Science.gov

Sample records for stellarator fusion neutronics

  1. Fusion neutron generation computations in a stellarator-mirror hybrid with neutral beam injection

    SciTech Connect

    Moiseenko, V. E.; Agren, O.

    2012-06-19

    In the paper [Moiseenko V.E., Noack K., Agren O. 'Stellarator-mirror based fusion driven fission reactor' J Fusion Energy 29 (2010) 65.], a version of a fusion driven system (FDS), i.e. a sub-critical fast fission assembly with a fusion plasma neutron source, is proposed. The plasma part of the reactor is based on a stellarator with a small mirror part. Hot ions with high perpendicular energy are assumed to be trapped in the magnetic mirror part. The stellarator part which connects to the mirror part and provides confinement for the bulk (deuterium) plasma. In the magnetic well of the mirror part, fusion reactions occur from collisions between a of hot ion component (tritium) with cold background plasma ions. RF heating is one option to heat the tritium. A more conventional method to sustain the hot ions is neutral beam injection (NBI), which is here studied numerically for the above-mentioned hybrid scheme. For these studies, a new kinetic code, KNBIM, has been developed. The code takes into account Coulomb collisions between the hot ions and the background plasma. The geometry of the confining magnetic field is arbitrary for the code. It is accounted for via a numerical bounce averaging procedure. Along with the kinetic calculations the neutron generation intensity and its spatial distribution are computed.

  2. Intense fusion neutron sources

    NASA Astrophysics Data System (ADS)

    Kuteev, B. V.; Goncharov, P. R.; Sergeev, V. Yu.; Khripunov, V. I.

    2010-04-01

    The review describes physical principles underlying efficient production of free neutrons, up-to-date possibilities and prospects of creating fission and fusion neutron sources with intensities of 1015-1021 neutrons/s, and schemes of production and application of neutrons in fusion-fission hybrid systems. The physical processes and parameters of high-temperature plasmas are considered at which optimal conditions for producing the largest number of fusion neutrons in systems with magnetic and inertial plasma confinement are achieved. The proposed plasma methods for neutron production are compared with other methods based on fusion reactions in nonplasma media, fission reactions, spallation, and muon catalysis. At present, intense neutron fluxes are mainly used in nanotechnology, biotechnology, material science, and military and fundamental research. In the near future (10-20 years), it will be possible to apply high-power neutron sources in fusion-fission hybrid systems for producing hydrogen, electric power, and technological heat, as well as for manufacturing synthetic nuclear fuel and closing the nuclear fuel cycle. Neutron sources with intensities approaching 1020 neutrons/s may radically change the structure of power industry and considerably influence the fundamental and applied science and innovation technologies. Along with utilizing the energy produced in fusion reactions, the achievement of such high neutron intensities may stimulate wide application of subcritical fast nuclear reactors controlled by neutron sources. Superpower neutron sources will allow one to solve many problems of neutron diagnostics, monitor nano-and biological objects, and carry out radiation testing and modification of volumetric properties of materials at the industrial level. Such sources will considerably (up to 100 times) improve the accuracy of neutron physics experiments and will provide a better understanding of the structure of matter, including that of the neutron itself.

  3. Generic Stellarator-like Magnetic Fusion Reactor

    NASA Astrophysics Data System (ADS)

    Sheffield, John; Spong, Donald

    2015-11-01

    The Generic Magnetic Fusion Reactor paper, published in 1985, has been updated, reflecting the improved science and technology base in the magnetic fusion program. Key changes beyond inflation are driven by important benchmark numbers for technologies and costs from ITER construction, and the use of a more conservative neutron wall flux and fluence in modern fusion reactor designs. In this paper the generic approach is applied to a catalyzed D-D stellarator-like reactor. It is shown that an interesting power plant might be possible if the following parameters could be achieved for a reference reactor: R/ < a > ~ 4 , confinement factor, fren = 0.9-1.15, < β > ~ 8 . 0 -11.5 %, Zeff ~ 1.45 plus a relativistic temperature correction, fraction of fast ions lost ~ 0.07, Bm ~ 14-16 T, and R ~ 18-24 m. J. Sheffield was supported under ORNL subcontract 4000088999 with the University of Tennessee.

  4. Neutron diagnostics at the Wendelstein 7-X stellarator

    NASA Astrophysics Data System (ADS)

    Schneider, W.; Wiegel, B.; Grünauer, F.; Burhenn, R.; Koch, S.; Schuhmacher, H.; Zimbal, A.

    2012-03-01

    The stellarator W7-X, presently under construction at the Institute for Plasma Physics in Greifswald, will be equipped with a set of neutron monitors in order to study the time behaviour of neutron emission generated during D-D plasma operation and neutral beam heating with Deuterium. Each of these neutron monitors consists of several neutron detector tubes inserted in a dedicated moderator. The neutron monitors at W7-X are designed to monitor neutron yields with a time resolution of 5 ms and with a statistical uncertainty of better than 15%. One of the monitors is located in the centre above the stellarator. The other five monitors are distributed around the torus. A prerequisite for the determination of the absolute neutron source strength produced by D(d,n)3He fusion reactions in the plasma is an in-situ calibration with a neutron source of known source strength. During such a calibration procedure, the neutron source will be moved along the torus axis and the count rates of the different neutron monitors will be measured. In a first benchmark experiment, an 241AmBe neutron source was moved along the torus axis within one module of the stellarator and the neutron signals were measured by a De Pangher Long Counter outside of the cryostat chamber as a function of the neutron source position. These measurements have been compared with predictions of Monte Carlo calculations (MCNP) of the neutron propagation from the location of the neutron source to the long counter. The concept of neutron monitors will be reported together with results from the benchmark experiment and results from MCNP calculations. The neutron monitor system is the first part of several neutron diagnostic systems such as neutron activation system, neutron profile camera planned for future neutron analysis. A short survey of these neutron diagnostic tools of W7-X will be given.

  5. Modular Stellarator Fusion Reactor concept

    SciTech Connect

    Miller, R.L.; Krakowski, R.A.

    1981-08-01

    A preliminary conceptual study is made of the Modular Stellarator Reactor (MSR). A steady-state ignited, DT-fueled, magnetic fusion reactor is proposed for use as a central electric-power station. The MSR concept combines the physics of the classic stellarator confinement topology with an innovative, modular-coil design. Parametric tradeoff calculations are described, leading to the selection of an interim design point for a 4-GWt plant based on Alcator transport scaling and an average beta value of 0.04 in an l = 2 system with a plasma aspect ratio of 11. The physics basis of the design point is described together with supporting magnetics, coil-force, and stress computations. The approach and results presented herein will be modified in the course of ongoing work to form a firmer basis for a detailed conceptual design of the MSR.

  6. Research on stellarator-mirror fission-fusion hybrid

    NASA Astrophysics Data System (ADS)

    Moiseenko, V. E.; Kotenko, V. G.; Chernitskiy, S. V.; Nemov, V. V.; Ågren, O.; Noack, K.; Kalyuzhnyi, V. N.; Hagnestål, A.; Källne, J.; Voitsenya, V. S.; Garkusha, I. E.

    2014-09-01

    The development of a stellarator-mirror fission-fusion hybrid concept is reviewed. The hybrid comprises of a fusion neutron source and a powerful sub-critical fast fission reactor core. The aim is the transmutation of spent nuclear fuel and safe fission energy production. In its fusion part, neutrons are generated in deuterium-tritium (D-T) plasma, confined magnetically in a stellarator-type system with an embedded magnetic mirror. Based on kinetic calculations, the energy balance for such a system is analyzed. Neutron calculations have been performed with the MCNPX code, and the principal design of the reactor part is developed. Neutron outflux at different outer parts of the reactor is calculated. Numerical simulations have been performed on the structure of a magnetic field in a model of the stellarator-mirror device, and that is achieved by switching off one or two coils of toroidal field in the Uragan-2M torsatron. The calculations predict the existence of closed magnetic surfaces under certain conditions. The confinement of fast particles in such a magnetic trap is analyzed.

  7. Prospects for fusion neutron NPLs

    SciTech Connect

    Petra, M.; Miley, G.H.; Batyrbekov, E.; Jassby, D.L.; McArthur, D.

    1996-05-01

    To date, nuclear pumped lasers (NPLs) have been driven by neutrons from pulsed research fission reactors. However, future applications using either a Magnetic Confinement Fusion (MCF) neutron source or an Inertial Confinement Fusion (ICF) source appear attractive. One unique combination proposed earlier would use a neutron feedback NPL driver in an ICF power plant. 14-MeV D-T neutrons (and 2.5-MeV D-D neutrons) provide a unique opportunity for a neutron recoil pumped NPL. Alternatively, these neutrons can be thermalized to provide thermal-neutron induced reactions for pumping. Initial experience with a fusion-pumped NPL can possibly be obtained using the D-T burn experiments in progress/planning at the Tokamak Fusion Test Reactor (TFTR) and Joint European Torus (JET) tokamak devices or at the planned National Ignition Facility (NIF) high-gain ICF target experimental facility. With neutron fluxes presently available, peak thermalized fluxes at a test laser in the shield region could exceed 10{sup 14} n/cm{sup 2}/sec. Several low-threshold NPLs might be utilized in such an experiment, including the He-Ne-H{sub 2} NPL and the Ar-Xe NPL. Experimental set-ups for both the tokamak and the NIF will be described. {copyright} {ital 1996 American Institute of Physics.}

  8. Stellarator approach to fusion plasma confinement

    SciTech Connect

    Harris, J.H.

    1985-01-01

    The stellarator is a toroidal fusion plasma confinement device with nested magnetic flux surfaces. The required twist of the field lines is produced by external helical coils rather than by plasma current, as in a tokamak. Stellarator devices are attractive fusion reactor candidates precisely because they offer the prospect of steady-state operation without plasma current. In the last few years the excellent results achieved with currentless stellarator plasmas of modest minor radius (10 to 20 cm) at Kyoto University (Japan) and the Max Planck Institute (West Germany) have made the stellarator second only to the tokamak in its progress toward fusion breakeven, with temperatures T/sub e/, T/sub i/ approx. 1 KeV, Lawson products n tau approx. 2 to 5 x 10/sup 12/ cm/sup -3/.s, and volume-averaged beta values approx. = 2%. The Advanced Toroidal Facility (ATF), now under construction at Oak Ridge Natioal Laboratory (ORNL) and scheduled to operate in 1986, represents a significant advance in stellarator research, with a plasma major radius of 2.1 m, an average minor radius of 0.3 m, and a magnetic field of 2 T for 5 s or 1 T at steady state. ATF replaces the Impurity Study Experiment (ISX-B) tokamak at ORNL and will use the ISX-B heating and diagnostic system.

  9. Interpreting inertial fusion neutron spectra

    NASA Astrophysics Data System (ADS)

    Munro, David H.

    2016-03-01

    A burning laser fusion plasma produces a neutron spectrum first described by Brysk (1973 Plasma Phys. Control. Fusion 15 611). This and more recent work deals with the spectrum produced by a single fluid element. The distribution of temperatures and velocities in multiple fluid elements combine in any real spectrum; we derive formulas for how the neutron spectrum averages these contributions. The single element momentum spectrum is accurately Gaussian, but the multi-element spectrum exhibits higher moments. In particular, the skew and kurtosis are likely to be large enough to measure. Even the single fluid element spectrum may exhibit measurable directional anisotropy, so that instruments with different lines of sight should see different yields, mean velocities, mean temperatures, and higher moments. Finally, we briefly discuss how scattering in the imploded core modifies the neutron spectrum by changing the relative weighting of fuel regions with different temperatures and velocities.

  10. Neutron measurements in search of cold fusion

    SciTech Connect

    Anderson, R.E.; Goulding, C.A.; Johnson, M.W.; Butterfield, K.B.; Gottesfeld, S.; Baker, D.A.; Springer, T.E.; Garzon, F.H.; Bolton, R.D.; Leonard, E.M.; Chancellor, T. )

    1991-05-10

    We have conducted a search for neutron emission from cold fusion systems of the electrochemical type and, to a lesser extent, the high-pressure gas cell type. Using a high-efficiency well counter and an NE 213 scintillator, the experiments were conducted on the earth's surface and in a shielded cave approximately 50 ft underground. After approximately 6500 h of counting time, we have obtained no evidence for cold fusion processes leading to neutron production. However, we have observed all three types of neutron data that have been presented as evidence for cold fusion: large positive fluctuations in the neutron counting rate, weak peaks near 2.5 MeV in the neutron energy spectrum, and bursts of up to 140 neutrons in 500-{mu}s intervals. The data were obtained under circumstances that clearly show our results to be data encountered as a part of the naturally occurring neutron background, which is due primarily to cosmic rays. Thus, observing these types of data does not, of itself, provide evidence for the existence of cold fusion processes. Artifacts in the data that were due to counter misbehavior were also observed to lead to long-term neutron bursts'' whose time duration varied from several hours to several days. We conclude that any experiments which attempt to observed neutron emission must include strong steps to ensure that the experiments deal adequately with both cosmic-ray processes and counter misbehavior.

  11. Neutron measurements in search of cold fusion

    SciTech Connect

    Anderson, R.E.; Goulding, C.A.; Johnson, M.W.; Butterfield, K.B.; Gottesfeld, S.; Baker, D.A.; Springer, T.E.; Garzon, F.H.; Bolton, R.D.; Leonard, E.M.; Chancellor, T.

    1990-01-01

    We have conducted a research for neutron emission from cold fusion systems of the electrochemical type and, to a lesser extent, the high-pressure gas cell type. Using a high-efficiency well counter and an NE 213 scintillator, the experiments were conducted on the earth's surface and in a shielded cave approximately 50 ft underground. After approximately 6500 h of counting time, we have obtained no evidence for cold fusion processes leading to neutron production. However, we have observed all three types of neutron data that have been presented as evidence for cold fusion: large positive fluctuations in the neutron counting rate, weak peaks near 2.5 MeV in the neutron energy spectrum, and bursts of up to 145 neutrons in 500-{mu}s intervals. The data were obtained under circumstances that clearly show our results to be data encountered as a part of naturally occurring neutron background, which is due primarily to cosmic rays. Thus, observing these types of data does not, of itself, provide evidence for the existence of cold fusion processes. Artifacts in the data that were due to counter misbehavior were also to lead to long-term neutron bursts'' whose time duration varied from several hours to several days. We conclude that any experiments which attempt to observe neutron emission must include strong steps to ensure that the experiments deal adequately with both cosmic-ray processes and counter misbehavior. 13 refs., 14 figs.

  12. Neutronic analysis of a fusion hybrid reactor

    SciTech Connect

    Kammash, T.

    2012-07-01

    In a PHYSOR 2010 paper(1) we introduced a fusion hybrid reactor whose fusion component is the gasdynamic mirror (GDM), and whose blanket was made of thorium - 232. The thrust of that study was to demonstrate the performance of such a reactor by establishing the breeding of uranium - 233 in the blanket, and the burning thereof to produce power. In that analysis, we utilized the diffusion equation for one-energy neutron group, namely, those produced by the fusion reactions, to establish the power distribution and density in the system. Those results should be viewed as a first approximation since the high energy neutrons are not effective in inducing fission, but contribute primarily to the production of actinides. In the presence of a coolant, however, such as water, these neutrons tend to thermalize rather quickly, hence a better assessment of the reactor performance would require at least a two group analysis, namely the fast and thermal groups. We follow that approach and write an approximate set of equations for the fluxes of these groups. From these relations we deduce the all-important quantity, k{sub eff}, which we utilize to compute the multiplication factor, and subsequently, the power density in the reactor. We show that k{sub eff} can be made to have a value of 0.99, thus indicating that 100 thermal neutrons are generated per fusion neutron, while allowing the system to function as 'subcritical.' Moreover, we show that such a hybrid reactor can generate hundreds of megawatts of thermal power per cm of length depending on the flux of the fusion neutrons impinging on the blanket. (authors)

  13. Variable control of neutron albedo in toroidal fusion devices

    DOEpatents

    Jassby, Daniel L.; Micklich, Bradley J.

    1986-01-01

    An arrangement is provided for controlling neutron albedo in toroidal fusion devices having inboard and outboard vacuum vessel walls for containment of the neutrons of a fusion plasma. Neutron albedo material is disposed immediately adjacent the inboard wall, and is movable, preferably in vertical directions, so as to be brought into and out of neutron modifying communication with the fusion neutrons. Neutron albedo material preferably comprises a liquid form, but may also take pebble, stringer and curtain-like forms. A neutron flux valve, rotatable about a vertical axis is also disclosed.

  14. Modular stellarator reactor: a fusion power plant

    SciTech Connect

    Miller, R.L.; Bathke, C.G.; Krakowski, R.A.; Heck, F.M.; Green, L.; Karbowski, J.S.; Murphy, J.H.; Tupper, R.B.; DeLuca, R.A.; Moazed, A.

    1983-07-01

    A comparative analysis of the modular stellarator and the torsatron concepts is made based upon a steady-state ignited, DT-fueled, reactor embodiment of each concept for use as a central electric-power station. Parametric tradeoff calculations lead to the selection of four design points for an approx. 4-GWt plant based upon Alcator transport scaling in l = 2 systems of moderate aspect ratio. The four design points represent high-aspect ratio. The four design points represent high-(0.08) and low-(0.04) beta versions of the modular stellarator and torsatron concepts. The physics basis of each design point is described together with supporting engineering and economic analyses. The primary intent of this study is the elucidation of key physics and engineering tradeoffs, constraints, and uncertainties with respect to the ultimate power reactor embodiment.

  15. Cherenkov neutron detector for fusion reaction and runaway electron diagnostics.

    PubMed

    Cheon, MunSeong; Kim, Junghee

    2015-08-01

    A Cherenkov-type neutron detector was newly developed and neutron measurement experiments were performed at Korea Superconducting Tokamak Advanced Research. It was shown that the Cherenkov neutron detector can monitor the time-resolved neutron flux from deuterium-fueled fusion plasmas. Owing to the high temporal resolution of the detector, fast behaviors of runaway electrons, such as the neutron spikes, could be observed clearly. It is expected that the Cherenkov neutron detector could be utilized to provide useful information on runaway electrons as well as fusion reaction rate in fusion plasmas.

  16. Cherenkov neutron detector for fusion reaction and runaway electron diagnostics

    NASA Astrophysics Data System (ADS)

    Cheon, MunSeong; Kim, Junghee

    2015-08-01

    A Cherenkov-type neutron detector was newly developed and neutron measurement experiments were performed at Korea Superconducting Tokamak Advanced Research. It was shown that the Cherenkov neutron detector can monitor the time-resolved neutron flux from deuterium-fueled fusion plasmas. Owing to the high temporal resolution of the detector, fast behaviors of runaway electrons, such as the neutron spikes, could be observed clearly. It is expected that the Cherenkov neutron detector could be utilized to provide useful information on runaway electrons as well as fusion reaction rate in fusion plasmas.

  17. Cherenkov neutron detector for fusion reaction and runaway electron diagnostics

    SciTech Connect

    Cheon, MunSeong Kim, Junghee

    2015-08-15

    A Cherenkov-type neutron detector was newly developed and neutron measurement experiments were performed at Korea Superconducting Tokamak Advanced Research. It was shown that the Cherenkov neutron detector can monitor the time-resolved neutron flux from deuterium-fueled fusion plasmas. Owing to the high temporal resolution of the detector, fast behaviors of runaway electrons, such as the neutron spikes, could be observed clearly. It is expected that the Cherenkov neutron detector could be utilized to provide useful information on runaway electrons as well as fusion reaction rate in fusion plasmas.

  18. Neutron diffraction studies of viral fusion peptides

    NASA Astrophysics Data System (ADS)

    Bradshaw, Jeremy P.; J. M. Darkes, Malcolm; Katsaras, John; Epand, Richard M.

    2000-03-01

    Membrane fusion plays a vital role in a large and diverse number of essential biological processes. Despite this fact, the precise molecular events that occur during fusion are still not known. We are currently engaged on a study of membrane fusion as mediated by viral fusion peptides. These peptides are the N-terminal regions of certain viral envelope proteins that mediate the process of fusion between the viral envelope and the membranes of the host cell during the infection process. As part of this study, we have carried out neutron diffraction measurements at the ILL, BeNSC and Chalk River, on a range of viral fusion peptides. The peptides, from simian immunodeficiency virus (SIV), influenza A and feline leukaemia virus (FeLV), were incorporated into stacked phospholipid bilayers. Some of the peptides had been specifically deuterated at key amino acids. Lamellar diffraction data were collected and analysed to yield information on the peptide conformation, location and orientation relative to the bilayer.

  19. Effect of superbanana diffusion on fusion reactivity in stellarators

    SciTech Connect

    Hinton, Fred L.

    2012-08-15

    Fusion reactivity is usually obtained using a Maxwellian distribution. However, energy-dependent radial diffusion can modify the energy distribution. Superbanana diffusion is energy-dependent and occurs in nonaxisymmetric magnetic confinement devices, such as stellarators, because of ripple-trapped particles which can take large steps between collisions. In this paper, the D-T fusion reactivity is calculated using a non-Maxwellian energy distribution obtained by solving the Fokker-Planck equation numerically, including radial superbanana diffusion as well as energy scattering. The ions in the tail of the distribution, with energies larger than thermal, which are most needed for fusion, are depleted by superbanana diffusion. In this paper, it is shown that the D-T fusion reactivity is reduced by tail ion depletion due to superbanana diffusion, by roughly a factor of 0.5 for the parameters used in the calculation.

  20. Fast ion motion in the plasma part of a stellarator-mirror fission-fusion hybrid

    NASA Astrophysics Data System (ADS)

    Moiseenko, V. E.; Nemov, V. V.; Ågren, O.; Kasilov, S. V.; Garkusha, I. E.

    2016-06-01

    Recent developments of a stellarator-mirror (SM) fission-fusion hybrid concept are reviewed. The hybrid consists of a fusion neutron source and a powerful sub-critical fast fission reactor core. The aim is transmutation of spent nuclear fuel and safe fission energy production. In its fusion part, a stellarator-type system with an embedded magnetic mirror is used. The stellarator confines deuterium plasma with moderate temperature, 1-2 keV. In the magnetic mirror, a hot component of sloshing tritium ions is trapped. There, the fusion neutrons are generated. A candidate for a combined SM system is a DRACON magnetic trap. A basic idea behind an SM device is to maintain local neutron production in a mirror part, but at the same time eliminate the end losses by using a toroidal device. A possible drawback is that the stellarator part can introduce collision-free radial drift losses, which is the main topic for this study. For high energy ions of tritium with an energy of 70 keV, comparative computations of collisionless losses in the rectilinear part of a specific design of the DRACON type trap are carried out. Two versions of the trap are considered with different lengths of the rectilinear sections. Also the total number of current-carrying rings in the magnetic system is varied. The results predict that high energy ions from neutral beam injection can be satisfactorily confined in the mirror part during 0.1-1 s. The Uragan-2M experimental device is used to check key points of the SM concept. The magnetic configuration of a stellarator with an embedded magnetic mirror is arranged in this device by switching off one toroidal coil. The motion of particles magnetically trapped in the embedded mirror is analyzed numerically with use of motional invariants. It is found that without radial electric field particles quickly drift out of the SM, even if the particles initially are located on a nested magnetic surface. We will show that a weak radial electric field, which

  1. A review of recent fusion neutronics experiments

    SciTech Connect

    Maekawa, Hiroshi; Oyama, Yukio; Ikeda, Yujiro

    1994-12-31

    This paper reviews experimental activities in fusion neutronics experiments since the last International Conference on Nuclear Data. Many experiments have been carried out in Japan at FNS/JAERI, OKTAVIAN /Osaka University and KURRI/Kyoto University. Experiments on Be were performed at INEL/USA, KfK/FRG, SINPC/PRC, OKTAVIAN/Japan and several institutes in CIS, Czech Republic and Ukraine. A new series of shielding experiments have been started at FNS, ENEA/Frascati, TUD and Russian institutes for ITER/EDA R&D program.

  2. Fuel cycle for a fusion neutron source

    NASA Astrophysics Data System (ADS)

    Ananyev, S. S.; Spitsyn, A. V.; Kuteev, B. V.

    2015-12-01

    The concept of a tokamak-based stationary fusion neutron source (FNS) for scientific research (neutron diffraction, etc.), tests of structural materials for future fusion reactors, nuclear waste transmutation, fission reactor fuel production, and control of subcritical nuclear systems (fusion-fission hybrid reactor) is being developed in Russia. The fuel cycle system is one of the most important systems of FNS that provides circulation and reprocessing of the deuterium-tritium fuel mixture in all fusion reactor systems: the vacuum chamber, neutral injection system, cryogenic pumps, tritium purification system, separation system, storage system, and tritium-breeding blanket. The existing technologies need to be significantly upgraded since the engineering solutions adopted in the ITER project can be only partially used in the FNS (considering the capacity factor higher than 0.3, tritium flow up to 200 m3Pa/s, and temperature of reactor elements up to 650°C). The deuterium-tritium fuel cycle of the stationary FNS is considered. The TC-FNS computer code developed for estimating the tritium distribution in the systems of FNS is described. The code calculates tritium flows and inventory in tokamak systems (vacuum chamber, cryogenic pumps, neutral injection system, fuel mixture purification system, isotope separation system, tritium storage system) and takes into account tritium loss in the fuel cycle due to thermonuclear burnup and β decay. For the two facility versions considered, FNS-ST and DEMO-FNS, the amount of fuel mixture needed for uninterrupted operation of all fuel cycle systems is 0.9 and 1.4 kg, consequently, and the tritium consumption is 0.3 and 1.8 kg per year, including 35 and 55 g/yr, respectively, due to tritium decay.

  3. Neutron suppression in polarized dd fusion reaction

    NASA Astrophysics Data System (ADS)

    Zhang, J. S.; Liu, K. F.; Shuy, G. W.

    1999-11-01

    We report a model-independent partial-wave analysis of polarized dd fusion reactions at low energies. The radial transition amplitudes, designated by the central, spin-orbit, and tensor forces, are determined by fitting angular distributions of the tensor and vector analyzing powers AXZ(θ), AZZ(θ), AXX-YY(θ), and AY(θ), and the unpolarized cross section σ0(θ). The polarized fusion cross section σ1,1(θ) is then predicted from these radial transition amplitudes. We stress that this is feasible only when these amplitudes are separated according to the tensor rank of the interaction. This study includes the D-state components of the deuteron, triton, and 3He, and the partial-wave expansion is done up to the d wave for both the entrance and exit channels. Experimental data at Elab=30, 50, 70, and 90 keV for the d(d,p)t reaction are very well fitted with this method. It is found that the ratio of polarized to unpolarized cross sections is about 86% at 30 keV and goes down to 22% at 90 keV. The implication of the suppression of a polarized dd fusion reaction is discussed in the context of the neutron-lean fusion reactor with polarized D-3He fuel. It turns out that the important range of energy for suppressing the d(d,p)t and d(d,n)3He reactions at the plasma temperature T=60 keV is Ed=80-600 keV. More experimental data are needed in this range to make a detailed study of the neutron suppression.

  4. Variable control of neutron albedo in toroidal fusion devices

    DOEpatents

    Jassby, D.L.; Micklich, B.J.

    1983-06-01

    This invention pertains to methods of controlling in the steady state, neutron albedo in toroidal fusion devices, and in particular, to methods of controlling the flux and energy distribution of collided neutrons which are incident on an outboard wall of a toroidal fusion device.

  5. Fuel cycle for a fusion neutron source

    SciTech Connect

    Ananyev, S. S. Spitsyn, A. V. Kuteev, B. V.

    2015-12-15

    The concept of a tokamak-based stationary fusion neutron source (FNS) for scientific research (neutron diffraction, etc.), tests of structural materials for future fusion reactors, nuclear waste transmutation, fission reactor fuel production, and control of subcritical nuclear systems (fusion–fission hybrid reactor) is being developed in Russia. The fuel cycle system is one of the most important systems of FNS that provides circulation and reprocessing of the deuterium–tritium fuel mixture in all fusion reactor systems: the vacuum chamber, neutral injection system, cryogenic pumps, tritium purification system, separation system, storage system, and tritium-breeding blanket. The existing technologies need to be significantly upgraded since the engineering solutions adopted in the ITER project can be only partially used in the FNS (considering the capacity factor higher than 0.3, tritium flow up to 200 m{sup 3}Pa/s, and temperature of reactor elements up to 650°C). The deuterium–tritium fuel cycle of the stationary FNS is considered. The TC-FNS computer code developed for estimating the tritium distribution in the systems of FNS is described. The code calculates tritium flows and inventory in tokamak systems (vacuum chamber, cryogenic pumps, neutral injection system, fuel mixture purification system, isotope separation system, tritium storage system) and takes into account tritium loss in the fuel cycle due to thermonuclear burnup and β decay. For the two facility versions considered, FNS-ST and DEMO-FNS, the amount of fuel mixture needed for uninterrupted operation of all fuel cycle systems is 0.9 and 1.4 kg, consequently, and the tritium consumption is 0.3 and 1.8 kg per year, including 35 and 55 g/yr, respectively, due to tritium decay.

  6. Physics assessment of stellarators as fusion power plants

    SciTech Connect

    Lyon, J.F.; Rome, J.A.; Garabedian, P.R.; Anderson, D.T.; Painter, S.L.

    1995-02-01

    Four different stellarator configurations (a Compact Torsatron, a new modular torsatron, Helias, and a new Modular Helias-like Heliac) were analyzed as fusion power plants and compared with the second-stability ARIES-IV tokamak. The device and plasma parameters were determined by minimizing the projected cost of electricity subject to various constraints. The stellarators were competitive with ARIES-IV for a range of assumptions on confinement models, alpha-particle losses, and beta. 1-D power balance equations were solved for both Lackner-Gottardi confinement scaling with an assumed n{sub e}(r) and for helical-ripple-induced transport with both assumed and calculated forms for n{sub e}(r) and E{sub r}(r).

  7. Stellar (n, gamma) cross sections of neutron-rich nuclei

    SciTech Connect

    Marganiec, J.; Domingo Pardo, C.; Kaeppeler, F.

    2010-03-01

    The present measurements were performed by means of the activation technique. Neutrons were produced at the Karlsruhe Van de Graaff accelerator via the {sup 7}Li(p,n){sup 7}Be reaction. For proton energies just above threshold, one obtains a neutron spectrum similar to a Maxwellian distribution for kT = 25 keV. This quasi-stellar neutron spectrum allowed us to measure the Maxwellian averaged cross sections directly. The experimental results of {sup 174,176}Yb, {sup 184,186}W, {sup 190,192}Os, {sup 196,198}Pt, and {sup 202}Hg were extrapolated from kT = 25 keV to lower and higher temperatures.

  8. Search for neutrons as evidence of cold fusion

    SciTech Connect

    Cannizzaro, F.; Greco, G.; Raneli, M.; Spitale, M.C.; Tomarchio, E. )

    1992-01-01

    In this paper investigations performed at the University of Palermo in an attempt to reproduce the cold fusion experiment are reported. The search was devoted to detecting neutron emission from palladium electrodes electrolytically charged with deuterium. In no test was neutron emission significantly over the background observed, either in bursts or continuous. Results of a few tests are reported. For the more sensitive test, an upper limit for D(d,n) cold fusion (at 98% confidence level) of {lambda}{sub f} {lt} 3.6 {times} 10{sup {minus}24} fusion/s {center dot} d-d pair is determined.

  9. Progress in modular-stellarator fusion-power-reactor conceptual designs

    SciTech Connect

    Sviatoslavsky, I.N.; Van Sciver, S.W.; Kulcinski, G.L.

    1982-01-01

    Recent encouraging experimental results on stellarators/torsatrons/heliotrons (S/T/H) have revived interest in these concepts as possible fusion power reactors. The use of modular coils to generate the stellarator topology has added impetus to this renewed interest. Studies of the modular coil approach to stellarators by UW-Madison and Los Alamos National Laboratory are summarized in this paper.

  10. Stellar neutron capture cross sections of the Ba isotopes

    NASA Astrophysics Data System (ADS)

    Voss, F.; Wisshak, K.; Guber, K.; Käppeler, F.; Reffo, G.

    1994-11-01

    The neutron capture cross sections of 134Ba, 135Ba, 136Ba, and 137Ba were measured in the energy range from 5 to 225 keV at the Karlsruhe 3.75 MV Van de Graaff accelerator. Neutrons were produced via the 7Li (p,n)7 Be reaction by bombarding metallic Li targets with a pulsed proton beam. Capture events were registered with the Karlsruhe 4π barium fluoride detector. The cross section ratios were determined with an overall uncertainty of ~3%, an improvement by factors of 5 to 8 compared to existing data. Severe discrepancies were found with respect to previous results. As a new possibility in time of flight experiments, isomeric cross section ratios could be determined for 135Ba, 136Ba, and 137Ba. Maxwellian averaged neutron capture cross sections were calculated for thermal energies between kT=10 keV and 100 keV. These stellar cross sections were used in an s-process analysis. For the s-only isotopes 134Ba and 136Ba the Ns<σ> ratio was determined to 0.875+/-0.025. Hence, a significant branching of the s-process path at 134Cs can be claimed for the first time, in contrast to predictions from the classical approach. This branching yields information on the s-process temperature, indicating values around T8=2. The new cross sections are also important for the interpretation of barium isotopic anomalies, which were recently discovered in SiC grains of carbonaceous chondrite meteorites. Together with the results from previous experiments on tellurium and samarium, a general improvement of the Ns<σ> systematics in the mass range A=120-150 is achieved. This yields a more reliable separation of s- and r-process contributions for comparison with stellar observations, but reveals a 20% discrepancy with respect to the solar barium abundance.

  11. Calculating fusion neutron energy spectra from arbitrary reactant distributions

    NASA Astrophysics Data System (ADS)

    Eriksson, J.; Conroy, S.; Andersson Sundén, E.; Hellesen, C.

    2016-02-01

    The Directional Relativistic Spectrum Simulator (DRESS) code can perform Monte-Carlo calculations of reaction product spectra from arbitrary reactant distributions, using fully relativistic kinematics. The code is set up to calculate energy spectra from neutrons and alpha particles produced in the D(d, n)3He and T(d, n)4He fusion reactions, but any two-body reaction can be simulated by including the corresponding cross section. The code has been thoroughly tested. The kinematics calculations have been benchmarked against the kinematics module of the ROOT Data Analysis Framework. Calculated neutron energy spectra have been validated against tabulated fusion reactivities and against an exact analytical expression for the thermonuclear fusion neutron spectrum, with good agreement. The DRESS code will be used as the core of a detailed synthetic diagnostic framework for neutron measurements at the JET and MAST tokamaks.

  12. Data fusion in neutron and X-ray computed tomography

    SciTech Connect

    Schrapp, Michael J.; Goldammer, Matthias; Schulz, Michael; Issani, Siraj; Bhamidipati, Suryanarayana; Böni, Peter

    2014-10-28

    We present a fusion methodology between neutron and X-ray computed tomography (CT). On the one hand, the inspection by X-ray CT of a wide class of multimaterials in non-destructive testing applications suffers from limited information of object features. On the other hand, neutron imaging can provide complementary data in such a way that the combination of both data sets fully characterizes the object. In this contribution, a novel data fusion procedure, called Fusion Regularized Simultaneous Algebraic Reconstruction Technique, is developed where the X-ray reconstruction is modified to fulfill the available data from the imaging with neutrons. The experiments, which were obtained from an aluminum profile containing a steel screw, and attached carbon fiber plates demonstrate that the image quality in CT can be significantly improved when the proposed fusion method is used.

  13. Fusion-neutron measurements for magnetized liner inertial fusion experiments on the Z accelerator

    NASA Astrophysics Data System (ADS)

    Hahn, K. D.; Chandler, G. A.; Ruiz, C. L.; Cooper, G. W.; Gomez, M. R.; Slutz, S.; Sefkow, A. B.; Sinars, D. B.; Hansen, S. B.; Knapp, P. F.; Schmit, P. F.; Harding, E.; Jennings, C. A.; Awe, T. J.; Geissel, M.; Rovang, D. C.; Torres, J. A.; Bur, J. A.; Cuneo, M. E.; Glebov, V. Yu; Harvey-Thompson, A. J.; Herrman, M. C.; Hess, M. H.; Johns, O.; Jones, B.; Lamppa, D. C.; Lash, J. S.; Martin, M. R.; McBride, R. D.; Peterson, K. J.; Porter, J. L.; Reneker, J.; Robertson, G. K.; Rochau, G. A.; Savage, M. E.; Smith, I. C.; Styron, J. D.; Vesey, R. A.

    2016-05-01

    Several magnetized liner inertial fusion (MagLIF) experiments have been conducted on the Z accelerator at Sandia National Laboratories since late 2013. Measurements of the primary DD (2.45 MeV) neutrons for these experiments suggest that the neutron production is thermonuclear. Primary DD yields up to 3e12 with ion temperatures ∼2-3 keV have been achieved. Measurements of the secondary DT (14 MeV) neutrons indicate that the fuel is significantly magnetized. Measurements of down-scattered neutrons from the beryllium liner suggest ρRliner∼1g/cm2. Neutron bang times, estimated from neutron time-of-flight (nTOF) measurements, coincide with peak x-ray production. Plans to improve and expand the Z neutron diagnostic suite include neutron burn-history diagnostics, increased sensitivity and higher precision nTOF detectors, and neutron recoil-based yield and spectral measurements.

  14. Fusion-neutron measurements for magnetized liner inertial fusion experiments on the Z accelerator

    SciTech Connect

    Hahn, K. D.; Chandler, G. A.; Ruiz, C. L.; Cooper, G. W.; Gomez, M. R.; Slutz, S.; Sefkow, A. B.; Sinars, D. B.; Hansen, S. B.; Knapp, P. F.; Schmit, P. F.; Harding, E.; Jennings, C. A.; Awe, T. J.; Geissel, M.; Rovang, D. C.; Torres, J. A.; Bur, J. A.; Cuneo, M. E.; Glebov, V. Yu; Harvey-Thompson, A. J.; Herrman, M. C.; Hess, M. H.; Johns, O.; Jones, B.; Lamppa, D. C.; Lash, J. S.; Martin, M. R.; McBride, R. D.; Peterson, K. J.; Porter, J. L.; Reneker, J.; Robertson, G. K.; Rochau, G. A.; Savage, M. E.; Smith, I. C.; Styron, J. D.; Vesey, R. A.

    2016-05-26

    Several magnetized liner inertial fusion (MagLIF) experiments have been conducted on the Z accelerator at Sandia National Laboratories since late 2013. Measurements of the primary DD (2.45 MeV) neutrons for these experiments suggest that the neutron production is thermonuclear. Primary DD yields up to 3e12 with ion temperatures ~2-3 keV have been achieved. Measurements of the secondary DT (14 MeV) neutrons indicate that the fuel is significantly magnetized. Measurements of down-scattered neutrons from the beryllium liner suggest ρRliner ~ 1g/cm2. Neutron bang times, estimated from neutron time-of-flight (nTOF) measurements, coincide with peak x-ray production. Furthermore, plans to improve and expand the Z neutron diagnostic suite include neutron burn-history diagnostics, increased sensitivity and higher precision nTOF detectors, and neutron recoil-based yield and spectral measurements.

  15. A portable cylindrical electrostatic fusion device for neutronic tomography

    SciTech Connect

    Gu, Y.B.; Javedani, J.B.; Miley, G.H.

    1994-11-01

    A portable cylindrical electrostatic fusion device (C-device) was developed. Earlier studies have focused on spherical geometry. Here the authors discuss a related, but radically different cylindrical version which offers great promise for application requiring that geometry. The C-device, operating in a plasma glow discharge mode, has produced neutrons at 106 neutrons/sec for D-D fusion (equivalent to 10{sup 8} neutrons/sec for D-T fusion). When used as a neutron generator, the C-device is well suited for tomographic diagnosis. Such a neutron generator would have advantages over both a beam-solid target generator and a neutron-emanating isotope. Advantages over a beam-solid target include lower estimated capital cost, longer life expectancy; over an isotope are an on/off capability, minimal radioactive inventory, variable source strength, self-calibrating capability, no storage shield. A detailed description of the device along with preliminary experimental data and an analysis of neutron yield vs. different operating parameters will be presented.

  16. Diagnostic of fusion neutrons on JET tokamak using diamond detector

    SciTech Connect

    Nemtsev, G.; Amosov, V.; Marchenko, N.; Meshchaninov, S.; Rodionov, R.; Popovichev, S.; Collaboration: JET EFDA Conbributors

    2014-08-21

    In 2011-2012, an experimental campaign with a significant yield of fusion neutrons was carried out on the JET tokamak. During this campaign the facility was equipped with two diamond detectors based on natural and artificial CVD diamond. These detectors were designed and manufactured in State Research Center of Russian Federation TRINITI. The detectors measure the flux of fast neutrons with energies above 0.2 MeV. They have been installed in the torus hall and the distance from the center of plasma was about 3 m. For some of the JET pulses in this experiment, the neutron flux density corresponded to the operational conditions in collimator channels of ITER Vertical Neutron Camera. The main objective of diamond monitors was the measurement of total fast neutron flux at the detector location and the estimation of the JET total neutron yield. The detectors operate as threshold counters. Additionally a spectrometric measurement channel has been configured that allowed us to distinguish various energy components of the neutron spectrum. In this paper we describe the neutron signal measuring and calibration procedure of the diamond detector. Fluxes of DD and DT neutrons at the detector location were measured. It is shown that the signals of total neutron yield measured by the diamond detector correlate with signals measured by the main JET neutron diagnostic based on fission chambers with high accuracy. This experiment can be considered as a successful test of diamond detectors in ITER-like conditions.

  17. Stellar neutron sources and s-process in massive stars

    NASA Astrophysics Data System (ADS)

    Talwar, Rashi

    The s-process or the slow neutron capture process is a nucleosynthesis process taking place at relatively low neutron densities in stars. It runs along the valley of beta stability since the neutron capture rate is much slower compared to the beta decay rate. The s-process occurs mainly during core helium burning and shell carbon burning phase in massive stars and during thermally pulsing helium burning phase in asymptotic giant-branch stars. The potential stellar neutron source for the s-process is associated with alpha-capture reactions on light nuclei. The capture-reaction rates provide the reaction flow for the build-up of22Ne neutron source during the heliumburning phase in these stars. The low energy 26Mg resonances at stellar energies below 800 keV are predicted to have a critical influence on the alpha-capture rates on 22Ne. Some of these resonances may also correspond to pronounced alpha cluster structure near the alpha-threshold. However, these resonances have remained elusive during direct alpha capture measurements owing to the high Coulomb barrier and background from cosmic rays and beam induced reactions. Hence, in the present work, alpha-inelastic scattering and alpha- transfer measurements have been performed to probe the level structure of 26Mg nucleus in order to determine the 22Ne+alpha-capture rates. Both experiments have been performed using the high-resolution Grand Raiden Spectrometer at the Research Center for Nuclear Physics (RCNP), Osaka, Japan. For the alpha-inelastic scattering measurement, a self-supporting solid 26Mg target was used and for the alpha-transfer study via the (6Li,d) reaction, 22Ne gas enclosed in a gas cell with Aramid windows was used. The reaction products were momentum analysed by the spectrometer and detected at the focal plane equipped with two multi-wire drift chambers and two plastic-scintillation detectors. The focal plane detection system provided information on the position, the angle, the time of flight and

  18. Concept of DT fuel cycle for a fusion neutron source

    SciTech Connect

    Anan'ev, S.; Spitsyn, A.V.; Kuteev, B.V.; Cherkez, D.I.; Shirnin, P.N.; Kazakovsky, N.T.

    2015-03-15

    A concept of DT-fusion neutron source (FNS) with the neutron yield higher than 10{sup 18} neutrons per second is under design in Russia. Such a FNS is of interest for many applications: 1) basic and applied research (neutron scattering, etc); 2) testing the structural materials for fusion reactors; 3) control of sub-critical nuclear systems and 4) nuclear waste processing (including transmutation of minor actinides). This paper describes the fuel cycle concept of a compact fusion neutron source based on a small spherical tokamak (FNS-ST) with a MW range of DT fusion power and considers the key physics issues of this device. The major and minor radii are ∼0.5 and ∼0.3 m, magnetic field ∼1.5 T, heating power less than 15 MW and plasma current 1-2 MA. The system provides the fuel mixture with equal fractions of D and T (D:T = 1:1) for all FNS technology systems. (authors)

  19. Linear induction accelerators for fusion and neutron production

    SciTech Connect

    Barletta, W.A. |

    1993-08-01

    Linear induction accelerators (LIA) with pulsed power drives can produce high energy, intense beams or electrons, protons, or heavy ions with megawatts of average power. The continuing development of highly reliable LIA components permits the use such accelerators as cost-effective beam sources to drive fusion pellets with heavy ions, to produce intense neutron fluxes using proton beams, and to generate with electrons microwave power to drive magnetic fusion reactors and high gradient, rf-linacs.

  20. Neutron detectors for fusion reaction-rate measurements

    SciTech Connect

    Lerche, R.A.; Phillion, D.W.; Landen, O.L.; Murphy, T.J.; Jaanimagi, P.A.

    1994-02-10

    Fusion reactions in an inertial-confinement fusion (ICF) target filled with deuterium or a deuterium/tritium fuel release nearly monoenergetic neutrons. Because most the neutrons leave the compressed target without collision, they preserve reaction-rate information as they travel radially outward from their point of origin. Three fast, neutron detector techniques, each capable of measuring the fusion reaction-rate of ICF targets, have been demonstrated. The most advanced detector is based on the fast rise-time of a commercial plastic scintillator material (BC-422) which acts as a neutron-to-light converter. Signals, which are recorded with a fast optical streak camera, have a resolution of 25 ps. Good signals can be recorded for targets producing only 5 x 10{sup 7} DT neutrons. Two other detectors use knock-on collisions between neutrons and protons in a thin polyethylene (CH{sub 2}) converter. In one, the converter is placed in front of the photocathode of an x-ray streak camera. Recoil protons pass through the photocathode and knock out electrons which are accelerated and deflected to produce a signal. Resolutions < 25 ps are possible. In the other, the converter is placed in front of a microchannel plate (MCP) with a gated microstrip. Recoil protons eject electrons from the gold layer forming the microstrip. If a gate pulse is present, the signal is amplified. Present gate times are about 80 ps.

  1. Progress in Mirror-Based Fusion Neutron Source Development.

    PubMed

    Anikeev, A V; Bagryansky, P A; Beklemishev, A D; Ivanov, A A; Kolesnikov, E Yu; Korzhavina, M S; Korobeinikova, O A; Lizunov, A A; Maximov, V V; Murakhtin, S V; Pinzhenin, E I; Prikhodko, V V; Soldatkina, E I; Solomakhin, A L; Tsidulko, Yu A; Yakovlev, D V; Yurov, D V

    2015-12-04

    The Budker Institute of Nuclear Physics in worldwide collaboration has developed a project of a 14 MeV neutron source for fusion material studies and other applications. The projected neutron source of the plasma type is based on the gas dynamic trap (GDT), which is a special magnetic mirror system for plasma confinement. Essential progress in plasma parameters has been achieved in recent experiments at the GDT facility in the Budker Institute, which is a hydrogen (deuterium) prototype of the source. Stable confinement of hot-ion plasmas with the relative pressure exceeding 0.5 was demonstrated. The electron temperature was increased up to 0.9 keV in the regime with additional electron cyclotron resonance heating (ECRH) of a moderate power. These parameters are the record for axisymmetric open mirror traps. These achievements elevate the projects of a GDT-based neutron source on a higher level of competitive ability and make it possible to construct a source with parameters suitable for materials testing today. The paper presents the progress in experimental studies and numerical simulations of the mirror-based fusion neutron source and its possible applications including a fusion material test facility and a fusion-fission hybrid system.

  2. Progress in Mirror-Based Fusion Neutron Source Development

    PubMed Central

    Anikeev, A. V.; Bagryansky, P. A.; Beklemishev, A. D.; Ivanov, A. A.; Kolesnikov, E. Yu.; Korzhavina, M. S.; Korobeinikova, O. A.; Lizunov, A. A.; Maximov, V. V.; Murakhtin, S. V.; Pinzhenin, E. I.; Prikhodko, V. V.; Soldatkina, E. I.; Solomakhin, A. L.; Tsidulko, Yu. A.; Yakovlev, D. V.; Yurov, D. V.

    2015-01-01

    The Budker Institute of Nuclear Physics in worldwide collaboration has developed a project of a 14 MeV neutron source for fusion material studies and other applications. The projected neutron source of the plasma type is based on the gas dynamic trap (GDT), which is a special magnetic mirror system for plasma confinement. Essential progress in plasma parameters has been achieved in recent experiments at the GDT facility in the Budker Institute, which is a hydrogen (deuterium) prototype of the source. Stable confinement of hot-ion plasmas with the relative pressure exceeding 0.5 was demonstrated. The electron temperature was increased up to 0.9 keV in the regime with additional electron cyclotron resonance heating (ECRH) of a moderate power. These parameters are the record for axisymmetric open mirror traps. These achievements elevate the projects of a GDT-based neutron source on a higher level of competitive ability and make it possible to construct a source with parameters suitable for materials testing today. The paper presents the progress in experimental studies and numerical simulations of the mirror-based fusion neutron source and its possible applications including a fusion material test facility and a fusion-fission hybrid system. PMID:28793722

  3. Engineering design point for a 1MW fusion neutron source

    NASA Astrophysics Data System (ADS)

    Sieck, Paul; Melnik, Paul; Woodruff, Simon; Stuber, James; Romero-Talamas, Carlos; O'Bryan, John; Miller, Ronald

    2016-10-01

    Compact fusion neutron sources are currently serving important roles in medical isotope production, and could be used for waste transmutation if sufficient fluence can be attained. The engineering design point for a compact neutron source with target rateof e17n/sbased on the adiabatic compression of a spheromak is presented. The compression coils and passive structure are designed to maintain stability during compression. The power supplies consist of 4 separate banks of MJ each; Pspice simulations and power requirement calculations will be shown. We outline the diagnostic set that will be required for an experimental campaign to address issues relating to both formation efficiency and energy confinement scaling during compression. Work supported in part by DARPA Grant N66001-14-1-4044 and IAEA CRP on compac fusion neutron sources.

  4. Fission and activation of uranium by fusion-plasma neutrons

    NASA Technical Reports Server (NTRS)

    Lee, J. H.; Hohl, F.; Mcfarland, D. R.

    1978-01-01

    Fusion-fission hybrid reactors are discussed in terms of two main purposes: to breed fissile materials (Pu 233 and Th 233 from U 238 or Th 232) for use in low-reactivity breeders, and to produce tritium from lithium to refuel fusion plasma cores. Neutron flux generation is critical for both processes. Various methods for generating the flux are described, with attention to new geometries for multiple plasma focus arrays, e.g., hypocycloidal pinch and staged plasma focus devices. These methods are evaluated with reference to their applicability to D-D fusion reactors, which will ensure a virtually unlimited energy supply. Accurate observations of the neutron flux from such schemes are obtained by using different target materials in the plasma focus.

  5. Fission and activation of uranium by fusion-plasma neutrons

    NASA Technical Reports Server (NTRS)

    Lee, J. H.; Hohl, F.; Mcfarland, D. R.

    1978-01-01

    Fusion-fission hybrid reactors are discussed in terms of two main purposes: to breed fissile materials (Pu 233 and Th 233 from U 238 or Th 232) for use in low-reactivity breeders, and to produce tritium from lithium to refuel fusion plasma cores. Neutron flux generation is critical for both processes. Various methods for generating the flux are described, with attention to new geometries for multiple plasma focus arrays, e.g., hypocycloidal pinch and staged plasma focus devices. These methods are evaluated with reference to their applicability to D-D fusion reactors, which will ensure a virtually unlimited energy supply. Accurate observations of the neutron flux from such schemes are obtained by using different target materials in the plasma focus.

  6. Fusion of neutron-rich oxygen isotopes in the crust of accreting neutron stars

    SciTech Connect

    Horowitz, C. J.; Dussan, H.; Berry, D. K.

    2008-04-15

    Fusion reactions in the crust of an accreting neutron star are an important source of heat, and the depth at which these reactions occur is important for determining the temperature profile of the star. Fusion reactions depend strongly on the nuclear charge Z. Nuclei with Z{<=}6 can fuse at low densities in a liquid ocean. However, nuclei with Z=8 or 10 may not burn until higher densities where the crust is solid and electron capture has made the nuclei neutron rich. We calculate the S factor for fusion reactions of neutron rich nuclei including {sup 24}O+{sup 24}O and {sup 28}Ne+{sup 28}Ne. We use a simple barrier penetration model. The S factor could be further enhanced by dynamical effects involving the neutron rich skin. This possible enhancement in S should be studied in the laboratory with neutron rich radioactive beams. We model the structure of the crust with molecular dynamics simulations. We find that the crust of accreting neutron stars may contain micro-crystals or regions of phase separation. Nevertheless, the screening factors that we determine for the enhancement of the rate of thermonuclear reactions are insensitive to these features. Finally, we calculate the rate of thermonuclear {sup 24}O+{sup 24}O fusion and find that {sup 24}O should burn at densities near 10{sup 11} g/cm{sup 3}. The energy released from this and similar reactions may be important for the temperature profile of the star.

  7. Secondary fusion coupled deuteron/triton transport simulation and thermal-to-fusion neutron convertor measurement

    SciTech Connect

    Wang, G. B.; Wang, K.; Liu, H. G.; Li, R. D.

    2013-07-01

    A Monte Carlo tool RSMC (Reaction Sequence Monte Carlo) was developed to simulate deuteron/triton transportation and reaction coupled problem. The 'Forced particle production' variance reduction technique was used to improve the simulation speed, which made the secondary product play a major role. The mono-energy 14 MeV fusion neutron source was employed as a validation. Then the thermal-to-fusion neutron convertor was studied with our tool. Moreover, an in-core conversion efficiency measurement experiment was performed with {sup 6}LiD and {sup 6}LiH converters. Threshold activation foils was used to indicate the fast and fusion neutron flux. Besides, two other pivotal parameters were calculated theoretically. Finally, the conversion efficiency of {sup 6}LiD is obtained as 1.97x10{sup -4}, which matches well with the theoretical result. (authors)

  8. Advanced Scintillator Detectors for Neutron Imaging in Inertial Confinement Fusion

    NASA Astrophysics Data System (ADS)

    Geppert-Kleinrath, Verena; Danly, Christopher; Merrill, Frank; Simpson, Raspberry; Volegov, Petr; Wilde, Carl

    2016-10-01

    The neutron imaging team at Los Alamos National Laboratory (LANL) has been providing two-dimensional neutron imaging of the inertial confinement fusion process at the National Ignition Facility (NIF) for over five years. Neutron imaging is a powerful tool in which position-sensitive detectors register neutrons emitted in the fusion reactions, producing a picture of the burning fuel. Recent images have revealed possible multi-dimensional asymmetries, calling for additional views to facilitate three-dimensional imaging. These will be along shorter lines of sight to stay within the existing facility at NIF. In order to field imaging capabilities equivalent to the existing system several technological challenges have to be met: high spatial resolution, high light output, and fast scintillator response to capture lower-energy neutrons, which have scattered from non-burning regions of fuel. Deuterated scintillators are a promising candidate to achieve the timing and resolution required; a systematic study of deuterated and non-deuterated polystyrene and liquid samples is currently ongoing. A test stand has been implemented to measure the response function, and preliminary data on resolution and light output have been obtained at the LANL Weapons Neutrons Research facility.

  9. Basics of Fusion-Fissison Research Facility (FFRF) as a Fusion Neutron Source

    SciTech Connect

    Leonid E. Zakharov

    2011-06-03

    FFRF, standing for the Fusion-Fission Research Facility represents an option for the next step project of ASIPP (Hefei, China) aiming to a first fusion-fission multifunctional device [1]. FFRF strongly relies on new, Lithium Wall Fusion plasma regimes, the development of which has already started in the US and China. With R/a=4/1m/m, Ipl=5 MA, Btor=4-6 T, PDT=50- 100 MW, Pfission=80-4000MW, 1 m thick blanket, FFRF has a unique fusion mission of a stationary fusion neutron source. Its pioneering mission of merging fusion and fission consists in accumulation of design, experimental, and operational data for future hybrid applications.

  10. Control of neutron albedo in toroidal fusion reactors

    SciTech Connect

    Micklich, B.J.; Jassby, D.L.

    1983-07-01

    The MCNP and ANISN codes have been used to obtain basic neutron albedo data for materials of interest for fusion applications. Simple physical models are presented which explain albedo dependence on pre- and post-reflection variables. The angular distribution of reflected neutrons. The energy spectra of reflected neutrons are presented, and it is shown that substantial variations in the total neutron current at the outboard wall of a torus can be effected by changing materials behind the inboard wall. Analyses show that a maximum of four isolated incident-current environments may be established simultaneously on the outboard side of a torus. With suitable inboard reflectors, global tritium breeding ratios significantly larger than unity can be produced in limited-coverage breeding blankets when the effects of outboard penetrations are included.

  11. Neutronics issues and inertial fusion energy: a summary of findings

    SciTech Connect

    Latkowski, J. F., LLNL

    1998-05-29

    We have analyzed and compared five major inertial fusion energy (IFE) and two representative magnetic fusion energy (MFE) power plant designs for their environment, safety, and health (ES&H) characteristics. Our work has focussed upon the neutronics of each of the designs and the resulting radiological hazard indices. The calculation of a consistent set of hazard indices allows comparisons to be made between the designs. Such comparisons enable identification of trends in fusion ES&H characteristics and may be used to increase the likelihood of fusion achieving its full potential with respect to ES&H characteristics. The present work summarizes our findings and conclusions. This work emphasizes the need for more research in low-activation materials and for the experimental measurement of radionuclide release fractions under accident conditions.

  12. Fusion-neutron measurements for magnetized liner inertial fusion experiments on the Z accelerator

    DOE PAGES

    Hahn, K. D.; Chandler, G. A.; Ruiz, C. L.; ...

    2016-05-26

    Several magnetized liner inertial fusion (MagLIF) experiments have been conducted on the Z accelerator at Sandia National Laboratories since late 2013. Measurements of the primary DD (2.45 MeV) neutrons for these experiments suggest that the neutron production is thermonuclear. Primary DD yields up to 3e12 with ion temperatures ~2-3 keV have been achieved. Measurements of the secondary DT (14 MeV) neutrons indicate that the fuel is significantly magnetized. Measurements of down-scattered neutrons from the beryllium liner suggest ρRliner ~ 1g/cm2. Neutron bang times, estimated from neutron time-of-flight (nTOF) measurements, coincide with peak x-ray production. Furthermore, plans to improve and expandmore » the Z neutron diagnostic suite include neutron burn-history diagnostics, increased sensitivity and higher precision nTOF detectors, and neutron recoil-based yield and spectral measurements.« less

  13. The New Sorgentina Fusion Source-NSFS: 14 MeV neutrons for fusion and beyond

    NASA Astrophysics Data System (ADS)

    Pietropaolo, A.; Console Camprini, P.; Agostini, P.; Amendola, R.; Angelone, M.; Bernardi, D.; Bruni, F.; Capogni, M.; Colognesi, D.; Faccini, R.; Filabozzi, A.; Flammini, D.; Fiori, F.; Frisoni, M.; Grazzi, F.; Pillon, M.; Pizzuto, A.; Quintieri, L.; Sacchetti, F.; Valente, P.

    2016-09-01

    The importance of the design for the realization of an intense 14 MeV neutron facility devoted to test and validate materials suitable for harsh neutron environments, such as a fusion reactor, is well established. The “New Sorgentina” Fusion Source (NSFS) is a project that proposes an intense D-T 14 MeV neutron source achievable with T and D ion beams impinging on 2 m radius rotating targets. NSFS may produce about 1015 n/s at the target and has to be intended as an European facility that maybe realized in a few years, once provided a preliminary technological program devoted to the operation of the ion source in continuous mode, target heat loading/removal, target and tritium handling, inventor as well as site licensing. In this contribution, the main characteristics of NSFS project will be presented and its possible use as a multipurpose facility outlined.

  14. Muon catalyzed fusion in plasma state and high intensity DT fusion neutron source

    SciTech Connect

    Takahashi, Hiroshi

    1989-01-01

    dt/mu/ molecular formation rates in a plasma state of DT mixture by d and t ions are, respectively, 63 and 77 times higher than the ones by electrons. High plasma oscillation frequency in a high electron density plasma enhances the formation rate in the high temperature dt mixture. The DT muon catalyzed fusion has the ability to produce much higher intensity 14 MeV neutron source (in order of 5 /times/ 10/sup 16/n/cm/sup 2//sec) than other means of stripping and spallation approaches. Such neutrons can be used for testing of first wall material candidates for magnetic fusion reactors, for incinerating fission products (e.g., Cs/sup 137/) and for creating high thermal flux neutron sources, on the order of 10/sup 17/n/cm/sup 2//sec. 12 refs., 2 figs.

  15. Fission-Fusion Neutron Source Progress Report July 31, 2009

    SciTech Connect

    Chapline, G; Daffin, F; Clarke, R

    2010-02-19

    In this report the authors describe progress in evaluating the feasibility of a novel concept for producing intense pulses of 14 MeV neutrons using the DT fusion reaction. In this new scheme the heating of the DT is accomplished using fission fragments rather than ion beams as in conventional magnet fusion schemes or lasers in ICF schemes. This has the great advantage that there is no need for any large auxiliary power source. The scheme does require large magnetic fields, but generating these fields, e.g. with superconducting magnets, requires only a modest power source. As a source of fission fragments they propose using a dusty reactor concept introduced some time ago by one of us (RC). The version of the dusty reactor that they propose using for our neutron source would operate as a thermal neutron reactor and use highly enriched uranium in the form of micron sized pellets of UC. Our scheme for using the fission fragments to produce intense pulses of 14 MeV neutrons is based on the fission fragment rocket idea. In the fission fragment rocket scheme it was contemplated that the fission fragments produced in a low density reactor core would then be guided out of the reactor by large magnetic fields. A simple version of this idea would be to use the fission fragments escaping from one side of a tandem magnet mirror to heat DT gas confined in the adjacent magnetic trap.

  16. Optimization of compact stellarator configuration as fusion devices

    SciTech Connect

    Najmabadi, Farrokh; Rene Raffray, A.; Ku, Long-Poe; Lyon, James F.

    2006-05-15

    Optimization of the stellarator configuration requires tradeoffs among a large number of physics parameters and engineering constraints. An integrated study of compact stellarator power plants, ARIES-CS, aims at examining these tradeoffs and defining key R and D areas. Configurations with a plasma aspect ratio of A{<=}6 and excellent quasiaxisymmetry (QA) in both two and three field period versions were developed while reducing {alpha}-particle losses to <10%. Stability to linear ideal MHD modes was attained, but at the expense of reduced QA (and increased {alpha}-particle losses) and increased complexity of the plasma shape. Recent experimental results indicate, however, that linear MHD stability limits may not be applicable to stellarators. By utilizing a highly efficient shield-only region in strategic areas, the minimum standoff was reduced by {approx}30%. This allows a comparable reduction in the machine size. The device configuration, assembly, and maintenance procedures appear to impose severe constraints: three distinct approaches were developed, each applicable to a certain blanket concept and/or stellarator configuration. Modular coils are designed to examine the geometric complexity and to understand the constraints imposed by the maximum allowable field, desirable coil-plasma separation, coil-coil spacing, and other coil parameters. A cost-optimization system code has also been developed and will be utilized to assess the tradeoff among physics and engineering constraints in a self-consistent manner in the final phase of the ARIES-CS study.

  17. Neutron flux assessment of a neutron irradiation facility based on inertial electrostatic confinement fusion.

    PubMed

    Sztejnberg Gonçalves-Carralves, M L; Miller, M E

    2015-12-01

    Neutron generators based on inertial electrostatic confinement fusion were considered for the design of a neutron irradiation facility for explanted organ Boron Neutron Capture Therapy (BNCT) that could be installed in a health care center as well as in research areas. The chosen facility configuration is "irradiation chamber", a ~20×20×40 cm(3) cavity near or in the center of the facility geometry where samples to be irradiated can be placed. Neutron flux calculations were performed to study different manners for improving scattering processes and, consequently, optimize neutron flux in the irradiation position. Flux distributions were assessed through numerical simulations of several models implemented in MCNP5 particle transport code. Simulation results provided a wide spectrum of combinations of net fluxes and energy spectrum distributions. Among them one can find a group that can provide thermal neutron fluxes per unit of production rate in a range from 4.1·10(-4) cm(-2) to 1.6·10(-3) cm(-2) with epithermal-to-thermal ratios between 0.3% and 13% and fast-to-thermal ratios between 0.01% to 8%. Neutron generators could be built to provide more than 10(10) n s(-1) and, consequently, with an arrangement of several generators appropriate enough neutron fluxes could be obtained that would be useful for several BNCT-related irradiations and, eventually, for clinical practice.

  18. Observation of gravity decays of multiple-neutron nuclei during cold fusion

    SciTech Connect

    Matsumoto, T. . Dept. of Nuclear Engineering)

    1992-08-01

    The Nattoh model predicted that multiple-neutron nuclei such as quad-neutrons can be produced during cold fusion, and the gravity decays of the quad-neutrons were recorded on nuclear emulsions. Several different traces that might be produced by the gravity decays of di-neutron and multiple-neutron nuclei have been successfully observed. The mechanisms of the production of multiple-neutron nuclei are discussed in this paper.

  19. Fission-Fusion Neutron Source Progress Report Sept 30, 2009

    SciTech Connect

    Chapline, G F; Daffin, F; Clark, R

    2010-02-19

    In this report the authors describe the progress made in FY09 in evaluating the feasibility of a new concept for using the DT fusion reaction to produce intense pulses of 14 MeV neutrons. In this new scheme the heating of the DT is accomplished using fission fragments rather than ion beams as in conventional magnet confinement fusion schemes or lasers in inertial confinement schemes. As a source of fission fragments they propose using a dust reactor concept introduced some time ago by one of us (RC). An attractive feature of this approach is that there is no need for a large auxiliary power source to heat the DT plasma to the point where self-sustaining fusion become possible. Their scheme does require pulsed magnetic fields, but generating these fields requires only a modest power source. The dust reactor that they propose using for their neutron source would use micron-sized UC pellets suspended in a vacuum as the reactor fuel. Surrounding the fuel with a moderator such as heavy water (D{sub 2}O) would allow the reactor to operate as a thermal reactor and require only modest amounts of HEU. The scheme for using fission fragments to generate intense pulses of 14 MeV neutrons is based on the fission fragment rocket idea. In the fission fragment rocket scheme it was contemplated that the fission fragments produced in a low density reactor core could be guided out of the reactor by large magnetic fields used to form a 'rocket exhaust'. Their adaptation of this idea for the purposes of making a neutron source involves using the fission fragments escaping from one side of a tandem magnet mirror to heat DT gas confined in the adjacent magnetic trap.

  20. Observation of quad-neutrons and gravity decay during cold fusion

    SciTech Connect

    Matsumoto, T. )

    1991-07-01

    The Nattoh model predicts that neutron nuclei such as quad-neutrons are produced during cold fusion as a result of the emission of a new particle, the iton. Several quad-neutron decays have been successfully recorded on nuclear emulsions. Especially important, micro-explosions caused by gravity decay have been clearly observed. This indicates that gravitational energy as well as fusion energy may be available in cold fusion.

  1. A neutron study of the feline leukaemia virus fusion peptide: Implications for biological fusion?

    NASA Astrophysics Data System (ADS)

    Davies, Sarah M. A.; Darkes, Malcolm J. M.; Bradshaw, Jeremy P.

