrinsic Lyman α profile which served as the pumping radiation for the molecular hydrogen. We found that an atomic hydrogen column density of log10N(H I) = 14.13 ± 0.16 cm-2 represents a breaking point above which there is not enough Lyman α flux available to excite a significant molecular hydrogen population into the [1, 7] state. We also present H2 temperatures which may suggest that star spots on low mass stars persist longer, and encompass more area than star spots on solar-type stars.

  7. Theory and evidence of global Rossby waves in upper main-sequence stars: r-mode oscillations in many Kepler stars

    NASA Astrophysics Data System (ADS)

    Saio, Hideyuki; Kurtz, Donald W.; Murphy, Simon J.; Antoci, Victoria L.; Lee, Umin

    2018-02-01

    Asteroseismic inference from pressure modes (p modes) and buoyancy, or gravity, modes (g modes) is ubiquitous for stars across the Hertzsprung-Russell diagram. Until now, however, discussion of r modes (global Rossby waves) has been rare. Here we derive the expected frequency ranges of r modes in the observational frame by considering the visibility of these modes. We find that the frequencies of r modes of azimuthal order m appear as groups at slightly lower frequency than m times the rotation frequency. Comparing the visibility curves for r modes with Fourier amplitude spectra of Kepler light curves of upper main-sequence B, A, and F stars, we find that r modes are present in many γ Dor stars (as first discovered by Van Reeth et al.), spotted stars, and so-called heartbeat stars, which are highly eccentric binary stars. We also find a signature of r modes in a frequently bursting Be star observed by Kepler. In the amplitude spectra of moderately to rapidly rotating γ Dor stars, r-mode frequency groups appear at lower frequency than prograde g-mode frequency groups, while in the amplitude spectra of spotted early A to B stars, groups of symmetric (with respect to the equator) r-mode frequencies appear just below the frequency of a structured peak that we suggest represents an approximate stellar rotation rate. In many heartbeat stars, a group of frequencies can be fitted with symmetric m = 1 r modes, which can be used to obtain rotation frequencies of these stars.

  8. RADIO OBSERVATIONS OF THE STAR FORMATION ACTIVITIES IN THE NGC 2024 FIR 4 REGION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Minho; Kang, Miju; Lee, Jeong-Eun, E-mail: minho@kasi.re.kr

    Star formation activities in the NGC 2024 FIR 4 region were studied by imaging centimeter continuum sources and water maser sources using several archival data sets from the Very Large Array. The continuum source VLA 9 is elongated in the northwest–southeast direction, consistent with the FIR 4 bipolar outflow axis, and has a flat spectrum in the 6.2–3.6 cm interval. The three water maser spots associated with FIR 4 are also distributed along the outflow axis. One of the spots is located close to VLA 9, and another one is close to an X-ray source. Examinations of the positions ofmore » compact objects in this region suggest that the FIR 4 cloud core contains a single low-mass protostar. VLA 9 is the best indicator of the protostellar position. VLA 9 may be a radio thermal jet driven by this protostar, and it is unlikely that FIR 4 contains a high-mass young stellar object (YSO). A methanol 6.7 GHz maser source is located close to VLA 9, at a distance of about 100 AU. The FIR 4 protostar must be responsible for the methanol maser action, which suggests that methanol class II masers are not necessarily excited by high-mass YSOs. Also discussed are properties of other centimeter continuum sources in the field of view and the water masers associated with FIR 6n. Some of the continuum sources are radio thermal jets, and some are magnetically active young stars.« less

  9. Stellar Absorption Line Analysis of Local Star-forming Galaxies: The Relation between Stellar Mass, Metallicity, Dust Attenuation, and Star Formation Rate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jabran Zahid, H.; Kudritzki, Rolf-Peter; Ho, I-Ting

    We analyze the optical continuum of star-forming galaxies in the Sloan Digital Sky Survey by fitting stacked spectra with stellar population synthesis models to investigate the relation between stellar mass, stellar metallicity, dust attenuation, and star formation rate. We fit models calculated with star formation and chemical evolution histories that are derived empirically from multi-epoch observations of the stellar mass–star formation rate and the stellar mass–gas-phase metallicity relations, respectively. We also fit linear combinations of single-burst models with a range of metallicities and ages. Star formation and chemical evolution histories are unconstrained for these models. The stellar mass–stellar metallicity relationsmore » obtained from the two methods agree with the relation measured from individual supergiant stars in nearby galaxies. These relations are also consistent with the relation obtained from emission-line analysis of gas-phase metallicity after accounting for systematic offsets in the gas-phase metallicity. We measure dust attenuation of the stellar continuum and show that its dependence on stellar mass and star formation rate is consistent with previously reported results derived from nebular emission lines. However, stellar continuum attenuation is smaller than nebular emission line attenuation. The continuum-to-nebular attenuation ratio depends on stellar mass and is smaller in more massive galaxies. Our consistent analysis of stellar continuum and nebular emission lines paves the way for a comprehensive investigation of stellar metallicities of star-forming and quiescent galaxies.« less

  10. The climate of HD 189733b from fourteen transits and eclipses measured by Spitzer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agol, E.; /Washington U., Seattle, Astron. Dept. /Santa Barbara, KITP /UC, Santa Barbara; Cowan, Nicolas B.

    We present observations of six transits and six eclipses of the transiting planet system HD 189733 taken with the Spitzer Space Telescope IRAC camera at 8 microns, as well as a re-analysis of previously published data. We use several novel techniques in our data analysis, the most important of which is a new correction for the detector 'ramp' variation with a double-exponential function which performs better and is a better physical model for this detector variation. Our main scientific findings are: (1) an upper limit on the variability of the day-side planet flux of 2.7% (68% confidence); (2) the mostmore » precise set of transit times measured for a transiting planet, with an average accuracy of 3 seconds; (3) a lack of transit-timing variations, excluding the presence of second planets in this system above 20% of the mass of Mars in low-order mean-motion resonance at 95% confidence; (4) a confirmation of the planet's phase variation, finding the night side is 64% as bright as the day side, as well as an upper limit on the night-side variability of 17% (68% confidence); (5) a better correction for stellar variability at 8 micron causing the phase function to peak 3.5 hours before secondary eclipse, confirming that the advection and radiation timescales are comparable at the 8 micron photosphere; (6) variation in the depth of transit, which possibly implies variations in the surface brightness of the portion of the star occulted by the planet, posing a fundamental limit on non-simultaneous multi-wavelength transit absorption measurements of planet atmospheres; (7) a measurement of the infrared limb-darkening of the star, which is in good agreement with stellar atmosphere models; (8) an offset in the times of secondary eclipse of 69 seconds, which is mostly accounted for by a 31 second light travel time delay and 33 second delay due to the shift of ingress and egress by the planet hot spot; this confirms that the phase variation is due to an offset hot spot on the planet; (9) a retraction of the claimed eccentricity of this system due to the offset of secondary eclipse, which is now just an upper limit; and (10) high precision measurements of the parameters of this system. These results were enabled by the exquisite photometric precision of the Spitzer IRAC camera; for repeat observations the scatter is less than 0.35 mmag over the 590 day time scale of our observations after decorrelating with detector parameters.« less

  11. Analysis of new high-precision transit light curves of WASP-10 b: starspot occultations, small planetary radius, and high metallicity

    NASA Astrophysics Data System (ADS)

    Maciejewski, G.; Raetz, St.; Nettelmann, N.; Seeliger, M.; Adam, C.; Nowak, G.; Neuhäuser, R.

    2011-11-01

    Context. The WASP-10 planetary system is intriguing because different values of radius have been reported for its transiting exoplanet. The host star exhibits activity in terms of photometric variability, which is caused by the rotational modulation of the spots. Moreover, a periodic modulation has been discovered in transit timing of WASP-10 b, which could be a sign of an additional body perturbing the orbital motion of the transiting planet. Aims: We attempt to refine the physical parameters of the system, in particular the planetary radius, which is crucial for studying the internal structure of the transiting planet. We also determine new mid-transit times to confirm or refute observed anomalies in transit timing. Methods: We acquired high-precision light curves for four transits of WASP-10 b in 2010. Assuming various limb-darkening laws, we generated best-fit models and redetermined parameters of the system. The prayer-bead method and Monte Carlo simulations were used to derive error estimates. Results: Three transit light curves exhibit signatures of the occultations of dark spots by the planet during its passage across the stellar disk. The influence of stellar activity on transit depth is taken into account while determining system parameters. The radius of WASP-10 b is found to be no greater than 1.03+0.07-0.03 Jupiter radii, a value significantly smaller than most previous studies indicate. We calculate interior structure models of the planet, assuming a two-layer structure with one homogeneous envelope atop a rock core. The high value of the WASP-10 b's mean density allows one to consider the planet's internal structure including 270 to 450 Earth masses of heavy elements. Our new mid-transit times confirm that transit timing cannot be explained by a constant period if all literature data points are considered. They are consistent with the ephemeris assuming a periodic variation of transit timing. We show that possible starspot features affecting the transit's ingress or egress cannot reproduce variations in transit timing at the observed amplitude. Based on observations collected at the Centro Astronómico Hispano Alemán (CAHA), operated jointly by the Max-Planck Institut für Astronomie and the Instituto de Astrofisica de Andalucia (CSIC).Photometric data are available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/535/A7

  12. Algol: An Early Candidate for a Transiting Exoplanet

    NASA Astrophysics Data System (ADS)

    French, Linda M.; Stuart, I.

    2008-09-01

    Virtually every astronomy text credits John Goodricke (1764-1786) with the discovery of the period of variability of the star Algol (β Per) and with the explanation of its variation (eclipses by an unseen stellar companion). Today, Algol is considered a prototype of an eclipsing binary star. In actuality, John Goodricke worked in collaboration with his neighbor, mentor, and distant relative, Edward Pigott. As observed by Hoskin1, the observing journals2 of the two clearly show that the eclipse explanation originated with Edward. Both originally used the term "planet” to describe the eclipsing body. However, in Goodricke's 1783 paper describing Algol, he writes: "....I should imagine it could hardly be accounted for otherwise than either by the interposition of a large body revolving round Algol, or some kind of motion of its own, whereby part of its body, covered with spots or such like matter...."3 Goodricke was later to soften his stance still further after the two discovered several other variable stars; his last published work4 mentions only starspots as an explanation for the light variation of Algol. Although the physics of the time would not have allowed Goodricke and Pigott to distinguish between a star and a planet as the unseen companion, the eighteenth-century astronomers showed great prescience in realizing that the eclipses of Algol were just that. Their mental leap, at a time when astronomers were just beginning to think seriously of discovering planets around other stars, should not go unremembered by modern planetary scientists. Footnotes 1 Hoskin, M. (1982). In Stellar Astronomy, Science History Publications Ltd., Chalfont St. Giles, England. 2 Goodricke and Pigott journals. York City Archives, York, England. 3 Goodricke, J. G. (1783). Phil. Soc. Roy. Soc. London 73, 474-482. 4 Goodricke, J. G. (1786). Phil. Soc. Roy. Soc. London 76, 48-61.

  13. The structure of protoplanetary discs around evolving young stars

    NASA Astrophysics Data System (ADS)

    Bitsch, Bertram; Johansen, Anders; Lambrechts, Michiel; Morbidelli, Alessandro

    2015-03-01

    The formation of planets with gaseous envelopes takes place in protoplanetary accretion discs on time scales of several million years. Small dust particles stick to each other to form pebbles, pebbles concentrate in the turbulent flow to form planetesimals and planetary embryos and grow to planets, which undergo substantial radial migration. All these processes are influenced by the underlying structure of the protoplanetary disc, specifically the profiles of temperature, gas scale height, and density. The commonly used disc structure of the minimum mass solar nebula (MMSN) is a simple power law in all these quantities. However, protoplanetary disc models with both viscous and stellar heating show several bumps and dips in temperature, scale height, and density caused by transitions in opacity, which are missing in the MMSN model. These play an important role in the formation of planets, since they can act as sweet spots for forming planetesimals via the streaming instability and affect the direction and magnitude of type-I migration. We present 2D simulations of accretion discs that feature radiative cooling and viscous and stellar heating, and they are linked to the observed evolutionary stages of protoplanetary discs and their host stars. These models allow us to identify preferred planetesimal and planet formation regions in the protoplanetary disc as a function of the disc's metallicity, accretion rate, and lifetime. We derive simple fitting formulae that feature all structural characteristics of protoplanetary discs during the evolution of several Myr. These fits are straightforward for applying to modelling any growth stage of planets where detailed knowledge of the underlying disc structure is required. Appendix A is available in electronic form at http://www.aanda.org

  14. An HST/STIS Optical Transmission Spectrum of Warm Neptune GJ 436b

    NASA Astrophysics Data System (ADS)

    Lothringer, Joshua D.; Benneke, Björn; Crossfield, Ian J. M.; Henry, Gregory W.; Morley, Caroline; Dragomir, Diana; Barman, Travis; Knutson, Heather; Kempton, Eliza; Fortney, Jonathan; McCullough, Peter; Howard, Andrew W.

    2018-02-01

    GJ 436b is a prime target for understanding warm Neptune exoplanet atmospheres and a target for multiple James Webb Space Telescope (JWST) Guaranteed Time Observation programs. Here, we report the first space-based optical transmission spectrum of the planet using two Hubble Space Telescope (HST) Space Telescope Imaging Spectrograph (STIS) transit observations from 0.53 to 1.03 μm. We find no evidence for alkali absorption features, nor evidence of a scattering slope longward of 0.53 μm. The spectrum is indicative of moderate to high metallicity (∼100–1000× solar), while moderate-metallicity scenarios (∼100× solar) require aerosol opacity. The optical spectrum also rules out some highly scattering haze models. We find an increase in transit depth around 0.8 μm in the transmission spectra of three different sub-Jovian exoplanets (GJ 436b, HAT-P-26b, and GJ 1214b). While most of the data come from STIS, data from three other instruments may indicate this is not an instrumental effect. Only the transit spectrum of GJ 1214b is well fit by a model with stellar plages on the photosphere of the host star. Our photometric monitoring of the host star reveals a stellar rotation rate of 44.1 days and an activity cycle of 7.4 years. Intriguingly, GJ 436 does not become redder as it gets dimmer, which is expected if star spots were dominating the variability. These insights into the nature of the GJ 436 system help refine our expectations for future observations in the era of JWST, whose higher precision and broader wavelength coverage will shed light on the composition and structure of GJ 436b’s atmosphere.

  15. CSI 2264: simultaneous optical and infrared light curves of young disk-bearing stars in NGC 2264 with CoRoT and Spitzer—evidence for multiple origins of variability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cody, Ann Marie; Stauffer, John; Rebull, Luisa M.

    2014-04-01

    We present the Coordinated Synoptic Investigation of NGC 2264, a continuous 30 day multi-wavelength photometric monitoring campaign on more than 1000 young cluster members using 16 telescopes. The unprecedented combination of multi-wavelength, high-precision, high-cadence, and long-duration data opens a new window into the time domain behavior of young stellar objects. Here we provide an overview of the observations, focusing on results from Spitzer and CoRoT. The highlight of this work is detailed analysis of 162 classical T Tauri stars for which we can probe optical and mid-infrared flux variations to 1% amplitudes and sub-hour timescales. We present a morphological variabilitymore » census and then use metrics of periodicity, stochasticity, and symmetry to statistically separate the light curves into seven distinct classes, which we suggest represent different physical processes and geometric effects. We provide distributions of the characteristic timescales and amplitudes and assess the fractional representation within each class. The largest category (>20%) are optical 'dippers' with discrete fading events lasting ∼1-5 days. The degree of correlation between the optical and infrared light curves is positive but weak; notably, the independently assigned optical and infrared morphology classes tend to be different for the same object. Assessment of flux variation behavior with respect to (circum)stellar properties reveals correlations of variability parameters with Hα emission and with effective temperature. Overall, our results point to multiple origins of young star variability, including circumstellar obscuration events, hot spots on the star and/or disk, accretion bursts, and rapid structural changes in the inner disk.« less

  16. Infrared images of merging galaxies

    NASA Technical Reports Server (NTRS)

    Wright, G. S.; James, P. A.; Joseph, R. D.; Mclean, I. S.; Doyon, R.

    1990-01-01

    Infrared imaging of interacting galaxies is especially interesting because their optical appearance is often so chaotic due to extinction by dust and emission from star formation regions, that it is impossible to locate the nuclei or determine the true stellar distribution. However, at near-infrared wavelengths extinction is considerably reduced, and most of the flux from galaxies originates from red giant stars that comprise the dominant stellar component by mass. Thus near infrared images offer the opportunity to study directly components of galactic structure which are otherwise inaccessible. Such images may ultimately provide the framework in which to understand the activity taking place in many of the mergers with high Infrared Astronomy Satellite (IRAS) luminosities. Infrared images have been useful in identifying double structures in the nuclei of interacting galaxies which have not even been hinted at by optical observations. A striking example of this is given by the K images of Arp 220. Graham et al. (1990) have used high resolution imaging to show that it has a double nucleus coincident with the radio sources in the middle of the dust lane. The results suggest that caution should be applied in the identification of optical bright spots as multiple nuclei in the absence of other evidence. They also illustrate the advantages of using infrared imaging to study the underlying structure in merging galaxies. The authors have begun a program to take near infrared images of galaxies which are believed to be mergers of disk galaxies because they have tidal tails and filaments. In many of these the merger is thought to have induced exceptionally luminous infrared emission (cf. Joseph and Wright 1985, Sanders et al. 1988). Although the optical images of the galaxies show spectacular dust lanes and filaments, the K images all have a very smooth distribution of light with an apparently single nucleus.

  17. K2 ROTATION PERIODS FOR LOW-MASS HYADS AND THE IMPLICATIONS FOR GYROCHRONOLOGY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Douglas, S. T.; Agüeros, M. A.; Covey, K. R.

    2016-05-01

    As the closest open cluster to the Sun, the Hyades is an important benchmark for many stellar properties, but its members are also scattered widely over the sky. Previous studies of stellar rotation in the Hyades relied on targeted observations of single stars or data from shallower all-sky variability surveys. The re-purposed Kepler mission, K2 , is the first opportunity to measure rotation periods ( P {sub rot}) for many Hyads simultaneously while also being sensitive to fully convective M dwarf members. We analyze K2 data for 65 Hyads and present P {sub rot} values for 48. Thirty-seven of thesemore » are new measurements, including the first P {sub rot} measurements for fully convective Hyads. For 9 of the 11 stars with P {sub rot} in the literature and this work, the measurements are consistent; we attribute the two discrepant cases to spot evolution. Nearly all stars with masses ≲0.3 M {sub ⊙} are rapidly rotating, indicating a change in rotation properties at the boundary to full convection. When confirmed and candidate binaries are removed from the mass–period plane, only three rapid rotators with masses ≳0.3 M {sub ⊙} remain. This is in contrast to previous results showing that the single-valued mass–period sequence for ≈600 Myr old stars ends at ≈0.65 M {sub ⊙} when binaries are included. We also find that models of rotational evolution predict faster rotation than is actually observed at ≈600 Myr for stars ≲0.9 M {sub ⊙}. The dearth of single rapid rotators more massive than ≈0.3 M {sub ⊙} indicates that magnetic braking is more efficient than previously thought, and that age–rotation studies must account for multiplicity.« less

  18. STELLAR ATMOSPHERES, ATMOSPHERIC EXTENSION, AND FUNDAMENTAL PARAMETERS: WEIGHING STARS USING THE STELLAR MASS INDEX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neilson, Hilding R.; Lester, John B.; Baron, Fabien

    2016-10-20

    One of the great challenges of understanding stars is measuring their masses. The best methods for measuring stellar masses include binary interaction, asteroseismology, and stellar evolution models, but these methods are not ideal for red giant and supergiant stars. In this work, we propose a novel method for inferring stellar masses of evolved red giant and supergiant stars using interferometric and spectrophotometric observations combined with spherical model stellar atmospheres to measure what we call the stellar mass index, defined as the ratio between the stellar radius and mass. The method is based on the correlation between different measurements of angularmore » diameter, used as a proxy for atmospheric extension, and fundamental stellar parameters. For a given star, spectrophotometry measures the Rosseland angular diameter while interferometric observations generally probe a larger limb-darkened angular diameter. The ratio of these two angular diameters is proportional to the relative extension of the stellar atmosphere, which is strongly correlated to the star’s effective temperature, radius, and mass. We show that these correlations are strong and can lead to precise measurements of stellar masses.« less

  19. Reevaluating Old Stellar Populations

    NASA Astrophysics Data System (ADS)

    Stanway, E. R.; Eldridge, J. J.

    2018-05-01

    Determining the properties of old stellar populations (those with age >1 Gyr) has long involved the comparison of their integrated light, either in the form of photometry or spectroscopic indexes, with empirical or synthetic templates. Here we reevaluate the properties of old stellar populations using a new set of stellar population synthesis models, designed to incorporate the effects of binary stellar evolution pathways as a function of stellar mass and age. We find that single-aged stellar population models incorporating binary stars, as well as new stellar evolution and atmosphere models, can reproduce the colours and spectral indices observed in both globular clusters and quiescent galaxies. The best fitting model populations are often younger than those derived from older spectral synthesis models, and may also lie at slightly higher metallicities.

  20. Estimating stellar effective temperatures and detected angular parameters using stochastic particle swarm optimization

    NASA Astrophysics Data System (ADS)

    Zhang, Chuan-Xin; Yuan, Yuan; Zhang, Hao-Wei; Shuai, Yong; Tan, He-Ping

    2016-09-01

    Considering features of stellar spectral radiation and sky surveys, we established a computational model for stellar effective temperatures, detected angular parameters and gray rates. Using known stellar flux data in some bands, we estimated stellar effective temperatures and detected angular parameters using stochastic particle swarm optimization (SPSO). We first verified the reliability of SPSO, and then determined reasonable parameters that produced highly accurate estimates under certain gray deviation levels. Finally, we calculated 177 860 stellar effective temperatures and detected angular parameters using data from the Midcourse Space Experiment (MSX) catalog. These derived stellar effective temperatures were accurate when we compared them to known values from literatures. This research makes full use of catalog data and presents an original technique for studying stellar characteristics. It proposes a novel method for calculating stellar effective temperatures and detecting angular parameters, and provides theoretical and practical data for finding information about radiation in any band.

  1. Estimating precise metallicity and stellar mass evolution of galaxies

    NASA Astrophysics Data System (ADS)

    Mosby, Gregory

    2018-01-01

    The evolution of galaxies can be conveniently broken down into the evolution of their contents. The changing dust, gas, and stellar content in addition to the changing dark matter potential and periodic feedback from a super-massive blackhole are some of the key ingredients. We focus on the stellar content that can be observed, as the stars reflect information about the galaxy when they were formed. We approximate the stellar content and star formation histories of unresolved galaxies using stellar population modeling. Though simplistic, this approach allows us to reconstruct the star formation histories of galaxies that can be used to test models of galaxy formation and evolution. These models, however, suffer from degeneracies at large lookback times (t > 1 Gyr) as red, low luminosity stars begin to dominate a galaxy’s spectrum. Additionally, degeneracies between stellar populations at different ages and metallicities often make stellar population modeling less precise. The machine learning technique diffusion k-means has been shown to increase the precision in stellar population modeling using a mono-metallicity basis set. However, as galaxies evolve, we expect the metallicity of stellar populations to vary. We use diffusion k-means to generate a multi-metallicity basis set to estimate the stellar mass and chemical evolution of unresolved galaxies. Two basis sets are formed from the Bruzual & Charlot 2003 and MILES stellar population models. We then compare the accuracy and precision of these models in recovering complete (stellar mass and metallicity) histories of mock data. Similarities in the groupings of stellar population spectra in the diffusion maps for each metallicity hint at fundamental age transitions common to both basis sets that can be used to identify stellar populations in a given age range.

  2. THE OBSERVED RELATION BETWEEN STELLAR MASS, DUST EXTINCTION, AND STAR FORMATION RATE IN LOCAL GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zahid, H. J.; Kewley, L. J.; Kudritzki, R. P.

    In this study, we investigate the relation between stellar mass, dust extinction, and star formation rate (SFR) using {approx}150,000 star-forming galaxies from SDSS DR7. We show that the relation between dust extinction and SFR changes with stellar mass. For galaxies at the same stellar mass, dust extinction is anti-correlated with the SFR at stellar masses <10{sup 10} M {sub Sun }. There is a sharp transition in the relation at a stellar mass of 10{sup 10} M {sub Sun }. At larger stellar masses, dust extinction is positively correlated with the SFR for galaxies at the same stellar mass. Themore » observed relation between stellar mass, dust extinction, and SFR presented in this study helps to confirm similar trends observed in the relation between stellar mass, metallicity, and SFR. The relation reported in this study provides important new constraints on the physical processes governing the chemical evolution of galaxies. The correlation between SFR and dust extinction for galaxies with stellar masses >10{sup 10} M {sub Sun} is shown to extend to the population of quiescent galaxies suggesting that the physical processes responsible for the observed relation between stellar mass, dust extinction, and SFR may be related to the processes leading to the shutdown of star formation in galaxies.« less

  3. The masses and metallicities of stellar haloes reflect galactic merger histories

    NASA Astrophysics Data System (ADS)

    D'Souza, Richard; Bell, Eric F.

    2018-03-01

    There is increasing observational and theoretical evidence for a correlation between the metallicity and the mass of the stellar halo for galaxies with Milky Way-like stellar masses. Using the Illustris cosmological hydrodynamical simulations, we find that this relationship arises because a single massive progenitor contributes the bulk of the mass to the accreted stellar component as well as sets its metallicity. Moreover, in the Illustris simulations, this relationship extends over 3 orders of magnitude in accreted stellar mass for central galaxies. We show that for Milky Way-like mass galaxies, the scatter in accreted metallicity at a fixed accreted stellar mass encodes information about the stellar mass of the dominant accreted progenitor, while the radial density and metallicity gradients of the accreted stellar component encodes information about the time of accretion of the dominant progenitor. We demonstrate that for Milky Way-like mass galaxies, the Illustris simulations predict that the metallicity and the stellar mass of the total accreted stellar component can be reconstructed from aperture measurements of the stellar halo along the minor axis of edge-on disc galaxies. These correlations highlight the potential for observational studies of stellar haloes to quantify our understanding of the most dominant events in the growth history of galaxies. We explore the implications of our model for our understanding of the accretion histories of the Milky Way, M31, and NGC 5128. In particular, a relatively late and massive accretion is favoured for M31; additionally, we provide a first estimate of the accreted stellar mass for NGC 5128.

  4. Validation: Codes to compare simulation data to various observations

    NASA Astrophysics Data System (ADS)

    Cohn, J. D.

    2017-02-01

    Validation provides codes to compare several observations to simulated data with stellar mass and star formation rate, simulated data stellar mass function with observed stellar mass function from PRIMUS or SDSS-GALEX in several redshift bins from 0.01-1.0, and simulated data B band luminosity function with observed stellar mass function, and to create plots for various attributes, including stellar mass functions, and stellar mass to halo mass. These codes can model predictions (in some cases alongside observational data) to test other mock catalogs.

  5. The California- Kepler Survey. II. Precise Physical Properties of 2025 Kepler Planets and Their Host Stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, John Asher; Cargile, Phillip A.; Sinukoff, Evan

    We present stellar and planetary properties for 1305 Kepler Objects of Interest hosting 2025 planet candidates observed as part of the California- Kepler Survey. We combine spectroscopic constraints, presented in Paper I, with stellar interior modeling to estimate stellar masses, radii, and ages. Stellar radii are typically constrained to 11%, compared to 40% when only photometric constraints are used. Stellar masses are constrained to 4%, and ages are constrained to 30%. We verify the integrity of the stellar parameters through comparisons with asteroseismic studies and Gaia parallaxes. We also recompute planetary radii for 2025 planet candidates. Because knowledge of planetarymore » radii is often limited by uncertainties in stellar size, we improve the uncertainties in planet radii from typically 42% to 12%. We also leverage improved knowledge of stellar effective temperature to recompute incident stellar fluxes for the planets, now precise to 21%, compared to a factor of two when derived from photometry.« less

  6. The CARMENES search for exoplanets around M dwarfs. Radial-velocity variations of active stars in visual-channel spectra

    NASA Astrophysics Data System (ADS)

    Tal-Or, L.; Zechmeister, M.; Reiners, A.; Jeffers, S. V.; Schöfer, P.; Quirrenbach, A.; Amado, P. J.; Ribas, I.; Caballero, J. A.; Aceituno, J.; Bauer, F. F.; Béjar, V. J. S.; Czesla, S.; Dreizler, S.; Fuhrmeister, B.; Hatzes, A. P.; Johnson, E. N.; Kürster, M.; Lafarga, M.; Montes, D.; Morales, J. C.; Reffert, S.; Sadegi, S.; Seifert, W.; Shulyak, D.

    2018-06-01

    Context. Previous simulations predicted the activity-induced radial-velocity (RV) variations of M dwarfs to range from 1 cm s-1 to 1 km s-1, depending on various stellar and activity parameters. Aims: We investigate the observed relations between RVs, stellar activity, and stellar parameters of M dwarfs by analyzing CARMENES high-resolution visual-channel spectra (0.5-1μm), which were taken within the CARMENES RV planet survey during its first 20 months of operation. Methods: During this time, 287 of the CARMENES-sample stars were observed at least five times. From each spectrum we derived a relative RV and a measure of chromospheric Hα emission. In addition, we estimated the chromatic index (CRX) of each spectrum, which is a measure of the RV wavelength dependence. Results: Despite having a median number of only 11 measurements per star, we show that the RV variations of the stars with RV scatter of >10 m s-1 and a projected rotation velocity v sin i > 2 km s-1 are caused mainly by activity. We name these stars "active RV-loud stars" and find their occurrence to increase with spectral type: from 3% for early-type M dwarfs (M0.0-2.5 V) through 30% for mid-type M dwarfs (M3.0-5.5 V) to >50% for late-type M dwarfs (M6.0-9.0 V). Their RV-scatter amplitude is found to be correlated mainly with v sin i. For about half of the stars, we also find a linear RV-CRX anticorrelation, which indicates that their activity-induced RV scatter is lower at longer wavelengths. For most of them we can exclude a linear correlation between RV and Hα emission. Conclusions: Our results are in agreement with simulated activity-induced RV variations in M dwarfs. The RV variations of most active RV-loud M dwarfs are likely to be caused by dark spots on their surfaces, which move in and out of view as the stars rotate. The data presented in Figs. 5 and A.1 are only available in electronic form at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz- bin/qcat?J/A+A/614/A122

  7. Hot Jupiters and Hot Spots: The Short- and Long-Term Chromospheric Activity on Stars with Giant Planets

    NASA Astrophysics Data System (ADS)

    Shkolnik, E.; Walker, G. A. H.; Bohlender, D. A.; Gu, P.-G.; Kürster, M.

    2005-04-01

    We monitored the chromospheric activity in the Ca II H and K lines of 13 solar-type stars (including the Sun): 8 of them over 3 years at the Canada-France-Hawaii Telescope (CFHT) and 5 in a single run at the Very Large Telescope (VLT). A total of 10 of the 13 targets have close planetary companions. All of the stars observed at the CFHT show long-term (months to years) changes in H and K intensity levels. Four stars display short-term (days) cyclical activity. For two, HD 73256 and κ1 Cet, the activity is likely associated with an active region rotating with the star; however, the flaring in excess of the rotational modulation may be associated with a hot Jupiter. A planetary companion remains a possibility for κ1 Cet. For the other two, HD 179949 and υ And, the cyclic variation is synchronized to the hot Jupiter's orbit. For both stars this synchronicity with the orbit is clearly seen in two out of three epochs. The effect is only marginal in the third epoch at which the seasonal level of chromospheric activity had changed for both stars. Short-term chromospheric activity appears weakly dependent on the mean K line reversal intensities for the sample of 13 stars. In addition, a suggestive correlation exists between this activity and the Mpsini of the star's hot Jupiter. Because of their small separation (<=0.1 AU), many of the hot Jupiters lie within the Alfvén radius of their host stars, which allows a direct magnetic interaction with the stellar surface. We discuss the conditions under which a planet's magnetic field might induce activity on the stellar surface and why no such effect was seen for the prime candidate, τ Boo. This work opens up the possibility of characterizing planet-star interactions, with implications for extrasolar planet magnetic fields and the energy contribution to stellar atmospheres. Based on observations collected at the Canada-France-Hawaii Telescope operated by the National Research Council of Canada, the Centre National de la Recherche Scientifique of France, and the University of Hawaii, as well as data from the European Southern Observatory's Very Large Telescope, Chile (programme ESO 73.C-0694).

  8. Accretion Flows in Magnetic White Dwarf Systems

    NASA Technical Reports Server (NTRS)

    Imamura, James N.

    2005-01-01

    We received Type A and B funding under the NASA Astrophysics Data Program for the analysis and interpretation of hard x-ray data obtained by the Rossi X-ray Timing Explorer and other NASA sponsored missions for Intermediate Polars (IPS) and Polars. For some targets, optical data was available. We reduced and analyzed the X-ray spectra and the X-ray and optical (obtained at the Cerro Tololo Inter-American Observatory) timing data using detailed shock models (which we constructed) to place constraints on the properties of the accreting white dwarfs, the high energy emission mechanisms of white dwarfs, and the large-scale accretion flows of Polars and IPS. IPS and Polars are white dwarf mass-transfer binaries, members of the larger class of cata,clysmic variables. They differ from the bulk of the cataclysmic variables in that they contain strongly magnetic white dwarfs; the white dwarfs in Polars have B, = 7 to 230 MG and those in IPS have B, less than 10 MG. The IPS and Polars are both examples of funneled accretion flows in strong magnetic field systems. The IPS are similar to x-ray pulsars in that accretion disks form in the systems which are disrupted by the strong stellar magnetic fields of the white dwarfs near the stellar surface from where the plasma is funneled to the surface of the white dwarf. The localized hot spots formed at the footpoints of the funnels coupled with the rotation of the white dwarf leads to coherent pulsed x-ray emission. The Polars offer an example of a different accretion topology; the magnetic field of the white dwarf controls the accretion flow from near the inner Lagrangian point of the system directly to the stellar surface. Accretion disks do not form. The strong magnetic coupling generally leads to synchronous orbital/rotational motion in the Polars. The physical system in this sense resembles the Io/Jupiter system. In both IPS and Polars, pulsed emission from the infrared to x-rays is produced as the funneled flows merge onto the white dwarfs through the formation of strong radiating shock waves. A comparative study of the IPS and Polars can elucidate the primary effects of the magnetic fields on the dynamics and thermodynamics in accreting white dwarf systems.

  9. Unbound Young Stellar Systems: Star Formation on the Loose

    NASA Astrophysics Data System (ADS)

    Gouliermis, Dimitrios A.

    2018-07-01

    Unbound young stellar systems, the loose ensembles of physically related young bright stars, trace the typical regions of recent star formation in galaxies. Their morphologies vary from small few pc-size associations of newly formed stars to enormous few kpc-size complexes composed of stars few 100 Myr old. These stellar conglomerations are located within the disks and along the spiral arms and rings of star-forming disk galaxies, and they are the active star-forming centers of dwarf and starburst galaxies. Being associated with star-forming regions of various sizes, these stellar structures trace the regions where stars form at various length- and timescales, from compact clusters to whole galactic disks. Stellar associations, the prototypical unbound young systems, and their larger counterparts, stellar aggregates, and stellar complexes, have been the focus of several studies for quite a few decades, with special interest on their demographics, classification, and structural morphology. The compiled surveys of these loose young stellar systems demonstrate that the clear distinction of these systems into well-defined classes is not as straightforward as for stellar clusters, due to their low densities, asymmetric shapes and variety in structural parameters. These surveys also illustrate that unbound stellar structures follow a clear hierarchical pattern in the clustering of their stars across various scales. Stellar associations are characterized by significant sub-structure with bound stellar clusters being their most compact parts, while associations themselves are the brighter denser parts of larger stellar aggregates and stellar complexes, which are members of larger super-structures up to the scale of a whole star-forming galaxy. This structural pattern, which is usually characterized as self-similar or fractal, appears to be identical to that of star-forming giant molecular clouds and interstellar gas, driven mainly by turbulence cascade. In this short review, I make a concise compilation of our understanding of unbound young stellar systems across various environments in the local universe, as it is developed during the last 60 years. I present a factual assessment of the clustering behavior of star formation, as revealed from the assembling pattern of stars across loose stellar structures and its relation to the interstellar medium and the environmental conditions. I also provide a consistent account of the processes that possibly play important role in the formation of unbound stellar systems, compiled from both theoretical and observational investigations on the field.

  10. Stellar Populations. A User Guide from Low to High Redshift

    NASA Astrophysics Data System (ADS)

    Greggio, Laura; Renzini, Alvio

    2011-09-01

    This textbook is meant to illustrate the specific role played by stellar population diagnostics in our attempt to understand galaxy formation and evolution. The book starts with a rather unconventional summary of the results of stellar evolution theory (Chapter 1), as they provide the basis for the construction of synthetic stellar populations. Current limitations of stellar models are highlighted, which arise from the necessity to parametrize all those physical processes that involve bulk mass motions, such as convection, mixing, mass loss, etc. Chapter 2 deals with the foundations of the theory of synthetic stellar populations, and illustrates their energetics and metabolic functions, providing basic tools that will be used in subsequent chapters. Chapters 3 and 4 deal with resolved stellar populations, first addressing some general problems encountered in photometric studies of stellar fields. Then some highlights are presented illustrating our current capacity of measuring stellar ages in Galactic globular clusters, in the Galactic bulge and in nearby galaxies. Chapter 5 is dedicated to the exemplification of synthetic spectra of simple as well as composite stellar populations, drawing attention to those spectral features that may depend on less secure results of stellar evolution models. Chapter 6 illustrates how synthetic stellar populations are used to derive basic galaxy properties, such as star formation rates, stellar masses, ages and metallicities, and does so for galaxies at low as well as at high redshifts. Chapter 7 is dedicated to supernovae, distinguishing them in core collapse and thermonuclear cases, describing the evolution of their rates for various star formation histories, and estimating the supernova productivity of stellar populations and their chemical yields. In Chapter 8 the stellar initial mass function (IMF) is discussed, first showing how even apparently small IMF variations may have large effects on the demo! graphy of stellar populations, and then using galaxies at low ! and high redshifts and clusters of galaxies to set tight constraints on possible IMF variations in space or time. In Chapter 9 a phenomenological model of galaxy evolution is presented which illustrates a concrete application of the stellar population tools described in the previous chapters. Finally, Chapter 10 is dedicated to the chemical evolution on the scale of galaxies, clusters of galaxies and the whole Universe.

  11. Stellar Streams Discovered in the Dark Energy Survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shipp, N.; et al.

    We perform a search for stellar streams around the Milky Way using the first three years of multi-band optical imaging data from the Dark Energy Survey (DES). We use DES data coveringmore » $$\\sim 5000$$ sq. deg. to a depth of $g > 23.5$ with a relative photometric calibration uncertainty of $$< 1 \\%$$. This data set yields unprecedented sensitivity to the stellar density field in the southern celestial hemisphere, enabling the detection of faint stellar streams to a heliocentric distance of $$\\sim 50$$ kpc. We search for stellar streams using a matched-filter in color-magnitude space derived from a synthetic isochrone of an old, metal-poor stellar population. Our detection technique recovers four previously known thin stellar streams: Phoenix, ATLAS, Tucana III, and a possible extension of Molonglo. In addition, we report the discovery of eleven new stellar streams. In general, the new streams detected by DES are fainter, more distant, and lower surface brightness than streams detected by similar techniques in previous photometric surveys. As a by-product of our stellar stream search, we find evidence for extra-tidal stellar structure associated with four globular clusters: NGC 288, NGC 1261, NGC 1851, and NGC 1904. The ever-growing sample of stellar streams will provide insight into the formation of the Galactic stellar halo, the Milky Way gravitational potential, as well as the large- and small-scale distribution of dark matter around the Milky Way.« less

  12. Influence of Stellar Multiplicity On Planet Formation. III. Adaptive Optics Imaging of Kepler Stars With Gas Giant Planets

    NASA Astrophysics Data System (ADS)

    Wang, Ji; Fischer, Debra A.; Horch, Elliott P.; Xie, Ji-Wei

    2015-06-01

    As hundreds of gas giant planets have been discovered, we study how these planets form and evolve in different stellar environments, specifically in multiple stellar systems. In such systems, stellar companions may have a profound influence on gas giant planet formation and evolution via several dynamical effects such as truncation and perturbation. We select 84 Kepler Objects of Interest (KOIs) with gas giant planet candidates. We obtain high-angular resolution images using telescopes with adaptive optics (AO) systems. Together with the AO data, we use archival radial velocity data and dynamical analysis to constrain the presence of stellar companions. We detect 59 stellar companions around 40 KOIs for which we develop methods of testing their physical association. These methods are based on color information and galactic stellar population statistics. We find evidence of suppressive planet formation within 20 AU by comparing stellar multiplicity. The stellar multiplicity rate (MR) for planet host stars is {0}-0+5% within 20 AU. In comparison, the stellar MR is 18% ± 2% for the control sample, i.e., field stars in the solar neighborhood. The stellar MR for planet host stars is 34% ± 8% for separations between 20 and 200 AU, which is higher than the control sample at 12% ± 2%. Beyond 200 AU, stellar MRs are comparable between planet host stars and the control sample. We discuss the implications of the results on gas giant planet formation and evolution.

  13. The close circumstellar environment of Betelgeuse. V. Rotation velocity and molecular envelope properties from ALMA

    NASA Astrophysics Data System (ADS)

    Kervella, Pierre; Decin, Leen; Richards, Anita M. S.; Harper, Graham M.; McDonald, Iain; O'Gorman, Eamon; Montargès, Miguel; Homan, Ward; Ohnaka, Keiichi

    2018-01-01

    We observed Betelgeuse using ALMA's extended configuration in band 7 (f ≈ 340 GHz, λ ≈ 0.88 mm), resulting in a very high angular resolution of 18 mas. Using a solid body rotation model of the 28SiO(ν= 2, J = 8-7) line emission, we show that the supergiant is rotating with a projected equatorial velocity of νeqsini = 5.47 ± 0.25 km s-1 at the equivalent continuum angular radius Rstar = 29.50 ± 0.14 mas. This corresponds to an angular rotation velocity of ω sini = (5.6 ± 1.3) × 10-9 rad s-1. The position angle of its north pole is PA = 48.0 ± 3.5°. The rotation period of Betelgeuse is estimated to P/ sini = 36 ± 8 years. The combination of our velocity measurement with previous observations in the ultraviolet shows that the chromosphere is co-rotating with the star up to a radius of ≈ 10 au (45 mas or 1.5 × the ALMA continuum radius). The coincidence of the position angle of the polar axis of Betelgeuse with that of the major ALMA continuum hot spot, a molecular plume, and a partial dust shell (from previous observations) suggests that focused mass loss is currently taking place in the polar region of the star. We propose that this hot spot corresponds to the location of a particularly strong "rogue" convection cell, which emits a focused molecular plume that subsequently condenses into dust at a few stellar radii. Rogue convection cells therefore appear to be an important factor shaping the anisotropic mass loss of red supergiants.

  14. A Candidate Young Massive Planet in Orbit around the Classical T Tauri Star CI Tau

    NASA Astrophysics Data System (ADS)

    Johns-Krull, Christopher M.; McLane, Jacob N.; Prato, L.; Crockett, Christopher J.; Jaffe, Daniel T.; Hartigan, Patrick M.; Beichman, Charles A.; Mahmud, Naved I.; Chen, Wei; Skiff, B. A.; Cauley, P. Wilson; Jones, Joshua A.; Mace, G. N.

    2016-08-01

    The ˜2 Myr old classical T Tauri star CI Tau shows periodic variability in its radial velocity (RV) variations measured at infrared (IR) and optical wavelengths. We find that these observations are consistent with a massive planet in a ˜9 day period orbit. These results are based on 71 IR RV measurements of this system obtained over five years, and on 26 optical RV measurements obtained over nine years. CI Tau was also observed photometrically in the optical on 34 nights over ˜one month in 2012. The optical RV data alone are inadequate to identify an orbital period, likely the result of star spot and activity-induced noise for this relatively small data set. The infrared RV measurements reveal significant periodicity at ˜9 days. In addition, the full set of optical and IR RV measurements taken together phase coherently and with equal amplitudes to the ˜9 day period. Periodic RV signals can in principle be produced by cool spots, hotspots, and reflection of the stellar spectrum off the inner disk, in addition to resulting from a planetary companion. We have considered each of these and find the planet hypothesis most consistent with the data. The RV amplitude yields an M\\sin I of ˜8.1 M Jup; in conjunction with a 1.3 mm continuum emission measurement of the circumstellar disk inclination from the literature, we find a planet mass of ˜11.3 M Jup, assuming alignment of the planetary orbit with the disk. This paper includes data taken at The McDonald Observatory of The University of Texas at Austin.

