Stellar Models of Rotating, PMS Stars with Magnetic Fields
NASA Astrophysics Data System (ADS)
Mendes, L. T. S.; Landin, N. R.; Vaz, L. P. R.
2014-10-01
We report our ongoing studies of the magnetic field effects on the structure and evolution of low-mass stars, using a method first proposed by Lydon & Sofia (1995, ApJS 101, 357) which treats the magnetic field as a perturbation on the stellar structure equations. The ATON 2.3 stellar evolution code (Ventura et al. 1998, A&A 334, 953) now includes, via this method, the effects of an imposed, parametric magnetic field whose surface strength scales throughout the stellar interior according to one of the three following laws: (a) the ratio between the magnetic and gas energy densities, β_{mg}, is kept at its surface value across the stellar interior, (b) β_{mg} has a shallower decrease in deeper layers, or (c) β_{mg} decays as [m(r)/M_{*}]^{2/3}. We then computed rotating stellar models, starting at the pre-main sequence phase, of 0.4, 0.6, 0.8 and 1.0 M_{odot} with solar chemical composition, mixing-length convection treatment with &alpha=λ/H_{P}=1.5 and surface magnetic field strength of 50 G. Summarizing our main findings: (1) we confirm that the magnetic field inhibits convection and so reduces the convective envelope; (2) the magnetic perturbation effect dominates over that of rotation for 0.8 and 1.0 M_{odot} masses, but their relative impact shows a reversal during the Hayashi tracks at lower masses (0.4 and 0.6 M_{odot}); in any case, the magnetic perturbation makes the tracks cooler; and (3) the magnetic field contributes to higher surface lithium abundances.
The Magnetic Field of the Class I Protostar WL 17
NASA Astrophysics Data System (ADS)
Johns-Krull, Christopher M.; Greene, T. P.; Doppmann, G.; Covey, K. R.
2007-12-01
Strong stellar magnetic fields are believed to truncate the inner accretion disks around young stars, redirecting the accreting material to the high latitude regions of the stellar surface. In the past few years, observations of strong stellar fields on Classical T Tauri stars [class II young stellar objects (YSOs)] with field strengths in general agreement with the predictions of magnetopsheric accretion theory have bolstered this picture. Currently, nothing is known about the magnetic field properties of younger, more embedded class I YSOs. It is during this protostellar evolutionary phase that stars accrete most of their final mass, but the physics governing this process remains poorly understood. Here, we use high resolution near infrared spectra obtained with NIRSPEC on Keck and with PHOENIX on Gemini South to measure the magnetic field properties of the class I protostar WL 17. We find clear signatures of a strong stellar magnetic field. Initial analysis of this data suggests a surface average field strength of 3.6 kG on the surface of WL 17. This is the highest mean surface field detected to date on any YSO. We present our field measurements and discuss how they fit with the general model of magnetospheric accretion in young stars.
NASA Astrophysics Data System (ADS)
Keszthelyi, Zsolt; Wade, Gregg A.; Petit, Veronique
2017-11-01
Large-scale dipolar surface magnetic fields have been detected in a fraction of OB stars, however only few stellar evolution models of massive stars have considered the impact of these fossil fields. We are performing 1D hydrodynamical model calculations taking into account evolutionary consequences of the magnetospheric-wind interactions in a simplified parametric way. Two effects are considered: i) the global mass-loss rates are reduced due to mass-loss quenching, and ii) the surface angular momentum loss is enhanced due to magnetic braking. As a result of the magnetic mass-loss quenching, the mass of magnetic massive stars remains close to their initial masses. Thus magnetic massive stars - even at Galactic metallicity - have the potential to be progenitors of "heavy" stellar mass black holes. Similarly, at Galactic metallicity, the formation of pair instability supernovae is plausible with a magnetic progenitor.
Binary stellar winds. [flow and magnetic field geometry
NASA Technical Reports Server (NTRS)
Siscoe, G. L.; Heinemann, M. A.
1974-01-01
Stellar winds from a binary star pair will interact with each other along a contact discontinuity. We discuss qualitatively the geometry of the flow and field resulting from this interaction in the simplest case where the stars and winds are identical. We consider the shape of the critical surface (defined as the surface where the flow speed is equal to the sound speed) as a function of stellar separation and the role of shock waves in the flow field. The effect of stellar spin and magnetic sectors on the field configuration is given. The relative roles of mass loss and magnetic torque in the evolution of orbital parameters is discussed.
Binary stellar winds. [flow and magnetic field interactions
NASA Technical Reports Server (NTRS)
Siscoe, G. L.; Heinemann, M. A.
1974-01-01
Stellar winds from a binary star will interact with each other along a contact discontinuity. We discuss qualitatively the geometry of the flow and field resulting from this interaction in the simplest case where the stars and winds are identical. We consider the shape of the critical surface (defined as the surface where the flow speed is equal to the sound speed) as a function of stellar separation and the role of shock waves in the flow field. The effect of stellar spin and magnetic sectors on the field configuration is given. The relative roles of mass loss and magnetic torque in the evolution of orbital parameters are discussed.
The Stellar Imager (SI) Project: Resolving Stellar Surfaces, Interiors, and Magnetic Activity
NASA Technical Reports Server (NTRS)
Carpenter, Kenneth G.; Schrijver, K.; Karovska, M.
2007-01-01
The Stellar Imager (SI) is a UV/Optical. Space-Based Interferometer designed to enable 0.1 milli-arcsec (mas) spectral imaging of stellar surfaces and, via asteroseismology, stellar interiors and of the Universe in general. The ultra-sharp images of SI will revolutionize our view of many dynamic astrophysical processes by transforming point sources into extended sources, and snapshots into evolving views. The science of SI focuses on the role of magnetism in the Universe, particularly on magnetic activity on the surfaces of stars like the Sun. Its prime goal is to enable long-term forecasting of solar activity and the space weather that it drives. SI will also revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magneto-hydrodynamically controlled processes in the Universe. In this paper we discuss the science goals, technology needs, and baseline design of the SI mission.
Nonlinear calculation of the m=1 internal kink instability in current carrying stellarators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wakatani, M.
1978-02-01
Nonlinear properties of the m=1 internal kink mode are shown in a low beta current carrying stellarator. The effects of the external helical magnetic fields are considered through a rotational transform and the magnetic surface is assumed to be circular. Magnetic surfaces inside the iota sub eta + iota sub sigma = 1 surface shift and deform non-circularly, while magnetic surfaces outside the iota sub eta + iota sub sigma = 1 are not disturbed, where iota sub eta is a rotational transform due to helical magnetic fields and iota sub sigma is due to a plasma current. Many highermore » harmonics are excited after the fundamental mode saturates. When the external helical magnetic fields are lowered, the m=1 tearing mode similar to that in a low beta Tokamak grows and magnetic islands appear near the iota sub eta + iota sub sigma = 1 surface. For adequate helical magnetic fields, the current carrying stellarator becomes stable against both the m=1 internal kink mode and the m=1 internal kink mode and the m=1 tearing mode, without lowering the rotational transform.« less
Non-resonant divertors for stellarators
NASA Astrophysics Data System (ADS)
Boozer, Allen; Punjabi, Alkesh
2017-10-01
The outermost confining magnetic surface in optimized stellarators has sharp edges, which resemble tokamak X-points. The plasma cross section has an even number of edges at the beginning but an odd number half way through the period. Magnetic field lines cannot cross sharp edges, but stellarator edges have a finite length and do not determine the rotational transform on the outermost confining surface. Just outside the last confining surface, surfaces formed by magnetic field lines have splits containing two adjacent magnetic flux tubes: one with entering and the other with an equal existing flux to the walls. The splits become wider with distance outside the outermost confining surface. These flux tubes form natural non-resonant stellarator divertors, which we are studying using maps. This work is supported by the US DOE Grants DE-FG02-95ER54333 to Columbia University and DE-FG02-01ER54624 and DE-FG02-04ER54793 to Hampton University and used resources of the NERSC, supported by the Office of Science, US DOE, under Contract No. DE-AC02-.
On the spottedness, magnetism and internal structure of stars
NASA Astrophysics Data System (ADS)
Gershberg, R. E.
Kinematical structures within stellar interiors that are the result of a self-organization of these interiors as thermodynamically open nonlinear systems are proposed as the physical basis for stellar magnetism. It is noted that the ubiquitousness of stellar magnetism that follows from the hypothesis is not in contradiction with observations. These kinematical structures may be energy reservoirs, and changes in these structures may be connected with variations of an energy flux emergent from a stellar surface, while its internal energy sources remain constant, explaining the radiation deficit from sunspots and starspots.
Resistive edge mode instability in stellarator and tokamak geometries
NASA Astrophysics Data System (ADS)
Mahmood, M. Ansar; Rafiq, T.; Persson, M.; Weiland, J.
2008-09-01
Geometrical effects on linear stability of electrostatic resistive edge modes are investigated in the three-dimensional Wendelstein 7-X stellarator [G. Grieger et al., Plasma Physics and Controlled Nuclear Fusion Research 1990 (International Atomic Energy Agency, Vienna, 1991), Vol. 3, p. 525] and the International Thermonuclear Experimental Reactor [Progress in the ITER Physics Basis, Nucl. Fusion 7, S1, S285 (2007)]-like equilibria. An advanced fluid model is used for the ions together with the reduced Braghinskii equations for the electrons. Using the ballooning mode representation, the drift wave problem is set as an eigenvalue equation along a field line and is solved numerically using a standard shooting technique. A significantly larger magnetic shear and a less unfavorable normal curvature in the tokamak equilibrium are found to give a stronger finite-Larmor radius stabilization and a more narrow mode spectrum than in the stellarator. The effect of negative global magnetic shear in the tokamak is found to be stabilizing. The growth rate on a tokamak magnetic flux surface is found to be comparable to that on a stellarator surface with the same global magnetic shear but the eigenfunction in the tokamak is broader than in the stellarator due to the presence of large negative local magnetic shear (LMS) on the tokamak surface. A large absolute value of the LMS in a region of unfavorable normal curvature is found to be stabilizing in the stellarator, while in the tokamak case, negative LMS is found to be stabilizing and positive LMS destabilizing.
NASA Astrophysics Data System (ADS)
Baliunas, S. L.
2004-05-01
Is hope for understanding the solar magnetic cycle to be found in stars? Observations of stars with significant sub-surface convective zones -- masses smaller than about 1.5 solar masses on the lower main sequence and many types of cool, post-main-sequence stars -- indicate the presence of surface and atmospheric inhomogeneities analogous to solar magnetic features, making stellar magnetic activity a cosmically widespread phenomenon. Observations have been made primarily in visible wavelengths, and important information has also been derived from the ultraviolet and x-ray spectrum regions. Interannual to interdecadal variability of spectrum indicators of stellar magnetic features is common, and in some cases similar in appearance to the 11-year sunspot cycle. Successful models of the physical processes responsible for stellar magnetic cycles, typically cast as a magnetohydrodynamic dynamo, require advances in understanding not only convection but also the magnetic field's interaction with it. The observed facts that underpin the hope for models will be summarized. Properties of stellar magnetic cycles will be compared and contrasted with those of the sun, including inferences from paleo-environmental reservoirs that contain information on solar century- to millennial-scale magnetic variability. Partial support of this research came from NASA NAG5-7635, NRC COBASE, CRDF 322, MIT-MSG 5710001241, JPL 1236821, AF 49620-02-1-0194, Richard Lounsberry Foundation, Langley-Abbot, Rollins, Scholarly Studies and James Arthur Funds (Smithsonian Institution) and several generous individuals.
High surface magnetic field in red giants as a new signature of planet engulfment?
NASA Astrophysics Data System (ADS)
Privitera, Giovanni; Meynet, Georges; Eggenberger, Patrick; Georgy, Cyril; Ekström, Sylvia; Vidotto, Aline A.; Bianda, Michele; Villaver, Eva; ud-Doula, Asif
2016-09-01
Context. Red giant stars may engulf planets. This may increase the rotation rate of their convective envelope, which could lead to strong dynamo-triggered magnetic fields. Aims: We explore the possibility of generating magnetic fields in red giants that have gone through the process of a planet engulfment. We compare them with similar models that evolve without any planets. We discuss the impact of magnetic braking through stellar wind on the evolution of the surface velocity of the parent star. Methods: By studying rotating stellar models with and without planets and an empirical relation between the Rossby number and the surface magnetic field, we deduced the evolution of the surface magnetic field along the red giant branch. The effects of stellar wind magnetic braking were explored using a relation deduced from magnetohydrodynamics simulations. Results: The stellar evolution model of a red giant with 1.7 M⊙ without planet engulfment and with a time-averaged rotation velocity during the main sequence equal to 100 km s-1 shows a surface magnetic field triggered by convection that is stronger than 10 G only at the base of the red giant branch, that is, for gravities log g> 3. When a planet engulfment occurs, this magnetic field can also appear at much lower gravities, that is, at much higher luminosities along the red giant branch. The engulfment of a 15 MJ planet typically produces a dynamo-triggered magnetic field stronger than 10 G for gravities between 2.5 and 1.9. We show that for reasonable magnetic braking laws for the wind, the high surface velocity reached after a planet engulfment may be maintained sufficiently long to be observable. Conclusions: High surface magnetic fields for red giants in the upper part of the red giant branch are a strong indication of a planet engulfment or of an interaction with a companion. Our theory can be tested by observing fast-rotating red giants such as HD 31994, Tyc 0347-00762-1, Tyc 5904-00513-1, and Tyc 6054-01204-1 and by determining whether they show magnetic fields.
The Stellar Imager (SI) - A Mission to Resolve Stellar Surfaces, Interiors, and Magnetic Activity
NASA Astrophysics Data System (ADS)
Carpenter, K. G.; Schrijver, C. J.; Karovska, M.; Si Vision Mission Team
2009-09-01
The Stellar Imager (SI) is a UV/Optical, Space-Based Interferometer designed to enable 0.1 milli-arcsecond (mas) spectral imaging of stellar surfaces and, via asteroseismology, stellar interiors and of the Universe in general. The ultra-sharp images of the Stellar Imager will revolutionize our view of many dynamic astrophysical processes by transforming point sources into extended sources, and snapshots into evolving views. SI's science focuses on the role of magnetism in the Universe, particularly on magnetic activity on the surfaces of stars like the Sun. SI's prime goal is to enable long-term forecasting of solar activity and the space weather that it drives. SI will also revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magneto-hydrodynamically controlled processes in the Universe. SI is included as a ``Flagship and Landmark Discovery Mission'' in the 2005 NASA Sun Solar System Connection (SSSC) Roadmap and as a candidate for a ``Pathways to Life Observatory'' in the NASA Exploration of the Universe Division (EUD) Roadmap (May, 2005). In this paper we discuss the science goals and technology needs of, and the baseline design for, the SI Mission (http://hires.gsfc.nasa.gov/si/) and its ability to image the Biggest, Baddest, Coolest Stars.
The Stellar Imager (SI) - A Mission to Resolve Stellar Surfaces, Interiors, and Magnetic Activity
NASA Technical Reports Server (NTRS)
Carpenter, Kenneth; Schrijver, Carolus J.; Karovska, Margarita
2007-01-01
The Stellar Imager (SI) is a UV/Optical, Space-Based Interferometer designed to enable 0.1 milli-arcsecond (mas) spectral imaging of stellar surfaces and, via asteroseismology, stellar interiors and of the Universe in general. The ultra-sharp images of the Stellar Imager will revolutionize our view of many dynamic astrophysical processes by transforming point sources into extended sources, and snapshots into evolving views. SI's science focuses on the role of magnetism in the Universe, particularly on magnetic activity on the surfaces of stars like the Sun. SI's prime goal is to enable long-term forecasting of solar activity and the space weather that it drives. SI will also revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magneto-hydrodynamically controlled processes in the Universe. SI is included as a 'Flagship and Landmark Discovery Mission' in the 2005 NASA Sun Solar System Connection (SSSC) Roadmap and as a candidate for a 'Pathways to Life Observatory' in the NASA Exploration of the Universe Division (EUD) Roadmap (May, 2005). In this paper we discuss the science goals and technology needs of, and the baseline design for, the SI Mission (http://hires.gsfc.nasa.gov/si/) its ability to image the 'Biggest, Baddest, Coolest Stars'.
Modelling the Surface Distribution of Magnetic Activity on Sun-Like Stars
NASA Astrophysics Data System (ADS)
Isik, Emre
2018-04-01
With the advent of high-precision space-borne stellar photometry and prospects for direct imaging, it is timely and essential to improve our understanding of stellar magnetic activity in rotational time scales. We present models for 'younger suns' with rotation and flux emergence rates between 1 and 16 times the solar rate. The models provide latitudinal distributions and tilt angles of bipolar magnetic regions, using flux tube rise simulations. Using these emergence patterns, we model the subsequent surface flux transport, to predict surface distributions of star-spots. Based on these models, we present preliminary results from our further modelling of the observed azimuthal magnetic fields, which strengthen for more rapidly rotating Sun-like stars.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garraffo, Cecilia; Drake, Jeremy J.; Cohen, Ofer
Rotation evolution of late-type stars is dominated by magnetic braking and the underlying factors that control this angular momentum loss are important for the study of stellar spin-down. In this work, we study angular momentum loss as a function of two different aspects of magnetic activity using a calibrated Alfvén wave-driven magnetohydrodynamic wind model: the strengths of magnetic spots and their distribution in latitude. By driving the model using solar and modified solar surface magnetograms, we show that the topology of the field arising from the net interaction of both small-scale and large-scale field is important for spin-down rates andmore » that angular momentum loss is not a simple function of large scale magnetic field strength. We find that changing the latitude of magnetic spots can modify mass and angular momentum loss rates by a factor of two. The general effect that causes these differences is the closing down of large-scale open field at mid- and high-latitudes by the addition of the small-scale field. These effects might give rise to modulation of mass and angular momentum loss through stellar cycles, and present a problem for ab initio attempts to predict stellar spin-down based on wind models. For all the magnetogram cases considered here, from dipoles to various spotted distributions, we find that angular momentum loss is dominated by the mass loss at mid-latitudes. The spin-down torque applied by magnetized winds therefore acts at specific latitudes and is not evenly distributed over the stellar surface, though this aspect is unlikely to be important for understanding spin-down and surface flows on stars.« less
On the Origin and Evolution of Stellar Chromospheres, Coronae and Winds
NASA Technical Reports Server (NTRS)
Musielak, Z. E.
2000-01-01
This grant was awarded by NASA to The University of Alabama in Huntsville (UAH) to construct state-of-the-art, theoretical, two-component, chromospheric models for single stars of different spectral types and different evolutionary status. In our proposal, we suggested to use these models to predict the level of the "basal flux", the observed range of variation of chromospheric activity for a given spectral type, and the decrease of this activity with stellar age. In addition, for red giants and supergiants, we also proposed to construct self-consistent, purely theoretical wind models, and used these models to investigate the origin of "dividing lines" in the H-R diagram. In the following, we describe our completed work. We have accomplished the first main goal of our proposal by constructing first purely theoretical, time-dependent and two-component models of stellar chromospheres.1 The models require specifying only three basic stellar parameters, namely, the effective temperature, gravity and rotation rate, and they take into account non-magnetic and magnetic regions in stellar chromospheres. The non-magnetic regions are heated by acoustic waves generated by the turbulent convection in the stellar subphotospheric layers. The magnetic regions are identified with magnetic flux tubes uniformly distributed over the entire stellar surface and they are heated by longitudinal tube waves generated by turbulent motions in the subphotospheric and photospheric layers. The coverage of stellar surface by magnetic regions (the so-called filling factor) is estimated for a given rotation rate from an observational relationship. The constructed models are time-dependent and are based on the energy balance between the amount of mechanical energy supplied by waves and radiative losses in strong Ca II and Mg II emission lines. To calculate the amount of wave energy in the non-magnetic regions, we have used the Lighthill-Stein theory for sound generation.
Detailed ADM-based Modeling of Shock Retreat and X-ray Emission of τ Sco
NASA Astrophysics Data System (ADS)
Fletcher, C. L.; Petit, V.; Cohen, D. H.; Townsend, R. H.; Wade, G. A.
2018-01-01
Leveraging the improvement of spectropolarimeters over the past few decades, surveys have found that about 10% of OB-type stars host strong (˜ kG) and mostly dipolar surface magnetic fields. One B-type star, τ Sco, has a more complex surface magnetic field than the general population of OB stars. Interestingly, its X-ray luminosity is an order of magnitude higher than predicted from analytical models of magnetized winds. Previous studies of τ Sco's magnetosphere have predicted that the region of closed field loops should be located close to the stellar surface. However, the lack of X-ray variability and the location of the shock-heated plasma measured from forbidden-to-intercombination X-ray line ratios suggest that the hot plasma, and hence the closed magnetic loops, extend considerably farther from the stellar surface, implying a significantly lower mass loss rate than initially assumed. We present an adaptation of the Analytic Dynamical Magnetosphere model, describing the magnetic confinement of the stellar wind, for an arbitrary field loop configuration. This model is used to predict the shock-heated plasma temperatures for individual field loops, which are then compared to high resolution grating spectra from the Chandra X-ray Observatory. This comparison shows that larger closed magnetic loops are needed.
Imaging Active Giants and Comparisons to Doppler Imaging
NASA Astrophysics Data System (ADS)
Roettenbacher, Rachael
2018-04-01
In the outer layers of cool, giant stars, stellar magnetism stifles convection creating localized starspots, analogous to sunspots. Because they frequently cover much larger regions of the stellar surface than sunspots, starspots of giant stars have been imaged using a variety of techniques to understand, for example, stellar magnetism, differential rotation, and spot evolution. Active giants have been imaged using photometric, spectroscopic, and, only recently, interferometric observations. Interferometry has provided a way to unambiguously see stellar surfaces without the degeneracies experienced by other methods. The only facility presently capable of obtaining the sub-milliarcsecond resolution necessary to not only resolve some giant stars, but also features on their surfaces is the Center for High-Angular Resolution Astronomy (CHARA) Array. Here, an overview will be given of the results of imaging active giants and details on the recent comparisons of simultaneous interferometric and Doppler images.
Magnetic fields driven by tidal mixing in radiative stars
NASA Astrophysics Data System (ADS)
Vidal, Jérémie; Cébron, David; Schaeffer, Nathanaël; Hollerbach, Rainer
2018-04-01
Stellar magnetism plays an important role in stellar evolution theory. Approximatively 10 per cent of observed main sequence (MS) and pre-main-sequence (PMS) radiative stars exhibit surface magnetic fields above the detection limit, raising the question of their origin. These stars host outer radiative envelopes, which are stably stratified. Therefore, they are assumed to be motionless in standard models of stellar structure and evolution. We focus on rapidly rotating, radiative stars which may be prone to the tidal instability, due to an orbital companion. Using direct numerical simulations in a sphere, we study the interplay between a stable stratification and the tidal instability, and assess its dynamo capability. We show that the tidal instability is triggered regardless of the strength of the stratification (Brunt-Väisälä frequency). Furthermore, the tidal instability can lead to both mixing and self-induced magnetic fields in stably stratified layers (provided that the Brunt-Väisälä frequency does not exceed the stellar spin rate in the simulations too much). The application to stars suggests that the resulting magnetic fields could be observable at the stellar surfaces. Indeed, we expect magnetic field strengths up to several Gauss. Consequently, tidally driven dynamos should be considered as a (complementary) dynamo mechanism, possibly operating in radiative MS and PMS stars hosting orbital companions. In particular, tidally driven dynamos may explain the observed magnetism of tidally deformed and rapidly rotating Vega-like stars.
NASA Astrophysics Data System (ADS)
Hudson, S. R.; Monticello, D. A.; Reiman, A. H.; Strickler, D. J.; Hirshman, S. P.
2003-06-01
For the (non-axisymmetric) stellarator class of plasma confinement devices to be feasible candidates for fusion power stations it is essential that, to a good approximation, the magnetic field lines lie on nested flux surfaces; however, the inherent lack of a continuous symmetry implies that magnetic islands are guaranteed to exist. Magnetic islands break the smooth topology of nested flux surfaces and chaotic field lines result when magnetic islands overlap. An analogous case occurs with 11/2-dimension Hamiltonian systems where resonant perturbations cause singularities in the transformation to action-angle coordinates and destroy integrability. The suppression of magnetic islands is a critical issue for stellarator design, particularly for small aspect ratio devices. Techniques for `healing' vacuum fields and fixed-boundary plasma equilibria have been developed, but what is ultimately required is a procedure for designing stellarators such that the self-consistent plasma equilibrium currents and the coil currents combine to produce an integrable magnetic field, and such a procedure is presented here for the first time. Magnetic islands in free-boundary full-pressure full-current stellarator magnetohydrodynamic equilibria are suppressed using a procedure based on the Princeton Iterative Equilibrium Solver [A.H.Reiman & H.S.Greenside, Comp. Phys. Comm., 43:157, 1986.] which iterates the equilibrium equations to obtain the plasma equilibrium. At each iteration, changes to a Fourier representation of the coil geometry are made to cancel resonant fields produced by the plasma. As the iterations continue, the coil geometry and the plasma simultaneously converge to an equilibrium in which the island content is negligible. The method is applied to a candidate plasma and coil design for the National Compact Stellarator eXperiment [G.H.Neilson et.al., Phys. Plas., 7:1911, 2000.].
Method and apparatus for maintaining equilibrium in a helical axis stellarator
Reiman, A.; Boozer, A.
1984-10-31
Apparatus for maintaining three-dimensional MHD equilibrium in a plasma contained in a helical axis stellarator includes a resonant coil system, having a configuration such that current therethrough generates a magnetic field cancelling the resonant magnetic field produced by currents driven by the plasma pressure on any given flux surface resonating with the rotational transform of another flux surface in the plasma. Current through the resonant coil system is adjusted as a function of plasma beta.
Flexible helical-axis stellarator
Harris, Jeffrey H.; Hender, Timothy C.; Carreras, Benjamin A.; Cantrell, Jack L.; Morris, Robert N.
1988-01-01
An 1=1 helical winding which spirals about a conventional planar, circular central conductor of a helical-axis stellarator adds a significant degree of flexibility by making it possible to control the rotational transform profile and shear of the magnetic fields confining the plasma in a helical-axis stellarator. The toroidal central conductor links a plurality of toroidal field coils which are separately disposed to follow a helical path around the central conductor in phase with the helical path of the 1=1 winding. This coil configuration produces bean-shaped magnetic flux surfaces which rotate around the central circular conductor in the same manner as the toroidal field generating coils. The additional 1=1 winding provides flexible control of the magnetic field generated by the central conductor to prevent the formation of low-order resonances in the rotational transform profile which can produce break-up of the equilibrium magnetic surfaces. Further, this additional winding can deepen the magnetic well which together with the flexible control provides increased stability.
Fixing Stellarator Magnetic Surfaces
NASA Astrophysics Data System (ADS)
Hanson, James D.
1999-11-01
Magnetic surfaces are a perennial issue for stellarators. The design heuristic of finding a magnetic field with zero perpendicular component on a specified outer surface often yields inner magnetic surfaces with very small resonant islands. However, magnetic fields in the laboratory are not design fields. Island-causing errors can arise from coil placement errors, stray external fields, and design inadequacies such as ignoring coil leads and incomplete characterization of current distributions within the coil pack. The problem addressed is how to eliminate such error-caused islands. I take a perturbation approach, where the zero order field is assumed to have good magnetic surfaces, and comes from a VMEC equilibrium. The perturbation field consists of error and correction pieces. The error correction method is to determine the correction field so that the sum of the error and correction fields gives zero island size at specified rational surfaces. It is particularly important to correctly calculate the island size for a given perturbation field. The method works well with many correction knobs, and a Singular Value Decomposition (SVD) technique is used to determine minimal corrections necessary to eliminate islands.
The Stellar Imager (SI) - A Mission to Resolve Stellar Surfaces, Interiors, and Magnetic Activity
NASA Technical Reports Server (NTRS)
Christensen-Dalsgaard, Jorgen; Carpenter, Kenneth G.; Schrijver, Carolus J.; Karovska, Margarita
2012-01-01
The Stellar Imager (SI) is a space-based, UV/Optical Interferometer (UVOI) designed to enable 0.1 milli-arcsecond (mas) spectral imaging of stellar surfaces and of the Universe in general. It will also probe via asteroseismology flows and structures in stellar interiors. SI will enable the development and testing of a predictive dynamo model for the Sun, by observing patterns of surface activity and imaging of the structure and differential rotation of stellar interiors in a population study of Sun-like stars to determine the dependence of dynamo action on mass, internal structure and flows, and time. SI's science focuses on the role of magnetism in the Universe and will revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magnetohydrodynamically controlled processes in the Universe. SI is a "LandmarklDiscovery Mission" in the 2005 Heliophysics Roadmap, an implementation of the UVOI in the 2006 Astrophysics Strategic Plan, and a NASA Vision Mission ("NASA Space Science Vision Missions" (2008), ed. M. Allen). We present here the science goals of the SI Mission, a mission architecture that could meet those goals, and the technology development needed to enable this mission
Multiple, short-lived "stellar prominences" on the O giant ξ Persei: a magnetic star?
NASA Astrophysics Data System (ADS)
Sudnik, N.; Henrichs, H. F.
2018-01-01
We present strong evidence for a rotation period of 2.0406 d of the O giant ξ Persei, derived from the NIV λ1718 wind line in 12 yr of IUE data. We predict that ξ Per has a magnetic dipole field, with superposed variable magnetic prominences. Favorable dates for future magnetic measurements can be predicted. We also analysed time-resolved HeII 4686 spectra from a campaign in 1989 by using the same simplified model as before for λ Cephei, in terms of multiple spherical blobs attached to the surface, called stellar prominences (Sudnik & Henrichs, 2016). These represent transient multiple magnetic loops on the surface, for which we find lifetimes of mostly less than 5 h.
NASA Astrophysics Data System (ADS)
Parfrey, K.; Tchekhovskoy, A.
2017-10-01
I will present results from the first relativistic MHD simulations of accretion onto magnetized neutron stars, performed in general relativity in the Kerr spacetime. The accretion flow is geometrically thick with a relativistic-gas equation of state, appropriate for super-Eddington systems. Four regimes are recovered, in order of increasing stellar magnetic field strength (equivalently, decreasing mass accretion rate): (a) crushing of the stellar magnetosphere and direct accretion; (b) magnetically channeled accretion onto the stellar poles; (c) the propeller state, where material enters through the light cylinder but is prevented from accreting by the centrifugal barrier; (d) almost perfect exclusion of the accretion flow from the light cylinder by the pulsar's electromagnetic wind. A Poynting-flux-dominated relativistic jet, powered by stellar rotation, is produced when the intruding plasma succeeds in opening the pulsar's previously closed magnetic field lines. I will demonstrate the effect of changing the relative orientation of the stellar dipole and the large-scale magnetic field in the accreting plasma, and discuss our results in the context of the neutron-star-powered ULXs, as well as the transitional millisecond X-ray/radio pulsars and jet-launching neutron-star X-ray binaries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, X., E-mail: xzm0005@auburn.edu; Maurer, D. A.; Knowlton, S. F.
2015-12-15
Non-axisymmetric free-boundary equilibrium reconstructions of stellarator plasmas are performed for discharges in which the magnetic configuration is strongly modified by ohmically driven plasma current. These studies were performed on the compact toroidal hybrid device using the V3FIT reconstruction code with a set of 50 magnetic diagnostics external to the plasma. With the assumption of closed magnetic flux surfaces, the reconstructions using external magnetic measurements allow accurate estimates of the net toroidal flux within the last closed flux surface, the edge safety factor, and the plasma shape of these highly non-axisymmetric plasmas. The inversion radius of standard sawteeth is used tomore » infer the current profile near the magnetic axis; with external magnetic diagnostics alone, the current density profile is imprecisely reconstructed.« less
NASA Astrophysics Data System (ADS)
Ma, X.; Maurer, D. A.; Knowlton, S. F.; ArchMiller, M. C.; Cianciosa, M. R.; Ennis, D. A.; Hanson, J. D.; Hartwell, G. J.; Hebert, J. D.; Herfindal, J. L.; Pandya, M. D.; Roberds, N. A.; Traverso, P. J.
2015-12-01
Non-axisymmetric free-boundary equilibrium reconstructions of stellarator plasmas are performed for discharges in which the magnetic configuration is strongly modified by ohmically driven plasma current. These studies were performed on the compact toroidal hybrid device using the V3FIT reconstruction code with a set of 50 magnetic diagnostics external to the plasma. With the assumption of closed magnetic flux surfaces, the reconstructions using external magnetic measurements allow accurate estimates of the net toroidal flux within the last closed flux surface, the edge safety factor, and the plasma shape of these highly non-axisymmetric plasmas. The inversion radius of standard sawteeth is used to infer the current profile near the magnetic axis; with external magnetic diagnostics alone, the current density profile is imprecisely reconstructed.
Ma, X.; Maurer, D. A.; Knowlton, Stephen F.; ...
2015-12-22
Non-axisymmetric free-boundary equilibrium reconstructions of stellarator plasmas are performed for discharges in which the magnetic configuration is strongly modified by ohmically driven plasma current. These studies were performed on the compact toroidal hybrid device using the V3FIT reconstruction code with a set of 50 magnetic diagnostics external to the plasma. With the assumption of closed magnetic flux surfaces, the reconstructions using external magnetic measurements allow accurate estimates of the net toroidal flux within the last closed flux surface, the edge safety factor, and the plasma shape of these highly non-axisymmetric plasmas. Lastly, the inversion radius of standard saw-teeth is usedmore » to infer the current profile near the magnetic axis; with external magnetic diagnostics alone, the current density profile is imprecisely reconstructed.« less
NASA Astrophysics Data System (ADS)
Reiman, Allan H.
2016-07-01
In toroidal, magnetically confined plasmas, the heat and particle transport is strongly anisotropic, with transport along the field lines sufficiently strong relative to cross-field transport that the equilibrium pressure can generally be regarded as constant on the flux surfaces in much of the plasma. The regions near small magnetic islands, and those near the X-lines of larger islands, are exceptions, having a significant variation of the pressure within the flux surfaces. It is shown here that the variation of the equilibrium pressure within the flux surfaces in those regions has significant consequences for the pressure driven currents. It is further shown that the consequences are strongly affected by the symmetry of the magnetic field if the field is invariant under combined reflection in the poloidal and toroidal angles. (This symmetry property is called "stellarator symmetry.") In non-stellarator-symmetric equilibria, the pressure-driven currents have logarithmic singularities at the X-lines. In stellarator-symmetric MHD equilibria, the singular components of the pressure-driven currents vanish. These equilibria are to be contrasted with equilibria having B ṡ∇p =0 , where the singular components of the pressure-driven currents vanish regardless of the symmetry. They are also to be contrasted with 3D MHD equilibrium solutions that are constrained to have simply nested flux surfaces, where the pressure-driven current goes like 1 /x near rational surfaces, where x is the distance from the rational surface, except in the case of quasi-symmetric flux surfaces. For the purpose of calculating the pressure-driven currents near magnetic islands, we work with a closed subset of the MHD equilibrium equations that involves only perpendicular force balance, and is decoupled from parallel force balance. It is not correct to use the parallel component of the conventional MHD force balance equation, B ṡ∇p =0 , near magnetic islands. Small but nonzero values of B ṡ∇p are important in this region, and small non-MHD contributions to the parallel force balance equation cannot be neglected there. Two approaches are pursued to solve our equations for the pressure driven currents. First, the equilibrium equations are applied to an analytically tractable magnetic field with an island, obtaining explicit expressions for the rotational transform and magnetic coordinates, and for the pressure-driven current and its limiting behavior near the X-line. The second approach utilizes an expansion about the X-line to provide a more general calculation of the pressure-driven current near an X-line and of the rotational transform near a separatrix. The study presented in this paper is motivated, in part, by tokamak experiments with nonaxisymmetric magnetic perturbations, where significant differences are observed between the behavior of stellarator-symmetric and non-stellarator-symmetric configurations with regard to stabilization of edge localized modes by resonant magnetic perturbations. Implications for the coupling between neoclassical tearing modes, and for magnetic island stability calculations, are also discussed.
Stellar Differential Rotation of F-Stars Using DI and ZDI: The Case of HR1817
NASA Astrophysics Data System (ADS)
Marsden, Stephen
2018-04-01
The measure of surface differential rotation via the motion of spots and/or magnetic features on the stellar surface is a critical part of understanding the stellar dynamo. Here we present several epochs of (Zeeman) Doppler imaging of the young late-F star HR1817 from 2001 until 2011. These results show that HR1817 exhibits a high shear of its surface features, significantly above the solar value. It would appear that F stars, with thin convective zones, have surface differential rotation rates much higher than that of low mass stars.
Improved methods for the measurement and analysis of stellar magnetic fields
NASA Technical Reports Server (NTRS)
Saar, Steven H.
1988-01-01
The paper presents several improved methods for the measurement of magnetic fields on cool stars which take into account simple radiative transfer effects and the exact Zeeman patterns. Using these methods, high-resolution, low-noise data can be fitted with theoretical line profiles to determine the mean magnetic field strength in stellar active regions and a model-dependent fraction of the stellar surface (filling factor) covered by these regions. Random errors in the derived field strength and filling factor are parameterized in terms of signal-to-noise ratio, wavelength, spectral resolution, stellar rotation rate, and the magnetic parameters themselves. Weak line blends, if left uncorrected, can have significant systematic effects on the derived magnetic parameters, and thus several methods are developed to compensate partially for them. The magnetic parameters determined by previous methods likely have systematic errors because of such line blends and because of line saturation effects. Other sources of systematic error are explored in detail. These sources of error currently make it difficult to determine the magnetic parameters of individual stars to better than about + or - 20 percent.
Convection in Cool Stars, as Seen Through Kepler's Eyes
NASA Astrophysics Data System (ADS)
Bastien, Fabienne A.
2015-01-01
Stellar surface processes represent a fundamental limit to the detection of extrasolar planets with the currently most heavily-used techniques. As such, considerable effort has gone into trying to mitigate the impact of these processes on planet detection, with most studies focusing on magnetic spots. Meanwhile, high-precision photometric planet surveys like CoRoT and Kepler have unveiled a wide variety of stellar variability at previously inaccessible levels. We demonstrate that these newly revealed variations are not solely magnetically driven but also trace surface convection through light curve ``flicker.'' We show that ``flicker'' not only yields a simple measurement of surface gravity with a precision of ˜0.1 dex, but it may also improve our knowledge of planet properties, enhance radial velocity planet detection and discovery, and provide new insights into stellar evolution.
Research on stellarator-mirror fission-fusion hybrid
NASA Astrophysics Data System (ADS)
Moiseenko, V. E.; Kotenko, V. G.; Chernitskiy, S. V.; Nemov, V. V.; Ågren, O.; Noack, K.; Kalyuzhnyi, V. N.; Hagnestål, A.; Källne, J.; Voitsenya, V. S.; Garkusha, I. E.
2014-09-01
The development of a stellarator-mirror fission-fusion hybrid concept is reviewed. The hybrid comprises of a fusion neutron source and a powerful sub-critical fast fission reactor core. The aim is the transmutation of spent nuclear fuel and safe fission energy production. In its fusion part, neutrons are generated in deuterium-tritium (D-T) plasma, confined magnetically in a stellarator-type system with an embedded magnetic mirror. Based on kinetic calculations, the energy balance for such a system is analyzed. Neutron calculations have been performed with the MCNPX code, and the principal design of the reactor part is developed. Neutron outflux at different outer parts of the reactor is calculated. Numerical simulations have been performed on the structure of a magnetic field in a model of the stellarator-mirror device, and that is achieved by switching off one or two coils of toroidal field in the Uragan-2M torsatron. The calculations predict the existence of closed magnetic surfaces under certain conditions. The confinement of fast particles in such a magnetic trap is analyzed.
The Stellar Imager (SI) - A Mission to Resolve Stellar Surfaces, Interiors, and Magnetic Activity
NASA Astrophysics Data System (ADS)
Christensen-Dalsgaard, Jørgen; Carpenter, Kenneth G.; Schrijver, Carolus J.; Karovska, Margarita; Si Team
2011-01-01
The Stellar Imager (SI) is a space-based, UV/Optical Interferometer (UVOI) designed to enable 0.1 milli-arcsecond (mas) spectral imaging of stellar surfaces and of the Universe in general. It will also probe via asteroseismology flows and structures in stellar interiors. SI will enable the development and testing of a predictive dynamo model for the Sun, by observing patterns of surface activity and imaging of the structure and differential rotation of stellar interiors in a population study of Sun-like stars to determine the dependence of dynamo action on mass, internal structure and flows, and time. SI's science focuses on the role of magnetism in the Universe and will revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magneto-hydrodynamically controlled processes in the Universe. SI is a "Landmark/Discovery Mission" in the 2005 Heliophysics Roadmap, an implementation of the UVOI in the 2006 Astrophysics Strategic Plan, and a NASA Vision Mission ("NASA Space Science Vision Missions" (2008), ed. M. Allen). We present here the science goals of the SI Mission, a mission architecture that could meet those goals, and the technology development needed to enable this mission. Additional information on SI can be found at: http://hires.gsfc.nasa.gov/si/.
Direct UV/Optical Imaging of Stellar Surfaces: The Stellar Imager (SI) Vision Mission
NASA Technical Reports Server (NTRS)
Carpenter, Kenneth G.; Lyon, Richard G.; Schrijver, Carolus; Karovska, Margarita; Mozurkewich, David
2007-01-01
The Stellar Imager (SI) is a UV/optical, space-based interferometer designed to enable 0.1 milli-arcsecond (mas) spectral imaging of stellar surfaces and, via asteroseismology, stellar interiors and of the Universe in general. SI's science focuses on the role of magnetism in the Universe, particularly on magnetic activity on the surfaces of stars like the Sun. SI's prime goal is to enable long-term forecasting of solar activity and the space weather that it drives, in support of the Living with a Star program in the Exploration Era. SI will also revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magneto-hydrodynamically controlled processes in thc Universe. SI is a "Flagship and Landmark Discovery Mission" in the 2005 Sun Solar System Connection (SSSC) Roadmap and a candidate for a "Pathways to Life Observatory" in the Exploration of the Universe Division (EUD) Roadmap. We discuss herein the science goals of the SI Mission, a mission architecture that could meet those goals, and the technologies needed to enable this mission. Additional information on SI can be found at: http://hires.gsfc.nasa.gov/si/.
A prevalence of dynamo-generated magnetic fields in the cores of intermediate-mass stars.
Stello, Dennis; Cantiello, Matteo; Fuller, Jim; Huber, Daniel; García, Rafael A; Bedding, Timothy R; Bildsten, Lars; Aguirre, Victor Silva
2016-01-21
Magnetic fields play a part in almost all stages of stellar evolution. Most low-mass stars, including the Sun, show surface fields that are generated by dynamo processes in their convective envelopes. Intermediate-mass stars do not have deep convective envelopes, although 10 per cent exhibit strong surface fields that are presumed to be residuals from the star formation process. These stars do have convective cores that might produce internal magnetic fields, and these fields might survive into later stages of stellar evolution, but information has been limited by our inability to measure the fields below the stellar surface. Here we report the strength of dipolar oscillation modes for a sample of 3,600 red giant stars. About 20 per cent of our sample show mode suppression, by strong magnetic fields in the cores, but this fraction is a strong function of mass. Strong core fields occur only in red giants heavier than 1.1 solar masses, and the occurrence rate is at least 50 per cent for intermediate-mass stars (1.6-2.0 solar masses), indicating that powerful dynamos were very common in the previously convective cores of these stars.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cegla, H. M.; Shelyag, S.; Watson, C. A.
2013-02-15
We outline our techniques to characterize photospheric granulation as an astrophysical noise source. A four-component parameterization of granulation is developed that can be used to reconstruct stellar line asymmetries and radial velocity shifts due to photospheric convective motions. The four components are made up of absorption line profiles calculated for granules, magnetic intergranular lanes, non-magnetic intergranular lanes, and magnetic bright points at disk center. These components are constructed by averaging Fe I 6302 A magnetically sensitive absorption line profiles output from detailed radiative transport calculations of the solar photosphere. Each of the four categories adopted is based on magnetic fieldmore » and continuum intensity limits determined from examining three-dimensional magnetohydrodynamic simulations with an average magnetic flux of 200 G. Using these four-component line profiles we accurately reconstruct granulation profiles, produced from modeling 12 Multiplication-Sign 12 Mm{sup 2} areas on the solar surface, to within {approx} {+-}20 cm s{sup -1} on a {approx}100 m s{sup -1} granulation signal. We have also successfully reconstructed granulation profiles from a 50 G simulation using the parameterized line profiles from the 200 G average magnetic field simulation. This test demonstrates applicability of the characterization to a range of magnetic stellar activity levels.« less
Imaging Stellar Surface with The CHARA Array
NASA Astrophysics Data System (ADS)
Schaefer, Gail
2018-04-01
I will provide an overview of results on imaging stellar surfaces with the CHARA Array. These include imaging gravity darkening on rapid rotators, starspots on magnetically active stars, convective cells on red supergiants, and stellar winds from massive stars. In binary systems, the CHARA Array has been used to observe tidal distortions from Roche lobe filling in interactive binaries, transiting companions as they move through eclipse, and the angular expansion of novae explosions. I will discuss the impact of these results in an astrophysical context.
Nanoflare Heating of Solar and Stellar Coronae
NASA Technical Reports Server (NTRS)
Klimchuk, James A.
2010-01-01
A combination of observational and theoretical evidence suggests that much, and perhaps most, of the Sun's corona is heated by small unresolved bursts of energy called nanoflares. It seems likely that stellar coronae are heated in a similar fashion. Kanoflares are here taken to mean any impulsive heating that occurs within a magnetic flux strand. Many mechanisms have this property, including waves, but we prefer Parker's picture of tangled magnetic fields. The tangling is caused by turbulent convection at the stellar surface, and magnetic energy is released when the stresses reach a critical level. We suggest that the mechanism of energy release is the "secondary instability" of electric current sheets that are present at the boundaries between misaligned strands. I will discuss the collective evidence for solar and stellar nanoflares and hopefully present new results from the Solar Dynamics Observatory that was just launched.
First Magnetic Field Detection on a Class I Protostar
NASA Astrophysics Data System (ADS)
Johns-Krull, Christopher M.; Greene, Thomas P.; Doppmann, Greg W.; Covey, Kevin R.
2009-08-01
Strong stellar magnetic fields are believed to truncate the inner accretion disks around young stars, redirecting the accreting material to the high latitude regions of the stellar surface. In the past few years, observations of strong stellar fields on T Tauri stars with field strengths in general agreement with the predictions of magnetospheric accretion theory have bolstered this picture. Currently, nothing is known about the magnetic field properties of younger, more embedded Class I young stellar objects. It is believed that protostars accrete much of their final mass during the Class I phase, but the physics governing this process remains poorly understood. Here, we use high-resolution near-infrared spectra obtained with NIRSPEC on Keck and with Phoenix on Gemini South to measure the magnetic field properties of the Class I protostar WL 17. We find clear signatures of a strong stellar magnetic field. Analysis of this data suggests a surface average field strength of 2.9 ± 0.43 kG on WL 17. We present our field measurements and discuss how they fit with the general model of magnetospheric accretion in young stars. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência e Tecnologia (Brazil), and SECYT (Argentina). The Phoenix data were obtained under the program: GS-2006A-C-12.
DOE Office of Scientific and Technical Information (OSTI.GOV)
S.R. Hudson; D.A. Monticello; A.H. Reiman
For the (non-axisymmetric) stellarator class of plasma confinement devices to be feasible candidates for fusion power stations it is essential that, to a good approximation, the magnetic field lines lie on nested flux surfaces; however, the inherent lack of a continuous symmetry implies that magnetic islands responsible for breaking the smooth topology of the flux surfaces are guaranteed to exist. Thus, the suppression of magnetic islands is a critical issue for stellarator design, particularly for small aspect ratio devices. Pfirsch-Schluter currents, diamagnetic currents, and resonant coil fields contribute to the formation of magnetic islands, and the challenge is to designmore » the plasma and coils such that these effects cancel. Magnetic islands in free-boundary high-pressure full-current stellarator magnetohydrodynamic equilibria are suppressed using a procedure based on the Princeton Iterative Equilibrium Solver [Reiman and Greenside, Comp. Phys. Comm. 43 (1986) 157] which iterate s the equilibrium equations to obtain the plasma equilibrium. At each iteration, changes to a Fourier representation of the coil geometry are made to cancel resonant fields produced by the plasma. The changes are constrained to preserve certain measures of engineering acceptability and to preserve the stability of ideal kink modes. As the iterations continue, the coil geometry and the plasma simultaneously converge to an equilibrium in which the island content is negligible, the plasma is stable to ideal kink modes, and the coils satisfy engineering constraints. The method is applied to a candidate plasma and coil design for the National Compact Stellarator Experiment [Reiman, et al., Phys. Plasmas 8 (May 2001) 2083].« less
NASA Astrophysics Data System (ADS)
Hudson, S. R.; Monticello, D. A.; Reiman, A. H.; Strickler, D. J.; Hirshman, S. P.; Ku, L.-P.; Lazarus, E.; Brooks, A.; Zarnstorff, M. C.; Boozer, A. H.; Fu, G.-Y.; Neilson, G. H.
2003-10-01
For the (non-axisymmetric) stellarator class of plasma confinement devices to be feasible candidates for fusion power stations it is essential that, to a good approximation, the magnetic field lines lie on nested flux surfaces; however, the inherent lack of a continuous symmetry implies that magnetic islands responsible for breaking the smooth topology of the flux surfaces are guaranteed to exist. Thus, the suppression of magnetic islands is a critical issue for stellarator design, particularly for small aspect ratio devices. Pfirsch-Schlüter currents, diamagnetic currents and resonant coil fields contribute to the formation of magnetic islands, and the challenge is to design the plasma and coils such that these effects cancel. Magnetic islands in free-boundary high-pressure full-current stellarator magnetohydrodynamic equilibria are suppressed using a procedure based on the Princeton Iterative Equilibrium Solver (Reiman and Greenside 1986 Comput. Phys. Commun. 43 157) which iterates the equilibrium equations to obtain the plasma equilibrium. At each iteration, changes to a Fourier representation of the coil geometry are made to cancel resonant fields produced by the plasma. The changes are constrained to preserve certain measures of engineering acceptability and to preserve the stability of ideal kink modes. As the iterations continue, the coil geometry and the plasma simultaneously converge to an equilibrium in which the island content is negligible, the plasma is stable to ideal kink modes, and the coils satisfy engineering constraints. The method is applied to a candidate plasma and coil design for the National Compact Stellarator eXperiment (Reiman et al 2001 Phys. Plasma 8 2083).
Probing Stellar Dynamics With Space Photometry
NASA Astrophysics Data System (ADS)
García, Rafael A.; Salabert, D.; Ballot, J.; Beck, P. G.; Bigot, L.; Corsaro, E.; Creevey, O.; Egeland, R.; Jiménez, A.; Mathur, S.; Metcalfe, T.; do Nascimento, J.; Pallé, P. L.; Pérez Hernández, F.; Regulo, C.
2016-08-01
The surface magnetic field has substantial influence on various stellar properties that can be probed through various techniques. With the advent of new space-borne facilities such as CoRoT and Kepler, uninterrupted long high-precision photometry is available for hundred of thousand of stars. This number will substantially grow through the forthcoming TESS and PLATO missions. The unique Kepler observations -covering up to 4 years with a 30-min cadence- allows studying stellar variability with different origins such as pulsations, convection, surface rotation, or magnetism at several time scales from hours to years. We study the photospheric magnetic activity of solar-like stars by means of the variability induced in the observed signal by starspots crossing the visible disk. We constructed a solar photometric magnetic activity proxy, Sph from SPM/VIRGO/SoHO, as if the Sun was a distant star and we compare it with several solar well-known magnetic proxies. The results validate this approach. Thus, we compute the Sph proxy for a set of CoRoT and Kepler solar-like stars for which pulsations were already detected. After characterizing the rotation and the magnetic properties of 300 solar-like stars, we use their seismic properties to characterize 18 solar analogs for which we study their magnetism. This allows us to put the Sun into context of its siblings.
Direct Imaging of Stellar Surfaces: Results from the Stellar Imager (SI) Vision Mission Study
NASA Technical Reports Server (NTRS)
Carpenter, Kenneth; Schrijver, Carolus; Karovska, Margarita
2006-01-01
The Stellar Imager (SI) is a UV-Optical, Space-Based Interferometer designed to enable 0.1 milli-arcsecond (mas) spectral imaging of stellar surfaces and stellar interiors (via asteroseismology) and of the Universe in general. SI is identified as a "Flagship and Landmark Discovery Mission'' in the 2005 Sun Solar System Connection (SSSC) Roadmap and as a candidate for a "Pathways to Life Observatory'' in the Exploration of the Universe Division (EUD) Roadmap (May, 2005). The ultra-sharp images of the Stellar Imager will revolutionize our view of many dynamic astrophysical processes: The 0.1 mas resolution of this deep-space telescope will transform point sources into extended sources, and snapshots into evolving views. SI's science focuses on the role of magnetism in the Universe, particularly on magnetic activity on the surfaces of stars like the Sun. SI's prime goal is to enable long-term forecasting of solar activity and the space weather that it drives in support of the Living With a Star program in the Exploration Era. SI will also revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magneto-hydrodynamically controlled processes in the Universe. In this paper we will discuss the results of the SI Vision Mission Study, elaborating on the science goals of the SI Mission and a mission architecture that could meet those goals.
The impact and evolution of magnetic confinement in hot stars
NASA Astrophysics Data System (ADS)
Keszthelyi, Z.; Wade, G. A.; Petit, V.; Meynet, G.; Georgy, C.
2018-01-01
Magnetic confinement of the winds of hot, massive stars has far-reaching consequences on timescales ranging from hours to Myr. Understanding the long-term effects of this interplay has already led to the identification of two new evolutionary pathways to form `heavy' stellar mass black holes and pair-instability supernova even at galactic metallicity. We are performing 1D stellar evolution model calculations that, for the first time, account for the surface effects and the time evolution of fossil magnetic fields. These models will be thoroughly confronted with observations and will potentially lead to a significant revision of the derived parameters of observed magnetic massive stars.
The influence of convective blueshift on radial velocities of F, G, and K stars
NASA Astrophysics Data System (ADS)
Bauer, F. F.; Reiners, A.; Beeck, B.; Jeffers, S. V.
2018-02-01
Context. Apparent radial velocity (RV) signals induced by stellar surface features such as spots and plages can result in a false planet detection or hide the presence of an orbiting planet. Our ability to detect rocky exoplanets is currently limited by our understanding of such stellar signals. Aims: We model RV variations caused by active regions on the stellar surface of typical exoplanet-hosting stars of spectral type F, G, and K. We aim to understand how the stellar magnetic field strength, convective blueshift, and spot temperatures can influence RV signals caused by active regions. Methods: We use magneto-hydrodynamic (MHD) simulations for stars with spectral types F3V, a G2V, and a K5V. We quantify the impact of the magnetic field strength inside active regions on the RV measurement using the magnetic and non-magnetic FeI lines at 6165 Å and 6173 Å. We also quantify the impact of spot temperature and convective blueshift on the measured RV values. Results: Increasing the magnetic field strength increases the efficiency to suppress convection in active regions which results in an asymmetry between red- and blueshifted parts of the RV curves. A stronger suppression of convection also leads to an observed increase in RV amplitude for stronger magnetic fields. The MHD simulations predict convective motions to be faster in hotter stars. The suppression of faster convection leads to a stronger RV amplitude increase in hotter stars when the magnetic field is increased. While suppression of convection increases the asymmetry in RV curves,c a decreasing spot temperature counteracts this effect. When using observed temperatures for dark spots in our simulations we find that convective blueshift effects are negligible.
Magnetic field-related heating instabilities in the surface layers of the sun and stars
NASA Technical Reports Server (NTRS)
Ferrari, A.; Rosner, R.; Vaiana, G. S.
1982-01-01
The stability of a magnetized low-density plasma to current-driven filamentation instabilities is investigated and the results are applied to the surface layers of stars. Unlike previous studies, the initial (i.e., precoronal) state of the stellar surface atmosphere is taken to be a low-density, optically thin magnetized plasma in radiative equilibrium. The linear analysis shows that the surface layers of main-sequence stars (including the sun) which are threaded by magnetic fields are unstable; the instabilities considered lead to structuring perpendicular to the ambient magnetic fields. These results suggest that relatively modest surface motions, in conjunction with the presence of magnetic fields, suffice to account for the presence of inhomogeneous chromospheric and coronal plasma overlying a star's surface.
Finite Beta Boundary Magnetic Fields of NCSX
NASA Astrophysics Data System (ADS)
Grossman, A.; Kaiser, T.; Mioduszewski, P.
2004-11-01
The magnetic field between the plasma surface and wall of the National Compact Stellarator (NCSX), which uses quasi-symmetry to combine the best features of the tokamak and stellarator in a configuration of low aspect ratio is mapped via field line tracing in a range of finite beta in which part of the rotational transform is generated by the bootstrap current. We adopt the methodology developed for W7-X, in which an equilibrium solution is computed by an inverse equilibrium solver based on an energy minimizing variational moments code, VMEC2000[1], which solves directly for the shape of the flux surfaces given the external coils and their currents as well as a bootstrap current provided by a separate transport calculation. The VMEC solution and the Biot-Savart vacuum fields are coupled to the magnetic field solver for finite-beta equilibrium (MFBE2001)[2] code to determine the magnetic field on a 3D grid over a computational domain. It is found that the edge plasma is more stellarator-like, with a complex 3D structure, and less like the ordered 2D symmetric structure of a tokamak. The field lines make a transition from ergodically covering a surface to ergodically covering a volume, as the distance from the last closed magnetic surface is increased. The results are compared with the PIES[3] calculations. [1] S.P. Hirshman et al. Comput. Phys. Commun. 43 (1986) 143. [2] E. Strumberger, et al. Nucl. Fusion 42 (2002) 827. [3] A.H. Reiman and H.S. Greenside, Comput. Phys. Commun. 43, 157 (1986).
The Threatening Magnetic and Plasma Environment of the TRAPPIST-1 Planets
NASA Astrophysics Data System (ADS)
Garraffo, Cecilia; Drake, Jeremy J.; Cohen, Ofer; Alvarado-Gómez, Julian D.; Moschou, Sofia P.
2017-07-01
Recently, four additional Earth-mass planets were discovered orbiting the nearby ultracool M8 dwarf, TRAPPIST-1, making a remarkable total of seven planets with equilibrium temperatures compatible with the presence of liquid water on their surface. Temperate terrestrial planets around an M-dwarf orbit close to their parent star, rendering their atmospheres vulnerable to erosion by the stellar wind and energetic electromagnetic and particle radiation. Here, we use state-of-the-art 3D magnetohydrodynamic models to simulate the wind around TRAPPIST-1 and study the conditions at each planetary orbit. All planets experience a stellar wind pressure between 103 and 105 times the solar wind pressure on Earth. All orbits pass through wind pressure changes of an order of magnitude and most planets spend a large fraction of their orbital period in the sub-Alfvénic regime. For plausible planetary magnetic field strengths, all magnetospheres are greatly compressed and undergo much more dynamic change than that of the Earth. The planetary magnetic fields connect with the stellar radial field over much of the planetary surface, allowing the direct flow of stellar wind particles onto the planetary atmosphere. These conditions could result in strong atmospheric stripping and evaporation and should be taken into account for any realistic assessment of the evolution and habitability of the TRAPPIST-1 planets.
NESSY: NLTE spectral synthesis code for solar and stellar atmospheres
NASA Astrophysics Data System (ADS)
Tagirov, R. V.; Shapiro, A. I.; Schmutz, W.
2017-07-01
Context. Physics-based models of solar and stellar magnetically-driven variability are based on the calculation of synthetic spectra for various surface magnetic features as well as quiet regions, which are a function of their position on the solar or stellar disc. Such calculations are performed with radiative transfer codes tailored for modeling broad spectral intervals. Aims: We aim to present the NLTE Spectral SYnthesis code (NESSY), which can be used for modeling of the entire (UV-visible-IR and radio) spectra of solar and stellar magnetic features and quiet regions. Methods: NESSY is a further development of the COde for Solar Irradiance (COSI), in which we have implemented an accelerated Λ-iteration (ALI) scheme for co-moving frame (CMF) line radiation transfer based on a new estimate of the local approximate Λ-operator. Results: We show that the new version of the code performs substantially faster than the previous one and yields a reliable calculation of the entire solar spectrum. This calculation is in a good agreement with the available observations.
Magnetic Doppler imaging of 53 Camelopardalis in all four Stokes parameters
NASA Astrophysics Data System (ADS)
Kochukhov, O.; Bagnulo, S.; Wade, G. A.; Sangalli, L.; Piskunov, N.; Landstreet, J. D.; Petit, P.; Sigut, T. A. A.
2004-02-01
We present the first investigation of the structure of the stellar surface magnetic field using line profiles in all four Stokes parameters. We extract the information about the magnetic field geometry and abundance distributions of the chemically peculiar star 53 Cam by modelling time-series of high-resolution spectropolarimetric observations with the help of a new magnetic Doppler imaging code. This combination of the unique four Stokes parameter data and state-of-the-art magnetic imaging technique makes it possible to infer the stellar magnetic field topology directly from the rotational variability of the Stokes spectra. In the magnetic imaging of 53 Cam we discard the traditional multipolar assumptions about the structure of magnetic fields in Ap stars and explore the stellar magnetic topology without introducing any global a priori constraints on the field structure. The complex magnetic model of 53 Cam derived with our magnetic Doppler imaging method achieves a good fit to the observed intensity, circular and linear polarization profiles of strong magnetically sensitive Fe II spectral lines. Such an agreement between observations and model predictions was not possible with any earlier multipolar magnetic models, based on modelling Stokes I spectra and fitting surface averaged magnetic observables (e.g., longitudinal field, magnetic field modulus, etc.). Furthermore, we demonstrate that even the direct inversion of the four Stokes parameters of 53 Cam assuming a low-order multipolar magnetic geometry is incapable of achieving an adequate fit to our spectropolarimetric observations. Thus, as a main result of our investigation, we discover that the magnetic field topology of 53 Cam is considerably more complex than any low-order multipolar expansion, raising a general question about the validity of the multipolar assumption in the studies of magnetic field structures of Ap stars. In addition to the analysis of the magnetic field of 53 Cam, we reconstruct surface abundance distributions of Si, Ca, Ti, Fe and Nd. These abundance maps confirm results of the previous studies of 53 Cam, in particular dramatic antiphase variation of Ca and Ti abundances. Based on observations obtained with the Bernard Lyot telescope of the Pic du Midi Observatory and Isaac Newton Telescope of the La Palma Observatory.
NASA Astrophysics Data System (ADS)
Strassmeier, Klaus G.
2009-09-01
Starspots are created by local magnetic fields on the surfaces of stars, just as sunspots. Their fields are strong enough to suppress the overturning convective motion and thus block or redirect the flow of energy from the stellar interior outwards to the surface and consequently appear as locally cool and therefore dark regions against an otherwise bright photosphere (Biermann in Astronomische Nachrichten 264:361, 1938; Z Astrophysik 25:135, 1948). As such, starspots are observable tracers of the yet unknown internal dynamo activity and allow a glimpse into the complex internal stellar magnetic field structure. Starspots also enable the precise measurement of stellar rotation which is among the key ingredients for the expected internal magnetic topology. But whether starspots are just blown-up sunspot analogs, we do not know yet. This article is an attempt to review our current knowledge of starspots. A comparison of a white-light image of the Sun (G2V, 5 Gyr) with a Doppler image of a young solar-like star (EK Draconis; G1.5V, age 100 Myr, rotation 10 × Ω Sun) and with a mean-field dynamo simulation suggests that starspots can be of significantly different appearance and cannot be explained with a scaling of the solar model, even for a star of same mass and effective temperature. Starspots, their surface location and migration pattern, and their link with the stellar dynamo and its internal energy transport, may have far reaching impact also for our understanding of low-mass stellar evolution and formation. Emphasis is given in this review to their importance as activity tracers in particular in the light of more and more precise exoplanet detections around solar-like, and therefore likely spotted, host stars.
NASA Astrophysics Data System (ADS)
Carlson, Jared; Dominguez, Arturo; N/A Collaboration
2017-10-01
The PPPL Science Education Department, in collaboration with IPP, is currently developing a versatile small scale Stellarator for education and outreach purposes. The Princeton Adaptable Stellarator for Education and Outreach (PASEO) will provide visual demonstrations of Stellarator physics and serve as a lab platform for undergraduate and graduate students. Based off the Columbia Non-Neutral Torus (CNT) (1), and mini-CNTs (2), PASEO will create pure electron plasmas to study magnetic surfaces. PASEO uses similar geometries to these, but has an adjustable coil configuration to increase its versatility and conform to a highly visible vacuum chamber geometry. To simulate the magnetic surfaces in these new configurations, a MATALB code utilizing the Biot Savart law and a Fourth Order Runge-Kutta method was developed, leading to new optimal current ratios. The design for PASEO and its predicted plasma confinement are presented. (1) T.S. Pedersen et al., Fusion Science and Technology Vol. 46 July 2004 (2) C. Dugan, et al., American Physical Society; 48th Annual Meeting of the Division of Plasma Physics, October 30-November 3, 2006
Neutron starquakes and the nature of gamma-ray bursts
NASA Technical Reports Server (NTRS)
Madau, P.; Blaes, O.; Blandford, R. D.; Goldreich, P.
1989-01-01
The possibility that gamma-ray bursts originate from quakes deep in the solid crust of a neutron star is investigated. Seismic waves are radiated if shear stress is relieved by brittle fracture. However they cannot propagate directly to the surface but are temporarily trapped below a reflecting layer. The shaking of the stellar surface couples the seismic waves to Alfven waves which propagate out into the magnetosphere. The crust-magnetosphere transmission coefficient strongly increases with wave frequency and magnetic field strength. Alfven wave luminosities sufficient to power galactic gamma-ray bursts are possible if magnetic fields greater than 100 billion G cover at least part of the stellar surface. As the Alfven waves propagate out into the low density magnetosphere, they become increasingly charge starved, thereby accelerating particles to relativistic energies.
NASA Astrophysics Data System (ADS)
Ireland, Lewis G.; Browning, Matthew K.
2018-04-01
Some low-mass stars appear to have larger radii than predicted by standard 1D structure models; prior work has suggested that inefficient convective heat transport, due to rotation and/or magnetism, may ultimately be responsible. We examine this issue using 1D stellar models constructed using Modules for Experiments in Stellar Astrophysics (MESA). First, we consider standard models that do not explicitly include rotational/magnetic effects, with convective inhibition modeled by decreasing a depth-independent mixing length theory (MLT) parameter α MLT. We provide formulae linking changes in α MLT to changes in the interior specific entropy, and hence to the stellar radius. Next, we modify the MLT formulation in MESA to mimic explicitly the influence of rotation and magnetism, using formulations suggested by Stevenson and MacDonald & Mullan, respectively. We find rapid rotation in these models has a negligible impact on stellar structure, primarily because a star’s adiabat, and hence its radius, is predominantly affected by layers near the surface; convection is rapid and largely uninfluenced by rotation there. Magnetic fields, if they influenced convective transport in the manner described by MacDonald & Mullan, could lead to more noticeable radius inflation. Finally, we show that these non-standard effects on stellar structure can be fabricated using a depth-dependent α MLT: a non-magnetic, non-rotating model can be produced that is virtually indistinguishable from one that explicitly parameterizes rotation and/or magnetism using the two formulations above. We provide formulae linking the radially variable α MLT to these putative MLT reformulations.
Rotation and magnetism in intermediate-mass stars
NASA Astrophysics Data System (ADS)
Quentin, Léo G.; Tout, Christopher A.
2018-06-01
Rotation and magnetism are increasingly recognized as important phenomena in stellar evolution. Surface magnetic fields from a few to 20 000 G have been observed and models have suggested that magnetohydrodynamic transport of angular momentum and chemical composition could explain the peculiar composition of some stars. Stellar remnants such as white dwarfs have been observed with fields from a few to more than 109 G. We investigate the origin of and the evolution, on thermal and nuclear rather than dynamical time-scales, of an averaged large-scale magnetic field throughout a star's life and its coupling to stellar rotation. Large-scale magnetic fields sustained until late stages of stellar evolution with conservation of magnetic flux could explain the very high fields observed in white dwarfs. We include these effects in the Cambridge stellar evolution code using three time-dependant advection-diffusion equations coupled to the structural and composition equations of stars to model the evolution of angular momentum and the two components of the magnetic field. We present the evolution in various cases for a 3 M_{⊙} star from the beginning to the late stages of its life. Our particular model assumes that turbulent motions, including convection, favour small-scale field at the expense of large-scale field. As a result, the large-scale field concentrates in radiative zones of the star and so is exchanged between the core and the envelope of the star as it evolves. The field is sustained until the end of the asymptotic giant branch, when it concentrates in the degenerate core.
NASA Astrophysics Data System (ADS)
Takasao, Shinsuke; Tomida, Kengo; Iwasaki, Kazunari; Suzuki, Takeru K.
2018-04-01
We present the results of a global, three-dimensional magnetohydrodynamics simulation of an accretion disk with a rotating, weakly magnetized central star. The disk is threaded by a weak, large-scale poloidal magnetic field, and the central star has no strong stellar magnetosphere initially. Our simulation investigates the structure of the accretion flows from a turbulent accretion disk onto the star. The simulation reveals that fast accretion onto the star at high latitudes occurs even without a stellar magnetosphere. We find that the failed disk wind becomes the fast, high-latitude accretion as a result of angular momentum exchange mediated by magnetic fields well above the disk, where the Lorentz force that decelerates the rotational motion of gas can be comparable to the centrifugal force. Unlike the classical magnetospheric accretion scenario, fast accretion streams are not guided by magnetic fields of the stellar magnetosphere. Nevertheless, the accretion velocity reaches the free-fall velocity at the stellar surface due to the efficient angular momentum loss at a distant place from the star. This study provides a possible explanation why Herbig Ae/Be stars whose magnetic fields are generally not strong enough to form magnetospheres also show indications of fast accretion. A magnetically driven jet is not formed from the disk in our model. The differential rotation cannot generate sufficiently strong magnetic fields for the jet acceleration because the Parker instability interrupts the field amplification.
Parallel momentum input by tangential neutral beam injections in stellarator and heliotron plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishimura, S., E-mail: nishimura.shin@lhd.nifs.ac.jp; Nakamura, Y.; Nishioka, K.
The configuration dependence of parallel momentum inputs to target plasma particle species by tangentially injected neutral beams is investigated in non-axisymmetric stellarator/heliotron model magnetic fields by assuming the existence of magnetic flux-surfaces. In parallel friction integrals of the full Rosenbluth-MacDonald-Judd collision operator in thermal particles' kinetic equations, numerically obtained eigenfunctions are used for excluding trapped fast ions that cannot contribute to the friction integrals. It is found that the momentum inputs to thermal ions strongly depend on magnetic field strength modulations on the flux-surfaces, while the input to electrons is insensitive to the modulation. In future plasma flow studies requiringmore » flow calculations of all particle species in more general non-symmetric toroidal configurations, the eigenfunction method investigated here will be useful.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Yu-Ling; Gu, Pin-Gao; Bodenheimer, Peter H.
We revisit the calculation of the ohmic dissipation in a hot Jupiter presented by Laine et al. by considering more realistic interior structures, stellar obliquity, and the resulting orbital evolution. In this simplified approach, the young hot Jupiter of one Jupiter mass is modeled as a diamagnetic sphere with a finite resistivity, orbiting across tilted stellar magnetic dipole fields in vacuum. Since the induced ohmic dissipation occurs mostly near the planet's surface, we find that the dissipation is unable to significantly expand the young hot Jupiter. Nevertheless, the planet inside a small corotation orbital radius can undergo orbital decay bymore » the dissipation torque and finally overfill its Roche lobe during the T Tauri star phase. The stellar obliquity can evolve significantly if the magnetic dipole is parallel/antiparallel to the stellar spin. Our results are validated by the general torque-dissipation relation in the presence of the stellar obliquity. We also run the fiducial model of Laine et al. and find that the planet's radius is sustained at a nearly constant value by the ohmic heating, rather than being thermally expanded to the Roche radius as suggested by the authors.« less
NASA Astrophysics Data System (ADS)
Vidotto, A. A.; Jardine, M.; Morin, J.; Donati, J. F.; Opher, M.; Gombosi, T. I.
2014-02-01
We perform three-dimensional numerical simulations of stellar winds of early-M-dwarf stars. Our simulations incorporate observationally reconstructed large-scale surface magnetic maps, suggesting that the complexity of the magnetic field can play an important role in the angular momentum evolution of the star, possibly explaining the large distribution of periods in field dM stars, as reported in recent works. In spite of the diversity of the magnetic field topologies among the stars in our sample, we find that stellar wind flowing near the (rotational) equatorial plane carries most of the stellar angular momentum, but there is no preferred colatitude contributing to mass-loss, as the mass flux is maximum at different colatitudes for different stars. We find that more non-axisymmetric magnetic fields result in more asymmetric mass fluxes and wind total pressures ptot (defined as the sum of thermal, magnetic and ram pressures). Because planetary magnetospheric sizes are set by pressure equilibrium between the planet's magnetic field and ptot, variations of up to a factor of 3 in ptot (as found in the case of a planet orbiting at several stellar radii away from the star) lead to variations in magnetospheric radii of about 20 per cent along the planetary orbital path. In analogy to the flux of cosmic rays that impact the Earth, which is inversely modulated with the non-axisymmetric component of the total open solar magnetic flux, we conclude that planets orbiting M-dwarf stars like DT Vir, DS Leo and GJ 182, which have significant non-axisymmetric field components, should be the more efficiently shielded from galactic cosmic rays, even if the planets lack a protective thick atmosphere/large magnetosphere of their own.
Doppler-Zeeman Mapping of the Rapidly Rotating Magnetic CP Star HD37776
NASA Astrophysics Data System (ADS)
Khokhlova, V. L.; Vasilchenko, D. V.; Stepanov, V. V.; Romanyuk, I. I.
2000-03-01
We present the results of our analysis of magnetic-field configuration and abundance anomalies on the surface of the rapidly rotating, chemically peculiar helium-strong variable B2 V star HD37776 with unresolved Zeeman components of spectral lines. Simultaneous inversion of the observed Stokes I and V profiles, which realizes the method of Doppler-Zeeman mapping (Vasilchenko et al. 1996), has been applied for the first time. Spectroscopic observations were carried out with the Main stellar spectrograph of the 6-m Special Astrophysical Observatory telescope equipped with a Zeeman analyzer and a CCD array, which allowed spectra in right- and left-hand circularly polarized light to be taken simultaneously at a signal-to-noise ratio S/N > 200 (Romanyuk et al. 1999). The profile width of winged spectral lines (reaching 5 A) is determined by Zeeman line splitting; however, the observed Zeeman components are blurred and unresolved because of the rapid stellar rotation. When solving the inverse problem, we sought for the magnetic-field configuration in the form of a combination of arbitrarily oriented dipole, quadrupole, and octupole placed at the stellar center. The observed Stokes I and V profiles for eight spectral lines of He, OII, AlIII, SiIII, and FeIII averaged over the visible stellar surface were used as input data. We constructed a model of the magnetic field from the condition of coincidence of magnetic maps obtained from different lines of different chemical elements and from the condition of a minimum profile residual. This model is a combination of centered coaxial dipole and quadrupole with the dominant quadrupole component at 30 deg < i < 50 deg, beta = 40 deg, and a maximum surface field strength H_s = 60 kG. A comparison of our abundance maps with the field configuration shows that the He concentration is at a maximum in the regions of maximum radial field, while the maximum concentrations of O, Al, Si, and Fe coincide with the regions of maximum tangential field.
Three-dimensional analysis of tokamaks and stellarators
Garabedian, Paul R.
2008-01-01
The NSTAB equilibrium and stability code and the TRAN Monte Carlo transport code furnish a simple but effective numerical simulation of essential features of present tokamak and stellarator experiments. When the mesh size is comparable to the island width, an accurate radial difference scheme in conservation form captures magnetic islands successfully despite a nested surface hypothesis imposed by the mathematics. Three-dimensional asymmetries in bifurcated numerical solutions of the axially symmetric tokamak problem are relevant to the observation of unstable neoclassical tearing modes and edge localized modes in experiments. Islands in compact stellarators with quasiaxial symmetry are easier to control, so these configurations will become good candidates for magnetic fusion if difficulties with safety and stability are encountered in the International Thermonuclear Experimental Reactor (ITER) project. PMID:18768807
The Threatening Magnetic and Plasma Environment of the TRAPPIST-1 Planets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garraffo, Cecilia; Drake, Jeremy J.; Cohen, Ofer
2017-07-10
Recently, four additional Earth-mass planets were discovered orbiting the nearby ultracool M8 dwarf, TRAPPIST-1, making a remarkable total of seven planets with equilibrium temperatures compatible with the presence of liquid water on their surface. Temperate terrestrial planets around an M-dwarf orbit close to their parent star, rendering their atmospheres vulnerable to erosion by the stellar wind and energetic electromagnetic and particle radiation. Here, we use state-of-the-art 3D magnetohydrodynamic models to simulate the wind around TRAPPIST-1 and study the conditions at each planetary orbit. All planets experience a stellar wind pressure between 10{sup 3} and 10{sup 5} times the solar windmore » pressure on Earth. All orbits pass through wind pressure changes of an order of magnitude and most planets spend a large fraction of their orbital period in the sub-Alfvénic regime. For plausible planetary magnetic field strengths, all magnetospheres are greatly compressed and undergo much more dynamic change than that of the Earth. The planetary magnetic fields connect with the stellar radial field over much of the planetary surface, allowing the direct flow of stellar wind particles onto the planetary atmosphere. These conditions could result in strong atmospheric stripping and evaporation and should be taken into account for any realistic assessment of the evolution and habitability of the TRAPPIST-1 planets.« less
NASA Astrophysics Data System (ADS)
Leto, P.; Trigilio, C.; Oskinova, L. M.; Ignace, R.; Buemi, C. S.; Umana, G.; Ingallinera, A.; Leone, F.; Phillips, N. M.; Agliozzo, C.; Todt, H.; Cerrigone, L.
2018-05-01
We present new radio/millimeter measurements of the hot magnetic star HR 5907 obtained with the VLA and ALMA interferometers. We find that HR 5907 is the most radio luminous early type star in the cm-mm band among those presently known. Its multi-wavelength radio light curves are strongly variable with an amplitude that increases with radio frequency. The radio emission can be explained by the populations of the non-thermal electrons accelerated in the current sheets on the outer border of the magnetosphere of this fast-rotating magnetic star. We classify HR 5907 as another member of the growing class of strongly magnetic fast-rotating hot stars where the gyro-synchrotron emission mechanism efficiently operates in their magnetospheres. The new radio observations of HR 5907 are combined with archival X-ray data to study the physical condition of its magnetosphere. The X-ray spectra of HR 5907 show tentative evidence for the presence of non-thermal spectral component. We suggest that non-thermal X-rays originate a stellar X-ray aurora due to streams of non-thermal electrons impacting on the stellar surface. Taking advantage of the relation between the spectral indices of the X-ray power-law spectrum and the non-thermal electron energy distributions, we perform 3-D modelling of the radio emission for HR 5907. The wavelength-dependent radio light curves probe magnetospheric layers at different heights above the stellar surface. A detailed comparison between simulated and observed radio light curves leads us to conclude that the stellar magnetic field of HR 5907 is likely non-dipolar, providing further indirect evidence of the complex magnetic field topology of HR 5907.
VizieR Online Data Catalog: Evolution of rotating very massive LC stars (Kohler, 2015)
NASA Astrophysics Data System (ADS)
Kohler, K.; Langer, N.; de Koter, A.; de Mink, S. E.; Crowther, P. A.; Evans, C. J.; Grafener, G.; Sana, H.; Sanyal, D.; Schneider, F. R. N.; Vink, J. S.
2014-11-01
A dense model grid with chemical composition appropriate for the Large Magellanic Cloud is presented. A one-dimensional hydrodynamic stellar evolution code was used to compute our models on the main sequence, taking into account rotation, transport of angular momentum by magnetic fields and stellar wind mass loss. We present stellar evolution models with initial masses of 70-500M⊙ and with initial surface rotational velocities of 0-550km/s. (2 data files).