    Neutron diffraction studies were performed on stacked phospholipid bilayers to determine the effects of the feline leukaemia virus (FeLV) fusion peptide on membrane structure. Bilayers were composed of dioleoylphosphatidylcholine with 50% (mol) dioleoylphosphatidylglycerol. Neutron scattering profiles with peptide present showed an increase in scattering density in the lipid-tails region, whilst scattering by the lipid headgroup region was decreased. This is interpreted as a lowering of the packing density of the lipid headgroups and an increase in the packing density of the lipid tails. Modelling studies and experimental evidence have suggested that fusion peptides catalyse fusion by increasing the negative curvature of the target membrane's outer monolayer. Our results presented here add support to this hypothesis for the fusion mechanism. The 2H 2O scattering profile was also slightly perturbed in the lipid headgroup region with 1% (mol)FeLV fusion peptide present. The FeLV peptide had no significant effect on the organisation of bilayers containing only dioleoylphosphatidylcholine.

  2. The neutronics studies of fusion fission hybrid power reactor

    SciTech Connect

    Zheng Youqi; Wu Hongchun; Zu Tiejun; Yang Chao; Cao Liangzhi

    2012-06-19

    In this paper, a series of neutronics analysis of hybrid power reactor is proposed. The ideas of loading different fuels in a modular-type fission blanket is analyzed, fitting different level of fusion developments, i.e., the current experimental power output, the level can be obtained in the coming future and the high-power fusion reactor like ITER. The energy multiplication of fission blankets and tritium breeding ratio are evaluated as the criterion of design. The analysis is implemented based on the D-type simplified model, aiming to find a feasible 1000MWe hybrid power reactor for 5 years' lifetime. Three patterns are analyzed: 1) for the low fusion power, the reprocessed fuel is chosen. The fuel with high plutonium content is loaded to achieve large energy multiplication. 2) For the middle fusion power, the spent fuel from PWRs can be used to realize about 30 times energy multiplication. 3) For the high fusion power, the natural uranium can be directly used and about 10 times energy multiplication can be achieved.

  3. Neutron detector for fusion reaction-rate measurements

    SciTech Connect

    Lerche, R.A.; Phillion, D.W.; Tietbohl, G.L.

    1993-09-03

    We have developed a fast, sensitive neutron detector for recording the fusion reaction-rate history of inertial-confinement fusion (ICF) experiments. The detector is based on the fast rise-time of a commercial plastic scintillator (BC-422) and has a response < 25-ps FWHM. A thin piece of scintillator material acts as a neutron-to- light converter. A zoom lens images light from the scintillator surface to a high-speed (15 ps) optical streak camera for recording. The zoom lens allows the scintillator to be positioned between 1 and 50 cm from a target. The camera simulaneously records an optical fiducial pulse which allows the camera time base to be calibrated relative to the incident laser power. Bursts of x rays formed by focusing 20-ps, 2.5-TW laser pulses onto gold disk targets demonstrate the detector resolution to be < 25 ps. We have recorded burn histories for deuterium/tritium-filled targets producing as few as 3 {times} 10{sup 7} neutrons.

  4. The masses and spins of neutron stars and stellar-mass black holes

    NASA Astrophysics Data System (ADS)

    Miller, M. Coleman; Miller, Jon M.

    2015-01-01

    Stellar-mass black holes and neutron stars represent extremes in gravity, density, and magnetic fields. They therefore serve as key objects in the study of multiple frontiers of physics. In addition, their origin (mainly in core-collapse supernovae) and evolution (via accretion or, for neutron stars, magnetic spindown and reconfiguration) touch upon multiple open issues in astrophysics. In this review, we discuss current mass and spin measurements and their reliability for neutron stars and stellar-mass black holes, as well as the overall importance of spins and masses for compact object astrophysics. Current masses are obtained primarily through electromagnetic observations of binaries, although future microlensing observations promise to enhance our understanding substantially. The spins of neutron stars are straightforward to measure for pulsars, but the birth spins of neutron stars are more difficult to determine. In contrast, even the current spins of stellar-mass black holes are challenging to measure. As we discuss, major inroads have been made in black hole spin estimates via analysis of iron lines and continuum emission, with reasonable agreement when both types of estimate are possible for individual objects, and future X-ray polarization measurements may provide additional independent information. We conclude by exploring the exciting prospects for mass and spin measurements from future gravitational wave detections, which are expected to revolutionize our understanding of strong gravity and compact objects.

  5. Using a Neutron Star as a Stellar Wind Probe

    NASA Astrophysics Data System (ADS)

    Gregory, P. C.; Neish, C.

    2002-12-01

    LS I+61o303 is a remarkable X-ray and γ -ray emitting Be + neutron star binary, with periodic (26.5 day) radio outbursts. A recent Bayesian analysis demonstrates that the orbital phase and peak flux density of the radio outbursts exhibit a 4.6 year periodic modulation. We present a model that accounts for the radio properties of LS I+61o303 in terms of variable accretion by the neutron star in an eccentric orbit embedded within the dense equatorial wind from the rapidly rotating Be star. The neutron star thus acts as a probe of the wind speed and density. The analysis indicates that the 4.6 year modulation in radio properties results from an outward moving density enhancement or shell in the Be star equatorial disk. We propose that each new shell ejection may be triggered by the interaction of a short lived relativistic wind (ejector phase) from the neutron star, with the rapidly rotating Be star. Our best estimates of the mass accretion rate of the neutron star are in the range ~ 0.001 to ~ 0.01 of the Eddington accretion limit. This translates to an expected luminosity range of ~ 1035 to ~ 1036 ergs s-1 which is comparable to estimates of the total X-ray and γ -ray luminosity for LS I +61o 303. This research was supported in part by a grant from the Canadian Natural Sciences and Engineering Research Council at the University of British Columbia.

  6. Neutron Generation by Laser-Driven Spherically Convergent Plasma Fusion

    NASA Astrophysics Data System (ADS)

    Ren, G.; Yan, J.; Liu, J.; Lan, K.; Chen, Y. H.; Huo, W. Y.; Fan, Z.; Zhang, X.; Zheng, J.; Chen, Z.; Jiang, W.; Chen, L.; Tang, Q.; Yuan, Z.; Wang, F.; Jiang, S.; Ding, Y.; Zhang, W.; He, X. T.

    2017-04-01

    We investigate a new laser-driven spherically convergent plasma fusion scheme (SCPF) that can produce thermonuclear neutrons stably and efficiently. In the SCPF scheme, laser beams of nanosecond pulse duration and 1 014- 1 015 W /cm2 intensity uniformly irradiate the fuel layer lined inside a spherical hohlraum. The fuel layer is ablated and heated to expand inwards. Eventually, the hot fuel plasmas converge, collide, merge, and stagnate at the central region, converting most of their kinetic energy to internal energy, forming a thermonuclear fusion fireball. With the assumptions of steady ablation and adiabatic expansion, we theoretically predict the neutron yield Yn to be related to the laser energy EL, the hohlraum radius Rh, and the pulse duration τ through a scaling law of Yn∝(EL/Rh1.2τ0.2 )2.5. We have done experiments at the ShengGuangIII-prototype facility to demonstrate the principle of the SCPF scheme. Some important implications are discussed.

  7. RECENT RESULTS OF FUSION INDUCED BY NEUTRON-RICH RADIOACTIVE BEAMS STUDIED AT HRIBF

    SciTech Connect

    Liang, J Felix

    2013-01-01

    The reaccelerated fission-fragment beams at HRIBF provide a unique opportunity for studying the mechanisms of fusion involving nuclei with large neutron excess. The fusion excitation functions for neutron-rich ra- dioactive 132Sn incident on 40Ca and 58Ni targets have been measured to explore the role of transfer couplings in sub-barrier fusion enhancement. Evaporation residue cross sections for 124,126,127,128Sn+64Ni were measured to study the dependence of fusion probability on neutron excess.

  8. Stability of carbon fusion on accreting neutron stars

    NASA Astrophysics Data System (ADS)

    Girichidis, Philipp

    With observing missions like the Rossi X-ray Timing Explorer (RXTE), BeppoSAX, XMM-Newton and Chandra many thermonuclear activities on neutron stars have been observed, especially thermonuclear X-ray bursts on accreting neutron stars. Aside from frequent short type I X-ray bursts, rare and very long enduring high energetic bursts, the so-called superbursts, have been found. The large total released energy during a superburst indicates a larger ignition depth and higher ignition temperatures than it is the case for type I bursts. These ignition conditions lead to the conclusion, that unstable carbon burning triggers the thermonuclear runaway for the superburst. This work focusses on the carbon plasma layer and its nuclear fusion stability. With numerical simulations a stability analysis of the layer has been performed, in order to find precise conditions for unstable ignitions. The numerical model used in this thesis combines a full reaction network with a complex number perturbation stability analysis, in which effects of temperature, energy flux, composition and accretion rate on the stability were examined. Furthermore, different burning regimes in the carbon burning process have been investigated in order to determine the nature of the explosion as well as the exact ignition depth. For a few sets of parameters burning oscillations were investigated. For the neutron star KS 1731-260 the stability analysis was used to determine the chemical composition of the carbon burning layer.

  9. Swelling of nuclei embedded in neutron-gas and consequences for fusion

    NASA Astrophysics Data System (ADS)

    Umar, A. S.; Oberacker, V. E.; Horowitz, C. J.; Reinhard, P.-G.; Maruhn, J. A.

    2015-08-01

    Fusion of very neutron rich nuclei may be important to determine the composition and heating of the crust of accreting neutron stars. We present an exploratory study of the effect of the neutron-gas environment on the structure of nuclei and the consequences for pycnonuclear fusion cross sections in the neutron drip region. We studied the formation and properties of oxygen and calcium isotopes embedded in varying neutron-gas densities. We observe that the formed isotope is the drip-line nucleus for the given effective interaction. Increasing the neutron-gas density leads to the swelling of the nuclear density. We have used these densities to study the effect of this swelling on the fusion cross sections using the São Paulo potential. At high neutron-gas densities the cross section is substantially increased but at lower densities the modification is minimal.

  10. Calibration of the neutron detectors for the cluster fusion experiment on the Texas Petawatt Laser

    SciTech Connect

    Bang, W.; Quevedo, H. J.; Dyer, G.; Rougk, J.; Kim, I.; McCormick, M.; Bernstein, A. C.; Ditmire, T.

    2012-06-15

    Three types of neutron detectors (plastic scintillation detectors, indium activation detectors, and CR-39 track detectors) were calibrated for the measurement of 2.45 MeV DD fusion neutron yields from the deuterium cluster fusion experiment on the Texas Petawatt Laser. A Cf-252 neutron source and 2.45 MeV fusion neutrons generated from laser-cluster interaction were used as neutron sources. The scintillation detectors were calibrated such that they can detect up to 10{sup 8} DD fusion neutrons per shot in current mode under high electromagnetic pulse environments. Indium activation detectors successfully measured neutron yields as low as 10{sup 4} per shot and up to 10{sup 11} neutrons. The use of a Cf-252 neutron source allowed cross calibration of CR-39 and indium activation detectors at high neutron yields ({approx}10{sup 11}). The CR-39 detectors provided consistent measurements of the total neutron yield of Cf-252 when a modified detection efficiency of 4.6 Multiplication-Sign 10{sup -4} was used. The combined use of all three detectors allowed for a detection range of 10{sup 4} to 10{sup 11} neutrons per shot.

  11. Stellar neutron capture cross sections of the tin isotopes

    SciTech Connect

    Wisshak, K.; Voss, F.; Theis, C.; Kaeppeler, F.; Guber, K.; Kazakov, L.; Kornilov, N.; Reffo, G.

    1996-09-01

    The neutron capture cross sections of {sup 114}Sn, {sup 115}Sn, {sup 116}Sn, {sup 117}Sn, {sup 118}Sn, and {sup 120}Sn were measured in the energy range from 3 to 225 keV at the Karlsruhe 3.75 MV Van de Graaff accelerator. Neutrons were produced via the {sup 7}Li({ital p},{ital n}){sup 7}Be reaction using a pulsed proton beam. Capture events were registered with the Karlsruhe 4{pi} barium fluoride detector. The experiment was complicated by the small ({ital n},{gamma}) cross sections of the proton magic tin isotopes and by the comparably low enrichment of the rare isotopes {sup 114}Sn and {sup 115}Sn. Despite significant corrections for capture of scattered neutrons and for isotopic impurities, the high efficiency and the spectroscopic quality of the BaF{sub 2} detector allowed the determination of the cross-section ratios with overall uncertainties of 1{endash}2{percent}, five times smaller compared to existing data. Based on these results, Maxwellian averaged ({ital n},{gamma}) cross sections were calculated for thermal energies between {ital kT}=10 and 100 keV. These data are used for a discussion of the solar tin abundance and for an improved determination of the isotopic {ital s}- and {ital r}-process components. {copyright} {ital 1996 The American Physical Society.}

  12. Stellar neutron capture cross sections of the Lu isotopes

    SciTech Connect

    Wisshak, K.; Voss, F.; Kaeppeler, F.; Kazakov, L.

    2006-01-15

    The neutron capture cross sections of {sup 175}Lu and {sup 176}Lu have been measured in the energy range 3-225 keV at the Karlsruhe 3.7 MV Van de Graaff accelerator. Neutrons were produced via the {sup 7}Li(p,n){sup 7}Be reaction by bombarding metallic Li targets with a pulsed proton beam, and capture events were registered with the Karlsruhe 4{pi} barium fluoride detector. The cross sections were determined relative to the gold standard using isotopically enriched as well as natural lutetium oxide samples. Overall uncertainties of {approx}1% could be achieved in the final cross section ratios to the gold standard, about a factor of 5 smaller than in previous works. Maxwellian averaged neutron capture cross sections were calculated for thermal energies between kT = 8 and 100 keV. These values are systematically larger by {approx}7% than those reported in recent evaluations. These results are of crucial importance for the assessment of the s-process branchings at A 175/176.

  13. Stellar encounters involving neutron stars in globular cluster cores

    NASA Technical Reports Server (NTRS)

    Davies, M. B.; Benz, W.; Hills, J. G.

    1992-01-01

    Encounters between a 1.4 solar mass neutron star and a 0.8 solar mass red giant (RG) and between a 1.4 solar mass neutron star (NS) and an 0.8 solar mass main-sequence (MS) star have been successfully simulated. In the case of encounters involving an RG, bound systems are produced when the separation at periastron passage R(MIN) is less than about 2.5 R(RG). At least 70 percent of these bound systems are composed of the RG core and NS forming a binary engulfed in a common envelope of what remains of the former RG envelope. Once the envelope is ejected, a tight white dwarf-NS binary remains. For MS stars, encounters with NSs will produce bound systems when R(MIN) is less than about 3.5 R(MS). Some 50 percent of these systems will be single objects with the NS engulfed in a thick disk of gas almost as massive as the original MS star. The ultimate fate of such systems is unclear.

  14. Physicsdesign point for a 1MW fusion neutron source

    NASA Astrophysics Data System (ADS)

    Woodruff, Simon; Melnik, Paul; Sieck, Paul; Stuber, James; Romero-Talamas, Carlos; O'Bryan, John; Miller, Ronald

    2016-10-01

    We are developing a design point for a spheromak experiment heated by adiabatic compression for use as a compact neutron source. We utilize the CORSICA and NIMROD MHD codes as well as analytic modeling to assess a concept with target parameters R0 =0.5m, Rf =0.17m, T0 =1keV, Tf =8keV, n0 =2e20m-3 and nf = 5e21m-3, with radial convergence of C =R0/Rf =3. We present results from CORSICA showing the placement of coils and passive structure to ensure stability during compression. We specify target parameters for the compression in terms of plasma beta, formation efficiency and energy confinement. We present results simulations of magnetic compression using the NIMROD code to examine the role of rotation on the stability and confinement of the spheromak as it is compressed. Supported by DARPA Grant N66001-14-1-4044 and IAEA CRP on Compact Fusion Neutron Sources.

  15. From the similarities between neutrons and radon to advanced radon-detection and improved cold fusion neutron-measurements

    NASA Astrophysics Data System (ADS)

    Tommasino, L.; Espinosa, G.

    2014-07-01

    Neutrons and radon are both ubiquitous in the earth's crust. The neutrons of terrestrial origin are strongly related to radon since they originate mainly from the interactions between the alpha particles from the decays of radioactive-gas (namely Radon and Thoron) and the light nuclei. Since the early studies in the field of neutrons, the radon gas was used to produce neutrons by (α, n) reactions in beryllium. Another important similarity between radon and neutrons is that they can be detected only through the radiations produced respectively by decays or by nuclear reactions. These charged particles from the two distinct nuclear processes are often the same (namely alpha-particles). A typical neutron detector is based on a radiator facing a alpha-particle detector, such as in the case of a neutron film badge. Based on the similarity between neutrons and radon, a film badge for radon has been recently proposed. The radon film badge, in addition to be similar, may be even identical to the neutron film badge. For these reasons, neutron measurements can be easily affected by the presence of unpredictable large radon concentration. In several cold fusion experiments, the CR-39 plastic films (typically used in radon and neutron film-badges), have been the detectors of choice for measuring neutrons. In this paper, attempts will be made to prove that most of these neutron-measurements might have been affected by the presence of large radon concentrations.

  16. Laser Intertial Fusion Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System

    SciTech Connect

    Kramer, Kevin James

    2010-04-08

    This study investigates the neutronics design aspects of a hybrid fusion-fission energy system called the Laser Fusion-Fission Hybrid (LFFH). A LFFH combines current Laser Inertial Confinement fusion technology with that of advanced fission reactor technology to produce a system that eliminates many of the negative aspects of pure fusion or pure fission systems. When examining the LFFH energy mission, a significant portion of the United States and world energy production could be supplied by LFFH plants. The LFFH engine described utilizes a central fusion chamber surrounded by multiple layers of multiplying and moderating media. These layers, or blankets, include coolant plenums, a beryllium (Be) multiplier layer, a fertile fission blanket and a graphite-pebble reflector. Each layer is separated by perforated oxide dispersion strengthened (ODS) ferritic steel walls. The central fusion chamber is surrounded by an ODS ferritic steel first wall. The first wall is coated with 250-500 μm of tungsten to mitigate x-ray damage. The first wall is cooled by Li17Pb83 eutectic, chosen for its neutron multiplication and good heat transfer properties. The Li17Pb83 flows in a jacket around the first wall to an extraction plenum. The main coolant injection plenum is immediately behind the Li17Pb83, separated from the Li17Pb83 by a solid ODS wall. This main system coolant is the molten salt flibe (2LiF-BeF2), chosen for beneficial neutronics and heat transfer properties. The use of flibe enables both fusion fuel production (tritium) and neutron moderation and multiplication for the fission blanket. A Be pebble (1 cm diameter) multiplier layer surrounds the coolant injection plenum and the coolant flows radially through perforated walls across the bed. Outside the Be layer, a fission fuel layer comprised of depleted uranium contained in Tristructural-isotropic (TRISO) fuel particles

  17. Cross Section Measurements of 12C+16O Fusion Reaction at Stellar Energies

    NASA Astrophysics Data System (ADS)

    Tan, Wanpeng; Fang, X.; Beard, M.; Gilardy, G.; Jung, H.; Liu, Q.; Lyons, S.; Robertson, D.; Setoodehnia, K.; Seymour, C.; Stech, E.; Vande Kolk, B.; Wiescher, M.; de Souza, R.; Hudan, S.; Singh, V.; Tang, X.; Uberseder, E.

    2016-09-01

    12C+16O is one of the three fusion reactions (12C+12C, 12C+16O, and 16O+16O) that play an important role at the late stage of stellar evolution in massive stars. The previous meassurements of its cross section at low energies rely on the singles measurements of either gamma rays or charged particles. New measurement was conducted for the 12C+16O reaction at Ecm = 3.64 - 4.93 MeV with the detection of both gammas and charged particles using the high intensity St ANA accelerator at the University of Notre Dame. The protons and alphas from the fusion evaporation were measured by a large area silicon strip detector array (SAND) while the gamma rays were detected by one large volume HPGe detector right after the target. Statistical model calculation were employed to interpret the experimental results. This provided a more reliable extrapolation for the 12C+16O fusion cross section, reducing substantially the uncertainty for stellar model simulations. This work was supported by the National Science Foundation through Grant Numbers PHY-1068192 and PHY-1419765 and the Joint Institute for Nuclear Astrophysics under Grant No. PHY-0822648.

  18. Stellar electron capture rates on neutron-rich nuclei and their impact on stellar core collapse

    NASA Astrophysics Data System (ADS)

    Raduta, Ad. R.; Gulminelli, F.; Oertel, M.

    2017-02-01

    During the late stages of gravitational core-collapse of massive stars, extreme isospin asymmetries are reached within the core. Due to the lack of microscopic calculations of electron-capture (EC) rates for all relevant nuclei, in general simple analytic parametrizations are employed. We study here several extensions of these parametrizations, allowing for a temperature, electron density, and isospin dependence as well as for odd-even effects. The latter extra degrees of freedom considerably improve the agreement with large-scale microscopic rate calculations. We find, in particular, that the isospin dependence leads to a significant reduction of the global EC rates during core collapse with respect to fiducial results, where rates optimized on calculations of stable f p -shell nuclei are used. Our results indicate that systematic microscopic calculations and experimental measurements in the N ≈50 neutron-rich region are desirable for realistic simulations of the core collapse.

  19. Misassigned neutron resonances of 142Nd and stellar neutron capture cross sections

    NASA Astrophysics Data System (ADS)

    Katabuchi, Tatsuya; Matsuhashi, Taihei; Terada, Kazushi; Igashira, Masayuki; Mizumoto, Motoharu; Hirose, Kentaro; Kimura, Atsushi; Iwamoto, Nobuyuki; Hara, Kaoru Y.; Harada, Hideo; Hori, Jun-ichi; Kamiyama, Takashi; Kino, Koichi; Kitatani, Fumito; Kiyanagi, Yoshiaki; Nakamura, Shoji; Toh, Yosuke

    2015-03-01

    Time-of-flight spectra of the neutron capture events of 142Nd were measured using a spallation neutron source at the Japan Proton Accelerator Research Complex. The first six resonances of 142Nd reported in a previous work were not observed. The experimental results and cross-search of resonance energies in nuclear data libraries suggested that resonances of the impurity nuclide 141Pr have been mistakenly assigned as 142Nd in the previous experiment. To investigate the impact of the nonexistence of the resonances on the s -process nucleosynthesis model, the Maxwellian averaged neutron capture cross sections with and without the misassigned resonances were compared.

  20. Allowed and unique first-forbidden stellar electron emission rates of neutron-rich copper isotopes

    NASA Astrophysics Data System (ADS)

    Majid, Muhammad; Nabi, Jameel-Un; Daraz, Gul

    2017-06-01

    The allowed charge-changing transitions are the most common weak interaction processes of spin-isospin form that play a crucial role in several nuclear/astrophysical processes. The first-forbidden (FF) transition becomes important, in the circumstances where allowed Gamow-Teller (GT) transitions are unfavored, specifically for neutron-rich nuclei due to phase space considerations. In this paper deformed proton-neutron quasi-particle random phase approximation (pn-QRPA) model is applied, for the first time, for the estimation of allowed GT and unique first-forbidden (U1F) transitions (|Δ J| = 2) of neutron rich copper isotopes in mass range 72 ≤ A ≤ 82 under stellar conditions. We compared our computed terrestrial β-decay half-life values with previous calculations and experimental results. It was concluded that the pn-QRPA calculation is in good accordance with measured data. Our study suggests that the addition of rank (0 and 1) operators in FF transitions can further improve the comparison which remain unattended at this stage. The deformed pn-QRPA model was employed for the estimation of GT and U1F stellar electron emission (β--decay) rates over wide range of stellar temperature (0.01 GK-30 GK) and density (10-10^{11} g/cm3) domains for astrophysical applications. Our study shows that, in high density and low temperature regions, the contribution of U1F rates to total electron emission rates of neutron-rich copper nuclei is negligible.

  1. Hans A. Bethe Prize Talk: Neutron stars and stellar collapse: the physics of strongly interacting Fermi systems

    NASA Astrophysics Data System (ADS)

    Pethick, C. J.

    2011-04-01

    The talk will touch on a number of themes in the application of many-body theory to neutron stars and stellar collapse. One of these will be the composition and equation of state of nuclear matter. Specific topics will include nuclei in neutron stars, superfluidity and superconductivity of nuclear matter, and inhomogeneous phases of nuclear matter. A second major theme will be neutrino processes in dense matter: neutrino emission is the most powerful cooling mechanism for young neutron stars, and rates of neutrino processes are a key ingredient in simulations of stellar collapse.

  2. FLUNG: coupled 35-group neutron and 21-group gamma ray, P/sub 3/ cross sections for fusion applications

    SciTech Connect

    Santoro, R.T.; Roussin, R.W.; Barnes, J.M.

    1981-06-01

    A 35-neutron, 21-gamma ray, P/sub 3/ cross section library for 63 nuclides is described. The library, called FLUNG (Fusion Library for Unshielded Neutron-Gamma-Ray Transport), was derived from the VITAMIN-C general purpose fine group library and is useful for the neutronic analysis of fusion reactors and other applications.

  3. Stellar neutron capture cross sections of Nd, Pm, and Sm isotopes

    SciTech Connect

    Toukan, K.A. ); Debus, K.; Kaeppeler, F. ); Reffo, G. )

    1995-03-01

    The neutron capture cross sections of [sup 146,148,150]Nd have been determined relative to that of gold by means of the activation method. The samples were irradiated in a quasistellar neutron spectrum for [ital kT]=25 keV using the [sup 7]Li([ital p],[ital n])[sup 7]Be reaction near threshold. Variation of the experimental conditions in different activations and the use of different samples allowed for the reliable determination of corrections and the evaluation of systematic uncertainties. The resulting stellar cross sections can be given with uncertainties around 6%, which represents a considerable improvement compared to previous measurements. These data are complemented by a new set of calculated cross sections for the unstable isotopes [sup 147]Nd, [sup 147,148,149]Pm, and [sup 151]Sm, which act as branching points in the [ital s]-process path. Based on these results, the [ital s]-process flow in the Nd-Pm-Sm region is discussed with respect to the neutron density during stellar helium burning and to isotopic anomalies in meteorites. The updated [ital s]-abundances are also used for a discussion of [ital r]- and [ital p]-process residuals.

  4. Viability of the ESS-Bilbao neutron source for irradiation of nuclear fusion materials

    NASA Astrophysics Data System (ADS)

    Páramo, A. R.; Sordo, F.; Perlado, J. M.; Rivera, A.

    2014-01-01

    The ESS-Bilbao neutron source, currently under construction, is conceived as a multipurpose facility. It will offer a fast neutron beam line for materials irradiation. In this paper we discuss the viability of ESS-Bilbao for experimental studies of fusion materials. Making use of the already designed target station we have calculated the neutron spectrum expected in the fast neutron line. Then, we have studied the neutron irradiation effects in two model materials: iron and silica. We have calculated the expected PKA (primary knock-on atom) spectra and light species production as well as the damage production in these materials. Regarding structural materials, we conclude that the ESS-Bilbao neutron irradiation facility will play a minor role due to the resulting low neutron fluxes (about two orders of magnitude lower than in fusion reactors). On the other hand, ESS-Bilbao turns out to be relevant for studies of final lenses in laser fusion power plants. A comparison with the conditions expected for HiPER final lenses shows that the fluxes will be only a factor 5 smaller in ESS-Bilbao and the PKA spectra will be very similar. Taking into account, in addition, that relevant effects on lenses occur from the onset of irradiation, we conclude that an appropriate irradiation cell with in situ characterisation techniques will make ESS-Bilbao very attractive for applied neutron damage studies of laser fusion final lenses. Finally, we compare ESS-Bilbao with other facilities.

  5. Fusion neutron source blanket: requirements for calculation accuracy and benchmark experiment precision

    NASA Astrophysics Data System (ADS)

    Zhirkin, A. V.; Alekseev, P. N.; Batyaev, V. F.; Gurevich, M. I.; Dudnikov, A. A.; Kuteev, B. V.; Pavlov, K. V.; Titarenko, Yu. E.; Titarenko, A. Yu.

    2017-06-01

    In this report the calculation accuracy requirements of the main parameters of the fusion neutron source, and the thermonuclear blankets with a DT fusion power of more than 10 MW, are formulated. To conduct the benchmark experiments the technical documentation and calculation models were developed for two blanket micro-models: the molten salt and the heavy water solid-state blankets. The calculations of the neutron spectra, and 37 dosimetric reaction rates that are widely used for the registration of thermal, resonance and threshold (0.25-13.45 MeV) neutrons, were performed for each blanket micro-model. The MCNP code and the neutron data library ENDF/B-VII were used for the calculations. All the calculations were performed for two kinds of neutron source: source I is the fusion source, source II is the source of neutrons generated by the 7Li target irradiated by protons with energy 24.6 MeV. The spectral indexes ratios were calculated to describe the spectrum variations from different neutron sources. The obtained results demonstrate the advantage of using the fusion neutron source in future experiments.

  6. Stellar neutron capture on 180 Tam . II. Defining the s -process contribution to nature's rarest isotope

    NASA Astrophysics Data System (ADS)

    Käppeler, F.; Arlandini, C.; Heil, M.; Voss, F.; Wisshak, K.; Reifarth, R.; Straniero, O.; Gallino, R.; Masera, S.; Travaglio, C.

    2004-05-01

    The contribution of the slow neutron capture process ( s process) to the solar 180 Tam abundance has been investigated on the basis of new experimental information. Measured neutron capture cross sections of 180 Tam and the corresponding Maxwellian averaged ( n,γ ) rates were important for defining the s abundance of 180 Tam , and the result of a recent photoactivation experiment was providing an estimate of its half-life at the temperatures of the s -process site. Following the s -process network with stellar evolutionary models from the premain sequence through the asymptotic giant branch phase, it was found that the produced 180 Tam survives the high temperatures during He shell flashes because of the fast convective mixing, which provides an efficient means for transporting freshly synthesized matter into cooler, outer zones. Accordingly, 180 Tam appears to be predominantly of s -process origin.

  7. Neutron capture cross section of unstable 63Ni: implications for stellar nucleosynthesis.

    PubMed

    Lederer, C; Massimi, C; Altstadt, S; Andrzejewski, J; Audouin, L; Barbagallo, M; Bécares, V; Bečvář, F; Belloni, F; Berthoumieux, E; Billowes, J; Boccone, V; Bosnar, D; Brugger, M; Calviani, M; Calviño, F; Cano-Ott, D; Carrapiço, C; Cerutti, F; Chiaveri, E; Chin, M; Colonna, N; Cortés, G; Cortés-Giraldo, M A; Diakaki, M; Domingo-Pardo, C; Duran, I; Dressler, R; Dzysiuk, N; Eleftheriadis, C; Ferrari, A; Fraval, K; Ganesan, S; García, A R; Giubrone, G; Gómez-Hornillos, M B; Gonçalves, I F; González-Romero, E; Griesmayer, E; Guerrero, C; Gunsing, F; Gurusamy, P; Jenkins, D G; Jericha, E; Kadi, Y; Käppeler, F; Karadimos, D; Kivel, N; Koehler, P; Kokkoris, M; Korschinek, G; Krtička, M; Kroll, J; Langer, C; Leeb, H; Leong, L S; Losito, R; Manousos, A; Marganiec, J; Martínez, T; Mastinu, P F; Mastromarco, M; Meaze, M; Mendoza, E; Mengoni, A; Milazzo, P M; Mingrone, F; Mirea, M; Mondelaers, W; Paradela, C; Pavlik, A; Perkowski, J; Pignatari, M; Plompen, A; Praena, J; Quesada, J M; Rauscher, T; Reifarth, R; Riego, A; Roman, F; Rubbia, C; Sarmento, R; Schillebeeckx, P; Schmidt, S; Schumann, D; Tagliente, G; Tain, J L; Tarrío, D; Tassan-Got, L; Tsinganis, A; Valenta, S; Vannini, G; Variale, V; Vaz, P; Ventura, A; Versaci, R; Vermeulen, M J; Vlachoudis, V; Vlastou, R; Wallner, A; Ware, T; Weigand, M; Weiß, C; Wright, T J; Zugec, P

    2013-01-11

    The 63Ni(n,γ) cross section has been measured for the first time at the neutron time-of-flight facility n_TOF at CERN from thermal neutron energies up to 200 keV. In total, capture kernels of 12 (new) resonances were determined. Maxwellian averaged cross sections were calculated for thermal energies from   kT=5-100  keV with uncertainties around 20%. Stellar model calculations for a 25M⊙ star show that the new data have a significant effect on the s-process production of 63Cu, 64Ni, and 64Zn in massive stars, allowing stronger constraints on the Cu yields from explosive nucleosynthesis in the subsequent supernova.

  8. Stellarators

    SciTech Connect

    Hartmann, D.A.

    2004-03-15

    Stellarators are toroidal devices where the required rotational transform of the magnetic field lines is generated by external field coils and not via an induced net toroidal plasma current. This confinement scheme has the advantages that, in principle, steady-state plasma operation is possible and that it does not have to brace itself against disruptions of a toroidal plasma current. At the cost of having to give up toroidal symmetry the properties of the stellarator field can be tailored to suit reactor needs. Research focuses on the plasma confinement properties of different stellarator fields and investigates the problems arising when one extrapolates to reactor parameters.

  9. Measurement and extrapolation of total cross sections of 12C+16O fusion at stellar energies

    NASA Astrophysics Data System (ADS)

    Fang, Xiao

    Carbon burning and oxygen burning in massive stars (M ≥ 8M[special character omitted]) are important burning phases in late stellar evolution following helium burning. They determined the nucleosynthesis phases and the initial matter distribution. Hydrostatic burning of 12C and 16O at lower temperatures remains an important feature. The critical reactions are the 12C+12C, 12C+ 16O and 16O+16O fusion processes. Extensive effort, both experimentally and theoretically, has been invested in the determination of the reaction rates for all reaction channels. Despite this effort, there remain large uncertainties in the predicted results that rely primarily on the extrapolation of the data into the Gamow range. The predicted results depend sensitively on the adopted model parameters, hindrance effects, and the possibility of resonances at relevant energies. The astrophysical important energy range of the 12C+12C fusion reaction spans from 1.0 MeV to 3.0 MeV. However, its cross section has not been determined with enough precision, despite numerous studies, due to the extremely low reaction cross sections and the large experimental background. The 12C+16O is difficult for experimental measurement due to the same reason. To allow measurements of the 12C+ 12C and 12C+16O fusions at astrophysical energies, a large-area silicon strip detector array was developed. The total cross section of the 12C+16O fusion has been measured at low energies using the St Ana 5MV accelerator at the University of Notre Dame. A high-intensity oxygen beam was produced impinging on a thick ultra-pure graphite target. Protons and gamma-rays have been measured simultaneously in the center-of-mass energy range of 3.64 to 4.93 MeV, using silicon and HPGe detectors. Statistical model calculations were employed to interpret the experimental results. This provides a more reliable extrapolation for the 12C+16O fusion cross section reducing substantially the uncertainty for stellar model simulations.

  10. A Freon-filled bubble chamber for neutron detection in inertial confinement fusion experiments

    NASA Astrophysics Data System (ADS)

    Ghilea, M. C.; Meyerhofer, D. D.; Sangster, T. C.

    2011-03-01

    Neutron imaging is one of the main methods used in inertial confinement fusion experiments to measure the core symmetry of target implosions. Previous studies have shown that bubble chambers have the potential to obtain higher resolution images of the targets for a shorter source-to-target distance than typical scintillator arrays. A bubble chamber for neutron imaging with Freon 115 as the active medium was designed and built for the OMEGA laser system. Bubbles resulting from spontaneous nucleation were recorded. Bubbles resulting from neutron-Freon interactions were observed at neutron yields of 1013 emitted from deuterium-tritium target implosions on OMEGA. The measured column bubble density was too low for neutron imaging on OMEGA but agreed with the model of bubble formation. The recorded data suggest that neutron bubble detectors are a promising technology for the higher neutron yields expected at National Ignition Facility.

  11. A Freon-filled bubble chamber for neutron detection in inertial confinement fusion experiments

    SciTech Connect

    Ghilea, M. C.; Meyerhofer, D. D.; Sangster, T. C.

    2011-03-15

    Neutron imaging is one of the main methods used in inertial confinement fusion experiments to measure the core symmetry of target implosions. Previous studies have shown that bubble chambers have the potential to obtain higher resolution images of the targets for a shorter source-to-target distance than typical scintillator arrays. A bubble chamber for neutron imaging with Freon 115 as the active medium was designed and built for the OMEGA laser system. Bubbles resulting from spontaneous nucleation were recorded. Bubbles resulting from neutron-Freon interactions were observed at neutron yields of 10{sup 13} emitted from deuterium-tritium target implosions on OMEGA. The measured column bubble density was too low for neutron imaging on OMEGA but agreed with the model of bubble formation. The recorded data suggest that neutron bubble detectors are a promising technology for the higher neutron yields expected at National Ignition Facility.

  12. A Freon-filled bubble chamber for neutron detection in inertial confinement fusion experiments.

    PubMed

    Ghilea, M C; Meyerhofer, D D; Sangster, T C

    2011-03-01

    Neutron imaging is one of the main methods used in inertial confinement fusion experiments to measure the core symmetry of target implosions. Previous studies have shown that bubble chambers have the potential to obtain higher resolution images of the targets for a shorter source-to-target distance than typical scintillator arrays. A bubble chamber for neutron imaging with Freon 115 as the active medium was designed and built for the OMEGA laser system. Bubbles resulting from spontaneous nucleation were recorded. Bubbles resulting from neutron-Freon interactions were observed at neutron yields of 10(13) emitted from deuterium-tritium target implosions on OMEGA. The measured column bubble density was too low for neutron imaging on OMEGA but agreed with the model of bubble formation. The recorded data suggest that neutron bubble detectors are a promising technology for the higher neutron yields expected at National Ignition Facility.

  13. Microscopic dynamics simulations of heavy-ion fusion reactions induced by neutron-rich nuclei

    NASA Astrophysics Data System (ADS)

    Wang, Ning; Ou, Li; Zhang, Yingxun; Li, Zhuxia

    2014-06-01

    The heavy-ion fusion reactions induced by neutron-rich nuclei are investigated with the improved quantum molecular dynamics (ImQMD) model. With a subtle consideration of the neutron skin thickness of nuclei and the symmetry potential, the stability of nuclei and the fusion excitation functions of heavy-ion fusion reactions O16 + Ge76, O16 + Sm154, Ca40 + Zr96, and Sn132 + Ca40 are systematically studied. The fusion cross sections of these reactions at energies around the Coulomb barrier can be well reproduced by using the ImQMD model. The corresponding slope parameter of the symmetry energy adopted in the calculations is L ≈78 MeV and the surface energy coefficient is gsur=18±1.5 MeV fm2. In addition, it is found that the surface-symmetry term significantly influences the fusion cross sections of neutron-rich fusion systems. For sub-barrier fusion, the dynamical fluctuations in the densities of the reaction partners and the enhanced surface diffuseness at neck side result in the lowering of the fusion barrier.

  14. Analysis of the neutron time-of-flight spectra from inertial confinement fusion experiments

    DOE PAGES

    Hatarik, R.; Sayre, D. B.; Caggiano, J. A.; ...

    2015-11-12

    For a long time, neutron time-of-flight diagnostics been used to characterize the neutron spectrum produced by inertial confinement fusion experiments. The primary diagnostic goals are to extract the d+t→n+α (DT) and d+d→n+³He (DD) neutron yields and peak widths, and the amount DT scattering relative to its unscattered yield, which is also known as the down-scatter ratio (DSR). These quantities are used to infer yield weighted plasma conditions, such as ion temperature (Tion) and cold fuel areal density. We explain such novel methodologies used to determine neutron yield, apparent Tion and DSR.

  15. Analysis of the neutron time-of-flight spectra from inertial confinement fusion experiments

    SciTech Connect

    Hatarik, R.; Sayre, D. B.; Caggiano, J. A.; Phillips, T.; Eckart, M. J.; Bond, E. J.; Cerjan, C.; Grim, G. P.; Hartouni, E. P.; Knauer, J. P.; Mcnaney, J. M.; Munro, D. H.

    2015-11-12

    For a long time, neutron time-of-flight diagnostics been used to characterize the neutron spectrum produced by inertial confinement fusion experiments. The primary diagnostic goals are to extract the d+t→n+α (DT) and d+d→n+³He (DD) neutron yields and peak widths, and the amount DT scattering relative to its unscattered yield, which is also known as the down-scatter ratio (DSR). These quantities are used to infer yield weighted plasma conditions, such as ion temperature (Tion) and cold fuel areal density. We explain such novel methodologies used to determine neutron yield, apparent Tion and DSR.

  16. Microscopic Sub-Barrier Fusion Calculations for the Neutron Star Crust

    SciTech Connect

    Umar, A. S.; Oberacker, V. E,; Horowitz, C. J.

    2012-01-01

    Fusion of very neutron-rich nuclei may be important to determine the composition and heating of the crust of accreting neutron stars. Fusion cross sections are calculated using time-dependent Hartree-Fock theory coupled with density-constrained Hartree-Fock calculations to deduce an effective potential. Systems studied include 16O+16O, 16O+24O, 24O+24O, 12C+16O, and 12C+24O. We find remarkable agreement with experimental cross sections for the fusion of stable nuclei. Our simulations use the SLy4 Skyrme force that has been previously fit to the properties of stable nuclei, and no parameters have been fit to fusion data. We compare our results to the simple S o Paulo static barrier penetration model. For the asymmetric systems 12C+24O or 16O+24O we predict an order of magnitude larger cross section than those predicted by the S o Paulo model. This is likely due to the transfer of neutrons from the very neutron rich nucleus to the stable nucleus and dynamical rearrangements of the nuclear densities during the collision process. These effects are not included in potential models. This enhancement of fusion cross sections, for very neutron rich nuclei, can be tested in the laboratory with radioactive beams.

  17. Fusion-neutron-yield, activation measurements at the Z accelerator: design, analysis, and sensitivity.

    PubMed

    Hahn, K D; Cooper, G W; Ruiz, C L; Fehl, D L; Chandler, G A; Knapp, P F; Leeper, R J; Nelson, A J; Smelser, R M; Torres, J A

    2014-04-01

    We present a general methodology to determine the diagnostic sensitivity that is directly applicable to neutron-activation diagnostics fielded on a wide variety of neutron-producing experiments, which include inertial-confinement fusion (ICF), dense plasma focus, and ion beam-driven concepts. This approach includes a combination of several effects: (1) non-isotropic neutron emission; (2) the 1/r(2) decrease in neutron fluence in the activation material; (3) the spatially distributed neutron scattering, attenuation, and energy losses due to the fielding environment and activation material itself; and (4) temporally varying neutron emission. As an example, we describe the copper-activation diagnostic used to measure secondary deuterium-tritium fusion-neutron yields on ICF experiments conducted on the pulsed-power Z Accelerator at Sandia National Laboratories. Using this methodology along with results from absolute calibrations and Monte Carlo simulations, we find that for the diagnostic configuration on Z, the diagnostic sensitivity is 0.037% ± 17% counts/neutron per cm(2) and is ∼ 40% less sensitive than it would be in an ideal geometry due to neutron attenuation, scattering, and energy-loss effects.

  18. Preliminary magnet design for a stellarator fusion reactor. [UWTOR-M reactor

    SciTech Connect

    Van Sciver, S.W.; Derr, J.; Shalil, A.; Sviatoslavsky, I.N.

    1981-09-01

    Conceptual design of the superconducting magnets for a stellarator fusion power reactor UWTOR-M are presented. The emphasis in the magnet design is toward modularity and maintainability by approximating the continuous helical coil geometry with a number of discrete windings. Magnetic field requirements are reasonable (B/sub max/ approximately 10 T) allowing for modest extrapolations of present technology. The unique features of the design are: (1) use of NbTiTa with superfluid helium cooling to achieve high current density cryo-stability; (2) a monolithic conductor, made possible by the lack of pulsed magnetic fields; and (3) an innovative construction technique required by nonaxisymmetric geometry of the magnets. 8 refs.

  19. Neutronization of matter in a stellar core and convection during gravitational collapse

    NASA Astrophysics Data System (ADS)

    Aksenov, A. G.; Chechetkin, V. M.

    2016-07-01

    The roles of neutrinos and convective instability in collapsing supernovae are considered. Spherically symmetrical computations of the collapse using the Boltzmann equation for the neutrinos lead to the formation of the condition of convective instability, {( {{partial P}/{partial s}} )_{ρ {Y_l}}}{ds}/{dr} + {( {{partial P}/{partial {Y_L}}} )_{ρ s}}{d{Y_L}}/{dr} < 0, in a narrow region of matter accretion above the neutrinosphere. If instability arises in this region, the three-dimensional solution will represent a correction to the spherically symmetrical solution for the gravitational collapse. The mean neutrino energies change only negligibly in the narrow region of accretion. Nuclear statistical equilibrium is usually assumed in the hot proto-neutron stellar core, to simplify the computations of the collapse. Neutronization with the participation of free neutrons is most efficient. However, the decay of nuclei into nucleons is hindered during the collapse, because the density grows too rapidly compared to the growth in the temperature, and an appreciable fraction of the energy is carried away by neutrinos. The entropy of the matter per nucleon is modest at the stellar center. All the energy is in degenerate electrons during the collapse. If the large energy of these degenerate electrons is taken into account, neutrons are efficiently formed, even in cool matter with reduced Y e (the difference between the numbers of electrons and positrons per nucleon). This process brings about an increase in the optical depth to neutrinos, the appearance of free neutrons, and an increase in the entropy per nucleon at the center. The convectively unstable region at the center increases. The development of large-scale convection is illustrated using a multi-dimensional gas-dynamical model for the evolution of a stationary, unstable state (without taking into account neutrino transport). The time for the development of convective instability (several milliseconds) does not

  20. A Freon-Filled Bubble Chamber for Neutron Detection in Inertial Confinement Fusion Experiments

    SciTech Connect

    Ghilea, M.C.; Meyerhofer, D.D.; Sangster, T.C.

    2011-03-24

    Neutron imaging is one of the main methods used in inertial confinement fusion experiments to measure the core symmetry of target implosions. Previous studies have shown that bubble chambers have the potential to obtain higher resolution images of the targets for a shorter source-to-target distance than typical scintillator arrays. A bubble chamber for neutron imaging with Freon 115 as the active medium was designed and built for the OMEGA laser system. Bubbles resulting from spontaneous nucleation were recorded. Bubbles resulting from neutron–Freon interactions were observed at neutron yields of 1013 emitted from deuterium–tritium target implosions on OMEGA. The measured column bubble density was too low for neutron imaging on OMEGA but agreed with the model of bubble formation. The recorded data suggest that neutron bubble detectors are a promising technology for the higher neutron yields expected at National Ignition Facility.

  1. Neutron spectroscopy on TFTR (Tokamak Fusion Test Reactor)

    SciTech Connect

    Nishitani, T.; Strachan, J.D.

    1988-05-01

    This paper describes the use of an /sup 3/He ionization chamber for neutron spectroscopy on TFTR during 1987. The ion temperature was measured using neutron spectroscopy for one set of ohmically heated plasmas. The deduced ion temperatures agreed to within 20% with those measured by other diagnostics. 11 refs., 11 figs., 1 tab.

  2. Neutronics shielding analysis for the end plug of a tandem mirror fusion reactor

    SciTech Connect

    Ragheb, M M.H.; Maynard, C W

    1981-01-01

    A neutronics analysis using the Monte Carlo method is carried out for the end-plug penetration and magnet system of a tandem mirror fusion reactor. Detailed penetration and magnet three-dimensional configurations are modelled. A method of position dependent angular source biasing is developed to adequately sample the DT fusion source in the central cell region and obtain flux contributions at the penetration components.

  3. Numerical study of neutron beam divergence in a beam-fusion scenario employing laser driven ions

    NASA Astrophysics Data System (ADS)

    Alejo, A.; Green, A.; Ahmed, H.; Robinson, A. P. L.; Cerchez, M.; Clarke, R.; Doria, D.; Dorkings, S.; Fernandez, J.; McKenna, P.; Mirfayzi, S. R.; Naughton, K.; Neely, D.; Norreys, P.; Peth, C.; Powell, H.; Ruiz, J. A.; Swain, J.; Willi, O.; Borghesi, M.; Kar, S.

    2016-09-01

    The most established route to create a laser-based neutron source is by employing laser accelerated, low atomic-number ions in fusion reactions. In addition to the high reaction cross-sections at moderate energies of the projectile ions, the anisotropy in neutron emission is another important feature of beam-fusion reactions. Using a simple numerical model based on neutron generation in a pitcher-catcher scenario, anisotropy in neutron emission was studied for the deuterium-deuterium fusion reaction. Simulation results are consistent with the narrow-divergence (∼ 70 ° full width at half maximum) neutron beam recently served in an experiment employing multi-MeV deuteron beams of narrow divergence (up to 30° FWHM, depending on the ion energy) accelerated by a sub-petawatt laser pulse from thin deuterated plastic foils via the Target Normal Sheath Acceleration mechanism. By varying the input ion beam parameters, simulations show that a further improvement in the neutron beam directionality (i.e. reduction in the beam divergence) can be obtained by increasing the projectile ion beam temperature and cut-off energy, as expected from interactions employing higher power lasers at upcoming facilities.

  4. A D-D/D-T fusion reaction based neutron generator system for liver tumor BNCT

    SciTech Connect

    Koivunoro, H.; Lou, T.P.; Leung, K. N.; Reijonen, J.

    2003-04-02

    Boron-neutron capture therapy (BNCT) is an experimental radiation treatment modality used for highly malignant tumor treatments. Prior to irradiation with low energetic neutrons, a 10B compound is located selectively in the tumor cells. The effect of the treatment is based on the high LET radiation released in the {sup 10}B(n,{alpha}){sup 7}Li reaction with thermal neutrons. BNCT has been used experimentally for brain tumor and melanoma treatments. Lately applications of other severe tumor type treatments have been introduced. Results have shown that liver tumors can also be treated by BNCT. At Lawrence Berkeley National Laboratory, various compact neutron generators based on D-D or D-T fusion reactions are being developed. The earlier theoretical studies of the D-D or D-T fusion reaction based neutron generators have shown that the optimal moderator and reflector configuration for brain tumor BNCT can be created. In this work, the applicability of 2.5 MeV neutrons for liver tumor BNCT application was studied. The optimal neutron energy for external liver treatments is not known. Neutron beams of different energies (1eV < E < 100 keV) were simulated and the dose distribution in the liver was calculated with the MCNP simulation code. In order to obtain the optimal neutron energy spectrum with the D-D neutrons, various moderator designs were performed using MCNP simulations. In this article the neutron spectrum and the optimized beam shaping assembly for liver tumor treatments is presented.

  5. Sub-barrier fusion calculations for the neutron star crust using the microscopic Brueckner G -matrix and Skyrme energy density functionals

    NASA Astrophysics Data System (ADS)

    Rashdan, M.

    2015-05-01

    Sub-barrier fusion cross sections for reactions involving stable and very neutron-rich nuclei, which may be important in determining the composition and heating of the crust of accreting neutron stars, are calculated using internuclear potentials derived from the microscopic Brueckner G -matrix and Skyrme SKM* and SLy4 energy density functionals. Microscopic Skyrme-Hartree-Fock proton and neutron density distributions are used. No parameters have been fit to fusion data. Calculations are performed for the isotopic reactions 16O+16O,16O+24O,16O+28O,24O+24O,12C+16O,12C+24O , and 12C+12C , which are of great astrophysical importance for the understanding of the time scale and the nucleosynthesis during late stellar evolution. The coupling to the low lying excited states is considered through the ccfull code. I compare my results with the time-dependent-Hartree-Fock calculations and with the São Paulo model as well as the experimental data. I found a remarkable agreement with the fusion cross sections for stable nuclei.

  6. Upgrade of the IGN-14 neutron generator for research on detection of fusion-plasma products

    NASA Astrophysics Data System (ADS)

    Igielski, Andrzej; Kurowski, Arkadiusz; Janik, Władysław; Gabańska, Barbara; Woźnicka, Urszula

    2015-10-01

    The fast neutron generator (IGN-14) at the Institute of Nuclear Physics of the Polish Academy of Sciences (IFJ PAN) in Kraków (Poland) is a laboratory multi-purpose experimental device. Neutrons are produced in a beam-target D-D or D-T reactions. A new vacuum chamber installed directly to the end of the ion guide of IGN-14 makes it possible to measure not only neutrons but also alpha particles in the presence of a mixed radiation field of other accompanying reaction products. The new experimental setup allows test detectors dedicated to spectrometric measurements of thermonuclear fusion reaction products.

  7. Benchmarking of the FENDL-3 Neutron Cross-section Data Starter Library for Fusion Applications

    SciTech Connect

    Fischer, U.; Angelone, M.; Bohm, T.; Kondo, K.; Konno, C.; Sawan, M.; Villari, R.; Walker, B.

    2014-06-15

    This paper summarizes the benchmark analyses performed in a joint effort of ENEA (Italy), JAEA (Japan), KIT (Germany), and the University of Wisconsin (USA) on a computational ITER benchmark and a series of 14 MeV neutron benchmark experiments. The computational benchmark revealed a modest increase of the neutron flux levels in the deep penetration regions and a substantial increase of the gas production in steel components. The comparison to experimental results showed good agreement with no substantial differences between FENDL-3.0 and FENDL-2.1 for most of the responses. In general, FENDL-3 shows an improved performance for fusion neutronics applications.

  8. Compact Intense Neutron Generators Based on Inertial Electrostatic Confinement of D-D Fusion Plasmas

    NASA Astrophysics Data System (ADS)

    Masuda, K.; Inoue, K.; Kajiwara, T.; Nakamatsu, R.

    2015-10-01

    A neutron generator based on inertial electrostatic confinement (IEC) of fusion plasmas is being developed for a non-destructive inspection system of special nuclear materials hidden in sea containers. The new IEC device is equipped with a multistage feedthrough which was designed aiming at both capability of a high bias voltage and enhancement of ion recirculation by modification of electric fields in the IEC device. Experimental comparison was made with a conventional single-stage IEC device developed in an earlier work. As the results, both the increase in the applied voltage and the modified field symmetry by the new multistage scheme showed significant enhancement in the neutron output. As a consequence, neutron output per input discharge current was enhanced drastically by a factor of ~30 in total. Also, the first pulsing experiments of the newly developed IEC neutron generator showed pulsed neutron output with a rapid pulse fall-off of ~ 1 μsec successfully.

  9. Development of High Intensity D-T fusion NEutron Generator (HINEG)

    NASA Astrophysics Data System (ADS)

    Wu, Yican; Liu, Chao; Song, Gang; Wang, Yongfeng; Li, Taosheng; Jiang, Jieqiong; Song, Yong; Ji, Xiang

    2017-09-01

    A high intensity D-T fusion neutron generator (HINEG) is keenly needed for the research and development (R&D) of nuclear technology and safety of the advanced nuclear energy system, especially for the radiation protection and shielding. The R&D of HINEG includes two phases: HINEG-I and HINEG-II. HINEG-I is designed to have both the steady beam and pulsed beam. The neutron yield of the steady beam is up to 1012 n/s. The width of pulse neutron beam is less than 1.5 ns. HINEG-I is used for the basic neutronics study, such as measurement of nuclear data, validation of neutronics methods and software, validation of radiation protection and so on. HINEG-II aims to generate a high neutron yield of 1013 n/s neutrons by adopting high speed rotating tritium target system integrated with jet/spray array enhanced cooling techniques, and can further upgrade to obtain neutron yield of 1014 1015n/s by using of accelerators-array in a later stage. HINEG-II can be used for fundamentals research of nuclear technology including mechanism of materials radiation damage and neutronics performance of components, radiation shielding as well as other nuclear technology applications.

  10. Proton recoil telescope based on diamond detectors for measurement of fusion neutrons

    SciTech Connect

    Caiffi, Barbara; Taiuti, Mauro; Osipenko, Mikhail; Ripani, Marco; Pillon, Mario

    2015-07-01

    Diamonds are very promising candidates for the neutron diagnostics in harsh environments such as fusion reactor. In the first place this is because of their radiation hardness, exceeding that of Silicon by an order of magnitude. Also, in comparison to the standard on-line neutron diagnostics (fission chambers, silicon based detectors, scintillators), diamonds are less sensitive to γ rays, which represent a huge background in fusion devices. Finally, their low leakage current at high temperature suppresses the detector intrinsic noise. In this talk a CVD diamond based detector has been proposed for the measurement of the 14 MeV neutrons from D-T fusion reaction. The detector was arranged in a proton recoil telescope configuration, featuring a plastic converter in front of the sensitive volume in order to induce the (n,p) reaction. The segmentation of the sensitive volume, achieved by using two crystals, allowed to perform measurements in coincidence, which suppressed the neutron elastic scattering background. A preliminary prototype was assembled and tested at FNG (Frascati Neutron Generator, ENEA), showing promising results regarding efficiency and energy resolution. (authors)

  11. Impact of temperature-velocity distribution on fusion neutron peak shape

    DOE PAGES

    Munro, D. H.; Field, J. E.; Hatarik, R.; ...

    2017-02-21

    Doppler broadening of the 14 MeV DT and 2.45 MeV DD fusion neutron lines has long been our best measure of temperature in a burning plasma. At the National Ignition Facility (NIF), yields are high enough and our neutron spectrometers accurate enough that we see finer details of the peak shape. For example, we can measure the shift of the peak due to the bulk motion of the plasma, and we see indications of non-thermal broadening, skew, and kurtosis of the peak caused by the variations of temperature and fluid velocity during burn. We can also distinguish spectral differences amongmore » several lines of sight. Finally, this paper will review the theory of fusion neutron line shape, show examples of non-Gaussian line shapes and directional variations in NIF data, and describe detailed spectral shapes we see in radiation-hydrodynamics simulations of implosions.« less

  12. Research and Development of Compact Neutron Sources based on Inertial Electrostatic Confinement Fusion

    SciTech Connect

    Masuda, Kai; Yoshikawa, Kiyoshi; Nagasaki, Kazunobu; Takamatsu, Teruhisa; Fujimoto, Takeshi; Nakagawa, Tomoya; Kajiwara, Taiju; Misawa, Tsuyoshi; Shiroya, Seiji; Takahashi, Yoshiyuki

    2009-03-10

    Recent progress is described in the research and development of an inertial-electrostatic confinement fusion (IECF) device. Use of a water-cooling jacket with non-uniform thickness shows promising success for landmine detection application, such as effective channeling of neutron flux toward the target and a very stable dc yield in excess of 10{sup 7} D-D neutrons/sec. Addition of an ion source to the conventional glow-discharge-driven IECF enhances the converging deuterium ion energy distribution by allowing a lower operating gas pressure. Improvement in normalized neutron yield, which corresponds to the fusion cross-section averaged over the device radius, by a factor often has been observed.

  13. Impact of temperature-velocity distribution on fusion neutron peak shape

    NASA Astrophysics Data System (ADS)

    Munro, D. H.; Field, J. E.; Hatarik, R.; Peterson, J. L.; Hartouni, E. P.; Spears, B. K.; Kilkenny, J. D.

    2017-05-01

    Doppler broadening of the 14 MeV DT and 2.45 MeV DD fusion neutron lines has long been our best measure of temperature in a burning plasma. At the National Ignition Facility (NIF), yields are high enough and our neutron spectrometers accurate enough that we see finer details of the peak shape. For example, we can measure the shift of the peak due to the bulk motion of the plasma, and we see indications of non-thermal broadening, skew, and kurtosis of the peak caused by the variations of temperature and fluid velocity during burn. We can also distinguish spectral differences among several lines of sight. This paper will review the theory of fusion neutron line shape, show examples of non-Gaussian line shapes and directional variations in NIF data, and describe detailed spectral shapes we see in radiation-hydrodynamics simulations of implosions.

  14. Analysis of primary damage in silicon carbide under fusion and fission neutron spectra

    NASA Astrophysics Data System (ADS)

    Guo, Daxi; Zang, Hang; Zhang, Peng; Xi, Jianqi; Li, Tao; Ma, Li; He, Chaohui

    2014-12-01

    Irradiation parameters on primary damage states of SiC are evaluated and compared for the first wall of ITER under deuterium-deuterium (DD) and deuterium-tritium (DT) operation, the high temperature gas-cooled reactor (HTGR) and high flux isotope reactor (HFIR). With the same neutron fluence, the studied fusion spectra produce more damage and much higher gas production than the fission spectra. Due to comparable gas production and similar weighted primary recoil spectra, HFIR is considered suitable to simulate the neutron irradiation in an HTGR. In contrast to the significant differences between the weighted primary recoil spectra of the fission and the fusion spectra, the weighted secondary recoil spectra of HFIR and HTGR match those of DD and DT, indicating that displacement cascades by the fission and the fusion irradiation are similar when the damage distribution among damaged regions by secondary recoils is taken into account.

  15. Conceptual design for a modular-stellarator fusion-reactor magnet

    SciTech Connect

    Van Sciver, S.W.; Khalil, A.; Yuan, K.Y.; Sviatoslavsky, I.N.

    1981-10-01

    The present report summarizes the design of a modular stellarator fusion reactor UWTOR-M by the University of Wisconsin. The reactor configuration employs 18 twisted toroidal field coils with a major radius of 24.1 m, a minor radius of 4.77 m and a field of 5.5 tesla on axis. The total energy stored in the coil set is 190 GJ. A 10 kA monolithic conductor of NbTi/NbTiTa in copper has a design current density of 3200 Amp/cm/sup 2/ and an overall current density of 2045 Amp/cm/sup 2/ across the winding cross section. The conductor is bath cooled with pressurized superfluid helium to achieve high current density cryostability. The coil case is a stainless steel structure designed to withstand bending moments resulting from self force on the individual coil and the interactive force between adjacent coils. Force components in the radial, poloidal and toroidal directions are calculated for the individual coils using EFFI. Typical values of the maximum force are 90, 100 and 120 MN/m. The net centering force on each coil is 245 MN inward. These loads are transferred through fiberglass composite struts to a room temperature central concrete column. A stress analysis is carried out on the coils in order to optimize the structural requirements.

  16. Experimental investigation of opacity models for stellar interior, inertial fusion, and high energy density plasmas

    SciTech Connect

    Bailey, J. E.; Rochau, G. A.; Mancini, R. C.; Iglesias, C. A.; MacFarlane, J. J.; Golovkin, I. E.; Blancard, C.; Cosse, Ph.; Faussurier, G.

    2009-05-15

    Theoretical opacities are required for calculating energy transport in plasmas. In particular, understanding stellar interiors, inertial fusion, and Z pinches depends on the opacities of mid-atomic-number elements over a wide range of temperatures. The 150-300 eV temperature range is particularly interesting. The opacity models are complex and experimental validation is crucial. For example, solar models presently disagree with helioseismology and one possible explanation is inadequate theoretical opacities. Testing these opacities requires well-characterized plasmas at temperatures high enough to produce the ion charge states that exist in the sun. Typical opacity experiments heat a sample using x rays and measure the spectrally resolved transmission with a backlight. The difficulty grows as the temperature increases because the heating x-ray source must supply more energy and the backlight must be bright enough to overwhelm the plasma self-emission. These problems can be overcome with the new generation of high energy density (HED) facilities. For example, recent experiments at Sandia's Z facility [M. K. Matzen et al., Phys. Plasmas 12, 055503 (2005)] measured the transmission of a mixed Mg and Fe plasma heated to 156{+-}6 eV. This capability will also advance opacity science for other HED plasmas. This tutorial reviews experimental methods for testing opacity models, including experiment design, transmission measurement methods, accuracy evaluation, and plasma diagnostics. The solar interior serves as a focal problem and Z facility experiments illustrate the techniques.

  17. Damage parameter comparison for candidate intense neutron test facilities for fusion materials

    SciTech Connect

    Doran, D.G.; Greenwood, L.R. ); Mann, F.M. )

    1990-07-31

    It is recognized worldwide that an intense source of fusion energy neutrons is needed to evaluate candidate fusion materials. At an International Energy Agency (IEA) workshop held in San Diego in February 1989, an Evaluation Panel recommended that three neutron source concepts be developed further. The panel also recommended that further comparisons were needed of their irradiation environments. In this paper, a comparison is made of damage parameters for beryllium, carbon, silicon, vanadium, iron, copper, molybdenum, and tungsten irradiated in spectra characteristic of di-Li, spallation, and beam-plasma (d-t) neutron sources and in a reference DEMO first wall spectrum. The treatment of neutron-induced displacement reactions is confined to the region below 20 MeV and transmutation reactions to below 50 MeV by the limited availability of calculational tools. The spallation spectrum is relatively soft; less than 2% of the neutrons are above 50 MeV. The transmutation results emphasize the need to define the neutron spectra at low, as well as high, energies; only the DEMO spectrum is adequate in this respect. Recommendations are given for further work to be performed under an international working group. 12 refs., 2 figs., 3 tabs.

  18. High-flux source of fusion neutrons for material and component testing

    SciTech Connect

    Baldwin, D. E.; Hooper, E. B.; Ryutov, D. D.; Thomassen, K. I.

    1999-01-07

    The inner part of a fusion reactor will have to operate at very high neutron loads. In steady-state reactors the minimum fluence before the scheduled replacement of the reactor core should be at least l0-15 Mw.yr/m2. A more frequent replacement of the core is hardly compatible with economic constraints. A most recent summary of the discussions of these issues is presented in Ref. [l]. If and when times come to build a commercial fusion reactor, the availability of information on the behavior of materials and components at such fluences will become mandatory for making a final decision. This makes it necessary an early development and construction of a neutron source for fusion material and component testing. In this paper, we present information on one very attractive concept of such a source: a source based on a so called Gas Dynamic Trap. This neutron source was proposed in the mid 1980s (Ref. [2]; see also a survey [3] with discussion of the early stage of the project). Since then, gradual accumulation of the relevant experimental information on a modest-scale experimental facility GDT at Novosibirsk, together with a continuing design activity, have made initial theoretical considerations much more credible. We believe that such a source can be built within 4 or 5 years. Of course, one should remember that there is a chance for developing steady-state reactors with a liquid (and therefore continuously renewable) first wall [4], which would also serve as a tritium breeder. In this case, the need in the neutron testing will become less pressing. However, it is not clear yet that the concept of the flowing wall will be compatible with all types of steady-state reactors. It seems therefore prudent to be prepared to the need of a quick construction of a neutron source. It should also be mentioned that there exist projects of the accelerator-based neutron sources (e.g., [5]). However, they generally have two major disadvantages: a wrong neutron spectrum

  19. Need for and requirements for neutron irradiation facility for fusion materials testing

    SciTech Connect

    Ishino, S.; Schiller, P.; Rowcliffe, A.F.

    1989-01-01

    The construction and operation of an intense 14MeV neutron source is essential for the development and eventual qualification of structural materials for a fusion reactor demonstration plant (DEMO). Because of the time required for materials developed and the scale-up of materials to commercial production, a decision to build a neutron source should precede engineering design activities for a DEMO by at least 20 years. The characteristic features of 14MeV neutron damage are summarized including effects related to cascade structure, transmutation production, and dose rate. The importance of a 14MeV neutron source for addressing fundamental radiation damage issues, alloy development activities and the development of an engineering data bases is discussed. From these considerations the basic requirements and machine parameters are derived. 14 refs., 5 figs., 5 tabs.

  20. 3D Neutronic Analysis in MHD Calculations at ARIES-ST Fusion Reactors Systems

    NASA Astrophysics Data System (ADS)

    Hançerliogulları, Aybaba; Cini, Mesut

    2013-10-01

    In this study, we developed new models for liquid wall (FW) state at ARIES-ST fusion reactor systems. ARIES-ST is a 1,000 MWe fusion reactor system based on a low aspect ratio ST plasma. In this article, we analyzed the characteristic properties of magnetohydrodynamics (MHD) and heat transfer conditions by using Monte-Carlo simulation methods (ARIES Team et al. in Fusion Eng Des 49-50:689-695, 2000; Tillack et al. in Fusion Eng Des 65:215-261, 2003) . In fusion applications, liquid metals are traditionally considered to be the best working fluids. The working liquid must be a lithium-containing medium in order to provide adequate tritium that the plasma is self-sustained and that the fusion is a renewable energy source. As for Flibe free surface flows, the MHD effects caused by interaction with the mean flow is negligible, while a fairly uniform flow of thick can be maintained throughout the reactor based on 3-D MHD calculations. In this study, neutronic parameters, that is to say, energy multiplication factor radiation, heat flux and fissile fuel breeding were researched for fusion reactor with various thorium and uranium molten salts. Sufficient tritium amount is needed for the reactor to work itself. In the tritium breeding ratio (TBR) >1.05 ARIES-ST fusion model TBR is >1.1 so that tritium self-sufficiency is maintained for DT fusion systems (Starke et al. in Fusion Energ Des 84:1794-1798, 2009; Najmabadi et al. in Fusion Energ Des 80:3-23, 2006).