  15. BRITE-Constellation high-precision time-dependent photometry of the early O-type supergiant ζ Puppis unveils the photospheric drivers of its small- and large-scale wind structures

    NASA Astrophysics Data System (ADS)

    Ramiaramanantsoa, Tahina; Moffat, Anthony F. J.; Harmon, Robert; Ignace, Richard; St-Louis, Nicole; Vanbeveren, Dany; Shenar, Tomer; Pablo, Herbert; Richardson, Noel D.; Howarth, Ian D.; Stevens, Ian R.; Piaulet, Caroline; St-Jean, Lucas; Eversberg, Thomas; Pigulski, Andrzej; Popowicz, Adam; Kuschnig, Rainer; Zocłońska, Elżbieta; Buysschaert, Bram; Handler, Gerald; Weiss, Werner W.; Wade, Gregg A.; Rucinski, Slavek M.; Zwintz, Konstanze; Luckas, Paul; Heathcote, Bernard; Cacella, Paulo; Powles, Jonathan; Locke, Malcolm; Bohlsen, Terry; Chené, André-Nicolas; Miszalski, Brent; Waldron, Wayne L.; Kotze, Marissa M.; Kotze, Enrico J.; Böhm, Torsten

    2018-02-01

    From 5.5 months of dual-band optical photometric monitoring at the 1 mmag level, BRITE-Constellation has revealed two simultaneous types of variability in the O4I(n)fp star ζ Puppis: one single periodic non-sinusoidal component superimposed on a stochastic component. The monoperiodic component is the 1.78-d signal previously detected by Coriolis/Solar Mass Ejection Imager, but this time along with a prominent first harmonic. The shape of this signal changes over time, a behaviour that is incompatible with stellar oscillations but consistent with rotational modulation arising from evolving bright surface inhomogeneities. By means of a constrained non-linear light-curve inversion algorithm, we mapped the locations of the bright surface spots and traced their evolution. Our simultaneous ground-based multisite spectroscopic monitoring of the star unveiled cyclical modulation of its He II λ4686 wind emission line with the 1.78-d rotation period, showing signatures of corotating interaction regions that turn out to be driven by the bright photospheric spots observed by BRITE. Traces of wind clumps are also observed in the He II λ4686 line and are correlated with the amplitudes of the stochastic component of the light variations probed by BRITE at the photosphere, suggesting that the BRITE observations additionally unveiled the photospheric drivers of wind clumps in ζ Pup and that the clumping phenomenon starts at the very base of the wind. The origins of both the bright surface inhomogeneities and the stochastic light variations remain unknown, but a subsurface convective zone might play an important role in the generation of these two types of photospheric variability.

  16. The crowded magnetosphere of the post-common-envelope binary QS Virginis

    NASA Astrophysics Data System (ADS)

    Parsons, S. G.; Hill, C. A.; Marsh, T. R.; Gänsicke, B. T.; Watson, C. A.; Steeghs, D.; Dhillon, V. S.; Littlefair, S. P.; Copperwheat, C. M.; Schreiber, M. R.; Zorotovic, M.

    2016-05-01

    We present high-speed photometry and high-resolution spectroscopy of the eclipsing post-common-envelope binary QS Virginis (QS Vir). Our Ultraviolet and Visual Echelle Spectrograph (UVES) spectra span multiple orbits over more than a year and reveal the presence of several large prominences passing in front of both the M star and its white dwarf companion, allowing us to triangulate their positions. Despite showing small variations on a time-scale of days, they persist for more than a year and may last decades. One large prominence extends almost three stellar radii from the M star. Roche tomography reveals that the M star is heavily spotted and that these spots are long-lived and in relatively fixed locations, preferentially found on the hemisphere facing the white dwarf. We also determine precise binary and physical parameters for the system. We find that the 14 220 ± 350 K white dwarf is relatively massive, 0.782 ± 0.013 M⊙, and has a radius of 0.010 68 ± 0.000 07 R⊙, consistent with evolutionary models. The tidally distorted M star has a mass of 0.382 ± 0.006 M⊙ and a radius of 0.381 ± 0.003 R⊙, also consistent with evolutionary models. We find that the magnesium absorption line from the white dwarf is broader than expected. This could be due to rotation (implying a spin period of only ˜700 s), or due to a weak (˜100 kG) magnetic field, we favour the latter interpretation. Since the M star's radius is still within its Roche lobe and there is no evidence that it is overinflated, we conclude that QS Vir is most likely a pre-cataclysmic binary just about to become semidetached.

  17. Multi-band, multi-epoch observations of the transiting warm Jupiter WASP-80b

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fukui, Akihiko; Kuroda, Daisuke; Kawashima, Yui

    WASP-80b is a warm Jupiter transiting a bright late-K/early-M dwarf, providing a good opportunity to extend the atmospheric study of hot Jupiters toward the lower temperature regime. We report multi-band, multi-epoch transit observations of WASP-80b by using three ground-based telescopes covering from optical (g', R{sub c}, and I{sub c} bands) to near-infrared (NIR; J, H, and K{sub s} bands) wavelengths. We observe 5 primary transits, each in 3 or 4 different bands simultaneously, obtaining 17 independent transit light curves. Combining them with results from previous works, we find that the observed transmission spectrum is largely consistent with both a solarmore » abundance and thick cloud atmospheric models at a 1.7σ discrepancy level. On the other hand, we find a marginal spectral rise in the optical region compared to the NIR region at the 2.9σ level, which possibly indicates the existence of haze in the atmosphere. We simulate theoretical transmission spectra for a solar abundance but hazy atmosphere, finding that a model with equilibrium temperature of 600 K can explain the observed data well, having a discrepancy level of 1.0σ. We also search for transit timing variations, but find no timing excess larger than 50 s from a linear ephemeris. In addition, we conduct 43 day long photometric monitoring of the host star in the optical bands, finding no significant variation in the stellar brightness. Combined with the fact that no spot-crossing event is observed in the five transits, our results confirm previous findings that the host star appears quiet for spot activities, despite the indications of strong chromospheric activities.« less

  18. The Resolved Stellar Populations Early Release Science Program

    NASA Astrophysics Data System (ADS)

    Gilbert, Karoline; Weisz, Daniel; Resolved Stellar Populations ERS Program Team

    2018-06-01

    The Resolved Stellar Populations Early Release Science Program (PI D. Weisz) will observe Local Group targets covering a range of stellar density and star formation histories, including a globular cluster, and ultra-faint dwarf galaxy, and a star-forming dwarf galaxy. Using observations of these diverse targets we will explore a broad science program: we will measure star formation histories, the sub-solar stellar initial mass function, and proper motions, perform studies of evolved stars, and map extinction in the target fields. Our observations will be of high archival value for other science such as calibrating stellar evolution models, studying variable stars, and searching for metal-poor stars. We will determine optimal observational setups and develop data reduction techniques that will be common to JWST studies of resolved stellar populations. We will also design, test, and release point spread function (PSF) fitting software specific to NIRCam and NIRISS, required for the crowded stellar regime. Prior to the Cycle 2 Call for Proposals, we will release PSF fitting software, matched HST and JWST catalogs, and clear documentation and step-by-step tutorials (such as Jupyter notebooks) for reducing crowded stellar field data and producing resolved stellar photometry catalogs, as well as for specific resolved stellar photometry science applications.

  19. The Anemic Stellar Halo of M101

    NASA Astrophysics Data System (ADS)

    Holwerda, Benne

    2014-10-01

    Models of galaxy formation in a cosmological context predict that massive disk galaxies should have richly-structured extended stellar halos, containing ~10% of a galaxy's stars, originating in large part from the tidal disruption of dwarf galaxies. Observations of a number of nearby disk galaxies have generally agreed with these expectations. Recent new observations in integrated light with a novel array of low scattered-light telephoto lenses have failed to convincingly detect a stellar halo in the nearby massive face-on disk galaxy M101 (van Dokkum et al. 2014). They argue that any halo has to have <0.3% of the mass of the galaxy. This halo would be the least massive of any massive disk galaxy in the local Universe (by factors of several) -- such a halo is not predicted or naturally interpreted by the models, and would present a critical challenge to the picture of ubiquitous stellar halos formed from the debris of disrupting dwarf galaxies.We propose to resolve the stellar populations of this uniquely anemic stellar halo for 6 orbits with HST (ACS and WFC3), allowing us to reach surface brightness limits sufficient to clearly detect and characterize M101's stellar halo if it carries more than 0.1% of M101's mass. With resolved stellar populations, we can use the gradient of stellar populations as a function of radius to separate stellar halo from disk, which is impossible using integrated light observations. The resolved stellar populations will reveal the halo mass to much greater accuracy, measure the halo radial profile, constrain any halo lopsidedness, estimate the halo's stellar metallicity, and permit an analysis of outer disk stellar populations.

  20. Eighteenth-Century Observations of Algol: The First Suggestion of an Exoplanet?

    NASA Astrophysics Data System (ADS)

    French, Linda M.

    2017-10-01

    In November of 1782, 18-year old John Goodricke of York, England, was amazed to observe the star Algol (Beta Persei) dim by more than one magnitude and then return to full brightness over a period of seven hours. Goodricke and his mentor, Edward Pigott, speculated that the dimming could only have been caused by a "dark body" passing in front of Algol. Over the succeeding months, the two were able to refine the period between what we now know to be eclipses to 2.87 days. They would determine the periods of other variable stars, including the first two Cepheid variables known. Yet in their lifetime, their suggestion that Algol's variation was due to an eclipse was not accepted. Most astronomers believed the variations were due to spots on the surface of a single star. Only a century later, with the advent of astronomical spectroscopy, was Algol's true nature revealed. Goodricke and Pigott's work is one of the first studies of stellar variation; their methods and occasional pitfalls are ones to which modern astronomers can relate.

  1. Exploring the engines of molecular outflows

    NASA Astrophysics Data System (ADS)

    Testi, Leonardo

    1995-03-01

    Water vapour masers and CO outflows are well known to be associated with the youngest phases of evolution of massive stellar objects. Nevertheless, up to now there is a lack of high resolution multiwavelength study of the regions containing these objects. Using the VLA, the CSO and the TIRGO equipped with the new Near-Infrared (NIR) camera ARNICA, we have begun a systematic study of water maser/CO outflow regions. These new high resolution and high sensitivity data have proved to be very useful in probing the star formation activity and the connection between infrared and radio sources. Here we report the results obtained in a preliminary sub- sample of objects. The NIR data showed that both the maser spots and the large- scale outflows tend to be associated to the most embedded and probably younger sources of the infrared clusters. Infrared emission lines observed with narrow band filters show the presence of jet-like structures in most of the sources observed. Water masers, jet-like and Herbig-Haro-like infrared structures, and CO outflows enable to probe ejection phenomena at all spacial scales ranging from 0.01 to 1 parsec.

  2. Magnetic field and radial velocities of the star Chi Draconis A

    NASA Astrophysics Data System (ADS)

    Lee, Byeong-Cheol; Gadelshin, D.; Han, Inwoo; Kang, Dong-Il; Kim, Kang-Min; Valyavin, G.; Galazutdinov, G.; Jeong, Gwanghui; Beskrovnaya, N.; Burlakova, T.; Grauzhanina, A.; Ikhsanov, N. R.; Kholtygin, A. F.; Valeev, A.; Bychkov, V.; Park, Myeong-Gu

    2018-01-01

    We present high-resolution spectropolarimetric observations of the spectroscopic binary χ Dra. Spectral lines in the spectrum of the main component χ Dra A show variable Zeeman displacement, which confirms earlier suggestions about the presence of a weak magnetic field on the surface of this star. Within about 2 yr of time base of our observations, the longitudinal component BL of the magnetic field exhibits variation from -11.5 ± 2.5 to +11.1 ± 2.1 G with a period of about 23 d. Considering the rotational velocity of χ Dra A in the literature and that newly measured in this work, this variability may be explained by the stellar rotation under the assumption that the magnetic field is globally stable. Our new measurements of the radial velocities (RV) in high-resolution I-spectra of χ Dra A refined the orbital parameters and reveal persistent deviations of RVs from the orbital curve. We suspect that these deviations may be due to the influence of local magnetically generated spots, pulsations, or a Jupiter-size planet orbiting the system.

  3. Photospheric and chromospheric activity on EY Dra

    NASA Astrophysics Data System (ADS)

    Korhonen, H.; Brogaard, K.; Holhjem, K.; Ramstedt, S.; Rantala, J.; Thöne, C. C.; Vida, K.

    2007-11-01

    Magnetic activity in the photosphere and chromosphere of the M dwarf EY Dra is studied and possible correlations between the two are investigated using photometric observations in the V and R bands and optical and near infrared spectroscopy. The longitudinal spot configuration in the photosphere is obtained from the V band photometry, and the chromospheric structures are investigated using variations in the Hα line profile and observations of the Paschen β line. The shape of the V band light-curve indicates two active regions on the stellar surface, about 0.4 in phase apart. The spectroscopic observations show enhanced Hα emission observed close to the phases of the photometrically detected starspots. This could indicate chromospheric plages associated with the photospheric starspots. Some indications of prominence structures are also seen. The chromospheric pressure is limited to log {m}_TR < -4 based on the non-detection of emission in the Paschen β wavelength region. Based on observations made with the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makarov, Valeri V.; Goldin, Alexey, E-mail: valeri.makarov@navy.mil, E-mail: alexey.goldin@gmail.com

    KIC 7341653 is one of several late-type M dwarfs observed by the main mission of Kepler with peculiar infrared colors placing them in the domain of suspected young stellar objects (YSO). It is likely associated with a powerful X-ray emitter with X-ray flares. Kepler light curves reveal two distinct types of activity: frequent flares lasting from less than 30 minutes to a few hours, and a periodic variability with a period of 0.5463441(7) days. The largest detected flare increased the flux in the Kepler passband by a factor of 2.8 and released an estimated 4 × 10{sup 34} erg ofmore » energy in the Kepler band. Segmented periodogram analysis reveals that the amplitude of the periodic variation was subject to secular changes, dropping from peak values around 20 ppt to below 5 ppt toward the end of the mission, while the phase varied periodically with an amplitude of 0.15 rad and period 362(3) days. Two possible interpretations of the phase periodicity are discussed: a migrating long-lived photospheric spot, and a Doppler frequency shift generated by a solar-mass faint companion, such as a white dwarf.« less

  5. Remote refilling of LN2 cryostats for high sensitivity astronomical applications

    NASA Astrophysics Data System (ADS)

    l'Allemand, J. L. Lizon a.

    2017-12-01

    The most sensitive observation mode of the ESO VLT (European Southern Observatory Very Large Telescope) is the interferometric mode, where the 4 Units Telescopes are directed to the same stellar object in order to operate as a gigantic interferometer. The beam is then re-combined in the main interferometry laboratory and fed into the analyzing instruments. In order not to disturb the performance of the Interferometer, this room is considered as a sanctuary where one enters only in case of extreme need. A simple opening of the door would create air turbulences affecting the stability for hours. Any cold spot in the room could also cause convection which might change the optical path by fraction of a micron. Most of the instruments are operating at cryogenic temperatures using passive cooling based on LN2 bath cryostat. For this reason, dedicated strategy has been developed for the transfer of LN2 to the various instruments. The present document describes the various aspects and care taken in order to guarantee the very high thermal and mechanical environmental stability.

  6. sunstardb: A Database for the Study of Stellar Magnetism and the Solar-stellar Connection

    NASA Astrophysics Data System (ADS)

    Egeland, Ricky

    2018-05-01

    The “solar-stellar connection” began as a relatively small field of research focused on understanding the processes that generate magnetic fields in stars and sometimes lead to a cyclic pattern of long-term variability in activity, as demonstrated by our Sun. This area of study has recently become more broadly pertinent to questions of exoplanet habitability and exo-space weather, as well as stellar evolution. In contrast to other areas of stellar research, individual stars in the solar-stellar connection often have a distinct identity and character in the literature, due primarily to the rarity of the decades-long time-series that are necessary for studying stellar activity cycles. Furthermore, the underlying stellar dynamo is not well understood theoretically, and is thought to be sensitive to several stellar properties, e.g., luminosity, differential rotation, and the depth of the convection zone, which in turn are often parameterized by other more readily available properties. Relevant observations are scattered throughout the literature and existing stellar databases, and consolidating information for new studies is a tedious and laborious exercise. To accelerate research in this area I developed sunstardb, a relational database of stellar properties and magnetic activity proxy time-series keyed by individual named stars. The organization of the data eliminates the need for the problematic catalog cross-matching operations inherent when building an analysis data set from heterogeneous sources. In this article I describe the principles behind sunstardb, the data structures and programming interfaces, as well as use cases from solar-stellar connection research.

  7. Interaction effects on galaxy pairs with Gemini/GMOS- III: stellar population synthesis

    NASA Astrophysics Data System (ADS)

    Krabbe, A. C.; Rosa, D. A.; Pastoriza, M. G.; Hägele, G. F.; Cardaci, M. V.; Dors, O. L., Jr.; Winge, C.

    2017-05-01

    We present an observational study of the impacts of interactions on the stellar population in a sample of galaxy pairs. Long-slit spectra in the wavelength range 3440-7300 Å obtained with the Gemini Multi-Object Spectrograph (GMOS) at Gemini South for 15 galaxies in nine close pairs were used. The spatial distributions of the stellar population contributions were obtained using the stellar population synthesis code starlight. Taking into account the different contributions to the emitted light, we found that most of the galaxies in our sample are dominated by young/intermediate stellar populations. This result differs from the one derived for isolated galaxies, where the old stellar population dominates the disc surface brightness. We interpreted such different behaviour as being due to the effect of gas inflows along the discs of interacting galaxies on the star formation over a time-scale of the order of about 2 Gyr. We also found that, in general, the secondary galaxy of a pair has a higher contribution from the young stellar population than the primary one. We compared the estimated values of stellar and nebular extinction derived from the synthesis method and the Hα/Hβ emission-line ratio, finding that nebular extinctions are systematically higher than stellar ones by about a factor of 2. We did not find any correlation between nebular and stellar metallicities. Neither did we find a correlation between stellar metallicities and ages, while a positive correlation between nebular metallicities and stellar ages was obtained, with older regions being the most metal-rich.

  8. Stellar activity and coronal heating: an overview of recent results

    PubMed Central

    Testa, Paola; Saar, Steven H.; Drake, Jeremy J.

    2015-01-01

    Observations of the coronae of the Sun and of solar-like stars provide complementary information to advance our understanding of stellar magnetic activity, and of the processes leading to the heating of their outer atmospheres. While solar observations allow us to study the corona at high spatial and temporal resolution, the study of stellar coronae allows us to probe stellar activity over a wide range of ages and stellar parameters. Stellar studies therefore provide us with additional tools for understanding coronal heating processes, as well as the long-term evolution of solar X-ray activity. We discuss how recent studies of stellar magnetic fields and coronae contribute to our understanding of the phenomenon of activity and coronal heating in late-type stars. PMID:25897087

  9. Recent advances in non-LTE stellar atmosphere models

    NASA Astrophysics Data System (ADS)

    Sander, Andreas A. C.

    2017-11-01

    In the last decades, stellar atmosphere models have become a key tool in understanding massive stars. Applied for spectroscopic analysis, these models provide quantitative information on stellar wind properties as well as fundamental stellar parameters. The intricate non-LTE conditions in stellar winds dictate the development of adequate sophisticated model atmosphere codes. The increase in both, the computational power and our understanding of physical processes in stellar atmospheres, led to an increasing complexity in the models. As a result, codes emerged that can tackle a wide range of stellar and wind parameters. After a brief address of the fundamentals of stellar atmosphere modeling, the current stage of clumped and line-blanketed model atmospheres will be discussed. Finally, the path for the next generation of stellar atmosphere models will be outlined. Apart from discussing multi-dimensional approaches, I will emphasize on the coupling of hydrodynamics with a sophisticated treatment of the radiative transfer. This next generation of models will be able to predict wind parameters from first principles, which could open new doors for our understanding of the various facets of massive star physics, evolution, and death.

  10. Star-disc interaction in galactic nuclei: formation of a central stellar disc

    NASA Astrophysics Data System (ADS)

    Panamarev, Taras; Shukirgaliyev, Bekdaulet; Meiron, Yohai; Berczik, Peter; Just, Andreas; Spurzem, Rainer; Omarov, Chingis; Vilkoviskij, Emmanuil

    2018-05-01

    We perform high-resolution direct N-body simulations to study the effect of an accretion disc on stellar dynamics in an active galactic nucleus (AGN). We show that the interaction of the nuclear stellar cluster (NSC) with the gaseous accretion disc (AD) leads to formation of a stellar disc in the central part of the NSC. The accretion of stars from the stellar disc on to the super-massive black hole is balanced by the capture of stars from the NSC into the stellar disc, yielding a stationary density profile. We derive the migration time through the AD to be 3 per cent of the half-mass relaxation time of the NSC. The mass and size of the stellar disc are 0.7 per cent of the mass and 5 per cent of the influence radius of the super-massive black hole. An AD lifetime shorter than the migration time would result in a less massive nuclear stellar disc. The detection of such a stellar disc could point to past activity of the hosting galactic nucleus.

  11. On the Scatter of the Present-day Stellar Metallicity–Mass Relation of Cluster Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Engler, Christoph; Lisker, Thorsten; Pillepich, Annalisa

    2018-04-01

    We examine the scatter of the relation between stellar mass and stellar metallicity for cluster dwarf galaxies in the cosmological simulation Illustris. The mass-metallicity relation exhibits the smallest intrinsic scatter at the galaxies' times of peak stellar mass, suggesting stellar mass stripping to be the primary effect responsible for the rather broad relation at present. However, for about 40% of galaxies in the high-metallicity tail of the relation, we find mass stripping to coincide with an increased enrichment of stellar metallicity, possibly caused by the stripping of low-metallicity stars in the galaxy outskirts.

  12. Estimation of distances to stars with stellar parameters from LAMOST

    DOE PAGES

    Carlin, Jeffrey L.; Liu, Chao; Newberg, Heidi Jo; ...

    2015-06-05

    Here, we present a method to estimate distances to stars with spectroscopically derived stellar parameters. The technique is a Bayesian approach with likelihood estimated via comparison of measured parameters to a grid of stellar isochrones, and returns a posterior probability density function for each star's absolute magnitude. We tailor this technique specifically to data from the Large Sky Area Multi-object Fiber Spectroscopic Telescope (LAMOST) survey. Because LAMOST obtains roughly 3000 stellar spectra simultaneously within each ~5-degree diameter "plate" that is observed, we can use the stellar parameters of the observed stars to account for the stellar luminosity function and targetmore » selection effects. This removes biasing assumptions about the underlying populations, both due to predictions of the luminosity function from stellar evolution modeling, and from Galactic models of stellar populations along each line of sight. Using calibration data of stars with known distances and stellar parameters, we show that our method recovers distances for most stars within ~20%, but with some systematic overestimation of distances to halo giants. We apply our code to the LAMOST database, and show that the current precision of LAMOST stellar parameters permits measurements of distances with ~40% error bars. This precision should improve as the LAMOST data pipelines continue to be refined.« less

  13. Estimation of distances to stars with stellar parameters from LAMOST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlin, Jeffrey L.; Liu, Chao; Newberg, Heidi Jo

    Here, we present a method to estimate distances to stars with spectroscopically derived stellar parameters. The technique is a Bayesian approach with likelihood estimated via comparison of measured parameters to a grid of stellar isochrones, and returns a posterior probability density function for each star's absolute magnitude. We tailor this technique specifically to data from the Large Sky Area Multi-object Fiber Spectroscopic Telescope (LAMOST) survey. Because LAMOST obtains roughly 3000 stellar spectra simultaneously within each ~5-degree diameter "plate" that is observed, we can use the stellar parameters of the observed stars to account for the stellar luminosity function and targetmore » selection effects. This removes biasing assumptions about the underlying populations, both due to predictions of the luminosity function from stellar evolution modeling, and from Galactic models of stellar populations along each line of sight. Using calibration data of stars with known distances and stellar parameters, we show that our method recovers distances for most stars within ~20%, but with some systematic overestimation of distances to halo giants. We apply our code to the LAMOST database, and show that the current precision of LAMOST stellar parameters permits measurements of distances with ~40% error bars. This precision should improve as the LAMOST data pipelines continue to be refined.« less

  14. The difference in age of the two counter-rotating stellar disks of the spiral galaxy NGC 4138

    NASA Astrophysics Data System (ADS)

    Pizzella, A.; Morelli, L.; Corsini, E. M.; Dalla Bontà, E.; Coccato, L.; Sanjana, G.

    2014-10-01

    Context. Galaxies accrete material from the environment through acquisitions and mergers. These processes contribute to the galaxy assembly and leave their fingerprints on the galactic morphology, internal kinematics of gas and stars, and stellar populations. Aims: The Sa spiral NGC 4138 is known to host two counter-rotating stellar disks, with the ionized gas co-rotating with one of them. We measured the kinematics and properties of the two counter-rotating stellar populations to constrain their formation scenario. Methods: A spectroscopic decomposition of the observed major-axis spectrum was performed to disentangle the relative contribution of the two counter-rotating stellar and one ionized-gas components. The line-strength indices of the two counter-rotating stellar components were measured and modeled with single stellar population models that account for the α/Fe overabundance. Results: The counter-rotating stellar population is younger, marginally more metal poor, and more α-enhanced than the main stellar component. The younger stellar component is also associated with a star-forming ring. Conclusions: The different properties of the counter-rotating stellar components of NGC 4138 rule out the idea that they formed because of bar dissolution. Our findings support the results of numerical simulations in which the counter-rotating component assembled from gas accreted on retrograde orbits from the environment or from the retrograde merging with a gas-rich dwarf galaxy. Based on observation carried out at the Galileo 1.22 m telescope at Padua University.

  15. Diverse stellar haloes in nearby Milky Way mass disc galaxies

    NASA Astrophysics Data System (ADS)

    Harmsen, Benjamin; Monachesi, Antonela; Bell, Eric F.; de Jong, Roelof S.; Bailin, Jeremy; Radburn-Smith, David J.; Holwerda, Benne W.

    2017-04-01

    We have examined the resolved stellar populations at large galactocentric distances along the minor axis (from 10 kpc up to between 40 and 75 kpc), with limited major axis coverage, of six nearby highly inclined Milky Way (MW) mass disc galaxies using Hubble Space Telescope data from the Galaxy haloes, Outer discs, Substructure, Thick discs, and Star clusters (GHOSTS) survey. We select red giant branch stars to derive stellar halo density profiles. The projected minor axis density profiles can be approximated by power laws with projected slopes of -2 to -3.7 and a diversity of stellar halo masses of 1-6 × 109 M⊙, or 2-14 per cent of the total galaxy stellar masses. The typical intrinsic scatter around a smooth power-law fit is 0.05-0.1 dex owing to substructure. By comparing the minor and major axis profiles, we infer projected axis ratios c/a at ˜25 kpc between 0.4and0.75. The GHOSTS stellar haloes are diverse, lying between the extremes charted out by the (rather atypical) haloes of the MW and M31. We find a strong correlation between the stellar halo metallicities and the stellar halo masses. We compare our results with cosmological models, finding good agreement between our observations and accretion-only models where the stellar haloes are formed by the disruption of dwarf satellites. In particular, the strong observed correlation between stellar halo metallicity and mass is naturally reproduced. Low-resolution hydrodynamical models have unrealistically high stellar halo masses. Current high-resolution hydrodynamical models appear to predict stellar halo masses somewhat higher than observed but with reasonable metallicities, metallicity gradients, and density profiles.

  16. Life in the Outer Limits: Insight into Hierarchical Merging from the Outermost Structure of the Andromeda Stellar Halo

    NASA Astrophysics Data System (ADS)

    Beaton, Rachael; Majewski, S. R.; Patterson, R. J.; Guhathakurta, P.; Gilbert, K.; Kalirai, J. S.; Tollerud, E. J.; SPLASH Team

    2014-01-01

    Owing to their large dynamical timescales, the stellar haloes of Milky Way (MW) sized galaxies represent ideal environments to test modern theories of galaxy formation in the Lambda-CDM paradigm. Only in stellar haloes can the remnants of hierarchical accretion be preserved over long timescales as in-tact dwarf satellites or as tidal debris and can be easily distinguished from the underlying smooth structure. Stellar haloes, however, remain some of the most difficult galactic structures to constrain due to their large angular extent and extremely low surface brightness. Thus, the basic properties of stellar haloes -- the overall stellar distribution, substructure fraction, global kinematics and detailed stellar content -- remained relatively unconstrained. In this thesis, we present several projects designed to understand the current structure and the the formation of the Andromeda (M31) stellar halo, the only stellar halo -- besides our own -- that is within reach of current ground based facilities on the large scale required to constrain the basic properties of stellar haloes. First, we describe a seven season imaging campaign comprising the backbone of the Spectroscopic and Photometric Landscape of the Andromeda Stellar Halo (SPLASH) program. This survey is unique in its application of the Washington + DDO51 filter system to select individual M31 RGB stars without spectroscopic follow up. Second, we use the SPLASH photometric survey to identify sample of halo stars at projected radii of 120 kpc, for which we have obtained spectroscopic follow-up. Third, we add this large radius sample to the existing spectroscopic results from SPLASH, and use this unique sample to explore the stellar kinematics of the halo at large radii with full azimuthal coverage. Lastly, we preview on-going work to constrain the formation of the Andromeda stellar halo, using both in-tact satellites and resolved M31 halo members as tracers of its accretion history.

  17. Unresolved versus resolved: testing the validity of young simple stellar population models with VLT/MUSE observations of NGC 3603

    NASA Astrophysics Data System (ADS)

    Kuncarayakti, H.; Galbany, L.; Anderson, J. P.; Krühler, T.; Hamuy, M.

    2016-09-01

    Context. Stellar populations are the building blocks of galaxies, including the Milky Way. The majority, if not all, extragalactic studies are entangled with the use of stellar population models given the unresolved nature of their observation. Extragalactic systems contain multiple stellar populations with complex star formation histories. However, studies of these systems are mainly based upon the principles of simple stellar populations (SSP). Hence, it is critical to examine the validity of SSP models. Aims: This work aims to empirically test the validity of SSP models. This is done by comparing SSP models against observations of spatially resolved young stellar population in the determination of its physical properties, that is, age and metallicity. Methods: Integral field spectroscopy of a young stellar cluster in the Milky Way, NGC 3603, was used to study the properties of the cluster as both a resolved and unresolved stellar population. The unresolved stellar population was analysed using the Hα equivalent width as an age indicator and the ratio of strong emission lines to infer metallicity. In addition, spectral energy distribution (SED) fitting using STARLIGHT was used to infer these properties from the integrated spectrum. Independently, the resolved stellar population was analysed using the colour-magnitude diagram (CMD) to determine age and metallicity. As the SSP model represents the unresolved stellar population, the derived age and metallicity were tested to determine whether they agree with those derived from resolved stars. Results: The age and metallicity estimate of NGC 3603 derived from integrated spectroscopy are confirmed to be within the range of those derived from the CMD of the resolved stellar population, including other estimates found in the literature. The result from this pilot study supports the reliability of SSP models for studying unresolved young stellar populations. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programme 60.A-9344.

  18. Color-size Relations of Disc Galaxies with Similar Stellar Masses

    NASA Astrophysics Data System (ADS)

    Fu, W.; Chang, R. X.; Shen, S. Y.; Zhang, B.

    2011-01-01

    To investigate the correlations between colors and sizes of disc galaxies with similar stellar masses, a sample of 7959 local face-on disc galaxies is collected from the main galaxy sample of the Seventh Data Release of Sloan Digital Sky Survey (SDSS DR7). Our results show that, under the condition that the stellar masses of disc galaxies are similar, the relation between u-r and size is weak, while g-r, r-i and r-z colors decrease with disk size. This means that the color-size relations of disc galaxies with similar stellar masses do exist, i.e., the more extended disc galaxies with similar stellar masses tend to have bluer colors. An artificial sample is constructed to confirm that this correlation is not driven by the color-stellar mass relations and size-stellar mass relation of disc galaxies. Our results suggest that the mass distribution of disk galaxies may have an important influence on their stellar formation history, i.e., the galaxies with more extended mass distribution evolve more slowly.

  19. Solar astrophysics - Ghettosis from, or symbiosis with, stellar and galactic astrophysics

    NASA Technical Reports Server (NTRS)

    Pecker, J.-C.; Thomas, R. N.

    1976-01-01

    The purpose of the paper is to show how the solar-stellar symbiotic approach has led to the modeling of a star as a concentration of matter and energy. By 'solar-stellar symbiosis' is meant the philosophy of investigation according to which one asks what change in our general understanding of stellar structure and of stellar spectroscopic diagnostics is required to satisfy both the sun and an unusual star when, for example, some feature of an unusual star is discovered. The evolution of stellar models is traced, from walled, thermodynamic-equilibrium models to de-isolated models featuring transition zones and nonlocal thermodynamic equilibrium.

  20. The stellar metallicity gradients in galaxy discs in a cosmological scenario

    NASA Astrophysics Data System (ADS)

    Tissera, Patricia B.; Machado, Rubens E. G.; Sanchez-Blazquez, Patricia; Pedrosa, Susana E.; Sánchez, Sebastián F.; Snaith, Owain; Vilchez, Jose

    2016-08-01

    Context. The stellar metallicity gradients of disc galaxies provide information on disc assembly, star formation processes, and chemical evolution. They also might store information on dynamical processes that could affect the distribution of chemical elements in the gas phase and the stellar components. Understanding their joint effects within a hierarchical clustering scenario is of paramount importance. Aims: We studied the stellar metallicity gradients of simulated discs in a cosmological simulation. We explored the dependence of the stellar metallicity gradients on stellar age and on the size and mass of the stellar discs. Methods: We used a catalogue of galaxies with disc components selected from a cosmological hydrodynamical simulation performed including a physically motivated supernova feedback and chemical evolution. Disc components were defined based on angular momentum and binding energy criteria. The metallicity profiles were estimated for stars with different ages. We confront our numerical findings with results from the Calar Alto Legacy Integral Field Area (CALIFA) Survey. Results: The simulated stellar discs are found to have metallicity profiles with slopes in global agreement with observations. Low stellar mass galaxies tend to have a larger variety of metallicity slopes. When normalized by the half-mass radius, the stellar metallicity gradients do not show any dependence and the dispersion increases significantly, regardless of the galaxy mass. Galaxies with stellar masses o f around 1010M⊙ show steeper negative metallicity gradients. The stellar metallicity gradients correlate with the half-mass radius. However, the correlation signal is not present when they are normalized by the half-mass radius. Stellar discs with positive age gradients are detected to have negative and positive metallicity gradients, depending on the relative importance of recent star formation activity in the central regions. Conclusions: Our results suggest that inside-out formation is the main process responsible for the metallicity and age profiles. The large dispersions in the metallicity gradients as a function of stellar mass could be ascribed to the effects of dynamical processes such as mergers, interactions and/or migration as well as those regulating the conversion of gas into stars. The fingerprints of the inside-out formation seem better preserved by the stellar metallicity gradients as a function of the half-mass radius.

  1. A relation between the characteristic stellar ages of galaxies and their intrinsic shapes

    NASA Astrophysics Data System (ADS)

    van de Sande, Jesse; Scott, Nicholas; Bland-Hawthorn, Joss; Brough, Sarah; Bryant, Julia J.; Colless, Matthew; Cortese, Luca; Croom, Scott M.; d'Eugenio, Francesco; Foster, Caroline; Goodwin, Michael; Konstantopoulos, Iraklis S.; Lawrence, Jon S.; McDermid, Richard M.; Medling, Anne M.; Owers, Matt S.; Richards, Samuel N.; Sharp, Rob

    2018-06-01

    Stellar population and stellar kinematic studies provide unique but complementary insights into how galaxies build-up their stellar mass and angular momentum1-3. A galaxy's mean stellar age reveals when stars were formed, but provides little constraint on how the galaxy's mass was assembled. Resolved stellar dynamics4 trace the change in angular momentum due to mergers, but major mergers tend to obscure the effect of earlier interactions5. With the rise of large multi-object integral field spectroscopic surveys, such as SAMI6 and MaNGA7, and single-object integral field spectroscopic surveys (for example, ATLAS3D (ref. 8), CALIFA9, MASSIVE10), it is now feasible to connect a galaxy's star formation and merger history on the same resolved physical scales, over a large range in galaxy mass, morphology and environment4,11,12. Using the SAMI Galaxy Survey, here we present a combined study of spatially resolved stellar kinematics and global stellar populations. We find a strong correlation of stellar population age with location in the (V/σ, ɛe) diagram that links the ratio of ordered rotation to random motions in a galaxy to its observed ellipticity. For the large majority of galaxies that are oblate rotating spheroids, we find that characteristic stellar age follows the intrinsic ellipticity of galaxies remarkably well.

  2. Evolution of the Stellar Mass–Metallicity Relation. I. Galaxies in the z ∼ 0.4 Cluster Cl0024

    NASA Astrophysics Data System (ADS)

    Leethochawalit, Nicha; Kirby, Evan N.; Moran, Sean M.; Ellis, Richard S.; Treu, Tommaso

    2018-03-01

    We present the stellar mass–stellar metallicity relationship (MZR) in the galaxy cluster Cl0024+1654 at z ∼ 0.4 using full-spectrum stellar population synthesis modeling of individual quiescent galaxies. The lower limit of our stellar mass range is M * = 109.7 M ⊙, the lowest galaxy mass at which individual stellar metallicity has been measured beyond the local universe. We report a detection of an evolution of the stellar MZR with observed redshift at 0.037 ± 0.007 dex per Gyr, consistent with the predictions from hydrodynamical simulations. Additionally, we find that the evolution of the stellar MZR with observed redshift can be explained by an evolution of the stellar MZR with the formation time of galaxies, i.e., when the single stellar population (SSP)-equivalent ages of galaxies are taken into account. This behavior is consistent with stars forming out of gas that also has an MZR with a normalization that decreases with redshift. Lastly, we find that over the observed mass range, the MZR can be described by a linear function with a shallow slope ([{Fe}/{{H}}]\\propto (0.16+/- 0.03){log}{M}* ). The slope suggests that galaxy feedback, in terms of mass-loading factor, might be mass-independent over the observed mass and redshift range.

  3. A relation between the characteristic stellar ages of galaxies and their intrinsic shapes

    NASA Astrophysics Data System (ADS)

    van de Sande, Jesse; Scott, Nicholas; Bland-Hawthorn, Joss; Brough, Sarah; Bryant, Julia J.; Colless, Matthew; Cortese, Luca; Croom, Scott M.; d'Eugenio, Francesco; Foster, Caroline; Goodwin, Michael; Konstantopoulos, Iraklis S.; Lawrence, Jon S.; McDermid, Richard M.; Medling, Anne M.; Owers, Matt S.; Richards, Samuel N.; Sharp, Rob

    2018-04-01

    Stellar population and stellar kinematic studies provide unique but complementary insights into how galaxies build-up their stellar mass and angular momentum1-3. A galaxy's mean stellar age reveals when stars were formed, but provides little constraint on how the galaxy's mass was assembled. Resolved stellar dynamics4 trace the change in angular momentum due to mergers, but major mergers tend to obscure the effect of earlier interactions5. With the rise of large multi-object integral field spectroscopic surveys, such as SAMI6 and MaNGA7, and single-object integral field spectroscopic surveys (for example, ATLAS3D (ref. 8), CALIFA9, MASSIVE10), it is now feasible to connect a galaxy's star formation and merger history on the same resolved physical scales, over a large range in galaxy mass, morphology and environment4,11,12. Using the SAMI Galaxy Survey, here we present a combined study of spatially resolved stellar kinematics and global stellar populations. We find a strong correlation of stellar population age with location in the (V/σ, ɛe) diagram that links the ratio of ordered rotation to random motions in a galaxy to its observed ellipticity. For the large majority of galaxies that are oblate rotating spheroids, we find that characteristic stellar age follows the intrinsic ellipticity of galaxies remarkably well.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reines, Amy E.; Volonteri, Marta, E-mail: reines@umich.edu

    Scaling relations between central black hole (BH) mass and host galaxy properties are of fundamental importance to studies of BH and galaxy evolution throughout cosmic time. Here we investigate the relationship between BH mass and host galaxy total stellar mass using a sample of 262 broad-line active galactic nuclei (AGNs) in the nearby universe (z < 0.055), as well as 79 galaxies with dynamical BH masses. The vast majority of our AGN sample is constructed using Sloan Digital Sky Survey spectroscopy and searching for Seyfert-like narrow-line ratios and broad Hα emission. BH masses are estimated using standard virial techniques. Wemore » also include a small number of dwarf galaxies with total stellar masses M{sub stellar} ≲ 10{sup 9.5} M{sub ⊙} and a subsample of the reverberation-mapped AGNs. Total stellar masses of all 341 galaxies are calculated in the most consistent manner feasible using color-dependent mass-to-light ratios. We find a clear correlation between BH mass and total stellar mass for the AGN host galaxies, with M{sub BH} ∝ M{sub stellar}, similar to that of early-type galaxies with dynamically detected BHs. However, the relation defined by the AGNs has a normalization that is lower by more than an order of magnitude, with a BH-to-total stellar mass fraction of M{sub BH}/M{sub stellar} ∼ 0.025% across the stellar mass range 10{sup 8} ≤ M{sub stellar}/M{sub ⊙} ≤ 10{sup 12}. This result has significant implications for studies at high redshift and cosmological simulations in which stellar bulges cannot be resolved.« less

  5. Compact Starburst Galaxies with Fast Outflows: Spatially Resolved Stellar Mass Profiles

    NASA Astrophysics Data System (ADS)

    Gottlieb, Sophia; Diamond-Stanic, Aleksandar; Lipscomb, Charles; Ohene, Senyo; Rines, Josh; Moustakas, John; Sell, Paul; Tremonti, Christy; Coil, Alison; Rudnick, Gregory; Hickox, Ryan C.; Geach, James; Kepley, Amanda

    2018-01-01

    Powerful galactic winds driven by stellar feedback and black hole accretion are thought to play an important role in regulating star formation in galaxies. In particular, strong stellar feedback from supernovae, stellar winds, radiation pressure, and cosmic rays is required by simulations of star-forming galaxies to prevent the vast majority of baryons from cooling and collapsing to form stars. However, it remains unclear whether these stellar processes play a significant role in expelling gas and shutting down star formation in massive progenitors of quiescent galaxies. What are the limits of stellar feedback? We present multi-band photometry with HST/WFC3 (F475W, F814W, F160W) for a dozen compact starburst galaxies at z~0.6 with half-light radii that suggest incredibly large central escape velocities. These massive galaxies are driving fast (>1000 km/s) outflows that have been previously attributed to stellar feedback associated with the compact (r~100 pc) starburst. But how compact is the stellar mass? In the context of the stellar feedback hypothesis, it is unclear whether these fast outflows are being driven at velocities comparable to the escape velocity of an incredibly dense stellar system (as predicted by some models of radiation-pressure winds) or at velocities that exceed the central escape velocity by large factor. Our spatially resolved measurements with HST show that the stellar mass is more extended than the light, and this requires that the physical mechanism responsible for driving the winds must be able to launch gas at velocities that are factors of 5-10 beyond the central escape velocity.

  6. Targeted Optimization of Quasi-Symmetric Stellarators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hegna, Chris C.; Anderson, D. T.; Talmadge, J. N.

    2016-10-06

    The proposed research focuses on targeted areas of plasma physics dedicated to improving the stellarator concept. Research was pursued in the technical areas of edge/divertor physics in 3D configurations, magnetic island physics in stellarators, the role of 3D shaping on microinstabilities and turbulent transport and energetic ion confinement in stellarators.

  7. Connecting Stellar Substructures to the Oscillating Disk: Monoceros and A13

    NASA Astrophysics Data System (ADS)

    Sheffield, Allyson; Tzanidakis, Anastasios; Johnston, Kathryn; Price-Whelan, Adrian

    2018-01-01

    Recent observations of stellar substructures in the Milky Way have challenged our view of where the traditional disk ends. By assessing the stellar populations in a stellar feature, particularly the fraction of RR Lyrae to M giant stars, an accretion scenario can be ruled out in favor of a kicked-out disk origin. A more definitive distinction can be made with the inclusion of high-resolution abundances. I will present evidence that two low latitude stellar substructures, the Monoceros Ring and A13, originated in the Galactic disk and were kicked out to their current location, in the outer regions of the stellar disk, due to a dynamic perturbation to the disk.

  8. METALLICITY AND AGE OF THE STELLAR STREAM AROUND THE DISK GALAXY NGC 5907

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laine, Seppo; Grillmair, Carl J.; Capak, Peter

    2016-09-01

    Stellar streams have become central to studies of the interaction histories of nearby galaxies. To characterize the most prominent parts of the stellar stream around the well-known nearby ( d  = 17 Mpc) edge-on disk galaxy NGC 5907, we have obtained and analyzed new, deep gri Subaru/Suprime-Cam and 3.6 μ m Spitzer /Infrared Array Camera observations. Combining the near-infrared 3.6 μ m data with visible-light images allows us to use a long wavelength baseline to estimate the metallicity and age of the stellar population along an ∼60 kpc long segment of the stream. We have fitted the stellar spectral energy distributionmore » with a single-burst stellar population synthesis model and we use it to distinguish between the proposed satellite accretion and minor/major merger formation models of the stellar stream around this galaxy. We conclude that a massive minor merger (stellar mass ratio of at least 1:8) can best account for the metallicity of −0.3 inferred along the brightest parts of the stream.« less

  9. Know the Planet, Know the Star: Precise Stellar Parameters with Kepler

    NASA Astrophysics Data System (ADS)

    Sandford, Emily; Kipping, David M.