The Stellar Imager (SI) Mission Concept: Imaging the Surfaces and Interiors of Other Stars
NASA Technical Reports Server (NTRS)
Carpenter, Kenneth G.; Oegerle, William R. (Technical Monitor)
2002-01-01
The Stellar Imager (SI) is envisioned as a space-based, uv-optical interferometer composed of 10 or more one-meter class elements distributed with a maximum. baseline of 0.5-km and providing a resolution of 60 micro-arcseconds at 1550 A. It will image stars and binaries with one hundred to one thousand resolution elements on their surface and enable long-term studies of stellar magnetic activity patterns and their evolution with time, for comparison with those on the sun. It will also sound their interiors through asteroseismology to image internal structure, differential rotation, and large-scale circulations. SI will enable us to understand the various effects of magnetic fields of stars, the dynamos that generate these fields, and the internal structure and dynamic the stars in which these dynamos operate. The ultimate goal of the mission is to achieve the best-possible forecasting of solar activity as a driver of climate and space weather on times scales ranging from months up to decades, and an understanding of the impact of stellar magnetic activity on life in the universe. The road to that goal will revolutionize our understanding of stars and stellar systems, the building blocks of the universe. Fitting naturally within the NASA and ESA long-term time lines, SI complements defined missions, and with them will show us entire other solar systems, from the central star to their orbiting planets. in this paper we describe the scientific goals of the mission, the performance requirements needed to address those goals, and the design concepts now under study.
Dynamical Model for Spindown of Solar-type Stars
NASA Astrophysics Data System (ADS)
Sood, Aditi; Kim, Eun-jin; Hollerbach, Rainer
2016-12-01
After their formation, stars slow down their rotation rates by the removal of angular momentum from their surfaces, e.g., via stellar winds. Explaining how this rotation of solar-type stars evolves in time is currently an interesting but difficult problem in astrophysics. Despite the complexity of the processes involved, a traditional model, where the removal of angular momentum by magnetic fields is prescribed, has provided a useful framework to understand observational relations between stellar rotation, age, and magnetic field strength. Here, for the first time, a spindown model is proposed where loss of angular momentum by magnetic fields evolves dynamically, instead of being prescibed kinematically. To this end, we evolve the stellar rotation and magnetic field simultaneously over stellar evolution time by extending our previous work on a dynamo model which incorporates nonlinear feedback mechanisms on rotation and magnetic fields. We show that our extended model reproduces key observations and is capable of explaining the presence of the two branches of (fast and slow rotating) stars which have different relations between rotation rate Ω versus time (age), magnetic field strength | B| versus rotation rate, and frequency of magnetic field {ω }{cyc} versus rotation rate. For fast rotating stars we find that: (I) there is an exponential spindown {{Ω }}\\propto {e}-1.35t, with t measured in Gyr; (II) magnetic activity saturates for higher rotation rate; (III) {ω }{cyc}\\propto {{{Ω }}}0.83. For slow rotating stars we find: (I) a power-law spindown {{Ω }}\\propto {t}-0.52; (II) that magnetic activity scales roughly linearly with rotation rate; (III) {ω }{cyc}\\propto {{{Ω }}}1.16. The results obtained from our investigations are in good agreement with observations. The Vaughan-Preston gap is consistently explained in our model by the shortest spindown timescale in this transition from fast to slow rotators. Our results highlight the importance of self-regulation of magnetic fields and rotation by direct and indirect interactions involving nonlinear feedback in stellar evolution.
Chromospheric Heating in Late-Type Stars: Evidence for Magnetic and Nonmagnetic Surface Structure
NASA Technical Reports Server (NTRS)
Cuntz, Manfred
1996-01-01
The aim of this paper is to evaluate recent observational and theoretical results concerning the physics of chromospheric heating as inferred from IUE, HST-GHRS and ROSAT data. These results are discussed in conjunction with theoretical model calculations based on acoustic and magnetic heating to infer some conclusions about the magnetic and non-magnetic surface structure of cool luminous stars. I find that most types of stars may exhibit both magnetic and nonmagnetic structures. Candidates for pure nonmagnetic surface structure include M-type giants and super-giants. M-type supergiants are also ideal candidates for identifying direct links between the appearance of hot spots on the stellar surface (perhaps caused by large convective bubbles) and temporarily increased chromospheric heating and emission.
Advances in stellarator gyrokinetics
NASA Astrophysics Data System (ADS)
Helander, P.; Bird, T.; Jenko, F.; Kleiber, R.; Plunk, G. G.; Proll, J. H. E.; Riemann, J.; Xanthopoulos, P.
2015-05-01
Recent progress in the gyrokinetic theory of stellarator microinstabilities and turbulence simulations is summarized. The simulations have been carried out using two different gyrokinetic codes, the global particle-in-cell code EUTERPE and the continuum code GENE, which operates in the geometry of a flux tube or a flux surface but is local in the radial direction. Ion-temperature-gradient (ITG) and trapped-electron modes are studied and compared with their counterparts in axisymmetric tokamak geometry. Several interesting differences emerge. Because of the more complicated structure of the magnetic field, the fluctuations are much less evenly distributed over each flux surface in stellarators than in tokamaks. Instead of covering the entire outboard side of the torus, ITG turbulence is localized to narrow bands along the magnetic field in regions of unfavourable curvature, and the resulting transport depends on the normalized gyroradius ρ* even in radially local simulations. Trapped-electron modes can be significantly more stable than in typical tokamaks, because of the spatial separation of regions with trapped particles from those with bad magnetic curvature. Preliminary non-linear simulations in flux-tube geometry suggest differences in the turbulence levels in Wendelstein 7-X and a typical tokamak.
NASA Astrophysics Data System (ADS)
Biazzo, K.
2006-11-01
Understanding stellar magnetic activity phenomena is of paramount importance for stellar evolution and for planetary systems formation and their atmosphere and climate. The dynamo process that generates magnetic fields in stars is well understood and there is still no comprehensive model of solar and stellar magnetic activity. Stellar activity is characterized by tracers such as spots, plages, flares and winds. These features are the fingerprints of magnetic field lines and their detailed analysis provides constraints for theoretical models. Our knowledge can only advance if the active stars besides the Sun are included in our study. Therefore, it is essential to accomplish comprehensive studies of active stars with a wide range of stellar parameters and a variety of activity phenomena. In this thesis, I concentrate on emergence of active regions at photospheric and chromospheric levels, namely spots and plages, in stars with different evolutionary stages. Spots are cool areas on the surface of the stars and are supposed to be the result of the blocking effect on convection caused by magnetic flux-tube emersion. Plages are bright areas linked to emersion of magnetic flux tubes from the sub-photospheric convective level. Starspot temperature represents an important parameter for the investigation of stellar magnetic activity, but its precise determination, relying only on light curve inversion techniques, is strongly hampered by the lack of solution uniqueness. Therefore, a method based on line-depth ratios as temperature discriminant has been developed. This technique is capable of resolving temperature differences less than 10 K. Moreover, combining temperature and light curve solutions, I am able to determine in a univocal way starspot temperature and area. Using the net Halpha emission as indicator of plage presence, I have also studied the spot and plage association. As a matter of fact, the residual Halpha profiles, obtained as the difference between the observed spectra and non-active templates, allows to study the chromospheric structures simultaneously to the photospheric ones. In addition, I have also detected the intensity of the HeI-D3 line to analyse the presence of surface features in the high chromosphere. The observations of both standard and target stars have been performed with different instruments. In particular, the spectra have been acquired at Catania Astrophysical Observatory (Italy), Observatoire de Haute-Provence (France) and Nordic Optical Observatory (Canarian Islands). The photometric observations have been obtained at Catania Astrophysical Observatory, Fairnborn Observatory (USA) and Ege University Observatory (Turkey). Finally, starspot and plage physical parameters have been obtained for sixteen stars of different effective temperature and gravity and different evolutionary stages. The main results can be summarized as follows: - starspot temperatures are more similar to solar penumbrae; - dwarf stars tend to have smaller spots compared to giant stars; - stars with higher gravity seem to have cooler (relative to their photosphere) spots compared to stars with lower gravity; - spatial association exists between surface inhomogeneities at different atmospheric levels.
Radiative accretion shocks along nonuniform stellar magnetic fields in classical T Tauri stars
NASA Astrophysics Data System (ADS)
Orlando, S.; Bonito, R.; Argiroffi, C.; Reale, F.; Peres, G.; Miceli, M.; Matsakos, T.; Stehlé, C.; Ibgui, L.; de Sa, L.; Chièze, J. P.; Lanz, T.
2013-11-01
Context. According to the magnetospheric accretion model, hot spots form on the surface of classical T Tauri stars (CTTSs) in regions where accreting disk material impacts the stellar surface at supersonic velocity, generating a shock. Aims: We investigate the dynamics and stability of postshock plasma that streams along nonuniform stellar magnetic fields at the impact region of accretion columns. We study how the magnetic field configuration and strength determine the structure, geometry, and location of the shock-heated plasma. Methods: We model the impact of an accretion stream onto the chromosphere of a CTTS by 2D axisymmetric magnetohydrodynamic simulations. Our model considers the gravity, the radiative cooling, and the magnetic-field-oriented thermal conduction (including the effects of heat flux saturation). We explore different configurations and strengths of the magnetic field. Results: The structure, stability, and location of the shocked plasma strongly depend on the configuration and strength of the magnetic field. In the case of weak magnetic fields (plasma β ≳ 1 in the postshock region), a large component of B may develop perpendicular to the stream at the base of the accretion column, which limits the sinking of the shocked plasma into the chromosphere and perturbs the overstable shock oscillations induced by radiative cooling. An envelope of dense and cold chromospheric material may also develop around the shocked column. For strong magnetic fields (β < 1 in the postshock region close to the chromosphere), the field configuration determines the position of the shock and its stand-off height. If the field is strongly tapered close to the chromosphere, an oblique shock may form well above the stellar surface at the height where the plasma β ≈ 1. In general, we find that a nonuniform magnetic field makes the distribution of emission measure vs. temperature of the postshock plasma at T > 106 K lower than when there is uniform magnetic field. Conclusions: The initial magnetic field strength and configuration in the region of impact of the stream are expected to influence the chromospheric absorption and, therefore, the observability of the shock-heated plasma in the X-ray band. In addition, the field strength and configuration also influence the energy balance of the shocked plasma with its emission measure at T > 106 K, which is lower than expected for a uniform field. The above effects contribute to underestimating the mass accretion rates derived in the X-ray band. Movies are available in electronic form at http://www.aanda.org
Theory of plasma confinement in non-axisymmetric magnetic fields.
Helander, Per
2014-08-01
The theory of plasma confinement by non-axisymmetric magnetic fields is reviewed. Such fields are used to confine fusion plasmas in stellarators, where in contrast to tokamaks and reversed-field pinches the magnetic field generally does not possess any continuous symmetry. The discussion is focussed on magnetohydrodynamic equilibrium conditions, collisionless particle orbits, and the kinetic theory of equilbrium and transport. Each of these topics is fundamentally affected by the absence of symmetry in the magnetic field: the field lines need not trace out nested flux surfaces, the particle orbits may not be confined, and the cross-field transport can be very large. Nevertheless, by tailoring the magnetic field appropriately, well-behaved equilibria with good confinement can be constructed, potentially offering an attractive route to magnetic fusion. In this article, the mathematical apparatus to describe stellarator plasmas is developed from first principles and basic elements underlying confinement optimization are introduced.
Simulation of the small-scale magnetism in main-sequence stellar atmospheres
NASA Astrophysics Data System (ADS)
Salhab, R. G.; Steiner, O.; Berdyugina, S. V.; Freytag, B.; Rajaguru, S. P.; Steffen, M.
2018-06-01
Context. Observations of the Sun tell us that its granular and subgranular small-scale magnetism has significant consequences for global quantities such as the total solar irradiance or convective blueshift of spectral lines. Aims: In this paper, properties of the small-scale magnetism of four cool stellar atmospheres, including the Sun, are investigated, and in particular its effects on the radiative intensity and flux. Methods: We carried out three-dimensional radiation magnetohydrodynamic simulations with the CO5BOLD code in two different settings: with and without a magnetic field. These are thought to represent states of high and low small-scale magnetic activity of a stellar magnetic cycle. Results: We find that the presence of small-scale magnetism increases the bolometric intensity and flux in all investigated models. The surplus in radiative flux of the magnetic over the magnetic field-free atmosphere increases with increasing effective temperature, Teff, from 0.47% for spectral type K8V to 1.05% for the solar model, but decreases for higher effective temperatures than solar. The degree of evacuation of the magnetic flux concentrations monotonically increases with Teff as does their depression of the visible optical surface, that is the Wilson depression. Nevertheless, the strength of the field concentrations on this surface stays remarkably unchanged at ≈1560 G throughout the considered range of spectral types. With respect to the surrounding gas pressure, the field strength is close to (thermal) equipartition for the Sun and spectral type F5V but is clearly sub-equipartition for K2V and more so for K8V. The magnetic flux concentrations appear most conspicuous for model K2V owing to their high brightness contrast. Conclusions: For mean magnetic flux densities of approximately 50 G, we expect the small-scale magnetism of stars in the spectral range from F5V to K8V to produce a positive contribution to their bolometric luminosity. The modulation seems to be most effective for early G-type stars.
Equilibrium β-limits in classical stellarators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loizu, Joaquim; Hudson, S. R.; Nuhrenberg, C.
Here, a numerical investigation is carried out to understand the equilibrium β-limit in a classical stellarator. The stepped-pressure equilibrium code is used in order to assess whether or not magnetic islands and stochastic field-lines can emerge at high β. Two modes of operation are considered: a zero-net-current stellarator and a fixed-iota stellarator. Despite the fact that relaxation is allowed, the former is shown to maintain good flux surfaces up to the equilibrium β-limit predicted by ideal-magnetohydrodynamics (MHD), above which a separatrix forms. The latter, which has no ideal equilibrium β-limit, is shown to develop regions of magnetic islands and chaosmore » at sufficiently high β, thereby providing a ‘non-ideal β-limit’. Perhaps surprisingly, however, the value of β at which the Shafranov shift of the axis reaches a fraction of the minor radius follows in all cases the scaling laws predicted by ideal-MHD. We compare our results to the High-Beta-Stellarator theory of Freidberg and derive a new prediction for the non-ideal equilibrium β-limit above which chaos emerges.« less
Equilibrium β-limits in classical stellarators
Loizu, Joaquim; Hudson, S. R.; Nuhrenberg, C.; ...
2017-11-17
Here, a numerical investigation is carried out to understand the equilibrium β-limit in a classical stellarator. The stepped-pressure equilibrium code is used in order to assess whether or not magnetic islands and stochastic field-lines can emerge at high β. Two modes of operation are considered: a zero-net-current stellarator and a fixed-iota stellarator. Despite the fact that relaxation is allowed, the former is shown to maintain good flux surfaces up to the equilibrium β-limit predicted by ideal-magnetohydrodynamics (MHD), above which a separatrix forms. The latter, which has no ideal equilibrium β-limit, is shown to develop regions of magnetic islands and chaosmore » at sufficiently high β, thereby providing a ‘non-ideal β-limit’. Perhaps surprisingly, however, the value of β at which the Shafranov shift of the axis reaches a fraction of the minor radius follows in all cases the scaling laws predicted by ideal-MHD. We compare our results to the High-Beta-Stellarator theory of Freidberg and derive a new prediction for the non-ideal equilibrium β-limit above which chaos emerges.« less
STELLAR DYNAMO MODELS WITH PROMINENT SURFACE TOROIDAL FIELDS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonanno, Alfio
2016-12-20
Recent spectro-polarimetric observations of solar-type stars have shown the presence of photospheric magnetic fields with a predominant toroidal component. If the external field is assumed to be current-free it is impossible to explain these observations within the framework of standard mean-field dynamo theory. In this work, it will be shown that if the coronal field of these stars is assumed to be harmonic, the underlying stellar dynamo mechanism can support photospheric magnetic fields with a prominent toroidal component even in the presence of axisymmetric magnetic topologies. In particular, it is argued that the observed increase in the toroidal energy inmore » low-mass fast-rotating stars can be naturally explained with an underlying α Ω mechanism.« less
NASA Astrophysics Data System (ADS)
Folsom, C. P.; Bouvier, J.; Petit, P.; Lèbre, A.; Amard, L.; Palacios, A.; Morin, J.; Donati, J.-F.; Vidotto, A. A.
2018-03-01
There is a large change in surface rotation rates of sun-like stars on the pre-main sequence and early main sequence. Since these stars have dynamo-driven magnetic fields, this implies a strong evolution of their magnetic properties over this time period. The spin-down of these stars is controlled by interactions between stellar and magnetic fields, thus magnetic evolution in turn plays an important role in rotational evolution. We present here the second part of a study investigating the evolution of large-scale surface magnetic fields in this critical time period. We observed stars in open clusters and stellar associations with known ages between 120 and 650 Myr, and used spectropolarimetry and Zeeman Doppler Imaging to characterize their large-scale magnetic field strength and geometry. We report 15 stars with magnetic detections here. These stars have masses from 0.8 to 0.95 M⊙, rotation periods from 0.326 to 10.6 d, and we find large-scale magnetic field strengths from 8.5 to 195 G with a wide range of geometries. We find a clear trend towards decreasing magnetic field strength with age, and a power law decrease in magnetic field strength with Rossby number. There is some tentative evidence for saturation of the large-scale magnetic field strength at Rossby numbers below 0.1, although the saturation point is not yet well defined. Comparing to younger classical T Tauri stars, we support the hypothesis that differences in internal structure produce large differences in observed magnetic fields, however for weak-lined T Tauri stars this is less clear.
NASA Astrophysics Data System (ADS)
Pagano, Isabella
2010-02-01
Stars with significant subsurface convection zones develop magnetic loop structures that, arising from the surface upward to the external atmospheres, cause flux variability detectable throughout the whole electromagnetic spectrum. In fact, diagnostics of magnetic activity are in radio wavelengths, where gyrosincrotron radiation arises from the quiescent and flaring corona; in the optical region, where important signatures are the Balmer lines, the Ca ii IRT and H&K lines; in the UV and X ray domains, the latter mainly due to coronal thermal plasma. The zoo of different magnetic features observed for the Sun - spots, faculae, flares, CMEs - are characterized by different temporal evolution and energetics, both in quantity and quality. As a consequence, the time scale of variability, the amount of involved energy and the quality of the involved photons are used as fingerprints in interpreting the observed stellar variability in the framework of the solar-stellar analogy. Here I review main results from long-term multiwavelength observations of cool star atmospheres, with emphasis to similarities and differences with the solar case.
Confirmation of the topology of the Wendelstein 7-X magnetic field to better than 1:100,000
Pedersen, T. Sunn; Otte, M.; Lazerson, S.; ...
2016-11-30
Fusion energy research has in the past 40 years focused primarily on the tokamak concept, but recent advances in plasma theory and computational power have led to renewed interest in stellarators. The largest and most sophisticated stellarator in the world, Wendelstein 7-X (W7-X), has just started operation, with the aim to show that the earlier weaknesses of this concept have been addressed successfully, and that the intrinsic advantages of the concept persist, also at plasma parameters approaching those of a future fusion power plant. Here we show the first physics results, obtained before plasma operation: that the carefully tailored topologymore » of nested magnetic surfaces needed for good confinement is realized, and that the measured deviations are smaller than one part in 100,000. Lastly, this is a significant step forward in stellarator research, since it shows that the complicated and delicate magnetic topology can be created and verified with the required accuracy.« less
Confirmation of the topology of the Wendelstein 7-X magnetic field to better than 1:100,000.
Pedersen, T Sunn; Otte, M; Lazerson, S; Helander, P; Bozhenkov, S; Biedermann, C; Klinger, T; Wolf, R C; Bosch, H-S
2016-11-30
Fusion energy research has in the past 40 years focused primarily on the tokamak concept, but recent advances in plasma theory and computational power have led to renewed interest in stellarators. The largest and most sophisticated stellarator in the world, Wendelstein 7-X (W7-X), has just started operation, with the aim to show that the earlier weaknesses of this concept have been addressed successfully, and that the intrinsic advantages of the concept persist, also at plasma parameters approaching those of a future fusion power plant. Here we show the first physics results, obtained before plasma operation: that the carefully tailored topology of nested magnetic surfaces needed for good confinement is realized, and that the measured deviations are smaller than one part in 100,000. This is a significant step forward in stellarator research, since it shows that the complicated and delicate magnetic topology can be created and verified with the required accuracy.
Confirmation of the topology of the Wendelstein 7-X magnetic field to better than 1:100,000
Pedersen, T. Sunn; Otte, M.; Lazerson, S.; Helander, P.; Bozhenkov, S.; Biedermann, C.; Klinger, T.; Wolf, R. C.; Bosch, H. -S.; Abramovic, Ivana; Äkäslompolo, Simppa; Aleynikov, Pavel; Aleynikova, Ksenia; Ali, Adnan; Alonso, Arturo; Anda, Gabor; Andreeva, Tamara; Ascasibar, Enrique; Baldzuhn, Jürgen; Banduch, Martin; Barbui, Tullio; Beidler, Craig; Benndorf, Andree; Beurskens, Marc; Biel, Wolfgang; Birus, Dietrich; Blackwell, Boyd; Blanco, Emilio; Blatzheim, Marko; Bluhm, Torsten; Böckenhoff, Daniel; Bolgert, Peter; Borchardt, Matthias; Böttger, Lukas-Georg; Brakel, Rudolf; Brandt, Christian; Bräuer, Torsten; Braune, Harald; Burhenn, Rainer; Buttenschön, Birger; Bykov, Victor; Calvo, Ivan; Cappa, Alvaro; Carls, Andre; de Carvalho, Bernardo Brotas; Castejon, Francisco; Cianciosa, Mark; Cole, Michael; Costea, Stefan; Cseh, Gabor; Czarnecka, Agata; Da Molin, Andrea; de la Cal, Eduardo; de la Pena, Angel; Degenkolbe, Sven; Prakash Dhard, Chandra; Dinklage, Andreas; Dostal, Marion; Drevlak, Michael; Drewelow, Peter; Drews, Philipp; Dudek, Andrzej; Durodie, Frederic; Dzikowicka, Anna; van Eeten, Paul; Effenberg, Florian; Endler, Michael; Erckmann, Volker; Estrada, Teresa; Fahrenkamp, Nils; Fellinger, Joris; Feng, Yühe; Figacz, Waldemar; Ford, Oliver; Fornal, Tomasz; Frerichs, Heinke; Fuchert, Golo; Garcia-Munoz, Manuel; Geiger, Benedikt; Geiger, Joachim; Gierse, Niels; Gogoleva, Alena; Goncalves, Bruno; Gradic, Dorothea; Grahl, Michael; Groß, Silvia; Grote, Heinz; Grulke, Olaf; Guerard, Carlos; Haas, Matthias; Harris, Jeffrey; Hartfuß, Hans- Jürgen; Hartmann, Dirk; Hathiramani, Dag; Hein, Bernd; Heinrich, Stefan; Henneberg, Sophia; Hennig, Christine; Hernandez, Julio; Hidalgo, Carlos; Hidalgo, Ulises; Hirsch, Matthias; Höfel, Udo; Hölbe, Hauke; Hölting, Alf; Houry, Michael; Huber, Valentina; Ionita, Codrina; Israeli, Ben; Jablonski, Slowomir; Jakubowski, Marcin; van Vuuren, Anton Jansen; Jenzsch, Hartmut; Kaczmarczyk, Jacek; Kallmeyer, Johann-Peter; Kamionka, Ute; Kasahara, Hiroshi; Kenmochi, Naoki; Kernbichler, Winfried; Killer, Carsten; Kinna, David; Kleiber, Ralf; Knauer, Jens; Köchl, Florian; Kocsis, Gabor; Kolesnichenko, Yaroslav; Könies, Axel; König, Ralf; Kornejew, Petra; Köster, Felix; Krämer-Flecken, Andreas; Krampitz, Rüdiger; Krawzyk, Natalia; Kremeyer, Thierry; Krychowiak, Maciej; Ksiazek, Ireneusz; Kubkowska, Monika; Kühner, Georg; Kurki-Suonio, Taina; Kurz, Peter; Küttler, Katja; Kwak, Sehyun; Landreman, Matt; Langenberg, Andreas; Lapayese, Fernando; Laqua, Heike; Laqua, Heinrich-Peter; Laube, Ralph; Laux, Michael; Lentz, Holger; Lewerentz, Marc; Liang, Yunfeng; Liu, Shaocheng; Lobsien, Jim-Felix; Cisquella, Joaquim Loizu; Lopez-Bruna, Daniel; Lore, Jeremy; Lorenz, Axel; Lutsenko, Vadym; Maaßerg, Henning; Maisano-Brown, Jeanette; Marchuk, Oleksandr; Marrelli, Lionello; Marsen, Stefan; Marushchenko, Nikolai; Masuzaki, Suguru; McCarthy, Kieran; McNeely, Paul; Medina, Francisco; Milojevic, Dusan; Mishchenko, Alexey; Missal, Bernd; Mittelstaedt, Joseph; Mollen, Albert; Moncada, Victor; Mönnich, Thomas; Moseev, Dmitry; Nagel, Michael; Naujoks, Dirk; Neilson, George Hutch; Neubauer, Olaf; Neuner, Ulrich; Ngo, Tran-Thanh; Niemann, Holger; Nührenberg, Carolin; Nührenberg, Jürgen; Ochando, Marian; Ogawa, Kunihiro; Ongena, Jef; Oosterbeek, Hans; Pablant, Novimir; Pacella, Danilo; Pacios, Luis; Panadero, Nerea; Pasch, Ekkehard; Pastor, Ignacio; Pavone, Andrea; Pawelec, Ewa; Pedrosa, Angeles; Perseo, Valeria; Peterson, Byron; Pilopp, Dirk; Pisano, Fabio; Puiatti, Maria Ester; Plunk, Gabriel; Preynas, Melanie; Proll, Josefine; Sitjes, Aleix Puig; Purps, Frank; Rack, Michael; Rahbarnia, Kian; Riemann, Jörg; Riße, Konrad; Rong, Peter; Rosenberger, Joachim; Rudischhauser, Lukas; Rummel, Kerstin; Rummel, Thomas; Runov, Alexey; Rust, Norbert; Ryc, Leszek; Saitoh, Haruhiko; Satake, Shinsuke; Schacht, Jörg; Schmitz, Oliver; Schmuck, Stefan; Schneider, Bernd; Schneider, Matthias; Schneider, Wolfgang; Schrittwieser, Roman; Schröder, Michael; Schröder, Timo; Schröder, Ralf; Schumacher, Hans Werner; Schweer, Bernd; Seki, Ryosuke; Sinha, Priyanjana; Sipilae, Seppo; Slaby, Christoph; Smith, Håkan; Sousa, Jorge; Spring, Anett; Standley, Brian; Stange, Torsten; von Stechow, Adrian; Stephey, Laurie; Stoneking, Matthew; Stridde, Uwe; Suzuki, Yasuhiro; Svensson, Jakob; Szabolics, Tamas; Szepesi, Tamas; Thomsen, Henning; Travere, Jean-Marcel; Traverso, Peter; Mora, Humberto Trimino; Tsuchiya, Hayato; Tsuijmura, Tohru; Turkin, Yuriy; Valet, Swetlana; van Milligen, Boudewijn; Vela, Luis; Velasco, Jose-Luis; Vergote, Maarten; Vervier, Michel; Viebke, Holger; Vilbrandt, Reinhard; von Thun, Christian Perez; Wagner, Friedrich; Wang, Erhui; Wang, Nengchao; Warmer, Felix; Wauters, Tom; Wegener, Lutz; Wegner, Thomas; Weir, Gavin; Wendorf, Jörg; Wenzel, Uwe; Werner, Andreas; Wie, Yanling; Wiegel, Burkhard; Wilde, Fabian; Windisch, Thomas; Winkler, Mario; Winters, Victoria; Wright, Adelle; Wurden, Glen; Xanthopoulos, Pavlos; Yamada, Ichihiro; Yasuhara, Ryo; Yokoyama, Masayuki; Zhang, Daihong; Zilker, Manfred; Zimbal, Andreas; Zocco, Alessandro; Zoletnik, Sandor
2016-01-01
Fusion energy research has in the past 40 years focused primarily on the tokamak concept, but recent advances in plasma theory and computational power have led to renewed interest in stellarators. The largest and most sophisticated stellarator in the world, Wendelstein 7-X (W7-X), has just started operation, with the aim to show that the earlier weaknesses of this concept have been addressed successfully, and that the intrinsic advantages of the concept persist, also at plasma parameters approaching those of a future fusion power plant. Here we show the first physics results, obtained before plasma operation: that the carefully tailored topology of nested magnetic surfaces needed for good confinement is realized, and that the measured deviations are smaller than one part in 100,000. This is a significant step forward in stellarator research, since it shows that the complicated and delicate magnetic topology can be created and verified with the required accuracy. PMID:27901043
Spot distribution and fast surface evolution on Vega
NASA Astrophysics Data System (ADS)
Petit, P.; Hébrard, E. M.; Böhm, T.; Folsom, C. P.; Lignières, F.
2017-11-01
Spectral signatures of surface spots were recently discovered from high cadence observations of the A star Vega. We aim at constraining the surface distribution of these photospheric inhomogeneities and investigating a possible short-term evolution of the spot pattern. Using data collected over five consecutive nights, we employ the Doppler imaging method to reconstruct three different maps of the stellar surface, from three consecutive subsets of the whole time series. The surface maps display a complex distribution of dark and bright spots, covering most of the visible fraction of the stellar surface. A number of surface features are consistently recovered in all three maps, but other features seem to evolve over the time span of observations, suggesting that fast changes can affect the surface of Vega within a few days at most. The short-term evolution is observed as emergence or disappearance of individual spots, and may also show up as zonal flows, with low- and high-latitude belts rotating faster than intermediate latitudes. It is tempting to relate the surface brightness activity to the complex magnetic field topology previously reconstructed for Vega, although strictly simultaneous brightness and magnetic maps will be necessary to assess this potential link.
Magnetic Field Measurements of T Tauri Stars in the Orion Nebula Cluster
NASA Astrophysics Data System (ADS)
Yang, Hao; Johns-Krull, Christopher M.
2011-03-01
We present an analysis of high-resolution (R ~ 50, 000) infrared K-band echelle spectra of 14 T Tauri stars (TTSs) in the Orion Nebula Cluster. We model Zeeman broadening in three magnetically sensitive Ti I lines near 2.2 μm and consistently detect kilogauss-level magnetic fields in the stellar photospheres. The data are consistent in each case with the entire stellar surface being covered with magnetic fields, suggesting that magnetic pressure likely dominates over gas pressure in the photospheres of these stars. These very strong magnetic fields might themselves be responsible for the underproduction of X-ray emission of TTSs relative to what is expected based on main-sequence star calibrations. We combine these results with previous measurements of 14 stars in Taurus and 5 stars in the TW Hydrae association to study the potential variation of magnetic field properties during the first 10 million years of stellar evolution, finding a steady decline in total magnetic flux with age. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (USA), the Science and Technology Facilities Council (UK), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência e Tecnologia (Brazil), and SECYT (Argentina).
Stellar differential rotation and coronal time-scales
NASA Astrophysics Data System (ADS)
Gibb, G. P. S.; Jardine, M. M.; Mackay, D. H.
2014-10-01
We investigate the time-scales of evolution of stellar coronae in response to surface differential rotation and diffusion. To quantify this, we study both the formation time and lifetime of a magnetic flux rope in a decaying bipolar active region. We apply a magnetic flux transport model to prescribe the evolution of the stellar photospheric field, and use this to drive the evolution of the coronal magnetic field via a magnetofrictional technique. Increasing the differential rotation (i.e. decreasing the equator-pole lap time) decreases the flux rope formation time. We find that the formation time is dependent upon the lap time and the surface diffusion time-scale through the relation τ_Form ∝ √{τ_Lapτ_Diff}. In contrast, the lifetimes of flux ropes are proportional to the lap time (τLife∝τLap). With this, flux ropes on stars with a differential rotation of more than eight times the solar value have a lifetime of less than 2 d. As a consequence, we propose that features such as solar-like quiescent prominences may not be easily observable on such stars, as the lifetimes of the flux ropes which host the cool plasma are very short. We conclude that such high differential rotation stars may have very dynamical coronae.
Surface currents on the plasma-vacuum interface in MHD equilibria
NASA Astrophysics Data System (ADS)
Hanson, James
2017-10-01
The VMEC non-axisymmetric MHD equilibrium code can compute free-boundary equilibria. Since VMEC assumes that magnetic fields within the plasma form closed and nested flux surfaces, the plasma-vacuum interface is a flux surface, and the total magnetic field there has no normal component. VMEC imposes this condition of zero normal field using the potential formulation of Merkel, and solves a Neumann problem for the magnetic potential in the exterior region. This boundary condition necessarily admits the possibility of a surface current on the interface. While this surface current may be small in MHD equilibrium, it is readily computed in terms of the magnetic potentials in both the interior and exterior regions, evaluated on the surface. If only the external magnetic potential is known (as in VMEC), then the surface current can be computed from the discontinuity of the tangential field across the interface. Examples of the surface current for VMEC equilibria will be shown for a zero-pressure stellarator equilibrium. Field-line following of the vacuum magnetic field shows magnetic islands within the plasma region.
Surface Magnetic Field Strengths: New Tests of Magnetoconvective Models of M Dwarfs
NASA Astrophysics Data System (ADS)
MacDonald, James; Mullan, D. J.
2014-05-01
Precision modeling of M dwarfs has become worthwhile in recent years due to the increasingly precise values of masses and radii which can be obtained from eclipsing binary studies. In a recent paper, Torres has identified four prime M dwarf pairs with the most precise empirical determinations of masses and radii. The measured radii are consistently larger than standard stellar models predict by several percent. These four systems potentially provide the most challenging tests of precision evolutionary models of cool dwarfs at the present time. We have previously modeled M dwarfs in the context of a criterion due to Gough & Tayler in which magnetic fields inhibit the onset of convection according to a physics-based prescription. In the present paper, we apply our magnetoconvective approach to the four prime systems in the Torres list. Going a step beyond what we have already modeled in CM Dra (one of the four Torres systems), we note that new constraints on magnetoconvective models of M dwarfs are now available from empirical estimates of magnetic field strengths on the surfaces of these stars. In the present paper, we consider how well our magnetoconvective models succeed when confronted with this new test of surface magnetic field strengths. Among the systems listed by Torres, we find that plausible magnetic models work well for CM Dra, YY Gem, and CU Cnc. (The fourth system in Torres's list does not yet have enough information to warrant magnetic modeling.) Our magnetoconvection models of CM Dra, YY Gem, and CU Cnc yield predictions of the magnetic fluxes on the stellar surface which are consistent with the observed correlation between magnetic flux and X-ray luminosity.
Surface magnetic field strengths: New tests of magnetoconvective models of M dwarfs
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacDonald, James; Mullan, D. J., E-mail: jimmacd@udel.edu, E-mail: mullan@udel.edu
2014-05-20
Precision modeling of M dwarfs has become worthwhile in recent years due to the increasingly precise values of masses and radii which can be obtained from eclipsing binary studies. In a recent paper, Torres has identified four prime M dwarf pairs with the most precise empirical determinations of masses and radii. The measured radii are consistently larger than standard stellar models predict by several percent. These four systems potentially provide the most challenging tests of precision evolutionary models of cool dwarfs at the present time. We have previously modeled M dwarfs in the context of a criterion due to Goughmore » and Tayler in which magnetic fields inhibit the onset of convection according to a physics-based prescription. In the present paper, we apply our magnetoconvective approach to the four prime systems in the Torres list. Going a step beyond what we have already modeled in CM Dra (one of the four Torres systems), we note that new constraints on magnetoconvective models of M dwarfs are now available from empirical estimates of magnetic field strengths on the surfaces of these stars. In the present paper, we consider how well our magnetoconvective models succeed when confronted with this new test of surface magnetic field strengths. Among the systems listed by Torres, we find that plausible magnetic models work well for CM Dra, YY Gem, and CU Cnc. (The fourth system in Torres's list does not yet have enough information to warrant magnetic modeling.) Our magnetoconvection models of CM Dra, YY Gem, and CU Cnc yield predictions of the magnetic fluxes on the stellar surface which are consistent with the observed correlation between magnetic flux and X-ray luminosity.« less
Method and apparatus for maintaining equilibrium in a helical axis stellarator
Reiman, Allan; Boozer, Allen
1987-01-01
Apparatus for maintaining three-dimensional MHD equilibrium in a plasma contained in a helical axis stellerator includes a resonant coil system, having a configuration such that current therethrough generates a magnetic field cancelling the resonant magnetic field produced by currents driven by the plasma pressure on any given flux surface resonating with the rotational transform of another flux surface in the plasma. Current through the resonant coil system is adjusted as a function of plasma beta.
Disruption of circumstellar discs by large-scale stellar magnetic fields
NASA Astrophysics Data System (ADS)
ud-Doula, Asif; Owocki, Stanley P.; Kee, Nathaniel Dylan
2018-05-01
Spectropolarimetric surveys reveal that 8-10% of OBA stars harbor large-scale magnetic fields, but thus far no such fields have been detected in any classical Be stars. Motivated by this, we present here MHD simulations for how a pre-existing Keplerian disc - like that inferred to form from decretion of material from rapidly rotating Be stars - can be disrupted by a rotation-aligned stellar dipole field. For characteristic stellar and disc parameters of a near-critically rotating B2e star, we find that a polar surface field strength of just 10 G can significantly disrupt the disc, while a field of 100 G, near the observational upper limit inferred for most Be stars, completely destroys the disc over just a few days. Our parameter study shows that the efficacy of this magnetic disruption of a disc scales with the characteristic plasma beta (defined as the ratio between thermal and magnetic pressure) in the disc, but is surprisingly insensitive to other variations, e.g. in stellar rotation speed, or the mass loss rate of the star's radiatively driven wind. The disc disruption seen here for even a modest field strength suggests that the presumed formation of such Be discs by decretion of material from the star would likely be strongly inhibited by such fields; this provides an attractive explanation for why no large-scale fields are detected from such Be stars.
Medium-β free-boundary equilibria of a quasi-isodynamic stellarator
NASA Astrophysics Data System (ADS)
Mikhailov, M. I.; Drevlak, M.; Nührenberg, J.; Shafranov, V. D.
2012-06-01
Free-boundary MHD equilibria with magnetic surfaces in the vacuum region surrounding the plasma [E. Strumberger, Nucl. Fusion 37, 19 (1997); M. Drevlak, D. Monticello, and A. Reiman, Nucl. Fusion 45, 731 (2005)] are obtained for a quasi-isodynamic stellarator [A. A. Subbotin, M. I. Mikhailov, V. D. Shafranov et al., Nucl. Fusion 46, 921 (2006); M. I. Mikhailov, J. Nuhrenberg, and V. D. Shafranov, Plasma Phys. Rep. 35, 529 (2009)].
Medium-{beta} free-boundary equilibria of a quasi-isodynamic stellarator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mikhailov, M. I.; Drevlak, M.; Nuehrenberg, J.
Free-boundary MHD equilibria with magnetic surfaces in the vacuum region surrounding the plasma [E. Strumberger, Nucl. Fusion 37, 19 (1997); M. Drevlak, D. Monticello, and A. Reiman, Nucl. Fusion 45, 731 (2005)] are obtained for a quasi-isodynamic stellarator [A. A. Subbotin, M. I. Mikhailov, V. D. Shafranov et al., Nucl. Fusion 46, 921 (2006); M. I. Mikhailov, J. Nuhrenberg, and V. D. Shafranov, Plasma Phys. Rep. 35, 529 (2009)].
Calculations of neoclassical impurity transport in stellarators
NASA Astrophysics Data System (ADS)
Mollén, Albert; Smith, Håkan M.; Langenberg, Andreas; Turkin, Yuriy; Beidler, Craig D.; Helander, Per; Landreman, Matt; Newton, Sarah L.; García-Regaña, José M.; Nunami, Masanori
2017-10-01
The new stellarator Wendelstein 7-X has finished the first operational campaign and is restarting operation in the summer 2017. To demonstrate that the stellarator concept is a viable candidate for a fusion reactor and to allow for long pulse lengths of 30 min, i.e. ``quasi-stationary'' operation, it will be important to avoid central impurity accumulation typically governed by the radial neoclassical transport. The SFINCS code has been developed to calculate neoclassical quantities such as the radial collisional transport and the ambipolar radial electric field in 3D magnetic configurations. SFINCS is a cutting-edge numerical tool which combines several important features: the ability to model an arbitrary number of kinetic plasma species, the full linearized Fokker-Planck collision operator for all species, and the ability to calculate and account for the variation of the electrostatic potential on flux surfaces. In the present work we use SFINCS to study neoclassical impurity transport in stellarators. We explore how flux-surface potential variations affect the radial particle transport, and how the radial electric field is modified by non-trace impurities and flux-surface potential variations.
Thermal structure and cooling of neutron stars with magnetized envelopes
NASA Astrophysics Data System (ADS)
Potekhin, A. Y.; Yakovlev, D. G.
2001-07-01
The thermal structure of neutron stars with magnetized envelopes is studied using modern physics input. The relation between the internal (Tint) and local surface temperatures is calculated and fitted by analytic expressions for magnetic field strengths B from 0 to 1016 G and arbitrary inclination of the field lines to the surface. The luminosity of a neutron star with dipole magnetic field is calculated and fitted as a function of B, Tint, stellar mass and radius. In addition, we simulate cooling of neutron stars with magnetized envelopes. In particular, we analyse ultramagnetized envelopes of magnetars and also the effects of the magnetic field of the Vela pulsar on the determination of critical temperatures of neutron and proton superfluids in its core.
Equilibrium 𝛽-limits in classical stellarators
NASA Astrophysics Data System (ADS)
Loizu, J.; Hudson, S. R.; Nührenberg, C.; Geiger, J.; Helander, P.
2017-12-01
A numerical investigation is carried out to understand the equilibrium -limit in a classical stellarator. The stepped-pressure equilibrium code (Hudson et al., Phys. Plasmas, vol. 19 (11), 2012) is used in order to assess whether or not magnetic islands and stochastic field-lines can emerge at high . Two modes of operation are considered: a zero-net-current stellarator and a fixed-iota stellarator. Despite the fact that relaxation is allowed (Taylor, Rev. Mod. Phys., vol. 58 (3), 1986, pp. 741-763), the former is shown to maintain good flux surfaces up to the equilibrium -limit predicted by ideal-magnetohydrodynamics (MHD), above which a separatrix forms. The latter, which has no ideal equilibrium -limit, is shown to develop regions of magnetic islands and chaos at sufficiently high , thereby providing a `non-ideal -limit'. Perhaps surprisingly, however, the value of at which the Shafranov shift of the axis reaches a fraction of the minor radius follows in all cases the scaling laws predicted by ideal-MHD. We compare our results to the High-Beta-Stellarator theory of Freidberg (Ideal MHD, 2014, Cambridge University Press) and derive a new prediction for the non-ideal equilibrium -limit above which chaos emerges.
Fast ion motion in the plasma part of a stellarator-mirror fission-fusion hybrid
NASA Astrophysics Data System (ADS)
Moiseenko, V. E.; Nemov, V. V.; Ågren, O.; Kasilov, S. V.; Garkusha, I. E.
2016-06-01
Recent developments of a stellarator-mirror (SM) fission-fusion hybrid concept are reviewed. The hybrid consists of a fusion neutron source and a powerful sub-critical fast fission reactor core. The aim is transmutation of spent nuclear fuel and safe fission energy production. In its fusion part, a stellarator-type system with an embedded magnetic mirror is used. The stellarator confines deuterium plasma with moderate temperature, 1-2 keV. In the magnetic mirror, a hot component of sloshing tritium ions is trapped. There, the fusion neutrons are generated. A candidate for a combined SM system is a DRACON magnetic trap. A basic idea behind an SM device is to maintain local neutron production in a mirror part, but at the same time eliminate the end losses by using a toroidal device. A possible drawback is that the stellarator part can introduce collision-free radial drift losses, which is the main topic for this study. For high energy ions of tritium with an energy of 70 keV, comparative computations of collisionless losses in the rectilinear part of a specific design of the DRACON type trap are carried out. Two versions of the trap are considered with different lengths of the rectilinear sections. Also the total number of current-carrying rings in the magnetic system is varied. The results predict that high energy ions from neutral beam injection can be satisfactorily confined in the mirror part during 0.1-1 s. The Uragan-2M experimental device is used to check key points of the SM concept. The magnetic configuration of a stellarator with an embedded magnetic mirror is arranged in this device by switching off one toroidal coil. The motion of particles magnetically trapped in the embedded mirror is analyzed numerically with use of motional invariants. It is found that without radial electric field particles quickly drift out of the SM, even if the particles initially are located on a nested magnetic surface. We will show that a weak radial electric field, which would be spontaneously created by the ambipolar radial particle losses, can make drift trajectories closed, which substantially improves particle confinement. It is remarkable that the improvement acts both for positive and negative charges.
Stellar wind erosion of protoplanetary discs
NASA Astrophysics Data System (ADS)
Schnepf, N. R.; Lovelace, R. V. E.; Romanova, M. M.; Airapetian, V. S.
2015-04-01
An analytic model is developed for the erosion of protoplanetary gas discs by high-velocity magnetized stellar winds. The winds are centrifugally driven from the surface of rapidly rotating, strongly magnetized young stars. The presence of the magnetic field in the wind leads to Reynolds numbers sufficiently large to cause a strongly turbulent wind/disc boundary layer which entrains and carries away the disc gas. The model uses the conservation of mass and momentum in the turbulent boundary layer. The time-scale for significant erosion depends on the disc accretion speed, disc accretion rate, the wind mass-loss rate, and the wind velocity. The time-scale is estimated to be ˜2 × 106 yr. The analytic model assumes a steady stellar wind with mass- loss rate dot {M}}_w ˜ 10^{-10} M_{⊙} yr-1 and velocity vw ˜ 103 km s-1. A significant contribution to the disc erosion can come from frequent powerful coronal mass ejections (CMEs) where the average mass-loss rate in CMEs, dot{M}_CME, and velocities, vCME, have values comparable to those for the steady wind.
Un modelo de dínamo para ɛ Eridani
NASA Astrophysics Data System (ADS)
Sraibman, L.; Buccino, A. P.; Minotti, F.
2017-10-01
Eridani is an active young K2V star (0.8 Gyr), which exhibits a short and long-term chromospheric cycles of 3 and 13-yr periods, between 1985 and 1992, the star went through a broad activity minimum, similar to the solar Maunder Minimum-state. Motivated by these results, we found in Eridani a great opportunity to test the solar cinematic dynamo model built in sraibman16. In this work we present the components of the magnetic fields in the stellar surface derived from the model. To contrast these results to the registry of activity obtained from stellar observations, we also computed an activity index associated to the magnetic field.
STELLAR MAGNETIC CYCLES IN THE SOLAR-LIKE STARS KEPLER-17 AND KEPLER-63
DOE Office of Scientific and Technical Information (OSTI.GOV)
Estrela, Raissa; Valio, Adriana, E-mail: rlf.estrela@gmail.com, E-mail: avalio@craam.mackenzie.br
2016-11-01
The stellar magnetic field plays a crucial role in the star internal mechanisms, as in the interactions with its environment. The study of starspots provides information about the stellar magnetic field and can characterize the cycle. Moreover, the analysis of solar-type stars is also useful to shed light onto the origin of the solar magnetic field. The objective of this work is to characterize the magnetic activity of stars. Here, we studied two solar-type stars, Kepler-17 and Kepler-63, using two methods to estimate the magnetic cycle length. The first one characterizes the spots (radius, intensity, and location) by fitting themore » small variations in the light curve of a star caused by the occultation of a spot during a planetary transit. This approach yields the number of spots present in the stellar surface and the flux deficit subtracted from the star by their presence during each transit. The second method estimates the activity from the excess in the residuals of the transit light curves. This excess is obtained by subtracting a spotless model transit from the light curve and then integrating all the residuals during the transit. The presence of long-term periodicity is estimated in both time series. With the first method, we obtained P {sub cycle} = 1.12 ± 0.16 year (Kepler-17) and P {sub cycle} = 1.27 ± 0.16 year (Kepler-63), and for the second approach the values are 1.35 ± 0.27 year and 1.27 ± 0.12 year, respectively. The results of both methods agree with each other and confirm their robustness.« less
The diagnosed mobile limiters of the TJ-II stellarator for plasma boundary studies
NASA Astrophysics Data System (ADS)
de la Cal, E.; Tabarés, F. L.; Tafalla, D.; Cortés, I. García.; Hidalgo, C.; López-Fraguas, A.
TJ-II is a medium size (major radius R=1.5 m, average plasma radius a <0.25 m, on axis magnetic field B=1 T) helical axis stellarator. The main characteristic is its magnetic configuration flexibility, due to the separate control of the different magnetic field coils. The two diagnosed mobile limiters are installed to reduce thermal loads on the thin protection plates of the contacting plasma-chamber regions and to study the plasma edge. First diagnostics are a set of thermocouples, Langmuir probes, H α-detectors and a CCD video camera with different filters (atomic lines of HeI, H α and near IR) looking at the limiter. A method of passive spectroscopy is proposed to map the electron temperature and density over the whole limiter surface by analysing the emission of helium recycling neutrals. It is expected from previous results of other stellarators, that the boundary magnetic topology will have a strong influence on the plasma-wall interaction. The mobile limiters can control the last closed magnetic surface and diagnose the plasma boundary. A qualitative different plasma edge scenario is foreseen between the limiter and the natural island divertor configuration (rational rotational transform inside the limiter radius). Plasma-wall interaction in TJ-II shows very specific features and the optimisation of the plasma edge topology can influence strongly the core plasma parameters. In particular, impurity screening will be a challenge due to the large power density which will be available in future (up to 2 MW NBI for 0.5 s). A safe operation for future high β-plasmas is also required and the mobile limiters should help to remove a fraction of the conductive/convective power.
Weaving the history of the solar wind with magnetic field lines
NASA Astrophysics Data System (ADS)
Alvarado Gomez, Julian
2017-08-01
Despite its fundamental role for the evolution of the solar system, our observational knowledge of the wind properties of the young Sun comes from a single stellar observation. This unexpected fact for a field such as astrophysics arises from the difficulty of detecting Sun-like stellar winds. Their detection relies on the appearance of an astrospheric signature (from the stellar wind-ISM interaction region), visible only with the aid of high-resolution HST Lyman-alpha spectra. However, observations and modelling of the present day Sun have revealed that magnetic fields constitute the main driver of the solar wind, providing guidance on how such winds would look like back in time. In this context we propose observations of four young Sun-like stars in order to detect their astrospheres and characterise their stellar winds. For all these objects we have recovered surface magnetic field maps using the technique of Zeeman Doppler Imaging, and developed detailed wind models based on these observed field distributions. Even a single detection would represent a major step forward for our understanding of the history of the solar wind, and the outflows in more active stars. Mass loss rate estimates from HST will be confronted with predictions from realistic models of the corona/stellar wind. In one of our objects the comparison would allow us to quantify the wind variability induced by the magnetic cycle of a star, other than the Sun, for the first time. Three of our targets are planet hosts, thus the HST spectra would also provide key information on the high-energy environment of these systems, guaranteeing their legacy value for the growing field of exoplanet characterisation.
Effect of Magnetic Islands on Divertors in Tokamaks and Stellarators
NASA Astrophysics Data System (ADS)
Punjabi, Alkesh; Boozer, Allen
2017-10-01
Divertors are required for handling the plasma particle and heat exhausts on the walls in fusion plasmas. Relatively simple methods, models, and maps from field line Hamiltonian are developed to better understand the interaction of strong plasma shaping and magnetic islands on the size and behavior of the magnetic flux tubes that go from the plasma edge to the wall in non-axisymmetric system. This approach is applicable not only in tokamaks but also in stellarators. Stellarator diverters in which magnetic islands are dominant are called resonant and when shaping is dominant are called non-resonant. Optimized stellarators generally have sharp edges on their surface, but unlike the case for tokamaks these edges do not encircle the entire plasma, so they do not define an edge value for the rotational transform. The approach is used in the DIII-D tokamak. Computation results are consistent with the predictions of the models. Further simulations are being done to understand why the transition from an effective cubic to a linear increase in loss time and area of footprint occurs and whether this increase is discontinuous or not. This work is supported by the US DOE Grants DE-FG02-01ER54624 and DE-FG02-04ER54793 to Hampton University and DE-FG02-95ER54333 to Columbia University. This research used resources of the NERSC, supported by the Office of Science, US DOE, under Contract No. DE-AC02-05CH11231.
Stellar granulation as the source of high-frequency flicker in Kepler light curves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cranmer, Steven R.; Saar, Steven H.; Bastien, Fabienne A.
2014-02-01
A large fraction of cool, low-mass stars exhibit brightness fluctuations that arise from a combination of convective granulation, acoustic oscillations, magnetic activity, and stellar rotation. Much of the short-timescale variability takes the form of stochastic noise, whose presence may limit the progress of extrasolar planet detection and characterization. In order to lay the groundwork for extracting useful information from these quasi-random signals, we focus on the origin of the granulation-driven component of the variability. We apply existing theoretical scaling relations to predict the star-integrated variability amplitudes for 508 stars with photometric light curves measured by the Kepler mission. We alsomore » derive an empirical correction factor that aims to account for the suppression of convection in F-dwarf stars with magnetic activity and shallow convection zones. So that we can make predictions of specific observational quantities, we performed Monte Carlo simulations of granulation light curves using a Lorentzian power spectrum. These simulations allowed us to reproduce the so-called flicker floor (i.e., a lower bound in the relationship between the full light-curve range and power in short-timescale fluctuations) that was found in the Kepler data. The Monte Carlo model also enabled us to convert the modeled fluctuation variance into a flicker amplitude directly comparable with observations. When the magnetic suppression factor described above is applied, the model reproduces the observed correlation between stellar surface gravity and flicker amplitude. Observationally validated models like these provide new and complementary evidence for a possible impact of magnetic activity on the properties of near-surface convection.« less
NASA Technical Reports Server (NTRS)
Carpenter, Kenneth
2007-01-01
The Stellar Imager (SI) is one of NASA's "Vision Missions" - concepts for future, space-based, strategic missions that could enormously increase our capabilities for observing the Cosmos. SI is designed as a UV/Optical Interferometer which will enable 0.1 milli-arcsecond (mas) spectral imaging of stellar surfaces and, via asteroseismology, stellar interiors and of the Universe in general. The ultra-sharp images of the Stellar Imager will revolutionize our view of many dynamic astrophysical processes by transforming point sources into extended sources, and snapshots into evolving views. SI, with a characteristic angular resolution of 0.1 milli-arcseconds at 2000 Angstroms, represents an advance in image detail of several hundred times over that provided by the Hubble Space Telescope. The Stellar Imager will zoom in on what today-with few exceptions - we only know as point sources, revealing processes never before seen, thus providing a tool as fundamental to astrophysics as the microscope is to the study of life on Earth. SI's science focuses on the role of magnetism in the Universe, particularly on magnetic activity on the surfaces of stars like the Sun. It's prime goal is to enable long-term forecasting of solar activity and the space weather that it drives, in support of the Living With a Star program in the Exploration Era. SI will also revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magneto-hydrodynamically controlled processes in the Universe. Stellar Imager is included as a "Flagship and Landmark Discovery Mission" in the 2005 Sun Solar System Connection (SSSC) Roadmap and as a candidate for a "Pathways to Life Observatory" in the Exploration of the Universe Division (EUD) Roadmap (May, 2005) and as such is a candidate mission for the 2025-2030 timeframe. An artist's drawing of the current "baseline" concept for SI is presented.
Plasma Equilibria With Stochastic Magnetic Fields
NASA Astrophysics Data System (ADS)
Krommes, J. A.; Reiman, A. H.
2009-05-01
Plasma equilibria that include regions of stochastic magnetic fields are of interest in a variety of applications, including tokamaks with ergodic limiters and high-pressure stellarators. Such equilibria are examined theoretically, and a numerical algorithm for their construction is described.^2,3 % The balance between stochastic diffusion of magnetic lines and small effects^2 omitted from the simplest MHD description can support pressure and current profiles that need not be flattened in stochastic regions. The diffusion can be described analytically by renormalizing stochastic Langevin equations for pressure and parallel current j, with particular attention being paid to the satisfaction of the periodicity constraints in toroidal configurations with sheared magnetic fields. The equilibrium field configuration can then be constructed by coupling the prediction for j to Amp'ere's law, which is solved numerically. A. Reiman et al., Pressure-induced breaking of equilibrium flux surfaces in the W7AS stellarator, Nucl. Fusion 47, 572--8 (2007). J. A. Krommes and A. H. Reiman, Plasma equilibrium in a magnetic field with stochastic regions, submitted to Phys. Plasmas. J. A. Krommes, Fundamental statistical theories of plasma turbulence in magnetic fields, Phys. Reports 360, 1--351.
Kulsrud, R.M.; Spitzer, L. Jr.
1961-12-12
An apparatus of the stellarator type for heating a plasma to high temperatures is designed. Circularizers at the end of then helical windings produce a circular magnetic surface and provide improved confining and heating of the plasma. Reverse curvature sections formed in the end loops of the reaction tube provide increased plasma pressure for a given magnetic field pressure and thereby minimize the current flow in the helical windings. (AEC)
Resolving polarized stellar features thanks to polarimetric interferometry
NASA Astrophysics Data System (ADS)
Rousselet-Perraut, Karine; Chesneau, Olivier; Vakili, Farrokh; Mourard, Denis; Janel, Sebastien; Lavaud, Laurent; Crocherie, Axel
2003-02-01
Polarimetry is a powerful means for detecting and constraining various physical phenomena, such as scattering processes or magnetic fields, occuring in a large panel of stellar objects: extended atmospheres of hot stars, CP stars, Young Stellar Objects, Active Galaxy Nuclei, ... However, the lack of angular resolution is generally a strong handicap to drastically constrain the physical parameters and the geometry of the polarizing phenomena because of the cancelling of the polarized signal. In fact, even if stellar features are strongly polarized, the (spectro-)polarimetric signal integrated over the stellar surface rarely exceeds few percents. Coupling polarimetric and interferometric devices allows to resolve these local polarized structures and thus to constrain complex patchy stellar surfaces and/or environments such as disk topology in T Tauri stars, hot stars radiative winds or oscillations in Be star envelopes. In this article, we explain how interfero-polarimetric observables, basically the contrast and the position of the interference fringe patterns versus polarization (and even versus wavelength) are powerful to address the above scientific drivers and we emphasize on the key point of instrumental and data calibrations: since interferometric measurements are differential ones between 2 or more beams, this strongly relaxes the calibration requirements for the fringe phase observable. Prospects induced by the operation of the optical aperture synthesis arrays are also discussed.
NASA Astrophysics Data System (ADS)
Ma, X.; Cianciosa, M.; Hanson, J. D.; Hartwell, G. J.; Knowlton, S. F.; Maurer, D. A.; Ennis, D. A.; Herfindal, J. L.
2015-11-01
Non-axisymmetric free-boundary equilibrium reconstructions of stellarator plasmas are performed for discharges in which the magnetic configuration is strongly modified by the driven plasma current. Studies were performed on the Compact Toroidal Hybrid device using the V3FIT reconstruction code incorporating a set of 50 magnetic diagnostics external to the plasma, combined with information from soft X-ray (SXR) arrays. With the assumption of closed magnetic flux surfaces, the reconstructions using external magnetic measurements allow accurate estimates of the net toroidal flux within the last closed flux surface, the edge safety factor, and the outer boundary of these highly non-axisymmetric plasmas. The inversion radius for sawtoothing plasmas is used to identify the location of the q = 1 surface, and thus infer the current profile near the magnetic axis. With external magnetic diagnostics alone, we find the reconstruction to be insufficiently constrained. This work is supported by US Department of Energy Grant No. DE-FG02-00ER54610.
Imaging the cool stars in the interacting binaries AE Aqr, BV Cen and V426 Oph
NASA Astrophysics Data System (ADS)
Watson, C. A.; Steeghs, D.; Dhillon, V. S.; Shahbaz, T.
2007-10-01
It is well known that magnetic activity in late-type stars increases with increasing rotation rate. Using inversion techniques akin to medical imaging, the rotationally broadened profiles from such stars can be used to reconstruct `Doppler images' of the distribution of cool, dark starspots on their stellar surfaces. Interacting binaries, however, contain some of the most rapidly rotating late-type stars known and thus provide important tests of stellar dynamo models. Furthermore, magnetic activity is thought to play a key role in their evolution, behaviour and accretion dynamics. Despite this, we know comparatively little about the magnetic activity and its influence on such binaries. In this review we summarise the concepts behind indirect imaging of these systems, and present movies of the starspot distributions on the cool stars in some interacting binaries. We conclude with a look at the future opportunities that such studies may provide.
NASA Technical Reports Server (NTRS)
Carpenter, Kenneth G.; Schrijver, Carolus J.; Karovska, Margarita
2006-01-01
The ultra-sharp images of the Stellar Imager (SI) will revolutionize our view of many dynamic astrophysical processes: The 0.1 milliarcsec resolution of this deep-space telescope will transform point sources into extended sources, and simple snapshots into spellbinding evolving views. SI s science focuses on the role of magnetism in the Universe, particularly on magnetic activity on the surfaces of stars like the Sun. SI s prime goal is to enable long-term forecasting of solar activity and the space weather that it drives in support of the Living With a Star program in the Exploration Era by imaging a sample of magnetically active stars with enough resolution to map their evolving dynamo patterns and their internal flows. By exploring the Universe at ultra-high resolution, SI will also revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magnetohydrodynamically controlled structures and processes in the Universe.
Momentum and energy deposition in late-type stellar atmospheres and winds
NASA Technical Reports Server (NTRS)
Hartmann, L.; Macgregor, K. B.
1980-01-01
The present study calculates the response of the outer atmospheres of cool low-gravity stars to the passage of the mechanical energy fluxes of solar magnitude in the form of acoustic waves and Alfven waves. It is shown that Alfven waves are efficient in generating outflow, and can account for the order of magnitude of observed mass loss in late-type luminous stars. However, unless these magnetic waves undergo some dissipation within several stellar radii of the surface, the predicted terminal velocities of the resulting stellar winds are far too high. Alfven wave dissipation should give rise to extended warm chromospheres in low-gravity late-type stars, a prediction which can be observationally tested.
NASA Technical Reports Server (NTRS)
Page, Dany
1995-01-01
We model the temperature distribution at the surface of a magnetized neutron star and study the effects on the observed X-ray spectra and light curves. Generalrelativistic effects, i.e., redshift and lensing, are fully taken into account. Atmospheric effects on the emitted spectral flux are not included: we consider only blackbody emission at the local effective temperature. In this first paper we restrict ourselves to dipole fields. General features are studied and compared with the ROSAT data from the pulsars 0833 - 45 (Vela), 0656 + 14, 0630 + 178 (Geminga), and 1055 - 52, the four cases for which there is strong evidence that thermal radiation from the stellar surface is detected. The composite spectra we obtain are not very different from a blackbody spectrum at the star's effective temperature. We conclude that, as far as blackbody spectra are considered, temperature estimates using single-temperature models give results practically identical to our composite models. The change of the (composite blackbody) spectrum with the star's rotational phase is also not very large and may be unobservable inmost cases. Gravitational lensing strongly suppresses the light curve pulsations. If a dipole field is assumed, pulsed fractions comparable to the observed ones can be obtained only with stellar radii larger than those which are predicted by current models of neutron star struture, or with low stellar masses. Moreover, the shapes of the theoretical light curves with dipole fields do not correspond to the observations. The use of magnetic spectra may raise the pulsed fraction sufficiently but will certainly make the discrepancy with the light curve shapes worse: dipole fields are not sufficient to interpret the data. Many neutron star models with a meson condensate or hypersons predict very small radii, and hence very strong lensing, which will require highly nondipolar fields to be able to reproduce the observed pulsed fractions, if possible at all: this may be a new tool to constrain the size of neutron stars. The pulsed fractions obtained in all our models increase with photon energy: the strong decrease observed in Geminga at energies 0.3-0.5 keV is definitely a genuine effect of the magnetic field on the spectrum in contradistinction to the magnetic effects on the surface temperature considered her. Thus, a detailed analysis of thermal emission from the four pulsars we consider will require both complex surface field configurations and the inclusion of magnetic effects in the atmosphere (i.e., on the emitted spectrum).
Influence of Thermal Anisotropy on Equilibrium Stellarator Beta Limits
NASA Astrophysics Data System (ADS)
Bechtel, T. A.; Hegna, C. C.; Sovinec, C. R.
2017-10-01
The effect of anisotropic heat conduction on the upper beta limit of stellarator plasmas is studied using the nonlinear, extended MHD code NIMROD. The configuration under investigation is an l=2, M=10 torsatron with vacuum rotational transform near unity. Finite-beta plasmas are created using a volumetric heating source and temperature dependent resistivity; modeled with 22 stellarator symmetric (integer multiples of M) toroidal modes. Extended MHD simulations are then performed to generate steady state solutions that represent 3D equilibria. With increased heating, Shafranov shifts occur, and the associated break up of edge magnetic surfaces limits the achievable beta. Due to the presence of finite parallel heat conduction, pressure profiles can exist in regions of magnetic stochasticity. Here, we present results of independently varying the parallel and perpendicular thermal anisotropy. In particular, simulations show that the attained stored energy is a function of the magnitude of parallel and perpendicular thermal conduction for a given heat source, indicating that equilibrium beta limits are sensitive to anisotropic transport properties. Preliminary studies of MHD stability with non-stellarator symmetric modes, near the highest achievable beta, are also presented. Research supported by US DOE under Grant No. DE-FG02-99ER54546.
Detection of magnetic field in the B2 star ρ Ophiuchi A with ESO FORS2
NASA Astrophysics Data System (ADS)
Pillitteri, I.; Fossati, L.; Castro Rodriguez, N.; Oskinova, L.; Wolk, S. J.
2018-02-01
Circumstantial evidence suggests that magnetism and enhanced X-ray emission are likely correlated in early B-type stars: similar fractions of them ( 10%) are strong and hard X-ray sources and possess strong magnetic fields. It is also known that some B-type stars have spots on their surface. Yet up to now no X-ray activity associated with spots on early-type stars was detected. In this Letter we report the detection of a magnetic field on the B2V star ρ Oph A. Previously, we assessed that the X-ray activity of this star is associated with a surface spot, herewith we establish its magnetic origin. We analyze spectra of ρ Oph A obtained with the FORS2 spectrograph at ESO Very Large Telescope (VLT) at two epochs, and detect a longitudinal component of the magnetic field of the order of 500 G in one of the datasets. The detection of the magnetic field only at one epoch can be explained by stellar rotation which is also invoked to explain observed periodic X-ray activity. From archival HARPS ESO VLT high resolution spectra we derived the fundamental stellar parameters of ρ Oph A and further constrained its age. We conclude that ρ Oph A provides strong evidence for the presence of active X-ray emitting regions on young magnetized early type stars. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programmes 099.D-0067(A) and 078.C-0403(A).
The Hidden Magnetic Field of the Young Neutron Star in Kesteven 79
NASA Astrophysics Data System (ADS)
Shabaltas, Natalia; Lai, Dong
2012-04-01
Recent observations of the central compact object in the Kesteven 79 supernova remnant show that this neutron star (NS) has a weak dipole magnetic field (a few × 1010 G) but an anomalously large (~64%) pulse fraction in its surface X-ray emission. We explore the idea that a substantial sub-surface magnetic field exists in the NS crust, which produces diffuse hot spots on the stellar surface due to anisotropic heat conduction, and gives rise to the observed X-ray pulsation. We develop a general-purpose method, termed "Temperature Template with Full Transport" (TTFT), that computes the synthetic pulse profile of surface X-ray emission from NSs with arbitrary magnetic field and surface temperature distributions, taking into account magnetic atmosphere opacities, beam pattern, vacuum polarization, and gravitational light bending. We show that a crustal toroidal magnetic field of order a few × 1014 G or higher, varying smoothly across the crust, can produce sufficiently distinct surface hot spots to generate the observed pulse fraction in the Kes 79 NS. This result suggests that substantial sub-surface magnetic fields, much stronger than the "visible" dipole fields, may be buried in the crusts of some young NSs, and such hidden magnetic fields can play an important role in their observational manifestations. The general TTFT tool we have developed can also be used for studying radiation from other magnetic NSs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kiefer, René; Schad, Ariane; Roth, Markus
2017-09-10
Where is the solar dynamo located and what is its modus operandi? These are still open questions in solar physics. Helio- and asteroseismology can help answer them by enabling us to study solar and stellar internal structures through global oscillations. The properties of solar and stellar acoustic modes are changing with the level of magnetic activity. However, until now, the inference on subsurface magnetic fields with seismic measures has been very limited. The aim of this paper is to develop a formalism to calculate the effect of large-scale toroidal magnetic fields on solar and stellar global oscillation eigenfunctions and eigenfrequencies.more » If the Lorentz force is added to the equilibrium equation of motion, stellar eigenmodes can couple. In quasi-degenerate perturbation theory, this coupling, also known as the direct effect, can be quantified by the general matrix element. We present the analytical expression of the matrix element for a superposition of subsurface zonal toroidal magnetic field configurations. The matrix element is important for forward calculations of perturbed solar and stellar eigenfunctions and frequency perturbations. The results presented here will help to ascertain solar and stellar large-scale subsurface magnetic fields, and their geometric configuration, strength, and change over the course of activity cycles.« less
NASA Astrophysics Data System (ADS)
Kiefer, René; Schad, Ariane; Roth, Markus
2017-09-01
Where is the solar dynamo located and what is its modus operandi? These are still open questions in solar physics. Helio- and asteroseismology can help answer them by enabling us to study solar and stellar internal structures through global oscillations. The properties of solar and stellar acoustic modes are changing with the level of magnetic activity. However, until now, the inference on subsurface magnetic fields with seismic measures has been very limited. The aim of this paper is to develop a formalism to calculate the effect of large-scale toroidal magnetic fields on solar and stellar global oscillation eigenfunctions and eigenfrequencies. If the Lorentz force is added to the equilibrium equation of motion, stellar eigenmodes can couple. In quasi-degenerate perturbation theory, this coupling, also known as the direct effect, can be quantified by the general matrix element. We present the analytical expression of the matrix element for a superposition of subsurface zonal toroidal magnetic field configurations. The matrix element is important for forward calculations of perturbed solar and stellar eigenfunctions and frequency perturbations. The results presented here will help to ascertain solar and stellar large-scale subsurface magnetic fields, and their geometric configuration, strength, and change over the course of activity cycles.
Accretion Flows in Magnetic White Dwarf Systems
NASA Technical Reports Server (NTRS)
Imamura, James N.
2005-01-01
We received Type A and B funding under the NASA Astrophysics Data Program for the analysis and interpretation of hard x-ray data obtained by the Rossi X-ray Timing Explorer and other NASA sponsored missions for Intermediate Polars (IPS) and Polars. For some targets, optical data was available. We reduced and analyzed the X-ray spectra and the X-ray and optical (obtained at the Cerro Tololo Inter-American Observatory) timing data using detailed shock models (which we constructed) to place constraints on the properties of the accreting white dwarfs, the high energy emission mechanisms of white dwarfs, and the large-scale accretion flows of Polars and IPS. IPS and Polars are white dwarf mass-transfer binaries, members of the larger class of cata,clysmic variables. They differ from the bulk of the cataclysmic variables in that they contain strongly magnetic white dwarfs; the white dwarfs in Polars have B, = 7 to 230 MG and those in IPS have B, less than 10 MG. The IPS and Polars are both examples of funneled accretion flows in strong magnetic field systems. The IPS are similar to x-ray pulsars in that accretion disks form in the systems which are disrupted by the strong stellar magnetic fields of the white dwarfs near the stellar surface from where the plasma is funneled to the surface of the white dwarf. The localized hot spots formed at the footpoints of the funnels coupled with the rotation of the white dwarf leads to coherent pulsed x-ray emission. The Polars offer an example of a different accretion topology; the magnetic field of the white dwarf controls the accretion flow from near the inner Lagrangian point of the system directly to the stellar surface. Accretion disks do not form. The strong magnetic coupling generally leads to synchronous orbital/rotational motion in the Polars. The physical system in this sense resembles the Io/Jupiter system. In both IPS and Polars, pulsed emission from the infrared to x-rays is produced as the funneled flows merge onto the white dwarfs through the formation of strong radiating shock waves. A comparative study of the IPS and Polars can elucidate the primary effects of the magnetic fields on the dynamics and thermodynamics in accreting white dwarf systems.
Magnetic field structure and evolution features of selected stars. III.
NASA Astrophysics Data System (ADS)
Glagolevskij, Yu. V.
2016-01-01
We present the results of modeling for about a hundred magnetic stars. It is shown that the dipole representation of magnetic field structures describes the distribution of the magnetic field over stellar surfaces fairly well. We analyze some patterns which support the relic hypothesis of magnetic field formation.Arguments are given in favor of the assumption that themain properties ofmagnetic stars—slow rotation, predominant orientation of magnetic field lines along the plane of the rotation equator, complex internal structures of magnetic fields—are acquired in the process of gravitational collapse. There are no conditions for that in the non-stationary Hayashi phase and in the stage of a radiative young star.
NASA Astrophysics Data System (ADS)
Nagendra, K. N.; Bagnulo, Stefano; Centeno, Rebecca; Jesús Martínez González, María.
2015-08-01
Preface; 1. Solar and stellar surface magnetic fields; 2. Future directions in astrophysical polarimetry; 3. Physical processes; 4. Instrumentation for astronomical polarimetry; 5. Data analysis techniques for polarization observations; 6. Polarization diagnostics of atmospheres and circumstellar environments; 7. Polarimetry as a tool for discovery science; 8. Numerical modeling of polarized emission; Author index.
Observations of magnetic fields on solar-type stars
NASA Technical Reports Server (NTRS)
Marcy, G. W.
1982-01-01
Magnetic-field observations were carried out for 29 G and K main-sequence stars. The area covering-factors of magnetic regions tends to be greater in the K dwarfs than in the G dwarfs. However, no spectral-type dependence is found for the field strengths, contrary to predictions that pressure equilibrium with the ambient photospheric gas pressure would determine the surface field strengths. Coronal soft X-ray fluxes from the G and K dwarfs correlate well with the fraction of the stellar surface covered by magnetic regions. The dependence of coronal soft X-ray fluxes on photospheric field strengths is consistent with Stein's predicted generation-rates for Alfven waves. These dependences are inconsistent with the one dynamo model for which a specific prediction is offered. Finally, time variability of magnetic fields is seen on the two active stars that have been extensively monitored. Significant changes in magnetic fields are seen to occur on timescales as short as one day.
NASA Astrophysics Data System (ADS)
Böhm, T.; Holschneider, M.; Lignières, F.; Petit, P.; Rainer, M.; Paletou, F.; Wade, G.; Alecian, E.; Carfantan, H.; Blazère, A.; Mirouh, G. M.
2015-05-01
Context. The theoretically studied impact of rapid rotation on stellar evolution needs to be compared with these results of high-resolution spectroscopy-velocimetry observations. Early-type stars present a perfect laboratory for these studies. The prototype A0 star Vega has been extensively monitored in recent years in spectropolarimetry. A weak surface magnetic field was detected, implying that there might be a (still undetected) structured surface. First indications of the presence of small amplitude stellar radial velocity variations have been reported recently, but the confirmation and in-depth study with the highly stabilized spectrograph SOPHIE/OHP was required. Aims: The goal of this article is to present a thorough analysis of the line profile variations and associated estimators in the early-type standard star Vega (A0) in order to reveal potential activity tracers, exoplanet companions, and stellar oscillations. Methods: Vega was monitored in quasi-continuous high-resolution echelle spectroscopy with the highly stabilized velocimeter SOPHIE/OHP. A total of 2588 high signal-to-noise spectra was obtained during 34.7 h on five nights (2 to 6 of August 2012) in high-resolution mode at R = 75 000 and covering the visible domain from 3895-6270 Å. For each reduced spectrum, least square deconvolved equivalent photospheric profiles were calculated with a Teff = 9500 and log g = 4.0 spectral line mask. Several methods were applied to study the dynamic behaviour of the profile variations (evolution of radial velocity, bisectors, vspan, 2D profiles, amongst others). Results: We present the discovery of a spotted stellar surface on an A-type standard star (Vega) with very faint spot amplitudes ΔF/Fc ~ 5 × 10-4. A rotational modulation of spectral lines with a period of rotation P = 0.68 d has clearly been exhibited, unambiguously confirming the results of previous spectropolarimetric studies. Most of these brightness inhomogeneities seem to be located in lower equatorial latitudes. Either a very thin convective layer can be responsible for magnetic field generation at small amplitudes, or a new mechanism has to be invoked to explain the existence of activity tracing starspots. At this stage it is difficult to disentangle a rotational from a stellar pulsational origin for the existing higher frequency periodic variations. Conclusions: This first strong evidence that standard A-type stars can show surface structures opens a new field of research and ask about a potential link with the recently discovered weak magnetic field discoveries in this category of stars. Based on observations obtained with the SOPHIE spectrograph at the 2 m OHP telescope operated by the Institut National des Sciences de l'Univers (INSU) of the Centre National de la Recherche Scientifique of France (CNRS).
The dichotomy between strong and ultra-weak magnetic fields among intermediate-mass stars
NASA Astrophysics Data System (ADS)
Lignières, François; Petit, Pascal; Aurière, Michel; Wade, Gregg A.; Böhm, Torsten
2014-08-01
Until recently, the detection of magnetic fields at the surface of intermediate-mass main-sequence stars has been limited to Ap/Bp stars, a class of chemically peculiar stars. This class represents no more than 5-10% of the stars in this mass range. This small fraction is not explained by the fossil field paradigm that describes the Ap/Bp type magnetism as a remnant of an early phase of the star-life. Also, the limitation of the field measurements to a small and special group of stars is obviously a problem to study the effect of the magnetic fields on the stellar evolution of a typical intermediate-mass star. Thanks to the improved sensitivity of a new generation of spectropolarimeters, a lower bound to the magnetic fields of Ap/Bp stars, a two orders of magnitude desert in the longitudinal magnetic field and a new type of sub-gauss magnetism first discovered on Vega have been identified. These advances provide new clues to understand the origin of intermediate-mass magnetism as well as its influence on stellar evolution. In particular, a scenario has been proposed whereby the magnetic dichotomy between Ap/Bp and Vega-like magnetism originate from the bifurcation between stable and unstable large scale magnetic configurations in differentially rotating stars. In this paper, we review these recent observational findings and discuss this scenario.
Magnetocentrifugally driven flows from young stars and disks. 1: A generalized model
NASA Technical Reports Server (NTRS)
Shu, Frank; Najita, Joan; Ostriker, Eve; Wilkin, Frank; Ruden, Steven; Lizano, Susana
1994-01-01
We propose a generalized model for stellar spin-down, disk accretion, and truncation, and the origin of winds, jets, and bipolar outflows from young stellar objects. We consider the steady state dynamics of accretion of matter from a viscous and imperfectly conducting disk onto a young star with a strong magnetic field. For an aligned stellar magnetosphere, shielding currents in the surface layers of the disk prevent stellar field lines from penetrating the disk everywhere except for a range of radii about pi = R(sub x), where the Keplerian angular speed of rotation Omega(sub x) equals the angular speed of the star Omega(sub *). For the low disk accretion rates and high magnetic fields associated with typical T Tauri stars, R(sub x) exceeds the radius of the star R(sub *) by a factor of a few, and the inner disk is effectively truncated at a radius R(sub t) somewhat smaller than R(sub x). Where the closed field lines between R(sub t) and R(sub x) bow sufficiently inward, the accreting gas attaches itself to the field and is funneled dynamically down the effective potential (gravitational plus centrifugal) onto the star. Contrary to common belief, the accompanying magnetic torques associated with this accreting gas may transfer angular momentum mostly to the disk rather than to the star. Thus, the star can spin slowly as long as R(sub x) remains significantly greater than R(sub *). Exterior to R(sub x) field lines threading the disk bow outward, which makes the gas off the mid-plane rotate at super-Keplerian velocities. This combination drives a magnetocentrifugal wind with a mass-loss rate M(sub w) equal to a definite fraction f of the disk accretion rate M(sub D). For high disk accretion rates, R(sub x) is forced down to the stellar surface, the star is spun to breakup, and the wind is generated in a manner identical to that proposed by Shu, Lizano, Ruden, & Najita in a previous communication to this journal. In two companion papers (II and III), we develop a detailed but idealized theory of the magnetocentrifugal acceleration process.