  1. Subaru/HDS study of CH stars: elemental abundances for stellar neutron-capture process studies

    NASA Astrophysics Data System (ADS)

    Goswami, Aruna; Aoki, Wako; Karinkuzhi, Drisya

    2016-01-01

    A comprehensive abundance analysis providing rare insight into the chemical history of lead stars is still lacking. We present results from high-resolution (R ˜ 50 000) spectral analyses of three CH stars, HD 26, HD 198269 and HD 224959, and, a carbon star with a dusty envelope, HD 100764. Previous studies on these objects are limited by both resolution and wavelength regions and the results differ significantly from each other. We have undertaken to reanalyse the chemical composition of these objects based on high-resolution Subaru spectra covering the wavelength regions 4020-6775 Å. Considering local thermodynamic equilibrium and using model atmospheres, we have derived the stellar parameters, the effective temperatures Teff, surface gravities log g, and metallicities [Fe/H] for these objects. The derived parameters for HD 26, HD 100764, HD 198269 and HD 224959 are (5000, 1.6, -1.13), (4750, 2.0 -0.86), (4500, 1.5, -2.06) and (5050, 2.1, -2.44), respectively. The stars are found to exhibit large enhancements of heavy elements relative to iron in conformity to previous studies. Large enhancement of Pb with respect to iron is also confirmed. Updates on the elemental abundances for several s-process elements (Y, Zr, La, Ce, Nd, Sm and Pb) along with the first-time estimates of abundances for a number of other heavy elements (Sr, Ba, Pr, Eu, Er and W) are reported. Our analysis suggests that neutron-capture elements in HD 26 primarily originate in the s-process while the major contributions to the abundances of neutron-capture elements in the more metal-poor objects HD 224959 and HD 198269 are from the r-process, possibly from materials that are pre-enriched with products of the r-process.

  2. Inference of total DT fusion neutron yield from prompt gamma-ray measurements at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Church, J. A.; Herrmann, H. W.; Stoeffl, W.; Caggiano, J. A.; Cerjan, C.; Sayre, D.

    2014-10-01

    Prompt D-T fusion gamma-rays measured at the National Ignition Facility (NIF) with the Gamma-ray Reaction History detector (GRH) have been used recently to infer the total DT fusion neutron yield of inertial confinement fusion (ICF) implosions. DT fusion produces energetic gamma-rays (16.75 MeV) with a small branching ratio of approximately (4.2 +/- 2.0)e-5 γ/n. While the large error bar precludes use of the branching ratio for an accurate yield determination, the gamma-rays themselves provide the most unperturbed measure of fusion burn and can be used for such a purpose. A cross-calibration for the DT fusion gamma-ray to neutron signal is obtained via low areal density exploding pusher implosions which have mostly unperturbed neutron and gamma-ray signals. The calibration is then used to infer total DT neutron yield from gamma-ray measurements on high areal-density, cryogenically layered implosions in which neutrons are heavily down-scattered (up to 30%). Furthermore, the difference between the gamma-ray inferred total DT yield and the primary neutron yield (unscattered neutrons) can be used to estimate the total down-scatter fraction. Error analysis and comparison of yield values will be presented. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, LLNL-ABS-657694.

  3. Neutron transport-burnup code MCORGS and its application in fusion fission hybrid blanket conceptual research

    NASA Astrophysics Data System (ADS)

    Shi, Xue-Ming; Peng, Xian-Jue

    2016-09-01

    Fusion science and technology has made progress in the last decades. However, commercialization of fusion reactors still faces challenges relating to higher fusion energy gain, irradiation-resistant material, and tritium self-sufficiency. Fusion Fission Hybrid Reactors (FFHR) can be introduced to accelerate the early application of fusion energy. Traditionally, FFHRs have been classified as either breeders or transmuters. Both need partition of plutonium from spent fuel, which will pose nuclear proliferation risks. A conceptual design of a Fusion Fission Hybrid Reactor for Energy (FFHR-E), which can make full use of natural uranium with lower nuclear proliferation risk, is presented. The fusion core parameters are similar to those of the International Thermonuclear Experimental Reactor. An alloy of natural uranium and zirconium is adopted in the fission blanket, which is cooled by light water. In order to model blanket burnup problems, a linkage code MCORGS, which couples MCNP4B and ORIGEN-S, is developed and validated through several typical benchmarks. The average blanket energy Multiplication and Tritium Breeding Ratio can be maintained at 10 and 1.15 respectively over tens of years of continuous irradiation. If simple reprocessing without separation of plutonium from uranium is adopted every few years, FFHR-E can achieve better neutronic performance. MCORGS has also been used to analyze the ultra-deep burnup model of Laser Inertial Confinement Fusion Fission Energy (LIFE) from LLNL, and a new blanket design that uses Pb instead of Be as the neutron multiplier is proposed. In addition, MCORGS has been used to simulate the fluid transmuter model of the In-Zinerater from Sandia. A brief comparison of LIFE, In-Zinerater, and FFHR-E will be given.

  4. A diamond based neutron spectrometer for diagnostics of deuterium-tritium fusion plasmas.

    PubMed

    Cazzaniga, C; Nocente, M; Rebai, M; Tardocchi, M; Calvani, P; Croci, G; Giacomelli, L; Girolami, M; Griesmayer, E; Grosso, G; Pillon, M; Trucchi, D M; Gorini, G

    2014-11-01

    Single crystal Diamond Detectors (SDD) are being increasingly exploited for neutron diagnostics in high power fusion devices, given their significant radiation hardness and high energy resolution capabilities. The geometrical efficiency of SDDs is limited by the size of commercially available crystals, which is often smaller than the dimension of neutron beams along collimated lines of sight in tokamak devices. In this work, we present the design and fabrication of a 14 MeV neutron spectrometer consisting of 12 diamond pixels arranged in a matrix, so to achieve an improved geometrical efficiency. Each pixel is equipped with an independent high voltage supply and read-out electronics optimized to combine high energy resolution and fast signals (<30 ns), which are essential to enable high counting rate (>1 MHz) spectroscopy. The response function of a prototype SDD to 14 MeV neutrons has been measured at the Frascati Neutron Generator by observation of the 8.3 MeV peak from the (12)C(n, α)(9)Be reaction occurring between neutrons and (12)C nuclei in the detector. The measured energy resolution (2.5% FWHM) meets the requirements for neutron spectroscopy applications in deuterium-tritium plasmas.

  5. A diamond based neutron spectrometer for diagnostics of deuterium-tritium fusion plasmas

    SciTech Connect

    Cazzaniga, C. Nocente, M.; Gorini, G.; Rebai, M.; Giacomelli, L.; Tardocchi, M.; Croci, G.; Grosso, G.; Calvani, P.; Girolami, M.; Trucchi, D. M.; Griesmayer, E.; Pillon, M.

    2014-11-15

    Single crystal Diamond Detectors (SDD) are being increasingly exploited for neutron diagnostics in high power fusion devices, given their significant radiation hardness and high energy resolution capabilities. The geometrical efficiency of SDDs is limited by the size of commercially available crystals, which is often smaller than the dimension of neutron beams along collimated lines of sight in tokamak devices. In this work, we present the design and fabrication of a 14 MeV neutron spectrometer consisting of 12 diamond pixels arranged in a matrix, so to achieve an improved geometrical efficiency. Each pixel is equipped with an independent high voltage supply and read-out electronics optimized to combine high energy resolution and fast signals (<30 ns), which are essential to enable high counting rate (>1 MHz) spectroscopy. The response function of a prototype SDD to 14 MeV neutrons has been measured at the Frascati Neutron Generator by observation of the 8.3 MeV peak from the {sup 12}C(n, α){sup 9}Be reaction occurring between neutrons and {sup 12}C nuclei in the detector. The measured energy resolution (2.5% FWHM) meets the requirements for neutron spectroscopy applications in deuterium-tritium plasmas.

  6. Analysis of the neutron time-of-flight spectra from inertial confinement fusion experiments

    SciTech Connect

    Hatarik, R. Sayre, D. B.; Caggiano, J. A.; Phillips, T.; Eckart, M. J.; Bond, E. J.; Cerjan, C.; Grim, G. P.; Hartouni, E. P.; Mcnaney, J. M.; Munro, D. H.; Knauer, J. P.

    2015-11-14

    Neutron time-of-flight diagnostics have long been used to characterize the neutron spectrum produced by inertial confinement fusion experiments. The primary diagnostic goals are to extract the d + t → n + α (DT) and d + d → n + {sup 3}He (DD) neutron yields and peak widths, and the amount DT scattering relative to its unscattered yield, also known as the down-scatter ratio (DSR). These quantities are used to infer yield weighted plasma conditions, such as ion temperature (T{sub ion}) and cold fuel areal density. We report on novel methodologies used to determine neutron yield, apparent T{sub ion}, and DSR. These methods invoke a single temperature, static fluid model to describe the neutron peaks from DD and DT reactions and a spline description of the DT spectrum to determine the DSR. Both measurements are performed using a forward modeling technique that includes corrections for line-of-sight attenuation and impulse response of the detection system. These methods produce typical uncertainties for DT T{sub ion} of 250 eV, 7% for DSR, and 9% for the DT neutron yield. For the DD values, the uncertainties are 290 eV for T{sub ion} and 10% for the neutron yield.

  7. Analysis of the neutron time-of-flight spectra from inertial confinement fusion experiments

    NASA Astrophysics Data System (ADS)

    Hatarik, R.; Sayre, D. B.; Caggiano, J. A.; Phillips, T.; Eckart, M. J.; Bond, E. J.; Cerjan, C.; Grim, G. P.; Hartouni, E. P.; Knauer, J. P.; Mcnaney, J. M.; Munro, D. H.

    2015-11-01

    Neutron time-of-flight diagnostics have long been used to characterize the neutron spectrum produced by inertial confinement fusion experiments. The primary diagnostic goals are to extract the d + t → n + α (DT) and d + d → n + 3He (DD) neutron yields and peak widths, and the amount DT scattering relative to its unscattered yield, also known as the down-scatter ratio (DSR). These quantities are used to infer yield weighted plasma conditions, such as ion temperature (Tion) and cold fuel areal density. We report on novel methodologies used to determine neutron yield, apparent Tion, and DSR. These methods invoke a single temperature, static fluid model to describe the neutron peaks from DD and DT reactions and a spline description of the DT spectrum to determine the DSR. Both measurements are performed using a forward modeling technique that includes corrections for line-of-sight attenuation and impulse response of the detection system. These methods produce typical uncertainties for DT Tion of 250 eV, 7% for DSR, and 9% for the DT neutron yield. For the DD values, the uncertainties are 290 eV for Tion and 10% for the neutron yield.

  8. Quantum coupled-channels model of nuclear fusion with a semiclassical consideration of neutron rearrangement

    NASA Astrophysics Data System (ADS)

    Karpov, A. V.; Rachkov, V. A.; Samarin, V. V.

    2015-12-01

    Background: Significant enhancement of sub-barrier fusion cross sections owing to neutron transfer with positive Q values was observed in many combinations of colliding nuclei. This degree of freedom has not yet been included into the rigorous quantum coupled-channels (QCC) approach. However, the empirical coupled-channels model with neutron rearrangement [Zagrebaev, Phys. Rev. C 67, 061601 (2003), 10.1103/PhysRevC.67.061601] has already been successfully used in several papers to reproduce and predict cross sections for sub-barrier fusion reactions of stable nuclei. Purpose: The objective of this study is to combine the QCC approach and the empirical model to account for additional channels of neutron rearrangement. Method: Coupling of relative motion to collective degrees of freedom (rotation of nuclei and/or their surface vibrations) are taken into account within the QCC approach. The probability of transfer of x neutrons with a given Q value is estimated semiclassically. Results: The proposed new model was successfully tested on a few combinations of fusing nuclei 40Ca+90,96Zr, 32S+96,90, and 60,64Ni+100Mo. The calculated fusion cross sections and barrier distribution functions agree well with experimental data. Conclusions: The model developed in this work confirms all the conclusions previously made within the empirical coupled-channels model with neutron rearrangement [see Rachkov et al., Phys. Rev. C 90, 014614 (2014), 10.1103/PhysRevC.90.014614]. Moreover, it has an advantage of a more reliable microscopic account for the coupling between relative motion and the collective degrees of freedom. The proposed model can also be used to reproduce the structure of the barrier distribution function. This is a step forward to a complete solution of the long-term problem of accounting for neutron transfer channels in the QCC model.

  9. Neutron Induced D Breakup in Inertial Confinement Fusion at the Omega Laser Facility

    NASA Astrophysics Data System (ADS)

    Forrest, C. J.; Glebov, V. Yu.; Knauer, J. P.; Radha, P. B.; Regan, S. P.; Sangster, T. C.; Stoeckl, C.; Schroder, W. U.; Frenje, J. A.; Gatu Johnson, M.

    2015-11-01

    High-resolution neutron spectroscopy is used to study the deuteron breakup reaction D(n,n ') np in the thermonuclear environment created in inertial confinement fusion experiments at the Omega Laser Facility. Neutrons with an energy of 14.1 MeV generated in the primary D-T fusion reactions scatter elastically and inelastically off the dense (cryogenic) D-T fuel assembly surrounding the central hot spot at peak fuel compression. These neutrons also induce a breakup of the fuel deuterons. The corresponding breakup cross section is measured relative to elastic n -D and n -T scattering, i.e., simultaneously in the same environment. Apart from astrophysical and technological interest, the neutron-induced deuteron breakup reaction is of interest to the physics of nucleon -nucleon forces. For example, theoretical calculations predict a noticeable influence of nucleonic three-body forces on the magnitude of the breakup cross section. Preliminary results from measurements of the neutron contribution in the 2- to 6-MeV range show reasonable agreement with the published ENDL 2008.2 semi-empirical cross-section. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  10. A U.S. high-flux neutron facility for fusion materials development

    SciTech Connect

    Rei, Donald J

    2010-01-01

    Materials for a fusion reactor first wall and blanket structure must be able to reliably function in an extreme environment that includes 10-15 MW-year/m{sup 2} neutron and heat fluences. The various materials and structural challenges are as difficult and important as achieving a burning plasma. Overcoming radiation damage degradation is the rate-controlling step in fusion materials development. Recent advances with oxide dispersion strengthened ferritic steels show promise in meeting reactor requirements, while multi-timescale atomistic simulations of defect-grain boundary interactions in model copper systems reveal surprising self-annealing phenomenon. While these results are promising, simultaneous evaluation of radiation effects displacement damage ({le} 200 dpa) and in-situ He generation ({le} 2000 appm) at prototypical reactor temperatures and chemical environments is still required. There is currently no experimental facility in the U.S. that can meet these requirements for macroscopic samples. The E.U. and U.S. fusion communities have recently concluded that a fusion-relevant, high-flux neutron source for accelerated characterization of the effects of radiation damage to materials is a top priority for the next decade. Data from this source will be needed to validate designs for the multi-$B next-generation fusion facilities such as the CTF, ETF, and DEMO, that are envisioned to follow ITER and NIF.

  11. Experimental investigation of opacity models for stellar interiors, inertial fusion, and high energy density plasmas

    NASA Astrophysics Data System (ADS)

    Bailey, James

    2008-11-01

    Theoretical opacities are required for calculating energy transport in plasmas. In particular, understanding stellar interiors, inertial fusion, and Z-pinches depends on the opacities of mid-atomic-number elements in the 150-300 eV temperature range. These models are complex and experimental validation is crucial. For example, solar models presently disagree with helioseismology and one possible explanation is inadequate opacities. Testing these opacities requires a uniform plasma at temperatures high enough to produce the ion charge states that exist in the sun. Typical opacity experiments heat a sample using x-rays and measure the spectrally resolved transmission with a backlight. The difficulty grows as the temperature increases because the heating x-ray source must supply more energy and the backlighter source must be bright enough to overwhelm the plasma self emission. These problems were overcome using the dynamic hohlraum x-ray source at Sandia's Z facility to measure the transmission of a mixed Mg-Fe plasma heated above 150 eV. This capability will also advance opacity science for other high energy density plasmas. This tutorial describes opacity experiment challenges including accurate transmission measurements, plasma diagnostics, and quantitative model comparisons. The solar interior serves as a focal problem and Z facility experiments are used to illustrate the techniques. **In collaboration with C. Iglesias (LLNL), R. Mancini (U. Nevada), J.MacFarlane, I. Golovkin and P. Wang (Prism), C. Blancard, Ph. Cosse, G. Faussurier, F. Gilleron, and J.C. Pain (CEA), J. Abdallah Jr. (LANL), and G.A. Rochau and P.W. Lake (Sandia). ++Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000.

  12. Thermal-to-fusion neutron convertor and Monte Carlo coupled simulation of deuteron/triton transport and secondary products generation

    NASA Astrophysics Data System (ADS)

    Wang, Guan-bo; Liu, Han-gang; Wang, Kan; Yang, Xin; Feng, Qi-jie

    2012-09-01

    Thermal-to-fusion neutron convertor has being studied in China Academy of Engineering Physics (CAEP). Current Monte Carlo codes, such as MCNP and GEANT, are inadequate when applied in this multi-step reactions problems. A Monte Carlo tool RSMC (Reaction Sequence Monte Carlo) has been developed to simulate such coupled problem, from neutron absorption, to charged particle ionization and secondary neutron generation. "Forced particle production" variance reduction technique has been implemented to improve the calculation speed distinctly by making deuteron/triton induced secondary product plays a major role. Nuclear data is handled from ENDF or TENDL, and stopping power from SRIM, which described better for low energy deuteron/triton interactions. As a validation, accelerator driven mono-energy 14 MeV fusion neutron source is employed, which has been deeply studied and includes deuteron transport and secondary neutron generation. Various parameters, including fusion neutron angle distribution, average neutron energy at different emission directions, differential and integral energy distributions, are calculated with our tool and traditional deterministic method as references. As a result, we present the calculation results of convertor with RSMC, including conversion ratio of 1 mm 6LiD with a typical thermal neutron (Maxwell spectrum) incidence, and fusion neutron spectrum, which will be used for our experiment.

  13. Analysis of the role of neutron transfer in asymmetric fusion reactions at subbarrier energies

    SciTech Connect

    Ogloblin, A. A.; Zhang, H. Q.; Lin, C. J.; Jia, H. M.; Khlebnikov, S. V.; Kuzmin, E. A.; Danilov, A. N.; Demyanova, A. S.; Trzaska, W. H.; Xu, X. X.; Yang, F.; Sargsyan, V. V. Adamian, G. G.; Antonenko, N. V.; Scheid, W.

    2015-12-15

    The excitation functions were measured for the {sup 28}Si + {sup 208}Pb complete-fusion (capture) reaction at deep subbarrier energies. The results were compared with the cross sections predicted within the quantum diffusion approach. The role of neutron transfer in the case of positive Q values in the {sup 28}Si + {sup 124}Sn, {sup 208}Pb; {sup 30}Si + {sup 124}Sn, {sup 208}Pb; {sup 20}Ne + {sup 208}Pb; {sup 40}Ca + {sup 96}Zr; and {sup 134}Te + {sup 40}Ca complete-fusion (capture) reactions is discussed.

  14. Stellar evolution.

    NASA Technical Reports Server (NTRS)

    Chiu, H.-Y. (Editor); Muriel, A.

    1972-01-01

    Aspects of normal stellar evolution are discussed together with evolution near the main sequence, stellar evolution from main sequence to white dwarf or carbon ignition, the structure of massive main-sequence stars, and problems of stellar stability and stellar pulsation. Other subjects considered include variable stars, white dwarfs, close binaries, novae, early supernova luminosity, neutron stars, the photometry of field horizontal-branch stars, and stellar opacity. Transport mechanisms in stars are examined together with thermonuclear reactions and nucleosynthesis, the instability problem in nuclear burning shells, stellar coalescence, and intense magnetic fields in astrophysics. Individual items are announced in this issue.

  15. Computational Challenges of Fusion Neutronics for ITER Ports

    NASA Astrophysics Data System (ADS)

    Serikov, A.; Fischer, U.; Pitcher, C. S.; Suarez, A.; Weinhorst, B.

    2014-06-01

    This paper elaborates computational challenges tackled for providing neutronics service supplied for developing the design of the Diagnostics Equatorial and Upper Port Plugs (EPP and UPP). The aim was to guide and assist the EPP and UPP design developers with optimal shielding solutions which are characterised of maintain the diagnostics purposes of the systems together with adequate radiation shielding performance. The target parameter for the shielding optimization was the minimum of Shut-Down Dose Rate (SDDR) inside the interspace between the port back-side and ITER bioshield. This aim was reached by parametric neutronic analyses of the shielding geometry and material composition, mitigating direct streaming of neutrons from the plasma by arranging the labyrinths and horizontal rails. Variation of many geometrical parameters of the labyrinths was possible only by applying the high performance parallel computations with MCNP5 using pure MPI and hybrid OpenMP/MPI parallelization techniques on several available supercomputers. MCNP5 parallel performance assessments were carried out to find an efficient way to run the code in a parallel regime. It was found a strong scaling (up to 4096 cores) performance of the MCNP5 jobs running with analogue Monte Carlo sampling and weak scaling for the tasks with biased sampling as a variance reduction technique, such as the MCNP5 intrinsic weight window generator. Deep penetrating radiation in the complex ITER tokamak geometry combined blocks of strong attenuation of the radiation together with the void gaps along which the particles are streamed freely contributes to computation challenges of radiation transport.

  16. Laser fusion neutron source employing compression with short pulse lasers

    DOEpatents

    Sefcik, Joseph A; Wilks, Scott C

    2013-11-05

    A method and system for achieving fusion is provided. The method includes providing laser source that generates a laser beam and a target that includes a capsule embedded in the target and filled with DT gas. The laser beam is directed at the target. The laser beam helps create an electron beam within the target. The electron beam heats the capsule, the DT gas, and the area surrounding the capsule. At a certain point equilibrium is reached. At the equilibrium point, the capsule implodes and generates enough pressure on the DT gas to ignite the DT gas and fuse the DT gas nuclei.

  17. Nuclear fusion and carbon flashes on neutron stars

    NASA Technical Reports Server (NTRS)

    Taam, R. E.; Picklum, R. E.

    1978-01-01

    This paper reports on detailed calculations of the thermal evolution of the carbon-burning shells in the envelopes of accreting neutron stars for mass-accretion rates of 1 hundred-billionth to 2 billionths of a solar mass per yr and neutron-star masses of 0.56 and 1.41 solar masses. The work of Hansen and Van Horn (1975) is extended to higher densities, and a more detailed treatment of nuclear processing in the hydrogen- and helium-burning regions is included. Results of steady-state calculations are presented, and results of time-dependent computations are examined for accretion rates of 3 ten-billionths and 1 billionth of solar mass per yr. It is found that two evolutionary sequences lead to carbon flashes and that the carbon abundance at the base of the helium shell is a strong function of accretion rate. Upper limits are placed on the accretion rates at which carbon flashes will be important.

  18. Nuclear fusion and carbon flashes on neutron stars

    NASA Technical Reports Server (NTRS)

    Taam, R. E.; Picklum, R. E.

    1978-01-01

    This paper reports on detailed calculations of the thermal evolution of the carbon-burning shells in the envelopes of accreting neutron stars for mass-accretion rates of 1 hundred-billionth to 2 billionths of a solar mass per yr and neutron-star masses of 0.56 and 1.41 solar masses. The work of Hansen and Van Horn (1975) is extended to higher densities, and a more detailed treatment of nuclear processing in the hydrogen- and helium-burning regions is included. Results of steady-state calculations are presented, and results of time-dependent computations are examined for accretion rates of 3 ten-billionths and 1 billionth of solar mass per yr. It is found that two evolutionary sequences lead to carbon flashes and that the carbon abundance at the base of the helium shell is a strong function of accretion rate. Upper limits are placed on the accretion rates at which carbon flashes will be important.

  19. Deuteron Acceleration and Fusion Neutron Production in Z-pinch plasmas

    SciTech Connect

    Klir, D.; Kravarik, J.; Kubes, P.; Rezac, K.; Ananeev, S. S.; Bakshaev, Yu. L.; Blinov, P. I.; Chernenko, A. S.; Kazakov, E. D.; Korolev, V. D.; Ustroev, G. I.

    2009-01-21

    Fusion neutron measurements were carried out on the S-300 generator (Kurchatov Institute, Moscow). We tried deuterated fibers, various types of wire arrays imploding onto a deuterated fiber, and deuterium gas puffs as Z-pinch loads. On the current level of 2 MA, the peak neutron yield of 10{sup 10} was achieved with a deuterium gas-puff. The neutron and deuteron energy spectra were quite similar in various types of Z-pinch configurations. The broad width of radial neutron spectra implied a high radial component of deuteron velocity. On the basis of neutron measurements, we concluded that neutron production mechanism is connected with the study of plasma voltage. It means that the acceleration of fast deuterons is not a secondary process but it reflects the global dynamics of Z-pinch plasmas. For this reason it is useful to add deuterium as a 'tracer' in Z-pinch loads more often. For instance, it seems attractive to prepare wire-arrays from deuterated metal wires such as Pd.

  20. Novel neutralized-beam intense neutron source for fusion technology development

    SciTech Connect

    Osher, J.E.; Perkins, L.J.

    1983-07-08

    We describe a neutralized-beam intense neutron source (NBINS) as a relevant application of fusion technology for the type of high-current ion sources and neutral beamlines now being developed for heating and fueling of magnetic-fusion-energy confinement systems. This near-term application would support parallel development of highly reliable steady-state higher-voltage neutral D/sup 0/ and T/sup 0/ beams and provide a relatively inexpensive source of fusion neutrons for materials testing at up to reactor-like wall conditions. Beam-target examples described incude a 50-A mixed D-T total (ions plus neutrals) space-charge-neutralized beam at 120 keV incident on a liquid Li drive-in target, or a 50-A T/sup 0/ + T/sup +/ space-charge-neutralized beam incident on either a LiD or gas D/sub 2/ target with calculated 14-MeV neutron yields of 2 x 10/sup 15//s, 7 x 10/sup 15//s, or 1.6 x 10/sup 16//s, respectively. The severe local heat loading on the target surface is expected to limit the allowed beam focus and minimum target size to greater than or equal to 25 cm/sup 2/.

  1. Neutron Capture and the Production of 60-Fe in Stellar Environments

    SciTech Connect

    Kelley, Kevin

    2005-01-01

    The observation of gamma rays associated with the decay of 26Al and 60Fe can provide important information regarding ongoing nucleosynthesis in our galaxy. The half-lives of these radioisotopes (7.2 x 105 y and 1.5 x 106 y, respectively) are long compared to the interval between synthesis events such as supernovae, so they build up in a steady state in the interstellar medium (centered on the galactic plane, where massive stars reside), yet short enough that gamma radiation from their decay may be detected. Additionally, these half-lifes are short compared to the period of galactic revolution, so that observable abundances remain in the proximity of their production sites. Predicted abundances of 26Al and 60Fe vary widely between several calculations in the last decade. In 2004, the first observation of the gamma ray flux from 60Fe decay was reported, with a 60Fe/26Al flux ratio in good agreement with nucleosynthesis modeling from 1995. However, recent calculations that include well motivated updates to the stellar and nuclear physics, predict a flux ratio as much as six times higher than the observed value. It is desirable to understand the discrepancy between the latest calculation, which in principle should have been more accurate, and the observation. In the present study, the uncertainties related to two key nuclear aspects of this problem, namely the neutron capture reaction rates for 59, 60Fe, are investigated. New reaction rates are modeled using local systematics as opposed to the global systematics used in previous studies. Comparisons to experimental data are made whenever possible. The sensitivity of the reaction rates to various input quantities is gauged, and estimates regarding the total uncertainty in the reaction rates are made. The resulting rates and uncertainties are used in parameterized single-zone nucleosynthesis calculations using

  2. Fusion-neutron damage in superconductors and magnet stabilizers

    SciTech Connect

    Van Konynenburg, R.A.; Guinan, M.W.; Kinney, J.H.

    1981-08-07

    Two NbTi and two Cu wires were irradiated with 14.8 MeV neutrons at 4.2 K to fluences of 6 to 8 x 10/sup 20/ n/m/sup 2/, using RTNS-II. Electrical resistances of Cu were monitored during irradiation. Magnetoresistances were measured in fields up to 12.4 T before and after irradiation and after isochronal annealing up to 273 K. Critical currents of NbTi were measured after irradiation, in feilds up to 10 T. The initial rate of increase of resistivity of the Cu was found to be 2.23 x 10/sup -31/ (..cap omega..-m)/(n/m/sup 2/). This rate could be predicted from fission reactor irradiations using damage energy scaling. The maximum observed change in the NbTi critical was a decrease of 3% at 4 T. At 6, 8, and 10 T there were no significant changes.

  3. Generation of the neutron response function of an NE213 scintillator for fusion applications

    NASA Astrophysics Data System (ADS)

    Binda, F.; Eriksson, J.; Ericsson, G.; Hellesen, C.; Conroy, S.; Nocente, M.; Sundén, E. Andersson; JET Contributors

    2017-09-01

    In this work we present a method to evaluate the neutron response function of an NE213 liquid scintillator. This method is particularly useful when the proton light yield function of the detector has not been measured, since it is based on a proton light yield function taken from literature, MCNPX simulations, measurements of gamma-rays from a calibration source and measurements of neutrons from fusion experiments with ohmic plasmas. The inclusion of the latter improves the description of the proton light yield function in the energy range of interest (around 2.46 MeV). We apply this method to an NE213 detector installed at JET, inside the radiation shielding of the magnetic proton recoil (MPRu) spectrometer, and present the results from the calibration along with some examples of application of the response function to perform neutron emission spectroscopy (NES) of fusion plasmas. We also investigate how the choice of the proton light yield function affects the NES analysis, finding that the result does not change significantly. This points to the fact that the method for the evaluation of the neutron response function is robust and gives reliable results.

  4. Laser inertial fusion-based energy: Neutronic design aspects of a hybrid fusion-fission nuclear energy system

    NASA Astrophysics Data System (ADS)

    Kramer, Kevin James

    This study investigates the neutronics design aspects of a hybrid fusion-fission energy system called the Laser Fusion-Fission Hybrid (LFFH). A LFFH combines current Laser Inertial Confinement fusion technology with that of advanced fission reactor technology to produce a system that eliminates many of the negative aspects of pure fusion or pure fission systems. When examining the LFFH energy mission, a significant portion of the United States and world energy production could be supplied by LFFH plants. The LFFH engine described utilizes a central fusion chamber surrounded by multiple layers of multiplying and moderating media. These layers, or blankets, include coolant plenums, a beryllium (Be) multiplier layer, a fertile fission blanket and a graphite-pebble reflector. Each layer is separated by perforated oxide dispersion strengthened (ODS) ferritic steel walls. The central fusion chamber is surrounded by an ODS ferritic steel first wall. The first wall is coated with 250-500 mum of tungsten to mitigate x-ray damage. The first wall is cooled by Li17Pb83 eutectic, chosen for its neutron multiplication and good heat transfer properties. The Li17Pb 83 flows in a jacket around the first wall to an extraction plenum. The main coolant injection plenum is immediately behind the Li17Pb83, separated from the Li17Pb83 by a solid ODS wall. This main system coolant is the molten salt flibe (2LiF-BeF2), chosen for beneficial neutronics and heat transfer properties. The use of flibe enables both fusion fuel production (tritium) and neutron moderation and multiplication for the fission blanket. A Be pebble (1 cm diameter) multiplier layer surrounds the coolant injection plenum and the coolant flows radially through perforated walls across the bed. Outside the Be layer, a fission fuel layer comprised of depleted uranium contained in Tristructural-isotropic (TRISO) fuel particles having a packing fraction of 20% in 2 cm diameter fuel pebbles. The fission blanket is cooled by

  5. A Subcritical, Gas-Cooled Fast Transmutation Reactor with a Fusion Neutron Source

    SciTech Connect

    Stacey, W.M.; Beavers, V.L.; Casino, W.A.; Cheatham, J.R.; Friis, Z.W.; Green, R.D.; Hamilton, W.R.; Haufler, K.W.; Hutchinson, J.D.; Lackey, W.J.; Lorio, R.A.; Maddox, J.W.; Mandrekas, J.; Manzoor, A.A.; Noelke, C.A.; Oliveira, C. de; Park, M.; Tedder, D.W.; Terry, M.R.; Hoffman, E.A.

    2005-05-15

    A design is presented for a subcritical, He-cooled fast reactor, driven by a tokamak D-T fusion neutron source, for the transmutation of spent nuclear fuel (SNF). The reactor is fueled with coated transuranic (TRU) particles and is intended for the deep-burn (>90%) transmutation of the TRUs in SNF without reprocessing of the coated fuel particles. The reactor design is based on the materials, fuel, and separations technologies under near-term development in the U.S. Department of Energy (DOE) Nuclear Energy Program and on the plasma physics and fusion technologies under near-term development in the DOE Fusion Energy Sciences Program, with the objective of intermediate-term ({approx}2040) deployment. The physical and performance characteristics and research and development requirements of such a reactor are described.

  6. The initial stellar masses for the formation of white dwarfs, neutron stars and black holes

    NASA Astrophysics Data System (ADS)

    Meynet, Georges

    As is well known a star may end its nuclear lifetime as a white dwarf, neutron star, black hole or may, in certain circumstances, leave no remnant at all. The main question to be addressed in this review is the following: what are the progenitors of these different final stages? After a brief review of the major physical principles governing stellar evolution, we present the different evolutionary scenarios resulting from numerical calculations. Particular attention will be paid to the effect of mass loss on theoretical determinations of the mass limits M WD and MBH which are respectively the maximum initial mass leading to the formation of a white dwarf and the minimum initial mass for the formation of a black hole. We terminate this review by the presentation of some relevant observational results. The bulk of this paper is devoted to the discussion of the evolution of single Population I stars. Les étoiles terminent leur évolution soit comme naines blanches, étoiles à neutrons, ou trous noirs, il peut également arriver qu'aucun résidu ne subsiste, l'étoile étant complètement détruite dans ses phases ultimes. La question à laquelle nous allons essayer de répondre dans cet article est la suivante : quels sont les progéniteurs de ces états finaux? Après un bref rappel de quelques principes importants gouvernant l'évolution stellaire, les différents scénarios évolutifs, tels qu'ils sont proposés par les modèles numériques, sont présentés. Les valeurs de la masse initiale maximale pour la formation des naines blanches ainsi que celles de la masse initiale minimale pour la formation des trous noirs sont discutées tant du point de vue théorique, qu'observationnel. La majeure partie de cet article concerne l'évolution d'étoiles simples et de composition chimique solaire.

  7. Using an Inertial Electrostatic Confinement (IEC) Nuclear Fusion Device as a Pulsed Neutron Source: Optimizing the Pulse Shape

    NASA Astrophysics Data System (ADS)

    Bonomo, Richard

    2010-11-01

    Pulsed neutron sources may prove to be valuable for detecting illicit nuclear materials in items being smuggled across borders or checkpoints. Work already accomplished by Sorebo et al. [1] at the U. of Wisconsin demonstrated the basic detection concept by successfully detecting delayed ^235U fission neutrons using neutron pulses generated by an IEC fusion device. Numerical studies imply the detection of the much more copious prompt induced-fission neutrons would be preferable; the experimental detection of prompt neutrons represents a challenge: the prompt, fission-produced neutron and interrogating neutron pulses may overlap. After IEC device operation and past work by Sorebo et al. are reviewed, efforts to produce a properly shaped interrogating neutron pulse are described. Efforts drawing, in part, on techniques used in hard-switched power inverters are highlighted.[4pt] [1] J.H. Sorebo, G.L. Kulcinski, R.F. Radel, and J.F. Santarius, ``Special Nuclear Materials Detection Using IEC Fusion Pulsed Neutron Source,'' Fusion Science and Technology 56, 540 (2009).

  8. Analysis of the radial potential structure and neutron production rate in the spherical inertial electrostatic confinement fusion devices

    NASA Astrophysics Data System (ADS)

    Ramzanpour, M. A.; Pahlavani, M. R.

    2017-01-01

    The radial dependent potential and neutron production rate in spherical inertial electrostatic confinement fusion (IECF) devices is investigated. The electrostatic potential is determined by solving the Poisson equation for various deuteron and electron distribution functions. The fusion reaction rates are determined using energy distribution function. Also, dependence of potential structure and neutron production rate on some important parameters as the ion and electron convergence, working pressure, kinetic energy of the secondary electrons emitted from the cathode and the fraction of secondary electrons drawn inside the cathode are studied. Total produced neutrons as a function of input power at different working conditions are also obtained.

  9. Indirect Study of the 16O+16O Fusion Reaction Toward Stellar Energies by the Trojan Horse Method

    NASA Astrophysics Data System (ADS)

    Hayakawa, S.; Spitaleri, C.; Burtebayev, N.; Aimaganbetov, A.; Figuera, P.; Fisichella, M.; Guardo, G. L.; Igamov, S.; Indelicato, I.; Kiss, G.; Kliczewski, S.; La Cognata, M.; Lamia, L.; Lattuada, M.; Piasecki, E.; Rapisarda, G. G.; Romano, S.; Sakuta, S. B.; Siudak, R.; Trzcińska, A.; Tumino, A.; Urkinbayev, A.

    2016-05-01

    The 16O+16O fusion reaction is important in terms of the explosive oxygen burning process during late evolution stage of massive stars as well as understanding of the mechanism of low-energy heavy-ion fusion reactions. We aim to determine the excitation function for the most major exit channels, α+28Si and p+31P, toward stellar energies indirectly by the Trojan Horse Method via the 16O(20Ne, α28Si)α and 16O(20Ne, p31P)α three-body reactions. We report preliminary results involving reaction identification, and determination of the momentum distribution of α-16O intercluster motion in the projectile 20Ne nucleus.

  10. Effect of polarized fusion on the neutronics of a mirror fusion reactor

    SciTech Connect

    Takahashi, H.; Lazareth, O.W.

    1983-01-01

    The conclusions of this study are that for the anisotropic neutron source: (1) the radiation damage in the first wall is reduced, and (2) both the fraction of energy (heat) deposited in the hot interior, and the tritium breeding ratio do not change significantly. These conclusions apply to this particular blanket design only. In order to increase the fractional heating and the breeding ratio, the blanket design must be modified.

  11. Simultaneous usage of pinhole and penumbral apertures for imaging small scale neutron sources from inertial confinement fusion experiments.

    PubMed

    Guler, N; Volegov, P; Danly, C R; Grim, G P; Merrill, F E; Wilde, C H

    2012-10-01

    Inertial confinement fusion experiments at the National Ignition Facility are designed to understand the basic principles of creating self-sustaining fusion reactions by laser driven compression of deuterium-tritium (DT) filled cryogenic plastic capsules. The neutron imaging diagnostic provides information on the distribution of the central fusion reaction region and the surrounding DT fuel by observing neutron images in two different energy bands for primary (13-17 MeV) and down-scattered (6-12 MeV) neutrons. From this, the final shape and size of the compressed capsule can be estimated and the symmetry of the compression can be inferred. These experiments provide small sources with high yield neutron flux. An aperture design that includes an array of pinholes and penumbral apertures has provided the opportunity to image the same source with two different techniques. This allows for an evaluation of these different aperture designs and reconstruction algorithms.

  12. (International Panel on 14 MeV Intense Neutron Source Based on Accelerators for Fusion Materials Study)

    SciTech Connect

    Thoms, K.R.; Wiffen, F.W.

    1991-02-14

    Both travelers were members of a nine-person US delegation that participated in an international workshop on accelerator-based 14 MeV neutron sources for fusion materials research hosted by the University of Tokyo. Presentations made at the workshop reviewed the technology developed by the FMIT Project, advances in accelerator technology, and proposed concepts for neutron sources. One traveler then participated in the initial meeting of the IEA Working Group on High Energy, High Flux Neutron Sources in which efforts were begun to evaluate and compare proposed neutron sources; the Fourth FFTF/MOTA Experimenters' Workshop which covered planning and coordination of the US-Japan collaboration using the FFTF reactor to irradiate fusion reactor materials; and held discussions with several JAERI personnel on the US-Japan collaboration on fusion reactor materials.

  13. Impact of temperature-velocity distribution on fusion neutron peak shape

    NASA Astrophysics Data System (ADS)

    Munro, David

    2016-10-01

    Doppler broadening of the 14 MeV DT and 2.45 MeV DD fusion neutron lines has long been our best measure of temperature in a burning plasma. At the National Ignition Facility yields are high enough and our neutron spectrometers accurate enough that we see finer details of the peak shape. For example, we can measure the shift of the peak due to bulk motion of the plasma, and we see indications of non-thermal broadening, skew, and kurtosis of the peak caused by the variations of temperature and fluid velocity during burn. We can also distinguish spectral differences among several lines of sight. This talk will review the theory of fusion neutron line shape, show examples of non-Gaussian line shapes and directional variations in NIF data, and describe detailed spectral shapes we see in radhydro implosion simulations. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  14. Response of LaBr3(Ce) scintillators to 2.5 MeV fusion neutrons.

    PubMed

    Cazzaniga, C; Nocente, M; Tardocchi, M; Croci, G; Giacomelli, L; Angelone, M; Pillon, M; Villari, S; Weller, A; Petrizzi, L; Gorini, G

    2013-12-01

    Measurements of the response of LaBr3(Ce) to 2.5 MeV neutrons have been carried out at the Frascati Neutron Generator and at tokamak facilities with deuterium plasmas. The observed spectrum has been interpreted by means of a Monte Carlo model. It is found that the main contributor to the measured response is neutron inelastic scattering on (79)Br, (81)Br, and (139)La. An extrapolation of the count rate response to 14 MeV neutrons from deuterium-tritium plasmas is also presented. The results are of relevance for the design of γ-ray diagnostics of fusion burning plasmas.

  15. Response of LaBr{sub 3}(Ce) scintillators to 2.5 MeV fusion neutrons

    SciTech Connect

    Cazzaniga, C.; Nocente, M.; Gorini, G.; Tardocchi, M.; Croci, G.; Giacomelli, L.; Angelone, M.; Pillon, M.; Villari, S.; Weller, A.; Petrizzi, L.; Collaboration: ASDEX Upgrade Team; JET-EFDA Contributors

    2013-12-15

    Measurements of the response of LaBr{sub 3}(Ce) to 2.5 MeV neutrons have been carried out at the Frascati Neutron Generator and at tokamak facilities with deuterium plasmas. The observed spectrum has been interpreted by means of a Monte Carlo model. It is found that the main contributor to the measured response is neutron inelastic scattering on {sup 79}Br, {sup 81}Br, and {sup 139}La. An extrapolation of the count rate response to 14 MeV neutrons from deuterium-tritium plasmas is also presented. The results are of relevance for the design of γ-ray diagnostics of fusion burning plasmas.

  16. Single crystal diamond detector measurements of deuterium-deuterium and deuterium-tritium neutrons in Joint European Torus fusion plasmas

    SciTech Connect

    Cazzaniga, C. Gorini, G.; Nocente, M.; Sundén, E. Andersson; Binda, F.; Ericsson, G.; Croci, G.; Grosso, G.; Cippo, E. Perelli; Tardocchi, M.; Giacomelli, L.; Rebai, M.; Griesmayer, E.; Kaveney, G.; Syme, B.; Collaboration: JET-EFDA Contributors

    2014-04-15

    First simultaneous measurements of deuterium-deuterium (DD) and deuterium-tritium neutrons from deuterium plasmas using a Single crystal Diamond Detector are presented in this paper. The measurements were performed at JET with a dedicated electronic chain that combined high count rate capabilities and high energy resolution. The deposited energy spectrum from DD neutrons was successfully reproduced by means of Monte Carlo calculations of the detector response function and simulations of neutron emission from the plasma, including background contributions. The reported results are of relevance for the development of compact neutron detectors with spectroscopy capabilities for installation in camera systems of present and future high power fusion experiments.

  17. Single crystal diamond detector measurements of deuterium-deuterium and deuterium-tritium neutrons in Joint European Torus fusion plasmas.

    PubMed

    Cazzaniga, C; Sundén, E Andersson; Binda, F; Croci, G; Ericsson, G; Giacomelli, L; Gorini, G; Griesmayer, E; Grosso, G; Kaveney, G; Nocente, M; Perelli Cippo, E; Rebai, M; Syme, B; Tardocchi, M

    2014-04-01

    First simultaneous measurements of deuterium-deuterium (DD) and deuterium-tritium neutrons from deuterium plasmas using a Single crystal Diamond Detector are presented in this paper. The measurements were performed at JET with a dedicated electronic chain that combined high count rate capabilities and high energy resolution. The deposited energy spectrum from DD neutrons was successfully reproduced by means of Monte Carlo calculations of the detector response function and simulations of neutron emission from the plasma, including background contributions. The reported results are of relevance for the development of compact neutron detectors with spectroscopy capabilities for installation in camera systems of present and future high power fusion experiments.

  18. Stellar (n ,γ ) cross sections of neutron-rich nuclei: Completing the isotope chains of Yb, Os, Pt, and Hg

    NASA Astrophysics Data System (ADS)

    Marganiec, J.; Dillmann, I.; Domingo-Pardo, C.; Käppeler, F.

    2014-12-01

    The (n ,γ ) cross sections of the most neutron-rich stable isotopes of Yb, Os, Pt, and Hg have been determined in a series of activation measurements at the Karlsruhe 3.7 MV Van de Graaff accelerator, using the quasistellar neutron spectrum for k T =25 keV that can be produced with the 7Li(p ,n ) 7Be reaction. In this way, Maxwellian averaged cross sections could be directly obtained with only minor corrections. After irradiation the induced activities were counted with a HPGe detector via the strongest γ -ray lines. The stellar neutron capture cross sections of Yb,176174, Os,192190, Pt,198196, and Hg,204202, extrapolated to k T =30 keV, were found to be 157 ±6 mb, 114 ±8 mb, 278 ±11 mb, 160 ±7 mb, 171 ±19 mb, 94 ±4 mb, 62 ±2 mb, and 32 ±15 mb, respectively. In the case of 196Pt the partial cross section to the isomeric state at 399.5 keV could be determined as well. With these results the cross section data for long isotopic chains could be completed for a discussion of the predictive power of statistical model calculations towards the neutron-rich and proton-rich sides of the stability valley.

  19. Axial Neutron Flux Evaluation in a Tokamak System: a Possible Transmutation Blanket Position for a Fusion-Fission Transmutation System

    NASA Astrophysics Data System (ADS)

    Velasquez, Carlos E.; de P. Barros, Graiciany; Pereira, Claubia; Fortini Veloso, Maria A.; Costa, Antonella L.

    2012-08-01

    A sub-critical advanced reactor based on Tokamak technology with a D-T fusion neutron source is an innovative type of nuclear system. Due to the large number of neutrons produced by fusion reactions, such a system could be useful in the transmutation process of transuranic elements (Pu and minor actinides (MAs)). However, to enhance the MA transmutation efficiency, it is necessary to have a large neutron wall loading (high neutron fluence) with a broad energy spectrum in the fast neutron energy region. Therefore, it is necessary to know and define the neutron fluence along the radial axis and its characteristics. In this work, the neutron flux and the interaction frequency along the radial axis are evaluated for various materials used to build the first wall. W alloy, beryllium, and the combination of both were studied, and the regions more suitable to transmutation were determined. The results demonstrated that the best zone in which to place a transmutation blanket is limited by the heat sink and the shield block. Material arrangements of W alloy/W alloy and W alloy/beryllium would be able to meet the requirements of the high fluence and hard spectrum that are needed for transuranic transmutation. The system was simulated using the MCNP code, data from the ITER Final Design Report, 2001, and the Fusion Evaluated Nuclear Data Library/MC-2.1 nuclear data library.

  20. Time Resolved Neutron Reflectivity During Supported Membrane Formation by Vesicle Fusion.

    PubMed

    Koutsioubas, Alexandros; Appavou, Marie-Sousai; Lairez, Didier

    2017-09-05

    The formation of supported lipid bilayers (SLB) on hydrophilic substrates through the method of unilamelar vesicle fusion is used routinely in a wide range of biophysical studies. In an effort to control and better understand the fusion process on the substrate, many experimental studies employing different techniques have been devoted to the elucidation of the fusion mechanism. In the present work we follow the kinetics of membrane formation using time-resolved (TR) neutron reflectivity, focussing at the structural changes near the solid/liquid interface. A clear indication of stacked bilayer structure is observed during the intermediate phase of SLB formation. Adsorbed lipid mass decrease is also measured at the final stage of the process. We have found that it is essential for the analysis of the experimental results to treat theoretically the shape of adsorbed lipid vesicles on an attractive substrate. The overall findings are discussed in relation to proposed fusion mechanisms from previous literature, while we argue that our observations favour a model involving enhanced adhesion of incoming vesicles on the edges of already formed bilayer patches.

  1. Evaluation of two-stage system for neutron measurement aiming at increase in count rate at Japan Atomic Energy Agency-Fusion Neutronics Source.

    PubMed

    Shinohara, K; Ishii, K; Ochiai, K; Baba, M; Sukegawa, A; Sasao, M; Kitajima, S

    2014-11-01

    In order to increase the count rate capability of a neutron detection system as a whole, we propose a multi-stage neutron detection system. Experiments to test the effectiveness of this concept were carried out on Fusion Neutronics Source. Comparing four configurations of alignment, it was found that the influence of an anterior stage on a posterior stage was negligible for the pulse height distribution. The two-stage system using 25 mm thickness scintillator was about 1.65 times the count rate capability of a single detector system for d-D neutrons and was about 1.8 times the count rate capability for d-T neutrons. The results suggested that the concept of a multi-stage detection system will work in practice.

  2. Evaluation of two-stage system for neutron measurement aiming at increase in count rate at Japan Atomic Energy Agency-Fusion Neutronics Source

    SciTech Connect

    Shinohara, K. Ochiai, K.; Sukegawa, A.; Ishii, K.; Kitajima, S.; Baba, M.; Sasao, M.

    2014-11-15

    In order to increase the count rate capability of a neutron detection system as a whole, we propose a multi-stage neutron detection system. Experiments to test the effectiveness of this concept were carried out on Fusion Neutronics Source. Comparing four configurations of alignment, it was found that the influence of an anterior stage on a posterior stage was negligible for the pulse height distribution. The two-stage system using 25 mm thickness scintillator was about 1.65 times the count rate capability of a single detector system for d-D neutrons and was about 1.8 times the count rate capability for d-T neutrons. The results suggested that the concept of a multi-stage detection system will work in practice.

  3. Research on anisotropy of fusion-produced protons and neutrons emission from high-current plasma-focus discharges

    NASA Astrophysics Data System (ADS)

    Malinowski, K.; Skladnik-Sadowska, E.; Sadowski, M. J.; Szydlowski, A.; Czaus, K.; Kwiatkowski, R.; Zaloga, D.; Paduch, M.; Zielinska, E.

    2015-01-01

    The paper concerns fast protons and neutrons from D-D fusion reactions in a Plasma-Focus-1000U facility. Measurements were performed with nuclear-track detectors arranged in "sandwiches" of an Al-foil and two PM-355 detectors separated by a polyethylene-plate. The Al-foil eliminated all primary deuterons, but was penetrable for fast fusion protons. The foil and first PM-355 detector were penetrable for fast neutrons, which were converted into recoil-protons in the polyethylene and recorded in the second PM-355 detector. The "sandwiches" were irradiated by discharges of comparable neutron-yields. Analyses of etched tracks and computer simulations of the fusion-products behavior in the detectors were performed.

  4. Research on anisotropy of fusion-produced protons and neutrons emission from high-current plasma-focus discharges

    SciTech Connect

    Malinowski, K. Sadowski, M. J.; Szydlowski, A.; Skladnik-Sadowska, E.; Czaus, K.; Kwiatkowski, R.; Zaloga, D.; Paduch, M.; Zielinska, E.

    2015-01-15

    The paper concerns fast protons and neutrons from D-D fusion reactions in a Plasma-Focus-1000U facility. Measurements were performed with nuclear-track detectors arranged in “sandwiches” of an Al-foil and two PM-355 detectors separated by a polyethylene-plate. The Al-foil eliminated all primary deuterons, but was penetrable for fast fusion protons. The foil and first PM-355 detector were penetrable for fast neutrons, which were converted into recoil-protons in the polyethylene and recorded in the second PM-355 detector. The “sandwiches” were irradiated by discharges of comparable neutron-yields. Analyses of etched tracks and computer simulations of the fusion-products behavior in the detectors were performed.

  5. Neutron Damage in the Plasma Chamber First Wall of the GCFTR-2 Fusion-Fission Hybrid Reactor

    NASA Astrophysics Data System (ADS)

    Pinto, L. N.; Gonnelli, E.; Rossi, P. C. R.; Carluccio, T.; dos Santos, A.

    2015-07-01

    The successful development of energy-conversion machines based on either nuclear fission or fusion is completely dependent on the behaviour of the engineering materials used to construct the fuel containment and primary heat extraction systems. Such materials must be designed in order to maintain their structural integrity and dimensional stability in an environment involving high temperatures and heat fluxes, corrosive media, high stresses and intense neutron fluxes. However, despite the various others damage issues, such as the effects of plasma radiation and particle flux, the neutron flux is sufficiently energetic to displace atoms from their crystalline lattice sites. It is clear that the understanding of the neutron damage is essential for the development and safe operation of nuclear systems. Considering this context, the work presents a study of neutron damage in the Gas Cooled Fast Transmutation Reactor (GCFTR-2) driven by a Tokamak D-T fusion neutron source of 14.03 MeV. The theoretical analysis was performed by MCNP-5 and the ENDF/B-VII.1 neutron data library. A brief discussion about the determination of the radiation damage is presented, along with an analysis of the total neutron energy deposition in seven points through the material of the plasma source wall (PSW), in which was considered the HT-9 steel. The neutron flux was subdivided into three energy groups and their behaviour through the material was also examined.

  6. Possibilities of production of neutron-deficient isotopes of U, Np, Pu, Am, Cm, and Cf in complete fusion reactions

    SciTech Connect

    Adamian, G. G.; Antonenko, N. V.; Zubov, A. S.; Scheid, W.

    2008-10-15

    Within the dinuclear system model we analyze the production of yet unknown neutron-deficient isotopes of U, Np, Pu, Am, Cm, and Cf in various complete fusion reactions. Different deexcitation channels of the excited compound nucleus are treated. The results are obtained without special adjustment to the selected evaporation channel. The fusion probability is an important ingredient of the excitation function. The results are in good agreement with the available experimental data. The alpha decay half-life times in the neutron-deficient actinides are discussed.

  7. D-T gamma-to-neutron branching ratio determined from inertial confinement fusion plasmasa)

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Mack, J. M.; Herrmann, H. W.; Young, C. S.; Hale, G. M.; Caldwell, S.; Hoffman, N. M.; Evans, S. C.; Sedillo, T. J.; McEvoy, A.; Langenbrunner, J.; Hsu, H. H.; Huff, M. A.; Batha, S.; Horsfield, C. J.; Rubery, M. S.; Garbett, W. J.; Stoeffl, W.; Grafil, E.; Bernstein, L.; Church, J. A.; Sayre, D. B.; Rosenberg, M. J.; Waugh, C.; Rinderknecht, H. G.; Gatu Johnson, M.; Zylstra, A. B.; Frenje, J. A.; Casey, D. T.; Petrasso, R. D.; Kirk Miller, E.; Yu Glebov, V.; Stoeckl, C.; Sangster, T. C.

    2012-05-01

    A new deuterium-tritium (D-T) fusion gamma-to-neutron branching ratio [3H(d,γ)5He/3H(d,n)4He] value of (4.2 ± 2.0) × 10-5 was recently reported by this group [Y. Kim et al. Phys. Rev. C (submitted)]. This measurement, conducted at the OMEGA laser facility located at the University of Rochester, was made for the first time using inertial confinement fusion (ICF) plasmas. Neutron-induced backgrounds are significantly reduced in these experiments as compared to traditional beam-target accelerator-based experiments due to the short pulse nature of ICF implosions and the use of gas Cherenkov γ-ray detectors with fast temporal responses and inherent energy thresholds. It is expected that this ICF-based measurement will help resolve the large and long-standing inconsistencies in previously reported accelerator-based values, which vary by a factor of approximately 30. The reported value at ICF conditions was determined by averaging the results of two methods: (1) a direct measurement of ICF D-T γ-ray and neutron emissions using absolutely calibrated detectors and (2) a separate cross-calibration against the better known D-3He gamma-to-proton branching ratio [3He(d, γ)5Li/3He(d,p)4He]. Here we include a detailed explanation of these results, and introduce as a corroborative method an in-situ γ-ray detector calibration using neutron-induced γ-rays. Also, by extending the established techniques to two additional series of implosions with significantly different ion temperatures, we test the branching ratio dependence on ion temperature. The data show a D-T branching ratio is nearly constant over the temperature range 2-9 keV. These studies motivate further investigation into the 5He and 5Li systems resulting from D-T and D-3He fusion, respectively, and result in improved ICF γ-ray reaction history diagnosis at the National Ignition Facility.

  8. BNCT dose distribution in liver with epithermal D-D and D-T fusion-based neutron beams.

    PubMed

    Koivunoro, H; Bleuel, D L; Nastasi, U; Lou, T P; Reijonen, J; Leung, K-N

    2004-11-01

    Recently, a new application of boron neutron capture therapy (BNCT) treatment has been introduced. Results have indicated that liver tumors can be treated by BNCT after removal of the liver from the body. At Lawrence Berkeley National Laboratory, compact neutron generators based on (2)H(d,n)(3)He (D-D) or (3)H(t,n)(4)He (D-T) fusion reactions are being developed. Preliminary simulations of the applicability of 2.45 MeV D-D fusion and 14.1 MeV D-T fusion neutrons for in vivo liver tumor BNCT, without removing the liver from the body, have been carried out. MCNP simulations were performed in order to find a moderator configuration for creating a neutron beam of optimal neutron energy and to create a source model for dose calculations with the simulation environment for radiotherapy applications (SERA) treatment planning program. SERA dose calculations were performed in a patient model based on CT scans of the body. The BNCT dose distribution in liver and surrounding healthy organs was calculated with rectangular beam aperture sizes of 20 cm x 20 cm and 25 cm x 25 cm. Collimator thicknesses of 10 and 15 cm were used. The beam strength to obtain a practical treatment time was studied. In this paper, the beam shaping assemblies for D-D and D-T neutron generators and dose calculation results are presented.

  9. SODIUM-OXYGEN ANTICORRELATION AND NEUTRON-CAPTURE ELEMENTS IN OMEGA CENTAURI STELLAR POPULATIONS

    SciTech Connect

    Marino, A. F.; Milone, A. P.; Piotto, G.; Bellini, A.; Villanova, S.; Geisler, D.; Gratton, R.; Renzini, A.; D'Antona, F.; Anderson, J.; Bedin, L. R.; Cassisi, S.; Zoccali, M. E-mail: anna.marino@unipd.it

    2011-04-10

    Omega Centauri is no longer the only globular cluster known to contain multiple stellar populations, yet it remains the most puzzling. Due to the extreme way in which the multiple stellar population phenomenon manifests in this cluster, it has been suggested that it may be the remnant of a larger stellar system. In this work, we present a spectroscopic investigation of the stellar populations hosted in the globular cluster {omega} Centauri to shed light on its still puzzling chemical enrichment history. With this aim, we used FLAMES+GIRAFFE-VLT to observe 300 stars distributed along the multimodal red giant branch of this cluster, sampling with good statistics the stellar populations of different metallicities. We determined chemical abundances for Fe, Na, O, and n-capture elements Ba and La. We confirm that {omega} Centauri exhibits large star-to-star variations in iron with [Fe/H] ranging from {approx}-2.0 to {approx}-0.7 dex. Barium and lanthanum abundances of metal-poor stars are correlated with iron, up to [Fe/H] {approx}-1.5, while they are almost constant (or at least have only a moderate increase) in the more metal-rich populations. There is an extended Na-O anticorrelation for stars with [Fe/H] {approx}<-1.3 while more metal-rich stars are almost all Na-rich. Sodium was found to mildly increase with iron over the entire metallicity range.

  10. Development of the large neutron imaging system for inertial confinement fusion experiments

    SciTech Connect

    Caillaud, T.; Landoas, O.; Briat, M.; Kime, S.; Rosse, B.; Thfoin, I.; Bourgade, J. L.; Disdier, L.; Glebov, V. Yu.; Marshall, F. J.; Sangster, T. C.

    2012-03-15

    Inertial confinement fusion (ICF) requires a high resolution ({approx}10 {mu}m) neutron imaging system to observe deuterium and tritium (DT) core implosion asymmetries. A new large (150 mm entrance diameter: scaled for Laser MegaJoule [P. A. Holstein, F. Chaland, C. Charpin, J. M. Dufour, H. Dumont, J. Giorla, L. Hallo, S. Laffite, G. Malinie, Y. Saillard, G. Schurtz, M. Vandenboomgaerde, and F. Wagon, Laser and Particle Beams 17, 403 (1999)]) neutron imaging detector has been developed for such ICF experiments. The detector has been fully characterized using a linear accelerator and a {sup 60}Co {gamma}-ray source. A penumbral aperture was used to observe DT-gas-filled target implosions performed on the OMEGA laser facility. [T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, and C. P. Verdon, Opt. Commun. 133, 495 (1997)] Neutron core images of 14 MeV with a resolution of 15 {mu}m were obtained and are compared to x-ray images of comparable resolution.

  11. Development of the large neutron imaging system for inertial confinement fusion experiments.

    PubMed

    Caillaud, T; Landoas, O; Briat, M; Kime, S; Rossé, B; Thfoin, I; Bourgade, J L; Disdier, L; Glebov, V Yu; Marshall, F J; Sangster, T C

    2012-03-01

    Inertial confinement fusion (ICF) requires a high resolution (~10 μm) neutron imaging system to observe deuterium and tritium (DT) core implosion asymmetries. A new large (150 mm entrance diameter: scaled for Laser MégaJoule [P. A. Holstein, F. Chaland, C. Charpin, J. M. Dufour, H. Dumont, J. Giorla, L. Hallo, S. Laffite, G. Malinie, Y. Saillard, G. Schurtz, M. Vandenboomgaerde, and F. Wagon, Laser and Particle Beams 17, 403 (1999)]) neutron imaging detector has been developed for such ICF experiments. The detector has been fully characterized using a linear accelerator and a (60)Co γ-ray source. A penumbral aperture was used to observe DT-gas-filled target implosions performed on the OMEGA laser facility. [T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, and C. P. Verdon, Opt. Commun. 133, 495 (1997)] Neutron core images of 14 MeV with a resolution of 15 μm were obtained and are compared to x-ray images of comparable resolution.

  12. The Mission and Technology of a Gas Dynamic Trap Neutron Source for Fusion Material and Component Testing and Qualification

    SciTech Connect

    Molvik, A W; Simonen, T C

    2009-07-17

    This report summarizes discussions and conclusions of the workshop to 'Assess The Mission and Technology of a Gas Dynamic Trap Neutron Source for Fusion Material and Component Testing and Qualification'. The workshop was held at LBNL, Berkeley, CA on March 12, 2009. Most workshop attendees have worked on magnetic mirror systems, several have worked on similar neutron source designs, and others are knowledgeable of materials, fusion component, and neutral beams The workshop focused on the gas dynamic trap DT Neutron Source (DTNS) concept being developed at the Budker Institute of Nuclear Physics (BINP) in Novosibirsk, Russia. The DTNS may be described as a line source of neutrons, in contrast to a spallation or a D-Lithium source with neutrons beaming from a point, or a tokamak volume source. The DTNS is a neutral beam driven linear plasma system with magnetic mirrors to confine the energetic deuterium and tritium beam injected ions, which produce the 14 MeV neutrons. The hot ions are imbedded in warm-background plasma, which traps the neutral atoms and provides both MHD and micro stability to the plasma. The 14 MeV neutron flux ranges typically at the level of 1 to 4 MW/m2.

  13. PRODUCTION OF {sup 9}Be THROUGH THE {alpha}-FUSION REACTION OF METAL-POOR COSMIC RAYS AND STELLAR FLARES

    SciTech Connect

    Kusakabe, Motohiko; Kawasaki, Masahiro E-mail: kawasaki@icrr.u-tokyo.ac.jp

    2013-04-10

    Spectroscopic observations of metal-poor stars have indicated possible {sup 6}Li abundances that are much larger than the primordial abundance predicted in the standard big bang nucleosynthesis model. Possible mechanisms of {sup 6}Li production in metal-poor stars include pregalactic and cosmological cosmic-ray (CR) nucleosynthesis and nucleosynthesis by flare-accelerated nuclides. We study {sup 9}Be production via two-step {alpha}-fusion reactions of CR or flare-accelerated {sup 3,4}He through {sup 6}He and {sup 6,7}Li, in pregalactic structure, intergalactic medium, and stellar surfaces. We solve transfer equations of CR or flare particles and calculate nuclear yields of {sup 6}He, {sup 6,7}Li, and {sup 9}Be taking account of probabilities of processing {sup 6}He and {sup 6,7}Li into {sup 9}Be via fusions with {alpha} particles. Yield ratios, i.e., {sup 9}Be/{sup 6}Li, are then calculated for the CR and flare nucleosynthesis models. We suggest that the future observations of {sup 9}Be in metal-poor stars may find enhanced abundances originating from metal-poor CR or flare activities.

  14. Stellar neutron capture cross sections of 41K and 45Sc

    NASA Astrophysics Data System (ADS)

    Heil, M.; Plag, R.; Uberseder, E.; Bisterzo, S.; Käppeler, F.; Mengoni, A.; Pignatari, M.

    2016-05-01

    The neutron capture cross sections of light nuclei (A <56 ) are important for s -process scenarios since they act as neutron poisons. We report on measurements of the neutron capture cross sections of 41K and 45Sc, which were performed at the Karlsruhe 3.7 MV Van de Graaff accelerator via the activation method in a quasistellar neutron spectrum corresponding to a thermal energy of k T =25 keV. Systematic effects were controlled by repeated irradiations, resulting in overall uncertainties of less than 3%. The measured spectrum-averaged data have been used to normalize the energy-dependent (n ,γ ) cross sections from the main data libraries JEFF-3.2, JENDL-4.0, and ENDF/B-VII.1, and a set of Maxwellian averaged cross sections was calculated for improving the s -process nucleosynthesis yields in AGB stars and in massive stars. At k T =30 keV, the new Maxwellian averaged cross sections of 41K and 45Sc are 19.2 ±0.6 mb and 61.3 ±1.8 mb, respectively. Both values are 20% lower than previously recommended. The effect of neutron poisons is discussed for nuclei with A <56 in general and for the investigated isotopes in particular.

  15. Advanced stellarator power plants

    SciTech Connect

    Miller, R.L.

    1994-07-01

    The stellarator is a class of helical/toroidal magnetic fusion devices. Recent international progress in stellarator power plant conceptual design is reviewed and comparisons in the areas of physics, engineering, and economics are made with recent tokamak design studies.

  16. Influence of projectile neutron number on cross section in cold fusion reactions

    SciTech Connect

    Dragojevic, Irena; Dragojevic, I.; Gregorich, K.E.; Dullmann, Ch.E.; Folden III, C.M.; Garcia, M.A.; Gates, J.M.; Nelson, S.L.; Sudowe, R.; Nitsche, H.