    2017-01-01

    The Kepler space telescope has revolutionized exoplanetary science with unprecedentedly precise photometric measurements of the light curves of transiting planets. In addition to information about the planet and its orbit, encoded in each Kepler transiting planet light curve are certain properties of the host star, including the stellar density and the limb darkening profile. For planets with strong prior constraints on orbital eccentricity (planets to which we refer as “stellar anchors”), we may measure these stellar properties directly from the light curve. This method promises to aid greatly in the characterization of transiting planet host stars targeted by the upcoming NASA TESS mission and any long-period, singly-transiting planets discovered in the same systems. Using Bayesian inference, we fit a transit model, including a nonlinear limb darkening law, to a large sample of transiting planet hosts to measure their stellar properties. We present the results of our analysis, including posterior stellar density distributions for each stellar host, and show how the method yields superior precision to literature stellar properties in the majority of cases studied.

  10. Near-Field Cosmology with Resolved Stellar Populations Around Local Volume LMC Stellar-Mass Galaxies

    NASA Astrophysics Data System (ADS)

    Carlin, Jeffrey L.; Sand, David J.; Willman, Beth; Brodie, Jean P.; Crnojevic, Denija; Forbes, Duncan; Hargis, Jonathan R.; Peter, Annika; Pucha, Ragadeepika; Romanowsky, Aaron J.; Spekkens, Kristine; Strader, Jay

    2018-06-01

    We discuss our ongoing observational program to comprehensively map the entire virial volumes of roughly LMC stellar mass galaxies at distances of ~2-4 Mpc. The MADCASH (Magellanic Analog Dwarf Companions And Stellar Halos) survey will deliver the first census of the dwarf satellite populations and stellar halo properties within LMC-like environments in the Local Volume. Our results will inform our understanding of the recent DES discoveries of dwarf satellites tentatively affiliated with the LMC/SMC system. This program has already yielded the discovery of the faintest known dwarf galaxy satellite of an LMC stellar-mass host beyond the Local Group, based on deep Subaru+HyperSuprimeCam imaging reaching ~2 magnitudes below its TRGB, and at least two additional candidate satellites. We will summarize the survey results and status to date, highlighting some challenges encountered and lessons learned as we process the data for this program through a prototype LSST pipeline. Our program will examine whether LMC stellar mass dwarfs have extended stellar halos, allowing us to assess the relative contributions of in-situ stars vs. merger debris to their stellar populations and halo density profiles. We outline the constraints on galaxy formation models that will be provided by our observations of low-mass galaxy halos and their satellites.

  11. Tidal effects on stellar activity

    NASA Astrophysics Data System (ADS)

    Poppenhaeger, K.

    2017-10-01

    The architecture of many exoplanetary systems is different from the solar system, with exoplanets being in close orbits around their host stars and having orbital periods of only a few days. We can expect interactions between the star and the exoplanet for such systems that are similar to the tidal interactions observed in close stellar binary systems. For the exoplanet, tidal interaction can lead to circularization of its orbit and the synchronization of its rotational and orbital period. For the host star, it has long been speculated if significant angular momentum transfer can take place between the planetary orbit and the stellar rotation. In the case of the Earth-Moon system, such tidal interaction has led to an increasing distance between Earth and Moon. For stars with Hot Jupiters, where the orbital period of the exoplanet is typically shorter than the stellar rotation period, one expects a decreasing semimajor axis for the planet and enhanced stellar rotation, leading to increased stellar activity. Also excess turbulence in the stellar convective zone due to rising and subsiding tidal bulges may change the magnetic activity we observe for the host star. I will review recent observational results on stellar activity and tidal interaction in the presence of close-in exoplanets, and discuss the effects of enhanced stellar activity on the exoplanets in such systems.

  12. A new stellar spectrum interpolation algorithm and its application to Yunnan-III evolutionary population synthesis models

    NASA Astrophysics Data System (ADS)

    Cheng, Liantao; Zhang, Fenghui; Kang, Xiaoyu; Wang, Lang

    2018-05-01

    In evolutionary population synthesis (EPS) models, we need to convert stellar evolutionary parameters into spectra via interpolation in a stellar spectral library. For theoretical stellar spectral libraries, the spectrum grid is homogeneous on the effective-temperature and gravity plane for a given metallicity. It is relatively easy to derive stellar spectra. For empirical stellar spectral libraries, stellar parameters are irregularly distributed and the interpolation algorithm is relatively complicated. In those EPS models that use empirical stellar spectral libraries, different algorithms are used and the codes are often not released. Moreover, these algorithms are often complicated. In this work, based on a radial basis function (RBF) network, we present a new spectrum interpolation algorithm and its code. Compared with the other interpolation algorithms that are used in EPS models, it can be easily understood and is highly efficient in terms of computation. The code is written in MATLAB scripts and can be used on any computer system. Using it, we can obtain the interpolated spectra from a library or a combination of libraries. We apply this algorithm to several stellar spectral libraries (such as MILES, ELODIE-3.1 and STELIB-3.2) and give the integrated spectral energy distributions (ISEDs) of stellar populations (with ages from 1 Myr to 14 Gyr) by combining them with Yunnan-III isochrones. Our results show that the differences caused by the adoption of different EPS model components are less than 0.2 dex. All data about the stellar population ISEDs in this work and the RBF spectrum interpolation code can be obtained by request from the first author or downloaded from http://www1.ynao.ac.cn/˜zhangfh.

  13. Kinematic and stellar population properties of the counter-rotating components in the S0 galaxy NGC 1366

    NASA Astrophysics Data System (ADS)

    Morelli, L.; Pizzella, A.; Coccato, L.; Corsini, E. M.; Dalla Bontà, E.; Buson, L. M.; Ivanov, V. D.; Pagotto, I.; Pompei, E.; Rocco, M.

    2017-04-01

    Context. Many disk galaxies host two extended stellar components that rotate in opposite directions. The analysis of the stellar populations of the counter-rotating components provides constraints on the environmental and internal processes that drive their formation. Aims: The S0 NGC 1366 in the Fornax cluster is known to host a stellar component that is kinematically decoupled from the main body of the galaxy. Here we successfully separated the two counter-rotating stellar components to independently measure the kinematics and properties of their stellar populations. Methods: We performed a spectroscopic decomposition of the spectrum obtained along the galaxy major axis and separated the relative contribution of the two counter-rotating stellar components and of the ionized-gas component. We measured the line-strength indices of the two counter-rotating stellar components and modeled each of them with single stellar population models that account for the α/Fe overabundance. Results: We found that the counter-rotating stellar component is younger, has nearly the same metallicity, and is less α/Fe enhanced than the corotating component. Unlike most of the counter-rotating galaxies, the ionized gas detected in NGC 1366 is neither associated with the counter-rotating stellar component nor with the main galaxy body. On the contrary, it has a disordered distribution and a disturbed kinematics with multiple velocity components observed along the minor axis of the galaxy. Conclusions: The different properties of the counter-rotating stellar components and the kinematic peculiarities of the ionized gas suggest that NGC 1366 is at an intermediate stage of the acquisition process, building the counter-rotating components with some gas clouds still falling onto the galaxy. Based on observations made with ESO Telescopes at the La Silla-Paranal Observatory under programmes 075.B-0794 and 077.B-0767.

  14. Absorption line indices in the UV. I. Empirical and theoretical stellar population models

    NASA Astrophysics Data System (ADS)

    Maraston, C.; Nieves Colmenárez, L.; Bender, R.; Thomas, D.

    2009-01-01

    Aims: Stellar absorption lines in the optical (e.g. the Lick system) have been extensively studied and constitute an important stellar population diagnostic for galaxies in the local universe and up to moderate redshifts. Proceeding towards higher look-back times, galaxies are younger and the ultraviolet becomes the relevant spectral region where the dominant stellar populations shine. A comprehensive study of ultraviolet absorption lines of stellar population models is however still lacking. With this in mind, we study absorption line indices in the far and mid-ultraviolet in order to determine age and metallicity indicators for UV-bright stellar populations in the local universe as well as at high redshift. Methods: We explore empirical and theoretical spectral libraries and use evolutionary population synthesis to compute synthetic line indices of stellar population models. From the empirical side, we exploit the IUE-low resolution library of stellar spectra and system of absorption lines, from which we derive analytical functions (fitting functions) describing the strength of stellar line indices as a function of gravity, temperature and metallicity. The fitting functions are entered into an evolutionary population synthesis code in order to compute the integrated line indices of stellar populations models. The same line indices are also directly evaluated on theoretical spectral energy distributions of stellar population models based on Kurucz high-resolution synthetic spectra, In order to select indices that can be used as age and/or metallicity indicators for distant galaxies and globular clusters, we compare the models to data of template globular clusters from the Magellanic Clouds with independently known ages and metallicities. Results: We provide synthetic line indices in the wavelength range ~1200 Å to ~3000 Å for stellar populations of various ages and metallicities.This adds several new indices to the already well-studied CIV and SiIV absorptions. Based on the comparison with globular cluster data, we select a set of 11 indices blueward of the 2000 Å rest-frame that allows us to recover well the ages and the metallicities of the clusters. These indices are ideal to study ages and metallicities of young galaxies at high redshift. We also provide the synthetic high-resolution stellar population SEDs.

  15. Omega Centauri Looks Radiant in Infrared

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Poster Version

    A cluster brimming with millions of stars glistens like an iridescent opal in this image from NASA's Spitzer Space Telescope. Called Omega Centauri, the sparkling orb of stars is like a miniature galaxy. It is the biggest and brightest of the 150 or so similar objects, called globular clusters, that orbit around the outside of our Milky Way galaxy. Stargazers at southern latitudes can spot the stellar gem with the naked eye in the constellation Centaurus.

    Globular clusters are some of the oldest objects in our universe. Their stars are over 12 billion years old, and, in most cases, formed all at once when the universe was just a toddler. Omega Centauri is unusual in that its stars are of different ages and possess varying levels of metals, or elements heavier than boron. Astronomers say this points to a different origin for Omega Centauri than other globular clusters: they think it might be the core of a dwarf galaxy that was ripped apart and absorbed by our Milky Way long ago.

    In this new view of Omega Centauri, Spitzer's infrared observations have been combined with visible-light data from the National Science Foundation's Blanco 4-meter telescope at Cerro Tololo Inter-American Observatory in Chile. Visible-light data with a wavelength of .55 microns is colored blue, 3.6-micron infrared light captured by Spitzer's infrared array camera is colored green and 24-micron infrared light taken by Spitzer's multiband imaging photometer is colored red.

    Where green and red overlap, the color yellow appears. Thus, the yellow and red dots are stars revealed by Spitzer. These stars, called red giants, are more evolved, larger and dustier. The stars that appear blue were spotted in both visible and 3.6-micron-, or near-, infrared light. They are less evolved, like our own sun. Some of the red spots in the picture are distant galaxies beyond our own.

    Spitzer found very little dust around any but the most luminous, coolest red giants, implying that the dimmer red giants do not form significant amounts of dust. The space between the stars in Omega Centauri was also found to lack dust, which means the dust is rapidly destroyed or leaves the cluster.

  16. VizieR Online Data Catalog: STAGGER-grid of 3D stellar models. V. (Chiavassa+, 2018)

    NASA Astrophysics Data System (ADS)

    Chiavassa, A.; Casagrande, L.; Collet, R.; Magic, Z.; Bigot, L.; Thevenin, F.; Asplund, M.

    2018-01-01

    Table B0: RHD simulations' stellar parameters, bolometric magnitude, and bolometric correction for Johnson-Cousins, 2MASS, SDSS (columns 13 to 17), and Gaia systems Table 4: RHD simulations' stellar parameters, bolometric magnitude, and bolometric correction for SkyMapper photometric system, and Stroemgren index b-y, m1=(v-b)-(b-y), and c1=(u-v)-(v-b) Table 5: RHD simulations' stellar parameters, bolometric magnitude, and bolometric correction for the HST-WFC3 in VEGA system Table 6: RHD simulations' stellar parameters, bolometric magnitude, and bolometric correction for the HST-WFC3 in ST system Table 7: RHD simulations' stellar parameters, bolometric magnitude, and bolometric correction for the HST-WFC3 in AB system (5 data files).

  17. The Dragonfly Nearby Galaxies Survey. IV. A Giant Stellar Disk in NGC 2841

    NASA Astrophysics Data System (ADS)

    Zhang, Jielai; Abraham, Roberto; van Dokkum, Pieter; Merritt, Allison; Janssens, Steven

    2018-03-01

    Neutral gas is commonly believed to dominate over stars in the outskirts of galaxies, and investigations of the disk-halo interface are generally considered to be in the domain of radio astronomy. This may simply be a consequence of the fact that deep H I observations typically probe to a lower-mass surface density than visible wavelength data. This paper presents low-surface-brightness, optimized visible wavelength observations of the extreme outskirts of the nearby spiral galaxy NGC 2841. We report the discovery of an enormous low-surface brightness stellar disk in this object. When azimuthally averaged, the stellar disk can be traced out to a radius of ∼70 kpc (5 R 25 or 23 inner disk scale lengths). The structure in the stellar disk traces the morphology of H I emission and extended UV emission. Contrary to expectations, the stellar mass surface density does not fall below that of the gas mass surface density at any radius. In fact, at all radii greater than ∼20 kpc, the ratio of the stellar mass to gas mass surface density is a constant 3:1. Beyond ∼30 kpc, the low-surface-brightness stellar disk begins to warp, which may be an indication of a physical connection between the outskirts of the galaxy and infall from the circumgalactic medium. A combination of stellar migration, accretion, and in situ star formation might be responsible for building up the outer stellar disk, but whatever mechanisms formed the outer disk must also explain the constant ratio between stellar and gas mass in the outskirts of this galaxy.

  18. PHAT+MaNGA: Using resolved stellar populations to improve the recovery of star formation histories from galaxy spectra

    NASA Astrophysics Data System (ADS)

    Byler, Nell

    2017-08-01

    Stellar Population Synthesis (SPS) models are routinely used to interpret extragalactic observations at all redshifts. Currently, the dominant source of uncertainty in SPS modeling lies in the degeneracies associated with synthesizing and fitting complex stellar populations to observed galaxy spectra. To remedy this, we propose an empirical calibration of SPS models using resolved stellar population observations from Hubble Space Telescope (HST) to constrain the stellar masses, ages, and star formation histories (SFHs) in regions matched to 2D spectroscopic observations from MaNGA. We will take advantage of the state of the art observations from the Panchromatic Hubble Andromeda Treasury (PHAT), which maps the dust content, history of chemical enrichment, and history of star formation across the disk of M31 in exquisite detail. Recently, we have coupled these observations with an unprecedented, spatially-resolved suite of IFU observations from MaNGA. With these two comprehensive data sets we can use the true underlying stellar properties from PHAT to properly interpret the aperture-matched integrated spectra from MaNGA. Our MaNGA observations target 20 regions within the PHAT footprint that fully sample the available range in metallicity, SFR, dust content, and stellar density. This transformative dataset will establish a comprehensive link between resolved stellar populations and the inferred properties of unresolved stellar populations across astrophysically important environments. The net data product will be a library of galaxy spectra matched to the true underlying stellar properties, a comparison set that has lasting legacy value for the extragalactic community.

  19. New theory of stellar convection without the mixing-length parameter: new stellar atmosphere model

    NASA Astrophysics Data System (ADS)

    Pasetto, Stefano; Chiosi, Cesare; Cropper, Mark; Grebel, Eva K.

    2018-01-01

    Stellar convection is usually described by the mixing-length theory, which makes use of the mixing-length scale factor to express the convective flux, velocity, and temperature gradients of the convective elements and stellar medium. The mixing-length scale is proportional to the local pressure scale height of the star, and the proportionality factor (i.e. mixing-length parameter) is determined by comparing the stellar models to some calibrator, i.e. the Sun. No strong arguments exist to suggest that the mixing-length parameter is the same in all stars and all evolutionary phases and because of this, all stellar models in the literature are hampered by this basic uncertainty. In a recent paper [1] we presented a new theory that does not require the mixing length parameter. Our self-consistent analytical formulation of stellar convection determines all the properties of stellar convection as a function of the physical behavior of the convective elements themselves and the surrounding medium. The new theory of stellar convection is formulated starting from a conventional solution of the Navier-Stokes/Euler equations expressed in a non-inertial reference frame co-moving with the convective elements. The motion of stellar convective cells inside convective-unstable layers is fully determined by a new system of equations for convection in a non-local and time-dependent formalism. The predictions of the new theory are compared with those from the standard mixing-length paradigm with positive results for atmosphere models of the Sun and all the stars in the Hertzsprung-Russell diagram.

  20. Star-forming galaxies in intermediate-redshift clusters: stellar versus dynamical masses of luminous compact blue galaxies

    NASA Astrophysics Data System (ADS)

    Randriamampandry, S. M.; Crawford, S. M.; Bershady, M. A.; Wirth, G. D.; Cress, C. M.

    2017-10-01

    We investigate the stellar masses of the class of star-forming objects known as luminous compact blue galaxies (LCBGs) by studying a sample of galaxies in the distant cluster MS 0451.6-0305 at z ≈ 0.54 with ground-based multicolour imaging and spectroscopy. For a sample of 16 spectroscopically confirmed cluster LCBGs (colour B - V < 0.5, surface brightness μB < 21 mag arcsec-2 and magnitude MB < -18.5), we measure stellar masses by fitting spectral energy distribution (SED) models to multiband photometry, and compare with dynamical masses [determined from velocity dispersion in the range 10 < σv(km s- 1) < 80] we previously obtained from their emission-line spectra. We compare two different stellar population models that measure stellar mass in star-bursting galaxies, indicating correlations between the stellar age, extinction and stellar mass derived from the two different SED models. The stellar masses of cluster LCBGs are distributed similarly to those of field LCBGs, but the cluster LCBGs show lower dynamical-to-stellar mass ratios (Mdyn/M⋆ = 2.6) than their field LCBG counterparts (Mdyn/M⋆ = 4.8), echoing trends noted previously in low-redshift dwarf elliptical galaxies. Within this limited sample, the specific star formation rate declines steeply with increasing mass, suggesting that these cluster LCBGs have undergone vigorous star formation.

  1. The calculation and publication of a grid of line-blanketed model stellar atmospheres

    NASA Technical Reports Server (NTRS)

    Avrett, E. H.

    1972-01-01

    The luminosity, mass, and elemental abundances, as well as other properties of each star are studied in order to locate them in an evolutionary pattern. A method for determining the flux, gravity, and abundances at the stellar surface is the construction of theoretical stellar atmospheric models that predict the observed energy distribution and detailed stellar spectrum.

  2. The distribution of stars most likely to harbor intelligent life.

    PubMed

    Whitmire, Daniel P; Matese, John J

    2009-09-01

    Simple heuristic models and recent numerical simulations show that the probability of habitable planet formation increases with stellar mass. We combine those results with the distribution of main-sequence stellar masses to obtain the distribution of stars most likely to possess habitable planets as a function of stellar lifetime. We then impose the self-selection condition that intelligent observers can only find themselves around a star with a lifetime greater than the time required for that observer to have evolved, T(i). This allows us to obtain the stellar timescale number distribution for a given value of T(i). Our results show that for habitable planets with a civilization that evolved at time T(i) = 4.5 Gyr the median stellar lifetime is 13 Gyr, corresponding approximately to a stellar type of G5, with two-thirds of the stars having lifetimes between 7 and 30 Gyr, corresponding approximately to spectral types G0-K5. For other values of T(i) the median stellar lifetime changes by less than 50%.

  3. A GRID OF THREE-DIMENSIONAL STELLAR ATMOSPHERE MODELS OF SOLAR METALLICITY. I. GENERAL PROPERTIES, GRANULATION, AND ATMOSPHERIC EXPANSION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trampedach, Regner; Asplund, Martin; Collet, Remo

    2013-05-20

    Present grids of stellar atmosphere models are the workhorses in interpreting stellar observations and determining their fundamental parameters. These models rely on greatly simplified models of convection, however, lending less predictive power to such models of late-type stars. We present a grid of improved and more reliable stellar atmosphere models of late-type stars, based on deep, three-dimensional (3D), convective, stellar atmosphere simulations. This grid is to be used in general for interpreting observations and improving stellar and asteroseismic modeling. We solve the Navier Stokes equations in 3D and concurrent with the radiative transfer equation, for a range of atmospheric parameters,more » covering most of stellar evolution with convection at the surface. We emphasize the use of the best available atomic physics for quantitative predictions and comparisons with observations. We present granulation size, convective expansion of the acoustic cavity, and asymptotic adiabat as functions of atmospheric parameters.« less

  4. Improving 1D Stellar Models with 3D Atmospheres

    NASA Astrophysics Data System (ADS)

    Mosumgaard, Jakob Rørsted; Silva Aguirre, Víctor; Weiss, Achim; Christensen-Dalsgaard, Jørgen; Trampedach, Regner

    2017-10-01

    Stellar evolution codes play a major role in present-day astrophysics, yet they share common issues. In this work we seek to remedy some of those by the use of results from realistic and highly detailed 3D hydrodynamical simulations of stellar atmospheres. We have implemented a new temperature stratification extracted directly from the 3D simulations into the Garching Stellar Evolution Code to replace the simplified atmosphere normally used. Secondly, we have implemented the use of a variable mixing-length parameter, which changes as a function of the stellar surface gravity and temperature - also derived from the 3D simulations. Furthermore, to make our models consistent, we have calculated new opacity tables to match the atmospheric simulations. Here, we present the modified code and initial results on stellar evolution using it.

  5. Stellar Rotation: New Insight from CoRoT

    NASA Astrophysics Data System (ADS)

    Catala, C.; Goupil, M. J.; Michel, E.; Baglin, A.; de Medeiros, J. Renan; Gondoin, Ph.

    2009-02-01

    We present an overview of the new insight provided by the CoRoT satellite on stellar rotation. Thanks to its ultra-high precision, high duty cycle, long photometric monitoring of thousands of stars, CoRoT gives us a powerful tool to study stellar rotational modulation, and therefore to measure stellar rotational periods and to study active structures at the surface of stars. This paper presents preliminary results concerning this type of study. CoRoT will also provide us with an insight of internal stellar rotation via the measurement and exploitation of rotational splittings of oscillation modes. This approach to stellar rotation with CoRoT will require a careful analysis of the oscillation power spectra, which is in progress, but prospects for such measurements are presented.

  6. Asteroseismology with FRESIP: A meter class space telescope

    NASA Technical Reports Server (NTRS)

    Milford, Peter

    1994-01-01

    The requirements for asteroseismology and searching for occulting inner planets are similar. The FRESIP mission will be suited to making asteroseismology measurements. Recommendation: Use 30-60 second integrations from one or more CCD's in the FRESIP mosaic, sampled continuously for the entire mission to measure stellar non-radial oscillations with amplitudes of parts per million and frequencies of 0.1 to 10 MHz. These measurements lead to determination of stellar interior helium abundances, rotation rates, depth of convection zones and measuring stellar cycle frequency changes for a variety of stellar types, enabling major advances in stellar structure and evolutionary theories.

  7. Searching for Extrasolar Trojan Planets: A Status Report

    NASA Astrophysics Data System (ADS)

    Caton, D. B.; Davis, S. A.; Kluttz, K. A.; Stamilio, R. J.; Wohlman, K. D.

    2001-05-01

    We are exploring the light curves of eclipsing binaries for the photometric signature of planets that may exist at the L4 and L5 Lagrange points of the stellar system. While no binaries are known to exist that strictly satisfy the stellar mass ratio constraint for the restricted three-body problem, the general solution would allow a planet formed at the L-point to remain there if there are no major perturbing bodies such as an additional planet. We have coined such objects "Trojan planets." The advantage of this approach is that the phases of the planetary eclipses are known. We picked systems with deep primary eclipses, to maximize the amount of system light eclipsed by the planet when in front of the hotter star. We also scanned the Finding List for Observers of Interactive Binary Stars, for G dwarf systems, but found only a few that were high inclination and detached. The target list includes QY Aql, YZ Aql, V442 Cas, SS Cet, S Cnc, VW Cyg, WW Cyg, RR Dra, RX Gem, RY Gem, VW Hya, Y Leo, TV Mon, BN Sct, UW Vir, AC UMa, and GSC 1657. We have concentrated on V442 Cas and YZ Aql, based on initial results that show anomalies in the light curves near the phases where a Trojan planet eclipse is expected. New work is being done on brighter systems by using a "spot filter," similar to that developed by Castellano (PASP 112, 821-6),2000), to allow longer exposures that provide brighter comparison stars. We will report on the observations made to date on several systems. We gratefully acknowledge the support of the National Science Foundation, through grants AST-9731062 and AST-0089248. We also appreciate the support of the Fund for Astrophysical Research. Gregory Shelton and Brenda Corbin, at the U.S. naval Observatory Library, have been indispensable in providing references for these binary systems. This research has made use of the Simbad database, operated at CDS, Strasbourg, France

  8. Spectral variability of photospheric radiation due to faculae. I. The Sun and Sun-like stars

    NASA Astrophysics Data System (ADS)

    Norris, Charlotte M.; Beeck, Benjamin; Unruh, Yvonne C.; Solanki, Sami K.; Krivova, Natalie A.; Yeo, Kok Leng

    2017-09-01

    Context. Stellar spectral variability on timescales of a day and longer, arising from magnetic surface features such as dark spots and bright faculae, is an important noise source when characterising extra-solar planets. Current 1D models of faculae do not capture the geometric properties and fail to reproduce observed solar facular contrasts. Magnetoconvection simulations provide facular contrasts accounting for geometry. Aims: We calculate facular contrast spectra from magnetoconvection models of the solar photosphere with a view to improve (a) future parameter determinations for planets with early G type host stars and (b) reconstructions of solar spectral variability. Methods: Regions of a solar twin (G2, log g = 4.44) atmosphere with a range of initial average vertical magnetic fields (100 to 500 G) were simulated using a 3D radiation-magnetohydrodynamics code, MURaM, and synthetic intensity spectra were calculated from the ultraviolet (149.5 nm) to the far infrared (160 000 nm) with the ATLAS9 radiative transfer code. Nine viewing angles were investigated to account for facular positions across most of the stellar disc. Results: Contrasts of the radiation from simulation boxes with different levels of magnetic flux relative to an atmosphere with no magnetic field are a complicated function of position, wavelength and magnetic field strength that is not reproduced by 1D facular models. Generally, contrasts increase towards the limb, but at UV wavelengths a saturation and decrease are observed close to the limb. Contrasts also increase strongly from the visible to the UV; there is a rich spectral dependence, with marked peaks in molecular bands and strong spectral lines. At disc centre, a complex relationship with magnetic field was found and areas of strong magnetic field can appear either dark or bright, depending on wavelength. Spectra calculated for a wide variety of magnetic fluxes will also serve to improve total and spectral solar irradiance reconstructions.

  9. CSI 2264: Simultaneous Optical and Infrared Light Curves of Young Disk-bearing Stars in NGC 2264 with CoRoT and Spitzer—Evidence for Multiple Origins of Variability

    NASA Astrophysics Data System (ADS)

    Cody, Ann Marie; Stauffer, John; Baglin, Annie; Micela, Giuseppina; Rebull, Luisa M.; Flaccomio, Ettore; Morales-Calderón, María; Aigrain, Suzanne; Bouvier, Jèrôme; Hillenbrand, Lynne A.; Gutermuth, Robert; Song, Inseok; Turner, Neal; Alencar, Silvia H. P.; Zwintz, Konstanze; Plavchan, Peter; Carpenter, John; Findeisen, Krzysztof; Carey, Sean; Terebey, Susan; Hartmann, Lee; Calvet, Nuria; Teixeira, Paula; Vrba, Frederick J.; Wolk, Scott; Covey, Kevin; Poppenhaeger, Katja; Günther, Hans Moritz; Forbrich, Jan; Whitney, Barbara; Affer, Laura; Herbst, William; Hora, Joseph; Barrado, David; Holtzman, Jon; Marchis, Franck; Wood, Kenneth; Medeiros Guimarães, Marcelo; Lillo Box, Jorge; Gillen, Ed; McQuillan, Amy; Espaillat, Catherine; Allen, Lori; D'Alessio, Paola; Favata, Fabio

    2014-04-01

    We present the Coordinated Synoptic Investigation of NGC 2264, a continuous 30 day multi-wavelength photometric monitoring campaign on more than 1000 young cluster members using 16 telescopes. The unprecedented combination of multi-wavelength, high-precision, high-cadence, and long-duration data opens a new window into the time domain behavior of young stellar objects. Here we provide an overview of the observations, focusing on results from Spitzer and CoRoT. The highlight of this work is detailed analysis of 162 classical T Tauri stars for which we can probe optical and mid-infrared flux variations to 1% amplitudes and sub-hour timescales. We present a morphological variability census and then use metrics of periodicity, stochasticity, and symmetry to statistically separate the light curves into seven distinct classes, which we suggest represent different physical processes and geometric effects. We provide distributions of the characteristic timescales and amplitudes and assess the fractional representation within each class. The largest category (>20%) are optical "dippers" with discrete fading events lasting ~1-5 days. The degree of correlation between the optical and infrared light curves is positive but weak; notably, the independently assigned optical and infrared morphology classes tend to be different for the same object. Assessment of flux variation behavior with respect to (circum)stellar properties reveals correlations of variability parameters with Hα emission and with effective temperature. Overall, our results point to multiple origins of young star variability, including circumstellar obscuration events, hot spots on the star and/or disk, accretion bursts, and rapid structural changes in the inner disk. Based on data from the Spitzer and CoRoT missions. The CoRoT space mission was developed and is operated by the French space agency CNES, with participation of ESA's RSSD and Science Programmes, Austria, Belgium, Brazil, Germany, and Spain.

  10. CoRoT-2b: a Tidally Inflated, Young Exoplanet?

    NASA Astrophysics Data System (ADS)

    Guillot, Tristan; Havel, M.

    2009-09-01

    CoRoT-2b is among the most anomalously large transiting exoplanet known. Due to its large mass (3.3 Mjup), its large radius ( 1.5 Rjup) cannot be explained by standard evolution models. Recipes that work for other anomalously large exoplanets (e.g. HD209458b), such as invoking kinetic energy transport in the planetary interior or increased opacities, clearly fail for CoRoT-2b. Interestingly, the planet's parent star is an active star with a large fraction (7 to 20%) of spots and a rapid rotation (4.5 days). We first model the star's evolution to accurately constrain the planetary parameters. We find that the stellar activity has little influence on the star's evolution and inferred parameters. However, stellar evolution models point towards two kind of solutions for the star-planet system: (i) a very young system (20-40 Ma) with a star still undergoing pre-main sequence contraction, and a planet which could have a radius as low as 1.4 Rjup, or (ii) a young main-sequence star (40 to 500 Ma) with a planet that is slightly more inflated ( 1.5 Rjup). In either case, planetary evolution models require a significant added internal energy to explain the inferred planet size: from a minimum of 3x1028 erg/s in case (i), to up to 1.5x1029 erg/s in case (ii). We find that evolution models consistently including planet/star tides are able to reproduce the inferred radius but only for a short period of time ( 10 Ma). This points towards a young age for the star/planet system and dissipation by tides due to either circularization or synchronization of the planet. Additional observations of the star (infrared excess due to disk?) and of the planet (precise Rossiter effect, IR secondary eclispe) would be highly valuable to understand the early evolution of star-exoplanet systems.

  11. Lithium in Stellar Atmospheres: Observations and Theory

    NASA Astrophysics Data System (ADS)

    Lyubimkov, L. S.

    2016-09-01

    Of all the light elements, lithium is the most sensitive indicator of stellar evolution. This review discusses current data on the abundance of lithium in the atmospheres of A-, F-, G-, and K-stars of different types, as well as the consistency of these data with theoretical predictions. The variety of observed Li abundances is illustrated by the following objects in different stages of evolution: (1) Old stars in the galactic halo, which have a lithium abundance logɛ(Li)=2.2 (the "lithium plateau") that appears to be 0.5 dex lower than the primordial abundance predicted by cosmological models. (2) Young stars in the galactic disk, which have been used to estimate the contemporary initial lithium abundance logɛ(Li)=3.2±0.1 for stars in the Main sequence. Possible sources of lithium enrichment in the interstellar medium during evolution of the galaxy are discussed. (3) Evolving FGK dwarfs in the galactic disk, which have lower logɛ(Li) for lower effective temperature T eff and mass M. The "lithium dip" near T eff ~6600 K in the distribution of logɛ(Li) with respect to T eff in old clusters is discussed. (4) FGK giants and supergiants, of which most have no lithium at all. This phenomenon is consistent with rotating star model calculations. (5) Lithium rich cold giants with logɛ(Li) ≥ 2.0, which form a small, enigmatic group. Theoretical models with rotation can explain the existence of these stars only in the case of low initial rotation velocities V 0 <50 km/s. In all other cases it is necessary to assume recent synthesis of lithium (capture of a giant planet is an alternative). (6) Magnetic Ap-stars, where lithium is concentrated in spots located at the magnetic poles. There the lithium abundance reaches logɛ(Li)=6. Discrepancies between observations and theory are noted for almost all the stars discussed in this review.

  12. Experimental results of near real-time protection system for plasma facing components in Wendelstein 7-X at GLADIS

    NASA Astrophysics Data System (ADS)

    Ali, A.; Jakubowski, M.; Greuner, H.; Böswirth, B.; Moncada, V.; Sitjes, A. Puig; Neu, R.; Pedersen, T. S.; the W7-X Team

    2017-12-01

    One of the aims of stellarator Wendelstein 7-X (W7-X), is to investigate steady state operation, for which power exhaust is an important issue. The predominant fraction of the energy lost from the confined plasma region will be absorbed by an island divertors, which is designed for 10 {{MWm}}-2 steady state operation. In order to protect the divertor targets from overheating, 10 state-of-the-art infrared endoscopes will be installed at W7-X. In this work, we present the experimental results obtained at the high heat flux test facility GLADIS (Garching LArge DIvertor Sample test facility in IPP Garching) [1] during tests of a new plasma facing components (PFCs) protection algorithm designed for W7-X. The GLADIS device is equipped with two ion beams that can generate a heat load in the range from 3 MWm-2 to 55 MWm-2. The algorithms developed at W7-X to detect defects and hot spots are based on the analysis of surface temperature evolution and are adapted to work in near real-time. The aim of this work was to test the near real-time algorithms in conditions close to those expected in W7-X. The experiments were performed on W7-X pre-series tiles to detect CFC/Cu delaminations. For detection of surface layers, carbon fiber composite (CFC) blocks from the divertor of the Wendelstein 7-AS stellarator were used to observe temporal behavior of fully developed surface layers. These layers of re-deposited materials, like carbon, boron, oxygen and iron, were formed during the W7-AS operation. A detailed analysis of the composition and their thermal response to high heat fluxes (HHF) are described in [2]. The experiments indicate that the automatic detection of critical events works according to W7-X PFC protection requirements.

  13. Second Cambridge Workshop on Cool Stars, Stellar Systems, and the Sun, volume 1

    NASA Technical Reports Server (NTRS)

    Giampapa, M. S. (Editor); Golub, L. (Editor)

    1981-01-01

    Solar and stellar atmospheric phenomena and their fundamental physical properties such as gravity, effective temperature and rotation rate, which provides the range in parameter space required to test various theoretical models were investigated. The similarity between solar activity and stellar activity is documented. Some of the topics discussed are: atmospheric structure, magnetic fields, solar and stellar activity, and evolution.

  14. AME - Asteroseismology Made Easy. Estimating stellar properties by using scaled models

    NASA Astrophysics Data System (ADS)

    Lundkvist, Mia; Kjeldsen, Hans; Silva Aguirre, Victor

    2014-06-01

    Context. Stellar properties and, in particular stellar radii of exoplanet host stars, are essential for measuring the properties of exoplanets, therefore it is becoming increasingly important to be able to supply reliable stellar radii fast. Grid-modelling is an obvious choice for this, but that only offers a low degree of transparency to non-specialists. Aims: Here we present a new, easy, fast, and transparent method of obtaining stellar properties for stars exhibiting solar-like oscillations. The method, called Asteroseismology Made Easy (AME), can determine stellar masses, mean densities, radii, and surface gravities, as well as estimate ages. We present AME as a visual and powerful tool that could be useful, in particular, in light of the large number of exoplanets being found. Methods: AME consists of a set of figures from which the stellar parameters can be deduced. These figures are made from a grid of stellar evolutionary models that cover masses ranging from 0.7 M⊙ to 1.6 M⊙ in steps of 0.1 M⊙ and metallicities in the interval -0.3 dex ≤ [Fe/H] ≤ +0.3 dex in increments of 0.1 dex. The stellar evolutionary models are computed using the Modules for Experiments in Stellar Astrophysics (MESA) code with simple input physics. Results: We have compared the results from AME with results for three groups of stars: stars with radii determined from interferometry (and measured parallaxes), stars with radii determined from measurements of their parallaxes (and calculated angular diameters), and stars with results based on modelling their individual oscillation frequencies. We find that a comparison of the radii from interferometry to those from AME yields a weighted mean of the fractional differences of just 2%. This is also the level of deviation that we find when we compare the parallax-based radii to the radii determined from AME. Conclusions: The comparison between independently determined stellar parameters and those found using AME show that our method can provide reliable stellar masses, radii, and ages, with median uncertainties in the order of 4%, 2%, and 25%, respectively. http://sac.au.dk/scientific-data/ame

  15. SPIDER. V. MEASURING SYSTEMATIC EFFECTS IN EARLY-TYPE GALAXY STELLAR MASSES FROM PHOTOMETRIC SPECTRAL ENERGY DISTRIBUTION FITTING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swindle, R.; Gal, R. R.; La Barbera, F.

    2011-10-15

    We present robust statistical estimates of the accuracy of early-type galaxy stellar masses derived from spectral energy distribution (SED) fitting as functions of various empirical and theoretical assumptions. Using large samples consisting of {approx}40,000 galaxies from the Sloan Digital Sky Survey (SDSS; ugriz), of which {approx}5000 are also in the UKIRT Infrared Deep Sky Survey (YJHK), with spectroscopic redshifts in the range 0.05 {<=} z {<=} 0.095, we test the reliability of some commonly used stellar population models and extinction laws for computing stellar masses. Spectroscopic ages (t), metallicities (Z), and extinctions (A{sub V} ) are also computed from fitsmore » to SDSS spectra using various population models. These external constraints are used in additional tests to estimate the systematic errors in the stellar masses derived from SED fitting, where t, Z, and A{sub V} are typically left as free parameters. We find reasonable agreement in mass estimates among stellar population models, with variation of the initial mass function and extinction law yielding systematic biases on the mass of nearly a factor of two, in agreement with other studies. Removing the near-infrared bands changes the statistical bias in mass by only {approx}0.06 dex, adding uncertainties of {approx}0.1 dex at the 95% CL. In contrast, we find that removing an ultraviolet band is more critical, introducing 2{sigma} uncertainties of {approx}0.15 dex. Finally, we find that the stellar masses are less affected by the absence of metallicity and/or dust extinction knowledge. However, there is a definite systematic offset in the mass estimate when the stellar population age is unknown, up to a factor of 2.5 for very old (12 Gyr) stellar populations. We present the stellar masses for our sample, corrected for the measured systematic biases due to photometrically determined ages, finding that age errors produce lower stellar masses by {approx}0.15 dex, with errors of {approx}0.02 dex at the 95% CL for the median stellar age subsample.« less

  16. The outskirts of spiral galaxies: touching stellar halos at z˜0 and z˜1

    NASA Astrophysics Data System (ADS)

    Bakos, J.; Trujillo, I.

    Taking advantage of ultra-deep imaging of SDSS Stripe82 and the Hubble Ultra Deep Field by HST, we explore the properties of stellar halos at two relevant epochs of cosmic history. At z˜0 we find that the radial surface brightness profiles of disks have a smooth continuation into the stellar halo that starts to affect the surface brightness profiles at mu r'˜28 {mag arcsec-2}, and at a radial distance of gtrsim 4-10 inner scale-lengths. The light contribution of the stellar halo to the total galaxy light varies from ˜1% to ˜5%, but in case of ongoing mergers, the halo light fraction can be as high as ˜10%. The integrated (g'-r') color of the stellar halo of our galaxies range from ˜0.4 to ˜1.2. By confronting these colors with model predictions, these halos can be attributed to moderately aged and metal-poor populations, however the extreme red colors (˜1) cannot be explained by populations of conventional IMFs. Very red halo colors can be attributed to stellar populations dominated by very low mass stars of low to intermediate metallicity produced by bottom-heavy IMFs. At z˜1 stellar halos appear to be ˜2 magnitudes brighter than their local counterparts, meanwhile they exhibit bluer colors ((g'-r')≲0.3 mag), as well. The stellar populations corresponding to these colors are compatible with having ages ≲1 Gyr. This latter observation strongly suggests the possibility that these halos were formed between z˜1 and z˜2. This result matches very well the theoretical predictions that locate most of the formation of the stellar halos at those early epochs. A pure passive evolutionary scenario, where the stellar populations of our high-z haloes simply fade to match the stellar halo properties found in the local universe, is consistent with our data.

  17. When the Jeans Do Not Fit: How Stellar Feedback Drives Stellar Kinematics and Complicates Dynamical Modeling in Low-mass Galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El-Badry, Kareem; Quataert, Eliot; Wetzel, Andrew R.

    In low-mass galaxies, stellar feedback can drive gas outflows that generate non-equilibrium fluctuations in the gravitational potential. Using cosmological zoom-in baryonic simulations from the Feedback in Realistic Environments project, we investigate how these fluctuations affect stellar kinematics and the reliability of Jeans dynamical modeling in low-mass galaxies. We find that stellar velocity dispersion and anisotropy profiles fluctuate significantly over the course of galaxies’ starburst cycles. We therefore predict an observable correlation between star formation rate and stellar kinematics: dwarf galaxies with higher recent star formation rates should have systemically higher stellar velocity dispersions. This prediction provides an observational test ofmore » the role of stellar feedback in regulating both stellar and dark-matter densities in dwarf galaxies. We find that Jeans modeling, which treats galaxies as virialized systems in dynamical equilibrium, overestimates a galaxy’s dynamical mass during periods of post-starburst gas outflow and underestimates it during periods of net inflow. Short-timescale potential fluctuations lead to typical errors of ∼20% in dynamical mass estimates, even if full three-dimensional stellar kinematics—including the orbital anisotropy—are known exactly. When orbital anisotropy is not known a priori, typical mass errors arising from non-equilibrium fluctuations in the potential are larger than those arising from the mass-anisotropy degeneracy. However, Jeans modeling alone cannot reliably constrain the orbital anisotropy, and problematically, it often favors anisotropy models that do not reflect the true profile. If galaxies completely lose their gas and cease forming stars, fluctuations in the potential subside, and Jeans modeling becomes much more reliable.« less

  18. Influence of stellar multiplicity on planet formation. II. Planets are less common in multiple-star systems with separations smaller than 1500 AU

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Ji; Fischer, Debra A.; Xie, Ji-Wei

    2014-08-20

    Almost half of the stellar systems in the solar neighborhood are made up of multiple stars. In multiple-star systems, planet formation is under the dynamical influence of stellar companions, and the planet occurrence rate is expected to be different from that of single stars. There have been numerous studies on the planet occurrence rate of single star systems. However, to fully understand planet formation, the planet occurrence rate in multiple-star systems needs to be addressed. In this work, we infer the planet occurrence rate in multiple-star systems by measuring the stellar multiplicity rate for planet host stars. For a subsamplemore » of 56 Kepler planet host stars, we use adaptive optics (AO) imaging and the radial velocity (RV) technique to search for stellar companions. The combination of these two techniques results in high search completeness for stellar companions. We detect 59 visual stellar companions to 25 planet host stars with AO data. Three stellar companions are within 2'' and 27 within 6''. We also detect two possible stellar companions (KOI 5 and KOI 69) showing long-term RV acceleration. After correcting for a bias against planet detection in multiple-star systems due to flux contamination, we find that planet formation is suppressed in multiple-star systems with separations smaller than 1500 AU. Specifically, we find that compared to single star systems, planets in multiple-star systems occur 4.5 ± 3.2, 2.6 ± 1.0, and 1.7 ± 0.5 times less frequently when a stellar companion is present at a distance of 10, 100, and 1000 AU, respectively. This conclusion applies only to circumstellar planets; the planet occurrence rate for circumbinary planets requires further investigation.« less

  19. The universal relation of galactic chemical evolution: the origin of the mass-metallicity relation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zahid, H. Jabran; Dima, Gabriel I.; Kudritzki, Rolf-Peter

    2014-08-20

    We examine the mass-metallicity relation for z ≲ 1.6. The mass-metallicity relation follows a steep slope with a turnover, or 'knee', at stellar masses around 10{sup 10} M {sub ☉}. At stellar masses higher than the characteristic turnover mass, the mass-metallicity relation flattens as metallicities begin to saturate. We show that the redshift evolution of the mass-metallicity relation depends only on the evolution of the characteristic turnover mass. The relationship between metallicity and the stellar mass normalized to the characteristic turnover mass is independent of redshift. We find that the redshift-independent slope of the mass-metallicity relation is set by themore » slope of the relationship between gas mass and stellar mass. The turnover in the mass-metallicity relation occurs when the gas-phase oxygen abundance is high enough that the amount of oxygen locked up in low-mass stars is an appreciable fraction of the amount of oxygen produced by massive stars. The characteristic turnover mass is the stellar mass, where the stellar-to-gas mass ratio is unity. Numerical modeling suggests that the relationship between metallicity and the stellar-to-gas mass ratio is a redshift-independent, universal relationship followed by all galaxies as they evolve. The mass-metallicity relation originates from this more fundamental universal relationship between metallicity and the stellar-to-gas mass ratio. We test the validity of this universal metallicity relation in local galaxies where stellar mass, metallicity, and gas mass measurements are available. The data are consistent with a universal metallicity relation. We derive an equation for estimating the hydrogen gas mass from measurements of stellar mass and metallicity valid for z ≲ 1.6 and predict the cosmological evolution of galactic gas masses.« less

  20. Advancing the understanding of plasma transport in mid-size stellarators

    NASA Astrophysics Data System (ADS)

    Hidalgo, Carlos; Talmadge, Joseph; Ramisch, Mirko; TJ-II, the; HXS; TJ-K Teams

    2017-01-01

    The tokamak and the stellarator are the two main candidate concepts for magnetically confining fusion plasmas. The flexibility of the mid-size stellarator devices together with their unique diagnostic capabilities make them ideally suited to study the relation between magnetic topology, electric fields and transport. This paper addresses advances in the understanding of plasma transport in mid-size stellarators with an emphasis on the physics of flows, transport control, impurity and particle transport and fast particles. The results described here emphasize an improved physics understanding of phenomena in stellarators that complements the empirical approach. Experiments in mid-size stellarators support the development of advanced plasma scenarios in Wendelstein 7-X (W7-X) and, in concert with better physics understanding in tokamaks, may ultimately lead to an advance in the prediction of burning plasma behaviour.