Extension of the XGC code for global gyrokinetic simulations in stellarator geometry
NASA Astrophysics Data System (ADS)
Cole, Michael; Moritaka, Toseo; White, Roscoe; Hager, Robert; Ku, Seung-Hoe; Chang, Choong-Seock
2017-10-01
In this work, the total-f, gyrokinetic particle-in-cell code XGC is extended to treat stellarator geometries. Improvements to meshing tools and the code itself have enabled the first physics studies, including single particle tracing and flux surface mapping in the magnetic geometry of the heliotron LHD and quasi-isodynamic stellarator Wendelstein 7-X. These have provided the first successful test cases for our approach. XGC is uniquely placed to model the complex edge physics of stellarators. A roadmap to such a global confinement modeling capability will be presented. Single particle studies will include the physics of energetic particles' global stochastic motions and their effect on confinement. Good confinement of energetic particles is vital for a successful stellarator reactor design. These results can be compared in the core region with those of other codes, such as ORBIT3d. In subsequent work, neoclassical transport and turbulence can then be considered and compared to results from codes such as EUTERPE and GENE. After sufficient verification in the core region, XGC will move into the stellarator edge region including the material wall and neutral particle recycling.
THE SPACE WEATHER OF PROXIMA CENTAURI b
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garraffo, C.; Drake, J. J.; Cohen, O., E-mail: cgaraffo@cfa.harvard.edu
A planet orbiting in the “habitable zone” of our closest neighboring star, Proxima Centauri, has recently been discovered, and the next natural question is whether or not Proxima b is “habitable.” Stellar winds are likely a source of atmospheric erosion that could be particularly severe in the case of M dwarf habitable zone planets that reside close to their parent star. Here, we study the stellar wind conditions that Proxima b experiences over its orbit. We construct 3D MHD models of the wind and magnetic field around Proxima Centauri using a surface magnetic field map for a star of themore » same spectral type and scaled to match the observed ∼600 G surface magnetic field strength of Proxima. We examine the wind conditions and dynamic pressure over different plausible orbits that sample the constrained parameters of the orbit of Proxima b. For all the parameter space explored, the planet is subject to stellar wind pressures of more than 2000 times those experienced by Earth from the solar wind. During an orbit, Proxima b is also subject to pressure changes of 1–3 orders of magnitude on timescales of a day. Its magnetopause standoff distance consequently undergoes sudden and periodic changes by a factor of 2–5. Proxima b will traverse the interplanetary current sheet twice each orbit, and likely crosses into regions of subsonic wind quite frequently. These effects should be taken into account in any physically realistic assessment or prediction of its atmospheric reservoir, characteristics, and loss.« less
Connecting the large- and the small-scale magnetic fields of solar-like stars
NASA Astrophysics Data System (ADS)
Lehmann, L. T.; Jardine, M. M.; Mackay, D. H.; Vidotto, A. A.
2018-05-01
A key question in understanding the observed magnetic field topologies of cool stars is the link between the small- and the large-scale magnetic field and the influence of the stellar parameters on the magnetic field topology. We examine various simulated stars to connect the small-scale with the observable large-scale field. The highly resolved 3D simulations we used couple a flux transport model with a non-potential coronal model using a magnetofrictional technique. The surface magnetic field of these simulations is decomposed into spherical harmonics which enables us to analyse the magnetic field topologies on a wide range of length scales and to filter the large-scale magnetic field for a direct comparison with the observations. We show that the large-scale field of the self-consistent simulations fits the observed solar-like stars and is mainly set up by the global dipolar field and the large-scale properties of the flux pattern, e.g. the averaged latitudinal position of the emerging small-scale field and its global polarity pattern. The stellar parameters flux emergence rate, differential rotation and meridional flow affect the large-scale magnetic field topology. An increased flux emergence rate increases the magnetic flux in all field components and an increased differential rotation increases the toroidal field fraction by decreasing the poloidal field. The meridional flow affects the distribution of the magnetic energy across the spherical harmonic modes.
Stellar feedback strongly alters the amplification and morphology of galactic magnetic fields
NASA Astrophysics Data System (ADS)
Su, Kung-Yi; Hayward, Christopher C.; Hopkins, Philip F.; Quataert, Eliot; Faucher-Giguère, Claude-André; Kereš, Dušan
2018-01-01
Using high-resolution magnetohydrodynamic simulations of idealized, non-cosmological galaxies, we investigate how cooling, star formation and stellar feedback affect galactic magnetic fields. We find that the amplification histories, saturation values and morphologies of the magnetic fields vary considerably depending on the baryonic physics employed, primarily because of differences in the gas density distribution. In particular, adiabatic runs and runs with a subgrid (effective equation of state) stellar feedback model yield lower saturation values and morphologies that exhibit greater large-scale order compared with runs that adopt explicit stellar feedback and runs with cooling and star formation but no feedback. The discrepancies mostly lie in gas denser than the galactic average, which requires cooling and explicit fragmentation to capture. Independent of the baryonic physics included, the magnetic field strength scales with gas density as B ∝ n2/3, suggesting isotropic flux freezing or equipartition between the magnetic and gravitational energies during the field amplification. We conclude that accurate treatments of cooling, star formation and stellar feedback are crucial for obtaining the correct magnetic field strength and morphology in dense gas, which, in turn, is essential for properly modelling other physical processes that depend on the magnetic field, such as cosmic ray feedback.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spong, D.A.; Hirshman, S.P.; Whitson, J.C.
A new class of low aspect ratio toroidal hybrid stellarators is found using more general plasma confinement optimization criterion than quasi-symmetrization. The plasma current profile and shape of the outer magnetic flux surface are used as control variables to achieve near constancy of the longitudinal invariant J* on internal flux surfaces (quasi-omnigeneity), in addition to a number of other desirable physics target properties. We find that a range of compact (small aspect ratio A), high {beta} (ratio of thermal energy to magnetic field energy), low plasma current devices exist which have significantly improved confinement both for thermal as well asmore » energetic (collisionless) particle components. With reasonable increases in magnetic field and geometric size, such devices can also be scaled to confine 3.5 MeV alpha particle orbits.« less
Global helioseismology (WP4.1): From the Sun to the stars & solar analogs
NASA Astrophysics Data System (ADS)
García, Rafael A.
2017-10-01
Sun-as-a star observations put our star as a reference for stellar observations. Here, I review the activities in which the SPACEINN global seismology team (Working Package WP4.1) has worked during the past 3 years. In particular, we will explain the new deliverables available on the SPACEINN seismic+ portal. Moreover, special attention will be given to surface dynamics (rotation and magnetic fields). After characterizing the rotation and the magnetic properties of around 300 solar-like stars and defining proper metrics for that, we use their seismic properties to characterize 18 solar analogues for which we study their surface magnetic and seismic properties. This allows us to put the Sun into context compared to its siblings.
Two component X-ray emission from RS CVn binaries
NASA Technical Reports Server (NTRS)
Swank, J. H.; White, N. E.; Holt, S. S.; Becker, R. H.
1980-01-01
A summary of results from the solid state spectrometer on the Einstein Observatory for 7 RS CVn binaries is presented. The spectra of all require two emission components, evidenced by line emission characteristic of plasma at 4 to 8 x 10 to the 6th power and bremsstrahlung characteristic of 20 to 100 x 10 to the 6th power K. The data are interpreted in terms of magnetic coronal loops similar to those seen on the Sun, although with different characteristic parameters. The emission regions could be defined by separate magnetic structures. For pressure less than approximately 10 dynes/sq cm the low temperature plasma would be confined within the stellar radii, while the high temperature plasma would, for the synchronous close binaries, fill the binary orbits. However, for loop pressures exceeding 100 dynes/sq cm, the high temperature components would also be confined to within the stellar radii, in loops covering only small fractions of the stellar surfaces. While the radio properties and the occurrence of X-ray flares suggest the larger emission regions, the observations of time variations leave the ambiguity unresolved.
NASA Astrophysics Data System (ADS)
Rubini, F.; Maurri, L.; Inghirami, G.; Bacciotti, F.; Del Zanna, L.
2014-07-01
High angular resolution spectra obtained with the Hubble Space Telescope Imaging Spectrograph (HST/STIS) provide rich morphological and kinematical information about the stellar jet phenomenon, which allows us to test theoretical models efficiently. In this work, numerical simulations of stellar jets in the propagation region are executed with the PLUTO code, by adopting inflow conditions that arise from former numerical simulations of magnetized outflows, accelerated by the disk-wind mechanism in the launching region. By matching the two regions, information about the magneto-centrifugal accelerating mechanism underlying a given astrophysical object can be extrapolated by comparing synthetic and observed position-velocity diagrams. We show that quite different jets, like those from the young T Tauri stars DG-Tau and RW-Aur, may originate from the same disk-wind model for different configurations of the magnetic field at the disk surface. This result supports the idea that all the observed jets may be generated by the same mechanism. Appendix A is available in electronic form at http://www.aanda.org
Gravity, Rotation, Ages, and Magnetism of Solar-like Stars and Red Giants observed by Kepler and K2
NASA Astrophysics Data System (ADS)
Mathur, Savita
Scientific Objectives: Asteroseismology has proved to be a very powerful tool thanks to the high-precision data obtained by the space missions such as Kepler and CoRoT. Solar-like oscillations have been detected and reported for around 15,600 red giants and 540 main-sequence stars observed by the nominal Kepler mission. Hence, these stars have their surface gravities, masses, and radii obtained with seismology. However, according to the latest Kepler star properties catalog (Mathur et al., in prep.) more than 24,000 red giants, 127,000 FGK dwarfs, and 10,000 subgiants were targeted. K2 has been observing 90,000 red giants and dwarfs. Moreover, the continuous photometric data of 4 yrs (resp. 3 mo) collected by Kepler (resp. K2) contain the signature of other phenomena such as convection, rotation, and magnetism, which are very important to understand stellar evolution and can also be used to obtain precise fundamental stellar parameters even when pulsations are not detected. We propose to perform the largest homogeneous analysis to date of seismic oscillations, convection, and rotation/magnetic activity across the full range of stellar spectral types and evolutionary states present in the K2 and Kepler missions. We will use the longest publicly available time series to derive the most accurate surface gravities, rotation periods, evolutionary states, and magnetic activity levels to characterize rotation-age-magnetic activity relationships and oscillations-magnetism interaction. Relevance: The determination of the gravity, mass, radius, and age of planet host stars allow us to better characterize the planetary systems. By studying the stellar surface rotation periods, we can better understand the angular momentum transport involved during the stellar evolution and have more accurate rotation-age relationships. Finally, the study of the magnetic activity of a large number of stars will allow us to put the Sun in a broader context. This work will also have an impact on galactic evolution study. Methodology: We will analyse the data with the new version of the A2Z pipeline (Mathur et al. 2010) on the stars where no acoustic modes have been detected or completely characterized so far. In the case that still no modes are observed, we will study the convective background as it has been shown that the granulation timescale is proportional to the surface gravity of the star (Mathur et al. 2011). We will develop and automate the recent method developed by Kallinger et al. (2016) that proved it is possible to measure logg very precisely with the auto-correlation function for stars where the modes are slightly above the Nyquist frequency, i.e. subgiants for the long cadence data. We will analyze dwarfs and subgiants observed by Kepler and K2 to look for their rotation periods following Garcia et al. (2014). This method was shown to have the best combination of completeness and reliability according to hare and hounds benchmarks (Aigrain et al., 2015). We will calibrate gyrochronology relation with the best-characterized dwarfs as done by van Saders et al. (2016) and apply it to dwarfs when applicable to estimate their ages. For the stars where a reliable rotation period is determined we will compute a photometric magnetic proxy as defined in Mathur et al. (2014). In many cases we will have complementary spectroscopic observations (e.g. Gaia). Data: We will analyse the Kepler Q0-Q17 data calibrated with the KADACS software (Garcia et al. 2011; Mathur et al. in prep.) and the K2 C1 to C7 data processed by Vanderburg & Johnson (2014).
Collisionless damping of flows in the TJ-II stellarator
NASA Astrophysics Data System (ADS)
Sánchez, E.; Kleiber, R.; Hatzky, R.; Borchardt, M.; Monreal, P.; Castejón, F.; López-Fraguas, A.; Sáez, X.; Velasco, J. L.; Calvo, I.; Alonso, A.; López-Bruna, D.
2013-01-01
The results of global linear gyrokinetic simulations of residual flows carried out with the code EUTERPE in the TJ-II three-dimensional geometry are reported. The linear response of the plasma to potential perturbations homogeneous in a magnetic surface shows several oscillation frequencies: a Geodesic-acoustic-mode-like frequency, in qualitative agreement with the formula given by Sugama and Watanabe (2006 Plasma Phys. 72 825), and a much lower frequency oscillation in agreement with the predictions of Mishchenko et al (2008 Phys. Plasmas 15 072309) and Helander et al (2011 Plasma Phys. Control. Fusion 53 054006) for stellarators. The dependence of both oscillations on ion and electron temperatures and the magnetic configuration is studied. The low-frequency oscillations are in the frequency range supporting the long-range correlations between potential signals experimentally observed in TJ-II.
An adjoint method for gradient-based optimization of stellarator coil shapes
NASA Astrophysics Data System (ADS)
Paul, E. J.; Landreman, M.; Bader, A.; Dorland, W.
2018-07-01
We present a method for stellarator coil design via gradient-based optimization of the coil-winding surface. The REGCOIL (Landreman 2017 Nucl. Fusion 57 046003) approach is used to obtain the coil shapes on the winding surface using a continuous current potential. We apply the adjoint method to calculate derivatives of the objective function, allowing for efficient computation of analytic gradients while eliminating the numerical noise of approximate derivatives. We are able to improve engineering properties of the coils by targeting the root-mean-squared current density in the objective function. We obtain winding surfaces for W7-X and HSX which simultaneously decrease the normal magnetic field on the plasma surface and increase the surface-averaged distance between the coils and the plasma in comparison with the actual winding surfaces. The coils computed on the optimized surfaces feature a smaller toroidal extent and curvature and increased inter-coil spacing. A technique for computation of the local sensitivity of figures of merit to normal displacements of the winding surface is presented, with potential applications for understanding engineering tolerances.
Phase transitions, interparticle correlations, and elementary processes in dense plasmas
NASA Astrophysics Data System (ADS)
Ichimaru, Setsuo
2017-12-01
Astrophysical dense plasmas are those we find in the interiors, surfaces, and outer envelopes of stellar objects such as neutron stars, white dwarfs, the Sun, and giant planets. Condensed plasmas in the laboratory settings include those in ultrahigh-pressure metal-physics experiments undertaken for realization of metallic hydrogen. We review basic physics issues studied in the past 60 some years on the phase transitions, the interparticle correlations, and the elementary processes in dense plasmas, through survey on scattering of electromagnetic waves, equations of state, phase diagrams, transport processes, stellar and planetary magnetisms, and thermo- and pycnonuclear reactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nemov, V. V.; Kasilov, S. V.; Institut für Theoretische Physik—Computational Physics, Technische Universität Graz, Fusion@ÖAW, Petersgasse 16, A-8010 Graz
An approach for the direct computation of collisionless losses of high energy charged particles is developed for stellarator magnetic fields given in real space coordinates. With this approach, the corresponding computations can be performed for magnetic fields with three-dimensional inhomogeneities in the presence of stochastic regions as well as magnetic islands. A code, which is based on this approach, is applied to various stellarator configurations. It is found that the life time of fast particles obtained in real-space coordinates can be smaller than that obtained in magnetic coordinates.
NASA Astrophysics Data System (ADS)
Khusainov, T. A.; Shalashov, A. G.; Gospodchikov, E. D.
2018-05-01
The field structure of quasi-optical wave beams tunneled through the evanescence region in the vicinity of the plasma cutoff in a nonuniform magnetoactive plasma is analyzed. This problem is traditionally associated with the process of linear transformation of ordinary and extraordinary waves. An approximate analytical solution is constructed for a rather general magnetic configuration applicable to spherical tokamaks, optimized stellarators, and other magnetic confinement systems with a constant plasma density on magnetic surfaces. A general technique for calculating the transformation coefficient of a finite-aperture wave beam is proposed, and the physical conditions required for the most efficient transformation are analyzed.
Strong magnetic field generated by the extreme oxygen-rich red supergiant VY Canis Majoris
NASA Astrophysics Data System (ADS)
Shinnaga, Hiroko; Claussen, Mark J.; Yamamoto, Satoshi; Shimojo, Masumi
2017-12-01
Evolved stars experience high mass-loss rates forming thick circumstellar envelopes (CSEs). The circumstellar material is made of the result of stellar nucleosynthesis and, as such, plays a crucial role in the chemical evolution of galaxies and the universe. Since asymmetric geometries of CSEs are common, and with very complex structures for some cases, radiative pressure from the stars can explain only a small portion of the mass-loss processes; thus the essential driving mechanism is still unknown, particularly for high-mass stars. Here we report on magnetic field measurements associated with the well-known extreme red supergiant (RSG) VY Canis Majoris (VY CMa). We measured the linear polarization and the Zeeman splitting of the SiO v = 0, J = 1-0 transition using a sensitive radio interferometer. The measured magnetic field strengths are surprisingly high; their upper limits range between 150 and 650 G within 530 au (˜80 R*) of the star. The lower limit of the field strength is expected to be at least ˜10 G based on the high degree of linear polarization. Since the field strengths are very high, the magnetic field must be a key element in understanding the stellar evolution of VY CMa, as well as the dynamical and chemical evolution of the complex CSE of the star. M-type RSGs, with large stellar surface, were thought to be very slow rotators. This would seem to make a dynamo in operation difficult, and would also dilute any fossil magnetic field. At least for VY CMa, we expect that powerful dynamo processes must still be active to generate the intense magnetic field.
Investigating the Magnetospheres of Rapidly Rotating B-type Stars
NASA Astrophysics Data System (ADS)
Fletcher, C. L.; Petit, V.; Nazé, Y.; Wade, G. A.; Townsend, R. H.; Owocki, S. P.; Cohen, D. H.; David-Uraz, A.; Shultz, M.
2017-11-01
Recent spectropolarimetric surveys of bright, hot stars have found that ~10% of OB-type stars contain strong (mostly dipolar) surface magnetic fields (~kG). The prominent paradigm describing the interaction between the stellar winds and the surface magnetic field is the magnetically confined wind shock (MCWS) model. In this model, the stellar wind plasma is forced to move along the closed field loops of the magnetic field, colliding at the magnetic equator, and creating a shock. As the shocked material cools radiatively it will emit X-rays. Therefore, X-ray spectroscopy is a key tool in detecting and characterizing the hot wind material confined by the magnetic fields of these stars. Some B-type stars are found to have very short rotational periods. The effects of the rapid rotation on the X-ray production within the magnetosphere have yet to be explored in detail. The added centrifugal force due to rapid rotation is predicted to cause faster wind outflows along the field lines, leading to higher shock temperatures and harder X-rays. However, this is not observed in all rapidly rotating magnetic B-type stars. In order to address this from a theoretical point of view, we use the X-ray Analytical Dynamical Magnetosphere (XADM) model, originally developed for slow rotators, with an implementation of new rapid rotational physics. Using X-ray spectroscopy from ESA's XMM-Newton space telescope, we observed 5 rapidly rotating B-types stars to add to the previous list of observations. Comparing the observed X-ray luminosity and hardness ratio to that predicted by the XADM allows us to determine the role the added centrifugal force plays in the magnetospheric X-ray emission of these stars.
Helical axis stellarator with noninterlocking planar coils
Reiman, Allan; Boozer, Allen H.
1987-01-01
A helical axis stellarator using only noninterlocking planar, non-circular coils, generates magnetic fields having a magnetic well and large rotational transform with resultant large equilibrium beta.
Temporal variability of the wind from the star τ Boötis
NASA Astrophysics Data System (ADS)
Nicholson, B. A.; Vidotto, A. A.; Mengel, M.; Brookshaw, L.; Carter, B.; Petit, P.; Marsden, S. C.; Jeffers, S. V.; Fares, R.; BCool Collaboration
2016-06-01
We present new wind models for τ Boötis (τ Boo), a hot-Jupiter-host-star whose observable magnetic cycles makes it a uniquely useful target for our goal of monitoring the temporal variability of stellar winds and their exoplanetary impacts. Using spectropolarimetric observations from May 2009 to January 2015, the most extensive information of this type yet available, to reconstruct the stellar magnetic field, we produce multiple 3D magnetohydrodynamic stellar wind models. Our results show that characteristic changes in the large-scale magnetic field as the star undergoes magnetic cycles produce changes in the wind properties, both globally and locally at the position of the orbiting planet. Whilst the mass loss rate of the star varies by only a minimal amount (˜4 per cent), the rates of angular momentum loss and associated spin-down time-scales are seen to vary widely (up to ˜140 per cent), findings consistent with and extending previous research. In addition, we find that temporal variation in the global wind is governed mainly by changes in total magnetic flux rather than changes in wind plasma properties. The magnetic pressure varies with time and location and dominates the stellar wind pressure at the planetary orbit. By assuming a Jovian planetary magnetic field for τ Boo b, we nevertheless conclude that the planetary magnetosphere can remain stable in size for all observed stellar cycle epochs, despite significant changes in the stellar field and the resulting local space weather environment.
MAGNETIC ACTIVITY ANALYSIS FOR A SAMPLE OF G-TYPE MAIN SEQUENCE KEPLER TARGETS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mehrabi, Ahmad; He, Han; Khosroshahi, Habib, E-mail: mehrabi@basu.ac.ir
2017-01-10
The variation of a stellar light curve owing to rotational modulation by magnetic features (starspots and faculae) on the star’s surface can be used to investigate the magnetic properties of the host star. In this paper, we use the periodicity and magnitude of the light-curve variation as two proxies to study the stellar magnetic properties for a large sample of G-type main sequence Kepler targets, for which the rotation periods were recently determined. By analyzing the correlation between the two magnetic proxies, it is found that: (1) the two proxies are positively correlated for most of the stars in ourmore » sample, and the percentages of negative, zero, and positive correlations are 4.27%, 6.81%, and 88.91%, respectively; (2) negative correlation stars cannot have a large magnitude of light-curve variation; and (3) with the increase of rotation period, the relative number of positive correlation stars decreases and the negative correlation one increases. These results indicate that stars with shorter rotation period tend to have positive correlation between the two proxies, and a good portion of the positive correlation stars have a larger magnitude of light-curve variation (and hence more intense magnetic activities) than negative correlation stars.« less
NASA Astrophysics Data System (ADS)
Carpenter, Kenneth G.; Karovska, Margarita; Lyon, Richard G.; Mozurkewich, D.; Schrijver, Carolus
2009-08-01
Stellar Imager (SI) is a space-based, UV/Optical Interferometer (UVOI) with over 200x the resolution of HST. It will enable 0.1 milli-arcsec spectral imaging of stellar surfaces and the Universe in general and open an enormous new "discovery space" for astrophysics with its combination of high angular resolution, dynamic imaging, and spectral energy resolution. SI's goal is to study the role of magnetism in the Universe and revolutionize our understanding of: 1) Solar/Stellar Magnetic Activity and their impact on Space Weather, Planetary Climates, and Life, 2) Magnetic and Accretion Processes and their roles in the Origin & Evolution of Structure and in the Transport of Matter throughout the Universe, 3) the close-in structure of Active Galactic Nuclei and their winds, and 4) Exo-Solar Planet Transits and Disks. SI is a "Landmark/Discovery Mission" in 2005 Heliophysics Roadmap and a candidate UVOI in the 2006 Astrophysics Strategic Plan and is targeted for launch in the mid-2020's. It is a NASA Vision Mission and has been recommended for further study in a 2008 NRC report on missions potentially enabled/enhanced by an Ares V launch. In this paper, we discuss the science goals and required capabilities of SI, the baseline architecture of the mission assuming launch on one or more Delta rockets, and then the potential significant enhancements to the SI science and mission architecture that would be made possible by a launch in the larger volume Ares V payload fairing, and by servicing options under consideration in the Constellation program.
NASA Technical Reports Server (NTRS)
Carpenter, Kenneth G.; Lyon, Richard G.; Karovska, Margarita; Mozurkwich, D.; Schrijver, Carolus
2009-01-01
Stellar Imager (SI) is a space-based, UV/Optical Interferometer (UVOI) with over 200x the resolution of HST. It will enable 0.1 milli-aresec spectral imaging of stellar surfaces and the Universe in general and open an enormous new "discovery space" for astrophysics with its combination of high angular resolution, dynamic imaging , and spectral energy resolution. SI's goal is to study the role of magnetism in the Universe and revolutionize our understanding of 1) Solar/Stellar Magnetic Activity and their impact on Space Weather, Planetary Climates, and Life, 2) Magnetic and Accretion Processes and their roles in the Origin & Evolution of Structure and in the Transport of Matter throughout the Universe, 3) the close-in structure of Active Galactic Nuclei and their winds, and 4) Exo-Solar Planet Transits and Disks. SI is a "Landmark-Discovery Mission" in 2005 Heliophysics Roadmap and a candidate UVOI in the 2006 Astrophysics Strategic Plan and is targeted for launch in the mid-2020's. It is a NASA Vision Mission and has been recommended for further study in a 2008 NRC report on missions potentially enabled/enhanced by an Ares V launch. In this paper, we discuss the science goals and required capabilities of SI, the baseline architecture of the mission assuming launch on one or more Delta rockets, and then the potential significant enhancements to the SI science and mission architecture that would be made possible by a launch in the larger volume Ares V payload fairing, and by servicing options under consideration in the Constellation program.
A retractable electron emitter for the creation of unperturbed pure electron plasmas.
Berkery, John W; Pedersen, Thomas Sunn; Sampedro, Luis
2007-01-01
A retractable electron emitter has been constructed for the creation of unperturbed pure electron plasmas on magnetic surfaces in the Columbia Non-neutral Torus stellarator. The previous method of electron emission using emitters mounted on stationary rods limited the confinement time to 20 ms. A pneumatically driven system that can retract from the magnetic axis to the last closed flux surface in less than 20 ms while filling the surfaces with electrons was designed. The motion of the retractable emitter was modeled with a system of dynamical equations. The measured position versus time of the emitter agrees well with the model and the fastest axis-to-edge retraction was measured to be 20 ms with 40 psig helium gas driving the pneumatic piston.
A condition for small bootstrap current in three-dimensional toroidal configurations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mikhailov, M. I., E-mail: mikhaylov-mi@nrcki.ru; Nührenberg, J.; Zille, R.
2016-11-15
It is shown that, if the maximum of the magnetic field strength on a magnetic surface in a threedimensional magnetic confinement configuration with stellarator symmetry constitutes a line that is orthogonal to the field lines and crosses the symmetry line, then the bootstrap current density is smaller compared to that in quasi-axisymmetric (qa) [J. Nührenberg et al., in Proc. of Joint Varenna−Lausanne Int. Workshop on Theory of Fusion Plasmas, Varenna, 1994, p. 3] and quasi-helically (qh) symmetric [J. Nührenberg and R. Zille, Phys. Lett. A 129, 113 (1988)] configurations.
Evidence of a primordial solar wind. [T Tauri-type evolution model
NASA Technical Reports Server (NTRS)
Sonett, C. P.
1974-01-01
A model is reviewed which requires a T Tauri 'wind' and at the same time encompasses certain early-object stellar features. The theory rests on electromagnetic induction driven by the 'wind'. Plasma confinement of the induced field prohibits a scattered field, and all energy loss is via ohmic heating in the scatterer (i.e., planetary objects). Two modes, one caused by the interplanetary electric field (transverse magnetic) and the other by time variations in the interplanetary magnetic field (transverse electric) are present. Parent body melting, lunar surface melting, and a primordial magnetic field are components of the proposed model.
UV And X-Ray Emission from Impacts of Fragmented Accretion Streams on Classical T Tauri Stars
NASA Astrophysics Data System (ADS)
Colombo, Salvatore; Orlando, Salvatore; Peres, Giovanni; Argiroffi, Costanza; Reale, Fabio
2016-07-01
According to the magnetoshperic accretion scenario, during their evo- lution, Classical T Tauri stars accrete material from their circumstellar disk. The accretion process is regulated by the stellar magnetic eld and produces hot and dense post-shocks on the stellar surface as a result of impacts of the downfalling material. The impact regions are expected to strongly radiate in UV and X-rays. Several lines of evidence support the magnetospheric accretion scenario, especially in optical and infrared bands. However several points still remain unclear as, for instance,where the complex-pro le UV lines originate, or whether and how UV and X-ray emission is produced in the same shock region. The analysis of a large solar eruption has shown that EUV excesses might be e ectively produced by the impact of dense fragments onto the stellar surface. Since a steady accretion stream does not reprouce observations, in this work we investi- gate the e ects of a fragmented accretion stream on the uxes and pro les of C IV and O VIII emission lines. To this end we model the impact of a fragmented accretion stream onto the chromosphere of a CTTS with 2D axysimmetric magneto-hydrodynamic simulations. Our model takes into account of the gravity, the stellar magnetic eld, the thermal conduction and the radiative cooling from an optically thin plasma. From the model results, we synthesize the UV and X-ray emission including the e ect of Doppler shift along the line of sight. We nd that a fragmented accretion stream produces complex pro les of UV emission lines which consists of multiple components with di erent Doppler shifts. Our model predicts line pro les that are consistent with those observed and explain their origin as due to the stream fragmentation.
Stellar activity and coronal heating: an overview of recent results
Testa, Paola; Saar, Steven H.; Drake, Jeremy J.
2015-01-01
Observations of the coronae of the Sun and of solar-like stars provide complementary information to advance our understanding of stellar magnetic activity, and of the processes leading to the heating of their outer atmospheres. While solar observations allow us to study the corona at high spatial and temporal resolution, the study of stellar coronae allows us to probe stellar activity over a wide range of ages and stellar parameters. Stellar studies therefore provide us with additional tools for understanding coronal heating processes, as well as the long-term evolution of solar X-ray activity. We discuss how recent studies of stellar magnetic fields and coronae contribute to our understanding of the phenomenon of activity and coronal heating in late-type stars. PMID:25897087
NASA Astrophysics Data System (ADS)
Hill, Peter; Shanahan, Brendan; Dudson, Ben
2017-04-01
We present a technique for handling Dirichlet boundary conditions with the Flux Coordinate Independent (FCI) parallel derivative operator with arbitrary-shaped material geometry in general 3D magnetic fields. The FCI method constructs a finite difference scheme for ∇∥ by following field lines between poloidal planes and interpolating within planes. Doing so removes the need for field-aligned coordinate systems that suffer from singularities in the metric tensor at null points in the magnetic field (or equivalently, when q → ∞). One cost of this method is that as the field lines are not on the mesh, they may leave the domain at any point between neighbouring planes, complicating the application of boundary conditions. The Leg Value Fill (LVF) boundary condition scheme presented here involves an extrapolation/interpolation of the boundary value onto the field line end point. The usual finite difference scheme can then be used unmodified. We implement the LVF scheme in BOUT++ and use the Method of Manufactured Solutions to verify the implementation in a rectangular domain, and show that it does not modify the error scaling of the finite difference scheme. The use of LVF for arbitrary wall geometry is outlined. We also demonstrate the feasibility of using the FCI approach in no n-axisymmetric configurations for a simple diffusion model in a "straight stellarator" magnetic field. A Gaussian blob diffuses along the field lines, tracing out flux surfaces. Dirichlet boundary conditions impose a last closed flux surface (LCFS) that confines the density. Including a poloidal limiter moves the LCFS to a smaller radius. The expected scaling of the numerical perpendicular diffusion, which is a consequence of the FCI method, in stellarator-like geometry is recovered. A novel technique for increasing the parallel resolution during post-processing, in order to reduce artefacts in visualisations, is described.
NASA Astrophysics Data System (ADS)
Kochukhov, O.; Wade, G. A.; Shulyak, D.
2012-04-01
Magnetic Doppler imaging is currently the most powerful method of interpreting high-resolution spectropolarimetric observations of stars. This technique has provided the very first maps of stellar magnetic field topologies reconstructed from time series of full Stokes vector spectra, revealing the presence of small-scale magnetic fields on the surfaces of Ap stars. These studies were recently criticised by Stift et al., who claimed that magnetic inversions are not robust and are seriously undermined by neglecting a feedback on the Stokes line profiles from the local atmospheric structure in the regions of enhanced metal abundance. We show that Stift et al. misinterpreted published magnetic Doppler imaging results and consistently neglected some of the most fundamental principles behind magnetic mapping. Using state-of-the-art opacity sampling model atmosphere and polarized radiative transfer codes, we demonstrate that the variation of atmospheric structure across the surface of a star with chemical spots affects the local continuum intensity but is negligible for the normalized local Stokes profiles except for the rare situation of a very strong line in an extremely Fe-rich atmosphere. For the disc-integrated spectra of an Ap star with extreme abundance variations, we find that the assumption of a mean model atmosphere leads to moderate errors in Stokes I but is negligible for the circular and linear polarization spectra. Employing a new magnetic inversion code, which incorporates the horizontal variation of atmospheric structure induced by chemical spots, we reconstructed new maps of magnetic field and Fe abundance for the bright Ap star α2 CVn. The resulting distribution of chemical spots changes insignificantly compared to the previous modelling based on a single model atmosphere, while the magnetic field geometry does not change at all. This shows that the assertions by Stift et al. are exaggerated as a consequence of unreasonable assumptions and extrapolations, as well as methodological flaws and inconsistencies of their analysis. Our discussion proves that published magnetic inversions based on a mean stellar atmosphere are highly robust and reliable, and that the presence of small-scale magnetic field structures on the surfaces of Ap stars is indeed real. Incorporating horizontal variations of atmospheric structure in Doppler imaging can marginally improve reconstruction of abundance distributions for stars showing very large iron overabundances. But this costly technique is unnecessary for magnetic mapping with high-resolution polarization spectra.
Hessian matrix approach for determining error field sensitivity to coil deviations
NASA Astrophysics Data System (ADS)
Zhu, Caoxiang; Hudson, Stuart R.; Lazerson, Samuel A.; Song, Yuntao; Wan, Yuanxi
2018-05-01
The presence of error fields has been shown to degrade plasma confinement and drive instabilities. Error fields can arise from many sources, but are predominantly attributed to deviations in the coil geometry. In this paper, we introduce a Hessian matrix approach for determining error field sensitivity to coil deviations. A primary cost function used for designing stellarator coils, the surface integral of normalized normal field errors, was adopted to evaluate the deviation of the generated magnetic field from the desired magnetic field. The FOCUS code (Zhu et al 2018 Nucl. Fusion 58 016008) is utilized to provide fast and accurate calculations of the Hessian. The sensitivities of error fields to coil displacements are then determined by the eigenvalues of the Hessian matrix. A proof-of-principle example is given on a CNT-like configuration. We anticipate that this new method could provide information to avoid dominant coil misalignments and simplify coil designs for stellarators.
NASA Astrophysics Data System (ADS)
Sokal, Kimberly R.; Deen, Casey P.; Mace, Gregory N.; Lee, Jae-Joon; Oh, Heeyoung; Kim, Hwihyun; Kidder, Benjamin T.; Jaffe, Daniel T.
2018-02-01
At 60 pc, TW Hydra (TW Hya) is the closest example of a star with a gas-rich protoplanetary disk, though TW Hya may be relatively old (3–15 Myr). As such, TW Hya is especially appealing for testing our understanding of the interplay between stellar and disk evolution. We present a high-resolution near-infrared spectrum of TW Hya obtained with the Immersion GRating INfrared Spectrometer (IGRINS) to re-evaluate the stellar parameters of TW Hya. We compare these data to synthetic spectra of magnetic stars produced by MoogStokes, and use sensitive spectral line profiles to probe the effective temperature, surface gravity, and magnetic field. A model with {T}{eff}=3800 K, {log} g=4.2, and B=3.0 kG best fits the near-infrared spectrum of TW Hya. These results correspond to a spectral type of M0.5 and an age of 8 Myr, which is well past the median life of gaseous disks.
ECRH and its effects on neoclassical transport in a stellarator
NASA Astrophysics Data System (ADS)
Seol, Jaechun
The banana center orbit deviates significantly from the magnetic surface due to the symmetry-breaking term in the magnetic field configuration. Energetic electrons can escape the plasma without collision, since the drift speed is proportional to the perpendicular energy of electron and the collision frequency is reduced as the electron energy goes up. A direct loss flux can be generated from energetic electron population in a stellarator. Thus energetic electron populations can substantially modify the neoclassical transport properties in stellarators. A model accounting for this change in transport is developed assuming the presence of electron cyclotron resonance heating (ECRH). The quasilinear diffusion coefficient for second harmonic X-mode ECRH is developed for a bumpy stellarator. Care is taken in accounting for the pitch-angle dependence of the quasilinear diffusion coefficient since application to experiments with narrow resonance zones is of interest. Weakly relativistic effects are considered through the mass effect on the cyclotron frequency. For trapped particles in a three dimensional configuration, collisionless loss zones exist in velocity space. Radio-frequency (rf) waves accelerate trapped electrons into the direct loss zone in bumpy stellarators and produce a direct loss flux. An analytic expression for this loss flux is derived; it is proportional to the rf field strength and the value of the zeroth order distribution function at the minimum speed for collisionless loss. The direct loss flux of electrons is another source of a non-ambipolar particle flux in bumpy stellarators. This additional non-ambipolar flux modifies the ambipolarity equation which generally has multiple roots for the radial electric field. An electron root (large positive Er) is easily obtained if the electrons are in the 1/nu regime and the ions are in the nu regime.
Extension of the SIESTA MHD equilibrium code to free-plasma-boundary problems
Peraza-Rodriguez, Hugo; Reynolds-Barredo, J. M.; Sanchez, Raul; ...
2017-08-28
Here, SIESTA is a recently developed MHD equilibrium code designed to perform fast and accurate calculations of ideal MHD equilibria for three-dimensional magnetic configurations. Since SIESTA does not assume closed magnetic surfaces, the solution can exhibit magnetic islands and stochastic regions. In its original implementation SIESTA addressed only fixed-boundary problems. That is, the shape of the plasma edge, assumed to be a magnetic surface, was kept fixed as the solution iteratively converges to equilibrium. This condition somewhat restricts the possible applications of SIESTA. In this paper we discuss an extension that will enable SIESTA to address free-plasma-boundary problems, opening upmore » the possibility of investigating problems in which the plasma boundary is perturbed either externally or internally. As an illustration, SIESTA is applied to a configuration of the W7-X stellarator.« less
Extension of the SIESTA MHD equilibrium code to free-plasma-boundary problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peraza-Rodriguez, Hugo; Reynolds-Barredo, J. M.; Sanchez, Raul
Here, SIESTA is a recently developed MHD equilibrium code designed to perform fast and accurate calculations of ideal MHD equilibria for three-dimensional magnetic configurations. Since SIESTA does not assume closed magnetic surfaces, the solution can exhibit magnetic islands and stochastic regions. In its original implementation SIESTA addressed only fixed-boundary problems. That is, the shape of the plasma edge, assumed to be a magnetic surface, was kept fixed as the solution iteratively converges to equilibrium. This condition somewhat restricts the possible applications of SIESTA. In this paper we discuss an extension that will enable SIESTA to address free-plasma-boundary problems, opening upmore » the possibility of investigating problems in which the plasma boundary is perturbed either externally or internally. As an illustration, SIESTA is applied to a configuration of the W7-X stellarator.« less
Magnetic massive stars as progenitors of `heavy' stellar-mass black holes
NASA Astrophysics Data System (ADS)
Petit, V.; Keszthelyi, Z.; MacInnis, R.; Cohen, D. H.; Townsend, R. H. D.; Wade, G. A.; Thomas, S. L.; Owocki, S. P.; Puls, J.; ud-Doula, A.
2017-04-01
The groundbreaking detection of gravitational waves produced by the inspiralling and coalescence of the black hole (BH) binary GW150914 confirms the existence of 'heavy' stellar-mass BHs with masses >25 M⊙. Initial characterization of the system by Abbott et al. supposes that the formation of BHs with such large masses from the evolution of single massive stars is only feasible if the wind mass-loss rates of the progenitors were greatly reduced relative to the mass-loss rates of massive stars in the Galaxy, concluding that heavy BHs must form in low-metallicity (Z ≲ 0.25-0.5 Z⊙) environments. However, strong surface magnetic fields also provide a powerful mechanism for modifying mass-loss and rotation of massive stars, independent of environmental metallicity. In this paper, we explore the hypothesis that some heavy BHs, with masses >25 M⊙ such as those inferred to compose GW150914, could be the natural end-point of evolution of magnetic massive stars in a solar-metallicity environment. Using the MESA code, we developed a new grid of single, non-rotating, solar-metallicity evolutionary models for initial zero-age main sequence masses from 40 to 80 M⊙ that include, for the first time, the quenching of the mass-loss due to a realistic dipolar surface magnetic field. The new models predict terminal-age main-sequence (TAMS) masses that are significantly greater than those from equivalent non-magnetic models, reducing the total mass lost by a strongly magnetized 80 M⊙ star during its main-sequence evolution by 20 M⊙. This corresponds approximately to the mass-loss reduction expected from an environment with metallicity Z = 1/30 Z⊙.
Weakened magnetic braking as the origin of anomalously rapid rotation in old field stars.
van Saders, Jennifer L; Ceillier, Tugdual; Metcalfe, Travis S; Aguirre, Victor Silva; Pinsonneault, Marc H; García, Rafael A; Mathur, Savita; Davies, Guy R
2016-01-14
A knowledge of stellar ages is crucial for our understanding of many astrophysical phenomena, and yet ages can be difficult to determine. As they become older, stars lose mass and angular momentum, resulting in an observed slowdown in surface rotation. The technique of 'gyrochronology' uses the rotation period of a star to calculate its age. However, stars of known age must be used for calibration, and, until recently, the approach was untested for old stars (older than 1 gigayear, Gyr). Rotation periods are now known for stars in an open cluster of intermediate age (NGC 6819; 2.5 Gyr old), and for old field stars whose ages have been determined with asteroseismology. The data for the cluster agree with previous period-age relations, but these relations fail to describe the asteroseismic sample. Here we report stellar evolutionary modelling, and confirm the presence of unexpectedly rapid rotation in stars that are more evolved than the Sun. We demonstrate that models that incorporate dramatically weakened magnetic braking for old stars can--unlike existing models--reproduce both the asteroseismic and the cluster data. Our findings might suggest a fundamental change in the nature of ageing stellar dynamos, with the Sun being close to the critical transition to much weaker magnetized winds. This weakened braking limits the diagnostic power of gyrochronology for those stars that are more than halfway through their main-sequence lifetimes.
Three-dimensional photogrammetric measurement of magnetic field lines in the WEGA stellarator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drewelow, Peter; Braeuer, Torsten; Otte, Matthias
2009-12-15
The magnetic confinement of plasmas in fusion experiments can significantly degrade due to perturbations of the magnetic field. A precise analysis of the magnetic field in a stellarator-type experiment utilizes electrons as test particles following the magnetic field line. The usual fluorescent detector for this electron beam limits the provided information to two-dimensional cut views at certain toroidal positions. However, the technique described in this article allows measuring the three-dimensional structure of the magnetic field by means of close-range photogrammetry. After testing and optimizing the main diagnostic components, measurements of the magnetic field lines were accomplished with a spatial resolutionmore » of 5 mm. The results agree with numeric calculations, qualifying this technique as an additional tool to investigate magnetic field configurations in a stellarator. For a possible future application, ways are indicated on how to reduce experimental error sources.« less
New measurements of photospheric magnetic fields in late-type stars and emerging trends
NASA Technical Reports Server (NTRS)
Saar, S. H.; Linsky, J. L.
1986-01-01
The magnetic fields of late-type stars are measured using the method of Saar et al. (1986). The method includes radiative transfer effects and compensation for line blending; the photospheric magnetic field parameters are derived by comparing observed and theoretical line profiles using an LTE code that includes line saturation and full Zeeman pattern. The preliminary mean active region magnetic field strengths (B) and surface area coverages for 20 stars are discussed. It is observed that there is a trend of increasing B towards the cooler dwarfs stars, and the linear correlation between B and the equipartition value of the magnetic field strength suggests that the photospheric gas pressure determines the photospheric magnetic field strengths. A tendency toward larger filling factors at larger stellar angular velocities is also detected.
sunstardb: A Database for the Study of Stellar Magnetism and the Solar-stellar Connection
NASA Astrophysics Data System (ADS)
Egeland, Ricky
2018-05-01
The “solar-stellar connection” began as a relatively small field of research focused on understanding the processes that generate magnetic fields in stars and sometimes lead to a cyclic pattern of long-term variability in activity, as demonstrated by our Sun. This area of study has recently become more broadly pertinent to questions of exoplanet habitability and exo-space weather, as well as stellar evolution. In contrast to other areas of stellar research, individual stars in the solar-stellar connection often have a distinct identity and character in the literature, due primarily to the rarity of the decades-long time-series that are necessary for studying stellar activity cycles. Furthermore, the underlying stellar dynamo is not well understood theoretically, and is thought to be sensitive to several stellar properties, e.g., luminosity, differential rotation, and the depth of the convection zone, which in turn are often parameterized by other more readily available properties. Relevant observations are scattered throughout the literature and existing stellar databases, and consolidating information for new studies is a tedious and laborious exercise. To accelerate research in this area I developed sunstardb, a relational database of stellar properties and magnetic activity proxy time-series keyed by individual named stars. The organization of the data eliminates the need for the problematic catalog cross-matching operations inherent when building an analysis data set from heterogeneous sources. In this article I describe the principles behind sunstardb, the data structures and programming interfaces, as well as use cases from solar-stellar connection research.
Physics of systems containing neutron stars
NASA Technical Reports Server (NTRS)
Shaham, Jacob
1989-01-01
The following is a summary of work done during the period of Mar. to Oct. 1989. Three major topics were extensively looked into during this time: the reported 2,000 Hz optical signal from the direction of SNR1987A, the possibility that neutron stellar surface magnetic fields do not decay except when the star is accreting, and the 6 Hz QPOs of LMXBs.
NASA Astrophysics Data System (ADS)
Ma, Xinxing; Ennis, D. A.; Hanson, J. D.; Hartwell, G. J.; Knowlton, S. F.; Maurer, D. A.
2017-10-01
Non-axisymmetric equilibrium reconstructions have been routinely performed with the V3FIT code in the Compact Toroidal Hybrid (CTH), a stellarator/tokamak hybrid. In addition to 50 external magnetic measurements, 160 SXR emissivity measurements are incorporated into V3FIT to reconstruct the magnetic flux surface geometry and infer the current distribution within the plasma. Improved reconstructions of current and q profiles provide insight into understanding the physics of density limit disruptions observed in current-carrying discharges in CTH. It is confirmed that the final scenario of the density limit of CTH plasmas is consistent with classic observations in tokamaks: current profile shrinkage leads to growing MHD instabilities (tearing modes) followed by a loss of MHD equilibrium. It is also observed that the density limit at a given current linearly increases with increasing amounts of 3D shaping fields. Consequently, plasmas with densities up to two times the Greenwald limit are attained. Equilibrium reconstructions show that addition of 3D fields effectively moves resonance surfaces towards the edge of the plasma where the current profile gradient is less, providing a stabilizing effect. This work is supported by US Department of Energy Grant No. DE-FG02-00ER54610.
NASA Astrophysics Data System (ADS)
Kochukhov, O.; Wade, G. A.
2010-04-01
Context. Strong organized magnetic fields have been studied in the upper main sequence chemically peculiar stars for more than half a century. However, only recently have observational methods and numerical techniques become sufficiently mature to allow us to record and interpret high-resolution four Stokes parameter spectra, leading to the first assumption-free magnetic field models of these stars. Aims: Here we present a detailed magnetic Doppler imaging analysis of the spectropolarimetric observations of the prototypical magnetic Ap star α2 CVn. This is the second star for which the magnetic field topology and horizontal chemical abundance inhomogeneities have been inferred directly from phase-resolved observations of line profiles in all four Stokes parameters, free from the traditional assumption of a low-order multipolar field geometry. Methods: We interpret the rotational modulation of the circular and linear polarization profiles of the strong Fe II and Cr II lines in the spectra of α2 CVn recorded with the MuSiCoS spectropolarimeter. The surface abundance distributions of the two chemical elements and a full vector map of the stellar magnetic field are reconstructed in a self-consistent inversion using our state-of-the-art magnetic Doppler imaging code Invers10. Results: We succeeded in reproducing most of the details of the available spectropolarimetric observations of α2 CVn with a magnetic map which combines a global dipolar-like field topology with localized spots of higher field intensity. We demonstrate that these small-scale magnetic structures are inevitably required to fit the linear polarization spectra; however, their presence cannot be inferred from the Stokes I and V observations alone. We also found high-contrast surface distributions of Fe and Cr, with both elements showing abundance minima in the region of weaker and topologically simpler magnetic field. Conclusions: Our magnetic Doppler imaging analysis of α2 CVn and previous results for 53 Cam support the view that the upper main sequence stars can harbour fairly complex surface magnetic fields which resemble oblique dipoles only at the largest spatial scales. Spectra in all four Stokes parameters are absolutely essential to unveil and meaningfully characterize this field complexity in Ap stars. We therefore suggest that understanding magnetism of stars in other parts of the H-R diagram is similarly incomplete without investigation of their linear polarization spectra. Based on data obtained using the Télescope Bernard Lyot at Observatoire du Pic du Midi.
Reconciling solar and stellar magnetic cycles with nonlinear dynamo simulations.
Strugarek, A; Beaudoin, P; Charbonneau, P; Brun, A S; do Nascimento, J-D
2017-07-14
The magnetic fields of solar-type stars are observed to cycle over decadal periods-11 years in the case of the Sun. The fields originate in the turbulent convective layers of stars and have a complex dependency upon stellar rotation rate. We have performed a set of turbulent global simulations that exhibit magnetic cycles varying systematically with stellar rotation and luminosity. We find that the magnetic cycle period is inversely proportional to the Rossby number, which quantifies the influence of rotation on turbulent convection. The trend relies on a fundamentally nonlinear dynamo process and is compatible with the Sun's cycle and those of other solar-type stars. Copyright © 2017, American Association for the Advancement of Science.
Cosmic ray acceleration in magnetic circumstellar bubbles
NASA Astrophysics Data System (ADS)
Zirakashvili, V. N.; Ptuskin, V. S.
2018-03-01
We consider the diffusive shock acceleration in interstellar bubbles created by powerful stellar winds of supernova progenitors. Under the moderate stellar wind magnetization the bubbles are filled by the strongly magnetized low density gas. It is shown that the maximum energy of particles accelerated in this environment can exceed the "knee" energy in the observable cosmic ray spectrum.
Stellarator Coil Design and Plasma Sensitivity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Long-Poe Ku and Allen H. Boozer
2010-11-03
The rich information contained in the plasma response to external magnetic perturbations can be used to help design stellarator coils more effectively. We demonstrate the feasibility by first devel- oping a simple, direct method to study perturbations in stellarators that do not break stellarator symmetry and periodicity. The method applies a small perturbation to the plasma boundary and evaluates the resulting perturbed free-boundary equilibrium to build up a sensitivity matrix for the important physics attributes of the underlying configuration. Using this sensitivity information, design methods for better stellarator coils are then developed. The procedure and a proof-of-principle application are givenmore » that (1) determine the spatial distributions of external normal magnetic field at the location of the unperturbed plasma boundary to which the plasma properties are most sen- sitive, (2) determine the distributions of external normal magnetic field that can be produced most efficiently by distant coils, (3) choose the ratios of the magnitudes of the the efficiently produced magnetic distributions so the sensitive plasma properties can be controlled. Using these methods, sets of modular coils are found for the National Compact Stellarator Experiment (NCSX) that are either smoother or can be located much farther from the plasma boundary than those of the present design.« less
An improved current potential method for fast computation of stellarator coil shapes
NASA Astrophysics Data System (ADS)
Landreman, Matt
2017-04-01
Several fast methods for computing stellarator coil shapes are compared, including the classical NESCOIL procedure (Merkel 1987 Nucl. Fusion 27 867), its generalization using truncated singular value decomposition, and a Tikhonov regularization approach we call REGCOIL in which the squared current density is included in the objective function. Considering W7-X and NCSX geometries, and for any desired level of regularization, we find the REGCOIL approach simultaneously achieves lower surface-averaged and maximum values of both current density (on the coil winding surface) and normal magnetic field (on the desired plasma surface). This approach therefore can simultaneously improve the free-boundary reconstruction of the target plasma shape while substantially increasing the minimum distances between coils, preventing collisions between coils while improving access for ports and maintenance. The REGCOIL method also allows finer control over the level of regularization, it preserves convexity to ensure the local optimum found is the global optimum, and it eliminates two pathologies of NESCOIL: the resulting coil shapes become independent of the arbitrary choice of angles used to parameterize the coil surface, and the resulting coil shapes converge rather than diverge as Fourier resolution is increased. We therefore contend that REGCOIL should be used instead of NESCOIL for applications in which a fast and robust method for coil calculation is needed, such as when targeting coil complexity in fixed-boundary plasma optimization, or for scoping new stellarator geometries.
High-beta extended MHD simulations of stellarators
NASA Astrophysics Data System (ADS)
Bechtel, T. A.; Hegna, C. C.; Sovinec, C. R.; Roberds, N. A.
2016-10-01
The high beta properties of stellarator plasmas are studied using the nonlinear, extended MHD code NIMROD. In this work, we describe recent developments to the semi-implicit operator which allow the code to model 3D plasma evolution with better accuracy and efficiency. The configurations under investigation are an l=2, M=5 torsatron with geometry modeled after the Compact Toroidal Hybrid (CTH) experiment and an l=2, M=10 torsatron capable of having vacuum rotational transform profiles near unity. High-beta plasmas are created using a volumetric heating source and temperature dependent anisotropic thermal conduction and resistivity. To reduce computation expenses, simulations are initialized from stellarator symmetric pseudo-equilibria by turning on symmetry breaking modes at finite beta. The onset of MHD instabilities and nonlinear consequences are monitored as a function of beta as well as the fragility of the magnetic surfaces. Research supported by US DOE under Grant No. DE-FG02-99ER54546.
Origin and Evolution of Magnetic Field in PMS Stars: Influence of Rotation and Structural Changes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Emeriau-Viard, Constance; Brun, Allan Sacha, E-mail: constance.emeriau@cea.fr, E-mail: sacha.brun@cea.fr
During stellar evolution, especially in the pre-main-sequence phase, stellar structure and rotation evolve significantly, causing major changes in the dynamics and global flows of the star. We wish to assess the consequences of these changes on stellar dynamo, internal magnetic field topology, and activity level. To do so, we have performed a series of 3D HD and MHD simulations with the ASH code. We choose five different models characterized by the radius of their radiative zone following an evolutionary track computed by a 1D stellar evolution code. These models characterized stellar evolution from 1 to 50 Myr. By introducing amore » seed magnetic field in the fully convective model and spreading its evolved state through all four remaining cases, we observe systematic variations in the dynamical properties and magnetic field amplitude and topology of the models. The five MHD simulations develop a strong dynamo field that can reach an equipartition state between the kinetic and magnetic energies and even superequipartition levels in the faster-rotating cases. We find that the magnetic field amplitude increases as it evolves toward the zero-age main sequence. Moreover, the magnetic field topology becomes more complex, with a decreasing axisymmetric component and a nonaxisymmetric one becoming predominant. The dipolar components decrease as the rotation rate and the size of the radiative core increase. The magnetic fields possess a mixed poloidal-toroidal topology with no obvious dominant component. Moreover, the relaxation of the vestige dynamo magnetic field within the radiative core is found to satisfy MHD stability criteria. Hence, it does not experience a global reconfiguration but slowly relaxes by retaining its mixed stable poloidal-toroidal topology.« less
3D Realistic Radiative Hydrodynamic Modeling of a Moderate-Mass Star: Effects of Rotation
NASA Astrophysics Data System (ADS)
Kitiashvili, Irina; Kosovichev, Alexander G.; Mansour, Nagi N.; Wray, Alan A.
2018-01-01
Recent progress in stellar observations opens new perspectives in understanding stellar evolution and structure. However, complex interactions in the turbulent radiating plasma together with effects of magnetic fields and rotation make inferences of stellar properties uncertain. The standard 1D mixing-length-based evolutionary models are not able to capture many physical processes of stellar interior dynamics, but they provide an initial approximation of the stellar structure that can be used to initialize 3D time-dependent radiative hydrodynamics simulations, based on first physical principles, that take into account the effects of turbulence, radiation, and others. In this presentation we will show simulation results from a 3D realistic modeling of an F-type main-sequence star with mass 1.47 Msun, in which the computational domain includes the upper layers of the radiation zone, the entire convection zone, and the photosphere. The simulation results provide new insight into the formation and properties of the convective overshoot region, the dynamics of the near-surface, highly turbulent layer, the structure and dynamics of granulation, and the excitation of acoustic and gravity oscillations. We will discuss the thermodynamic structure, oscillations, and effects of rotation on the dynamics of the star across these layers.
A grid of MHD models for stellar mass loss and spin-down rates of solar analogs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cohen, O.; Drake, J. J.
2014-03-01
Stellar winds are believed to be the dominant factor in the spin-down of stars over time. However, stellar winds of solar analogs are poorly constrained due to observational challenges. In this paper, we present a grid of magnetohydrodynamic models to study and quantify the values of stellar mass loss and angular momentum loss rates as a function of the stellar rotation period, magnetic dipole component, and coronal base density. We derive simple scaling laws for the loss rates as a function of these parameters, and constrain the possible mass loss rate of stars with thermally driven winds. Despite the successmore » of our scaling law in matching the results of the model, we find a deviation between the 'solar dipole' case and a real case based on solar observations that overestimates the actual solar mass loss rate by a factor of three. This implies that the model for stellar fields might require a further investigation with additional complexity. Mass loss rates in general are largely controlled by the magnetic field strength, with the wind density varying in proportion to the confining magnetic pressure B {sup 2}. We also find that the mass loss rates obtained using our grid models drop much faster with the increase in rotation period than scaling laws derived using observed stellar activity. For main-sequence solar-like stars, our scaling law for angular momentum loss versus poloidal magnetic field strength retrieves the well-known Skumanich decline of angular velocity with time, Ω{sub *}∝t {sup –1/2}, if the large-scale poloidal magnetic field scales with rotation rate as B{sub p}∝Ω{sub ⋆}{sup 2}.« less
Calculating Pressure-Driven Current Near Magnetic Islands for 3D MHD Equilibria
NASA Astrophysics Data System (ADS)
Radhakrishnan, Dhanush; Reiman, Allan
2016-10-01
In general, 3D MHD equilibria in toroidal plasmas do not result in nested pressure surfaces. Instead, islands and chaotic regions appear in the equilibrium. Near small magnetic islands, the pressure varies within the flux surfaces, which has a significant effect on the pressure-driven current, introducing singularities. Previously, the MHD equilibrium current near a magnetic island was calculated, including the effect of ``stellarator symmetry,'' wherein the singular components of the pressure-driven current vanish [A. H. Reiman, Phys. Plasmas 23, 072502 (2016)]. Here we first solve for pressure in a cylindrical plasma from the heat diffusion equation, after adding a helical perturbation. We then numerically calculate the corresponding Pfirsch-Schluter current. At the small island limit, we compare the pressure-driven current with the previously calculated solution, and far from the island, we recover the solution for nested flux surfaces. Lastly, we compute the current for a toroidal plasma for symmetric and non-symmetric geometries.
NASA Astrophysics Data System (ADS)
Hubrig, S.; Savanov, I.; Ilyin, I.; González, J. F.; Korhonen, H.; Lehmann, H.; Schöller, M.; Granzer, T.; Weber, M.; Strassmeier, K. G.; Hartmann, M.; Tkachenko, A.
2010-10-01
The system ARAur is a young late B-type double-lined eclipsing binary with a primary star of HgMn peculiarity. We applied the Doppler imaging method to reconstruct the distribution of Fe and Y over the surface of the primary using spectroscopic time series obtained in 2005 and from 2008 October to 2009 February. The results show a remarkable evolution of the element distribution and overabundances. Measurements of the magnetic field with the moment technique using several elements reveal the presence of a longitudinal magnetic field of the order of a few hundred gauss in both stellar components and a quadratic field of the order of 8kG on the surface of the primary star. Based on observations obtained at the 2.56-m Nordic Optical Telescope on La Palma, the Karl-Schwarzschild-Observatorium in Tautenburg and the STELLA robotic telescope on Tenerife. E-mail: shubrig@aip.de
Young Stellar Objects from Soft to Hard X-rays
NASA Astrophysics Data System (ADS)
Güdel, Manuel
2009-05-01
Magnetically active stars are the sites of efficient particle acceleration and plasma heating, processes that have been studied in detail in the solar corona. Investigation of such processes in young stellar objects is much more challenging due to various absorption processes. There is, however, evidence for violent magnetic energy release in very young stellar objects. The impact on young stellar environments (e.g., circumstellar disk heating and ionization, operation of chemical networks, photoevaporation) may be substantial. Hard X-ray devices like those carried on Simbol-X will establish a basis for detailed studies of these processes.
Modelling and analysis of flux surface mapping experiments on W7-X
NASA Astrophysics Data System (ADS)
Lazerson, Samuel; Otte, Matthias; Bozhenkov, Sergey; Sunn Pedersen, Thomas; Bräuer, Torsten; Gates, David; Neilson, Hutch; W7-X Team
2015-11-01
The measurement and compensation of error fields in W7-X will be key to the device achieving high beta steady state operations. Flux surface mapping utilizes the vacuum magnetic flux surfaces, a feature unique to stellarators and heliotrons, to allow direct measurement of magnetic topology, and thereby allows a highly accurate determination of remnant magnetic field errors. As will be reported separately at this meeting, the first measurements confirming the existence of nested flux surfaces in W7-X have been made. In this presentation, a synthetic diagnostic for the flux surface mapping diagnostic is presented. It utilizes Poincaré traces to construct an image of the flux surface consistent with the measured camera geometry, fluorescent rod sweep plane, and emitter beam position. Forward modeling of the high-iota configuration will be presented demonstrating an ability to measure the intrinsic error field using the U.S. supplied trim coil system on W7-X, and a first experimental assessment of error fields in W7-X will be presented. This work has been authored by Princeton University under Contract Number DE-AC02-09CH11466 with the US Department of Energy.
A Dream of a Mission: Stellar Imager and Seismic Probe
NASA Technical Reports Server (NTRS)
Carpenter, Kenneth G.; Schrijver, Carolus J.; Fisher, Richard R. (Technical Monitor)
2000-01-01
The Stellar Imager and Seismic Probe (SISP) is a mission to understand the various effects of magnetic fields of stars, the dynamos that generate them, and the internal structure and dynamics of the stars in which they exist. The ultimate goal is to achieve the best-possible forecasting of solar activity on times scales ranging up to decades, and an understanding of the impact of stellar magnetic activity on astrobiology and life in the Universe. The road to that goal will revolutionize our understanding of stars and stellar systems, the building blocks of the Universe. SISP will zoom in on what today - with few exceptions - we only know as point sources, revealing processes never before seen, thus providing a tool to astrophysics as fundamental as the microscope is to the study of life on Earth. SISP is an ultraviolet aperture-synthesis imager with 8-10 telescopes with meter-class apertures, and a central hub with focal-plane instrumentation that allows spectrophotometry in passbands as narrow as a few Angstroms up to hundreds of Angstroms. SISP will image stars and binaries with one hundred to one thousand resolution elements on their surface, and sound their interiors through asteroseismology to image internal structure, differential rotation, and large-scale circulations; this will provide accurate knowledge of stellar structure and evolution and complex transport processes, and will impact numerous branches of (astro)physics ranging from the Big Bang to the future of the Universe. Fitting naturally within the NASA long-term time line, SISP complements defined missions, and with them will show us entire other solar systems, from the central star to their orbiting planets.
Advancing the understanding of plasma transport in mid-size stellarators
NASA Astrophysics Data System (ADS)
Hidalgo, Carlos; Talmadge, Joseph; Ramisch, Mirko; TJ-II, the; HXS; TJ-K Teams
2017-01-01
The tokamak and the stellarator are the two main candidate concepts for magnetically confining fusion plasmas. The flexibility of the mid-size stellarator devices together with their unique diagnostic capabilities make them ideally suited to study the relation between magnetic topology, electric fields and transport. This paper addresses advances in the understanding of plasma transport in mid-size stellarators with an emphasis on the physics of flows, transport control, impurity and particle transport and fast particles. The results described here emphasize an improved physics understanding of phenomena in stellarators that complements the empirical approach. Experiments in mid-size stellarators support the development of advanced plasma scenarios in Wendelstein 7-X (W7-X) and, in concert with better physics understanding in tokamaks, may ultimately lead to an advance in the prediction of burning plasma behaviour.
A BCool survey of the magnetic fields of planet-hosting solar-type stars
NASA Astrophysics Data System (ADS)
Mengel, M. W.; Marsden, S. C.; Carter, B. D.; Horner, J.; King, R.; Fares, R.; Jeffers, S. V.; Petit, P.; Vidotto, A. A.; Morin, J.; BCool Collaboration
2017-03-01
We present a spectropolarimetric snapshot survey of solar-type planet-hosting stars. In addition to 14 planet-hosting stars observed as part of the BCool magnetic snapshot survey, we obtained magnetic observations of a further 19 planet-hosting solar-type stars in order to see if the presence of close-in planets had an effect on the measured surface magnetic field (|Bℓ|). Our results indicate that the magnetic activity of this sample is congruent with that of the overall BCool sample. The effects of the planetary systems on the magnetic activity of the parent star, if any, are too subtle to detect compared to the intrinsic dispersion and correlations with rotation, age and stellar activity proxies in our sample. Four of the 19 newly observed stars, two of which are subgiants, have unambiguously detected magnetic fields and are future targets for Zeeman-Doppler mapping.
Probing the extreme wind confinement of the most magnetic O star with COS spectroscopy
NASA Astrophysics Data System (ADS)
Petit, Veronique
2014-10-01
We propose to obtain phase-resolved UV spectroscopy of the recently discovered magnetic O star NGC 1624-2, which has the strongest magnetic field ever detected in a O-star, by an order of magnitude. We will use the strength and variability of the UV resonance line profiles to diagnose the density, velocity, and ionization structure of NGC 1624-2's enormous magnetosphere that results from entrapment of its stellar wind by its strong, nearly dipolar magnetic field. With this gigantic magnetosphere, NGC 1624-2 represents a new regime of extreme wind confinement that will constrain models of magnetized winds and their surface mass flux properties. A detailed understanding of such winds is necessary to study the rotational braking history of magnetic O-stars, which can shed new light on the fundamental origin of magnetism in massive, hot stars.
On the structure of solar and stellar coronae - Loops and loop heat transport
NASA Technical Reports Server (NTRS)
Litwin, Christof; Rosner, Robert
1993-01-01
We discuss the principal constraints on mechanisms for structuring and heating the outer atmospheres - the coronae - of stars. We argue that the essential cause of highly localized heating in the coronae of stars like the sun is the spatially intermittent nature of stellar surface magnetic fields, and that the spatial scale of the resulting coronal structures is related to the spatial structure of the photospheric fields. We show that significant constraints on coronal heating mechanisms derive from the observed variations in coronal emission, and, in addition, show that the observed structuring perpendicular to coronal magnetic fields imposes severe constraints on mechanisms for heat dispersal in the low-beta atmosphere. In particular, we find that most of commonly considered mechanisms for heat dispersal, such as anomalous diffusion due to plasma turbulence or magnetic field line stochasticity, are much too slow to account for the observed rapid heating of coronal loops. The most plausible mechanism appears to be reconnection at the interface between two adjacent coronal flux bundles. Based on a model invoking hyperresistivity, we show that such a mechanism naturally leads to dominance of isolated single bright coronal loops and to bright coronal plasma structures whose spatial scale transverse to the local magnetic field is comparable to observed dimensions of coronal X-ray loops.
Hessian matrix approach for determining error field sensitivity to coil deviations.
Zhu, Caoxiang; Hudson, Stuart R.; Lazerson, Samuel A.; ...
2018-03-15
The presence of error fields has been shown to degrade plasma confinement and drive instabilities. Error fields can arise from many sources, but are predominantly attributed to deviations in the coil geometry. In this paper, we introduce a Hessian matrix approach for determining error field sensitivity to coil deviations. A primary cost function used for designing stellarator coils, the surface integral of normalized normal field errors, was adopted to evaluate the deviation of the generated magnetic field from the desired magnetic field. The FOCUS code [Zhu et al., Nucl. Fusion 58(1):016008 (2018)] is utilized to provide fast and accurate calculationsmore » of the Hessian. The sensitivities of error fields to coil displacements are then determined by the eigenvalues of the Hessian matrix. A proof-of-principle example is given on a CNT-like configuration. We anticipate that this new method could provide information to avoid dominant coil misalignments and simplify coil designs for stellarators.« less
Hessian matrix approach for determining error field sensitivity to coil deviations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Caoxiang; Hudson, Stuart R.; Lazerson, Samuel A.
The presence of error fields has been shown to degrade plasma confinement and drive instabilities. Error fields can arise from many sources, but are predominantly attributed to deviations in the coil geometry. In this paper, we introduce a Hessian matrix approach for determining error field sensitivity to coil deviations. A primary cost function used for designing stellarator coils, the surface integral of normalized normal field errors, was adopted to evaluate the deviation of the generated magnetic field from the desired magnetic field. The FOCUS code [Zhu et al., Nucl. Fusion 58(1):016008 (2018)] is utilized to provide fast and accurate calculationsmore » of the Hessian. The sensitivities of error fields to coil displacements are then determined by the eigenvalues of the Hessian matrix. A proof-of-principle example is given on a CNT-like configuration. We anticipate that this new method could provide information to avoid dominant coil misalignments and simplify coil designs for stellarators.« less
The magnetically controlled stellar wind of HD 21699
NASA Technical Reports Server (NTRS)
Brown, D. N.; Shore, S. N.; Sonneborn, G.
1985-01-01
The discovery of a magnetically controlled stellar mass outflow in the helium-weak sn star HD 21699 = HR 1063 is reported. IUE observations show that the C IV resonance doublet is variable on the rotational time scale of about 2.5 days, and that there are no other observable spectrum variations in the UV. The magnetic field reverses sign on the rotational time scale. An interpretation of the observations in terms of magnetically structured jets is presented.
Precision modelling of M dwarf stars: the magnetic components of CM Draconis
NASA Astrophysics Data System (ADS)
MacDonald, J.; Mullan, D. J.
2012-04-01
The eclipsing binary CM Draconis (CM Dra) contains two nearly identical red dwarfs of spectral class dM4.5. The masses and radii of the two components have been reported with unprecedentedly small statistical errors: for M, these errors are 1 part in 260, while for R, the errors reported by Morales et al. are 1 part in 130. When compared with standard stellar models with appropriate mass and age (≈4 Gyr), the empirical results indicate that both components are discrepant from the models in the following sense: the observed stars are larger in R ('bloated'), by several standard deviations, than the models predict. The observed luminosities are also lower than the models predict. Here, we attempt at first to model the two components of CM Dra in the context of standard (non-magnetic) stellar models using a systematic array of different assumptions about helium abundances (Y), heavy element abundances (Z), opacities and mixing length parameter (α). We find no 4-Gyr-old models with plausible values of these four parameters that fit the observed L and R within the reported statistical error bars. However, CM Dra is known to contain magnetic fields, as evidenced by the occurrence of star-spots and flares. Here we ask: can inclusion of magnetic effects into stellar evolution models lead to fits of L and R within the error bars? Morales et al. have reported that the presence of polar spots results in a systematic overestimate of R by a few per cent when eclipses are interpreted with a standard code. In a star where spots cover a fraction f of the surface area, we find that the revised R and L for CM Dra A can be fitted within the error bars by varying the parameter α. The latter is often assumed to be reduced by the presence of magnetic fields, although the reduction in α as a function of B is difficult to quantify. An alternative magnetic effect, namely inhibition of the onset of convection, can be readily quantified in terms of a magnetic parameter δ≈B2/4πγpgas (where B is the strength of the local vertical magnetic field). In the context of δ models in which B is not allowed to exceed a 'ceiling' of 106 G, we find that the revised R and L can also be fitted, within the error bars, in a finite region of the f-δ plane. The permitted values of δ near the surface leads us to estimate that the vertical field strength on the surface of CM Dra A is about 500 G, in good agreement with independent observational evidence for similar low-mass stars. Recent results for another binary with parameters close to those of CM Dra suggest that metallicity differences cannot be the dominant explanation for the bloating of the two components of CM Dra.
Cosmic-Ray Propagation in Turbulent Spiral Magnetic Fields Associated with Young Stellar Objects
NASA Astrophysics Data System (ADS)
Fatuzzo, Marco; Adams, Fred C.
2018-04-01
External cosmic rays impinging upon circumstellar disks associated with young stellar objects provide an important source of ionization, and, as such, play an important role in disk evolution and planet formation. However, these incoming cosmic rays are affected by a variety of physical processes internal to stellar/disk systems, including modulation by turbulent magnetic fields. Globally, these fields naturally provide both a funneling effect, where cosmic rays from larger volumes are focused into the disk region, and a magnetic mirroring effect, where cosmic rays are repelled due to the increasing field strength. This paper considers cosmic-ray propagation in the presence of a turbulent spiral magnetic field, analogous to that produced by the solar wind. The interaction of this wind with the interstellar medium defines a transition radius, analogous to the heliopause, which provides the outer boundary to this problem. We construct a new coordinate system where one coordinate follows the spiral magnetic field lines and consider magnetic perturbations to the field in the perpendicular directions. The presence of magnetic turbulence replaces the mirroring points with a distribution of values and moves the mean location outward. Our results thus help quantify the degree to which cosmic-ray fluxes are reduced in circumstellar disks by the presence of magnetic field structures that are shaped by stellar winds. The new coordinate system constructed herein should also be useful in other astronomical applications.
Targeted Optimization of Quasi-Symmetric Stellarators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hegna, Chris C.; Anderson, D. T.; Talmadge, J. N.
2016-10-06
The proposed research focuses on targeted areas of plasma physics dedicated to improving the stellarator concept. Research was pursued in the technical areas of edge/divertor physics in 3D configurations, magnetic island physics in stellarators, the role of 3D shaping on microinstabilities and turbulent transport and energetic ion confinement in stellarators.
NASA Astrophysics Data System (ADS)
Leitzinger, M.; Odert, P.; Zaqarashvili, T. V.; Greimel, R.; Hanslmeier, A.; Lammer, H.
2016-11-01
We present the analysis of six nights of spectroscopic monitoring of two young and fast rotating late-type stars, namely the dMe star HK Aqr and the dG/dK star PZ Tel. On both stars, we detect absorption features reminiscent of signatures of corotating cool clouds or prominences visible in Hα. Several prominences on HK Aqr show periodic variability in the prominence tracks which follow a sinusoidal motion (indication of prominence oscillations). On PZ Tel, we could not find any periodic variability in the prominence tracks. By fitting sinusoidal functions to the prominence tracks, we derive amplitudes and periods which are similar to those of large-amplitude oscillations seen in solar prominences. In one specific event, we also derive a periodic variation of the prominence track in the Hβ spectral line which shows an anti-phase variation with the one derived for the Hα spectral line. Using these parameters and estimated mass density of a prominence on HK Aqr, we derive a minimum magnetic field strength of ˜2 G. The relatively low strength of the magnetic field is explained by the large height of this stellar prominence (≥ 0.67 stellar radii above the surface).
Structure, Dynamics, and Deuterium Fractionation of Massive Pre-stellar Cores
NASA Astrophysics Data System (ADS)
Goodson, Matthew D.; Kong, Shuo; Tan, Jonathan C.; Heitsch, Fabian; Caselli, Paola
2016-12-01
High levels of deuterium fraction in N2H+ are observed in some pre-stellar cores. Single-zone chemical models find that the timescale required to reach observed values ({D}{frac}{{{N}}2{{{H}}}+}\\equiv {{{N}}}2{{{D}}}+/{{{N}}}2{{{H}}}+≳ 0.1) is longer than the free-fall time, possibly 10 times longer. Here, we explore the deuteration of turbulent, magnetized cores with 3D magnetohydrodynamics simulations. We use an approximate chemical model to follow the growth in abundances of N2H+ and N2D+. We then examine the dynamics of the core using each tracer for comparison to observations. We find that the velocity dispersion of the core as traced by N2D+ appears slightly sub-virial compared to predictions of the Turbulent Core Model of McKee & Tan, except at late times just before the onset of protostar formation. By varying the initial mass surface density, the magnetic energy, the chemical age, and the ortho-to-para ratio of H2, we also determine the physical and temporal properties required for high deuteration. We find that low initial ortho-to-para ratios (≲ 0.01) and/or multiple free-fall times (≳ 3) of prior chemical evolution are necessary to reach the observed values of deuterium fraction in pre-stellar cores.
Gradient of the stellar magnetic field in measurements of hydrogen line cores
NASA Astrophysics Data System (ADS)
Kudryavtsev, Dimitry O.; Romanyuk, Iosif I.
2009-04-01
We report the observed systematic differences in longitudinal magnetic field values, obtained from measurements of metal lines and the core of the Hβ line for a number of Ap stars, having strong global magnetic fields. In overwhelming majority of cases the magnetic field values, obtained from measurements of hydrogen lines cores, is smaller then the ones obtained from metal lines. We discuss some possible explanations of this effect, the most probable of which is the existence of the gradient of the magnetic field in stellar atmospheres.
The MiMeS survey of magnetism in massive stars: CNO surface abundances of Galactic O stars
NASA Astrophysics Data System (ADS)
Martins, F.; Hervé, A.; Bouret, J.-C.; Marcolino, W.; Wade, G. A.; Neiner, C.; Alecian, E.; Grunhut, J.; Petit, V.
2015-03-01
Context. The evolution of massive stars is still partly unconstrained. Mass, metallicity, mass loss, and rotation are the main drivers of stellar evolution. Binarity and the magnetic field may also significantly affect the fate of massive stars. Aims: Our goal is to investigate the evolution of single O stars in the Galaxy. Methods: For that, we used a sample of 74 objects comprising all luminosity classes and spectral types from O4 to O9.7. We relied on optical spectroscopy obtained in the context of the MiMeS survey of massive stars. We performed spectral modelling with the code CMFGEN. We determined the surface properties of the sample stars, with special emphasis on abundances of carbon, nitrogen, and oxygen. Results: Most of our sample stars have initial masses in the range of 20 to 50 M⊙. We show that nitrogen is more enriched and carbon and oxygen are more depleted in supergiants than in dwarfs, with giants showing intermediate degrees of mixing. CNO abundances are observed in the range of values predicted by nucleosynthesis through the CNO cycle. More massive stars, within a given luminosity class, appear to be more chemically enriched than lower mass stars. We compare our results with predictions of three types of evolutionary models and show that for two sets of models, 80% of our sample can be explained by stellar evolution including rotation. The effect of magnetism on surface abundances is unconstrained. Conclusions: Our study indicates that in the 20-50 M⊙ mass range, the surface chemical abundances of most single O stars in the Galaxy are fairly well accounted for by stellar evolution of rotating stars. Based on observations obtained at 1) the Telescope Bernard Lyot (USR5026) operated by the Observatoire Midi-Pyrénées, Université de Toulouse (Paul Sabatier), Centre National de la Recherche Scientifique of France; 2) at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council (NRC) of Canada, the Institut National des Science de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii; 3) at the ESO/La Silla Observatory under program ID 187.D-0917.
Dead Zone Accretion Flows in Protostellar Disks
NASA Technical Reports Server (NTRS)
Turner, Neal; Sano, T.
2008-01-01
Planets form inside protostellar disks in a dead zone where the electrical resistivity of the gas is too high for magnetic forces to drive turbulence. We show that much of the dead zone nevertheless is active and flows toward the star while smooth, large-scale magnetic fields transfer the orbital angular momentum radially outward. Stellar X-ray and radionuclide ionization sustain a weak coupling of the dead zone gas to the magnetic fields, despite the rapid recombination of free charges on dust grains. Net radial magnetic fields are generated in the magnetorotational turbulence in the electrically conducting top and bottom surface layers of the disk, and reach the midplane by ohmic diffusion. A toroidal component to the fields is produced near the midplane by the orbital shear. The process is similar to the magnetization of the solar tachocline. The result is a laminar, magnetically driven accretion flow in the region where the planets form.