    2007-09-01

    Elements 107-112 [1,2] have been discovered in reactions between {sup 208}Pb or {sup 209}Bi targets and projectiles ranging from {sup 54}Cr through {sup 70}Zn. In such reactions, the compound nucleus can be formed at excitation energies as low as {approx}12 MeV, thus this type of reaction has been referred to as 'cold fusion'. The study of cold fusion reactions is an indispensable approach to gaining a better understanding of heavy element formation and decay. A theoretical model that successfully predicts not only the magnitudes of cold fusion cross sections, but also the shapes of excitation functions and the cross section ratios between various reaction pairs was recently developed by Swiatecki, Siwek-Wilczynska, and Wilczynski [3,4]. This theoretical model, also referred to as Fusion by Diffusion, has been the guide in all of our cold fusion studies. One particularly interesting aspect of this model is the large predicted difference in cross sections between projectiles differing by two neutrons. The projectile pair where this difference is predicted to be largest is {sup 48}Ti and {sup 50}Ti. To test and extend this model, {sup 208}Pb({sup 48}Ti,n){sup 255}Rf and {sup 208}Pb({sup 50}Ti,n){sup 257}Rf excitation functions were recently measured at the Lawrence Berkeley National Laboratory's (LBNL) 88-Inch Cyclotron utilizing the Berkeley Gas-filled Separator (BGS). The {sup 50}Ti reaction was carried out with thin lead targets ({approx}100 {micro}g/cm{sup 2}), and the {sup 48}Ti reaction with both thin and thick targets ({approx}470 {micro}g/cm{sup 2}). In addition to this reaction pair, reactions with projectile pairs {sup 52}Cr and {sup 54}Cr [5], {sup 56}Fe and {sup 58}Fe [6], and {sup 62}Ni [7] and {sup 64}Ni [8] will be discussed and compared to the Fusion by Diffusion predictions. The model predictions show a very good agreement with the data.

  17. Progress on using deuteron-deuteron fusion generated neutrons for 40Ar/39Ar sample irradiation

    NASA Astrophysics Data System (ADS)

    Rutte, Daniel; Renne, Paul R.; Becker, Tim; Waltz, Cory; Ayllon Unzueta, Mauricio; Zimmerman, Susan; Hidy, Alan; Finkel, Robert; Bauer, Joseph D.; Bernstein, Lee; van Bibber, Karl

    2017-04-01

    We present progress on the development and proof of concept of a deuteron-deuteron fusion based neutron generator for 40Ar/39Ar sample irradiation. Irradiation with deuteron-deuteron fusion neutrons is anticipated to reduce Ar recoil and Ar production from interfering reactions. This will allow dating of smaller grains and increase accuracy and precision of the method. The instrument currently achieves neutron fluxes of ˜9×107 cm-2s-1 as determined by irradiation of indium foils and use of the activation reaction 115In(n,n')115mIn. Multiple foils and simulations were used to determine flux gradients in the sample chamber. A first experiment quantifying the loss of 39Ar is underway and will likely be available at the time of the presentation of this abstract. In ancillary experiments via irradiation of K salts and subsequent mass spectrometric analysis we determined the cross-sections of the 39K(n,p)39Ar reaction at ˜2.8 MeV to be 160 ± 35 mb (1σ). This result is in good agreement with bracketing cross-section data of ˜96 mb at ˜2.45 MeV and ˜270 mb at ˜4 MeV [Johnson et al., 1967; Dixon and Aitken, 1961 and Bass et al. 1964]. Our data disfavor a much lower value of ˜45 mb at 2.59 MeV [Lindström & Neuer, 1958]. In another ancillary experiment the cross section for 39K(n,α)36Cl at ˜2.8 MeV was determined as 11.7 ± 0.5 mb (1σ), which is significant for 40Ar/39Ar geochronology due to subsequent decay to 36Ar as well as for the determination of production rates of cosmogenic 36Cl. Additional experiments resolving the cross section functions on 39K between 1.5 and 3.6 MeV are on their way using the LICORNE neutron source of the IPN Orsay tandem accelerator. Results will likely be available at the time of the presentation of this abstract. While the neutron generator is designed for fluxes of ˜109 cm-2s-1, arcing in the sample chamber currently limits the power—straightforwardly correlated to the neutron flux—the generator can safely be run at. Further

  18. Optimization of the neutron yield in fusion plasmas produced by Coulomb explosions of deuterium clusters irradiated by a petawatt laser.

    PubMed

    Bang, W; Dyer, G; Quevedo, H J; Bernstein, A C; Gaul, E; Donovan, M; Ditmire, T

    2013-02-01

    The kinetic energy of hot (multi-keV) ions from the laser-driven Coulomb explosion of deuterium clusters and the resulting fusion yield in plasmas formed from these exploding clusters has been investigated under a variety of conditions using the Texas Petawatt laser. An optimum laser intensity was found for producing neutrons in these cluster fusion plasmas with corresponding average ion energies of 14 keV. The substantial volume (1-10 mm(3)) of the laser-cluster interaction produced by the petawatt peak power laser pulse led to a fusion yield of 1.6×10(7) neutrons in a single shot with a 120 J, 170 fs laser pulse. Possible effects of prepulses are discussed.

  19. Diagnosing suprathermal ion populations in Z-pinch plasmas using fusion neutron spectra

    NASA Astrophysics Data System (ADS)

    Knapp, P. F.; Sinars, D. B.; Hahn, K. D.

    2013-06-01

    The existence of suprathermal ion populations gives rise to significant broadening of and modifications to the fusion neutron spectrum. We show that when this population takes the form of a power-law at high energies, specific changes occur to the spectrum which are diagnosable. In particular, the usual Gaussian spectral shape produced by a thermal plasma is replaced by a Lorentz-like spectrum with broad wings extending far from the spectral peak. Additionally, it is found that the full width at half maximum of the spectrum depends on both the ion temperature and the power-law exponent. This causes the use of the spectral width for determination of the ion temperature to be unreliable. We show that these changes are distinguishable from other broadening mechanisms, such as temporal and motional broadening, and that detailed fitting of the spectral shape is a promising method for extracting information about the state of the ions.

  20. Diagnosing suprathermal ion populations in Z-pinch plasmas using fusion neutron spectra

    SciTech Connect

    Knapp, P. F.; Sinars, D. B.; Hahn, K. D.

    2013-01-01

    The existence of suprathermal ion populations gives rise to significant broadening of and modifications to the fusion neutron spectrum. We show that when this population takes the form of a power-law at high energies, specific changes occur to the spectrum which are diagnosable. In particular, the usual Gaussian spectral shape produced by a thermal plasma is replaced by a Lorentz-like spectrum with broad wings extending far from the spectral peak. Additionally, it is found that the full width at half maximum of the spectrum depends on both the ion temperature and the power-law exponent. This causes the use of the spectral width for determination of the ion temperature to be unreliable. We show that these changes are distinguishable from other broadening mechanisms, such as temporal and motional broadening, and that detailed fitting of the spectral shape is a promising method for extracting information about the state of the ions

  1. Diagnosing suprathermal ion populations in Z-pinch plasmas using fusion neutron spectra

    SciTech Connect

    Knapp, P. F.; Sinars, D. B.; Hahn, K. D.

    2013-06-15

    The existence of suprathermal ion populations gives rise to significant broadening of and modifications to the fusion neutron spectrum. We show that when this population takes the form of a power-law at high energies, specific changes occur to the spectrum which are diagnosable. In particular, the usual Gaussian spectral shape produced by a thermal plasma is replaced by a Lorentz-like spectrum with broad wings extending far from the spectral peak. Additionally, it is found that the full width at half maximum of the spectrum depends on both the ion temperature and the power-law exponent. This causes the use of the spectral width for determination of the ion temperature to be unreliable. We show that these changes are distinguishable from other broadening mechanisms, such as temporal and motional broadening, and that detailed fitting of the spectral shape is a promising method for extracting information about the state of the ions.

  2. Impact of the neutron flux on transmutation products at fusion reactor first-walls

    NASA Astrophysics Data System (ADS)

    Sanz, J.; De La Fuente, R.; Perlado, J. M.

    1988-07-01

    To develop and to assess the suitability of a material for use as the first structural wall in a fusion reactor, it is necessary to know the transmutation behaviour of the material. In the present paper we propose a transmutation calculational strategy and how this methodology is implemented in a computer code package, called CIBELES. The code system has been developed to calculate and especially to analyze the transmutations resulting from neutron irradiation. The system includes powerful computing methods for analysing the results, and uses the numerical calculation techniques of the ORIGEN code. The transmutation characteristics of two structural materials, AISI 316L austenitic steel and DIN 1.4914 martensitic steel have been evaluated for the peripheral target position in the High Flux Isotope Reactor (HFIR), and the first wall position of the Culham Conceptual Tokamak Reactor MarkIIA (CCTRII).

  3. Stellar Neutron Capture Cross Sections of the Lu and Hf Isotopes

    SciTech Connect

    Wisshak, K.; Voss, F.; Kaeppeler, F.; Kazakov, L.; Krticka, M.

    2005-05-24

    The neutron capture cross sections of 175,176Lu and 176,177,178,179,180Hf have been measured in the energy range from 3 to 225 keV at the Karlsruhe 3.7 MV Van de Graaff accelerator relative to the gold standard. Neutrons were produced by the 7Li(p,n)7Be reaction and capture events were detected by the Karlsruhe 4{pi}BaF2 detector. The cross section ratios could be determined with uncertainties between 0.9 and 1.8% about a factor of five more accurate than previous data. A strong population of isomeric states was found in neutron capture of the Hf isotopes, which are only partially explained by CASINO/GEANT simulations based on the known level schemes.Maxwellian averaged neutron capture cross sections were calculated for thermal energies between kT = 8 keV and 100 keV. Severe differences up to40% were found to the data of a recent evaluation based on existing experimental results. The new data allow for a much more reliable analysis of the important branching in the s-process synthesis path at 176Lu which can be interpreted as an s-process thermometer.

  4. Comprehensive neutron cross-section and secondary energy distribution uncertainty analysis for a fusion reactor

    SciTech Connect

    Gerstl, S.A.W.; LaBauve, R.J.; Young, P.G.

    1980-05-01

    On the example of General Atomic's well-documented Power Generating Fusion Reactor (PGFR) design, this report exercises a comprehensive neutron cross-section and secondary energy distribution (SED) uncertainty analysis. The LASL sensitivity and uncertainty analysis code SENSIT is used to calculate reaction cross-section sensitivity profiles and integral SED sensitivity coefficients. These are then folded with covariance matrices and integral SED uncertainties to obtain the resulting uncertainties of three calculated neutronics design parameters: two critical radiation damage rates and a nuclear heating rate. The report documents the first sensitivity-based data uncertainty analysis, which incorporates a quantitative treatment of the effects of SED uncertainties. The results demonstrate quantitatively that the ENDF/B-V cross-section data files for C, H, and O, including their SED data, are fully adequate for this design application, while the data for Fe and Ni are at best marginally adequate because they give rise to response uncertainties up to 25%. Much higher response uncertainties are caused by cross-section and SED data uncertainties in Cu (26 to 45%), tungsten (24 to 54%), and Cr (up to 98%). Specific recommendations are given for re-evaluations of certain reaction cross-sections, secondary energy distributions, and uncertainty estimates.

  5. Near and sub-barrier fusion of neutron-rich oxygen and carbon nuclei using low-intensity beams

    NASA Astrophysics Data System (ADS)

    Steinbach, Tracy K.

    Fusion between neutron-rich light nuclei in the crust of an accreting neutron star has been proposed as a heat source that triggers an X-ray superburst. To explore the probability with which such fusion events occur and examine their decay characteristics, an experimental program using beams of neutron-rich light nuclei has been established. Evaporation residues resulting from the fusion of oxygen and 12C nuclei, are directly measured and distinguished from unreacted beam particles on the basis of their energy and time-of-flight. Using an experimental setup developed for measurements utilizing low-intensity (< 105 ions/s) radioactive beams, the fusion excitation functions for 16O + 12C and 18O + 12C have been measured. The fusion excitation function for 18O + 12C has been measured in the sub-barrier domain down to the 820 mub level, a factor of 30 lower than previous direct measurements. This measured fusion excitation function is compared to the predictions of a density constrained time-dependent Hartree-Fock model. This comparison reveals a shape difference in the fusion excitation functions, indicating a larger tunneling probability for the experimental data as compared to the theoretical calculations. In addition to the measured cross-section, the measured angular distribution of the evaporation residues provides insight into the relative importance of the different de-excitation channels. These evaporation residue angular distributions are compared to the predictions of a statistical model code, evapOR, revealing an under-prediction of the de-excitation channels associated with alpha particle emission.

  6. The effects of magnetic field topology on secondary neutron spectra in Magnetized Liner Inertial Fusion

    NASA Astrophysics Data System (ADS)

    Appelbe, B.; Pecover, J.; Chittenden, J.

    2017-03-01

    The Magnetized Liner Inertial Fusion (MagLIF) concept involves the compression of a magnetized fuel such that the stagnated fuel contains a magnetic field that can suppress heat flow losses and confine α particles. Magnetic confinement of α particles reduces the fuel ρR required for ignition. Recent work [1,2] has demonstrated that the magnitude of the magnetic field in deuterium fuel can be inferred from the yields and spectra of secondary DT neutrons. In this work we investigate the potential for using the shape of the secondary neutron spectra to diagnose the magnetic field topology in the stagnated fuel. Three different field topologies that could possibly occur in MagLIF experiments are studied: (1) a cylindrical fuel column containing axial and azimuthal magnetic field components, (2) a fuel column which is pinched at the ends to form a magnetic mirror and (3) a fuel column that has a helical tube shape with magnetic field lines following the helical path of the tube's axis. Each topology is motivated by observations from experimental or simulated MagLIF data. For each topology we use a multi-physics model to investigate the shapes of the secondary neutron spectra emitted from a steady-state stagnated fuel column. It is found that the azimuthal and helical topologies are more suitable than the mirror topology for reproducing an asymmetry in the axial spectra that was observed in experiments. Gorgon MHD simulations of the MagLIF implosion in 1D are also carried out. These show that sufficient azimuthal magnetic field can penetrate from the liner into the fuel to qualitatively reproduce the observed spectral asymmetry.

  7. Enhancement of fusion at near-barrier energies for neutron-rich light nuclei: 19O +12 C

    NASA Astrophysics Data System (ADS)

    Singh, Varinderjit; Vadas, J.; Steinbach, T. K.; Wiggins, B. B.; Hudan, S.; Desouza, R. T.; Baby, L. T.; Kuvin, S. A.; Tripathi, Vandana; Wiedenhover, I.; Umar, A. S.

    2017-01-01

    Measuring the fusion excitation function for an isotopic chain of projectile nuclei provides a sensitive test of a microscopic description of fusion. To investigate the theoretically predicted fusion enhancement for neutron-rich light nuclei, an experiment was performed to measure the fusion excitation functions for 19 O +12 C and 18 O +12 C . Using the 18O(d,p) reaction and the RESOLUT mass spectrometer at Florida State University, a beam of 19O was produced with an intensity of 2-4 x 103 p/s. This beam bombarded a 100 μg/cm2 carbon target. Using an approach optimized for the measurement of fusion with a low-intensity beam, evaporation residues (ERs) resulting from the de-excitation of the fusion product were measured. The ERs were identified by measuring their energy and time-of-flight. At near-barrier energies, an enhancement of fusion by a factor of three has been observed for 19 O +12 C in comparison to 18 O +12 C . Comparison of the experimental results with the predictions of a density constrained time-dependent Hartree-Fock (DC-TDHF) model provide evidence for the importance of pairing in the fusion process. Supported by the US DOE under Grant No. DEFG02-88ER-40404.

  8. Measurement of the dmud quartet-to-doublet molecular formation rate ratio (lambdaq : lambdad) and the mu d hyperfine rate (lambdaqd) using the fusion neutrons from mu- stops in D2 gas

    NASA Astrophysics Data System (ADS)

    Raha, Nandita

    The MuSun experiment will determine the microd capture rate (micro - + d → n + n + nue) from the doublet hyperfine state Lambdad, of the muonic deuterium atom in the 1S ground state to a precision of 1.5%. Modern effective field theories (EFT) predict that an accurate measurement of Lambdad would determine the two-nucleon weak axial current. This will help in understanding all weak nuclear interactions such as the stellar thermonuclear proton-proton fusion reactions, the neutrino reaction nu + d (which explores the solar neutrino oscillation problem). It will also help us understand weak nuclear interactions involving more than two nucleons---double beta decay---as they do involve a two-nucleon weak axial current term. The experiment took place in the piE3 beam-line of Paul Scherrer Institute (PSI) using a muon beam generated from 2.2 mA proton beam---which is the highest intensity beam in the world. The muons first passed through entrance scintillator and multiwire proportional chamber for determining thier entrance timing and position respectively. Then they were stopped in a cryogenic time projection chamber (cryo-TPC) filled with D2 gas. This was surrounded by plastic scintillators and multiwire proportional chambers for detecting the decay electrons and an array of eight liquid scintillators for detecting neutrons. Muons in deuterium get captured to form microd atoms in the quartet and doublet spin states. These atoms undergo nuclear capture from these hyperfine states respectively. There is a hyperfine transition rate from quartet-to-doublet state---lambdaqd along with dmicrod molecular formation which further undergoes a fusion reaction with the muon acting as a catalyst (MCF). The goal of this dissertation is to measure the dmicro d quartet-to-doublet rate ratio (lambdaq : lambdad) and microd hyperfine rate (lambda qd) using the fusion neutrons from micro. stops in D2 gas. The dmicrod molecules undergo MCF reactions from the doublet and the quartet state

  9. Comparisons of calculated and measured spectral distributions of neutrons from a 14-MeV neutron source inside the Tokamak Fusion Test Reactor

    SciTech Connect

    Santoro, R.T.; Barnes, J.M.; Alsmiller, R.G. Jr.; Emmett, M.B.; Drischler, J.D.

    1985-12-01

    A recent paper presented neutron spectral distributions (energy greater than or equal to0.91 MeV) measured at various locations around the Tokamak Fusion Test Reactor (TFTR) at the Princeton Plasma Physics Laboratory. The neutron source for the series of measurements was a small D-T generator placed at various positions in the TFTR vacuum chamber. In the present paper the results of neutron transport calculations are presented and compared with these experimental data. The calculations were carried out using Monte Carlo methods and a very detailed model of the TFTR and the TFTR test cell. The calculated and experimental fluences per unit energy are compared in absolute units and are found to be in substantial agreement for five different combinations of source and detector positions.

  10. Catalyzed D-D stellarator reactor

    SciTech Connect

    Sheffield, John; Spong, Donald A.

    2016-05-12

    The advantages of using the catalyzed deuterium-deuterium (D-D) approach for a fusion reactor—lower and less energetic neutron flux and no need for a tritium breeding blanket—have been evaluated in previous papers, giving examples of both tokamak and stellarator reactors. This paper presents an update for the stellarator example, taking account of more recent empirical transport scaling results and design studies of lower-aspect-ratio stellarators. We use a modified version of the Generic Magnetic Fusion Reactor model to cost a stellarator-type reactor. Recently, this model has been updated to reflect the improved science and technology base and costs in the magnetic fusion program. Furthermore, it is shown that an interesting catalyzed D-D, stellarator power plant might be possible if the following parameters could be achieved: R/ ≈ 4, required improvement factor to ISS04 scaling, FR = 0.9 to 1.15, <β> ≈ 8.0% to 11.5%, Zeff ≈ 1.45 plus a relativistic temperature correction, fraction of fast ions lost ≈ 0.07, Bm ≈ 14 to 16 T, and R ≈ 18 to 24 m.

  11. Catalyzed D-D stellarator reactor

    SciTech Connect

    Sheffield, John; Spong, Donald A.

    2016-05-12

    The advantages of using the catalyzed deuterium-deuterium (D-D) approach for a fusion reactor—lower and less energetic neutron flux and no need for a tritium breeding blanket—have been evaluated in previous papers, giving examples of both tokamak and stellarator reactors. This paper presents an update for the stellarator example, taking account of more recent empirical transport scaling results and design studies of lower-aspect-ratio stellarators. We use a modified version of the Generic Magnetic Fusion Reactor model to cost a stellarator-type reactor. Recently, this model has been updated to reflect the improved science and technology base and costs in the magnetic fusion program. Furthermore, it is shown that an interesting catalyzed D-D, stellarator power plant might be possible if the following parameters could be achieved: R/ ≈ 4, required improvement factor to ISS04 scaling, FR = 0.9 to 1.15, <β> ≈ 8.0% to 11.5%, Zeff ≈ 1.45 plus a relativistic temperature correction, fraction of fast ions lost ≈ 0.07, Bm ≈ 14 to 16 T, and R ≈ 18 to 24 m.

  12. Neutron activation analysis of nuclides from stellar and man-induced nuclear reactions

    NASA Astrophysics Data System (ADS)

    Oliver, L. L.

    Neutron activation and gamma counting were used to determine the relative abundances of six stable tellurium isotopes in the acid-etched residues of the Allende meteorite. The results were correlated with the isotopic compositions of xenon and the elemental abundances of helium and neon in similarly prepared residues. Nucleosynthesis appears to be the only viable explanation or the anomalous isotopic and elemental compositions observed in these residues. Results suggest that the solar system condensed from an isotopically and chemically zoned nebula that was produced by the explosion of a supernova, concentric with the present Sun. A combination of neutron activation and mass spectrometry was used to determine the concentrations of fissiogenic iodine 129 and stable iodine 127 in rain, milk and the thyroids of man, cow and deer from Missouri. Rain and deer thyroids show the highest average values of the iodine 129/iodine 127 ratio. Milk and the thyroids of cattle and humans show successively lower values of the iodine 129/iodine 127 ratio due to dietary additives of mineral iodine and to biological averaging.

  13. The Status of Research Regarding Magnetic Mirrors as a Fusion Neutron Source or Power Plant

    SciTech Connect

    Simonen, T

    2008-12-23

    experiments have confirmed the physics of effluent plasma stabilization predicted by theory. The plasma had a mean ion energy of 10 keV and a density of 5e19m-3. If successful, the axisymmetric tandem mirror extension of the GDT idea could lead to a Q {approx} 10 power plant of modest size and would yield important applications at lower Q. In addition to the GDT method, there are four other ways to augment stability that have been demonstrated; including: plasma rotation (MCX), diverter coils (Tara), pondermotive (Phaedrus & Tara), and end wall funnel shape (Nizhni Novgorod). There are also 5 stabilization techniques predicted, but not yet demonstrated: expander kinetic pressure (KSTM-Post), Pulsed ECH Dynamic Stabilization (Post), wall stabilization (Berk), non-paraxial end mirrors (Ryutov), and cusp ends (Kesner). While these options should be examined further together with conceptual engineering designs. Physics issues that need further analysis include: electron confinement, MHD and trapped particle modes, analysis of micro stability, radial transport, evaluation and optimization of Q, and the plasma density needed to bridge to the expansion-region. While promising all should be examined through increased theory effort, university-scale experiments, and through increased international collaboration with the substantial facilities in Russia and Japan The conventional wisdom of magnetic mirrors was that they would never work as a fusion concept for a number of reasons. This conventional wisdom is most probably all wrong or not applicable, especially for applications such as low Q (DT Neutron Source) aimed at materials testing or for a Q {approx} 3-5 fusion neutron source applied to destroying actinides in fission waste and breeding of fissile fuel.

  14. How the projectile neutron number influences the evaporation cross section in complete fusion reactions with heavy ions

    SciTech Connect

    Wang Chengbin; Zhang Jinjuan; Ren, Z. Z.; Shen, C. W.

    2010-11-15

    The influence of the projectile neutron number on the evaporation residue cross sections for the reactions {sup 208}Pb({sup 52,54}Cr,n,2n){sup 258-261}Sg and {sup 208}Pb({sup 48,50}Ti,n,2n){sup 254-257}Rf has been studied within the framework of a fusion-fission statistical model. The results obtained with the kewpie2 code are compared with recent experimental data. The excitation functions represent the experimental results well both in the maximum value and the lactation of the peak. The calculations show that the projectile neutron number greatly influences both the capture cross section and the fusion probability.

  15. Nondestructive Inspection System for Special Nuclear Material Using Inertial Electrostatic Confinement Fusion Neutrons and Laser Compton Scattering Gamma-Rays

    NASA Astrophysics Data System (ADS)

    Ohgaki, H.; Daito, I.; Zen, H.; Kii, T.; Masuda, K.; Misawa, T.; Hajima, R.; Hayakawa, T.; Shizuma, T.; Kando, M.; Fujimoto, S.

    2017-07-01

    A Neutron/Gamma-ray combined inspection system for hidden special nuclear materials (SNMs) in cargo containers has been developed under a program of Japan Science and Technology Agency in Japan. This inspection system consists of an active neutron-detection system for fast screening and a laser Compton backscattering gamma-ray source in coupling with nuclear resonance fluorescence (NRF) method for precise inspection. The inertial electrostatic confinement fusion device has been adopted as a neutron source and two neutron-detection methods, delayed neutron noise analysis method and high-energy neutron-detection method, have been developed to realize the fast screening system. The prototype system has been constructed and tested in the Reactor Research Institute, Kyoto University. For the generation of the laser Compton backscattering gamma-ray beam, a race track microtron accelerator has been used to reduce the size of the system. For the NRF measurement, an array of LaBr3(Ce) scintillation detectors has been adopted to realize a low-cost detection system. The prototype of the gamma-ray system has been demonstrated in the Kansai Photon Science Institute, National Institutes for Quantum and Radiological Science and Technology. By using numerical simulations based on the data taken from these prototype systems and the inspection-flow, the system designed by this program can detect 1 kg of highly enriched 235U (HEU) hidden in an empty 20-ft container within several minutes.

  16. Evidence of nuclear fusion neutrons in an extremely small plasma focus device operating at 0.1 Joules

    NASA Astrophysics Data System (ADS)

    Soto, Leopoldo; Pavéz, Cristián; Moreno, José; Altamirano, Luis; Huerta, Luis; Barbaglia, Mario; Clausse, Alejandro; Mayer, Roberto E.

    2017-08-01

    We report on D-D fusion neutron emission in a plasma device with an energy input of only 0.1 J, within a range where fusion events have been considered very improbable. The results presented here are the consequence of scaling rules we have derived, thus being the key point to assure the same energy density plasma in smaller devices than in large machines. The Nanofocus (NF)—our device—was designed and constructed at the P4 Lab of the Chilean Nuclear Energy Commission. Two sets of independent measurements, with different instrumentation, were made at two laboratories, in Chile and Argentina. The neutron events observed are 20σ greater than the background. The NF plasma is produced from a pulsed electrical discharge using a submillimetric anode, in a deuterium atmosphere, showing empirically that it is, in fact, possible to heat and compress the plasma. The strong evidence presented here stretches the limits beyond what was expected. A thorough understanding of this could possibly tell us where the theoretical limits actually lie, beyond conjectures. Notwithstanding, a window is thus open for low cost endeavours for basic fusion research. In addition, the development of small, portable, safe nonradioactive neutron sources becomes a feasible issue.

  17. MERGER RATES OF DOUBLE NEUTRON STARS AND STELLAR ORIGIN BLACK HOLES: THE IMPACT OF INITIAL CONDITIONS ON BINARY EVOLUTION PREDICTIONS

    SciTech Connect

    Mink, S. E. de; Belczynski, K. E-mail: kbelczyn@astrouw.edu.pl

    2015-11-20

    The initial mass function (IMF), binary fraction, and distributions of binary parameters (mass ratios, separations, and eccentricities) are indispensable inputs for simulations of stellar populations. It is often claimed that these are poorly constrained, significantly affecting evolutionary predictions. Recently, dedicated observing campaigns have provided new constraints on the initial conditions for massive stars. Findings include a larger close binary fraction and a stronger preference for very tight systems. We investigate the impact on the predicted merger rates of neutron stars and black holes. Despite the changes with previous assumptions, we only find an increase of less than a factor of 2 (insignificant compared with evolutionary uncertainties of typically a factor of 10–100). We further show that the uncertainties in the new initial binary properties do not significantly affect (within a factor of 2) our predictions of double compact object merger rates. An exception is the uncertainty in IMF (variations by a factor of 6 up and down). No significant changes in the distributions of final component masses, mass ratios, chirp masses, and delay times are found. We conclude that the predictions are, for practical purposes, robust against uncertainties in the initial conditions concerning binary parameters, with the exception of the IMF. This eliminates an important layer of the many uncertain assumptions affecting the predictions of merger detection rates with the gravitational wave detectors aLIGO/aVirgo.

  18. Microstructural investigation, using polarized neutron scattering, of a martensitic steel for fusion reactors

    SciTech Connect

    Coppola, R.; Kampmann, R.; Staron, P.; Magnani, M.

    1998-09-18

    Small- and wide-angle polarized neutron scattering has been used to investigate the microstructure of modified martensitic steel DIN 1.4914 (MANET-type) developed as a potential candidate for the first wall of future fusion reactors. The nuclear-magnetic interference term and the comparison of the size distribution functions, obtained from the nuclear and from the magnetic scattering components, show that for quench temperatures lower than 1200 C three kinds of microstructural inhomogeneities can be identified: (a) tiny C-Cr elementary aggregates (1 nm or less in size), (b) larger (1--25 nm) Fe-carbides, (c) much larger inhomogeneities arising either from M{sub 23}C{sub 6} precipitates or from fluctuations in the Cr distribution. The scattering data are also compared with those previously obtained on the same samples from a conventional SANS instrument and the influence of the available Q-range on the accuracy of the obtained size distribution functions is discussed.

  19. Simultaneous neutron and x-ray imaging of inertial confinement fusion experiments along a single line of sight at Omega

    SciTech Connect

    Danly, C. R.; Day, T. H.; Herrmann, H.; Kim, Y. H.; Martinez, J. I.; Merrill, F. E.; Schmidt, D. W.; Simpson, R. A.; Volegov, P. L.; Wilde, C. H.; Fittinghoff, D. N.; Izumi, N.

    2015-04-15

    Neutron and x-ray imaging provide critical information about the geometry and hydrodynamics of inertial confinement fusion implosions. However, existing diagnostics at Omega and the National Ignition Facility (NIF) cannot produce images in both neutrons and x-rays along the same line of sight. This leads to difficulty comparing these images, which capture different parts of the plasma geometry, for the asymmetric implosions seen in present experiments. Further, even when opposing port neutron and x-ray images are available, they use different detectors and cannot provide positive information about the relative positions of the neutron and x-ray sources. A technique has been demonstrated on implosions at Omega that can capture x-ray images along the same line of sight as the neutron images. The technique is described, and data from a set of experiments are presented, along with a discussion of techniques for coregistration of the various images. It is concluded that the technique is viable and could provide valuable information if implemented on NIF in the near future.

  20. Simultaneous neutron and x-ray imaging of inertial confinement fusion experiments along a single line of sight at Omega.

    PubMed

    Danly, C R; Day, T H; Fittinghoff, D N; Herrmann, H; Izumi, N; Kim, Y H; Martinez, J I; Merrill, F E; Schmidt, D W; Simpson, R A; Volegov, P L; Wilde, C H

    2015-04-01

    Neutron and x-ray imaging provide critical information about the geometry and hydrodynamics of inertial confinement fusion implosions. However, existing diagnostics at Omega and the National Ignition Facility (NIF) cannot produce images in both neutrons and x-rays along the same line of sight. This leads to difficulty comparing these images, which capture different parts of the plasma geometry, for the asymmetric implosions seen in present experiments. Further, even when opposing port neutron and x-ray images are available, they use different detectors and cannot provide positive information about the relative positions of the neutron and x-ray sources. A technique has been demonstrated on implosions at Omega that can capture x-ray images along the same line of sight as the neutron images. The technique is described, and data from a set of experiments are presented, along with a discussion of techniques for coregistration of the various images. It is concluded that the technique is viable and could provide valuable information if implemented on NIF in the near future.

  1. Simultaneous neutron and x-ray imaging of inertial confinement fusion experiments along a single line of sight at Omega

    DOE PAGES

    Danly, C. R.; Day, T. H.; Fittinghoff, D. N.; ...

    2015-04-16

    Neutron and x-ray imaging provide critical information about the geometry and hydrodynamics of inertial confinement fusion implosions. However, existing diagnostics at Omega and the National Ignition Facility (NIF) cannot produce images in both neutrons and x-rays along the same line of sight. This leads to difficulty comparing these images, which capture different parts of the plasma geometry, for the asymmetric implosions seen in present experiments. Further, even when opposing port neutron and x-ray images are available, they use different detectors and cannot provide positive information about the relative positions of the neutron and x-ray sources. A technique has been demonstratedmore » on implosions at Omega that can capture x-ray images along the same line of sight as the neutron images. Thus, the technique is described, and data from a set of experiments are presented, along with a discussion of techniques for coregistration of the various images. It is concluded that the technique is viable and could provide valuable information if implemented on NIF in the near future.« less

  2. Simultaneous neutron and x-ray imaging of inertial confinement fusion experiments along a single line of sight at Omega

    SciTech Connect

    Danly, C. R.; Day, T. H.; Fittinghoff, D. N.; Herrmann, H.; Izumi, N.; Kim, Y. H.; Martinez, J. I.; Merrill, F. E.; Schmidt, D. W.; Simpson, R. A.; Volegov, P. L.; Wilde, C. H.

    2015-04-16

    Neutron and x-ray imaging provide critical information about the geometry and hydrodynamics of inertial confinement fusion implosions. However, existing diagnostics at Omega and the National Ignition Facility (NIF) cannot produce images in both neutrons and x-rays along the same line of sight. This leads to difficulty comparing these images, which capture different parts of the plasma geometry, for the asymmetric implosions seen in present experiments. Further, even when opposing port neutron and x-ray images are available, they use different detectors and cannot provide positive information about the relative positions of the neutron and x-ray sources. A technique has been demonstrated on implosions at Omega that can capture x-ray images along the same line of sight as the neutron images. Thus, the technique is described, and data from a set of experiments are presented, along with a discussion of techniques for coregistration of the various images. It is concluded that the technique is viable and could provide valuable information if implemented on NIF in the near future.

  3. Neutron Transport and Nuclear Burnup Analysis for the Laser Inertial Confinement Fusion-Fission Energy (LIFE) Engine

    SciTech Connect

    Kramer, K J; Latkowski, J F; Abbott, R P; Boyd, J K; Powers, J J; Seifried, J E

    2008-10-24

    Lawrence Livermore National Laboratory is currently developing a hybrid fusion-fission nuclear energy system, called LIFE, to generate power and burn nuclear waste. We utilize inertial confinement fusion to drive a subcritical fission blanket surrounding the fusion chamber. It is composed of TRISO-based fuel cooled by the molten salt flibe. Low-yield (37.5 MJ) targets and a repetition rate of 13.3 Hz produce a 500 MW fusion source that is coupled to the subcritical blanket, which provides an additional gain of 4-8, depending on the fuel. In the present work, we describe the neutron transport and nuclear burnup analysis. We utilize standard analysis tools including, the Monte Carlo N-Particle (MCNP) transport code, ORIGEN2 and Monteburns to perform the nuclear design. These analyses focus primarily on a fuel composed of depleted uranium not requiring chemical reprocessing or enrichment. However, other fuels such as weapons grade plutonium and highly-enriched uranium are also under consideration. In addition, we have developed a methodology using {sup 6}Li as a burnable poison to replace the tritium burned in the fusion targets and to maintain constant power over the lifetime of the engine. The results from depleted uranium analyses suggest up to 99% burnup of actinides is attainable while maintaining full power at 2GW for more than five decades.

  4. Negative results and positive artifacts observed in a comprehensive search for neutrons from (cold fusion) using a multidetector system located underground

    SciTech Connect

    Ewing, R.I.; Butler, M.A.; Schirber, J.E.; Ginley, D.S. )

    1989-11-01

    This paper reports on a search for neutrons from deuterium cold fusion systems (both electrochemical and high-pressure gas cells) conducted in an underground laboratory using three highly sensitive neutron detectors composed of {sup 3}He gas proportional counter tubes embedded in polyethylene moderators. Any neutron emission from a test cell would be simultaneously observed in all three detectors in a known proportion. The counting system can detect random, continuous emission at a rate of {lt} 100 n/h, and short bursts of as few as 35 neutrons. None of the cold fusion systems tested emitted neutrons at these levels. Occasional anomalous groups of counts were observed in individual detectors that closely mimicked both continuous and burst emission. These anomalies were identified as spurious detector artifacts rather than true detection, because counts were not observed in the appropriate proportion in all three detectors.

  5. The Mission and Technology of a Gas Dynamic Trap Neutron Source for Fusion Material and Component Testing and Qualification

    SciTech Connect

    Ivanov, A; Kulcinski, J; Molvik, A; Ryutov, D; Santarius, J; Simonen, T; Wirth, B D; Ying, A

    2009-11-23

    The successful operation (with {beta} {le} 60%, classical ions and electrons with Te = 250 eV) of the Gas Dynamic Trap (GDT) device at the Budker Institute of Nuclear Physics (BINP) in Novosibirsk, Russia, extrapolates to a 2 MW/m{sup 2} Dynamic Trap Neutron Source (DTNS), which burns only {approx}100 g of tritium per full power year. The DTNS has no serious physics, engineering, or technology obstacles; the extension of neutral beam lines to steady state can use demonstrated engineering; and it supports near-term tokamaks and volume neutron sources. The DTNS provides a neutron spectrum similar to that of ITER and satisfies the missions specified by the materials community to test fusion materials (listed as one of the top grand challenges for engineering in the 21st century by the U.S. National Academy of Engineering) and subcomponents (including tritium-breeding blankets) needed to construct DEMO. The DTNS could serve as the first Fusion Nuclear Science Facility (FNSF), called for by ReNeW, and could provide the data necessary for licensing subsequent FSNFs.

  6. Catalyzed D-D stellarator reactor

    DOE PAGES

    Sheffield, John; Spong, Donald A.

    2016-05-12

    The advantages of using the catalyzed deuterium-deuterium (D-D) approach for a fusion reactor—lower and less energetic neutron flux and no need for a tritium breeding blanket—have been evaluated in previous papers, giving examples of both tokamak and stellarator reactors. This paper presents an update for the stellarator example, taking account of more recent empirical transport scaling results and design studies of lower-aspect-ratio stellarators. We use a modified version of the Generic Magnetic Fusion Reactor model to cost a stellarator-type reactor. Recently, this model has been updated to reflect the improved science and technology base and costs in the magnetic fusionmore » program. Furthermore, it is shown that an interesting catalyzed D-D, stellarator power plant might be possible if the following parameters could be achieved: R/ ≈ 4, required improvement factor to ISS04 scaling, FR = 0.9 to 1.15, <β> ≈ 8.0% to 11.5%, Zeff ≈ 1.45 plus a relativistic temperature correction, fraction of fast ions lost ≈ 0.07, Bm ≈ 14 to 16 T, and R ≈ 18 to 24 m.« less

  7. Moderator design studies for a new neutron reference source based on the D-T fusion reaction

    NASA Astrophysics Data System (ADS)

    Mozhayev, Andrey V.; Piper, Roman K.; Rathbone, Bruce A.; McDonald, Joseph C.

    2016-06-01

    The radioactive isotope Californium-252 (252Cf) is relied upon internationally as a neutron calibration source for ionizing radiation dosimetry because of its high specific activity. The source may be placed within a heavy-water (D2O) moderating sphere to produce a softened spectrum representative of neutron fields common to commercial nuclear power plant environments, among others. Due to termination of the U.S. Department of Energy loan/lease program in 2012, the expense of obtaining 252Cf sources has undergone a significant increase, rendering high output sources largely unattainable. On the other hand, the use of neutron generators in research and industry applications has increased dramatically in recent years. Neutron generators based on deuteriumtritium (D-T) fusion reaction provide high neutron fluence rates and, therefore, could possibly be used as a replacement for 252Cf. To be viable, the 14 MeV D-T output spectrum must be significantly moderated to approximate common workplace environments. This paper presents the results of an effort to select appropriate moderating materials and design a configuration to reshape the primary neutron field toward a spectrum approaching that from a nuclear power plant workplace. A series of Monte-Carlo (MCNP) simulations of single layer high- and low-Z materials are used to identify initial candidate moderators. Candidates are refined through a similar series of simulations involving combinations of 2-5 different materials. The simulated energy distribution using these candidate moderators are rated in comparison to a target spectrum. Other properties, such as fluence preservation and/or enhancement, prompt gamma production and other characteristics are also considered.

  8. Moderator design studies for a new neutron reference source based on the D–T fusion reaction

    SciTech Connect

    Mozhayev, Andrey V.; Piper, Roman K.; Rathbone, Bruce A.; McDonald, Joseph C.

    2016-06-01

    The radioactive isotope Californium-252 (252Cf) is relied upon internationally as a neutron calibration source for ionizing radiation dosimetry because of its high specific activity. The source may be placed within a heavy-water (D2O) moderating sphere to produce a softened spectrum representative of neutron fields common to commercial nuclear power plant environments, among others. Due to termination of the U.S. Department of Energy loan/lease program in 2012, the expense of obtaining 252Cf sources has undergone a significant increase, rendering high output sources largely unattainable. On the other hand, the use of neutron generators in research and industry applications has increased dramatically in recent years. Neutron generators based on deuterium-tritium (D-T) fusion reaction provide high neutron fluence rates and, therefore, could possibly be used as a replacement for 252Cf. To be viable, the 14.6 MeV D-T output spectrum must be significantly moderated to approximate common workplace environments. This paper presents the results of an effort to select appropriate moderating materials and design a configuration to reshape the primary neutron field toward a spectrum approaching that from a nuclear power plant workplace. A series of Monte-Carlo (MCNP) simulations of single layer high- and low-Z materials are used to identify initial candidate moderators. Candidates are refined through a similar series of simulations involving combinations of 2 to 5 different materials. The simulated energy distribution using these candidate moderators are rated in comparison to a target spectrum. Other properties, such as fluence preservation and/or enhancement, prompt gamma production and other characteristics are also considered.

  9. Second generation fusion neutron time-of-flight spectrometer at optimized rate for fully digital data acquisition

    SciTech Connect

    Zhang, X. E-mail: jnke1@icloud.com Fan, T.; Yuan, X.; Xie, X.; Chen, Z.; Källne, J.; Gorini, G.; Nocente, M.

    2014-04-15

    The progress on high-rate event recording of data is taken as starting point to revisit the design of fusion neutron spectrometers based on the TOF (time-of-flight) technique. The study performed was aimed at how such instruments for optimized rate (TOFOR) can be further developed to enhance the plasma diagnostic capabilities based on measurement of the 2.5 MeV dd neutron emission from D plasmas, especially the weak spectral components that depend on discrimination of extraneous events. This paper describes a design (TOFOR II) adapted for use with digital wave form recording of all detector pulses providing information on both amplitude (pulse height) and timing. The results of simulations are presented and the performance enhancement is assessed in comparison to the present.

  10. Calculation of the absolute detection efficiency of a moderated /sup 235/U neutron detector on the Tokamak Fusion Test Reactor

    SciTech Connect

    Ku, L.P.; Hendel, H.W.; Liew, S.L.

    1989-02-01

    Neutron transport simulations have been carried out to calculate the absolute detection efficiency of a moderated /sup 235/U neutron detector which is used on the TFTR as a part of the primary fission detector diagnostic system for measuring fusion power yields. Transport simulations provide a means by which the effects of variations in various shielding and geometrical parameters can be explored. These effects are difficult to study in calibration experiments. The calculational model, benchmarked against measurements, can be used to complement future detector calibrations, when the high level of radioactivity resulting from machine operation may severely restrict access to the tokamak. We present a coupled forward-adjoint algorithm, employing both the deterministic and Monte Carlo sampling methods, to model the neutron transport in the complex tokamak and detector geometries. Sensitivities of the detector response to the major and minor radii, and angular anisotropy of the neutron emission are discussed. A semi-empirical model based on matching the calculational results with a small set of experiments produces good agreement (+-15%) for a wide range of source energies and geometries. 20 refs., 6 figs., 4 tabs.

  11. Neutron irradiation of V-Cr-Ti alloys in the BOR-60 fast reactor: Description of the fusion-1 experiment

    SciTech Connect

    Rowcliffe, A.F.; Tsai, H.C.; Smith, D.L.

    1997-08-01

    The FUSION-1 irradiation capsule was inserted in Row 5 of the BOR-60 fast reactor in June 1995. The capsule contains a collaborative RF/U.S. experiment to investigate the irradiation performance of V-Cr-Ti alloys in the temperature range 310 to 350{degrees}C. This report describes the capsule layout, specimen fabrication history, and the detailed test matrix for the U.S. specimens. A description of the operating history and neutronics will be presented in the next semiannual report.

  12. Weak Interaction Rates of sd-SHELL Nuclei in Stellar Environments Calculated in the Proton-Neutron Quasiparticle Random-Phase Approximation

    NASA Astrophysics Data System (ADS)

    Nabi, J.-U.; Klapdor-Kleingrothaus, H. V.

    1999-03-01

    Allowed weak interaction rates for sd-shell nuclei in stellar environment are calculated using a generalized form of proton-neutron quasi-particle RPA model with separable Gamow-Teller forces. The calculated capture and decay rates take into consideration the latest experimental energy levels and ft-value compilations. Weak rates calculated are tabulated at the same points of density and temperature as those of Oda et al. [Atomic Data and Nuclear Data Tables 56, 231 (1994)]. The results are also compared with earlier works. Particle emission processes from excited states, previously ignored, are taken into account and are found to significantly affect some β decay rates.

  13. Georgia Tech Studies of Sub-Critical Advanced Burner Reactors with a D-T Fusion Tokamak Neutron Source for the Transmutation of Spent Nuclear Fuel

    NASA Astrophysics Data System (ADS)

    Stacey, W. M.

    2009-09-01

    The possibility that a tokamak D-T fusion neutron source, based on ITER physics and technology, could be used to drive sub-critical, fast-spectrum nuclear reactors fueled with the transuranics (TRU) in spent nuclear fuel discharged from conventional nuclear reactors has been investigated at Georgia Tech in a series of studies which are summarized in this paper. It is found that sub-critical operation of such fast transmutation reactors is advantageous in allowing longer fuel residence time, hence greater TRU burnup between fuel reprocessing stages, and in allowing higher TRU loading without compromising safety, relative to what could be achieved in a similar critical transmutation reactor. The required plasma and fusion technology operating parameter range of the fusion neutron source is generally within the anticipated operational range of ITER. The implications of these results for fusion development policy, if they hold up under more extensive and detailed analysis, is that a D-T fusion tokamak neutron source for a sub-critical transmutation reactor, built on the basis of the ITER operating experience, could possibly be a logical next step after ITER on the path to fusion electrical power reactors. At the same time, such an application would allow fusion to contribute to meeting the nation's energy needs at an earlier stage by helping to close the fission reactor nuclear fuel cycle.

  14. Conceptual Design and Neutronics Analyses of a Fusion Reactor Blanket Simulation Facility

    DTIC Science & Technology

    1986-01-01

    of the source neutrons will be almost negligible, and will not contribute significantly to asymmetry of flux distributions in the blanket. Therefore...difference in angular distribution of source neutrons with respect to the radial direction. The angular flux at the first wall due to the central source...R. Alsmiller, " Multigroup Energy-Angle Distributions for Neutrons from the T(d,n) 4He Reaction (Ed = 100-400 KeV)," ORNL/TM-9251, July 1984

  15. Fusion

    NASA Astrophysics Data System (ADS)

    Herman, Robin

    1990-10-01

    The book abounds with fascinating anecdotes about fusion's rocky path: the spurious claim by Argentine dictator Juan Peron in 1951 that his country had built a working fusion reactor, the rush by the United States to drop secrecy and publicize its fusion work as a propaganda offensive after the Russian success with Sputnik; the fortune Penthouse magazine publisher Bob Guccione sank into an unconventional fusion device, the skepticism that met an assertion by two University of Utah chemists in 1989 that they had created "cold fusion" in a bottle. Aimed at a general audience, the book describes the scientific basis of controlled fusion--the fusing of atomic nuclei, under conditions hotter than the sun, to release energy. Using personal recollections of scientists involved, it traces the history of this little-known international race that began during the Cold War in secret laboratories in the United States, Great Britain and the Soviet Union, and evolved into an astonishingly open collaboration between East and West.

  16. Fission yield measurements from deuterium-tritium fusion produced neutrons using cyclic neutron activation analysis and gamma-gamma coincidence counting

    NASA Astrophysics Data System (ADS)

    Pierson, Bruce D.

    The work described in this dissertation used cyclic neutron activation analysis (CNAA) coupled with gamma-gamma coincidence counting with high-purity germanium detectors to measure the independent and cumulative fission yields of short-lived fission products from thorium-232, uranium-235, and uranium-238. Fission yields of short-lived fission products are needed to enhance the precision and expediency of pre- and post-detonation nuclear forensics. The measurements presented in this work illustrate the large differences in the delayed gamma-ray response following a nuclear detonation. The work performed in this dissertation applied non-destructive CNAA using deuterium-tritium fusion produced neutrons to induce fission. Irradiated targets were shuttled from the irradiation position at the face of the neutron generator to a radiation detection system in less than 0.3 seconds using a pneumatic transfer system. Delayed gamma-rays emitted by fission progeny with half-lives on the order of seconds to several minutes were acquired using three high-purity germanium detectors operating in coincidence. Gamma emissions from this timescale exhibit the largest differences in intensity between individual actinides because of order-of-magnitude variations in independent fission yields for fission products at the wings and valley of the fission product distribution curve. Fission product decay data from the listed targets were evaluated to measure the fission yields of arsenic-84, selenium-86, bromine-88, krypton-90 and -92, rubidium-94, strontium-94, -95, and -96, yttrium-96m, zirconium-99, barium-143, and lanthanum-146. Time-dependent gamma-ray spectra were used to measure the fission yields of the listed radioisotopes along with: bromine-86 and -87, krypton-89, yttrium-97m and -99, tellurium-136, iodine-136 metastable and ground states, xenon-138, -139, and -140, cesium-140 and -142, and barium and lanthanum-144. All of the measured fission yields have yet to be experimentally

  17. Note: Light output enhanced fast response and low afterglow {sup 6}Li glass scintillator as potential down-scattered neutron diagnostics for inertial confinement fusion

    SciTech Connect

    Arikawa, Yasunobu; Yamanoi, Kohei; Nagai, Takahiro; Watanabe, Kozue; Kouno, Masahiro; Sakai, Kohei; Nakazato, Tomoharu; Shimizu, Toshihiko; Cadatal, Marilou Raduban; Estacio, Elmer Surat; Sarukura, Nobuhiko; Nakai, Mitsuo; Norimatsu, Takayoshi; Azechi, Hiroshi; Murata, Takahiro; Fujino, Shigeru; Yoshida, Hideki; Izumi, Nobuhiko; Satoh, Nakahiro; Kan, Hirofumi

    2010-10-15

    The characteristics of an APLF80+3Ce scintillator are presented. Its sufficiently fast decay profile, low afterglow, and an improved light output compared to the recently developed APLF80+3Pr, were experimentally demonstrated. This scintillator material holds promise for applications in neutron imaging diagnostics at the energy regions of 0.27 MeV of DD fusion down-scattered neutron peak at the world's largest inertial confinement fusion facilities such as the National Ignition Facility and the Laser Megajoule.

  18. Note: Light output enhanced fast response and low afterglow 6Li glass scintillator as potential down-scattered neutron diagnostics for inertial confinement fusion.

    PubMed

    Arikawa, Yasunobu; Yamanoi, Kohei; Nagai, Takahiro; Watanabe, Kozue; Kouno, Masahiro; Sakai, Kohei; Nakazato, Tomoharu; Shimizu, Toshihiko; Cadatal, Marilou Raduban; Estacio, Elmer Surat; Sarukura, Nobuhiko; Nakai, Mitsuo; Norimatsu, Takayoshi; Azechi, Hiroshi; Murata, Takahiro; Fujino, Shigeru; Yoshida, Hideki; Izumi, Nobuhiko; Satoh, Nakahiro; Kan, Hirofumi

    2010-10-01

    The characteristics of an APLF80+3Ce scintillator are presented. Its sufficiently fast decay profile, low afterglow, and an improved light output compared to the recently developed APLF80+3Pr, were experimentally demonstrated. This scintillator material holds promise for applications in neutron imaging diagnostics at the energy regions of 0.27 MeV of DD fusion down-scattered neutron peak at the world's largest inertial confinement fusion facilities such as the National Ignition Facility and the Laser Mégajoule.

  19. Neutronic Analysis for Transmutation of Minor Actinides and Long-Lived Fission Products in a Fusion-Driven Transmuter (FDT)

    NASA Astrophysics Data System (ADS)

    Yapıcı, Hüseyin; Demir, Nesrin; Genç, Gamze

    2006-12-01

    This study presents the transmutations of both the minor actinides (MAs: 237Np, 241Am, 243Am and 244Cm) and the long-lived fission products (LLFPs: 99Tc, 129I and 135Cs), discharged from high burn-up PWR-MOX spent fuel, in a fusion-driven transmuter (FDT) and the effects of the MA and LLFP volume fractions on their transmutations. The blanket configuration of the FDT is improved by analyzing various sample blanket design combinations with different radial thicknesses. Two different transmutation zones (TZMA and TZFP which contain the MA and LLFP nuclides, respectively) are located separately from each other. The volume fractions of the MA and the LLFP are raised from 10 to 20% stepped by 2% and from 10 to 80% stepped by 5%, respectively. The calculations are performed to estimate neutronic parameters and transmutation characteristics per D-T fusion neutron. The conversion ratios (CRs) for the whole of all MAs are about 65-70%. The transmutation rates of the LLFP nuclides increase linearly with the increase of volume fractions of the MA, and the 99Tc nuclide among them has the highest transmutation rate. The variations of their transmutation rate per unit volume in the radial direction are quasi-concave parabolic.

  20. Neutron yield enhancement in laser-induced deuterium-deuterium fusion using a novel shaped target

    SciTech Connect

    Zhao, J. R.; Chen, L. M. Li, Y. T.; Li, F.; Zhu, B. J.; Li, Yan. F.; Liao, G. Q.; Huang, K.; Ma, Y.; Li, Yi. F.; Zhang, X. P.; Fu, C. B.; Yuan, D. W.; Zhang, K.; Han, B.; Zhao, G.; Rhee, Y. J.; Liu, C.; Xiong, J.; Huang, X. G.; and others

    2015-06-15

    Neutron yields have direct correlation with the energy of incident deuterons in experiments of laser deuterated target interaction [Roth et al., Phys. Rev. Lett. 110, 044802 (2013) and Higginson et al., Phys. Plasmas 18, 100703 (2011)], while deuterated plasma density is also an important parameter. Experiments at the Shenguang II laser facility have produced neutrons with energy of 2.45 MeV using d (d, n) He reaction. Deuterated foil target and K-shaped target were employed to study the influence of plasma density on neutron yields. Neutron yield generated by K-shaped target (nearly 10{sup 6}) was two times higher than by foil target because the K-shaped target results in higher density plasma. Interferometry and multi hydro-dynamics simulation confirmed the importance of plasma density for enhancement of neutron yields.

  1. Neutron yield enhancement in laser-induced deuterium-deuterium fusion using a novel shaped target

    NASA Astrophysics Data System (ADS)

    Zhao, J. R.; Zhang, X. P.; Yuan, D. W.; Chen, L. M.; Li, Y. T.; Fu, C. B.; Rhee, Y. J.; Li, F.; Zhu, B. J.; Li, Yan. F.; Liao, G. Q.; Zhang, K.; Han, B.; Liu, C.; Huang, K.; Ma, Y.; Li, Yi. F.; Xiong, J.; Huang, X. G.; Fu, S. Z.; Zhu, J. Q.; Zhao, G.; Zhang, J.

    2015-06-01

    Neutron yields have direct correlation with the energy of incident deuterons in experiments of laser deuterated target interaction [Roth et al., Phys. Rev. Lett. 110, 044802 (2013) and Higginson et al., Phys. Plasmas 18, 100703 (2011)], while deuterated plasma density is also an important parameter. Experiments at the Shenguang II laser facility have produced neutrons with energy of 2.45 MeV using d (d, n) He reaction. Deuterated foil target and K-shaped target were employed to study the influence of plasma density on neutron yields. Neutron yield generated by K-shaped target (nearly 106) was two times higher than by foil target because the K-shaped target results in higher density plasma. Interferometry and multi hydro-dynamics simulation confirmed the importance of plasma density for enhancement of neutron yields.

  2. Choice of coils for a fusion reactor

    PubMed Central

    Alexander, Romeo; Garabedian, Paul R.

    2007-01-01

    In a fusion reactor a hot plasma of deuterium and tritium is confined by a strong magnetic field to produce helium ions and release energetic neutrons. The 3D geometry of a stellarator provides configurations for such a device that reduce net toroidal current that might lead to disruptions. We construct smooth coils generating an external magnetic field designed to prevent the plasma from deteriorating. PMID:17640879

  3. The Lowest-Mass Stellar Black Holes: Catastrophic Death of Neutron Stars in Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Belczynski, K.; O'Shaughnessy, R.; Kalogera, V.; Rasio, F.; Taam, R. E.; Bulik, T.

    2008-06-01

    Mergers of double neutron stars are considered the most likely progenitors for short gamma-ray bursts. Indeed, such a merger can produce a black hole with a transient accreting torus of nuclear matter, and the conversion of a fraction of the torus mass-energy to radiation can power a gamma-ray burst. Using available binary pulsar observations supported by our extensive evolutionary calculations of double neutron star formation, we demonstrate that the fraction of mergers that can form a black hole-torus system depends very sensitively on the (largely unknown) maximum neutron star mass. We show that the available observations and models put a very stringent constraint on this maximum mass under the assumption that black hole formation is required to produce a short gamma-ray burst in a double neutron star merger. Specifically, we find that the maximum neutron star mass must be within 2-2.5 M⊙. Moreover, a single unambiguous measurement of a neutron star mass above 2.5 M⊙ would exclude a black hole-torus central engine model of short gamma-ray bursts in double neutron star mergers. Such an observation would also indicate that if in fact short gamma-ray bursts are connected to neutron star mergers, the gamma-ray burst engine is best explained by the lesser known model invoking a highly magnetized massive neutron star.

  4. The super X divertor (SXD) and a compact fusion neutron source (CFNS)

    SciTech Connect

    Kotschenreuther, M.; Valanju, P.; Mahajan, S.; Zheng, L. J.; Pearlstein, L. D.; Bulmer, R. H.; Canik, John; Maingi, R.

    2010-01-01

    A new magnetic geometry, the super X divertor (SXD), is invented to solve severe heat exhaust problems in high power density fusion plasmas. SXD divertor plates are moved to the largest major radii inside the TF coils, increasing the wetted area by 2-3 and the line length by 2-5. Two-dimensional fluid simulations with SOLPS (Schneider et al 2006 SOLPS 2-D edge calculation code Contrib. Plasma Phys. 46) show a several-fold decrease in divertor heat flux and plasma temperature at the plate. A small high power density tokamak using SXD is proposed, for either (1) useful fusion applications using conservative physics, such as a component test facility (CTF) or fission fusion hybrid, or (2) to develop more advanced physics modes for a pure fusion reactor in an integrated fusion environment.

  5. Neutron physics of the Re/Os clock. III. Resonance analyses and stellar (n,gamma) cross sections of {sup 186,187,188}Os

    SciTech Connect

    Fujii, K.; Abbondanno, U.; Belloni, F.; Milazzo, P. M.; Moreau, C.; Mosconi, M.; Kaeppeler, F.; Audouin, L.; Dillmann, I.; Heil, M.; Plag, R.; Voss, F.; Walter, S.; Wisshak, K.; Mengoni, A.; Domingo-Pardo, C.; Aerts, G.; Andriamonje, S.; Berthoumieux, E.; Dridi, W.

    2010-07-15

    Neutron resonance analyses have been performed for the capture cross sections of {sup 186}Os, {sup 187}Os, and {sup 188}Os measured at the n{sub T}OF facility at cern. Resonance parameters have been extracted up to 5, 3, and 8 keV, respectively, using the sammy code for a full R-matrix fit of the capture yields. From these results average resonance parameters were derived by a statistical analysis to provide a comprehensive experimental basis for modeling of the stellar neutron capture rates of these isotopes in terms of the Hauser-Feshbach statistical model. Consistent calculations for the capture and inelastic reaction channels are crucial for the evaluation of stellar enhancement factors to correct the Maxwellian averaged cross sections obtained from experimental data for the effect of thermally populated excited states. These factors have been calculated for the full temperature range of current scenarios of s-process nucleosynthesis using the combined information of the experimental data in the region of resolved resonances and in the continuum. The consequences of this analysis for the s-process component of the {sup 187}Os abundance and the related impact on the evaluation of the time duration of galactic nucleosynthesis via the Re/Os cosmochronometer are discussed.

  6. Neutron physics of the Re/Os clock. III. Resonance analyses and stellar (n,γ) cross sections of Os186,187,188

    NASA Astrophysics Data System (ADS)

    Fujii, K.; Mosconi, M.; Mengoni, A.; Domingo-Pardo, C.; Käppeler, F.; Abbondanno, U.; Aerts, G.; Álvarez-Pol, H.; Alvarez-Velarde, F.; Andriamonje, S.; Andrzejewski, J.; Assimakopoulos, P.; Audouin, L.; Badurek, G.; Baumann, P.; Bečvář, F.; Belloni, F.; Berthoumieux, E.; Bisterzo, S.; Calviani, M.; Calviño, F.; Cano-Ott, D.; Capote, R.; Carrillo de Albornoz, A.; Cennini, P.; Chepel, V.; Chiaveri, E.; Colonna, N.; Cortes, G.; Couture, A.; Cox, J.; Dahlfors, M.; David, S.; Dillmann, I.; Dolfini, R.; Dridi, W.; Duran, I.; Eleftheriadis, C.; Embid-Segura, M.; Ferrant, L.; Ferrari, A.; Ferreira-Marques, R.; Fitzpatrick, L.; Frais-Koelbl, H.; Furman, W.; Gallino, R.; Goncalves, I.; Gonzalez-Romero, E.; Goverdovski, A.; Gramegna, F.; Griesmayer, E.; Guerrero, C.; Gunsing, F.; Haas, B.; Haight, R.; Heil, M.; Herrera-Martinez, A.; Igashira, M.; Isaev, S.; Jericha, E.; Kadi, Y.; Karamanis, D.; Karadimos, D.; Kerveno, M.; Ketlerov, V.; Koehler, P.; Konovalov, V.; Kossionides, E.; Krtička, M.; Lamboudis, C.; Leeb, H.; Lindote, A.; Lopes, I.; Lozano, M.; Lukic, S.; Marganiec, J.; Marques, L.; Marrone, S.; Massimi, C.; Mastinu, P.; Milazzo, P. M.; Moreau, C.; Neves, F.; Oberhummer, H.; Oshima, M.; O'Brien, S.; Pancin, J.; Papachristodoulou, C.; Papadopoulos, C.; Paradela, C.; Patronis, N.; Pavlik, A.; Pavlopoulos, P.; Perrot, L.; Plag, R.; Plompen, A.; Plukis, A.; Poch, A.; Praena, J.; Pretel, C.; Quesada, J.; Rauscher, T.; Reifarth, R.; Rosetti, M.; Rubbia, C.; Rudolf, G.; Rullhusen, P.; Salgado, J.; Sarchiapone, L.; Savvidis, I.; Stephan, C.; Tagliente, G.; Tain, J. L.; Tassan-Got, L.; Tavora, L.; Terlizzi, R.; Vannini, G.; Vaz, P.; Ventura, A.; Villamarin, D.; Vincente, M. C.; Vlachoudis, V.; Vlastou, R.; Voss, F.; Walter, S.; Wendler, H.; Wiescher, M.; Wisshak, K.

    2010-07-01

    Neutron resonance analyses have been performed for the capture cross sections of Os186, Os187, and Os188 measured at the n_TOF facility at cern. Resonance parameters have been extracted up to 5, 3, and 8 keV, respectively, using the sammy code for a full R-matrix fit of the capture yields. From these results average resonance parameters were derived by a statistical analysis to provide a comprehensive experimental basis for modeling of the stellar neutron capture rates of these isotopes in terms of the Hauser-Feshbach statistical model. Consistent calculations for the capture and inelastic reaction channels are crucial for the evaluation of stellar enhancement factors to correct the Maxwellian averaged cross sections obtained from experimental data for the effect of thermally populated excited states. These factors have been calculated for the full temperature range of current scenarios of s-process nucleosynthesis using the combined information of the experimental data in the region of resolved resonances and in the continuum. The consequences of this analysis for the s-process component of the Os187 abundance and the related impact on the evaluation of the time duration of galactic nucleosynthesis via the Re/Os cosmochronometer are discussed.

  7. Neutronic design studies of a conceptual DCLL fusion reactor for a DEMO and a commercial power plant

    NASA Astrophysics Data System (ADS)

    Palermo, I.; Veredas, G.; Gómez-Ros, J. M.; Sanz, J.; Ibarra, A.

    2016-01-01

    Neutronic analyses or, more widely, nuclear analyses have been performed for the development of a dual-coolant He/LiPb (DCLL) conceptual design reactor. A detailed three-dimensional (3D) model has been examined and optimized. The design is based on the plasma parameters and functional materials of the power plant conceptual studies (PPCS) model C. The initial radial-build for the detailed model has been determined according to the dimensions established in a previous work on an equivalent simplified homogenized reactor model. For optimization purposes, the initial specifications established over the simplified model have been refined on the detailed 3D design, modifying material and dimension of breeding blanket, shield and vacuum vessel in order to fulfil the priority requirements of a fusion reactor in terms of the fundamental neutronic responses. Tritium breeding ratio, energy multiplication factor, radiation limits in the TF coils, helium production and displacements per atom (dpa) have been calculated in order to demonstrate the functionality and viability of the reactor design in guaranteeing tritium self-sufficiency, power efficiency, plasma confinement, and re-weldability and structural integrity of the components. The paper describes the neutronic design improvements of the DCLL reactor, obtaining results for both DEMO and power plant operational scenarios.

  8. Comparison between proton boron fusion therapy (PBFT) and boron neutron capture therapy (BNCT): a Monte Carlo study

    PubMed Central

    Barraclough, Brendan; Lee, Heui Chang; Suh, Tae Suk; Lu, Bo

    2017-01-01

    The aim of this study is to compare between proton boron fusion therapy (PBFT) and boron neutron capture therapy (BNCT) and to analyze dose escalation using a Monte Carlo simulation. We simulated a proton beam passing through the water with a boron uptake region (BUR) in MCNPX. To estimate the interaction between neutrons/protons and borons by the alpha particle, the simulation yielded with a variation of the center of the BUR location and proton energies. The variation and influence about the alpha particle were observed from the percent depth dose (PDD) and cross-plane dose profile of both the neutron and proton beams. The peak value of the maximum dose level when the boron particle was accurately labeled at the region was 192.4% among the energies. In all, we confirmed that prompt gamma rays of 478 keV and 719 keV were generated by the nuclear reactions in PBFT and BNCT, respectively. We validated the dramatic effectiveness of the alpha particle, especially in PBFT. The utility of PBFT was verified using the simulation and it has a potential for application in radiotherapy. PMID:28427153

  9. Neutron Time-of-Flight Measurements of Charged-Particle Energy Loss in Inertial Confinement Fusion Plasmas

    NASA Astrophysics Data System (ADS)

    Sayre, Daniel; Cerjan, Charlie; Berzak Hopkins, Laura; Caggiano, Joseph; Divol, Laurent; Eckart, Mark; Graziani, Frank; Grim, Gary; Hartouni, Ed; Hatarik, Robert; Le Pape, Sebastien; MacKinnon, Andrew; Schneider, Dieter; Sepke, Scott

    2015-11-01

    Neutron time-of-flight measurements of inflight T (d , n) α reactions created during an implosion of a deuterium gas target have been performed at the National Ignition Facility, with order of magnitude improvements in statistics and resolution over past experiments. In the implosion, energetic tritons emitted by thermonuclear fusion within the deuterium plasma produced over 1011 inflight T (d , n) α reactions. The yield and particle spectrum of inflight reactions are sensitive to the triton's energy loss in the plasma, which, in this implosion, consisted of multi-keV temperatures and number densities above 1024 cm-3. Radiation-hydrodynamic simulations of the implosion were adjusted to match the yield and broadening of the D (d , n) 3 He neutron peak. These same simulations give reasonable agreement with the measured T (d , n) α yield and neutron spectrum, and this provides a strong consistency check of the simulated plasma conditions and energy loss model. This research was performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  10. Effects of magnetization on fusion product trapping and secondary neutron spectraa)

    NASA Astrophysics Data System (ADS)

    Knapp, P. F.; Schmit, P. F.; Hansen, S. B.; Gomez, M. R.; Hahn, K. D.; Sinars, D. B.; Peterson, K. J.; Slutz, S. A.; Sefkow, A. B.; Awe, T. J.; Harding, E.; Jennings, C. A.; Desjarlais, M. P.; Chandler, G. A.; Cooper, G. W.; Cuneo, M. E.; Geissel, M.; Harvey-Thompson, A. J.; Porter, J. L.; Rochau, G. A.; Rovang, D. C.; Ruiz, C. L.; Savage, M. E.; Smith, I. C.; Stygar, W. A.; Herrmann, M. C.