  1. Dynamical effects of stellar companions

    NASA Astrophysics Data System (ADS)

    Naoz, Smadar

    2015-08-01

    The fraction of stellar binaries in the field is extremely high (about 40% - 70% for > 1 Msun stars), and thus, given this frequency, a large fraction of all exoplanetary systems may reside in binaries. While close-in giant planets tend to be found preferentially in binary stellar systems it seems that the frequency of giant planets in close binaries (<100 AU) is significantly lower than in the overall population. Stellar companions’ gravitational perturbations may significantly alter the planetary orbits around their partner on secular timescales. They can drive planets to large eccentric orbits which can either result in plunging these planets into the star or shrinking their orbits and forming short period planets. I will review the dynamical effects stellar binaries have on a planetary systems. I will also present new results on the influence that stellar evolution has on the dynamical processes in these systems.

  2. The Sun as a variable star: Solar and stellar irradiance variations; Colloquium of the International Astronomical Union, 143rd, Boulder, CO, Jun. 20-25, 1993

    NASA Technical Reports Server (NTRS)

    Pap, Judit M. (Editor); Froehlich, Claus (Editor); Hudson, Hugh S. (Editor); Tobiska, W. Kent (Editor)

    1994-01-01

    Variations in solar and stellar irradiances have long been of interest. An International Astronomical Union (IAU) colloquium reviewed such relevant subjects as observations, theoretical interpretations, and empirical and physical models, with a special emphasis on climatic impact of solar irradiance variability. Specific topics discussed included: (1) General Reviews on Observations of Solar and Stellar Irradiance Variability; (2) Observational Programs for Solar and Stellar Irradiance Variability; (3) Variability of Solar and Stellar Irradiance Related to the Network, Active Regions (Sunspots and Plages), and Large-Scale Magnetic Structures; (4) Empirical Models of Solar Total and Spectral Irradiance Variability; (5) Solar and Stellar Oscillations, Irradiance Variations and their Interpretations; and (6) The Response of the Earth's Atmosphere to Solar Irradiance Variations and Sun-Climate Connections.

  3. Two chemically similar stellar overdensities on opposite sides of the plane of the Galactic disk.

    PubMed

    Bergemann, Maria; Sesar, Branimir; Cohen, Judith G; Serenelli, Aldo M; Sheffield, Allyson; Li, Ting S; Casagrande, Luca; Johnston, Kathryn V; Laporte, Chervin F P; Price-Whelan, Adrian M; Schönrich, Ralph; Gould, Andrew

    2018-03-15

    Our Galaxy is thought to have an active evolutionary history, dominated over the past ten billion years or so by star formation, the accretion of cold gas and, in particular, the merging of clumps of baryonic and dark matter. The stellar halo-the faint, roughly spherical component of the Galaxy-reveals rich 'fossil' evidence of these interactions, in the form of stellar streams, substructures and chemically distinct stellar components. The effects of interactions with dwarf galaxies on the content and morphology of the Galactic disk are still being explored. Recent studies have identified kinematically distinct stellar substructures and moving groups of stars in our Galaxy, which may have extragalactic origins. There is also mounting evidence that stellar overdensities (regions with greater-than-average stellar density) at the interface between the outer disk and the halo could have been caused by the interaction of a dwarf galaxy with the disk. Here we report a spectroscopic analysis of 14 stars from two stellar overdensities, each lying about five kiloparsecs above or below the Galactic plane-locations suggestive of an association with the stellar halo. We find that the chemical compositions of these two groups of stars are almost identical, both within and between these overdensities, and closely match the abundance patterns of stars in the Galactic disk. We conclude that these stars came from the disk, and that the overdensities that they are part of were created by tidal interactions of the disk with passing or merging dwarf galaxies.

  4. Two chemically similar stellar overdensities on opposite sides of the plane of the Galactic disk

    NASA Astrophysics Data System (ADS)

    Bergemann, Maria; Sesar, Branimir; Cohen, Judith G.; Serenelli, Aldo M.; Sheffield, Allyson; Li, Ting S.; Casagrande, Luca; Johnston, Kathryn V.; Laporte, Chervin F. P.; Price-Whelan, Adrian M.; Schönrich, Ralph; Gould, Andrew

    2018-03-01

    Our Galaxy is thought to have an active evolutionary history, dominated over the past ten billion years or so by star formation, the accretion of cold gas and, in particular, the merging of clumps of baryonic and dark matter. The stellar halo—the faint, roughly spherical component of the Galaxy—reveals rich ‘fossil’ evidence of these interactions, in the form of stellar streams, substructures and chemically distinct stellar components. The effects of interactions with dwarf galaxies on the content and morphology of the Galactic disk are still being explored. Recent studies have identified kinematically distinct stellar substructures and moving groups of stars in our Galaxy, which may have extragalactic origins. There is also mounting evidence that stellar overdensities (regions with greater-than-average stellar density) at the interface between the outer disk and the halo could have been caused by the interaction of a dwarf galaxy with the disk. Here we report a spectroscopic analysis of 14 stars from two stellar overdensities, each lying about five kiloparsecs above or below the Galactic plane—locations suggestive of an association with the stellar halo. We find that the chemical compositions of these two groups of stars are almost identical, both within and between these overdensities, and closely match the abundance patterns of stars in the Galactic disk. We conclude that these stars came from the disk, and that the overdensities that they are part of were created by tidal interactions of the disk with passing or merging dwarf galaxies.

  5. Comparing Dark Energy Survey and HST –CLASH observations of the galaxy cluster RXC J2248.7-4431: implications for stellar mass versus dark matter

    DOE PAGES

    Palmese, A.; Lahav, O.; Banerji, M.; ...

    2016-08-20

    We derive the stellar mass fraction in the galaxy cluster RXC J2248.7-4431 observed with the Dark Energy Survey (DES) during the Science Verification period. We compare the stellar mass results from DES (5 filters) with those from the Hubble Space Telescope CLASH (17 filters). When the cluster spectroscopic redshift is assumed, we show that stellar masses from DES can be estimated within 25% of CLASH values. We compute the stellar mass contribution coming from red and blue galaxies, and study the relation between stellar mass and the underlying dark matter using weak lensing studies with DES and CLASH. An analysismore » of the radial profiles of the DES total and stellar mass yields a stellar-to-total fraction of f*=7.0+-2.2x10^-3 within a radius of r_200c~3 Mpc. Our analysis also includes a comparison of photometric redshifts and star/galaxy separation efficiency for both datasets. We conclude that space-based small field imaging can be used to calibrate the galaxy properties in DES for the much wider field of view. The technique developed to derive the stellar mass fraction in galaxy clusters can be applied to the ~100 000 clusters that will be observed within this survey. The stacking of all the DES clusters would reduce the errors on f* estimates and deduce important information about galaxy evolution.« less

  6. The PyCASSO database: spatially resolved stellar population properties for CALIFA galaxies

    NASA Astrophysics Data System (ADS)

    de Amorim, A. L.; García-Benito, R.; Cid Fernandes, R.; Cortijo-Ferrero, C.; González Delgado, R. M.; Lacerda, E. A. D.; López Fernández, R.; Pérez, E.; Vale Asari, N.

    2017-11-01

    The Calar Alto Legacy Integral Field Area (CALIFA) survey, a pioneer in integral field spectroscopy legacy projects, has fostered many studies exploring the information encoded on the spatially resolved data on gaseous and stellar features in the optical range of galaxies. We describe a value-added catalogue of stellar population properties for CALIFA galaxies analysed with the spectral synthesis code starlight and processed with the pycasso platform. Our public database (http://pycasso.ufsc.br/, mirror at http://pycasso.iaa.es/) comprises 445 galaxies from the CALIFA Data Release 3 with COMBO data. The catalogue provides maps for the stellar mass surface density, mean stellar ages and metallicities, stellar dust attenuation, star formation rates, and kinematics. Example applications both for individual galaxies and for statistical studies are presented to illustrate the power of this data set. We revisit and update a few of our own results on mass density radial profiles and on the local mass-metallicity relation. We also show how to employ the catalogue for new investigations, and show a pseudo Schmidt-Kennicutt relation entirely made with information extracted from the stellar continuum. Combinations to other databases are also illustrated. Among other results, we find a very good agreement between star formation rate surface densities derived from the stellar continuum and the H α emission. This public catalogue joins the scientific community's effort towards transparency and reproducibility, and will be useful for researchers focusing on (or complementing their studies with) stellar properties of CALIFA galaxies.

  7. Comparing Dark Energy Survey and HST-CLASH observations of the galaxy cluster RXC J2248.7-4431: implications for stellar mass versus dark matter

    NASA Astrophysics Data System (ADS)

    Palmese, A.; Lahav, O.; Banerji, M.; Gruen, D.; Jouvel, S.; Melchior, P.; Aleksić, J.; Annis, J.; Diehl, H. T.; Hartley, W. G.; Jeltema, T.; Romer, A. K.; Rozo, E.; Rykoff, E. S.; Seitz, S.; Suchyta, E.; Zhang, Y.; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Capozzi, D.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Crocce, M.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; Desai, S.; Dietrich, J. P.; Doel, P.; Estrada, J.; Evrard, A. E.; Flaugher, B.; Frieman, J.; Gerdes, D. W.; Goldstein, D. A.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; James, D. J.; Kuehn, K.; Kuropatkin, N.; Li, T. S.; Lima, M.; Maia, M. A. G.; Marshall, J. L.; Miller, C. J.; Miquel, R.; Nord, B.; Ogando, R.; Plazas, A. A.; Roodman, A.; Sanchez, E.; Scarpine, V.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Tucker, D.; Vikram, V.

    2016-12-01

    We derive the stellar mass fraction in the galaxy cluster RXC J2248.7-4431 observed with the Dark Energy Survey (DES) during the Science Verification period. We compare the stellar mass results from DES (five filters) with those from the Hubble Space Telescope Cluster Lensing And Supernova Survey (CLASH; 17 filters). When the cluster spectroscopic redshift is assumed, we show that stellar masses from DES can be estimated within 25 per cent of CLASH values. We compute the stellar mass contribution coming from red and blue galaxies, and study the relation between stellar mass and the underlying dark matter using weak lensing studies with DES and CLASH. An analysis of the radial profiles of the DES total and stellar mass yields a stellar-to-total fraction of f⋆ = (6.8 ± 1.7) × 10-3 within a radius of r200c ≃ 2 Mpc. Our analysis also includes a comparison of photometric redshifts and star/galaxy separation efficiency for both data sets. We conclude that space-based small field imaging can be used to calibrate the galaxy properties in DES for the much wider field of view. The technique developed to derive the stellar mass fraction in galaxy clusters can be applied to the ˜100 000 clusters that will be observed within this survey and yield important information about galaxy evolution.

  8. Comparing Dark Energy Survey and HST –CLASH observations of the galaxy cluster RXC J2248.7-4431: implications for stellar mass versus dark matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palmese, A.; Lahav, O.; Banerji, M.

    We derive the stellar mass fraction in the galaxy cluster RXC J2248.7-4431 observed with the Dark Energy Survey (DES) during the Science Verification period. We compare the stellar mass results from DES (5 filters) with those from the Hubble Space Telescope CLASH (17 filters). When the cluster spectroscopic redshift is assumed, we show that stellar masses from DES can be estimated within 25% of CLASH values. We compute the stellar mass contribution coming from red and blue galaxies, and study the relation between stellar mass and the underlying dark matter using weak lensing studies with DES and CLASH. An analysismore » of the radial profiles of the DES total and stellar mass yields a stellar-to-total fraction of f*=7.0+-2.2x10^-3 within a radius of r_200c~3 Mpc. Our analysis also includes a comparison of photometric redshifts and star/galaxy separation efficiency for both datasets. We conclude that space-based small field imaging can be used to calibrate the galaxy properties in DES for the much wider field of view. The technique developed to derive the stellar mass fraction in galaxy clusters can be applied to the ~100 000 clusters that will be observed within this survey. The stacking of all the DES clusters would reduce the errors on f* estimates and deduce important information about galaxy evolution.« less

  9. Comparing Dark Energy Survey and HST –CLASH observations of the galaxy cluster RXC J2248.7-4431: implications for stellar mass versus dark matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palmese, A.; Lahav, O.; Banerji, M.

    We derive the stellar mass fraction in the galaxy cluster RXC J2248.7-4431 observed with the Dark Energy Survey (DES) during the Science Verification period. We compare the stellar mass results from DES (five filters) with those from the Hubble Space Telescope Cluster Lensing And Supernova Survey (CLASH; 17 filters). When the cluster spectroscopic redshift is assumed, we show that stellar masses from DES can be estimated within 25 per cent of CLASH values. We compute the stellar mass contribution coming from red and blue galaxies, and study the relation between stellar mass and the underlying dark matter using weak lensingmore » studies with DES and CLASH. An analysis of the radial profiles of the DES total and stellar mass yields a stellar-to-total fraction of f(star) = (6.8 +/- 1.7) x 10(-3) within a radius of r(200c) similar or equal to 2 Mpc. Our analysis also includes a comparison of photometric redshifts and star/galaxy separation efficiency for both data sets. We conclude that space-based small field imaging can be used to calibrate the galaxy properties in DES for the much wider field of view. The technique developed to derive the stellar mass fraction in galaxy clusters can be applied to the similar to 100 000 clusters that will be observed within this survey and yield important information about galaxy evolution.« less

  10. SP_Ace: Stellar Parameters And Chemical abundances Estimator

    NASA Astrophysics Data System (ADS)

    Boeche, C.; Grebel, E. K.

    2018-05-01

    SP_Ace (Stellar Parameters And Chemical abundances Estimator) estimates the stellar parameters Teff, log g, [M/H], and elemental abundances. It employs 1D stellar atmosphere models in Local Thermodynamic Equilibrium (LTE). The code is highly automated and suitable for analyzing the spectra of large spectroscopic surveys with low or medium spectral resolution (R = 2000-20 000). A web service for calculating these values with the software is also available.

  11. Binary Population and Spectral Synthesis Version 2.1: Construction, Observational Verification, and New Results

    NASA Astrophysics Data System (ADS)

    Eldridge, J. J.; Stanway, E. R.; Xiao, L.; McClelland, L. A. S.; Taylor, G.; Ng, M.; Greis, S. M. L.; Bray, J. C.

    2017-11-01

    The Binary Population and Spectral Synthesis suite of binary stellar evolution models and synthetic stellar populations provides a framework for the physically motivated analysis of both the integrated light from distant stellar populations and the detailed properties of those nearby. We present a new version 2.1 data release of these models, detailing the methodology by which Binary Population and Spectral Synthesis incorporates binary mass transfer and its effect on stellar evolution pathways, as well as the construction of simple stellar populations. We demonstrate key tests of the latest Binary Population and Spectral Synthesis model suite demonstrating its ability to reproduce the colours and derived properties of resolved stellar populations, including well-constrained eclipsing binaries. We consider observational constraints on the ratio of massive star types and the distribution of stellar remnant masses. We describe the identification of supernova progenitors in our models, and demonstrate a good agreement to the properties of observed progenitors. We also test our models against photometric and spectroscopic observations of unresolved stellar populations, both in the local and distant Universe, finding that binary models provide a self-consistent explanation for observed galaxy properties across a broad redshift range. Finally, we carefully describe the limitations of our models, and areas where we expect to see significant improvement in future versions.

  12. Advances in stellar evolution; Proceedings of the Workshop on Stellar Ecology, Marciana Marina, Italy, June 23-29, 1996

    NASA Astrophysics Data System (ADS)

    Rood, R. T.; Renzini, A.

    1997-01-01

    The present volume on stellar evolution discusses fundamentals of stellar evolution and star clusters, variable stars, AGB stars and planetary nebulae, white dwarfs, binary star evolution, and stars in galaxies. Attention is given to the stellar population in the Galactic bulge, a photometric study of NGC 458, and HST observations of high-density globular clusters. Other topics addressed include the Cepheid instability strip in external galaxies, Hyades cluster white dwarfs and the initial-final mass relation, element diffusion in novae, mass function of the stars in the solar neighborhood, synthetic spectral indices for elliptical galaxies, and stars at the Galactic center.

  13. Dependence of the clustering properties of galaxies on stellar velocity dispersion in the Main galaxy sample of SDSS DR10

    NASA Astrophysics Data System (ADS)

    Deng, Xin-Fa; Song, Jun; Chen, Yi-Qing; Jiang, Peng; Ding, Ying-Ping

    2014-08-01

    Using two volume-limited Main galaxy samples of the Sloan Digital Sky Survey Data Release 10 (SDSS DR10), we investigate the dependence of the clustering properties of galaxies on stellar velocity dispersion by cluster analysis. It is found that in the luminous volume-limited Main galaxy sample, except at r=1.2, richer and larger systems can be more easily formed in the large stellar velocity dispersion subsample, while in the faint volume-limited Main galaxy sample, at r≥0.9, an opposite trend is observed. According to statistical analyses of the multiplicity functions, we conclude in two volume-limited Main galaxy samples: small stellar velocity dispersion galaxies preferentially form isolated galaxies, close pairs and small group, while large stellar velocity dispersion galaxies preferentially inhabit the dense groups and clusters. However, we note the difference between two volume-limited Main galaxy samples: in the faint volume-limited Main galaxy sample, at r≥0.9, the small stellar velocity dispersion subsample has a higher proportion of galaxies in superclusters ( n≥200) than the large stellar velocity dispersion subsample.

  14. Model structure of a cosmic-ray mediated stellar or solar wind

    NASA Technical Reports Server (NTRS)

    Lee, M. A.; Axford, W. I.

    1988-01-01

    An idealized hydrodynamic model is presented for the mediation of a free-streaming stellar wind by galactic cosmic rays or energetic particles accelerated at the stellar wind termination shock. The spherically-symmetric stellar wind is taken to be cold; the only body force is the cosmic ray pressure gradient. The cosmic rays are treated as a massless fluid with an effective mean diffusion coefficient k proportional to radial distance r. The structure of the governing equations is investigated both analytically and numerically. Solutions for a range of values of k are presented which describe the deceleration of the stellar wind and a transition to nearly incompressible flow and constant cosmic ray pressure at large r. In the limit of small k the transition steepens to a strong stellar wind termination shock. For large k the stellar wind is decelerated gradually with no shock transition. It is argued that the solutions provide a simple model for the mediation of the solar wind by interstellar ions as both pickup ions and the cosmic ray anomalous component which together dominate the pressure of the solar wind at large r.

  15. Construction concepts and validation of the 3D printed UST_2 modular stellarator

    NASA Astrophysics Data System (ADS)

    Queral, V.

    2015-03-01

    High accuracy, geometric complexity and thus high cost of stellarators tend to hinder the advance of stellarator research. Nowadays, new manufacturing methods might be developed for the production of small and middle-size stellarators. The methods should demonstrate advantages with respect common fabrication methods, like casting, cutting, forging and welding, for the construction of advanced highly convoluted modular stellarators. UST2 is a small modular three period quasi-isodynamic stellarator of major radius 0.26 m and plasma volume 10 litres being currently built to validate additive manufacturing (3D printing) for stellarator construction. The modular coils are wound in grooves defined on six 3D printed half period frames designed as light truss structures filled by a strong filler. A geometrically simple assembling configuration has been concocted for UST2 so as to try to lower the cost of the device while keeping the positioning accuracy of the different elements. The paper summarizes the construction and assembling concepts developed, the devised positioning methodology, the design of the coil frames and positioning elements and, an initial validation of the assembling of the components.

  16. A PHOTOMETRIC STUDY OF FOUR RECENTLY DISCOVERED CONTACT BINARIES: 1SWASP J064501.21+342154.9, 1SWASP J155822.10-025604.8, 1SWASP J212808.86+151622.0, AND UCAC4 436-062932

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Djurašević, G.; Latković, O.; Cséki, A.

    We present new, high-quality multicolor observations of four recently discovered contact binaries, 1SWASP J064501.21+342154.9, 1SWASP J155822.10-025604.8, 1SWASP J212808.86+151622.0, and UCAC4 436-062932, and analyze their light curves to determine orbital and physical parameters using the modeling program of G. Djurašević. In the absence of spectroscopic observations, the effective temperatures of the brighter components are estimated from the color indices, and the mass ratios are determined with the q -search method. The analysis shows that all four systems are W UMa type binaries in shallow contact configurations, consisting of late-type main-sequence primaries and evolved secondaries with active surface regions (dark or bright spots) resultingmore » from magnetic activity or ongoing transfer of thermal energy between the components. We compare the derived orbital and stellar parameters for these four variables with a large sample of previously analyzed W UMa stars and find that our results fit it well.« less

  17. Evolution of Starspots on LO Pegasi

    NASA Astrophysics Data System (ADS)

    Harmon, Robert; Bloodgood, Felise; Martin, Alec; Pellegrin, Kyle

    2018-01-01

    LO Pegasi is a young solar analog, a K main-sequence star that rotates with a period of 10.1538 hr. The rapid rotation yields a strong stellar dynamo associated with large starspots on the surface, which are regions where the magnetic field inhibits the convective transport of energy from below, so that the spots are cooler and thus darker than the surrounding photosphere. The star thus exhibits rotational modulation of its light curve as the starspots are carried into and out of view of Earth. CCD images of LO Peg were acquired at Perkins Observatory in Delaware, OH through standard B, V, R, and I photometric filters from 2017 June 1 to July 20. After subtracting dark frames and flat fielding the images, differential aperture photometry was performed to yield light curves through each of the four filters. The resulting light curves that were then analyzed via the Light-curve Inversion program created by one of us (Harmon) to produce surface maps. Our observations indicated that LO Pegasi’s light curve changed in both amplitude and shape between 2017 June and July, while its maximum brightness did not change. We present maps corresponding to these two distinct light curves, along with maps for data acquired from 2006-2016.

  18. Survey of the BY Draconis syndrome among dMe stars. [BVr photometry search for slow quasisinusoidal light variations

    NASA Technical Reports Server (NTRS)

    Bopp, B. W.; Espenak, F.

    1977-01-01

    Results are reported for a BVr photometric survey of 22 dK, dKe, dM, and dMe stars conducted to search for slow quasi-sinusoidal fluctuations in V (the BY Draconis syndrome). The (B-V) and (V-r) color indices are determined in an attempt to detect wavelength-dependent color changes produced by starspots and to infer starspot temperatures. It is found that nine of the stars exhibit variations in V of the order of 0.05 to 0.10 magnitude on a time scale of days or weeks, that at least three more display changes in mean light level over a period of years, that the stars generally tend to become redder at minimum light, and that some of the stars show no detectable color changes over their photometric cycle. The color data are taken to suggest a probable temperature difference of about 200 to 500 K between the stellar photospheres and starspots if the V variations are attributed to dark spots. It is concluded that the BY Draconis syndrome is clearly a very common occurrence among dMe stars.

  19. Photospheres of hot stars. IV - Spectral type O4

    NASA Technical Reports Server (NTRS)

    Bohannan, Bruce; Abbott, David C.; Voels, Stephen A.; Hummer, David G.

    1990-01-01

    The basic stellar parameters of a supergiant (Zeta Pup) and two main-sequence stars, 9 Sgr and HD 46223, at spectral class O4 are determined using line profile analysis. The stellar parameters are determined by comparing high signal-to-noise hydrogen and helium line profiles with those from stellar atmosphere models which include the effect of radiation scattered back onto the photosphere from an overlying stellar wind, an effect referred to as wind blanketing. At spectral class O4, the inclusion of wind-blanketing in the model atmosphere reduces the effective temperature by an average of 10 percent. This shift in effective temperature is also reflected by shifts in several other stellar parameters relative to previous O4 spectral-type calibrations. It is also shown through the analysis of the two O4 V stars that scatter in spectral type calibrations is introduced by assuming that the observed line profile reflects the photospheric stellar parameters.

  20. Particle tagging and its implications for stellar population dynamics

    NASA Astrophysics Data System (ADS)

    Le Bret, Theo; Pontzen, Andrew; Cooper, Andrew P.; Frenk, Carlos; Zolotov, Adi; Brooks, Alyson M.; Governato, Fabio; Parry, Owen H.

    2017-07-01

    We establish a controlled comparison between the properties of galactic stellar haloes obtained with hydrodynamical simulations and with 'particle tagging'. Tagging is a fast way to obtain stellar population dynamics: instead of tracking gas and star formation, it 'paints' stars directly on to a suitably defined subset of dark matter particles in a collisionless, dark-matter-only simulation. Our study shows that 'live' particle tagging schemes, where stellar masses are painted on to the dark matter particles dynamically throughout the simulation, can generate good fits to the hydrodynamical stellar density profiles of a central Milky Way-like galaxy and its most prominent substructure. Energy diffusion processes are crucial to reshaping the distribution of stars in infalling spheroidal systems and hence the final stellar halo. We conclude that the success of any particular tagging scheme hinges on this diffusion being taken into account, and discuss the role of different subgrid feedback prescriptions in driving this diffusion.

  1. Assessing the Effect of Stellar Companions to Kepler Objects of Interest

    NASA Astrophysics Data System (ADS)

    Hirsch, Lea; Ciardi, David R.; Howard, Andrew

    2017-01-01

    Unknown stellar companions to Kepler planet host stars dilute the transit signal, causing the planetary radii to be underestimated. We report on the analysis of 165 stellar companions detected with high-resolution imaging to be within 2" of 159 KOI host stars. The majority of the planets and planet candidates in these systems have nominal radii smaller than 6 REarth. Using multi-filter photometry on each companion, we assess the likelihood that the companion is bound and estimate its stellar properties, including stellar radius and flux. We then recalculate the planet radii in these systems, determining how much each planet's size is underestimated if it is assumed to 1) orbit the primary star, 2) orbit the companion star, or 3) be equally likely to orbit either star in the system. We demonstrate the overall effect of unknown stellar companions on our understanding of Kepler planet sizes.

  2. Thermonuclear inverse magnetic pumping power cycle for stellarator reactor

    DOEpatents

    Ho, Darwin D.; Kulsrud, Russell M.

    1991-01-01

    The plasma column in a stellarator is compressed and expanded alternatively in minor radius. First a plasma in thermal balance is compressed adiabatically. The volume of the compressed plasma is maintained until the plasma reaches a new thermal equilibrium. The plasma is then expanded to its original volume. As a result of the way a stellarator works, the plasma pressure during compression is less than the corresponding pressure during expansion. Therefore, negative work is done on the plasma over a complete cycle. This work manifests itself as a back-voltage in the toroidal field coils. Direct electrical energy is obtained from this voltage. Alternatively, after the compression step, the plasma can be expanded at constant pressure. The cycle can be made self-sustaining by operating a system of two stellarator reactors in tandem. Part of the energy derived from the expansion phase of a first stellarator reactor is used to compress the plasma in a second stellarator reactor.

  3. [Study on Hexagonal Super-Lattice Pattern with Light Spot and Dim Spot in Dielectric Barrier Discharge by Optical Emission Spectra].

    PubMed

    Liu, Ying; Dong, Li-fang; Niu, Xue-jiao; Zhang, Chao

    2016-02-01

    The hexagonal super-lattice pattern composed of the light spot and the dim spot is firstly observed and investigated in the discharge of gas mixture of air and argon by using the dielectric barrier discharge device with double water electrodes. It is found that the dim spot is located at the center of its surrounding three light spots by observing the discharge image. Obviously, the brightness of the light spot and the dim spot are different, which indicates that the plasma states of the light spot and the dim spot may be different. The optical emission spectrum method is used to further study the several plasma parameters of the light spot and the dim spot in different argon content. The emission spectra of the N₂ second positive band (C³IIu --> B³IIg) are measured, from which the molecule vibration temperatures of the light spot and the dim spot are calculated. Based on the relative intensity ratio of the line at 391.4 nm and the N₂ line at 394.1 nm, the average electron energies of the light spot and the dim spot are investigated. The broadening of spectral line 696.57 nm (2P₂-1S₅) is used to study the electron densities of the light spot and the dim spot. The experiment shows that the molecule vibration temperature, average electron energy and the electron density of the dim spot are higher than those of the light spot in the same argon content. The molecule vibration temperature and electron density of the light spot and dim spot increase with the argon content increasing from 70% to 95%, while average electron energies of the light spot and dim spot decrease gradually. The short-exposure image recorded by a high speed video camera shows that the dim spot results from the surface discharges (SDs). The surface discharge induced by the volume discharge (VD) has the decisive effect on the formation of the dim spot. The experiment above plays an important role in studying the formation mechanism of the hexagonal super-lattice pattern with light spot and dim spot. In addition, the studies exert influences on the application of surface discharge and volume discharge in different fields.

  4. TRACING THE EVOLUTION OF HIGH-REDSHIFT GALAXIES USING STELLAR ABUNDANCES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crosby, Brian D.; O’Shea, Brian W.; Beers, Timothy C.

    2016-03-20

    This paper presents the first results from a model for chemical evolution that can be applied to N-body cosmological simulations and quantitatively compared to measured stellar abundances from large astronomical surveys. This model convolves the chemical yield sets from a range of stellar nucleosynthesis calculations (including asymptotic giant branch stars, Type Ia and II supernovae, and stellar wind models) with a user-specified stellar initial mass function (IMF) and metallicity to calculate the time-dependent chemical evolution model for a “simple stellar population” (SSP) of uniform metallicity and formation time. These SSP models are combined with a semianalytic model for galaxy formation andmore » evolution that uses merger trees from N-body cosmological simulations to track several α- and iron-peak elements for the stellar and multiphase interstellar medium components of several thousand galaxies in the early (z ≥ 6) universe. The simulated galaxy population is then quantitatively compared to two complementary data sets of abundances in the Milky Way stellar halo and is capable of reproducing many of the observed abundance trends. The observed abundance ratio distributions are best reproduced with a Chabrier IMF, a chemically enriched star formation efficiency of 0.2, and a redshift of reionization of 7. Many abundances are qualitatively well matched by our model, but our model consistently overpredicts the carbon-enhanced fraction of stars at low metallicities, likely owing to incomplete coverage of Population III stellar yields and supernova models and the lack of dust as a component of our model.« less

  5. Stellar Velocity Dispersion: Linking Quiescent Galaxies to Their Dark Matter Halos

    NASA Astrophysics Data System (ADS)

    Zahid, H. Jabran; Sohn, Jubee; Geller, Margaret J.

    2018-06-01

    We analyze the Illustris-1 hydrodynamical cosmological simulation to explore the stellar velocity dispersion of quiescent galaxies as an observational probe of dark matter halo velocity dispersion and mass. Stellar velocity dispersion is proportional to dark matter halo velocity dispersion for both central and satellite galaxies. The dark matter halos of central galaxies are in virial equilibrium and thus the stellar velocity dispersion is also proportional to dark matter halo mass. This proportionality holds even when a line-of-sight aperture dispersion is calculated in analogy to observations. In contrast, at a given stellar velocity dispersion, the dark matter halo mass of satellite galaxies is smaller than virial equilibrium expectations. This deviation from virial equilibrium probably results from tidal stripping of the outer dark matter halo. Stellar velocity dispersion appears insensitive to tidal effects and thus reflects the correlation between stellar velocity dispersion and dark matter halo mass prior to infall. There is a tight relation (≲0.2 dex scatter) between line-of-sight aperture stellar velocity dispersion and dark matter halo mass suggesting that the dark matter halo mass may be estimated from the measured stellar velocity dispersion for both central and satellite galaxies. We evaluate the impact of treating all objects as central galaxies if the relation we derive is applied to a statistical ensemble. A large fraction (≳2/3) of massive quiescent galaxies are central galaxies and systematic uncertainty in the inferred dark matter halo mass is ≲0.1 dex thus simplifying application of the simulation results to currently available observations.

  6. The Influence of Atomic Diffusion on Stellar Ages and Chemical Tagging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dotter, Aaron; Conroy, Charlie; Cargile, Phillip

    2017-05-10

    In the era of large stellar spectroscopic surveys, there is an emphasis on deriving not only stellar abundances but also the ages for millions of stars. In the context of Galactic archeology, stellar ages provide a direct probe of the formation history of the Galaxy. We use the stellar evolution code MESA to compute models with atomic diffusion—with and without radiative acceleration—and extra mixing in the surface layers. The extra mixing consists of both density-dependent turbulent mixing and envelope overshoot mixing. Based on these models we argue that it is important to distinguish between initial, bulk abundances (parameters) and current,more » surface abundances (variables) in the analysis of individual stellar ages. In stars that maintain radiative regions on evolutionary timescales, atomic diffusion modifies the surface abundances. We show that when initial, bulk metallicity is equated with current, surface metallicity in isochrone age analysis, the resulting stellar ages can be systematically overestimated by up to 20%. The change of surface abundances with evolutionary phase also complicates chemical tagging, which is the concept that dispersed star clusters can be identified through unique, high-dimensional chemical signatures. Stars from the same cluster, but in different evolutionary phases, will show different surface abundances. We speculate that calibration of stellar models may allow us to estimate not only stellar ages but also initial abundances for individual stars. In the meantime, analyzing the chemical properties of stars in similar evolutionary phases is essential to minimize the effects of atomic diffusion in the context of chemical tagging.« less

  7. SDSS-IV MaNGA: modelling the metallicity gradients of gas and stars - radially dependent metal outflow versus IMF

    NASA Astrophysics Data System (ADS)

    Lian, Jianhui; Thomas, Daniel; Maraston, Claudia; Goddard, Daniel; Parikh, Taniya; Fernández-Trincado, J. G.; Roman-Lopes, Alexandre; Rong, Yu; Tang, Baitian; Yan, Renbin

    2018-05-01

    In our previous work, we found that only two scenarios are capable of reproducing the observed integrated mass-metallicity relations for the gas and stellar components of local star-forming galaxies simultaneously. One scenario invokes a time-dependent metal outflow loading factor with stronger outflows at early times. The other scenario uses a time-dependent initial mass function (IMF) slope with a steeper IMF at early times. In this work, we extend our study to investigate the radial profile of gas and stellar metallicity in local star-forming galaxies using spatially resolved spectroscopic data from the SDSS-IV MaNGA survey. We find that most galaxies show negative gradients in both gas and stellar metallicity with steeper gradients in stellar metallicity. The stellar metallicity gradients tend to be mass dependent with steeper gradients in more massive galaxies while no clear mass dependence is found for the gas metallicity gradient. Then we compare the observations with the predictions from a chemical evolution model of the radial profiles of gas and stellar metallicities. We confirm that the two scenarios proposed in our previous work are also required to explain the metallicity gradients. Based on these two scenarios, we successfully reproduce the radial profiles of gas metallicity, stellar metallicity, stellar mass surface density, and star formation rate surface density simultaneously. The origin of the negative gradient in stellar metallicity turns out to be driven by either radially dependent metal outflow or IMF slope. In contrast, the radial dependence of the gas metallicity is less constrained because of the degeneracy in model parameters.

  8. Deriving stellar parameters with the SME software package

    NASA Astrophysics Data System (ADS)

    Piskunov, N.

    2017-09-01

    Photometry and spectroscopy are complementary tools for deriving accurate stellar parameters. Here I present one of the popular packages for stellar spectroscopy called SME with the emphasis on the latest developments and error assessment for the derived parameters.

  9. Chemical element transport in stellar evolution models

    PubMed Central

    Cassisi, Santi

    2017-01-01

    Stellar evolution computations provide the foundation of several methods applied to study the evolutionary properties of stars and stellar populations, both Galactic and extragalactic. The accuracy of the results obtained with these techniques is linked to the accuracy of the stellar models, and in this context the correct treatment of the transport of chemical elements is crucial. Unfortunately, in many respects calculations of the evolution of the chemical abundance profiles in stars are still affected by sometimes sizable uncertainties. Here, we review the various mechanisms of element transport included in the current generation of stellar evolution calculations, how they are implemented, the free parameters and uncertainties involved, the impact on the models and the observational constraints. PMID:28878972

  10. Program Package for the Analysis of High Resolution High Signal-To-Noise Stellar Spectra

    NASA Astrophysics Data System (ADS)

    Piskunov, N.; Ryabchikova, T.; Pakhomov, Yu.; Sitnova, T.; Alekseeva, S.; Mashonkina, L.; Nordlander, T.

    2017-06-01

    The program package SME (Spectroscopy Made Easy), designed to perform an analysis of stellar spectra using spectral fitting techniques, was updated due to adding new functions (isotopic and hyperfine splittins) in VALD and including grids of NLTE calculations for energy levels of few chemical elements. SME allows to derive automatically stellar atmospheric parameters: effective temperature, surface gravity, chemical abundances, radial and rotational velocities, turbulent velocities, taking into account all the effects defining spectral line formation. SME package uses the best grids of stellar atmospheres that allows us to perform spectral analysis with the similar accuracy in wide range of stellar parameters and metallicities - from dwarfs to giants of BAFGK spectral classes.

  11. Chemical element transport in stellar evolution models.

    PubMed

    Salaris, Maurizio; Cassisi, Santi

    2017-08-01

    Stellar evolution computations provide the foundation of several methods applied to study the evolutionary properties of stars and stellar populations, both Galactic and extragalactic. The accuracy of the results obtained with these techniques is linked to the accuracy of the stellar models, and in this context the correct treatment of the transport of chemical elements is crucial. Unfortunately, in many respects calculations of the evolution of the chemical abundance profiles in stars are still affected by sometimes sizable uncertainties. Here, we review the various mechanisms of element transport included in the current generation of stellar evolution calculations, how they are implemented, the free parameters and uncertainties involved, the impact on the models and the observational constraints.

  12. Theoretical Re-evaluations of Scaling Relations between SMBHs and Their Host Galaxies - 2. Importance of AGN Feedback Suggested by Stellar Age - Velocity Dispersion Relation

    NASA Astrophysics Data System (ADS)

    Shirakata, Hikari; Kawaguchi, Toshihiro; Okamoto, Takashi; Ishiyama, Tomoaki

    2017-09-01

    We present the galactic stellar age - velocity dispersion relation obtained from a semi-analytic model of galaxy formation. We divide galaxies into two populations: galaxies which have over-massive/under-massive black holes (BHs) against the best-fitting BH mass - velocity dispersion relation. We find that galaxies with larger velocity dispersion have older stellar ages. We also find that galaxies with over-massive BHs have older stellar ages. These results are consistent with observational results obtained from Martin-Navarro et al. (2016). We tested the model with weak AGN feedback and find that galaxies with larger velocity dispersion have a younger stellar age.

  13. Cluster galaxy population evolution from the Subaru Hyper Suprime-Cam survey: brightest cluster galaxies, stellar mass distribution, and active galaxies

    NASA Astrophysics Data System (ADS)

    Lin, Yen-Ting; Hsieh, Bau-Ching; Lin, Sheng-Chieh; Oguri, Masamune; Chen, Kai-Feng; Tanaka, Masayuki; Chiu, I.-non; Huang, Song; Kodama, Tadayuki; Leauthaud, Alexie; More, Surhud; Nishizawa, Atsushi J.; Bundy, Kevin; Lin, Lihwai; Miyazaki, Satoshi; HSC Collaboration

    2018-01-01

    The unprecedented depth and area surveyed by the Subaru Strategic Program with the Hyper Suprime-Cam (HSC-SSP) have enabled us to construct and publish the largest distant cluster sample out to z~1 to date. In this exploratory study of cluster galaxy evolution from z=1 to z=0.3, we investigate the stellar mass assembly history of brightest cluster galaxies (BCGs), and evolution of stellar mass and luminosity distributions, stellar mass surface density profile, as well as the population of radio galaxies. Our analysis is the first high redshift application of the top N richest cluster selection, which is shown to allow us to trace the cluster galaxy evolution faithfully. Our stellar mass is derived from a machine-learning algorithm, which we show to be unbiased and accurate with respect to the COSMOS data. We find very mild stellar mass growth in BCGs, and no evidence for evolution in both the total stellar mass-cluster mass correlation and the shape of the stellar mass surface density profile. The clusters are found to contain more red galaxies compared to the expectations from the field, even after the differences in density between the two environments have been taken into account. We also present the first measurement of the radio luminosity distribution in clusters out to z~1.

  14. Two chemically similar stellar overdensities on opposite sides of the plane of the Galactic disk

    DOE PAGES

    Bergemann, Maria; Sesar, Branimir; Cohen, Judith G.; ...

    2018-02-26

    Our Galaxy is thought to have undergone an active evolutionary history dominated by star formation, the accretion of cold gas, and, in particular, mergers up to 10 gigayear ago. The stellar halo reveals rich fossil evidence of these interactions in the form of stellar streams, substructures, and chemically distinct stellar components. The impact of dwarf galaxy mergers on the content and morphology of the Galactic disk is still being explored. Recent studies have identified kinematically distinct stellar substructures and moving groups, which may have extragalactic origin. However, there is mounting evidence that stellar overdensities at the outer disk/halo interface couldmore » have been caused by the interaction of a dwarf galaxy with the disk. Here we report detailed spectroscopic analysis of 14 stars drawn from two stellar overdensities, each lying about 5 kiloparsecs above and below the Galactic plane - locations suggestive of association with the stellar halo. However, we find that the chemical compositions of these stars are almost identical, both within and between these groups, and closely match the abundance patterns of the Milky Way disk stars. This study hence provides compelling evidence that these stars originate from the disk and the overdensities they are part of were created by tidal interactions of the disk with passing or merging dwarf galaxies.« less

  15. THE SL2S GALAXY-SCALE LENS SAMPLE. V. DARK MATTER HALOS AND STELLAR IMF OF MASSIVE EARLY-TYPE GALAXIES OUT TO REDSHIFT 0.8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sonnenfeld, Alessandro; Treu, Tommaso; Marshall, Philip J.