The science case of the PEPSI high-resolution echelle spectrograph and polarimeter for the LBT
NASA Astrophysics Data System (ADS)
Strassmeier, K. G.; Pallavicini, R.; Rice, J. B.; Andersen, M. I.
2004-05-01
We lay out the scientific rationale for and present the instrumental requirements of a high-resolution adaptive-optics Echelle spectrograph with two full-Stokes polarimeters for the Large Binocular Telescope (LBT) in Arizona. Magnetic processes just like those seen on the Sun and in the space environment of the Earth are now well recognized in many astrophysical areas. The application to other stars opened up a new field of research that became widely known as the solar-stellar connection. Late-type stars with convective envelopes are all affected by magnetic processes which give rise to a rich variety of phenomena on their surface and are largely responsible for the heating of their outer atmospheres. Magnetic fields are likely to play a crucial role in the accretion process of T-Tauri stars as well as in the acceleration and collimation of jet-like flows in young stellar objects (YSOs). Another area is the physics of active galactic nucleii (AGNs) , where the magnetic activity of the accreting black hole is now believed to be responsible for most of the behavior of these objects, including their X-ray spectrum, their notoriously dramatic variability, and the powerful relativistic jets they produce. Another is the physics of the central engines of cosmic gamma-ray bursts, the most powerful explosions in the universe, for which the extreme apparent energy release are explained through the collimation of the released energy by magnetic fields. Virtually all the physics of magnetic fields exploited in astrophysics is somehow linked to our understanding of the Sun's and the star's magnetic fields.
Starspots and active regions on IN Com: UBVRI photometry and linear polarization
NASA Astrophysics Data System (ADS)
Alekseev, I. Yu.; Kozlova, O. V.
2014-06-01
The activity of the variable star IN Com is considered using the latest multicolor UBVRI photometry and linear polarimetric observations carried out during a decade. The photometric variability of the star is fully described using the zonal spottedness model developed at the Crimean Astrophysical Observatory (CrAO). Spotted regions cover up to 22% of the total stellar surface, with the difference in temperatures between the quiet photosphere and the spot umbra being 600 K. The spots are located at middle and low latitudes (40°-55°). The intrinsic broad-band linear polarization of IN Com and its rotational modulation in the U band due to local magnetic fields at the most spotted (active) stellar longitudes were detected for the first time.
On the stellar rotation-activity connection
NASA Technical Reports Server (NTRS)
Rosner, R.
1983-01-01
The relationship between rotation rates and surface activity in late-type dwarf stars is explored in a survey of recent theoretical and observational studies. Current theoretical models of stellar-magnetic-field production and coronal activity are examined, including linear kinematic dynamo theory, nonlinear dynamos using approximations, and full numerical simulations of the MHD equations; and some typical results are presented graphically. The limitations of the modeling procedures and the constraints imposed by the physics are indicated. The statistical techniques used in establishing correlations between various observational parameters are analyzed critically, and the methods developed for quasar luminosity functions by Avni et al. (1980) are used to evaluate the effects of upper detection bounds, incomplete samples, and missing data for the case of rotation and X-ray flux data.
NASA Astrophysics Data System (ADS)
Boozer, Allen H.
1999-11-01
Modern stellarators are designed using J. Nuehrenberg’s method of varying Fourier coefficients in the shape of the plasma boundary to maximize a target function. The matrix of second derivatives of the target function at the optimum determines a quality matrix. This matrix gives the degradation in the quality of the configuration as the normal magnetic field is varied on a control surface, which lies on or outside the plasma surface. The task is finding saddle coils that produce the desired configuration in the presence of a given toroidal field. An eigenvector of the quality matrix can be important for two reasons: (1) the normal field that must be produced by the saddles is large or (2) the eigenvalue is large (an island-causing resonant perturbation). The rank of the important part of the quality matrix is the number of important eigenvectors. The current in each saddle coil produces a normal field on the control surface, which can be described by an inductance matrix. The relevant part of the inductance matrix has large eigenvalues. The coils can produce the configuration if the rank of the important part of the quality matrix and its product with the relevant part of the inductance matrix are the same. Existing coil design codes, pioneered by P. Merkel, approximate the quality matrix by the unit matrix. Stellarator flexibility could be enhanced by using a more realistic quality matrix and by using trim coils to balance large eigenvalues.
Measuring a Truncated Disk in Aquila X-1
NASA Technical Reports Server (NTRS)
King, Ashley L.; Tomsick, John A.; Miller, Jon M.; Chenevez, Jerome; Barret, Didier; Boggs, Steven E.; Chakrabarty, Deepto; Christensen, Finn E.; Craig, William W.; Feurst, Felix;
2016-01-01
We present NuSTAR and Swift observations of the neutron star Aquila X-1 during the peak of its 2014 July outburst. The spectrum is soft with strong evidence for a broad Fe K(alpha) line. Modeled with a relativistically broadened reflection model, we find that the inner disk is truncated with an inner radius of 15 +/- 3RG. The disk is likely truncated by either the boundary layer and/or a magnetic field. Associating the truncated inner disk with pressure from a magnetic field gives an upper limit of B < 5+/- 2x10(exp 8) G. Although the radius is truncated far from the stellar surface, material is still reaching the neutron star surface as evidenced by the X-ray burst present in the NuSTAR observation.
Helical axis stellarator with noninterlocking planar coils
Reiman, A.; Boozer, A.H.
1984-03-06
The present invention generates stellarator fields having favorable properties (magnetic well and large rotational transform) by a simple coil system consisting only of unlinked planar non-circular coils. At large rotational transform toroidal effects on magnetic well and rotational transform are small and can be ignored. We do so herein, specializing in straight helical systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neilson, G. H.; Heitzenroeder, P.; Lyon, J.
Stellarators use 3D plasma and magnetic field shaping to produce a steady-state disruption-free magnetic confinement configuration. Compact stellarators have additional attractive properties — quasi-symmetric magnetic fields and low aspect ratio. The National Compact Stellarator Experiment (NCSX) is being constructed at the Princeton Plasma Physics Laboratory (PPPL) in partnership with the Oak Ridge National Laboratory (ORNL) to test the physics of a high-beta compact stellarator with a lowripple, tokamak-like magnetic configuration. The engineering challenges of NCSX stem from its complex geometry requirements. These issues are addressed in the construction project through manufacturing R&D and system engineering. As a result, the fabricationmore » of the coil winding forms and vacuum vessel are proceeding in industry without significant technical issues, and preparations for winding the coils at PPPL are in place. Design integration, analysis, and dimensional control are functions provided by system engineering to ensure that the finished product will satisfy the physics requirements, especially accurate realization of the specified coil geometries. After completion of construction in 2009, a research program to test the expected physics benefits will start.« less
A rigidly rotating magnetosphere model for circumstellar emission from magnetic OB stars
NASA Astrophysics Data System (ADS)
Townsend, R. H. D.; Owocki, S. P.
2005-02-01
We present a semi-analytical approach for modelling circumstellar emission from rotating hot stars with a strong dipole magnetic field tilted at an arbitrary angle to the rotation axis. By assuming the rigid-field limit in which material driven (e.g. in a wind outflow) from the star is forced to remain in strict rigid-body corotation, we are able to solve for the effective centrifugal-plus-gravitational potential along each field line, and thereby identify the location of potential minima where material is prone to accumulate. Applying basic scalings for the surface mass flux of a radiatively driven stellar wind, we calculate the circumstellar density distribution that obtains once ejected plasma settles into hydrostatic stratification along field lines. The resulting accumulation surface resembles a rigidly rotating, warped disc, tilted such that its average surface normal lies between the rotation and magnetic axes. Using a simple model of the plasma emissivity, we calculate time-resolved synthetic line spectra for the disc. Initial comparisons show an encouraging level of correspondence with the observed rotational phase variations of Balmer-line emission profiles from magnetic Bp stars such as σ Ori E.
Stellar Magnetism, Winds and their Effects on Planetary Environments
NASA Astrophysics Data System (ADS)
Vidotto, A. A.
2016-08-01
Here, I review some recent works on magnetism of cool, main-sequence stars, their winds and potential impact on surrounding exoplanets. The winds of these stars are very tenuous and persist during their lifetime. Although carrying just a small fraction of the stellar mass, these magnetic winds carry away angular momentum, thus regulating the rotation of the star. Since cool stars are likely to be surrounded by planets, understanding the host star winds and magnetism is a key step towards characterisation of exoplanetary environments. As rotation and activity are intimately related, the spin down of stars leads to a decrease in stellar activity with age. As a consequence, as stars age, a decrease in high-energy (X-ray, extreme ultraviolet) irradiation is observed, which can a ect the evaporation of exoplanetary atmospheres and, thus, also altering exoplanetary evolution.
Stellar Imager - Observing the Universe in High Definition
NASA Technical Reports Server (NTRS)
Carpenter, Kenneth
2009-01-01
Stellar Imager (SI) is a space-based, UV Optical Interferometer (UVOI) with over 200x the resolution of HST. It will enable 0.1 milli-arcsec spectral imaging of stellar surfaces and the Universe in general and open an enormous new 'discovery space' for Astrophysics with its combination of high angular resolution, dynamic imaging, and spectral energy resolution. SI's goal is to study the role of magnetism in the Universe and revolutionize our understanding of: 1) Solar/Stellar Magnetic Activity and their impact on Space Weather, Planetary Climates. and Life, 2) Magnetic and Accretion Processes and their roles in the Origin and Evolution of Structure and in the Transport of Matter throughout the Universe, 3) the close-in structure of Active Galactic Nuclei and their winds, and 4) Exo-Solar Planet Transits and Disks. The SI mission is targeted for the mid 2020's - thus significant technology development in the upcoming decade is critical to enabling it and future spacebased sparse aperture telescope and distributed spacecraft missions. The key technology needs include: 1) precision formation flying of many spacecraft, 2) precision metrology over km-scales, 3) closed-loop control of many-element, sparse optical arrays, 4) staged-control systems with very high dynamic ranges (nm to km-scale). It is critical that the importance of timely development of these capabilities is called out in the upcoming Astrophysics and Heliophysics Decadal Surveys, to enable the flight of such missions in the following decade. S1 is a 'Landmark/Discovery Mission' in 2005 Heliophysics Roadmap and a candidate UVOI in the 2006 Astrophysics Strategic Plan. It is a NASA Vision Mission ('NASA Space Science Vision Missions' (2008), ed. M. Allen) and has also been recommended for further study in the 2008 NRC interim report on missions potentially enabled enhanced by an Ares V' launch, although a incrementally-deployed version could be launched using smaller rockets.
NASA Technical Reports Server (NTRS)
Giampapa, Mark S. (Editor); Bookbinder, Jay A. (Editor)
1992-01-01
Consideration is given to HST observations of late-type stars, molecular absorption in the UV spectrum of Alpha Ori, EUV emission from late-type stars, Rosat observations of the Pleiades cluster, a deep ROSAT observation of the Hyades cluster, optical spectroscopy detected by EXOSAT, stellar photospheric convection, a structure of the solar X-ray corona, magnetic surface images of the BY Dra Star HD 82558, a Zebra interpretatin of BY Dra stars, optical flares on II Peg, a low-resolution spectroscopic survey of post-T tauri candidates, millimeter and sub-millimeter emission from flare stars, and activity in tidally interacting binaries. Attention is also given to modeling stellar angular momentum evolution, extended 60-micron emission from nearby Mira variables, the PANDORA atmosphere program, the global properties of active regions, oscillations in a stratified atmosphere, lithium abundances in northern RS CVn binaries, a new catalog of cool dwarf stars, the Far UV Spectrograph Explorer, and development of reflecting coronagraphs.
Calculation of the Neoclassical Radial Electric Field using a Gyrokinetic δ f Code
NASA Astrophysics Data System (ADS)
Lewandowski, J. L. V.; Boozer, A.; Williams, J.; Lin, Z.; Zarnstorff, M.
2000-10-01
The calculation of the radial electric field in stellarator devices is an important issue in neoclassical transport. The radial electric field, which is also related to the formation of transport barriers, can affect the anomalous transport. In stellarator configurations which depart only weakly from axi-symmetry, a direct Monte Carlo calculations of the radial electric is difficult due to the large statistical fluctuations. We present a novel method based on the evaluation of the perpendicular ( p_⊥ ) and parallel ( p_|| ) pressures. The variation of widehatp ≡ ( p_|| + p_⊥ ) /2 on the magnetic surface provides a low-noise calculation of the radial electric field. The low-noise method has been implemented in a three-dimensional gyro-kinetic particle code [1]. The calculation of the radial electric field for the National Compact Stellarator Experiment [2] will be presented. [ 1 ] Z. Lin, T. S. Hahm, W. W. Lee, W. M. Tang, and R. White Science 281, 1835 (1998). [ 2 ] A. Reiman et al, invited talk (this conference).
NASA Astrophysics Data System (ADS)
Lazanja, David; Boozer, Allen
2006-10-01
Given the total magnetic field on a toroidal plasma surface, a method for decomposing the field into a part due to internal currents (often the plasma) and a part due to external currents is presented. The method exploits Laplace theory which is valid in the vacuum region between the plasma surface and the chamber walls. The method is developed for the full three dimensional case which is necessary for studying stellarator plasma configurations. A change in the plasma shape is produced by the total normal field perturbation on the plasma surface. This method allows a separation of the total normal field perturbation into a part produced by external currents and a part produced by the plasma response. There are immediate applications to coil design. The computational procedure is based on Merkel's 1986 work on vacuum field computations. Several test cases are presented for toroidal surfaces which verify the method and computational robustness of the code.
Activity cycles in members of young loose stellar associations
NASA Astrophysics Data System (ADS)
Distefano, E.; Lanzafame, A. C.; Lanza, A. F.; Messina, S.; Spada, F.
2017-10-01
Context. Magnetic cycles analogous to the solar cycle have been detected in tens of solar-like stars by analyzing long-term time series of different magnetic activity indexes. The relationship between the cycle properties and global stellar parameters is not fully understood yet. One reason for this is the lack of long-term time series for stars covering a wide range of stellar parameters. Aims: We searched for activity cycles in a sample of 90 young solar-like stars with ages between 4 and 95 Myr with the aim to investigate the properties of activity cycles in this age range. Methods: We measured the length Pcyc of a given cycle by analyzing the long-term time series of three different activity indexes: the period of rotational modulation, the amplitude of the rotational modulation and the median magnitude in the V band. For each star, we also computed the global magnetic activity index ⟨ IQR ⟩ that is proportional to the amplitude of the rotational modulation and can be regarded as a proxy of the mean level of the surface magnetic activity. Results: We detected activity cycles in 67 stars. Secondary cycles were also detected in 32 stars of the sample. The lack of correlation between Pcyc and Prot and the position of our targets in the Pcyc/Prot-Ro-1 diagram suggest that these stars belong to the so-called transitional branch and that the dynamo acting in these stars is different from the solar dynamo and from that acting in the older Mt. Wilson stars. This statement is also supported by the analysis of the butterfly diagrams whose patterns are very different from those seen in the solar case. We computed the Spearman correlation coefficient rS between Pcyc, ⟨ IQR ⟩ and various stellar parameters. We found that Pcyc in our sample is uncorrelated with all the investigated parameters. The ⟨ IQR ⟩ index is positively correlated with the convective turnover timescale, the magnetic diffusivity timescale τdiff, and the dynamo number DN, whereas it is anti-correlated with the effective temperature Teff, the photometric shear ΔΩphot and the radius RC at which the convective zone is located. We investigated how Pcyc and ⟨ IQR ⟩ evolve with the stellar age. We found that Pcyc is about constant and that ⟨ IQR ⟩ decreases with the stellare age in the range 4-95 Myr. Finally we investigated the magnetic activity of the star AB Dor A by merging All Sky Automatic Survey (ASAS) time series with previous long-term photometric data. We estimated the length of the AB Dor A primary cycle as Pcyc = 16.78 ± 2 yr and we also found shorter secondary cycles with lengths of 400 d, 190 d, and 90 d, respectively. Tables 2 and 3 and Time series are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/606/A58
Magnetised winds and their influence in the escaping upper atmosphere of HD 209458b
NASA Astrophysics Data System (ADS)
D'Angelo, Carolina Villarreal; Esquivel, Alejandro; Schneiter, Matías; Sgró, Mario Agustín
2018-06-01
Lyman α observations during an exoplanet transit have proved to be very useful to study the interaction between the stellar wind and the planetary atmosphere. They have been extensively used to constrain planetary system parameters that are not directly observed, such as the planetary mass loss rate. In this way, Ly α observations can be a powerful tool to infer the existence of a planetary magnetic field, since it is expected that the latter will affect the escaping planetary material. To explore the effect that magnetic fields have on the Ly α absorption of HD 209458b, we run a set of 3D MHD simulations including dipolar magnetic fields for the planet and the star. We assume values for the surface magnetic field at the poles of the planet in the range of [0-5] G, and from 1 to 5 G at the poles of the star. Our models also include collisional and photo-ionisation, radiative recombination, and an approximation for the radiation pressure. Our results show that the magnetic field of the planet and the star change the shape of the Ly α absorption profile, since it controls the extent of the planetary magnetosphere and the amount of neutral material inside it. The model that best reproduces the absorption observed in HD 209458b (with canonical values for the stellar wind parameters) corresponds to a dipole planetary field of ≲ 1 gauss at the poles.
BOOK REVIEW: Stellarator and Heliotron Devices
NASA Astrophysics Data System (ADS)
Johnson, John L.
1999-02-01
Stellarators and tokamaks are the most advanced devices that have been developed for magnetic fusion applications. The two approaches have much in common; tokamaks have received the most attention because their axisymmetry justifies the use of simpler models and provides a more forgiving geometry. However, recent advances in treating more complicated three dimensional systems have made it possible to design stellarators that are not susceptible to disruptions and do not need plasma current control. This has excited interest recently. The two largest new magnetic experiments in the world are the LHD device, which commenced operation in Toki, Japan, in 1998 and W7-X, which should become operational in Greifswald, Germany, in 2004. Other recently commissioned stellarators, including H-1 in Canberra, Australia, TJ-II in Madrid, Spain, and IMS in Madison, Wisconsin, have joined these in rejuvenating the stellarator programme. Thus, it is most appropriate that the author has made the lecture material that he presents to his students in the Graduate School of Energy Science at Kyoto University available to everyone. Stellarator and Heliotron Devices provides an excellent treatment of stellarator theory. It is aimed at graduate students who have a good understanding of classical mechanics and mathematical techniques. It contains good descriptions and derivations of essentially every aspect of fusion theory. The author provides an excellent qualitative introduction to each subject, pointing out the strengths and weaknesses of the models that are being used and describing our present understanding. He judiciously uses simple models which illustrate the similarities and differences between stellarators and tokamaks. To some extent the treatment is uneven, rigorous derivations starting with basic principles being given in some cases and relations and equations taken from the original papers being used as a starting point in others. This technique provides an excellent training ground for students without detracting from the usefulness of the book for knowledgeable fusion physicists. After a short, somewhat historical, introduction, Chapter 2 contains a good treatment of the basic properties of a toroidal magnetic configuration (the concepts of magnetic surfaces, rotational transform, shear and magnetic wells), averaging techniques which can often be used to simplify the calculations, helically invariant configurations, magnetic islands and line tracing techniques. Derivations and discussions of the basic tools of plasma theory, including the Vlasov equation, magnetohydrodynamic equations and their reduced form for low-β, large aspect ratio systems, properties of MHD waves, the drift kinetic equation and transport equations, are given in Chapter 3. Chapter 4 contains a good treatment of MHD equilibria, including a derivation of the three dimensional Grad-Shafranov equation, a discussion of the calculation of equilibria with a planar magnetic axis with both averaged equations and a variational approach, a comparison of the results of the two techniques, a formulation for stellarators with a helical magnetic axis and a good discussion of the Pfirsch-Schlüter current. The treatment of MHD instabilities in Chapter 5 is also excellent. It starts with a good derivation and discussion of the energy principle, gives a detailed treatment of ballooning modes where the wavelengths of the perturbation perpendicular to the field are short while those along B are long and derives the Mercier criterion from the ballooning mode equation. I personally prefer to obtain this criterion by making the low mode number assumption that dξ/dΨ>>dξ/dθ approx dξ/dζ, since non-ideal effects such as finite gyration radius corrections may provide less stabilization to these modes. A careful treatment of the resistive interchange mode is followed by a discussion of the role of localized stability criteria in the analysis of experiment and design studies, a study of Pfirsch-Schlüter current driven magnetic islands and the interpretation of sawtooth instabilities in Heliotron E. The treatment of particle orbits in Chapter 6 includes a derivation of drift equations, a discussion of the characteristics of trapped particle confinement in a heliotron and one of the Monte Carlo method for studying transport phenomena. A good treatment of neoclassical transport in a stellarator, with emphasis on the relation between parallel viscosity driven fluxes and bootstrap current, is given in Chapter 7. This is the best treatment I have found, outside of the original references, but it is still demanding. In addition, a radial electric field is introduced into the energy transport equations. The treatment of heating and confinement of heliotron plasmas in Chapter 8 is a good combination of providing results from experiments on the Heliotron E and DR heliotrons and the ATF and CHS stellarators and showing how theoretical interpretation is formulated. The discussions of ray tracing and energy absorption for both ECRH and ICRF heating techniques, as well as a treatment of neutral beam injection, are very clear. Measurements of bootstrap current and plasma rotation, as well as the density limits associated with pellet injection, are discussed. The chapter ends with a discussion of what may be the author's favourite topic, pressure gradient driven turbulence, in which he describes mixing length and scale invariance techniques. Finally, a discussion of the characteristics of a steady state fusion reactor, including a treatment of the containment, slowing down and energy transfer of the alpha particles, one of the toroidal Alfvén modes driven by these particles and some physics of divertors are given in Chapter 9. A reviewer is usually expected to find some faults. I had no problem in finding one as soon as I received the book: indeed, I did not like its title. I have always maintained that Lyman Spitzer defined a stellarator as any toroidal device in which the rotational transform is generated by coils outside the plasma, either through imposition of a helical magnetic axis as in a figure-8 stellarator or a heliac, or through the generation of helical magnetic fields, as in a classical stellarator, a torsatron or a quasi-helical stellarator such as W7-X. The author notes that the heliotron (as it was invented by Uo in Japan) is the same as the torsatron (first proposed by Gourdon and his colleagues in Europe) in his introduction, but cannot bring himself to ignore Uo's desire to maintain a distinction between stellarators and heliotrons. Enough typographical errors are present to make one have to be careful before relying on the book for specific formulas. Nevertheless, it will prove to be a useful reference. I have always respected the author for the quality of students he produces. He provides a list of some of them in the preface, which justifies this opinion. These students are a good demonstration of the usefulness of this book.
Chaotic coordinates for the Large Helical Device
NASA Astrophysics Data System (ADS)
Hudson, Stuart; Suzuki, Yasuhiro
2014-10-01
The study of dynamical systems is facilitated by a coordinate framework with coordinate surfaces that coincide with invariant structures of the dynamical flow. For axisymmetric systems, a continuous family of invariant surfaces is guaranteed and straight-fieldline coordinates may be constructed. For non-integrable systems, e.g. stellarators, perturbed tokamaks, this continuous family is broken. Nevertheless, coordinates can still be constructed that simplify the description of the dynamics. The Poincare-Birkhoff theorem, the Aubry-Mather theorem, and the KAM theorem show that there are important structures that are invariant under the perturbed dynamics; namely the periodic orbits, the cantori, and the irrational flux surfaces. Coordinates adapted to these invariant sets, which we call chaotic coordinates, provide substantial advantages. The regular motion becomes straight, and the irregular motion is bounded by, and dissected by, coordinate surfaces that coincide with surfaces of locally-minimal magnetic-fieldline flux. The chaotic edge of the magnetic field, as calculated by HINT2 code, in the Large Helical Device (LHD) is examined, and a coordinate system is constructed so that the flux surfaces are ``straight'' and the islands become ``square.''
NASA Astrophysics Data System (ADS)
Carpenter, Kenneth G.; Schrijver, Carolus J.; Karovska, Margarita
2009-04-01
The Stellar Imager (SI) is a space-based, UV/Optical Interferometer (UVOI) designed to enable 0.1 milli-arcsecond (mas) spectral imaging of stellar surfaces and of the Universe in general. It will also probe via asteroseismology flows and structures in stellar interiors. SI’s science focuses on the role of magnetism in the Universe and will revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magneto-hydrodynamically controlled processes, such as accretion, in the Universe. The ultra-sharp images of SI will revolutionize our view of many dynamic astrophysical processes by transforming point sources into extended sources, and snapshots into evolving views. SI is a “Flagship and Landmark Discovery Mission” in the 2005 Heliophysics Roadmap and a potential implementation of the UVOI in the 2006 Science Program for NASA’s Astronomy and Physics Division. We present here the science goals of the SI Mission, a mission architecture that could meet those goals, and the technology development needed to enable this mission. Additional information on SI can be found at: http://hires.gsfc.nasa.gov/si/
NASA Technical Reports Server (NTRS)
Carpenter, Kenneth G.; Schrijver, Carolus J.; Karovska, Margarita
2008-01-01
The Stellar Imager (SI) is a space-based, UV/ Optical Interferometer (UVOI) designed to enable 0.1 milliarcsecond (mas) spectral imaging of stellar surfaces and of the Universe in general. It will also probe via asteroseismology flows and structures in stellar interiors. SI's science focuses on the role of magnetism in the Universe and will revolutionize our understanding, of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magneto-hydrodynamically controlled processes, such as accretion, in the Universe. The ultra-sharp images of SI will revolutionize our view of many dynamic astrophysical processes by transforming point sources into extended sources, and snapshots into evolving views. SI is a "Flagship and Landmark Discovery Mission" in the 2005 Heliophysics Roadmap and a potential implementation of the UVOI in the 2006 Science Program for NASA's Astronomy and Physics Division. We present here the science goals of the SI Mission, a mission architecture that could meet those goals, and the technology development needed to enable this missin. Additional information on SI can be found at: http://hires.gsfc.nasa.gov/si/.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, X.; Cianciosa, M. R.; Ennis, D. A.
In this research, collimated soft X-ray (SXR) emissivity measurements from multi-channel cameras on the Compact Toroidal Hybrid (CTH) tokamak/torsatron device are incorporated in the 3D equilibrium reconstruction code V3FIT to reconstruct the shape of flux surfaces and infer the current distribution within the plasma. Equilibrium reconstructions of sawtoothing plasmas that use data from both SXR and external magnetic diagnostics show the central safety factor to be near unity under the assumption that SXR iso-emissivity contours lie on magnetic flux surfaces. The reconstruction results are consistent with those using the external magnetic data and a constraint on the location of qmore » = 1 surfaces determined from the sawtooth inversion surface extracted from SXR brightness profiles. The agreement justifies the use of approximating SXR emission as a flux function in CTH, at least within the core of the plasma, subject to the spatial resolution of the SXR diagnostics. Lastly, this improved reconstruction of the central current density indicates that the current profile peakedness decreases with increasing external transform and that the internal inductance is not a relevant measure of how peaked the current profile is in hybrid discharges.« less
NASA Astrophysics Data System (ADS)
Ma, X.; Cianciosa, M. R.; Ennis, D. A.; Hanson, J. D.; Hartwell, G. J.; Herfindal, J. L.; Howell, E. C.; Knowlton, S. F.; Maurer, D. A.; Traverso, P. J.
2018-01-01
Collimated soft X-ray (SXR) emissivity measurements from multi-channel cameras on the Compact Toroidal Hybrid (CTH) tokamak/torsatron device are incorporated in the 3D equilibrium reconstruction code V3FIT to reconstruct the shape of flux surfaces and infer the current distribution within the plasma. Equilibrium reconstructions of sawtoothing plasmas that use data from both SXR and external magnetic diagnostics show the central safety factor to be near unity under the assumption that SXR iso-emissivity contours lie on magnetic flux surfaces. The reconstruction results are consistent with those using the external magnetic data and a constraint on the location of q = 1 surfaces determined from the sawtooth inversion surface extracted from SXR brightness profiles. The agreement justifies the use of approximating SXR emission as a flux function in CTH, at least within the core of the plasma, subject to the spatial resolution of the SXR diagnostics. This improved reconstruction of the central current density indicates that the current profile peakedness decreases with increasing external transform and that the internal inductance is not a relevant measure of how peaked the current profile is in hybrid discharges.
Ma, X.; Cianciosa, M. R.; Ennis, D. A.; ...
2018-01-31
In this research, collimated soft X-ray (SXR) emissivity measurements from multi-channel cameras on the Compact Toroidal Hybrid (CTH) tokamak/torsatron device are incorporated in the 3D equilibrium reconstruction code V3FIT to reconstruct the shape of flux surfaces and infer the current distribution within the plasma. Equilibrium reconstructions of sawtoothing plasmas that use data from both SXR and external magnetic diagnostics show the central safety factor to be near unity under the assumption that SXR iso-emissivity contours lie on magnetic flux surfaces. The reconstruction results are consistent with those using the external magnetic data and a constraint on the location of qmore » = 1 surfaces determined from the sawtooth inversion surface extracted from SXR brightness profiles. The agreement justifies the use of approximating SXR emission as a flux function in CTH, at least within the core of the plasma, subject to the spatial resolution of the SXR diagnostics. Lastly, this improved reconstruction of the central current density indicates that the current profile peakedness decreases with increasing external transform and that the internal inductance is not a relevant measure of how peaked the current profile is in hybrid discharges.« less
Surface activity and oscillation amplitudes of red giants in eclipsing binaries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaulme, P.; Jackiewicz, J.; Appourchaux, T.
2014-04-10
Among the 19 red-giant stars belonging to eclipsing binary systems that have been identified in Kepler data, 15 display solar-like oscillations. We study whether the absence of mode detection in the remaining 4 is an observational bias or possibly evidence of mode damping that originates from tidal interactions. A careful analysis of the corresponding Kepler light curves shows that modes with amplitudes that are usually observed in red giants would have been detected if they were present. We observe that mode depletion is strongly associated with short-period systems, in which stellar radii account for 16%-24% of the semi-major axis, andmore » where red-giant surface activity is detected. We suggest that when the rotational and orbital periods synchronize in close binaries, the red-giant component is spun up, so that a dynamo mechanism starts and generates a magnetic field, leading to observable stellar activity. Pressure modes would then be damped as acoustic waves dissipate in these fields.« less
Ground-based observation of emission lines from the corona of a red-dwarf star.
Schmitt, J H; Wichmann, R
2001-08-02
All 'solar-like' stars are surrounded by coronae, which contain magnetically confined plasma at temperatures above 106 K. (Until now, only the Sun's corona could be observed in the optical-as a shimmering envelope during a total solar eclipse.) As the underlying stellar 'surfaces'-the photospheres-are much cooler, some non-radiative process must be responsible for heating the coronae. The heating mechanism is generally thought to be magnetic in origin, but is not yet understood even for the case of the Sun. Ultraviolet emission lines first led to the discovery of the enormous temperature of the Sun's corona, but thermal emission from the coronae of other stars has hitherto been detectable only from space, at X-ray wavelengths. Here we report the detection of emission from highly ionized iron (Fe XIII at 3,388.1 A) in the corona of the red-dwarf star CN Leonis, using a ground-based telescope. The X-ray flux inferred from our data is consistent with previously measured X-ray fluxes, and the non-thermal line width of 18.4 km s-1 indicates great similarities between solar and stellar coronal heating mechanisms. The accessibility and spectral resolution (45,000) of the ground-based instrument are much better than those of X-ray satellites, so a new window to the study of stellar coronae has been opened.
Theoretical models for stellar X-ray polarization in compact objects
NASA Technical Reports Server (NTRS)
Meszaros, P.
1991-01-01
Degenerate stellar objects are expected to be strong sources of polarized X-ray emission. This is particularly true for strongly magnetized neutron stars, e.g. accretion or rotation powered pulsars, and gamma ray bursters. In these, linear polarization degrees well in excess of 30 percent are expected. Weaker magnetic field stellar sources, such as old neutron stars in low mass binary systems, white dwarfs and black holes are expected to have polarization degrees in the range 1-3 percent. A great interest attaches to the detection of polarization in these objects, since this would provide invaluable information concerning the geometry, radiation mechanism and magnetic field strength, necessary for testing and proving models of the structure and evolution of stars in their late stages. In this paper we review the theoretical models of the production of polarized radiation in compact stellar X-ray sources, and discuss the possibility of detecting these properties using currently planned detectors to be flown in space.
Tidal Heating of Earth-like Exoplanets around M Stars: Thermal, Magnetic, and Orbital Evolutions
Barnes, R.
2015-01-01
Abstract The internal thermal and magnetic evolution of rocky exoplanets is critical to their habitability. We focus on the thermal-orbital evolution of Earth-mass planets around low-mass M stars whose radiative habitable zone overlaps with the “tidal zone,” where tidal dissipation is expected to be a significant heat source in the interior. We develop a thermal-orbital evolution model calibrated to Earth that couples tidal dissipation, with a temperature-dependent Maxwell rheology, to orbital circularization and migration. We illustrate thermal-orbital steady states where surface heat flow is balanced by tidal dissipation and cooling can be stalled for billions of years until circularization occurs. Orbital energy dissipated as tidal heat in the interior drives both inward migration and circularization, with a circularization time that is inversely proportional to the dissipation rate. We identify a peak in the internal dissipation rate as the mantle passes through a viscoelastic state at mantle temperatures near 1800 K. Planets orbiting a 0.1 solar-mass star within 0.07 AU circularize before 10 Gyr, independent of initial eccentricity. Once circular, these planets cool monotonically and maintain dynamos similar to that of Earth. Planets forced into eccentric orbits can experience a super-cooling of the core and rapid core solidification, inhibiting dynamo action for planets in the habitable zone. We find that tidal heating is insignificant in the habitable zone around 0.45 (or larger) solar-mass stars because tidal dissipation is a stronger function of orbital distance than stellar mass, and the habitable zone is farther from larger stars. Suppression of the planetary magnetic field exposes the atmosphere to stellar wind erosion and the surface to harmful radiation. In addition to weak magnetic fields, massive melt eruption rates and prolonged magma oceans may render eccentric planets in the habitable zone of low-mass stars inhospitable for life. Key Words: Tidal dissipation—Thermal history—Planetary interiors—Magnetic field. Astrobiology 15, 739–760. PMID:26393398
HOW CAN NEWLY BORN RAPIDLY ROTATING NEUTRON STARS BECOME MAGNETARS?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Quan; Yu, Yun-Wei, E-mail: yuyw@mail.ccnu.edu.cn
2014-05-10
In a newly born (high-temperature and Keplerian rotating) neutron star, r-mode instability can lead to stellar differential rotation, which winds the seed poloidal magnetic field (∼10{sup 11} G) to generate an ultra-high (∼10{sup 17} G) toroidal field component. Subsequently, by succumbing to the Tayler instability, the toroidal field could be partially transformed into a new poloidal field. Through such dynamo processes, the newly born neutron star with sufficiently rapid rotation could become a magnetar on a timescale of ∼10{sup 2} {sup –} {sup 3} s, with a surface dipolar magnetic field of ∼10{sup 15} G. Accompanying the field amplification, the star could spinmore » down to a period of ∼5 ms through gravitational wave radiation due to the r-mode instability and, in particular, the non-axisymmetric stellar deformation caused by the toroidal field. This scenario provides a possible explanation for why the remnant neutron stars formed in gamma-ray bursts and superluminous supernovae could be millisecond magnetars.« less
Modelling the RV jitter of early-M dwarfs using tomographic imaging
NASA Astrophysics Data System (ADS)
Hébrard, É. M.; Donati, J.-F.; Delfosse, X.; Morin, J.; Moutou, C.; Boisse, I.
2016-09-01
In this paper, we show how tomographic imaging (Zeeman-Doppler imaging, ZDI) can be used to characterize stellar activity and magnetic field topologies, ultimately allowing us to filter out the radial velocity (RV) activity jitter of M dwarf moderate rotators. This work is based on spectropolarimetric observations of a sample of five weakly active early-M dwarfs (GJ 205, GJ 358, GJ 410, GJ 479, GJ 846) with HARPS-Pol and NARVAL. These stars have v sin I and RV jitters in the range 1-2 km s-1 and 2.7-10.0 m s-1 rms, respectively. Using a modified version of ZDI applied to sets of phase-resolved least-squares deconvolved profiles of unpolarized spectral lines, we are able to characterize the distribution of active regions at the stellar surfaces. We find that dark spots cover less than 2 per cent of the total surface of the stars of our sample. Our technique is efficient at modelling the rotationally modulated component of the activity jitter, and succeeds at decreasing the amplitude of this component by typical factors of 2-3 and up to 6 in optimal cases. From the rotationally modulated time series of circularly polarized spectra and with ZDI, we also reconstruct the large-scale magnetic field topology. These fields suggest that bistability of dynamo processes observed in active M dwarfs may also be at work for moderately active M dwarfs. Comparing spot distributions with field topologies suggest that dark spots causing activity jitter concentrate at the magnetic pole and/or equator, to be confirmed with future data on a larger sample.
Formation Flying and the Stellar Imager Mission Concept
NASA Technical Reports Server (NTRS)
Carpenter, Kenneth G.
2003-01-01
The Stellar Imager (SI) is envisioned as a space-based, W-optical interferometer composed of 10 or more one-meter class elements distributed with a maximum baseline of 0.5 km. image stars and binaries with sufficient resolution to enable long-term studies of stellar magnetic activity patterns, for comparison with those on the sun. It will also support asteroseismology (acoustic imaging) to probe stellar internal structure, differential rotation, and large-scale circulations. SI will enable us to understand the various effects of the magnetic fields of stars, the dynamos that generate these fields, and the internal structure and dynamics of the stars. The ultimate goal of the mission is to achieve the best-possible forecasting of solar activity as a driver of climate and space weather on time scales ranging from months up to decades, and an understanding of the impact of stellar magnetic activity on life in the Universe. In this paper we briefly describe the scientific goals of the mission, the performance requirements needed to address these goals, and the "enabling technology" development efforts required, with specific attention for this meeting to the formation-flying aspects. It is designed to
The Stellar Imager (SI) Mission Concept
NASA Technical Reports Server (NTRS)
Carpenter, Kenneth G.; Schrijver, Carolus J.; Lyon, Richard G.; Mundy, Lee G.; Allen, Ronald J.; Armstrong, Thomas; Danchi, William C.; Karovska, Margarita; Marzouk, Joe; Mazzuca, Lisa M.;
2002-01-01
The Stellar Imager (SI) is envisioned as a space-based, UV-optical interferometer composed of 10 or more one-meter class elements distributed with a maximum baseline of 0.5 km. It is designed to image stars and binaries with sufficient resolution to enable long-term studies of stellar magnetic activity patterns, for comparison with those on the sun. It will also support asteroseismology (acoustic imaging) to probe stellar internal structure, differential rotation, and large-scale circulations. SI will enable us to understand the various effects of the magnetic fields of stars, the dynamos that generate these fields, and the internal structure and dynamics of the stars. The ultimate goal of the mission is to achieve the best-possible forecasting of solar activity as a driver of climate and space weather on time scales ranging from months up to decades, and an understanding of the impact of stellar magnetic activity on life in the Universe. In this paper we describe the scientific goals of the mission, the performance requirements needed to address these goals, the "enabling technology" development efforts being pursued, and the design concepts now under study for the full mission and a possible pathfinder mission.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kochukhov, Oleg; Lavail, Alexis
2017-01-20
The nearby M dwarf binary GJ65 AB, also known as BL Cet and UV Cet, is a unique benchmark for investigation of dynamo-driven activity of low-mass stars. Magnetic activity of GJ65 was repeatedly assessed by indirect means, such as studies of flares, photometric variability, X-ray, and radio emission. Here, we present a direct analysis of large-scale and local surface magnetic fields in both components. Interpreting high-resolution circular polarization spectra (sensitive to a large-scale field geometry) we uncovered a remarkable difference of the global stellar field topologies. Despite nearly identical masses and rotation rates, the secondary exhibits an axisymmetric, dipolar-like globalmore » field with an average strength of 1.3 kG while the primary has a much weaker, more complex, and non-axisymmetric 0.3 kG field. On the other hand, an analysis of the differential Zeeman intensification (sensitive to the total magnetic flux) shows the two stars having similar magnetic fluxes of 5.2 and 6.7 kG for GJ65 A and B, respectively, although there is evidence that the field strength distribution in GJ65 B is shifted toward a higher field strength compared to GJ65 A. Based on these complementary magnetic field diagnostic results, we suggest that the dissimilar radio and X-ray variability of GJ65 A and B is linked to their different global magnetic field topologies. However, this difference appears to be restricted to the upper atmospheric layers but does not encompass the bulk of the stars and has no influence on the fundamental stellar properties.« less
NASA Astrophysics Data System (ADS)
Weber, Maria Ann; Browning, Matthew; Nelson, Nicholas
2018-01-01
Starspots are windows into a star’s internal dynamo mechanism. However, the manner by which the dynamo-generated magnetic field traverses the stellar interior to emerge at the surface is not especially well understood. Establishing the details of magnetic flux emergence plays a key role in deciphering stellar dynamos and observed starspot properties. In the solar context, insight into this process has been obtained by assuming the magnetism giving rise to sunspots consists partly of idealized thin flux tubes (TFTs). Here, we present three sets of TFT simulations in rotating spherical shells of convection: one representative of the Sun, the second of a solar-like rapid rotator, and the third of a fully convective M dwarf. Our solar simulations reproduce sunspot observables such as low-latitude emergence, tilting action toward the equator following the Joy’s Law trend, and a phenomenon akin to active longitudes. Further, we compare the evolution of rising flux tubes in our (computationally inexpensive) TFT simulations to buoyant magnetic structures that arise naturally in a unique global simulation of a rapidly rotating Sun. We comment on the role of rapid rotation, the Coriolis force, and external torques imparted by the surrounding convection in establishing the trajectories of the flux tubes across the convection zone. In our fully convective M dwarf simulations, the expected starspot latitudes deviate from the solar trend, favoring significantly poleward latitudes unless the differential rotation is sufficiently prograde or the magnetic field is strongly super-equipartition. Together our work provides a link between dynamo-generated magnetic fields, turbulent convection, and observations of starspots along the lower main sequence.
The Dragonfly Nearby Galaxies Survey. IV. A Giant Stellar Disk in NGC 2841
NASA Astrophysics Data System (ADS)
Zhang, Jielai; Abraham, Roberto; van Dokkum, Pieter; Merritt, Allison; Janssens, Steven
2018-03-01
Neutral gas is commonly believed to dominate over stars in the outskirts of galaxies, and investigations of the disk-halo interface are generally considered to be in the domain of radio astronomy. This may simply be a consequence of the fact that deep H I observations typically probe to a lower-mass surface density than visible wavelength data. This paper presents low-surface-brightness, optimized visible wavelength observations of the extreme outskirts of the nearby spiral galaxy NGC 2841. We report the discovery of an enormous low-surface brightness stellar disk in this object. When azimuthally averaged, the stellar disk can be traced out to a radius of ∼70 kpc (5 R 25 or 23 inner disk scale lengths). The structure in the stellar disk traces the morphology of H I emission and extended UV emission. Contrary to expectations, the stellar mass surface density does not fall below that of the gas mass surface density at any radius. In fact, at all radii greater than ∼20 kpc, the ratio of the stellar mass to gas mass surface density is a constant 3:1. Beyond ∼30 kpc, the low-surface-brightness stellar disk begins to warp, which may be an indication of a physical connection between the outskirts of the galaxy and infall from the circumgalactic medium. A combination of stellar migration, accretion, and in situ star formation might be responsible for building up the outer stellar disk, but whatever mechanisms formed the outer disk must also explain the constant ratio between stellar and gas mass in the outskirts of this galaxy.
Second Cambridge Workshop on Cool Stars, Stellar Systems, and the Sun, volume 1
NASA Technical Reports Server (NTRS)
Giampapa, M. S. (Editor); Golub, L. (Editor)
1981-01-01
Solar and stellar atmospheric phenomena and their fundamental physical properties such as gravity, effective temperature and rotation rate, which provides the range in parameter space required to test various theoretical models were investigated. The similarity between solar activity and stellar activity is documented. Some of the topics discussed are: atmospheric structure, magnetic fields, solar and stellar activity, and evolution.
NASA Astrophysics Data System (ADS)
Landstreet, J. D.; Bagnulo, S.; Valyavin, G.; Valeev, A. F.
2017-11-01
Magnetic fields are detected in a few percent of white dwarfs. The number of such magnetic white dwarfs known is now some hundreds. Fields range in strength from a few kG to several hundred MG. Almost all the known magnetic white dwarfs have a mean field modulus ≥1 MG. We are trying to fill a major gap in observational knowledge at the low field limit (≤200 kG) using circular spectro-polarimetry. In this paper we report the discovery and monitoring of strong, periodic magnetic variability in two previously discovered "super-weak field" magnetic white dwarfs, WD 2047+372 and WD 2359-434. WD 2047+372 has a mean longitudinal field that reverses between about -12 and + 15 kG, with a period of 0.243 d, while its mean field modulus appears nearly constant at 60 kG. The observations can be interpreted in terms of a dipolar field tilted with respect to the stellar rotation axis. WD 2359-434 always shows a weak positive longitudinal field with values between about 0 and + 12 kG, varying only weakly with stellar rotation, while the mean field modulus varies between about 50 and 100 kG. The rotation period is found to be 0.112 d using the variable shape of the Hα line core, consistent with available photometry. The field of this star appears to be much more complex than a dipole, and is probably not axisymmetric. Available photometry shows that WD 2359-434 is a light variable with an amplitude of only 0.005 mag; our own photometry shows that if WD 2047+372 is photometrically variable, the amplitude is below about 0.01 mag. These are the first models for magnetic white dwarfs with fields below about 100 kG based on magnetic measurements through the full stellar rotation. They reveal two very different magnetic surface configurations, and that, contrary to simple ohmic decay theory, WD 2359-434 has a much more complex surface field than the much younger WD 2047+372. Based, in part, on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile, under observing programmes 095.D-0264 and 097.D-0264, and obtained from the ESO/ST-ECF Science Archive Facility; in part, on observations made with the William Herschel Telescope, operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias; and in part on observations obtained at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii.
STELLAR DYNAMOS AND CYCLES FROM NUMERICAL SIMULATIONS OF CONVECTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dubé, Caroline; Charbonneau, Paul, E-mail: dube@astro.umontreal.ca, E-mail: paulchar@astro.umontreal.ca
We present a series of kinematic axisymmetric mean-field αΩ dynamo models applicable to solar-type stars, for 20 distinct combinations of rotation rates and luminosities. The internal differential rotation and kinetic helicity profiles required to calculate source terms in these dynamo models are extracted from a corresponding series of global three-dimensional hydrodynamical simulations of solar/stellar convection, so that the resulting dynamo models end up involving only one free parameter, namely, the turbulent magnetic diffusivity in the convecting layers. Even though the αΩ dynamo solutions exhibit a broad range of morphologies, and sometimes even double cycles, these models manage to reproduce relativelymore » well the observationally inferred relationship between cycle period and rotation rate. On the other hand, they fail in capturing the observed increase of magnetic activity levels with rotation rate. This failure is due to our use of a simple algebraic α-quenching formula as the sole amplitude-limiting nonlinearity. This suggests that α-quenching is not the primary mechanism setting the amplitude of stellar magnetic cycles, with magnetic reaction on large-scale flows emerging as the more likely candidate. This inference is coherent with analyses of various recent global magnetohydrodynamical simulations of solar/stellar convection.« less
MAGNETIC GAMES BETWEEN A PLANET AND ITS HOST STAR: THE KEY ROLE OF TOPOLOGY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strugarek, A.; Brun, A. S.; Réville, V.
Magnetic interactions between a star and a close-in planet are postulated to be a source of enhanced emissions and to play a role in the secular evolution of the orbital system. Close-in planets generally orbit in the sub-alfvénic region of the stellar wind, which leads to efficient transfers of energy and angular momentum between the star and the planet. We model the magnetic interactions occurring in close-in star–planet systems with three-dimensional, global, compressible magnetohydrodynamic numerical simulations of a planet orbiting in a self-consistent stellar wind. We focus on the cases of magnetized planets and explore three representative magnetic configurations. Themore » Poynting flux originating from the magnetic interactions is an energy source for enhanced emissions in star–planet systems. Our results suggest a simple geometrical explanation for ubiquitous on/off enhanced emissions associated with close-in planets, and confirm that the Poynting fluxes can reach powers of the order of 10{sup 19} W. Close-in planets are also shown to migrate due to magnetic torques for sufficiently strong stellar wind magnetic fields. The topology of the interaction significantly modifies the shape of the magnetic obstacle that leads to magnetic torques. As a consequence, the torques can vary by at least an order of magnitude as the magnetic topology of the interaction varies.« less
Magnetic Games between a Planet and Its Host Star: The Key Role of Topology
NASA Astrophysics Data System (ADS)
Strugarek, A.; Brun, A. S.; Matt, S. P.; Réville, V.
2015-12-01
Magnetic interactions between a star and a close-in planet are postulated to be a source of enhanced emissions and to play a role in the secular evolution of the orbital system. Close-in planets generally orbit in the sub-alfvénic region of the stellar wind, which leads to efficient transfers of energy and angular momentum between the star and the planet. We model the magnetic interactions occurring in close-in star-planet systems with three-dimensional, global, compressible magnetohydrodynamic numerical simulations of a planet orbiting in a self-consistent stellar wind. We focus on the cases of magnetized planets and explore three representative magnetic configurations. The Poynting flux originating from the magnetic interactions is an energy source for enhanced emissions in star-planet systems. Our results suggest a simple geometrical explanation for ubiquitous on/off enhanced emissions associated with close-in planets, and confirm that the Poynting fluxes can reach powers of the order of 1019 W. Close-in planets are also shown to migrate due to magnetic torques for sufficiently strong stellar wind magnetic fields. The topology of the interaction significantly modifies the shape of the magnetic obstacle that leads to magnetic torques. As a consequence, the torques can vary by at least an order of magnitude as the magnetic topology of the interaction varies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Réville, Victor; Brun, Allan Sacha; Strugarek, Antoine
Stellar wind is thought to be the main process responsible for the spin down of main-sequence stars. The extraction of angular momentum by a magnetized wind has been studied for decades, leading to several formulations for the resulting torque. However, previous studies generally consider simple dipole or split monopole stellar magnetic topologies. Here we consider, in addition to a dipolar stellar magnetic field, both quadrupolar and octupolar configurations, while also varying the rotation rate and the magnetic field strength. Sixty simulations made with a 2.5D cylindrical and axisymmetric set-up, and computed with the PLUTO code, were used to find torquemore » formulations for each topology. We further succeed to give a unique law that fits the data for every topology by formulating the torque in terms of the amount of open magnetic flux in the wind. We also show that our formulation can be applied to even more realistic magnetic topologies, with examples of the Sun in its minimum and maximum phases as observed at the Wilcox Solar Observatory, and of a young K-star (TYC-0486-4943-1) whose topology has been obtained by Zeeman-Doppler Imaging.« less
The influence of the magnetic topology on the wind braking of sun-like stars.
NASA Astrophysics Data System (ADS)
Réville, V.; Brun, A. S.; Matt, S. P.; Strugarek, A.; Pinto, R.
2014-12-01
Stellar winds are thought to be the main process responsible for the spin down of main-sequence stars. The extraction of angular momentum by a magnetized wind has been studied for decades, leading to several formulations for the resulting torque. However, previous studies generally consider simple dipole or split monopole stellar magnetic topologies. Here we consider in addition to a dipolar stellar magnetic field, both quadrupolar and octupolar configurations, while also varying the rotation rate and the magnetic field strength. 60 simulations made with a 2.5D, cylindrical and axisymmetric set-up and computed with the PLUTO code were used to find torque formulations for each topology. We further succeed to give a unique law that fits the data for every topology by formulating the torque in terms of the amount of open magnetic flux in the wind. We also show that our formulation can be applied to even more realistic magnetic topologies, with examples of the Sun in its minimum and maximum phase as observed at the Wilcox Solar Observatory, and of a young K-star (TYC-0486-4943-1) whose topology has been obtained by Zeeman-Doppler Imaging (ZDI).
The evolution of rotating very massive stars with LMC composition
NASA Astrophysics Data System (ADS)
Köhler, K.; Langer, N.; de Koter, A.; de Mink, S. E.; Crowther, P. A.; Evans, C. J.; Gräfener, G.; Sana, H.; Sanyal, D.; Schneider, F. R. N.; Vink, J. S.
2015-01-01
Context. With growing evidence for the existence of very massive stars at subsolar metallicity, there is an increased need for corresponding stellar evolution models. Aims: We present a dense model grid with a tailored input chemical composition appropriate for the Large Magellanic Cloud (LMC). Methods: We use a one-dimensional hydrodynamic stellar evolution code, which accounts for rotation, transport of angular momentum by magnetic fields, and stellar wind mass loss to compute our detailed models. We calculate stellar evolution models with initial masses from 70 to 500 M⊙ and with initial surface rotational velocities from 0 to 550 km s-1, covering the core-hydrogen burning phase of evolution. Results: We find our rapid rotators to be strongly influenced by rotationally induced mixing of helium, with quasi-chemically homogeneous evolution occurring for the fastest rotating models. Above 160 M⊙, homogeneous evolution is also established through mass loss, producing pure helium stars at core hydrogen exhaustion independent of the initial rotation rate. Surface nitrogen enrichment is also found for slower rotators, even for stars that lose only a small fraction of their initial mass. For models above ~150 M⊙ at zero age, and for models in the whole considered mass range later on, we find a considerable envelope inflation due to the proximity of these models to their Eddington limit. This leads to a maximum ZAMS surface temperature of ~56 000 K, at ~180 M⊙, and to an evolution of stars in the mass range 50 M⊙...100 M⊙ to the regime of luminous blue variables in the Hertzsprung-Russell diagram with high internal Eddington factors. Inflation also leads to decreasing surface temperatures during the chemically homogeneous evolution of stars above ~180 M⊙. Conclusions: The cool surface temperatures due to the envelope inflation in our models lead to an enhanced mass loss, which prevents stars at LMC metallicity from evolving into pair-instability supernovae. The corresponding spin-down will also prevent very massive LMC stars to produce long-duration gamma-ray bursts, which might, however, originate from lower masses. The dataset of the presented stellar evolution models is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/573/A71Appendices are available in electronic form at http://www.aanda.org
Magnetocentrifugally Driven Flows from Young Stars and Disks. IV. The Accretion Funnel and Dead Zone
NASA Astrophysics Data System (ADS)
Ostriker, Eve C.; Shu, Frank H.
1995-07-01
We formulate the time-steady, axisymmetric problem of stellar magnetospheric inflow of gas from a surrounding accretion disk. The computational domain is bounded on the outside by a surface of given shape containing the open field lines associated with an induced disk wind. The mechanism for this wind has been investigated in previous publications in this journal. Our zeroth-order solution incorporates an acceptable accounting of the pressure balance between the magnetic field lines loaded with accreting gas (funnel flow) and those empty of matter (dead zone). In comparison with previous models, our funnel-flow/dead-zone solution has the following novel features: (1) Because of a natural tendency for the trapped stellar magnetic flux to pinch toward the corotation radius Rx (X-point of the effective potential), most of the interesting magnetohydrodynamics is initiated within a small neighborhood of Rx (X-region), where the Keplerian angular speed of rotation in the disk equals the spin rate of the star. (2) Unimpeded funnel flow from the inner portion of the X-region to the star can occur when the amount of trapped magnetic flux equals or exceeds 1.5 times the unperturbed dipole flux that would lie outside Rx in the absence of an accretion disk. (3). Near the equatorial plane, radial infall from the X-point is terminated at a "kink" point Rk = 0.74Rx that deflects the flow away from the midplane, mediating thereby between the field topology imposed by a magnetic fan of trapped flux at Rx and the geometry of a strong stellar dipole. (4) The excess angular momentum of accretion that would otherwise spin up the star rapidly is deposited by the magnetic torques of the funnel flow into the inner portion of the X-region of the disk. (5) An induced disk wind arises in the outer portion of the .X-region, where the stellar field lines have been blown open, and removes whatever excess angular momentum that viscous torques do not transport to the outer disk. (6) The interface between open field lines loaded with outflowing matter (connected to the disk) and those not loaded (connected to the star) forms a "helmet streamer," along which major mass-ejection and reconnection events may arise in response to changing boundary conditions (e.g., stellar magnetic cycles), much the way that such events occur in the active Sun. (7) Pressure balance across the dead-zone/wind interface will probably yield an asymptotically vertical (i.e., "jetlike") trajectory for the matter ejected along the helmet streamer, but mathematical demonstration of this fact is left for future studies. (8) In steady state the overall balance of angular momentum in the star/disk/ magnetosphere system fixes the fractions, f and 1 - f, of the disk mass accretion rate into the X-region carried away, respectively, by the wind and funnel flows.
Angular momentum transport by heat-driven g-modes in slowly pulsating B stars
NASA Astrophysics Data System (ADS)
Townsend, R. H. D.; Goldstein, J.; Zweibel, E. G.
2018-03-01
Motivated by recent interest in the phenomenon of waves transport in massive stars, we examine whether the heat-driven gravity (g) modes excited in slowly pulsating B (SPB) stars can significantly modify the stars' internal rotation. We develop a formalism for the differential torque exerted by g modes, and implement this formalism using the GYRE oscillation code and the MESASTAR stellar evolution code. Focusing first on a 4.21M⊙ model, we simulate 1 000 yr of stellar evolution under the combined effects of the torque due to a single unstable prograde g mode (with an amplitude chosen on the basis of observational constraints), and diffusive angular momentum transport due to convection, overshooting, and rotational instabilities. We find that the g mode rapidly extracts angular momentum from the surface layers, depositing it deeper in the stellar interior. The angular momentum transport is so efficient that by the end of the simulation, the initially non-rotating surface layers are spun in the retrograde direction to ≈ 30 per cent of the critical rate. However, the additional inclusion of magnetic stresses in our simulations almost completely inhibits this spin-up. Expanding our simulations to cover the whole instability strip, we show that the same general behaviour is seen in all SPB stars. After providing some caveats to contextualize our results, we hypothesize that the observed slower surface rotation of SPB stars (as compared to other B-type stars) may be the direct consequence of the angular momentum transport that our simulations demonstrate.
Solar Wind Ablation of Terrestrial Planet Atmospheres
NASA Technical Reports Server (NTRS)
Moore, Thomas Earle; Fok, Mei-Ching H.; Delcourt, Dominique C.
2009-01-01
Internal plasma sources usually arise in planetary magnetospheres as a product of stellar ablation processes. With the ignition of a new star and the onset of its ultraviolet and stellar wind emissions, much of the volatiles in the stellar system undergo a phase transition from gas to plasma. Condensation and accretion into a disk is replaced by radiation and stellar wind ablation of volatile materials from the system- Planets or smaller bodies that harbor intrinsic magnetic fields develop an apparent shield against direct stellar wind impact, but UV radiation still ionizes their gas phases, and the resulting internal plasmas serve to conduct currents to and from the central body along reconnected magnetic field linkages. Photoionization and thermalization of electrons warms the ionospheric topside, enhancing Jeans' escape of super-thermal particles, with ambipolar diffusion and acceleration. Moreover, observations and simulations of auroral processes at Earth indicate that solar wind energy dissipation is concentrated by the geomagnetic field by a factor of 10-100, enhancing heavy species plasma and gas escape from gravity, and providing more current carrying capacity. Thus internal plasmas enable coupling with the plasma, neutral gas and by extension, the entire body. The stellar wind is locally loaded and slowed to develop the required power. The internal source plasma is accelerated and heated, inflating the magnetosphere as it seeks escape, and is ultimately blown away in the stellar wind. Bodies with little sensible atmosphere may still produce an exosphere of sputtered matter when exposed to direct solar wind impact. Bodies with a magnetosphere and internal sources of plasma interact more strongly with the stellar wind owing to the magnetic linkage between the two created by reconnection.
NASA Astrophysics Data System (ADS)
Künstler, A.; Carroll, T. A.; Strassmeier, K. G.
2015-06-01
Context. Solar spots appear to decay linearly proportional to their size. The decay rate of solar spots is directly related to magnetic diffusivity, which itself is a key quantity for the length of a magnetic-activity cycle. Is a linear spot decay also seen on other stars, and is this in agreement with the large range of solar and stellar activity cycle lengths? Aims: We investigate the evolution of starspots on the rapidly-rotating (Prot≈24 d) K0 giant XX Tri, using consecutive time-series Doppler images. Our aim is to obtain a well-sampled movie of the stellar surface over many years, and thereby detect and quantify a starspot decay law for further comparison with the Sun. Methods: We obtained continuous high-resolution and phase-resolved spectroscopy with the 1.2-m robotic STELLA telescope on Tenerife over six years, and these observations are ongoing. For each observing season, we obtained between 5 to 7 independent Doppler images, one per stellar rotation, making up a total of 36 maps. All images were reconstructed with our line-profile inversion code iMap. A wavelet analysis was implemented for denoising the line profiles. To quantify starspot area decay and growth, we match the observed images with simplified spot models based on a Monte Carlo approach. Results: It is shown that the surface of XX Tri is covered with large high-latitude and even polar spots and with occasional small equatorial spots. Just over the course of six years, we see a systematically changing spot distribution with various timescales and morphology, such as spot fragmentation and spot merging as well as spot decay and formation. An average linear decay of D = -0.022 ± 0.002 SH/day is inferred. We found evidence of an active longitude in phase toward the (unseen) companion star. Furthermore, we detect a weak solar-like differential rotation with a surface shear of α = 0.016 ± 0.003. From the decay rate, we determine a turbulent diffusivity of ηT = (6.3 ± 0.5) × 1014 cm2/s and predict a magnetic activity cycle of ≈26 ± 6 yr. Finally, we present a short movie of the spatially resolved surface of XX Tri. Based on data obtained with the STELLA robotic telescopes in Tenerife, an AIP facility jointly operated with IAC.Appendices and the movie are available in electronic form at http://www.aanda.org
Applying Zeeman Doppler imaging to solar spectra
NASA Astrophysics Data System (ADS)
Hussain, G. A. J.; Saar, S. H.; Collier Cameron, A.
2004-03-01
A new generation of spectro-polarimeters with high throughput (e.g. CFHT/ESPADONS and LBT/PEPSI) is becoming available. This opportunity can be exploited using Zeeman Doppler imaging (ZDI), a technique that inverts time-series of Stokes V spectra to map stellar surface magnetic fields (Semel 1989). ZDI is assisted by ``Least squares deconvolution'' (LSD), which sums up the signal from 1000's of photospheric lines to produce a mean deconvolved profile with higher S:N (Donati & Collier Cameron 1997).
Magnetically Sleepy Stars: An X-ray Survey of Candidate Stars in Extended Magnetic Minima
NASA Astrophysics Data System (ADS)
Saar, Steven
2010-09-01
The Sun occasionally slips into periods of extended magnetic quiescence where the normal magnetic cycle largely ceases (e.g., the Maunder minimum). Understanding these episodes is important for understanding non-linear magnetic dynamos and the Earth's radiation budget. We have developed a new method for determining which stars may be in the stellar analog of these magnetic minima. We propose to study five such stars with Chandra ACIS-S. Combined with archival spectra of more stars, we can 1) explore (by proxy) properties of the solar corona in a Maunder-like minimum, 2) determine what stellar properties affect this state, and 3) investigate the coronal product of the residual turbulent dynamo in a solar mass star.
Magnetic moment and plasma environment of HD 209458b as determined from Lyα observations.
Kislyakova, Kristina G; Holmström, Mats; Lammer, Helmut; Odert, Petra; Khodachenko, Maxim L
2014-11-21
Transit observations of HD 209458b in the stellar Lyman-α(Lyα) line revealed strong absorption in both blue and red wings of the line interpreted as hydrogen atoms escaping from the planet's exosphere at high velocities. The following sources for the absorption were suggested: acceleration by the stellar radiation pressure, natural spectral line broadening, or charge exchange with the stellar wind. We reproduced the observation by means of modeling that includes all aforementioned processes. Our results support a stellar wind with a velocity of ≈400 kilometers per second at the time of the observation and a planetary magnetic moment of ≈1.6 × 10(26) amperes per square meter. Copyright © 2014, American Association for the Advancement of Science.
An Analysis of the Rapidly Rotating Bp star HD 133880
NASA Technical Reports Server (NTRS)
Bailey, J. D.; Grunhut, J.; Shultz, M.; Wade, G.; Landstreet, J. D.; Bohlender, D.; Lim, J.; Wong, K.; Drake, S.; Linsky, J.
2012-01-01
HD 133880 is a rapidly rotating chemically peculiar B-type (Bp) star (nu sin i approx = 103km/s) and is host to one of the strongest magnetic fields of any Ap/Bp star. A member of the Upper Centaurus Lupus association, it is a star with a well-determined age of 16 Myr. 12 new spectra, four of which are polarimetric, obtained from the FEROS, ESPaDOnS and HARPS instruments, provide sufficient material from which to re-evaluate the magnetic field and obtain a first approximation to the atmospheric abundance distributions of He, O, Mg, Si, Ti. Cr, Fe, Ni, Pr and Nd. An abundance analysis was carried out using ZEEMAN, a program which synthesizes spectral line profiles for stars with permeating magnetic fields. The magnetic field structure was characterized by a colinear multipole expansion from the observed variations of the longitudinal and surface fields with rotational phase. Both magnetic hemispheres are clearly visible during the stellar rotation, and thus a three-ring abundance distribution model encompassing both magnetic poles and magnetic equator with equal spans in colatitude was adopted. Using the new magnetic field measurements and optical photometry together with previously published data, we refine the period of HD 133880 to P = 0.877 476 +/- 0.000009 d. Our simple axisymmetric magnetic field model is based on a predominantly quadrupolar component that roughly describes the field variations. Using spectrum synthesis, we derived mean abundances for O, Mg, Si, Ti, Cr, Fe and Pr. All elements; except Mg, are overabundant compared to the Son. Mg appears to be approximately uniform over the stellar surface, while all other elements are more abundant in the negative magnetic hemisphere than in the positive magnetic hemisphere. In contrast to most Ap/Bp stars which show an underabundance in 0, in HD 133880 this element is clearly overabundant compared to the solar abundance ratio. In studying the Ha and Paschen lines in the optical spectra, we could not unambiguously detect information about the magnetosphere of HD 133880. However, radio emission data at both 3 and 6 cm suggest that the magnetospheric plasma is held in rigid rotation with the star by the magnetic field and further supported against collapse by the rapid rotation. Subtle differences in the shapes of the optically thick radio light curves at 3 and 6 cm suggest that the large-scale magnetic field is not fully axisymmetric at large distances from the star.
NASA Astrophysics Data System (ADS)
Orlando, S.; Sacco, G. G.; Argiroffi, C.; Reale, F.; Peres, G.; Maggio, A.
2010-02-01
Context. Plasma accreting onto classical T Tauri stars (CTTS) is believed to impact the stellar surface at free-fall velocities, generating a shock. Current time-dependent models describing accretion shocks in CTTSs are one-dimensional, assuming that the plasma moves and transports energy only along magnetic field lines (β ≪ 1). Aims: We investigate the stability and dynamics of accretion shocks in CTTSs, considering the case of β ⪆ 1 in the post-shock region. In these cases the 1D approximation is not valid and a multi-dimensional MHD approach is necessary. Methods: We model an accretion stream propagating through the atmosphere of a CTTS and impacting onto its chromosphere by performing 2D axisymmetric MHD simulations. The model takes into account the stellar magnetic field, the gravity, the radiative cooling, and the thermal conduction (including the effects of heat flux saturation). Results: The dynamics and stability of the accretion shock strongly depend on the plasma β. In the case of shocks with β > 10, violent outflows of shock-heated material (and possibly MHD waves) are generated at the base of the accretion column and intensely perturb the surrounding stellar atmosphere and the accretion column itself (therefore modifying the dynamics of the shock). In shocks with β ≈ 1, the post-shock region is efficiently confined by the magnetic field. The shock oscillations induced by cooling instability are strongly influenced by β: for β > 10, the oscillations may be rapidly dumped by the magnetic field, approaching a quasi-stationary state, or may be chaotic with no obvious periodicity due to perturbation of the stream induced by the post-shock plasma itself; for β≈ 1 the oscillations are quasi-periodic, although their amplitude is smaller and the frequency higher than those predicted by 1D models. Three movies are only available in electronic form at http://www.aanda.org
Magnetic absorption of VHE photons in the magnetosphere of the Crab pulsar
NASA Astrophysics Data System (ADS)
Bogovalov, S. V.; Contopoulos, I.; Prosekin, A.; Tronin, I.; Aharonian, F. A.
2018-05-01
The detection of the pulsed ˜1 TeV gamma-ray emission from the Crab pulsar reported by MAGIC and VERITAS collaborations demands a substantial revision of existing models of particle acceleration in the pulsar magnetosphere. In this regard model independent restrictions on the possible production site of the very high energy (VHE) photons become an important issue. In this paper, we consider limitations imposed by the process of conversion of VHE gamma-rays into e± pairs in the magnetic field of the pulsar magnetosphere. Photons with energies exceeding 1 TeV are effectively absorbed even at large distances from the surface of the neutron star. Our calculations of magnetic absorption in the force-free magnetosphere show that the twisting of the magnetic field due to the pulsar rotation makes the magnetosphere more transparent compared to the dipole magnetosphere. The gamma-ray absorption appears stronger for photons emitted in the direction of rotation than in the opposite direction. There is a small angular cone inside which the magnetosphere is relatively transparent and photons with energy 1.5 TeV can escape from distances beyond 0.1 light cylinder radius (Rlc). The emission surface from where photons can be emitted in the observer's direction further restricts the sites of VHE gamma-ray production. For the observation angle 57° relative to the Crab pulsar axis of rotation and the orthogonal rotation, the emission surface in the open field line region is located as close as 0.4 Rlc from the stellar surface for a dipole magnetic field, and 0.1 Rlc for a force-free magnetic field.
Mass-loss rates, ionization fractions, shock velocities, and magnetic fields of stellar jets
NASA Technical Reports Server (NTRS)
Hartigan, Patrick; Morse, Jon A.; Raymond, John
1994-01-01
In this paper we calculate emission-line ratios from a series of planar radiative shock models that cover a wide range of shock velocities, preshock densities, and magnetic fields. The models cover the initial conditions relevant to stellar jets, and we show how to estimate the ionization fractions and shock velocities in jets directly from observations of the strong emission lines in these flows. The ionization fractions in the HH 34, HH 47, and HH 111 jets are approximately 2%, considerably smaller than previous estimates, and the shock velocities are approximately 30 km/s. For each jet the ionization fractions were found from five different line ratios, and the estimates agree to within a factor of approximately 2. The scatter in the estimates of the shock velocities is also small (+/- 4 km/s). The low ionization fractions of stellar jets imply that the observed electron densities are much lower than the total densities, so the mass-loss rates in these flows are correspondingly higher (approximately greater than 2 x 10(exp -7) solar mass/yr). The mass-loss rates in jets are a significant fraction (1%-10%) of the disk accretion rates onto young stellar objects that drive the outflows. The momentum and energy supplied by the visible portion of a typical stellar jet are sufficient to drive a weak molecular outflow. Magnetic fields in stellar jets are difficult to measure because the line ratios from a radiative shock with a magnetic field resemble those of a lower velocity shock without a field. The observed line fluxes can in principle indicate the strength of the field if the geometry of the shocks in the jet is well known.
Influence of large-scale zonal flows on the evolution of stellar and planetary magnetic fields
NASA Astrophysics Data System (ADS)
Petitdemange, Ludovic; Schrinner, Martin; Dormy, Emmanuel; ENS Collaboration
2011-10-01
Zonal flows and magnetic field are present in various objects as accretion discs, stars and planets. Observations show a huge variety of stellar and planetary magnetic fields. Of particular interest is the understanding of cyclic field variations, as known from the sun. They are often explained by an important Ω-effect, i.e., by the stretching of field lines because of strong differential rotation. We computed the dynamo coefficients for an oscillatory dynamo model with the help of the test-field method. We argue that this model is of α2 Ω -type and here the Ω-effect alone is not responsible for its cyclic time variation. More general conditions which lead to dynamo waves in global direct numerical simulations are presented. Zonal flows driven by convection in planetary interiors may lead to secondary instabilities. We showed that a simple, modified version of the MagnetoRotational Instability, i.e., the MS-MRI can develop in planteray interiors. The weak shear yields an instability by its constructive interaction with the much larger rotation rate of planets. We present results from 3D simulations and show that 3D MS-MRI modes can generate wave pattern at the surface of the spherical numerical domain. Zonal flows and magnetic field are present in various objects as accretion discs, stars and planets. Observations show a huge variety of stellar and planetary magnetic fields. Of particular interest is the understanding of cyclic field variations, as known from the sun. They are often explained by an important Ω-effect, i.e., by the stretching of field lines because of strong differential rotation. We computed the dynamo coefficients for an oscillatory dynamo model with the help of the test-field method. We argue that this model is of α2 Ω -type and here the Ω-effect alone is not responsible for its cyclic time variation. More general conditions which lead to dynamo waves in global direct numerical simulations are presented. Zonal flows driven by convection in planetary interiors may lead to secondary instabilities. We showed that a simple, modified version of the MagnetoRotational Instability, i.e., the MS-MRI can develop in planteray interiors. The weak shear yields an instability by its constructive interaction with the much larger rotation rate of planets. We present results from 3D simulations and show that 3D MS-MRI modes can generate wave pattern at the surface of the spherical numerical domain. The first author thanks DFG and PlanetMag project for financial support.
Causal impact of magnetic fluctuations in slow and fast L–H transitions at TJ-II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milligen, B. Ph. van; Estrada, T.; Ascasíbar, E.
2016-07-15
This work focuses on the relationship between L–H (or L–I) transitions and MHD activity in the low magnetic shear TJ-II stellarator. It is shown that the presence of a low order rational surface in the plasma edge (gradient) region lowers the threshold density for H-mode access. MHD activity is systematically suppressed near the confinement transition. We apply a causality detection technique (based on the Transfer Entropy) to study the relation between magnetic oscillations and locally measured plasma rotation velocity (related to Zonal Flows). For this purpose, we study a large number of discharges in two magnetic configurations, corresponding to “fast”more » and “slow” transitions. With the “slow” transitions, the developing Zonal Flow prior to the transition is associated with the gradual reduction of magnetic oscillations. The transition itself is marked by a strong spike of “information transfer” from magnetic to velocity oscillations, suggesting that the magnetic drive may play a role in setting up the final sheared flow responsible for the H-mode transport barrier. Similar observations were made for the “fast” transitions. Thus, it is shown that magnetic oscillations associated with rational surfaces play an important and active role in confinement transitions, so that electromagnetic effects should be included in any complete transition model.« less
First Spectroscopic Detection of Surface Structures on a Normal A-Type Star - The Case of Vega
NASA Astrophysics Data System (ADS)
Böhm, Torsten
2018-04-01
For the first time the existence of spots on the surface of the intermediate mass star Vega has been shown. This unexpected result sets new important constraints on the stellar evolution of intermediate mass stars and in particular on the magnetic field generation mechanisms. Vega (α Lyrae) is an intermediate mass star (spectral class A0) in rapid rotation (Prot = 0.68 d). Since more than 150 years it is a stability reference for photometry. Despite the fact that very small sporadic light variations had been announced in the past, no periodicity had been detected in its light curve. In 2009 a very faint magnetic field has been detected on Vega (Lignières et al., 2009, A&A, 500L, 41) and subsequently also on other stars of the same spectral class (A). While the solar magnetic field is generated by a dynamo mechanism in its convective envelope, the origin of magnetic field in stars exempt of convective envelopes, such as Vega, remains mysterious. One of the characteristics of the solar dynamo is its temporal variability revealed by the appearance or disappearance of solar spots. Are there similar structures on the surface of Vega? 2015 A&A, 577, 64. & Nature Research Highlights
Catalyzed D-D stellarator reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheffield, John; Spong, Donald A.
The advantages of using the catalyzed deuterium-deuterium (D-D) approach for a fusion reactor—lower and less energetic neutron flux and no need for a tritium breeding blanket—have been evaluated in previous papers, giving examples of both tokamak and stellarator reactors. This paper presents an update for the stellarator example, taking account of more recent empirical transport scaling results and design studies of lower-aspect-ratio stellarators. We use a modified version of the Generic Magnetic Fusion Reactor model to cost a stellarator-type reactor. Recently, this model has been updated to reflect the improved science and technology base and costs in the magnetic fusionmore » program. Furthermore, it is shown that an interesting catalyzed D-D, stellarator power plant might be possible if the following parameters could be achieved: R/ ≈ 4, required improvement factor to ISS04 scaling, F R = 0.9 to 1.15, ≈ 8.0% to 11.5%, Z eff ≈ 1.45 plus a relativistic temperature correction, fraction of fast ions lost ≈ 0.07, B m ≈ 14 to 16 T, and R ≈ 18 to 24 m.« less
Catalyzed D-D stellarator reactor
Sheffield, John; Spong, Donald A.
2016-05-12
The advantages of using the catalyzed deuterium-deuterium (D-D) approach for a fusion reactor—lower and less energetic neutron flux and no need for a tritium breeding blanket—have been evaluated in previous papers, giving examples of both tokamak and stellarator reactors. This paper presents an update for the stellarator example, taking account of more recent empirical transport scaling results and design studies of lower-aspect-ratio stellarators. We use a modified version of the Generic Magnetic Fusion Reactor model to cost a stellarator-type reactor. Recently, this model has been updated to reflect the improved science and technology base and costs in the magnetic fusionmore » program. Furthermore, it is shown that an interesting catalyzed D-D, stellarator power plant might be possible if the following parameters could be achieved: R/ ≈ 4, required improvement factor to ISS04 scaling, F R = 0.9 to 1.15, ≈ 8.0% to 11.5%, Z eff ≈ 1.45 plus a relativistic temperature correction, fraction of fast ions lost ≈ 0.07, B m ≈ 14 to 16 T, and R ≈ 18 to 24 m.« less
The evolution of stable magnetic fields in stars: an analytical approach
NASA Astrophysics Data System (ADS)
Mestel, Leon; Moss, David
2010-07-01
The absence of a rigorous proof of the existence of dynamically stable, large-scale magnetic fields in radiative stars has been for many years a missing element in the fossil field theory for the magnetic Ap/Bp stars. Recent numerical simulations, by Braithwaite & Spruit and Braithwaite & Nordlund, have largely filled this gap, demonstrating convincingly that coherent global scale fields can survive for times of the order of the main-sequence lifetimes of A stars. These dynamically stable configurations take the form of magnetic tori, with linked poloidal and toroidal fields, that slowly rise towards the stellar surface. This paper studies a simple analytical model of such a torus, designed to elucidate the physical processes that govern its evolution. It is found that one-dimensional numerical calculations reproduce some key features of the numerical simulations, with radiative heat transfer, Archimedes' principle, Lorentz force and Ohmic decay all playing significant roles.
Measuring surface magnetic fields of red supergiant stars
NASA Astrophysics Data System (ADS)
Tessore, B.; Lèbre, A.; Morin, J.; Mathias, P.; Josselin, E.; Aurière, M.
2017-07-01
Context. Red supergiant (RSG) stars are very massive cool evolved stars. Recently, a weak magnetic field was measured at the surface of α Ori and this is so far the only M-type supergiant for which a direct detection of a surface magnetic field has been reported. Aims: By extending the search for surface magnetic field in a sample of late-type supergiants, we want to determine whether the surface magnetic field detected on α Ori is a common feature among the M-type supergiants. Methods: With the spectropolarimeter Narval at Télescope Bernard-Lyot we undertook a search for surface magnetic fields in a sample of cool supergiant stars, and we analysed circular polarisation spectra using the least-squares deconvolution technique. Results: We detect weak Zeeman signatures of stellar origin in the targets CE Tau, α1 Her and μ Cep. For the latter star, we also show that cross-talk from the strong linear polarisation signals detected on this star must be taken into account. For CE Tau and μ Cep, the longitudinal component of the detected surface fields is at the Gauss-level, such as in α Ori. We measured a longitudinal field almost an order of magnitude stronger for α1 Her. We also report variability of the longitudinal magnetic field of CE Tau and α1 Her, with changes in good agreement with the typical atmospheric dynamics time-scales. We also report a non-detection of magnetic field at the surface of the yellow supergiant star ρ Cas. Conclusions: The two RSG stars of our sample, CE Tau and μ Cep, display magnetic fields very similar to that of α Ori. The non-detection of a magnetic field on the post-RSG star ρ Cas suggests that the magnetic field disappears, or at least becomes undetectable with present methods, at later evolutionary stages. Our analysis of α1 Her supports the proposed reclassification of the star as an M-type asymptotic giant branch star. Based on observations obtained at the Télescope Bernard Lyot (TBL) at the Observatoire du Pic du Midi, operated by the Observatoire Midi-Pyrénées, Université de Toulouse (Paul Sabatier), Centre National de la Recherche Scientifique of France.