    2015-05-01

    By magnetizing the fusion fuel in inertial confinement fusion (ICF) systems, the required stagnation pressure and density can be relaxed dramatically. This happens because the magnetic field insulates the hot fuel from the cold pusher and traps the charged fusion burn products. This trapping allows the burn products to deposit their energy in the fuel, facilitating plasma self-heating. Here, we report on a comprehensive theory of this trapping in a cylindrical DD plasma magnetized with a purely axial magnetic field. Using this theory, we are able to show that the secondary fusion reactions can be used to infer the magnetic field-radius product, BR, during fusion burn. This parameter, not ρR, is the primary confinement parameter in magnetized ICF. Using this method, we analyze data from recent Magnetized Liner Inertial Fusion experiments conducted on the Z machine at Sandia National Laboratories. We show that in these experiments BR ≈ 0.34(+0.14/-0.06) MG . cm, a ˜ 14× increase in BR from the initial value, and confirming that the DD-fusion tritons are magnetized at stagnation. This is the first experimental verification of charged burn product magnetization facilitated by compression of an initial seed magnetic flux.

  11. Effects of magnetization on fusion product trapping and secondary neutron spectra

    DOE PAGES

    Knapp, Patrick F.; Schmit, Paul F.; Hansen, Stephanie B.; ...

    2015-05-14

    In magnetizing the fusion fuel in inertial confinement fusion (ICF) systems, we found that the required stagnation pressure and density can be relaxed dramatically. This happens because the magnetic field insulates the hot fuel from the cold pusher and traps the charged fusion burn products. This trapping allows the burn products to deposit their energy in the fuel, facilitating plasma self-heating. Here, we report on a comprehensive theory of this trapping in a cylindrical DD plasma magnetized with a purely axial magnetic field. Using this theory, we are able to show that the secondary fusion reactions can be used tomore » infer the magnetic field-radius product, BR, during fusion burn. This parameter, not ρR, is the primary confinement parameter in magnetized ICF. Using this method, we analyze data from recent Magnetized Liner InertialFusion experiments conducted on the Z machine at Sandia National Laboratories. Furthermore, we show that in these experiments BR ≈ 0.34(+0.14/-0.06) MG · cm, a ~ 14× increase in BR from the initial value, and confirming that the DD-fusion tritons are magnetized at stagnation. Lastly, this is the first experimental verification of charged burn product magnetization facilitated by compression of an initial seed magnetic flux.« less

  12. Effects of magnetization on fusion product trapping and secondary neutron spectra

    SciTech Connect

    Knapp, Patrick F.; Schmit, Paul F.; Hansen, Stephanie B.; Gomez, Matthew R.; Hahn, Kelly D.; Sinars, Daniel Brian; Peterson, Kyle J.; Slutz, Stephen A.; Sefkow, Adam B.; Awe, Thomas James; Harding, Eric; Jennings, Christopher A.; Desjarlais, M. P.; Chandler, Gordon A.; Cooper, Gary Wayne; Cuneo, Michael Edward; Geissel, Matthias; Harvey-Thompson, Adam James; Porter, John L.; Rochau, Gregory A.; Rovang, Dean C.; Ruiz, Carlos L.; Savage, Mark E.; Smith, Ian C.; Stygar, William A.; Herrmann, Mark

    2015-05-14

    In magnetizing the fusion fuel in inertial confinement fusion (ICF) systems, we found that the required stagnation pressure and density can be relaxed dramatically. This happens because the magnetic field insulates the hot fuel from the cold pusher and traps the charged fusion burn products. This trapping allows the burn products to deposit their energy in the fuel, facilitating plasma self-heating. Here, we report on a comprehensive theory of this trapping in a cylindrical DD plasma magnetized with a purely axial magnetic field. Using this theory, we are able to show that the secondary fusion reactions can be used to infer the magnetic field-radius product, BR, during fusion burn. This parameter, not ρR, is the primary confinement parameter in magnetized ICF. Using this method, we analyze data from recent Magnetized Liner InertialFusion experiments conducted on the Z machine at Sandia National Laboratories. Furthermore, we show that in these experiments BR ≈ 0.34(+0.14/-0.06) MG · cm, a ~ 14× increase in BR from the initial value, and confirming that the DD-fusion tritons are magnetized at stagnation. Lastly, this is the first experimental verification of charged burn product magnetization facilitated by compression of an initial seed magnetic flux.

  13. Effects of magnetization on fusion product trapping and secondary neutron spectra

    SciTech Connect

    Knapp, P. F.; Schmit, P. F.; Hansen, S. B.; Gomez, M. R.; Hahn, K. D.; Sinars, D. B.; Peterson, K. J.; Slutz, S. A.; Sefkow, A. B.; Awe, T. J.; Harding, E.; Jennings, C. A.; Desjarlais, M. P.; Chandler, G. A.; Cooper, G. W.; Cuneo, M. E.; Geissel, M.; Harvey-Thompson, A. J.; Porter, J. L.; Rochau, G. A.; and others

    2015-05-15

    By magnetizing the fusion fuel in inertial confinement fusion (ICF) systems, the required stagnation pressure and density can be relaxed dramatically. This happens because the magnetic field insulates the hot fuel from the cold pusher and traps the charged fusion burn products. This trapping allows the burn products to deposit their energy in the fuel, facilitating plasma self-heating. Here, we report on a comprehensive theory of this trapping in a cylindrical DD plasma magnetized with a purely axial magnetic field. Using this theory, we are able to show that the secondary fusion reactions can be used to infer the magnetic field-radius product, BR, during fusion burn. This parameter, not ρR, is the primary confinement parameter in magnetized ICF. Using this method, we analyze data from recent Magnetized Liner Inertial Fusion experiments conducted on the Z machine at Sandia National Laboratories. We show that in these experiments BR ≈ 0.34(+0.14/−0.06) MG · cm, a ∼ 14× increase in BR from the initial value, and confirming that the DD-fusion tritons are magnetized at stagnation. This is the first experimental verification of charged burn product magnetization facilitated by compression of an initial seed magnetic flux.

  14. A compact neutron spectrometer for characterizing inertial confinement fusion implosions at OMEGA and the NIF

    SciTech Connect

    Zylstra, A. B. Gatu Johnson, M.; Frenje, J. A.; Séguin, F. H.; Rinderknecht, H. G.; Rosenberg, M. J.; Sio, H. W.; Li, C. K.; Petrasso, R. D.; McCluskey, M.; Mastrosimone, D.; Glebov, V. Yu.; Forrest, C.; Stoeckl, C.; Sangster, T. C.

    2014-06-15

    A compact spectrometer for measurements of the primary deuterium-tritium neutron spectrum has been designed and implemented on the OMEGA laser facility [T. Boehly et al., Opt. Commun. 133, 495 (1997)]. This instrument uses the recoil spectrometry technique, where neutrons produced in an implosion elastically scatter protons in a plastic foil, which are subsequently detected by a proton spectrometer. This diagnostic is currently capable of measuring the yield to ∼±10% accuracy, and mean neutron energy to ∼±50 keV precision. As these compact spectrometers can be readily placed at several locations around an implosion, effects of residual fuel bulk flows during burn can be measured. Future improvements to reduce the neutron energy uncertainty to ±15−20 keV are discussed, which will enable measurements of fuel velocities to an accuracy of ∼±25−40 km/s.

  15. A compact neutron spectrometer for characterizing inertial confinement fusion implosions at OMEGA and the NIF.

    PubMed

    Zylstra, A B; Gatu Johnson, M; Frenje, J A; Séguin, F H; Rinderknecht, H G; Rosenberg, M J; Sio, H W; Li, C K; Petrasso, R D; McCluskey, M; Mastrosimone, D; Glebov, V Yu; Forrest, C; Stoeckl, C; Sangster, T C

    2014-06-01

    A compact spectrometer for measurements of the primary deuterium-tritium neutron spectrum has been designed and implemented on the OMEGA laser facility [T. Boehly et al., Opt. Commun. 133, 495 (1997)]. This instrument uses the recoil spectrometry technique, where neutrons produced in an implosion elastically scatter protons in a plastic foil, which are subsequently detected by a proton spectrometer. This diagnostic is currently capable of measuring the yield to ~±10% accuracy, and mean neutron energy to ~±50 keV precision. As these compact spectrometers can be readily placed at several locations around an implosion, effects of residual fuel bulk flows during burn can be measured. Future improvements to reduce the neutron energy uncertainty to ±15-20 keV are discussed, which will enable measurements of fuel velocities to an accuracy of ~±25-40 km/s.

  16. Characterisation of a BC501A compact neutron spectrometer for fusion research

    NASA Astrophysics Data System (ADS)

    Tardini, G.; Gagnon-Moisan, F.; Zimbal, A.

    2016-10-01

    The compact neutron spectrometer used at the ASDEX Upgrade tokamak is characterised to obtain its response matrix. This paper describes the characterisation procedure and the derived response matrix, based on a campaign at the PTB ion accelerator facility (PIAF) and on the subsequent time-of-flight (TOF) analysis of neutrons from a field with a broad energy distribution. The response of mono-energetic neutrons generated at the PIAF is used as reference for the TOF analysis. The detector's response functions for spectrum deconvolution are obtained by Gaussian broadening of the simulated responses to fit the experimental ones, using a maximum-entropy ansatz. In this way, the response functions are smooth enough to ensure a reliable unfolding of pulse height spectra into neutron emission spectra, which provide information on the fast ion velocity distribution in neutral beam heated tokamak plasmas.

  17. In-situ calibration of TFTR (Tokamak Fusion Test Reactor) neutron detectors

    SciTech Connect

    Hendel, H.W.; Palladino, R.W.; Barnes, C.W.; Diesso, M.; Felt, J.S.; Jassby, D.L.; Johnson, L.C.; Ku, L.P.; Liu, Q.P.; Motley, R.W.; Murphy, H.B.; Murphy, J.; Nieschmidt, E.B.; Roberts, J.A.; Saito, T.; Strachan, J.D.; Waszazak, R.J.; Young, K.

    1990-03-01

    We report results of the TFTR fission detector calibration performed in December 1988. A NBS-traceable, remotely controlled {sup 252}Cf neutron source was moved toroidally through the TFTR vacuum vessel. Detection efficiencies for two {sup 235}U detectors were measured for 930 locations of the neutron point source in toroidal scans at 16 different major radii and vertical heights. These scans effectively simulated the volume-distributed plasma neutron source, and the volume-integrated detection efficiency was found to be insensitive to plasma position. The Campbell mode is useful due to its large overlap with the count rate mode and large dynamic range. The resulting absolute plasma neutron source calibration has an uncertainty of {plus minus} 13%. 21 refs., 23 figs., 4 tabs.

  18. A compact neutron spectrometer for characterizing inertial confinement fusion implosions at OMEGA and the NIF

    DOE PAGES

    Zylstra, A. B.; Gatu Johnson, M.; Frenje, J. A.; ...

    2014-06-04

    A compact spectrometer for measurements of the primary deuterium-tritium neutron spectrum has been designed and implemented on the OMEGA laser facility. This instrument uses the recoil spectrometry technique, where neutrons produced in an implosion elastically scatter protons in a plastic foil, which are subsequently detected by a proton spectrometer. This diagnostic is capable of measuring the yield to ~±10% accuracy, and mean neutron energy to ~±50 keV precision. As these compact spectrometers can be readily placed at several locations around an implosion, effects of residual fuel bulk flows during burn can be measured. Future improvements to reduce the neutron energymore » uncertainty to ±15-20 keV are discussed, which will enable measurements of fuel velocities to an accuracy of ~±25-40 km/s.« less

  19. A compact neutron spectrometer for characterizing inertial confinement fusion implosions at OMEGA and the NIF

    NASA Astrophysics Data System (ADS)

    Zylstra, A. B.; Gatu Johnson, M.; Frenje, J. A.; Séguin, F. H.; Rinderknecht, H. G.; Rosenberg, M. J.; Sio, H. W.; Li, C. K.; Petrasso, R. D.; McCluskey, M.; Mastrosimone, D.; Glebov, V. Yu.; Forrest, C.; Stoeckl, C.; Sangster, T. C.

    2014-06-01

    A compact spectrometer for measurements of the primary deuterium-tritium neutron spectrum has been designed and implemented on the OMEGA laser facility [T. Boehly et al., Opt. Commun. 133, 495 (1997)]. This instrument uses the recoil spectrometry technique, where neutrons produced in an implosion elastically scatter protons in a plastic foil, which are subsequently detected by a proton spectrometer. This diagnostic is currently capable of measuring the yield to ˜±10% accuracy, and mean neutron energy to ˜±50 keV precision. As these compact spectrometers can be readily placed at several locations around an implosion, effects of residual fuel bulk flows during burn can be measured. Future improvements to reduce the neutron energy uncertainty to ±15-20 keV are discussed, which will enable measurements of fuel velocities to an accuracy of ˜±25-40 km/s.

  20. A compact neutron spectrometer for characterizing inertial confinement fusion implosions at OMEGA and the NIF

    SciTech Connect

    Zylstra, A. B.; Gatu Johnson, M.; Frenje, J. A.; Séguin, F. H.; Rinderknecht, H. G.; Rosenberg, M. J.; Sio, H. W.; Li, C. K.; Petrasso, R. D.; McCluskey, M.; Mastrosimone, D.; Glebov, V. Yu.; Forrest, C.; Stoeckl, C.; Sangster, T. C.

    2014-06-04

    A compact spectrometer for measurements of the primary deuterium-tritium neutron spectrum has been designed and implemented on the OMEGA laser facility. This instrument uses the recoil spectrometry technique, where neutrons produced in an implosion elastically scatter protons in a plastic foil, which are subsequently detected by a proton spectrometer. This diagnostic is capable of measuring the yield to ~±10% accuracy, and mean neutron energy to ~±50 keV precision. As these compact spectrometers can be readily placed at several locations around an implosion, effects of residual fuel bulk flows during burn can be measured. Future improvements to reduce the neutron energy uncertainty to ±15-20 keV are discussed, which will enable measurements of fuel velocities to an accuracy of ~±25-40 km/s.

  1. Particle Filter-Based Recursive Data Fusion With Sensor Indexing for Large Core Neutron Flux Estimation

    NASA Astrophysics Data System (ADS)

    Tamboli, Prakash Kumar; Duttagupta, Siddhartha P.; Roy, Kallol

    2017-06-01

    We introduce a sequential importance sampling particle filter (PF)-based multisensor multivariate nonlinear estimator for estimating the in-core neutron flux distribution for pressurized heavy water reactor core. Many critical applications such as reactor protection and control rely upon neutron flux information, and thus their reliability is of utmost importance. The point kinetic model based on neutron transport conveniently explains the dynamics of nuclear reactor. The neutron flux in the large core loosely coupled reactor is sensed by multiple sensors measuring point fluxes located at various locations inside the reactor core. The flux values are coupled to each other through diffusion equation. The coupling facilitates redundancy in the information. It is shown that multiple independent data about the localized flux can be fused together to enhance the estimation accuracy to a great extent. We also propose the sensor anomaly handling feature in multisensor PF to maintain the estimation process even when the sensor is faulty or generates data anomaly.

  2. A novel method for modeling the neutron time of flight detector response in current mode to inertial confinement fusion experiments (invited)

    SciTech Connect

    Nelson, A. J.; Cooper, G. W.; Ruiz, C. L.; Chandler, G. A.; Fehl, D. L.; Hahn, K. D.; Leeper, R. J.; Smelser, R.; Torres, J. A.

    2012-10-15

    A novel method for modeling the neutron time of flight (nTOF) detector response in current mode for inertial confinement fusion experiments has been applied to the on-axis nTOF detectors located in the basement of the Z-Facility. It will be shown that this method can identify sources of neutron scattering, and is useful for predicting detector responses in future experimental configurations, and for identifying potential sources of neutron scattering when experimental set-ups change. This method can also provide insight on how much broadening neutron scattering contributes to the primary signals, which is then subtracted from them. Detector time responses are deconvolved from the signals, allowing a transformation from dN/dt to dN/dE, extracting neutron spectra at each detector location; these spectra are proportional to the absolute yield.

  3. Design of a target and moderator at the Los Alamos Spallation Radiation Effects Facility (LASREF) as a neutron source for fusion reactor materials development

    SciTech Connect

    Ferguson, P.D.; Mueller, G.E.; Sommer, W.F.; Farnum, E.H.

    1993-10-01

    The LASREF facility is located in the beam stop area at LAMPF. The neutron spectrum is fission-like with the addition of a 3% to 5% component with E > 20 MeV. The present study evaluates the limits on geometry and material selection that will maximize the neutron flux. MCNP and LAHET were used to predict the neutron flux and energy spectrum for a variety of geometries. The problem considers 760 MeV protons incident on tungsten. The resulting neutrons are multiplied in uranium through (n,xn) reactions. Calculations show that a neutron flux greater than 10{sup 19} n/m{sup 2}/s is achievable. The helium to dpa ratio and the transmutation product generation are calculated. These results are compared to expectations for the proposed DEMO fusion reactor and to FFTF.

  4. Neutronics Design of a Thorium-Fueled Fission Blanket for LIFE (Laser Inertial Fusion-based Energy)

    SciTech Connect

    Powers, J; Abbott, R; Fratoni, M; Kramer, K; Latkowski, J; Seifried, J; Taylor, J

    2010-03-08

    The Laser Inertial Fusion-based Energy (LIFE) project at LLNL includes development of hybrid fusion-fission systems for energy generation. These hybrid LIFE engines use high-energy neutrons from laser-based inertial confinement fusion to drive a subcritical blanket of fission fuel that surrounds the fusion chamber. The fission blanket contains TRISO fuel particles packed into pebbles in a flowing bed geometry cooled by a molten salt (flibe). LIFE engines using a thorium fuel cycle provide potential improvements in overall fuel cycle performance and resource utilization compared to using depleted uranium (DU) and may minimize waste repository and proliferation concerns. A preliminary engine design with an initial loading of 40 metric tons of thorium can maintain a power level of 2000 MW{sub th} for about 55 years, at which point the fuel reaches an average burnup level of about 75% FIMA. Acceptable performance was achieved without using any zero-flux environment 'cooling periods' to allow {sup 233}Pa to decay to {sup 233}U; thorium undergoes constant irradiation in this LIFE engine design to minimize proliferation risks and fuel inventory. Vast reductions in end-of-life (EOL) transuranic (TRU) inventories compared to those produced by a similar uranium system suggest reduced proliferation risks. Decay heat generation in discharge fuel appears lower for a thorium LIFE engine than a DU engine but differences in radioactive ingestion hazard are less conclusive. Future efforts on development of thorium-fueled LIFE fission blankets engine development will include design optimization, fuel performance analysis work, and further waste disposal and nonproliferation analyses.

  5. The lowest-mass stellar black holes: catastrophic death of neutron stars in gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    O'Saughnessy, Richard; Belczynski, Kristof; Kalogera, Vassiliki; Rasio, Fred; Taam, Ron; Bulik, Thomas

    2008-04-01

    Mergers of double neutron stars are considered the most likely progenitors for short gamma-ray bursts. Indeed such a merger can produce a black hole with a transient accreting torus of nuclear matter and the conversion of the torus mass-energy to radiation can power a gamma-ray burst. Using available binary pulsar observations supported by our extensive evolutionary calculations of double neutron star formation, we demonstrate that the fraction of mergers that can form a black hole -- torus system depends very sensitively on the (largely unknown) maximum neutron star mass. We show that the available observations and models put a very stringent constraint on this maximum mass under the assumption that a majority of short gamma-ray bursts originate in double neutron star mergers. Specifically, we find that the maximum neutron star mass must be within 2--2.5 Msun. Moreover, a single unambiguous measurement of a neutron star mass above 2.5 Msun would exclude double neutron star mergers as short gamma-ray burst progenitors.

  6. Plasma fusion and cold fusion

    SciTech Connect

    Hideo, Kozima

    1996-12-31

    Fundamental problems of plasma fusion (controlled thermonuclear fusion) due to the contradicting demands of the magnetic confinement of plasma and suppression of instabilities occurring on and in plasma are surveyed in contrast with problems of cold fusion. Problems in cold fusion due to the complicated constituents and types of force are explained. Typical cold fusion events are explained by a model based on the presence of trapped neutrons in cold fusion materials. The events include Pons-Fleishmann effect, tritium anomaly, helium 4 production, and nuclear transmutation. Fundamental hypothesis of the model is an effectiveness of a new concept--neutron affinity of elements. The neutron affinity is defined and some bases supporting it are explained. Possible justification of the concept by statistical approach is given.

  7. High-resolution spectroscopy used to measure inertial confinement fusion neutron spectra on Omega (invited)

    SciTech Connect

    Forrest, C. J.; Radha, P. B.; Glebov, V. Yu.; Goncharov, V. N.; Knauer, J. P.; Pruyne, A.; Romanofsky, M.; Sangster, T. C.; Shoup, M. J. III; Stoeckl, C.; Casey, D. T.; Gatu-Johnson, M.; Gardner, S.

    2012-10-15

    The areal density ({rho}R) of cryogenic DT implosions on Omega is inferred by measuring the spectrum of neutrons that elastically scatter off the dense deuterium (D) and tritium (T) fuel. Neutron time-of-flight (nTOF) techniques are used to measure the energy spectrum with high resolution. High signal-to-background data has been recorded on cryogenic DT implosions using a well-collimated 13.4-m line of sight and an nTOF detector with an advanced liquid scintillator compound. An innovative method to analyze the elastically scattered neutron spectra was developed using well-known cross sections of the DT nuclear reactions. The estimated areal densities are consistent with alternative {rho}R measurements and 1-D simulations.

  8. The relativistic equations of stellar structure and evolution. Stars with degenerate neutron cores. 1: Structure of equilibrium models

    NASA Technical Reports Server (NTRS)

    Thorne, K. S.; Zytkow, A. N.

    1976-01-01

    The general relativistic equations of stellar structure and evolution are reformulated in a notation which makes easy contact with Newtonian theory. Also, a general relativistic version of the mixing-length formalism for convection is presented. Finally, it is argued that in previous work on spherical systems general relativity theorists have identified the wrong quantity as "total mass-energy inside radius r."

  9. Sequential charged-particle and neutron activation of Flibe in the HYLIFE-II inertial fusion energy power plant design

    SciTech Connect

    Latkowski, J.F.; Tobin, M.T.; Vujic, J.L.; Sanz, J.

    1996-06-14

    Most radionuclide generation/depletion codes consider only neutron reactions and assume that charged particles, which may be generated in these reactions, deposit their energy locally without undergoing further nuclear interactions. Neglect of sequential charged-particle (x,n) reactions can lead to large underestimation in the inventories of radionuclides. PCROSS code was adopted for use with the ACAB activation code to enable calculation of the effects of (x,n) reactions upon radionuclide inventories and inventory-related indices. Activation calculations were made for Flibe (2LiF + BeF{sub 2}) coolant in the HYLIFE-II inertial fusion energy (IFE) power plant design. For pure Flibe coolant, it was found that (x,n) reactions dominate the residual contact dose rate at times of interest for maintenance and decommissioning. For impure Flibe, however, radionuclides produced directly in neutron reaction dominate the contact dose rate and (x,n) reactions do not make a significant contribution. Results demonstrate potential importance of (x,n) reactions and that the relative importance of (x,n) reactions varies strongly with the composition of the material considered. Future activation calculations should consider (x,n) reactions until a method for pre-determining their importance is established.

  10. The equilibrium and preequilibrium neutron-emission spectra of some structural fusion materials for (n, xn) reactions up to 16 MeV energy

    SciTech Connect

    Kaplan, A.; Tel, E.; Aydin, A.

    2009-06-15

    In this study, neutron-emission spectra produced by (n, xn) reactions for some structural fusion materials as {sup 27}Al, {sup 51}V, {sup 52}Cr, {sup 55}Mn, and {sup 56}Fe have been investigated by a neutron beam up to 16 MeV. Multiple preequilibrium mean-free-path constant from internal transition and the preequilibrium and equilibrium level-density parameters have been investigated for some (n, xn) neutron-emission spectra calculated in this study. Preequilibrium neutron-emission spectra were calculated by using new-evaluated hybrid model and geometry-dependent hybrid model, full-exciton model, and cascade-exciton model. The reaction equilibrium component was calculated by Weisskopf-Ewing model. The obtained results have been discussed and compared with the available experimental data and found agreement with each other.

  11. Maximal design basis accident of fusion neutron source DEMO-TIN

    NASA Astrophysics Data System (ADS)

    Kolbasov, B. N.

    2015-12-01

    When analyzing the safety of nuclear (including fusion) facilities, the maximal design basis accident at which the largest release of activity is expected must certainly be considered. Such an accident is usually the failure of cooling systems of the most thermally stressed components of a reactor (for a fusion facility, it is the divertor or the first wall). The analysis of safety of the ITER reactor and fusion power facilities (including hybrid fission-fusion facilities) shows that the initial event of such a design basis accident is a large-scale break of a pipe in the cooling system of divertor or the first wall outside the vacuum vessel of the facility. The greatest concern is caused by the possibility of hydrogen formation and the inrush of air into the vacuum chamber (VC) with the formation of a detonating mixture and a subsequent detonation explosion. To prevent such an explosion, the emergency forced termination of the fusion reaction, the mounting of shutoff valves in the cooling systems of the divertor and the first wall or blanket for reducing to a minimum the amount of water and air rushing into the VC, the injection of nitrogen or inert gas into the VC for decreasing the hydrogen and oxygen concentration, and other measures are recommended. Owing to a continuous feed-out of the molten-salt fuel mixture from the DEMO-TIN blanket with the removal period of 10 days, the radioactivity release at the accident will mainly be determined by tritium (up to 360 PBq). The activity of fission products in the facility will be up to 50 PBq.

  12. Maximal design basis accident of fusion neutron source DEMO-TIN

    SciTech Connect

    Kolbasov, B. N.

    2015-12-15

    When analyzing the safety of nuclear (including fusion) facilities, the maximal design basis accident at which the largest release of activity is expected must certainly be considered. Such an accident is usually the failure of cooling systems of the most thermally stressed components of a reactor (for a fusion facility, it is the divertor or the first wall). The analysis of safety of the ITER reactor and fusion power facilities (including hybrid fission–fusion facilities) shows that the initial event of such a design basis accident is a large-scale break of a pipe in the cooling system of divertor or the first wall outside the vacuum vessel of the facility. The greatest concern is caused by the possibility of hydrogen formation and the inrush of air into the vacuum chamber (VC) with the formation of a detonating mixture and a subsequent detonation explosion. To prevent such an explosion, the emergency forced termination of the fusion reaction, the mounting of shutoff valves in the cooling systems of the divertor and the first wall or blanket for reducing to a minimum the amount of water and air rushing into the VC, the injection of nitrogen or inert gas into the VC for decreasing the hydrogen and oxygen concentration, and other measures are recommended. Owing to a continuous feed-out of the molten-salt fuel mixture from the DEMO-TIN blanket with the removal period of 10 days, the radioactivity release at the accident will mainly be determined by tritium (up to 360 PBq). The activity of fission products in the facility will be up to 50 PBq.

  13. From laser particle acceleration to the synthesis of extremely neutron rich isotopes via the novel fission-fusion mechanism

    NASA Astrophysics Data System (ADS)

    Thirolf, P. G.

    2015-02-01

    High-power, short pulse lasers have emerged in the last decade as attractive tools for accelerating charged particles (electrons, ions) to high energies over mm-scale acceleration lengths, thus promising to rival conventional acceleration techniques in the years ahead. In the first part of the article, the principles of laser-plasma interaction as well as the techniques and the current status of the acceleration of electron and ion beams will be briefly introduced. In particular with the upcoming next generation of multi-PW class laser systems, such as the one under construction for the ELI-Nuclear Physics project in Bucharest (ELI-NP), very efficient acceleration mechanisms for brilliant ion beams like radiation pressure acceleration (RPA) come into reach. Here, ultra-dense ion beams reaching solid-state density can be accelerated from thin target foils, exceeding the density of conventionally accelerated ion beams by about 14 orders of magnitude. This unique property of laser-accelerated ion beams can be exploited to explore the scenario of a new reaction mechanism called `fission-fusion', which will be introduced in the second part of the article. Accelerating fissile species (e.g. 232Th ) towards a second layer of the same material will lead to fission both of the beam-like and target-like particles. Due to the close to solid-state density of the accelerated ion bunches, fusion may occur between neutron-rich (light) fission products. This may open an access path towards extremely neutron-rich nuclides in the vicinity of the N=126 waiting point of the astrophysical r process. `Waiting points' at closed nucleon shells play a crucial role in controlling the reaction rates. However, since most of the pathway of heavy-element formation via the rapid-neutron capture process (r-process) runs in `terra incognita' of the nuclear landscape, in particular the waiting point at N=126 is yet unexplored and will remain largely inaccessible to conventional nuclear reaction

  14. Radiography apparatus using gamma rays emitted by water activated by fusion neutrons

    DOEpatents

    Smith, D.L.; Ikeda, Yujiro; Uno, Yoshitomo

    1996-11-05

    Radiography apparatus includes an arrangement for circulating pure water continuously between a location adjacent a source of energetic neutrons, such as a tritium target irradiated by a deuteron beam, and a remote location where radiographic analysis is conducted. Oxygen in the pure water is activated via the {sup 16}O(n,p){sup 16}N reaction using {sup 14}N-MeV neutrons produced at the neutron source via the {sup 3}H(d,n){sup 4}He reaction. Essentially monoenergetic gamma rays at 6.129 (predominantly) and 7.115 MeV are produced by the 7.13-second {sup 16}N decay for use in radiographic analysis. The gamma rays have substantial penetrating power and are useful in determining the thickness of materials and elemental compositions, particularly for metals and high-atomic number materials. The characteristic decay half life of 7.13 seconds of the activated oxygen is sufficient to permit gamma ray generation at a remote location where the activated water is transported, while not presenting a chemical or radioactivity hazard because the radioactivity falls to negligible levels after 1--2 minutes. 15 figs.

  15. Radiography apparatus using gamma rays emitted by water activated by fusion neutrons

    DOEpatents

    Smith, Donald L.; Ikeda, Yujiro; Uno, Yoshitomo

    1996-01-01

    Radiography apparatus includes an arrangement for circulating pure water continuously between a location adjacent a source of energetic neutrons, such as a tritium target irradiated by a deuteron beam, and a remote location where radiographic analysis is conducted. Oxygen in the pure water is activated via the .sup.16 O(n,p).sup.16 N reaction using .sup.14 -MeV neutrons produced at the neutron source via the .sup.3 H(d,n).sup.4 He reaction. Essentially monoenergetic gamma rays at 6.129 (predominantly) and 7.115 MeV are produced by the 7.13-second .sup.16 N decay for use in radiographic analysis. The gamma rays have substantial penetrating power and are useful in determining the thickness of materials and elemental compositions, particularly for metals and high-atomic number materials. The characteristic decay half life of 7.13 seconds of the activated oxygen is sufficient to permit gamma ray generation at a remote location where the activated water is transported, while not presenting a chemical or radioactivity hazard because the radioactivity falls to negligible levels after 1-2 minutes.

  16. Parameters optimization in a fission-fusion system with a mirror machine based neutron source

    NASA Astrophysics Data System (ADS)

    Yurov, D. V.; Anikeev, A. V.; Bagryansky, P. A.; Brednikhin, S. A.; Frolov, S. A.; Lezhnin, S. I.; Prikhodko, V. V.

    2012-06-01

    Long-lived fission products utilization is a problem of high importance for the modern nuclear reactor technology. BINP jointly with NSI RAS develops a conceptual design of a hybrid sub-critical minor actinides burner with a neutron source based on the gas dynamic mirror machine (GDT) to resolve the stated task. A number of modelling tools was created to calculate the main parameters of the device. First of the codes, GENESYS, is a zero-dimensional code, designed for plasma dynamics numerical investigation in a GDT-based neutron source. The code contains a Monte-Carlo module for the determination of linear neutron emission intensity along the machine axis. Fuel blanket characteristics calculation was implemented by means of a static Monte-Carlo code NMC. Subcritical core, which has been previously analyzed by OECD-NEA, was used as a template for the fuel blanket of the modelled device. This article represents the codes used and recent results of the described system parameters optimization. Particularly, optimum emission zone length of the source and core multiplicity dependence on buffer zone thickness were defined.

  17. Stellar Isotopic Abundances in the Milky Way: Insights into the Origin of Carbon and Neutron-Capture Elements

    NASA Astrophysics Data System (ADS)

    Guo, Michelle; Zhang, A.; Kirby, E. N.; Guhathakurta, P.

    2014-01-01

    Elements heavier than iron are formed by the capture of neutrons onto lighter nuclei. Neutron capture happens via two separate processes: the rapid neutron capture process (r-process) that occurs in supernovae, and slow neutron capture process (s-process) that occurs in less-massive stars. This work used high-resolution spectroscopy, synthetic model spectra, and a least-squares fit to show that the ratio of 12C to 13C increases proportionally with [Fe/H]. The new results agree with the conclusions of Lucatello et al. (2006) and Frebel (2008), and show significant improvement that contains less scattering of data points. Analysis of the obtained isotope ratios suggests that the carbon in most stars of the sample originated in supernovae. This paper also presents a method to calculate the europium isotope ratio by modeling the shapes of absorption lines. The range of europium isotopic ratios agrees with previous theoretical predictions about the classical model of heavy element nucleosynthesis, and the work presents new insight into the origins of life in the universe. We thank the US National Science Foundation, the UCSC Science Internship Program, and the Lick Observatory where the spectra were obtained.

  18. Interpolation method for the transport theory and its application in fusion-neutronics analysis

    SciTech Connect

    Jung, J.

    1981-09-01

    This report presents an interpolation method for the solution of the Boltzmann transport equation. The method is based on a flux synthesis technique using two reference-point solutions. The equation for the interpolated solution results in a Volterra integral equation which is proved to have a unique solution. As an application of the present method, tritium breeding ratio is calculated for a typical D-T fusion reactor system. The result is compared to that of a variational technique.

  19. Fusion/Fission Damage Ratios for Neutron-Induced Displacement Damage in Silicon.

    DTIC Science & Technology

    1978-05-01

    The fluence measurements at the APRF reactor were obtained using techniques given by McGarry et al. 24 The fluences for exposures at a californium ...Against Californium -252” , IEEE Trans. Nuci. Sci., NS-23, No. b. 2002-2006, December (1976). 25. E.D. McGarry, C.R. Heimbach, A .U. Kazi , and G.W...G.S. Davis, and D.M. Gilliam , “Absolute Neutron Flux Measurements at Fast Pulse Reactors With Calibration Against Californium -252”, IEEE Trans. Mud

  20. Stellar neutron capture on 180 Tam . I. Cross section measurement between 10 keV and 100 keV

    NASA Astrophysics Data System (ADS)

    Wisshak, K.; Voss, F.; Arlandini, C.; Käppeler, F.; Heil, M.; Reifarth, R.; Krtička, M.; Bečvář, F.

    2004-05-01

    The neutron capture cross section of 180 Tam has been measured at energies between 10 keV and 100 keV in a time-of-flight experiment at the Karlsruhe 3.7 MV Van de Graaff accelerator. Neutrons were produced via the 7Li ( p,n ) 7Be reaction by bombarding metallic Li targets with a pulsed proton beam, and gold was used as a cross section standard. Though the world supply of enriched 180 Tam was available for this experiment, the sample consisted of only 150 mg Ta2 O5 with a 180 Tam content of only 5.5% . The difficult separation of the comparably few capture events in 180 Tam from the much larger background due to captures in 181 Ta could be achieved by means of the Karlsruhe 4π barium fluoride detector, taking advantage of its combination of high efficiency, good energy resolution, and high granularity. The cross section was determined with an overall uncertainty of better than 10% in the energy range from 30 keV to 100 keV and could be used for renormalizing statistical model calculations in the entire energy range of astrophysical interest, which had predicted about two times larger values. Based on these first experimental data, Maxwellian averaged neutron capture cross sections were calculated for thermal energies between kT=8 keV and 100 keV .

  1. Stellarator hybrids

    SciTech Connect

    Furth, H.P.; Ludescher, C.

    1984-08-01

    The present paper briefly reviews the subject of tokamak-stellarator and pinch-stellarator hybrids, and points to two interesting new possibilities: compact-torus-stellarators and mirror-stellarators.

  2. Response measurement of single-crystal chemical vapor deposition diamond radiation detector for intense X-rays aiming at neutron bang-time and neutron burn-history measurement on an inertial confinement fusion with fast ignition.

    PubMed

    Shimaoka, T; Kaneko, J H; Arikawa, Y; Isobe, M; Sato, Y; Tsubota, M; Nagai, T; Kojima, S; Abe, Y; Sakata, S; Fujioka, S; Nakai, M; Shiraga, H; Azechi, H; Chayahara, A; Umezawa, H; Shikata, S

    2015-05-01

    A neutron bang time and burn history monitor in inertial confinement fusion with fast ignition are necessary for plasma diagnostics. In the FIREX project, however, no detector attained those capabilities because high-intensity X-rays accompanied fast electrons used for plasma heating. To solve this problem, single-crystal CVD diamond was grown and fabricated into a radiation detector. The detector, which had excellent charge transportation property, was tested to obtain a response function for intense X-rays. The applicability for neutron bang time and burn history monitor was verified experimentally. Charge collection efficiency of 99.5% ± 0.8% and 97.1% ± 1.4% for holes and electrons were obtained using 5.486 MeV alpha particles. The drift velocity at electric field which saturates charge collection efficiency was 1.1 ± 0.4 × 10(7) cm/s and 1.0 ± 0.3 × 10(7) cm/s for holes and electrons. Fast response of several ns pulse width for intense X-ray was obtained at the GEKKO XII experiment, which is sufficiently fast for ToF measurements to obtain a neutron signal separately from X-rays. Based on these results, we confirmed that the single-crystal CVD diamond detector obtained neutron signal with good S/N under ion temperature 0.5-1 keV and neutron yield of more than 10(9) neutrons/shot.

  3. Response measurement of single-crystal chemical vapor deposition diamond radiation detector for intense X-rays aiming at neutron bang-time and neutron burn-history measurement on an inertial confinement fusion with fast ignition

    SciTech Connect

    Shimaoka, T. Kaneko, J. H.; Tsubota, M.; Arikawa, Y.; Nagai, T.; Kojima, S.; Abe, Y.; Sakata, S.; Fujioka, S.; Nakai, M.; Shiraga, H.; Azechi, H.; Isobe, M.; Sato, Y.; Chayahara, A.; Umezawa, H.; Shikata, S.

    2015-05-15

    A neutron bang time and burn history monitor in inertial confinement fusion with fast ignition are necessary for plasma diagnostics. In the FIREX project, however, no detector attained those capabilities because high-intensity X-rays accompanied fast electrons used for plasma heating. To solve this problem, single-crystal CVD diamond was grown and fabricated into a radiation detector. The detector, which had excellent charge transportation property, was tested to obtain a response function for intense X-rays. The applicability for neutron bang time and burn history monitor was verified experimentally. Charge collection efficiency of 99.5% ± 0.8% and 97.1% ± 1.4% for holes and electrons were obtained using 5.486 MeV alpha particles. The drift velocity at electric field which saturates charge collection efficiency was 1.1 ± 0.4 × 10{sup 7} cm/s and 1.0 ± 0.3 × 10{sup 7} cm/s for holes and electrons. Fast response of several ns pulse width for intense X-ray was obtained at the GEKKO XII experiment, which is sufficiently fast for ToF measurements to obtain a neutron signal separately from X-rays. Based on these results, we confirmed that the single-crystal CVD diamond detector obtained neutron signal with good S/N under ion temperature 0.5–1 keV and neutron yield of more than 10{sup 9} neutrons/shot.

  4. Neutron transfer versus inelastic surface vibrations in the enhancement of sub-barrier fusion excitation function data and the energy dependent Woods-Saxon potential

    NASA Astrophysics Data System (ADS)

    Singh Gautam, Manjeet

    2015-02-01

    This work deeply analyzed the relative importance of the neutron transfer channels and inelastic surface vibrations of colliding nuclei in the sub-barrier fusion enhancement of various heavy ion systems using an energy dependent Woods-Saxon potential (EDWSP) model in conjunction with a one-dimensional Wong formula and the coupled channel formulation using the code CCFULL. The multi-phonon vibrational states of colliding nuclei and the nucleon transfer channels are found to be dominant internal degrees of freedom. The coupling between the relative motion of reactants and these relevant channels produces anomalously large sub-barrier fusion enhancement over the expectations of the one-dimensional barrier penetration model. In some cases, the influence of neutron transfer dominates over the couplings to low lying surface vibrational states of collision partners. Furthermore, the effects of coupling to inelastic surface excitations and the impact of neutron transfer channels with positive ground state Q-values are imitated due to energy dependence in the Woods-Saxon potential. In the EDWSP model calculations, a wide range for the diffuseness parameter, which is much larger than the value extracted from the elastic scattering data, is needed to account for the observed fusion enhancement in the close vicinity of the Coulomb barrier.

  5. From laser particle acceleration to the synthesis of extremely neutron rich isotopes via the novel fission-fusion mechanism

    SciTech Connect

    Thirolf, P. G.

    2015-02-24

    High-power, short pulse lasers have emerged in the last decade as attractive tools for accelerating charged particles (electrons, ions) to high energies over mm-scale acceleration lengths, thus promising to rival conventional acceleration techniques in the years ahead. In the first part of the article, the principles of laser-plasma interaction as well as the techniques and the current status of the acceleration of electron and ion beams will be briefly introduced. In particular with the upcoming next generation of multi-PW class laser systems, such as the one under construction for the ELI-Nuclear Physics project in Bucharest (ELI-NP), very efficient acceleration mechanisms for brilliant ion beams like radiation pressure acceleration (RPA) come into reach. Here, ultra-dense ion beams reaching solid-state density can be accelerated from thin target foils, exceeding the density of conventionally accelerated ion beams by about 14 orders of magnitude. This unique property of laser-accelerated ion beams can be exploited to explore the scenario of a new reaction mechanism called ‘fission-fusion’, which will be introduced in the second part of the article. Accelerating fissile species (e.g. {sup 232}Th) towards a second layer of the same material will lead to fission both of the beam-like and target-like particles. Due to the close to solid-state density of the accelerated ion bunches, fusion may occur between neutron-rich (light) fission products. This may open an access path towards extremely neutron-rich nuclides in the vicinity of the N=126 waiting point of the astrophysical r process. ‘Waiting points’ at closed nucleon shells play a crucial role in controlling the reaction rates. However, since most of the pathway of heavy-element formation via the rapid-neutron capture process (r-process) runs in ‘terra incognita’ of the nuclear landscape, in particular the waiting point at N=126 is yet unexplored and will remain largely inaccessible to conventional

  6. Calculations of Branching Ratios for Radiative-Capture, One-Proton, and Two-Neutron Channels in the Fusion Reaction 209Bi + 70Zn

    NASA Astrophysics Data System (ADS)

    Takatoshi Ichikawa,; Akira Iwamoto,

    2010-07-01

    We discuss the possibility of the non-one-neutron emission channels in the cold fusion reaction 70Zn + 209Bi to produce the element Z=113. For this purpose, we calculate the evaporation-residue cross sections of one-proton, radiative-capture, and two-neutron emissions relative to the one-neutron emission in the reaction 70Zn + 209Bi. To estimate the upper bounds of those quantities, we vary model parameters in the calculations, such as the level-density parameter and the height of the fission barrier. We conclude that the highest possibility is for the 2n reaction channel, and its upper bounds are 2.4% and at most less than 7.9% with unrealistic parameter values, under the actual experimental conditions of [J. Phys. Soc. Jpn. 73 (2004) 2593].

  7. Role of nuclear dissipation and entrance channel mass asymmetry in pre-scission neutron multiplicity enhancement in fusion-fission reactions

    SciTech Connect

    Singh, Hardev; Sandal, Rohit; Behera, Bivash R.; Singh, Gulzar; Govil, I. M.; Golda, K. S.; Ranjeet,; Jhingan, Akhil; Singh, R. P.; Sugathan, P.; Chatterjee, M. B.; Datta, S. K.; Pal, Santanu; Viesti, G.

    2008-08-15

    Pre-scission neutron multiplicities are measured for {sup 12}C + {sup 204}Pb and {sup 19}F + {sup 197}Au reactions at laboratory energies of 75-95 MeV for the {sup 12}C beam and 98-118 MeV for the {sup 19}F beam. The chosen projectile-target combinations in the present study lie on either side of the Businaro-Gallone mass asymmetry ({alpha}{sub BG}) and populate the {sup 216}Ra compound nucleus. The dissipation strength is deduced after comparing the experimentally measured neutron yield with the statistical model predictions which contains the nuclear viscosity as a free parameter. Present results demonstrate the combined effects of entrance channel mass asymmetry and the dissipative property of nuclear matter on the pre-scission neutron multiplicity in fusion-fission reactions.

  8. Studies of Neutron-Deficient Nuclei Near the Z = 82 Shell Closure via Cold Fusion Reactions

    NASA Astrophysics Data System (ADS)

    Carpenter, M. P.; Kondev, F. G.; Janssens, R. V. F.; Seweryniak, D.; Khoo, T. L.; Lauritsen, T.; Lister, C. J.; Zhu, S.; Camera, F.; Bracco, A.; Million, B.; Leoni, S.; Jenkins, D. G.; Wadsworth, R.

    2009-03-01

    Over the last decade, we have performed in-beam experiments using Gammasphere+FMA to measure excited states in proton-rich Au, Hg, Tl and Pb isotopes. In these studies, the use of the FMA is essential in order to differentiate evaporation residues from the large fission background which dominates the reaction cross-section. In addition, we have found that using near-symmetric reactions at bombarding energies near the Coloumb barrier is beneficial in performing these studies. By keeping the bombarding energy low, fission is minimized and the reaction products are concentrated in only a few channels. New results have recently been obtained using the 90Zr+92Mo reaction to study shape co-existence in 181Tl via the lp evaporation channel. In addition, we have measured the total γ-ray energy and multiplicity associated with the surviving compund system, 179Au, following the fusion reaction, 90Zr+89Y.

  9. Fusion neutron detector for time-of-flight measurements in z-pinch and plasma focus experiments

    SciTech Connect

    Klir, D.; Kravarik, J.; Kubes, P.; Rezac, K.; Litseva, E.; Tomaszewski, K.; Karpinski, L.; Paduch, M.; Scholz, M.

    2011-03-15

    We have developed and tested sensitive neutron detectors for neutron time-of-flight measurements in z-pinch and plasma focus experiments with neutron emission times in tens of nanoseconds and with neutron yields between 10{sup 6} and 10{sup 12} per one shot. The neutron detectors are composed of a BC-408 fast plastic scintillator and Hamamatsu H1949-51 photomultiplier tube (PMT). During the calibration procedure, a PMT delay was determined for various operating voltages. The temporal resolution of the neutron detector was measured for the most commonly used PMT voltage of 1.4 kV. At the PF-1000 plasma focus, a novel method of the acquisition of a pulse height distribution has been used. This pulse height analysis enabled to determine the single neutron sensitivity for various neutron energies and to calibrate the neutron detector for absolute neutron yields at about 2.45 MeV.

  10. ACCELERATING FUSION REACTOR NEUTRONICS MODELING BY AUTOMATIC COUPLING OF HYBRID MONTE CARLO/DETERMINISTIC TRANSPORT ON CAD GEOMETRY

    SciTech Connect

    Biondo, Elliott D; Ibrahim, Ahmad M; Mosher, Scott W; Grove, Robert E

    2015-01-01

    Detailed radiation transport calculations are necessary for many aspects of the design of fusion energy systems (FES) such as ensuring occupational safety, assessing the activation of system components for waste disposal, and maintaining cryogenic temperatures within superconducting magnets. Hybrid Monte Carlo (MC)/deterministic techniques are necessary for this analysis because FES are large, heavily shielded, and contain streaming paths that can only be resolved with MC. The tremendous complexity of FES necessitates the use of CAD geometry for design and analysis. Previous ITER analysis has required the translation of CAD geometry to MCNP5 form in order to use the AutomateD VAriaNce reducTion Generator (ADVANTG) for hybrid MC/deterministic transport. In this work, ADVANTG was modified to support CAD geometry, allowing hybrid (MC)/deterministic transport to be done automatically and eliminating the need for this translation step. This was done by adding a new ray tracing routine to ADVANTG for CAD geometries using the Direct Accelerated Geometry Monte Carlo (DAGMC) software library. This new capability is demonstrated with a prompt dose rate calculation for an ITER computational benchmark problem using both the Consistent Adjoint Driven Importance Sampling (CADIS) method an the Forward Weighted (FW)-CADIS method. The variance reduction parameters produced by ADVANTG are shown to be the same using CAD geometry and standard MCNP5 geometry. Significant speedups were observed for both neutrons (as high as a factor of 7.1) and photons (as high as a factor of 59.6).

  11. Irradiation creep in austenitic and ferritic steels irradiated in a tailored neutron spectrum to induce fusion reactor levels of helium

    SciTech Connect

    Grossbeck, M.L.; Gibson, L.T.; Jitsukawa, S.

    1996-04-01

    Six austenitic stainless steels and two ferritic alloys were irradiated sequentially in two research reactors where the neutron spectrum was tailored to produce a He production rate typical of a fusion device. Irradiation began in the Oak Ridge Research Reactor where an atomic displacement level of 7.4 dpa was achieved and was then transferred to the High Flux Isotope Reactor for the remainder of the irradiation to a total displacement level of 19 dpa. Temperatures of 60 and 330{degree}C are reported on. At 330{degree}C irradiation creep was found to be linear in stress and fluence with rates in the range of 1.7 - 5.5 x 10{sup -4}% MPa{sup -1} dpa{sup -1}. Annealed and cold-worked materials exhibited similar creep rates. There is some indication that austenitic alloys with TiC or TiO precipitates had a slightly higher irradiation creep rate than those without. The ferritic alloys HT-9 and Fe-16Cr had irradiatoin creep rates about 0.5 x 10{sup -4}% MPa{sup -1} dpa{sup -1}. No meaningful data could be obtained from the tubes irradiated at 60{degree}C because of damage to the tubes.

  12. Neutronic Model of a Mirror Based Fusion-Fission Hybrid for the Incineration of Spent Nuclear Fuel and with Potential for Energy Amplification

    NASA Astrophysics Data System (ADS)

    Noack, Klaus; Moiseenko, V. E.; Agren, O.; Hagnestall, A.

    2010-11-01

    In the last decade the Georgia Institute of Technology (Georgia Tech) published several design concepts of tokamak based fusion-fission hybrids which use solid fuels consisting of transuranic elements of the spent nuclear fuel from Light-Water-Reactors. The objectives of the hybrids are the incineration of the transuranic elements and an additional net energy production under the condition of tritium self-sufficiency. The present paper presents a preliminary scientific design of the blanket of a mirror based hybrid which was derived from the results of Monte Carlo neutron transport calculations. The main operation parameters of two hybrid options were specified. One is the analog to Georgia Techs first version of a ``fusion transmutation of waste reactor'' (FTWR) and the other is a possible near-term option which requires minimal fusion power. The latter version shows considerably better performance parameters.

  13. HIGH SPATIAL RESOLUTION IMAGING OF INERTIAL FUSION TARGET PLASMAS USING BUBBLE NEUTRON DETECTORS, Final Report for the Period November 1, 1999 - February 28, 2001

    SciTech Connect

    FISHER,RK

    2003-02-01

    OAK B202 HIGH SPATIAL RESOLUTION IMAGING OF INERTIAL FUSION TARGET PLASMAS USING BUBBLE NEUTRON DETECTORS. Bubble detectors, which can detect neutrons with a spatial 5 to 30 {micro}, are the most promising approach to imaging NIF target plasmas with the desired 5 {micro} spatial resolution in the target plane. Gel bubble detectors are being tested to record neutron images of ICF implosions in OMEGA experiments. By improving the noise reduction techniques used in analyzing the data taken in June 2000, we have been able to image the neutron emission from 6 {center_dot} 10{sup 13} yield DT target plasmas with a target plane spatial resolution of {approx} 140 {micro}. As expected, the spatial resolution was limited by counting statistics as a result of the low neutron detection efficiency of the easy-to-use gel bubble detectors. The results have been submitted for publication and will be the subject of an invited talk at the October 2001 Meeting of the Division of Plasma Physics of the American Physical Society. To improve the counting statistics, data was taken in May 2001 using a stack of four gel detectors and integrated over a series of up to seven high-yield DT shots. Analysis of the 2001 data is still in its early stages. Gel detectors were chosen for these initial tests since the bubbles can be photographed several hours after the neutron exposure. They consist of {approx} 5000 drops ({approx} 100 {micro} in diameter) of bubble detector liquid/cm{sup 3} suspended in an inactive support gel that occupies {approx} 99% of the detector volume. Using a liquid bubble chamber detector and a light scattering system to record the bubble locations a few microseconds after the neutron exposure when the bubbles are {approx} 10 {micro} in diameter, should result in {approx} 1000 times higher neutron detection efficiency and a target plane resolution on OMEGA of {approx} 10 to 50 {micro}.

  14. Frontiers of stellar evolution

    NASA Technical Reports Server (NTRS)

    Lambert, David L. (Editor)

    1991-01-01

    The present conference discusses theoretical and observational views of star formation, spectroscopic constraints on the evolution of massive stars, very low mass stars and brown dwarfs, asteroseismology, globular clusters as tests of stellar evolution, observational tests of stellar evolution, and mass loss from cool evolved giant stars. Also discussed are white dwarfs and hot subdwarfs, neutron stars and black holes, supernovae from single stars, close binaries with evolved components, accretion disks in interacting binaries, supernovae in binary systems, stellar evolution and galactic chemical evolution, and interacting binaries containing compact components.

  15. Studies of Neutron-Deficient Nuclei Near the Z = 82 Shell Closure via Cold Fusion Reactions

    SciTech Connect

    Carpenter, M. P.; Kondev, F. G.; Janssens, R. V. F.; Seweryniak, D.; Khoo, T. L.; Lauritsen, T.; Lister, C. J.; Zhu, S.; Camera, F.; Bracco, A.; Million, B.; Leoni, S.; Jenkins, D. G.; Wadsworth, R.

    2009-03-04

    Over the last decade, we have performed in-beam experiments using Gammasphere+FMA to measure excited states in proton-rich Au, Hg, Tl and Pb isotopes. In these studies, the use of the FMA is essential in order to differentiate evaporation residues from the large fission background which dominates the reaction cross-section. In addition, we have found that using near-symmetric reactions at bombarding energies near the Coloumb barrier is beneficial in performing these studies. By keeping the bombarding energy low, fission is minimized and the reaction products are concentrated in only a few channels. New results have recently been obtained using the {sup 90}Zr+{sup 92}Mo reaction to study shape co-existence in {sup 181}Tl via the lp evaporation channel. In addition, we have measured the total {gamma}-ray energy and multiplicity associated with the surviving compound system, {sup 179}Au, following the fusion reaction, {sup 90}Zr+{sup 89}Y.

  16. Double-helix stellarator

    SciTech Connect

    Moroz, P.E.

    1997-09-01

    A new stellarator configuration, the Double-Helix Stellarator (DHS), is introduced. This novel configuration features a double-helix center post as the only helical element of the stellarator coil system. The DHS configuration has many unique characteristics. One of them is the extreme low plasma aspect ratio, A {approx} 1--1.2. Other advantages include a high enclosed volume, appreciable rotational transform, and a possibility of extreme-high-{beta} MHD equilibria. Moreover, the DHS features improved transport characteristics caused by the absence of the magnetic field ripple on the outboard of the torus. Compactness, simplicity and modularity of the coil system add to the DHS advantages for fusion applications.

  17. Numerical Study on Effects of Fuel Mixture Fraction and Li-6 Enrichment on Neutronic Parameters of a Fusion-Fission Hybrid Reactor

    NASA Astrophysics Data System (ADS)

    Yapııcıı, Hüseyin; Genç, Gamze; Demir, Nesrin

    2004-09-01

    This study presents the effects of mixture fractions of nuclear fuels (mixture of fissile-fertile fuels and mixture of two different fertile fuels) and 6Li enrichment on the neutronic parameters (the tritium breeding ratio, TBR, the fission rate, FR, the energy multiplication ratio, M, the fissile breeding rate, FBR, the neutron leakage out of blanket, L, and the peak-to-average fission power density ratio, Γ) of a deuterium-tritium (D-T) fusion neutron-driven hybrid blanket. Three different fertile fuels (232Th, 238U and 244Cm), and one fissile fuel (235U) were selected as the nuclear fuel. Two different coolants (pressurized helium and natural lithium) were used for the nuclear heat transfer out of the fuel zone (FZ). The Boltzmann transport equation was solved numerically for obtaining the neutronic parameters with the help of the neutron transport code XSDRNPM/SCALE4.4a. In addition, these calculations were performed by also using the MCNP4B code. The sub-limits of the mixture fractions and 6Li enrichment were determined for the tritium self-sufficiency. The considered hybrid reactor can be operated in a self-sufficiency mode in the cases with the fuel mixtures mixed with a fraction of equal to or greater than these sub-limits. Furthermore, the numerical results show that the fissile fuel breeding and fission potentials of the blankets with the helium coolant are higher than with the lithium coolant.

  18. Three-dimensional stellarator codes

    PubMed Central

    Garabedian, P. R.

    2002-01-01

    Three-dimensional computer codes have been used to develop quasisymmetric stellarators with modular coils that are promising candidates for a magnetic fusion reactor. The mathematics of plasma confinement raises serious questions about the numerical calculations. Convergence studies have been performed to assess the best configurations. Comparisons with recent data from large stellarator experiments serve to validate the theory. PMID:12140367

  19. Ultrafast neutron detector

    DOEpatents

    Wang, C.L.

    1985-06-19

    A neutron detector of very high temporal resolution is described. It may be used to measure distributions of neutrons produced by fusion reactions that persist for times as short as about 50 picoseconds.

  20. Fusion breeder

    SciTech Connect

    Moir, R.W.

    1982-04-20

    The fusion breeder is a fusion reactor designed with special blankets to maximize the transmutation by 14 MeV neutrons of uranium-238 to plutonium or thorium to uranium-233 for use as a fuel for fission reactors. Breeding fissile fuels has not been a goal of the US fusion energy program. This paper suggests it is time for a policy change to make the fusion breeder a goal of the US fusion program and the US nuclear energy program. The purpose of this paper is to suggest this policy change be made and tell why it should be made, and to outline specific research and development goals so that the fusion breeder will be developed in time to meet fissile fuel needs.

  1. Fusion breeder

    SciTech Connect

    Moir, R.W.

    1982-02-22

    The fusion breeder is a fusion reactor designed with special blankets to maximize the transmutation by 14 MeV neutrons of uranium-238 to plutonium or thorium to uranium-233 for use as a fuel for fission reactors. Breeding fissile fuels has not been a goal of the US fusion energy program. This paper suggests it is time for a policy change to make the fusion breeder a goal of the US fusion program and the US nuclear energy program. The purpose of this paper is to suggest this policy change be made and tell why it should be made, and to outline specific research and development goals so that the fusion breeder will be developed in time to meet fissile fuel needs.

  2. NE-213-scintillator-based neutron detection system for diagnostic measurements of energy spectra for neutrons having energies greater than or equal to 0.8 MeV created during plasma operations at the Princeton Tokamak Fusion Test Reactor

    NASA Astrophysics Data System (ADS)

    Dickens, J. K.; Hill, N. W.; Hou, F. S.; McConnell, J. W.; Spencer, R. R.; Tsang, F. Y.

    1985-08-01

    A system for making diagnostic measurements of the energy spectra of greater than or equal to 0.8-MeV neutrons produced during plasma operations of the Princeton Tokamak Fusion Test Reactor (TFTR) has been fabricated and tested and is presently in operation in the TFTR Test Cell Basement. The system consists of two separate detectors, each made up of cells containing liquid NE-213 scintillator attached permanently to RCA-8850 photomultiplier tubes. Pulses obtained from each photomultiplier system are amplified and electronically analyzed to identify and separate those pulses due to neutron-induced events in the detector from those due to photon-induced events in the detector. Signals from each detector are routed to two separate Analog-to-Digital Converters, and the resulting digitized information, representing: (1) the raw neutron-spectrum data; and (2) the raw photon-spectrum data, are transmited to the CICADA data-acquisition computer system of the TFTR. Software programs have been installed on the CICADA system to analyze the raw data to provide moderate-resolution recreations of the energy spectrum of the neutron and photon fluences incident on the detector during the operation of the TFTR. A complete description of, as well as the operation of, the hardware and software is given in this report.

  3. NE-213-scintillator-based neutron detection system for diagnostic measurements of energy spectra for neutrons having energies greater than or equal to 0. 8 MeV created during plasma operations at the Princeton Tokamak Fusion Test Reactor

    SciTech Connect

    Dickens, J.K.; Hill, N.W.; Hou, F.S.; McConnell, J.W.; Spencer, R.R.; Tsang, F.Y.

    1985-08-01

    A system for making diagnostic measurements of the energy spectra of greater than or equal to 0.8-MeV neutrons produced during plasma operations of the Princeton Tokamak Fusion Test Reactor (TFTR) has been fabricated and tested and is presently in operation in the TFTR Test Cell Basement. The system consists of two separate detectors, each made up of cells containing liquid NE-213 scintillator attached permanently to RCA-8850 photomultiplier tubes. Pulses obtained from each photomultiplier system are amplified and electronically analyzed to identify and separate those pulses due to neutron-induced events in the detector from those due to photon-induced events in the detector. Signals from each detector are routed to two separate Analog-to-Digital Converters, and the resulting digitized information, representing: (1) the raw neutron-spectrum data; and (2) the raw photon-spectrum data, are transmited to the CICADA data-acquisition computer system of the TFTR. Software programs have been installed on the CICADA system to analyze the raw data to provide moderate-resolution recreations of the energy spectrum of the neutron and photon fluences incident on the detector during the operation of the TFTR. A complete description of, as well as the operation of, the hardware and software is given in this report.

  4. Anomalous neutron yield in indirect-drive inertial-confinement-fusion due to the formation of collisionless shocks in the corona

    NASA Astrophysics Data System (ADS)

    Zhang, Wen-Shuai; Cai, Hong-Bo; Shan, Lian-Qiang; Zhang, Hua-Sen; Gu, Yu-Qiu; Zhu, Shao-Ping

    2017-06-01

    Observations of anomalous neutron yield in the indirect-drive inertial confinement fusion implosion experiments conducted at SG-III prototype and SG-II upgrade laser facilities are interpreted. The anomalous mechanism results in a neutron yield which is 100-times higher than that predicted by 1D radiation-hydrodynamic simulations. 2D radiation-hydrodynamic simulations show that the supersonic, radially directed gold (Au) plasma jets arising from the laser-hohlraum interactions can collide with the carbon-deuterium (CD) corona plasma of the compressed pellet. It is found that in the interaction front of the high-Z jet with the low-Z corona, with low density  ∼{{10}20}~\\text{c}{{\\text{m}}-3} and high temperature  ∼keV, kinetic effects become important. Particle-in-cell simulations indicate that an electrostatic shock wave can be driven when the high-temperature Au jet expands into the low-temperature CD corona. Deuterium ions with an amount of  ∼1015 can be accelerated to  ∼25 keV by the collisionless shock wave, thus causing efficient neutron productions though the beam-target method by stopping these energetic ions in the corona. The evaluated neutron yield is consistent with the experiments conducted at SG laser facilities.

  5. Fusion of Polarized Deuterons

    NASA Astrophysics Data System (ADS)

    Hofmann, H. M.; Fick, D.

    1984-06-01

    The nuclear physics aspects of the d-d reactions initiated by low-energy polarized deuterons are discussed. It is shown that the use of polarized deuterons does not suppress the fusion of deuterons with deuterons and hence does not suppress neutron production. Therefore a recently proposed "neutron-free" d-3He fusion reactor is unlikely to work.

  6. H ingestion into He-burning convection zones in super-AGB stellar models as a potential site for intermediate neutron-density nucleosynthesis

    SciTech Connect

    Jones, Sam; Ritter, Christian; Herwig, Falk; Fryer, Christopher Lee; Pignatari, Marco; Bertolli, Michael G.; Paxton, Bill

    2015-12-03

    We investigate the evolution of super-AGB (SAGB) thermal pulse (TP) stars for a range of metallicities (Z) and explore the effect of convective boundary mixing (CBM). With decreasing metallicity and evolution along the TP phase, the He-shell flash and the third dredge-up (TDU) occur closer together in time. After some time (depending upon the CBM parametrization), efficient TDU begins while the pulse-driven convection zone (PDCZ) is still present, causing a convective exchange of material between the PDCZ and the convective envelope. This results in the ingestion of protons into the convective He-burning pulse. Even small amounts of CBM encourage the interaction of the convection zones leading to transport of protons from the convective envelope into the He layer. H-burning luminosities exceed 109 (in some cases 1010) L⊙. We also calculate models of dredge-out in the most massive SAGB stars and show that the dredge-out phenomenon is another likely site of convective-reactive H-12C combustion. We discuss the substantial uncertainties of stellar evolution models under these conditions. Nevertheless, the simulations suggest that in the convective-reactive H-combustion regime of H ingestion the star may encounter conditions for the intermediate neutron capture process (i-process). We speculate that some CEMP-s/r stars could originate in i-process conditions in the H ingestion phases of low-Z SAGB stars. This scenario would however suggest a very low electron-capture supernova rate from SAGB stars. Here, we also simulate potential outbursts triggered by such H ingestion events, present their light curves and briefly discuss their transient properties.

  7. H ingestion into He-burning convection zones in super-AGB stellar models as a potential site for intermediate neutron-density nucleosynthesis

    DOE PAGES

    Jones, Sam; Ritter, Christian; Herwig, Falk; ...