    2015-02-20

    We investigate the cosmic evolution of the internal structure of massive early-type galaxies over half of the age of the universe. We perform a joint lensing and stellar dynamics analysis of a sample of 81 strong lenses from the Strong Lensing Legacy Survey and Sloan ACS Lens Survey and combine the results with a hierarchical Bayesian inference method to measure the distribution of dark matter mass and stellar initial mass function (IMF) across the population of massive early-type galaxies. Lensing selection effects are taken into account. We find that the dark matter mass projected within the inner 5 kpc increasesmore » for increasing redshift, decreases for increasing stellar mass density, but is roughly constant along the evolutionary tracks of early-type galaxies. The average dark matter slope is consistent with that of a Navarro-Frenk-White profile, but is not well constrained. The stellar IMF normalization is close to a Salpeter IMF at log M {sub *} = 11.5 and scales strongly with increasing stellar mass. No dependence of the IMF on redshift or stellar mass density is detected. The anti-correlation between dark matter mass and stellar mass density supports the idea of mergers being more frequent in more massive dark matter halos.« less

  16. The V-band Empirical Mass-luminosity Relation for Main Sequence Stars

    NASA Astrophysics Data System (ADS)

    Xia, Fang; Fu, Yan-Ning

    2010-07-01

    Stellar mass is an indispensable parameter in the studies of stellar physics and stellar dynamics. On the one hand, the most reliable way to determine the stellar dynamical mass is via orbital determinations of binaries. On the other hand, however, most stellar masses have to be estimated by using the mass luminosity relation (MLR). Therefore, it is important to obtain the empirical MLR through fitting the data of stellar dynamical mass and luminosity. The effect of metallicity can make this relation disperse in the V-band, but studies show that this is mainly limited to the case when the stellar mass is less than 0.6M⊙ Recently, many relevant data have been accumulated for main sequence stars with larger masses, which make it possible to significantly improve the corresponding MLR. Using a fitting method which can reasonably assign weights to the observational data including two quantities with different dimensions, we obtain a V-band MLR based on the dynamical masses and luminosities of 203 main sequence stars. In comparison with the previous work, the improved MLR is statistically significant, and the relative error of mass estimation reaches about 5%. Therefore, our MLR is useful not only in the studies of statistical nature, but also in the studies of concrete stellar systems, such as the long-term dynamical study and the short-term positioning study of a specific multiple star system.

  17. The V Band Empirical Mass-Luminosity Relation for Main Sequence Stars

    NASA Astrophysics Data System (ADS)

    Xia, F.; Fu, Y. N.

    2010-01-01

    Stellar mass is an indispensable parameter in the studies of stellar physics and stellar dynamics. On the one hand, the most reliable way to determine the stellar dynamical mass is via orbital determination of binaries. On the other hand, however, most stellar masses have to be estimated by using the mass-luminosity relation (MLR). Therefore, it is important to obtain the empirical MLR through fitting the data of stellar dynamical mass and luminosity. The effect of metallicity can make this relation disperse in the V-band, but studies show that this is mainly limited to the case when the stellar mass is less than 0.6M⊙. Recently, many relevant data have been accumulated for main sequence stars with larger mass, which make it possible to significantly improve the corresponding MLR. Using a fitting method which can reasonably assign weight to the observational data including two quantities with different dimensions, we obtain a V-band MLR based on the dynamical masses and luminosities of 203 main sequence stars. Compared with the previous work, the improved MLR is statistically significant, and the relative error of mass estimation reaches about 5%. Therefore, our MLR is useful not only in studies of statistical nature, but also in studies of concrete stellar systems, such as the long-term dynamical study and the short-term positioning study of a specific multiple star system.

  18. The SL2S galaxy-scale lens sample. V. dark matter halos and stellar IMF of massive early-type galaxies out to redshift 0.8

    DOE PAGES

    Sonnenfeld, Alessandro; Treu, Tommaso; Marshall, Philip J.; ...

    2015-02-17

    Here, we investigate the cosmic evolution of the internal structure of massive early-type galaxies over half of the age of the universe. We also perform a joint lensing and stellar dynamics analysis of a sample of 81 strong lenses from the Strong Lensing Legacy Survey and Sloan ACS Lens Survey and combine the results with a hierarchical Bayesian inference method to measure the distribution of dark matter mass and stellar initial mass function (IMF) across the population of massive early-type galaxies. Lensing selection effects are taken into account. Furthermore, we found that the dark matter mass projected within the innermore » 5 kpc increases for increasing redshift, decreases for increasing stellar mass density, but is roughly constant along the evolutionary tracks of early-type galaxies. The average dark matter slope is consistent with that of a Navarro-Frenk-White profile, but is not well constrained. The stellar IMF normalization is close to a Salpeter IMF at log M * = 11.5 and scales strongly with increasing stellar mass. No dependence of the IMF on redshift or stellar mass density is detected. The anti-correlation between dark matter mass and stellar mass density supports the idea of mergers being more frequent in more massive dark matter halos.« less

  19. Stellar Mass Versus Stellar Velocity Dispersion: Which is Better for Linking Galaxies to Their Dark Matter Halos?

    NASA Astrophysics Data System (ADS)

    Li, Cheng; Wang, Lixin; Jing, Y. P.

    2013-01-01

    It was recently suggested that compared to its stellar mass (M *), the central stellar velocity dispersion (σ*) of a galaxy might be a better indicator for its host dark matter halo mass. Here we test this hypothesis by estimating the dark matter halo mass for central galaxies in groups as a function of M * and σ*. For this we have estimated the redshift-space cross-correlation function (CCF) between the central galaxies at given M * and σ* and a reference galaxy sample, from which we determine both the projected CCF, wp (rp ), and the velocity dispersion profile. A halo mass is then obtained from the average velocity dispersion within the virial radius. At fixed M *, we find very weak or no correlation between halo mass and σ*. In contrast, strong mass dependence is clearly seen even when σ* is limited to a narrow range. Our results thus firmly demonstrate that the stellar mass of central galaxies is still a good (if not the best) indicator for dark matter halo mass, better than the stellar velocity dispersion. The dependence of galaxy clustering on σ* at fixed M *, as recently discovered by Wake et al., may be attributed to satellite galaxies, for which the tidal stripping occurring within halos has stronger effect on stellar mass than on central stellar velocity dispersion.

  20. The Role of Stellar Feedback on the Structure of the ISM and Star Formation in Galaxies

    NASA Astrophysics Data System (ADS)

    Grisdale, Kearn Michael

    2017-08-01

    Stellar feedback refers to the injection of energy, momentum and mass into the interstellar medium (ISM) by massive stars. This feedback owes to a combination of ionising radiation, radiation pressure, stellar winds and supernovae and is likely responsible both for the inefficiency of star formation in galaxies, and the observed super-sonic turbulence of the ISM. In this thesis, I study how stellar feedback shapes the ISM thereby regulating galaxy evolution. In particular, I focus on three key questions: (i) How does stellar feedback shape the gas density distribution of the ISM? (ii) How does feedback change or influence the distribution of the kinetic energy in the ISM? and (iii) What role does feedback play in determining the star formation efficiency of giant molecular clouds (GMCs)? To answer these questions, I run high resolution (Deltax 4.6 pc) numerical simulations of three isolated galaxies, both with and without stellar feedback. I compare these simulations to observations of six galaxies from The HI Nearby Galaxy Survey (THINGS) using power spectra, and I use clump finding techniques to identify GMCs in my simulations and calculate their properties. I find that the kinetic energy power spectra in stellar feedback- regulated galaxies, regardless of the galaxy's mass and size, show scalings in excellent agreement with supersonic turbulence on scales below the thickness of the HI layer. I show that feedback influences the gas density field, and drives gas turbulence, up to large (kiloparsec) scales. This is in stark contrast to the density fields generated by large-scale gravity-only driven turbulence (i.e. without stellar feedback). Simulations with stellar feedback are able to reproduce the internal properties of GMCs such as: mass, size and velocity dispersion. Finally, I demonstrate that my simulations naturally reproduce the observed scatter (3.5-4 dex) in the star formation efficiency per free-fall time of GMCs, despite only employing a simple Schmidt star formation law. I conclude that the neutral gas content of galaxies carries signatures of stellar feedback on all scales and that stellar feedback is, therefore, key to regulating the evolution of galaxies over cosmic time.

  1. Preface (for CUP)

    NASA Technical Reports Server (NTRS)

    Pap, Judit

    1993-01-01

    Study of changes in solar and stellar irradiances has been of high interest for a long time. Determining the absolute value of the luminosity of stars with different ages is a crucial question for the theory of stellar evolution and energy production in stellar interiors.

  2. Watching the Sun to Improve Exoplanet Detection

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-12-01

    Looking for stars that wobble is one of the key ways by which we detect exoplanets: the gravitational pull of planets cause tiny variations in stars radial velocities. But our ability to detect Earth twins is currently limited by our ability to distinguish between radial-velocity variations caused by exoplanets, and those caused by noise from the star itself. A team of scientists has recently proposed that the key to solving this problem may be to examine our own star.Precision Amid NoiseThe radial-velocity technique works well for detecting large planets on close orbits, but detecting an Earth twin requires being able to detect star motion on the order of 10 cm/s! This precision is hard to reach, because activity on the stellar surface i.e., sunspots, plages (bright spots), or granulation can also cause variations in the measured radial velocity for the star, obscuring the signature of a planet.Because the stars were examining arent resolved, we cant track the activity on their surfaces so how can we better understand the imprint that stellar activity has on radial-velocity measurements? A team of scientists has come up with a clever approach: examine the Sun as though it were a distant star.Wealth of InformationThe team, led by Xavier Dumusque (Branco-Weiss Fellow at the Harvard-Smithsonian Center for Astrophysics) and David F. Phillips (Harvard-Smithsonian Center for Astrophysics), has begun a project to observe the Sun with a ground-based solar telescope. The telescope observes the full disk of the Sun and feeds the data into the HARPS-N spectrograph in Spain, a spectrograph normally used for radial-velocity measurements of other stars in the hunt for exoplanets.But the team has access to other data about the Sun, too: information from satellites like the Solar Dynamics Observatory and SORCE about the solar activity and total irradiance during the time when the spectra were taken. Dumusque and collaborators have combined all of this information, during a week-long test, to see if its possible to correct for radial-velocity perturbations due to sunspots and plages.Reducing VariationsThe total solar irradiance of the Sun (top panel) is correlated with the radial velocity variations measured for the Sun (bottom panel), due to the effects of surface inhomogeneities like sunspots and plages. [Dumusque et al. 2015]By relating the total stellar irradiance (measured by SORCE) to the radial-velocity variation due to stellar noise, the team finds that even with only a week of data theyre already able to subtract off some of these effects. They reduce the radial-velocity variation by more than a factor of two, bringing it down to 60 cm/s.After this initial success, the next step is to improve on this result with more extensive observations. The team plans to continue to monitor the Sun daily over the next two to three years, allowing them to further develop correction methods. They believe this will enable us to reach the precision needed to detect an Earth twin around another star.CitationXavier Dumusque et al 2015 ApJ 814 L21. doi:10.1088/2041-8205/814/2/L21

  3. The Soft X-Ray/Microwave Ratio of Solar and Stellar Flares and Coronae

    NASA Technical Reports Server (NTRS)

    Benz, A. O.; Guedel, M.

    1994-01-01

    We have carried out plasma diagnostics of solar flares using soft X-ray (SXR) and simultaneous microwave observations and have compared the ratio of X-ray to microwave luminosities of solar flares with various active late-type stars available in the published literature. Both the SXR low-level ('quiescent') emission from stellar coronae and the flaring emission from the Sun and stars are generally interpreted as thermal radiations of coronal plasmas. On the other hand, the microwave emission of stars and solar flares is generally attributed to an extremely hot or nonthermal population of electrons. Solar flare SXR are conventionally measured in a narrower and harder passband than the stellar sources. Observations of the GOES-2 satellite in two energy channels have been used to estimate the luminosity of solar flares as it would appear in the ROSAT satellite passband. The solar and stellar flare luminosities fit well at the lower end of the active stellar coronae. The flare SXR/microwave ratio is similar to the ratio for stellar coronae. The average ratio follows a power-law relation L(sub X) varies as L(sub R)(sup 0.73 +/- 0.03) over 10 orders of magnitude from solar microflares to RS CVn and FK Com-type coronae. Dwarf Me and Ke stars, and RS CVn stars are also compatible with a linear SXR/microwave relation, but the ratio is slightly different for each type of star. Considering the differences between solar flares, stellar flares and the various active stellar coronae, the similarity of the SXR/microwave ratios is surprising. It suggests that the energetic electrons in low-level stellar coronae observed in microwaves are related in a similar way to the coronal thermal plasma as flare electrons to the flare thermal plasma, and, consequently, that the heating mechanism of active stellar coronae is a flare-like process.

  4. Eight luminous early-type galaxies in nearby pairs and sparse groups. I. Stellar populations spatially analysed

    NASA Astrophysics Data System (ADS)

    Rosa, D. A.; Milone, A. C.; Krabbe, A. C.; Rodrigues, I.

    2018-06-01

    We present a detailed spatial analysis of stellar populations based on long-slit optical spectra in a sample of eight luminous early-type galaxies selected from nearby sparse groups and pairs, three of them may have interaction with another galaxy of similar mass. We have spatially measured luminosity-weighted averages of age, [M/H], [Fe/H], and [α /Fe] in the sample galaxies to add empirical data relative to the influence of galaxy mass, environment, interaction, and AGN feedback in their formation and evolution. The stellar population of the individual galaxies were determined through the well-established stellar population synthesis code starlight using semi-empirical simple stellar population models. Radial variations of luminosity- weighted means of age, [M/H], [Fe/H], and [α /Fe] were quantified up to half of the effective radius of each galaxy. We found trends between representative values of age, [M/H], [α /Fe], and the nuclear stellar velocity dispersion. There are also relations between the metallicity/age gradients and the velocity dispersion. Contributions of 1-4 Gyr old stellar populations were quantified in IC 5328 and NGC 6758 as well as 4-8 Gyr old ones in NGC 5812. Extended gas is present in IC 5328, NGC 1052, NGC 1209, and NGC 6758, and the presence of a LINER is identified in all these galaxies. The regions up to one effective radius of all galaxies are basically dominated by α -enhanced metal-rich old stellar populations likely due to rapid star formation episodes that induced efficient chemical enrichment. On average, the age and [α /Fe] gradients are null and the [M/H] gradients are negative, although discordant cases were found. We found no correlation between the stellar population properties and the LINER presence as well as between the stellar properties and environment or gravitational interaction, suggesting that the influence of progenitor mass cannot be discarded in the formation and evolution of early-type galaxies.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sonnenfeld, Alessandro; Treu, Tommaso; Marshall, Philip J.

    Here, we investigate the cosmic evolution of the internal structure of massive early-type galaxies over half of the age of the universe. We also perform a joint lensing and stellar dynamics analysis of a sample of 81 strong lenses from the Strong Lensing Legacy Survey and Sloan ACS Lens Survey and combine the results with a hierarchical Bayesian inference method to measure the distribution of dark matter mass and stellar initial mass function (IMF) across the population of massive early-type galaxies. Lensing selection effects are taken into account. Furthermore, we found that the dark matter mass projected within the innermore » 5 kpc increases for increasing redshift, decreases for increasing stellar mass density, but is roughly constant along the evolutionary tracks of early-type galaxies. The average dark matter slope is consistent with that of a Navarro-Frenk-White profile, but is not well constrained. The stellar IMF normalization is close to a Salpeter IMF at log M * = 11.5 and scales strongly with increasing stellar mass. No dependence of the IMF on redshift or stellar mass density is detected. The anti-correlation between dark matter mass and stellar mass density supports the idea of mergers being more frequent in more massive dark matter halos.« less

  6. The Class of Jsolated Stars and Luminous Planetary Nebulae in old stellar populations

    NASA Astrophysics Data System (ADS)

    Sabach, Efrat; Soker, Noam

    2018-06-01

    We suggest that stars whose angular momentum (J) does not increase by a companion, star or planet, along their post-main sequence evolution have much lower mass loss rates along their giant branches. Their classification to a separate group can bring insight on their late evolution stages. We here term these Jsolated stars. We argue that the mass loss rate of Jsolated stars is poorly determined because the mass loss rate expressions on the giant branches are empirically based on samples containing stars that experience strong binary interaction, with stellar or sub-stellar companions, e.g., planetary nebula (PN) progenitors. We use our earlier claim for a low mass loss rate of asymptotic giant branch (AGB) stars that are not spun-up by a stellar or substellar companion to show that we can account for the enigmatic finding that the brightest PNe in old stellar populations reach the same luminosity as the brightest PNe in young populations. It is quite likely that the best solution to the existence of bright PNe in old stellar populations is the combination of higher AGB luminosities, as obtained in some new stellar models, and the lower mass loss rates invoked here.

  7. The scaling relationship between baryonic mass and stellar disc size in morphologically late-type galaxies

    NASA Astrophysics Data System (ADS)

    Wu, Po-Feng

    2018-02-01

    Here I report the scaling relationship between the baryonic mass and scale-length of stellar discs for ∼1000 morphologically late-type galaxies. The baryonic mass-size relationship is a single power law R_\\ast ∝ M_b^{0.38} across ∼3 orders of magnitude in baryonic mass. The scatter in size at fixed baryonic mass is nearly constant and there are no outliers. The baryonic mass-size relationship provides a more fundamental description of the structure of the disc than the stellar mass-size relationship. The slope and the scatter of the stellar mass-size relationship can be understood in the context of the baryonic mass-size relationship. For gas-rich galaxies, the stars are no longer a good tracer for the baryons. High-baryonic-mass, gas-rich galaxies appear to be much larger at fixed stellar mass because most of the baryonic content is gas. The stellar mass-size relationship thus deviates from the power-law baryonic relationship, and the scatter increases at the low-stellar-mass end. These extremely gas-rich low-mass galaxies can be classified as ultra-diffuse galaxies based on the structure.

  8. An Extension of the EDGES Survey: Stellar Populations in Dark Matter Halos

    NASA Astrophysics Data System (ADS)

    van Zee, Liese

    The formation and evolution of galactic disks is one of the key questions in extragalactic astronomy today. We plan to use archival data from GALEX, Spitzer, and WISE to investigate the growth and evolution of the stellar component in a statistical sample of nearby galaxies. Data covering a broad wavelength range are critical for measurement of current star formation activity, stellar populations, and stellar distributions in nearby galaxies. In order to investigate the timescales associated with the growth of galactic disks, we will (1) investigate the structure of the underlying stellar distribution, (2) measure the ratio of current-to-past star formation activity as a function of radius, and (3) investigate the growth of the stellar disk as a function of baryon fraction and total dynamical mass. The proposed projects leverage the existing deep wide field-of-view near infrared imaging observations obtained with the Spitzer Space Telescope as part of the EDGES Survey, a Cycle 8 Exploration Science Program. The proposed analysis of multiwavelength imaging observations of a well-defined statistical sample will place strong constraints on hierarchical models of galaxy formation and evolution and will further our understanding of the stellar component of nearby galaxies.

  9. A new method to unveil embedded stellar clusters

    NASA Astrophysics Data System (ADS)

    Lombardi, Marco; Lada, Charles J.; Alves, João

    2017-11-01

    In this paper we present a novel method to identify and characterize stellar clusters deeply embedded in a dark molecular cloud. The method is based on measuring stellar surface density in wide-field infrared images using star counting techniques. It takes advantage of the differing H-band luminosity functions (HLFs) of field stars and young stellar populations and is able to statistically associate each star in an image as a member of either the background stellar population or a young stellar population projected on or near the cloud. Moreover, the technique corrects for the effects of differential extinction toward each individual star. We have tested this method against simulations as well as observations. In particular, we have applied the method to 2MASS point sources observed in the Orion A and B complexes, and the results obtained compare very well with those obtained from deep Spitzer and Chandra observations where presence of infrared excess or X-ray emission directly determines membership status for every star. Additionally, our method also identifies unobscured clusters and a low resolution version of the Orion stellar surface density map shows clearly the relatively unobscured and diffuse OB 1a and 1b sub-groups and provides useful insights on their spatial distribution.

  10. STELLAR ENCOUNTER RATE IN GALACTIC GLOBULAR CLUSTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bahramian, Arash; Heinke, Craig O.; Sivakoff, Gregory R.

    2013-04-01

    The high stellar densities in the cores of globular clusters cause significant stellar interactions. These stellar interactions can produce close binary mass-transferring systems involving compact objects and their progeny, such as X-ray binaries and radio millisecond pulsars. Comparing the numbers of these systems and interaction rates in different clusters drives our understanding of how cluster parameters affect the production of close binaries. In this paper we estimate stellar encounter rates ({Gamma}) for 124 Galactic globular clusters based on observational data as opposed to the methods previously employed, which assumed 'King-model' profiles for all clusters. By deprojecting cluster surface brightness profilesmore » to estimate luminosity density profiles, we treat 'King-model' and 'core-collapsed' clusters in the same way. In addition, we use Monte Carlo simulations to investigate the effects of uncertainties in various observational parameters (distance, reddening, surface brightness) on {Gamma}, producing the first catalog of globular cluster stellar encounter rates with estimated errors. Comparing our results with published observations of likely products of stellar interactions (numbers of X-ray binaries, numbers of radio millisecond pulsars, and {gamma}-ray luminosity) we find both clear correlations and some differences with published results.« less

  11. Blue Stragglers in Clusters and Integrated Spectral Properties of Stellar Populations

    NASA Astrophysics Data System (ADS)

    Xin, Yu; Deng, Licai

    Blue straggler stars are the most prominent bright objects in the colour-magnitude diagram of a star cluster that challenges the theory of stellar evolution. Star clusters are the closest counterparts of the theoretical concept of simple stellar populations (SSPs) in the Universe. SSPs are widely used as the basic building blocks to interpret stellar contents in galaxies. The concept of an SSP is a group of coeval stars which follows a given distribution in mass, and has the same chemical property and age. In practice, SSPs are more conveniently made by the latest stellar evolutionary models of single stars. In reality, however, stars can be more complicated than just single either at birth time or during the course of evolution in a typical environment. Observations of star clusters show that there are always exotic objects which do not follow the predictions of standard theory of stellar evolution. Blue straggler stars (BSSs), as discussed intensively in this book both observationally and theoretically, are very important in our context when considering the integrated spectral properties of a cluster, or a simple stellar population. In this chapter, we are going to describe how important the contribution of BSSs is to the total light of a cluster.

  12. Stellar mass buildup in galaxies in the first 1.5 Gyr of the universe

    NASA Astrophysics Data System (ADS)

    Gonzalez, Valentino

    In this thesis we have made extensive use of the deepest optical and infrared images currently available from the Hubble Space Telescope (HST) and the Spitzer Space Telescope to study the properties of the stellar populations and the stellar mass buildup in galaxies in the first 1.5 Gyr after the Big Bang. The star formation Rates (SFRs) estimated for LBGs at z ≳ 4 are generally in the range 1 -- 100 M⊙ yr--1. The stellar mass estimates are most robust for sources with good Spitzer/IRAC detections, corresponding to galaxies with stellar masses ≳ 108.5 M⊙ at z ˜ 4 ( ≳ 109.5 M⊙ at z ˜ 7). For sources with lower rest-frame optical luminosities, that, as a result, are individually undetected in IRAC, their average stellar masses have been studied in a stacking analysis of a large number of sources. This enables us to reach stellar masses ˜ 10 7.8 M⊙ at z ˜ 4. The stellar masses show a fairly tight correlation with UV luminosity or SFR, and the zeropoint of the relation does not seem to evolve strongly with redshift. We have taken advantage of the UV luminosity vs. stellar mass relation observed in LBGs at z ≳ 4 -- 7 to derive the stellar mass function (SMF) of galaxies at these redshifts. The method uses a combination of the UV LF and the mean UV vs. stellar mass relation (including the scatter, estimated to be ˜ 0.5 dex at bright luminosities at z ˜ 4). This method allows an analytic estimate of the low mass slope of the SMF. This slope (the power-law exponent of the SMF at low masses), is estimated to be in the --1.44 -- --1.55, range which is flatter than the UV LF faint end slope at these redshifts ( ≲ --1.74). This means that low mass systems contribute less to the total stellar mass density (SMD) of the Universe than would have been estimated assuming a constant mass-to-UV-light ratio. We show that this is also much flatter than the theoretical predictions from simulations, which generally over-predict the number density of low mass systems at these redshifts. The UV luminosity vs. stellar mass relation indicates only a small variation of the mass-to-light ratio as a function of UV luminosity. This is confirmed in a stacking analysis of a large number of sources from the HUDF and the Early Release Science fields (˜ 400 z ˜ 4, ˜ 120 z ˜ 5, ˜ 60 z ˜ 6, 36 at z ˜ 7). Interestingly, the stacked SEDs at z ≳ 5 in the rest-frame optical shows a color [3.6] -- [4.5] ˜ 0.3 mag. This color is hard to reproduce by synthetic stellar population models that only include stellar continua, and it probably indicates the presence of moderately strong emission lines (Halpha EWrest ˜ 300 A). The contribution from such emission lines in the IRAC fluxes indicates that the stellar masses and ages could both be over-estimated by a factor ˜ 2. One of the most interesting results presented in this thesis is the apparent plateau of the specific SFR (sSFR = SFR / stellar mass). In early results, the similarity in the SEDs of galaxies at a given UV luminosity in the z ˜ 4 -- 7 redshift range resulted in very similar estimates of the SFR and stellar masses of these galaxies. Furthermore, we find that the reported sSFR estimates at z ˜ 2 are also very similar to the ones in the z ˜ 4 -- 7 redshift range (˜ 2 Gyr--1 for ˜ 5 x 109 M⊙ galaxies). A puzzle arises from the fact that the dark matter accretion rate onto halos is predicted to decrease monotonically and rather fast as a function of cosmic time (approximately ∝ (1 + z) 2.5). If gas and star formation follow the inflow of dark matter, the sSFR at a constant mass should also decrease monotonically with time, which is contrary to the indication from these observations. When we include the possible effects of emission lines, the stellar masses decrease by a factor ˜ 2x at z ≳ 5. The revised stellar masses may favor a slowly rising sSFR at z ≳ 2, but the rise as a function of redshift is still much slower (sSFR(z) ∝ (1 + z)0.7) than that of specific dark matter accretion rate. This suggests that the stellar mass buildup is somehow decoupled from the dark matter buildup at early times. (Abstract shortened by UMI.)

  13. How to Spot a Disrupted Galactic Satellite

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-03-01

    Many satellites dwarf galaxies and globular clusters are thought to be orbiting our galaxy, but detecting them can be a tricky business. In particular, satellites can be disrupted by the galactic potential and spread out into streams, making them so diffuse that were unable to spot them in photometric observations.In a recent study, a team of scientists led by John Vickers (Chinese Academy of Sciences) has cleverly worked around this difficulty by searching for groups of stars that have clustered velocities and metallicities differing from the background field.Searching Through StarsRadial velocity and metallicity of LAMOST stars near the physical location of Lamost 1. Circles are stars within 1.5 of the target location, small dots are stars within 5. [Vickers et al. 2016]The team trawled the Large Sky Area Multi-Object Fibre Spectroscopic Telescope (LAMOST) catalog, which contains spectroscopic information for 2.5 million stars. Vickers and collaborators first hunted for stars that shared an approximate physical location and had similar velocities (because the stars of a satellite will maintain similar velocities even after the satellite is disrupted). Next, they discarded any of these clumps that didnt also share a similar metallicity.Vickers and collaborators then compared the resulting set of 21 candidate streams to catalogs of known globular clusters, open clusters, and nearby galaxies. Three of the candidate clumps, clustered in a 3 area on the sky, do not correspond to any known objects. The authors postulate that these are all part of a disrupted satellite, which they dub Lamost 1.Characterizing a Former ClusterFitting the spectroscopic data for the member stars, the authors are able to estimate a number of characteristics of Lamost 1, with the best fit implying an age of 11 Gyr, a total mass of about 20,000 solar masses, and a distance from us of about 8,500 light-years.Based on the stellar motions, the authors believe that the clump is on an eccentric orbit and is currently at its furthest distance from the Galactic center. They suggest that the elliptic orbit and advanced age of the clump indicate it is most likely to be a disrupted globular cluster, rather than a dwarf galaxy.Interestingly, when the authors went back to search for a stellar overdensity corresponding to Lamost 1 in photometric data, they were unable to detect it. This reaffirms that their approach of searching for velocity and metallicity clumping is an important tool for discovering otherwise-invisible diffuse streams.BonusCheck out this cool graphic Vickers made using Stellarium and Aladin to demonstratewhere in the sky the stars ofLamost 1 are located. Lamost 1sstars are the red dots in the constellation Draco.CitationJohn J. Vickers et al 2016 ApJ 816 L2. doi:10.3847/2041-8205/816/1/L2

  14. A Dark Spot on a Massive White Dwarf

    NASA Astrophysics Data System (ADS)

    Kilic, Mukremin; Gianninas, Alexandros; Bell, Keaton J.; Curd, Brandon; Brown, Warren R.; Hermes, J. J.; Dufour, Patrick; Wisniewski, John P.; Winget, D. E.; Winget, K. I.

    2015-12-01

    We present the serendipitous discovery of eclipse-like events around the massive white dwarf SDSS J152934.98+292801.9 (hereafter J1529+2928). We selected J1529+2928 for time-series photometry based on its spectroscopic temperature and surface gravity, which place it near the ZZ Ceti instability strip. Instead of pulsations, we detect photometric dips from this white dwarf every 38 minutes. Follow-up optical spectroscopy observations with Gemini reveal no significant radial velocity variations, ruling out stellar and brown dwarf companions. A disintegrating planet around this white dwarf cannot explain the observed light curves in different filters. Given the short period, the source of the photometric dips must be a dark spot that comes into view every 38 minutes due to the rotation of the white dwarf. Our optical spectroscopy does not show any evidence of Zeeman splitting of the Balmer lines, limiting the magnetic field strength to B < 70 kG. Since up to 15% of white dwarfs display kG magnetic fields, such eclipse-like events should be common around white dwarfs. We discuss the potential implications of this discovery on transient surveys targeting white dwarfs, like the K2 mission and the Large Synoptic Survey Telescope. This work is based on observations obtained at the Gemini Observatory, McDonald Observatory, and the Apache Point Observatory 3.5-m telescope. The latter is owned and operated by the Astrophysical Research Consortium. Gemini Observatory is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência, Tecnologia e Inovação (Brazil) and Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina).

  15. The birth of gravitational evolutionary dynamics of stellar systems (from Th. Wright to W. Herschel).

    NASA Astrophysics Data System (ADS)

    Eremeeva, A. J.

    1995-05-01

    Th. Wright, I. Kant and I. H. Lambert used well-known ideas about the structure and dynamics of the Solar system as a basis of their concepts of the stellar Universe. W. Herschel discovered the main features of the true, non-hierarchical large-scale structure of the Universe. He was also a pioneer of stellar dynamics with its new statistical laws and also of the theory of dynamical evolution in stellar systems at different scales.

  16. Exploring the Solar System with Stellar Occultations

    NASA Technical Reports Server (NTRS)

    Elliot, J. L.; Dunham, E. W.

    1984-01-01

    By recording the light intensity as a function of time when a planet occults a relatively bright star, the thermal structure of the upper atmosphere of the planet can be probed. The main feature of stellar occultation observations is their high spatial resolution, typically several thousand times better than the resolution achievable with ground-based imaging. Five stellar occultations have been observed. The main results of these observations are summarized. Stellar occultations have been observed on Uranus, Mars, Pallas, Neptune and the Jovian Ring.

  17. CCFpams: Atmospheric stellar parameters from cross-correlation functions

    NASA Astrophysics Data System (ADS)

    Malavolta, Luca; Lovis, Christophe; Pepe, Francesco; Sneden, Christopher; Udry, Stephane

    2017-07-01

    CCFpams allows the measurement of stellar temperature, metallicity and gravity within a few seconds and in a completely automated fashion. Rather than performing comparisons with spectral libraries, the technique is based on the determination of several cross-correlation functions (CCFs) obtained by including spectral features with different sensitivity to the photospheric parameters. Literature stellar parameters of high signal-to-noise (SNR) and high-resolution HARPS spectra of FGK Main Sequence stars are used to calibrate the stellar parameters as a function of CCF areas.

  18. Frontiers of stellar evolution

    NASA Technical Reports Server (NTRS)

    Lambert, David L. (Editor)

    1991-01-01

    The present conference discusses theoretical and observational views of star formation, spectroscopic constraints on the evolution of massive stars, very low mass stars and brown dwarfs, asteroseismology, globular clusters as tests of stellar evolution, observational tests of stellar evolution, and mass loss from cool evolved giant stars. Also discussed are white dwarfs and hot subdwarfs, neutron stars and black holes, supernovae from single stars, close binaries with evolved components, accretion disks in interacting binaries, supernovae in binary systems, stellar evolution and galactic chemical evolution, and interacting binaries containing compact components.

  19. Examining the effect of galaxy evolution on the stellar-halo mass relation in the EAGLE simulation

    NASA Astrophysics Data System (ADS)

    Kulier, Andrea; Padilla, Nelson; Schaye, Joop; Crain, Robert; Schaller, Matthieu; Bower, Richard; Theuns, Tom; Paillas, Enrique

    2018-01-01

    The EAGLE hydrodynamical simulation was used in Matthee et al. 2016 to examine the scatter in the stellar mass-halo mass relation of central galaxies, finding that the stellar mass (M*) correlates well with the maximum circular velocity (Vmax) of the host halo, but with a substantial scatter that does not correlate significantly with other host halo properties. Here we further examine the scatter in the stellar mass-halo mass relation of central galaxies in EAGLE, its correlation with other properties, and its origin. We find that at fixed Vmax, galaxies with lower concentration have younger stellar populations, as expected from the relationship between concentration and halo assembly time. However, at fixed Vmax and halo concentration, galaxies with larger M* have younger stellar ages, so that combining the two effects, galaxies with younger stellar ages at fixed halo mass have higher stellar masses. The host halos of galaxies with larger M* at fixed Vmax and concentration also contain more gas than those with smaller stellar masses at z = 0.1, i.e. the baryon fraction of the halos is larger. There is an even stronger correlation between the scatter in M* at z = 0.1 and the scatter in the baryon fraction of the galaxy's progenitors at z ~ 1, such that the latter sets ~50% of the scatter in M* at z = 0.1. We conclude that most of the scatter between Vmax and M* at z = 0.1 is set at earlier redshifts by the scatter in the baryon fraction of halos, which in turn is primarily the result of differences in feedback strength within halos.

  20. Galaxy structure from multiple tracers - III. Radial variations in M87's IMF

    NASA Astrophysics Data System (ADS)

    Oldham, Lindsay; Auger, Matthew

    2018-03-01

    We present the first constraints on stellar mass-to-light ratio gradients in an early-type galaxy (ETG) using multiple dynamical tracer populations to model the dark and luminous mass structure simultaneously. We combine the kinematics of the central starlight, two globular cluster populations and satellite galaxies in a Jeans analysis to obtain new constraints on M87's mass structure, employing a flexible mass model which allows for radial gradients in the stellar-mass-to-light ratio. We find that, in the context of our model, a radially declining stellar-mass-to-light ratio is strongly favoured. Modelling the stellar-mass-to-light ratio as following a power law, ϒ⋆ ˜ R-μ, we infer a power-law slope μ = -0.54 ± 0.05; equally, parametrizing the stellar-mass-to-light ratio via a central mismatch parameter relative to a Salpeter initial mass function (IMF), α, and scale radius RM, we find α > 1.48 at 95% confidence and RM = 0.35 ± 0.04 kpc. We use stellar population modelling of high-resolution 11-band HST photometry to show that such a steep gradient cannot be achieved by variations in only the metallicity, age, dust extinction and star formation history if the stellar IMF remains spatially constant. On the other hand, the stellar-mass-to-light ratio gradient that we find is consistent with an IMF whose inner slope changes such that it is Salpeter-like in the central ˜0.5 kpc and becomes Chabrier-like within the stellar effective radius. This adds to recent evidence that the non-universality of the IMF in ETGs may be confined to their core regions, and points towards a picture in which the stars in these central regions may have formed in fundamentally different physical conditions.

  1. Gas expulsion vs gas retention in young stellar clusters II: effects of cooling and mass segregation

    NASA Astrophysics Data System (ADS)

    Silich, Sergiy; Tenorio-Tagle, Guillermo

    2018-05-01

    Gas expulsion or gas retention is a central issue in most of the models for multiple stellar populations and light element anti-correlations in globular clusters. The success of the residual matter expulsion or its retention within young stellar clusters has also a fundamental importance in order to understand how star formation proceeds in present-day and ancient star-forming galaxies and if proto-globular clusters with multiple stellar populations are formed in the present epoch. It is usually suggested that either the residual gas is rapidly ejected from star-forming clouds by stellar winds and supernova explosions, or that the enrichment of the residual gas and the formation of the second stellar generation occur so rapidly, that the negative stellar feedback is not significant. Here we continue our study of the early development of star clusters in the extreme environments and discuss the restrictions that strong radiative cooling and stellar mass segregation provide on the gas expulsion from dense star-forming clouds. A large range of physical initial conditions in star-forming clouds which include the star-forming cloud mass, compactness, gas metallicity, star formation efficiency and effects of massive stars segregation are discussed. It is shown that in sufficiently massive and compact clusters hot shocked winds around individual massive stars may cool before merging with their neighbors. This dramatically reduces the negative stellar feedback, prevents the development of the global star cluster wind and expulsion of the residual and the processed matter into the ambient interstellar medium. The critical lines which separate the gas expulsion and the gas retention regimes are obtained.

  2. Extended Main-sequence Turn-offs in Intermediate-age Star Clusters: Stellar Rotation Diminishes, but Does Not Eliminate, Age Spreads

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goudfrooij, Paul; Correnti, Matteo; Girardi, Léo, E-mail: goudfroo@stsci.edu

    Extended main-sequence turn-off (eMSTO) regions are a common feature in color–magnitude diagrams of young- and intermediate-age star clusters in the Magellanic Clouds. The nature of eMSTOs remains debated in the literature. The currently most popular scenarios are extended star formation activity and ranges of stellar rotation rates. Here we study details of differences in main-sequence turn-off (MSTO) morphology expected from spreads in age versus spreads in rotation rates, using Monte Carlo simulations with the Geneva syclist isochrone models that include the effects of stellar rotation. We confirm a recent finding of Niederhofer et al. that a distribution of stellar rotationmore » velocities yields an MSTO extent that is proportional to the cluster age, as observed. However, we find that stellar rotation yields MSTO crosscut widths that are generally smaller than observed ones at a given age. We compare the simulations with high-quality Hubble Space Telescope data of NGC 1987 and NGC 2249, which are the two only relatively massive star clusters with an age of ∼1 Gyr for which such data is available. We find that the distribution of stars across the eMSTOs of these clusters cannot be explained solely by a distribution of stellar rotation velocities, unless the orientations of rapidly rotating stars are heavily biased toward an equator-on configuration. Under the assumption of random viewing angles, stellar rotation can account for ∼60% and ∼40% of the observed FWHM widths of the eMSTOs of NGC 1987 and NGC 2249, respectively. In contrast, a combination of distributions of stellar rotation velocities and stellar ages fits the observed eMSTO morphologies very well.« less

  3. The PAndAS Field of Streams: Stellar Structures in the Milky Way Halo toward Andromeda and Triangulum

    NASA Astrophysics Data System (ADS)

    Martin, Nicolas F.; Ibata, Rodrigo A.; Rich, R. Michael; Collins, Michelle L. M.; Fardal, Mark A.; Irwin, Michael J.; Lewis, Geraint F.; McConnachie, Alan W.; Babul, Arif; Bate, Nicholas F.; Chapman, Scott C.; Conn, Anthony R.; Crnojević, Denija; Ferguson, Annette M. N.; Mackey, A. Dougal; Navarro, Julio F.; Peñarrubia, Jorge; Tanvir, Nial T.; Valls-Gabaud, David

    2014-05-01

    We reveal the highly structured nature of the Milky Way (MW) stellar halo within the footprint of the Pan-Andromeda Archaeological Survey (PAndAS) photometric survey from blue main sequence (MS) and MS turn-off stars. We map no fewer than five stellar structures within a heliocentric range of ~5-30 kpc. Some of these are known (the Monoceros Ring, the Pisces/Triangulum globular cluster stream), but we also uncover three well-defined stellar structures that could be, at least partly, responsible for the so-called Triangulum/Andromeda and Triangulum/Andromeda 2 features. In particular, we trace a new faint stellar stream located at a heliocentric distance of ~17 kpc. With a surface brightness of Σ V ~ 32-32.5 mag arcsec-2, it follows an orbit that is almost parallel to the Galactic plane north of M31 and has so far eluded surveys of the MW halo as these tend to steer away from regions dominated by the Galactic disk. Investigating our follow-up spectroscopic observations of PAndAS, we serendipitously uncover a radial velocity signature from stars that have colors and magnitudes compatible with the stream. From the velocity of eight likely member stars, we show that this stellar structure is dynamically cold, with an unresolved velocity dispersion that is lower than 7.1 km s-1 at the 90% confidence level. Along with the width of the stream (300-650 pc), its dynamics point to a dwarf-galaxy-accretion origin. The numerous stellar structures we can map in the MW stellar halo between 5 and 30 kpc and their varying morphology is a testament to the complex nature of the stellar halo at these intermediate distances.

  4. Habitability in Different Milky Way Stellar Environments: A Stellar Interaction Dynamical Approach

    PubMed Central

    Pichardo, Bárbara; Lake, George; Segura, Antígona

    2013-01-01

    Abstract Every Galactic environment is characterized by a stellar density and a velocity dispersion. With this information from literature, we simulated flyby encounters for several Galactic regions, numerically calculating stellar trajectories as well as orbits for particles in disks; our aim was to understand the effect of typical stellar flybys on planetary (debris) disks in the Milky Way Galaxy. For the solar neighborhood, we examined nearby stars with known distance, proper motions, and radial velocities. We found occurrence of a disturbing impact to the solar planetary disk within the next 8 Myr to be highly unlikely; perturbations to the Oort cloud seem unlikely as well. Current knowledge of the full phase space of stars in the solar neighborhood, however, is rather poor; thus we cannot rule out the existence of a star that is more likely to approach than those for which we have complete kinematic information. We studied the effect of stellar encounters on planetary orbits within the habitable zones of stars in more crowded stellar environments, such as stellar clusters. We found that in open clusters habitable zones are not readily disrupted; this is true if they evaporate in less than 108 yr. For older clusters the results may not be the same. We specifically studied the case of Messier 67, one of the oldest open clusters known, and show the effect of this environment on debris disks. We also considered the conditions in globular clusters, the Galactic nucleus, and the Galactic bulge-bar. We calculated the probability of whether Oort clouds exist in these Galactic environments. Key Words: Stellar interactions—Galactic habitable zone—Oort cloud. Astrobiology 13, 491–509. PMID:23659647

  5. The Prospect for Detecting Stellar Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Osten, Rachel A.; Crosley, Michael Kevin

    2018-06-01

    The astrophysical study of mass loss, both steady-state and transient, on the cool half of the HR diagram has implications bothfor the star itself and the conditions created around the star that can be hospitable or inimical to supporting life. Recent results from exoplanet studies show that planets around M dwarfs are exceedingly common, which together with the commonality of M dwarfs in our galaxy make this the dominant mode of star and planet configurations. The closeness of the exoplanets to the parent M star motivate a comprehensive understanding of habitability for these systems. Radio observations provide the most clear signature of accelerated particles and shocks in stars arising as the result of MHD processes in the stellar outer atmosphere. Stellar coronal mass ejections have not been conclusively detected, despite the ubiquity with which their radiative counterparts in an eruptive event (stellar flares) have. I will review some of the different observational methods which have been used and possibly could be used in the future in the stellar case, emphasizing some of the difficulties inherent in such attempts. I will provide a framework for interpreting potential transient stellar mass loss in light of the properties of flares known to occur on magnetically active stars. This uses a physically motivated way to connect the properties of flares and coronal mass ejections and provides a testable hypothesis for observing or constraining transient stellar mass loss. I will describe recent results using radio observations to detect stellar coronal mass ejections, and what those results imply about transient stellar mass loss. I will provide some motivation for what could be learned in this topic from space-based low frequency radio experiments.

  6. Observing Stellar Clusters in the Computer

    NASA Astrophysics Data System (ADS)

    Borch, A.; Spurzem, R.; Hurley, J.

    2006-08-01

    We present a new approach to combine direct N-body simulations to stellar population synthesis modeling in order to model the dynamical evolution and color evolution of globular clusters at the same time. This allows us to model the spectrum, colors and luminosities of each star in the simulated cluster. For this purpose the NBODY6++ code (Spurzem 1999) is used, which is a parallel version of the NBODY code. J. Hurley implemented simple recipes to follow the changes of stellar masses, radii, and luminosities due to stellar evolution into the NBODY6++ code (Hurley et al. 2001), in the sense that each simulation particle represents one star. These prescriptions cover all evolutionary phases and solar to globular cluster metallicities. We used the stellar parameters obtained by this stellar evolution routine and coupled them to the stellar library BaSeL 2.0 (Lejeune et al. 1997). As a first application we investigated the integrated broad band colors of simulated clusters. We modeled tidally disrupted globular clusters and compared the results with isolated globular clusters. Due to energy equipartition we expected a relative blueing of tidally disrupted clusters, because of the higher escape probability of red, low-mass stars. This behaviour we actually observe for concentrated globular clusters. The mass-to-light ratio of isolated clusters follows exactly a color-M/L correlation, similar as described in Bell and de Jong (2001) in the case of spiral galaxies. At variance to this correlation, in tidally disrupted clusters the M/L ratio becomes significantly lower at the time of cluster dissolution. Hence, for isolated clusters the behavior of the stellar population is not influenced by dynamical evolution, whereas the stellar population of tidally disrupted clusters is strongly influenced by dynamical effects.