New Insights into the Puzzling P-Cygni Profiles of Magnetic Massive Stars
NASA Astrophysics Data System (ADS)
Erba, Christiana; David-Uraz, Alexandre; Petit, Véronique; Owocki, Stanley P.
2017-11-01
Magnetic massive stars comprise approximately 10% of the total OB star population. Modern spectropolarimetry shows these stars host strong, stable, large-scale, often nearly dipolar surface magnetic fields of 1 kG or more. These global magnetic fields trap and deflect outflowing stellar wind material, forming an anisotropic magnetosphere that can be probed with wind-sensitive UV resonance lines. Recent HST UV spectra of NGC 1624-2, the most magnetic O star observed to date, show atypically unsaturated P-Cygni profiles in the Civ resonant doublet, as well as a distinct variation with rotational phase. We examine the effect of non-radial, magnetically-channeled wind outflow on P-Cygni line formation, using a Sobolev Exact Integration (SEI) approach for direct comparison with HST UV spectra of NGC 1624-2. We demonstrate that the addition of a magnetic field desaturates the absorption trough of the P-Cygni profiles, but further efforts are needed to fully account for the observed line profile variation. Our study thus provides a first step toward a broader understanding of how strong magnetic fields affect mass loss diagnostics from UV lines.
NASA Astrophysics Data System (ADS)
Kochukhov, O.; Silvester, J.; Bailey, J. D.; Landstreet, J. D.; Wade, G. A.
2017-09-01
Context. The young, rapidly rotating Bp star HR 5624 (HD 133880) shows an unusually strong non-sinusoidal variability of its longitudinal magnetic field. This behaviour was previously interpreted as the signature of an exceptionally strong, quadrupole-dominated surface magnetic field geometry. Aims: We studied the magnetic field structure and chemical abundance distributions of HR 5624 with the aim to verify the unusual quadrupolar nature of its magnetic field and to investigate correlations between the field topology and chemical spots. Methods: We analysed high-resolution, time series Stokes parameter spectra of HR 5624 with the help of a magnetic Doppler imaging inversion code based on detailed polarised radiative transfer modelling of the line profiles. Results: We refined the stellar parameters, revised the rotational period, and obtained new longitudinal magnetic field measurements. Our magnetic Doppler inversions reveal that the field structure of HR 5624 is considerably simpler and the field strength is much lower than proposed by previous studies. We find a maximum local field strength of 12 kG and a mean field strength of 4 kG, which is about a factor of three weaker than predicted by quadrupolar field models. Our model implies that overall large-scale field topology of HR 5624 is better described as a distorted, asymmetric dipole rather than an axisymmetric quadrupole. The chemical abundance maps of Mg, Si, Ti, Cr, Fe, and Nd obtained in our study are characterised by large-scale, high-contrast abundance patterns. These structures correlate weakly with the magnetic field geometry and, in particular, show no distinct element concentrations in the horizontal field regions predicted by theoretical atomic diffusion calculations. Conclusions: We conclude that the surface magnetic field topology of HR 5624 is not as unusual as previously proposed. Considering these results together with other recent magnetic mapping analyses of early-type stars suggests that predominantly quadrupolar magnetic field topologies, invoked to be present in a significant number of stars, probably do not exist in real stars. This finding agrees with an outcome of the MHD simulations of fossil field evolution in stably stratified stellar interiors. Based on observations collected at the European Southern Observatory, Chile (ESO programs 085.D-0296, 089.D-0383, 095.D-0194) and on observations obtained at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council of Canada, the Institut National des Science de l'Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii.
Far beyond the Sun - I. The beating magnetic heart in Horologium
NASA Astrophysics Data System (ADS)
Alvarado-Gómez, Julián D.; Hussain, Gaitee A. J.; Drake, Jeremy J.; Donati, Jean-François; Sanz-Forcada, Jorge; Stelzer, Beate; Cohen, Ofer; Amazo-Gómez, Eliana M.; Grunhut, Jason H.; Garraffo, Cecilia; Moschou, Sofia P.; Silvester, James; Oksala, Mary E.
2018-02-01
A former member of the Hyades cluster, ι Horologii (ι Hor) is a planet-hosting Sun-like star which displays the shortest coronal activity cycle known to date (Pcyc ∼ 1.6 yr). With an age of ∼625 Myr, ι Hor is also the youngest star with a detected activity cycle. The study of its magnetic properties holds the potential to provide fundamental information to understand the origin of cyclic activity and stellar magnetism in late-type stars. In this series of papers, we present the results of a comprehensive project aimed at studying the evolving magnetic field in this star and how this evolution influences its circumstellar environment. This paper summarizes the first stage of this investigation, with results from a long-term observing campaign of ι Hor using ground-based high-resolution spectropolarimetry. The analysis includes precise measurements of the magnetic activity and radial velocity of the star, and their multiple time-scales of variability. In combination with values reported in the literature, we show that the long-term chromospheric activity evolution of ι Hor follows a beating pattern, caused by the superposition of two periodic signals of similar amplitude at P1 ≃ 1.97 ± 0.02 yr and P2 ≃ 1.41 ± 0.01 yr. Additionally, using the most recent parameters for ι Hor b in combination with our activity and radial velocity measurements, we find that stellar activity dominates the radial velocity residuals, making the detection of additional planets in this system challenging. Finally, we report here the first measurements of the surface longitudinal magnetic field strength of ι Hor, which displays varying amplitudes within ±4 G and served to estimate the rotation period of the star (P_rot = 7.70^{+0.18}_{-0.67} d).
The Magnetic Properties of Galactic OB Stars from the Magnetism in Massive Stars Project
NASA Astrophysics Data System (ADS)
Wade, Gregg A.; Grunhut, Jason; Petit, Veronique; Neiner, Coralie; Alecian, Evelyne; Landstreet, John; MiMeS Collaboration
2013-06-01
The Magnetism in Massive Stars (MiMeS) project represents the largest systematic survey of stellar magnetism ever undertaken. Comprising nearly 4500 high resolution polarised spectra of nearly 550 Galactic B and O-type stars, the MiMeS survey aims to address interesting and fundamental questions about the magnetism of hot, massive stars: How and when are massive star magnetic fields generated, and how do they evolve throughout stellar evolution? How do magnetic fields couple to and interact with the powerful winds of OB stars, and what are the consequences for the wind structure, momentum flux and energetics? What are the detailed physical mechanisms that lead to the anomalously slow rotation of many magnetic massive stars? What is the ultimate impact of stellar magnetic fields -- both direct and indirect -- on the evolution of massive stars? In this talk we report results from the analysis of the B-type stars observed within the MiMeS survey. The sample consists of over 450 stars ranging in spectral type from B9 to B0, and in evolutionary stage from the pre-main sequence to the post-main sequence. In addition to general statistical results concerning field incidence, strength and topology, we will elaborate our conclusions for subsamples of special interest, including the Herbig and classical Be stars, pulsating B stars and chemically peculiar B stars.
On the Magnetic Protection of the Atmosphere of Proxima Centauri b
NASA Astrophysics Data System (ADS)
Garcia-Sage, K.; Glocer, A.; Drake, J. J.; Gronoff, G.; Cohen, O.
2017-07-01
The discovery of exoplanets orbiting red dwarfs, such as Proxima Centauri b, has led to questions of their habitability and capacity to retain liquid surface water. While Proxima b is in a “temperate orbit,” I.e., an Earth at that location would not freeze or boil its oceans, its proximity to a parent star with quite high magnetic activity is likely to influence its atmospheric evolution and habitability. Planetary magnetic fields can prevent direct stripping away of the planetary atmosphere by the stellar wind, but ion escape can still occur at the magnetic poles. This process, the polar wind, is well known to occur at Earth and may have contributed to the habitability of Earth’s early atmosphere. The polar wind is highly variable and sensitive to both ionizing radiation and geomagnetic activity. The higher ionizing radiation levels of M dwarfs at habitable zone distances are expected to increase the polar wind by orders of magnitude and, instead of helping create a habitable atmosphere, may strip away enough volatiles to render the planet inhospitable. Here, we compute the ionospheric outflow of an Earth-twin subject to the enhanced stellar EUV flux of Proxima b, and the effect on atmospheric escape timescales. We show that an Earth-like planet would not survive the escape of its atmosphere at that location, and therefore the pathway to habitability for Proxima b requires a very different atmospheric history than that of Earth.
On the Magnetic Protection of the Atmosphere of Proxima Centauri b
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garcia-Sage, K.; Glocer, A.; Drake, J. J.
The discovery of exoplanets orbiting red dwarfs, such as Proxima Centauri b, has led to questions of their habitability and capacity to retain liquid surface water. While Proxima b is in a “temperate orbit,” i.e., an Earth at that location would not freeze or boil its oceans, its proximity to a parent star with quite high magnetic activity is likely to influence its atmospheric evolution and habitability. Planetary magnetic fields can prevent direct stripping away of the planetary atmosphere by the stellar wind, but ion escape can still occur at the magnetic poles. This process, the polar wind, is wellmore » known to occur at Earth and may have contributed to the habitability of Earth’s early atmosphere. The polar wind is highly variable and sensitive to both ionizing radiation and geomagnetic activity. The higher ionizing radiation levels of M dwarfs at habitable zone distances are expected to increase the polar wind by orders of magnitude and, instead of helping create a habitable atmosphere, may strip away enough volatiles to render the planet inhospitable. Here, we compute the ionospheric outflow of an Earth-twin subject to the enhanced stellar EUV flux of Proxima b, and the effect on atmospheric escape timescales. We show that an Earth-like planet would not survive the escape of its atmosphere at that location, and therefore the pathway to habitability for Proxima b requires a very different atmospheric history than that of Earth.« less
EXor OUTBURSTS FROM DISK AMPLIFICATION OF STELLAR MAGNETIC CYCLES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Armitage, Philip J., E-mail: pja@jilau1.colorado.edu
EXor outbursts—moderate-amplitude disk accretion events observed in Class I and Class II protostellar sources—have timescales and amplitudes that are consistent with the viscous accumulation and release of gas in the inner disk near the dead zone boundary. We suggest that outbursts are indirectly triggered by stellar dynamo cycles, via poloidal magnetic flux that diffuses radially outward through the disk. Interior to the dead zone the strength of the net field modulates the efficiency of angular momentum transport by the magnetorotational instability. In the dead zone changes in the polarity of the net field may lead to stronger outbursts because ofmore » the dominant role of the Hall effect in this region of the disk. At the level of simple estimates we show that changes to kG-strength stellar fields could stimulate disk outbursts on 0.1 au scales, though this optimistic conclusion depends upon the uncertain efficiency of net flux transport through the inner disk. The model predicts a close association between observational tracers of stellar magnetic activity and EXor events.« less
UVMag: Space UV and visible spectropolarimetry
NASA Astrophysics Data System (ADS)
Pertenais, Martin; Neiner, Coralie; Parès, Laurent P.; Petit, Pascal; Snik, Frans; van Harten, Gerard
2014-07-01
UVMag is a project of a space mission equipped with a high-resolution spectropolarimeter working in the UV and visible range. This M-size mission will be proposed to ESA at its M4 call. The main goal of UVMag is to measure the magnetic fields, winds and environment of all types of stars to reach a better understanding of stellar formation and evolution and of the impact of stellar environment on the surrounding planets. The groundbreaking combination of UV and visible spectropolarimetric observations will allow the scientists to study the stellar surface and its environment simultaneously. The instrumental challenge for this mission is to design a high-resolution space spectropolarimeter measuring the full- Stokes vector of the observed star in a huge spectral domain from 117 nm to 870 nm. This spectral range is the main difficulty because of the dispersion of the optical elements and of birefringence issues in the FUV. As the instrument will be launched into space, the polarimetric module has to be robust and therefore use if possible only static elements. This article presents the different design possibilities for the polarimeter at this point of the project.
Solar and stellar coronal plasmas
NASA Technical Reports Server (NTRS)
Golub, L.
1985-01-01
Progress made in describing and interpreting coronal plasma processes and the relationship between the solar corona and its stellar counterparts is reported. Topics covered include: stellar X-ray emission, HEAO 2 X-ray survey of the Pleiades, closed coronal structures, X-ray survey of main-sequence stars with shallow convection zones, implications of the 1400 MHz flare emission, and magnetic field stochasticity.
First Spectropolarimetric Measurement of a Brown Dwarf Magnetic Field in Molecular Bands
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuzmychov, Oleksii; Berdyugina, Svetlana V.; Harrington, David M., E-mail: oleksii@leibniz-kis.de
We present the first measurements of the surface magnetic field of a late-M dwarf, LSR J1835+3259, with the help of the full-Stokes spectropolarimetry in the bands of diatomic molecules. Our measurements at different rotational phases of a dwarf yielded one 5 σ and two 3 σ magnetic field detections. The observational data have been obtained with the LRISp polarimeter at the Keck observatory on 2012 August 22 and 23. These data have been compared against synthetic full-Stokes spectra in the bands of the molecules CrH, FeH, and TiO, which have been calculated for a range of the stellar parameters andmore » magnetic field strengths. Making use of χ {sup 2}-minimization and maximum likelihood estimation, we determine the net magnetic field strength B (and not flux Bf ) of LSR J1835+3259 to ∼5 kG with the help of the Paschen–Back effect in the CrH lines. Our measurements at different rotational phases suggest that the dwarf’s surface might be covered with strong small-scale magnetic fields. In addition, recent findings of the dwarf’s hydrogen emission and the Stokes V signal from the lower chromosphere indicate that its surface magnetic field might be changing rapidly giving rise to flare activity, similar to young dMe dwarfs. We substantiate the substellar origin of LSR J1835+3259 by making use of our own data as well as the photometric data from the all-sky surveys 2MASS and WISE .« less
The Influence of Atomic Diffusion on Stellar Ages and Chemical Tagging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dotter, Aaron; Conroy, Charlie; Cargile, Phillip
2017-05-10
In the era of large stellar spectroscopic surveys, there is an emphasis on deriving not only stellar abundances but also the ages for millions of stars. In the context of Galactic archeology, stellar ages provide a direct probe of the formation history of the Galaxy. We use the stellar evolution code MESA to compute models with atomic diffusion—with and without radiative acceleration—and extra mixing in the surface layers. The extra mixing consists of both density-dependent turbulent mixing and envelope overshoot mixing. Based on these models we argue that it is important to distinguish between initial, bulk abundances (parameters) and current,more » surface abundances (variables) in the analysis of individual stellar ages. In stars that maintain radiative regions on evolutionary timescales, atomic diffusion modifies the surface abundances. We show that when initial, bulk metallicity is equated with current, surface metallicity in isochrone age analysis, the resulting stellar ages can be systematically overestimated by up to 20%. The change of surface abundances with evolutionary phase also complicates chemical tagging, which is the concept that dispersed star clusters can be identified through unique, high-dimensional chemical signatures. Stars from the same cluster, but in different evolutionary phases, will show different surface abundances. We speculate that calibration of stellar models may allow us to estimate not only stellar ages but also initial abundances for individual stars. In the meantime, analyzing the chemical properties of stars in similar evolutionary phases is essential to minimize the effects of atomic diffusion in the context of chemical tagging.« less
Radiation Pressure-Driven Magnetic Disk Winds in Broad Absorption Line Quasi-Stellar Objects
NASA Technical Reports Server (NTRS)
DeKool, Martin; Begelman, Mitchell C.
1995-01-01
We explore a model in which QSO broad absorption lines (BALS) are formed in a radiation pressure-driven wind emerging from a magnetized accretion disk. The magnetic field threading the disk material is dragged by the flow and is compressed by the radiation pressure until it is dynamically important and strong enough to contribute to the confinement of the BAL clouds. We construct a simple self-similar model for such radiatively driven magnetized disk winds, in order to explore their properties. It is found that solutions exist for which the entire magnetized flow is confined to a thin wedge over the surface of the disk. For reasonable values of the mass-loss rate, a typical magnetic field strength such that the magnetic pressure is comparable to the inferred gas pressure in BAL clouds, and a moderate amount of internal soft X-ray absorption, we find that the opening angle of the flow is approximately 0.1 rad, in good agreement with the observed covering factor of the broad absorption line region.
Can Superflares Occur on the Sun? A View from Dynamo Theory
NASA Astrophysics Data System (ADS)
Katsova, M. M.; Kitchatinov, L. L.; Livshits, M. A.; Moss, D. L.; Sokoloff, D. D.; Usoskin, I. G.
2018-01-01
Recent data from the Kepler mission has revealed the occurrence of superflares in Sun-like stars which exceed by far any observed solar flares in released energy. Radionuclide data do not provide evidence for occurrence of superflares on the Sun over the past eleven millennia. Stellar data for a subgroup of superflaring Kepler stars are analysed in an attempt to find possible progenitors of their abnormal magnetic activity. A natural idea is that the dynamo mechanism in superflaring stars differs in some respect from that in the Sun. We search for a difference in the dynamo-related parameters between superflaring stars and the Sun to suggest a dynamo mechanism as close as possible to the conventional solar/stellar dynamo but capable of providing much higher magnetic energy. Dynamo based on joint action of differential rotation and mirror asymmetric motions can in principle result in excitation of two types of magnetic fields. First of all, it is well-known in solar physics dynamo waves. The point is that another magnetic configuration with initial growth and further stabilisation can also be excited. For comparable conditions, magnetic field of second configuration is much stronger than that of the first one just because dynamo does not spend its energy for periodic magnetic field inversions but uses it for magnetic field growth. We analysed available data from the Kepler mission concerning the superflaring stars in order to find tracers of anomalous magnetic activity. As suggested in a recent paper [1], we find that anti-solar differential rotation or anti-solar sign of the mirror-asymmetry of stellar convection can provide the desired strong magnetic field in dynamo models. We confirm this concept by numerical models of stellar dynamos with corresponding governing parameters. We conclude that the proposed mechanism can plausibly explain the superflaring events at least for some cool stars, including binaries, subgiants and, possibly, low-mass stars and young rapid rotators.
NASA Astrophysics Data System (ADS)
Tofflemire, Benjamin M.; Mathieu, Robert D.; Ardila, David R.; Akeson, Rachel L.; Ciardi, David R.; Herczeg, Gregory; Johns-Krull, Christopher M.; Vodniza, Alberto
2016-01-01
Protostellar disks are integral to the formation and evolution of low-mass stars and planets. A paradigm for the star-disk interaction has been extensively developed through theory and observation in the case of single stars. Most stars, however, form in binaries or higher order systems where the distribution of disk material and mass flows are more complex. Pre-main sequence (PMS) binary stars can have up to three accretion disks: two circumstellar disks and a circumbinary disk separated by a dynamically cleared gap. Theory suggests that mass may periodically flow in an accretion stream from a circumbinary disk across the gap onto circumstellar disks or stellar surfaces.The archetype for this theory is the eccentric, PMS binary DQ Tau. Moderate-cadence broadband photometry (~10 observations per orbital period) has shown pulsed brightening events near most periastron passages, just as numerical simulations would predict for a binary of similar orbital parameters. While this observed behavior supports the accretion stream theory, it is not exclusive to variable accretion rates. Magnetic reconnection events (flares) during the collision of stellar magnetospheres at periastron (when separated by 8 stellar radii) could produce the same periodic, broadband behavior when observed at a one-day cadence. Further evidence for magnetic activity comes from gyrosynchrotron, radio flares (typical of stellar flares) observed near multiple periastron passages. To reveal the physical mechanism seen in DQ Tau's moderate-cadence observations, we have obtained continuous, moderate-cadence, multi-band photometry over 10 orbital periods (LCOGT 1m network), supplemented with 32 nights of minute-cadence photometry centered on 4 separate periastron passages (WIYN 0.9m; APO ARCSAT). With detailed lightcurve morphologies we distinguish between the gradual rise and fall on multi-day time-scales predicted by the accretion stream theory and the hour time-scale, rapid-rise and exponential-decay typical of flares. While both are present, accretion dominates the observed variability providing evidence for the accretion stream theory and detailed mass accretion rates for comparison with numerical simulations.
Radially Magnetized Protoplanetary Disk: Vertical Profile
NASA Astrophysics Data System (ADS)
Russo, Matthew; Thompson, Christopher
2015-11-01
This paper studies the response of a thin accretion disk to an external radial magnetic field. Our focus is on protoplanetary disks (PPDs), which are exposed during their later evolution to an intense, magnetized wind from the central star. A radial magnetic field is mixed into a thin surface layer, wound up by the disk shear, and pushed downward by a combination of turbulent mixing and ambipolar and ohmic drift. The toroidal field reaches much greater strengths than the seed vertical field that is usually invoked in PPD models, even becoming superthermal. Linear stability analysis indicates that the disk experiences the magnetorotational instability (MRI) at a higher magnetization than a vertically magnetized disk when both the effects of ambipolar and Hall drift are taken into account. Steady vertical profiles of density and magnetic field are obtained at several radii between 0.06 and 1 AU in response to a wind magnetic field Br ˜ (10-4-10-2)(r/ AU)-2 G. Careful attention is given to the radial and vertical ionization structure resulting from irradiation by stellar X-rays. The disk is more strongly magnetized closer to the star, where it can support a higher rate of mass transfer. As a result, the inner ˜1 AU of a PPD is found to evolve toward lower surface density. Mass transfer rates around 10-8 M⊙ yr-1 are obtained under conservative assumptions about the MRI-generated stress. The evolution of the disk and the implications for planet migration are investigated in the accompanying paper.
Equilibrium Reconstruction on the Large Helical Device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samuel A. Lazerson, D. Gates, D. Monticello, H. Neilson, N. Pomphrey, A. Reiman S. Sakakibara, and Y. Suzuki
Equilibrium reconstruction is commonly applied to axisymmetric toroidal devices. Recent advances in computational power and equilibrium codes have allowed for reconstructions of three-dimensional fields in stellarators and heliotrons. We present the first reconstructions of finite beta discharges in the Large Helical Device (LHD). The plasma boundary and magnetic axis are constrained by the pressure profile from Thomson scattering. This results in a calculation of plasma beta without a-priori assumptions of the equipartition of energy between species. Saddle loop arrays place additional constraints on the equilibrium. These reconstruction utilize STELLOPT, which calls VMEC. The VMEC equilibrium code assumes good nested fluxmore » surfaces. Reconstructed magnetic fields are fed into the PIES code which relaxes this constraint allowing for the examination of the effect of islands and stochastic regions on the magnetic measurements.« less
NASA Technical Reports Server (NTRS)
Harvey, Karen L. (Editor)
1992-01-01
Attention is given to a flux-transport model, the effect of fractal distribution on the evolution of solar surface magnetic fields, active nests on the sun, magnetic flux transport in solar active regions, recent advances in stellar cycle research, magnetic intermittency on the sun, a search for existence of large-scale motions on the sun, and new solar cycle data from the NASA/NSO spectromagnetograph. Attention is also given to the solar cycle variation of coronal temperature during cycle 22, the distribution of the north-south asymmetry for the various activity cycles, solar luminosity variation, a two-parameter model of total solar irradiance variation over the solar cycle, the origin of the solar cycle, nonlinear feedbacks in the solar dynamo, and long-term dynamics of the solar cycle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feiden, Gregory A.; Chaboyer, Brian, E-mail: gregory.a.feiden.gr@dartmouth.edu, E-mail: brian.chaboyer@dartmouth.edu
2013-12-20
Magnetic fields are hypothesized to inflate the radii of low-mass stars—defined as less massive than 0.8 M {sub ☉}—in detached eclipsing binaries (DEBs). We investigate this hypothesis using the recently introduced magnetic Dartmouth stellar evolution code. In particular, we focus on stars thought to have a radiative core and convective outer envelope by studying in detail three individual DEBs: UV Psc, YY Gem, and CU Cnc. Our results suggest that the stabilization of thermal convection by a magnetic field is a plausible explanation for the observed model-radius discrepancies. However, surface magnetic field strengths required by the models are significantly strongermore » than those estimated from observed coronal X-ray emission. Agreement between model predicted surface magnetic field strengths and those inferred from X-ray observations can be found by assuming that the magnetic field sources its energy from convection. This approach makes the transport of heat by convection less efficient and is akin to reduced convective mixing length methods used in other studies. Predictions for the metallicity and magnetic field strengths of the aforementioned systems are reported. We also develop an expression relating a reduction in the convective mixing length to a magnetic field strength in units of the equipartition value. Our results are compared with those from previous investigations to incorporate magnetic fields to explain the low-mass DEB radius inflation. Finally, we explore how the effects of magnetic fields might affect mass determinations using asteroseismic data and the implication of magnetic fields on exoplanet studies.« less
The Detectability of Radio Auroral Emission from Proxima b
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burkhart, Blakesley; Loeb, Abraham
Magnetically active stars possess stellar winds whose interactions with planetary magnetic fields produce radio auroral emission. We examine the detectability of radio auroral emission from Proxima b, the closest known exosolar planet orbiting our nearest neighboring star, Proxima Centauri. Using the radiometric Bode’s law, we estimate the radio flux produced by the interaction of Proxima Centauri’s stellar wind and Proxima b’s magnetosphere for different planetary magnetic field strengths. For plausible planetary masses, Proxima b could produce radio fluxes of 100 mJy or more in a frequency range of 0.02–3 MHz for planetary magnetic field strengths of 0.007–1 G. According tomore » recent MHD models that vary the orbital parameters of the system, this emission is expected to be highly variable. This variability is due to large fluctuations in the size of Proxima b’s magnetosphere as it crosses the equatorial streamer regions of dense stellar wind and high dynamic pressure. Using the MHD model of Garraffo et al. for the variation of the magnetosphere radius during the orbit, we estimate that the observed radio flux can vary nearly by an order of magnitude over the 11.2-day period of Proxima b. The detailed amplitude variation depends on the stellar wind, orbital, and planetary magnetic field parameters. We discuss observing strategies for proposed future space-based observatories to reach frequencies below the ionospheric cutoff (∼10 MHz), which would be required to detect the signal we investigate.« less
Spectral variability of photospheric radiation due to faculae. I. The Sun and Sun-like stars
NASA Astrophysics Data System (ADS)
Norris, Charlotte M.; Beeck, Benjamin; Unruh, Yvonne C.; Solanki, Sami K.; Krivova, Natalie A.; Yeo, Kok Leng
2017-09-01
Context. Stellar spectral variability on timescales of a day and longer, arising from magnetic surface features such as dark spots and bright faculae, is an important noise source when characterising extra-solar planets. Current 1D models of faculae do not capture the geometric properties and fail to reproduce observed solar facular contrasts. Magnetoconvection simulations provide facular contrasts accounting for geometry. Aims: We calculate facular contrast spectra from magnetoconvection models of the solar photosphere with a view to improve (a) future parameter determinations for planets with early G type host stars and (b) reconstructions of solar spectral variability. Methods: Regions of a solar twin (G2, log g = 4.44) atmosphere with a range of initial average vertical magnetic fields (100 to 500 G) were simulated using a 3D radiation-magnetohydrodynamics code, MURaM, and synthetic intensity spectra were calculated from the ultraviolet (149.5 nm) to the far infrared (160 000 nm) with the ATLAS9 radiative transfer code. Nine viewing angles were investigated to account for facular positions across most of the stellar disc. Results: Contrasts of the radiation from simulation boxes with different levels of magnetic flux relative to an atmosphere with no magnetic field are a complicated function of position, wavelength and magnetic field strength that is not reproduced by 1D facular models. Generally, contrasts increase towards the limb, but at UV wavelengths a saturation and decrease are observed close to the limb. Contrasts also increase strongly from the visible to the UV; there is a rich spectral dependence, with marked peaks in molecular bands and strong spectral lines. At disc centre, a complex relationship with magnetic field was found and areas of strong magnetic field can appear either dark or bright, depending on wavelength. Spectra calculated for a wide variety of magnetic fluxes will also serve to improve total and spectral solar irradiance reconstructions.
Tidal Heating of Earth-like Exoplanets around M Stars: Thermal, Magnetic, and Orbital Evolutions.
Driscoll, P E; Barnes, R
2015-09-01
The internal thermal and magnetic evolution of rocky exoplanets is critical to their habitability. We focus on the thermal-orbital evolution of Earth-mass planets around low-mass M stars whose radiative habitable zone overlaps with the "tidal zone," where tidal dissipation is expected to be a significant heat source in the interior. We develop a thermal-orbital evolution model calibrated to Earth that couples tidal dissipation, with a temperature-dependent Maxwell rheology, to orbital circularization and migration. We illustrate thermal-orbital steady states where surface heat flow is balanced by tidal dissipation and cooling can be stalled for billions of years until circularization occurs. Orbital energy dissipated as tidal heat in the interior drives both inward migration and circularization, with a circularization time that is inversely proportional to the dissipation rate. We identify a peak in the internal dissipation rate as the mantle passes through a viscoelastic state at mantle temperatures near 1800 K. Planets orbiting a 0.1 solar-mass star within 0.07 AU circularize before 10 Gyr, independent of initial eccentricity. Once circular, these planets cool monotonically and maintain dynamos similar to that of Earth. Planets forced into eccentric orbits can experience a super-cooling of the core and rapid core solidification, inhibiting dynamo action for planets in the habitable zone. We find that tidal heating is insignificant in the habitable zone around 0.45 (or larger) solar-mass stars because tidal dissipation is a stronger function of orbital distance than stellar mass, and the habitable zone is farther from larger stars. Suppression of the planetary magnetic field exposes the atmosphere to stellar wind erosion and the surface to harmful radiation. In addition to weak magnetic fields, massive melt eruption rates and prolonged magma oceans may render eccentric planets in the habitable zone of low-mass stars inhospitable for life.
Could the stellar magnetic field explain the structures in the AU Mic debris disk?
NASA Astrophysics Data System (ADS)
Sezestre, Élie; Augereau, Jean-Charles
2016-05-01
Recent SPHERE and reprocessed HST images of the edge-on AU Mic debris disk have revealed arch-like structures moving away from the star on unbound trajectories. No model in the literature can readily explain these features. Here, we explore the effect of the large-scale, stellar magnetic field on the dust dynamics. We show that our study may place constraints on the dust production location.
Accretion shocks in the laboratory: Design of an experiment to study star formation
Young, Rachel P.; Kuranz, C. C.; Drake, R. P.; ...
2017-02-13
Here, we present the design of a laboratory-astrophysics experiment to study magnetospheric accretion relevant to young, pre-main-sequence stars. Spectra of young stars show evidence of hotspots created when streams of accreting material impact the surface of the star and create shocks. The structures that form during this process are poorly understood, as the surfaces of young stars cannot be spatially resolved. Our experiment would create a scaled "accretion shock" at a major (several kJ) laser facility. The experiment drives a plasma jet (the "accretion stream") into a solid block (the "stellar surface"), in the presence of a parallel magnetic fieldmore » analogous to the star's local field.« less
The sn stars - Magnetically controlled stellar winds among the helium-weak stars
NASA Technical Reports Server (NTRS)
Shore, Steven N.; Brown, Douglas N.; Sonneborn, George
1987-01-01
The paper reports observations of magnetically controlled stellar mass outflows in three helium-weak sn stars: HD 21699 = HR 1063; HD 5737 = Alpha Scl; and HD 79158 = 36 Lyn. IUE observations show that the C IV resonance doublet is variable on the rotational timescale but that there are no other strong-spectrum variations in the UV. Magnetic fields, which reverse sign on the rotational timescale, are present in all three stars. This phenomenology is interpreted in terms of jetlike mass loss above the magnetic poles, and these objects are discussed in the context of a general survey of the C IV and Si IV profiles of other more typical helium-weak stars.
Steady hydromagnetic flows in open magnetic fields. II - Global flows with static zones
NASA Technical Reports Server (NTRS)
Tsinganos, K.; Low, B. C.
1989-01-01
A theoretical study of an axisymmetric steady stellar wind with a static zone is presented, with emphasis on the situation where the global magnetic field is symmetrical about the stellar equator and is partially open. In this scenario, the wind escapes in open magnetic fluxes originating from a region at the star pole and a region at an equatorial belt of closed magnetic field in static equilibrium. The two-dimensional balance of the pressure gradient and the inertial, gravitational, and Lorentz forces in different parts of the flow are studied, along with the static interplay between external sources of energy (heating and/or cooling) distributed in the flow and the pressure distribution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orange, N. Brice; Chesny, David L.; Gendre, Bruce
Solar variability investigations that include magnetic energy coupling are paramount to solving many key solar/stellar physics problems, particularly for understanding the temporal variability of magnetic energy redistribution and heating processes. Using three years of observations from the Solar Dynamics Observatory ’ s Atmospheric Imaging Assembly and Heliosemic Magnetic Imager, we measured radiative and magnetic fluxes from gross features and at full-disk scales, respectively. Magnetic energy coupling analyses support radiative flux descriptions via the plasma heating connectivity of dominant (magnetic) and diffuse components, specifically of the predominantly closed-field corona. Our work shows that this relationship favors an energetic redistribution efficiency acrossmore » large temperature gradients, and potentially sheds light on the long-standing issue of diffuse unresolved low corona emission. The close connection between magnetic energy redistribution and plasma conditions revealed by this work lends significant insight into the field of stellar physics, as we have provided possible means for probing distant sources in currently limited and/or undetectable radiation distributions.« less
The Effects of Magnetic Activity on Lithium-Inferred Ages of Stars
NASA Astrophysics Data System (ADS)
Juarez, Aaron J.; Cargile, Phillip A.; James, David J.; Stassun, Keivan G.
2014-08-01
In this project, we investigate the effects of magnetic activity on the Lithium Depletion Boundary (LDB) to recalibrate the measured ages for star clusters, using the open cluster Blanco 1 as a pilot study. We apply the LDB technique on low-mass Pre-Main-Sequence (PMS) stars to derive an accurate age for Blanco 1, and we consider the effect of magnetic activity on this inferred age. Although observations have shown that magnetic activity directly affects stellar radius and temperature, most PMS models do not include the effects of magnetic activity on stellar properties. Since the lithium abundance of a star depends on its radius and temperature, we expect that LDB ages are affected by magnetic activity. After empirically accounting for the effects of magnetic activity, we find the age of Blanco 1 to be ~100 Myr, which is ~30 Myr younger than the standard LDB age of ~130 Myr.
An X-shooter survey of star forming regions: Low-mass stars and sub-stellar objects
NASA Astrophysics Data System (ADS)
Alcalá, J. M.; Stelzer, B.; Covino, E.; Cupani, G.; Natta, A.; Randich, S.; Rigliaco, E.; Spezzi, L.; Testi, L.; Bacciotti, F.; Bonito, R.; Covino, S.; Flaccomio, E.; Frasca, A.; Gandolfi, D.; Leone, F.; Micela, G.; Nisini, B.; Whelan, E.
2011-03-01
We present preliminary results of our X-shooter survey in star forming regions. In this contribution we focus on sub-samples of young stellar and sub-stellar objects (YSOs) in the Lupus star forming region and in the TW Hya association. We show that the X-shooter spectra are suitable for conducting several parallel studies such as YSO + disk fundamental parameters, accretion and outflow activity in the very low-mass (VLM) and sub-stellar regimes, as well as magnetic activity in young VLM YSOs, and Li abundance determinations. The capabilities of X-shooter in terms of wide spectral coverage, resolution and limiting magnitudes, allow us to assess simultaneously the accretion/outflow, magnetic activity, and disk diagnostics, from the UV and optical to the near-IR, avoiding ambiguities due to possible YSO variability. Based on observations collected at the European Southern Observatory, Chile, under Programmes 084.C-0269 and 085.C-0238.
Selections from 2017: Hostile Environment Around TRAPPIST-1
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2017-12-01
Editors note:In these last two weeks of 2017, well be looking at a few selections that we havent yet discussed on AAS Nova from among the most-downloaded paperspublished in AAS journals this year. The usual posting schedule will resume in January.The Threatening Magnetic and Plasma Environment of the TRAPPIST-1 PlanetsPublished July2017Main takeaway:Modelsof the magnetic environment surrounding the seven planets of the TRAPPIST-1 system suggest that this isnot a pleasant place to be for life. In particular, the simulations run byCecilia Garraffo (Harvard-Smithsonian Center for Astrophysics) and collaborators indicate that all planets in the system are bombarded by a stellar wind with a pressure thats 1,000 to 100,000 times the pressureof what we experience on Earth.Why its interesting:Simulations of the magnetic environment around the planet TRAPPIST-1 f, for a variety of different assumed planetary magnetic fields. Red field lines are those that have connected between the star and the planet. [Garraffo et al. 2017]The discovery of seven Earth-sized planets in the nearby TRAPPIST-1 system particularly given many of the planets apparent location in the stars habitable zone gave us hope that these planets might be an interesting place to look for life. But the issue of habitability is more complicated than whether or not the planets can support liquid water. Garraffo and collaborators models suggest that these planets likely have their atmospheres eroded or completely stripped by the stellar wind, renderingprospects for life on these planets low.Why the TRAPPIST-1 systemis still awesome:We may be bummed that the magnetically active host star impedes chances for life on the TRAPPIST-1 planets, but theenvironment it produces isstill pretty awesome. According to the authors models, the planets pass through wildly changing wind pressure changes as they orbit. In the process, their magnetospheres are compressed, and their magnetic field lines connect with the stellar field lines over much of the planets surfaces, causing thestellar wind particles tofunnel directly onto the planets atmospheres. The result isan exciting and dynamic environment definitely worth studying further.CitationCecilia Garraffo et al 2017 ApJL 843 L33. doi:10.3847/2041-8213/aa79ed
Observational Effects of Magnetism in O Stars: Surface Nitrogen Abundances
NASA Technical Reports Server (NTRS)
Martins, F.; Escolano, C.; Wade, G. A.; Donati, J. F.; Bouret, J. C.
2011-01-01
Aims. We investigate the surface nitrogen content of the six magnetic O stars known to date as well as of the early B-type star Tau Sco.. We compare these abundances to predictions of evolutionary models to isolate the effects of magnetic field on the transport of elements in stellar interiors. Methods. We conduct a quantitative spectroscopic analysis of the ample stars with state-of-the-art atmosphere models. We rely on high signal-to-noise ratio, high resolution optical spectra obtained with ESPADONS at CFHT and NARVAL at TBL. Atmosphere models and synthetic spectra are computed with the code CMFGEN. Values of N/H together with their uncertainties are determined and compared to predictions of evolutionary models. Results. We find that the magnetic stars can be divided into two groups: one with stars displaying no N enrichment (one object); and one with stars most likely showing extra N enrichment (5 objects). For one star (Ori C) no robust conclusion can be drawn due to its young age. The star with no N enrichment is the one with the weakest magnetic field, possibly of dynamo origin. It might be a star having experienced strong magnetic braking under the condition of solid body rotation, but its rotational velocity is still relatively large. The five stars with high N content were probably slow rotators on the zero age main sequence, but they have surface N/H typical of normal O stars, indicating that the presence of a (probably fossil) magnetic field leads to extra enrichment. These stars may have a strong differential rotation inducing shear mixing. Our results shOuld be viewed as a basis on which new theoretical simulations can rely to better understand the effect of magnetism on the evolution of massive stars.
NASA Astrophysics Data System (ADS)
Ayres, T. R.
2004-05-01
Many solar-stellar astronomers believe that the solar-stellar connection primarily is a one-way street: the exquisitely detailed studies of the solar surface, interior, and heliosphere strongly mold our views of the distant, unresolved stars. Perhaps many solar physicists have gone so far as to adopt the myopic view that stellar astronomy, by and large, is merely sponging up the fabulous insights from ever deeper examinations of our local star, but the ``dark side'' is not really capable of returning the favor. What could we possibly learn from the stars, that we don't already know from much better observations of the Sun? In my Introduction to this Topical Session, I will discuss two broad issues: (1) the present divergence between solar and stellar physics (driven by the different goals and tools of the two disciplines); and (2) the diversity of stars in the H-R diagram, to help inform our understanding of solar processes. Today, there are observations of stars that greatly exceed the quality of analogous solar measurements: e.g., HST/STIS UV echelle spectra of Alpha Cen A; Chandra transmission grating spectra of solar-type stars; and only recently have we obtained a definitive understanding of the Sun's soft X-ray luminosity in the key ROSAT/PSPC band. The lack of equivalent solar observations hinders practical applications of the solar-stellar connection. On the more informative side, the evolutionary paths of other stars can be quite different from the Sun's, with potentially dramatic influences on phenomena such as magnetic activity. Equally important, examples of Sun-like stars can be found at all stages of evolution, from proplyds to red giants, in the volume of nearby space out to 500 pc. In short, the solar-stellar connection need not be a one-way street, but rather a powerful tool to explore solar processes within the broader context of stars and stellar evolution. This work was supported by NASA grant NAG5-13058.
A Method to Measure the Transverse Magnetic Field and Orient the Rotational Axis of Stars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leone, Francesco; Scalia, Cesare; Gangi, Manuele
Direct measurements of stellar magnetic fields are based on the splitting of spectral lines into polarized Zeeman components. With a few exceptions, Zeeman signatures are hidden in data noise, and a number of methods have been developed to measure the average, over the visible stellar disk, of longitudinal components of the magnetic field. At present, faint stars are only observable via low-resolution spectropolarimetry, which is a method based on the regression of the Stokes V signal against the first derivative of Stokes I . Here, we present an extension of this method to obtain a direct measurement of the transversemore » component of stellar magnetic fields by the regression of high-resolution Stokes Q and U as a function of the second derivative of Stokes I . We also show that it is possible to determine the orientation in the sky of the rotation axis of a star on the basis of the periodic variability of the transverse component due to its rotation. The method is applied to data, obtained with the Catania Astrophysical Observatory Spectropolarimeter along the rotational period of the well known magnetic star β CrB.« less
NASA Technical Reports Server (NTRS)
Musielak, Z. E.; Rosner, R.
1988-01-01
Magnetohydrodynamic (MHD) wave energy fluxes for late-type stars are calculated, using previously obtained formulae for the source functions for the generation of MHD waves in a stratified, but otherwise uniform, turbulent atmosphere; the magnetic fields in the wave generation region are assumed to be homogeneous. In contradiction to previous results, it is shown that in this uniform magnetic field case there is no significant increase in the efficiency of MHD wave generation, at least within the theory's limits of applicability. The major results are that the MHD energy fluxes calculated for late-type stars are less than those obtained for compressible modes in the magnetic field-free case, and that these MHD energy fluxes do not vary enough for a given spectral type to explain the observed range of UV and X-ray fluxes from such stars. It is therefore concluded that MHD waves in stellar atmospheres with homogeneous magnetic fields in the wave generation region cannot explain the observed stellar coronal emissions; if such MHD waves are responsible for a significant component of stellar coronal heating, then nonuniform fields within the generation region must be appealed to.
NASA Astrophysics Data System (ADS)
He, Han; Wang, Huaning; Zhang, Mei; Mehrabi, Ahmad; Yan, Yan; Yun, Duo
2018-05-01
The light curves of solar-type stars present both periodic fluctuation and flare spikes. The gradual periodic fluctuation is interpreted as the rotational modulation of magnetic features on the stellar surface and is used to deduce magnetic feature activity properties. The flare spikes in light curves are used to derive flare activity properties. In this paper, we analyze the light curve data of three solar-type stars (KIC 6034120, KIC 3118883, and KIC 10528093) observed with Kepler space telescope and investigate the relationship between their magnetic feature activities and flare activities. The analysis shows that: (1) both the magnetic feature activity and the flare activity exhibit long-term variations as the Sun does; (2) unlike the Sun, the long-term variations of magnetic feature activity and flare activity are not in phase with each other; (3) the analysis of star KIC 6034120 suggests that the long-term variations of magnetic feature activity and flare activity have a similar cycle length. Our analysis and results indicate that the magnetic features that dominate rotational modulation and the flares possibly have different source regions, although they may be influenced by the magnetic field generated through a same dynamo process.
Single rotating stars and the formation of bipolar planetary nebula
DOE Office of Scientific and Technical Information (OSTI.GOV)
García-Segura, G.; Villaver, E.; Langer, N.
2014-03-10
We have computed new stellar evolution models that include the effects of rotation and magnetic torques under different hypotheses. The goal is to test whether a single star can sustain the rotational velocities needed in the envelope for magnetohydrodynamical(MHD) simulations to shape bipolar planetary nebulae (PNe) when high mass-loss rates take place. Stellar evolution models with main sequence masses of 2.5 and 5 M {sub ☉} and initial rotational velocities of 250 km s{sup –1} have been followed through the PNe formation phase. We find that stellar cores have to be spun down using magnetic torques in order to reproducemore » the rotation rates observed for white dwarfs. During the asymptotic giant branch phase and beyond, the magnetic braking of the core has a practically null effect on increasing the rotational velocity of the envelope since the stellar angular momentum is efficiently removed by the wind. We have also tested the best possible case scenarios in rather non-physical contexts to give enough angular momentum to the envelope. We find that we cannot get the envelope of a single star to rotate at the speeds needed for MHD simulations to form bipolar PNe. We conclude that single stellar rotators are unlikely to be the progenitors of bipolar PNe under the current MHD model paradigm.« less
Asteroseismology can reveal strong internal magnetic fields in red giant stars.
Fuller, Jim; Cantiello, Matteo; Stello, Dennis; Garcia, Rafael A; Bildsten, Lars
2015-10-23
Internal stellar magnetic fields are inaccessible to direct observations, and little is known about their amplitude, geometry, and evolution. We demonstrate that strong magnetic fields in the cores of red giant stars can be identified with asteroseismology. The fields can manifest themselves via depressed dipole stellar oscillation modes, arising from a magnetic greenhouse effect that scatters and traps oscillation-mode energy within the core of the star. The Kepler satellite has observed a few dozen red giants with depressed dipole modes, which we interpret as stars with strongly magnetized cores. We find that field strengths larger than ~10(5) gauss may produce the observed depression, and in one case we infer a minimum core field strength of ≈10(7) gauss. Copyright © 2015, American Association for the Advancement of Science.
CONVECTION THEORY AND SUB-PHOTOSPHERIC STRATIFICATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arnett, David; Meakin, Casey; Young, Patrick A., E-mail: darnett@as.arizona.ed, E-mail: casey.meakin@gmail.co, E-mail: patrick.young.1@asu.ed
2010-02-20
As a preliminary step toward a complete theoretical integration of three-dimensional compressible hydrodynamic simulations into stellar evolution, convection at the surface and sub-surface layers of the Sun is re-examined, from a restricted point of view, in the language of mixing-length theory (MLT). Requiring that MLT use a hydrodynamically realistic dissipation length gives a new constraint on solar models. While the stellar structure which results is similar to that obtained by Yale Rotational Evolution Code (Guenther et al.; Bahcall and Pinsonneault) and Garching models (Schlattl et al.), the theoretical picture differs. A new quantitative connection is made between macro-turbulence, micro-turbulence, andmore » the convective velocity scale at the photosphere, which has finite values. The 'geometric parameter' in MLT is found to correspond more reasonably with the thickness of the superadiabatic region (SAR), as it must for consistency in MLT, and its integrated effect may correspond to that of the strong downward plumes which drive convection (Stein and Nordlund), and thus has a physical interpretation even in MLT. If we crudely require the thickness of the SAR to be consistent with the 'geometric factor' used in MLT, there is no longer a free parameter, at least in principle. Use of three-dimensional simulations of both adiabatic convection and stellar atmospheres will allow the determination of the dissipation length and the geometric parameter (i.e., the entropy jump) more realistically, and with no astronomical calibration. A physically realistic treatment of convection in stellar evolution will require substantial additional modifications beyond MLT, including nonlocal effects of kinetic energy flux, entrainment (the most dramatic difference from MLT found by Meakin and Arnett), rotation, and magnetic fields.« less
SPIN EVOLUTION OF ACCRETING YOUNG STARS. II. EFFECT OF ACCRETION-POWERED STELLAR WINDS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matt, Sean P.; Pinzon, Giovanni; Greene, Thomas P.
2012-01-20
We present a model for the rotational evolution of a young, solar-mass star interacting magnetically with an accretion disk. As in a previous paper (Paper I), the model includes changes in the star's mass and radius as it descends the Hayashi track, a decreasing accretion rate, and a prescription for the angular momentum transfer between the star and disk. Paper I concluded that, for the relatively strong magnetic coupling expected in real systems, additional processes are necessary to explain the existence of slowly rotating pre-main-sequence stars. In the present paper, we extend the stellar spin model to include the effectmore » of a spin-down torque that arises from an accretion-powered stellar wind (APSW). For a range of magnetic field strengths, accretion rates, initial spin rates, and mass outflow rates, the modeled stars exhibit rotation periods within the range of 1-10 days in the age range of 1-3 Myr. This range coincides with the bulk of the observed rotation periods, with the slow rotators corresponding to stars with the lowest accretion rates, strongest magnetic fields, and/or highest stellar wind mass outflow rates. We also make a direct, quantitative comparison between the APSW scenario and the two types of disk-locking models (namely, the X-wind and Ghosh and Lamb type models) and identify some remaining theoretical issues for understanding young star spins.« less
Spin Evolution of Accreting Young Stars. II. Effect of Accretion-powered Stellar Winds
NASA Astrophysics Data System (ADS)
Matt, Sean P.; Pinzón, Giovanni; Greene, Thomas P.; Pudritz, Ralph E.
2012-01-01
We present a model for the rotational evolution of a young, solar-mass star interacting magnetically with an accretion disk. As in a previous paper (Paper I), the model includes changes in the star's mass and radius as it descends the Hayashi track, a decreasing accretion rate, and a prescription for the angular momentum transfer between the star and disk. Paper I concluded that, for the relatively strong magnetic coupling expected in real systems, additional processes are necessary to explain the existence of slowly rotating pre-main-sequence stars. In the present paper, we extend the stellar spin model to include the effect of a spin-down torque that arises from an accretion-powered stellar wind (APSW). For a range of magnetic field strengths, accretion rates, initial spin rates, and mass outflow rates, the modeled stars exhibit rotation periods within the range of 1-10 days in the age range of 1-3 Myr. This range coincides with the bulk of the observed rotation periods, with the slow rotators corresponding to stars with the lowest accretion rates, strongest magnetic fields, and/or highest stellar wind mass outflow rates. We also make a direct, quantitative comparison between the APSW scenario and the two types of disk-locking models (namely, the X-wind and Ghosh & Lamb type models) and identify some remaining theoretical issues for understanding young star spins.
Polarized radiation diagnostics of stellar magnetic fields
NASA Astrophysics Data System (ADS)
Mathys, Gautier
The main techniques used to diagnose magnetic fields in stars from polarimetric observations are presented. First, a summary of the physics of spectral line formation in the presence of a magnetic field is given. Departures from the simple case of linear Zeeman effect are briefly considered: partial Paschen-Back effect, contribution of hyperfine structure, and combined Stark and Zeeman effects. Important approximate solutions of the equation of transfer of polarized light in spectral lines are introduced. The procedure for disk-integration of emergent Stokes profiles, which is central to stellar magnetic field studies, is described, with special attention to the treatment of stellar rotation. This formalism is used to discuss the determination of the mean longitudinal magnetic field (through the photographic technique and through Balmer line photopolarimetry). This is done within the specific framework of Ap stars, which, with their unique large-scale organized magnetic fields, are an ideal laboratory for studies of stellar magnetism. Special attention is paid to those Ap stars whose magnetically split line components are resolved in high-dispersion Stokes I spectra, and to the determination of their mean magnetic field modulus. Various techniques of exploitation of the information contained in polarized spectral line profiles are reviewed: the moment technique (in particular, the determination of the crossover and of the mean quadratic field), Zeeman-Doppler imaging, and least-squares deconvolution. The prospects that these methods open for linear polarization studies are sketched. The way in which linear polarization diagnostics complement their Stokes I and V counterparts is emphasized by consideration of the results of broad band linear polarization measurements. Illustrations of the use of various diagnostics to derive properties of the magnetic fields of Ap stars are given. This is used to show the interest of deriving more physically realistic models of the geometric structure of these fields. How this can possibly be achieved is briefly discussed. An overview of the current status of polarimetric studies of magnetic fields in non-degenerate stars of other types is presented. The final section is devoted to magnetic fields of white dwarfs. Current knowledge of magnetic fields of isolated white dwarfs is briefly reviewed. Diagnostic techniques are discussed, with particular emphasis on the variety of physical processes to be considered for understanding of spectral line formation over the broad range of magnetic field strengths encountered in these stars.
A substantial amount of hidden magnetic energy in the quiet Sun.
Bueno, J Trujillo; Shchukina, N; Ramos, A Asensio
2004-07-15
Deciphering and understanding the small-scale magnetic activity of the quiet solar photosphere should help to solve many of the key problems of solar and stellar physics, such as the magnetic coupling to the outer atmosphere and the coronal heating. At present, we can see only approximately 1 per cent of the complex magnetism of the quiet Sun, which highlights the need to develop a reliable way to investigate the remaining 99 per cent. Here we report three-dimensional radiative transfer modelling of scattering polarization in atomic and molecular lines that indicates the presence of hidden, mixed-polarity fields on subresolution scales. Combining this modelling with recent observational data, we find a ubiquitous tangled magnetic field with an average strength of approximately 130 G, which is much stronger in the intergranular regions of solar surface convection than in the granular regions. So the average magnetic energy density in the quiet solar photosphere is at least two orders of magnitude greater than that derived from simplistic one-dimensional investigations, and sufficient to balance radiative energy losses from the solar chromosphere.
NASA Technical Reports Server (NTRS)
Baliunas, Sallie L.; Sharber, James (Technical Monitor)
2003-01-01
The following summarizes the most important, results of our research: (1) Conciliation of solar and stellar photometric variability; (2) Demonstration of an inverse correlation between the global temperature of the terrestrial lower troposphere, inferred from the NASA Microwave Sounding Unit (MSU)) radiometers, and the total area of the Sun covered by coronal holes from January 1979 to present (up to May 2000); (3) Identification of a possible climate mechanism amplifying the impact of solar ultraviolet irradiance variations; (4) Exploration of natural variability in an ocean-atmosphere climate model; (5) Presentation of a review of the sun's coronal influence on the terrestrial space environment; (6) Quantification of stellar variability as an influence on the analysis of periodic radial velocities that imply the presence of a planetary companion.
The stretching of magnetic flux tubes in the convective overshoot region
NASA Technical Reports Server (NTRS)
Fisher, George H.; Mcclymont, Alexander N.; Chou, Dean-Yi
1991-01-01
The present study examines the fate of a magnetic flux tube initially lying at the bottom of the solar convective overshoot region. Stretching of the flux tube, e.g., by differential rotation, reduces its density, causing it to rise quasi-statically (a process referred to as vertical flux drift) until it reaches the top of the overshoot region and enters the buoyantly unstable convection region, from which a portion of it may ultimately protrude to form an active region on the surface. It is suggested that vertical flux drift and flux destabilization are inevitable consequences of field amplification, and it is surmised that these phenomena should be considered in self-consistent models of solar and stellar dynamos operating in the overshoot region.
Chromospheric Activity in Cool Luminous Stars
NASA Astrophysics Data System (ADS)
Dupree, Andrea
2018-04-01
Spatially unresolved spectra of giant and supergiant stars demonstrate ubiquitous signatures of chromospheric activity, variable outflows, and winds. The advent of imaging techniques and spatially resolved spectra reveal complex structures in these extended stellar atmospheres that we do not understand. The presence and behavior of these atmospheres is wide ranging and impacts stellar activity, magnetic fields, angular momentum loss, abundance determinations, and the understanding of stellar cluster populations.
Laboratory Plasma Source as an MHD Model for Astrophysical Jets
NASA Technical Reports Server (NTRS)
Mayo, Robert M.
1997-01-01
The significance of the work described herein lies in the demonstration of Magnetized Coaxial Plasma Gun (MCG) devices like CPS-1 to produce energetic laboratory magneto-flows with embedded magnetic fields that can be used as a simulation tool to study flow interaction dynamic of jet flows, to demonstrate the magnetic acceleration and collimation of flows with primarily toroidal fields, and study cross field transport in turbulent accreting flows. Since plasma produced in MCG devices have magnetic topology and MHD flow regime similarity to stellar and extragalactic jets, we expect that careful investigation of these flows in the laboratory will reveal fundamental physical mechanisms influencing astrophysical flows. Discussion in the next section (sec.2) focuses on recent results describing collimation, leading flow surface interaction layers, and turbulent accretion. The primary objectives for a new three year effort would involve the development and deployment of novel electrostatic, magnetic, and visible plasma diagnostic techniques to measure plasma and flow parameters of the CPS-1 device in the flow chamber downstream of the plasma source to study, (1) mass ejection, morphology, and collimation and stability of energetic outflows, (2) the effects of external magnetization on collimation and stability, (3) the interaction of such flows with background neutral gas, the generation of visible emission in such interaction, and effect of neutral clouds on jet flow dynamics, and (4) the cross magnetic field transport of turbulent accreting flows. The applicability of existing laboratory plasma facilities to the study of stellar and extragalactic plasma should be exploited to elucidate underlying physical mechanisms that cannot be ascertained though astrophysical observation, and provide baseline to a wide variety of proposed models, MHD and otherwise. The work proposed herin represents a continued effort on a novel approach in relating laboratory experiments to astrophysical jet observation. There exists overwhelming similarity among these flows that has already produced some fascinating results and is expected to continue a high pay off in future flow similarity studies.
A Theoretical Model of X-Ray Jets from Young Stellar Objects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takasao, Shinsuke; Suzuki, Takeru K.; Shibata, Kazunari, E-mail: takasao@kwasan.kyoto-u.ac.jp
There is a subclass of X-ray jets from young stellar objects that are heated very close to the footpoint of the jets, particularly DG Tau jets. Previous models have attributed the strong heating to shocks in the jets. However, the mechanism that localizes the heating at the footpoint remains puzzling. We presented a different model of such X-ray jets, in which the disk atmosphere is magnetically heated. Our disk corona model is based on the so-called nanoflare model for the solar corona. We show that the magnetic heating near the disks can result in the formation of a hot coronamore » with a temperature of ≳10{sup 6} K, even if the average field strength in the disk is moderately weak, ≳1 G. We determine the density and the temperature at the jet base by considering the energy balance between the heating and cooling. We derive the scaling relations of the mass-loss rate and terminal velocity of jets. Our model is applied to the DG Tau jets. The observed temperature and estimated mass-loss rate are consistent with the prediction of our model in the case of a disk magnetic field strength of ∼20 G and a heating region of <0.1 au. The derived scaling relation of the temperature of X-ray jets could be a useful tool for estimating the magnetic field strength. We also find that the jet X-ray can have a significant impact on the ionization degree near the disk surface and the dead zone size.« less
Comparison of Microinstability Properties for Stellarator Magnetic Geometries
DOE Office of Scientific and Technical Information (OSTI.GOV)
G. Rewoldt; L.-P. Ku; W.M. Tang
2005-06-16
The microinstability properties of seven distinct magnetic geometries corresponding to different operating and planned stellarators with differing symmetry properties are compared. Specifically, the kinetic stability properties (linear growth rates and real frequencies) of toroidal microinstabilities (driven by ion temperature gradients and trapped-electron dynamics) are compared, as parameters are varied. The familiar ballooning representation is used to enable efficient treatment of the spatial variations along the equilibrium magnetic field lines. These studies provide useful insights for understanding the differences in the relative strengths of the instabilities caused by the differing localizations of good and bad magnetic curvature and of the presencemore » of trapped particles. The associated differences in growth rates due to magnetic geometry are large for small values of the temperature gradient parameter n identical to d ln T/d ln n, whereas for large values of n, the mode is strongly unstable for all of the different magnetic geometries.« less
Cosmic ray impact on extrasolar earth-like planets in close-in habitable zones.
Griessmeier, J-M; Stadelmann, A; Motschmann, U; Belisheva, N K; Lammer, H; Biernat, H K
2005-10-01
Because of their different origins, cosmic rays can be subdivided into galactic cosmic rays and solar/stellar cosmic rays. The flux of cosmic rays to planetary surfaces is mainly determined by two planetary parameters: the atmospheric density and the strength of the internal magnetic moment. If a planet exhibits an extended magnetosphere, its surface will be protected from high-energy cosmic ray particles. We show that close-in extrasolar planets in the habitable zone of M stars are synchronously rotating with their host star because of the tidal interaction. For gravitationally locked planets the rotation period is equal to the orbital period, which is much longer than the rotation period expected for planets not subject to tidal locking. This results in a relatively small magnetic moment. We found that an Earth-like extrasolar planet, tidally locked in an orbit of 0.2 AU around an M star of 0.5 solar masses, has a rotation rate of 2% of that of the Earth. This results in a magnetic moment of less than 15% of the Earth's current magnetic moment. Therefore, close-in extrasolar planets seem not to be protected by extended Earth-like magnetospheres, and cosmic rays can reach almost the whole surface area of the upper atmosphere. Primary cosmic ray particles that interact with the atmosphere generate secondary energetic particles, a so-called cosmic ray shower. Some of the secondary particles can reach the surface of terrestrial planets when the surface pressure of the atmosphere is on the order of 1 bar or less. We propose that, depending on atmospheric pressure, biological systems on the surface of Earth-like extrasolar planets at close-in orbital distances can be strongly influenced by secondary cosmic rays.
The polarimeters for HARPS and X-shooter
NASA Astrophysics Data System (ADS)
Snik, F.; Harpspol Team; X-Shooter-Pol Team
2013-01-01
Spectropolarimetry enables observations of stellar magnetic fields and circumstellar asymmetries, e.g. in disks and supernova explosions. To furnish better diagnostics of such stellar physics, we designed and commissioned a polarimetric unit at the successful HARPS spectrograph at ESO's 3.6-m telescope at La Silla. We present the design and performance of HARPSpol, and show some first science results. The most striking achievement of HARPSpol is its capability to measure stellar magnetic fields as small as 0.1 G. Finally, we give a sneak preview of the polarimeter we are currently designing for X-shooter at the VLT. It contains a novel type of polarimetric modulator that is able to efficiently measure all the Stokes parameters over the huge wavelength range of 300-2500 nm.
Pulsar Emission: Is It All Relative?
NASA Technical Reports Server (NTRS)
Harding, Alice K.
2004-01-01
Thirty-five years after the discovery of pulsars, we still do not understand the fundamentals of their pulsed emission at any wavelength. The fact that even detailed pulse profiles cannot identlfy the origin of the emission in a magnetosphere that extends fiom the neutron star surface to plasma moving at relativistic speeds near the light cylinder compounds the problem. I will discuss the role of special and general relativistic effects on pulsar emission, fiom inertial frame-dragging near the stellar surface to aberration, time-of-flight and retardation of the magnetic field near the light cylinder. Understanding how these effects determine what we observe at different wavelengths is critical to unraveling the emission physics.
Stellar Magnetic Activity Cycles, and Hunting for Maunder Minimum-like Events among Sun-like Stars
NASA Astrophysics Data System (ADS)
Wright, J. T.
2016-12-01
Since 1966, astronomers have been making measurements of the chromospheric activity levels of Sun-like stars. Recently, the decades-long Mount Wilson data became public (spanning 1966-1995) complementing the published measurements from the California & Carnegie Planet Survey (1995-2011) and ongoing measurements ancillary to radial velocity planet searches at Keck Observatory. I will discuss what these long time series reveal about stellar magnetic activity cycles, and the prevalence of stars in states analogous to the Sun's Maunder Minimum.
Zonal flow dynamics and control of turbulent transport in stellarators.
Xanthopoulos, P; Mischchenko, A; Helander, P; Sugama, H; Watanabe, T-H
2011-12-09
The relation between magnetic geometry and the level of ion-temperature-gradient (ITG) driven turbulence in stellarators is explored through gyrokinetic theory and direct linear and nonlinear simulations. It is found that the ITG radial heat flux is sensitive to details of the magnetic configuration that can be understood in terms of the linear behavior of zonal flows. The results throw light on the question of how the optimization of neoclassical confinement is related to the reduction of turbulence.
NASA Astrophysics Data System (ADS)
Theissen, Christopher A.; Burgasser, Adam J.; Bardalez Gagliuffi, Daniella C.; Hardegree-Ullman, Kevin K.; Gagné, Jonathan; Schmidt, Sarah J.; West, Andrew A.
2018-01-01
We present 2MASS J11151597+1937266, a recently identified low-surface-gravity L dwarf, classified as an L2γ based on Sloan Digital Sky Survey optical spectroscopy. We confirm this spectral type with near-infrared spectroscopy, which provides further evidence that 2MASS J11151597+1937266 is a low-surface-gravity L dwarf. This object also shows significant excess mid-infrared flux, indicative of circumstellar material; and its strong Hα emission (EWHα = 560 ± 82 Å) is an indicator of enhanced magnetic activity or weak accretion. Comparison of its spectral energy distribution to model photospheres yields an effective temperature of {1724}-38+184 {{K}}. We also provide a revised distance estimate of 37 ± 6 pc using a spectral type–luminosity relationship for low-surface-gravity objects. The three-dimensional galactic velocities and positions of 2MASS J11151597+1937266 do not match any known young association or moving group. Assuming a probable age in the range of 5–45 Myr, the model-dependent estimated mass of this object is between 7 and 21 M Jup, making it a potentially isolated planetary-mass object. We also identify a candidate co-moving, young stellar companion, 2MASS J11131089+2110086.
The Local ISM and its Interaction with the Winds of Nearby Late-type Stars
NASA Technical Reports Server (NTRS)
Wood, Brian E.; Linsky, Jeffrey L.
1998-01-01
We present new Goddard High-Resolution Spectrograph (GHRS) observations of the Ly-alpha and Mg II absorption lines seen toward the nearby stars 61 Cyg A and 40 Eri A. We use these data to measure interstellar properties along these lines of sight and to search for evidence of circumstellar hydrogen walls, which are produced by collisions between the stellar winds and the Local InterStellar Medium (LISM). We were able to model the Ly-alpha lines of both stars without hydrogen-wall absorption components, but for 61 Cyg A the fit required a stellar Ly-alpha, line profile with an improbably deep self-reversal, and for 40 Eri A the fit required a very low deuterium-to-hydrogen ratio that is inconsistent with previous GHRS measurements. Since these problems could be rectified simply by including stellar hydrogen-wall components with reasonable attributes, our preferred fits to the data include these components. We have explored several ways in which the hydrogen-wall properties measured here and in previous work can be used to study stellar winds and the LISM. We argue that the existence of a hydrogen wall around 40 Eri A and a low H I column density along that line of sight imply that either the interstellar density must decrease toward 40 Eri A or the hydrogen ionization fraction (chi) must increase. We find that hydrogen-wall temperatures are larger for stars with faster velocities through the LISM. The observed temperature-velocity relation is consistent with the predictions of hydromagnetic shock jump conditions. More precise comparison of the data and the jump conditions suggests crude upper limits for both chi and the ratio of magnetic to thermal pressure in the LISM (alpha): chi less than 0.6 and alpha less than 2. The latter upper limit corresponds to a limit on the LISM magnetic field of B less than 5 micro G. These results imply that the plasma Mach number of the interstellar wind flowing into the heliosphere is M(sub A) greater than 1.3, which indicates that the collision is supersonic and that there should therefore be a bow shock outside the heliopause in the upwind direction. Finally, we estimate stellar wind pressures (P sub wind) from the measured hydrogen-wall column densities. These estimates represent the first empirical measurements of wind properties for late-type main-sequence stars. The wind pressures appear to be correlated with stellar X-ray surface fluxes, F(x), in a manner consistent with the relation P(wind) varies as F(x)(exp -1/2), a relation that is also consistent with the variations of P(sub wind) and F(sub x) observed during the solar activity cycle. If this relation can in fact be generalized to solar-like stars, as is suggested by our data, then it is possible to estimate stellar wind properties simply by measuring stellar X-rays. One implication of this is that stellar wind pressures and mass-loss rates are then predicted to increase with time, since F(sub x) is known to decrease with stellar age.
Investigating the Spectroscopic Variability of Magentically Active M Dwarfs In SDSS.
NASA Astrophysics Data System (ADS)
Ventura, Jean-Paul; Schmidt, Sarah J.; Cruz, Kelle; Rice, Emily; Cid, Aurora
2018-01-01
Magnetic activity, a wide range of observable phenomena produced in the outer atmospheres of stars is, currently, not well understood for M dwarfs. In higher mass stars, magnetic activity is powered by a dynamo process involving the differential rotation of a star’s inner regions. This process generates a magnetic field, heats up regions in the chromosphere and produces Hα emission line radiation from collisional excitation. Using spectroscopic data from the Sloan Digital Sky Survey (SDSS), I compare Hα emission line strengths for a subsample of 12,000 photometric variability selected M dwarfs from Pan-STARRS1 with those of a known non-variable sample. Presumably, the photometric variability originates from the occurrence of star spots at the stellar surface, which are the result of an intense magnetic field and associated chromospheric heating. We proceed with this work in order to test whether the photometric variability of the sample correlates with chromospheric Hα emission features. If not, we explore alternate reasons for that photometric variability (e.g. binarity or transiting planetary companions)
Estimating the Magnetic Field Strength in Hot Jupiters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yadav, Rakesh K.; Thorngren, Daniel P., E-mail: rakesh_yadav@fas.harvard.edu
A large fraction of known Jupiter-like exoplanets are inflated as compared to Jupiter. These “hot” Jupiters orbit close to their parent star and are bombarded with intense starlight. Many theories have been proposed to explain their radius inflation and several suggest that a small fraction of the incident starlight is injected into the planetary interior, which helps to puff up the planet. How will such energy injection affect the planetary dynamo? In this Letter, we estimate the surface magnetic field strength of hot Jupiters using scaling arguments that relate energy available in planetary interiors to the dynamo-generated magnetic fields. Wemore » find that if we take into account the energy injected in the planetary interior that is sufficient to inflate hot Jupiters to observed radii, then the resulting dynamo should be able generate magnetic fields that are more than an order of magnitude stronger than the Jovian values. Our analysis highlights the potential fundamental role of the stellar light in setting the field strength in hot Jupiters.« less
NASA Astrophysics Data System (ADS)
Emeriau-Viard, Constance; Brun, Allan Sacha
2017-10-01
During the PMS, structure and rotation rate of stars evolve significantly. We wish to assess the consequences of these drastic changes on stellar dynamo, internal magnetic field topology and activity level by mean of HPC simulations with the ASH code. To answer this question, we develop 3D MHD simulations that represent specific stages of stellar evolution along the PMS. We choose five different models characterized by the radius of their radiative zone following an evolutionary track, from 1 Myr to 50 Myr, computed by a 1D stellar evolution code. We introduce a seed magnetic field in the youngest model and then we spread it through all simulations. First of all, we study the consequences that the increase of rotation rate and the change of geometry of the convective zone have on the dynamo field that exists in the convective envelop. The magnetic energy increases, the topology of the magnetic field becomes more complex and the axisymmetric magnetic field becomes less predominant as the star ages. The computation of the fully convective MHD model shows that a strong dynamo develops with a ratio of magnetic to kinetic energy reaching equipartition and even super-equipartition states in the faster rotating cases. Magnetic fields resulting from our MHD simulations possess a mixed poloidal-toroidal topology with no obvious dominant component. We also study the relaxation of the vestige dynamo magnetic field within the radiative core and found that it satisfies stability criteria. Hence it does not experience a global reconfiguration and instead slowly relaxes by retaining its mixed poloidal-toroidal topology.
NASA Astrophysics Data System (ADS)
Gondoin, P.; Gandolfi, D.; Fridlund, M.; Frasca, A.; Guenther, E. W.; Hatzes, A.; Deeg, H. J.; Parviainen, H.; Eigmüller, P.; Deleuil, M.
2012-12-01
Aims: The present study reports measurements of the rotation period of a young solar analogue, estimates of its surface coverage by photospheric starspots and of its chromospheric activity level, and derivations of its evolutionary status. Detailed observations of many young solar-type stars, such as the one reported in the present paper, provide insight into rotation and magnetic properties that may have prevailed on the Sun in its early evolution. Methods: Using a model based on the rotational modulation of the visibility of active regions, we analysed the high-accuracy CoRoT lightcurve of the active star CoRoT 102899501. Spectroscopic follow-up observations were used to derive its fundamental parameters. We compared the chromospheric activity level of Corot 102899501 with the R'HK index distribution vs age established on a large sample of solar-type dwarfs in open clusters. We also compared the chromospheric activity level of this young star with a model of chromospheric activity evolution established by combining relationships between the R'HK index and the Rossby number with a recent model of stellar rotation evolution on the main sequence. Results: We measure the spot coverage of the stellar surface as a function of time and find evidence for a tentative increase from 5 - 14% at the beginning of the observing run to 13-29% 35 days later. A high level of magnetic activity on Corot 102899501 is corroborated by a strong emission in the Balmer and Ca ii H and K lines (R'HK ~ -4). The starspots used as tracers of the star rotation constrain the rotation period to 1.625 ± 0.002 days and do not show evidence for differential rotation. The effective temperature (Teff = 5180 ± 80 K), surface gravity (log g = 4.35 ± 0.1), and metallicity ([M/H] = 0.05 ± 0.07 dex) indicate that the object is located near the evolutionary track of a 1.09 ± 0.12 M⊙ pre-main sequence star at an age of 23 ± 10 Myr. This value is consistent with the "gyro-age" of about 8-25 Myr, inferred using a parameterization of the stellar rotation period as a function of colour index and time established for the I-sequence of stars in stellar clusters. Conclusions: We conclude that the high magnetic activity level and fast rotation of CoRoT 102899501 are manifestations of its stellar youth consistent with its estimated evolutionary status and with the detection of a strong Li i λ6707.8 Å absorption line in its spectrum. We argue that a magnetic activity level comparable to that observed on CoRot 102899501 could have been present on the Sun at the time of planet formation. Based on observations obtained with CoRoT, a space project operated by the French Space Agency, CNES, with participation of the Science Programme of ESA, ESTEC/RSSD, Austria, Belgium, Brazil, Germany and Spain.Based on observations made with the Anglo-Australian Telescope; the 2.1-m Otto Struve telescope at McDonald Observatory, Texas, USA; the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias, in time allocated by the NOT "Fast-Track" Service Programme, OPTICON, and the Spanish Time Allocation Committee (CAT).The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement number RG226604 (OPTICON).
NASA Technical Reports Server (NTRS)
Davis, R. J.; Deutschman, W. A.; Haramundanis, K. L.
1973-01-01
Observational results obtained by the celescope experiment during the first 16 months of operation of NASA's Orbiting Astronomical Observatory are presented. Results of the stellar observations are listed along with selected ground-based information obtained from the available literature.
The effects of rotation on the surface composition and yields of low mass AGB stars.
NASA Astrophysics Data System (ADS)
Cristallo, S.; Piersanti, L.; Straniero, O.
Over the past 20 years, stellar evolutionary models have been strongly improved in order to reproduce with reasonable accuracy both photometric and spectroscopic observations. Notwithstanding, the majority of these models do not take into account macroscopic phenomena, like rotation and/or magnetic fields. Their explicit treatment could modify stellar physical and chemical properties. One of the most interesting problems related to stellar nucleosynthesis is the behavior of the s-process spectroscopic indexes ([hs/ls] and [Pb/hs]) in Asymptotic Giant Branch (AGB) stars. In this contribution we show that, for a fixed metallicity, rotation can lead to a spread in the [hs/ls] and [Pb/hs] in low-mass AGB stars. In particular, we demonstrate that the Eddington-Sweet and the Goldreich-Schubert-Fricke instabilities may have enough time to smear the 13C-pocket (the major neutron source) and the 14N-pocket (the major neutron poison). In fact, a different overlap between these pockets leads to a different neutrons-to-seeds ratio, with important consequences on the corresponding s-process distributions. Possible consequences on the chemical evolution of Galactic globular clusters are discussed.
Performance and properties of the first plasmas of Wendelstein 7-X
NASA Astrophysics Data System (ADS)
Klinger, T.; Alonso, A.; Bozhenkov, S.; Burhenn, R.; Dinklage, A.; Fuchert, G.; Geiger, J.; Grulke, O.; Langenberg, A.; Hirsch, M.; Kocsis, G.; Knauer, J.; Krämer-Flecken, A.; Laqua, H.; Lazerson, S.; Landreman, M.; Maaßberg, H.; Marsen, S.; Otte, M.; Pablant, N.; Pasch, E.; Rahbarnia, K.; Stange, T.; Szepesi, T.; Thomsen, H.; Traverso, P.; Velasco, J. L.; Wauters, T.; Weir, G.; Windisch, T.; The Wendelstein 7-X Team
2017-01-01
The optimized, superconducting stellarator Wendelstein 7-X went into operation and delivered first measurement data after 15 years of construction and one year commissioning. Errors in the magnet assembly were confirmend to be small. Plasma operation was started with 5 MW electron cyclotron resonance heating (ECRH) power and five inboard limiters. Core plasma values of {{T}\\text{e}}>8 keV, {{T}\\text{i}}>2 keV at line-integrated densities n≈ 3\\centerdot {{10}19}~{{\\text{m}}-2} were achieved, exceeding the original expectations by about a factor of two. Indications for a core-electron-root were found. The energy confinement times are in line with the international stellarator scaling, despite unfavourable wall conditions, i.e. large areas of metal surfaces and particle sources from the limiter close to the plasma volume. Well controlled shorter hydrogen discharges at higher power (4 MW ECRH power for 1 s) and longer discharges at lower power (0.7 MW ECRH power for 6 s) could be routinely established after proper wall conditioning. The fairly large set of diagnostic systems running in the end of the 10 weeks operation campaign provided first insights into expected and unexpected physics of optimized stellarators.
Improved Design of Stellarator Coils for Current Carrying Plasmas
NASA Astrophysics Data System (ADS)
Drevlak, M.; Strumberger, E.; Hirshman, S.; Boozer, A.; Brooks, A.; Valanju, P.
1998-11-01
The method of automatic optimization (P. Merkel, Nucl. Fus. 27), (1987) 867; P. Merkel, M. Drevlak, Proc 25th EPS Conf. on Cont. Fus. and Plas. Phys., Prague, in print. for the design of stellarator coils consists essentially of determining filaments such that the average relative field error int dS [ (B_coil + B_j) \\cdot n]^2/B^2_coil is minimized on the prescribed plasma boundary. Bj is the magnetic field produced by the plasma currents of the given finite β fixed boundary equilibrium. For equilibria of the W7-X type, Bj can be neglected, because of the reduced parallel plasma currents. This is not true for quasi-axisymmetric stellarator (QAS) configurations (A. Reiman, et al., to be published.) with large equilibrium and net plasma (bootstrap) currents. Although the coils for QAS exhibit low values of the field error, free boundary calculations indicate that the shape of the plasma is usually not accurately reproduced , particularly when saddle coils are used. We investigate if the surface reconstruction can be improved by introducing a modified measure of the field error based on a measure of the resonant components of the normal field.
Circumstellar disc lifetimes in numerous galactic young stellar clusters
NASA Astrophysics Data System (ADS)
Richert, A. J. W.; Getman, K. V.; Feigelson, E. D.; Kuhn, M. A.; Broos, P. S.; Povich, M. S.; Bate, M. R.; Garmire, G. P.