    2015-12-03

    We investigate the evolution of super-AGB (SAGB) thermal pulse (TP) stars for a range of metallicities (Z) and explore the effect of convective boundary mixing (CBM). With decreasing metallicity and evolution along the TP phase, the He-shell flash and the third dredge-up (TDU) occur closer together in time. After some time (depending upon the CBM parametrization), efficient TDU begins while the pulse-driven convection zone (PDCZ) is still present, causing a convective exchange of material between the PDCZ and the convective envelope. This results in the ingestion of protons into the convective He-burning pulse. Even small amounts of CBM encourage themore » interaction of the convection zones leading to transport of protons from the convective envelope into the He layer. H-burning luminosities exceed 109 (in some cases 1010) L⊙. We also calculate models of dredge-out in the most massive SAGB stars and show that the dredge-out phenomenon is another likely site of convective-reactive H-12C combustion. We discuss the substantial uncertainties of stellar evolution models under these conditions. Nevertheless, the simulations suggest that in the convective-reactive H-combustion regime of H ingestion the star may encounter conditions for the intermediate neutron capture process (i-process). We speculate that some CEMP-s/r stars could originate in i-process conditions in the H ingestion phases of low-Z SAGB stars. This scenario would however suggest a very low electron-capture supernova rate from SAGB stars. Here, we also simulate potential outbursts triggered by such H ingestion events, present their light curves and briefly discuss their transient properties.« less

  8. H ingestion into He-burning convection zones in super-AGB stellar models as a potential site for intermediate neutron-density nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Jones, S.; Ritter, C.; Herwig, F.; Fryer, C.; Pignatari, M.; Bertolli, M. G.; Paxton, B.

    2016-02-01

    We investigate the evolution of super-AGB (SAGB) thermal pulse (TP) stars for a range of metallicities (Z) and explore the effect of convective boundary mixing (CBM). With decreasing metallicity and evolution along the TP phase, the He-shell flash and the third dredge-up (TDU) occur closer together in time. After some time (depending upon the CBM parametrization), efficient TDU begins while the pulse-driven convection zone (PDCZ) is still present, causing a convective exchange of material between the PDCZ and the convective envelope. This results in the ingestion of protons into the convective He-burning pulse. Even small amounts of CBM encourage the interaction of the convection zones leading to transport of protons from the convective envelope into the He layer. H-burning luminosities exceed 109 (in some cases 1010) L⊙. We also calculate models of dredge-out in the most massive SAGB stars and show that the dredge-out phenomenon is another likely site of convective-reactive H-12C combustion. We discuss the substantial uncertainties of stellar evolution models under these conditions. Nevertheless, the simulations suggest that in the convective-reactive H-combustion regime of H ingestion the star may encounter conditions for the intermediate neutron capture process (i-process). We speculate that some CEMP-s/r stars could originate in i-process conditions in the H ingestion phases of low-Z SAGB stars. This scenario would however suggest a very low electron-capture supernova rate from SAGB stars. We also simulate potential outbursts triggered by such H ingestion events, present their light curves and briefly discuss their transient properties.

  9. What we should do for transition from current tokamaks to fusion-fission reactor

    NASA Astrophysics Data System (ADS)

    Mirnov, S.

    2012-06-01

    The Russian fission community places several heavy demands to quality of fusion neutron source for the first step of investigation of minority transmutations ("burning") and breading of nuclear fuel. They are: the steady state regime of neutron production (not rare 80% of main operation time), the total power on neutron flux should be not lower than 20MW with surface neutron load not lower than 0.2MW/m2. Between the current fusion devices: mirror traps, reverse field pinches, stellarators, spherical torus and tokamaks only lasts have today the some probability to fulfill in the near future these hard demands. Two well known DT-tokamaks with neutron power production higher 10MW - TFTR and JET-had maximal neutron load approximately 0.1MW/m2 only in transient (with time scale lower 1s) regimes. The quasi steady state neutron emission regime (˜5MW, 5sec) was performed in JET with mean surface neutron load lower than 0.025MW/m2 only. In this communication it will be discussed the main needs of JET scale tokamak improvement for increase on neutron load up to 0.2MW/m2. They are: decrease of Zeff by ECRH and lithium use as plasma facing components, the increase of energy of steady state neutral injectors up to 150-170keV (tritium), the He removal and creation of closed loop of DT fuel circulation.

  10. Experimental study of the Pb and Bi breeding zones effect on the neutron parameters of a molten-salt blanket in a fusion reactor

    NASA Astrophysics Data System (ADS)

    Novikov, V. M.; Sheehov, S. B.; Romodanov, V. L.; Zagryadsky, V. A.; Chuvilin, D. Yu.

    1980-07-01

    The fluorid salt melt of Li, Be, U and Th is considered as one of the possible coolants both for a "clean" and for a "hybrid" fusion reactor. The tritium reproduction coefficient Kτ is only a little greater than unity in the molten-salt blanket, because of inelastic scattering on a fluorine nucleus which depresses the 7Li(n, n' α) T reaction. To compensate for this effect the neu tron multiplication Pb, Be and 238U zones may be used [2,4]. This article is devoted to the experimental study of the Pb and Bi neutron multiplication zones in the molten-salt blanket model, consisting of an aluminium sphere, filled with a eutectical mixture of LiF and BeF 2. The blanket model diameter was 400 mm. The 23 mm multiplication zones were placed into the cavity of the model. The neutron generator NGI-200 was used as a 14 MeV neutron source. The neutron output was 10 10 n/s. The deuteron energy was 140 keV and the average target current value was 500 uA. The detection of neutrons was performed by small impulsive fission chambers KNT-2 with 232Th and KNT-5 with 235U. The neutron generator output measurements were made with the helpof the attendant α-particle technique using silicon semiconductor detector DKP25. It was experimentally shown that there is a noticeable influence of the Pb and Bi multiplication zones on the fission rates of 232Th and 235U. The spacial distribution of the fission rates of 232Th and 235U measured in this experiment was compared with that calculated by means of the program "BLANK". This comparison showed good agreement between experimental and calculated values at a large distance from the neutron source and a noticeable distinction near it. It was also shown that the experimental value of the Pb influence was larger by an average 15% for 232Th and less by an average 10% for 235U, than that calculated.

  11. Chemical Abundances of the Milky Way Thick Disk and Stellar Halo. II. Sodium, Iron-peak, and Neutron-capture Elements

    NASA Astrophysics Data System (ADS)

    Ishigaki, M. N.; Aoki, W.; Chiba, M.

    2013-07-01

    We present chemical abundance analyses of sodium, iron-peak, and neutron-capture elements for 97 kinematically selected thick disk, inner halo, and outer halo stars with metallicities -3.3 < [Fe/H] <-0.5. The main aim of this study is to examine chemical similarities and differences among metal-poor stars belonging to these old Galactic components as a clue to determine their early chemodynamical evolution. In our previous paper, we obtained abundances of α elements by performing a one-dimensional LTE abundance analysis based on the high-resolution (R ~ 50, 000) spectra obtained with the Subaru/HDS. In this paper, a similar analysis is performed to determine abundances of an additional 17 elements. We show that, in metallicities below [Fe/H] ~-2, the abundance ratios of many elements in the thick disk, inner halo, and outer halo subsamples are largely similar. In contrast, in higher metallicities ([Fe/H] gsim -1.5), differences in some of the abundance ratios among the three subsamples are identified. Specifically, the [Na/Fe], [Ni/Fe], [Cu/Fe], and [Zn/Fe] ratios in the inner and outer halo subsamples are found to be lower than those in the thick disk subsample. A modest abundance difference between the two halo subsamples in this metallicity range is also seen for the [Na/Fe] and [Zn/Fe] ratios. In contrast to that observed for [Mg/Fe] in our previous paper, [Eu/Fe] ratios are more enhanced in the two halo subsamples rather than in the thick disk subsample. The observed distinct chemical abundances of some elements between the thick disk and inner/outer halo subsamples with [Fe/H] >-1.5 support the hypothesis that these components formed through different mechanisms. In particular, our results favor the scenario that the inner and outer halo components formed through an assembly of multiple progenitor systems that experienced various degrees of chemical enrichments, while the thick disk formed through rapid star formation with an efficient mixing of chemical

  12. The possible hot nature of cold fusion

    SciTech Connect

    Kuehne, R.W. )

    1994-03-01

    Based on the model of micro hot fusion, the neutron emission rate of cold fusion is determined without the need for fine-tuning parameters. Moreover, the experimental conditions that are essential to reproduce fusion are determined. 84 refs.

  13. Comparison of transmutation and activation effects in five ferritic alloys and aisi 316 stainless steel in a fusion neutron spectrum

    NASA Astrophysics Data System (ADS)

    Butterworth, G. J.; Jarvis, O. N.

    1984-05-01

    Transmutation and activation characteristics are presented for alloys FV448, EM12, 1.4914, HT-9, the Japanese alloy E5 and 316 stainless steel as a reference material. The alloys were assumed to be subjected to a first wall neutron power loading of 7 MWm -2 continuously for 2.5 years in the spectrum of the Culham Conceptual Tokamak Reactor IIA. The computations used a modified ORIGEN code and the neutron cross section data library UKCTRIIIA.

  14. Increasing the High Voltage Capabilities and Exploring Parameter Space of an Inertial Electrostatic Confinement Fusion Neutron Source for the Detection of Chemical Explosives

    NASA Astrophysics Data System (ADS)

    Michalak, Matthew K.

    The objectives of the work presented here include understanding key operating principles and providing precise data sets that can be used to test inertial electrostatic confinement (IEC) fusion theory and optimize IEC device operation. The underlying physical behavior was separated from superficial trends observed in an IEC device at the University of Wisconsin-Madison (UW). The effects of changing voltage (30-170 kV) and current (30-100 mA) were thoroughly explored, pressure effects (0.15-1.25 mTorr) were mapped, and the effect of impurities in the system was quantified. The most challenging part of this work was designing a high voltage feedthrough that could reliably operate at higher voltages for far longer times than previously attained. A system to detect conventional explosives using fusion neutrons was also designed, constructed, and tested. Precise data sets were created by taking into account and minimizing the effects of short and long term trends in the experiment. Detailed meter current scans were taken that showed a linear relationship of the neutron production rate with current. Cathode voltage scans were slightly greater than linear in the neutron rate from 30 to 170 kV, but the rate increase diminished to near linear as 170 kV was approached. A new high voltage feedthrough was designed that surpassed the performance of past UW IEC lab feedthroughs and shows promise for long duration operation at still higher voltages. Limitations of other equipment in the IEC lab prevented testing the feedthrough to voltages above 175 kV. A more robust construction of the feedthrough and reducing the consequences of a feedthrough failure were also important design criteria that were met. A detector array was made to detect explosives via the 10.8 MeV neutron capture prompt gamma from nitrogen. Signals from four separate detectors were combined to make the individual detectors act similar to one large detector. The detector signals were both summed and combined to

  15. Demonstration of a time-integrated short line of sight neutron imaging system for inertial confinement fusion.

    PubMed

    Simpson, R; Christensen, K; Danly, C; Fatherley, V E; Fittinghoff, D; Grim, G P; Izumi, N; Jedlovec, D; Merrill, F E; Skulina, K; Volegov, P; Wilde, C

    2015-12-01

    The Neutron Imaging System (NIS) is an important diagnostic for understanding implosions of deuterium-tritium capsules at the National Ignition Facility. While the detectors for the existing system must be positioned 28 m from the source to produce sufficient imaging magnification and resolution, recent testing of a new short line of sight neutron imaging system has shown sufficient resolution to allow reconstruction of the source image with quality similar to that of the existing NIS on a 11.6 m line of sight. The new system used the existing pinhole aperture array and a stack of detectors composed of 2 mm thick high-density polyethylene converter material followed by an image plate. In these detectors, neutrons enter the converter material and interact with protons, which recoil and deposit energy within the thin active layer of the image plate through ionization losses. The described system produces time-integrated images for all neutron energies passing through the pinhole. We present details of the measurement scheme for this novel technique to produce energy-integrated neutron images as well as source reconstruction results from recent experiments at NIF.

  16. Demonstration of a time-integrated short line of sight neutron imaging system for inertial confinement fusion

    SciTech Connect

    Simpson, R. Danly, C.; Fatherley, V. E.; Merrill, F. E.; Volegov, P.; Wilde, C.; Christensen, K.; Fittinghoff, D.; Grim, G. P.; Izumi, N.; Jedlovec, D.; Skulina, K.

    2015-12-15

    The Neutron Imaging System (NIS) is an important diagnostic for understanding implosions of deuterium-tritium capsules at the National Ignition Facility. While the detectors for the existing system must be positioned 28 m from the source to produce sufficient imaging magnification and resolution, recent testing of a new short line of sight neutron imaging system has shown sufficient resolution to allow reconstruction of the source image with quality similar to that of the existing NIS on a 11.6 m line of sight. The new system used the existing pinhole aperture array and a stack of detectors composed of 2 mm thick high-density polyethylene converter material followed by an image plate. In these detectors, neutrons enter the converter material and interact with protons, which recoil and deposit energy within the thin active layer of the image plate through ionization losses. The described system produces time-integrated images for all neutron energies passing through the pinhole. We present details of the measurement scheme for this novel technique to produce energy-integrated neutron images as well as source reconstruction results from recent experiments at NIF.

  17. Observation of stars produced during cold fusion

    SciTech Connect

    Matsumoto, T. . Dept. of Nuclear Engineering)

    1992-12-01

    It has been indicated tht multiple-neutron nuclei such as quad-neutrons can be emitted during cold fusion. These multiple-neutrons might bombard the nuclei of materials outside a cold fusion cell to cause nuclear reactions. In this paper, observations of nuclear emulsions that were irradiated during a cold fusion experiment with heavy water and palladium foil are described. Various traces, like stars, showing nuclear reactions caused by the multiple-neutrons have been clearly observed.

  18. The production of sup 49 V, sup 93 Mo, sup 93m Nb and other long-lived isotopes in fusion materials with 14 MeV neutrons

    SciTech Connect

    Greenwood, L.R.; Bowers, D.L.

    1989-01-01

    Results are presented for measurements of neutron cross sections for the production of {sup 49}V (331 d) from vanadium and for {sup 93}Mo (3500 a) and {sup 93m}Nb (16 a) from natural and {sup 94}Mo-enriched molybdenum targets near 14 MeV. The targets were irradiated at the Rotating Target Neutron Source II to fluences up to 10{sup 18} n/cm{sup 2}. Radiochemical separations were performed to separate the desired nuclides from interferring activities. Activity measurements were then performed using x-ray counting techniques. Results are compared with calculations and the measured cross sections are used to predict the level of these activities in a first-wall fusion reactor material. Previous results are also reviewed for similar measurements of the production of {sup 55}Fe, {sup 63}Ni, {sup 59}Ni, {sup 94}Nb, and {sup 91}Nb. Comparisons with theoretical calculations suggest possible revisions of the halflives of {sup 59}Ni and {sup 91}Nb.

  19. An assessment of the evaporation and condensation phenomena of lithium during the operation of a Li(d,xn) fusion relevant neutron source.

    PubMed

    Knaster, J; Kanemura, T; Kondo, K

    2016-12-01

    The flowing lithium target of a Li(d,xn) fusion relevant neutron source must evacuate the deuteron beam power and generate in a stable manner a flux of neutrons with a broad peak at 14 MeV capable to cause similar phenomena as would undergo the structural materials of plasma facing components of a DEMO like reactors. Whereas the physics of the beam-target interaction are understood and the stability of the lithium screen flowing at the nominal conditions of IFMIF (25 mm thick screen with +/-1 mm surface amplitudes flowing at 15 m/s and 523 K) has been demonstrated, a conclusive assessment of the evaporation and condensation of lithium during operation was missing. First attempts to determine evaporation rates started by Hertz in 1882 and have since been subject of continuous efforts driven by its practical importance; however intense surface evaporation is essentially a non-equilibrium process with its inherent theoretical difficulties. Hertz-Knudsen-Langmuir (HKL) equation with Schrage's 'accommodation factor' η = 1.66 provide excellent agreement with experiments for weak evaporation under certain conditions, which are present during a Li(d,xn) facility operation. An assessment of the impact under the known operational conditions for IFMIF (574 K and 10(-3)Pa on the free surface), with the sticking probability of 1 inherent to a hot lithium gas contained in room temperature steel walls, is carried out. An explanation of the main physical concepts to adequately place needed assumptions is included.

  20. Time-Dependent Neutronics in Structural Materials of Inertial Fusion Reactors and Simulation of Defect Accumulation in Pulsed Fe and SiC

    SciTech Connect

    Perlado, J.M.; Lodi, D.; Marian, J.; Plata, A. Gonzalez; Salvador, M.; Caturla, M.J.; Rubia, T. Diaz de la; Colombo, L

    2003-05-15

    New results are presented on the time-dependent neutron intensities and energy spectra from compressed inertial fusion energy (IFE) targets and in structural Fe walls behind typical IFE chamber protection schemes. Protection schemes of LiPb and Flibe have been considered with two different thicknesses, and neutron fluxes in the outer Fe layer as a function of the time from target emission are given. Differences between the two solutions are noted and explained, and the effect of thickness is quantitatively shown. Time-dependent defect characterization of the Fe layer under pulse irradiation is presented. A new well-established multiscale modeling procedure injects, at the appropriate dose rate, damage cascades in a kinetic Monte Carlo lattice (microscopic) to study defect diffusion, clustering, and disintegration. The differences with a continuous irradiation for a still low fluence of irradiation are presented. Experimental validation of a multiscale modeling approach has been recognized and proposed in the Spanish VENUS-II project by using Fe ions on pure and ultrapure Fe. To study similar problems in SiC, new tools are needed to quantify the kinetic defects; results leading to the validation of a new tight binding molecular dynamics code for SiC are presented.

  1. Three-dimensional neutronics optimization of helium-cooled blanket for multi-functional experimental fusion-fission hybrid reactor (FDS-MFX)

    SciTech Connect

    Jiang, J.; Yuan, B.; Jin, M.; Wang, M.; Long, P.; Hu, L.

    2012-07-01

    Three-dimensional neutronics optimization calculations were performed to analyse the parameters of Tritium Breeding Ratio (TBR) and maximum average Power Density (PDmax) in a helium-cooled multi-functional experimental fusion-fission hybrid reactor named FDS (Fusion-Driven hybrid System)-MFX (Multi-Functional experimental) blanket. Three-stage tests will be carried out successively, in which the tritium breeding blanket, uranium-fueled blanket and spent-fuel-fueled blanket will be utilized respectively. In this contribution, the most significant and main goal of the FDS-MFX blanket is to achieve the PDmax of about 100 MW/m3 with self-sustaining tritium (TBR {>=} 1.05) based on the second-stage test with uranium-fueled blanket to check and validate the demonstrator reactor blanket relevant technologies based on the viable fusion and fission technologies. Four different enriched uranium materials were taken into account to evaluate PDmax in subcritical blanket: (i) natural uranium, (ii) 3.2% enriched uranium, (iii) 19.75% enriched uranium, and (iv) 64.4% enriched uranium carbide. These calculations and analyses were performed using a home-developed code VisualBUS and Hybrid Evaluated Nuclear Data Library (HENDL). The results showed that the performance of the blanket loaded with 64.4% enriched uranium was the most attractive and it could be promising to effectively obtain tritium self-sufficiency (TBR-1.05) and a high maximum average power density ({approx}100 MW/m{sup 3}) when the blanket was loaded with the mass of {sup 235}U about 1 ton. (authors)

  2. Current-carrying element based on second-generation high-temperature superconductor for the magnet system of a fusion neutron source

    SciTech Connect

    Novikov, M. S. Ivanov, D. P. E-mail: denis.ivanov30@mail.ru; Novikov, S. I. Shuvaev, S. A. E-mail: sergey.shuvaev@phystech.edu

    2015-12-15

    Application of current-carrying elements (CCEs) made of second-generation high-temperature superconductor (2G HTS) in magnet systems of a fusion neutron source (FNS) and other fusion devices will allow their magnetic field and thermodynamic stability to be increased substantially in comparison with those of low-temperature superconductor (LTS) magnets. For a toroidal magnet of the FNS, a design of a helical (partially transposed) CCE made of 2G HTS is under development with forced-flow cooling by helium gas, a current of 20–30 kA, an operating temperature of 10–20 K, and a magnetic field on the winding of 12–15 T (prospectively ∼20 T). Short-sized samples of the helical flexible heavy-current CCE are being fabricated and investigated; a pilot-line unit for production of long-sized CCE pieces is under construction. The applied fabrication technique allows the CCE to be produced which combines a high operating current, thermal and mechanical stability, manufacturability, and low losses in the alternating modes. The possibility of fabricating the CCE with the outer dimensions and values of the operating parameter required for the FNS (and with a significant margin) using already available serial 2G HTS tapes is substantiated. The maximum field of toroidal magnets with CCEs made of 2G HTS will be limited only by mechanical properties of the magnet’s casing and structure, while the thermal stability will be approximately two orders of magnitude higher than that of toroidal magnets with LTS-based CCEs. The helical CCE made of 2G HTS is very promising for fusion and hybrid electric power plants, and its design and technologies of production, as well as the prototype coils made of it for the FNS and other tokamaks, are worth developing now.

  3. On the role of fusion neutron source with thorium blanket in forming the nuclide composition of the nuclear fuel cycle of the Russian Federation

    NASA Astrophysics Data System (ADS)

    Shmelev, A. N.; Kulikov, G. G.

    2016-12-01

    The possible role of available thorium resources of the Russian Federation in utilization of thorium in the closed (U-Pu)-fuel cycle of nuclear power is considered. The efficiency of application of fusion neutron sources with thorium blanket for economical use of available thorium resources is demonstrated. The objective of this study is the search for a solution of such major tasks of nuclear power as reduction of the amount of front-end operations in the nuclear fuel cycle and enhancement of its protection against uncontrolled proliferation of fissile materials with the smallest possible alterations in the fuel cycle. The earlier results are analyzed, new information on the amount of thorium resources of the Russian Federation is used, and additional estimates are made. The following basic results obtained on the basis of the assumption of involving fusion reactors with Th-blanket in future nuclear power for generation of the light uranium fraction 232+233+234U and 231Pa are formulated. (1) The fuel cycle would shift from fissile 235U to 233U, which is more attractive for thermal power reactors. (2) The light uranium fraction is the most "protected" in the uranium fuel component, and being mixed with regenerated uranium, it would become reduced-enrichment uranium fuel, which would relieve the problem of nonproliferation of the fissile material. (3) The addition of 231Pa into the fuel would stabilize its neutron-multiplying properties, thus making it possible to implement a long fuel residence time and, as a consequence, increase the export potential of the whole nuclear power technology. (4) The available thorium resource in the vicinity of Krasnoufimsk is sufficient for operation of the large-scale nuclear power industry of the Russian Federation with an electric power of 70 GW for more than one quarter of a century. The general conclusion is that involvement of a small number of fusion reactors with Th-blanket in the future nuclear power industry of the Russian

  4. On the role of fusion neutron source with thorium blanket in forming the nuclide composition of the nuclear fuel cycle of the Russian Federation

    SciTech Connect

    Shmelev, A. N.; Kulikov, G. G.

    2016-12-15

    The possible role of available thorium resources of the Russian Federation in utilization of thorium in the closed (U–Pu)-fuel cycle of nuclear power is considered. The efficiency of application of fusion neutron sources with thorium blanket for economical use of available thorium resources is demonstrated. The objective of this study is the search for a solution of such major tasks of nuclear power as reduction of the amount of front-end operations in the nuclear fuel cycle and enhancement of its protection against uncontrolled proliferation of fissile materials with the smallest possible alterations in the fuel cycle. The earlier results are analyzed, new information on the amount of thorium resources of the Russian Federation is used, and additional estimates are made. The following basic results obtained on the basis of the assumption of involving fusion reactors with Th-blanket in future nuclear power for generation of the light uranium fraction {sup 232+233+234}U and {sup 231}Pa are formulated. (1) The fuel cycle would shift from fissile {sup 235}U to {sup 233}U, which is more attractive for thermal power reactors. (2) The light uranium fraction is the most “protected” in the uranium fuel component, and being mixed with regenerated uranium, it would become reduced-enrichment uranium fuel, which would relieve the problem of nonproliferation of the fissile material. (3) The addition of {sup 231}Pa into the fuel would stabilize its neutron-multiplying properties, thus making it possible to implement a long fuel residence time and, as a consequence, increase the export potential of the whole nuclear power technology. (4) The available thorium resource in the vicinity of Krasnoufimsk is sufficient for operation of the large-scale nuclear power industry of the Russian Federation with an electric power of 70 GW for more than one quarter of a century. The general conclusion is that involvement of a small number of fusion reactors with Th-blanket in the future

  5. Estimates of fission barrier heights for neutron-deficient Po to Ra nuclei produced in fusion reactions

    NASA Astrophysics Data System (ADS)

    Sagaidak, Roman

    2017-09-01

    The cross section data for fission and evaporation residue production in fusion reactions leading to nuclei from Po to Ra have been considered in a systematic way in the framework of the conventional barrier-passing (fusion) model coupled with the statistical model. The cross section data obtained in very asymmetric projectile-target combinations can be described within these models rather well with the adjusted model parameters. In particular, one can scale and fix the macroscopic (liquid-drop) fission barrier heights (FBHs) for nuclei involved in the de-excitation of compound nuclei produced in the reactions. The macroscopic FBHs for nuclei from Po to Ra have been derived in the framework of such analysis and compared with the predictions of various theoretical models.

  6. Development of quasi-isodynamic stellarators

    NASA Astrophysics Data System (ADS)

    Nührenberg, Jürgen

    2010-12-01

    Theoretical stellarator research from MHD-stable stellarators via quasi-helically symmetric ones to Wendelstein 7-X, quasi-axisymmetric tokamaks and quasi-isodynamic stellarators is sketched. Research strategy, computational aspects and various favorable properties are emphasized. The results found, but only together with the completion of according experimental devices and their scientific exploitation, may form a basis for selecting the confinement geometry most viable for fusion.

  7. Symmetry breaking of quasihelical stellarator equilibria

    SciTech Connect

    Weening, R.H. )

    1993-04-01

    A mean-field Ohm's law is used to determine the effects of the bootstrap current on quasihelically symmetric stellarator equilibria. The Ohm's law leads to the conclusion that the effects of the bootstrap current break the quasihelical stellarator symmetry at second order in an inverse aspect ratio expansion of the magnetic field strength. The level of symmetry breaking suggests that good approximations to quasihelical stellarator fusion reactors may not be attainable.

  8. Materials research for fusion

    NASA Astrophysics Data System (ADS)

    Knaster, J.; Moeslang, A.; Muroga, T.

    2016-05-01

    Fusion materials research started in the early 1970s following the observation of the degradation of irradiated materials used in the first commercial fission reactors. The technological challenges of fusion energy are intimately linked with the availability of suitable materials capable of reliably withstanding the extremely severe operational conditions of fusion reactors. Although fission and fusion materials exhibit common features, fusion materials research is broader. The harder mono-energetic spectrum associated with the deuterium-tritium fusion neutrons (14.1 MeV compared to <2 MeV on average for fission neutrons) releases significant amounts of hydrogen and helium as transmutation products that might lead to a (at present undetermined) degradation of structural materials after a few years of operation. Overcoming the historical lack of a fusion-relevant neutron source for materials testing is an essential pending step in fusion roadmaps. Structural materials development, together with research on functional materials capable of sustaining unprecedented power densities during plasma operation in a fusion reactor, have been the subject of decades of worldwide research efforts underpinning the present maturity of the fusion materials research programme.

  9. Superfluidity and Superconductivity in Neutron Stars

    NASA Astrophysics Data System (ADS)

    Chamel, N.

    2017-09-01

    Neutron stars, the compact stellar remnants of core-collapse supernova explosions, are unique cosmic laboratories for exploring novel phases of matter under extreme conditions. In particular, the occurrence of superfluidity and superconductivity in neutron stars will be briefly reviewed.

  10. Fusion pumped laser

    DOEpatents

    Pappas, D.S.

    1987-07-31

    The apparatus of this invention may comprise a system for generating laser radiation from a high-energy neutron source. The neutron source is a tokamak fusion reactor generating a long pulse of high-energy neutrons and having a temperature and magnetic field effective to generate a neutron flux of at least 10/sup 15/ neutrons/cm/sup 2//center dot/s. Conversion means are provided adjacent the fusion reactor at a location operable for converting the high-energy neutrons to an energy source with an intensity and energy effective to excite a preselected lasing medium. A lasing medium is spaced about and responsive to the energy source to generate a population inversion effective to support laser oscillations for generating output radiation. 2 figs., 2 tabs.

  11. Laser fusion

    SciTech Connect

    Smit, W.A.; Boskma, P.

    1980-12-01

    Unrestricted laser fusion offers nations an opportunity to circumvent arms control agreements and develop thermonuclear weapons. Early laser weapons research sought a clean radiation-free bomb to replace the fission bomb, but this was deceptive because a fission bomb was needed to trigger the fusion reaction and additional radioactivity was induced by generating fast neutrons. As laser-implosion experiments focused on weapons physics, simulating weapons effects, and applications for new weapons, the military interest shifted from developing a laser-ignited hydrogen bomb to more sophisticated weapons and civilian applications for power generation. Civilian and military research now overlap, making it possible for several countries to continue weapons activities and permitting proliferation of nuclear weapons. These countries are reluctant to include inertial confinement fusion research in the Non-Proliferation Treaty. 16 references. (DCK)

  12. From W7-X to a HELIAS fusion power plant: motivation and options for an intermediate-step burning-plasma stellarator

    NASA Astrophysics Data System (ADS)

    Warmer, F.; Beidler, C. D.; Dinklage, A.; Wolf, R.; The W7-X Team

    2016-07-01

    As a starting point for a more in-depth discussion of a research strategy leading from Wendelstein 7-X to a HELIAS power plant, the respective steps in physics and engineering are considered from different vantage points. The first approach discusses the direct extrapolation of selected physics and engineering parameters. This is followed by an examination of advancing the understanding of stellarator optimisation. Finally, combining a dimensionless parameter approach with an empirical energy confinement time scaling, the necessary development steps are highlighted. From this analysis it is concluded that an intermediate-step burning-plasma stellarator is the most prudent approach to bridge the gap between W7-X and a HELIAS power plant. Using a systems code approach in combination with transport simulations, a range of possible conceptual designs is analysed. This range is exemplified by two bounding cases, a fast-track, cost-efficient device with low magnetic field and without a blanket and a device similar to a demonstration power plant with blanket and net electricity power production.

  13. Plasma Potential Measurements by the Heavy Ion Beam Probe Diagnostic in Fusion Plasmas: Biasing Experiments in the TJ-II Stellarator and T-10 Tokamak

    SciTech Connect

    Melnikov, A.V.; Hidalgo, C.; Eliseev, L.G.

    2004-09-15

    The effect of edge biasing on plasma potential was investigated in the TJ-II stellarator and the T-10 tokamak. The Heavy Ion Beam Probe (HIBP) diagnostic, a unique tool for studying the core potential directly, was used in both machines. Experiments in TJ-II show that it is possible to modify the global confinement and edge plasma parameters with limiter biasing, illustrating the direct impact of radial electric fields on TJ-II confinement properties. For the first time it was shown that the plasma column in a stellarator can be charged as a whole for a hot, near-reactor-relevant plasma. The plasma potential and electric fields evolve on two different characteristic time scales. Although the experimental conditions in the two machines have many important differences, the basic features of plasma potential behavior have some similarities: The potential response has the same polarity and scale as the biasing voltage, and the fluctuations are suppressed near the electrode/limiter region. However, whereas both edge and core plasma potential are affected by biasing in TJ-II, the potential changes mainly near the biased electrode in T-10.

  14. Transmutation and activation effects in high-conductivity copper alloys exposed to a first wall fusion neutron flux

    NASA Astrophysics Data System (ADS)

    Butterworth, G. J.

    1985-10-01

    Transmutation and activity characteristics are calculated for a number of high-conductivity copper-based alloys exposed to 2.5 y continuous irradiation in the first wall neutron flux of the Culham Conceptual Tokamak Reactor IIA with neutron power loading of 7 MW m -2. The computations are based on a modified form of the ORIGEN code and the cross section data library UKCTRIIIA. It is found that the copper base transmutes to other elements, principally nickel and zinc, at the rate of 0.28 wt% per MW y m -2. The probable effect of these unintended alloying additions on the thermal conductivity is briefly discussed. Since their activities are generally dominated by that of the copper component, the dilute alloys studied exhibit very similar activation and decay properties. The long term surface dose rate of alumina dispersion strengthened alloys may, however, be dominated by the γ decay of 26Al with half life 7.4 × 10 5y. Comparison is made with the activation characteristics of type 316 austenitic steel and the martensitic steel HT-9. It is noted that the long-term activity of copper alloys may in practice be governed by their silver impurity content, unless this can be reduced to about 1 ppm.

  15. Nattoh model for cold fusion

    SciTech Connect

    Matsumoto, T. . Dept. of Nuclear Engineering)

    1989-12-01

    A hypothetical model, the Nattoh model, is proposed to answer the questions that result from cold fusion experiments. This model proposes the formation of a small cluster of deuterons and examines the feasibility of many-body fusion reactions. The gamma-ray spectrum, heat production, neutron emissions, and fusion products are discussed.

  16. Use of zooming and pulseshaping for acceleration to high velocities and fusion neutron production on the Nike laser

    NASA Astrophysics Data System (ADS)

    Karasik, Max; Weaver, J. L.; Aglitskiy, Y.; Kehne, D. M.; Zalesak, S. T.; Velikovich, A. L.; Oh, J.; Obenschain, S. P.; Arikawa, Y.

    2011-10-01

    We will present results from follow-on experiments to the record-high velocities of 1000 km/s achieved on Nike [Karasik et al, Phys. Plasmas 17, 056317(2010)], in which highly accelerated planar foils of deuterated polystyrene were made to collide with a witness foil to produce ~ 1 Gbar shock pressures and result in heating of matter to thermonuclear temperatures. Still higher velocities and higher target densities are required for impact fast ignition. The aim of these experiments is using the focal zoom capability of Nike and shaping the driving pulse to minimize shock heating of the accelerated target to achieve higher densities and velocities. In-flight target density is inferred from target heating upon collision via DD neutron time-of-flight ion temperature measurement. Work is supported by US DOE (NNSA) and Office of Naval Research. SAIC

  17. Optimizing pulse shaping and zooming for acceleration to high velocities and fusion neutron production on the Nike laser

    NASA Astrophysics Data System (ADS)

    Karasik, Max; Weaver, J. L.; Aglitskiy, Y.; Zalesak, S. T.; Velikovich, A. L.; Oh, J.; Obenschain, S. P.; Arikawa, Y.; Watari, T.

    2010-11-01

    We will present results from follow-on experiments to the record-high velocities of 1000 km/s achieved on Nike [Karasik et al., Phys. Plasmas 17, 056317 (2010) ], in which highly accelerated planar foils of deuterated polystyrene were made to collide with a witness foil to produce extreme shock pressures and result in heating of matter to thermonuclear temperatures. Still higher velocities and higher target densities are required for impact fast ignition. The aim of these experiments is shaping the driving pulse to minimize shock heating of the accelerated target and using the focal zoom capability of Nike to achieve higher densities and velocities. Spectroscopic measurements of electron temperature achieved upon impact will complement the neutron time-of-flight ion temperature measurement. Work is supported by US DOE and Office of Naval Research.

  18. Stellar chromospheres

    NASA Technical Reports Server (NTRS)

    Linsky, J. L.

    1980-01-01

    Developments in the understanding and use of chromospheric diagnostics are discussed with emphasis on the following aspects: (1) trends emerging from semiempirical models of single stars; (2) the validity of claims that theoretical models of chromospheres are becoming realistic; (3) the correlation between the widths of Ca 2 H and K line emission cores and stellar absolute luminosity extending over 15 magnitudes (Wilson-Bappu relation); and (4) the existence of systematic flow patterns in stellar chromospheres.

  19. Trends of stellar entropy along stellar evolution

    NASA Astrophysics Data System (ADS)

    de Avellar, Guilherme Bronzato, Marcio; Alvares de Souza, Rodrigo; Horvath, Jorge Ernesto

    2016-02-01

    This paper is devoted to discussing the difference in the thermodynamic entropy budget per baryon in each type of stellar object found in the Universe. We track and discuss the actual decrease of the stored baryonic thermodynamic entropy from the most primitive molecular cloud up to the final fate of matter in black holes, passing through evolved states of matter as found in white dwarfs and neutron stars. We then discuss the case of actual stars with different masses throughout their evolution, clarifying the role of the virial equilibrium condition for the decrease in entropy and related issues. Finally, we discuss the role of gravity in driving the composition and the structural changes of stars with different Main Sequence masses during their evolution up to the final product. Particularly, we discuss the entropy of a black hole in this context arguing that the dramatic increase in its entropy, differently from the other cases, is due to the gravitational field itself.

  20. Characterization of a Pulse Neutron Source Yield under Field Conditions

    SciTech Connect

    Barzilov, Alexander; Novikov, Ivan; Womble, Phillip C.; Hopper, Lindsay

    2009-03-10

    Technique of rapid evaluation of a pulse neutron sources such as neutron generators under field conditions has been developed. The phoswich sensor and pulse-shape discrimination techniques have been used for the simultaneous measurements of fast neutrons, thermal neutrons, and photons. The sensor has been calibrated using activation neutron detectors and a pulse deuterium-tritium fusion neutron source.

  1. Neutron scatter camera

    DOEpatents

    Mascarenhas, Nicholas; Marleau, Peter; Brennan, James S.; Krenz, Kevin D.

    2010-06-22

    An instrument that will directly image the fast fission neutrons from a special nuclear material source has been described. This instrument can improve the signal to background compared to non imaging neutron detection techniques by a factor given by ratio of the angular resolution window to 4.pi.. In addition to being a neutron imager, this instrument will also be an excellent neutron spectrometer, and will be able to differentiate between different types of neutron sources (e.g. fission, alpha-n, cosmic ray, and D-D or D-T fusion). Moreover, the instrument is able to pinpoint the source location.

  2. TEM turbulence optimisation in stellarators

    NASA Astrophysics Data System (ADS)

    Proll, J. H. E.; Mynick, H. E.; Xanthopoulos, P.; Lazerson, S. A.; Faber, B. J.

    2016-01-01

    With the advent of neoclassically optimised stellarators, optimising stellarators for turbulent transport is an important next step. The reduction of ion-temperature-gradient-driven turbulence has been achieved via shaping of the magnetic field, and the reduction of trapped-electron mode (TEM) turbulence is addressed in the present paper. Recent analytical and numerical findings suggest TEMs are stabilised when a large fraction of trapped particles experiences favourable bounce-averaged curvature. This is the case for example in Wendelstein 7-X (Beidler et al 1990 Fusion Technol. 17 148) and other Helias-type stellarators. Using this knowledge, a proxy function was designed to estimate the TEM dynamics, allowing optimal configurations for TEM stability to be determined with the STELLOPT (Spong et al 2001 Nucl. Fusion 41 711) code without extensive turbulence simulations. A first proof-of-principle optimised equilibrium stemming from the TEM-dominated stellarator experiment HSX (Anderson et al 1995 Fusion Technol. 27 273) is presented for which a reduction of the linear growth rates is achieved over a broad range of the operational parameter space. As an important consequence of this property, the turbulent heat flux levels are reduced compared with the initial configuration.

  3. Advanced stellarators

    NASA Astrophysics Data System (ADS)

    Schlüter, Arnulf

    1983-03-01

    Toroidal confinement of a plasma by an external magnetic field is not compatible with axisymmetry, in contrast to confinement by the pinch effect of induced electric currents as in a tokomak or by the reversed field pinch configuration. The existence of magnetic surfaces throughout the region in which grad p ≠ 0 is therefore not guaranteed in such configurations, though it is necessary for MHD-equilibrium when the lines of force possess a finite twist (or "rotational transform"). These twisted equilibria are called stellarators. The other type of external confinement requires all lines of force to be closed upon themselves and p to be function of the well defined quantity Q = φ d l/ B only. The resulting "bumpy" tori are sometimes also referred to as being M + S like. By discussing specific examples it is shown that stellarator configurations exist which retain as much as possible the properties of M + S like configurations, combine these with the magnetic well, and with an approximation to the isodynamic requirement of D. Palumbo. These so-called Advanced Stellarators shown an improvement in predicted particle confinement and beta-limit compared to the classical stellarators. They can also be viewed as forming a system of linked stabilized mirrors of small mirror ratio. These fields can be produced by modular coils. A prototype of such a configuration is being designed by the stellarator division of IPP under the name of Wendelstein VII-AS. Expected physical data and technical details of W VII-AS are given.

  4. Fusion Power measurement at ITER

    SciTech Connect

    Bertalot, L.; Barnsley, R.; Krasilnikov, V.; Stott, P.; Suarez, A.; Vayakis, G.; Walsh, M.

    2015-07-01

    Nuclear fusion research aims to provide energy for the future in a sustainable way and the ITER project scope is to demonstrate the feasibility of nuclear fusion energy. ITER is a nuclear experimental reactor based on a large scale fusion plasma (tokamak type) device generating Deuterium - Tritium (DT) fusion reactions with emission of 14 MeV neutrons producing up to 700 MW fusion power. The measurement of fusion power, i.e. total neutron emissivity, will play an important role for achieving ITER goals, in particular the fusion gain factor Q related to the reactor performance. Particular attention is given also to the development of the neutron calibration strategy whose main scope is to achieve the required accuracy of 10% for the measurement of fusion power. Neutron Flux Monitors located in diagnostic ports and inside the vacuum vessel will measure ITER total neutron emissivity, expected to range from 1014 n/s in Deuterium - Deuterium (DD) plasmas up to almost 10{sup 21} n/s in DT plasmas. The neutron detection systems as well all other ITER diagnostics have to withstand high nuclear radiation and electromagnetic fields as well ultrahigh vacuum and thermal loads. (authors)

  5. Fusion reactor pumped laser

    DOEpatents

    Jassby, Daniel L.

    1988-01-01

    A nuclear pumped laser capable of producing long pulses of very high power laser radiation is provided. A toroidal fusion reactor provides energetic neutrons which are slowed down by a moderator. The moderated neutrons are converted to energetic particles capable of pumping a lasing medium. The lasing medium is housed in an annular cell surrounding the reactor. The cell includes an annular reflecting mirror at the bottom and an annular output window at the top. A neutron reflector is disposed around the cell to reflect escaping neutrons back into the cell. The laser radiation from the annular window is focused onto a beam compactor which generates a single coherent output laser beam.

  6. Stellar Imager

    NASA Technical Reports Server (NTRS)

    Carpenter, Kenneth

    2007-01-01

    The Stellar Imager (SI) is one of NASA's "Vision Missions" - concepts for future, space-based, strategic missions that could enormously increase our capabilities for observing the Cosmos. SI is designed as a UV/Optical Interferometer which will enable 0.1 milli-arcsecond (mas) spectral imaging of stellar surfaces and, via asteroseismology, stellar interiors and of the Universe in general. The ultra-sharp images of the Stellar Imager will revolutionize our view of many dynamic astrophysical processes by transforming point sources into extended sources, and snapshots into evolving views. SI, with a characteristic angular resolution of 0.1 milli-arcseconds at 2000 Angstroms, represents an advance in image detail of several hundred times over that provided by the Hubble Space Telescope. The Stellar Imager will zoom in on what today-with few exceptions - we only know as point sources, revealing processes never before seen, thus providing a tool as fundamental to astrophysics as the microscope is to the study of life on Earth. SI's science focuses on the role of magnetism in the Universe, particularly on magnetic activity on the surfaces of stars like the Sun. It's prime goal is to enable long-term forecasting of solar activity and the space weather that it drives, in support of the Living With a Star program in the Exploration Era. SI will also revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magneto-hydrodynamically controlled processes in the Universe. Stellar Imager is included as a "Flagship and Landmark Discovery Mission" in the 2005 Sun Solar System Connection (SSSC) Roadmap and as a candidate for a "Pathways to Life Observatory" in the Exploration of the Universe Division (EUD) Roadmap (May, 2005) and as such is a candidate mission for the 2025-2030 timeframe. An artist's drawing of the current "baseline" concept for SI is presented.

  7. Stellar Winds

    NASA Astrophysics Data System (ADS)

    Owocki, Stan

    A "stellar wind" is the continuous, supersonic outflow of matter from the surface layers of a star. Our sun has a solar wind, driven by the gas-pressure expansion of the hot (T > 106 K) solar corona. It can be studied through direct in situ measurement by interplanetary spacecraft; but analogous coronal winds in more distant solar-type stars are so tenuous and transparent that that they are difficult to detect directly. Many more luminous stars have winds that are dense enough to be opaque at certain wavelengths of the star's radiation, making it possible to study their wind outflows remotely through careful interpretation of the observed stellar spectra. Red giant stars show slow, dense winds that may be driven by the pressure from magnetohydrodyanmic waves. As stars with initial mass up to 8 M ⊙ evolve toward the Asymptotic Giant Branch (AGB), a combination of stellar pulsations and radiative scattering off dust can culminate in "superwinds" that strip away the entire stellar envelope, leaving behind a hot white dwarf stellar core with less than the Chandrasekhar mass of ˜ ​​ 1. 4M ⊙. The winds of hot, luminous, massive stars are driven by line-scattering of stellar radiation, but such massive stars can also exhibit superwind episodes, either as Red Supergiants or Luminous Blue Variable stars. The combined wind and superwind mass loss can strip the star's hydrogen envelope, leaving behind a Wolf-Rayet star composed of the products of earlier nuclear burning via the CNO cycle. In addition to such direct effects on a star's own evolution, stellar winds can be a substantial source of mass, momentum, and energy to the interstellar medium, blowing open large cavities or "bubbles" in this ISM, seeding it with nuclear processed material, and even helping trigger the formation of new stars, and influencing their eventual fate as white dwarves or core-collapse supernovae. This chapter reviews the properties of such stellar winds, with an emphasis on the various

  8. Neutron measurements

    SciTech Connect

    McCall, R.C.

    1981-01-01

    Methods of neutron detection and measurement are discussed. Topics include sources of neutrons, neutrons in medicine, interactions of neutrons with matter, neutron shielding, neutron measurement units, measurement methods, and neutron spectroscopy. (ACR)

  9. Monte Carlo modelling of distributions of the d-d and d-t reaction products in a dedicated measuring chamber at the fast neutron generator

    NASA Astrophysics Data System (ADS)

    Wiącek, U.; Dankowski, J.

    2015-04-01

    A fast neutron generator with a tritium target can be used to generate d-d and d-t reaction products corresponding to thermonuclear reactions in tokamaks or stellarators. In this way, convenient laboratory conditions for tests of spectrometric detectors - prior to their installation at the big fusion devices - can be achieved. Distributions of the alpha particles, protons, deuterons, and tritons generated by the fast neutron generator operating at the Institute of Nuclear Physics PAN in Cracow, Poland, were calculated by means of the Monte Carlo (MC) codes. Results of this MC modelling are presented.

  10. Prospects for pilot plants based on the tokamak, spherical tokamak and stellarator

    NASA Astrophysics Data System (ADS)

    Menard, J. E.; Bromberg, L.; Brown, T.; Burgess, T.; Dix, D.; El-Guebaly, L.; Gerrity, T.; Goldston, R. J.; Hawryluk, R. J.; Kastner, R.; Kessel, C.; Malang, S.; Minervini, J.; Neilson, G. H.; Neumeyer, C. L.; Prager, S.; Sawan, M.; Sheffield, J.; Sternlieb, A.; Waganer, L.; Whyte, D.; Zarnstorff, M.

    2011-10-01

    A potentially attractive next-step towards fusion commercialization is a pilot plant, i.e. a device ultimately capable of small net electricity production in as compact a facility as possible and in a configuration scalable to a full-size power plant. A key capability for a pilot-plant programme is the production of high neutron fluence enabling fusion nuclear science and technology (FNST) research. It is found that for physics and technology assumptions between those assumed for ITER and nth-of-a-kind fusion power plant, it is possible to provide FNST-relevant neutron wall loading in pilot devices. Thus, it may be possible to utilize a single facility to perform FNST research utilizing reactor-relevant plasma, blanket, coil and auxiliary systems and maintenance schemes while also targeting net electricity production. In this paper three configurations for a pilot plant are considered: the advanced tokamak, spherical tokamak and compact stellarator. A range of configuration issues is considered including: radial build and blanket design, magnet systems, maintenance schemes, tritium consumption and self-sufficiency, physics scenarios and a brief assessment of research needs for the configurations.

  11. FOREWORD: Neutron metrology Neutron metrology

    NASA Astrophysics Data System (ADS)

    Thomas, David J.; Nolte, Ralf; Gressier, Vincent

    2011-12-01

    industry, from the initial fuel enrichment and fabrication processes right through to storage or reprocessing, and neutron metrology is clearly important in this area. Neutron fields do, however, occur in other areas, for example where neutron sources are used in oil well logging and moisture measurements. They also occur around high energy accelerators, including photon linear accelerators used for cancer therapy, and are expected to be a more serious problem around the new hadron radiation therapy facilities. Roughly 50% of the cosmic ray doses experienced by fliers at the flight altitudes of commercial aircraft are due to neutrons. Current research on fusion presents neutron metrology with a whole new range of challenges because of the very high fluences expected. One of the most significant features of neutron fields is the very wide range of possible neutron energies. In the nuclear industry, for example, neutrons occur with energies from those of thermal neutrons at a few meV to the upper end of the fission spectrum at perhaps 10 MeV. For cosmic ray dosimetry the energy range extends into the GeV region. This enormous range sets a challenge for designing measuring devices and a parallel challenge of developing measurement standards for characterizing these devices. One of the major considerations when deciding on topics for this special issue was agreeing on what not to include. Modelling, i.e. the use of radiation transport codes, is now a very important aspect of neutron measurements. These calculations are vital for shielding and for instrument design; nevertheless, the topic has only been included here where it has a direct bearing on metrology and the development of standards. Neutron spectrometry is an increasingly important technique for unravelling some of the problems of dose equivalent measurements and for plasma diagnostics in fusion research. However, this topic is at least one step removed from primary metrology and so it was felt that it should not be

  12. Rapidly rotating neutron star progenitors

    NASA Astrophysics Data System (ADS)

    Postnov, K. A.; Kuranov, A. G.; Kolesnikov, D. A.; Popov, S. B.; Porayko, N. K.

    2016-12-01

    Rotating proto-neutron stars can be important sources of gravitational waves to be searched for by present-day and future interferometric detectors. It was demonstrated by Imshennik that in extreme cases the rapid rotation of a collapsing stellar core may lead to fission and formation of a binary proto-neutron star which subsequently merges due to gravitational wave emission. In this paper, we show that such dynamically unstable collapsing stellar cores may be the product of a former merger process of two stellar cores in a common envelope. We applied population synthesis calculations to assess the expected fraction of such rapidly rotating stellar cores which may lead to fission and formation of a pair of proto-neutron stars. We have used the BSE (Binary Star Evolution) population synthesis code supplemented with a new treatment of stellar core rotation during the evolution via effective core-envelope coupling, characterized by the coupling time, τc. The validity of this approach is checked by direct MESA calculations of the evolution of a rotating 15 M⊙ star. From comparison of the calculated spin distribution of young neutron stars with the observed one, reported by Popov and Turolla, we infer the value τc ≃ 5 × 105 yr. We show that merging of stellar cores in common envelopes can lead to collapses with dynamically unstable proto-neutron stars, with their formation rate being ˜0.1-1 per cent of the total core collapses, depending on the common envelope efficiency.

  13. A newcomer: the Wendelstein 7-X Stellarator

    NASA Astrophysics Data System (ADS)

    Klinger, Thomas

    2016-11-01

    Stellarators ("star generators") belong to the earliest concepts for magnetic confinement of fusion plasmas. In May 1951, a confidential report authored by Lyman Spitzer at the Princeton Plasma Physics Laboratory (PPPL) was issued, in which he proposed the "figure eight" stellarator based on the idea to generate the required rotational transform of magnetic field lines by twisting the torus into a figure-8. The first experimental device based on this idea started operation in early 1953. In the 1950's a series of stellarator experiments were built, most of them at PPPL.

  14. Compact Stellarator Path to DEMO

    NASA Astrophysics Data System (ADS)

    Lyon, J. F.

    2007-11-01

    Issues for a DEMO reactor are sustaining an ignited/high-Q plasma in steady state, avoiding disruptions and large variations in power flux to the wall, adequate confinement of thermal plasma and alpha-particles, control of a burning plasma, particle and power handling, etc. Compact stellarators have key advantages -- steady-state high-plasma-density operation without external current drive or disruptions, stability without a close conducting wall or active feedback systems, and low recirculating power -- in addition to moderate plasma aspect ratio, good confinement, and high-beta potential. The ARIES-CS study established that compact stellarators can be competitive with tokamaks as reactors. Many of the issues for a compact stellarator DEMO can be answered using results from large tokamaks, ITER D-T experiments and fusion materials, technology and component development programs, in addition to stellarators in operation, under construction or in development. However, a large next-generation stellarator will be needed to address some physics issues: size scaling and confinement at higher parameters, burning plasma issues, and operation with a strongly radiative divertor. Technology issues include simpler coils, structure, and divertor fabrication, and better cost information.

  15. Stellar Evolution

    NASA Astrophysics Data System (ADS)

    Christensen-Dalsgaard, J.; Murdin, P.

    2002-01-01

    Stars evolve because they lose energy through radiation from their hot surfaces. As a result, there is a general tendency for the star to contract under gravity. This is partly stopped by the release of energy from nuclear reactions. However, once the nuclear fuel is exhausted, gravity gets the upper hand and the star ends its life as a compact object: a white dwarf, a neutron star or a black hol...

  16. Fusion pumped laser

    DOEpatents

    Pappas, Daniel S.

    1989-01-01

    Apparatus is provided for generating energy in the form of laser radiation. A tokamak fusion reactor is provided for generating a long, or continuous, pulse of high-energy neutrons. The tokamak design provides a temperature and a magnetic field which is effective to generate a neutron flux of at least 10.sup.15 neutrons/cm.sup.2.s. A conversion medium receives neutrons from the tokamak and converts the high-energy neutrons to an energy source with an intensity and an energy effective to excite a preselected lasing medium. The energy source typically comprises fission fragments, alpha particles, and radiation from a fission event. A lasing medium is provided which is responsive to the energy source to generate a population inversion which is effective to support laser oscillations for generating output radiation.

  17. Stellar shrapnel

    NASA Image and Video Library

    2016-08-15

    Several thousand years ago, a star some 160 000 light-years away from us exploded, scattering stellar shrapnel across the sky. The aftermath of this energetic detonation is shown here in this striking image from the NASA/ESA Hubble Space Telescope’s Wide Field Camera 3. The exploding star was a white dwarf located in the Large Magellanic Cloud, one of our nearest neighbouring galaxies. Around 97% of stars within the Milky Way that are between a tenth and eight times the mass of the Sun are expected to end up as white dwarfs. These stars can face a number of different fates, one of which is to explode as supernovae, some of the brightest events ever observed in the Universe. If a white dwarf is part of a binary star system, it can siphon material from a close companion. After gobbling up more than it can handle — and swelling to approximately one and a half times the size of the Sun — the star becomes unstable and ignites as a Type Ia supernova. This was the case for the supernova remnant pictured here, which is known as DEM L71. It formed when a white dwarf reached the end of its life and ripped itself apart, ejecting a superheated cloud of debris in the process. Slamming into the surrounding interstellar gas, this stellar shrapnel gradually diffused into the separate fiery filaments of material seen scattered across this skyscape.

  18. Stellar cannibalism

    NASA Astrophysics Data System (ADS)

    Astronomers have obtained evidence that stars can literally swallow other stars, leading to the ejection of stellar material into space and the formation of extremely close pairs of stars, according to the National Science Foundation (NSF). The discovery supports theoretical predictions of the evolution of double stars.While studying the central stars of planetary nebulae—disk-shaped gas clouds that vaguely resemble planets—Albert D. Grauer of the University of Arkansas at Little Rock and Howard E. Bond of Louisiana State University at Baton Rouge found that several of these central stars are actually very close stellar pairs. Previously, it had been thought that the central star in a planetary nebula was a single star that expelled a gas cloud as it neared the end of its life. Their latest discovery, the central star of planetary nebula Abell 41, consists of a pair of stars that orbit each other in 2 hours and 43 minutes. The researchers also have found three other central star pairs that have orbital periods of between 11 and 16 hours.

  19. STELLARATOR INJECTOR

    DOEpatents

    Post, R.F.

    1962-09-01

    A method and means are described for injecting energetic neutral atoms or molecular ions into dense magnetically collimated plasma columns of stellarators and the like in such a manner that the atoms or ions are able to significantly penetrate the column before being ionized by collision with the plasma constituent particles. Penetration of the plasma column by the neutral atoms or molecular ions is facilitated by superposition of two closely spaced magnetic mirrors on the plasma confinement field. The mirrors are moved apart to magnetically sweep plasma from a region between the mirrors and establish a relatively low plasma density therein. By virture of the low density, neutral atoms or molecular ions injected into the region significantly penetrate the plasma column before being ionized. Thereafter, the mirrors are diminished to permit the injected material to admix with the plasma in the remainder of the column. (AEC)

  20. The relativistic inverse stellar structure problem

    SciTech Connect

    Lindblom, Lee

    2014-01-14

    The observable macroscopic properties of relativistic stars (whose equations of state are known) can be predicted by solving the stellar structure equations that follow from Einstein’s equation. For neutron stars, however, our knowledge of the equation of state is poor, so the direct stellar structure problem can not be solved without modeling the highest density part of the equation of state in some way. This talk will describe recent work on developing a model independent approach to determining the high-density neutron-star equation of state by solving an inverse stellar structure problem. This method uses the fact that Einstein’s equation provides a deterministic relationship between the equation of state and the macroscopic observables of the stars which are composed of that material. This talk illustrates how this method will be able to determine the high-density part of the neutron-star equation of state with few percent accuracy when high quality measurements of the masses and radii of just two or three neutron stars become available. This talk will also show that this method can be used with measurements of other macroscopic observables, like the masses and tidal deformabilities, which can (in principle) be measured by gravitational wave observations of binary neutron-star mergers.

  1. Dense Plasma Focus as Collimated Source of D-D Fusion Neutron Beams for Irradiation Experiences and Study of Emitted Radiations

    NASA Astrophysics Data System (ADS)

    Milanese, M.; Niedbalski, J.; Moroso, R.; Guichón, S.; Supán, J.

    2008-04-01

    A "table-top" 2 kJ, 250 kA plasma focus, the PACO (Plasma AutoConfinado), designed by the Dense Plasma Group of IFAS is used in its optimum regime for neutron yield for obtaining collimated pulsed neutron beams (100 ns). A simple and low-cost shielding arrangement was developed in order to fully eliminate the 2.45 MeV neutrons generated in the PACO device (108 per shot at 31 kV, 1-2 mbar). Conventional neutron diagnostics: scintillator-photomultiplier (S-PMT), silver activation counters (SAC), etc., are used to determine the minimum width of the shielding walls. Emission of very hard electromagnetic pulses is also studied. Collimation using lead and copper plates is made to determine the localization of the very hard X-ray source. The maximum energy of the continuum photon distribution is estimated in 0,6 MeV using a system of filters.

  2. Kinetic Modeling of Laser-Induced Fusion

    DTIC Science & Technology

    2007-09-01

    Thermal neutrons are of considerable interest to the Department of Defense and for commercial applications. Unlike high- energy photons, neutrons easily...develop a compact generator for thermal neutrons with large enough flux. The limited availability of radio-isotopes, combined with the relatively...Deuterium-Tritium (D-T) fusion, which generates Alpha particles and fast neutrons . In these sources, Deuterium ions are accelerated to about 130 keV and hit

  3. Stellar Dynamos

    NASA Astrophysics Data System (ADS)

    Charbonneau, Paul

    This chapter steps finally away from the sun and towards the stars, the idea being to apply the physical insight gained so far to see how much of stellar magnetism can be understood in terms of dynamo action. Dynamo action in the convective core of massive main-sequence stars is first considered and shown viable. For intermediate-mass main-sequence stars the fossil field hypothesis will carry the day, although possible dynamo alternatives are also briefly discussed. The extension of the solar dynamo models investigated in Chap. 3 (10.1007/978-3-642-32093-4_3) to other solar-type stars will first take us through an important detour in first having to understand rotational evolution in response to angular momentum loss in a magnetized wind. Dynamo action in fully convective stars comes next, and the chapter closes with an overview of the situation for pre- and post-main-sequence stars and compact objects, leading finally to the magnetic fields of galaxies and beyond.

  4. Pycnonuclear reactions in dense stellar matter

    NASA Astrophysics Data System (ADS)

    Yakovlev, D. G.; Levenfish, K. P.; Gnedin, O. Y.

    2005-09-01

    We discuss pycnonuclear burning of highly exotic atomic nuclei in deep crusts of neutron stars, at densities up to 1013 g cm-3. As an application, we consider pycnonuclear burning of matter accreted on a neutron star in a soft X-ray transient (SXT, a compact binary containing a neutron star and a low-mass companion). The energy released in this burning, while the matter sinks into the stellar crust under the weight of newly accreted material, is sufficient to warm up the star and initiate neutrino emission in its core. The surface thermal radiation of the star in quiescent states becomes dependent on the poorly known equation of state (EOS) of supranuclear matter in the stellar core, which gives a method to explore this EOS. Four qualitatively different model EOSs are tested against observations of SXTs. They imply different levels of the enhancement of neutrino emission in massive neutron stars by 1) the direct Urca process in nucleon/hyperon matter; 2) pion condensates; 3) kaon condensates; 4) Cooper pairing of neutrons in nucleon matter with the forbidden direct Urca process. A low level of the thermal quiescent emission of two SXTs, SAX J1808.4-3658 and Cen X-4, contradicts model 4). Observations of SXTs test the same physics of dense matter as observations of thermal radiation from cooling isolated neutron stars, but the data on SXTs are currently more conclusive.

  5. Possible in-lattice confinement fusion (LCF)

    SciTech Connect

    Kawarasaki, Y.

    1996-05-01

    New scheme of a nuclear fusion reactor system is proposed, the basic concept of which comes from ingenious combination of hitherto developed techniques and verified facts; (1) so-called cold fusion (CF), (2) plasma of both magnetic confinement fusion (MCF) and inertial confinement fusion (ICF), and (3) accelerator-based D-T (D) neutron source. Through the comparison of the characteristics among ICF, LCF, and MCF, the feasibility of the LCFs is discussed. {copyright} {ital 1996 American Institute of Physics.}

  6. Fusion reactor pumped laser

    DOEpatents

    Jassby, D.L.

    1987-09-04

    A nuclear pumped laser capable of producing long pulses of very high power laser radiation is provided. A toroidal fusion reactor provides energetic neutrons which are slowed down by a moderator. The moderated neutrons are converted to energetic particles capable of pumping a lasing medium. The lasing medium is housed in an annular cell surrounding the reactor. The cell includes an annular reflecting mirror at the bottom and an annular output window at the top. A neutron reflector is disposed around the cell to reflect escaping neutrons back into the cell. The laser radiation from the annular window is focused onto a beam compactor which generates a single coherent output laser beam. 10 figs.

  7. The Hibernating Stellar Magnet

    NASA Astrophysics Data System (ADS)

    2008-09-01

    First Optically Active Magnetar-Candidate Discovered Astronomers have discovered a most bizarre celestial object that emitted 40 visible-light flashes before disappearing again. It is most likely to be a missing link in the family of neutron stars, the first case of an object with an amazingly powerful magnetic field that showed some brief, strong visible-light activity. Hibernating Stellar Magnet ESO PR Photo 31/08 The Hibernating Stellar Magnet This weird object initially misled its discoverers as it showed up as a gamma-ray burst, suggesting the death of a star in the distant Universe. But soon afterwards, it exhibited some unique behaviour that indicates its origin is much closer to us. After the initial gamma-ray pulse, there was a three-day period of activity during which 40 visible-light flares were observed, followed by a brief near-infrared flaring episode 11 days later, which was recorded by ESO's Very Large Telescope. Then the source became dormant again. "We are dealing with an object that has been hibernating for decades before entering a brief period of activity", explains Alberto J. Castro-Tirado, lead author of a paper in this week's issue of Nature. The most likely candidate for this mystery object is a 'magnetar' located in our own Milky Way galaxy, about 15 000 light-years away towards the constellation of Vulpecula, the Fox. Magnetars are young neutron stars with an ultra-strong magnetic field a billion billion times stronger than that of the Earth. "A magnetar would wipe the information from all credit cards on Earth from a distance halfway to the Moon," says co-author Antonio de Ugarte Postigo. "Magnetars remain quiescent for decades. It is likely that there is a considerable population in the Milky Way, although only about a dozen have been identified." Some scientists have noted that magnetars should be evolving towards a pleasant retirement as their magnetic fields decay, but no suitable source had been identified up to now as evidence for

  8. Keeping the options open: concept improvements and stellarator physics

    NASA Astrophysics Data System (ADS)

    Sanchez, J.; Tribaldos, V.

    2005-12-01

    The roadmap to a feasible fusion reactor based on the tokamak line is already established. However, options for further improvement are very desirable in order to be ready to meet the future requirements of the energy market. In this respect, stellarators have a significant role to play as candidates for steady state operation reactors. Like tokamaks, stellarators are toroidal confining devices but they show two fundamental differences: the fact that the confining magnetic field is generated by external coils; and the lack of toroidal symmetry. The history of tokamaks shows that from the original concept, solutions have converged into a given range of configurations, and, in fact, all large tokamak are relatively similar. On the other hand most of the stellarators are apparently very different (coil structure, plasma shape, size, ...). The advantage of the higher dimensionality of stellarators has been perceived as a shortcoming, but recent developments, both theoretical and computational, have permitted us to develop improved concepts and design new stellarators with outstanding physics properties. Moreover, most of the devices presently under construction are stellarators. This work is devoted to discuss, firstly, the present role of stellarators in the understanding of basic physical processes in fusion devices, secondly the role of future devices, based on different concept improvements, which will significantly expand the stellarator plasma parameter range, and finally, the potential of the concept as a fusion reactor.

  9. Stellar Ro

    NASA Astrophysics Data System (ADS)

    Featherstone, Nicholas

    2017-05-01

    Our understanding of the interior dynamics that give rise to a stellar dynamo draws heavily from investigations of similar dynamics in the solar context. Unfortunately, an outstanding gap persists in solar dynamo theory. Convection, an indispensable component of the dynamo, occurs in the midst of rotation, and yet we know little about how the influence of that rotation manifests across the broad range of convective scales present in the Sun. We are nevertheless well aware that the interaction of rotation and convection profoundly impacts many aspects of the dynamo, including the meridional circulation, the differential rotation, and the helicity of turbulent EMF. The rotational constraint felt by solar convection ultimately hinges on the characteristic amplitude of deep convective flow speeds, and such flows are difficult to measure helioseismically. Those measurements of deep convective power which do exist disagree by orders of magnitude, and until this disagreement is resolved, we are left with the results of models and those less ambiguous measurements derived from surface observations of solar convection. I will present numerical results from a series of nonrotating and rotating convection simulations conducted in full 3-D spherical geometry. This presentation will focus on how convective spectra differ between the rotating and non-rotating models and how that behavior changes as simulations are pushed toward more turbulent and/or more rotationally-constrained regimes. I will discuss how the surface signature of rotationally-constrained interior convection might naturally lead to observable signatures in the surface convective pattern, such as supergranulation and a dearth of giant cells.

  10. Recent experimental results in sub- and near-barrier heavy-ion fusion reactions

    NASA Astrophysics Data System (ADS)

    Montagnoli, Giovanna; Stefanini, Alberto M.

    2017-08-01

    Recent advances obtained in the field of near and sub-barrier heavy-ion fusion reactions are reviewed. Emphasis is given to the results obtained in the last decade, and focus is mainly on the experimental work performed concerning the influence of transfer channels on fusion cross sections and the hindrance phenomenon far below the barrier. Indeed, early data of sub-barrier fusion taught us that cross sections may strongly depend on the low-energy collective modes of the colliding nuclei, and, possibly, on couplings to transfer channels. The coupled-channels (CC) model has been quite successful in the interpretation of the experimental evidences. Fusion barrier distributions often yield the fingerprint of the relevant coupled channels. Recent results obtained by using radioactive beams are reported. At deep sub-barrier energies, the slope of the excitation function in a semi-logarithmic plot keeps increasing in many cases and standard CC calculations overpredict the cross sections. This was named a hindrance phenomenon, and its physical origin is still a matter of debate. Recent theoretical developments suggest that this effect, at least partially, may be a consequence of the Pauli exclusion principle. The hindrance may have far-reaching consequences in astrophysics where fusion of light systems determines stellar evolution during the carbon and oxygen burning stages, and yields important information for exotic reactions that take place in the inner crust of accreting neutron stars.