  7. Influence of stellar multiplicity on planet formation. I. Evidence of suppressed planet formation due to stellar companions within 20 au and validation of four planets from the Kepler multiple planet candidates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Ji; Fischer, Debra A.; Xie, Ji-Wei

    2014-03-01

    The planet occurrence rate for multiple stars is important in two aspects. First, almost half of stellar systems in the solar neighborhood are multiple systems. Second, the comparison of the planet occurrence rate for multiple stars to that for single stars sheds light on the influence of stellar multiplicity on planet formation and evolution. We developed a method of distinguishing planet occurrence rates for single and multiple stars. From a sample of 138 bright (K{sub P} < 13.5) Kepler multi-planet candidate systems, we compared the stellar multiplicity rate of these planet host stars to that of field stars. Using dynamicalmore » stability analyses and archival Doppler measurements, we find that the stellar multiplicity rate of planet host stars is significantly lower than field stars for semimajor axes less than 20 AU, suggesting that planet formation and evolution are suppressed by the presence of a close-in companion star at these separations. The influence of stellar multiplicity at larger separations is uncertain because of search incompleteness due to a limited Doppler observation time baseline and a lack of high-resolution imaging observation. We calculated the planet confidence for the sample of multi-planet candidates and find that the planet confidences for KOI 82.01, KOI 115.01, KOI 282.01, and KOI 1781.02 are higher than 99.7% and thus validate the planetary nature of these four planet candidates. This sample of bright Kepler multi-planet candidates with refined stellar and orbital parameters, planet confidence estimation, and nearby stellar companion identification offers a well-characterized sample for future theoretical and observational study.« less

  8. THE STRUCTURE AND STELLAR CONTENT OF THE OUTER DISKS OF GALAXIES: A NEW VIEW FROM THE Pan-STARRS1 MEDIUM DEEP SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Zheng; Thilker, David A.; Heckman, Timothy M.

    2015-02-20

    We present the results of an analysis of Pan-STARRS1 Medium Deep Survey multi-band (grizy) images of a sample of 698 low-redshift disk galaxies that span broad ranges in stellar mass, star-formation rate, and bulge/disk ratio. We use population synthesis spectral energy distribution fitting techniques to explore the radial distribution of the light, color, surface mass density, mass/light ratio, and age of the stellar populations. We characterize the structure and stellar content of the galaxy disks out to radii of about twice Petrosian r {sub 90}, beyond which the halo light becomes significant. We measure normalized radial profiles for sub-samples ofmore » galaxies in three bins each of stellar mass and concentration. We also fit radial profiles to each galaxy. The majority of galaxies have down-bending radial surface brightness profiles in the bluer bands with a break radius at roughly r {sub 90}. However, they typically show single unbroken exponentials in the reddest bands and in the stellar surface mass density. We find that the mass/light ratio and stellar age radial profiles have a characteristic 'U' shape. There is a good correlation between the amplitude of the down-bend in the surface brightness profile and the rate of the increase in the M/L ratio in the outer disk. As we move from late- to early-type galaxies, the amplitude of the down-bend and the radial gradient in M/L both decrease. Our results imply a combination of stellar radial migration and suppression of recent star formation can account for the stellar populations of the outer disk.« less

  9. A COMPARISON OF STELLAR ELEMENTAL ABUNDANCE TECHNIQUES AND MEASUREMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hinkel, Natalie R.; Young, Patrick A.; Pagano, Michael D.

    2016-09-01

    Stellar elemental abundances are important for understanding the fundamental properties of a star or stellar group, such as age and evolutionary history, as well as the composition of an orbiting planet. However, as abundance measurement techniques have progressed, there has been little standardization between individual methods and their comparisons. As a result, different stellar abundance procedures determine measurements that vary beyond the quoted error for the same elements within the same stars. The purpose of this paper is to better understand the systematic variations between methods and offer recommendations for producing more accurate results in the future. We invited amore » number of participants from around the world (Australia, Portugal, Sweden, Switzerland, and the United States) to calculate 10 element abundances (C, O, Na, Mg, Al, Si, Fe, Ni, Ba, and Eu) using the same stellar spectra for four stars (HD 361, HD 10700, HD 121504, and HD 202206). Each group produced measurements for each star using (1) their own autonomous techniques, (2) standardized stellar parameters, (3) a standardized line list, and (4) both standardized parameters and a line list. We present the resulting stellar parameters, absolute abundances, and a metric of data similarity that quantifies the homogeneity of the data. We conclude that standardization of some kind, particularly stellar parameters, improves the consistency between methods. However, because results did not converge as more free parameters were standardized, it is clear there are inherent issues within the techniques that need to be reconciled. Therefore, we encourage more conversation and transparency within the community such that stellar abundance determinations can be reproducible as well as accurate and precise.« less

  10. The PAndAS field of streams: Stellar structures in the milky way halo toward Andromeda and Triangulum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Nicolas F.; Ibata, Rodrigo A.; Rich, R. Michael

    We reveal the highly structured nature of the Milky Way (MW) stellar halo within the footprint of the Pan-Andromeda Archaeological Survey (PAndAS) photometric survey from blue main sequence (MS) and MS turn-off stars. We map no fewer than five stellar structures within a heliocentric range of ∼5-30 kpc. Some of these are known (the Monoceros Ring, the Pisces/Triangulum globular cluster stream), but we also uncover three well-defined stellar structures that could be, at least partly, responsible for the so-called Triangulum/Andromeda and Triangulum/Andromeda 2 features. In particular, we trace a new faint stellar stream located at a heliocentric distance of ∼17more » kpc. With a surface brightness of Σ {sub V} ∼ 32-32.5 mag arcsec{sup –2}, it follows an orbit that is almost parallel to the Galactic plane north of M31 and has so far eluded surveys of the MW halo as these tend to steer away from regions dominated by the Galactic disk. Investigating our follow-up spectroscopic observations of PAndAS, we serendipitously uncover a radial velocity signature from stars that have colors and magnitudes compatible with the stream. From the velocity of eight likely member stars, we show that this stellar structure is dynamically cold, with an unresolved velocity dispersion that is lower than 7.1 km s{sup –1} at the 90% confidence level. Along with the width of the stream (300-650 pc), its dynamics point to a dwarf-galaxy-accretion origin. The numerous stellar structures we can map in the MW stellar halo between 5 and 30 kpc and their varying morphology is a testament to the complex nature of the stellar halo at these intermediate distances.« less

  11. A direct imaging search for close stellar and sub-stellar companions to young nearby stars

    NASA Astrophysics Data System (ADS)

    Vogt, N.; Mugrauer, M.; Neuhäuser, R.; Schmidt, T. O. B.; Contreras-Quijada, A.; Schmidt, J. G.

    2015-01-01

    A total of 28 young nearby stars (ages {≤ 60} Myr) have been observed in the K_s-band with the adaptive optics imager Naos-Conica of the Very Large Telescope at the Paranal Observatory in Chile. Among the targets are ten visual binaries and one triple system at distances between 10 and 130 pc, all previously known. During a first observing epoch a total of 20 faint stellar or sub-stellar companion-candidates were detected around seven of the targets. These fields, as well as most of the stellar binaries, were re-observed with the same instrument during a second epoch, about one year later. We present the astrometric observations of all binaries. Their analysis revealed that all stellar binaries are co-moving. In two cases (HD 119022 AB and FG Aqr B/C) indications for significant orbital motions were found. However, all sub-stellar companion candidates turned out to be non-moving background objects except PZ Tel which is part of this project but whose results were published elsewhere. Detection limits were determined for all targets, and limiting masses were derived adopting three different age values; they turn out to be less than 10 Jupiter masses in most cases, well below the brown dwarf mass range. The fraction of stellar multiplicity and of the sub-stellar companion occurrence in the star forming regions in Chamaeleon are compared to the statistics of our search, and possible reasons for the observed differences are discussed. Based on observations made with ESO telescopes at Paranal Observatory under programme IDs 083.C-0150(B), 084.C-0364(A), 084.C-0364(B), 084.C-0364(C), 086.C-0600(A) and 086.C-0600(B).

  12. The Galaxy mass function up to z =4 in the GOODS-MUSIC sample: into the epoch of formation of massive galaxies

    NASA Astrophysics Data System (ADS)

    Fontana, A.; Salimbeni, S.; Grazian, A.; Giallongo, E.; Pentericci, L.; Nonino, M.; Fontanot, F.; Menci, N.; Monaco, P.; Cristiani, S.; Vanzella, E.; de Santis, C.; Gallozzi, S.

    2006-12-01

    Aims.The goal of this work is to measure the evolution of the Galaxy Stellar Mass Function and of the resulting Stellar Mass Density up to redshift ≃4, in order to study the assembly of massive galaxies in the high redshift Universe. Methods: .We have used the GOODS-MUSIC catalog, containing 3000 Ks-selected galaxies with multi-wavelength coverage extending from the U band to the Spitzer 8 μm band, of which 27% have spectroscopic redshifts and the remaining fraction have accurate photometric redshifts. On this sample we have applied a standard fitting procedure to measure stellar masses. We compute the Galaxy Stellar Mass Function and the resulting Stellar Mass Density up to redshift ≃4, taking into proper account the biases and incompleteness effects. Results: .Within the well known trend of global decline of the Stellar Mass Density with redshift, we show that the decline of the more massive galaxies may be described by an exponential timescale of ≃6 Gyr up to z≃ 1.5, and proceeds much faster thereafter, with an exponential timescale of ≃0.6 Gyr. We also show that there is some evidence for a differential evolution of the Galaxy Stellar Mass Function, with low mass galaxies evolving faster than more massive ones up to z≃ 1{-}1.5 and that the Galaxy Stellar Mass Function remains remarkably flat (i.e. with a slope close to the local one) up to z≃ 1{-}1.3. Conclusions: .The observed behaviour of the Galaxy Stellar Mass Function is consistent with a scenario where about 50% of present-day massive galaxies formed at a vigorous rate in the epoch between redshift 4 and 1.5, followed by a milder evolution until the present-day epoch.

  13. Testing the Universality of the Stellar IMF with Chandra and HST

    NASA Technical Reports Server (NTRS)

    Coulter, D. A.; Lehmer, B. D.; Eufrasio, R. T.; Kundu, A.; Maccarone, T.; Peacock, M.; Hornschemeier, A. E.; Basu-Zych, A.; Gonzalez, A. H.; Maraston, C.; hide

    2017-01-01

    The stellar initial mass function (IMF), which is often assumed to be universal across unresolved stellar populations, has recently been suggested to be bottom-heavy for massive ellipticals. In these galaxies, the prevalence of gravity-sensitive absorption lines (e.g., Na I and Ca II) in their near-IR spectra implies an excess of low-mass (m < or approx. = 0.5 Stellar Mass) stars over that expected from a canonical IMF observed in low-mass ellipticals. A direct extrapolation of such a bottom-heavy IMF to high stellar masses (m > or approx. = 8 Stellar Mass) would lead to a corresponding deficit of neutron stars and black holes, and therefore of low-mass X-ray binaries (LMXBs), per unit near-IR luminosity in these galaxies. Peacock et al. searched for evidence of this trend and found that the observed number of LMXBs per unit K-band luminosity (N/LK) was nearly constant. We extend this work using new and archival Chandra X-ray Observatory and Hubble Space Telescope observations of seven low-mass ellipticals where N/LK is expected to be the largest and compare these data with a variety of IMF models to test which are consistent with the observed N/LK. We reproduce the result of Peacock et al., strengthening the constraint that the slope of the IMF at m > or approx. = 8 Stellar Mass must be consistent with a Kroupa-like IMF. We construct an IMF model that is a linear combination of a Milky Way-like IMF and a broken power-law IMF, with a steep slope (alpha1 = 3.84) for stars < 0.5 Stellar Mass (as suggested by near-IR indices), and that flattens out (alpha2 = 2.14) for stars > 0.5 Stellar Mass, and discuss its wider ramifications and limitations.

  14. DETECTING TRIAXIALITY IN THE GALACTIC DARK MATTER HALO THROUGH STELLAR KINEMATICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rojas-Nino, Armando; Valenzuela, Octavio; Pichardo, Barbara

    Assuming the dark matter halo of the Milky Way to be a non-spherical potential (i.e., triaxial, prolate, oblate), we show how the assembling process of the Milky Way halo may have left long-lasting stellar halo kinematic fossils due to the shape of the dark matter halo. In contrast with tidal streams, which are associated with recent satellite accretion events, these stellar kinematic groups will typically show inhomogeneous chemical and stellar population properties. However, they may be dominated by a single accretion event for certain mass assembling histories. If the detection of these peculiar kinematic stellar groups were confirmed, they wouldmore » be the smoking gun for the predicted triaxiality of dark halos in cosmological galaxy formation scenarios.« less

  15. Constraining Star Formation in Old Stellar Populations from Theoretical Spectra

    NASA Astrophysics Data System (ADS)

    Peterson, R. C.

    2007-12-01

    We are calculating stellar spectra using Kurucz codes, Castelli models, and Kurucz laboratory lines plus guesses; but must first finish adjusting gf values to match stars of solar metallicity and higher. We show that even now, 1D LTE spectral calculations fit a wide range of stellar spectra (from A to K types) over 2200 Å-9000Å once gf values are set to optimize them. Moreover, weighted coadditions of spectral calculations can be constructed that match M31 globular clusters over this entire wavelength range. Both stellar and composite grids will be archived on MAST. The age-metallicity degeneracy can be broken, but only with high-quality data, and only if rare stages of stellar evolution are incorporated where necessary.

  16. Old stellar populations. 5: Absorption feature indices for the complete LICK/IDS sample of stars

    NASA Technical Reports Server (NTRS)

    Worthey, Guy; Faber, S. M.; Gonzalez, J. Jesus; Burstein, D.

    1994-01-01

    Twenty-one optical absorption features, 11 of which have been previously defined, are automatically measured in a sample of 460 stars. Following Gorgas et al., the indices are summarized in fitting functions that give index strengths as functions of stellar temperature, gravity, and (Fe/H). This project was carried out with the purpose of predicting index strengths in the integrated light of stellar populations of different ages and metallicities, but the data should be valuable for stellar studies in the Galaxy as well. Several of the new indices appear to be promising indicators of metallicity for old stellar populations. A complete list of index data and atmospheric parameters is available in computer-readable form.

  17. Exploring stellar evolution with gravitational-wave observations

    NASA Astrophysics Data System (ADS)

    Dvorkin, Irina; Uzan, Jean-Philippe; Vangioni, Elisabeth; Silk, Joseph

    2018-05-01

    Recent detections of gravitational waves from merging binary black holes opened new possibilities to study the evolution of massive stars and black hole formation. In particular, stellar evolution models may be constrained on the basis of the differences in the predicted distribution of black hole masses and redshifts. In this work we propose a framework that combines galaxy and stellar evolution models and use it to predict the detection rates of merging binary black holes for various stellar evolution models. We discuss the prospects of constraining the shape of the time delay distribution of merging binaries using just the observed distribution of chirp masses. Finally, we consider a generic model of primordial black hole formation and discuss the possibility of distinguishing it from stellar-origin black holes.

  18. Minicourses in Astrophysics, Modular Approach, Vol. II.

    ERIC Educational Resources Information Center

    Illinois Univ., Chicago.

    This is the second of a two-volume minicourse in astrophysics. It contains chapters on the following topics: stellar nuclear energy sources and nucleosynthesis; stellar evolution; stellar structure and its determination; and pulsars. Each chapter gives much technical discussion, mathematical treatment, diagrams, and examples. References are…

  19. A catalog of stellar spectrophotometry

    NASA Technical Reports Server (NTRS)

    Adelman, S. J.; Pyper, D. M.; Shore, S. N.; White, R. E.; Warren, W. H., Jr.

    1989-01-01

    A machine-readable catalog of stellar spectrophotometric measurements made with rotating grating scanner is introduced. Consideration is given to the processes by which the stellar data were collected and calibrated with the fluxes of Vega (Hayes and Latham, 1975). A sample page from the spectrophotometric catalog is presented.

  20. Revealing Stellar Surface Structure Behind Transiting Exoplanets

    NASA Astrophysics Data System (ADS)

    Dravins, Dainis

    2018-04-01

    During exoplanet transits, successive stellar surface portions become hidden and differential spectroscopy between various transit phases provide spectra of small surface segments temporarily hidden behind the planet. Line profile changes across the stellar disk offer diagnostics for hydrodynamic modeling, while exoplanet analyses require stellar background spectra to be known along the transit path. Since even giant planets cover only a small fraction of any main-sequence star, very precise observations are required, as well as averaging over numerous spectral lines with similar parameters. Spatially resolved Fe I line profiles across stellar disks have now been retrieved for HD209458 (G0V) and HD189733A (K1V), using data from the UVES and HARPS spectrometers. Free from rotational broadening, spatially resolved profiles are narrower and deeper than in integrated starlight. During transit, the profiles shift towards longer wavelengths, illustrating both stellar rotation at the latitude of transit and the prograde orbital motion of the exoplanets. This method will soon become applicable to more stars, once additional bright exoplanet hosts have been found.

  1. Scaling Stellar Mass Estimates of Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Carr, Brandon Michael; McQuinn, Kristen B.; Cannon, John M.; Dalcanton, Julianne; Dolphin, Andrew E.; Skillman, Evan D.; Williams, Benjamin F.; van Zee, Liese

    2017-01-01

    Hubble Space Telescope (HST) optical imaging of resolved stellar populations has been used to constrain the star formation history (SFH) and chemical evolution of many nearby dwarf galaxies. However, even for dwarf galaxies, the angle subtended by nearby systems can be greater than the HST field of view. Thus, estimates of stellar mass from the HST footprint do not accurately represent the total mass of the system, impacting how SFH results can be used in holistic comparisons of galaxy properties. Here, we use the SFHs of dwarfs combined with stellar population synthesis models to determine mass-to-light ratios for individual galaxies, and compare these values with measured infrared luminosities from Spitzer IRAC data. In this way, we determine what fraction of mass is not included in the HST field of view. To test our methodology, we focus on dwarfs whose stellar disks are contained within the HST observations. Then, we also apply this method to galaxies with larger angular sizes to scale the stellar masses accordingly.

  2. Astronomy In Denver: Polarization of Stellar Wind Bow Shocks

    NASA Astrophysics Data System (ADS)

    Lin, Austin A.; Shrestha, Manisha; Wolfe, Tristan; Stencel, Robert E.; Hoffman, Jennifer L.

    2018-06-01

    When a star with stellar wind moves through the interstellar medium (ISM) at a relative supersonic velocity, an arch like structure known as a stellar wind bow shock is formed. Studying the characteristics of these structures can further our understanding of evolved stellar winds and the composition of the ISM. Observations of these structures have been performed for some time, but the recent discovery of many bow shock structures have opened more ways to study them. These stellar wind bow shocks display aspherical shapes, which cause light scattering through the dense shock material to become polarized. We selected a target star for observation using a catalog compiled from previous studies and observed it in polarized light with the University of Denver’s DUSTPol instrument. Our group has also simulated the polarization of stellar wind bow shocks using a Monte Carlo radiative transfer code. We present the data from our observations and compare them with the simulations. We also discuss the contribution of interstellar polarization to the data.

  3. Abnormal behaviour of lithium in coeval stars?

    NASA Astrophysics Data System (ADS)

    Llorente de Andrés, F.; Morales-Durán, C.; Chavero, C.; de la Reza, R.

    2015-05-01

    Due to its fragility, the light element lithium (Li) is an excellent and very used indicator of stellar processes. Our interest here is to explore and try to understand the Li dispersion observed in some stellar open clusters which are not explained by the standard theories. A typical and historical case, for example, is that found for stars cooler than the stellar effective temperature Teff ˜ 5500 K in the Pleiades cluster with an age of ˜ 130 My (see details in Figure 2 of this poster). What is the mechanism that provoques this dispersion?. Up to now, mainly three mechanisms are being proposed : (1) Episodic accretion during the protostellar phase (Barafee et al. 2010). (2) Rotational stellar internal mixing shears due to a star-disk interaction (Eggenberger at al. 2012) and (3) Li depletion by an increased stellar radius (Somers et al. 2014). We will explore this problem using the rotational option (2) (Chavero et al. 2014) and also identifying stellar interlopers in some groups.

  4. Implications of Stellar Feedback for Dynamical Modeling of the Milky Way and Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Wetzel, Andrew

    2018-04-01

    I will present recent results on dynamical modeling of stellar populations from the FIRE cosmological zoom-in baryonic simulations of Milky Way-like and dwarf galaxies. First, I will discuss the dynamical formation of the Milky Way, including the origin of thin+thick stellar disk morphology. I also will discuss the curious origin of metal-rich stars on halo-like orbits near the Sun, as recently measured by Gaia, with new insights from FIRE simulations on stellar radial migration/heating. Next, I will discuss role of stellar feedback in generating non-equilibrium fluctuations of the gravitational potential in low-mass 'dwarf' galaxies, which can explain the origin of cores in their dark-matter density profiles. In particular, we predict significant observable effects on stellar dynamics, including radial migration, size fluctuations, and population gradients, which can provide observational tests of feedback-driven core formation. Finally, this scenario can explain the formation of newly discovered 'ultra-diffuse' galaxies.

  5. Research at the Institute of Astronomy and Astrophysics of the Université Libre de Bruxelles

    NASA Astrophysics Data System (ADS)

    Karinkuzhi, Drisya; Chamel, Nicolas; Goriely, Stéphane; Jorissen, Alain; Pourbaix, Dimitri; Siess, Lionel; Van Eck, Sophie

    2018-04-01

    Over the years, a coherent research strategy has developed in the field of stellar physics at the Institute of Astronomy and Astrophysics (IAA). It involves observational studies (chemical composition of giant stars, binary properties, tomography of stellar atmospheres) that make use of the large ESO telescopes as well as of other major instruments. The presence of a high-resolution spectrograph on the 3.6-m Devasthal Optical Telescope (DOT) would therefore be highly beneficial to IAA research. These observations are complemented and supported by theoretical studies of mass transfer in binary systems, of standard and non-standard stellar evolution (including the modelling of stellar hydrodynamical nuclear burning for application to certain thermonuclear supernovae) and of nuclear astrophysics (a field in which IAA has been recognized for a long time as an international centre of excellence), including the theory of nucleosynthesis. IAA also addresses the end-points of stellar evolution as it is carrying out research on the compact remnants of stellar evolution of massive stars: neutron stars.

  6. The effect of multiplicity of stellar encounters and the diffusion coefficients in a locally homogeneous three-dimensional stellar medium: Removing the classical divergence

    NASA Astrophysics Data System (ADS)

    Rastorguev, A. S.; Utkin, N. D.; Chumak, O. V.

    2017-08-01

    Agekyan's λ-factor that allows for the effect of multiplicity of stellar encounters with large impact parameters has been used for the first time to directly calculate the diffusion coefficients in the phase space of a stellar system. Simple estimates show that the cumulative effect, i.e., the total contribution of distant encounters to the change in the velocity of a test star, given the multiplicity of stellar encounters, is finite, and the logarithmic divergence inherent in the classical description of diffusion is removed, as was shown previously byKandrup using a different, more complex approach. In this case, the expressions for the diffusion coefficients, as in the classical description, contain the logarithm of the ratio of two independent quantities: the mean interparticle distance and the impact parameter of a close encounter. However, the physical meaning of this logarithmic factor changes radically: it reflects not the divergence but the presence of two characteristic length scales inherent in the stellar medium.

  7. The make-up of stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asplund, Martin

    2014-11-20

    The chemical composition of stars contain vital clues not only about the stars themselves but also about the conditions prevailing before their births. As such, stellar spectroscopy plays a key role in contemporary astrophysics and cosmology by probing cosmic, galactic, stellar and planetary evolution. In this review I will describe the theoretical foundations of quantitative stellar spectroscopy: stellar atmosphere models and spectral line formation. I will focus mainly on more recent advances in the field, in particular the advent of realistic time-dependent, 3D, (magneto-)hydrodynamical simulations of stellar surface convection and atmospheres and non-LTE radiative transfer relevant for stars like themore » Sun. I will also discuss some particular applications of this type of modelling which have resulted in some exciting break-throughs in our understanding and with wider implications: the solar chemical composition, the chemical signatures of planet formation imprinted in stellar abundances, the cosmological Li problem(s) and where the first stars may be residing today.« less

  8. Not-so-simple stellar populations in nearby, resolved massive star clusters

    NASA Astrophysics Data System (ADS)

    de Grijs, Richard; Li, Chengyuan

    2018-02-01

    Around the turn of the last century, star clusters of all kinds were considered ‘simple’ stellar populations. Over the past decade, this situation has changed dramatically. At the same time, star clusters are among the brightest stellar population components and, as such, they are visible out to much greater distances than individual stars, even the brightest, so that understanding the intricacies of star cluster composition and their evolution is imperative for understanding stellar populations and the evolution of galaxies as a whole. In this review of where the field has moved to in recent years, we place particular emphasis on the properties and importance of binary systems, the effects of rapid stellar rotation, and the presence of multiple populations in Magellanic Cloud star clusters across the full age range. Our most recent results imply a reverse paradigm shift, back to the old simple stellar population picture for at least some intermediate-age (˜1-3 Gyr old) star clusters, opening up exciting avenues for future research efforts.

  9. Multi-scale, Hierarchically Nested Young Stellar Structures in LEGUS Galaxies

    NASA Astrophysics Data System (ADS)

    Thilker, David A.; LEGUS Team

    2017-01-01

    The study of star formation in galaxies has predominantly been limited to either young stellar clusters and HII regions, or much larger kpc-scale morphological features such as spiral arms. The HST Legacy ExtraGalactic UV Survey (LEGUS) provides a rare opportunity to link these scales in a diverse sample of nearby galaxies and obtain a more comprehensive understanding of their co-evolution for comparison against model predictions. We have utilized LEGUS stellar photometry to identify young, resolved stellar populations belonging to several age bins and then defined nested hierarchical structures as traced by these subsamples of stars. Analagous hierarchical structures were also defined using LEGUS catalogs of unresolved young stellar clusters. We will present our emerging results concerning the physical properties (e.g. area, star counts, stellar mass, star formation rate, ISM characteristics), occupancy statistics (e.g. clusters per substructure versus age and scale, parent/child demographics) and relation to overall galaxy morphology/mass for these building blocks of hierarchical star-forming structure.

  10. Multicenter accuracy and interobserver agreement of spot sign identification in acute intracerebral hemorrhage.

    PubMed

    Huynh, Thien J; Flaherty, Matthew L; Gladstone, David J; Broderick, Joseph P; Demchuk, Andrew M; Dowlatshahi, Dar; Meretoja, Atte; Davis, Stephen M; Mitchell, Peter J; Tomlinson, George A; Chenkin, Jordan; Chia, Tze L; Symons, Sean P; Aviv, Richard I

    2014-01-01

    Rapid, accurate, and reliable identification of the computed tomography angiography spot sign is required to identify patients with intracerebral hemorrhage for trials of acute hemostatic therapy. We sought to assess the accuracy and interobserver agreement for spot sign identification. A total of 131 neurology, emergency medicine, and neuroradiology staff and fellows underwent imaging certification for spot sign identification before enrolling patients in 3 trials targeting spot-positive intracerebral hemorrhage for hemostatic intervention (STOP-IT, SPOTLIGHT, STOP-AUST). Ten intracerebral hemorrhage cases (spot-positive/negative ratio, 1:1) were presented for evaluation of spot sign presence, number, and mimics. True spot positivity was determined by consensus of 2 experienced neuroradiologists. Diagnostic performance, agreement, and differences by training level were analyzed. Mean accuracy, sensitivity, and specificity for spot sign identification were 87%, 78%, and 96%, respectively. Overall sensitivity was lower than specificity (P<0.001) because of true spot signs incorrectly perceived as spot mimics. Interobserver agreement for spot sign presence was moderate (k=0.60). When true spots were correctly identified, 81% correctly identified the presence of single or multiple spots. Median time needed to evaluate the presence of a spot sign was 1.9 minutes (interquartile range, 1.2-3.1 minutes). Diagnostic performance, interobserver agreement, and time needed for spot sign evaluation were similar among staff physicians and fellows. Accuracy for spot identification is high with opportunity for improvement in spot interpretation sensitivity and interobserver agreement particularly through greater reliance on computed tomography angiography source data and awareness of limitations of multiplanar images. Further prospective study is needed.

  11. Occurrence of spot signs from hypodensity areas on precontrast CT in intracerebral hemorrhage.

    PubMed

    Nishiyama, Jun; Sorimachi, Takatoshi; Aoki, Rie; Inoue, Go; Matsumae, Mitsunori

    2017-05-01

    Both the spot signs, which is a bright spot on computed tomography angiography (CTA) source images, and hypodensity areas within a hematoma on precontrast CT scans, which presumably represent uncoagulated blood, have been reported to be predictive of hematoma enlargement in acute spontaneous intracerebral hematoma (ICH). The aim was to investigate densities on precontrast CT scans in an area within a hematoma that matched the locations of spot signs on CTA source images. In consecutive cases of spontaneous ICH admitted within 6 h after onset, early spot signs on CTA source images and delayed spot signs on delayed-phase CT scans 90 s after CTA were evaluated. Of 177 patients undergoing CTA, 41 (23.2%) showed early spot signs. Among 146 patients who underwent delayed-phase CT scans, 23 (15.8%) demonstrated delayed spot signs but not early spot signs. Spot signs originated from hypodensity areas, including densities <50 HU, in 30 of 35 patients (85.7%) with early spot signs and in 8 of 23 (34.8%) with delayed spot signs. Early spot signs arose from hypodensity areas more frequently than delayed spot signs (p < 0.05). Hematoma enlargement was observed in 10 of 24 patients (41.7%) with early spot signs, but in none with delayed spot signs. Some hypodensity areas within ICHs may indicate uncoagulated blood related to ongoing leakage, which are seen as spot signs. Minimum densities in hypodensity areas might correlate with the speed and volume of bleeding.

  12. Limb Darkening and Planetary Transits: Testing Center-to-limb Intensity Variations and Limb-darkening Directly from Model Stellar Atmospheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neilson, Hilding R.; Lester, John B.; McNeil, Joseph T.

    The transit method, employed by Microvariability and Oscillation of Stars ( MOST ), Kepler , and various ground-based surveys has enabled the characterization of extrasolar planets to unprecedented precision. These results are precise enough to begin to measure planet atmosphere composition, planetary oblateness, starspots, and other phenomena at the level of a few hundred parts per million. However, these results depend on our understanding of stellar limb darkening, that is, the intensity distribution across the stellar disk that is sequentially blocked as the planet transits. Typically, stellar limb darkening is assumed to be a simple parameterization with two coefficients thatmore » are derived from stellar atmosphere models or fit directly. In this work, we revisit this assumption and compute synthetic planetary-transit light curves directly from model stellar atmosphere center-to-limb intensity variations (CLIVs) using the plane-parallel Atlas and spherically symmetric SAtlas codes. We compare these light curves to those constructed using best-fit limb-darkening parameterizations. We find that adopting parametric stellar limb-darkening laws leads to systematic differences from the more geometrically realistic model stellar atmosphere CLIV of about 50–100 ppm at the transit center and up to 300 ppm at ingress/egress. While these errors are small, they are systematic, and they appear to limit the precision necessary to measure secondary effects. Our results may also have a significant impact on transit spectra.« less

  13. Post Common Envelope Binaries as probes of M dwarf stellar wind and habitable zone radiation environments

    NASA Astrophysics Data System (ADS)

    Wilson, David

    2017-08-01

    M dwarf stars are promising targets in the search for extrasolar habitable planets, as their small size and close-in habitable zones make the detection of Earth-analog planets easier than at Solar-type stars. However, the effects of the high stellar activity of M dwarf hosts has uncertain effects on such planets, and may render them uninhabitable. Studying stellar activity at M dwarfs is hindered by a lack of measurements of high-energy radiation, flare activity and, in particular, stellar wind rates. We propose to rectify this by observing a sample of Post Common Envelope Binaries (PCEBs) with HST and XMM-Newton. PCEBs consist of an M dwarf with a white dwarf companion, which experiences the same stellar wind and radiation environment as a close-in planet. The stellar wind of the M dwarf accretes onto the otherwise pure hydrogen atmosphere white dwarf, producing metal lines detectable with ultraviolet spectroscopy. The metal lines can be used to measure accretion rates onto the white dwarf, from with we can accurately infer the stellar wind mass loss rate of the M dwarf, along with abundances of key elements. Simultaneous observations with XMM-Newton will probe X-ray flare occurrence rate and strength, in addition to coronal temperatures. Performing these measurements over twelve PCEBs will provide a sample of M dwarf stellar wind strengths, flare occurrence and X-ray/UV activity that will finally shed light on the true habitability of planets around small stars.

  14. Introducing galactic structure finder: the multiple stellar kinematic structures of a simulated Milky Way mass galaxy

    NASA Astrophysics Data System (ADS)

    Obreja, Aura; Macciò, Andrea V.; Moster, Benjamin; Dutton, Aaron A.; Buck, Tobias; Wang, Gregory S. Stinson Liang

    2018-04-01

    We present the first results of applying Gaussian Mixture Models in the stellar kinematic space of normalized angular momentum and binding energy on NIHAO high resolution galaxies to separate the stars into multiple components. We exemplify this method using a simulated Milky Way analogue, whose stellar component hosts: thin and thick discs, classical and pseudo bulges, and a stellar halo. The properties of these stellar structures are in good agreement with observational expectations in terms of sizes, shapes and rotational support. Interestingly, the two kinematic discs show surface mass density profiles more centrally concentrated than exponentials, while the bulges and the stellar halo are purely exponential. We trace back in time the Lagrangian mass of each component separately to study their formation history. Between z ˜ 3 and the end of halo virialization, z ˜ 1.3, all components lose a fraction of their angular momentum. The classical bulge loses the most (˜95%) and the thin disc the least (˜60%). Both bulges formed their stars in-situ at high redshift, while the thin disc formed ˜98% in-situ, but with a constant SFR ˜ 1.5M⊙yr-1 over the last ˜ 11 Gyr. Accreted stars (6% of total stellar mass) are mainly incorporated to the thick disc or the stellar halo, which formed ex-situ 8% and 45% of their respective masses. Our analysis pipeline is freely available at https://github.com/aobr/gsf.

  15. Merger-driven evolution of the effective stellar initial mass function of massive early-type galaxies

    NASA Astrophysics Data System (ADS)

    Sonnenfeld, Alessandro; Nipoti, Carlo; Treu, Tommaso

    2017-02-01

    The stellar initial mass function (IMF) of early-type galaxies is the combination of the IMF of the stellar population formed in situ and that of accreted stellar populations. Using as an observable the effective IMF αIMF, defined as the ratio between the true stellar mass of a galaxy and the stellar mass inferred assuming a Salpeter IMF, we present a theoretical model for its evolution as a result of dry mergers. We use a simple dry-merger evolution model, based on cosmological N-body simulations, together with empirically motivated prescriptions for the IMF to make predictions on how the effective IMF of massive early-type galaxies changes from z = 2 to z = 0. We find that the IMF normalization of individual galaxies becomes lighter with time. At fixed velocity dispersion, αIMF is predicted to be constant with redshift. Current dynamical constraints on the evolution of the IMF are in slight tension with this prediction, even though systematic uncertainties, including the effect of radial gradients in the IMF, prevent a conclusive statement. The correlation of αIMF with stellar mass becomes shallower with time, while the correlation between αIMF and velocity dispersion is mostly preserved by dry mergers. We also find that dry mergers can mix the dependence of the IMF on stellar mass and velocity dispersion, making it challenging to infer, from z = 0 observations of global galactic properties, what is the quantity that is originally coupled with the IMF.

  16. Galaxies Grow Their Bulges and Black Holes in Diverse Ways

    NASA Astrophysics Data System (ADS)

    Bell, Eric F.; Monachesi, Antonela; Harmsen, Benjamin; de Jong, Roelof S.; Bailin, Jeremy; Radburn-Smith, David J.; D'Souza, Richard; Holwerda, Benne W.

    2017-03-01

    Galaxies with Milky Way-like stellar masses have a wide range of bulge and black hole masses; in turn, these correlate with other properties such as star formation history. While many processes may drive bulge formation, major and minor mergers are expected to play a crucial role. Stellar halos offer a novel and robust measurement of galactic merger history; cosmologically motivated models predict that mergers with larger satellites produce more massive, higher-metallicity stellar halos, reproducing the recently observed stellar halo metallicity-mass relation. We quantify the relationship between stellar halo mass and bulge or black hole prominence using a sample of 18 Milky Way-mass galaxies with newly available measurements of (or limits on) stellar halo properties. There is an order of magnitude range in bulge mass, and two orders of magnitude in black hole mass, at a given stellar halo mass (or, equivalently, merger history). Galaxies with low-mass bulges show a wide range of quiet merger histories, implying formation mechanisms that do not require intense merging activity. Galaxies with massive “classical” bulges and central black holes also show a wide range of merger histories. While three of these galaxies have massive stellar halos consistent with a merger origin, two do not—merging appears to have had little impact on making these two massive “classical” bulges. Such galaxies may be ideal laboratories to study massive bulge formation through pathways such as early gas-rich accretion, violent disk instabilities, or misaligned infall of gas throughout cosmic time.

  17. Astrophysics: An Integrative Course

    ERIC Educational Resources Information Center

    Gutsche, Graham D.

    1975-01-01

    Describes a one semester course in introductory stellar astrophysics at the advanced undergraduate level. The course aims to integrate all previously learned physics by applying it to the study of stars. After a brief introductory section on basic astronomical measurements, the main topics covered are stellar atmospheres, stellar structure, and…

  18. 77 FR 23318 - Culturally Significant Object Imported for Exhibition Determinations: “African Cosmos: Stellar Arts”

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-18

    ... DEPARTMENT OF STATE [Public Notice 7850] Culturally Significant Object Imported for Exhibition Determinations: ``African Cosmos: Stellar Arts'' SUMMARY: Notice is hereby given of the following determinations... the exhibition ``African Cosmos: Stellar Arts,'' imported from abroad for temporary exhibition within...

  19. Correction to Method of Establishing the Absolute Radiometric Accuracy of Remote Sensing Systems While On-orbit Using Characterized Stellar Sources

    NASA Technical Reports Server (NTRS)

    Bowen, Howard S.; Cunningham, Douglas M.

    2007-01-01

    The contents include: 1) Brief history of related events; 2) Overview of original method used to establish absolute radiometric accuracy of remote sensing instruments using stellar sources; and 3) Considerations to improve the stellar calibration approach.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyon, J.F.; Grieger, G.; Rau, F.

    The present status of stellarator experiments and recent progress in stellarator research (both experimental and theoretical) are reported by groups in the United States, the USSR, Japan, Australia, and the European Community (the Federal Republic of Germany and Spain). Experiments under construction and studies of large, next-generation stellarators are also described. 73 refs., 11 figs., 4 tabs.

  1. 50 CFR 226.202 - Critical habitat for Stellar sea lions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false Critical habitat for Stellar sea lions... Critical habitat for Stellar sea lions. Steller Sea Lion (Eumetopias jubatus) (a) Alaska rookeries, haulouts, and associated areas. In Alaska, all major Steller sea lion rookeries identified in Table 1 and...

  2. 50 CFR 226.202 - Critical habitat for Stellar sea lions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 10 2013-10-01 2013-10-01 false Critical habitat for Stellar sea lions... Critical habitat for Stellar sea lions. Steller Sea Lion (Eumetopias jubatus) (a) Alaska rookeries, haulouts, and associated areas. In Alaska, all major Steller sea lion rookeries identified in Table 1 and...

  3. 50 CFR 226.202 - Critical habitat for Stellar sea lions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 9 2011-10-01 2011-10-01 false Critical habitat for Stellar sea lions... Critical habitat for Stellar sea lions. Steller Sea Lion (Eumetopias jubatus) (a) Alaska rookeries, haulouts, and associated areas. In Alaska, all major Steller sea lion rookeries identified in Table 1 and...

  4. 50 CFR 226.202 - Critical habitat for Stellar sea lions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 10 2012-10-01 2012-10-01 false Critical habitat for Stellar sea lions... Critical habitat for Stellar sea lions. Steller Sea Lion (Eumetopias jubatus) (a) Alaska rookeries, haulouts, and associated areas. In Alaska, all major Steller sea lion rookeries identified in Table 1 and...

  5. Summary of spacecraft technology, systems reliability, and tracking data acquisition

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Goddard activities are reported for 1973. An eight-year flight schedule for projected space missions is presented. Data acquired by spacecraft in the following disciplines are described: stellar ultraviolet, stellar X-rays, stellar gamma rays, solar radiation, radio astronomy, particles/fields, magnetosphere, aurora, and the upper atmosphere.

  6. Stellar Populations in BL Lac type Objects

    NASA Astrophysics Data System (ADS)

    Serote Roos, Margarida

    The relationship between an Active Galactic Nucleus (AGN) and its host galaxy is a crucial question in the study of galaxy evolution. We present an estimate of the stellar contribution in a sample of low luminosity BL Lac type objects. We have performed stellar population synthesis for a sample of 19 objects selected from Marchã et al. (1996, MNRAS 281, 425). The stellar content is quantified using the equivalent widths of all absorption features available throughout the spectrum. The synthesis is done by a variant of the GPG method (Pelat: 1997, MNRAS 284, 365).

  7. The Effects of Stellar Dynamics on the Evolution of Young, Dense Stellar Systems

    NASA Astrophysics Data System (ADS)

    Belkus, H.; van Bever, J.; Vanbeveren, D.

    In this paper, we report on first results of a project in Brussels in which we study the effects of stellar dynamics on the evolution of young dense stellar systems using 3 decades of expertise in massive-star evolution and our population (number and spectral) synthesis code. We highlight an unconventionally formed object scenario (UFO-scenario) for Wolf Rayet binaries and study the effects of a luminous blue variable-type instability wind mass-loss formalism on the formation of intermediate-mass black holes.

  8. Ensemble asteroseismology of solar-type stars with the NASA Kepler mission.

    PubMed

    Chaplin, W J; Kjeldsen, H; Christensen-Dalsgaard, J; Basu, S; Miglio, A; Appourchaux, T; Bedding, T R; Elsworth, Y; García, R A; Gilliland, R L; Girardi, L; Houdek, G; Karoff, C; Kawaler, S D; Metcalfe, T S; Molenda-Żakowicz, J; Monteiro, M J P F G; Thompson, M J; Verner, G A; Ballot, J; Bonanno, A; Brandão, I M; Broomhall, A-M; Bruntt, H; Campante, T L; Corsaro, E; Creevey, O L; Doğan, G; Esch, L; Gai, N; Gaulme, P; Hale, S J; Handberg, R; Hekker, S; Huber, D; Jiménez, A; Mathur, S; Mazumdar, A; Mosser, B; New, R; Pinsonneault, M H; Pricopi, D; Quirion, P-O; Régulo, C; Salabert, D; Serenelli, A M; Silva Aguirre, V; Sousa, S G; Stello, D; Stevens, I R; Suran, M D; Uytterhoeven, K; White, T R; Borucki, W J; Brown, T M; Jenkins, J M; Kinemuchi, K; Van Cleve, J; Klaus, T C

    2011-04-08

    In addition to its search for extrasolar planets, the NASA Kepler mission provides exquisite data on stellar oscillations. We report the detections of oscillations in 500 solar-type stars in the Kepler field of view, an ensemble that is large enough to allow statistical studies of intrinsic stellar properties (such as mass, radius, and age) and to test theories of stellar evolution. We find that the distribution of observed masses of these stars shows intriguing differences to predictions from models of synthetic stellar populations in the Galaxy.

  9. Stellar Parameter Determination With J-Plus Using Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Whitten, Devin D.

    2017-10-01

    The J-PLUS narrow-band filter system provides a unique opportunity for the determination of stellar parameters and chemical abundances from photometry alone. Mapping stellar magnitudes to estimates of surface temperature, [Fe/H], and [C/Fe] is an excellent application of machine learning and in particular, artificial neural networks (ANN). The logistics and performance of this ANN methodology is explored with the J-PLUS Early Data Release, as well as the potential impact of stellar parameters from J-PLUS on the field of Galactic chemical evolution.

  10. On the spottedness, magnetism and internal structure of stars

    NASA Astrophysics Data System (ADS)

    Gershberg, R. E.

    Kinematical structures within stellar interiors that are the result of a self-organization of these interiors as thermodynamically open nonlinear systems are proposed as the physical basis for stellar magnetism. It is noted that the ubiquitousness of stellar magnetism that follows from the hypothesis is not in contradiction with observations. These kinematical structures may be energy reservoirs, and changes in these structures may be connected with variations of an energy flux emergent from a stellar surface, while its internal energy sources remain constant, explaining the radiation deficit from sunspots and starspots.

  11. Luminosity and Stellar Mass Functions from the 6dF Galaxy Survey

    NASA Astrophysics Data System (ADS)

    Colless, M.; Jones, D. H.; Peterson, B. A.; Campbell, L.; Saunders, W.; Lah, P.