2018-07-01
Photometric detections of dust circumstellar discs around pre-main sequence (PMS) stars, coupled with estimates of stellar ages, provide constraints on the time available for planet formation. Most previous studies on disc longevity, starting with Haisch, Lada & Lada, use star samples from PMS clusters but do not consider data sets with homogeneous photometric sensitivities and/or ages placed on a uniform time-scale. Here we conduct the largest study to date of the longevity of inner dust discs using X-ray and 1-8 µm infrared photometry from the MYStIX and SFiNCs projects for 69 young clusters in 32 nearby star-forming regions with ages t ≤ 5 Myr. Cluster ages are derived by combining the empirical AgeJX method with PMS evolutionary models, which treat dynamo-generated magnetic fields in different ways. Leveraging X-ray data to identify disc-free objects, we impose similar stellar mass sensitivity limits for disc-bearing and disc-free young stellar objects while extending the analysis to stellar masses as low as M ˜ 0.1 M⊙. We find that the disc longevity estimates are strongly affected by the choice of PMS evolutionary model. Assuming a disc fraction of 100 per cent at zero age, the inferred disc half-life changes significantly, from t1/2 ˜ 1.3-2 Myr to t1/2 ˜ 3.5 Myr when switching from non-magnetic to magnetic PMS models. In addition, we find no statistically significant evidence that disc fraction varies with stellar mass within the first few Myr of life for stars with masses <2 M⊙, but our samples may not be complete for more massive stars. The effects of initial disc fraction and star-forming environment are also explored.
NASA Astrophysics Data System (ADS)
Shkolnik, E.; Walker, G. A. H.; Bohlender, D. A.; Gu, P.-G.; Kürster, M.
2005-04-01
We monitored the chromospheric activity in the Ca II H and K lines of 13 solar-type stars (including the Sun): 8 of them over 3 years at the Canada-France-Hawaii Telescope (CFHT) and 5 in a single run at the Very Large Telescope (VLT). A total of 10 of the 13 targets have close planetary companions. All of the stars observed at the CFHT show long-term (months to years) changes in H and K intensity levels. Four stars display short-term (days) cyclical activity. For two, HD 73256 and κ1 Cet, the activity is likely associated with an active region rotating with the star; however, the flaring in excess of the rotational modulation may be associated with a hot Jupiter. A planetary companion remains a possibility for κ1 Cet. For the other two, HD 179949 and υ And, the cyclic variation is synchronized to the hot Jupiter's orbit. For both stars this synchronicity with the orbit is clearly seen in two out of three epochs. The effect is only marginal in the third epoch at which the seasonal level of chromospheric activity had changed for both stars. Short-term chromospheric activity appears weakly dependent on the mean K line reversal intensities for the sample of 13 stars. In addition, a suggestive correlation exists between this activity and the Mpsini of the star's hot Jupiter. Because of their small separation (<=0.1 AU), many of the hot Jupiters lie within the Alfvén radius of their host stars, which allows a direct magnetic interaction with the stellar surface. We discuss the conditions under which a planet's magnetic field might induce activity on the stellar surface and why no such effect was seen for the prime candidate, τ Boo. This work opens up the possibility of characterizing planet-star interactions, with implications for extrasolar planet magnetic fields and the energy contribution to stellar atmospheres. Based on observations collected at the Canada-France-Hawaii Telescope operated by the National Research Council of Canada, the Centre National de la Recherche Scientifique of France, and the University of Hawaii, as well as data from the European Southern Observatory's Very Large Telescope, Chile (programme ESO 73.C-0694).
Nebular and Stellar Dust Extinction Across the Disk of Emission-line Galaxies on Kiloparsec Scales
NASA Astrophysics Data System (ADS)
Hemmati, Shoubaneh; Mobasher, Bahram; Darvish, Behnam; Nayyeri, Hooshang; Sobral, David; Miller, Sarah
2015-11-01
We investigate the resolved kiloparsec-scale stellar and nebular dust distribution in eight star-forming galaxies at z ∼ 0.4 in the Great Observatories Origins Deep Survey fields. This is to get a better understanding of the effect of dust attenuation on measurements of physical properties and its variation with redshift. Constructing the observed spectral energy distributions (SEDs) per pixel, based on seven bands of photometric data from Hubble Space Telescope/Advanced Camera for Surveys and WFC3, we performed pixel-by-pixel SED fits to population synthesis models and estimated the small-scale distribution of stellar dust extinction. We use Hα/Hβ nebular emission line ratios from Keck/DEIMOS high-resolution spectra at each spatial resolution element to measure the amount of attenuation faced by ionized gas at different radii from the centers of galaxies. We find a good agreement between the integrated and median of resolved color excess measurements in our galaxies. The ratio of integrated nebular to stellar dust extinction is always greater than unity, but does not show any trend with stellar mass or star formation rate (SFR). We find that inclination plays an important role in the variation of the nebular to stellar excess ratio. The stellar color excess profiles are found to have higher values at the center compared to outer parts of the disk. However, for lower mass galaxies, a similar trend is not found for the nebular color excess. We find that the nebular color excess increases with stellar mass surface density. This explains the absence of radial trend in the nebular color excess in lower mass galaxies which lack a large radial variation of stellar mass surface density. Using standard conversions of SFR surface density to gas mass surface density, and the relation between dust mass surface density and color excess, we find no significant variation in the dust-to-gas ratio in regions with high gas mass surface densities over the scales probed in this study.
Which of Kepler's Stars Flare?
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2017-12-01
The habitability of distant exoplanets is dependent upon many factors one of which is the activity of their host stars. To learn about which stars are most likely to flare, a recent study examines tens of thousands of stellar flares observed by Kepler.Need for a Broader SampleArtists rendering of a flaring dwarf star. [NASAs Goddard Space Flight Center/S. Wiessinger]Most of our understanding of what causes a star to flare is based on observations of the only star near enough to examine in detail the Sun. But in learning from a sample size of one, a challenge arises: we must determine which conclusions are unique to the Sun (or Sun-like stars), and which apply to other stellar types as well.Based on observations and modeling, astronomers think that stellar flares result from the reconnection of magnetic field lines in a stars outer atmosphere, the corona. The magnetic activity is thought to be driven by a dynamo caused by motions in the stars convective zone.HR diagram of the Kepler stars, with flaring main-sequence (yellow), giant (red) and A-star (green) stars in the authors sample indicated. [Van Doorsselaere et al. 2017]To test whether these ideas are true generally, we need to understand what types of stars exhibit flares, and what stellar properties correlate with flaring activity. A team of scientists led by Tom Van Doorsselaere (KU Leuven, Belgium) has now used an enormous sample of flares observed by Kepler to explore these statistics.Intriguing TrendsVan Doorsselaere and collaborators used a new automated flare detection and characterization algorithm to search through the raw light curves from Quarter 15 of the Kepler mission, building a sample of 16,850 flares on 6,662 stars. They then used these to study the dependence of the flare occurrence rate, duration, energy, and amplitude on the stellar spectral type and rotation period.This large statistical study led the authors to several interesting conclusions, including:Flare star incidence rate as a a function of Rossby number, which traces stellar rotation. Higher rotation rates correspond to lower Rossby numbers, so these data indicate that more rapidly rotating stars are more likely to exhibit flares. [Van Doorsselaere et al. 2017]Roughly 3.5% of Kepler stars in this sample are flaring stars.24 new A stars are found to show flaring activity. This is interesting because A stars arent thought to have an outer convective zone, which should prevent a magnetic dynamo from operating. Yet these flaring-star detections add to the body of evidence that at least some A stars do show magnetic activity.Most flaring stars in the sample are main-sequence stars, but 653 giants were found to have flaring activity. As with A stars, its unexpected that giant stars would have strong magnetic fields their increase in size and gradual spin-down over time should result in weakening of the surface fields. Nevertheless, it seems that the flare incidence of giant stars is similar to that of F or G main-sequence stars.All stellar types appear to have a small fraction of flare stars stars with an especially high rate of flare occurrence.Rapidly rotating stars are more likely to flare, tend to flare more often, and tend to have stronger flares than slowly rotating stars.As a next step, the authors plan to apply their flare detection algorithm to the larger sample of all Kepler data. In the meantime, this study has both deepened a few mysteries and moved us a step closer in our understanding of which stars flare and why.CitationTom Van Doorsselaere et al 2017 ApJS 232 26. doi:10.3847/1538-4365/aa8f9a
Strong evidences for a nonextensive behavior of the rotation period in open clusters
NASA Astrophysics Data System (ADS)
de Freitas, D. B.; Nepomuceno, M. M. F.; Soares, B. B.; Silva, J. R. P.
2014-11-01
Time-dependent nonextensivity in a stellar astrophysical scenario combines nonextensive entropic indices qK derived from the modified Kawaler's parametrization, and q, obtained from rotational velocity distribution. These q's are related through a heuristic single relation given by q≈ q0(1-Δ t/qK) , where t is the cluster age. In a nonextensive scenario, these indices are quantities that measure the degree of nonextensivity present in the system. Recent studies reveal that the index q is correlated to the formation rate of high-energy tails present in the distribution of rotation velocity. On the other hand, the index qK is determined by the stellar rotation-age relationship. This depends on the magnetic-field configuration through the expression qK=1+4aN/3 , where a and N denote the saturation level of the star magnetic field and its topology, respectively. In the present study, we show that the connection q-qK is also consistent with 548 rotation period data for single main-sequence stars in 11 open clusters aged less than 1 Gyr. The value of qK ˜ 2.5 from our unsaturated model shows that the mean magnetic-field topology of these stars is slightly more complex than a purely radial field. Our results also suggest that stellar rotational braking behavior affects the degree of anti-correlation between q and cluster age t. Finally, we suggest that stellar magnetic braking can be scaled by the entropic index q.
X-ray emission processes in stars and their immediate environment
Testa, Paola
2010-01-01
A decade of X-ray stellar observations with Chandra and XMM-Newton has led to significant advances in our understanding of the physical processes at work in hot (magnetized) plasmas in stars and their immediate environment, providing new perspectives and challenges, and in turn the need for improved models. The wealth of high-quality stellar spectra has allowed us to investigate, in detail, the characteristics of the X-ray emission across the Hertzsprung-Russell (HR) diagram. Progress has been made in addressing issues ranging from classical stellar activity in stars with solar-like dynamos (such as flares, activity cycles, spatial and thermal structuring of the X-ray emitting plasma, and evolution of X-ray activity with age), to X-ray generating processes (e.g., accretion, jets, magnetically confined winds) that were poorly understood in the preChandra/XMM-Newton era. I will discuss the progress made in the study of high energy stellar physics and its impact in a wider astrophysical context, focusing on the role of spectral diagnostics now accessible. PMID:20360562
Magnetic field and radial velocities of the star Chi Draconis A
NASA Astrophysics Data System (ADS)
Lee, Byeong-Cheol; Gadelshin, D.; Han, Inwoo; Kang, Dong-Il; Kim, Kang-Min; Valyavin, G.; Galazutdinov, G.; Jeong, Gwanghui; Beskrovnaya, N.; Burlakova, T.; Grauzhanina, A.; Ikhsanov, N. R.; Kholtygin, A. F.; Valeev, A.; Bychkov, V.; Park, Myeong-Gu
2018-01-01
We present high-resolution spectropolarimetric observations of the spectroscopic binary χ Dra. Spectral lines in the spectrum of the main component χ Dra A show variable Zeeman displacement, which confirms earlier suggestions about the presence of a weak magnetic field on the surface of this star. Within about 2 yr of time base of our observations, the longitudinal component BL of the magnetic field exhibits variation from -11.5 ± 2.5 to +11.1 ± 2.1 G with a period of about 23 d. Considering the rotational velocity of χ Dra A in the literature and that newly measured in this work, this variability may be explained by the stellar rotation under the assumption that the magnetic field is globally stable. Our new measurements of the radial velocities (RV) in high-resolution I-spectra of χ Dra A refined the orbital parameters and reveal persistent deviations of RVs from the orbital curve. We suspect that these deviations may be due to the influence of local magnetically generated spots, pulsations, or a Jupiter-size planet orbiting the system.
Chromospheric and Transition Region Emission Properties of G, K, and M dwarf Exoplanet Host Stars
NASA Astrophysics Data System (ADS)
France, Kevin; Arulanantham, Nicole; Fossati, Luca; Lanza, A. F.; Linsky, Jeffrey L.; Redfield, Seth; Loyd, Robert; Schneider, Christian
2018-01-01
Exoplanet magnetic fields have proven notoriously hard to detect, despite theoretical predictions of substantial magnetic field strengths on close-in extrasolar giant planets. It has been suggested that stellar and planetary magnetic field interactions can manifest as enhanced stellar activity relative to nominal age-rotation-activity relationships for main sequence stars or enhanced activity on stars hosting short-period massive planets. In a recent study of M and K dwarf exoplanet host stars, we demonstrated a significant correlation between the relative luminosity in high-temperature stellar emission lines (L(ion)/L_Bol) and the “star-planet interaction strength”, M_plan/a_plan. Here, we expand on that work with a survey of G, K, and M dwarf exoplanet host stars obtained in two recent far-ultraviolet spectroscopic programs with the Hubble Space Telescope. We have measured the relative luminosities of stellar lines C II, Si III, Si IV, and N V (formation temperatures from 30,000 – 150,000 K) in a sample of ~60 exoplanet host stars and an additional ~40 dwarf stars without known planets. We present results on star-planet interaction signals as a function of spectral type and line formation temperature, as well as a statistical comparison of stars with and without planets.
Talks also presented at the Symposium
NASA Astrophysics Data System (ADS)
Eldridge, J. J.; Bray, J. C.; McClelland, L. A. S.; Xiao, L.
2017-11-01
Internal rotation and magnetism are key ingredients that largely affect explosive stellar deaths (Supernovae and Gamma Ray Bursts) and the properties of stellar remnants (White Dwarfs, Neutron Stars and Black Holes). However, the study of these subtle internal stellar properties has been limited to very indirect proxies. In the last couple of years, exciting asteroseismic results have been obtained by the Kepler satellite. Among these results are 1) The direct measure of the degree of radial differential rotation in many evolved low-mass stars and in a few massive stars, and 2) The detection of strong (>105 G) internal magnetic fields in thousands of red giant stars that had convective cores during their main sequence. I will discuss the impact of these important findings for our understanding of massive star evolution.
Optimized Strategies for Detecting Extrasolar Space Weather
NASA Astrophysics Data System (ADS)
Hallinan, Gregg
2018-06-01
Fully understanding the implications of space weather for the young solar system, as well as the wider population of planet-hosting stars, requires remote sensing of space weather in other stellar systems. Solar coronal mass ejections can be accompanied by bright radio bursts at low frequencies (typically <100 MHz), that are produced as the resulting shockwave propagates through the corona and interplanetary medium.; searches for similar emissions are ongoing from nearby stellar systems. Exoplanets that encounter CMEs can increase in radio luminosity by orders of magnitude at kHz-MHz frequencies. A detection of this radio emission allows the direct measurement of the magnetic field strength of the planet, informing on whether the atmosphere of the planet can survive the intense magnetic activity of its host star. However, both stellar and planetary radio emission are highly variable and optimal strategies for detection of these emissions requires the capability to monitor 1000s of nearby stellar/planetary systems simultaneously. I will discuss optimized strategies for both ground and space-based experiments to take advantage of the highly variable nature of the radio emissions powered by extrasolar space weather to enable detection of stellar CMEs and planetary magnetospheres.
Multiwavelength observations of magnetic fields and related activity on XI Bootis A
NASA Technical Reports Server (NTRS)
Saar, Steven H.; Huovelin, J.; Linsky, Jeffrey L.; Giampapa, Mark S.; Jordan, Carole
1988-01-01
Preliminary results of coordinated observations of magnetic fields and related activity on the active dwarf, Xi Boo A, are presented. Combining the magnetic fluxes with the linear polarization data, a simple map of the stellar active regions is constructed.
3D Realistic Modeling of the Interaction of Quiet-Sun Magnetic Fields with the Chromosphere
NASA Technical Reports Server (NTRS)
Kitiashvili, I. N.; Kosovichev, A. G.; Mansour, N. N.; Wray, A. A.
2017-01-01
High-resolution observations and 3D simulations suggest that a local dynamo operates near the surface and produces ubiquitous small-scale magnetic elements, thus contributing to the magnetic carpet in the photosphere and to the magnetic structure and dynamics of the solar atmosphere. It appears that the traditional mechanisms of chromospheric energy and mass transport by acoustic waves and shocks are likely to play a secondary role; instead, the primary drivers in the energetics and dynamics of the chromosphere and transition region are small-scale, previously unresolved, quiet-Sun magnetic fields. These fields appear as ubiquitous, rapidly changing (on the scale of a few seconds), tiny magnetic loops and magnetized vortex tubes. Questions then arise about their origin and dynamics in the chromosphere, their links to magnetic fields in the photosphere, and their role in the energy storage and exchange between subsurface layers and the chromosphere. In the talk we will present results of 3D radiative MHD simulations obtained with the StellarBox code and discuss the energetics and dynamical interlinks between the subphotospheric layers and low chromosphere, their effects on the structure of the chromosphere, and signatures of the fine-scale magnetic features in high-resolution spectro-polarimetric observations.
Revealing Stellar Surface Structure Behind Transiting Exoplanets
NASA Astrophysics Data System (ADS)
Dravins, Dainis
2018-04-01
During exoplanet transits, successive stellar surface portions become hidden and differential spectroscopy between various transit phases provide spectra of small surface segments temporarily hidden behind the planet. Line profile changes across the stellar disk offer diagnostics for hydrodynamic modeling, while exoplanet analyses require stellar background spectra to be known along the transit path. Since even giant planets cover only a small fraction of any main-sequence star, very precise observations are required, as well as averaging over numerous spectral lines with similar parameters. Spatially resolved Fe I line profiles across stellar disks have now been retrieved for HD209458 (G0V) and HD189733A (K1V), using data from the UVES and HARPS spectrometers. Free from rotational broadening, spatially resolved profiles are narrower and deeper than in integrated starlight. During transit, the profiles shift towards longer wavelengths, illustrating both stellar rotation at the latitude of transit and the prograde orbital motion of the exoplanets. This method will soon become applicable to more stars, once additional bright exoplanet hosts have been found.
The X-Ray View of Young Stellar Objects
NASA Astrophysics Data System (ADS)
Guedel, Manuel
2007-08-01
X-rays offer ideal access to high-energy phenomena in young, accreting stars. The energy released in magnetic flares has profound effects on the stellar environment. Star-disk magnetic reconnection has been suggested as a possible origin of bipolar jets. Such jets from have been detected at X-ray wavelengths, offering new diagnostics for the energy release and jet shock physics. Finally, eruptive phenomena of FU Ori and EX Lup-type stars have been monitored in X-rays. I will discuss observations and suggest simple models for high-energy eruptive phenomena in young stars.
AN EXPLORATION OF THE STATISTICAL SIGNATURES OF STELLAR FEEDBACK
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyden, Ryan D.; Offner, Stella S. R.; Koch, Eric W.
2016-12-20
All molecular clouds are observed to be turbulent, but the origin, means of sustenance, and evolution of the turbulence remain debated. One possibility is that stellar feedback injects enough energy into the cloud to drive observed motions on parsec scales. Recent numerical studies of molecular clouds have found that feedback from stars, such as protostellar outflows and winds, injects energy and impacts turbulence. We expand upon these studies by analyzing magnetohydrodynamic simulations of molecular clouds, including stellar winds, with a range of stellar mass-loss rates and magnetic field strengths. We generate synthetic {sup 12}CO(1–0) maps assuming that the simulations aremore » at the distance of the nearby Perseus molecular cloud. By comparing the outputs from different initial conditions and evolutionary times, we identify differences in the synthetic observations and characterize these using common astrostatistics. We quantify the different statistical responses using a variety of metrics proposed in the literature. We find that multiple astrostatistics, including the principal component analysis, the spectral correlation function, and the velocity coordinate spectrum (VCS), are sensitive to changes in stellar mass-loss rates and/or time evolution. A few statistics, including the Cramer statistic and VCS, are sensitive to the magnetic field strength. These findings demonstrate that stellar feedback influences molecular cloud turbulence and can be identified and quantified observationally using such statistics.« less
The Stellar Imager (SI)"Vision Mission"
NASA Technical Reports Server (NTRS)
Carpenter, Ken; Danchi, W.; Leitner, J.; Liu, A.; Lyon, R.; Mazzuca, L.; Moe, R.; Chenette, D.; Karovska, M.; Allen, R.
2004-01-01
The Stellar Imager (SI) is a "Vision" mission in the Sun-Earth Connection (SEC) Roadmap, conceived for the purpose of understanding the effects of stellar magnetic fields, the dynamos that generate them, and the internal structure and dynamics of the stars in which they exist. The ultimate goal is to achieve the best possible forecasting of solar/stellar magnetic activity and its impact on life in the Universe. The science goals of SI require an ultra-high angular resolution, at ultraviolet wavelengths, on the order of 100 micro-arcsec and thus baselines on the order of 0.5 km. These requirements call for a large, multi-spacecraft (less than 20) imaging interferometer, utilizing precision formation flying in a stable environment, such as in a Lissajous orbit around the Sun-Earth L2 point. SI's resolution will make it an invaluable resource for many other areas of astrophysics, including studies of AGN s, supernovae, cataclysmic variables, young stellar objects, QSO's, and stellar black holes. ongoing mission concept and technology development studies for SI. These studies are designed to refine the mission requirements for the science goals, define a Design Reference Mission, perform trade studies of selected major technical and architectural issues, improve the existing technology roadmap, and explore the details of deployment and operations, as well as the possible roles of astronauts and/or robots in construction and servicing of the facility.
Stellar fibril magnetic systems. I - Reduced energy state
NASA Technical Reports Server (NTRS)
Parker, E. N.
1984-01-01
The remarkable fibril structure of the magnetic fields at the surface of the sun (with fibrils compressed to 1,000-2,000 gauss) lies outside existing statistical theories of magnetohydrodynamic turbulence. The total energy of the fibril field is enhanced by a factor of more than 100 above the energy for the mean field in a continuum state. The magnetic energy density within a fibril is of the order of 100 times the local kinetic energy density, so that no simple application of equipartition principles is possible. It is pointed out that the total energy of the atmosphere (thermal + gravitational + magnetic) is reduced by the fibril state of the field by avoiding the magnetic inhibition of the convective overturning, suggesting that the formation of the observed intense fibril state may be in response to the associated energy reduction. Calculation of the minimum total energy of a polytropic atmosphere permeated by magnetic fibrils yields theoretical fibril fields of the order of 1-5 kilogauss when characteristics appropriate to the solar convective zone are introduced, in rough agreement with the actual fields of 1-2 kilogauss. The polytrope model, although crude, establishes that a large reduction in total energy is made possible by the fibril state.
A new mechanical stellar wind feedback model for the Rosette Nebula
NASA Astrophysics Data System (ADS)
Wareing, C. J.; Pittard, J. M.; Wright, N. J.; Falle, S. A. E. G.
2018-04-01
The famous Rosette Nebula has an evacuated central cavity formed from the stellar winds ejected from the 2-6 Myr old codistant and comoving central star cluster NGC 2244. However, with upper age estimates of less than 110 000 yr, the central cavity is too young compared to NGC 2244 and existing models do not reproduce its properties. A new proper motion study herein using Gaia data reveals the ejection of the most massive star in the Rosette, HD 46223, from NGC 2244 occurred 1.73 (+0.34, -0.25) Myr (1σ uncertainty) in the past. Assuming this ejection was at the birth of the most massive stars in NGC 2244, including the dominant centrally positioned HD 46150, the age is set for the famous ionized region at more than 10 times that derived for the cavity. Here, we are able to reproduce the structure of the Rosette Nebula, through simulation of mechanical stellar feedback from a 40 M⊙ star in a thin sheet-like molecular cloud. We form the 135 000 M⊙ cloud from thermally unstable diffuse interstellar medium (ISM) under the influence of a realistic background magnetic field with thermal/magnetic pressure equilibrium. Properties derived from a snapshot of the simulation at 1.5 Myr, including cavity size, stellar age, magnetic field, and resulting inclination to the line of sight, match those derived from observations. An elegant explanation is thus provided for the stark contrast in age estimates based on realistic diffuse ISM properties, molecular cloud formation and stellar wind feedback.
On Star-Planet Interaction: Magnetospheric Dynamics and Atmospheric Evolution
NASA Astrophysics Data System (ADS)
Tilley, Matthew Tilley
With the explosion of exoplanetary discoveries, the question of planetary habitability is at the forefront, and generates many interesting and complex questions. One of those questions: Are planetary global magnetic fields necessary for the development of complex surface organics and the development of life? Does a global field protect planetary atmospheres? What detection signatures can be gleaned from a planet or moon with a global field as opposed to one without? We have a wealth of in situ magnetospheric data from Earth, as well as solar system planets and their moons from several vital satellite missions, such as the Voyager missions, the Pioneer missions, Galileo, Cassini, Messenger, MAVEN, and New Horizons. Due to the distances involved, it is not tenable to send satellites to obtain data at exoplanetary bodies, so we rely on simulations and using solar system data as analog environments to help set ground truth validation for the numerical work. In this dissertation, I use a multifluid plasma model for gas giant magnetospheres to predict the potential dynamical consequences and detection signatures for giant exoplanets in a warm orbit (˜0.2 AU). I discuss the dynamics of plasma loss from an exomoon injected torus, and how the total mass flux out of the system is altered by increased stellar wind forcing as a function of orbital semi-major axis. Detection signatures for such a planet, including transit depth modifications due to plasma densities and radio emissions, show promise for further detecting and characterizing future systems. I also improve the multifluid model by implementing a full treatment of pressure anisotropy at Saturn, with a focus on the dynamics and structure of the magnetosphere. The improvements to the physics of the model generate more accurate system when compared to Cassini data; the anisotropic simulations show stronger current confinement of the Enceladus torus, consistent and well-structure flux interchange events, and global corotational convection that match more closely with the Cassini data than the isotropic model. Turning from giant planets to terrestrial, I use a coupled one-dimensional photochemical and radiative-convective climate model to investigate the effects of M dwarf stellar flare activity on an Earth-like atmosphere for an unmagnetized planet in the nominal habitable zone. I find that EM-only activity - even to the level of some of the most active stars yet observed - is insufficient at the age of the universe to reduce the ozone column to the point that UV-C radiation can reach the surface. However, repeated proton events from frequent daily flare activity, which has been observed on several M dwarfs, can erode the ozone column by several orders of magnitude, allowing the surface of the planet to be bathed in UV-C, which is sterilizing and detrimental to the development of complex organic structures. The ability of a strong planetary magnetic field to deflect incoming stellar wind and flare-energized protons seems to be of import to maintain surface habitability. I also use scaling laws to predict a potential atomic oxygen auroral signal from Proxima Centauri b, the detection of which would constrain the presence of an atmosphere and point to the presence of a magnetic field. The increased forcing from Proxima Centauri's stellar wind is expected to drive powerful emissions, orders of magnitude stronger than at Earth, and within easy reach of the next generation of observational telescopic instruments. Magnetic fields do seem to be important for both detection and potential shielding of the atmosphere of exoplanets, but much work remains to be performed. Future observations combined with simulations validated against solar system star-planet interactions will likely provide answers to these questions, and perhaps lead to a focus on specific planetary targets for extensive investigation of astrobiological interest.
Imaging Stellar Surfaces with an Agile 12-Telescopes Visible Interferometer for the VLTI
NASA Astrophysics Data System (ADS)
Woillez, Julien
2018-04-01
Imaging stellar surfaces with an optical interferometer requires a large number of telescopes and the extensive use of the bootstrapping technique to reach the high spatial frequencies where the surface details are revealed. An idea would use all 6 dual-star delay lines of VLTI to deploy an agile 12-telescopes single-mode visible interferometer on the Paranal mountain. The concept relies on single-mode fiber technologies that have been demonstrated by the `OHANA and `OHANA IKI projects. We present the expected performance of this concept and explore its potential for the study of stellar surfaces.
On MHD rotational transport, instabilities and dynamo action in stellar radiation zones
NASA Astrophysics Data System (ADS)
Mathis, Stéphane; Brun, A.-S.; Zahn, J.-P.
2009-04-01
Magnetic field and their related dynamical effects are thought to be important in stellar radiation zones. For instance, it has been suggested that a dynamo, sustained by a m = 1 MHD instability of toroidal magnetic fields (discovered by Tayler in 1973), could lead to a strong transport of angular momentum and of chemicals in such stable regions. We wish here to recall the different magnetic transport processes present in radiative zone and show how the dynamo can operate by recalling the conditions required to close the dynamo loop (BPol → BTor → BPol). Helped by high-resolution 3D MHD simulations using the ASH code in the solar case, we confirm the existence of the m = 1 instability, study its non-linear saturation, but we do not detect, up to a magnetic Reylnods number of 105, any dynamo action.
Not all songbirds calibrate their magnetic compass from twilight cues: a telemetry study.
Chernetsov, Nikita; Kishkinev, Dmitry; Kosarev, Vladislav; Bolshakov, Casimir V
2011-08-01
Migratory birds are able to use the sun and associated polarised light patterns, stellar cues and the geomagnetic field for orientation. No general agreement has been reached regarding the hierarchy of orientation cues. Recent data from naturally migrating North American Catharus thrushes suggests that they calibrate geomagnetic information daily from twilight cues. Similar results have been shown in caged birds in a few studies but not confirmed in others. We report that free-flying European migrants, song thrushes Turdus philomelos, released after pre-exposure to a horizontally rotated magnetic field, do not recalibrate their magnetic compass from solar cues, but rather show a simple domination of either the magnetic or the stellar compass. We suggest that different songbird species possess different hierarchies of orientation cues, depending on the geographic and ecological challenges met by the migrants.
RADIALLY MAGNETIZED PROTOPLANETARY DISK: VERTICAL PROFILE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russo, Matthew; Thompson, Christopher
2015-11-10
This paper studies the response of a thin accretion disk to an external radial magnetic field. Our focus is on protoplanetary disks (PPDs), which are exposed during their later evolution to an intense, magnetized wind from the central star. A radial magnetic field is mixed into a thin surface layer, wound up by the disk shear, and pushed downward by a combination of turbulent mixing and ambipolar and ohmic drift. The toroidal field reaches much greater strengths than the seed vertical field that is usually invoked in PPD models, even becoming superthermal. Linear stability analysis indicates that the disk experiencesmore » the magnetorotational instability (MRI) at a higher magnetization than a vertically magnetized disk when both the effects of ambipolar and Hall drift are taken into account. Steady vertical profiles of density and magnetic field are obtained at several radii between 0.06 and 1 AU in response to a wind magnetic field B{sub r} ∼ (10{sup −4}–10{sup −2})(r/ AU){sup −2} G. Careful attention is given to the radial and vertical ionization structure resulting from irradiation by stellar X-rays. The disk is more strongly magnetized closer to the star, where it can support a higher rate of mass transfer. As a result, the inner ∼1 AU of a PPD is found to evolve toward lower surface density. Mass transfer rates around 10{sup −8} M{sub ⊙} yr{sup −1} are obtained under conservative assumptions about the MRI-generated stress. The evolution of the disk and the implications for planet migration are investigated in the accompanying paper.« less
3D toroidal physics: testing the boundaries of symmetry breaking
NASA Astrophysics Data System (ADS)
Spong, Don
2014-10-01
Toroidal symmetry is an important concept for plasma confinement; it allows the existence of nested flux surface MHD equilibria and conserved invariants for particle motion. However, perfect symmetry is unachievable in realistic toroidal plasma devices. For example, tokamaks have toroidal ripple due to discrete field coils, optimized stellarators do not achieve exact quasi-symmetry, the plasma itself continually seeks lower energy states through helical 3D deformations, and reactors will likely have non-uniform distributions of ferritic steel near the plasma. Also, some level of designed-in 3D magnetic field structure is now anticipated for most concepts in order to lead to a stable, steady-state fusion reactor. Such planned 3D field structures can take many forms, ranging from tokamaks with weak 3D ELM-suppression fields to stellarators with more dominant 3D field structures. There is considerable interest in the development of unified physics models for the full range of 3D effects. Ultimately, the questions of how much symmetry breaking can be tolerated and how to optimize its design must be addressed for all fusion concepts. Fortunately, significant progress is underway in theory, computation and plasma diagnostics on many issues such as magnetic surface quality, plasma screening vs. amplification of 3D perturbations, 3D transport, influence on edge pedestal structures, MHD stability effects, modification of fast ion-driven instabilities, prediction of energetic particle heat loads on plasma-facing materials, effects of 3D fields on turbulence, and magnetic coil design. A closely coupled program of simulation, experimental validation, and design optimization is required to determine what forms and amplitudes of 3D shaping and symmetry breaking will be compatible with future fusion reactors. The development of models to address 3D physics and progress in these areas will be described. This work is supported both by the US Department of Energy under Contract DE-AC05-00OR22725 with UT-Battelle, LLC and under the US DOE SciDAC GSEP Center.
EK Draconis. Magnetic activity in the photosphere and chromosphere
NASA Astrophysics Data System (ADS)
Järvinen, S. P.; Berdyugina, S. V.; Korhonen, H.; Ilyin, I.; Tuominen, I.
2007-09-01
Context: As a young solar analogue, EK Draconis provides an opportunity to study the magnetic activity of the infant Sun. Aims: We present three new surface temperature maps of EK Draconis and compare them with previous results obtained from long-term photometry. Furthermore, we determined a set of stellar parameters and compared the determined values with the corresponding solar values. Methods: Atmospheric parameters were determined by comparing observed and synthetic spectra calculated with stellar atmosphere models. Surface temperature maps were obtained using the Occamian approach inversion technique. The differential rotation of EK Dra was estimated using two different methods. Results: A detailed model atmosphere analysis of high resolution spectra of EK Dra has yielded a self-consistent set of atmospheric parameters: T_eff = 5750 K, log g = 4.5, [M/H] = 0.0, ξt = 1.6 km s-1. The evolutionary models imply that the star is slightly more massive than the Sun and has an age between 30-50 Myr, which agrees with the determined lithium abundance of log N(Li) = 3.02. Moreover, the atmospheric parameters, as well as the wings of the Ca ii 8662 Å, indicate that the photosphere of EK Dra is very similar to the one of the present Sun, while their chromospheres differ. There also seems to be a correlation between magnetic features seen in the photosphere and chromosphere. The temperature images reveal spots of only 500 K cooler than the quiet photosphere. The mean spot latitude varies with time. The obtained differential rotation is very small, but the sign of it supports solar type differential rotation on EK Dra. Based on observations made with the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias. Table [see full text] and Figs. [see full text] and [see full text] are only available in electronic form at http://www.aanda.org
Effect of fast electrons on the stability of resistive interchange modes in the TJ-II stellarator
DOE Office of Scientific and Technical Information (OSTI.GOV)
García, L.; Ochando, M. A.; Hidalgo, C.
2016-06-15
In this paper, we report on electromagnetic phenomena in low-β plasmas at the TJ-II stellarator, controlled by external heating. To understand the observations qualitatively, we introduce a simple modification of the standard resistive MHD equations, to include the potential impact of fast electrons on instabilities. The dominant instabilities of the modeling regime are resistive interchange modes, and calculations are performed in a configuration with similar characteristics as the TJ-II stellarator. The main effect of the trapping of fast electrons by magnetic islands induced by MHD instabilities is to increase the magnetic component of the fluctuations, changing the character of themore » instability to tearing-like and modifying the frequency of the modes. These effects seem to be consistent with some of the experimental observations.« less
Ultimate Spectrum of Solar/Stellar Cosmic Rays
NASA Astrophysics Data System (ADS)
Struminsky, Alexei
2015-08-01
We reconstruct an ultimate spectrum of solar/stellar cosmic rays (SCR) in a given point in the heliosphere (stellar sphere) basing on maximal value of magnetic field strenght in active region and its characteristic linear dimension. An accelerator of given dimensions and magnetic field strengh may accelarate to a finite energy for a given time (a maximal energy of SCR). We will use spectrum of SCR proposed by Syrovatsky (1961) for relativistic and non-relativistic energies normaliszing it to galactic cosmic ray (GCR) intensity at maximal SCR energy. Maximal values of SCR flux propagating in the heliosphere are determined by equilibrium between pressure of interplanetary magnrtic field and dynamic pressure of SCR (Frier&Webber, 1963). The obtained spectra would be applied to explain the extreme solar particle event occurred in about 775 AD basing on the tree-ring chronology (Miyake et al., 2012).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Zheng; Thilker, David A.; Heckman, Timothy M.
2015-02-20
We present the results of an analysis of Pan-STARRS1 Medium Deep Survey multi-band (grizy) images of a sample of 698 low-redshift disk galaxies that span broad ranges in stellar mass, star-formation rate, and bulge/disk ratio. We use population synthesis spectral energy distribution fitting techniques to explore the radial distribution of the light, color, surface mass density, mass/light ratio, and age of the stellar populations. We characterize the structure and stellar content of the galaxy disks out to radii of about twice Petrosian r {sub 90}, beyond which the halo light becomes significant. We measure normalized radial profiles for sub-samples ofmore » galaxies in three bins each of stellar mass and concentration. We also fit radial profiles to each galaxy. The majority of galaxies have down-bending radial surface brightness profiles in the bluer bands with a break radius at roughly r {sub 90}. However, they typically show single unbroken exponentials in the reddest bands and in the stellar surface mass density. We find that the mass/light ratio and stellar age radial profiles have a characteristic 'U' shape. There is a good correlation between the amplitude of the down-bend in the surface brightness profile and the rate of the increase in the M/L ratio in the outer disk. As we move from late- to early-type galaxies, the amplitude of the down-bend and the radial gradient in M/L both decrease. Our results imply a combination of stellar radial migration and suppression of recent star formation can account for the stellar populations of the outer disk.« less
NASA Astrophysics Data System (ADS)
Loi, Shyeh Tjing; Papaloizou, John C. B.
2017-05-01
Stars are self-gravitating fluids in which pressure, buoyancy, rotation and magnetic fields provide the restoring forces for global modes of oscillation. Pressure and buoyancy energetically dominate, while rotation and magnetism are generally assumed to be weak perturbations and often ignored. However, observations of anomalously weak dipole mode amplitudes in red giant stars suggest that a substantial fraction of these are subject to an additional source of damping localized to their core region, with indirect evidence pointing to the role of a deeply buried magnetic field. It is also known that in many instances, the gravity-mode character of affected modes is preserved, but so far, no effective damping mechanism has been proposed that accommodates this aspect. Here we present such a mechanism, which damps the oscillations of stars harbouring magnetised cores via resonant interactions with standing Alfvén modes of high harmonic index. The damping rates produced by this mechanism are quantitatively on par with those associated with turbulent convection, and in the range required to explain observations, for realistic stellar models and magnetic field strengths. Our results suggest that magnetic fields can provide an efficient means of damping stellar oscillations without needing to disrupt the internal structure of the modes, and lay the groundwork for an extension of the theory of global stellar oscillations that incorporates these effects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finley, Adam J.; Matt, Sean P., E-mail: af472@exeter.ac.uk
Cool stars with outer convective envelopes are observed to have magnetic fields with a variety of geometries, which on large scales are dominated by a combination of the lowest-order fields such as the dipole, quadrupole, and octupole modes. Magnetized stellar wind outflows are primarily responsible for the loss of angular momentum from these objects during the main sequence. Previous works have shown the reduced effectiveness of the stellar wind braking mechanism with increasingly complex but singular magnetic field geometries. In this paper, we quantify the impact of mixed dipolar and quadrupolar fields on the spin-down torque using 50 MHD simulationsmore » with mixed fields, along with 10 each of the pure geometries. The simulated winds include a wide range of magnetic field strength and reside in the slow-rotator regime. We find that the stellar wind braking torque from our combined geometry cases is well described by a broken power-law behavior, where the torque scaling with field strength can be predicted by the dipole component alone or the quadrupolar scaling utilizing the total field strength. The simulation results can be scaled and apply to all main-sequence cool stars. For solar parameters, the lowest-order component of the field (dipole in this paper) is the most significant in determining the angular momentum loss.« less
NASA Technical Reports Server (NTRS)
Pap, Judit M. (Editor); Froehlich, Claus (Editor); Hudson, Hugh S. (Editor); Tobiska, W. Kent (Editor)
1994-01-01
Variations in solar and stellar irradiances have long been of interest. An International Astronomical Union (IAU) colloquium reviewed such relevant subjects as observations, theoretical interpretations, and empirical and physical models, with a special emphasis on climatic impact of solar irradiance variability. Specific topics discussed included: (1) General Reviews on Observations of Solar and Stellar Irradiance Variability; (2) Observational Programs for Solar and Stellar Irradiance Variability; (3) Variability of Solar and Stellar Irradiance Related to the Network, Active Regions (Sunspots and Plages), and Large-Scale Magnetic Structures; (4) Empirical Models of Solar Total and Spectral Irradiance Variability; (5) Solar and Stellar Oscillations, Irradiance Variations and their Interpretations; and (6) The Response of the Earth's Atmosphere to Solar Irradiance Variations and Sun-Climate Connections.
NASA Astrophysics Data System (ADS)
Choi, Jieun; Dotter, Aaron; Conroy, Charlie; Ting, Yuan-Sen
2018-06-01
The effective temperature (T eff) distribution of stellar evolution models along the red giant branch (RGB) is sensitive to a number of parameters including the overall metallicity, elemental abundance patterns, the efficiency of convection, and the treatment of the surface boundary condition (BC). Recently there has been interest in using observational estimates of the RGB T eff to place constraints on the mixing length parameter, α MLT, and possible variation with metallicity. Here we use 1D Modules for Experiments in Stellar Astrophysics (MESA) stellar evolution models to explore the sensitivity of the RGB T eff to the treatment of the surface BC. We find that different surface BCs can lead to ±100 K metallicity-dependent offsets on the RGB relative to one another in spite of the fact that all models can reproduce the properties of the Sun. Moreover, for a given atmosphere T–τ relation, we find that the RGB T eff is also sensitive to the optical depth at which the surface BC is applied in the stellar model. Nearly all models adopt the photosphere as the location of the surface BC, but this choice is somewhat arbitrary. We compare our models to stellar parameters derived from the APOGEE-Kepler sample of first ascent red giants and find that systematic uncertainties in the models due to treatment of the surface BC place a limit of ≈100 K below which it is not possible to make firm conclusions regarding the fidelity of the current generation of stellar models.
NEBULAR AND STELLAR DUST EXTINCTION ACROSS THE DISK OF EMISSION-LINE GALAXIES ON KILOPARSEC SCALES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hemmati, Shoubaneh; Mobasher, Bahram; Darvish, Behnam
We investigate the resolved kiloparsec-scale stellar and nebular dust distribution in eight star-forming galaxies at z ∼ 0.4 in the Great Observatories Origins Deep Survey fields. This is to get a better understanding of the effect of dust attenuation on measurements of physical properties and its variation with redshift. Constructing the observed spectral energy distributions (SEDs) per pixel, based on seven bands of photometric data from Hubble Space Telescope/Advanced Camera for Surveys and WFC3, we performed pixel-by-pixel SED fits to population synthesis models and estimated the small-scale distribution of stellar dust extinction. We use Hα/Hβ nebular emission line ratios from Keck/DEIMOS high-resolutionmore » spectra at each spatial resolution element to measure the amount of attenuation faced by ionized gas at different radii from the centers of galaxies. We find a good agreement between the integrated and median of resolved color excess measurements in our galaxies. The ratio of integrated nebular to stellar dust extinction is always greater than unity, but does not show any trend with stellar mass or star formation rate (SFR). We find that inclination plays an important role in the variation of the nebular to stellar excess ratio. The stellar color excess profiles are found to have higher values at the center compared to outer parts of the disk. However, for lower mass galaxies, a similar trend is not found for the nebular color excess. We find that the nebular color excess increases with stellar mass surface density. This explains the absence of radial trend in the nebular color excess in lower mass galaxies which lack a large radial variation of stellar mass surface density. Using standard conversions of SFR surface density to gas mass surface density, and the relation between dust mass surface density and color excess, we find no significant variation in the dust-to-gas ratio in regions with high gas mass surface densities over the scales probed in this study.« less
Celescope catalog of ultraviolet stellar observations
NASA Technical Reports Server (NTRS)
Davis, R. J.; Deutschman, W. A.; Haramundanis, K. L.
1973-01-01
The catalog contains the observational results obtained by the Celescope Experiment during the first 16 months of operation of NASA's Orbiting Astronomical Observatory (OAO-2). It lists the results of the stellar observations, along with selected ground-based information obtained from the available literature. Lunar observations (Ahmad and Deutschman, 1972), as well as other analyses of the data, are being published as separate papers. These data are available in two forms: (1) magnetic tapes and the necessary utility programs for reading and printing the contents of the tapes; and (2) this catalog, transcribed from the magnetic-tape catalog. The magnetic tape version contains not only the compiled results but also the results of the individual observations from which these averaged data were compiled.
Shape of a slowly rotating star measured by asteroseismology
Gizon, Laurent; Sekii, Takashi; Takata, Masao; Kurtz, Donald W.; Shibahashi, Hiromoto; Bazot, Michael; Benomar, Othman; Birch, Aaron C.; Sreenivasan, Katepalli R.
2016-01-01
Stars are not perfectly spherically symmetric. They are deformed by rotation and magnetic fields. Until now, the study of stellar shapes has only been possible with optical interferometry for a few of the fastest-rotating nearby stars. We report an asteroseismic measurement, with much better precision than interferometry, of the asphericity of an A-type star with a rotation period of 100 days. Using the fact that different modes of oscillation probe different stellar latitudes, we infer a tiny but significant flattening of the star’s shape of ΔR/R = (1.8 ± 0.6) × 10−6. For a stellar radius R that is 2.24 times the solar radius, the difference in radius between the equator and the poles is ΔR = 3 ± 1 km. Because the observed ΔR/R is only one-third of the expected rotational oblateness, we conjecture the presence of a weak magnetic field on a star that does not have an extended convective envelope. This calls to question the origin of the magnetic field. PMID:28138541
The pseudo-symmetric optimization of the National Compact Stellarator Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Isaev, M.Y.; Mikhailov, M.I.; Monticello, D.A.
1999-08-01
A new experiment, the National Compact Stellarator Experiment (NCSX) [Monticello {ital et al.} {open_quotes}Physics Consideration for the Design of NCSX,{close_quotes} {ital Proceedings of 25th EPS Conference on Controlled Fusion and Plasma Physics, Prague, 1998} (European Physical Society, Petit-Lancy), paper 1.187], hopes to overcome the deleterious ripple transport usually associated with stellarators by creating a quasi-axisymmetric configuration. A quasi-axisymmetric configuration is one in which the Fourier spectrum of the magnetic field strength in so-called Boozer coordinates is dominated by the toroidal angle averaged (n=0) components. In this article the concept of pseudosymmetry is used to improve ripple transport in a four-periodmore » variant of NCSX. By definition, pseudosymmetric magnetic configurations have no locally trapped particles. To obtain a pseudosymmetric configuration, different target functions are considered. It is found that a target function equal to the area of ripple of the magnetic field magnitude along the field line is very effective in reducing the neoclassical transport coefficient. {copyright} {ital 1999 American Institute of Physics.}« less
Magnetic fields of intermediate mass T Tauri stars
NASA Astrophysics Data System (ADS)
Lavail, A.; Kochukhov, O.; Hussain, G. A. J.; Alecian, E.; Herczeg, G. J.; Johns-Krull, C.
2017-12-01
Aims: In this paper, we aim to measure the strength of the surface magnetic fields for a sample of five intermediate mass T Tauri stars and one low mass T Tauri star from late-F to mid-K spectral types. While magnetic fields of T Tauri stars at the low mass range have been extensively characterized, our work complements previous studies towards the intermediate mass range; this complementary study is key to evaluate how magnetic fields evolve during the transition from a convective to a radiative core. Methods: We studied the Zeeman broadening of magnetically sensitive spectral lines in the H-band spectra obtained with the CRIRES high-resolution near-infrared spectrometer. These data are modelled using magnetic spectral synthesis and model atmospheres. Additional constraints on non-magnetic line broadening mechanisms are obtained from modelling molecular lines in the K band or atomic lines in the optical wavelength region. Results: We detect and measure mean surface magnetic fields for five of the six stars in our sample: CHXR 28, COUP 107, V2062 Oph, V1149 Sco, and Par 2441. Magnetic field strengths inferred from the most magnetically sensitive diagnostic line range from 0.8 to 1.8 kG. We also estimate a magnetic field strength of 1.9 kG for COUP 107 from an alternative diagnostic. The magnetic field on YLW 19 is the weakest in our sample and is marginally detected, with a strength of 0.8 kG. Conclusions: We populate an uncharted area of the pre-main-sequence HR diagram with mean magnetic field measurements from high-resolution near-infrared spectra. Our sample of intermediate mass T Tauri stars in general exhibits weaker magnetic fields than their lower mass counterparts. Our measurements will be used in combination with other spectropolarimetric studies of intermediate mass and lower mass T Tauri stars to provide input into pre-main-sequence stellar evolutionary models.
HSX as an example of a resilient non-resonant divertor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bader, A.; Boozer, A. H.; Hegna, C. C.
This study describes an initial description of the resilient divertor properties of quasi-symmetric (QS) stellarators using the HSX (Helically Symmetric eXperiment) configuration as a test-case. Divertors in high-performance QS stellarators will need to be resilient to changes in plasma configuration that arise due to evolution of plasma pressure profiles and bootstrap currents for divertor design. Resiliency is tested by examining the changes in strike point patterns from the field line following, which arise due to configurational changes. A low strike point variation with high configuration changes corresponds to high resiliency. The HSX edge displays resilient properties with configuration changes arisingmore » from the (1) wall position, (2) plasma current, and (3) external coils. The resilient behavior is lost if large edge islands intersect the wall structure. The resilient edge properties are corroborated by heat flux calculations from the fully 3-D plasma simulations using EMC3-EIRENE. Additionally, the strike point patterns are found to correspond to high curvature regions of magnetic flux surfaces.« less
HSX as an example of a resilient non-resonant divertor
Bader, A.; Boozer, A. H.; Hegna, C. C.; ...
2017-03-16
This study describes an initial description of the resilient divertor properties of quasi-symmetric (QS) stellarators using the HSX (Helically Symmetric eXperiment) configuration as a test-case. Divertors in high-performance QS stellarators will need to be resilient to changes in plasma configuration that arise due to evolution of plasma pressure profiles and bootstrap currents for divertor design. Resiliency is tested by examining the changes in strike point patterns from the field line following, which arise due to configurational changes. A low strike point variation with high configuration changes corresponds to high resiliency. The HSX edge displays resilient properties with configuration changes arisingmore » from the (1) wall position, (2) plasma current, and (3) external coils. The resilient behavior is lost if large edge islands intersect the wall structure. The resilient edge properties are corroborated by heat flux calculations from the fully 3-D plasma simulations using EMC3-EIRENE. Additionally, the strike point patterns are found to correspond to high curvature regions of magnetic flux surfaces.« less
Evolution of X-ray activity of 1-3 Msun late-type stars in early post-main-sequence phases
NASA Astrophysics Data System (ADS)
Pizzolato, N.; Maggio, A.; Sciortino, S.
2000-09-01
We have investigated the variation of coronal X-ray emission during early post-main-sequence phases for a sample of 120 late-type stars within 100 pc, and with estimated masses in the range 1-3 Msun, based on Hipparcos parallaxes and recent evolutionary models. These stars were observed with the ROSAT/PSPC, and the data processed with the Palermo-CfA pipeline, including detection and evaluation of X-ray fluxes (or upper limits) by means of a wavelet transform algorithm. We have studied the evolutionary history of X-ray luminosity and surface flux for stars in selected mass ranges, including stars with inactive A-type progenitors on the main sequence and lower mass solar-type stars. Our stellar sample suggests a trend of increasing X-ray emission level with age for stars with masses M > 1.5 Msun, and a decline for lower-mass stars. A similar behavior holds for the average coronal temperature, which follows a power-law correlation with the X-ray luminosity, independently of their mass and evolutionary state. We have also studied the relationship between X-ray luminosity and surface rotation rate for stars in the same mass ranges, and how this relationships departs from the Lx ~ vrot2 law followed by main-sequence stars. Our results are interpreted in terms of a magnetic dynamo whose efficiency depends on the stellar evolutionary state through the mass-dependent changes of the stellar internal structure, including the properties of envelope convection and the internal rotation profile.
RED DWARF DYNAMO RAISES PUZZLE OVER INTERIORS OF LOWEST-MASS STARS
NASA Technical Reports Server (NTRS)
2002-01-01
NASA's Hubble Space Telescope has uncovered surprising evidence that powerful magnetic fields might exist around the lowest mass stars in the universe, which are near the threshold of stellar burning processes. 'New theories will have to be developed to explain how these strong fields are produced, since conventional models predict that these low mass red dwarfs should have very weak or no magnetic fields,' says Dr. Jeffrey Linsky of the Joint Institute for Laboratory Astrophysics (JILA) in Boulder, Colorado. 'The Hubble observations provide clear evidence that very low mass red dwarf stars must have some form of dynamo to amplify their magnetic fields.' His conclusions are based upon Hubble's detection of a high-temperature outburst, called a flare, on the surface of the extremely small, cool red dwarf star Van Biesbroeck 10 (VB10) also known as Gliese 752B. Stellar flares are caused by intense, twisted magnetic fields that accelerate and contain gasses which are much hotter than a star's surface. Explosive flares are common on the Sun and expected for stars that have internal structures similar to our Sun's. Stars as small as VB10 are predicted to have a simpler internal structure than that of the Sun and so are not expected to generate the electric currents required for magnetic fields that drive flares. Besides leading to a clearer understanding of the interior structure of the smallest red dwarf stars known, these unexpected results might possibly shed light on brown dwarf stars. A brown dwarf is a long-sought class of astronomical object that is too small to shine like a star through nuclear fusion processes, but is too large to be considered a planet. 'Since VB10 is nearly a brown dwarf, it is likely brown dwarfs also have strong magnetic fields,' says Linsky. 'Additional Hubble searches for flares are needed to confirm this prediction.' A QUARTER-MILLION DEGREE TORCH The star VB10 and its companion star Gliese 752A make up a binary system located 19 light-years away in the constellation Aquila. Gliese 752A is a red dwarf that is one-third the mass of the Sun and slightly more than half its diameter. By contrast, VB10 is physically smaller than the planet Jupiter and only about nine percent the mass of our Sun. This very faint star is near the threshold of the lowest possible mass for a true star (.08 solar masses), below which nuclear fusion processes cannot take place according to current models. A team led by Linsky used Hubble's Goddard High Resolution Spectrograph (GHRS) to make a one-hour long exposure of VB10 on October 12, 1994. No detectable ultraviolet emission was seen until the last five minutes, when bright emission was detected in a flare. Though the star's normal surface temperature is 4,500 degrees Fahrenheit, Hubble's GHRS detected a sudden burst of 270,000 degrees Fahrenheit in the star's outer atmosphere. Linsky attributes this rapid heating to the presence of an intense, but unstable, magnetic field. THE INTERIOR WORKINGS OF A STELLAR DYNAMO Before the Hubble observation, astronomers thought magnetic fields in stars required the same dynamo process which creates magnetic fields on the Sun. In the classic solar model, heat generated by nuclear fusion reactions at the star's center escapes through a radiative zone just outside the core. The heat travels from the radiative core to the star's surface through a convection zone. In this region, heat bubbles to the surface by motions similar to boiling in a pot of water. Dynamos, which accelerate electrons to create magnetic forces, operate when the interior of a star rotates faster than the surface. Recent studies of the Sun indicate its convective zone rotates at nearly the same rate at all depths. This means the solar dynamo must operate in the more rapidly rotating radiative core just below the convective zone. The puzzle is that stars below 20 percent the mass of our Sun do not have radiative cores, but instead transport heat from their core through convection only. The new Hubble observations suggest a magnetic dynamo perhaps of a new type can operate inside these stars. These results are being reported at the 185th meeting of the American Astronomical Society in Tucson, Arizona. * * * * * * * * * * * * The Space Telescope Science Institute is operated by the Association of Universities for Research in Astronomy, Inc. (AURA) for NASA, under contract with the Goddard Space Flight Center, Greenbelt, MD. The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency (ESA). JILA is a joint institute of the University of Colorado and the National Institute of Standards and Technology (NIST). Dr. Linsky is a staff member of the Quantum Physics Division of NIST.
Magnetic braking of stellar cores in red giants and supergiants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maeder, André; Meynet, Georges, E-mail: andre.maeder@unige, E-mail: georges.meynet@unige.ch
2014-10-01
Magnetic configurations, stable on the long term, appear to exist in various evolutionary phases, from main-sequence stars to white dwarfs and neutron stars. The large-scale ordered nature of these fields, often approximately dipolar, and their scaling according to the flux conservation scenario favor a fossil field model. We make some first estimates of the magnetic coupling between the stellar cores and the outer layers in red giants and supergiants. Analytical expressions of the truncation radius of the field coupling are established for a convective envelope and for a rotating radiative zone with horizontal turbulence. The timescales of the internal exchangesmore » of angular momentum are considered. Numerical estimates are made on the basis of recent model grids. The direct magnetic coupling of the core to the extended convective envelope of red giants and supergiants appears unlikely. However, we find that the intermediate radiative zone is fully coupled to the core during the He-burning and later phases. This coupling is able to produce a strong spin down of the core of red giants and supergiants, also leading to relatively slowly rotating stellar remnants such as white dwarfs and pulsars. Some angular momentum is also transferred to the outer convective envelope of red giants and supergiants during the He-burning phase and later.« less
RADIUS-DEPENDENT ANGULAR MOMENTUM EVOLUTION IN LOW-MASS STARS. I
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reiners, Ansgar; Mohanty, Subhanjoy, E-mail: Ansgar.Reiners@phys.uni-goettingen.de
2012-02-10
Angular momentum evolution in low-mass stars is determined by initial conditions during star formation, stellar structure evolution, and the behavior of stellar magnetic fields. Here we show that the empirical picture of angular momentum evolution arises naturally if rotation is related to magnetic field strength instead of to magnetic flux and formulate a corrected braking law based on this. Angular momentum evolution then becomes a strong function of stellar radius, explaining the main trends observed in open clusters and field stars at a few Gyr: the steep transition in rotation at the boundary to full convection arises primarily from themore » large change in radius across this boundary and does not require changes in dynamo mode or field topology. Additionally, the data suggest transient core-envelope decoupling among solar-type stars and field saturation at longer periods in very low mass stars. For solar-type stars, our model is also in good agreement with the empirical Skumanich law. Finally, in further support of the theory, we show that the predicted age at which low-mass stars spin down from the saturated to unsaturated field regimes in our model corresponds remarkably well to the observed lifetime of magnetic activity in these stars.« less
Hard X-ray spectra of neutron stars and black hole candidates
NASA Technical Reports Server (NTRS)
Durouchoux, P.; Mahoney, W.; Clenet, Y.; Ling, J.; Wallyn, P.; Wheaton, W.; Corbet, S.; Chapuis, C.
1997-01-01
The hard X-ray behavior of several X-ray binary systems containing a neutron star or a black hole candidate is analyzed in an attempt to determine the specific signature of these categories of compact objects. Limiting the consideration to two subclasses of neutron stars, Atoll sources and non-pulsating Z sources, it appears that only the Atoll sources have a spectral behavior similar to black holes. It is proposed that Atoll sources are weakly magnetized neutron stars, whereas Z sources are small radius moderate magnetized neutron stars. Large magnetic fields funnel the accreting matter, thus preventing spherical accretion and free fall if the neutron star radius is smaller than the last stable accreting orbit. Weak magnetic fields do not have this effect, and blackbody soft photons from the stellar surface are upscattered on the relativistic infalling matter, leading to excess hard X-rays. This excess is visible in two of the observed Atoll sources and in the spectrum of a black hole candidate. In the case of a Z source, a lack of photons was remarked, providing a possible signature to distinguish between these classes of objects.
Astrometric Detection of Exo-Earths in the Presence of Stellar Noise
NASA Astrophysics Data System (ADS)
Catanzarite, Joseph; Law, N.; Shao, M.
2008-03-01
Astrometry from space is capable of making extremely precise measurements of the positions of stars, well below 1 uas (microarcsecond) at each visit. A hundred such visits over a period of several years could result in a relative astrometric precision for the mission of 0.1 uas, which is below the astrometric signature of 0.3 uas for a Sun-Earth system at a distance of 10 pc. Stellar photometric fluctuations on timescales of months to years introduce astrophysical noise in radial velocity and astrometric measurements of stars. These fluctuations are dominated by rotation and evolution of magnetic surface features (sunspots and faculae). We describe a dynamic model of starspot noise which is consistent with the power spectrum of the Sun and several other stars. We use the model to predict the noise in astrometric and RV observing campaigns for this small sample of stars. We also use empirical stellar activity models to estimate the astrometric and radial velocity jitter for a much larger sample of nearby solar-type stars. We find that for most of these stars, starspot noise does not significantly interfere with astrometric detection of habitable zone planets down to well below an Earth mass. This work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA.
Performance and properties of the first plasmas of Wendelstein 7-X
Klinger, Thomas; Alonso, A.; Bozhenkov, S.; ...
2016-10-18
The optimized, superconducting stellarator Wendelstein 7-X went into operation and delivered first measurement data after 15 years of construction and one year commissioning. Errors in the magnet assembly were confirmend to be small. Plasma operation was started with 5 MW electron cyclotron resonance heating (ECRH) power and five inboard limiters. Core plasma values ofmore » $${{T}_{\\text{e}}}>8$$ keV, $${{T}_{\\text{i}}}>2$$ keV at line-integrated densities $$n\\approx 3\\centerdot {{10}^{19}}~{{\\text{m}}^{-2}}$$ were achieved, exceeding the original expectations by about a factor of two. Indications for a core-electron-root were found. The energy confinement times are in line with the international stellarator scaling, despite unfavourable wall conditions, i.e. large areas of metal surfaces and particle sources from the limiter close to the plasma volume. Well controlled shorter hydrogen discharges at higher power (4 MW ECRH power for 1 s) and longer discharges at lower power (0.7 MW ECRH power for 6 s) could be routinely established after proper wall conditioning. Lastly, the fairly large set of diagnostic systems running in the end of the 10 weeks operation campaign provided first insights into expected and unexpected physics of optimized stellarators.« less
The effect of a sheared flow on magnetic islands in plasmas with non-axisymetric geometry
NASA Astrophysics Data System (ADS)
Cancino, M. Stefany; Martinell, Julio J.
2018-02-01
The stability of a magnetic island in a toroidal magnetic confinement device depends on various factors besides the usual tearing-mode stability parameter ?, determined by the local current profile.The presence of a sheared flow in the vicinity of the rational surface that supports the island is one of the factors that affects its stability since it can give rise to a polarization current around the island position. The contribution of the polarization current to the stability has been computed for a tokamak geometry. Here, we consider the case of magnetic islands with a shear flow in a stellarator which has a non-axisymmetric magnetic geometry. The main difference is a contribution to the polarization current from the toroidal electrostatic oscillation. A correction due to the global toroidal magnetic geometry is also present. It is found that the regime where the stability is affected corresponds to the large island width relative to the ion gyroradius. Thus, the contribution is relevant for low-temperature regimes. In that case, the polarization current is destabilizing for frequencies larger than the ion diamagnetic frequency. Our results imply that the sheared flow can produce a growth of the magnetic island in a cold plasma but it can become narrower as the temperature rises.
Optical Multi-Channel Intensity Interferometry - Or: How to Resolve O-Stars in the Magellanic Clouds
NASA Astrophysics Data System (ADS)
Trippe, Sascha; Kim, Jae-Young; Lee, Bangwon; Choi, Changsu; Oh, Junghwan; Lee, Taeseok; Yoon, Sung-Chul; Im, Myungshin; Park, Yong-Sun
2014-12-01
Intensity interferometry, based on the Hanbury Brown--Twiss effect, is a simple and inexpensive method for optical interferometry at microarcsecond angular resolutions; its use in astronomy was abandoned in the 1970s because of low sensitivity. Motivated by recent technical developments, we argue that the sensitivity of large modern intensity interferometers can be improved by factors up to approximately 25,000, corresponding to 11 photometric magnitudes, compared to the pioneering Narrabri Stellar Interferometer. This is made possible by (i) using avalanche photodiodes (APD) as light detectors, (ii) distributing the light received from the source over multiple independent spectral channels, and (iii) use of arrays composed of multiple large light collectors. Our approach permits the construction of large (with baselines ranging from few kilometers to intercontinental distances) optical interferometers at the cost of (very) long-baseline radio interferometers. Realistic intensity interferometer designs are able to achieve limiting R-band magnitudes as good as m_R≈14, sufficient for spatially resolved observations of main-sequence O-type stars in the Magellanic Clouds. Multi-channel intensity interferometers can address a wide variety of science cases: (i) linear radii, effective temperatures, and luminosities of stars, via direct measurements of stellar angular sizes; (ii) mass--radius relationships of compact stellar remnants, via direct measurements of the angular sizes of white dwarfs; (iii) stellar rotation, via observations of rotation flattening and surface gravity darkening; (iv) stellar convection and the interaction of stellar photospheres and magnetic fields, via observations of dark and bright starspots; (v) the structure and evolution of multiple stars, via mapping of the companion stars and of accretion flows in interacting binaries; (vi) direct measurements of interstellar distances, derived from angular diameters of stars or via the interferometric Baade--Wesselink method; (vii) the physics of gas accretion onto supermassive black holes, via resolved observations of the central engines of luminous active galactic nuclei; and (viii) calibration of amplitude interferometers by providing a sample of calibrator stars.
NASA Astrophysics Data System (ADS)
Owocki, Stanley P.; Cranmer, Steven R.
2018-03-01
In the subset of luminous, early-type stars with strong, large-scale magnetic fields and moderate to rapid rotation, material from the star's radiatively driven stellar wind outflow becomes trapped by closed magnetic loops, forming a centrifugally supported, corotating magnetosphere. We present here a semi-analytic analysis of how this quasi-steady accumulation of wind mass can be balanced by losses associated with a combination of an outward, centrifugally driven drift in the region beyond the Kepler co-rotation radius, and an inward/outward diffusion near this radius. We thereby derive scaling relations for the equilibrium spatial distribution of mass, and the associated emission measure for observational diagnostics like Balmer line emission. We discuss the potential application of these relations for interpreting surveys of the emission line diagnostics for OB stars with centrifugally supported magnetospheres. For a specific model of turbulent field-line-wandering rooted in surface motions associated with the iron opacity bump, we estimate values for the associated diffusion and drift coefficients.
NASA Astrophysics Data System (ADS)
Kissin, Yevgeni; Thompson, Christopher
2015-07-01
The internal rotation of post-main sequence stars is investigated, in response to the convective pumping of angular momentum toward the stellar core, combined with a tight magnetic coupling between core and envelope. The spin evolution is calculated using model stars of initial mass 1, 1.5, and 5 {M}⊙ , taking into account mass loss on the giant branches. We also include the deposition of orbital angular momentum from a sub-stellar companion, as influenced by tidal drag along with the excitation of orbital eccentricity by a fluctuating gravitational quadrupole moment. A range of angular velocity profiles {{Ω }}(r) is considered in the envelope, extending from solid rotation to constant specific angular momentum. We focus on the backreaction of the Coriolis force, and the threshold for dynamo action in the inner envelope. Quantitative agreement with measurements of core rotation in subgiants and post-He core flash stars by Kepler is obtained with a two-layer angular velocity profile: uniform specific angular momentum where the Coriolis parameter {Co}\\equiv {{Ω }}{τ }{con}≲ 1 (here {τ }{con} is the convective time), and {{Ω }}(r)\\propto {r}-1 where {Co}≳ 1. The inner profile is interpreted in terms of a balance between the Coriolis force and angular pressure gradients driven by radially extended convective plumes. Inward angular momentum pumping reduces the surface rotation of subgiants, and the need for a rejuvenated magnetic wind torque. The co-evolution of internal magnetic fields and rotation is considered in Kissin & Thompson, along with the breaking of the rotational coupling between core and envelope due to heavy mass loss.
SUN-LIKE MAGNETIC CYCLES IN THE RAPIDLY ROTATING YOUNG SOLAR ANALOG HD 30495
DOE Office of Scientific and Technical Information (OSTI.GOV)
Egeland, Ricky; Metcalfe, Travis S.; Hall, Jeffrey C.
A growing body of evidence suggests that multiple dynamo mechanisms can drive magnetic variability on different timescales, not only in the Sun but also in other stars. Many solar activity proxies exhibit a quasi-biennial (∼2 year) variation, which is superimposed upon the dominant 11 year cycle. A well-characterized stellar sample suggests at least two different relationships between rotation period and cycle period, with some stars exhibiting long and short cycles simultaneously. Within this sample, the solar cycle periods are typical of a more rapidly rotating star, implying that the Sun might be in a transitional state or that it hasmore » an unusual evolutionary history. In this work, we present new and archival observations of dual magnetic cycles in the young solar analog HD 30495, a ∼1 Gyr old G1.5 V star with a rotation period near 11 days. This star falls squarely on the relationships established by the broader stellar sample, with short-period variations at ∼1.7 years and a long cycle of ∼12 years. We measure three individual long-period cycles and find durations ranging from 9.6 to 15.5 years. We find the short-term variability to be intermittent, but present throughout the majority of the time series, though its occurrence and amplitude are uncorrelated with the longer cycle. These essentially solar-like variations occur in a Sun-like star with more rapid rotation, though surface differential rotation measurements leave open the possibility of a solar equivalence.« less
Mass-loss Rates from Coronal Mass Ejections: A Predictive Theoretical Model for Solar-type Stars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cranmer, Steven R.
Coronal mass ejections (CMEs) are eruptive events that cause a solar-type star to shed mass and magnetic flux. CMEs tend to occur together with flares, radio storms, and bursts of energetic particles. On the Sun, CME-related mass loss is roughly an order of magnitude less intense than that of the background solar wind. However, on other types of stars, CMEs have been proposed to carry away much more mass and energy than the time-steady wind. Earlier papers have used observed correlations between solar CMEs and flare energies, in combination with stellar flare observations, to estimate stellar CME rates. This papermore » sidesteps flares and attempts to calibrate a more fundamental correlation between surface-averaged magnetic fluxes and CME properties. For the Sun, there exists a power-law relationship between the magnetic filling factor and the CME kinetic energy flux, and it is generalized for use on other stars. An example prediction of the time evolution of wind/CME mass-loss rates for a solar-mass star is given. A key result is that for ages younger than about 1 Gyr (i.e., activity levels only slightly higher than the present-day Sun), the CME mass loss exceeds that of the time-steady wind. At younger ages, CMEs carry 10–100 times more mass than the wind, and such high rates may be powerful enough to dispel circumstellar disks and affect the habitability of nearby planets. The cumulative CME mass lost by the young Sun may have been as much as 1% of a solar mass.« less
Basic research in solar physics
NASA Technical Reports Server (NTRS)
Linsky, Jeffrey L.
1991-01-01
This grant, dating back more than 20 years has supported a variety of investigations of the chromospheres and coronae of the Sun and related cool stars by the Principal Investigator, his postdocs and graduate students, and colleagues at other institutions. This work involved studies of radiative transfer and spectral line formation theory, and the application of these techniques to the analysis of spectra obtained from space and ground-based observatories in the optical, ultraviolet, x-ray and radio portions of the spectrum. Space observations have included the analysis of spectra from OSO-7, Skylab, SMM, and the HRTS rocket experiments. Recent work has concentrated on the interaction of magnetic fields, plasma and radiation in the outer atmospheres of the Sun and other magnetically active stars with different fundamental parameters. Our study of phenomena common to the Sun and stars, the 'solar-stellar connection', can elucidate the fundamental physics, because spatially-resolved observations of the Sun provide us with the 'groundtruth,' while interpretation of stellar data permit us to isolate those parameters critical to stellar activity. Recently, we have studied the differences in physical properties between solar regions of high magnetic flux density and the surrounding plasma. High-resolution CN and CO spectroheliograms have been used to model the thermal inhomogeneities driven by unstable CO cooling, and we have analyzed spatially resolved UV spectra from HRTS to model the thermal structure and energy balance of small-scale structures. The study of nonlinear relations between atmospheric radiative losses and the photospheric magnetic flux density has been continued. We have also proposed a new model for the decay of plages by random walk diffusion of magnetic flux. Our analysis of phenomena common to the Sun and stars included the application of available spectroscopic diagnostics, establishing evidence that the atmospheres of the least active stars are heated at a 'basal' rate that is also found in the centers of solar supergranules, and using the Doppler-imaging technique to measure the position, size, and brightness of stellar active regions. We are computing multi-component models for solar and stellar atmospheres, and models for coronal loops and for the transition-region down flows. The study of solar and stellar flares permits us to assess the role of turbulent energy transport, to pinpoint the mechanism behind Type I radio bursts, to determine whether plasma radiation or cyclotron maser is responsible for microwave flares on M dwarfs, and to extend our knowledge of the basic physics pertinent to cyclotron-maser processes operating on the Sun.
Magnetic field strength of a neutron-star-powered ultraluminous X-ray source
NASA Astrophysics Data System (ADS)
Brightman, M.; Harrison, F. A.; Fürst, F.; Middleton, M. J.; Walton, D. J.; Stern, D.; Fabian, A. C.; Heida, M.; Barret, D.; Bachetti, M.
2018-04-01
Ultraluminous X-ray sources (ULXs) are bright X-ray sources in nearby galaxies not associated with the central supermassive black hole. Their luminosities imply they are powered by either an extreme accretion rate onto a compact stellar remnant, or an intermediate mass ( 100-105M⊙) black hole1. Recently detected coherent pulsations coming from three bright ULXs2-5 demonstrate that some of these sources are powered by accretion onto a neutron star, implying accretion rates significantly in excess of the Eddington limit, a high degree of geometric beaming, or both. The physical challenges associated with the high implied accretion rates can be mitigated if the neutron star surface field is very high (1014 G)6, since this suppresses the electron scattering cross-section, reducing the radiation pressure that chokes off accretion for high luminosities. Surface magnetic field strengths can be determined through cyclotron resonance scattering features7,8 produced by the transition of charged particles between quantized Landau levels. Here, we present the detection at a significance of 3.8σ of an absorption line at 4.5 keV in the Chandra spectrum of a ULX in M51. This feature is likely to be a cyclotron resonance scattering feature produced by the strong magnetic field of a neutron star. Assuming scattering off electrons, the magnetic field strength is implied to be 1011 G, while protons would imply a magnetic field of B 1015 G.
Thermonuclear inverse magnetic pumping power cycle for stellarator reactor
Ho, Darwin D.; Kulsrud, Russell M.
1991-01-01
The plasma column in a stellarator is compressed and expanded alternatively in minor radius. First a plasma in thermal balance is compressed adiabatically. The volume of the compressed plasma is maintained until the plasma reaches a new thermal equilibrium. The plasma is then expanded to its original volume. As a result of the way a stellarator works, the plasma pressure during compression is less than the corresponding pressure during expansion. Therefore, negative work is done on the plasma over a complete cycle. This work manifests itself as a back-voltage in the toroidal field coils. Direct electrical energy is obtained from this voltage. Alternatively, after the compression step, the plasma can be expanded at constant pressure. The cycle can be made self-sustaining by operating a system of two stellarator reactors in tandem. Part of the energy derived from the expansion phase of a first stellarator reactor is used to compress the plasma in a second stellarator reactor.
Solar and stellar flares and their impact on planets
NASA Astrophysics Data System (ADS)
Shibata, Kazunari
Recent observations of the Sun revealed that the solar atmosphere is full of flares and flare-like phenomena, which affect terrestrial environment and our civilization. It has been established that flares are caused by the release of magnetic energy through magnetic reconnection. Many stars show flares similar to solar flares, and such stellar flares especially in stars with fast rotation are much more energetic than solar flares. These are called superflares. The total energy of a solar flare is 1029 - 1032 erg, while that of a superflare is 1033 - 1038 erg. Recently, it was found that superflares (with 1034 - 1035 erg) occur on Sun-like stars with slow rotation with frequency once in 800 - 5000 years. This suggests the possibility of superflares on the Sun. We review recent development of solar and stellar flare research, and briefly discuss possible impacts of superflares on the Earth and exoplanets.
Time-scales of stellar rotational variability and starspot diagnostics
NASA Astrophysics Data System (ADS)
Arkhypov, Oleksiy V.; Khodachenko, Maxim L.; Lammer, Helmut; Güdel, Manuel; Lüftinger, Teresa; Johnstone, Colin P.
2018-01-01
The difference in stability of starspot distribution on the global and hemispherical scales is studied in the rotational spot variability of 1998 main-sequence stars observed by Kepler mission. It is found that the largest patterns are much more stable than smaller ones for cool, slow rotators, whereas the difference is less pronounced for hotter stars and/or faster rotators. This distinction is interpreted in terms of two mechanisms: (1) the diffusive decay of long-living spots in activity complexes of stars with saturated magnetic dynamos, and (2) the spot emergence, which is modulated by gigantic turbulent flows in convection zones of stars with a weaker magnetism. This opens a way for investigation of stellar deep convection, which is yet inaccessible for asteroseismology. Moreover, a subdiffusion in stellar photospheres was revealed from observations for the first time. A diagnostic diagram was proposed that allows differentiation and selection of stars for more detailed studies of these phenomena.
POET: Planetary Orbital Evolution due to Tides
NASA Astrophysics Data System (ADS)
Penev, Kaloyan
2014-08-01
POET (Planetary Orbital Evolution due to Tides) calculates the orbital evolution of a system consisting of a single star with a single planet in orbit under the influence of tides. The following effects are The evolutions of the semimajor axis of the orbit due to the tidal dissipation in the star and the angular momentum of the stellar convective envelope by the tidal coupling are taken into account. In addition, the evolution includes the transfer of angular momentum between the stellar convective and radiative zones, effect of the stellar evolution on the tidal dissipation efficiency, and stellar core and envelope spins and loss of stellar convective zone angular momentum to a magnetically launched wind. POET can be used out of the box, and can also be extended and modified.
Circumstellar Disk Lifetimes In Numerous Galactic Young Stellar Clusters
NASA Astrophysics Data System (ADS)
Richert, A. J. W.; Getman, K. V.; Feigelson, E. D.; Kuhn, M. A.; Broos, P. S.; Povich, M. S.; Bate, M. R.; Garmire, G. P.
2018-04-01
Photometric detections of dust circumstellar disks around pre-main sequence (PMS) stars, coupled with estimates of stellar ages, provide constraints on the time available for planet formation. Most previous studies on disk longevity, starting with Haisch, Lada & Lada (2001), use star samples from PMS clusters but do not consider datasets with homogeneous photometric sensitivities and/or ages placed on a uniform timescale. Here we conduct the largest study to date of the longevity of inner dust disks using X-ray and 1-8 {μ m} infrared photometry from the MYStIX and SFiNCs projects for 69 young clusters in 32 nearby star-forming regions with ages t ≤ 5 Myr. Cluster ages are derived by combining the empirical AgeJX method with PMS evolutionary models, which treat dynamo-generated magnetic fields in different ways. Leveraging X-ray data to identify disk-free objects, we impose similar stellar mass sensitivity limits for disk-bearing and disk-free YSOs while extending the analysis to stellar masses as low as M ˜ 0.1 M⊙. We find that the disk longevity estimates are strongly affected by the choice of PMS evolutionary model. Assuming a disk fraction of 100% at zero age, the inferred disk half-life changes significantly, from t1/2 ˜ 1.3 - 2 Myr to t1/2 ˜ 3.5 Myr when switching from non-magnetic to magnetic PMS models. In addition, we find no statistically significant evidence that disk fraction varies with stellar mass within the first few Myr of life for stars with masses <2 M⊙, but our samples may not be complete for more massive stars. The effects of initial disk fraction and star-forming environment are also explored.
A universal model for solar eruptions.
Wyper, Peter F; Antiochos, Spiro K; DeVore, C Richard
2017-04-26
Magnetically driven eruptions on the Sun, from stellar-scale coronal mass ejections to small-scale coronal X-ray and extreme-ultraviolet jets, have frequently been observed to involve the ejection of the highly stressed magnetic flux of a filament. Theoretically, these two phenomena have been thought to arise through very different mechanisms: coronal mass ejections from an ideal (non-dissipative) process, whereby the energy release does not require a change in the magnetic topology, as in the kink or torus instability; and coronal jets from a resistive process involving magnetic reconnection. However, it was recently concluded from new observations that all coronal jets are driven by filament ejection, just like large mass ejections. This suggests that the two phenomena have physically identical origin and hence that a single mechanism may be responsible, that is, either mass ejections arise from reconnection, or jets arise from an ideal instability. Here we report simulations of a coronal jet driven by filament ejection, whereby a region of highly sheared magnetic field near the solar surface becomes unstable and erupts. The results show that magnetic reconnection causes the energy release via 'magnetic breakout'-a positive-feedback mechanism between filament ejection and reconnection. We conclude that if coronal mass ejections and jets are indeed of physically identical origin (although on different spatial scales) then magnetic reconnection (rather than an ideal process) must also underlie mass ejections, and that magnetic breakout is a universal model for solar eruptions.