  11. (Radiation damage correlation for fusion conditions)

    SciTech Connect

    Grossbeck, M.L.

    1989-10-16

    The workshop consisted of formal presentations and discussions by 39 invited participants from 11 countries. The theme of the workshop was the status of techniques for correlating fusion reactor and accelerator-generated data with those expected of a fusion reactor neutron spectrum. Several papers addressed the nature of cascades induced by 14 MeV neutrons. Still others supported such studies by theoretical investigations of high-energy neutron damage. Other presentations, such as the traveler's presentation, addressed the macroscopic aspects of neutron irradiation effects, such as swelling, irradiation creep, and mechanical properties. Additional presentations addressed theoretical aspects of helium embrittlement and transmutation products in general.

  12. Neutron Stars

    NASA Astrophysics Data System (ADS)

    van den Heuvel, Ed

    Radio pulsars are unique laboratories for a wide range of physics and astrophysics. Understanding how they are created, how they evolve and where we find them in the Galaxy, with or without binary companions, is highly constraining of theories of stellar and binary evolution. Pulsars' relationship with a recently discovered variety of apparently different classes of neutron stars is an interesting modern astrophysical puzzle which we consider in Part I of this review. Radio pulsars are also famous for allowing us to probe the laws of nature at a fundamental level. They act as precise cosmic clocks and, when in a binary system with a companion star, provide indispensable venues for precision tests of gravity. The different applications of radio pulsars for fundamental physics will be discussed in Part II. We finish by making mention of the newly discovered class of astrophysical objects, the Fast Radio Bursts, which may or may not be related to radio pulsars or neutron stars, but which were discovered in observations of the latter.

  13. US/Japan collaborative program on fusion reactor materials: Summary of the tenth DOE/JAERI Annex I technical progress meeting on neutron irradiation effects in first wall and blanket structural materials

    SciTech Connect

    Rowcliffe, A.F.

    1989-03-17

    This meeting was held at Oak Ridge National Laboratory on March 17, 1989, to review the technical progress on the collaborative DOE/JAERI program on fusion reactor materials. The purpose of the program is to determine the effects of neutron irradiation on the mechanical behavior and dimensional stability of US and Japanese austenitic stainless steels. Phase I of the program focused on the effects of high concentrations of helium on the tensile, fatigue, and swelling properties of both US and Japanese alloys. In Phase II of the program, spectral and isotropic tailoring techniques are fully utilized to reproduce the helium:dpa ratio typical of the fusion environment. The Phase II program hinges on a restart of the High Flux Isotope Reactor by mid-1989. Eight target position capsules and two RB* position capsules have been assembled. The target capsule experiments will address issues relating to the performance of austenitic steels at high damage levels including an assessment of the performance of a variety of weld materials. The RB* capsules will provide a unique and important set of data on the behavior of austenitic steels irradiated under conditions which reproduce the damage rate, dose, temperature, and helium generation rate expected in the first wall and blanket structure of the International Thermonuclear Experimental Reactor.

  14. Stellar Metamorphosis:

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [TOP LEFT AND RIGHT] The Hubble Space Telescope's Wide Field and Planetary Camera 2 has captured images of the birth of two planetary nebulae as they emerge from wrappings of gas and dust, like butterflies breaking out of their cocoons. These images highlight a fleeting phase in the stellar burnout process, occurring just before dying stars are transformed into planetary nebulae. The left-hand image is the Cotton Candy nebula, IRAS 17150-3224; the right-hand image, the Silkworm nebula, IRAS 17441-2411. Called proto-planetary nebulae, these dying stars have been caught in a transition phase between a red giant and a planetary nebula. This phase is only about 1,000 years long, very short in comparison to the 1 billion-year lifetime of a star. These images provide the earliest snapshots of the transition process. Studying images of proto-planetary nebulae is important to understanding the process of star death. A star begins to die when it has exhausted its thermonuclear fuel - hydrogen and helium. The star then becomes bright and cool (red giant phase) and swells to several tens of times its normal size. It begins puffing thin shells of gas off into space. These shells become the star's cocoon. In the Hubble images, the shells are the concentric rings seen around each nebula. But the images also reveal the nebulae breaking out from those shells. The butterfly-like wings of gas and dust are a common shape of planetary nebulae. Such butterfly shapes are created by the 'interacting winds' process, in which a more recent 'fast wind' - material propelled by radiation from the hot central star - punches a hole in the cocoon, allowing the nebula to emerge. (This 'interacting wind' theory was first proposed by Dr. Sun Kwok to explain the origin of planetary nebulae, and has been subsequently proven successful in explaining their shapes.) The nebulae are being illuminated by light from the invisible central star, which is then reflected toward us. We are viewing the nebulae

  15. Stellar Metamorphosis:

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [TOP LEFT AND RIGHT] The Hubble Space Telescope's Wide Field and Planetary Camera 2 has captured images of the birth of two planetary nebulae as they emerge from wrappings of gas and dust, like butterflies breaking out of their cocoons. These images highlight a fleeting phase in the stellar burnout process, occurring just before dying stars are transformed into planetary nebulae. The left-hand image is the Cotton Candy nebula, IRAS 17150-3224; the right-hand image, the Silkworm nebula, IRAS 17441-2411. Called proto-planetary nebulae, these dying stars have been caught in a transition phase between a red giant and a planetary nebula. This phase is only about 1,000 years long, very short in comparison to the 1 billion-year lifetime of a star. These images provide the earliest snapshots of the transition process. Studying images of proto-planetary nebulae is important to understanding the process of star death. A star begins to die when it has exhausted its thermonuclear fuel - hydrogen and helium. The star then becomes bright and cool (red giant phase) and swells to several tens of times its normal size. It begins puffing thin shells of gas off into space. These shells become the star's cocoon. In the Hubble images, the shells are the concentric rings seen around each nebula. But the images also reveal the nebulae breaking out from those shells. The butterfly-like wings of gas and dust are a common shape of planetary nebulae. Such butterfly shapes are created by the 'interacting winds' process, in which a more recent 'fast wind' - material propelled by radiation from the hot central star - punches a hole in the cocoon, allowing the nebula to emerge. (This 'interacting wind' theory was first proposed by Dr. Sun Kwok to explain the origin of planetary nebulae, and has been subsequently proven successful in explaining their shapes.) The nebulae are being illuminated by light from the invisible central star, which is then reflected toward us. We are viewing the nebulae

  16. Ultrafast neutron detector

    DOEpatents

    Wang, Ching L.

    1987-01-01

    The invention comprises a neutron detector (50) of very high temporal resolution that is particularly well suited for measuring the fusion reaction neutrons produced by laser-driven inertial confinement fusion targets. The detector comprises a biased two-conductor traveling-wave transmission line (54, 56, 58, 68) having a uranium cathode (60) and a phosphor anode (62) as respective parts of the two conductors. A charge line and Auston switch assembly (70, 72, 74) launch an electric field pulse along the transmission line. Neutrons striking the uranium cathode at a location where the field pulse is passing, are enabled to strike the phosphor anode and produce light that is recorded on photographic film (64). The transmission line may be variously configured to achieve specific experimental goals.

  17. Big fusion, little fusion

    NASA Astrophysics Data System (ADS)

    Chen, Frank; ddtuttle

    2016-08-01

    In reply to correspondence from George Scott and Adam Costley about the Physics World focus issue on nuclear energy, and to news of construction delays at ITER, the fusion reactor being built in France.

  18. A novel method for modeling the neutron time of flight (nTOF) detector response in current mode to inertial confinement fusion experiments.

    SciTech Connect

    Nelson, Alan J.; Cooper, Gary Wayne; Ruiz, Carlos L.; Chandler, Gordon Andrew; Fehl, David Lee; Hahn, Kelly Denise; Leeper, Ramon Joe; Smelser, Ruth Marie; Torres, Jose A.

    2013-09-01

    There are several machines in this country that produce short bursts of neutrons for various applications. A few examples are the Zmachine, operated by Sandia National Laboratories in Albuquerque, NM; the OMEGA Laser Facility at the University of Rochester in Rochester, NY; and the National Ignition Facility (NIF) operated by the Department of Energy at Lawrence Livermore National Laboratory in Livermore, California. They all incorporate neutron time of flight (nTOF) detectors which measure neutron yield, and the shapes of the waveforms from these detectors contain germane information about the plasma conditions that produce the neutrons. However, the signals can also be %E2%80%9Cclouded%E2%80%9D by a certain fraction of neutrons that scatter off structural components and also arrive at the detectors, thereby making analysis of the plasma conditions more difficult. These detectors operate in current mode - i.e., they have no discrimination, and all the photomultiplier anode charges are integrated rather than counted individually as they are in single event counting. Up to now, there has not been a method for modeling an nTOF detector operating in current mode. MCNPPoliMiwas developed in 2002 to simulate neutron and gammaray detection in a plastic scintillator, which produces a collision data output table about each neutron and photon interaction occurring within the scintillator; however, the postprocessing code which accompanies MCNPPoliMi assumes a detector operating in singleevent counting mode and not current mode. Therefore, the idea for this work had been born: could a new postprocessing code be written to simulate an nTOF detector operating in current mode? And if so, could this process be used to address such issues as the impact of neutron scattering on the primary signal? Also, could it possibly even identify sources of scattering (i.e., structural materials) that

  19. Superconducting magnets for fusion applications

    SciTech Connect

    Henning, C.D.

    1987-07-02

    Fusion magnet technology has made spectacular advances in the past decade; to wit, the Mirror Fusion Test Facility and the Large Coil Project. However, further advances are still required for advanced economical fusion reactors. Higher fields to 14 T and radiation-hardened superconductors and insulators will be necessary. Coupled with high rates of nuclear heating and pulsed losses, the next-generation magnets will need still higher current density, better stability and quench protection. Cable-in-conduit conductors coupled with polyimide insulations and better steels seem to be the appropriate path. Neutron fluences up to 10/sup 19/ neutrons/cm/sup 2/ in niobium tin are achievable. In the future, other amorphous superconductors could raise these limits further to extend reactor life or decrease the neutron shielding and corresponding reactor size.

  20. Evidence for a spin-aligned neutron-proton paired phase from the level structure of (92)Pd.

    PubMed

    Cederwall, B; Moradi, F Ghazi; Bäck, T; Johnson, A; Blomqvist, J; Clément, E; de France, G; Wadsworth, R; Andgren, K; Lagergren, K; Dijon, A; Jaworski, G; Liotta, R; Qi, C; Nyakó, B M; Nyberg, J; Palacz, M; Al-Azri, H; Algora, A; de Angelis, G; Ataç, A; Bhattacharyya, S; Brock, T; Brown, J R; Davies, P; Di Nitto, A; Dombrádi, Zs; Gadea, A; Gál, J; Hadinia, B; Johnston-Theasby, F; Joshi, P; Juhász, K; Julin, R; Jungclaus, A; Kalinka, G; Kara, S O; Khaplanov, A; Kownacki, J; La Rana, G; Lenzi, S M; Molnár, J; Moro, R; Napoli, D R; Singh, B S Nara; Persson, A; Recchia, F; Sandzelius, M; Scheurer, J-N; Sletten, G; Sohler, D; Söderström, P-A; Taylor, M J; Timár, J; Valiente-Dobón, J J; Vardaci, E; Williams, S

    2011-01-06

    Shell structure and magic numbers in atomic nuclei were generally explained by pioneering work that introduced a strong spin-orbit interaction to the nuclear shell model potential. However, knowledge of nuclear forces and the mechanisms governing the structure of nuclei, in particular far from stability, is still incomplete. In nuclei with equal neutron and proton numbers (N = Z), enhanced correlations arise between neutrons and protons (two distinct types of fermions) that occupy orbitals with the same quantum numbers. Such correlations have been predicted to favour an unusual type of nuclear superfluidity, termed isoscalar neutron-proton pairing, in addition to normal isovector pairing. Despite many experimental efforts, these predictions have not been confirmed. Here we report the experimental observation of excited states in the N = Z = 46 nucleus (92)Pd. Gamma rays emitted following the (58)Ni((36)Ar,2n)(92)Pd fusion-evaporation reaction were identified using a combination of state-of-the-art high-resolution γ-ray, charged-particle and neutron detector systems. Our results reveal evidence for a spin-aligned, isoscalar neutron-proton coupling scheme, different from the previous prediction. We suggest that this coupling scheme replaces normal superfluidity (characterized by seniority coupling) in the ground and low-lying excited states of the heaviest N = Z nuclei. Such strong, isoscalar neutron-proton correlations would have a considerable impact on the nuclear level structure and possibly influence the dynamics of rapid proton capture in stellar nucleosynthesis.

  1. Fusion research at ORNL

    SciTech Connect

    Not Available

    1982-03-01

    The ORNL Fusion Program includes the experimental and theoretical study of two different classes of magnetic confinement schemes - systems with helical magnetic fields, such as the tokamak and stellarator, and the ELMO Bumpy Torus (EBT) class of toroidally linked mirror systems; the development of technologies, including superconducting magnets, neutral atomic beam and radio frequency (rf) heating systems, fueling systems, materials, and diagnostics; the development of databases for atomic physics and radiation effects; the assessment of the environmental impact of magnetic fusion; and the design of advanced demonstration fusion devices. The program involves wide collaboration, both within ORNL and with other institutions. The elements of this program are shown. This document illustrates the program's scope; and aims by reviewing recent progress.

  2. Advanced fusion concepts: project summaries

    SciTech Connect

    1980-12-01

    This report contains descriptions of the activities of all the projects supported by the Advanced Fusion Concepts Branch of the Office of Fusion Energy, US Department of Energy. These descriptions are project summaries of each of the individual projects, and contain the following: title, principle investigators, funding levels, purpose, approach, progress, plans, milestones, graduate students, graduates, other professional staff, and recent publications. Information is given for each of the following programs: (1) reverse-field pinch, (2) compact toroid, (3) alternate fuel/multipoles, (4) stellarator/torsatron, (5) linear magnetic fusion, (6) liners, and (7) Tormac. (MOW)

  3. Investigation of condensed matter fusion

    SciTech Connect

    Jones, S.E.; Berrondo, M.; Czirr, J.B.; Decker, D.L.; Harrison, K.; Jensen, G.L.; Palmer, E.P.; Rees, L.B.; Taylor, S.; Vanfleet, H.B.; Wang, J.C.; Bennion, D.N.; Harb, J.N.; Pitt, W.G.; Thorne, J.M.; Anderson, A.N.; McMurtry, G.; Murphy, N.; Goff, F.E.

    1990-12-01

    Work on muon-catalyzed fusion led to research on a possible new type of fusion occurring in hydrogen isotopes embedded in metal lattices. While the nuclear-product yields observed to date are so small as to require careful further checking, rates observed over short times appear sufficiently large to suggest that significant neutrons and triton yields could be realized -- if the process could be understood and controlled. During 1990, we have developed two charged-particle detection systems and three new neutron detectors. A segmented, high-efficiency neutron counter was taken into 600 m underground in a mine in Colorado for studies out of the cosmic-ray background. Significant neutron emissions were observed in this environment in both deuterium-gas-loaded metals and in electrolytic cells, confirming our earlier observations.

  4. Near-term directions in the world stellarator program

    SciTech Connect

    Lyon, J.F.

    1989-10-01

    Interest in stellarators has increased because of the progress being made in the development of this concept and the inherent advantages of stellarators as candidates for an attractive, steady-state fusion reactor. Three new stellarator experiments started operation in 1988, and three more are scheduled to start in the next few years. In addition, design studies have started on large next-generation stellarator experiments for the mid-1990s. These devices are designed to test four basic approaches to stellarator configuration optimization. This report describes how these devices complement each other in exploring the potential of the stellarator concept and what main issues they will address during the next decade. 31 refs., 9 figs., 4 tabs.

  5. Compactness of Neutron Stars.

    PubMed

    Chen, Wei-Chia; Piekarewicz, J

    2015-10-16

    Recent progress in the determination of both masses and radii of neutron stars is starting to place stringent constraints on the dense matter equation of state. In particular, new theoretical developments together with improved statistical tools seem to favor stellar radii that are significantly smaller than those predicted by models using purely nucleonic equations of state. Given that the underlying equation of state must also account for the observation of 2M⊙ neutron stars, theoretical approaches to the study of the dense matter equation of state are facing serious challenges. In response to this challenge, we compute the underlying equation of state associated with an assumed mass-radius template similar to the "common radius" assumption used in recent studies. Once such a mass-radius template is adopted, the equation of state follows directly from the implementation of Lindblom's algorithm; assumptions on the nature or composition of the dense stellar core are not required. By analyzing mass-radius profiles with a maximum mass consistent with observation and common radii in the 8-11 km range, a lower limit on the stellar radius of a 1.4M⊙ neutron star of RNS≳10.7  km is required to prevent the equation of state from violating causality.

  6. Measurements of fusion product emission profiles in tokamaks

    SciTech Connect

    Strachan, J.D.; Heidbrink, W.W.; Hendel, H.W.; Lovberg, J.; Murphy, T.J.; Nieschmidt, E.B.; Tait, G.D.; Zweben, S.J.

    1986-11-01

    The techniques and results of fusion product emission profile measurements are reviewed. While neutron source strength profile measurements have been attempted by several methods, neutron scattering is a limitation to the results. Profile measurements using charged fusion products have recently provided an alternative since collimation is much easier for the charged particles.

  7. Neutron Stars—Cooling and Transport

    NASA Astrophysics Data System (ADS)

    Potekhin, Alexander Y.; Pons, José A.; Page, Dany

    2015-10-01

    Observations of thermal radiation from neutron stars can potentially provide information about the states of supranuclear matter in the interiors of these stars with the aid of the theory of neutron-star thermal evolution. We review the basics of this theory for isolated neutron stars with strong magnetic fields, including most relevant thermodynamic and kinetic properties in the stellar core, crust, and blanketing envelopes.

  8. Stellarator status, 1989

    SciTech Connect

    Lyon, J.F. ); Grieger, G.; Rau, F. ); Iiyoshi, A. ); Navarro, A.P. ); Kovrizhnykh, L.M. . Inst. Obshchey Fiziki); Pavlichenko, O.S. (AN Ukrain

    1990-07-01

    The present status of stellarator experiments and recent progress in stellarator research (both experimental and theoretical) are reported by groups in the United States, the USSR, Japan, Australia, and the European Community (the Federal Republic of Germany and Spain). Experiments under construction and studies of large, next-generation stellarators are also described. 73 refs., 11 figs., 4 tabs.

  9. Neutron tori around Kerr black holes

    NASA Technical Reports Server (NTRS)

    Witt, H. J.; Jaroszynski, M.; Haensel, P.; Paczynski, B.; Wambsganss, J.

    1994-01-01

    Models of stationary, axisymmetric, non-self-gravitating tori around stellar mass Kerr black holes are calculated. Such objects may form as a result of a merger between two neutron stars, a neutron star and a stellar mass black hole, or a 'failed supernova' collapse of a single rapidly rotating star. We explore a large range of parameters: the black hole mass and angular momentum, the torus mass, angular momentum and entropy. Physical conditions within the tori are similar to those in young and hot neutron stars, but their topology is different, and the range of masses and energies is much larger.

  10. Recent advances in modeling stellar interiors

    NASA Astrophysics Data System (ADS)

    Guzik, Joyce Ann

    2011-11-01

    Advances in stellar interior modeling are being driven by new data from large-scale surveys and high-precision photometric and spectroscopic observations. Here we focus on single stars in normal evolutionary phases; we will not discuss the many advances in modeling star formation, interacting binaries, supernovae, or neutron stars. We review briefly: (1) updates to input physics of stellar models; (2) progress in two and three-dimensional evolution and hydrodynamic models; (3) insights from oscillation data used to infer stellar interior structure and validate model predictions (asteroseismology). We close by highlighting a few outstanding problems, e.g., the driving mechanisms for hybrid γ Dor/ δ Sct star pulsations, the cause of giant eruptions seen in luminous blue variables such as η Car and P Cyg, and the solar abundance problem.

  11. Recent advances in modeling stellar interiors (u)

    SciTech Connect

    Guzik, Joyce Ann

    2010-01-01

    Advances in stellar interior modeling are being driven by new data from large-scale surveys and high-precision photometric and spectroscopic observations. Here we focus on single stars in normal evolutionary phases; we will not discuss the many advances in modeling star formation, interacting binaries, supernovae, or neutron stars. We review briefly: (1) updates to input physics of stellar models; (2) progress in two and three-dimensional evolution and hydrodynamic models; (3) insights from oscillation data used to infer stellar interior structure and validate model predictions (asteroseismology). We close by highlighting a few outstanding problems, e.g., the driving mechanisms for hybrid {gamma} Dor/{delta} Sct star pulsations, the cause of giant eruptions seen in luminous blue variables such as {eta} Car and P Cyg, and the solar abundance problem.

  12. ITER Fusion Energy

    ScienceCinema

    Dr. Norbert Holtkamp

    2016-07-12

    ITER (in Latin “the way”) is designed to demonstrate the scientific and technological feasibility of fusion energy. Fusion is the process by which two light atomic nuclei combine to form a heavier over one and thus release energy. In the fusion process two isotopes of hydrogen – deuterium and tritium – fuse together to form a helium atom and a neutron. Thus fusion could provide large scale energy production without greenhouse effects; essentially limitless fuel would be available all over the world. The principal goals of ITER are to generate 500 megawatts of fusion power for periods of 300 to 500 seconds with a fusion power multiplication factor, Q, of at least 10. Q ? 10 (input power 50 MW / output power 500 MW). The ITER Organization was officially established in Cadarache, France, on 24 October 2007. The seven members engaged in the project – China, the European Union, India, Japan, Korea, Russia and the United States – represent more than half the world’s population. The costs for ITER are shared by the seven members. The cost for the construction will be approximately 5.5 billion Euros, a similar amount is foreseen for the twenty-year phase of operation and the subsequent decommissioning.

  13. Magnetized Target Fusion

    NASA Technical Reports Server (NTRS)

    Griffin, Steven T.

    2002-01-01

    Magnetized target fusion (MTF) is under consideration as a means of building a low mass, high specific impulse, and high thrust propulsion system for interplanetary travel. This unique combination is the result of the generation of a high temperature plasma by the nuclear fusion process. This plasma can then be deflected by magnetic fields to provide thrust. Fusion is initiated by a small traction of the energy generated in the magnetic coils due to the plasma's compression of the magnetic field. The power gain from a fusion reaction is such that inefficiencies due to thermal neutrons and coil losses can be overcome. Since the fusion reaction products are directly used for propulsion and the power to initiate the reaction is directly obtained from the thrust generation, no massive power supply for energy conversion is required. The result should be a low engine mass, high specific impulse and high thrust system. The key is to successfully initiate fusion as a proof-of-principle for this application. Currently MSFC is implementing MTF proof-of-principle experiments. This involves many technical details and ancillary investigations. Of these, selected pertinent issues include the properties, orientation and timing of the plasma guns and the convergence and interface development of the "pusher" plasma. Computer simulations of the target plasma's behavior under compression and the convergence and mixing of the gun plasma are under investigation. This work is to focus on the gun characterization and development as it relates to plasma initiation and repeatability.

  14. Magnetized Target Fusion

    NASA Technical Reports Server (NTRS)

    Griffin, Steven T.

    2002-01-01

    Magnetized target fusion (MTF) is under consideration as a means of building a low mass, high specific impulse, and high thrust propulsion system for interplanetary travel. This unique combination is the result of the generation of a high temperature plasma by the nuclear fusion process. This plasma can then be deflected by magnetic fields to provide thrust. Fusion is initiated by a small traction of the energy generated in the magnetic coils due to the plasma's compression of the magnetic field. The power gain from a fusion reaction is such that inefficiencies due to thermal neutrons and coil losses can be overcome. Since the fusion reaction products are directly used for propulsion and the power to initiate the reaction is directly obtained from the thrust generation, no massive power supply for energy conversion is required. The result should be a low engine mass, high specific impulse and high thrust system. The key is to successfully initiate fusion as a proof-of-principle for this application. Currently MSFC is implementing MTF proof-of-principle experiments. This involves many technical details and ancillary investigations. Of these, selected pertinent issues include the properties, orientation and timing of the plasma guns and the convergence and interface development of the "pusher" plasma. Computer simulations of the target plasma's behavior under compression and the convergence and mixing of the gun plasma are under investigation. This work is to focus on the gun characterization and development as it relates to plasma initiation and repeatability.

  15. Progress in stellarator research in Kharkov IPP

    NASA Astrophysics Data System (ADS)

    Voitsenya, V. S.; Shapoval, A. N.; Pavlichenko, R. O.; Pankratov, I. M.; Chechkin, V. V.; Moiseenko, V. E.; Lozin, A. V.; Dreval, N. B.; Grigor'eva, L. I.; Konovalov, V. G.; Tarasov, I. K.; Lesnyakov, G. G.; Beletskii, A. A.; Berezhnyj, V. L.; Bondarenko, V. N.; Chernyshenko, V. Ya; Filippov, V. V.; Kasilov, A. A.; Korovin, V. B.; Kotsubanov, V. D.; Kozulya, M. M.; Kramskoi, Ye D.; Kulaga, A. E.; Maznichenko, S. M.; Makhov, M. N.; Mironov, Yu K.; Nikol'skij, I. K.; Romanov, V. S.; Slavnyj, A. S.; Shtan', A. F.; Sitnikov, D. A.; Tarasov, M. I.; Tsybenko, S. A.; Zamanov, N. V.; Garkusha, I. E.

    2014-05-01

    Recent results of the experimental program on the stellarator-type device Uragan-3M at the IPP in Kharkov are presented. Efforts were focused mainly on optimization of the operation of the frame-type radiofrequency antenna to produce a target plasma for the three-half-turn antenna. Different regimes of the Uragan-3M operation, which are characterized by different temporal behavior of the average plasma density, electron cyclotron emission radiation intensity and particle confinement time, are considered. Elementary atomic processes responsible for plasma creation are studied. The particle confinement time for the Uragan-3M plasmas is estimated. Measurements of energy spectra of charge exchange atoms are carried out. The principal possibility of realizing a ‘stellarator-magnetic mirror’ scheme as a prototype of a stellarator-mirror fusion-fission hybrid is shown for Uragan-2M. Future plans are discussed.

  16. Fusion gamma diagnostics

    NASA Astrophysics Data System (ADS)

    Medley, S. S.; Cecil, F. E.; Cole, D.; Conway, M. A.; Wilkinson, F. J., III

    1985-05-01

    Nuclear reactions of interest in fusion research often possess a branch yielding prompt emission of gamma radiation in excess of 15 MeV which can be exploited to provide a new fusion reaction diagnostic having applications similar to conventional neutron emission measurements. Conceptual aspects of fusion gamma diagnostics are discussed with emphasis on application to the Tokamak Fusion Test Reactor (TFTR) during deuterium neutral beam heating of D-T and D-3He plasmas. Recent measurements of the D (T, γ)5He, D(3He, γ)5Li, and D(D, γ)4He branching ratios at low center-of-mass energy (30-100 keV) and of the response of a large volume Ne226 detector for gamma detection in high neutron backgrounds are presented. Using a well-shielded Ne226 detector during 20 MW-120 kV deuterium beam heating of a tritium plasma in TFTR, the D(T, γ)5He gamma signal level is estimated to be 3.5×105 cps.

  17. Quantum Controlled Nuclear Fusion

    NASA Astrophysics Data System (ADS)

    Gruebele, Martin

    2017-06-01

    Laser-assisted nuclear fusion is a potential means for providing short, well-controlled particle bursts in the lab, such as neutron or alpha particle pulses. I will discuss computational results of how coherent control by shaped, amplified 800 nm laser pulses can be used to enhance the nuclear fusion cross section of diatomic molecules such as BH or DT. Quantum dynamics simulations show that a strong laser pulse can simultaneously field-bind the diatomic molecule after electron ejection, and increase the amplitude of the vibrational wave function at small internuclear distances. When VUV shaped laser pulses become available, coherent laser control may also be extended to muonic molecules such as D-mu-T, held together by muons instead of electrons. Muonic fusion has been extensively investigated for many decades, but without coherent laser control it falls slightly short of the break-evne point.

  18. Ceramics for fusion applications

    SciTech Connect

    Clinard, F.W. Jr.

    1986-01-01

    Ceramics are required for a variety of uses in both near-term fusion devices and in commercial powerplants. These materials must retain adequate structural and electrical properties under conditions of neutron, particle, and ionizing irradiation; thermal and applied stresses; and physical and chemical sputtering. Ceramics such as Al/sub 2/O/sub 3/, MgAl/sub 2/O/sub 4/, BeO, Si/sub 3/N/sub 4/ and SiC are currently under study for fusion applications, and results to date show widely-varying response to the fusion environment. Materials can be identified today which will meet initial operating requirements, but improvements in physical properties are needed to achieve satisfactory lifetimes for critical applications.

  19. Fission-reactor experiments for fusion-materials research

    SciTech Connect

    Grossbeck, M.L.; Bloom, E.E.; Woods, J.W.; Vitek, J.M.; Thomas, K.R.

    1982-01-01

    The US Fusion Materials Program makes extensive use of fission reactors to study the effects of simulated fusion environments on materials and to develop improved alloys for fusion reactor service. The fast reactor, EBR-II, and the mixed spectrum reactors, HFIR and ORR, are all used in the fusion program. The HFIR and ORR produce helium from transmutations of nickel in a two-step thermal neutron absorption reaction beginning with /sup 58/Ni, and the fast neutrons in these reactors produce atomic displacements. The simultaneous effects of these phenomena produce damage similar to the very high energy neutrons of a fusion reactor. This paper describes irradiation capsules for mechanical property specimens used in the HFIR and the ORR. A neutron spectral tailoring experiment to achieve the fusion reactor He:dpa ratio will be discussed.

  20. Development of fast neutron pinhole camera using nuclear emulsion for neutron emission profile measurement in KSTAR

    NASA Astrophysics Data System (ADS)

    Izumi, Y.; Tomita, H.; Nakayama, Y.; Hayashi, S.; Morishima, K.; Isobe, M.; Cheon, M. S.; Ogawa, K.; Nishitani, T.; Naka, T.; Nakano, T.; Nakamura, M.; Iguchi, T.

    2016-11-01

    We have developed a compact fast neutron camera based on a stack of nuclear emulsion plates and a pinhole collimator. The camera was installed at J-port of Korea superconducting tokamak advanced research at National Fusion Research Institute, Republic of Korea. Fast neutron images agreed better with calculated ones based on Monte Carlo neutron simulation using the uniform distribution of Deuterium-Deuterium (DD) neutron source in a torus of 40 cm radius.

  1. Analysis of fusion neutron spectra and the importance of 6 dimensional effects in ``high-foot'' implosions at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Hartouni, Edward P.; Caggiano, Joseph A.; Callahan, Debbie; Casey, Daniel T.; Cerjan, Charlie; Clarke, Dan; Doeppner, Tilo; Eckart, Mark J.; Field, John E.; Frenje, Johan; Gatu-Johnson, Maria; Grim, Gary P.; Hatarik, Robert; Hurricane, Omar A.; Kilkenny, Joseph; Knauer, James; Ma, Tammy; Mannion, Owen M.; Munro, David M.; Sayre, Daniel B.; Spears, Brian K.; Yeamans, Charles B.

    2015-11-01

    High convergence implosions introduce a number of factors having significant effects on the analysis of high precision reactant neutron time-of-flight (TOF) spectra at the NIF. Low mode perturbations of both the spatial and velocity distributions of the hot-spot and the cold-fuel are measurable in this data set. We report on the analysis performed to date including the line-of-sight (LOS) variation of ``standard observables'' (e.g. the yield and ion temperature) as well as new analysis extracting the bulk hot-spot velocity and the hot-spot velocity variance. These observations indicate that the assumption of isotropy of reactant neutrons can no longer provide an accurate description of the data. Preliminary analysis of the NIF ``high foot'' campaign data will be reported. We will describe the direction of future nuclear diagnostic techniques. Work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.

  2. Fusion breeder: its potential role and prospects

    SciTech Connect

    Lee, J.D.

    1981-01-01

    The fusion breeder is a concept that utilizes 14 MeV neutrons from D + T ..-->.. n(14.1 MeV) + ..cap alpha..(3.5 MeV) fusion reactions to produce more fuel than the tritium (T) needed to sustain the fusion process. This excess fuel production capacity is used to produce fissile material (Pu-239 or U-233) for subsequent use in fission reactors. We are concentrating on a class of blankets we call fission suppressed. The blanket is the region surrounding the fusion plasma in which fusion neutrons interact to produce fuel and heat. The fission-suppressed blanket uses non-fission reactions (mainly (n,2n) or (n,n't)) to generate excess neutrons for the production of net fuel. This is in contrast to the fast fission class of blankets which use (n,fiss) reactions to generate excess neutrons. Fusion reactors with fast fission blankets are commony known as fusion-fission hybrids because they combine fusion and fission in the same device.

  3. Alternative approaches to fusion. [reactor design and reactor physics for Tokamak fusion reactors

    NASA Technical Reports Server (NTRS)

    Roth, R. J.

    1976-01-01

    The limitations of the Tokamak fusion reactor concept are discussed and various other fusion reactor concepts are considered that employ the containment of thermonuclear plasmas by magnetic fields (i.e., stellarators). Progress made in the containment of plasmas in toroidal devices is reported. Reactor design concepts are illustrated. The possibility of using fusion reactors as a power source in interplanetary space travel and electric power plants is briefly examined.

  4. Propagation of nuclear data uncertainties for fusion power measurements

    NASA Astrophysics Data System (ADS)

    Sjöstrand, Henrik; Conroy, Sean; Helgesson, Petter; Hernandez, Solis Augusto; Koning, Arjan; Pomp, Stephan; Rochman, Dimitri

    2017-09-01

    Neutron measurements using neutron activation systems are an essential part of the diagnostic system at large fusion machines such as JET and ITER. Nuclear data is used to infer the neutron yield. Consequently, high-quality nuclear data is essential for the proper determination of the neutron yield and fusion power. However, uncertainties due to nuclear data are not fully taken into account in uncertainty analysis for neutron yield calibrations using activation foils. This paper investigates the neutron yield uncertainty due to nuclear data using the so-called Total Monte Carlo Method. The work is performed using a detailed MCNP model of the JET fusion machine; the uncertainties due to the cross-sections and angular distributions in JET structural materials, as well as the activation cross-sections in the activation foils, are analysed. It is found that a significant contribution to the neutron yield uncertainty can come from uncertainties in the nuclear data.

  5. Accelerators for Fusion Materials Testing

    NASA Astrophysics Data System (ADS)

    Knaster, Juan; Okumura, Yoshikazu

    Fusion materials research is a worldwide endeavor as old as the parallel one working toward the long term stable confinement of ignited plasma. In a fusion reactor, the preservation of the required minimum thermomechanical properties of the in-vessel components exposed to the severe irradiation and heat flux conditions is an indispensable factor for safe operation; it is also an essential goal for the economic viability of fusion. Energy from fusion power will be extracted from the 14 MeV neutron freed as a product of the deuterium-tritium fusion reactions; thus, this kinetic energy must be absorbed and efficiently evacuated and electricity eventually generated by the conventional methods of a thermal power plant. Worldwide technological efforts to understand the degradation of materials exposed to 14 MeV neutron fluxes >1018 m-2s-1, as expected in future fusion power plants, have been intense over the last four decades. Existing neutron sources can reach suitable dpa (“displacement-per-atom”, the figure of merit to assess materials degradation from being exposed to neutron irradiation), but the differences in the neutron spectrum of fission reactors and spallation sources do not allow one to unravel the physics and to anticipate the degradation of materials exposed to fusion neutrons. Fusion irradiation conditions can be achieved through Li (d, xn) nuclear reactions with suitable deuteron beam current and energy, and an adequate flowing lithium screen. This idea triggered in the late 1970s at Los Alamos National Laboratory (LANL) a campaign working toward the feasibility of continuous wave (CW) high current linacs framed by the Fusion Materials Irradiation Test (FMIT) project. These efforts continued with the Low Energy Demonstrating Accelerator (LEDA) (a validating prototype of the canceled Accelerator Production of Tritium (APT) project), which was proposed in 2002 to the fusion community as a 6.7MeV, 100mA CW beam injector for a Li (d, xn) source to bridge

  6. Accelerators for Fusion Materials Testing

    NASA Astrophysics Data System (ADS)

    Knaster, Juan; Okumura, Yoshikazu

    Fusion materials research is a worldwide endeavor as old as the parallel one working toward the long term stable confinement of ignited plasma. In a fusion reactor, the preservation of the required minimum thermomechanical properties of the in-vessel components exposed to the severe irradiation and heat flux conditions is an indispensable factor for safe operation; it is also an essential goal for the economic viability of fusion. Energy from fusion power will be extracted from the 14 MeV neutron freed as a product of the deuterium-tritium fusion reactions; thus, this kinetic energy must be absorbed and efficiently evacuated and electricity eventually generated by the conventional methods of a thermal power plant. Worldwide technological efforts to understand the degradation of materials exposed to 14 MeV neutron fluxes > 1018 m-2s-1, as expected in future fusion power plants, have been intense over the last four decades. Existing neutron sources can reach suitable dpa ("displacement-per-atom", the figure of merit to assess materials degradation from being exposed to neutron irradiation), but the differences in the neutron spectrum of fission reactors and spallation sources do not allow one to unravel the physics and to anticipate the degradation of materials exposed to fusion neutrons. Fusion irradiation conditions can be achieved through Li (d, xn) nuclear reactions with suitable deuteron beam current and energy, and an adequate flowing lithium screen. This idea triggered in the late 1970s at Los Alamos National Laboratory (LANL) a campaign working toward the feasibility of continuous wave (CW) high current linacs framed by the Fusion Materials Irradiation Test (FMIT) project. These efforts continued with the Low Energy Demonstrating Accelerator (LEDA) (a validating prototype of the canceled Accelerator Production of Tritium (APT) project), which was proposed in 2002 to the fusion community as a 6.7MeV, 100mA CW beam injector for a Li (d, xn) source to bridge

  7. Technical issues for beryllium use in fusion blanket applications

    SciTech Connect

    McCarville, T.J.; Berwald, D.H.; Wolfer, W.; Fulton, F.J.; Lee, J.D.; Maninger, R.C.; Moir, R.W.; Beeston, J.M.; Miller, L.G.

    1985-01-01

    Beryllium is an excellent non-fissioning neutron multiplier for fusion breeder and fusion electric blanket applications. This report is a compilation of information related to the use of beryllium with primary emphasis on the fusion breeder application. Beryllium resources, production, fabrication, properties, radiation damage and activation are discussed. A new theoretical model for beryllium swelling is presented.

  8. Fusion energy calorimeter for the tokamak fusion test reactor

    SciTech Connect

    Jassby, D.L.; Imel, G.R.

    1981-04-01

    One and two-dimensional neutronic analyses treating the transport and scattering of neutrons and the production and transport of gamma rays in the TFTR demonstrate that the fusion energy production in a D-T pulse in the TFTR can be determined with an uncertainty of +- 15% or less, simply by integrating the measured profile of temperature increase along the central radial axis of a large hydrocarbon moderator that fills the bay between adjacent toroidal-field coils, just outside the vacuum vessel. Limitations in thermopile temperature measurements dictate a minimum fusion-neutron fluence at the vacuum vessel of the order of 10/sup 12/ n/cm/sup 2/ per pulse (a source strength of 10/sup 18/ n/pulse in TFTR), in order that this simple calorimeter can provide useful accuracy.

  9. The accomplishment of the Engineering Design Activities of IFMIF/EVEDA: The European-Japanese project towards a Li(d,xn) fusion relevant neutron source

    NASA Astrophysics Data System (ADS)

    Knaster, J.; Ibarra, A.; Abal, J.; Abou-Sena, A.; Arbeiter, F.; Arranz, F.; Arroyo, J. M.; Bargallo, E.; Beauvais, P.-Y.; Bernardi, D.; Casal, N.; Carmona, J. M.; Chauvin, N.; Comunian, M.; Delferriere, O.; Delgado, A.; Diaz-Arocas, P.; Fischer, U.; Frisoni, M.; Garcia, A.; Garin, P.; Gobin, R.; Gouat, P.; Groeschel, F.; Heidinger, R.; Ida, M.; Kondo, K.; Kikuchi, T.; Kubo, T.; Le Tonqueze, Y.; Leysen, W.; Mas, A.; Massaut, V.; Matsumoto, H.; Micciche, G.; Mittwollen, M.; Mora, J. C.; Mota, F.; Nghiem, P. A. P.; Nitti, F.; Nishiyama, K.; Ogando, F.; O'hira, S.; Oliver, C.; Orsini, F.; Perez, D.; Perez, M.; Pinna, T.; Pisent, A.; Podadera, I.; Porfiri, M.; Pruneri, G.; Queral, V.; Rapisarda, D.; Roman, R.; Shingala, M.; Soldaini, M.; Sugimoto, M.; Theile, J.; Tian, K.; Umeno, H.; Uriot, D.; Wakai, E.; Watanabe, K.; Weber, M.; Yamamoto, M.; Yokomine, T.

    2015-08-01

    The International Fusion Materials Irradiation Facility (IFMIF), presently in its Engineering Validation and Engineering Design Activities (EVEDA) phase under the frame of the Broader Approach Agreement between Europe and Japan, accomplished in summer 2013, on schedule, its EDA phase with the release of the engineering design report of the IFMIF plant, which is here described. Many improvements of the design from former phases are implemented, particularly a reduction of beam losses and operational costs thanks to the superconducting accelerator concept, the re-location of the quench tank outside the test cell (TC) with a reduction of tritium inventory and a simplification on its replacement in case of failure, the separation of the irradiation modules from the shielding block gaining irradiation flexibility and enhancement of the remote handling equipment reliability and cost reduction, and the water cooling of the liner and biological shielding of the TC, enhancing the efficiency and economy of the related sub-systems. In addition, the maintenance strategy has been modified to allow a shorter yearly stop of the irradiation operations and a more careful management of the irradiated samples. The design of the IFMIF plant is intimately linked with the EVA phase carried out since the entry into force of IFMIF/EVEDA in June 2007. These last activities and their on-going accomplishment have been thoroughly described elsewhere (Knaster J et al [19]), which, combined with the present paper, allows a clear understanding of the maturity of the European-Japanese international efforts. This released IFMIF Intermediate Engineering Design Report (IIEDR), which could be complemented if required concurrently with the outcome of the on-going EVA, will allow decision making on its construction and/or serve as the basis for the definition of the next step, aligned with the evolving needs of our fusion community.

  10. Neutronics analysis of a spherical torus based volume neutron source

    SciTech Connect

    Cerbone, R. J.; Peng, Yueng Kay Martin

    1998-01-01

    A spherical torus based volumetric neutron source (ST-VNS) concept has been developed as a possible intermediate step to develop the necessary technology for reactor components of future fusion power plants. Such a VNS would complement ITER in testing, developing and qualifying nuclear technology components. Two recently designconcepts for a spherical torus based VNS have been investigated. The initial design operated at 39 MW fusion power with a 0.8 m major radius yielding an average neutron wall loading of 1 MW/ m '. A higher fusion power (326 MW) ST-VNS design was conceived by increasing the major radius to 1.07 m yielding an average neutron wall loading of 5 MW/ m '. In this paper, we report the results of the neutronics analyses of this high power design along with several design modifications including the effects of using ITER materials in the key components. The results of a feasibility study of using the ST-VNS with suitably designed blankets to provide an intense neutron source for neutron science applications is also reported.

  11. Active Neutron-Based Interrogation System with D-D Neutron Source for Detection of Special Nuclear Materials

    NASA Astrophysics Data System (ADS)

    Takahashi, Y.; Misawa, T.; Yagi, T.; Pyeon, C. H.; Kimura, M.; Masuda, K.; Ohgaki, H.

    2015-10-01

    The detection of special nuclear materials (SNM) is an important issue for nuclear security. The interrogation systems used in a sea port and an airport are developed in the world. The active neutron-based interrogation system is the one of the candidates. We are developing the active neutron-based interrogation system with a D-D fusion neutron source for the nuclear security application. The D-D neutron source is a compact discharge-type fusion neutron source called IEC (Inertial-Electrostatic Confinement fusion) device which provides 2.45 MeV neutrons. The nuclear materials emit the highenergy neutrons by fission reaction. High-energy neutrons with energies over 2.45 MeV amount to 30% of all the fission neutrons. By using the D-D neutron source, the detection of SNMs is considered to be possible with the attention of fast neutrons if there is over 2.45 MeV. Ideally, neutrons at En>2.45 MeV do not exist if there is no nuclear materials. The detection of fission neutrons over 2.45 MeV are hopeful prospect for the detection of SNM with a high S/N ratio. In the future, the experiments combined with nuclear materials and a D-D neutron source will be conducted. Furthermore, the interrogation system will be numerically investigated by using nuclear materials, a D-D neutron source, and a steel container.

  12. Investigation of the Spherical Stellarator Concept - Final Report

    SciTech Connect

    Moroz, P.E.

    2000-10-15

    This document is a final report of the U.S. DOE grant entitled ''Investigation of the Spherical Stellarator Concept'' which supported theoretical and numerical investigation of a novel fusion concept, the ultra-low-aspect-ratio stellarator system called Spherical Stellarator (SS). The research was concentrated on (a) search for principally different types of SS configurations, (b) optimization of SS configurations by varying the parameters of the coil systems, (c) finite beta and finite plasma current (including bootstrap current) equilibria in the SS, and (d) Monte Carlo particle transport simulations for the SS.

  13. Unconventional approaches to fusion

    SciTech Connect

    Brunelli, B.; Leotta, G.G.

    1982-01-01

    This volume is dedicated to unconventional approaches to fusionthose thermonuclear reactors that, in comparison with Tokamak and other main lines, have received little attention in the worldwide scientific community. Many of the approaches considered are still in the embryonic stages. The authors-an international group of active nuclear scientists and engineers-focus on the parameters achieved in the use of these reactors and on the meaning of the most recent physical studies and their implications for the future. They also compare these approaches with conventional ones, the Tokamak in particular, stressing the non-plasma-physics requirements of fusion reactors. Unconventional compact toroids, linear systems, and multipoles are considered, as are the ''almost conventional'' fusion machines: stellarators, mirrors, reversed-field pinches, and EBT.

  14. Compact stellarators with modular coils.

    PubMed

    Garabedian, P R

    2000-07-18

    Compact stellarator designs with modular coils and only two or three field periods are now available; these designs have both good stability and quasiaxial symmetry providing adequate transport for a magnetic fusion reactor. If the bootstrap current assumes theoretically predicted values a three field period configuration is optimal, but if that net current turns out to be lower, a device with two periods and just 12 modular coils might be better. There are also attractive designs with quasihelical symmetry and four or five periods whose properties depend less on the bootstrap current. Good performance requires that there be a satisfactory magnetic well in the vacuum field, which is a property lacking in a stellarator-tokamak hybrid that has been proposed for a proof of principle experiment. In this paper, we present an analysis of stability for these configurations that is based on a mountain pass theorem asserting that, if two solutions of the problem of magnetohydrodynamic equilibrium can be found, then there has to be an unstable solution. We compare results of our theory of equilibrium, stability, and transport with recently announced measurements from the large LHD experiment in Japan.

  15. Compact stellarators with modular coils

    PubMed Central

    Garabedian, P. R.

    2000-01-01

    Compact stellarator designs with modular coils and only two or three field periods are now available; these designs have both good stability and quasiaxial symmetry providing adequate transport for a magnetic fusion reactor. If the bootstrap current assumes theoretically predicted values a three field period configuration is optimal, but if that net current turns out to be lower, a device with two periods and just 12 modular coils might be better. There are also attractive designs with quasihelical symmetry and four or five periods whose properties depend less on the bootstrap current. Good performance requires that there be a satisfactory magnetic well in the vacuum field, which is a property lacking in a stellarator-tokamak hybrid that has been proposed for a proof of principle experiment. In this paper, we present an analysis of stability for these configurations that is based on a mountain pass theorem asserting that, if two solutions of the problem of magnetohydrodynamic equilibrium can be found, then there has to be an unstable solution. We compare results of our theory of equilibrium, stability, and transport with recently announced measurements from the large LHD experiment in Japan. PMID:10899993

  16. Spinal Fusion

    MedlinePlus

    ... concept of fusion is similar to that of welding in industry. Spinal fusion surgery, however, does not ... bone taken from the patient has a long history of use and results in predictable healing. Autograft ...

  17. Spinal Fusion

    MedlinePlus

    ... concept of fusion is similar to that of welding in industry. Spinal fusion surgery, however, does not ... bone taken from the patient has a long history of use and results in predictable healing. Autograft ...

  18. Fusion-fission-fusion fast ignition plasma focus [rapid communication

    NASA Astrophysics Data System (ADS)

    Winterberg, F.

    2005-03-01

    A crucial advancement in the problem for the controlled release of energy by nuclear fusion appears possible by an autocatalytic fusion-fission-fusion microexplosion, where the deuterium-tritium (DT) fusion reaction of a dense magnetized DT plasma placed inside a thin liner made up of U238, Th232 (perhaps B10) releases a sufficient number of 14 MeV fusion neutrons which by fission reactions in the liner implode the liner on the DT plasma. The liner implosion increases the DT plasma density and with it the neutron output accelerating the fast fission reactions. Following the fast fission assisted ignition, a thermonuclear detonation wave can propagate into unburnt DT to reach a high gain. The simplest way for the realization of this concept appears to be the dense plasma focus configuration, amended with a nested high voltage magnetically insulated transmission line for the heating of the DT. The large magnetic field needed for the α-particle entrapment of the DT fusion reaction is here generated by the thermomagnetic Nernst effect, amplifying the magnetic field of the plasma focus current sheet.

  19. Systematic analysis of advanced fusion fuel in inertial fusion energy

    NASA Astrophysics Data System (ADS)

    Velarde, G.; Eliezer, S.; Henis, Z.; Piera, M.; Martinez-Val, J. M.

    1997-04-01

    Aneutronic fusion reactions can be considered as the cleanest way to exploit nuclear energy. However, these reactions present in general two main drawbacks.—very high temperatures are needed to reach relevant values of their cross sections—Moderate (and even low) energy yield per reaction. This value is still lower if measured in relation to the Z number of the reacting particles. It is already known that bremsstrahlung overruns the plasma reheating by fusion born charged-particles in most of the advanced fuels. This is for instance the case for proton-boron-11 fusion in a stoichiometric plasma and is also so in lithium isotopes fusion reactions. In this paper, the use of deuterium-tritium seeding is suggested to allow to reach higher burnup fractions of advanced fuels, starting at a lower ignition temperature. Of course, neutron production increases as DT contents does. Nevertheless, the ratio of neutron production to energy generation is much lower in DT-advanced fuel mixtures than in pure DT plasmas. One of the main findings of this work is that some natural resources (as D and Li-7) can be burned-up in a catalytic regime for tritium. In this case, neither external tritium breeding nor tritium storage are needed, because the tritium inventory after the fusion burst is the same as before it. The fusion reactor can thus operate on a pure recycling of a small tritium inventory.

  20. Physics of Compact Advanced Stellarators

    SciTech Connect

    M.C. Zarnstorff; L.A. Berry; A. Brooks; E. Fredrickson; G.-Y. Fu; S. Hirshman; S. Hudson; L.-P. Ku; E. Lazarus; D. Mikkelsen; D. Monticello; G.H. Neilson; N. Pomphrey; A. Reiman; D. Spong; D. Strickler; A. Boozer; W.A. Cooper; R. Goldston; R. Hatcher; M. Isaev; C. Kessel; J. Lewandowski; J. Lyon; P. Merkel; H. Mynick; B.E. Nelson; C. Nuehrenberg; M. Redi; W. Reiersen; P. Rutherford; R. Sanchez; J. Schmidt; R.B. White

    2001-08-14

    Compact optimized stellarators offer novel solutions for confining high-beta plasmas and developing magnetic confinement fusion. The 3-D plasma shape can be designed to enhance the MHD stability without feedback or nearby conducting structures and provide drift-orbit confinement similar to tokamaks. These configurations offer the possibility of combining the steady-state low-recirculating power, external control, and disruption resilience of previous stellarators with the low-aspect ratio, high beta-limit, and good confinement of advanced tokamaks. Quasi-axisymmetric equilibria have been developed for the proposed National Compact Stellarator Experiment (NCSX) with average aspect ratio 4-4.4 and average elongation of approximately 1.8. Even with bootstrap-current consistent profiles, they are passively stable to the ballooning, kink, vertical, Mercier, and neoclassical-tearing modes for beta > 4%, without the need for external feedback or conducting walls. The bootstrap current generates only 1/4 of the magnetic rotational transform at beta = 4% (the rest is from the coils), thus the equilibrium is much less nonlinear and is more controllable than similar advanced tokamaks. The enhanced stability is a result of ''reversed'' global shear, the spatial distribution of local shear, and the large fraction of externally generated transform. Transport simulations show adequate fast-ion confinement and thermal neoclassical transport similar to equivalent tokamaks. Modular coils have been designed which reproduce the physics properties, provide good flux surfaces, and allow flexible variation of the plasma shape to control the predicted MHD stability and transport properties.

  1. A neutron activation spectrometer and neutronic experimental platform for the National Ignition Facility (invited)

    NASA Astrophysics Data System (ADS)

    Yeamans, C. B.; Gharibyan, N.

    2016-11-01

    At the National Ignition Facility, the diagnostic instrument manipulator-based neutron activation spectrometer is used as a diagnostic of implosion performance for inertial confinement fusion experiments. Additionally, it serves as a platform for independent neutronic experiments and may be connected to fast recording systems for neutron effect tests on active electronics. As an implosion diagnostic, the neutron activation spectrometers are used to quantify fluence of primary DT neutrons, downscattered neutrons, and neutrons above the primary DT neutron energy created by reactions of upscattered D and T in flight. At a primary neutron yield of 1015 and a downscattered fraction of neutrons in the 10-12 MeV energy range of 0.04, the downscattered neutron fraction can be measured to a relative uncertainty of 8%. Significant asymmetries in downscattered neutrons have been observed. Spectrometers have been designed and fielded to measure the tritium-tritium and deuterium-tritium neutron outputs simultaneously in experiments using DT/TT fusion ratio as a direct measure of mix of ablator into the gas.

  2. Origin of Neutron Stars

    NASA Astrophysics Data System (ADS)

    Brecher, K.

    1999-12-01

    The origin of the concept of neutron stars can be traced to two brief, incredibly insightful publications. Work on the earlier paper by Lev Landau (Phys. Z. Sowjetunion, 1, 285, 1932) actually predated the discovery of neutrons. Nonetheless, Landau arrived at the notion of a collapsed star with the density of a nucleus (really a "nucleus star") and demonstrated (at about the same time as, and independent of, Chandrasekhar) that there is an upper mass limit for dense stellar objects of about 1.5 solar masses. Perhaps even more remarkable is the abstract of a talk presented at the December 1933 meeting of the American Physical Society published by Walter Baade and Fritz Zwicky in 1934 (Phys. Rev. 45, 138). It followed the discovery of the neutron by just over a year. Their report, which was about the same length as the present abstract: (1) invented the concept and word supernova; (2) suggested that cosmic rays are produced by supernovae; and (3) in the authors own words, proposed "with all reserve ... the view that supernovae represent the transitions from ordinary stars to neutron stars (italics), which in their final stages consist of extremely closely packed neutrons." The abstract by Baade and Zwicky probably contains the highest density of new, important (and correct) ideas in high energy astrophysics ever published in a single paper. In this talk, we will discuss some of the facts and myths surrounding these two publications.

  3. Stellar 30-keV neutron capture in 94, 96Zr and the 90Zr (γ , n)89Zr photonuclear reaction with a high-power liquid-lithium target

    NASA Astrophysics Data System (ADS)

    Tessler, M.; Paul, M.; Arenshtam, A.; Feinberg, G.; Friedman, M.; Halfon, S.; Kijel, D.; Weissman, L.; Aviv, O.; Berkovits, D.; Eisen, Y.; Eliyahu, I.; Haquin, G.; Kreisel, A.; Mardor, I.; Shimel, G.; Shor, A.; Silverman, I.; Yungrais, Z.

    2015-12-01

    A high-power Liquid-Lithium Target (LiLiT) was used for the first time for neutron production via the thick-target 7Li (p , n)7Be reaction and quantitative determination of neutron capture cross sections. Bombarded with a 1-2 mA proton beam at 1.92 MeV from the Soreq Applied Research Accelerator Facility (SARAF), the setup yields a 30-keV quasi-Maxwellian neutron spectrum with an intensity of 3- 5 ×1010 n /s, more than one order of magnitude larger than present near-threshold 7Li (p , n) neutron sources. The setup was used here to determine the 30-keV Maxwellian averaged cross section (MACS) of 94Zr and 96Zr as 28.0 ± 0.6 mb and 12.4 ± 0.5 mb respectively, based on activation measurements. The precision of the cross section determinations results both from the high neutron yield and from detailed simulations of the entire experimental setup. We plan to extend our experimental studies to low-abundance and radioactive targets. In addition, we show here that the setup yields intense high-energy (17.6 and 14.6 MeV) prompt capture γ rays from the 7Li (p , γ)8Be reaction with yields of ∼ 3 ×108 γs-1mA-1 and ∼ 4 ×108 γs-1mA-1, respectively, evidenced by the 90Zr (γ , n)89Zr photonuclear reaction.

  4. Stellar core collapse and supernova

    SciTech Connect

    Wilson, J.R.; Mayle, R.; Woosley, S.E.; Weaver, T.

    1985-04-01

    Massive stars that end their stable evolution as their iron cores collapse to a neutron star or black hole long been considered good candidates for producing Type II supernovae. For many years the outward propagation of the shock wave produced by the bounce of these iron cores has been studied as a possible mechanism for the explosion. For the most part, the results of these studies have not been particularly encouraging, except, perhaps, in the case of very low mass iron cores or very soft nuclear equations of state. The shock stalls, overwhelmed by photodisintegration and neutrino losses, and the star does not explode. More recently, slow late time heating of the envelope of the incipient neutron star has been found to be capable of rejuvenating the stalled shock and producing an explosion after all. The present paper discusses this late time heating and presents results from numerical calculations of the evolution, core collapse, and subsequent explosion of a number of recent stellar models. For the first time they all, except perhaps the most massive, explode with reasonable choices of input physics. 39 refs., 17 figs., 1 tab.

  5. The Neutron Imaging System Fielded at the National Ignition Facility

    SciTech Connect

    Fittinghoff, D N; Atkinson, D P; Bower, D E; Drury, O B; Dzenitis, J M; Felker, B; Frank, M; Liddick, S N; Moran, M J; Roberson, G P; Weiss, P B; Grim, G P; Aragonez, R J; Archuleta, T N; Batha, S H; Clark, D D; Clark, D J; Danly, C R; Day, R D; Fatherley, V E; Finch, J P; Garcia, F P; Gallegos, R A; Guler, N; Hsu, A H; Jaramillo, S A; Loomis, E N; Mares, D; Martinson, D D; Merrill, F E; Morgan, G L; Munson, C; Murphy, T J; Oertel, J A; Polk, P J; Schmidt, D W; Tregillis, I L; Valdez, A C; Volegov, P L; Wang, T F; Wilde, C H; Wilke, M D; Wilson, D C; Buckles, R A; Cradick, J R; Kaufman, M I; Lutz, S S; Malone, R M; Traille, A

    2011-10-24

    We have fielded a neutron imaging system at the National Ignition Facility to collect images of fusion neutrons produced in the implosion of inertial confinement fusion experiments and scattered neutrons from (n, n') reactions of the source neutrons in the surrounding dense material. A description of the neutron imaging system will be presented, including the pinhole array aperture, the line-of-sight collimation, the scintillator-based detection system and the alignment systems and methods. Discussion of the alignment and resolution of the system will be presented. We will also discuss future improvements to the system hardware.

  6. DESCANT - the deuterated scintillator array for neutron tagging

    NASA Astrophysics Data System (ADS)

    Garrett, P. E.

    2014-01-01

    The DESCANT array is a new device for neutron detection based on deuterated liquid scintillator. It has been designed to be coupled with the TIGRESS and GRIFFIN γ-ray spectrometers to enable neutron tagging in fusion-evaporation reactions, and β-delayed neutron studies.

  7. Progress in bright ion beams for industry, medicine and fusion at LBNL

    SciTech Connect

    Kwan, Joe W.

    2002-05-31

    Recent progresses at LBNL in developing ion beams for industry, radiation therapy and inertial fusion applications were discussed. The highlights include ion beam lithography, boron neutron capture therapy (BNCT), and heavy ion fusion (HIF) drivers using multiple linacs.

  8. Magnetic fusion commercial power plants

    NASA Astrophysics Data System (ADS)

    Sheffield, John

    1994-09-01

    Toroidal magnetic systems offer the best opportunity to make a commercial fusion power plant. They have, between them, all the features needed; however, no one system yet meets the ideal requirements. The tokamak is the most advanced system, and the proposed International Thermonuclear Experimental Reactor (ITER) and Tokamak Physics Experiment (TPX) will build upon the existing program to prepare for an advanced tokamak demonstration plant. Complementary toroidal systems such as the spherical torus, stellarator, reversed-field pinch, field-reversed configuration, and spheromak offer, between them, potential advantages in each area and should be studied in a balanced fusion development program.

  9. The formation of stellar black holes

    NASA Astrophysics Data System (ADS)

    Mirabel, Félix

    2017-08-01

    It is believed that stellar black holes (BHs) can be formed in two different ways: Either a massive star collapses directly into a BH without a supernova (SN) explosion, or an explosion occurs in a proto-neutron star, but the energy is too low to completely unbind the stellar envelope, and a large fraction of it falls back onto the short-lived neutron star (NS), leading to the delayed formation of a BH. Theoretical models set progenitor masses for BH formation by implosion, namely, by complete or almost complete collapse, but observational evidences have been elusive. Here are reviewed the observational insights on BHs formed by implosion without large natal kicks from: (1) the kinematics in three dimensions of space of five Galactic BH X-ray binaries (BH-XRBs), (2) the diversity of optical and infrared observations of massive stars that collapse in the dark, with no luminous SN explosions, possibly leading to the formation of BHs, and (3) the sources of gravitational waves (GWs) produced by mergers of stellar BHs so far detected with LIGO. Multiple indications of BH formation without ejection of a significant amount of matter and with no natal kicks obtained from these different areas of observational astrophysics, and the recent observational confirmation of the expected dependence of BH formation on metallicity and redshift, are qualitatively consistent with the high merger rates of binary black holes (BBHs) inferred from the first detections with LIGO.

  10. Stability in straight stellarators

    SciTech Connect

    Kulsrud, R.M.; Yoshikawa, S.

    1981-07-01

    The stability of the straight stellarator against localized interchange modes is investigated employing the Mercier-Greene-Johnson criterion. Critical values of ..beta.. are obtained both numerically and analytically. The conclusion is that for classical helical stellarators the average limiting ..beta..'s are quite low of order three to four percent.

  11. High Energy Density Plasmas (HEDP) for studies of basic nuclear science relevant to Stellar and Big Bang Nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Frenje, Johan

    2014-06-01

    Thermonuclear reaction rates and nuclear processes have been explored traditionally by means of conventional accelerator experiments, which are difficult to execute at conditions relevant to stellar nucleosynthesis. Thus, nuclear reactions at stellar energies are often studied through extrapolations from higher-energy data or in low-background underground experiments. Even when measurements are possible using accelerators at relevant energies, thermonuclear reaction rates in stars are inherently different from those in accelerator experiments. The fusing nuclei are surrounded by bound electrons in accelerator experiments, whereas electrons occupy mainly continuum states in a stellar environment. Nuclear astrophysics research will therefore benefit from an enlarged toolkit for studies of nuclear reactions. In this presentation, we report on the first use of High Energy Density Plasmas for studies of nuclear reactions relevant to basic nuclear science, stellar and Big Bang nucleosynthesis. These experiments were carried out at the OMEGA laser facility at University of Rochester and the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory, in which spherical capsules were irradiated with powerful lasers to compress and heat the fuel to high enough temperatures and densities for nuclear reactions to occur. Four experiments will be highlighted in this presentation. In the first experiment, the differential cross section for the elastic neutron-triton (n-T) scattering at 14.1 MeV was measured with significantly higher accuracy than achieved in accelerator experiments. In the second experiment, the T(t,2n)4He reaction, a mirror reaction to the 3He(3He,2p)4He reaction that plays an important role in the proton-proton chain that transforms hydrogen into ordinary 4He in stars like our Sun, was studied at energies in the range 15-40 keV. In the third experiment, the 3He+3He solar fusion reaction was studied directly, and in the fourth experiment, we

  12. Astrophysical S factors for fusion reactions involving C, O, Ne, and Mg isotopes

    SciTech Connect

    Beard, M.; Afanasjev, A.V.; Chamon, L.C.; Gasques, L.R.; Wiescher, M.; Yakovlev, D.G.

    2010-09-15

    Using the Sao Paulo potential and the barrier penetration formalism we have calculated the astrophysical factor S(E) for 946 fusion reactions involving stable and neutron-rich isotopes of C, O, Ne, and Mg for center-of-mass energies E varying from 2 to {approx}18-30 MeV (covering the range below and above the Coulomb barrier). We have parameterized the energy dependence, S(E), by an accurate universal 9-parameter analytic expression and present tables of fit parameters for all the reactions. We also discuss the reduced 3-parameter version of our fit which is highly accurate at energies below the Coulomb barrier, and outline the procedure for calculating the reaction rates. The results can be easily converted to thermonuclear or pycnonuclear reaction rates to simulate various nuclear burning phenomena, in particular, stellar burning at high temperatures and nucleosynthesis in high density environments.

  13. Radioscapholunate Fusions

    PubMed Central

    McGuire, Duncan Thomas; Bain, Gregory Ian

    2012-01-01

    Radiocarpal fusions are performed for a variety of indications, most commonly for debilitating painful arthritis. The goal of a wrist fusion is to fuse the painful, diseased joints and to preserve motion through the healthy joints. Depending on the extent of the disease process, radiocarpal fusions may take the form of radiolunate, radioscapholunate, or total wrist fusions. Surgical techniques and instrumentation have advanced over the last few decades, and consequently the functional outcomes have improved and complications decreased. Techniques for partial carpal fusions have improved and now include distal scaphoid and triquetrum excision, which improves range of motion and fusion rates. In this article we discuss the various surgical techniques and fixation methods available and review the corresponding evidence in the literature. The authors' preferred surgical technique of radioscapholunate fusion with distal scaphoid and triquetrum excision is outlined. New implants and new concepts are also discussed. PMID:24179717

  14. Probing thermonuclear burning on accreting neutron stars

    NASA Astrophysics Data System (ADS)

    Keek, L.