    2007-12-01

    The completed 6dF Galaxy Survey includes redshifts for over 124,000 galaxies. We present luminosity functions in optical and near-infrared passbands that span a range of 10^4 in luminosity. These luminosity functions show systematic deviations from the Schechter form. The corresponding luminosity densities in the optical and near-infrared are consistent with an old stellar population and a moderately declining star formation rate. Stellar mass functions, derived from the K band luminosities and simple stellar population models selected by b_J-r_F colour, lead to an estimate of the present-day stellar mass density of ρ_* = (5.00 ± 0.11) × 10^8 h M_⊙ Mpc^{-3}, corresponding to Ω_* h = (1.80 ± 0.04) × 10^{-3}.

  12. POET: Planetary Orbital Evolution due to Tides

    NASA Astrophysics Data System (ADS)

    Penev, Kaloyan

    2014-08-01

    POET (Planetary Orbital Evolution due to Tides) calculates the orbital evolution of a system consisting of a single star with a single planet in orbit under the influence of tides. The following effects are The evolutions of the semimajor axis of the orbit due to the tidal dissipation in the star and the angular momentum of the stellar convective envelope by the tidal coupling are taken into account. In addition, the evolution includes the transfer of angular momentum between the stellar convective and radiative zones, effect of the stellar evolution on the tidal dissipation efficiency, and stellar core and envelope spins and loss of stellar convective zone angular momentum to a magnetically launched wind. POET can be used out of the box, and can also be extended and modified.

  13. Space Weather: Linking Stellar Explosions to the Human Endeavor

    NASA Astrophysics Data System (ADS)

    Knipp, Delores

    2017-06-01

    Arguably humans have flourished as a result of stellar explosions; we are, after all, stardust. Nonetheless, rapid technology advances of the last 200 years sometimes put society and individuals on a collision course with the natural variability of stellar and solar atmospheres. Human space exploration, routine satellite navigation system applications, aviation safety, and electric power grids are examples of such vulnerable endeavors. In this presentation I will outline how global society relies on ‘normal’ solar and stellar emissions, yet becomes susceptible to extremes of these emissions. The imprints of these astronomical-terrestrial interactions abound. In particular, I will highlight ways in which stellar/solar bursts link with our space-atmosphere-interaction region, producing multi-year patterns in cosmic ray detection, gorgeous aurora, and deep concern for good order and function of global community.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Da Rio, Nicola; Robberto, Massimo, E-mail: ndario@rssd.esa.int

    We present the Tool for Astrophysical Data Analysis (TA-DA), a new software aimed to greatly simplify and improve the analysis of stellar photometric data in comparison with theoretical models, and allow the derivation of stellar parameters from multi-band photometry. Its flexibility allows one to address a number of such problems: from the interpolation of stellar models, or sets of stellar physical parameters in general, to the computation of synthetic photometry in arbitrary filters or units; from the analysis of observed color-magnitude diagrams to a Bayesian derivation of stellar parameters (and extinction) based on multi-band data. TA-DA is available as amore » pre-compiled Interactive Data Language widget-based application; its graphical user interface makes it considerably user-friendly. In this paper, we describe the software and its functionalities.« less

  15. Stellar Structure Models of Deformed Neutron Stars

    NASA Astrophysics Data System (ADS)

    Zubairi, Omair; Wigley, David; Weber, Fridolin

    Traditional stellar structure models of non-rotating neutron stars work under the assumption that these stars are perfect spheres. This assumption of perfect spherical symmetry is not correct if the matter inside neutron stars is described by an anisotropic model for the equation of state. Certain classes of neutron stars such as Magnetars and neutron stars which contain color-superconducting quark matter cores are expected to be deformed making them oblong spheroids. In this work, we investigate the stellar structure of these deformed neutron stars by deriving stellar structure equations in the framework of general relativity. Using a non-isotropic equation of state model, we solve these structure equations numerically in two dimensions. We calculate stellar properties such as masses and radii along with pressure profiles and investigate changes from standard spherical models.

  16. The Direct Effect of Toroidal Magnetic Fields on Stellar Oscillations: An Analytical Expression for the General Matrix Element

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiefer, René; Schad, Ariane; Roth, Markus

    2017-09-10

    Where is the solar dynamo located and what is its modus operandi? These are still open questions in solar physics. Helio- and asteroseismology can help answer them by enabling us to study solar and stellar internal structures through global oscillations. The properties of solar and stellar acoustic modes are changing with the level of magnetic activity. However, until now, the inference on subsurface magnetic fields with seismic measures has been very limited. The aim of this paper is to develop a formalism to calculate the effect of large-scale toroidal magnetic fields on solar and stellar global oscillation eigenfunctions and eigenfrequencies.more » If the Lorentz force is added to the equilibrium equation of motion, stellar eigenmodes can couple. In quasi-degenerate perturbation theory, this coupling, also known as the direct effect, can be quantified by the general matrix element. We present the analytical expression of the matrix element for a superposition of subsurface zonal toroidal magnetic field configurations. The matrix element is important for forward calculations of perturbed solar and stellar eigenfunctions and frequency perturbations. The results presented here will help to ascertain solar and stellar large-scale subsurface magnetic fields, and their geometric configuration, strength, and change over the course of activity cycles.« less

  17. The limited role of galaxy mergers in driving stellar mass growth over cosmic time

    NASA Astrophysics Data System (ADS)

    Martin, G.; Kaviraj, S.; Devriendt, J. E. G.; Dubois, Y.; Laigle, C.; Pichon, C.

    2017-11-01

    A key unresolved question is the role that galaxy mergers play in driving stellar mass growth over cosmic time. Recent observational work hints at the possibility that the overall contribution of 'major' mergers (mass ratios ≳ 1 : 4) to cosmic stellar mass growth may be small, because they enhance star formation rates by relatively small amounts at high redshift, when much of today's stellar mass was assembled. However, the heterogeneity and relatively small size of today's data sets, coupled with the difficulty in identifying genuine mergers, makes it challenging to empirically quantify the merger contribution to stellar mass growth. Here, we use Horizon-AGN, a cosmological hydrodynamical simulation, to comprehensively quantify the contribution of mergers to the star formation budget over the lifetime of the Universe. We show that (1) both major and minor mergers enhance star formation to similar amounts, (2) the fraction of star formation directly attributable to merging is small at all redshifts (e.g. ∼35 and ∼20 per cent at z ∼ 3 and z ∼ 1, respectively) and (3) only ∼25 per cent of today's stellar mass is directly attributable to galaxy mergers over cosmic time. Our results suggest that smooth accretion, not merging, is the dominant driver of stellar mass growth over the lifetime of the Universe.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bergemann, Maria; Sesar, Branimir; Cohen, Judith G.

    Our Galaxy is thought to have undergone an active evolutionary history dominated by star formation, the accretion of cold gas, and, in particular, mergers up to 10 gigayear ago. The stellar halo reveals rich fossil evidence of these interactions in the form of stellar streams, substructures, and chemically distinct stellar components. The impact of dwarf galaxy mergers on the content and morphology of the Galactic disk is still being explored. Recent studies have identified kinematically distinct stellar substructures and moving groups, which may have extragalactic origin. However, there is mounting evidence that stellar overdensities at the outer disk/halo interface couldmore » have been caused by the interaction of a dwarf galaxy with the disk. Here we report detailed spectroscopic analysis of 14 stars drawn from two stellar overdensities, each lying about 5 kiloparsecs above and below the Galactic plane - locations suggestive of association with the stellar halo. However, we find that the chemical compositions of these stars are almost identical, both within and between these groups, and closely match the abundance patterns of the Milky Way disk stars. This study hence provides compelling evidence that these stars originate from the disk and the overdensities they are part of were created by tidal interactions of the disk with passing or merging dwarf galaxies.« less

  19. The Contribution of Stellar Winds to Cosmic Ray Production

    NASA Astrophysics Data System (ADS)

    Seo, Jeongbhin; Kang, Hyesung; Ryu, Dongsu

    2018-04-01

    Massive stars blow powerful stellar winds throughout their evolutionary stages from the main sequence to Wolf-Rayet phases. The wind mechanical energy of a massive star deposited to the interstellar medium can be comparable to the explosion energy of a core-collapse supernova that detonates at the end of its life In this study, we estimate the kinetic energy deposition by massive stars in our Galaxy by considering the integrated Galactic initial mass function and modeling the stellar wind luminosity. The mass loss rate and terminal velocity of stellar winds during the main sequence, red supergiant, and Wolf-Rayet stages are estimated by adopting theoretical calculations and observational data published in the literature. We find that the total stellar wind luminosity by all massive stars in the Galaxy is about Lw ≈ 1.1×1041 ergs, which is about 1/4 of the power of supernova explosions, LSN ≈ 4.8×1041 ergs. If we assume that ˜1-1% of the wind luminosity could be converted to Galactic cosmic rays (GCRs) through collisonless shocks such as termination shocks in stellar bubbles and superbubbles, colliding-wind shocks in binaries, and bow-shocks of massive runaway stars, stellar winds are expected to make a significant contribution to GCR production, though lower than that of supernova remnants.

  20. The Direct Effect of Toroidal Magnetic Fields on Stellar Oscillations: An Analytical Expression for the General Matrix Element

    NASA Astrophysics Data System (ADS)

    Kiefer, René; Schad, Ariane; Roth, Markus

    2017-09-01

    Where is the solar dynamo located and what is its modus operandi? These are still open questions in solar physics. Helio- and asteroseismology can help answer them by enabling us to study solar and stellar internal structures through global oscillations. The properties of solar and stellar acoustic modes are changing with the level of magnetic activity. However, until now, the inference on subsurface magnetic fields with seismic measures has been very limited. The aim of this paper is to develop a formalism to calculate the effect of large-scale toroidal magnetic fields on solar and stellar global oscillation eigenfunctions and eigenfrequencies. If the Lorentz force is added to the equilibrium equation of motion, stellar eigenmodes can couple. In quasi-degenerate perturbation theory, this coupling, also known as the direct effect, can be quantified by the general matrix element. We present the analytical expression of the matrix element for a superposition of subsurface zonal toroidal magnetic field configurations. The matrix element is important for forward calculations of perturbed solar and stellar eigenfunctions and frequency perturbations. The results presented here will help to ascertain solar and stellar large-scale subsurface magnetic fields, and their geometric configuration, strength, and change over the course of activity cycles.

  1. Featured Image: A Looping Stellar Stream

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-11-01

    This negative image of NGC 5907 (originally published inMartinez-Delgadoet al. 2008; click for the full view!) reveals the faint stellar stream that encircles the galaxy, forming loops around it a fossil of a recent merger. Mergers between galaxies come in several different flavors: major mergers, in which the merging galaxies are within a 1:5 ratio in stellar mass; satellite cannibalism, in which a large galaxy destroys a small satellite less than a 50th of its size; and the in-between case of minor mergers, in which the merging galaxieshave stellar mass ratios between 1:5 and 1:50. These minor mergers are thought to be relatively common, and they can have a significant effect on the dynamics and structure of the primary galaxy. A team of scientists led by Seppo Laine (Spitzer Science Center Caltech) has recently analyzed the metallicity and age of the stellar population in the stream around NGC 5907. By fitting these observations with a stellar population synthesis model, they conclude that this stream is an example of a massive minor merger, with a stellar mass ratio of at least 1:8. For more information, check out the paper below!CitationSeppo Laine et al 2016 AJ 152 72. doi:10.3847/0004-6256/152/3/72

  2. Systematic variation of the stellar initial mass function in early-type galaxies.

    PubMed

    Cappellari, Michele; McDermid, Richard M; Alatalo, Katherine; Blitz, Leo; Bois, Maxime; Bournaud, Frédéric; Bureau, M; Crocker, Alison F; Davies, Roger L; Davis, Timothy A; de Zeeuw, P T; Duc, Pierre-Alain; Emsellem, Eric; Khochfar, Sadegh; Krajnović, Davor; Kuntschner, Harald; Lablanche, Pierre-Yves; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Scott, Nicholas; Serra, Paolo; Weijmans, Anne-Marie; Young, Lisa M

    2012-04-25

    Much of our knowledge of galaxies comes from analysing the radiation emitted by their stars, which depends on the present number of each type of star in the galaxy. The present number depends on the stellar initial mass function (IMF), which describes the distribution of stellar masses when the population formed, and knowledge of it is critical to almost every aspect of galaxy evolution. More than 50 years after the first IMF determination, no consensus has emerged on whether it is universal among different types of galaxies. Previous studies indicated that the IMF and the dark matter fraction in galaxy centres cannot both be universal, but they could not convincingly discriminate between the two possibilities. Only recently were indications found that massive elliptical galaxies may not have the same IMF as the Milky Way. Here we report a study of the two-dimensional stellar kinematics for the large representative ATLAS(3D) sample of nearby early-type galaxies spanning two orders of magnitude in stellar mass, using detailed dynamical models. We find a strong systematic variation in IMF in early-type galaxies as a function of their stellar mass-to-light ratios, producing differences of a factor of up to three in galactic stellar mass. This implies that a galaxy's IMF depends intimately on the galaxy's formation history.

  3. Minimizing stellarator turbulent transport by geometric optimization

    NASA Astrophysics Data System (ADS)

    Mynick, H. E.

    2010-11-01

    Up to now, a transport optimized stellarator has meant one optimized to minimize neoclassical transport,ootnotetextH.E. Mynick, Phys. Plasmas 13, 058102 (2006). while the task of also mitigating turbulent transport, usually the dominant transport channel in such designs, has not been addressed, due to the complexity of plasma turbulence in stellarators. However, with the advent of gyrokinetic codes valid for 3D geometries such as GENE,ootnotetextF. Jenko, W. Dorland, M. Kotschenreuther, B.N. Rogers, Phys. Plasmas 7, 1904 (2000). and stellarator optimization codes such as STELLOPT,ootnotetextA. Reiman, G. Fu, S. Hirshman, L. Ku, et al, Plasma Phys. Control. Fusion 41 B273 (1999). designing stellarators to also reduce turbulent transport has become a realistic possibility. We have been using GENE to characterize the dependence of turbulent transport on stellarator geometry,ootnotetextH.E Mynick, P.A. Xanthopoulos, A.H. Boozer, Phys.Plasmas 16 110702 (2009). and to identify key geometric quantities which control the transport level. From the information obtained from these GENE studies, we are developing proxy functions which approximate the level of turbulent transport one may expect in a machine of a given geometry, and have extended STELLOPT to use these in its cost function, obtaining stellarator configurations with turbulent transport levels substantially lower than those in the original designs.

  4. X-shooter study of accretion in Chamaeleon I. II. A steeper increase of accretion with stellar mass for very low-mass stars?

    NASA Astrophysics Data System (ADS)

    Manara, C. F.; Testi, L.; Herczeg, G. J.; Pascucci, I.; Alcalá, J. M.; Natta, A.; Antoniucci, S.; Fedele, D.; Mulders, G. D.; Henning, T.; Mohanty, S.; Prusti, T.; Rigliaco, E.

    2017-08-01

    The dependence of the mass accretion rate on the stellar properties is a key constraint for star formation and disk evolution studies. Here we present a study of a sample of stars in the Chamaeleon I star-forming region carried out using spectra taken with the ESO VLT/X-shooter spectrograph. The sample is nearly complete down to stellar masses (M⋆) 0.1 M⊙ for the young stars still harboring a disk in this region. We derive the stellar and accretion parameters using a self-consistent method to fit the broadband flux-calibrated medium resolution spectrum. The correlation between accretion luminosity to stellar luminosity, and of mass accretion rate to stellar mass in the logarithmic plane yields slopes of 1.9 ± 0.1 and 2.3 ± 0.3, respectively. These slopes and the accretion rates are consistent with previous results in various star-forming regions and with different theoretical frameworks. However, we find that a broken power-law fit, with a steeper slope for stellar luminosity lower than 0.45 L⊙ and for stellar masses lower than 0.3 M⊙ is slightly preferred according to different statistical tests, but the single power-law model is not excluded. The steeper relation for lower mass stars can be interpreted as a faster evolution in the past for accretion in disks around these objects, or as different accretion regimes in different stellar mass ranges. Finally, we find two regions on the mass accretion versus stellar mass plane that are empty of objects: one region at high mass accretion rates and low stellar masses, which is related to the steeper dependence of the two parameters we derived. The second region is located just above the observational limits imposed by chromospheric emission, at M⋆ 0.3 - 0.4 M⊙. These are typical masses where photoevaporation is known to be effective. The mass accretion rates of this region are 10-10M⊙/yr, which is compatible with the value expected for photoevaporation to rapidly dissipate the inner disk. This work is based on observations made with ESO Telescopes at the Paranal Observatory under programme ID 090.C-0253 and 095.C-0378.

  5. 7 CFR 28.415 - Low Middling Light Spotted Color.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Low Middling Light Spotted Color. 28.415 Section 28... Spotted Color. Low Middling Light Spotted Color is color which in spot or color, or both, is between Low Middling Color and Low Middling Spotted Color. ...

  6. 7 CFR 28.411 - Good Middling Light Spotted Color.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Good Middling Light Spotted Color. 28.411 Section 28... Light Spotted Color. Good Middling Light Spotted Color is color which in spot or color, or both, is between Good Middling Color and Good Middling Spotted Color. ...

  7. 7 CFR 28.412 - Strict Middling Light Spotted Color.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Strict Middling Light Spotted Color. 28.412 Section 28... Light Spotted Color. Strict Middling Light Spotted Color is color which in spot or color, or both, is between Strict Middling Color and Strict Middling Spotted Color. ...

  8. 7 CFR 1427.3 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... they conflict with definitions in this section. Adjusted spot price means the spot price adjusted to reflect any lack of data for base quality to make the adjusted spot price comparable to a spot price assuming the base quality. If base quality spot price data are not available, spot prices for other...

  9. 7 CFR 1427.3 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... they conflict with definitions in this section. Adjusted spot price means the spot price adjusted to reflect any lack of data for base quality to make the adjusted spot price comparable to a spot price assuming the base quality. If base quality spot price data are not available, spot prices for other...

  10. Transcriptome sequencing of purple petal spot region in tree peony reveals differentially expressed anthocyanin structural genes.

    PubMed

    Zhang, Yanzhao; Cheng, Yanwei; Ya, Huiyuan; Xu, Shuzhen; Han, Jianming

    2015-01-01

    The pigmented cells in defined region of a petal constitute the petal spots. Petal spots attract pollinators and are found in many angiosperm families. Several cultivars of tree peony contain a single red or purple spot at the base of petal that makes the flower more attractive for the ornamental market. So far, the understanding of the molecular mechanism of spot formation is inadequate. In this study, we sequenced the transcriptome of the purple spot and the white non-spot of tree peony flower. We assembled and annotated 67,892 unigenes. Comparative analyses of the two transcriptomes showed 1,573 differentially expressed genes, among which 933 were up-regulated, and 640 were down-regulated in the purple spot. Subsequently, we examined four anthocyanin structural genes, including PsCHS, PsF3'H, PsDFR, and PsANS, which expressed at a significantly higher level in the purple spot than in the white non-spot. We further validated the digital expression data using quantitative real-time PCR. Our result uncovered transcriptome variance between the spot and non-spot of tree peony flower, and revealed that the co-expression of four anthocyanin structural genes was responsible for spot pigment in tree peony. The data will further help to unravel the genetic mechanism of peony flower spot formation.

  11. On the scatter in the relation between stellar mass and halo mass: random or halo formation time dependent?

    NASA Astrophysics Data System (ADS)

    Wang, Lan; De Lucia, Gabriella; Weinmann, Simone M.

    2013-05-01

    The empirical traditional halo occupation distribution (HOD) model of Wang et al. fits, by construction, both the stellar mass function and correlation function of galaxies in the local Universe. In contrast, the semi-analytical models of De Lucia & Blazoit (hereafter DLB07) and Guo et al. (hereafter Guo11), built on the same dark matter halo merger trees than the empirical model, still have difficulties in reproducing these observational data simultaneously. We compare the relations between the stellar mass of galaxies and their host halo mass in the three models, and find that they are different. When the relations are rescaled to have the same median values and the same scatter as in Wang et al., the rescaled DLB07 model can fit both the measured galaxy stellar mass function and the correlation function measured in different galaxy stellar mass bins. In contrast, the rescaled Guo11 model still overpredicts the clustering of low-mass galaxies. This indicates that the detail of how galaxies populate the scatter in the stellar mass-halo mass relation does play an important role in determining the correlation functions of galaxies. While the stellar mass of galaxies in the Wang et al. model depends only on halo mass and is randomly distributed within the scatter, galaxy stellar mass depends also on the halo formation time in semi-analytical models. At fixed value of infall mass, galaxies that lie above the median stellar mass-halo mass relation reside in haloes that formed earlier, while galaxies that lie below the median relation reside in haloes that formed later. This effect is much stronger in Guo11 than in DLB07, which explains the overclustering of low mass galaxies in Guo11. Assembly bias in Guo11 model might be overly strong. Nevertheless, in case that a significant assembly bias indeed exists in the real Universe, one needs to use caution when applying current HOD and abundance matching models that employ the assumption of random scatter in the relation between stellar and halo mass.

  12. The Stellar Mass-Halo Mass Relation for Low-mass X-Ray Groups At 0.5< z< 1 in the CDFS With CSI

    NASA Astrophysics Data System (ADS)

    Patel, Shannon G.; Kelson, Daniel D.; Williams, Rik J.; Mulchaey, John S.; Dressler, Alan; McCarthy, Patrick J.; Shectman, Stephen A.

    2015-02-01

    Since z˜ 1, the stellar mass density locked in low-mass groups and clusters has grown by a factor of ˜8. Here, we make the first statistical measurements of the stellar mass content of low-mass X-ray groups at 0.5\\lt z\\lt 1, enabling the calibration of stellar-to-halo mass scales for wide-field optical and infrared surveys. Groups are selected from combined Chandra and XMM-Newton X-ray observations in the Chandra Deep Field South. These ultra-deep observations allow us to identify bona fide low-mass groups at high redshift and enable measurements of their total halo masses. We compute aggregate stellar masses for these halos using galaxies from the Carnegie-Spitzer-IMACS (CSI) spectroscopic redshift survey. Stars comprise ˜3%-4% of the total mass of group halos with masses {{10}12.8}\\lt {{M}200}/{{M}⊙ }\\lt {{10}13.5} (about the mass of Fornax and one-fiftieth the mass of Virgo). Complementing our sample with higher mass halos at these redshifts, we find that the stellar-to-halo mass ratio decreases toward higher halo masses, consistent with other work in the local and high redshift universe. The observed scatter about the stellar-halo mass relation is σ ˜ 0.25 dex, which is relatively small and suggests that total group stellar mass can serve as a rough proxy for halo mass. We find no evidence for any significant evolution in the stellar-halo mass relation since z≲ 1. Quantifying the stellar content in groups since this epoch is critical given that hierarchical assembly leads to such halos growing in number density and hosting increasing shares of quiescent galaxies. This Letter includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile. This research is based on observations made with the NASA/ESA Hubble Space Telescope obtained at the Space Telescope Science Institute. STScI is operated by the Association of Universities for Research in Astronomy, Inc. under NASA contract NAS 5-26555.

  13. [A New Distance Metric between Different Stellar Spectra: the Residual Distribution Distance].

    PubMed

    Liu, Jie; Pan, Jing-chang; Luo, A-li; Wei, Peng; Liu, Meng

    2015-12-01

    Distance metric is an important issue for the spectroscopic survey data processing, which defines a calculation method of the distance between two different spectra. Based on this, the classification, clustering, parameter measurement and outlier data mining of spectral data can be carried out. Therefore, the distance measurement method has some effect on the performance of the classification, clustering, parameter measurement and outlier data mining. With the development of large-scale stellar spectral sky surveys, how to define more efficient distance metric on stellar spectra has become a very important issue in the spectral data processing. Based on this problem and fully considering of the characteristics and data features of the stellar spectra, a new distance measurement method of stellar spectra named Residual Distribution Distance is proposed. While using this method to measure the distance, the two spectra are firstly scaled and then the standard deviation of the residual is used the distance. Different from the traditional distance metric calculation methods of stellar spectra, when used to calculate the distance between stellar spectra, this method normalize the two spectra to the same scale, and then calculate the residual corresponding to the same wavelength, and the standard error of the residual spectrum is used as the distance measure. The distance measurement method can be used for stellar classification, clustering and stellar atmospheric physical parameters measurement and so on. This paper takes stellar subcategory classification as an example to test the distance measure method. The results show that the distance defined by the proposed method is more effective to describe the gap between different types of spectra in the classification than other methods, which can be well applied in other related applications. At the same time, this paper also studies the effect of the signal to noise ratio (SNR) on the performance of the proposed method. The result show that the distance is affected by the SNR. The smaller the signal-to-noise ratio is, the greater impact is on the distance; While SNR is larger than 10, the signal-to-noise ratio has little effect on the performance for the classification.

  14. Relationships between HI Gas Mass, Stellar Mass and Star Formation Rate of HICAT+WISE Galaxies

    NASA Astrophysics Data System (ADS)

    Parkash, Vaishali; Brown, Michael J. I.

    2018-01-01

    Galaxies grow via a combination of star formation and mergers. In this thesis, I have studied what drives star formation in nearby galaxies. Using archival WISE, Galex, 21-cm data and new IFU observations, I examine the HI content, Hα emission, stellar kinematics, and gas kinematics of three sub-classes of galaxies: spiral galaxies, shell galaxies and HI galaxies with unusually low star formation rates (SFR). In this dissertation talk, I will focus on the scaling relations between atomic (HI) gas, stellar mass and SFR of spiral galaxies. Star formation is fuelled by HI and molecular hydrogen, therefore we expect correlations between HI mass, stellar mass and SFR. However, the measured scaling relationships vary in the prior literature due to sample selection or low completeness. I will discuss new scaling relationships determined using HI Parkes All Sky-Survey Catalogue (HICAT) and the Wide-field Infrared Survey Explorer (WISE). The combination of the local HICAT survey with sensitive WISE mid-infrared imaging improves the stellar masses, SFRs and completeness relative to previous literature. Of the 3,513 HICAT sources, we find 3.4 μm counterparts for 2,824 sources (80%), and provide new WISE matched aperture photometry for these galaxies. For a stellar mass selected sample of z ≤ 0.01 spiral galaxies, we find HI detections for 94% of the galaxies, enabling us to accurately measure HI mass as a function of stellar mass. In contrast to HI-selected galaxy samples, we find that star formation efficiency of spiral galaxies is constant at 10-9.5 yr‑1 with a scatter of 0.5 dex for stellar masses above 109.5 solar masses. We find HI mass increases with stellar mass for spiral galaxies, but the scatter is 1.7 dex for all spiral galaxies and 0.6 dex for galaxies with the T-type 5 to 7. We find an upper limit on HI mass that depends on stellar mass, which is consistent with this limit being dictated by the halo spin parameter.

  15. The Andromeda Optical and Infrared Disk Survey

    NASA Astrophysics Data System (ADS)

    Sick, Jonathan

    The spectral energy distributions of galaxies inform us about a galaxy's stellar populations and interstellar medium, revealing stories of galaxy formation and evolution. How we interpret this light depends in part on our proximity to the galaxy. For nearby galaxies, detailed star formation histories can be extracted from the resolved stellar populations, while more distant galaxies feature the contributions of entire stellar populations within their integrated spectral energy distribution (SED). This thesis aims to resolve whether the techniques used to investigate stellar populations in distant galaxies are consistent with those available for nearby galaxies. As the nearest spiral galaxy, the Andromeda Galaxy (M31) is the ideal testbed for the joint study of resolved stellar populations and panchromatic SEDs. We present the Andromeda Optical and Infrared Disk Survey (ANDROIDS), which adds new near-UV to near-IR (u*g'r'i'JKs) imaging using the MegaCam and WIRCam cameras at the Canada-France-Hawaii telescope to the available M31 panchromatic dataset. To accurately subtract photometric background from our extremely wide-field (14 square degree) mosaics, we present observing and data reduction techniques with sky-target nodding, optimization of image-to-image surface brightness, and a novel hierarchical Bayesian model to trace the background signal while modelling the astrophysical SED. We model the spectral energy distributions of M31 pixels with MAGPHYS (da Cunha et al. 2008) and compare those results to resolved stellar population models of the same pixels from the Panchromatic Hubble Andromeda Treasury (PHAT) survey (Williams et al. 2017). We find substantial (0.3 dex) differences in stellar mass estimates despite a common use of the Chabrier (2003) initial mass function. Stellar mass estimated from the resolved stellar population is larger than any mass estimate from SED models or colour-M/L relations (CMLRs). There is also considerable diversity among CMLR estimators, largely driven by differences in the star formation history prior distribution. We find broad consistency between the star formation history estimated by integrated spectral energy distributions and resolved stars. Generally, spectral energy distribution models yield a stronger inside-out radial metallicity gradient and bias towards younger mean ages than resolved stellar population models.

  16. From CoRoT 102899501 to the Sun. A time evolution model of chromospheric activity on the main sequence

    NASA Astrophysics Data System (ADS)

    Gondoin, P.; Gandolfi, D.; Fridlund, M.; Frasca, A.; Guenther, E. W.; Hatzes, A.; Deeg, H. J.; Parviainen, H.; Eigmüller, P.; Deleuil, M.

    2012-12-01

    Aims: The present study reports measurements of the rotation period of a young solar analogue, estimates of its surface coverage by photospheric starspots and of its chromospheric activity level, and derivations of its evolutionary status. Detailed observations of many young solar-type stars, such as the one reported in the present paper, provide insight into rotation and magnetic properties that may have prevailed on the Sun in its early evolution. Methods: Using a model based on the rotational modulation of the visibility of active regions, we analysed the high-accuracy CoRoT lightcurve of the active star CoRoT 102899501. Spectroscopic follow-up observations were used to derive its fundamental parameters. We compared the chromospheric activity level of Corot 102899501 with the R'HK index distribution vs age established on a large sample of solar-type dwarfs in open clusters. We also compared the chromospheric activity level of this young star with a model of chromospheric activity evolution established by combining relationships between the R'HK index and the Rossby number with a recent model of stellar rotation evolution on the main sequence. Results: We measure the spot coverage of the stellar surface as a function of time and find evidence for a tentative increase from 5 - 14% at the beginning of the observing run to 13-29% 35 days later. A high level of magnetic activity on Corot 102899501 is corroborated by a strong emission in the Balmer and Ca ii H and K lines (R'HK ~ -4). The starspots used as tracers of the star rotation constrain the rotation period to 1.625 ± 0.002 days and do not show evidence for differential rotation. The effective temperature (Teff = 5180 ± 80 K), surface gravity (log g = 4.35 ± 0.1), and metallicity ([M/H] = 0.05 ± 0.07 dex) indicate that the object is located near the evolutionary track of a 1.09 ± 0.12 M⊙ pre-main sequence star at an age of 23 ± 10 Myr. This value is consistent with the "gyro-age" of about 8-25 Myr, inferred using a parameterization of the stellar rotation period as a function of colour index and time established for the I-sequence of stars in stellar clusters. Conclusions: We conclude that the high magnetic activity level and fast rotation of CoRoT 102899501 are manifestations of its stellar youth consistent with its estimated evolutionary status and with the detection of a strong Li i λ6707.8 Å absorption line in its spectrum. We argue that a magnetic activity level comparable to that observed on CoRot 102899501 could have been present on the Sun at the time of planet formation. Based on observations obtained with CoRoT, a space project operated by the French Space Agency, CNES, with participation of the Science Programme of ESA, ESTEC/RSSD, Austria, Belgium, Brazil, Germany and Spain.Based on observations made with the Anglo-Australian Telescope; the 2.1-m Otto Struve telescope at McDonald Observatory, Texas, USA; the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias, in time allocated by the NOT "Fast-Track" Service Programme, OPTICON, and the Spanish Time Allocation Committee (CAT).The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement number RG226604 (OPTICON).

  17. Introducing galactic structure finder: the multiple stellar kinematic structures of a simulated Milky Way mass galaxy

    NASA Astrophysics Data System (ADS)

    Obreja, Aura; Macciò, Andrea V.; Moster, Benjamin; Dutton, Aaron A.; Buck, Tobias; Stinson, Gregory S.; Wang, Liang

    2018-07-01

    We present the first results of applying Gaussian Mixture Models in the stellar kinematic space of normalized angular momentum and binding energy on NIHAO high-resolution galaxies to separate the stars into multiple components. We exemplify this method, using a simulated Milky Way analogue, whose stellar component hosts thin and thick discs, classical and pseudo bulges, and a stellar halo. The properties of these stellar structures are in good agreement with observational expectations in terms of sizes, shapes, and rotational support. Interestingly, the two kinematic discs show surface mass density profiles more centrally concentrated than exponentials, while the bulges and the stellar halo are purely exponential. We trace back in time the Lagrangian mass of each component separately to study their formation history. Between z ˜ 3 and the end of halo virialization, z ˜ 1.3, all components lose a fraction of their angular momentum. The classical bulge loses the most (˜ 95 per cent) and the thin disc the least (˜ 60 per cent). Both bulges formed their stars in situ at high redshift, while the thin disc formed ˜ 98 per cent in situ, but with a constant SFR ˜ 1.5 M⊙ yr-1 over the last ˜11 Gyr. Accreted stars (6 per cent of total stellar mass) are mainly incorporated to the thick disc or the stellar halo, which formed ex situ 8 per cent and 45 per cent of their respective masses. Our analysis pipeline is freely available at https://github.com/aobr/gsf.

  18. LLAMA: nuclear stellar properties of Swift-BAT AGN and matched inactive galaxies

    NASA Astrophysics Data System (ADS)

    Lin, Ming-Yi; Davies, R. I.; Hicks, E. K. S.; Burtscher, L.; Contursi, A.; Genzel, R.; Koss, M.; Lutz, D.; Maciejewski, W.; Müller-Sánchez, F.; Orban de Xivry, G.; Ricci, C.; Riffel, R.; Riffel, R. A.; Rosario, D.; Schartmann, M.; Schnorr-Müller, A.; Shimizu, T.; Sternberg, A.; Sturm, E.; Storchi-Bergmann, T.; Tacconi, L.; Veilleux, S.

    2018-02-01

    In a complete sample of local 14-195 keV selected active galactic nuclei (AGNs) and inactive galaxies, matched by their host galaxy properties, we study the spatially resolved stellar kinematics and luminosity distributions at near-infrared wavelengths on scales of 10-150 pc, using SINFONI on the VLT. In this paper, we present the first half of the sample, which comprises 13 galaxies, eight AGNs and five inactive galaxies. The stellar velocity fields show a disc-like rotating pattern, for which the kinematic position angle is in agreement with the photometric position angle obtained from large scale images. For this set of galaxies, the stellar surface brightness of the inactive galaxy sample is generally comparable to the matched sample of AGN, but extends to lower surface brightness. After removal of the bulge contribution, we find a nuclear stellar light excess with an extended nuclear disc structure, which exhibits a size-luminosity relation. While we expect the excess luminosity to be associated with a dynamically cooler young stellar population, we do not typically see a matching drop in dispersion. This may be because these galaxies have pseudo-bulges in which the intrinsic dispersion increases towards the centre. And although the young stars may have an impact in the observed kinematics, their fraction is too small to dominate over the bulge and compensate the increase in dispersion at small radii, so no dispersion drop is seen. Finally, we find no evidence for a difference in the stellar kinematics and nuclear stellar luminosity excess between these active and inactive galaxies.

  19. Stellar spectral classification of previously unclassified stars GSC 4461-698 and GSC 4466-870

    NASA Astrophysics Data System (ADS)

    Grau, Darren Moser

    Stellar spectral classification is one of the first efforts undertaken to begin defining the physical characteristics of stars. However, many stars lack even this basic information, which is the foundation for later research to constrain stellar effective temperatures, masses, radial velocities, the number of stars in the system, and age. This research obtained visible-λ stellar spectra via the testing and commissioning of a Santa Barbara Instruments Group (SBIG) Self-Guiding Spectrograph (SGS) at the UND Observatory. Utilizing a 16-inch-aperture telescope on Internet Observatory #3, the SGS obtained spectra of GSC 4461-698 and GSC 4466-870 in the low-resolution mode using an 18-µm wide slit with dispersion of 4.3 Å/pixel, resolution of 8 Å, and a spectral range from 3800-7500 Å. Observational protocols include automatic bias/dark frame subtraction for each stellar spectrum obtained. This was followed by spectral averaging to obtain a combined spectrum for each star observed. Image calibration and spectral averaging was performed using the software programs, Maxim DL, Image J, Microsoft Excel, and Winmk. A wavelength calibration process was used to obtain spectra of an Hg/Ne source that allowed the conversion of spectrograph channels into wavelengths. Stellar emission and absorption lines, such as those for hydrogen (H) and helium (He), were identified, extracted, and rectified. Each average spectrum was compared to the MK stellar spectral standards to determine an initial spectral classification for each star. The hope is that successful completion of this project will allow long-term stellar spectral observations to begin at the UND Observatory.

  20. O-star parameters from line profiles of wind-blanketed model atmospheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voels, S.A.

    1989-01-01

    The basic stellar parameters (i.e. effective temperature, gravity, helium content, bolometric correction, etc...) of several O-stars are determined by matching high signal-to-noise observed line profiles of optical hydrogen and helium line transitions with theoretical line profiles from a core-halo model of the stellar atmosphere. The core-halo atmosphere includes the effect of radiation backscattered from a stellar wind by incorporating the stellar wind model of Abbott and Lucy as a reflective upper boundary condition in the Mihalas atmosphere model. Three of the four supergiants analyzed showed an enhanced surface abundance of helium. Using a large sample of equivalent width data frommore » Conti a simple argument is made that surface enhancement of helium may be a common property of the most luminous supergiants. The stellar atmosphere theory is sufficient to determine the stellar parameters only if careful attention is paid to the detection and exclusion of lines which are not accurately modeled by the physical processes included. It was found that some strong lines which form entirely below the sonic point are not well modeled due to effects of atmospheric extension. For spectral class 09.5, one of these lines is the classification line He I {lambda}4471{angstrom}. For supergiant, the gravity determined could be systematically low by up to 0.05 dex as the radiation pressure due to lines is neglected. Within the error ranges, the stellar parameters determined, including helium abundance, agree with those from the stellar evolution calculations of Maeder and Maynet.« less

  1. Extinction maps toward the Milky Way bulge: Two-dimensional and three-dimensional tests with apogee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schultheis, M.; Zasowski, G.; Allende Prieto, C.

    Galactic interstellar extinction maps are powerful and necessary tools for Milky Way structure and stellar population analyses, particularly toward the heavily reddened bulge and in the midplane. However, due to the difficulty of obtaining reliable extinction measures and distances for a large number of stars that are independent of these maps, tests of their accuracy and systematics have been limited. Our goal is to assess a variety of photometric stellar extinction estimates, including both two-dimensional and three-dimensional extinction maps, using independent extinction measures based on a large spectroscopic sample of stars toward the Milky Way bulge. We employ stellar atmosphericmore » parameters derived from high-resolution H-band Apache Point Observatory Galactic Evolution Experiment (APOGEE) spectra, combined with theoretical stellar isochrones, to calculate line-of-sight extinction and distances for a sample of more than 2400 giants toward the Milky Way bulge. We compare these extinction values to those predicted by individual near-IR and near+mid-IR stellar colors, two-dimensional bulge extinction maps, and three-dimensional extinction maps. The long baseline, near+mid-IR stellar colors are, on average, the most accurate predictors of the APOGEE extinction estimates, and the two-dimensional and three-dimensional extinction maps derived from different stellar populations along different sightlines show varying degrees of reliability. We present the results of all of the comparisons and discuss reasons for the observed discrepancies. We also demonstrate how the particular stellar atmospheric models adopted can have a strong impact on this type of analysis, and discuss related caveats.« less

  2. Habitability in different Milky Way stellar environments: a stellar interaction dynamical approach.

    PubMed

    Jiménez-Torres, Juan J; Pichardo, Bárbara; Lake, George; Segura, Antígona

    2013-05-01

    Every Galactic environment is characterized by a stellar density and a velocity dispersion. With this information from literature, we simulated flyby encounters for several Galactic regions, numerically calculating stellar trajectories as well as orbits for particles in disks; our aim was to understand the effect of typical stellar flybys on planetary (debris) disks in the Milky Way Galaxy. For the solar neighborhood, we examined nearby stars with known distance, proper motions, and radial velocities. We found occurrence of a disturbing impact to the solar planetary disk within the next 8 Myr to be highly unlikely; perturbations to the Oort cloud seem unlikely as well. Current knowledge of the full phase space of stars in the solar neighborhood, however, is rather poor; thus we cannot rule out the existence of a star that is more likely to approach than those for which we have complete kinematic information. We studied the effect of stellar encounters on planetary orbits within the habitable zones of stars in more crowded stellar environments, such as stellar clusters. We found that in open clusters habitable zones are not readily disrupted; this is true if they evaporate in less than 10(8) yr. For older clusters the results may not be the same. We specifically studied the case of Messier 67, one of the oldest open clusters known, and show the effect of this environment on debris disks. We also considered the conditions in globular clusters, the Galactic nucleus, and the Galactic bulge-bar. We calculated the probability of whether Oort clouds exist in these Galactic environments.

  3. The Cannon: A data-driven approach to Stellar Label Determination

    NASA Astrophysics Data System (ADS)

    Ness, M.; Hogg, David W.; Rix, H.-W.; Ho, Anna. Y. Q.; Zasowski, G.

    2015-07-01

    New spectroscopic surveys offer the promise of stellar parameters and abundances (“stellar labels”) for hundreds of thousands of stars; this poses a formidable spectral modeling challenge. In many cases, there is a subset of reference objects for which the stellar labels are known with high(er) fidelity. We take advantage of this with The Cannon, a new data-driven approach for determining stellar labels from spectroscopic data. The Cannon learns from the “known” labels of reference stars how the continuum-normalized spectra depend on these labels by fitting a flexible model at each wavelength; then, The Cannon uses this model to derive labels for the remaining survey stars. We illustrate The Cannon by training the model on only 542 stars in 19 clusters as reference objects, with {T}{eff}, {log} g, and [{Fe}/{{H}}] as the labels, and then applying it to the spectra of 55,000 stars from APOGEE DR10. The Cannon is very accurate. Its stellar labels compare well to the stars for which APOGEE pipeline (ASPCAP) labels are provided in DR10, with rms differences that are basically identical to the stated ASPCAP uncertainties. Beyond the reference labels, The Cannon makes no use of stellar models nor any line-list, but needs a set of reference objects that span label-space. The Cannon performs well at lower signal-to-noise, as it delivers comparably good labels even at one-ninth the APOGEE observing time. We discuss the limitations of The Cannon and its future potential, particularly, to bring different spectroscopic surveys onto a consistent scale of stellar labels.

  4. Low-mass galaxy assembly in simulations: regulation of early star formation by radiation from massive stars

    NASA Astrophysics Data System (ADS)

    Trujillo-Gomez, Sebastian; Klypin, Anatoly; Colín, Pedro; Ceverino, Daniel; Arraki, Kenza S.; Primack, Joel

    2015-01-01

    Despite recent success in forming realistic present-day galaxies, simulations still form the bulk of their stars earlier than observations indicate. We investigate the process of stellar mass assembly in low-mass field galaxies, a dwarf and a typical spiral, focusing on the effects of radiation from young stellar clusters on the star formation (SF) histories. We implement a novel model of SF with a deterministic low efficiency per free-fall time, as observed in molecular clouds. Stellar feedback is based on observations of star-forming regions, and includes radiation pressure from massive stars, photoheating in H II regions, supernovae and stellar winds. We find that stellar radiation has a strong effect on the formation of low-mass galaxies, especially at z > 1, where it efficiently suppresses SF by dispersing cold and dense gas, preventing runaway growth of the stellar component. This behaviour is evident in a variety of observations but had so far eluded analytical and numerical models without radiation feedback. Compared to supernovae alone, radiation feedback reduces the SF rate by a factor of ˜100 at z ≲ 2, yielding rising SF histories which reproduce recent observations of Local Group dwarfs. Stellar radiation also produces bulgeless spiral galaxies and may be responsible for excess thickening of the stellar disc. The galaxies also feature rotation curves and baryon fractions in excellent agreement with current data. Lastly, the dwarf galaxy shows a very slow reduction of the central dark matter density caused by radiation feedback over the last ˜7 Gyr of cosmic evolution.