MODELING THE RISE OF FIBRIL MAGNETIC FIELDS IN FULLY CONVECTIVE STARS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weber, Maria A.; Browning, Matthew K., E-mail: mweber@astro.ex.ac.uk
Many fully convective stars exhibit a wide variety of surface magnetism, including starspots and chromospheric activity. The manner by which bundles of magnetic field traverse portions of the convection zone to emerge at the stellar surface is not especially well understood. In the solar context, some insight into this process has been gleaned by regarding the magnetism as consisting partly of idealized thin flux tubes (TFTs). Here we present the results of a large set of TFT simulations in a rotating spherical domain of convective flows representative of a 0.3 M {sub ⊙} main-sequence star. This is the first studymore » to investigate how individual flux tubes in such a star might rise under the combined influence of buoyancy, convection, and differential rotation. A time-dependent hydrodynamic convective flow field, taken from separate 3D simulations calculated with the anelastic equations, impacts the flux tube as it rises. Convective motions modulate the shape of the initially buoyant flux ring, promoting localized rising loops. Flux tubes in fully convective stars have a tendency to rise nearly parallel to the rotation axis. However, the presence of strong differential rotation allows some initially low-latitude flux tubes of moderate strength to develop rising loops that emerge in the near-equatorial region. Magnetic pumping suppresses the global rise of the flux tube most efficiently in the deeper interior and at lower latitudes. The results of these simulations aim to provide a link between dynamo-generated magnetic fields, fluid motions, and observations of starspots for fully convective stars.« less
Modelling element distributions in the atmospheres of magnetic Ap stars
NASA Astrophysics Data System (ADS)
Alecian, G.; Stift, M. J.
2007-11-01
Context: In recent papers convincing evidence has been presented for chemical stratification in Ap star atmospheres, and surface abundance maps have been shown to correlate with the magnetic field direction. Radiatively driven diffusion, which is known to be sensitive to the magnetic field strength and direction, is among the processes responsible for these inhomogeneities. Aims: Here we explore the hypothesis that equilibrium stratifications - such that the diffusive particle flux is close to zero throughout the atmosphere - can, in a number of cases, explain the observed abundance maps and vertical distributions of the various elements. Methods: An iterative scheme adjusts the abundances in such a way as to achieve either zero particle flux or zero effective acceleration throughout the atmosphere, taking strength and direction of the magnetic field into account. Results: The investigation of equilibrium stratifications in stellar atmospheres with temperatures from 8500 to 12 000 K and fields up to 10 kG reveals considerable variations in the vertical distribution of the 5 elements studied (Mg, Si, Ca, Ti, Fe), often with zones of large over- or under-abundances and with indications of other competing processes (such as mass loss). Horizontal magnetic fields can be very efficient in helping the accumulation of elements in higher layers. Conclusions: A comparison between our calculations and the vertical abundance profiles and surface maps derived by magnetic Doppler imaging reveals that equilibrium stratifications are in a number of cases consistent with the main trends inferred from observed spectra. However, it is not clear whether such equilibrium solutions will ever be reached during the evolution of an Ap star.
New method to design stellarator coils without the winding surface
NASA Astrophysics Data System (ADS)
Zhu, Caoxiang; Hudson, Stuart R.; Song, Yuntao; Wan, Yuanxi
2018-01-01
Finding an easy-to-build coils set has been a critical issue for stellarator design for decades. Conventional approaches assume a toroidal ‘winding’ surface, but a poorly chosen winding surface can unnecessarily constrain the coil optimization algorithm, This article presents a new method to design coils for stellarators. Each discrete coil is represented as an arbitrary, closed, one-dimensional curve embedded in three-dimensional space. A target function to be minimized that includes both physical requirements and engineering constraints is constructed. The derivatives of the target function with respect to the parameters describing the coil geometries and currents are calculated analytically. A numerical code, named flexible optimized coils using space curves (FOCUS), has been developed. Applications to a simple stellarator configuration, W7-X and LHD vacuum fields are presented.
SCR-1: Design and Construction of a Small Modular Stellarator for Magnetic Confinement of Plasma
NASA Astrophysics Data System (ADS)
Barillas, L.; Vargas, V. I.; Alpizar, A.; Asenjo, J.; Carranza, J. M.; Cerdas, F.; Gutiérrez, R.; Monge, J. I.; Mora, J.; Morera, J.; Peraza, H.; Queral, V.; Rojas, C.; Rozen, D.; Saenz, F.; Sánchez, G.; Sandoval, M.; Trimiño, H.; Umaña, J.; Villegas, L. F.
2014-05-01
This paper describes briefly the design and construction of a small modular stellarator for magnetic confinement of plasma, called Stellarator of Costa Rica 1, or SCR-1; developed by the Plasma Physics Group of the Instituto Tecnológico de Costa Rica, PlasmaTEC. The SCR-1 is based on the small Spanish stellarator UST_1, created by the engineer Vicente Queral. The SCR-1 will employ stainless steel torus-shaped vacuum vessel with a major radius of 460.33 mm and a cross section radius of 110.25mm. A typical SCR-1 plasma will have an average radius 42.2 mm and a volume of 8 liters (0.01 m3), and an aspect ratio of 5.7. The magnetic resonant field will be 0.0878 T, and a period of 2 (m=2) with a rotational transform of 0.3. The magnetic field will be provided by 12 modular coils, with 8 turns each, with an electrical current of 8704 A per coil (1088 A per turn of each coil). This current will be fed by a bank of cell batteries. The plasma will be heated by ECRH with magnetrons of a total power of 5kW, in the first harmonic at 2.45GHz. The expected electron temperature and density are 15 eV and 1017 m-3 respectively with an estimated confinement time of 7.30 x 10-4 ms. The initial diagnostics on the SCR-1 will consist of a Langmuir probe, a heterodyne microwave interferometer, and a field mapping system. The first plasma of the SCR-1 is expected at the end of 2011.
MAGNETIZED ACCRETION AND DEAD ZONES IN PROTOSTELLAR DISKS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dzyurkevich, Natalia; Henning, Thomas; Turner, Neal J.
The edges of magnetically dead zones in protostellar disks have been proposed as locations where density bumps may arise, trapping planetesimals and helping form planets. Magneto-rotational turbulence in magnetically active zones provides both accretion of gas on the star and transport of mass to the dead zone. We investigate the location of the magnetically active regions in a protostellar disk around a solar-type star, varying the disk temperature, surface density profile, and dust-to-gas ratio. We also consider stellar masses between 0.4 and 2 M{sub Sun }, with corresponding adjustments in the disk mass and temperature. The dead zone's size andmore » shape are found using the Elsasser number criterion with conductivities including the contributions from ions, electrons, and charged fractal dust aggregates. The charged species' abundances are found using the approach proposed by Okuzumi. The dead zone is in most cases defined by the ambipolar diffusion. In our maps, the dead zone takes a variety of shapes, including a fish tail pointing away from the star and islands located on and off the midplane. The corresponding accretion rates vary with radius, indicating locations where the surface density will increase over time, and others where it will decrease. We show that density bumps do not readily grow near the dead zone's outer edge, independently of the disk parameters and the dust properties. Instead, the accretion rate peaks at the radius where the gas-phase metals freeze out. This could lead to clearing a valley in the surface density, and to a trap for pebbles located just outside the metal freezeout line.« less
NASA Astrophysics Data System (ADS)
Borghese, A.; Rea, N.; Coti Zelati, F.; Tiengo, A.; Turolla, R.; Zane, S.
2017-07-01
We report on the results of a detailed phase-resolved spectroscopy of archival XMM-Newton observations of X-ray dim isolated neutron stars (XDINSs). Our analysis revealed a narrow and phase-variable absorption feature in the X-ray spectrum of RX J1308.6+2127. The feature has an energy of ˜740 eV and an equivalent width of ˜15 eV. It is detected only in ˜1/5 of the phase cycle, and appears to be present for the entire timespan covered by the observations (2001 December to 2007 June). The strong dependence on the pulsar rotation and the narrow width suggest that the feature is likely due to resonant cyclotron absorption/scattering in a confined high-B structure close to the stellar surface. Assuming a proton cyclotron line, the magnetic field strength in the loop is Bloop ˜ 1.7 × 1014 G, about a factor of ˜5 higher than the surface dipolar magnetic field (Bsurf ˜ 3.4 × 1013 G). This feature is similar to that recently detected in another XDINS, RX J0720.4-3125, showing (as expected by theoretical simulations) that small-scale magnetic loops close to the surface might be common to many highly magnetic neutron stars (although difficult to detect with current X-ray instruments). Furthermore, we investigated the available XMM-Newton data of all XDINSs in search for similar narrow phase-dependent features, but could derive only upper limits for all the other sources.
Non-radial pulsations and large-scale structure in stellar winds
NASA Astrophysics Data System (ADS)
Blomme, R.
2009-07-01
Almost all early-type stars show Discrete Absorption Components (DACs) in their ultraviolet spectral lines. These can be attributed to Co-rotating Interaction Regions (CIRs): large-scale spiral-shaped structures that sweep through the stellar wind. We used the Zeus hydrodynamical code to model the CIRs. In the model, the CIRs are caused by ``spots" on the stellar surface. Through the radiative acceleration these spots create fast streams in the stellar wind material. Where the fast and slow streams collide, a CIR is formed. By varying the parameters of the spots, we quantitatively fit the observed DACs in HD~64760. An important result from our work is that the spots do not rotate with the same velocity as the stellar surface. The fact that the cause of the CIRs is not fixed on the surface eliminates many potential explanations. The only remaining explanation is that the CIRs are due to the interference pattern of a number of non-radial pulsations.
Magnetic Field Topology in Low-Mass Stars: Spectropolarimetric Observations of M Dwarfs
NASA Astrophysics Data System (ADS)
Phan-Bao, Ngoc; Lim, Jeremy; Donati, Jean-François; Johns-Krull, Christopher M.; Martín, Eduardo L.
2009-10-01
The magnetic field topology plays an important role in the understanding of stellar magnetic activity. While it is widely accepted that the dynamo action present in low-mass partially convective stars (e.g., the Sun) results in predominantly toroidal magnetic flux, the field topology in fully convective stars (masses below ~0.35 M sun) is still under debate. We report here our mapping of the magnetic field topology of the M4 dwarf G 164-31 (or Gl 490B), which is expected to be fully convective, based on time series data collected from 20 hr of observations spread over three successive nights with the ESPaDOnS spectropolarimeter. Our tomographic imaging technique applied to time series of rotationally modulated circularly polarized profiles reveals an axisymmetric large-scale poloidal magnetic field on the M4 dwarf. We then apply a synthetic spectrum fitting technique for measuring the average magnetic flux on the star. The flux measured in G 164-31 is |Bf| = 3.2 ± 0.4 kG, which is significantly greater than the average value of 0.68 kG determined from the imaging technique. The difference indicates that a significant fraction of the stellar magnetic energy is stored in small-scale structures at the surface of G 164-31. Our Hα emission light curve shows evidence for rotational modulation suggesting the presence of localized structure in the chromosphere of this M dwarf. The radius of the M4 dwarf derived from the rotational period and the projected equatorial velocity is at least 30% larger than that predicted from theoretical models. We argue that this discrepancy is likely primarily due to the young nature of G 164-31 rather than primarily due to magnetic field effects, indicating that age is an important factor which should be considered in the interpretation of this observational result. We also report here our polarimetric observations of five other M dwarfs with spectral types from M0 to M4.5, three of them showing strong Zeeman signatures. Based on observations made at the Canada-France-Hawaii Telescope, operated by the National Research Council of Canada, the Centre National de la Recherche Scientifique de France and the University of Hawaii.
NASA Astrophysics Data System (ADS)
Fossati, L.; Zwintz, K.; Castro, N.; Langer, N.; Lorenz, D.; Schneider, F. R. N.; Kuschnig, R.; Matthews, J. M.; Alecian, E.; Wade, G. A.; Barnes, T. G.; Thoul, A. A.
2014-02-01
Star clusters are known as superb tools for understanding stellar evolution. In a quest for understanding the physical origin of magnetism and chemical peculiarity in about 7% of the massive main-sequence stars, we analysed two of the ten brightest members of the ~10 Myr old Galactic open cluster NGC 2264, the early B-dwarfs HD 47887 and HD 47777. We find accurate rotation periods of 1.95 and 2.64 days, respectively, from MOST photometry. We obtained ESPaDOnS spectropolarimetric observations, through which we determined stellar parameters, detailed chemical surface abundances, projected rotational velocities, and the inclination angles of the rotation axis. Because we found only small (<5 km s-1) radial velocity variations, most likely caused by spots, we can rule out that HD 47887 and HD 47777 are close binaries. Finally, using the least-squares deconvolution technique, we found that both stars possess a large-scale magnetic field with an average longitudinal field strength of about 400 G. From a simultaneous fit of the stellar parameters we determine the evolutionary masses of HD 47887 and HD 47777 to be 9.4+0.6-0.7 M⊙ and 7.6+0.5-0.5 M⊙. Interestingly, HD 47777 shows a remarkable helium underabundance, typical of helium-weak chemically peculiar stars, while the abundances of HD 47887 are normal, which might imply that diffusion is operating in the lower mass star but not in the slightly more massive one. Furthermore, we argue that the rather slow rotation, as well as the lack of nitrogen enrichment in both stars, can be consistent with both the fossil and the binary hypothesis for the origin of the magnetic field. However, the presence of two magnetic and apparently single stars near the top of the cluster mass-function may speak in favour of the latter. Based on data from the MOST satellite, a Canadian Space Agency mission, jointly operated by Microsatellite Systems Canada Inc. (MSCI), formerly part of Dynacon, Inc., the University of Toronto Institute for Aerospace Studies and the University of British Columbia with the assistance of the University of Vienna.Based on observations obtained at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council of Canada, the Institut National des Science de l'Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii.
Thermal Evolution of Neutron Stars
NASA Astrophysics Data System (ADS)
Geppert, Ulrich R. M. E.
The thermal evolution of neutron stars is a subject of intense research, both theoretical and observational. The evolution depends very sensitively on the state of dense matter at supranuclear densities, which essentially controls the neutrino emission. The evolution depends, too, on the structure of the stellar outer layers which control the photon emission. Various internal heating processes and the magnetic field strength and structure will influence the thermal evolution. Of great importance for the cooling processes is also whether, when, and where superfluidity and superconductivity appear within the neutron star. This article describes and discusses these issues and presents neutron star cooling calculations based on a broad collection of equations of state for neutron star matter and internal magnetic field geometries. X-ray observations provide reliable data, which allow conclusions about the surface temperatures of neutron stars. To verify the thermal evolution models, the results of model calculations are compared with the body of observed surface temperatures and their distribution. Through these comparisons, a better understanding can be obtained of the physical processes that take place under extreme conditions in the interior of neutron
Khodachenko, Maxim L; Ribas, Ignasi; Lammer, Helmut; Griessmeier, Jean-Mathias; Leitner, Martin; Selsis, Franck; Eiroa, Carlos; Hanslmeier, Arnold; Biernat, Helfried K; Farrugia, Charles J; Rucker, Helmut O
2007-02-01
Low mass M- and K-type stars are much more numerous in the solar neighborhood than solar-like G-type stars. Therefore, some of them may appear as interesting candidates for the target star lists of terrestrial exoplanet (i.e., planets with mass, radius, and internal parameters identical to Earth) search programs like Darwin (ESA) or the Terrestrial Planet Finder Coronagraph/Inferometer (NASA). The higher level of stellar activity of low mass M stars, as compared to solar-like G stars, as well as the closer orbital distances of their habitable zones (HZs), means that terrestrial-type exoplanets within HZs of these stars are more influenced by stellar activity than one would expect for a planet in an HZ of a solar-like star. Here we examine the influences of stellar coronal mass ejection (CME) activity on planetary environments and the role CMEs may play in the definition of habitability criterion for the terrestrial type exoplanets near M stars. We pay attention to the fact that exoplanets within HZs that are in close proximity to low mass M stars may become tidally locked, which, in turn, can result in relatively weak intrinsic planetary magnetic moments. Taking into account existing observational data and models that involve the Sun and related hypothetical parameters of extrasolar CMEs (density, velocity, size, and occurrence rate), we show that Earth-like exoplanets within close-in HZs should experience a continuous CME exposure over long periods of time. This fact, together with small magnetic moments of tidally locked exoplanets, may result in little or no magnetospheric protection of planetary atmospheres from a dense flow of CME plasma. Magnetospheric standoff distances of weakly magnetized Earth-like exoplanets at orbital distances
No Sun-like dynamo on the active star ζ Andromedae from starspot asymmetry.
Roettenbacher, R M; Monnier, J D; Korhonen, H; Aarnio, A N; Baron, F; Che, X; Harmon, R O; Kővári, Zs; Kraus, S; Schaefer, G H; Torres, G; Zhao, M; ten Brummelaar, T A; Sturmann, J; Sturmann, L
2016-05-12
Sunspots are cool areas caused by strong surface magnetic fields that inhibit convection. Moreover, strong magnetic fields can alter the average atmospheric structure, degrading our ability to measure stellar masses and ages. Stars that are more active than the Sun have more and stronger dark spots than does the Sun, including on the rotational pole. Doppler imaging, which has so far produced the most detailed images of surface structures on other stars, cannot always distinguish the hemisphere in which the starspots are located, especially in the equatorial region and if the data quality is not optimal. This leads to problems in investigating the north-south distribution of starspot active latitudes (those latitudes with more starspot activity); this distribution is a crucial constraint of dynamo theory. Polar spots, whose existence is inferred from Doppler tomography, could plausibly be observational artefacts. Here we report imaging of the old, magnetically active star ζ Andromedae using long-baseline infrared interferometry. In our data, a dark polar spot is seen in each of two observation epochs, whereas lower-latitude spot structures in both hemispheres do not persist between observations, revealing global starspot asymmetries. The north-south symmetry of active latitudes observed on the Sun is absent on ζ And, which hosts global spot patterns that cannot be produced by solar-type dynamos.
The magnetic fields at the surface of active single G-K giants
NASA Astrophysics Data System (ADS)
Aurière, M.; Konstantinova-Antova, R.; Charbonnel, C.; Wade, G. A.; Tsvetkova, S.; Petit, P.; Dintrans, B.; Drake, N. A.; Decressin, T.; Lagarde, N.; Donati, J.-F.; Roudier, T.; Lignières, F.; Schröder, K.-P.; Landstreet, J. D.; Lèbre, A.; Weiss, W. W.; Zahn, J.-P.
2015-02-01
Aims: We investigate the magnetic field at the surface of 48 red giants selected as promising for detection of Stokes V Zeeman signatures in their spectral lines. In our sample, 24 stars are identified from the literature as presenting moderate to strong signs of magnetic activity. An additional 7 stars are identified as those in which thermohaline mixing appears not to have occured, which could be due to hosting a strong magnetic field. Finally, we observed 17 additional very bright stars which enable a sensitive search to be performed with the spectropolarimetric technique. Methods: We use the spectropolarimeters Narval and ESPaDOnS to detect circular polarization within the photospheric absorption lines of our targets. We treat the spectropolarimetric data using the least-squares deconvolution method to create high signal-to-noise ratio mean Stokes V profiles. We also measure the classical S-index activity indicator for the Ca ii H&K lines, and the stellar radial velocity. To infer the evolutionary status of our giants and to interpret our results, we use state-of-the-art stellar evolutionary models with predictions of convective turnover times. Results: We unambiguously detect magnetic fields via Zeeman signatures in 29 of the 48 red giants in our sample. Zeeman signatures are found in all but one of the 24 red giants exhibiting signs of activity, as well as 6 out of 17 bright giant stars. However no detections were obtained in the 7 thermohaline deviant giants. The majority of the magnetically detected giants are either in the first dredge up phase or at the beginning of core He burning, i.e. phases when the convective turnover time is at a maximum: this corresponds to a "magnetic strip" for red giants in the Hertzsprung-Russell diagram. A close study of the 16 giants with known rotational periods shows that the measured magnetic field strength is tightly correlated with the rotational properties, namely to the rotational period and to the Rossby number Ro. Our results show that the magnetic fields of these giants are produced by a dynamo, possibly of α-ω origin since Ro is in general smaller than unity. Four stars for which the magnetic field is measured to be outstandingly strong with respect to that expected from the rotational period/magnetic field relation or their evolutionary status are interpreted as being probable descendants of magnetic Ap stars. In addition to the weak-field giant Pollux, 4 bright giants (Aldebaran, Alphard, Arcturus, η Psc) are detected with magnetic field strength at the sub-Gauss level. Besides Arcturus, these stars were not considered to be active giants before this study and are very similar in other respects to ordinary giants, with S-index indicating consistency with basal chromospheric flux. Tables 6-8 are available in electronic form at http://www.aanda.orgBased on observations obtained at the Télescope Bernard Lyot (TBL) at Observatoire du Pic du Midi, CNRS/INSU and Université de Toulouse, France, and at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council of Canada, CNRS/INSU and the University of Hawaii.
THE FIRST SPECTROPOLARIMETRIC MONITORING OF THE PECULIAR O4 Ief SUPERGIANT ζ PUPPIS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hubrig, S.; Ilyin, I.; Kholtygin, A.
2016-05-10
The origin of the magnetic field in massive O-type stars is still under debate. To model the physical processes responsible for the generation of O star magnetic fields, it is important to understand whether correlations between the presence of a magnetic field and stellar evolutionary state, rotation velocity, kinematical status, and surface composition can be identified. The O4 Ief supergiant ζ Pup is a fast rotator and a runaway star, which may be a product of a past binary interaction, possibly having had an encounter with the cluster Trumper 10 some 2 Myr ago. The currently available observational material suggestsmore » that certain observed phenomena in this star may be related to the presence of a magnetic field. We acquired spectropolarimetric observations of ζ Pup with FORS 2 mounted on the 8 m Antu telescope of the Very Large Telescope to investigate if a magnetic field is indeed present in this star. We show that many spectral lines are highly variable and probably vary with the recently detected period of 1.78 day. No magnetic field is detected in ζ Pup, as no magnetic field measurement has a significance level higher than 2.4 σ . Still, we studied the probability of a single sinusoidal explaining the variation of the longitudinal magnetic field measurements.« less
Semi-empirical models of the wind in cool supergiant stars
NASA Technical Reports Server (NTRS)
Kuin, N. P. M.; Ahmad, Imad A.
1988-01-01
A self-consistent semi-empirical model for the wind of the supergiant in zeta Aurigae type systems is proposed. The damping of the Alfven waves which are assumed to drive the wind is derived from the observed velocity profile. Solution of the ionization balance and energy equation gives the temperature structure for given stellar magnetic field and wave flux. Physically acceptable solutions of the temperature structure place limits on the stellar magnetic field. A crude formula for a critical mass loss rate is derived. For a mass loss rate below the critical value the wind cannot be cool. Comparison between the observed and the critical mass loss rate suggests that the proposed theory may provide an explanation for the coronal dividing line in the Hertzsprung-Russell diagram. The physical explanation may be that the atmosphere has a cool wind, unless it is physically impossible to have one. Stars which cannot have a cool wind release their nonthermal energy in an outer atmosphere at coronal temperatures. It is possible that in the absence of a substantial stellar wind the magnetic field has less incentive to extend radially outward, and coronal loop structures may become more dominant.
New method to design stellarator coils without the winding surface
Zhu, Caoxiang; Hudson, Stuart R.; Song, Yuntao; ...
2017-11-06
Finding an easy-to-build coils set has been a critical issue for stellarator design for decades. Conventional approaches assume a toroidal 'winding' surface, but a poorly chosen winding surface can unnecessarily constrain the coil optimization algorithm, This article presents a new method to design coils for stellarators. Each discrete coil is represented as an arbitrary, closed, one-dimensional curve embedded in three-dimensional space. A target function to be minimized that includes both physical requirements and engineering constraints is constructed. The derivatives of the target function with respect to the parameters describing the coil geometries and currents are calculated analytically. A numerical code,more » named flexible optimized coils using space curves (FOCUS), has been developed. Furthermore, applications to a simple stellarator configuration, W7-X and LHD vacuum fields are presented.« less
New method to design stellarator coils without the winding surface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Caoxiang; Hudson, Stuart R.; Song, Yuntao
Finding an easy-to-build coils set has been a critical issue for stellarator design for decades. Conventional approaches assume a toroidal 'winding' surface, but a poorly chosen winding surface can unnecessarily constrain the coil optimization algorithm, This article presents a new method to design coils for stellarators. Each discrete coil is represented as an arbitrary, closed, one-dimensional curve embedded in three-dimensional space. A target function to be minimized that includes both physical requirements and engineering constraints is constructed. The derivatives of the target function with respect to the parameters describing the coil geometries and currents are calculated analytically. A numerical code,more » named flexible optimized coils using space curves (FOCUS), has been developed. Furthermore, applications to a simple stellarator configuration, W7-X and LHD vacuum fields are presented.« less
Stellar populations of bulges in galaxies with a low surface-brightness disc
NASA Astrophysics Data System (ADS)
Morelli, L.; Corsini, E. M.; Pizzella, A.; Dalla Bontà, E.; Coccato, L.; Méndez-Abreu, J.
2015-03-01
The radial profiles of the Hβ, Mg, and Fe line-strength indices are presented for a sample of eight spiral galaxies with a low surface-brightness stellar disc and a bulge. The correlations between the central values of the line-strength indices and velocity dispersion are consistent to those known for early-type galaxies and bulges of high surface-brightness galaxies. The age, metallicity, and α/Fe enhancement of the stellar populations in the bulge-dominated region are obtained using stellar population models with variable element abundance ratios. Almost all the sample bulges are characterized by a young stellar population, on-going star formation, and a solar α/Fe enhancement. Their metallicity spans from high to sub-solar values. No significant gradient in age and α/Fe enhancement is measured, whereas only in a few cases a negative metallicity gradient is found. These properties suggest that a pure dissipative collapse is not able to explain formation of all the sample bulges and that other phenomena, like mergers or acquisition events, need to be invoked. Such a picture is also supported by the lack of a correlation between the central value and gradient of the metallicity in bulges with very low metallicity. The stellar populations of the bulges hosted by low surface-brightness discs share many properties with those of high surface-brightness galaxies. Therefore, they are likely to have common formation scenarios and evolution histories. A strong interplay between bulges and discs is ruled out by the fact that in spite of being hosted by discs with extremely different properties, the bulges of low and high surface-brightness discs are remarkably similar.
A Blind Search for Magnetospheric Emissions from Planetary Companions to Nearby Solar-type Stars
NASA Astrophysics Data System (ADS)
Lazio, T. Joseph W.; Carmichael, S.; Clark, J.; Elkins, E.; Gudmundsen, P.; Mott, Z.; Szwajkowski, M.; Hennig, L. A.
2010-01-01
This paper reports a blind search for planetary magnetospheric emissions from planets around nearby stars. Young stars are likely to have much stronger stellar winds than the Sun, and because planetary magnetospheric emissions are powered by stellar winds, stronger stellar winds may enhance the radio luminosity of any orbiting planets. Using various stellar catalogs, we selected nearby stars (< 30 pc) with relatively young age estimates (< 3 Gyr), finding between 100 and several hundred stars. We stacked images from the 74-MHz (4-m wavelength) VLA Low-frequency Sky Survey, obtaining 3\\sigma limits on planetary emission of between 10 and 33 mJy. These flux density limits correspond to average planetary luminosities less than 5--10 x 1023erg/s. Using models for the scaling of stellar wind velocity, density, and magnetic field with stellar age, we estimate scaling factors for the strength of stellar winds, relative to the Sun, in our samples. The typical kinetic (magnetic) energy carried by the stellar winds in our samples is 15--50 (5--10) times larger than that of the solar wind. If we assume that every star is orbited by a Jupiter-like planet with a luminosity larger than that of the Jovian decametric radiation by the above factors, our limits on planetary luminosities from the stacking analysis are likely to be a factor of 300 above what would be required to detect the planets in a statistical sense. Similar statistical analyses with observations by future instruments, such as the Low Frequency Array (LOFAR) and the Long Wavelength Array (LWA), offer the promise of improvements by factors of 10--100. Basic research in radio astronomy at NRL is supported by 6.1 Base funding. The LUNAR consortium, is funded by the NASA Lunar Science Institute (Cooperative Agreement NNA09DB30A) to investigate concepts for astrophysical observatories on the Moon.
DOE Office of Scientific and Technical Information (OSTI.GOV)
A. Brooks; A.H. Reiman; G.H. Neilson
High-beta, low-aspect-ratio (compact) stellarators are promising solutions to the problem of developing a magnetic plasma configuration for magnetic fusion power plants that can be sustained in steady-state without disrupting. These concepts combine features of stellarators and advanced tokamaks and have aspect ratios similar to those of tokamaks (2-4). They are based on computed plasma configurations that are shaped in three dimensions to provide desired stability and transport properties. Experiments are planned as part of a program to develop this concept. A beta = 4% quasi-axisymmetric plasma configuration has been evaluated for the National Compact Stellarator Experiment (NCSX). It has amore » substantial bootstrap current and is shaped to stabilize ballooning, external kink, vertical, and neoclassical tearing modes without feedback or close-fitting conductors. Quasi-omnigeneous plasma configurations stable to ballooning modes at beta = 4% have been evaluated for the Quasi-Omnigeneous Stellarator (QOS) experiment. These equilibria have relatively low bootstrap currents and are insensitive to changes in beta. Coil configurations have been calculated that reconstruct these plasma configurations, preserving their important physics properties. Theory- and experiment-based confinement analyses are used to evaluate the technical capabilities needed to reach target plasma conditions. The physics basis for these complementary experiments is described.« less
NASA Astrophysics Data System (ADS)
Zhu, Guangtun Ben; Barrera-Ballesteros, Jorge K.; Heckman, Timothy M.; Zakamska, Nadia L.; Sánchez, Sebastian F.; Yan, Renbin; Brinkmann, Jonathan
2017-07-01
We revisit the relation between the stellar surface density, the gas surface density and the gas-phase metallicity of typical disc galaxies in the local Universe with the SDSS-IV/MaNGA survey, using the star formation rate surface density as an indicator for the gas surface density. We show that these three local parameters form a tight relationship, confirming previous works (e.g. by the PINGS and CALIFA surveys), but with a larger sample. We present a new local leaky-box model, assuming star-formation history and chemical evolution is localized except for outflowing materials. We derive closed-form solutions for the evolution of stellar surface density, gas surface density and gas-phase metallicity, and show that these parameters form a tight relation independent of initial gas density and time. We show that, with canonical values of model parameters, this predicted relation match the observed one well. In addition, we briefly describe a pathway to improving the current semi-analytic models of galaxy formation by incorporating the local leaky-box model in the cosmological context, which can potentially explain simultaneously multiple properties of Milky Way-type disc galaxies, such as the size growth and the global stellar mass-gas metallicity relation.
Surface density: a new parameter in the fundamental metallicity relation of star-forming galaxies
NASA Astrophysics Data System (ADS)
Hashimoto, Tetsuya; Goto, Tomotsugu; Momose, Rieko
2018-04-01
Star-forming galaxies display a close relation among stellar mass, metallicity, and star formation rate (or molecular-gas mass). This is known as the fundamental metallicity relation (FMR) (or molecular-gas FMR), and it has a profound implication on models of galaxy evolution. However, there still remains a significant residual scatter around the FMR. We show here that a fourth parameter, the surface density of stellar mass, reduces the dispersion around the molecular-gas FMR. In a principal component analysis of 29 physical parameters of 41 338 star-forming galaxies, the surface density of stellar mass is found to be the fourth most important parameter. The new 4D fundamental relation forms a tighter hypersurface that reduces the metallicity dispersion to 50 per cent of that of the molecular-gas FMR. We suggest that future analyses and models of galaxy evolution should consider the FMR in a 4D space that includes surface density. The dilution time-scale of gas inflow and the star-formation efficiency could explain the observational dependence on surface density of stellar mass.
The calculation and publication of a grid of line-blanketed model stellar atmospheres
NASA Technical Reports Server (NTRS)
Avrett, E. H.
1972-01-01
The luminosity, mass, and elemental abundances, as well as other properties of each star are studied in order to locate them in an evolutionary pattern. A method for determining the flux, gravity, and abundances at the stellar surface is the construction of theoretical stellar atmospheric models that predict the observed energy distribution and detailed stellar spectrum.
Electromagnetic signals from bare strange stars
NASA Astrophysics Data System (ADS)
Mannarelli, Massimo; Pagliaroli, Giulia; Parisi, Alessandro; Pilo, Luigi
2014-05-01
The crystalline color superconducting phase is believed to be the ground state of deconfined quark matter for sufficiently large values of the strange quark mass. This phase has the remarkable property of being more rigid than any known material. It can therefore sustain large shear stresses, supporting torsional oscillations of large amplitude. The torsional oscillations could lead to observable electromagnetic signals if strange stars have a crystalline color superconducting crust. Indeed, considering a simple model of a strange star with a bare quark matter surface, it turns out that a positive charge is localized in a narrow shell about ten Fermi thick beneath the star surface. The electrons needed to neutralize the positive charge of quarks spill in the star exterior forming an electromagnetically bounded atmosphere hundreds of Fermi thick. When a torsional oscillation is excited, for example by a stellar glitch, the positive charge oscillates with typical kHz frequencies, for a crust thickness of about one-tenth of the stellar radius, to hundreds of Hz, for a crust thickness of about nine-tenths of the stellar radius. Higher frequencies, of the order of few GHz, can be reached if the star crust is of the order of a few centimeters thick. We estimate the emitted power considering emission by an oscillating magnetic dipole, finding that it can be quite large, of the order of 1045 erg/s for a thin crust. The associated relaxation times are very uncertain, with values ranging between microseconds and minutes, depending on the crust thickness. The radiated photons will be in part absorbed by the electronic atmosphere, but a sizable fraction of them should be emitted by the star.
Exoplanet Transits of Stellar Active Regions
NASA Astrophysics Data System (ADS)
Giampapa, Mark S.; Andretta, Vincenzo; Covino, Elvira; Reiners, Ansgar; Esposito, Massimiliano
2018-01-01
We report preliminary results of a program to obtain high spectral- and temporal-resolution observations of the neutral helium triplet line at 1083.0 nm in transiting exoplanet systems. The principal objective of our program is to gain insight on the properties of active regions, analogous to solar plages, on late-type dwarfs by essentially using exoplanet transits as high spatial resolution probes of the stellar surface within the transit chord. The 1083 nm helium line is a particularly appropriate diagnostic of magnetized areas since it is weak in the quiet photosphere of solar-type stars but appears strongly in absorption in active regions. Therefore, during an exoplanet transit over the stellar surface, variations in its absorption equivalent width can arise that are functions of the intrinsic strength of the feature in the active region and the known relative size of the exoplanet. We utilized the Galileo Telescope and the GIANO-B near-IR echelle spectrograph to obtain 1083 nm spectra during transits in bright, well-known systems that include HD 189733, HD 209458, and HD 147506 (HAT-P-2). We also obtained simultaneous auxiliary data on the same telescope with the HARPS-N UV-Visible echelle spectrograph. We will present preliminary results from our analysis of the observed variability of the strength of the He I 1083 nm line during transits.Acknowledgements: Based on observations made with the Italian Telescopio Nazionale Galileo (TNG) operated on the island of La Palma by the Fundación Galileo Galilei of the INAF (Istituto Nazionale di Astrofisica) at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias. The NSO is operated by AURA under a cooperative agreement with the NSF.
Observational evidence for enhanced magnetic activity of superflare stars.
Karoff, Christoffer; Knudsen, Mads Faurschou; De Cat, Peter; Bonanno, Alfio; Fogtmann-Schulz, Alexandra; Fu, Jianning; Frasca, Antonio; Inceoglu, Fadil; Olsen, Jesper; Zhang, Yong; Hou, Yonghui; Wang, Yuefei; Shi, Jianrong; Zhang, Wei
2016-03-24
Superflares are large explosive events on stellar surfaces one to six orders-of-magnitude larger than the largest flares observed on the Sun throughout the space age. Due to the huge amount of energy released in these superflares, it has been speculated if the underlying mechanism is the same as for solar flares, which are caused by magnetic reconnection in the solar corona. Here, we analyse observations made with the LAMOST telescope of 5,648 solar-like stars, including 48 superflare stars. These observations show that superflare stars are generally characterized by larger chromospheric emissions than other stars, including the Sun. However, superflare stars with activity levels lower than, or comparable to, the Sun do exist, suggesting that solar flares and superflares most likely share the same origin. The very large ensemble of solar-like stars included in this study enables detailed and robust estimates of the relation between chromospheric activity and the occurrence of superflares.
Observational evidence for enhanced magnetic activity of superflare stars
Karoff, Christoffer; Knudsen, Mads Faurschou; De Cat, Peter; Bonanno, Alfio; Fogtmann-Schulz, Alexandra; Fu, Jianning; Frasca, Antonio; Inceoglu, Fadil; Olsen, Jesper; Zhang, Yong; Hou, Yonghui; Wang, Yuefei; Shi, Jianrong; Zhang, Wei
2016-01-01
Superflares are large explosive events on stellar surfaces one to six orders-of-magnitude larger than the largest flares observed on the Sun throughout the space age. Due to the huge amount of energy released in these superflares, it has been speculated if the underlying mechanism is the same as for solar flares, which are caused by magnetic reconnection in the solar corona. Here, we analyse observations made with the LAMOST telescope of 5,648 solar-like stars, including 48 superflare stars. These observations show that superflare stars are generally characterized by larger chromospheric emissions than other stars, including the Sun. However, superflare stars with activity levels lower than, or comparable to, the Sun do exist, suggesting that solar flares and superflares most likely share the same origin. The very large ensemble of solar-like stars included in this study enables detailed and robust estimates of the relation between chromospheric activity and the occurrence of superflares. PMID:27009381
Pulsars and Acceleration Sites
NASA Technical Reports Server (NTRS)
Harding, Alice
2008-01-01
Rotation-powered pulsars are excellent laboratories for the studying particle acceleration as well as fundamental physics of strong gravity, strong magnetic fields and relativity. But even forty years after their discovery, we still do not understand their pulsed emission at any wavelength. I will review both the basic physics of pulsars as well as the latest developments in understanding their high-energy emission. Special and general relativistic effects play important roles in pulsar emission, from inertial frame-dragging near the stellar surface to aberration, time-of-flight and retardation of the magnetic field near the light cylinder. Understanding how these effects determine what we observe at different wavelengths is critical to unraveling the emission physics. Fortunately the Gamma-Ray Large Area Space Telescope (GLAST), with launch in May 2008 will detect many new gamma-ray pulsars and test the predictions of these models with unprecedented sensitivity and energy resolution for gamma-rays in the range of 30 MeV to 300 GeV.
NASA Astrophysics Data System (ADS)
Reiman, A.; Ferraro, N. M.; Turnbull, A.; Park, J. K.; Cerfon, A.; Evans, T. E.; Lanctot, M. J.; Lazarus, E. A.; Liu, Y.; McFadden, G.; Monticello, D.; Suzuki, Y.
2015-06-01
In comparing equilibrium solutions for a DIII-D shot that is amenable to analysis by both stellarator and tokamak three-dimensional (3D) equilibrium codes, a significant disagreement has been seen between solutions of the VMEC stellarator equilibrium code and solutions of tokamak perturbative 3D equilibrium codes. The source of that disagreement has been investigated, and that investigation has led to new insights into the domain of validity of the different equilibrium calculations, and to a finding that the manner in which localized screening currents at low order rational surfaces are handled can affect global properties of the equilibrium solution. The perturbative treatment has been found to break down at surprisingly small perturbation amplitudes due to overlap of the calculated perturbed flux surfaces, and that treatment is not valid in the pedestal region of the DIII-D shot studied. The perturbative treatment is valid, however, further into the interior of the plasma, and flux surface overlap does not account for the disagreement investigated here. Calculated equilibrium solutions for simple model cases and comparison of the 3D equilibrium solutions with those of other codes indicate that the disagreement arises from a difference in handling of localized currents at low order rational surfaces, with such currents being absent in VMEC and present in the perturbative codes. The significant differences in the global equilibrium solutions associated with the presence or absence of very localized screening currents at rational surfaces suggests that it may be possible to extract information about localized currents from appropriate measurements of global equilibrium plasma properties. That would require improved diagnostic capability on the high field side of the tokamak plasma, a region difficult to access with diagnostics.
Post, R.F.
1962-09-01
A method and means are described for injecting energetic neutral atoms or molecular ions into dense magnetically collimated plasma columns of stellarators and the like in such a manner that the atoms or ions are able to significantly penetrate the column before being ionized by collision with the plasma constituent particles. Penetration of the plasma column by the neutral atoms or molecular ions is facilitated by superposition of two closely spaced magnetic mirrors on the plasma confinement field. The mirrors are moved apart to magnetically sweep plasma from a region between the mirrors and establish a relatively low plasma density therein. By virture of the low density, neutral atoms or molecular ions injected into the region significantly penetrate the plasma column before being ionized. Thereafter, the mirrors are diminished to permit the injected material to admix with the plasma in the remainder of the column. (AEC)
REVIEWS OF TOPICAL PROBLEMS: Coronal magnetic loops
NASA Astrophysics Data System (ADS)
Zaitsev, Valerii V.; Stepanov, Alexander V.
2008-11-01
The goal of this review is to outline some new ideas in the physics of coronal magnetic loops, the fundamental structural elements of the atmospheres of the Sun and flaring stars, which are involved in phenomena such as stellar coronal heating, flare energy release, charged particle acceleration, and the modulation of optical, radio, and X-ray emissions. The Alfvén-Carlqvist view of a coronal loop as an equivalent electric circuit allows a good physical understanding of loop processes. Describing coronal loops as MHD-resonators explains various ways in which flaring emissions from the Sun and stars are modulated, whereas modeling them by magnetic mirror traps allows one to describe the dynamics and emission of high-energy particles. Based on these approaches, loop plasma and fast particle parameters are obtained and models for flare energy release and stellar corona heating are developed.
Poloidal motion of trapped particle orbits in real-space coordinates
NASA Astrophysics Data System (ADS)
Nemov, V. V.; Kasilov, S. V.; Kernbichler, W.; Leitold, G. O.
2008-05-01
The bounce averaged poloidal drift velocity of trapped particles in stellarators is an important quantity in the framework of optimization of stellarators because it allows us to analyze the possibility for closure of contours of the second adiabatic invariant and therefore for improvement of α-particle confinement in such a device. Here, a method is presented to compute such a drift velocity directly in real space coordinates through integration along magnetic field lines. This has the advantage that one is not limited to the usage of magnetic coordinates and can use the magnetic field produced by coil currents and more importantly also results of three-dimensional magnetohydrodynamic finite beta equilibrium codes, such as PIES [A. H. Reiman and H. S. Greenside, J. Comput. Phys. 75, 423 (1988)] and HINT [Y. Suzuki et al., Nucl. Fusion 46, L19 (2006)].
SPIN EVOLUTION OF ACCRETING YOUNG STARS. I. EFFECT OF MAGNETIC STAR-DISK COUPLING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matt, Sean P.; Greene, Thomas P.; Pinzon, Giovanni
2010-05-10
We present a model for the rotational evolution of a young, solar mass star interacting with an accretion disk. The model incorporates a description of the angular momentum transfer between the star and the disk due to a magnetic connection, and includes changes in the star's mass and radius and a decreasing accretion rate. The model also includes, for the first time in a spin evolution model, the opening of the stellar magnetic field lines, as expected to arise from twisting via star-disk differential rotation. In order to isolate the effect that this has on the star-disk interaction torques, wemore » neglect the influence of torques that may arise from open field regions connected to the star or disk. For a range of magnetic field strengths, accretion rates, and initial spin rates, we compute the stellar spin rates of pre-main-sequence stars as they evolve on the Hayashi track to an age of 3 Myr. How much the field opening affects the spin depends on the strength of the coupling of the magnetic field to the disk. For the relatively strong coupling (i.e., high magnetic Reynolds number) expected in real systems, all models predict spin periods of less than {approx}3 days, in the age range of 1-3 Myr. Furthermore, these systems typically do not reach an equilibrium spin rate within 3 Myr, so that the spin at any given time depends upon the choice of initial spin rate. This corroborates earlier suggestions that, in order to explain the full range of observed rotation periods of approximately 1-10 days, additional processes, such as the angular momentum loss from powerful stellar winds, are necessary.« less
Waldmeier's Rules in the Solar and Stellar Dynamos
NASA Astrophysics Data System (ADS)
Pipin, Valery; Kosovichev, Alexander
2015-08-01
The Waldmeier's rules [1] establish important empirical relations between the general parameters of magnetic cycles (such as the amplitude, period, growth rate and time profile) on the Sun and solar-type stars [2]. Variations of the magnetic cycle parameters depend on properties of the global dynamo processes operating in the stellar convection zones. We employ nonlinear mean-field axisymmetric dynamo models [3] and calculate of the magnetic cycle parameters, such as the dynamo cycle period, total magnetic and Poynting fluxes for the Sun and solar-type stars with rotational periods from 15 to 30 days. We consider two types of the dynamo models: 1) distributed (D-type) models employing the standard α - effect distributed in the whole convection zone, and 2) Babcock-Leighton (BL-type) models with a non-local α - effect. The dynamo models take into account the principal mechanisms of the nonlinear dynamo generation and saturation, including the magnetic helicity conservation, magnetic buoyancy effects, and the feedback on the angular momentum balance inside the convection zones. Both types of models show that the dynamo generated magnetic flux increases with the increase of the rotation rate. This corresponds to stronger brightness variations. The distributed dynamo model reproduces the observed dependence of the cycle period on the rotation rate for the Sun analogs better than the BL-type model. For the solar-type stars rotating more rapidly than the Sun we find dynamo regimes with multiple periods. Such stars with multiple cycles form a separate branch in the variability-rotation diagram.1. Waldmeier, M., Prognose für das nächste Sonnenfleckenmaximum, 1936, Astron. Nachrichten, 259,262. Soon,W.H., Baliunas,S.L., Zhang,Q.,An interpretation of cycle periods of stellar chromospheric activity, 1993, ApJ, 414,333. Pipin,V.V., Dependence of magnetic cycle parameters on period of rotation in nonlinear solar-type dynamos, 2015, astro-ph: 14125284
Optimizing stellarator coil winding surfaces with Regcoil
NASA Astrophysics Data System (ADS)
Bader, Aaron; Landreman, Matt; Anderson, David; Hegna, Chris
2017-10-01
We show initial attempts at optimizing a coil winding surface using the Regcoil code [1] for selected quasi helically symmetric equilibria. We implement a generic optimization scheme which allows for variation of the winding surface to allow for improved diagnostic access and allow for flexible divertor solutions. Regcoil and similar coil-solving algorithms require a user-input winding surface, on which the coils lie. Simple winding surfaces created by uniformly expanding the plasma boundary may not be ideal. Engineering constraints on reactor design require a coil-plasma separation sufficient for the introduction of neutron shielding and a tritium generating blanket. This distance can be the limiting factor in determining reactor size. Furthermore, expanding coils in other regions, where possible, can be useful for diagnostic and maintenance access along with providing sufficient room for a divertor. We minimize a target function that includes as constraints, the minimum coil-plasma distance, the winding surface volume, and the normal magnetic field on the plasma boundary. Results are presented for two quasi-symmetric equilibria at different aspect ratios. Work supported by the US DOE under Grant DE-FG02-93ER54222.
NASA Astrophysics Data System (ADS)
Song, H. F.; Meynet, G.; Maeder, A.; Ekström, S.; Eggenberger, P.; Georgy, C.; Qin, Y.; Fragos, T.; Soerensen, M.; Barblan, F.; Wade, G. A.
2018-01-01
Context. Massive stars with solar metallicity lose important amounts of rotational angular momentum through their winds. When a magnetic field is present at the surface of a star, efficient angular momentum losses can still be achieved even when the mass-loss rate is very modest, at lower metallicities, or for lower-initial-mass stars. In a close binary system, the effect of wind magnetic braking also interacts with the influence of tides, resulting in a complex evolution of rotation. Aims: We study the interactions between the process of wind magnetic braking and tides in close binary systems. Methods: We discuss the evolution of a 10 M⊙ star in a close binary system with a 7 M⊙ companion using the Geneva stellar evolution code. The initial orbital period is 1.2 days. The 10 M⊙ star has a surface magnetic field of 1 kG. Various initial rotations are considered. We use two different approaches for the internal angular momentum transport. In one of them, angular momentum is transported by shear and meridional currents. In the other, a strong internal magnetic field imposes nearly perfect solid-body rotation. The evolution of the primary is computed until the first mass-transfer episode occurs. The cases of different values for the magnetic fields and for various orbital periods and mass ratios are briefly discussed. Results: We show that, independently of the initial rotation rate of the primary and the efficiency of the internal angular momentum transport, the surface rotation of the primary will converge, in a time that is short with respect to the main-sequence lifetime, towards a slowly evolving velocity that is different from the synchronization velocity. This "equilibrium angular velocity" is always inferior to the angular orbital velocity. In a given close binary system at this equilibrium stage, the difference between the spin and the orbital angular velocities becomes larger when the mass losses and/or the surface magnetic field increase. The treatment of the internal angular momentum transport has a strong impact on the evolutionary tracks in the Hertzsprung-Russell Diagram as well as on the changes of the surface abundances resulting from rotational mixing. Our modelling suggests that the presence of an undetected close companion might explain rapidly rotating stars with strong surface magnetic fields, having ages well above the magnetic braking timescale. Our models predict that the rotation of most stars of this type increases as a function of time, except for a first initial phase in spin-down systems. The measure of their surface abundances, together, when possible, with their mass-luminosity ratio, provide interesting constraints on the transport efficiencies of angular momentum and chemical species. Conclusions: Close binaries, when studied at phases predating any mass transfer, are key objects to probe the physics of rotation and magnetic fields in stars.
AR Scorpii and possible gravitational wave radiation from pulsar white dwarfs
NASA Astrophysics Data System (ADS)
Franzon, B.; Schramm, S.
2017-06-01
In view of the new recent observation and measurement of the rotating and highly magnetized white dwarf AR Scorpii, we determine bounds of its moment of inertia, magnetic fields and radius. Moreover, we investigate the possibility of fast rotating and/or magnetized white dwarfs to be sources of detectable gravitational wave (GW) emission. Numerical stellar models at different baryon masses are constructed. For each star configuration, we compute self-consistent relativistic solutions for white dwarfs endowed with poloidal magnetic fields by solving the Einstein-Maxwell field equations in a self-consistent way. The magnetic field supplies an anisotropic pressure, leading to the braking of the spherical symmetry of the star. In this case, we compute the quadrupole moment of the mass distribution. Next, we perform an estimate of the GW of such objects. Finally, we show that the new recent observation and measurement pulsar white dwarf AR Scorpii, as well as other stellar models, might generate GW radiation that lies in the bandwidth of the discussed next generation of space-based GW detectors DECI-hertz Interferometer Gravitational wave Observatory (DECIGO) and Big Bang Observer (BBO).
NASA Astrophysics Data System (ADS)
Vernisse, Y.; Riousset, J. A.; Motschmann, U.; Glassmeier, K.-H.
2018-03-01
This study addresses the issue of the electromagnetic interactions between a stellar wind and planetary magnetospheres with various dipole field strengths by means of hybrid simulations. Focus is placed on the configuration where the upstream plasma magnetic field is parallel to the planetary magnetic moment (also called "Southward-IMF" configuration), leading to anti-parallel magnetic fields in the dayside interaction region. Each type of plasma interaction is characterized by means of currents flowing in the interaction region. Reconnection triggered in the tail in such configuration is shown to affect significantly the structure of the magnetotail at early stages. On the dayside, only the magnetopause current is observable for moderate planetary dipole field amplitude, while both bow-shock and magnetotail currents are identifiable downtail from the terminator. Strong differences in term of temperature for ions are particularly noticeable in the magnetosheath and in the magnetotail, when the present results are compared with our previous study, which focused on "Northward-IMF" configuration.
Two-jet astrosphere model: effect of azimuthal magnetic field
NASA Astrophysics Data System (ADS)
Golikov, E. A.; Izmodenov, V. V.; Alexashov, D. B.; Belov, N. A.
2017-01-01
Opher et al., Drake, Swisdak and Opher have shown that the heliospheric magnetic field results in formation of two-jet structure of the solar wind flow in the inner heliosheath, I.e. in the subsonic region between the heliospheric termination shock (TS) and the heliopause. In this scenario, the heliopause has a tube-like topology as compared with a sheet-like topology in the most models of the global heliosphere. In this paper, we explore the two-jet scenario for a simplified astrosphere in which (1) the star is at rest with respect to the circumstellar medium, (2) radial magnetic field is neglected as compared with azimuthal component and (3) the stellar wind outflow is assumed to be hypersonic (both the Mach number and the Alfvénic Mach number are much greater than unity at the inflow boundary). We have shown that the problem can be formulated in dimensionless form, in which the solution depends only on one dimensionless parameter ɛ that is reciprocal of the Alfvénic Mach number at the inflow boundary. This parameter is proportional to stellar magnetic field. We present the numerical solution of the problem for various values of ɛ. Three first integrals of the governing ideal magnetohydrodynamic equations are presented, and we make use of them in order to get the plasma distribution in the jets. Simple relations between distances to the TS, astropause and the size of the jet are established. These relations allow us to determine the stellar magnetic field from the geometrical pattern of the jet-like astrosphere.
AK Sco: a tidally induced atmospheric dynamo in a pre-main sequence binary?
NASA Astrophysics Data System (ADS)
Gómez de Castro, A. I.
2009-02-01
AK Sco is a unique source: a 10-30 Myrs old pre-main sequence spectroscopic binary composed by two nearly equal F5 stars that at periastron are separated by barely eleven stellar radii so, the stellar magnetospheres fill the Roche lobe at periastron. The orbit is not yet circularized (e = 0.47) and very strong tides are expected. This makes of AK Sco, the ideal laboratory to study the effect of gravitational tides in the stellar magnetic field building up during pre-main sequence evolution. Evidence of this effect is reported in this contribution.
Evaluating Stellarator Divertor Designs with EMC3
NASA Astrophysics Data System (ADS)
Bader, Aaron; Anderson, D. T.; Feng, Y.; Hegna, C. C.; Talmadge, J. N.
2013-10-01
In this paper various improvements of stellarator divertor design are explored. Next step stellarator devices require innovative divertor solutions to handle heat flux loads and impurity control. One avenue is to enhance magnetic flux expansion near strike points, somewhat akin to the X-Divertor concept in Tokamaks. The effect of judiciously placed external coils on flux deposition is calculated for configurations based on the HSX stellarator. In addition, we attempt to optimize divertor plate location to facilitate the external coil placement. Alternate areas of focus involve altering edge island size to elucidate the driving physics in the edge. The 3-D nature of stellarators complicates design and necessitates analysis of new divertor structures with appropriate simulation tools. We evaluate the various configurations with the coupled codes EMC3-EIRENE, allowing us to benchmark configurations based on target heat flux, impurity behavior, radiated power, and transitions to high recycling and detached regimes. Work supported by DOE-SC0006103.
Tidal effects on stellar activity
NASA Astrophysics Data System (ADS)
Poppenhaeger, K.
2017-10-01
The architecture of many exoplanetary systems is different from the solar system, with exoplanets being in close orbits around their host stars and having orbital periods of only a few days. We can expect interactions between the star and the exoplanet for such systems that are similar to the tidal interactions observed in close stellar binary systems. For the exoplanet, tidal interaction can lead to circularization of its orbit and the synchronization of its rotational and orbital period. For the host star, it has long been speculated if significant angular momentum transfer can take place between the planetary orbit and the stellar rotation. In the case of the Earth-Moon system, such tidal interaction has led to an increasing distance between Earth and Moon. For stars with Hot Jupiters, where the orbital period of the exoplanet is typically shorter than the stellar rotation period, one expects a decreasing semimajor axis for the planet and enhanced stellar rotation, leading to increased stellar activity. Also excess turbulence in the stellar convective zone due to rising and subsiding tidal bulges may change the magnetic activity we observe for the host star. I will review recent observational results on stellar activity and tidal interaction in the presence of close-in exoplanets, and discuss the effects of enhanced stellar activity on the exoplanets in such systems.
Testing Dissipative Magnetosphere Model Light Curves and Spectra with Fermi Pulsars
NASA Technical Reports Server (NTRS)
Brambilla, Gabriele; Kalapotharakos, Constantinos; Harding, Alice K.; Kazanas, Demosthenes
2015-01-01
We explore the emission properties of a dissipative pulsar magnetosphere model introduced by Kalapotharakos et al. comparing its high-energy light curves and spectra, due to curvature radiation, with data collected by the Fermi LAT. The magnetosphere structure is assumed to be near the force-free solution. The accelerating electric field, inside the light cylinder (LC), is assumed to be negligible, while outside the LC it rescales with a finite conductivity (sigma). In our approach we calculate the corresponding high-energy emission by integrating the trajectories of test particles that originate from the stellar surface, taking into account both the accelerating electric field components and the radiation reaction forces. First, we explore the parameter space assuming different value sets for the stellar magnetic field, stellar period, and conductivity. We show that the general properties of the model are in a good agreement with observed emission characteristics of young gamma-ray pulsars, including features of the phase-resolved spectra. Second, we find model parameters that fit each pulsar belonging to a group of eight bright pulsars that have a published phase-resolved spectrum. The sigma values that best describe each of the pulsars in this group show an increase with the spin-down rate (E? ) and a decrease with the pulsar age, expected if pair cascades are providing the magnetospheric conductivity. Finally, we explore the limits of our analysis and suggest future directions for improving such models.
A Universal Model for Solar Eruptions
NASA Technical Reports Server (NTRS)
Wyper, Peter F.; Antiochos, Spiro K.; Devore, C. Richard
2017-01-01
Magnetically driven eruptions on the Sun, from stellar-scale coronal mass ejections1 to small-scale coronal X-ray and extreme-ultraviolet jets, have frequently been observed to involve the ejection of the highly stressed magnetic flux of a filament. Theoretically, these two phenomena have been thought to arise through very different mechanisms: coronal mass ejections from an ideal (non-dissipative) process, whereby the energy release does not require a change in the magnetic topology, as in the kink or torus instability; and coronal jets from a resistive process, involving magnetic reconnection. However, it was recently concluded from new observations that all coronal jets are driven by filament ejection, just like large mass ejections. This suggests that the two phenomena have physically identical origin and hence that a single mechanism may be responsible, that is, either mass ejections arise from reconnection, or jets arise from an ideal instability. Here we report simulations of a coronal jet driven by filament ejection, whereby a region of highly sheared magnetic field near the solar surface becomes unstable and erupts. The results show that magnetic reconnection causes the energy release via 'magnetic breakout', a positive feedback mechanism between filament ejection and reconnection. We conclude that if coronal mass ejections and jets are indeed of physically identical origin (although on different spatial scales) then magnetic reconnection (rather than an ideal process) must also underlie mass ejections, and that magnetic breakout is a universal model for solar eruptions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gregory, S. G.; Hillenbrand, L. A.; Donati, J.-F.
2012-08-20
Zeeman-Doppler imaging studies have shown that the magnetic fields of T Tauri stars can be significantly more complex than a simple dipole and can vary markedly between sources. We collect and summarize the magnetic field topology information obtained to date and present Hertzsprung-Russell (H-R) diagrams for the stars in the sample. Intriguingly, the large-scale field topology of a given pre-main-sequence (PMS) star is strongly dependent upon the stellar internal structure, with the strength of the dipole component of its multipolar magnetic field decaying rapidly with the development of a radiative core. Using the observational data as a basis, we arguemore » that the general characteristics of the global magnetic field of a PMS star can be determined from its position in the H-R diagram. Moving from hotter and more luminous to cooler and less luminous stars across the PMS of the H-R diagram, we present evidence for four distinct magnetic topology regimes. Stars with large radiative cores, empirically estimated to be those with a core mass in excess of {approx}40% of the stellar mass, host highly complex and dominantly non-axisymmetric magnetic fields, while those with smaller radiative cores host axisymmetric fields with field modes of higher order than the dipole dominant (typically, but not always, the octupole). Fully convective stars above {approx}> 0.5 M{sub Sun} appear to host dominantly axisymmetric fields with strong (kilo-Gauss) dipole components. Based on similarities between the magnetic properties of PMS stars and main-sequence M-dwarfs with similar internal structures, we speculate that a bistable dynamo process operates for lower mass stars ({approx}< 0.5 M{sub Sun} at an age of a few Myr) and that they will be found to host a variety of magnetic field topologies. If the magnetic topology trends across the H-R diagram are confirmed, they may provide a new method of constraining PMS stellar evolution models.« less
WILSON-BAPPU EFFECT: EXTENDED TO SURFACE GRAVITY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Sunkyung; Kang, Wonseok; Lee, Jeong-Eun
2013-10-01
In 1957, Wilson and Bappu found a tight correlation between the stellar absolute visual magnitude (M{sub V} ) and the width of the Ca II K emission line for late-type stars. Here, we revisit the Wilson-Bappu relationship (WBR) to claim that the WBR can be an excellent indicator of stellar surface gravity of late-type stars as well as a distance indicator. We have measured the width (W) of the Ca II K emission line in high-resolution spectra of 125 late-type stars obtained with the Bohyunsan Optical Echelle Spectrograph and adopted from the Ultraviolet and Visual Echelle Spectrograph archive. Based onmore » our measurement of the emission line width (W), we have obtained a WBR of M{sub V} = 33.76 - 18.08 log W. In order to extend the WBR to being a surface gravity indicator, stellar atmospheric parameters such as effective temperature (T{sub eff}), surface gravity (log g), metallicity ([Fe/H]), and micro-turbulence ({xi}{sub tur}) have been derived from self-consistent detailed analysis using the Kurucz stellar atmospheric model and the abundance analysis code, MOOG. Using these stellar parameters and log W, we found that log g = -5.85 log W+9.97 log T{sub eff} - 23.48 for late-type stars.« less
REPEATING FAST RADIO BURSTS FROM HIGHLY MAGNETIZED PULSARS TRAVELING THROUGH ASTEROID BELTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, Z. G.; Wang, J. S.; Huang, Y. F.
Very recently, Spitler et al. and Scholz et al. reported their detections of 16 additional bright bursts in the direction of the fast radio burst (FRB) 121102. This repeating FRB is inconsistent with all of the catastrophic event models put forward previously for hypothetically non-repeating FRBs. Here, we propose a different model, in which highly magnetized pulsars travel through the asteroid belts of other stars. We show that a repeating FRB could originate from such a pulsar encountering a large number of asteroids in the belt. During each pulsar-asteroid impact, an electric field induced outside of the asteroid has suchmore » a large component parallel to the stellar magnetic field that electrons are torn off the asteroidal surface and accelerated to ultra-relativistic energies instantaneously. The subsequent movement of these electrons along magnetic field lines will cause coherent curvature radiation, which can account for all of the properties of an FRB. In addition, this model can self-consistently explain the typical duration, luminosity, and repetitive rate of the 17 bursts of FRB 121102. The predicted occurrence rate of repeating FRB sources may imply that our model would be testable in the next few years.« less
Super-Eddington radiation transfer in soft gamma repeaters
NASA Technical Reports Server (NTRS)
Ulmer, Andrew
1994-01-01
Bursts from soft gamma repeaters (SGRs) have been shown to be super-Eddington by a factor of 1000 and have been persuasively associated with compact objects. Super-Eddington radiation transfer on the surface of a strongly magnetic (greater than or equal to 10(exp 13) G) neutron star is studied and related to the observational constraints on SGRs. In strong magnetic fields, Thompson scattering is suppressed in one polarization state, so super-Eddington fluxes can be radiated while the plasma remains in hydrostatic equilibrium. We discuss a model which offers a somewhat natural explanation for the observation that the energy spectra of bursts with varying intensity are similar. The radiation produced is found to be linearly polarized to one part in 1000 in a direction determined by the local magnetic field, and intensity variations between bursts are understood as a change in the radiating area on the source. The net polarization is inversely correlated with burst intensity. Further, it is shown that for radiation transfer calculations in limit of superstrong magnetic fields, it is sufficient to solve the radiation transfer for the low opacity state rather than the coupled equations for both. With this approximation, standard stellar atmosphere techniques are utilized to calculate the model energy spectrum.
Limiter heat loads during the first operation of the W7-X stellarator
NASA Astrophysics Data System (ADS)
Wurden, Glen; Niemann, Holger; Jakubowski, Marcin; Bozhenkov, Sergey; Biedermann, Christoph; Marsen, Stefan; Effenberg, Florian; Stephey, Laurie; Schmitz, Oliver; W7-X Team
2016-10-01
During the first operational phase (OP1.1) of the new W7-X stellarator, five poloidal graphite limiters served as the main boundary for the plasma. There was a dedicated set of diagnostics to observe the performance of the temporary poloidal limiters and infer basic transport behavior of the 3-D helical SOL plasma. We describe IR imaging of the limiters, which resulted in observations of 1) heat flux determination as a function of time and space, 2) total energy into the limiters, 3) high-frequency helical patterns of energy bursts onto the limiters, 4) changes in surface emissivity, and 5) detection of UFO's (small-to-large dusts). These measurements were made in 2 magnetic configuration discharges (differing iota), and in ones where the power loads to the limiters were systematically modified by the use of trim coils. Observed power fractions on the limiters ranged from 40% to 20% of the 0.6 to 4 MW ECRH input powers. Acknowledgement: Funded under DOE LANS Contract DE-AC5026NA25396 and DE-SC0014210, and within the EUROfusion Consortium under Euratom Grant 633053.
On neoclassical impurity transport in stellarator geometry
NASA Astrophysics Data System (ADS)
García-Regaña, J. M.; Kleiber, R.; Beidler, C. D.; Turkin, Y.; Maaßberg, H.; Helander, P.
2013-07-01
The impurity dynamics in stellarators has become an issue of moderate concern due to the inherent tendency of the impurities to accumulate in the core when the neoclassical ambipolar radial electric field points radially inwards (ion root regime). This accumulation can lead to collapse of the plasma due to radiative losses, and thus limit high performance plasma discharges in non-axisymmetric devices. A quantitative description of the neoclassical impurity transport is complicated by the breakdown of the assumption of small E × B drift and trapping due to the electrostatic potential variation on a flux surface \\tilde{\\Phi} compared with those due to the magnetic field gradient. This work examines the impact of this potential variation on neoclassical impurity transport in the Large Helical Device heliotron. It shows that the neoclassical impurity transport can be strongly affected by \\tilde{\\Phi} . The central numerical tool used is the δf particle in cell Monte Carlo code EUTERPE. The \\tilde{\\Phi} used in the calculations is provided by the neoclassical code GSRAKE. The possibility of obtaining a more general \\tilde{\\Phi} self-consistently with EUTERPE is also addressed and a preliminary calculation is presented.
Are "Habitable" Exoplanets Really Habitable? -A perspective from atmospheric loss
NASA Astrophysics Data System (ADS)
Dong, C.; Huang, Z.; Jin, M.; Lingam, M.; Ma, Y. J.; Toth, G.; van der Holst, B.; Airapetian, V.; Cohen, O.; Gombosi, T. I.
2017-12-01
In the last two decades, the field of exoplanets has witnessed a tremendous creative surge. Research in exoplanets now encompasses a wide range of fields ranging from astrophysics to heliophysics and atmospheric science. One of the primary objectives of studying exoplanets is to determine the criteria for habitability, and whether certain exoplanets meet these requirements. The classical definition of the Habitable Zone (HZ) is the region around a star where liquid water can exist on the planetary surface given sufficient atmospheric pressure. However, this definition largely ignores the impact of the stellar wind and stellar magnetic activity on the erosion of an exoplanet's atmosphere. Amongst the many factors that determine habitability, understanding the mechanisms of atmospheric loss is of paramount importance. We will discuss the impact of exoplanetary space weather on climate and habitability, which offers fresh insights concerning the habitability of exoplanets, especially those orbiting M-dwarfs, such as Proxima b and the TRAPPIST-1 system. For each case, we will demonstrate the importance of the exoplanetary space weather on atmospheric ion loss and habitability.
Wave-driven winds from cool stars. I - Some effects of magnetic field geometry
NASA Technical Reports Server (NTRS)
Hartmann, L.; Macgregor, K. B.
1982-01-01
The wave-driven wind theory of Hartmann and MacGregor (1980) is extended to include effects due to non-radial divergence of the flow. Specifically, isothermal expansion within a flow tube whose cross-sectional area increases outward faster than the square of the radius near the stellar surface is considered. It is found that the qualitative conclusions of Hartmann and MacGregor concerning the physical properties of Alfven wave-driven winds are largely unaffected. In particular, mass fluxes of similar magnitude are obtained, and wave dissipation is still necessary to produce acceptably small terminal velocities. Increasingly divergent flow geometries generally lead to higher initial wind speeds and slightly lower terminal velocities. For some cases of extremely rapid flow tube divergence, steady supersonic wind solutions which extend to infinity with vanishing gas pressure cannot be obtained. In addition, departures from spherical symmetry can cause the relative Alfven wave amplitude delta-B/B to become approximately greater than 1 within several stellar radii of the base of the wind, suggesting that nonlinear processes may contribute to the wave dissipation required by the theory.
Solar and stellar coronal plasmas
NASA Technical Reports Server (NTRS)
Golub, Leon
1989-01-01
Progress in observational, theoretical, and radio studies of coronal plasmas is summarized. Specifically work completed in the area of solar and stellar magnetic fields, related photospheric phenomena and the relationships between magnetism, rotation, coronal and chromospheric emission in solar-like stars is described. Also outlined are theoretical studies carried out in the following areas, among others: (1) neutral beams as the dominant energy transport mechanism in two ribbon-flares; (2) magneto hydrodynamic and circuit models for filament eruptions; and (3) studies of radio emission mechanisms in transient events. Finally, radio observations designed for coronal activity studies of the sun and of solar-type coronae are described. A bibliography of publications and talks is provided along with reprints of selected articles.
NASA Astrophysics Data System (ADS)
Pipin, V. V.; Tomozov, V. M.
2018-04-01
Evidence that the distribution of the abundances of admixtures with low first-ionization potentials (FIP < 10 eV) in the lower solar corona could be associated with the typology of the largescale magnetic field is presented. Solar observations show an enhancement in the abundances of elements with low FIPs compared to elements with high FIPs (>10 eV) in active regions and closed magnetic configurations in the lower corona. Observations with the ULYSSES spacecraft and at the Stanford Solar Observatory have revealed strong correlations between the manifestation of the FIP effect in the solar wind, the strength of the open magnetic flux (without regard to sign), and the ratio of the large-scale toroidal and poloidal magnetic fields at the solar surface. Analyses of observations of the Sun as a star show that the enhancement of the abundances of admixtures with low FIPs in the corona compared to their abundances in the photosphere (the FIP effect) is closely related to the solar-activity cycle and also with variations in the topology of the large-scale magnetic field. A possible mechanism for the relationship between the FIP effect and the spectral type of a star is discussed in the framework of solar-stellar analogies.
High- β equilibrium and ballooning stability of the low aspect ratio CNT stellarator
Hammond, K. C.; Lazerson, S. A.; Volpe, F. A.
2017-04-07
In the paper, the existence and ballooning-stability of low aspect ratio stellarator equilibria is predicted for the Columbia Neutral Torus (CNT) with the aid of 3D numerical tools. In addition to having a low aspect ratio, CNT is characterized by a low magnetic field and small plasma volume. Also, highly overdense plasmas were recently heated in CNT by means of microwaves. These characteristics suggest that CNT might attain relatively high values of plasma beta and thus be of use in the experimental study of stellarator stability to high-beta instabilities such as ballooning modes. As a first step in that direction,more » here the ballooning stability limit is found numerically. Depending on the particular magnetic configuration we expect volume-averaged β limits in the range 0.9%–3.0%, and possibly higher, and observe indications of a second region of ballooning stability. As the aspect ratio is reduced, stability is found to increase in some configurations and decrease in others. Energy-balance estimates using stellarator scaling laws indicate that the lower β limit may be attainable with overdense heating at powers of 40 to 100 kW. The present study serves the additional purpose of testing VMEC and other stellarator codes at high values of β and at low aspect ratios. For this reason, the study was carried out both for free boundary, for maximum fidelity to experiment, as well as with a fixed boundary, as a numerical test.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tovmassian, G.; González–Buitrago, D.; Zharikov, S.
We studied two objects identified as cataclysmic variables (CVs) with periods exceeding the natural boundary for Roche-lobe-filling zero-age main sequence (ZAMS) secondary stars. We present observational results for V1082 Sgr with a 20.82 hr orbital period, an object that shows a low luminosity state when its flux is totally dominated by a chromospherically active K star with no signs of ongoing accretion. Frequent accretion shutoffs, together with characteristics of emission lines in a high state, indicate that this binary system is probably detached, and the accretion of matter on the magnetic white dwarf takes place through stellar wind from themore » active donor star via coupled magnetic fields. Its observational characteristics are surprisingly similar to V479 And, a 14.5 hr binary system. They both have early K-type stars as donor stars. We argue that, similar to the shorter-period prepolars containing M dwarfs, these are detached binaries with strong magnetic components. Their magnetic fields are coupled, allowing enhanced stellar wind from the K star to be captured and channeled through the bottleneck connecting the two stars onto the white dwarf’s magnetic pole, mimicking a magnetic CV. Hence, they become interactive binaries before they reach contact. This will help to explain an unexpected lack of systems possessing white dwarfs with strong magnetic fields among detached white+red dwarf systems.« less
NASA Astrophysics Data System (ADS)
Morgan, Dylan P.; West, Andrew A.; Becker, Andrew C.
2016-05-01
We present a study of the statistical flare rates of M dwarfs (dMs) with close white dwarf (WD) companions (WD+dM; typical separations <1 au). Our previous analysis demonstrated that dMs with close WD companions are more magnetically active than their field counterparts. One likely implication of having a close binary companion is increased stellar rotation through disk-disruption, tidal effects, and/or angular momentum exchange; increased stellar rotation has long been associated with an increase in stellar activity. Previous studies show a strong correlation between dMs that are magnetically active (showing Hα in emission) and the frequency of stellar flare rates. We examine the difference between the flare rates observed in close WD+dM binary systems and field dMs. Our sample consists of a subset of 181 close WD+dM pairs from Morgan et al. observed in the Sloan Digital Sky Survey Stripe 82, where we obtain multi-epoch observations in the Sloan ugriz-bands. We find an increase in the overall flaring fraction in the close WD+dM pairs (0.09 ± 0.03%) compared to the field dMs (0.0108 ± 0.0007%) and a lower flaring fraction for active WD+dMs (0.05 ± 0.03%) compared to active dMs (0.28 ± 0.05%). We discuss how our results constrain both the single and binary dM flare rates. Our results also constrain dM multiplicity, our knowledge of the Galactic transient background, and may be important for the habitability of attending planets around dMs with close companions.
Novel design methods for magnetic flux loops in the National Compact Stellarator Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pomphrey, N.; Lazarus, E.; Zarnstorff, M.
2007-05-15
Magnetic pickup loops on the vacuum vessel (VV) can provide an abundance of equilibrium information for stellarators. A substantial effort has gone into designing flux loops for the National Compact Stellarator Experiment (NCSX) [Zarnstorff et al., Plasma Phys. Controlled Fusion 43, A237 (2001)], a three-field period quasi-axisymmetric stellarator under construction at the Princeton Plasma Physics Laboratory. The design philosophy, to measure all of the magnetic field distributions normal to the VV that can be measured, has necessitated the development of singular value decomposition algorithms for identifying efficient loop locations. Fields are expected to be predominantly stellarator symmetric (SS)--the symmetry ofmore » the machine design--with toroidal mode numbers per torus (n) equal to a multiple of 3 and possessing reflection symmetry in a period. However, plasma instabilities and coil imperfections will generate non-SS fields that must also be diagnosed. The measured symmetric fields will yield important information on the plasma current and pressure profile as well as on the plasma shape. All fields that obey the design symmetries could be measured by placing flux loops in a single half-period of the VV, but accurate resolution of nonsymmetric modes, quantified by the condition number of a matrix, requires repositioning loops to equivalent locations on the full torus. A subarray of loops located along the inside wall of the vertically elongated cross section was designed to detect n=3, m=5 or 6 resonant field perturbations that can cause important islands. Additional subarrays included are continuous in the toroidal and poloidal directions. Loops are also placed at symmetry points of the VV to obtain maximal sensitivity to asymmetric perturbations. Combining results from various calculations which have made extensive use of a database of 2500 free-boundary VMEC equilibria, has led to the choice of 225 flux loops for NCSX, of which 151 have distinct shapes.« less
Generic Stellarator-like Magnetic Fusion Reactor
NASA Astrophysics Data System (ADS)
Sheffield, John; Spong, Donald
2015-11-01
The Generic Magnetic Fusion Reactor paper, published in 1985, has been updated, reflecting the improved science and technology base in the magnetic fusion program. Key changes beyond inflation are driven by important benchmark numbers for technologies and costs from ITER construction, and the use of a more conservative neutron wall flux and fluence in modern fusion reactor designs. In this paper the generic approach is applied to a catalyzed D-D stellarator-like reactor. It is shown that an interesting power plant might be possible if the following parameters could be achieved for a reference reactor: R/ < a > ~ 4 , confinement factor, fren = 0.9-1.15, < β > ~ 8 . 0 -11.5 %, Zeff ~ 1.45 plus a relativistic temperature correction, fraction of fast ions lost ~ 0.07, Bm ~ 14-16 T, and R ~ 18-24 m. J. Sheffield was supported under ORNL subcontract 4000088999 with the University of Tennessee.
Poloidal motion of trapped particle orbits in real-space coordinates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nemov, V. V.; Kasilov, S. V.; Kernbichler, W.
The bounce averaged poloidal drift velocity of trapped particles in stellarators is an important quantity in the framework of optimization of stellarators because it allows us to analyze the possibility for closure of contours of the second adiabatic invariant and therefore for improvement of {alpha}-particle confinement in such a device. Here, a method is presented to compute such a drift velocity directly in real space coordinates through integration along magnetic field lines. This has the advantage that one is not limited to the usage of magnetic coordinates and can use the magnetic field produced by coil currents and more importantlymore » also results of three-dimensional magnetohydrodynamic finite beta equilibrium codes, such as PIES [A. H. Reiman and H. S. Greenside, J. Comput. Phys. 75, 423 (1988)] and HINT [Y. Suzuki et al., Nucl. Fusion 46, L19 (2006)].« less
Do Low Surface Brightness Galaxies Host Stellar Bars?
NASA Astrophysics Data System (ADS)
Cervantes Sodi, Bernardo; Sánchez García, Osbaldo
2017-09-01
With the aim of assessing if low surface brightness galaxies host stellar bars and by studying the dependence of the occurrence of bars as a function of surface brightness, we use the Galaxy Zoo 2 data set to construct a large volume-limited sample of galaxies and then segregate these galaxies as having low or high surface brightness in terms of their central surface brightness. We find that the fraction of low surface brightness galaxies hosting strong bars is systematically lower than that found for high surface brightness galaxies. The dependence of the bar fraction on the central surface brightness is mostly driven by a correlation of the surface brightness with the spin and the gas richness of the galaxies, showing only a minor dependence on the surface brightness. We also find that the length of the bars is strongly dependent on the surface brightness, and although some of this dependence is attributed to the gas content, even at a fixed gas-to-stellar mass ratio, high surface brightness galaxies host longer bars than their low surface brightness counterparts, which we attribute to an anticorrelation of the surface brightness with the spin.