  5. Galaxies Grow Their Bulges and Black Holes in Diverse Ways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bell, Eric F.; Harmsen, Benjamin; D’Souza, Richard

    Galaxies with Milky Way–like stellar masses have a wide range of bulge and black hole masses; in turn, these correlate with other properties such as star formation history. While many processes may drive bulge formation, major and minor mergers are expected to play a crucial role. Stellar halos offer a novel and robust measurement of galactic merger history; cosmologically motivated models predict that mergers with larger satellites produce more massive, higher-metallicity stellar halos, reproducing the recently observed stellar halo metallicity–mass relation. We quantify the relationship between stellar halo mass and bulge or black hole prominence using a sample of 18more » Milky Way-mass galaxies with newly available measurements of (or limits on) stellar halo properties. There is an order of magnitude range in bulge mass, and two orders of magnitude in black hole mass, at a given stellar halo mass (or, equivalently, merger history). Galaxies with low-mass bulges show a wide range of quiet merger histories, implying formation mechanisms that do not require intense merging activity. Galaxies with massive “classical” bulges and central black holes also show a wide range of merger histories. While three of these galaxies have massive stellar halos consistent with a merger origin, two do not—merging appears to have had little impact on making these two massive “classical” bulges. Such galaxies may be ideal laboratories to study massive bulge formation through pathways such as early gas-rich accretion, violent disk instabilities, or misaligned infall of gas throughout cosmic time.« less

  6. A chronicle of galaxy mass assembly in the EAGLE simulation

    NASA Astrophysics Data System (ADS)

    Qu, Yan; Helly, John C.; Bower, Richard G.; Theuns, Tom; Crain, Robert A.; Frenk, Carlos S.; Furlong, Michelle; McAlpine, Stuart; Schaller, Matthieu; Schaye, Joop; White, Simon D. M.

    2017-01-01

    We analyse the mass assembly of central galaxies in the Evolution and Assembly of Galaxies and their Environments (EAGLE) hydrodynamical simulations. We build merger trees to connect galaxies to their progenitors at different redshifts and characterize their assembly histories by focusing on the time when half of the galaxy stellar mass was assembled into the main progenitor. We show that galaxies with stellar mass M* < 1010.5 M⊙ assemble most of their stellar mass through star formation in the main progenitor (`in situ' star formation). This can be understood as a consequence of the steep rise in star formation efficiency with halo mass for these galaxies. For more massive galaxies, however, an increasing fraction of their stellar mass is formed outside the main progenitor and subsequently accreted. Consequently, while for low-mass galaxies, the assembly time is close to the stellar formation time, the stars in high-mass galaxies typically formed long before half of the present-day stellar mass was assembled into a single object, giving rise to the observed antihierarchical downsizing trend. In a typical present-day M* ≥ 1011 M⊙ galaxy, around 20 per cent of the stellar mass has an external origin. This fraction decreases with increasing redshift. Bearing in mind that mergers only make an important contribution to the stellar mass growth of massive galaxies, we find that the dominant contribution comes from mergers with galaxies of mass greater than one-tenth of the main progenitor's mass. The galaxy merger fraction derived from our simulations agrees with recent observational estimates.

  7. Colour pairs for constraining the age and metallicity of stellar populations

    NASA Astrophysics Data System (ADS)

    Li, Zhongmu; Han, Zhanwen

    2008-04-01

    Using a widely used stellar-population synthesis model, we study the possibility of using pairs of AB system colours to break the well-known stellar age-metallicity degeneracy and to give constraints on two luminosity-weighted stellar-population parameters (age and metallicity). We present the relative age and metallicity sensitivities of the AB system colours that relate to the u,B,g,V,r,R,i, I,z,J,H and K bands, and we quantify the ability of various colour pairs to break the age-metallicity degeneracy. Our results suggest that a few pairs of colours can be used to constrain the above two stellar-population parameters. This will be very useful for exploring the stellar populations of distant galaxies. In detail, colour pairs [(r-K), (u-R)] and [(r-K), (u-r)] are shown to be the best pairs for estimating the luminosity-weighted stellar ages and metallicities of galaxies. They can constrain two stellar-population parameters on average with age uncertainties less than 3.89 Gyr and metallicity uncertainties less than 0.34 dex for typical colour uncertainties. The typical age uncertainties for young populations (age < 4.6 Gyr) and metal-rich populations (Z >= 0.001) are small (about 2.26 Gyr) while those for old populations (age >= 4.6 Gyr) and metal-poor populations (Z < 0.001) are much larger (about 6.88 Gyr). However, the metallicity uncertainties for metal-poor populations (about 0.0024) are much smaller than for other populations (about 0.015). Some other colour pairs can also possibly be used for constraining the two parameters. On the whole, the estimation of stellar-population parameters is likely to be reliable only for early-type galaxies with small colour errors and globular clusters, because such objects contain less dust. In fact, no galaxy is totally dust-free and early-type galaxies are also likely have some dust [e.g. E(B- V) ~ 0.05], which can change the stellar ages by about 2.5 Gyr and metallicities (Z) by about 0.015. When we compare the photometric estimates with previous spectroscopic estimates, we find some differences, especially when comparing the stellar ages determined by two methods. The differences mainly result from the young populations of galaxies. Therefore, it is difficult to obtain the absolute values of stellar ages and metallicities, but the results are useful for obtaining some relative values. In addition, our results suggest that colours relating to both UBVRIJHK and ugriz magnitudes are much better than either UBVRIJHK or ugriz colours for breaking the well-known degeneracy. The results also show that the stellar ages and metallicities of galaxies observed by the Sloan Digital Sky Survey and the Two-Micron All-Sky Survey can be estimated via photometry data. The data are available at the Centre de Données astronomiques de Strabourg (CDS) or on request to the authors. E-mail: zhongmu.li@gmail.com

  8. Catalyzed D-D stellarator reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheffield, John; Spong, Donald A.

    The advantages of using the catalyzed deuterium-deuterium (D-D) approach for a fusion reactor—lower and less energetic neutron flux and no need for a tritium breeding blanket—have been evaluated in previous papers, giving examples of both tokamak and stellarator reactors. This paper presents an update for the stellarator example, taking account of more recent empirical transport scaling results and design studies of lower-aspect-ratio stellarators. We use a modified version of the Generic Magnetic Fusion Reactor model to cost a stellarator-type reactor. Recently, this model has been updated to reflect the improved science and technology base and costs in the magnetic fusionmore » program. Furthermore, it is shown that an interesting catalyzed D-D, stellarator power plant might be possible if the following parameters could be achieved: R/ ≈ 4, required improvement factor to ISS04 scaling, F R = 0.9 to 1.15, ≈ 8.0% to 11.5%, Z eff ≈ 1.45 plus a relativistic temperature correction, fraction of fast ions lost ≈ 0.07, B m ≈ 14 to 16 T, and R ≈ 18 to 24 m.« less

  9. DISCOVERY OF RR LYRAE STARS IN THE NUCLEAR BULGE OF THE MILKY WAY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minniti, Dante; Ramos, Rodrigo Contreras; Zoccali, Manuela

    Galactic nuclei, such as that of the Milky Way, are extreme regions with high stellar densities, and in most cases, the hosts of a supermassive black hole. One of the scenarios proposed for the formation of the Galactic nucleus is merging of primordial globular clusters. An implication of this model is that this region should host stars that are characteristically found in old Milky Way globular clusters. RR Lyrae stars are primary distance indicators, well known representatives of old and metal-poor stellar populations, and therefore are regularly found in globular clusters. Here we report the discovery of a dozen RRmore » Lyrae type ab stars in the vicinity of the Galactic center, i.e., in the so-called nuclear stellar bulge of the Milky Way. This discovery provides the first direct observational evidence that the Galactic nuclear stellar bulge contains ancient stars (>10 Gyr old). Based on this we conclude that merging globular clusters likely contributed to the build-up of the high stellar density in the nuclear stellar bulge of the Milky Way.« less

  10. A Framework for Finding and Interpreting Stellar CMEs

    NASA Astrophysics Data System (ADS)

    Osten, Rachel A.; Wolk, Scott J.

    2017-10-01

    The astrophysical study of mass loss, both steady-state and transient, on the cool half of the HR diagram has implications both for the star itself and the conditions created around the star that can be hospitable or inimical to supporting life. Stellar coronal mass ejections (CMEs) have not been conclusively detected, despite the ubiquity with which their radiative counterparts in an eruptive event (flares) have been. I will review some of the different observational methods which have been used and possibly could be used in the future in the stellar case, emphasizing some of the difficulties inherent in such attempts. I will provide a framework for interpreting potential transient stellar mass loss in light of the properties of flares known to occur on magnetically active stars. This uses a physically motivated way to connect the properties of flares and coronal mass ejections and provides a testable hypothesis for observing or constraining transient stellar mass loss. Finally I will describe recent results using observations at low radio frequencies to detect stellar coronal mass ejections, and give updates on prospects using future facilities to make headway in this important area.

  11. The stellar wind as a key to the understanding of the spectral activity of IN Com

    NASA Astrophysics Data System (ADS)

    Kozlova, O. V.; Alekseev, I. Yu.

    2014-06-01

    We present long-term spectral observations ( R = 20000) of IN Com in the region of the Hα, Hβ, and He I 5876 lines. One distinguishing characteristic of the stellar spectrum is the presence in the Hα line of an extended two-component emission with limits up to ±400 km/s. Emission parameters show the rotation modulation with the stellar rotation period and a significant variability on the long-term scale. Similar emissions are also observed in the Hβ and He I 5876 lines. Our results allow us to conclude that observational emission profiles are formed in an optically thin hot gas. This is a result of the presence of a circumstellar gas disk around IN Com. Its size does not exceed several stellar radii. The material for the disk is supported by the stellar wind from IN Com. The detected variability of Hα-emission parameters shows a clear connection with the photopolarimetric activity of the star. This fact allows us to associate the long-term spectral variability with cycles of stellar activity of IN Com.

  12. Catalyzed D-D stellarator reactor

    DOE PAGES

    Sheffield, John; Spong, Donald A.

    2016-05-12

    The advantages of using the catalyzed deuterium-deuterium (D-D) approach for a fusion reactor—lower and less energetic neutron flux and no need for a tritium breeding blanket—have been evaluated in previous papers, giving examples of both tokamak and stellarator reactors. This paper presents an update for the stellarator example, taking account of more recent empirical transport scaling results and design studies of lower-aspect-ratio stellarators. We use a modified version of the Generic Magnetic Fusion Reactor model to cost a stellarator-type reactor. Recently, this model has been updated to reflect the improved science and technology base and costs in the magnetic fusionmore » program. Furthermore, it is shown that an interesting catalyzed D-D, stellarator power plant might be possible if the following parameters could be achieved: R/ ≈ 4, required improvement factor to ISS04 scaling, F R = 0.9 to 1.15, ≈ 8.0% to 11.5%, Z eff ≈ 1.45 plus a relativistic temperature correction, fraction of fast ions lost ≈ 0.07, B m ≈ 14 to 16 T, and R ≈ 18 to 24 m.« less

  13. A Multiphysics and Multiscale Software Environment for Modeling Astrophysical Systems

    NASA Astrophysics Data System (ADS)

    Portegies Zwart, Simon; McMillan, Steve; O'Nualláin, Breanndán; Heggie, Douglas; Lombardi, James; Hut, Piet; Banerjee, Sambaran; Belkus, Houria; Fragos, Tassos; Fregeau, John; Fuji, Michiko; Gaburov, Evghenii; Glebbeek, Evert; Groen, Derek; Harfst, Stefan; Izzard, Rob; Jurić, Mario; Justham, Stephen; Teuben, Peter; van Bever, Joris; Yaron, Ofer; Zemp, Marcel

    We present MUSE, a software framework for tying together existing computational tools for different astrophysical domains into a single multiphysics, multiscale workload. MUSE facilitates the coupling of existing codes written in different languages by providing inter-language tools and by specifying an interface between each module and the framework that represents a balance between generality and computational efficiency. This approach allows scientists to use combinations of codes to solve highly-coupled problems without the need to write new codes for other domains or significantly alter their existing codes. MUSE currently incorporates the domains of stellar dynamics, stellar evolution and stellar hydrodynamics for a generalized stellar systems workload. MUSE has now reached a "Noah's Ark" milestone, with two available numerical solvers for each domain. MUSE can treat small stellar associations, galaxies and everything in between, including planetary systems, dense stellar clusters and galactic nuclei. Here we demonstrate an examples calculated with MUSE: the merger of two galaxies. In addition we demonstrate the working of MUSE on a distributed computer. The current MUSE code base is publicly available as open source at http://muse.li.

  14. Extension of the XGC code for global gyrokinetic simulations in stellarator geometry

    NASA Astrophysics Data System (ADS)

    Cole, Michael; Moritaka, Toseo; White, Roscoe; Hager, Robert; Ku, Seung-Hoe; Chang, Choong-Seock

    2017-10-01

    In this work, the total-f, gyrokinetic particle-in-cell code XGC is extended to treat stellarator geometries. Improvements to meshing tools and the code itself have enabled the first physics studies, including single particle tracing and flux surface mapping in the magnetic geometry of the heliotron LHD and quasi-isodynamic stellarator Wendelstein 7-X. These have provided the first successful test cases for our approach. XGC is uniquely placed to model the complex edge physics of stellarators. A roadmap to such a global confinement modeling capability will be presented. Single particle studies will include the physics of energetic particles' global stochastic motions and their effect on confinement. Good confinement of energetic particles is vital for a successful stellarator reactor design. These results can be compared in the core region with those of other codes, such as ORBIT3d. In subsequent work, neoclassical transport and turbulence can then be considered and compared to results from codes such as EUTERPE and GENE. After sufficient verification in the core region, XGC will move into the stellarator edge region including the material wall and neutral particle recycling.

  15. ON THE INCORPORATION OF METALLICITY DATA INTO MEASUREMENTS OF STAR FORMATION HISTORY FROM RESOLVED STELLAR POPULATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dolphin, Andrew E., E-mail: adolphin@raytheon.com

    The combination of spectroscopic stellar metallicities and resolved star color–magnitude diagrams (CMDs) has the potential to constrain the entire star formation history (SFH) of a galaxy better than fitting CMDs alone (as is most common in SFH studies using resolved stellar populations). In this paper, two approaches to incorporating external metallicity information into CMD-fitting techniques are presented. Overall, the joint fitting of metallicity and CMD information can increase the precision of measured age–metallicity relationships (AMRs) and star formation rates by 10% over CMD fitting alone. However, systematics in stellar isochrones and mismatches between spectroscopic and photometric determinations of metallicity canmore » reduce the accuracy of the recovered SFHs. I present a simple mitigation of these systematics that can reduce their amplitude to the level obtained from CMD fitting alone, while ensuring that the AMR is consistent with spectroscopic metallicities. As is the case in CMD-fitting analysis, improved stellar models and calibrations between spectroscopic and photometric metallicities are currently the primary impediment to gains in SFH precision from jointly fitting stellar metallicities and CMDs.« less

  16. Stellar Gyroscope for Determining Attitude of a Spacecraft

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata; Hancock, Bruce; Liebe, Carl; Mellstrom, Jeffrey

    2005-01-01

    A paper introduces the concept of a stellar gyroscope, currently at an early stage of development, for determining the attitude or spin axis, and spin rate of a spacecraft. Like star trackers, which are commercially available, a stellar gyroscope would capture and process images of stars to determine the orientation of a spacecraft in celestial coordinates. Star trackers utilize chargecoupled devices as image detectors and are capable of tracking attitudes at spin rates of no more than a few degrees per second and update rates typically <5 Hz. In contrast, a stellar gyroscope would utilize an activepixel sensor as an image detector and would be capable of tracking attitude at a slew rate as high as 50 deg/s, with an update rate as high as 200 Hz. Moreover, a stellar gyroscope would be capable of measuring a slew rate up to 420 deg/s. Whereas a Sun sensor and a three-axis mechanical gyroscope are typically needed to complement a star tracker, a stellar gyroscope would function without them; consequently, the mass, power consumption, and mechanical complexity of an attitude-determination system could be reduced considerably.

  17. Stellar Companions of Exoplanet Host Stars in K2

    NASA Astrophysics Data System (ADS)

    Matson, Rachel; Howell, Steve; Horch, Elliott; Everett, Mark

    2018-01-01

    Stellar multiplicity has significant implications for the detection and characterization of exoplanets. A stellar companion can mimic the signal of a transiting planet or distort the true planetary radii, leading to improper density estimates and over-predicting the occurrence rates of Earth-sized planets. Determining the fraction of exoplanet host stars that are also binaries allows us to better determine planetary characteristics as well as establish the relationship between binarity and planet formation. Using high-resolution speckle imaging to obtain diffraction limited images of K2 planet candidate host stars we detect stellar companions within one arcsec and up to six magnitudes fainter than the host star. By comparing our observed companion fraction to TRILEGAL star count simulations, and using the known detection limits of speckle imaging, we find the binary fraction of K2 planet host stars to be similar to that of Kepler host stars and solar-type field stars. Accounting for stellar companions in exoplanet studies is therefore essential for deriving true stellar and planetary properties as well as maximizing the returns for TESS and future exoplanet missions.

  18. Connection between Dynamically Derived Initial Mass Function Normalization and Stellar Population Parameters

    NASA Astrophysics Data System (ADS)

    McDermid, Richard M.; Cappellari, Michele; Alatalo, Katherine; Bayet, Estelle; Blitz, Leo; Bois, Maxime; Bournaud, Frédéric; Bureau, Martin; Crocker, Alison F.; Davies, Roger L.; Davis, Timothy A.; de Zeeuw, P. T.; Duc, Pierre-Alain; Emsellem, Eric; Khochfar, Sadegh; Krajnović, Davor; Kuntschner, Harald; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Scott, Nicholas; Serra, Paolo; Weijmans, Anne-Marie; Young, Lisa M.

    2014-09-01

    We report on empirical trends between the dynamically determined stellar initial mass function (IMF) and stellar population properties for a complete, volume-limited sample of 260 early-type galaxies from the ATLAS3D project. We study trends between our dynamically derived IMF normalization αdyn ≡ (M/L)stars/(M/L)Salp and absorption line strengths, and interpret these via single stellar population-equivalent ages, abundance ratios (measured as [α/Fe]), and total metallicity, [Z/H]. We find that old and alpha-enhanced galaxies tend to have on average heavier (Salpeter-like) mass normalization of the IMF, but stellar population does not appear to be a good predictor of the IMF, with a large range of αdyn at a given population parameter. As a result, we find weak αdyn-[α/Fe] and αdyn -Age correlations and no significant αdyn -[Z/H] correlation. The observed trends appear significantly weaker than those reported in studies that measure the IMF normalization via the low-mass star demographics inferred through stellar spectral analysis.

  19. 7 CFR 28.416 - Strict Good Ordinary Light Spotted Color.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Strict Good Ordinary Light Spotted Color. 28.416... CONTAINER REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Standards Light Spotted Cotton § 28.416 Strict Good Ordinary Light Spotted Color. Strict Good Ordinary Light Spotted Color is color which in spot or...

  20. 7 CFR 28.415 - Low Middling Light Spotted Color.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Low Middling Light Spotted Color. 28.415 Section 28... REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Standards Light Spotted Cotton § 28.415 Low Middling Light Spotted Color. Low Middling Light Spotted Color is color which in spot or color, or both, is between Low...

  1. 7 CFR 28.415 - Low Middling Light Spotted Color.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Low Middling Light Spotted Color. 28.415 Section 28... REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Standards Light Spotted Cotton § 28.415 Low Middling Light Spotted Color. Low Middling Light Spotted Color is color which in spot or color, or both, is between Low...

  2. 7 CFR 28.415 - Low Middling Light Spotted Color.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Low Middling Light Spotted Color. 28.415 Section 28... REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Standards Light Spotted Cotton § 28.415 Low Middling Light Spotted Color. Low Middling Light Spotted Color is color which in spot or color, or both, is between Low...

  3. 7 CFR 28.416 - Strict Good Ordinary Light Spotted Color.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Strict Good Ordinary Light Spotted Color. 28.416... CONTAINER REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Standards Light Spotted Cotton § 28.416 Strict Good Ordinary Light Spotted Color. Strict Good Ordinary Light Spotted Color is color which in spot or...

  4. 7 CFR 28.416 - Strict Good Ordinary Light Spotted Color.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Strict Good Ordinary Light Spotted Color. 28.416... CONTAINER REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Standards Light Spotted Cotton § 28.416 Strict Good Ordinary Light Spotted Color. Strict Good Ordinary Light Spotted Color is color which in spot or...

  5. 7 CFR 28.416 - Strict Good Ordinary Light Spotted Color.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Strict Good Ordinary Light Spotted Color. 28.416... CONTAINER REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Standards Light Spotted Cotton § 28.416 Strict Good Ordinary Light Spotted Color. Strict Good Ordinary Light Spotted Color is color which in spot or...

  6. 7 CFR 28.412 - Strict Middling Light Spotted Color.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Strict Middling Light Spotted Color. 28.412 Section 28... REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Standards Light Spotted Cotton § 28.412 Strict Middling Light Spotted Color. Strict Middling Light Spotted Color is color which in spot or color, or both, is...

  7. 7 CFR 28.414 - Strict Low Middling Light Spotted Color.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Strict Low Middling Light Spotted Color. 28.414... CONTAINER REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Standards Light Spotted Cotton § 28.414 Strict Low Middling Light Spotted Color. Strict Low Middling Light Spotted Color is color which in spot or...

  8. 7 CFR 28.414 - Strict Low Middling Light Spotted Color.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Strict Low Middling Light Spotted Color. 28.414... CONTAINER REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Standards Light Spotted Cotton § 28.414 Strict Low Middling Light Spotted Color. Strict Low Middling Light Spotted Color is color which in spot or...

  9. 7 CFR 28.416 - Strict Good Ordinary Light Spotted Color.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Strict Good Ordinary Light Spotted Color. 28.416... CONTAINER REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Standards Light Spotted Cotton § 28.416 Strict Good Ordinary Light Spotted Color. Strict Good Ordinary Light Spotted Color is color which in spot or...

  10. 7 CFR 28.414 - Strict Low Middling Light Spotted Color.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Strict Low Middling Light Spotted Color. 28.414... CONTAINER REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Standards Light Spotted Cotton § 28.414 Strict Low Middling Light Spotted Color. Strict Low Middling Light Spotted Color is color which in spot or...

  11. 7 CFR 28.411 - Good Middling Light Spotted Color.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Good Middling Light Spotted Color. 28.411 Section 28... REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Standards Light Spotted Cotton § 28.411 Good Middling Light Spotted Color. Good Middling Light Spotted Color is color which in spot or color, or both, is...

  12. 7 CFR 28.412 - Strict Middling Light Spotted Color.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Strict Middling Light Spotted Color. 28.412 Section 28... REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Standards Light Spotted Cotton § 28.412 Strict Middling Light Spotted Color. Strict Middling Light Spotted Color is color which in spot or color, or both, is...

  13. 7 CFR 28.412 - Strict Middling Light Spotted Color.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Strict Middling Light Spotted Color. 28.412 Section 28... REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Standards Light Spotted Cotton § 28.412 Strict Middling Light Spotted Color. Strict Middling Light Spotted Color is color which in spot or color, or both, is...

  14. 7 CFR 28.414 - Strict Low Middling Light Spotted Color.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Strict Low Middling Light Spotted Color. 28.414... CONTAINER REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Standards Light Spotted Cotton § 28.414 Strict Low Middling Light Spotted Color. Strict Low Middling Light Spotted Color is color which in spot or...

  15. 7 CFR 28.411 - Good Middling Light Spotted Color.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Good Middling Light Spotted Color. 28.411 Section 28... REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Standards Light Spotted Cotton § 28.411 Good Middling Light Spotted Color. Good Middling Light Spotted Color is color which in spot or color, or both, is...

  16. 7 CFR 28.414 - Strict Low Middling Light Spotted Color.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Strict Low Middling Light Spotted Color. 28.414... CONTAINER REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Standards Light Spotted Cotton § 28.414 Strict Low Middling Light Spotted Color. Strict Low Middling Light Spotted Color is color which in spot or...

  17. 7 CFR 28.411 - Good Middling Light Spotted Color.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Good Middling Light Spotted Color. 28.411 Section 28... REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Standards Light Spotted Cotton § 28.411 Good Middling Light Spotted Color. Good Middling Light Spotted Color is color which in spot or color, or both, is...

  18. 7 CFR 28.411 - Good Middling Light Spotted Color.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Good Middling Light Spotted Color. 28.411 Section 28... REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Standards Light Spotted Cotton § 28.411 Good Middling Light Spotted Color. Good Middling Light Spotted Color is color which in spot or color, or both, is...

  19. 7 CFR 28.412 - Strict Middling Light Spotted Color.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Strict Middling Light Spotted Color. 28.412 Section 28... REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Standards Light Spotted Cotton § 28.412 Strict Middling Light Spotted Color. Strict Middling Light Spotted Color is color which in spot or color, or both, is...

  20. 7 CFR 28.413 - Middling Light Spotted Color.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Middling Light Spotted Color. 28.413 Section 28.413... REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Standards Light Spotted Cotton § 28.413 Middling Light Spotted Color. Middling Light Spotted Color is color which in spot or color, or both, is between Middling...

  1. 7 CFR 28.415 - Low Middling Light Spotted Color.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Low Middling Light Spotted Color. 28.415 Section 28... REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Standards Light Spotted Cotton § 28.415 Low Middling Light Spotted Color. Low Middling Light Spotted Color is color which in spot or color, or both, is between Low...

  2. 7 CFR 28.413 - Middling Light Spotted Color.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Middling Light Spotted Color. 28.413 Section 28.413... REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Standards Light Spotted Cotton § 28.413 Middling Light Spotted Color. Middling Light Spotted Color is color which in spot or color, or both, is between Middling...

  3. 7 CFR 28.413 - Middling Light Spotted Color.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Middling Light Spotted Color. 28.413 Section 28.413... REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Standards Light Spotted Cotton § 28.413 Middling Light Spotted Color. Middling Light Spotted Color is color which in spot or color, or both, is between Middling...

  4. 7 CFR 28.413 - Middling Light Spotted Color.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Middling Light Spotted Color. 28.413 Section 28.413... REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Standards Light Spotted Cotton § 28.413 Middling Light Spotted Color. Middling Light Spotted Color is color which in spot or color, or both, is between Middling...

  5. 7 CFR 28.413 - Middling Light Spotted Color.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Middling Light Spotted Color. 28.413 Section 28.413... REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Standards Light Spotted Cotton § 28.413 Middling Light Spotted Color. Middling Light Spotted Color is color which in spot or color, or both, is between Middling...

  6. Medical students’ attitudes and perspectives regarding novel computer-based practical spot tests compared to traditional practical spot tests

    PubMed Central

    Wijerathne, Buddhika; Rathnayake, Geetha

    2013-01-01

    Background Most universities currently practice traditional practical spot tests to evaluate students. However, traditional methods have several disadvantages. Computer-based examination techniques are becoming more popular among medical educators worldwide. Therefore incorporating the computer interface in practical spot testing is a novel concept that may minimize the shortcomings of traditional methods. Assessing students’ attitudes and perspectives is vital in understanding how students perceive the novel method. Methods One hundred and sixty medical students were randomly allocated to either a computer-based spot test (n=80) or a traditional spot test (n=80). The students rated their attitudes and perspectives regarding the spot test method soon after the test. The results were described comparatively. Results Students had higher positive attitudes towards the computer-based practical spot test compared to the traditional spot test. Their recommendations to introduce the novel practical spot test method for future exams and to other universities were statistically significantly higher. Conclusions The computer-based practical spot test is viewed as more acceptable to students than the traditional spot test. PMID:26451213

  7. Absolute stellar photometry on moderate-resolution FPA images

    USGS Publications Warehouse

    Stone, T.C.

    2009-01-01

    An extensive database of star (and Moon) images has been collected by the ground-based RObotic Lunar Observatory (ROLO) as part of the US Geological Survey program for lunar calibration. The stellar data are used to derive nightly atmospheric corrections for the observations from extinction measurements, and absolute calibration of the ROLO sensors is based on observations of Vega and published reference flux and spectrum data. The ROLO telescopes were designed for imaging the Moon at moderate resolution, thus imposing some limitations for the stellar photometry. Attaining accurate stellar photometry with the ROLO image data has required development of specialized processing techniques. A key consideration is consistency in discriminating the star core signal from the off-axis point spread function. The analysis and processing methods applied to the ROLO stellar image database are described. ?? 2009 BIPM and IOP Publishing Ltd.

  8. Chemical Abundances of Giants in Globular Clusters

    NASA Astrophysics Data System (ADS)

    Gratton, Raffaele G.; Bragaglia, Angela; Carretta, Eugenio; D'Orazi, Valentina; Lucatello, Sara

    A large fraction of stars form in clusters. According to a widespread paradigma, stellar clusters are prototypes of single stellar populations. According to this concept, they formed on a very short time scale, and all their stars share the same chemical composition. Recently it has been understood that massive stellar clusters (the globular clusters) rather host various stellar populations, characterized by different chemical composition: these stellar populations have also slightly different ages, stars of the second generations being formed from the ejecta of part of those of an earlier one. Furthermore, it is becoming clear that the efficiency of the process is quite low: many more stars formed within this process than currently present in the clusters. This implies that a significant, perhaps even dominant fraction of the ancient population of galaxies formed within the episodes that lead to formation the globular clusters.

  9. Stellar photometry with the Wide Field/Planetary Camera of the Hubble Space Telescope

    NASA Astrophysics Data System (ADS)

    Holtzman, Jon A.

    1990-07-01

    Simulations of Wide Field/Planetary Camera (WF/PC) images are analyzed in order to discover the most effective techniques for stellar photometry and to evaluate the accuracy and limitations of these techniques. The capabilities and operation of the WF/PC and the simulations employed in the study are described. The basic techniques of stellar photometry and methods to improve these techniques for the WF/PC are discussed. The correct parameters for star detection, aperture photometry, and point-spread function (PSF) fitting with the DAOPHOT software of Stetson (1987) are determined. Consideration is given to undersampling of the stellar images by the detector; variations in the PSF; and the crowding of the stellar images. It is noted that, with some changes DAOPHOT, is able to generate photometry almost to the level of photon statistics.

  10. Evolutionary synthesis of simple stellar populations. Colours and indices

    NASA Astrophysics Data System (ADS)

    Kurth, O. M.; Fritze-v. Alvensleben, U.; Fricke, K. J.

    1999-07-01

    We construct evolutionary synthesis models for simple stellar populations using the evolutionary tracks from the Padova group (1993, 1994), theoretical colour calibrations from \\cite[Lejeune et al. (1997, 1998)]{lejeune} and fit functions for stellar atmospheric indices from \\cite[Worthey et al. (1994)]{worthey}. A Monte-Carlo technique allows us to obtain a smooth time evolution of both broad band colours in UBVRIK and a series of stellar absorption features for Single Burst Stellar Populations (SSPs). We present colours and indices for SSPs with ages from 1 \\ 10(9) yrs to 1.6 \\ 10(10) yrs and metallicities [M/H]=-2.3, -1.7, -0.7, -0.4, 0.0 and 0.4. Model colours and indices at an age of about a Hubble time are in good agreement with observed colours and indices of the Galactic and M 31 GCs.

  11. Nebular and Stellar Dust Extinction Across the Disk of Emission-line Galaxies on Kiloparsec Scales

    NASA Astrophysics Data System (ADS)

    Hemmati, Shoubaneh; Mobasher, Bahram; Darvish, Behnam; Nayyeri, Hooshang; Sobral, David; Miller, Sarah

    2015-11-01

    We investigate the resolved kiloparsec-scale stellar and nebular dust distribution in eight star-forming galaxies at z ∼ 0.4 in the Great Observatories Origins Deep Survey fields. This is to get a better understanding of the effect of dust attenuation on measurements of physical properties and its variation with redshift. Constructing the observed spectral energy distributions (SEDs) per pixel, based on seven bands of photometric data from Hubble Space Telescope/Advanced Camera for Surveys and WFC3, we performed pixel-by-pixel SED fits to population synthesis models and estimated the small-scale distribution of stellar dust extinction. We use Hα/Hβ nebular emission line ratios from Keck/DEIMOS high-resolution spectra at each spatial resolution element to measure the amount of attenuation faced by ionized gas at different radii from the centers of galaxies. We find a good agreement between the integrated and median of resolved color excess measurements in our galaxies. The ratio of integrated nebular to stellar dust extinction is always greater than unity, but does not show any trend with stellar mass or star formation rate (SFR). We find that inclination plays an important role in the variation of the nebular to stellar excess ratio. The stellar color excess profiles are found to have higher values at the center compared to outer parts of the disk. However, for lower mass galaxies, a similar trend is not found for the nebular color excess. We find that the nebular color excess increases with stellar mass surface density. This explains the absence of radial trend in the nebular color excess in lower mass galaxies which lack a large radial variation of stellar mass surface density. Using standard conversions of SFR surface density to gas mass surface density, and the relation between dust mass surface density and color excess, we find no significant variation in the dust-to-gas ratio in regions with high gas mass surface densities over the scales probed in this study.

  12. Stellar populations dominated by massive stars in dusty starburst galaxies across cosmic time

    NASA Astrophysics Data System (ADS)

    Zhang, Zhi-Yu; Romano, D.; Ivison, R. J.; Papadopoulos, Padelis P.; Matteucci, F.

    2018-06-01

    All measurements of cosmic star formation must assume an initial distribution of stellar masses—the stellar initial mass function—in order to extrapolate from the star-formation rate measured for typically rare, massive stars (of more than eight solar masses) to the total star-formation rate across the full stellar mass spectrum1. The shape of the stellar initial mass function in various galaxy populations underpins our understanding of the formation and evolution of galaxies across cosmic time2. Classical determinations of the stellar initial mass function in local galaxies are traditionally made at ultraviolet, optical and near-infrared wavelengths, which cannot be probed in dust-obscured galaxies2,3, especially distant starbursts, whose apparent star-formation rates are hundreds to thousands of times higher than in the Milky Way, selected at submillimetre (rest-frame far-infrared) wavelengths4,5. The 13C/18O isotope abundance ratio in the cold molecular gas—which can be probed via the rotational transitions of the 13CO and C18O isotopologues—is a very sensitive index of the stellar initial mass function, with its determination immune to the pernicious effects of dust. Here we report observations of 13CO and C18O emission for a sample of four dust-enshrouded starbursts at redshifts of approximately two to three, and find unambiguous evidence for a top-heavy stellar initial mass function in all of them. A low 13CO/C18O ratio for all our targets—alongside a well tested, detailed chemical evolution model benchmarked on the Milky Way6—implies that there are considerably more massive stars in starburst events than in ordinary star-forming spiral galaxies. This can bring these extraordinary starbursts closer to the `main sequence' of star-forming galaxies7, although such main-sequence galaxies may not be immune to changes in initial stellar mass function, depending on their star-formation densities.

  13. The rise and fall of stellar across the peak of cosmic star formation history: effects of mergers versus diffuse stellar mass acquisition

    NASA Astrophysics Data System (ADS)

    Welker, C.; Dubois, Y.; Devriendt, J.; Pichon, C.; Kaviraj, S.; Peirani, S.

    2017-02-01

    Building galaxy merger trees from a state-of-the-art cosmological hydrodynamical simulation, Horizon-AGN, we perform a statistical study of how mergers and diffuse stellar mass acquisition processes drive galaxy morphologic properties above z > 1. By diffuse mass acquisition here, we mean both accretion of stars by unresolved mergers (relative stellar mass growth smaller than 4.5 per cent) as well as in situ star formation when no resolved mergers are detected along the main progenitor branch of a galaxy. We investigate how stellar densities, galaxy sizes and galaxy morphologies (defined via shape parameters derived from the inertia tensor of the stellar density) depend on mergers of different mass ratios. We investigate how stellar densities, effective radii and shape parameters derived from the inertia tensor depend on mergers of different mass ratios. We find strong evidence that diffuse stellar accretion and in situ formation tend to flatten small galaxies over cosmic time, leading to the formation of discs. On the other hand, mergers, and not only the major ones, exhibit a propensity to puff up and destroy stellar discs, confirming the origin of elliptical galaxies. We confirm that mergers grow galaxy sizes more efficiently than diffuse processes (r_{0.5}∝ M_s^{0.85} and r_{0.5}∝ M_s^{0.1} on average, respectively) and we also find that elliptical galaxies are more susceptible to grow in size through mergers than disc galaxies with a size-mass evolution r_{0.5}∝ M_s^{1.2} instead of r_{0.5}∝ M_s^{-0.5}-M^{0.5} for discs depending on the merger mass ratio. The gas content drives the size-mass evolution due to merger with a faster size growth for gas-poor galaxies r_{0.5}∝ M_s2 than for gas-rich galaxies r0.5 ∝ Ms.

  14. Stellar populations dominated by massive stars in dusty starburst galaxies across cosmic time.

    PubMed

    Zhang, Zhi-Yu; Romano, D; Ivison, R J; Papadopoulos, Padelis P; Matteucci, F

    2018-06-01

    All measurements of cosmic star formation must assume an initial distribution of stellar masses-the stellar initial mass function-in order to extrapolate from the star-formation rate measured for typically rare, massive stars (of more than eight solar masses) to the total star-formation rate across the full stellar mass spectrum 1 . The shape of the stellar initial mass function in various galaxy populations underpins our understanding of the formation and evolution of galaxies across cosmic time 2 . Classical determinations of the stellar initial mass function in local galaxies are traditionally made at ultraviolet, optical and near-infrared wavelengths, which cannot be probed in dust-obscured galaxies 2,3 , especially distant starbursts, whose apparent star-formation rates are hundreds to thousands of times higher than in the Milky Way, selected at submillimetre (rest-frame far-infrared) wavelengths 4,5 . The 13 C/ 18 O isotope abundance ratio in the cold molecular gas-which can be probed via the rotational transitions of the 13 CO and C 18 O isotopologues-is a very sensitive index of the stellar initial mass function, with its determination immune to the pernicious effects of dust. Here we report observations of 13 CO and C 18 O emission for a sample of four dust-enshrouded starbursts at redshifts of approximately two to three, and find unambiguous evidence for a top-heavy stellar initial mass function in all of them. A low 13 CO/C 18 O ratio for all our targets-alongside a well tested, detailed chemical evolution model benchmarked on the Milky Way 6 -implies that there are considerably more massive stars in starburst events than in ordinary star-forming spiral galaxies. This can bring these extraordinary starbursts closer to the 'main sequence' of star-forming galaxies 7 , although such main-sequence galaxies may not be immune to changes in initial stellar mass function, depending on their star-formation densities.

  15. An isochrone data base and a rapid model for stellar population synthesis

    NASA Astrophysics Data System (ADS)

    Li, Zhongmu; Han, Zhanwen

    2008-06-01

    We first presented an isochrone data base that can be widely used for stellar population synthesis studies and colour-magnitude diagram (CMD) fitting. The data base consists of the isochrones of both single-star and binary-star simple stellar populations (ss-SSPs and bs-SSPs). The ranges for the age and metallicity of populations are 0-15 Gyr and 0.0001-0.03, respectively. All data are available for populations with two widely used initial mass functions (IMFs), that is, Salpeter IMF and Chabrier IMF. The uncertainty caused by the data base (about 0.81 per cent) is designed to be smaller than those caused by the Hurley code and widely used stellar spectra libraries (e.g. BaSeL 3.1) when it is used for stellar population synthesis. Based on the isochrone data base, we then built a rapid stellar population synthesis (RPS) model and calculated the high-resolution (0.3-Å) integrated spectral energy distributions, Lick indices and colour indices for bs-SSPs and ss-SSPs. In particular, we calculated the UBVRIJHKLM colours, ugriz colours and some composite colours that consist of magnitudes on different systems. These colours are useful for disentangling the well-known stellar age-metallicity degeneracy according to our previous work. As an example for applying the isochrone data base for CMD fitting, we fitted the CMDs of two star clusters (M67 and NGC1868) and obtained their distance moduli, colour excesses, stellar metallicities and ages. The results showed that the isochrones of bs-SSPs are closer to those of real star clusters. It suggests that we should take the effects of binary interactions into account in stellar population synthesis. We also discussed on the limitations of the application of the isochrone data base and the results of the RPS model. All the data are available at the CDS or on request to the authors. E-mail: zhongmu.li@gmail.com

  16. The 6dF Galaxy Survey: dependence of halo occupation on stellar mass

    NASA Astrophysics Data System (ADS)

    Beutler, Florian; Blake, Chris; Colless, Matthew; Jones, D. Heath; Staveley-Smith, Lister; Campbell, Lachlan; Parker, Quentin; Saunders, Will; Watson, Fred

    2013-03-01

    In this paper we study the stellar mass dependence of galaxy clustering in the 6dF Galaxy Survey (6dFGS). The near-infrared selection of 6dFGS allows more reliable stellar mass estimates compared to optical bands used in other galaxy surveys. Using the halo occupation distribution model, we investigate the trend of dark matter halo mass and satellite fraction with stellar mass by measuring the projected correlation function, wp(rp). We find that the typical halo mass (M1) as well as the satellite power-law index (α) increases with stellar mass. This indicates (1) that galaxies with higher stellar mass sit in more massive dark matter haloes and (2) that these more massive dark matter haloes accumulate satellites faster with growing mass compared to haloes occupied by low stellar mass galaxies. Furthermore, we find a relation between M1 and the minimum dark matter halo mass (Mmin) of M1 ≈ 22 Mmin, in agreement with similar findings for Sloan Digital Sky Survey galaxies. The satellite fraction of 6dFGS galaxies declines with increasing stellar mass from 21 per cent at Mstellar = 2.6 × 1010 h-2 M⊙ to 12 per cent at Mstellar = 5.4 × 1010 h-2 M⊙ indicating that high stellar mass galaxies are more likely to be central galaxies. We compare our results to two different semi-analytic models derived from the Millennium Simulation, finding some disagreement. Our results can be used for placing new constraints on semi-analytic models in the future, particularly the behaviour of luminous red satellites. Finally, we compare our results to studies of halo occupation using galaxy-galaxy weak lensing. We find good overall agreement, representing a valuable cross-check for these two different tools of studying the matter distribution in the Universe.

  17. Spatiotemporal chaos of self-replicating spots in reaction-diffusion systems.

    PubMed

    Wang, Hongli; Ouyang, Qi

    2007-11-23

    The statistical properties of self-replicating spots in the reaction-diffusion Gray-Scott model are analyzed. In the chaotic regime of the system, the spots that dominate the spatiotemporal chaos grow and divide in two or decay into the background randomly and continuously. The rates at which the spots are created and decay are observed to be linearly dependent on the number of spots in the system. We derive a probabilistic description of the spot dynamics based on the statistical independence of spots and thus propose a characterization of the spatiotemporal chaos dominated by replicating spots.

  18. Transcriptome sequencing of purple petal spot region in tree peony reveals differentially expressed anthocyanin structural genes

    PubMed Central

    Zhang, Yanzhao; Cheng, Yanwei; Ya, Huiyuan; Xu, Shuzhen; Han, Jianming

    2015-01-01

    The pigmented cells in defined region of a petal constitute the petal spots. Petal spots attract pollinators and are found in many angiosperm families. Several cultivars of tree peony contain a single red or purple spot at the base of petal that makes the flower more attractive for the ornamental market. So far, the understanding of the molecular mechanism of spot formation is inadequate. In this study, we sequenced the transcriptome of the purple spot and the white non-spot of tree peony flower. We assembled and annotated 67,892 unigenes. Comparative analyses of the two transcriptomes showed 1,573 differentially expressed genes, among which 933 were up-regulated, and 640 were down-regulated in the purple spot. Subsequently, we examined four anthocyanin structural genes, including PsCHS, PsF3′H, PsDFR, and PsANS, which expressed at a significantly higher level in the purple spot than in the white non-spot. We further validated the digital expression data using quantitative real-time PCR. Our result uncovered transcriptome variance between the spot and non-spot of tree peony flower, and revealed that the co-expression of four anthocyanin structural genes was responsible for spot pigment in tree peony. The data will further help to unravel the genetic mechanism of peony flower spot formation. PMID:26583029

  19. Radiation-driven winds of hot stars. V - Wind models for central stars of planetary nebulae

    NASA Technical Reports Server (NTRS)

    Pauldrach, A.; Puls, J.; Kudritzki, R. P.; Mendez, R. H.; Heap, S. R.

    1988-01-01

    Wind models using the recent improvements of radiation driven wind theory by Pauldrach et al. (1986) and Pauldrach (1987) are presented for central stars of planetary nebulae. The models are computed along evolutionary tracks evolving with different stellar mass from the Asymptotic Giant Branch. We show that the calculated terminal wind velocities are in agreement with the observations and allow in principle an independent determination of stellar masses and radii. The computed mass-loss rates are in qualitative agreement with the occurrence of spectroscopic stellar wind features as a function of stellar effective temperature and gravity.

  20. Stellar C III Emissions as a New Classification Parameter for (WC) Central Stars

    NASA Technical Reports Server (NTRS)

    Feibelman, W. A.

    1999-01-01

    We report detection of stellar C III lambda 1909 emission in International Ultraviolet Explorer (IUE) echelle spectra of early-type [WC] planetary nebula central stars (CSPNs). Additionally, stellar C III emission at lambda 2297 is observed in early- and late-type [WC) CSPNS. Inclusion of these C III features for abundance determinations may resolve a conflict of underabundance of C/O for early type [WC2] - [WC4] CSPNS. A linear dependence on stellar C III lambda 2297 equivalent widths can be used to indicate a new classification of type [WCUV] central stars.

Top