Do Low Surface Brightness Galaxies Host Stellar Bars?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cervantes Sodi, Bernardo; Sánchez García, Osbaldo, E-mail: b.cervantes@irya.unam.mx, E-mail: o.sanchez@irya.unam.mx
With the aim of assessing if low surface brightness galaxies host stellar bars and by studying the dependence of the occurrence of bars as a function of surface brightness, we use the Galaxy Zoo 2 data set to construct a large volume-limited sample of galaxies and then segregate these galaxies as having low or high surface brightness in terms of their central surface brightness. We find that the fraction of low surface brightness galaxies hosting strong bars is systematically lower than that found for high surface brightness galaxies. The dependence of the bar fraction on the central surface brightness ismore » mostly driven by a correlation of the surface brightness with the spin and the gas richness of the galaxies, showing only a minor dependence on the surface brightness. We also find that the length of the bars is strongly dependent on the surface brightness, and although some of this dependence is attributed to the gas content, even at a fixed gas-to-stellar mass ratio, high surface brightness galaxies host longer bars than their low surface brightness counterparts, which we attribute to an anticorrelation of the surface brightness with the spin.« less
A new method to unveil embedded stellar clusters
NASA Astrophysics Data System (ADS)
Lombardi, Marco; Lada, Charles J.; Alves, João
2017-11-01
In this paper we present a novel method to identify and characterize stellar clusters deeply embedded in a dark molecular cloud. The method is based on measuring stellar surface density in wide-field infrared images using star counting techniques. It takes advantage of the differing H-band luminosity functions (HLFs) of field stars and young stellar populations and is able to statistically associate each star in an image as a member of either the background stellar population or a young stellar population projected on or near the cloud. Moreover, the technique corrects for the effects of differential extinction toward each individual star. We have tested this method against simulations as well as observations. In particular, we have applied the method to 2MASS point sources observed in the Orion A and B complexes, and the results obtained compare very well with those obtained from deep Spitzer and Chandra observations where presence of infrared excess or X-ray emission directly determines membership status for every star. Additionally, our method also identifies unobscured clusters and a low resolution version of the Orion stellar surface density map shows clearly the relatively unobscured and diffuse OB 1a and 1b sub-groups and provides useful insights on their spatial distribution.
STELLAR ENCOUNTER RATE IN GALACTIC GLOBULAR CLUSTERS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bahramian, Arash; Heinke, Craig O.; Sivakoff, Gregory R.
2013-04-01
The high stellar densities in the cores of globular clusters cause significant stellar interactions. These stellar interactions can produce close binary mass-transferring systems involving compact objects and their progeny, such as X-ray binaries and radio millisecond pulsars. Comparing the numbers of these systems and interaction rates in different clusters drives our understanding of how cluster parameters affect the production of close binaries. In this paper we estimate stellar encounter rates ({Gamma}) for 124 Galactic globular clusters based on observational data as opposed to the methods previously employed, which assumed 'King-model' profiles for all clusters. By deprojecting cluster surface brightness profilesmore » to estimate luminosity density profiles, we treat 'King-model' and 'core-collapsed' clusters in the same way. In addition, we use Monte Carlo simulations to investigate the effects of uncertainties in various observational parameters (distance, reddening, surface brightness) on {Gamma}, producing the first catalog of globular cluster stellar encounter rates with estimated errors. Comparing our results with published observations of likely products of stellar interactions (numbers of X-ray binaries, numbers of radio millisecond pulsars, and {gamma}-ray luminosity) we find both clear correlations and some differences with published results.« less
X-RAY EMISSION FROM MAGNETIC MASSIVE STARS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nazé, Yaël; Petit, Véronique; Rinbrand, Melanie
2014-11-01
Magnetically confined winds of early-type stars are expected to be sources of bright and hard X-rays. To clarify the systematics of the observed X-ray properties, we have analyzed a large series of Chandra and XMM-Newton observations, corresponding to all available exposures of known massive magnetic stars (over 100 exposures covering ∼60% of stars compiled in the catalog of Petit et al.). We show that the X-ray luminosity is strongly correlated with the stellar wind mass-loss rate, with a power-law form that is slightly steeper than linear for the majority of the less luminous, lower- M-dot B stars and flattens formore » the more luminous, higher- M-dot O stars. As the winds are radiatively driven, these scalings can be equivalently written as relations with the bolometric luminosity. The observed X-ray luminosities, and their trend with mass-loss rates, are well reproduced by new MHD models, although a few overluminous stars (mostly rapidly rotating objects) exist. No relation is found between other X-ray properties (plasma temperature, absorption) and stellar or magnetic parameters, contrary to expectations (e.g., higher temperature for stronger mass-loss rate). This suggests that the main driver for the plasma properties is different from the main determinant of the X-ray luminosity. Finally, variations of the X-ray hardnesses and luminosities, in phase with the stellar rotation period, are detected for some objects and they suggest that some temperature stratification exists in massive stars' magnetospheres.« less
Modelling interstellar structures around Vela X-1
NASA Astrophysics Data System (ADS)
Gvaramadze, V. V.; Alexashov, D. B.; Katushkina, O. A.; Kniazev, A. Y.
2018-03-01
We report the discovery of filamentary structures stretched behind the bow-shock-producing high-mass X-ray binary Vela X-1 using the SuperCOSMOS H-alpha Survey and present the results of optical spectroscopy of the bow shock carried out with the Southern African Large Telescope. The geometry of the detected structures suggests that Vela X-1 has encountered a wedge-like layer of enhanced density on its way and that the shocked material of the layer partially outlines a wake downstream of Vela X-1. To substantiate this suggestion, we carried out 3D magnetohydrodynamic simulations of interaction between Vela X-1 and the layer for three limiting cases. Namely, we run simulations in which (i) the stellar wind and the interstellar medium (ISM) were treated as pure hydrodynamic flows, (ii) a homogeneous magnetic field was added to the ISM, while the stellar wind was assumed to be unmagnetized, and (iii) the stellar wind was assumed to possess a helical magnetic field, while there was no magnetic field in the ISM. We found that although the first two simulations can provide a rough agreement with the observations, only the third one allowed us to reproduce not only the wake behind Vela X-1, but also the general geometry of the bow shock ahead of it.
Magnetic field structure in single late-type giants: the effectively single giant V390 Aurigae
NASA Astrophysics Data System (ADS)
Konstantinova-Antova, R.; Aurière, M.; Petit, P.; Charbonnel, C.; Tsvetkova, S.; Lèbre, A.; Bogdanovski, R.
2012-05-01
Aims: We have studied the active giant V390 Aur using spectropolarimetry to obtain direct and simultaneous measurements of the magnetic field and the activity indicators to obtain a precise insight of its activity. Methods: We used the spectropolarimeter NARVAL at the Bernard Lyot Telescope (Observatoire du Pic du Midi, France) to obtain a series of Stokes I and Stokes V profiles. Using the least-squares deconvolution (LSD) technique we were able to detect the Zeeman signature of the magnetic field in each of our 13 observations and to measure its longitudinal component. Using the wide wavelength range of the spectra we were able to monitor the CaII K&H and IR triplet, as well as the Hα lines, which are activity indicators. To reconstruct the magnetic field geometry of V390 Aur on the basis of modelling the Stokes V profiles, we applied the Zeeman Doppler imaging (ZDI) inversion method and present a map for the magnetic field. Based on the obtained spectra, we also refined the fundamental parameters of the star and the Li abundance using MARCS model atmospheres. Results: The ZDI revealed a structure in the radial magnetic field consisting of a polar magnetic spot of positive polarity and several negative spots at lower latitude. A high latitude belt is present on the azimuthal field map, indicative of a toroidal field close to the surface. Similar features are observed in some RS CVn and FK Com -type stars. It was found that the photometric period cannot fit the behaviour of the activity indicators formed in the chromosphere. Their behaviour suggests slower rotation compared to the photosphere, but our dataset is too short for us to be able to estimate their exact periods. All these results can be explained in terms of an α - ω dynamo operation, taking into account the stellar structure and rotation properties of V390 Aur that we studied with up-to-date stellar models computed at solar metallicity with the code STAREVOL. The calculated Rossby number also points to a very efficient dynamo. Based on data obtained using the Bernard Lyot Telescope at Observatoire du Pic du Midi, CNRS and Université Paul Sabatier, France.
EQUATION OF STATE FOR NUCLEONIC AND HYPERONIC NEUTRON STARS WITH MASS AND RADIUS CONSTRAINTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tolos, Laura; Centelles, Mario; Ramos, Angels
We obtain a new equation of state for the nucleonic and hyperonic inner core of neutron stars that fulfils the 2 M {sub ⊙} observations as well as the recent determinations of stellar radii below 13 km. The nucleonic equation of state is obtained from a new parameterization of the FSU2 relativistic mean-field functional that satisfies these latest astrophysical constraints and, at the same time, reproduces the properties of nuclear matter and finite nuclei while fulfilling the restrictions on high-density matter deduced from heavy-ion collisions. On the one hand, the equation of state of neutron star matter is softened aroundmore » saturation density, which increases the compactness of canonical neutron stars leading to stellar radii below 13 km. On the other hand, the equation of state is stiff enough at higher densities to fulfil the 2 M {sub ⊙} limit. By a slight modification of the parameterization, we also find that the constraints of 2 M {sub ⊙} neutron stars with radii around 13 km are satisfied when hyperons are considered. The inclusion of the high magnetic fields present in magnetars further stiffens the equation of state. Hyperonic magnetars with magnetic fields in the surface of ∼10{sup 15} G and with values of ∼10{sup 18} G in the interior can reach maximum masses of 2 M {sub ⊙} with radii in the 12–13 km range.« less
The Destructive Birth of Massive Stars and Massive Star Clusters
NASA Astrophysics Data System (ADS)
Rosen, Anna; Krumholz, Mark; McKee, Christopher F.; Klein, Richard I.; Ramirez-Ruiz, Enrico
2017-01-01
Massive stars play an essential role in the Universe. They are rare, yet the energy and momentum they inject into the interstellar medium with their intense radiation fields dwarfs the contribution by their vastly more numerous low-mass cousins. Previous theoretical and observational studies have concluded that the feedback associated with massive stars' radiation fields is the dominant mechanism regulating massive star and massive star cluster (MSC) formation. Therefore detailed simulation of the formation of massive stars and MSCs, which host hundreds to thousands of massive stars, requires an accurate treatment of radiation. For this purpose, we have developed a new, highly accurate hybrid radiation algorithm that properly treats the absorption of the direct radiation field from stars and the re-emission and processing by interstellar dust. We use our new tool to perform a suite of three-dimensional radiation-hydrodynamic simulations of the formation of massive stars and MSCs. For individual massive stellar systems, we simulate the collapse of massive pre-stellar cores with laminar and turbulent initial conditions and properly resolve regions where we expect instabilities to grow. We find that mass is channeled to the massive stellar system via gravitational and Rayleigh-Taylor (RT) instabilities. For laminar initial conditions, proper treatment of the direct radiation field produces later onset of RT instability, but does not suppress it entirely provided the edges of the radiation-dominated bubbles are adequately resolved. RT instabilities arise immediately for turbulent pre-stellar cores because the initial turbulence seeds the instabilities. To model MSC formation, we simulate the collapse of a dense, turbulent, magnetized Mcl = 106 M⊙ molecular cloud. We find that the influence of the magnetic pressure and radiative feedback slows down star formation. Furthermore, we find that star formation is suppressed along dense filaments where the magnetic field is amplified. Our results suggest that the combined effect of turbulence, magnetic pressure, and radiative feedback from massive stars is responsible for the low star formation efficiencies observed in molecular clouds.
NASA Astrophysics Data System (ADS)
Tsvetkova, S.; Petit, P.; Konstantinova-Antova, R.; Aurière, M.; Wade, G. A.; Palacios, A.; Charbonnel, C.; Drake, N. A.
2017-03-01
Aims: This work studies the magnetic activity of the late-type giant 37 Com. This star belongs to the group of weak G-band stars that present very strong carbon deficiency in their photospheres. The paper is a part of a global investigation into the properties and origin of magnetic fields in cool giants. Methods: We use spectropolarimetric data, which allows the simultaneous measurement of the longitudinal magnetic field Bl, line activity indicators (Hα, Ca II IRT, S-index) and radial velocity of the star, and consequently perform a direct comparison of their time variability. Mean Stokes V profiles are extracted using the least squares deconvolution (LSD) method. One map of the surface magnetic field of the star is reconstructed via the Zeeman Doppler imaging (ZDI) inversion technique. Results: A periodogram analysis is performed on our dataset and it reveals a rotation period of 111 days. We interpret this period to be the rotation period of 37 Com. The reconstructed magnetic map reveals that the structure of the surface magnetic field is complex and features a significant toroidal component. The time variability of the line activity indicators, radial velocity and magnetic field Bl indicates a possible evolution of the surface magnetic structures in the period from 2008 to 2011. For completeness of our study, we use customized stellar evolutionary models suited to a weak G-band star. Synthetic spectra are also calculated to confirm the peculiar abundance of 37 Com. Conclusions: We deduce that 37 Com is a 6.5 M⊙ weak G-band star located in the Hertzsprung gap, whose magnetic activity is probably due to dynamo action. Based on observations obtained at the Télescope Bernard Lyot (TBL, Pic du Midi, France) of the Midi-Pyrénées Observatory which is operated by the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique of France and Université de Toulouse, and at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii.
Discovery of magnetic A supergiants: the descendants of magnetic main-sequence B stars
NASA Astrophysics Data System (ADS)
Neiner, Coralie; Oksala, Mary E.; Georgy, Cyril; Przybilla, Norbert; Mathis, Stéphane; Wade, Gregg; Kondrak, Matthias; Fossati, Luca; Blazère, Aurore; Buysschaert, Bram; Grunhut, Jason
2017-10-01
In the context of the high resolution, high signal-to-noise ratio, high sensitivity, spectropolarimetric survey BritePol, which complements observations by the BRITE constellation of nanosatellites for asteroseismology, we are looking for and measuring the magnetic field of all stars brighter than V = 4. In this paper, we present circularly polarized spectra obtained with HarpsPol at ESO in La Silla (Chile) and ESPaDOnS at CFHT (Hawaii) for three hot evolved stars: ι Car, HR 3890 and ɛ CMa. We detected a magnetic field in all three stars. Each star has been observed several times to confirm the magnetic detections and check for variability. The stellar parameters of the three objects were determined and their evolutionary status was ascertained employing evolution models computed with the Geneva code. ɛ CMa was already known and is confirmed to be magnetic, but our modelling indicates that it is located near the end of the main sequence, I.e. it is still in a core hydrogen burning phase. ι Car and HR 3890 are the first discoveries of magnetic hot supergiants located well after the end of the main sequence on the Hertzsprung-Russell diagram. These stars are probably the descendants of main-sequence magnetic massive stars. Their current field strength (a few G) is compatible with magnetic flux conservation during stellar evolution. These results provide observational constraints for the development of future evolutionary models of hot stars including a fossil magnetic field.
Magnetic Coupling in the Disks around Young Gas Giant Planets
NASA Astrophysics Data System (ADS)
Turner, N. J.; Lee, Man Hoi; Sano, T.
2014-03-01
We examine the conditions under which the disks of gas and dust orbiting young gas giant planets are sufficiently conducting to experience turbulence driven by the magneto-rotational instability. By modeling the ionization and conductivity in the disk around proto-Jupiter, we find that turbulence is possible if the X-rays emitted near the Sun reach the planet's vicinity and either (1) the gas surface densities are in the range of the minimum-mass models constructed by augmenting Jupiter's satellites to solar composition, while dust is depleted from the disk atmosphere, or (2) the surface densities are much less, and in the range of gas-starved models fed with material from the solar nebula, but not so low that ambipolar diffusion decouples the neutral gas from the plasma. The results lend support to both minimum-mass and gas-starved models of the protojovian disk. (1) The dusty minimum-mass models have internal conductivities low enough to prevent angular momentum transfer by magnetic forces, as required for the material to remain in place while the satellites form. (2) The gas-starved models have magnetically active surface layers and a decoupled interior "dead zone." Similar active layers in the solar nebula yield accretion stresses in the range assumed in constructing the circumjovian gas-starved models. Our results also point to aspects of both classes of models that can be further developed. Non-turbulent minimum-mass models will lose dust from their atmospheres by settling, enabling gas to accrete through a thin surface layer. For the gas-starved models it is crucial to learn whether enough stellar X-ray and ultraviolet photons reach the circumjovian disk. Additionally, the stress-to-pressure ratio ought to increase with distance from the planet, likely leading to episodic accretion outbursts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cottaar, Michiel; Meyer, Michael R.; Covey, Kevin R.
2014-10-20
Over two years, 8859 high-resolution H-band spectra of 3493 young (1-10 Myr) stars were gathered by the multi-object spectrograph of the APOGEE project as part of the IN-SYNC ancillary program of the SDSS-III survey. Here we present the forward modeling approach used to derive effective temperatures, surface gravities, radial velocities, rotational velocities, and H-band veiling from these near-infrared spectra. We discuss in detail the statistical and systematic uncertainties in these stellar parameters. In addition, we present accurate extinctions by measuring the E(J – H) of these young stars with respect to the single-star photometric locus in the Pleiades. Finally, wemore » identify an intrinsic stellar radius spread of about 25% for late-type stars in IC 348 using three (nearly) independent measures of stellar radius, namely, the extinction-corrected J-band magnitude, the surface gravity, and the Rsin i from the rotational velocities and literature rotation periods. We exclude that this spread is caused by uncertainties in the stellar parameters by showing that the three estimators of stellar radius are correlated, so that brighter stars tend to have lower surface gravities and larger Rsin i than fainter stars at the same effective temperature. Tables providing the spectral and photometric parameters for the Pleiades and IC 348 have been provided online.« less
NASA Astrophysics Data System (ADS)
Cottaar, Michiel; Covey, Kevin R.; Meyer, Michael R.; Nidever, David L.; Stassun, Keivan G.; Foster, Jonathan B.; Tan, Jonathan C.; Chojnowski, S. Drew; da Rio, Nicola; Flaherty, Kevin M.; Frinchaboy, Peter M.; Skrutskie, Michael; Majewski, Steven R.; Wilson, John C.; Zasowski, Gail
2014-10-01
Over two years, 8859 high-resolution H-band spectra of 3493 young (1-10 Myr) stars were gathered by the multi-object spectrograph of the APOGEE project as part of the IN-SYNC ancillary program of the SDSS-III survey. Here we present the forward modeling approach used to derive effective temperatures, surface gravities, radial velocities, rotational velocities, and H-band veiling from these near-infrared spectra. We discuss in detail the statistical and systematic uncertainties in these stellar parameters. In addition, we present accurate extinctions by measuring the E(J - H) of these young stars with respect to the single-star photometric locus in the Pleiades. Finally, we identify an intrinsic stellar radius spread of about 25% for late-type stars in IC 348 using three (nearly) independent measures of stellar radius, namely, the extinction-corrected J-band magnitude, the surface gravity, and the Rsin i from the rotational velocities and literature rotation periods. We exclude that this spread is caused by uncertainties in the stellar parameters by showing that the three estimators of stellar radius are correlated, so that brighter stars tend to have lower surface gravities and larger Rsin i than fainter stars at the same effective temperature. Tables providing the spectral and photometric parameters for the Pleiades and IC 348 have been provided online.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moroz, P.E.
A new stellarator configuration, the Double-Helix Stellarator (DHS), is introduced. This novel configuration features a double-helix center post as the only helical element of the stellarator coil system. The DHS configuration has many unique characteristics. One of them is the extreme low plasma aspect ratio, A {approx} 1--1.2. Other advantages include a high enclosed volume, appreciable rotational transform, and a possibility of extreme-high-{beta} MHD equilibria. Moreover, the DHS features improved transport characteristics caused by the absence of the magnetic field ripple on the outboard of the torus. Compactness, simplicity and modularity of the coil system add to the DHS advantagesmore » for fusion applications.« less
FIRST ZEEMAN DOPPLER IMAGING OF A COOL STAR USING ALL FOUR STOKES PARAMETERS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosén, L.; Kochukhov, O.; Wade, G. A.
Magnetic fields are ubiquitous in active cool stars, but they are in general complex and weak. Current Zeeman Doppler imaging (ZDI) studies of cool star magnetic fields chiefly employ circular polarization observations because linear polarization is difficult to detect and requires a more sophisticated radiative transfer modeling to interpret. But it has been shown in previous theoretical studies, and in the observational analyses of magnetic Ap stars, that including linear polarization in the magnetic inversion process makes it possible to correctly recover many otherwise lost or misinterpreted magnetic features. We have obtained phase-resolved observations in all four Stokes parameters ofmore » the RS CVn star II Peg at two separate epochs. Here we present temperature and magnetic field maps reconstructed for this star using all four Stokes parameters. This is the very first such ZDI study of a cool active star. Our magnetic inversions reveal a highly structured magnetic field topology for both epochs. The strength of some surface features is doubled or even quadrupled when linear polarization is taken into account. The total magnetic energy of the reconstructed field map also becomes about 2.1–3.5 times higher. The overall complexity is also increased as the field energy is shifted toward higher harmonic modes when four Stokes parameters are used. As a consequence, the potential field extrapolation of the four Stokes parameter ZDI results indicates that magnetic field becomes weaker at a distance of several stellar radii due to a decrease of the large-scale field component.« less
Antisolar differential rotation with surface lithium enrichment on the single K-giant V1192 Orionis
NASA Astrophysics Data System (ADS)
Kővári, Zs.; Strassmeier, K. G.; Carroll, T. A.; Oláh, K.; Kriskovics, L.; Kővári, E.; Kovács, O.; Vida, K.; Granzer, T.; Weber, M.
2017-10-01
Context. Stars with about 1-2 solar masses at the red giant branch (RGB) represent an intriguing period of stellar evolution, I.e. when the convective envelope interacts with the fast-rotating core. During these mixing episodes freshly synthesized lithium can come up to the stellar surface along with high angular momentum material. This high angular momentum may alter the surface rotation pattern. Aims: The single rapidly rotating K-giant V1192 Ori is revisited to determine its surface differential rotation, lithium abundance, and basic stellar properties such as a precise rotation period. The aim is to independently verify the antisolar differential rotation of the star and possibly find a connection to the surface lithium abundance. Methods: We applied time-series Doppler imaging to a new multi-epoch data set. Altogether we reconstructed 11 Doppler images from spectroscopic data collected with the STELLA robotic telescope between 2007-2016. We used our inversion code iMap to reconstruct all stellar surface maps. We extracted the differential rotation from these images by tracing systematic spot migration as a function of stellar latitude from consecutive image cross-correlations. Results: The position of V1192 Ori in the Hertzsprung-Russell diagram suggests that the star is in the helium core-burning phase just leaving the RGB bump. We measure A(Li)NLTE = 1.27, I.e. a value close to the anticipated transition value of 1.5 from Li-normal to Li-rich giants. Doppler images reveal extended dark areas arranged quasi-evenly along an equatorial belt. No cool polar spot is found during the investigated epoch. Spot displacements clearly suggest antisolar surface differential rotation with α = - 0.11 ± 0.02 shear coefficient. Conclusions: The surface Li enrichment and the peculiar surface rotation pattern may indicate a common origin. Based on data obtained with the STELLA robotic observatory in Tenerife, an AIP facility jointly operated by AIP and IAC.
AN ACTIVITY–ROTATION RELATIONSHIP AND KINEMATIC ANALYSIS OF NEARBY MID-TO-LATE-TYPE M DWARFS
DOE Office of Scientific and Technical Information (OSTI.GOV)
West, Andrew A.; Weisenburger, Kolby L.; Irwin, Jonathan
Using spectroscopic observations and photometric light curves of 238 nearby M dwarfs from the MEarth exoplanet transit survey, we examine the relationships between magnetic activity (quantified by Hα emission), rotation period, and stellar age. Previous attempts to investigate the relationship between magnetic activity and rotation in these stars were hampered by the limited number of M dwarfs with measured rotation periods (and the fact that v sin i measurements probe only rapid rotation). However, the photometric data from MEarth allows us to probe a wide range of rotation periods for hundreds of M dwarf stars (from shorter than one tomore » longer than 100 days). Over all M spectral types that we probe, we find that the presence of magnetic activity is tied to rotation, including for late-type, fully convective M dwarfs. We also find evidence that the fraction of late-type M dwarfs that are active may be higher at longer rotation periods compared to their early-type counterparts, with several active, late-type, slowly rotating stars present in our sample. Additionally, we find that all M dwarfs with rotation periods shorter than 26 days (early-type; M1–M4) and 86 days (late-type; M5–M8) are magnetically active. This potential mismatch suggests that the physical mechanisms that connect stellar rotation to chromospheric heating may be different in fully convective stars. A kinematic analysis suggests that the magnetically active, rapidly rotating stars are consistent with a kinematically young population, while slow-rotators are less active or inactive and appear to belong to an older, dynamically heated stellar population.« less
Modelling Solar and Stellar Brightness Variabilities
NASA Astrophysics Data System (ADS)
Yeo, K. L.; Shapiro, A. I.; Krivova, N. A.; Solanki, S. K.
2016-04-01
Total and spectral solar irradiance, TSI and SSI, have been measured from space since 1978. This is accompanied by the development of models aimed at replicating the observed variability by relating it to solar surface magnetism. Despite significant progress, there remains persisting controversy over the secular change and the wavelength-dependence of the variation with impact on our understanding of the Sun's influence on the Earth's climate. We highlight the recent progress in TSI and SSI modelling with SATIRE. Brightness variations have also been observed for Sun-like stars. Their analysis can profit from knowledge of the solar case and provide additional constraints for solar modelling. We discuss the recent effort to extend SATIRE to Sun-like stars.
A Framework for Finding and Interpreting Stellar CMEs
NASA Astrophysics Data System (ADS)
Osten, Rachel A.; Wolk, Scott J.
2017-10-01
The astrophysical study of mass loss, both steady-state and transient, on the cool half of the HR diagram has implications both for the star itself and the conditions created around the star that can be hospitable or inimical to supporting life. Stellar coronal mass ejections (CMEs) have not been conclusively detected, despite the ubiquity with which their radiative counterparts in an eruptive event (flares) have been. I will review some of the different observational methods which have been used and possibly could be used in the future in the stellar case, emphasizing some of the difficulties inherent in such attempts. I will provide a framework for interpreting potential transient stellar mass loss in light of the properties of flares known to occur on magnetically active stars. This uses a physically motivated way to connect the properties of flares and coronal mass ejections and provides a testable hypothesis for observing or constraining transient stellar mass loss. Finally I will describe recent results using observations at low radio frequencies to detect stellar coronal mass ejections, and give updates on prospects using future facilities to make headway in this important area.
The PyCASSO database: spatially resolved stellar population properties for CALIFA galaxies
NASA Astrophysics Data System (ADS)
de Amorim, A. L.; García-Benito, R.; Cid Fernandes, R.; Cortijo-Ferrero, C.; González Delgado, R. M.; Lacerda, E. A. D.; López Fernández, R.; Pérez, E.; Vale Asari, N.
2017-11-01
The Calar Alto Legacy Integral Field Area (CALIFA) survey, a pioneer in integral field spectroscopy legacy projects, has fostered many studies exploring the information encoded on the spatially resolved data on gaseous and stellar features in the optical range of galaxies. We describe a value-added catalogue of stellar population properties for CALIFA galaxies analysed with the spectral synthesis code starlight and processed with the pycasso platform. Our public database (http://pycasso.ufsc.br/, mirror at http://pycasso.iaa.es/) comprises 445 galaxies from the CALIFA Data Release 3 with COMBO data. The catalogue provides maps for the stellar mass surface density, mean stellar ages and metallicities, stellar dust attenuation, star formation rates, and kinematics. Example applications both for individual galaxies and for statistical studies are presented to illustrate the power of this data set. We revisit and update a few of our own results on mass density radial profiles and on the local mass-metallicity relation. We also show how to employ the catalogue for new investigations, and show a pseudo Schmidt-Kennicutt relation entirely made with information extracted from the stellar continuum. Combinations to other databases are also illustrated. Among other results, we find a very good agreement between star formation rate surface densities derived from the stellar continuum and the H α emission. This public catalogue joins the scientific community's effort towards transparency and reproducibility, and will be useful for researchers focusing on (or complementing their studies with) stellar properties of CALIFA galaxies.
Coil Realizability Criteria for Stellarator Surface Currents
NASA Astrophysics Data System (ADS)
Boozer, A.; Hirshman, S.; Brooks, A.
1998-11-01
The method of automatic optimization(P. Merkel, Nucl. Fusion 27 (1987) 867.) for the design of stellarator coils (NESCOIL code) typically yields a two-dimensional surface current potential φ from which current filaments can be extracted, using the relation Ks = n × nabla φ. Until now, the realizability of coils obtained in this way has been largely decoupled from the physics optimization process which originally provided the matching surface on which B_normal = 0 (thus determining φ). For quasi-axisymmetric stellarators (QAS)(A. Reiman, et al., to be published.) or quasi- omnigeneous stellarators(S. P. Hirshman, D. A. Spong, et al., Phys. Rev. Lett. 80 (1998) 528.) with finite parallel plasma currents, it is often found that the current potential becomes too complicated to be consistent with realizable coils. We have developed analytic measures of the complexity of the current potential. These measures can be incorporated into the physics optimizer and can limit the plasma boundaries to those which are likely to produce realizable coils.
APOKASC 2.0: Asteroseismology and Spectroscopy for Cool Stars
NASA Astrophysics Data System (ADS)
Pinsonneault, Marc H.; Elsworth, Yvonne P.; APOKASC
2017-01-01
The APOGEE survey has obtained and analyzed high resolution H band spectra of more than 10,000 cool dwarfs and giants in the original Kepler fields. The APOKASC effort combines this data with asteroseismology and star spot studies, resulting in more than 7,000 stellar mass estimates for dwarfs and giants with high quality abundances, temperatures, and surface gravities. We highlight the main results from this effort so far, which include a tight correlation between surface abundances in giants and stellar mass, precise absolute gravity calibrations, and the discovery of unexpected stellar populations, such as young alpha-enhanced stars. We discuss grid modeling estimates for stellar masses and compare the absolute asteroseismic mass scale to calibrators in star clusters and the halo Directions for future efforts are discussed.
NASA Astrophysics Data System (ADS)
Lin, Yen-Ting; Hsieh, Bau-Ching; Lin, Sheng-Chieh; Oguri, Masamune; Chen, Kai-Feng; Tanaka, Masayuki; Chiu, I.-non; Huang, Song; Kodama, Tadayuki; Leauthaud, Alexie; More, Surhud; Nishizawa, Atsushi J.; Bundy, Kevin; Lin, Lihwai; Miyazaki, Satoshi; HSC Collaboration
2018-01-01
The unprecedented depth and area surveyed by the Subaru Strategic Program with the Hyper Suprime-Cam (HSC-SSP) have enabled us to construct and publish the largest distant cluster sample out to z~1 to date. In this exploratory study of cluster galaxy evolution from z=1 to z=0.3, we investigate the stellar mass assembly history of brightest cluster galaxies (BCGs), and evolution of stellar mass and luminosity distributions, stellar mass surface density profile, as well as the population of radio galaxies. Our analysis is the first high redshift application of the top N richest cluster selection, which is shown to allow us to trace the cluster galaxy evolution faithfully. Our stellar mass is derived from a machine-learning algorithm, which we show to be unbiased and accurate with respect to the COSMOS data. We find very mild stellar mass growth in BCGs, and no evidence for evolution in both the total stellar mass-cluster mass correlation and the shape of the stellar mass surface density profile. The clusters are found to contain more red galaxies compared to the expectations from the field, even after the differences in density between the two environments have been taken into account. We also present the first measurement of the radio luminosity distribution in clusters out to z~1.
Dynamics of Dwarf Galaxies Disfavor Stellar-Mass Black Holes as Dark Matter.
Koushiappas, Savvas M; Loeb, Abraham
2017-07-28
We study the effects of black hole dark matter on the dynamical evolution of stars in dwarf galaxies. We find that mass segregation leads to a depletion of stars in the center of dwarf galaxies and the appearance of a ring in the projected stellar surface density profile. Using Segue 1 as an example we show that current observations of the projected surface stellar density rule out at the 99.9% confidence level the possibility that more than 6% of the dark matter is composed of black holes with a mass of few tens of solar masses.
Holistic Framework for Understanding the Evolution of Stellar Coronal Plasmas
NASA Astrophysics Data System (ADS)
Blackman, Eric; Owen, James
2017-10-01
Understanding how how the coronal X-ray activity of stars depends on magnetic field strength, dynamos, rotation, mass loss and age is of interest not only for the basic plasma physics of stars, but also for stellar age determination and implications for habitability. Approximate relations between field strength, activity, spin down, mass loss and age have been measured, but remain to be understood theoretically. The saturation of plasma activity of the fastest rotators and the decoupling of spin-down from magnetic field strengths for slow rotators are particular puzzles. To explain the observed trends, I discuss our minimalist holistic theoretical framework that combines a Parker wind with (i) magnetic dynamo sourcing of thermal energy, wind energy and x-ray luminosity (ii) dynamo saturation based on magnetic helicity conservation and shear-induced eddy shredding and (iii) coronal equilibrium to determine how the magnetic energy divides into wind, x-ray, and thermal conduction sinks. We find conduction to be important for older stars where it can reduce the efficacy of wind angular momentum loss, offering an alternative explanation of this trend to those which require dynamo transitions. Overall, the framework shows promise and provides opportunity for further Grant NSF-AST1515648 is acknowledged.
Relating Stellar Cycle Periods to Dynamo Calculations
NASA Technical Reports Server (NTRS)
Tobias, S. M.
1998-01-01
Stellar magnetic activity in slowly rotating stars is often cyclic, with the period of the magnetic cycle depending critically on the rotation rate and the convective turnover time of the star. Here we show that the interpretation of this law from dynamo models is not a simple task. It is demonstrated that the period is (unsurprisingly) sensitive to the precise type of non-linearity employed. Moreover the calculation of the wave-speed of plane-wave solutions does not (as was previously supposed) give an indication of the magnetic period in a more realistic dynamo model, as the changes in length-scale of solutions are not easily captured by this approach. Progress can be made, however, by considering a realistic two-dimensional model, in which the radial length-scale of waves is included. We show that it is possible in this case to derive a more robust relation between cycle period and dynamo number. For all the non-linearities considered in the most realistic model, the magnetic cycle period is a decreasing function of IDI (the amplitude of the dynamo number). However, discriminating between different non-linearities is difficult in this case and care must therefore be taken before advancing explanations for the magnetic periods of stars.
Resilience of quasi-isodynamic stellarators against trapped-particle instabilities.
Proll, J H E; Helander, P; Connor, J W; Plunk, G G
2012-06-15
It is shown that in perfectly quasi-isodynamic stellarators, trapped particles with a bounce frequency much higher than the frequency of the instability are stabilizing in the electrostatic and collisionless limit. The collisionless trapped-particle instability is therefore stable as well as the ordinary electron-density-gradient-driven trapped-electron mode. This result follows from the energy balance of electrostatic instabilities and is thus independent of all other details of the magnetic geometry.
Nonlinear growth of zonal flows by secondary instability in general magnetic geometry
Plunk, G. G.; Navarro, A. Banon
2017-02-23
Here we present a theory of the nonlinear growth of zonal flows in magnetized plasma turbulence, by the mechanism of secondary instability. The theory is derived for general magnetic geometry, and is thus applicable to both tokamaks and stellarators. The predicted growth rate is shown to compare favorably with nonlinear gyrokinetic simulations, with the error scaling as expected with the small parameter of the theory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Linsky, Jeffrey L.; Bushinsky, Rachel; Ayres, Tom
2012-07-20
We compare high-resolution ultraviolet spectra of the Sun and thirteen solar-mass main-sequence stars with different rotational periods that serve as proxies for their different ages and magnetic field structures. In this, the second paper in the series, we study the dependence of ultraviolet emission-line centroid velocities on stellar rotation period, as rotation rates decrease from that of the Pleiades star HII314 (P{sub rot} = 1.47 days) to {alpha} Cen A (P{sub rot} = 28 days). Our stellar sample of F9 V to G5 V stars consists of six stars observed with the Cosmic Origins Spectrograph on the Hubble Space Telescopemore » (HST) and eight stars observed with the Space Telescope Imaging Spectrograph on HST. We find a systematic trend of increasing redshift with more rapid rotation (decreasing rotation period) that is similar to the increase in line redshift between quiet and plage regions on the Sun. The fastest-rotating solar-mass star in our study, HII314, shows significantly enhanced redshifts at all temperatures above log T = 4.6, including the corona, which is very different from the redshift pattern observed in the more slowly rotating stars. This difference in the redshift pattern suggests that a qualitative change in the magnetic-heating process occurs near P{sub rot} = 2 days. We propose that HII314 is an example of a solar-mass star with a magnetic heating rate too large for the physical processes responsible for the redshift pattern to operate in the same way as for the more slowly rotating stars. HII314 may therefore lie above the high activity end of the set of solar-like phenomena that is often called the 'solar-stellar connection'.« less
Optical, UV, and X-ray evidence for a 7-yr stellar cycle in Proxima Centauri
NASA Astrophysics Data System (ADS)
Wargelin, B. J.; Saar, S. H.; Pojmański, G.; Drake, J. J.; Kashyap, V. L.
2017-01-01
Stars of stellar type later than about M3.5 are believed to be fully convective and therefore unable to support magnetic dynamos like the one that produces the 11-yr solar cycle. Because of their intrinsic faintness, very few late M stars have undergone long-term monitoring to test this prediction, which is critical to our understanding of magnetic field generation in such stars. Magnetic activity is also of interest as the driver of UV and X-ray radiation, as well as energetic particles and stellar winds, that affects the atmospheres of close-in planets that lie within habitable zones, such as the recently discovered Proxima b. We report here on several years of optical, UV, and X-ray observations of Proxima Centauri (GJ 551; dM5.5e): 15 yr of All Sky Automated Survey photometry in the V band (1085 nights) and 3 yr in the I band (196 nights), 4 yr of Swift X-Ray Telescope and UV/Optical Telescope observations (more than 120 exposures), and nine sets of X-ray observations from other X-ray missions (ASCA, XMM-Newton, and three Chandra instruments) spanning 22 yr. We confirm previous reports of an 83-d rotational period and find strong evidence for a 7-yr stellar cycle, along with indications of differential rotation at about the solar level. X-ray/UV intensity is anticorrelated with optical V-band brightness for both rotational and cyclical variations. From comparison with other stars observed to have X-ray cycles, we deduce a simple empirical relationship between X-ray cyclic modulation and Rossby number, and we also present Swift UV grism spectra covering 2300-6000 Å.
Stellar Activity at the End of the Main Sequence: GHRS Observations of the M8 Ve Star VB 10
NASA Technical Reports Server (NTRS)
Linsky, Jeffrey L.; Wood, Brian E.; Brown, Alexander; Giampapa, Mark S.; Ambruster, Carol
1995-01-01
We present Goddard High Resolution Spectrograph observations of the M8 Ve star VB 10 (equal to G1 752B), located very near the end of the stellar main sequence, and its dM3.5 binary companion G1 752A. These coeval stars provide a test bed for studying whether the outer atmospheres of stars respond to changes in internal structure as stars become fully convective near mass 0.3 solar mass (about spectral type M5), where the nature of the stellar magnetic dynamo presumably changes, and near the transition from red to brown dwarfs near mass 0.08 solar mass (about spectral type M9), when hydrogen burning ceases at the end of the main sequence. We obtain upper limits for the quiescent emission of VB 10 but observe a transition region spectrum during a large flare, which indicates that some type of magnetic dynamo must be present. Two indirect lines of evidence-scaling from the observed X-ray emission and scaling from a time-resolved flare on AD Leo suggest that the fraction of the stellar bolometric luminosity that heats the transition region of VB 10 outside of obvious flares is comparable to, or larger than, that for G1 752A. This suggests an increase in the magnetic heating rates, as measured by L(sub line)/L(sub bol) ratios, across the radiative/convective core boundary and as stars approach the red/brown dwarf boundary. These results provide new constraints for dynamo models and models of coronal and transition-region heating in late-type stars.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilbert, Karoline M.; Font, Andreea S.; Johnston, Kathryn V.
2009-08-10
Extensive photometric and spectroscopic surveys of the Andromeda galaxy (M31) have discovered tidal debris features throughout M31's stellar halo. We present stellar kinematics and metallicities in fields with identified substructure from our on-going SPLASH survey of M31 red giant branch stars with the DEIMOS spectrograph on the Keck II 10 m telescope. Radial velocity criteria are used to isolate members of the kinematically cold substructures. The substructures are shown to be metal-rich relative to the rest of the dynamically hot stellar population in the fields in which they are found. We calculate the mean metallicity and average surface brightness ofmore » the various kinematical components in each field, and show that, on average, higher surface brightness features tend to be more metal-rich than lower surface brightness features. Simulations of stellar halo formation via accretion in a cosmological context are used to illustrate that the observed trend can be explained as a natural consequence of the observed dwarf galaxy mass-metallicity relation. A significant spread in metallicity at a given surface brightness is seen in the data; we show that this is due to time effects, namely, the variation in the time since accretion of the tidal streams' progenitor onto the host halo. We show that in this theoretical framework a relationship between the alpha-enhancement and surface brightness of tidal streams is expected, which arises from the varying times of accretion of the progenitor satellites onto the host halo. Thus, measurements of the alpha-enrichment, metallicity, and surface brightness of tidal debris can be used to reconstruct the luminosity and time of accretion onto the host halo of the progenitors of tidal streams.« less
Effect of magnetic shear on dissipative drift instabilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guzdar, P.N.; Chen, L.; Kaw, P.K.
1978-03-01
In this letter we report the results of a linear radial eigenmode analysis of dissipative drift waves in a plasma with magnetic shear and spatially varying density gradient. The results of the analysis are shown to be consistent with a recent experiment on the study of dissipative drift instabilities in a toroidal stellarator.
DOE Office of Scientific and Technical Information (OSTI.GOV)
G.Y. Fu; L.P. Ku; M.H. Redi
A key issue for compact stellarators is the stability of beta-limiting MHD modes, such as external kink modes driven by bootstrap current and pressure gradient. We report here recent progress in MHD stability studies for low-aspect-ratio Quasi-Axisymmetric Stellarators (QAS) and Quasi-Omnigeneous Stellarators (QOS). We find that the N = 0 periodicity-preserving vertical mode is significantly more stable in stellarators than in tokamaks because of the externally generated rotational transform. It is shown that both low-n external kink modes and high-n ballooning modes can be stabilized at high beta by appropriate 3D shaping without a conducting wall. The stabilization mechanism formore » external kink modes in QAS appears to be an enhancement of local magnetic shear due to 3D shaping. The stabilization of ballooning mode in QOS is related to a shortening of the normal curvature connection length.« less
X-ray insights into star and planet formation.
Feigelson, Eric D
2010-04-20
Although stars and planets form in cold environments, X-rays are produced in abundance by young stars. This review examines the implications of stellar X-rays for star and planet formation studies, highlighting the contributions of NASA's (National Aeronautics and Space Administration) Chandra X-ray Observatory. Seven topics are covered: X-rays from protostellar outflow shocks, X-rays from the youngest protostars, the stellar initial mass function, the structure of young stellar clusters, the fate of massive stellar winds, X-ray irradiation of protoplanetary disks, and X-ray flare effects on ancient meteorites. Chandra observations of star-forming regions often show dramatic star clusters, powerful magnetic reconnection flares, and parsec-scale diffuse plasma. X-ray selected samples of premain sequence stars significantly advance studies of star cluster formation, the stellar initial mass function, triggered star-formation processes, and protoplanetary disk evolution. Although X-rays themselves may not play a critical role in the physics of star formation, they likely have important effects on protoplanetary disks by heating and ionizing disk gases.
X-ray insights into star and planet formation
Feigelson, Eric D.
2010-01-01
Although stars and planets form in cold environments, X-rays are produced in abundance by young stars. This review examines the implications of stellar X-rays for star and planet formation studies, highlighting the contributions of NASA’s (National Aeronautics and Space Administration) Chandra X-ray Observatory. Seven topics are covered: X-rays from protostellar outflow shocks, X-rays from the youngest protostars, the stellar initial mass function, the structure of young stellar clusters, the fate of massive stellar winds, X-ray irradiation of protoplanetary disks, and X-ray flare effects on ancient meteorites. Chandra observations of star-forming regions often show dramatic star clusters, powerful magnetic reconnection flares, and parsec-scale diffuse plasma. X-ray selected samples of premain sequence stars significantly advance studies of star cluster formation, the stellar initial mass function, triggered star-formation processes, and protoplanetary disk evolution. Although X-rays themselves may not play a critical role in the physics of star formation, they likely have important effects on protoplanetary disks by heating and ionizing disk gases. PMID:20404197
Magnetically gated accretion in an accreting 'non-magnetic' white dwarf.
Scaringi, S; Maccarone, T J; D'Angelo, C; Knigge, C; Groot, P J
2017-12-13
White dwarfs are often found in binary systems with orbital periods ranging from tens of minutes to hours in which they can accrete gas from their companion stars. In about 15 per cent of these binaries, the magnetic field of the white dwarf is strong enough (at 10 6 gauss or more) to channel the accreted matter along field lines onto the magnetic poles. The remaining systems are referred to as 'non-magnetic', because until now there has been no evidence that they have a magnetic field that is strong enough to affect the accretion dynamics. Here we report an analysis of archival optical observations of the 'non-magnetic' accreting white dwarf in the binary system MV Lyrae, whose light curve displays quasi-periodic bursts of about 30 minutes duration roughly every 2 hours. The timescale and amplitude of these bursts indicate the presence of an unstable, magnetically regulated accretion mode, which in turn implies the existence of magnetically gated accretion, in which disk material builds up around the magnetospheric boundary (at the co-rotation radius) and then accretes onto the white dwarf, producing bursts powered by the release of gravitational potential energy. We infer a surface magnetic field strength for the white dwarf in MV Lyrae of between 2 × 10 4 gauss and 1 × 10 5 gauss, too low to be detectable by other current methods. Our discovery provides a new way of studying the strength and evolution of magnetic fields in accreting white dwarfs and extends the connections between accretion onto white dwarfs, young stellar objects and neutron stars, for which similar magnetically gated accretion cycles have been identified.
Fast core rotation in red-giant stars as revealed by gravity-dominated mixed modes.
Beck, Paul G; Montalban, Josefina; Kallinger, Thomas; De Ridder, Joris; Aerts, Conny; García, Rafael A; Hekker, Saskia; Dupret, Marc-Antoine; Mosser, Benoit; Eggenberger, Patrick; Stello, Dennis; Elsworth, Yvonne; Frandsen, Søren; Carrier, Fabien; Hillen, Michel; Gruberbauer, Michael; Christensen-Dalsgaard, Jørgen; Miglio, Andrea; Valentini, Marica; Bedding, Timothy R; Kjeldsen, Hans; Girouard, Forrest R; Hall, Jennifer R; Ibrahim, Khadeejah A
2011-12-07
When the core hydrogen is exhausted during stellar evolution, the central region of a star contracts and the outer envelope expands and cools, giving rise to a red giant. Convection takes place over much of the star's radius. Conservation of angular momentum requires that the cores of these stars rotate faster than their envelopes; indirect evidence supports this. Information about the angular-momentum distribution is inaccessible to direct observations, but it can be extracted from the effect of rotation on oscillation modes that probe the stellar interior. Here we report an increasing rotation rate from the surface of the star to the stellar core in the interiors of red giants, obtained using the rotational frequency splitting of recently detected 'mixed modes'. By comparison with theoretical stellar models, we conclude that the core must rotate at least ten times faster than the surface. This observational result confirms the theoretical prediction of a steep gradient in the rotation profile towards the deep stellar interior.
GAMA/H-ATLAS: The Dust Opacity-Stellar Mass Surface Density Relation for Spiral Galaxies
NASA Astrophysics Data System (ADS)
Grootes, M. W.; Tuffs, R. J.; Popescu, C. C.; Pastrav, B.; Andrae, E.; Gunawardhana, M.; Kelvin, L. S.; Liske, J.; Seibert, M.; Taylor, E. N.; Graham, Alister W.; Baes, M.; Baldry, I. K.; Bourne, N.; Brough, S.; Cooray, A.; Dariush, A.; De Zotti, G.; Driver, S. P.; Dunne, L.; Gomez, H.; Hopkins, A. M.; Hopwood, R.; Jarvis, M.; Loveday, J.; Maddox, S.; Madore, B. F.; Michałowski, M. J.; Norberg, P.; Parkinson, H. R.; Prescott, M.; Robotham, A. S. G.; Smith, D. J. B.; Thomas, D.; Valiante, E.
2013-03-01
We report the discovery of a well-defined correlation between B-band face-on central optical depth due to dust, τ ^f_B, and the stellar mass surface density, μ*, of nearby (z <= 0.13) spiral galaxies: {log}(τ ^{f}_{B}) = 1.12(+/- 0.11) \\cdot {log}({μ _{*}}/{{M}_{⊙ } {kpc}^{-2}}) - 8.6(+/- 0.8). This relation was derived from a sample of spiral galaxies taken from the Galaxy and Mass Assembly (GAMA) survey, which were detected in the FIR/submillimeter (submm) in the Herschel-ATLAS science demonstration phase field. Using a quantitative analysis of the NUV attenuation-inclination relation for complete samples of GAMA spirals categorized according to stellar mass surface density, we demonstrate that this correlation can be used to statistically correct for dust attenuation purely on the basis of optical photometry and Sérsic-profile morphological fits. Considered together with previously established empirical relationships of stellar mass to metallicity and gas mass, the near linearity and high constant of proportionality of the τ ^f_B - μ_{*} relation disfavors a stellar origin for the bulk of refractory grains in spiral galaxies, instead being consistent with the existence of a ubiquitous and very rapid mechanism for the growth of dust in the interstellar medium. We use the τ ^f_B - μ_{*} relation in conjunction with the radiation transfer model for spiral galaxies of Popescu & Tuffs to derive intrinsic scaling relations between specific star formation rate (SFR), stellar mass, and stellar surface density, in which attenuation of the UV light used for the measurement of SFR is corrected on an object-to-object basis. A marked reduction in scatter in these relations is achieved which we demonstrate is due to correction of both the inclination-dependent and face-on components of attenuation. Our results are consistent with a general picture of spiral galaxies in which most of the submm emission originates from grains residing in translucent structures, exposed to UV in the diffuse interstellar radiation field.
Asymmetric MHD outflows/jets from accreting T Tauri stars
NASA Astrophysics Data System (ADS)
Dyda, S.; Lovelace, R. V. E.; Ustyugova, G. V.; Lii, P. S.; Romanova, M. M.; Koldoba, A. V.
2015-06-01
Observations of jets from young stellar objects reveal the asymmetric outflows from some sources. A large set of 2.5D magnetohydrodynamic simulations was carried out for axisymmetric viscous/diffusive disc accretion to rotating magnetized stars for the purpose of assessing the conditions where the outflows are asymmetric relative to the equatorial plane. We consider initial magnetic fields that are symmetric about the equatorial plane and consist of a radially distributed field threading the disc (disc field) and a stellar dipole field. (1) For pure disc-fields the symmetry or asymmetry of the outflows is affected by the mid-plane plasma β of the disc. For discs with small plasma β, outflows are symmetric to within 10 per cent over time-scales of hundreds of inner disc orbits. For higher β discs, the coupling of the upper and lower coronal plasmas is broken, and quasi-periodic field motion leads to asymmetric episodic outflows. (2) Accreting stars with a stellar dipole field and no disc-field exhibit episodic, two component outflows - a magnetospheric wind and an inner disc wind. Both are characterized by similar velocity profiles but the magnetospheric wind has densities ≳ 10 times that of the disc wind. (3) Adding a disc field parallel to the stellar dipole field enhances the magnetospheric winds but suppresses the disc wind. (4) Adding a disc field which is antiparallel to the stellar dipole field in the disc suppresses the magnetospheric and disc winds. Our simulations reproduce some key features of observations of asymmetric outflows of T Tauri stars.
NASA Astrophysics Data System (ADS)
Gates, David
2013-10-01
The QUAsi-Axisymmetric Research (QUASAR) stellarator is a new facility which can solve two critical problems for fusion, disruptions and steady-state, and which provides new insights into the role of magnetic symmetry in plasma confinement. If constructed it will be the only quasi-axisymmetric stellarator in the world. The innovative principle of quasi-axisymmetry (QA) will be used in QUASAR to study how ``tokamak-like'' systems can be made: 1) Disruption-free, 2) Steady-state with low recirculating power, while preserving or improving upon features of axisymmetric tokamaks, such as 1) Stable at high pressure simultaneous with 2) High confinement (similar to tokamaks), and 3) Scalable to a compact reactor Stellarator research is critical to fusion research in order to establish the physics basis for a magnetic confinement device that can operate efficiently in steady-state, without disruptions at reactor-relevant parameters. The two large stellarator experiments - LHD in Japan and W7-X under construction in Germany are pioneering facilities capable of developing 3D physics understanding at large scale and for very long pulses. The QUASAR design is unique in being QA and optimized for confinement, stability, and moderate aspect ratio (4.5). It projects to a reactor with a major radius of ~8 m similar to advanced tokamak concepts. It is striking that (a) the EU DEMO is a pulsed (~2.5 hour) tokamak with major R ~ 9 m and (b) the ITER physics scenarios do not presume steady-state behavior. Accordingly, QUASAR fills a critical gap in the world stellarator program. This work supported by DoE Contract No. DEAC02-76CH03073.
Formation of stellar clusters in magnetized, filamentary infrared dark clouds
NASA Astrophysics Data System (ADS)
Li, Pak Shing; Klein, Richard I.; McKee, Christopher F.
2018-01-01
Star formation in a filamentary infrared dark cloud (IRDC) is simulated over the dynamic range of 4.2 pc to 28 au for a period of 3.5 × 105 yr, including magnetic fields and both radiative and outflow feedback from the protostars. At the end of the simulation, the star formation efficiency is 4.3 per cent and the star formation rate per free-fall time is εff ≃ 0.04, within the range of observed values. The total stellar mass increases as ∼t2, whereas the number of protostars increases as ∼t1.5. We find that the density profile around most of the simulated protostars is ∼ρ ∝ r-1.5. At the end of the simulation, the protostellar mass function approaches the Chabrier stellar initial mass function. We infer that the time to form a star of median mass 0.2 M⊙ is about 1.4 × 105 yr from the median mass accretion rate. We find good agreement among the protostellar luminosities observed in the large sample of Dunham et al., our simulation and a theoretical estimate, and we conclude that the classical protostellar luminosity problem is resolved. The multiplicity of the stellar systems in the simulation agrees, to within a factor of 2, with observations of Class I young stellar objects; most of the simulated multiple systems are unbound. Bipolar protostellar outflows are launched using a subgrid model, and extend up to 1 pc from their host star. The mass-velocity relation of the simulated outflows is consistent with both observation and theory.
GLOBAL PROPERTIES OF M31'S STELLAR HALO FROM THE SPLASH SURVEY. I. SURFACE BRIGHTNESS PROFILE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilbert, Karoline M.; Guhathakurta, Puragra; Beaton, Rachael L.
2012-11-20
We present the surface brightness profile of M31's stellar halo out to a projected radius of 175 kpc. The surface brightness estimates are based on confirmed samples of M31 red giant branch stars derived from Keck/DEIMOS spectroscopic observations. A set of empirical spectroscopic and photometric M31 membership diagnostics is used to identify and reject foreground and background contaminants. This enables us to trace the stellar halo of M31 to larger projected distances and fainter surface brightnesses than previous photometric studies. The surface brightness profile of M31's halo follows a power law with index -2.2 {+-} 0.2 and extends to amore » projected distance of at least {approx}175 kpc ({approx}2/3 of M31's virial radius), with no evidence of a downward break at large radii. The best-fit elliptical isophotes have b/a = 0.94 with the major axis of the halo aligned along the minor axis of M31's disk, consistent with a prolate halo, although the data are also consistent with M31's halo having spherical symmetry. The fact that tidal debris features are kinematically cold is used to identify substructure in the spectroscopic fields out to projected radii of 90 kpc and investigate the effect of this substructure on the surface brightness profile. The scatter in the surface brightness profile is reduced when kinematically identified tidal debris features in M31 are statistically subtracted; the remaining profile indicates that a comparatively diffuse stellar component to M31's stellar halo exists to large distances. Beyond 90 kpc, kinematically cold tidal debris features cannot be identified due to small number statistics; nevertheless, the significant field-to-field variation in surface brightness beyond 90 kpc suggests that the outermost region of M31's halo is also comprised to a significant degree of stars stripped from accreted objects.« less
Asteroseismology of Red-Giant Stars: Mixed Modes, Differential Rotation, and Eccentric Binaries
NASA Astrophysics Data System (ADS)
Beck, Paul G.
2013-12-01
Astronomers are aware of rotation in stars since Galileo Galilei attributed the movement of sunspots to rotation of the Sun in 1613. In contrast to the Sun, whose surface can be resolved by small telescopes or even the (protected) eye, we detect stars as point sources with no spatial information. Numerous techniques have been developed to derive information about stellar rotation. Unfortunately, most observational data allow only for the surface rotational rate to be inferred. The internal rotational profile, which has a great effect on the stellar structure and evolution, remains hidden below the top layers of the star - the essential is hidden to the eyes. Asteroseismology allows us to "sense" indirectly deep below the stellar surface. Oscillations that propagate through the star provide information about the deep stellar interiors while they also distort the stellar surface in characteristic patterns leading to detectable brightness or velocity variations. Also, certain oscillation modes are sensitive to internal rotation and carry information on how the star is spinning deep inside. Thanks to the unprecedented quality of NASA's space telescope Kepler, numerous detailed observations of stars in various evolutionary stages are available. Such high quality data allow that for many stars, rotation can not only be constrained from surface rotation, but also investigated through seismic studies. The work presented in this thesis focuses on the oscillations and internal rotational gradient of evolved single and binary stars. It is shown that the seismic analysis can reach the cores of oscillating red-giant stars and that these cores are rapidly rotating, while nested in a slowly rotating convective envelope.
Stellar MHD and Nuclear Physics Coupled Together Solve the Puzzle of Oxide Grain Composition
NASA Astrophysics Data System (ADS)
Palmerini, Sara; Trippella, Oscar; Busso, Maurizio; La Cognata, Marco; Petrelli, Maurizio; Zucchini, Azzurra
Oxide grains, enclosed in meteorites, give us very precise information about the stars in which they formed. Grains belonging to group 1 and 2 are characterized by values of 17O/16O and 18O/16O inconsistent with explosive nucleosynthesis scenarios, and are then believed to form in low mass stars. Nowadays, models of non convective mixing coupled with nuclear burning succeed in reproducing the oxygen isotopic mix found in these ancient solids thanks to the more accurate nuclear physics inputs employed in calculations. However, a large part of oxide grains shows values of the 26Al/27Al isotopic ratio too high to be accounted for by the mixing models mentioned above. Recently, [1] demonstrated that the stellar magnetic field might promote the transport of material across the stellar radiative layers. We apply this magnetic mixing model to a 1.2M ⊙ AGB star of solar metallicity. It turns out that the oxygen and aluminum isotopic ratios shown by group 1 and 2 grains are perfectly reproduced.
Measuring M Dwarf Rotation in the Pan-STARRS 1 Medium Deep Survey
NASA Astrophysics Data System (ADS)
Fong, Erin R.; Williams, Peter K. G.; Berger, Edo
2016-01-01
The rise of large-format CCDs and automated detection methods has greatly increased the tractability of large-scale studies of stellar rotation. Studies of the relationship between stellar rotation and magnetic activity show a strong correlation, supporting the concept of a rotationally-driven dynamo. However, the number of confirmed rotation periods for stars in the fully convective regime, whose magnetic dynamos are less well understood, remains low. Here we report on ongoing work to measure rotation periods for the M dwarf stellar population observed by the Pan-STARRS 1 Medium Deep Survey (PS1/MDS). We refine an initial sample of around 4.3 million sources using color cuts in each of the five Pan-STARRS 1 filters. Of these sources, we estimate there to be around 135,000 sources which are candidate M dwarfs with a spectral type of M1 or higher. We discuss the outcomes of various rotation period detection methods and present preliminary results. This work is supported in part by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant no. 1262851 and by the Smithsonian Institution.
Simulating Electron Cyclotron Maser Emission for Low Mass Stars
NASA Astrophysics Data System (ADS)
Llama, Joe; Jardine, Moira
2018-01-01
Zeeman-Doppler Imaging (ZDI) is a powerful technique that enables us to map the large-scale magnetic fields of stars spanning the pre- and main-sequence. Coupling these magnetic maps with field extrapolation methods allow us to investigate the topology of the closed, X-ray bright corona, and the cooler, open stellar wind.Using ZDI maps of young M dwarfs with simultaneous radio light curves obtained from the VLA, we present the results of modeling the Electron-Cyclotron Maser (ECM) emission from these systems. We determine the X-ray luminosity and ECM emission that is produced using the ZDI maps and our field extrapolation model. We compare these findings with the observed radio light curves of these stars. This allows us to predict the relative phasing and amplitude of the stellar X-ray and radio light curves.This benchmarking of our model using these systems allows us to predict the ECM emission for all stars that have a ZDI map and an observed X-ray luminosity. Our model allows us to understand the origin of transient radio emission observations and is crucial for disentangling stellar and exoplanetary radio signals.
Radio Emission from Red-Giant Hot Jupiters
NASA Technical Reports Server (NTRS)
Fujii, Yuka; Spiegel, David S.; Mroczkowski, Tony; Nordhaus, Jason; Zimmerman, Neil T.; Parsons, Aaron R.; Mirbabayi, Mehrdad; Madhusudhan, Nikku
2016-01-01
When planet-hosting stars evolve off the main sequence and go through the red-giant branch, the stars become orders of magnitudes more luminous and, at the same time, lose mass at much higher rates than their main sequence counterparts. Accordingly, if planetary companions exist around these stars at orbital distances of a few au, they will be heated up to the level of canonical hot Jupiters and also be subjected to a dense stellar wind. Given that magnetized planets interacting with stellar winds emit radio waves, such "Red-Giant Hot Jupiters" (RGHJs) may also be candidate radio emitters. We estimate the spectral auroral radio intensity of RGHJs based on the empirical relation with the stellar wind as well as a proposed scaling for planetary magnetic fields. RGHJs might be intrinsically as bright as or brighter than canonical hot Jupiters and about 100 times brighter than equivalent objects around main-sequence stars. We examine the capabilities of low-frequency radio observatories to detect this emission and find that the signal from an RGHJ may be detectable at distances up to a few hundred parsecs with the Square Kilometer Array.
Orbital Elements and Stellar Parameters of the Active Binary UX Arietis
NASA Astrophysics Data System (ADS)
Hummel, C. A.; Monnier, J. D.; Roettenbacher, R. M.; Torres, G.; Henry, G. W.; Korhonen, H.; Beasley, A.; Schaefer, G. H.; Turner, N. H.; Ten Brummelaar, T.; Farrington, C. D.; Sturmann, J.; Sturmann, L.; Baron, F.; Kraus, S.
2017-08-01
Stellar activity observed as large surface spots, radio flares, or emission lines is often found in binary systems. UX Arietis exhibits these signs of activity, originating on the K0 subgiant primary component. Our aim is to resolve the binary, measure the orbital motion, and provide accurate stellar parameters such as masses and luminosities to aid in the interpretation of the observed phenomena. Using the CHARA six-telescope optical long-baseline array on Mount Wilson, California, we obtained amplitudes and phases of the interferometric visibility on baselines up to 330 m in length, resolving the two components of the binary. We reanalyzed archival Center for Astrophysics spectra to disentangle the binary component spectra and the spectrum of the third component, which was resolved by speckle interferometry. We also obtained new spectra with the Nordic Optical Telescope, and we present new photometric data that we use to model stellar surface spot locations. Both interferometric visibilities and spectroscopic radial velocities are modeled with a spotted primary stellar surface using the Wilson-Devinney code. We fit the orbital elements to the apparent orbit and radial velocity data to derive the distance (52.1 ± 0.8 pc) and stellar masses ({M}{{P}}=1.30+/- 0.06 {M}⊙ , {M}{{S}}=1.14+/- 0.06 {M}⊙ ). The radius of the primary can be determined to be {R}{{P}}=5.6+/- 0.1 {R}⊙ and that of the secondary to be {R}{{S}}=1.6+/- 0.2 {R}⊙ . The equivalent spot coverage of the primary component was found to be 62% with an effective temperature 20% below that of the unspotted surface.
NASA Astrophysics Data System (ADS)
Tovmassian, G.; González–Buitrago, D.; Zharikov, S.; Reichart, D. E.; Haislip, J. B.; Ivarsen, K. M.; LaCluyze, A. P.; Moore, J. P.; Miroshnichenko, A. S.
2016-03-01
We studied two objects identified as cataclysmic variables (CVs) with periods exceeding the natural boundary for Roche-lobe-filling zero-age main sequence (ZAMS) secondary stars. We present observational results for V1082 Sgr with a 20.82 hr orbital period, an object that shows a low luminosity state when its flux is totally dominated by a chromospherically active K star with no signs of ongoing accretion. Frequent accretion shutoffs, together with characteristics of emission lines in a high state, indicate that this binary system is probably detached, and the accretion of matter on the magnetic white dwarf takes place through stellar wind from the active donor star via coupled magnetic fields. Its observational characteristics are surprisingly similar to V479 And, a 14.5 hr binary system. They both have early K-type stars as donor stars. We argue that, similar to the shorter-period prepolars containing M dwarfs, these are detached binaries with strong magnetic components. Their magnetic fields are coupled, allowing enhanced stellar wind from the K star to be captured and channeled through the bottleneck connecting the two stars onto the white dwarf’s magnetic pole, mimicking a magnetic CV. Hence, they become interactive binaries before they reach contact. This will help to explain an unexpected lack of systems possessing white dwarfs with strong magnetic fields among detached white+red dwarf systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cohen, O.
The development of the Zeeman–Doppler Imaging (ZDI) technique has provided synoptic observations of surface magnetic fields of low-mass stars. This led the stellar astrophysics community to adopt modeling techniques that have been used in solar physics using solar magnetograms. However, many of these techniques have been neglected by the solar community due to their failure to reproduce solar observations. Nevertheless, some of these techniques are still used to simulate the coronae and winds of solar analogs. Here we present a comparative study between two MHD models for the solar corona and solar wind. The first type of model is amore » polytropic wind model, and the second is the physics-based AWSOM model. We show that while the AWSOM model consistently reproduces many solar observations, the polytropic model fails to reproduce many of them, and in the cases where it does, its solutions are unphysical. Our recommendation is that polytropic models, which are used to estimate mass-loss rates and other parameters of solar analogs, must first be calibrated with solar observations. Alternatively, these models can be calibrated with models that capture more detailed physics of the solar corona (such as the AWSOM model) and that can reproduce solar observations in a consistent manner. Without such a calibration, the results of the polytropic models cannot be validated, but they can be wrongly used by others.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qian, S.-B.; Han, Z.-T.; Zhang, B.
1SWASP J162117.36+441254.2 was originally classified as an EW-type binary with a period of 0.20785 days. However, it was detected to have undergone a stellar outburst on 2016 June 3. Although the system was later classified as a cataclysmic variable (CV) and the event was attributed as a dwarf nova outburst, the physical reason is still unknown. This binary has been monitored photometrically since 2016 April 19, and many light curves were obtained before, during, and after the outburst. Those light and color curves observed before the outburst indicate that the system is a special CV. The white dwarf is notmore » accreting material from the secondary and there are no accretion disks surrounding the white dwarf. By comparing the light curves obtained from 2016 April 19 to those from September 14, it was found that magnetic activity of the secondary is associated with the outburst. We show strong evidence that the L {sub 1} region on the secondary was heavily spotted before and after the outburst and thus quench the mass transfer, while the outburst is produced by a sudden mass accretion of the white dwarf. These results suggest that J162117 is a good astrophysical laboratory to study stellar magnetic activity and its influences on CV mass transfer and mass accretion.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leiner, Emily; Mathieu, Robert D.; Geller, Aaron M., E-mail: leiner@astro.wisc.edu
Sub-subgiant stars (SSGs) lie to the red of the main sequence and fainter than the red giant branch in cluster color–magnitude diagrams (CMDs), a region not easily populated by standard stellar evolution pathways. While there has been speculation on what mechanisms may create these unusual stars, no well-developed theory exists to explain their origins. Here we discuss three hypotheses of SSG formation: (1) mass transfer in a binary system, (2) stripping of a subgiant’s envelope, perhaps during a dynamical encounter, and (3) reduced luminosity due to magnetic fields that lower convective efficiency and produce large starspots. Using the stellar evolutionmore » code MESA, we develop evolutionary tracks for each of these hypotheses, and compare the expected stellar and orbital properties of these models with six known SSGs in the two open clusters M67 and NGC 6791. All three of these mechanisms can create stars or binary systems in the SSG CMD domain. We also calculate the frequency with which each of these mechanisms may create SSG systems, and find that the magnetic field hypothesis is expected to create SSGs with the highest frequency in open clusters. Mass transfer and envelope stripping have lower expected formation frequencies, but may nevertheless create occasional SSGs in open clusters. They may also be important mechanisms to create SSGs in higher mass globular clusters.« less
NASA Astrophysics Data System (ADS)
Qian, S.-B.; Han, Z.-T.; Zhang, B.; Zejda, M.; Michel, R.; Zhu, L.-Y.; Zhao, E.-G.; Liao, W.-P.; Tian, X.-M.; Wang, Z.-H.
2017-10-01
1SWASP J162117.36+441254.2 was originally classified as an EW-type binary with a period of 0.20785 days. However, it was detected to have undergone a stellar outburst on 2016 June 3. Although the system was later classified as a cataclysmic variable (CV) and the event was attributed as a dwarf nova outburst, the physical reason is still unknown. This binary has been monitored photometrically since 2016 April 19, and many light curves were obtained before, during, and after the outburst. Those light and color curves observed before the outburst indicate that the system is a special CV. The white dwarf is not accreting material from the secondary and there are no accretion disks surrounding the white dwarf. By comparing the light curves obtained from 2016 April 19 to those from September 14, it was found that magnetic activity of the secondary is associated with the outburst. We show strong evidence that the L 1 region on the secondary was heavily spotted before and after the outburst and thus quench the mass transfer, while the outburst is produced by a sudden mass accretion of the white dwarf. These results suggest that J162117 is a good astrophysical laboratory to study stellar magnetic activity and its influences on CV mass transfer and mass accretion.
Statistical Studies of Solar White-light Flares and Comparisons with Superflares on Solar-type Stars
NASA Astrophysics Data System (ADS)
Namekata, Kosuke; Sakaue, Takahito; Watanabe, Kyoko; Asai, Ayumi; Maehara, Hiroyuki; Notsu, Yuta; Notsu, Shota; Honda, Satoshi; Ishii, Takako T.; Ikuta, Kai; Nogami, Daisaku; Shibata, Kazunari
2017-12-01
Recently, many superflares on solar-type stars have been discovered as white-light flares (WLFs). The statistical study found a correlation between their energies (E) and durations (τ): τ \\propto {E}0.39, similar to those of solar hard/soft X-ray flares, τ \\propto {E}0.2{--0.33}. This indicates a universal mechanism of energy release on solar and stellar flares, i.e., magnetic reconnection. We here carried out statistical research on 50 solar WLFs observed with Solar Dynamics Observatory/HMI and examined the correlation between the energies and durations. As a result, the E–τ relation on solar WLFs (τ \\propto {E}0.38) is quite similar to that on stellar superflares (τ \\propto {E}0.39). However, the durations of stellar superflares are one order of magnitude shorter than those expected from solar WLFs. We present the following two interpretations for the discrepancy: (1) in solar flares, the cooling timescale of WLFs may be longer than the reconnection one, and the decay time of solar WLFs can be elongated by the cooling effect; (2) the distribution can be understood by applying a scaling law (τ \\propto {E}1/3{B}-5/3) derived from the magnetic reconnection theory. In the latter case, the observed superflares are expected to have 2–4 times stronger magnetic field strength than solar flares.
NASA Astrophysics Data System (ADS)
Lian, Jianhui; Thomas, Daniel; Maraston, Claudia; Goddard, Daniel; Parikh, Taniya; Fernández-Trincado, J. G.; Roman-Lopes, Alexandre; Rong, Yu; Tang, Baitian; Yan, Renbin
2018-05-01
In our previous work, we found that only two scenarios are capable of reproducing the observed integrated mass-metallicity relations for the gas and stellar components of local star-forming galaxies simultaneously. One scenario invokes a time-dependent metal outflow loading factor with stronger outflows at early times. The other scenario uses a time-dependent initial mass function (IMF) slope with a steeper IMF at early times. In this work, we extend our study to investigate the radial profile of gas and stellar metallicity in local star-forming galaxies using spatially resolved spectroscopic data from the SDSS-IV MaNGA survey. We find that most galaxies show negative gradients in both gas and stellar metallicity with steeper gradients in stellar metallicity. The stellar metallicity gradients tend to be mass dependent with steeper gradients in more massive galaxies while no clear mass dependence is found for the gas metallicity gradient. Then we compare the observations with the predictions from a chemical evolution model of the radial profiles of gas and stellar metallicities. We confirm that the two scenarios proposed in our previous work are also required to explain the metallicity gradients. Based on these two scenarios, we successfully reproduce the radial profiles of gas metallicity, stellar metallicity, stellar mass surface density, and star formation rate surface density simultaneously. The origin of the negative gradient in stellar metallicity turns out to be driven by either radially dependent metal outflow or IMF slope. In contrast, the radial dependence of the gas metallicity is less constrained because of the degeneracy in model parameters.
Energy conversion in the coronal plasma
NASA Technical Reports Server (NTRS)
Martens, P. C. H.
1986-01-01
Solar and stellar X-ray emission are the observed waste products of the interplay between magnetic fields and the motion of stellar plasma. Theoretical understanding of the process of coronal heating is of utmost importance, since the high temperature is what defines the corona in the first place. Most of the research described deals with the aspects of the several rivalling theories for coronal heating. The rest of the papers deal with processes of energy conversion related to flares.
NASA Technical Reports Server (NTRS)
Hathaway, David H.
2009-01-01
Starspots and stellar activity can be detected in other stars using high precision photometric and spectrometric measurements. These observations have provided some surprises (starspots at the poles - sunspots are rarely seen poleward of 40 degrees) but more importantly they reveal behaviors that constrain our models of solar-stellar magnetic dynamos. The observations reveal variations in cycle characteristics that depend upon the stellar structure, convection zone dynamics, and rotation rate. In general, the more rapidly rotating stars are more active. However, for stars like the Sun, some are found to be inactive while nearly identical stars are found to be very active indicating that periods like the Sun's Maunder Minimum (an inactive period from 1645 to 1715) are characteristic of Sun-like stars.
The Einstein/CFA stellar survey - Overview of the data and interpretation of results
NASA Technical Reports Server (NTRS)
Vaiana, G. S.
1981-01-01
Results are presented from an extensive survey of stellar X-ray emission, using the Einstein Observatory. Over 140 stars have been detected to date, throughout the H-R diagram, thus showing that soft X-ray emission is the norm rather than the exception for stars in general. This finding is strongly at odds with pre-Einstein expectations based on standard acoustic theories of coronal heating. Typical examples of stellar X-ray detections and an overview of the survey data are presented. In combination with recent results from solar X-ray observations, the new Einstein data argue for the general applicability of magnetic field-related coronal heating mechanisms.
Dust cloud evolution in sub-stellar atmospheres via plasma deposition and plasma sputtering
NASA Astrophysics Data System (ADS)
Stark, C. R.; Diver, D. A.
2018-04-01
Context. In contemporary sub-stellar model atmospheres, dust growth occurs through neutral gas-phase surface chemistry. Recently, there has been a growing body of theoretical and observational evidence suggesting that ionisation processes can also occur. As a result, atmospheres are populated by regions composed of plasma, gas and dust, and the consequent influence of plasma processes on dust evolution is enhanced. Aim. This paper aims to introduce a new model of dust growth and destruction in sub-stellar atmospheres via plasma deposition and plasma sputtering. Methods: Using example sub-stellar atmospheres from DRIFT-PHOENIX, we have compared plasma deposition and sputtering timescales to those from neutral gas-phase surface chemistry to ascertain their regimes of influence. We calculated the plasma sputtering yield and discuss the circumstances where plasma sputtering dominates over deposition. Results: Within the highest dust density cloud regions, plasma deposition and sputtering dominates over neutral gas-phase surface chemistry if the degree of ionisation is ≳10-4. Loosely bound grains with surface binding energies of the order of 0.1-1 eV are susceptible to destruction through plasma sputtering for feasible degrees of ionisation and electron temperatures; whereas, strong crystalline grains with binding energies of the order 10 eV are resistant to sputtering. Conclusions: The mathematical framework outlined sets the foundation for the inclusion of plasma deposition and plasma sputtering in global dust cloud formation models of sub-stellar atmospheres.
On bipolar ejection. [of matter in astronomical systems
NASA Technical Reports Server (NTRS)
Cameron, A. G. W.
1985-01-01
Observations of bipolar outflows, including jets often with clumpy concentrations of matter, have been made for a wide variety of astronomical systems. In most but not all of the systems, an accretion disk is present. It is proposed that the general process responsible for bipolar ejection involves the conversion of rotational energy into magnetic energy, usually in the form of a polar magnetic torus, deep in the interiors of the systems involved. If the buoyancy of the torus resullts in draining the field lines of most of the matter which they thread, then the acceleration of the remaining matter in the toroidal bubble may produce velocities in excess of the escape velocity from the surface of the system. It is contemplated that this process will be repeated many times in most systems. A discussion is given of the application of these ideas to protostars, to stars evolved beyond the main sequence, to neutron stars, and to black holes on both stellar and galactic scales.
S201 catalog of far-ultraviolet objects
NASA Technical Reports Server (NTRS)
Page, T.; Carruthers, G. K.; Hill, R. E.
1978-01-01
A catalog of star images was compiled from images obtained by an NRL Far-Ultraviolet Camera/Spectrograph operated from 21 to 23 April 1972 on the lunar surface during the Apollo-16 mission. These images were scanned on a microdensitometer, and the output recorded on magnetic tapes. The catalog is divided into 11 parts, covering ten fields in the sky (the Sagittarius field being covered by two parts), and each part is headed by a constellation name and the field center coordinates. The errors in position of the detected images are less than about 3 arc-min. Correlations are given with star numbers in the Smithsonian Astrophysical Observatory catalog. Values are given of the peak density and the density volume. The text includes a discussion of the photometry, corrections thereto due to threshold and saturation effects, and its comparison with theoretical expectation, stellar model atmospheres, and a generalized far-ultraviolet interstellar extinction law. The S201 catalog is also available on a single reel of seven-track magnetic tape.
The spectra of the chemically peculiar stars
NASA Astrophysics Data System (ADS)
Hack, M.
The spectral properties of the chemically peculiar (CP) stars and the information which is obtainable from them are reviewed. The identification and classification of CP stars in the basis of their spectra is discussed with particular emphasis on the He-rich stars and CNO stars, and recent classification systems based on narrow-band photometry, low-resolution spectrometry or UV spectra are considered. Attention is given to continuum flux distributions, particularly the infrared excesses and UV deficiencies, and the stellar properties (effective temperature and gravity, line blocking, discontinuities, mass and radius) that may be derived from them, and to the magnetic field measurements and evidence for spotted element distributions that may be inferred from spectral surface composition analyses made using LTE model atmospheres are considered which involve both large sample of stars and individual stars, and statistical studies of rotation, magnetic braking and membership in binary systems and clusters are indicated. Finally, UV and X-ray evidence for chromospheres and coronas in some CP stars is noted.
Star-disk interaction in Herbig Ae/Be stars
NASA Astrophysics Data System (ADS)
Speights, Christa Marie
2012-09-01
The question of the mechanism of certain types of stars is important. Classical T Tauri (CTTS) stars accrete magnetospherically, and Herbig Ae/Be stars (higher-mass analogs to CTTS) are thought to also accrete magnetospherically, but the source of a kG magnetic field is unknown, since these stars have radiative interiors. For magnetospheric accretion, an equation has been derived (Hartmann, 2001) which relates the truncation radius, stellar radius, stellar mass, mass accretion rate and magnetic field strength. Currently the magnetic field of Herbig stars is known to be somewhere between 0.1 kG and 10 kG. One goal of this research is to further constrain the magnetic field. In order to do that, I use the magnetospheric accretion equation. For CTTS, all of the variables used in the equation can be measured, so I gather this data from the literature and test the equation and find that it is consistent. Then I apply the equation to Herbig Ae stars and find that the error introduced from using random inclinations is too large to lower the current upper limit of the magnetic field range. If Herbig Ae stars are higher-mass analogs to CTTS, then they should have a similar magnetic field distribution. I compare the calculated Herbig Ae magnetic field distribution to several typical magnetic field distributions using the Kolmogorov-Smirnov test, and find that the data distribution does not match any of the distributions used. This means that Herbig Ae stars do not have well ordered kG fields like CTTS.