    2008-12-01

    Neutron stars are the most compact stars that can be directly observed, which makes them ideal laboratories to study physics at extreme densities. Neutron stars in low-mass X-ray binaries accrete hydrogen and helium from a lower-mass companion star through Roche lobe overflow. This matter undergoes thermonuclear burning in the neutron star envelope, creating carbon and heavier elements. The fusion process may proceed in an unstable manner, resulting in a thermonuclear runaway. Within one second the entire surface is burned, which is observable as a sharp rise in the emitted X-ray flux: a type I X-ray burst. Afterwards the neutron star surface cools down on a timescale of ten to one hundred seconds. During these bursts the surface of an accreting neutron star can be observed directly, which makes them instrumental for studying this type of stars. We have studied rare kinds of X-ray bursts. One such rare burst is the superburst, which lasts a thousand times longer than an ordinary burst. Superbursts are thought to result from the explosive burning of a thick carbon layer, which lies deeper inside the neutron star, close to a layer known as the crust. A prerequisite for the occurrence of a superburst is a high enough temperature, which is set by the temperature of the crust and the heat conductivity of the envelope. The latter is lowered by the presence of heavy elements that are produced during normal X-ray bursts. Using a large set of observations from the Wide Field Camera's onboard the BeppoSAX satellite, we find that, at high accretion rate, sources which do not exhibit normal bursts likely have a longer superburst recurrence time, than the observed superburst recurrence time of one burster. We analyze in detail the first superburst from a transient source, which went into outburst only 55 days before the superburst. Recent models of the neutron star crust predict that this is too small a time to heat the crust sufficiently for superburst ignition, indicating

  15. Calibration issues for neutron diagnostics

    SciTech Connect

    Sadler, G.J.; Adams, J.M.; Barnes, C.W.

    1997-12-01

    The performance of diagnostic systems are limited by their weakest constituents, including their calibration issues. Neutron diagnostics are notorious for problems encountered while determining their absolute calibrations, due mainly to the nature of the neutron transport problem. In order to facilitate the determination of an accurate and precise calibration, the diagnostic design should be such as to minimize the scattered neutron flux. ITER will use a comprehensive set of neutron diagnostics--comprising radial and vertical neutron cameras, neutron spectrometers, a neutron activation system and internal and external fission chambers--to provide accurate measurements of fusion power and power densities as a function of time. The calibration of such an important diagnostic system merits careful consideration. Some thoughts have already been given to this subject during the conceptual design phase in relation to the time-integrated neutron activation and time-dependent neutron yield monitors. However, no overall calibration strategy has been worked out so far. This paper represents a first attempt to address this vital issue. Experience gained from present large tokamaks (JET, TFTR and JT60U) and proposals for ITER are reviewed. The need to use a 14-MeV neutron generator as opposed to radioactive sources for in-situ calibration of D-T diagnostics will be stressed. It is clear that the overall absolute determination of fusion power will have to rely on a combination of nuclear measuring techniques, for which the provision of accurate and independent calibrations will constitute an ongoing process as ITER moves from one phase of operation to the next.

  16. Computational mathematics and physics of fusion reactors

    PubMed Central

    Garabedian, Paul R.

    2003-01-01

    Theory has contributed significantly to recent advances in magnetic fusion research. New configurations have been found for a stellarator experiment by computational methods. Solutions of a free-boundary problem are applied to study the performance of the plasma and look for islands in the magnetic surfaces. Mathematical analysis and numerical calculations have been used to study equilibrium, stability, and transport of optimized fusion reactors. PMID:14614129

  17. Diagnosing magnetized liner inertial fusion experiments on Z

    SciTech Connect

    Hansen, Stephanie B.; Gomez, Matthew R.; Sefkow, Adam B.; Slutz, Stephen A.; Sinars, Daniel Brian; Hahn, Kelly; Harding, Eric; Knapp, Patrick; Schmit, Paul; Awe, Thomas James; McBride, Ryan D.; Jennings, Christopher; Geissel, Matthias; Harvey-Thompson, Adam James; Peterson, K. J.; Rovang, Dean C.; Chandler, Gordon A.; Cooper, Gary Wayne; Cuneo, Michael Edward; Herrmann, Mark C.; Mark Harry Hess; Johns, Owen; Lamppa, Derek C.; Martin, Matthew; Porter, J. L.; Robertson, G. K.; Rochau, G. A.; Ruiz, C. L.; Savage, M. E.; Smith, I. C.; Stygar, W. A.; Vesey, R. A.; Blue, B. E.; Ryutov, D.; Schroen, Diana; Tomlinson, K.

    2015-05-14

    The Magnetized Liner Inertial Fusion experiments performed at Sandia's Z facility have demonstrated significant thermonuclear fusion neutron yields (~1012 DD neutrons) from multi-keV deuterium plasmasinertially confined by slow (~10 cm/μs), stable, cylindrical implosions. Moreover, effective magnetic confinement of charged fusion reactants and products is signaled by high secondary DT neutron yields above 1010. Further analysis of extensive power, imaging, and spectroscopicx-ray measurements provides a detailed picture of ~3 keV temperatures, 0.3 g/cm3 densities, gradients, and mix in the fuel and liner over the 1–2 ns stagnation duration.

  18. Diagnosing magnetized liner inertial fusion experiments on Z

    SciTech Connect

    Hansen, S. B. Gomez, M. R.; Sefkow, A. B.; Slutz, S. A.; Sinars, D. B.; Hahn, K. D.; Harding, E. C.; Knapp, P. F.; Schmit, P. F.; Awe, T. J.; McBride, R. D.; Jennings, C. A.; Geissel, M.; Harvey-Thompson, A. J.; Peterson, K. J.; Rovang, D. C.; Chandler, G. A.; Cooper, G. W.; Cuneo, M. E.; Hess, M. H.; and others

    2015-05-15

    Magnetized Liner Inertial Fusion experiments performed at Sandia's Z facility have demonstrated significant thermonuclear fusion neutron yields (∼10{sup 12} DD neutrons) from multi-keV deuterium plasmas inertially confined by slow (∼10 cm/μs), stable, cylindrical implosions. Effective magnetic confinement of charged fusion reactants and products is signaled by high secondary DT neutron yields above 10{sup 10}. Analysis of extensive power, imaging, and spectroscopic x-ray measurements provides a detailed picture of ∼3 keV temperatures, 0.3 g/cm{sup 3} densities, gradients, and mix in the fuel and liner over the 1–2 ns stagnation duration.

  19. Diagnosing magnetized liner inertial fusion experiments on Z

    DOE PAGES

    Hansen, Stephanie B.; Gomez, Matthew R.; Sefkow, Adam B.; ...

    2015-05-14

    The Magnetized Liner Inertial Fusion experiments performed at Sandia's Z facility have demonstrated significant thermonuclear fusion neutron yields (~1012 DD neutrons) from multi-keV deuterium plasmasinertially confined by slow (~10 cm/μs), stable, cylindrical implosions. Moreover, effective magnetic confinement of charged fusion reactants and products is signaled by high secondary DT neutron yields above 1010. Further analysis of extensive power, imaging, and spectroscopicx-ray measurements provides a detailed picture of ~3 keV temperatures, 0.3 g/cm3 densities, gradients, and mix in the fuel and liner over the 1–2 ns stagnation duration.

  20. Cold Fusion Production and Decay of Neutron-Deficient Isotopes of Dubnium and Development of Extraction Systems for Group V Elements

    SciTech Connect

    Gates, Jacklyn M.

    2008-07-31

    Excitation functions for the 1n and 2n exit channels of the 208Pb(51V,xn)259-xDb reaction were measured. A maximum cross section of the 1n exit channel of 2070$+1100\\atop{-760}$ pb was measured at an excitation energy of 16.0 ± 1.8 MeV. For the 2n exit channel, a maximum cross section of 1660$+450\\atop{-370}$ pb was measured at 22.0 ± 1.8 MeV excitation energy. The 1n excitation function for the 209Bi(50Ti,n)258Db reaction was remeasured, resulting in a cross section of 5480$+1730\\atop{-1370}$ pb at an excitation energy of 16.0 ± 1.6 MeV. Differences in cross section maxima are discussed in terms of the fusion probability below the barrier. The extraction of niobium (Nb) and tantalum (Ta) from hydrochloric acid and mixed hydrochloric acid/lithium chloride media by bis(2-ethylhexyl) hydrogen phosphate (HDEHP) and bis(2-ethylhexyl) hydrogen phosphite (BEHP) was studied. The goal of the experiments was to find a system that demonstrates selectivity among the members of group five of the Periodic Table and is also suitable for the study of dubnium (Db, Z = 105). Experiments with niobium and tantalum were performed with carrier (10-6 M), carrier free (10-10 M) and trace (10-16 M) concentrations of metal using hydrochloric acid solution with concentrations ranging from 1 - 11 M. The extraction of niobium and tantalum from mixed hydrochloric acid/lithium chloride media by HDEHP and BEHP as a function of hydrogen ion (H+) concentration was also investigated. The data obtained are used as the basis to discuss the speciation of niobium and tantalum under the conditions studied and to evaluate possible extraction mechanisms. The 74Se(18O,p3n)88gNb excitation function was measured to determine the best energy for producing the 88Nb used in chemistry experiments. A maximum cross section of 495 +- 5 mb was observed at an 18O energy of 74.0 Me

  1. Fusion pumped light source

    DOEpatents

    Pappas, Daniel S.

    1989-01-01

    Apparatus is provided for generating energy in the form of light radiation. A fusion reactor is provided for generating a long, or continuous, pulse of high-energy neutrons. The neutron flux is coupled directly with the lasing medium. The lasing medium includes a first component selected from Group O of the periodic table of the elements and having a high inelastic scattering cross section. Gamma radiation from the inelastic scattering reactions interacts with the first component to excite the first component, which decays by photon emission at a first output wavelength. The first output wavelength may be shifted to a second output wavelength using a second liquid component responsive to the first output wavelength. The light outputs may be converted to a coherent laser output by incorporating conventional optics adjacent the laser medium.

  2. Cold fusion verification

    NASA Astrophysics Data System (ADS)

    North, M. H.; Mastny, G. F.; Wesley, E. J.

    1991-03-01

    The objective of this work to verify and reproduce experimental observations of Cold Nuclear Fusion (CNF), as originally reported in 1989. The method was to start with the original report and add such additional information as became available to build a set of operational electrolytic CNF cells. Verification was to be achieved by first observing cells for neutron production, and for those cells that demonstrated a nuclear effect, careful calorimetric measurements were planned. The authors concluded, after laboratory experience, reading published work, talking with others in the field, and attending conferences, that CNF probably is chimera and will go the way of N-rays and polywater. The neutron detector used for these tests was a completely packaged unit built into a metal suitcase that afforded electrostatic shielding for the detectors and self-contained electronics. It was battery-powered, although it was on charge for most of the long tests. The sensor element consists of He detectors arranged in three independent layers in a solid moderating block. The count from each of the three layers as well as the sum of all the detectors were brought out and recorded separately. The neutron measurements were made with both the neutron detector and the sample tested in a cave made of thick moderating material that surrounded the two units on the sides and bottom.

  3. The reality of cold fusion

    SciTech Connect

    Case, L.C. )

    1991-12-01

    Despite the unreproducibility, doubt, and controversy involved in the question of the cold fusion of deuterium, enough good data have been published to clearly indicate the reality of some sort of nuclear fusion. Yamaguchi and Niushioka reported a thrice-repeated event in which large amounts of heat and definite bursts of neutrons evolved simultaneously with considerable out-gassing of absorbed deuterium. These results are consistent with nuclear fusion and not with a chemical reaction. In this paper a detailed mechanism is proposed that is consistent with these events and that also generally explains many of the scattered indications of cold fusion that have been reported. There must be an adventitiously large enough presence of tritium to initiate the nuclear reaction. The results of previously successful experiments cannot now be reproduced because currently available D{sub 2}O (and D{sub 2}) is so low in adventitious tritium as to preclude initiation of the nuclear reaction.

  4. Overview of fusion reactor safety

    SciTech Connect

    Cohen, S.; Crocker, J.G.

    1981-01-01

    Use of deuterium-tritium burning fusion reactors requires examination of several major safety and environmental issues: (1) tritium inventory control, (2) neutron activation of structural materials, fluid streams and reactor hall environment, (3) release of radioactivity from energy sources including lithium spill reactions, superconducting magnet stored energy release, and plasma disruptions, (4) high magnetic and electromagnetic fields associated with fusion reactor superconducting magnets and radio frequency heating devices, and (5) handling and disposal of radioactive waste. Early recognition of potential safety problems with fusion reactors provides the opportunity for improvement in design and materials to eliminate or greatly reduce these problems. With an early start in this endeavor, fusion should be among the lower risk technologies for generation of commercial electrical power.

  5. Characterization of pulsed (plasma focus) neutron source with image plate and application to neutron radiography

    SciTech Connect

    Andola, Sanjay; Niranjan, Ram; Rout, R. K.; Kaushik, T. C.; Gupta, S. C.; Shaikh, A. M.

    2013-02-05

    Plasma focus device of Mather type developed in house has been used first time for neutron radiography of different objects. The device gives (1.2{+-}0.3) Multiplication-Sign 10{sup 9} neutrons per pulse produced by D-D fusion reaction with a pulse width of 50{+-}5 ns. The method involves exposing sample to be radiographed to thermalized D-D neutrons and recording the image on Fuji-film BAS-ND image plates. The thermal neutron component of the moderated beam was estimated using two image plates: a conventional IP for X-rays and gamma rays, and an IP doped with Gd for detecting neutrons.

  6. Compact neutron generator development at LBNL

    SciTech Connect

    Reijonen, J.; English, G.; Firestone, R.; Giquel, F.; King, M.; Leung, K-N.; Sun, M.

    2003-12-31

    A wide variety of applications ranging from medical (BNCT, Boron Neutron Capture Therapy) and basic science (neutron imaging, material studies) to homeland security (explosive detection and nuclear material non-proliferation) are in need of compact, high flux neutron generators. The Plasma and Ion Source Technology Group in the Lawrence Berkeley National Laboratory is developing various neutron generators for these applications. These neutron generators employed either the D-D or the D-T fusion reaction for the neutron production. The deuterium or deuterium-tritium gas mixture is ionized in an RF-driven plasma source. The ions are then accelerated to {approx}100 keV energy using high current, high voltage DC-power supply to a target where the 2.45 MeV (for D-D reaction) or 14 MeV (for the D-T reaction) neutrons are generated. The development of two different types of neutron tubes are being discussed in this presentation, namely compact, pulsed operation neutron generators and cw, high yield neutron generators. These generators are currently operating at D-D neutron yields of 108 n/s and 109 n/s respectively. A facility, incorporating the larger neutron generator, has been constructed for Prompt Gamma Activation Analysis (PGAA) and Neutron Activation Analysis (NAA) measurements.

  7. A search for stellar remnants of supernovae

    NASA Technical Reports Server (NTRS)

    Fesen, R. A.; Kirshner, R. P.; Winkler, P. F., Jr.

    1979-01-01

    The slitless spectra of the stars in the central regions of six galactic supernova remnants Cas A, Kepler, Tycho, SN 1006, RCW 86, and the Cygnus Loop were obtained with the prime focus transmission gratings at the 4M telescopes on Kitt Peak and Cerro Tololo. It was found that no stellar remnant with an unusually blue or peculiar spectrum is present in any of the remnants down to the limit of m sub pg of 18.5. Except for the Cygnus Loop, the area searched in each remnant is large enough that objects with transverse velocities of 1000 km/s would be well within the field. The results are also compared with a computation of emission from gas near a neutron star and with the unpulsed emission from the Crab pulsar; in both cases upper limits were set which place constraints on a possible condensed stellar remnant.

  8. Physics of stellar evolution and cosmology

    NASA Astrophysics Data System (ADS)

    Goldberg, H. S.; Scadron, M. D.

    Astrophysical phenomena are examined on a fundamental level, stressing basic physical laws, in a textbook suitable for a one-semester intermediate course. The ideal gas law, the meaning of temperature, black-body radiation, discrete spectra, and the Doppler effect are introduced and used to study such features of the interstellar medium as 21-cm radiation, nebulae and dust, and the galactic magnetic field. The phases of stellar evolution are discussed, including stellar collapse, quasi-hydrostatic equilibrium, the main sequence, red giants, white dwarves, neutron stars, supernovae, pulsars, and black holes. Among the cosmological topics covered are the implications of Hubble's constant, the red-shift curve, the steady-state universe, the evolution of the big bang (thermal equilibrium, hadron era, lepton era, primordial nucleosynthesis, hydrogen recombination, galaxy formation, and the cosmic fireball), and the future (cold end or big crunch).

  9. Spectroscopy of Stellar Coronae

    NASA Astrophysics Data System (ADS)

    Laming, J. Martin

    I review the important spectroscopic results that have come from observations of stellar coronae, mainly by EUVE and ASCA, but also from HST. The plasma parameters that can be determined from such spectra include the electron density and temperature distributions, and relative element abundances. With high resolution spectra dynamical information can be obtained. Such parameters can then be used to put constraints on models of the heating and structure of stellar coronae. Throughout, I try to emphasise the similarities and differences between stellar coronal spectroscopy and that of the solar corona.

  10. Generating physically realizable stellar structures via embedding

    NASA Astrophysics Data System (ADS)

    Maurya, S. K.; Govender, M.

    2017-05-01

    In this work we present an exact solution of the Einstein-Maxwell field equations describing compact charged objects within the framework of classical general relativity. Our model is constructed by embedding a four-dimensional spherically symmetric static metric into a five-dimensional flat metric. The source term for the matter field is composed of a perfect fluid distribution with charge. We show that our model obeys all the physical requirements and stability conditions necessary for a realistic stellar model. Our theoretical model approximates observations of neutron stars and pulsars to a very good degree of accuracy.

  11. Stellar black holes in globular clusters

    NASA Technical Reports Server (NTRS)

    Kulkarni, S. R.; Hut, Piet; Mcmillan, Steve

    1993-01-01

    The recent discovery of large populations of millisec pulsars associated with neutron stars in globular clusters indicates that several hundred stellar black holes of about 10 solar masses each can form within a typical cluster. While, in clusters of high central density, the rapid dynamical evolution of the black-hole population leads to an ejection of nearly all holes on a short timescale, systems of intermediate density may involve a normal star's capture by one of the surviving holes to form a low-mass X-ray binary. One or more such binaries may be found in the globular clusters surrounding our galaxy.

  12. Stellar black holes in globular clusters

    NASA Technical Reports Server (NTRS)

    Kulkarni, S. R.; Hut, Piet; Mcmillan, Steve

    1993-01-01

    The recent discovery of large populations of millisec pulsars associated with neutron stars in globular clusters indicates that several hundred stellar black holes of about 10 solar masses each can form within a typical cluster. While, in clusters of high central density, the rapid dynamical evolution of the black-hole population leads to an ejection of nearly all holes on a short timescale, systems of intermediate density may involve a normal star's capture by one of the surviving holes to form a low-mass X-ray binary. One or more such binaries may be found in the globular clusters surrounding our galaxy.

  13. Dynamical effects in fusion with exotic nuclei

    NASA Astrophysics Data System (ADS)

    Vo-Phuoc, K.; Simenel, C.; Simpson, E. C.

    2016-08-01

    Background: Reactions with stable beams have demonstrated strong interplay between nuclear structure and fusion. Exotic beam facilities open new perspectives to understand the impact of neutron skin, large isospin, and weak binding energies on fusion. Microscopic theories of fusion are required to guide future experiments. Purpose: To investigate new effects of exotic structures and dynamics in near-barrier fusion with exotic nuclei. Method: Microscopic approaches based on the Hartree-Fock (HF) mean-field theory are used for studying fusion barriers in -54Ca40+116Sn reactions for even isotopes. Bare potential barriers are obtained assuming frozen HF ground-state densities. Dynamical effects on the barrier are accounted for in time-dependent Hartree-Fock (TDHF) calculations of the collisions. Vibrational couplings are studied in the coupled-channel framework and near-barrier nucleon transfer is investigated with TDHF calculations. Results: The development of a neutron skin in exotic calcium isotopes strongly lowers the bare potential barrier. However, this static effect is not apparent when dynamical effects are included. On the contrary, a fusion hindrance is observed in TDHF calculations with the most neutron-rich calcium isotopes which cannot be explained by vibrational couplings. Transfer reactions are also important in these systems due to charge equilibration processes. Conclusions: Despite its impact on the bare potential, the neutron skin is not seen as playing an important role in the fusion dynamics. However, the charge transfer with exotic projectiles could lead to an increase of the Coulomb repulsion between the fragments, suppressing fusion. The effects of transfer and dissipative mechanisms on fusion with exotic nuclei deserve further studies.

  14. News and Views: Stellar baby boom in the young universe; School pupils observe and publish CV data; Neutron star with C atmosphere; Meeting on magma; Process for exoplanets; Floods off the charts

    NASA Astrophysics Data System (ADS)

    2009-12-01

    RESEARCH NOTES Gravitational lensing has allowed researchers to examine in detail one of the most distant known galaxies. They found a surprisingly high rate of star formation, with up to 50 stars like the Sun forming per year at the peak of the boom in starbirth. Time on a remote-control telescope has led to German secondary school students not only collecting useful data, but also being part of the team publishing the results in a professional journal. The neutron star at the heart of the Cassiopeia A supernova remnant has a thin carbon atmosphere, masking the X-ray emission that was expected, but not detected.

  15. Neutron Diagnostic Development for the Z Accelerator

    NASA Astrophysics Data System (ADS)

    Hahn, Kelly; Chandler, G. A.; Ruiz, C. L.; Jones, B.; Gomez, M. R.; Knapp, P. F.; Sefkow, A. B.; Hansen, S. B.; Schmit, P. F.; Harding, E. C.; Norris, E.; Torres, J. A.; Cooper, G. W.; Styron, J. D.; Frenje, J.; Lahmann, B.; Gatu-Johnson, M.; Seguin, F.; Petrasso, R.; Fittinghoff, D.; May, M.; Snyder, L.; Moy, K.; Buckles, R.; Glebov, V. Yu.

    2016-10-01

    We are studying Magnetized Liner Inertial Fusion (MagLIF) and Gas Puff fusion neutron sources on the Z accelerator. MagLIF experiments have produced up to 3e12 primary DD neutrons with 2-3 keV ion temperatures and 1-2 ns burn widths. Gas puff experiments have produced up to 5e13 primary DD neutrons with higher ion temperatures, longer burn times, and evidence of non-thermonuclear production. For MagLIF, the yield is expected to increase rapidly with increased energy coupling, yet it remains unclear if Gas Puffs would scale as attractively. We review neutron measurements for these experiments and plans for developing neutron diagnostics for these two very different sources. Sandia is sponsored by the U.S. DOE's NNSA under contract DE-AC04-94AL85000.

  16. "Polarized" Fusion

    NASA Astrophysics Data System (ADS)

    Schieck, Hans Paetz Gen.

    Increasing energy demand in view of limited supply, as well as environmental and nuclear-safety concerns leading to increased emphasis on renewable energy sources such as solar or wind energy are expected to focus public and scientific interest increasingly also on fusion energy. With the decision to build ITER (low-density magnetic confinement) and also continuing research on (high-density) inertial-confinement fusion (cf. the inauguration of the laser fusion facility at the Lawrence Livermore National Laboratory) prospects of fusion energy have probably entered a new era.

  17. Evolving sparse stellar populations

    NASA Astrophysics Data System (ADS)

    Bruzual, Gustavo; Gladis Magris, C.; Hernández-Pérez, Fabiola

    2017-03-01

    We examine the role that stochastic fluctuations in the IMF and in the number of interacting binaries have on the spectro-photometric properties of sparse stellar populations as a function of age and metallicity.

  18. Stellar atmospheric structural patterns

    NASA Technical Reports Server (NTRS)

    Thomas, R. N.

    1983-01-01

    The thermodynamics of stellar atmospheres is discussed. Particular attention is given to the relation between theoretical modeling and empirical evidence. The characteristics of distinctive atmospheric regions and their radical structures are discussed.

  19. Production cross sections of neutron-rich No-263261 isotopes

    NASA Astrophysics Data System (ADS)

    Li, Jingjing; Li, Cheng; Zhang, Gen; Zhu, Long; Liu, Zhong; Zhang, Feng-Shou

    2017-05-01

    The fusion excitation functions of No-263249 are studied by using various reaction systems based on the dinuclear system model. The neutron-rich radioactive beam 22O is used to produce neutron-rich nobelium isotopes, and the new neutron-rich isotopes No-263261 are synthesized by 242Pu(22O,3 n )261No , 244Pu(22O,4 n )262No , and 244Pu(22O,3 n )263No reactions, respectively. The corresponding maximum evaporation residue cross sections are 0.628, 4.649, and 1.638 μ b , respectively. The effects of the three processes (capture, fusion, and survival) in the complete fusion reaction are also analyzed. From investigation, a neutron-rich radioactive beam as the projectile and neutron-rich actinide as the target could be a new selection of the projectile-target combination to produce a neutron-rich heavy nuclide.

  20. Introduction to Stellar Winds

    NASA Astrophysics Data System (ADS)

    Lamers, Henny J. G. L. M.; Cassinelli, Joseph P.

    1999-06-01

    Preface; 1. Historical overview; 2. Observations of stellar winds; 3. Basic concepts: isothermal winds; 4. Basic concepts: non-isothermal winds; 5. Coronal winds; 6. Sound wave driven winds; 7. Dust driven winds; 8. Line driven winds; 9. Magnetic rotator theory; 10. Alfvén wave driven winds; 11. Outflowing disks from rotating stars; 12. Winds colliding with the interstellar medium; 13. The effects of mass loss on stellar evolution; 14. Problems; Appendices; Bibliography; Object index; Index.

  1. Oscillations in stellar atmospheres

    NASA Technical Reports Server (NTRS)

    Costa, A.; Ringuelet, A. E.; Fontenla, J. M.

    1989-01-01

    Atmospheric excitation and propagation of oscillations are analyzed for typical pulsating stars. The linear, plane-parallel approach for the pulsating atmosphere gives a local description of the phenomenon. From the local analysis of oscillations, the minimum frequencies are obtained for radially propagating waves. The comparison of the minimum frequencies obtained for a variety of stellar types is in good agreement with the observed periods of the oscillations. The role of the atmosphere in the globar stellar pulsations is thus emphasized.

  2. Oscillations in stellar atmospheres

    NASA Technical Reports Server (NTRS)

    Costa, A.; Ringuelet, A. E.; Fontenla, J. M.

    1989-01-01

    Atmospheric excitation and propagation of oscillations are analyzed for typical pulsating stars. The linear, plane-parallel approach for the pulsating atmosphere gives a local description of the phenomenon. From the local analysis of oscillations, the minimum frequencies are obtained for radially propagating waves. The comparison of the minimum frequencies obtained for a variety of stellar types is in good agreement with the observed periods of the oscillations. The role of the atmosphere in the globar stellar pulsations is thus emphasized.

  3. Calculations to support JET neutron yield calibration: Modelling of neutron emission from a compact DT neutron generator

    NASA Astrophysics Data System (ADS)

    Čufar, Aljaž; Batistoni, Paola; Conroy, Sean; Ghani, Zamir; Lengar, Igor; Milocco, Alberto; Packer, Lee; Pillon, Mario; Popovichev, Sergey; Snoj, Luka

    2017-03-01

    At the Joint European Torus (JET) the ex-vessel fission chambers and in-vessel activation detectors are used as the neutron production rate and neutron yield monitors respectively. In order to ensure that these detectors produce accurate measurements they need to be experimentally calibrated. A new calibration of neutron detectors to 14 MeV neutrons, resulting from deuterium-tritium (DT) plasmas, is planned at JET using a compact accelerator based neutron generator (NG) in which a D/T beam impinges on a solid target containing T/D, producing neutrons by DT fusion reactions. This paper presents the analysis that was performed to model the neutron source characteristics in terms of energy spectrum, angle-energy distribution and the effect of the neutron generator geometry. Different codes capable of simulating the accelerator based DT neutron sources are compared and sensitivities to uncertainties in the generator's internal structure analysed. The analysis was performed to support preparation to the experimental measurements performed to characterize the NG as a calibration source. Further extensive neutronics analyses, performed with this model of the NG, will be needed to support the neutron calibration experiments and take into account various differences between the calibration experiment and experiments using the plasma as a source of neutrons.

  4. Neutron skins and neutron stars

    SciTech Connect

    Piekarewicz, J.

    2013-11-07

    The neutron-skin thickness of heavy nuclei provides a fundamental link to the equation of state of neutron-rich matter, and hence to the properties of neutron stars. The Lead Radius Experiment ('PREX') at Jefferson Laboratory has recently provided the first model-independence evidence on the existence of a neutron-rich skin in {sup 208}Pb. In this contribution we examine how the increased accuracy in the determination of neutron skins expected from the commissioning of intense polarized electron beams may impact the physics of neutron stars.

  5. Characteristics of the neutron flux from a D-Li neutron source

    SciTech Connect

    Gomes, I.; Smith, D.L.

    1994-07-01

    A D-Li neutron source produces a high flux of neutrons which can be used for testing fusion materials. The characteristics exhibited by the neutron flux inside the test assembly volume of a D-Li neutron source irradiation facility is a function of several design options, such as deuteron energy, beam current, beam cross sectional area, and lithium target configuration, among others. The influence of each of these parameters on the overall performance of the machine, in terms of best results for irradiation of materials for fusion applications, can be inferred by scoping their impact on the uncollided neutron flux magnitude and distribution. The first part of this paper describes an analysis performed on the uncollided neutron flux (without material inside the test assembly region) for different beam-target configurations for determining the effect of varying the elements of the configuration on the uncollided neutron flux gradient. The second section deals with the neutron energy spectrum from the D-Li reaction and a brief discussion on {open_quotes}fusion reactor spectrum{close_quotes} is also presented. In the third section results from calculations of the volume with uncollided neutron above a threshold value are presented.

  6. Atmospheric neutrons

    NASA Technical Reports Server (NTRS)

    Korff, S. A.; Mendell, R. B.; Merker, M.; Light, E. S.; Verschell, H. J.; Sandie, W. S.

    1979-01-01

    Contributions to fast neutron measurements in the atmosphere are outlined. The results of a calculation to determine the production, distribution and final disappearance of atmospheric neutrons over the entire spectrum are presented. An attempt is made to answer questions that relate to processes such as neutron escape from the atmosphere and C-14 production. In addition, since variations of secondary neutrons can be related to variations in the primary radiation, comment on the modulation of both radiation components is made.

  7. Neutron activation for ITER

    SciTech Connect

    Barnes, C.W.; Loughlin, M.J.; Nishitani, Takeo

    1996-04-29

    There are three primary goals for the Neutron Activation system for ITER: maintain a robust relative measure of fusion power with stability and high dynamic range (7 orders of magnitude); allow an absolute calibration of fusion power (energy); and provide a flexible and reliable system for materials testing. The nature of the activation technique is such that stability and high dynamic range can be intrinsic properties of the system. It has also been the technique that demonstrated (on JET and TFTR) the highest accuracy neutron measurements in DT operation. Since the gamma-ray detectors are not located on the tokamak and are therefore amenable to accurate characterization, and if material foils are placed very close to the ITER plasma with minimum scattering or attenuation, high overall accuracy in the fusion energy production (7--10%) should be achievable on ITER. In the paper, a conceptual design is presented. A system is shown to be capable of meeting these three goals, also detailed design issues remain to be solved.

  8. Optimization of Shielded Scintillator for Neutron Detection

    NASA Astrophysics Data System (ADS)

    Belancourt, Patrick; Morrison, John; Akli, Kramer; Freeman, Richard; High Energy Density Physics Team

    2011-10-01

    The High Energy Density Physics group is interested in the basic science of creating a neutron and gamma ray source. The neutrons and gamma rays are produced by accelerating ions via a laser into a target and creating fusion neutrons and gamma rays. A scintillator and photomultiplier tube will be used to detect these neutrons. Neutrons and photons produce ionizing radiation in the scintillator which then activates metastable states. These metastable states have both short and long decay rates. The initial photon count is orders of magnitude higher than the neutron count and poses problems for accurately detecting the neutrons due to the long decay state that is activated by the photons. The effects of adding lead shielding on the temporal response and signal level of the neutron detector will be studied in an effort to minimize the photon count without significant reduction to the temporal resolution of the detector. MCNP5 will be used to find the temporal response and energy deposition into the scintillator by adding lead shielding. Results from the simulations will be shown. Optimization of our scintillator neutron detection system is needed to resolve the neutron energies and neutron count of a novel neutron and gamma ray source.

  9. ORNL fusion integral experiment/analysis program

    SciTech Connect

    Santoro, R.T.; Barnes, J.M.; Alsmiller, R.G. Jr.; Drischler, J.D.

    1986-01-01

    During the past 7 yr, the Oak Ridge National Lab. has been tasked by the Office of Fusion Energy, US Dept. of Energy, to conduct a series of integral experiments to provide data for validating the radiation transport methods and nuclear data that are used for nuclear design calculations for fusion reactors. The program focused on two kinds of experiments: (a) the measurement of neutron and gamma-ray spectra resulting when 14-MeV neutrons incident on bulk shields of different composition and thickness, and (b) the measurement of neutron and gamma-ray spectra as a function of detector location relative to the mouths of straight cylindrical ducts of different length-to-diameter ratios when 14-MeV neutrons were incident on the ducts.

  10. Neutron dosimetry

    DOEpatents

    Quinby, Thomas C.

    1976-07-27

    A method of measuring neutron radiation within a nuclear reactor is provided. A sintered oxide wire is disposed within the reactor and exposed to neutron radiation. The induced radioactivity is measured to provide an indication of the neutron energy and flux within the reactor.

  11. Neutron guide

    DOEpatents

    Greene, Geoffrey L.

    1999-01-01

    A neutron guide in which lengths of cylindrical glass tubing have rectangular glass plates properly dimensioned to allow insertion into the cylindrical glass tubing so that a sealed geometrically precise polygonal cross-section is formed in the cylindrical glass tubing. The neutron guide provides easier alignment between adjacent sections than do the neutron guides of the prior art.

  12. Image fusion

    NASA Technical Reports Server (NTRS)

    Pavel, M.

    1993-01-01

    The topics covered include the following: a system overview of the basic components of a system designed to improve the ability of a pilot to fly through low-visibility conditions such as fog; the role of visual sciences; fusion issues; sensor characterization; sources of information; image processing; and image fusion.

  13. MODULES FOR EXPERIMENTS IN STELLAR ASTROPHYSICS (MESA)

    SciTech Connect

    Paxton, Bill; Bildsten, Lars; Dotter, Aaron; Herwig, Falk; Lesaffre, Pierre; Timmes, Frank

    2011-01-15

    Stellar physics and evolution calculations enable a broad range of research in astrophysics. Modules for Experiments in Stellar Astrophysics (MESA) is a suite of open source, robust, efficient, thread-safe libraries for a wide range of applications in computational stellar astrophysics. A one-dimensional stellar evolution module, MESAstar, combines many of the numerical and physics modules for simulations of a wide range of stellar evolution scenarios ranging from very low mass to massive stars, including advanced evolutionary phases. MESAstar solves the fully coupled structure and composition equations simultaneously. It uses adaptive mesh refinement and sophisticated timestep controls, and supports shared memory parallelism based on OpenMP. State-of-the-art modules provide equation of state, opacity, nuclear reaction rates, element diffusion data, and atmosphere boundary conditions. Each module is constructed as a separate Fortran 95 library with its own explicitly defined public interface to facilitate independent development. Several detailed examples indicate the extensive verification and testing that is continuously performed and demonstrate the wide range of capabilities that MESA possesses. These examples include evolutionary tracks of very low mass stars, brown dwarfs, and gas giant planets to very old ages; the complete evolutionary track of a 1 M {sub sun} star from the pre-main sequence (PMS) to a cooling white dwarf; the solar sound speed profile; the evolution of intermediate-mass stars through the He-core burning phase and thermal pulses on the He-shell burning asymptotic giant branch phase; the interior structure of slowly pulsating B Stars and Beta Cepheids; the complete evolutionary tracks of massive stars from the PMS to the onset of core collapse; mass transfer from stars undergoing Roche lobe overflow; and the evolution of helium accretion onto a neutron star. MESA can be downloaded from the project Web site (http://mesa.sourceforge.net/).

  14. Control of a laser inertial confinement fusion-fission power plant

    DOEpatents

    Moses, Edward I.; Latkowski, Jeffery F.; Kramer, Kevin J.

    2015-10-27

    A laser inertial-confinement fusion-fission energy power plant is described. The fusion-fission hybrid system uses inertial confinement fusion to produce neutrons from a fusion reaction of deuterium and tritium. The fusion neutrons drive a sub-critical blanket of fissile or fertile fuel. A coolant circulated through the fuel extracts heat from the fuel that is used to generate electricity. The inertial confinement fusion reaction can be implemented using central hot spot or fast ignition fusion, and direct or indirect drive. The fusion neutrons result in ultra-deep burn-up of the fuel in the fission blanket, thus enabling the burning of nuclear waste. Fuels include depleted uranium, natural uranium, enriched uranium, spent nuclear fuel, thorium, and weapons grade plutonium. LIFE engines can meet worldwide electricity needs in a safe and sustainable manner, while drastically shrinking the highly undesirable stockpiles of depleted uranium, spent nuclear fuel and excess weapons materials.

  15. Experiments with neutron beams for the astrophysical s process

    NASA Astrophysics Data System (ADS)

    Lederer, C.; Altstadt, S.; Andrzejewski, J.; Audouin, L.; Barbagallo, M.; Bécares, V.; Bečvář, F.; Belloni, F.; Berthoumieux, E.; Billowes, J.; Boccone, V.; Bosnar, D.; Brugger, M.; Calviani, M.; Calviño, F.; Cano-Ott, D.; Carrapiço, C.; Cerutti, F.; Chiaveri, E.; Chin, M.; Colonna, N.; Cortés, G.; Cortés-Giraldo, M. A.; Diakaki, M.; Domingo-Pardo, C.; Duran, I.; Dressler, R.; Dzysiuk, N.; Eleftheriadis, C.; Ferrari, A.; Fraval, K.; Ganesan, S.; García, A. R.; Giubrone, G.; Gómez-Hornillos, M. B.; Gonçalves, I. F.; González-Romero, E.; Griesmayer, E.; Guerrero, C.; Gunsing, F.; Gurusamy, P.; Hernández-Prieto, A.; Jenkins, D. G.; Jericha, E.; Kadi, Y.; Käppeler, F.; Karadimos, D.; Kivel, N.; Koehler, P.; Kokkoris, M.; Korschinek, G.; Krtička, M.; Kroll, J.; Lampoudis, C.; Langer, C.; Leal-Cidoncha, E.; Leeb, H.; Leong, L. S.; Losito, R.; Mallick, A.; Manousos, A.; Marganiec, J.; Martínez, T.; Massimi, C.; Mastinu, P. F.; Mastromarco, M.; Meaze, M.; Mendoza, E.; Mengoni, A.; Milazzo, P. M.; Mingrone, F.; Mirea, M.; Mondalaers, W.; Paradela, C.; Pavlik, A.; Perkowski, J.; Pignatari, M.; Plompen, A.; Praena, J.; Quesada, J. M.; Rauscher, T.; Reifarth, R.; Riego, A.; Robles, M. S.; Roman, F.; Rubbia, C.; Sabaté-Gilarte, M.; Sarmento, R.; Saxena, A.; Schillebeeckx, P.; Schmidt, S.; Schumann, D.; Tagliente, G.; Tain, J. L.; Tarrío, D.; Tassan-Got, L.; Tsinganis, A.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Versaci, R.; Vermeulen, M. J.; Vlachoudis, V.; Vlastou, R.; Wallner, A.; Ware, T.; Weigand, M.; Weiβ, C.; Wright, T.; Žugec, P.

    2016-01-01

    Neutron capture cross sections are the key nuclear physics input to study the slow neutron capture process, which is responsible for forming about half of the elemental abundances above Fe. Stellar neutron capture cross section can be measured by the time-of-flight technique, or by activation. Both techniques will be discussed and recent experiments in the Fe/Ni mass region will be presented.

  16. Lithium ceramics as the solid breeder material in fusion reactors

    SciTech Connect

    Hollenberg, G. W.; Reuther, T. C.; Johnson, C. E.

    1982-03-01

    Fusion blanket designs have for almost a decade considered the use of a solid breeder relying on available data and assumed performance. The conclusion from these studies is that acceptable neutronic and thermal hydraulic performance can be achieved. In the future, it will be necessary to establish that a particular material can tolerate the thermal and irradiation environment of the fusion blanket while still providing the required functions of tritium recovery, power production and neutron shielding.

  17. The neutron imaging diagnostic at NIF (invited).

    PubMed

    Merrill, F E; Bower, D; Buckles, R; Clark, D D; Danly, C R; Drury, O B; Dzenitis, J M; Fatherley, V E; Fittinghoff, D N; Gallegos, R; Grim, G P; Guler, N; Loomis, E N; Lutz, S; Malone, R M; Martinson, D D; Mares, D; Morley, D J; Morgan, G L; Oertel, J A; Tregillis, I L; Volegov, P L; Weiss, P B; Wilde, C H; Wilson, D C

    2012-10-01

    A neutron imaging diagnostic has recently been commissioned at the National Ignition Facility (NIF). This new system is an important diagnostic tool for inertial fusion studies at the NIF for measuring the size and shape of the burning DT plasma during the ignition stage of Inertial Confinement Fusion (ICF) implosions. The imaging technique utilizes a pinhole neutron aperture, placed between the neutron source and a neutron detector. The detection system measures the two dimensional distribution of neutrons passing through the pinhole. This diagnostic has been designed to collect two images at two times. The long flight path for this diagnostic, 28 m, results in a chromatic separation of the neutrons, allowing the independently timed images to measure the source distribution for two neutron energies. Typically the first image measures the distribution of the 14 MeV neutrons and the second image of the 6-12 MeV neutrons. The combination of these two images has provided data on the size and shape of the burning plasma within the compressed capsule, as well as a measure of the quantity and spatial distribution of the cold fuel surrounding this core.

  18. Fluidized wall for protecting fusion chamber walls

    DOEpatents

    Maniscalco, James A.; Meier, Wayne R.

    1982-01-01

    Apparatus for protecting the inner wall of a fusion chamber from microexplosion debris, x-rays, neutrons, etc. produced by deuterium-tritium (DT) targets imploded within the fusion chamber. The apparatus utilizes a fluidized wall similar to a waterfall comprising liquid lithium or solid pellets of lithium-ceramic, the waterfall forming a blanket to prevent damage of the structural materials of the chamber.

  19. Challenges on the road towards fusion electricity

    NASA Astrophysics Data System (ADS)

    Donné, Tony

    2016-11-01

    The ultimate aim of fusion research is to generate electricity by fusing light atoms into heavier ones, thereby converting mass into energy. The most efficient fusion reaction is based on merging the hydrogenic isotopes: Deuterium (2D) and Tritium (3T) into Helium (4He) and a neutron, which releases 17.6 MeV in the form of kinetic energy of the reaction products.

  20. EDITORIAL: Stochasticity in fusion plasmas Stochasticity in fusion plasmas

    NASA Astrophysics Data System (ADS)

    Unterberg, Bernhard

    2010-03-01

    Structure formation and transport in stochastic plasmas is a topic of growing importance in many fields of plasma physics from astrophysics to fusion research. In particular, the possibility to control transport in the boundary of confined fusion plasmas by resonant magnetic perturbations has been investigated extensively during recent years. A major research achievement was finding that the intense transient particle and heat fluxes associated with edge localized modes (here type-I ELMs) in magnetically confined fusion plasmas can be mitigated or even suppressed by resonant magnetic perturbation fields. This observation opened up a possible scheme to avoid too large erosion and material damage by such transients in future fusion devices such as ITER. However, it is widely recognized that a more basic understanding is needed to extrapolate the results obtained in present experiments to future fusion devices. The 4th workshop on Stochasticity in Fusion Plasmas was held in Jülich, Germany, from 2 to 4 March 2009. This series of workshops aims at gathering fusion experts from various plasma configurations such as tokamaks, stellarators and reversed field pinches to exchange knowledge on structure formation and transport in stochastic fusion plasmas. The workshops have attracted colleagues from both experiment and theory and stimulated fruitful discussions about the basics of stochastic fusion plasmas. Important papers from the first three workshops in 2003, 2005 and 2007 have been published in previous special issues of Nuclear Fusion (stacks.iop.org/NF/44/i=6, stacks.iop.org/NF/46/i=4 and stacks.iop.org/NF/48/i=2). This special issue comprises contributions presented at the 4th SFP workshop, dealing with the main subjects such as formation of stochastic magnetic layers, energy and particle transport in stochastic magnetic fields, plasma response to external, non-axis-symmetric perturbations and last but not least application of resonant magnetic perturbations for

  1. PREFACE: A Stellar Journey A Stellar Journey

    NASA Astrophysics Data System (ADS)

    Asplund, M.

    2008-10-01

    The conference A Stellar Journey was held in Uppsala, Sweden, 23 27June 2008, in honour of Professor Bengt Gustafsson's 65th birthday. The choice of Uppsala as the location for this event was obvious given Bengt's long-standing association with the city stemming back to his school days. With the exception of a two-year postdoc stint in Copenhagen, five years as professor at Stockholm University and two years as director of the Sigtuna foundation, Bengt has forged his illustrious professional career at Uppsala University. The symposium venue was Museum Gustavianum, once the main building of the oldest university in Scandinavia. The title of the symposium is a paraphrasing of Bengt's popular astronomy book Kosmisk Resa (in English: Cosmic Journey) written in the early eighties. I think this aptly symbolizes his career that has been an astronomical voyage from near to far, from the distant past to the present. The original book title was modified slightly to reflect that most of his work to date has dealt with stars in one way or another. In addition it also gives credit to Bengt's important role as a guiding light for a very large number of students, colleagues and collaborators, indeed for several generations of astronomers. For me personally, the book Kosmisk Resa bears particular significance as it has shaped my life rather profoundly. Although I had already decided to become an astronomer, when I first read the book as a 14-year-old I made up my mind then and there that I would study under Bengt Gustafsson and work on stars. Indeed I have remained true to this somewhat audacious resolution. I suspect that a great number of us have similar stories how Bengt has had a major influence on our lives, whether on the professional or personal level. Perhaps Bengt's most outstanding characteristic is his enthralling enthusiasm. This is equally true whether he is pondering some scientific conundrum, supervising students or performing in front of an audience, be it an

  2. Fusion product studies via fast ion D-D and D-3He fusion on JET

    NASA Astrophysics Data System (ADS)

    Sharapov, S. E.; Hellsten, T.; Kiptily, V. G.; Craciunescu, T.; Eriksson, J.; Fitzgerald, M.; Girardo, J.-B.; Goloborod'ko, V.; Hellesen, C.; Hjalmarsson, A.; Johnson, T.; Kazakov, Y.; Koskela, T.; Mantsinen, M.; Monakhov, I.; Nabais, F.; Nocente, M.; Perez von Thun, C.; Rimini, F.; Santala, M.; Schneider, M.; Tardocchi, M.; Tsalas, M.; Yavorskij, V.; Zoita, V.; Contributors, JET

    2016-11-01

    Dedicated fast ion D-D and D-3He fusion experiments were performed on JET with carbon wall (2008) and ITER-like wall (2014) for testing the upgraded neutron and energetic ion diagnostics of fusion products. Energy spectrum of D-D neutrons was the focus of the studies in pure deuterium plasmas. A significant broadening of the energy spectrum of neutrons born in D-D fast fusion was observed, and dependence of the maximum D and D-D neutron energies on plasma density was established. Diagnostics of charged products of aneutronic D-3He fusion reactions, 3.7 MeV alpha-particles similar to those in D-T fusion, and 14.6 MeV protons, were the focus of the studies in D-3He plasmas. Measurements of 16.4 MeV gamma-rays born in the weak secondary branch of D(3He, γ)5Li reaction were used for assessing D-3He fusion power. For achieving high yield of D-D and D-3He reactions at relatively low levels of input heating power, an acceleration of D beam up to the MeV energy range was used employing 3rd harmonic (f=3{{f}CD} ) ICRH technique. These results were compared to the techniques of D beam injection into D-3He mixture, and 3He-minority ICRH in D plasmas.

  3. Resistive edge mode instability in stellarator and tokamak geometries

    SciTech Connect

    Mahmood, M. Ansar; Rafiq, T.; Persson, M.; Weiland, J.

    2008-09-15

    Geometrical effects on linear stability of electrostatic resistive edge modes are investigated in the three-dimensional Wendelstein 7-X stellarator [G. Grieger et al., Plasma Physics and Controlled Nuclear Fusion Research 1990 (International Atomic Energy Agency, Vienna, 1991), Vol. 3, p. 525] and the International Thermonuclear Experimental Reactor [Progress in the ITER Physics Basis, Nucl. Fusion 7, S1, S285 (2007)]-like equilibria. An advanced fluid model is used for the ions together with the reduced Braghinskii equations for the electrons. Using the ballooning mode representation, the drift wave problem is set as an eigenvalue equation along a field line and is solved numerically using a standard shooting technique. A significantly larger magnetic shear and a less unfavorable normal curvature in the tokamak equilibrium are found to give a stronger finite-Larmor radius stabilization and a more narrow mode spectrum than in the stellarator. The effect of negative global magnetic shear in the tokamak is found to be stabilizing. The growth rate on a tokamak magnetic flux surface is found to be comparable to that on a stellarator surface with the same global magnetic shear but the eigenfunction in the tokamak is broader than in the stellarator due to the presence of large negative local magnetic shear (LMS) on the tokamak surface. A large absolute value of the LMS in a region of unfavorable normal curvature is found to be stabilizing in the stellarator, while in the tokamak case, negative LMS is found to be stabilizing and positive LMS destabilizing.

  4. Resistive edge mode instability in stellarator and tokamak geometries

    NASA Astrophysics Data System (ADS)

    Mahmood, M. Ansar; Rafiq, T.; Persson, M.; Weiland, J.

    2008-09-01

    Geometrical effects on linear stability of electrostatic resistive edge modes are investigated in the three-dimensional Wendelstein 7-X stellarator [G. Grieger et al., Plasma Physics and Controlled Nuclear Fusion Research 1990 (International Atomic Energy Agency, Vienna, 1991), Vol. 3, p. 525] and the International Thermonuclear Experimental Reactor [Progress in the ITER Physics Basis, Nucl. Fusion 7, S1, S285 (2007)]-like equilibria. An advanced fluid model is used for the ions together with the reduced Braghinskii equations for the electrons. Using the ballooning mode representation, the drift wave problem is set as an eigenvalue equation along a field line and is solved numerically using a standard shooting technique. A significantly larger magnetic shear and a less unfavorable normal curvature in the tokamak equilibrium are found to give a stronger finite-Larmor radius stabilization and a more narrow mode spectrum than in the stellarator. The effect of negative global magnetic shear in the tokamak is found to be stabilizing. The growth rate on a tokamak magnetic flux surface is found to be comparable to that on a stellarator surface with the same global magnetic shear but the eigenfunction in the tokamak is broader than in the stellarator due to the presence of large negative local magnetic shear (LMS) on the tokamak surface. A large absolute value of the LMS in a region of unfavorable normal curvature is found to be stabilizing in the stellarator, while in the tokamak case, negative LMS is found to be stabilizing and positive LMS destabilizing.

  5. Las Campanas Stellar Library

    NASA Astrophysics Data System (ADS)

    Chilingarian, Igor; Zolotukhin, Ivan; Beletsky, Yuri; Worthey, Guy

    2015-08-01

    Stellar libraries are fundamental tools required to understand stellar populations in star clusters and galaxies as well as properties of individual stars. Comprehensive libraries exist in the optical domain, but the near-infrared (NIR) domain stays a couple of decades behind. Here we present the Las Campanas Stellar Library project aiming at obtaining high signal-to-noise intermediate-resolution (R=8000) NIR spectra (0.83<λ<2.5μm) for a sample of 1200 stars in the Southern sky using the Folded-port InfraRed Echelette spectrograph at the 6.5-m Magellan Baade telescope. We developed a dedicated observing strategy and customized the telescope control software in order to achieve the highest possible level of data homogeniety. As of 2015, we observed about 600 stars of all spectral types and luminosity classes making our library the largest homogeneous collection of stellar spectra covering the entire NIR domain. We also re-calibrated in flux and wavelength the two existing optical stellar libraries, INDO-US and UVES-POP and followed up about 400 non-variable stars in the NIR in order to get complete optical-NIR coverage. Worth mentioning that our current sample includes about 80 AGB stars and a few dozens of bulge/LMC/SMC stars.

  6. Neutron tube design study for boron neutron capture therapy application

    SciTech Connect

    Verbeke, J.M.; Lee, Y.; Leung, K.N.; Vujic, J.; Williams, M.D.; Wu, L.K.; Zahir, N.

    1999-05-06

    Radio-frequency (RF) driven ion sources are being developed in Lawrence Berkeley National Laboratory (LBNL) for sealed-accelerator-tube neutron generator application. By using a 5-cm-diameter RF-driven multicusp source H{sup +} yields over 95% have been achieved. These experimental findings will enable one to develop compact neutron generators based on the D-D or D-T fusion reactions. In this new neutron generator, the ion source, the accelerator and the target are all housed in a sealed metal container without external pumping. Recent moderator design simulation studies have shown that 14 MeV neutrons could be moderated to therapeutically useful energy ranges for boron neutron capture therapy (BNCT). The dose near the center of the brain with optimized moderators is about 65% higher than the dose obtained from a typical neutron spectrum produced by the Brookhaven Medical Research Reactor (BMRR), and is comparable to the dose obtained by other accelerator-based neutron sources. With a 120 keV and 1 A deuteron beam, a treatment time of {approx}35 minutes is estimated for BNCT.

  7. Observed Multi-Decade DD and DT Z-Pinch Fusion Rate Scaling in 5 Dense Plasma Focus Fusion Machines

    SciTech Connect

    Hagen, E. C.; Lowe, D. R.; O'Brien, R.; Meehan, B. T.

    2013-06-18

    Dense Plasma Focus (DPF) machines are in use worldwide or a wide variety of applications; one of these is to produce intense, short bursts of fusion via r-Z pinch heating and compression of a working gas. We have designed and constructed a series of these, ranging from portable to a maximum energy storage capacity of 2 MJ. Fusion rates from 5 DPF pulsed fusion generators have been measured in a single laboratory using calibrated activation detectors. Measured rates range from ~ 1015 to more than 1019 fusions per second have been measured. Fusion rates from the intense short (20 – 50 ns) periods of production were inferred from measurement of neutron production using both calibrated activation detectors and scintillator-PMT neutron time of flight (NTOF) detectors. The NTOF detectors are arranged to measure neutrons versus time over flight paths of 30 Meters. Fusion rate scaling versus energy and current will be discussed. Data showing observed fusion cutoff at D-D fusion yield levels of approximately 1*1012, and corresponding tube currents of ~ 3 MA will be shown. Energy asymmetry of product neutrons will also be discussed. Data from the NTOF lines of sight have been used to measure energy asymmetries of the fusion neutrons. From this, center of mass energies for the D(d,n)3He reaction are inferred. A novel re-entrant chamber that allows extremely high single pulse neutron doses (> 109 neutrons/cm2 in 50 ns) to be supplied to samples will be described. Machine characteristics and detector types will be discussed.

  8. Compact Stellar X-ray Sources

    NASA Astrophysics Data System (ADS)

    Lewin, Walter; van der Klis, Michiel

    2010-11-01

    1. Accreting neutron stars and black holes: a decade of discoveries D. Psaltis; 2. Rapid X-ray variability M. van der Klis; 3. New views of thermonuclear bursts T. Strohmayer and L. Bildsten; 4. Black hole binaries J. McClintock and R. Remillard; 5. Optical, ultraviolet and infrared observations of X-ray binaries P. Charles and M. Coe; 6. Fast X-ray transients and X-ray flashes J. Heise and J. in 't Zand; 7. Isolated neutron stars V. Kaspi, M. Roberts and A. Harding; 8. Globular cluster X-ray sources F. Verbunt and W. Lewin; 9. Jets from X-ray binaries R. Fender; 10. X-Rays from cataclysmic variables E. Kuulkers, A. Norton, A. Schwope and B. Warner; 11. Super soft sources P. Kahabka and E. van den Heuvel; 12. Compact stellar X-ray sources in normal galaxies G. Fabbiano and N. White; 13. Accretion in compact binaries A. King; 14. Soft gamma repeaters and anomalous X-ray pulsars: magnetar candidates P. Woods and C. Thompson; 15. Cosmic gamma-ray bursts, their afterglows, and their host galaxies K. Hurley, R. Sari and S. Djorgovski; 16. Formation and evolution of compact stellar X-ray sources T. Tauris and E. van den Heuvel.

  9. Compact Stellar X-ray Sources

    NASA Astrophysics Data System (ADS)

    Lewin, Walter H. G.; van der Klis, Michiel

    2006-04-01

    1. Accreting neutron stars and black holes: a decade of discoveries D. Psaltis; 2. Rapid X-ray variability M. van der Klis; 3. New views of thermonuclear bursts T. Strohmayer and L. Bildsten; 4. Black hole binaries J. McClintock and R. Remillard; 5. Optical, ultraviolet and infrared observations of X-ray binaries P. Charles and M. Coe; 6. Fast X-ray transients and X-ray flashes J. Heise and J. in 't Zand; 7. Isolated neutron stars V. Kaspi, M. Roberts and A. Harding; 8. Globular cluster X-ray sources F. Verbunt and W. Lewin; 9. Jets from X-ray binaries R. Fender; 10. X-Rays from cataclysmic variables E. Kuulkers, A. Norton, A. Schwope and B. Warner; 11. Super soft sources P. Kahabka and E. van den Heuvel; 12. Compact stellar X-ray sources in normal galaxies G. Fabbiano and N. White; 13. Accretion in compact binaries A. King; 14. Soft gamma repeaters and anomalous X-ray pulsars: magnetar candidates P. Woods and C. Thompson; 15. Cosmic gamma-ray bursts, their afterglows, and their host galaxies K. Hurley, R. Sari and S. Djorgovski; 16. Formation and evolution of compact stellar X-ray sources T. Tauris and E. van den Heuvel.

  10. Ch. 37, Inertial Fusion Energy Technology

    SciTech Connect

    Moses, E

    2010-06-09

    hydrogen (deuterium and tritium), are derived from water and the metal lithium, a relatively abundant resource. The fuels are virtually inexhaustible and they are available worldwide. Deuterium from one gallon of seawater would provide the equivalent energy of 300 gallons of gasoline, or over a half ton of coal. This energy is released when deuterium and tritium nuclei are fused together to form a helium nucleus and a neutron. The neutron is used to breed tritium from lithium. The energy released is carried by the helium nucleus (3.5 MeV) and the neutron (14 MeV). The energetic helium nucleus heats the fuel, helping to sustain the fusion reaction. Once the helium cools, it is collected and becomes a useful byproduct. A fusion power plant would produce no climate-changing gases.

  11. Stellar X-Ray Polarimetry

    NASA Technical Reports Server (NTRS)

    Swank, J.

    2011-01-01

    Most of the stellar end-state black holes, pulsars, and white dwarfs that are X-ray sources should have polarized X-ray fluxes. The degree will depend on the relative contributions of the unresolved structures. Fluxes from accretion disks and accretion disk corona may be polarized by scattering. Beams and jets may have contributions of polarized emission in strong magnetic fields. The Gravity and Extreme Magnetism Small Explorer (GEMS) will study the effects on polarization of strong gravity of black holes and strong magnetism of neutron stars. Some part of the flux from compact stars accreting from companion stars has been reflected from the companion, its wind, or accretion streams. Polarization of this component is a potential tool for studying the structure of the gas in these binary systems. Polarization due to scattering can also be present in X-ray emission from white dwarf binaries and binary normal stars such as RS CVn stars and colliding wind sources like Eta Car. Normal late type stars may have polarized flux from coronal flares. But X-ray polarization sensitivity is not at the level needed for single early type stars.

  12. Neutron counter based on beryllium activation

    SciTech Connect

    Bienkowska, B.; Prokopowicz, R.; Kaczmarczyk, J.; Paducha, M.; Scholz, M.; Igielski, A.; Karpinski, L.; Pytel, K.

    2014-08-21

    The fusion reaction occurring in DD plasma is followed by emission of 2.45 MeV neutrons, which carry out information about fusion reaction rate and plasma parameters and properties as well. Neutron activation of beryllium has been chosen for detection of DD fusion neutrons. The cross-section for reaction {sup 9}Be(n, α){sup 6}He has a useful threshold near 1 MeV, which means that undesirable multiple-scattered neutrons do not undergo that reaction and therefore are not recorded. The product of the reaction, {sup 6}He, decays with half-life T{sub 1/2} = 0.807 s emitting β{sup −} particles which are easy to detect. Large area gas sealed proportional detector has been chosen as a counter of β–particles leaving activated beryllium plate. The plate with optimized dimensions adjoins the proportional counter entrance window. Such set-up is also equipped with appropriate electronic components and forms beryllium neutron activation counter. The neutron flux density on beryllium plate can be determined from the number of counts. The proper calibration procedure needs to be performed, therefore, to establish such relation. The measurements with the use of known β–source have been done. In order to determine the detector response function such experiment have been modeled by means of MCNP5–the Monte Carlo transport code. It allowed proper application of the results of transport calculations of β{sup −} particles emitted from radioactive {sup 6}He and reaching proportional detector active volume. In order to test the counter system and measuring procedure a number of experiments have been performed on PF devices. The experimental conditions have been simulated by means of MCNP5. The correctness of simulation outcome have been proved by measurements with known radioactive neutron source. The results of the DD fusion neutron measurements have been compared with other neutron diagnostics.

  13. Cold fusion studies

    NASA Astrophysics Data System (ADS)

    Hembree, D. M.; Burchfield, L. A.; Fuller, E. L., Jr.; Perey, F. G.; Mamantov, G.

    1990-06-01

    A series of experiments designed to detect the by-products expected from deuterium fusion occurring in the palladium and titanium cathodes of heavy water, D2O, electrolysis cells is reported. The primary purpose of this account is to outline the integrated experimental design developed to test the cold fusion hypothesis and to report preliminary results that support continuing the investigation. Apparent positive indicators of deuterium fusion were observed, but could not be repeated or proved to originate from the electrochemical cells. In one instance, two large increases in the neutron count rate, the largest of which exceeded the background by 27 standard deviations, were observed. In a separate experiment, one of the calorimetry cells appeared to be producing approximately 18 percent more power that the input value, but thermistor failure prevented an accurate recording of the event as a function of time. In general, the tritium levels in most cells followed the slow enrichment expected from the electrolysis of D2O containing a small amount of tritium. However, after 576 hours of electrolysis, one cell developed a tritium concentration approximately seven times greater than expected level.

  14. Origins of Stellar Halos

    NASA Astrophysics Data System (ADS)

    Johnston, Kathryn V.

    2016-08-01

    This contribution reviews ideas about the origins of stellar halos. It includes discussion of the theoretical understanding of and observational evidence for stellar populations formed ``in situ'' (meaning formed in orbits close to their current ones), ``kicked-out'' (meaning formed in the inner galaxy in orbits unlike their current ones) and ``accreted'' (meaning formed in a dark matter halo other than the one they currently occupy). At this point there is general agreement that a significant fraction of any stellar halo population is likely ``accreted''. There is modest evidence for the presence of a ``kicked-out'' population around both the Milky Way and M31. Our theoretical understanding of and the observational evidence for an ``in situ'' population are less clear.

  15. High Intensity, Pulsed, D-D Neutron Generator

    SciTech Connect

    Williams, D. L.; Vainionpaa, J. H.; Jones, G.; Piestrup, M. A.; Gary, C. K.; Harris, J. L.; Fuller, M. J.; Cremer, J. T.; Ludewigt, B. A.; Kwan, J. W.; Reijonen, J.; Leung, K.-N.; Gough, R. A.

    2009-03-10

    Single ion-beam RF-plasma neutron generators are presented as a laboratory source of intense neutrons. The continuous and pulsed operations of such a neutron generator using the deuterium-deuterium fusion reaction are reported. The neutron beam can be pulsed by switching the RF plasma and/or a gate electrode. These generators are actively vacuum pumped so that a continuous supply of deuterium gas is present for the production of ions and neutrons. This contributes to the generator's long life. These single-beam generators are capable of producing up to 10{sup 10} n/s. Previously, Adelphi and LBNL have demonstrated these generators' applications in fast neutron radiography, Prompt Gamma Neutron Activation Analysis (PGNAA) and Neutron Activation Analysis (NAA). Together with an inexpensive compact moderator, these high-output neutron generators extend useful applications to home laboratory operations.

  16. High Intensity, Pulsed, D-D Neutron Generator

    SciTech Connect

    Williams, D. L.; Vainionpaa, J. H.; Jones, G.; Piestrup, M. A.; Gary, C. K.; Harris, J. L.; Fuller, M. J.; Cremer, J. T.; Ludewigt, Bernhard A.; Kwan, J. W.; Reijonen, J.; Leung, K.-N.; Gough, R. A.

    2008-08-01

    Single ion-beam RF-plasma neutron generators are presented as a laboratory source of intense neutrons. The continuous and pulsed operations of such a neutron generator using the deuterium-deuterium fusion reaction are reported. The neutron beam can be pulsed by switching the RF plasma and/or a gate electrode. These generators are actively vacuum pumped so that a continuous supply of deuterium gas is present for the production of ions and neutrons. This contributes to the generator's long life. These single-beam generators are capable of producing up to 1E10 n/s. Previously, Adelphi and LBNL have demonstrated these generators' applications in fast neutron radiography, Prompt Gamma Neutron Activation Analysis (PGNAA) and Neutron Activation Analysis (NAA). Together with an inexpensive compact moderator, these high-output neutron generators extend useful applications to home laboratory operations.

  17. High Intensity, Pulsed, D-D Neutron Generator

    NASA Astrophysics Data System (ADS)

    Williams, D. L.; Vainionpaa, J. H.; Jones, G.; Piestrup, M. A.; Gary, C. K.; Harris, J. L.; Fuller, M. J.; Cremer, J. T.; Ludewigt, B. A.; Kwan, J. W.; Reijonen, J.; Leung, K.-N.; Gough, R. A.

    2009-03-01

    Single ion-beam RF-plasma neutron generators are presented as a laboratory source of intense neutrons. The continuous and pulsed operations of such a neutron generator using the deuterium-deuterium fusion reaction are reported. The neutron beam can be pulsed by switching the RF plasma and/or a gate electrode. These generators are actively vacuum pumped so that a continuous supply of deuterium gas is present for the production of ions and neutrons. This contributes to the generator's long life. These single-beam generators are capable of producing up to 1010 n/s. Previously, Adelphi and LBNL have demonstrated these generators' applications in fast neutron radiography, Prompt Gamma Neutron Activation Analysis (PGNAA) and Neutron Activation Analysis (NAA). Together with an inexpensive compact moderator, these high-output neutron generators extend useful applications to home laboratory operations.

  18. The Galactic stellar disc

    NASA Astrophysics Data System (ADS)

    Feltzing, S.; Bensby, T.

    2008-12-01

    The study of the Milky Way stellar discs in the context of galaxy formation is discussed. In particular, we explore the properties of the Milky Way disc using a new sample of about 550 dwarf stars for which we have recently obtained elemental abundances and ages based on high-resolution spectroscopy. For all the stars we also have full kinematic information as well as information about their stellar orbits. We confirm results from previous studies that the thin and the thick discs have distinct abundance patterns. But we also explore a larger range of orbital parameters than what has been possible in our previous studies. Several new results are presented. We find that stars that reach high above the Galactic plane and have eccentric orbits show remarkably tight abundance trends. This implies that these stars formed out of well-mixed gas that had been homogenized over large volumes. We find some evidence that suggest that the event that most likely caused the heating of this stellar population happened a few billion years ago. Through a simple, kinematic exploration of stars with super-solar [Fe/H], we show that the solar neighbourhood contains metal-rich, high velocity stars that are very likely associated with the thick disc. Additionally, the HR1614 moving group and the Hercules and Arcturus stellar streams are discussed and it is concluded that, probably, a large fraction of the groups and streams so far identified in the disc are the result of evolution and interactions within the stellar disc rather than being dissolved stellar clusters or engulfed dwarf galaxies. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile. Also based on observations collected at the Nordic Optical Telescope on La Palma, Spain, and at the European Southern Observatories on La Silla and Paranal, Chile, Proposals no. 65.L-0019(B), 67.B-0108(B), 69.B-0277.

  19. Fusion reactor systems studies

    NASA Astrophysics Data System (ADS)

    1993-09-01

    Fusion Technology Institute personnel actively participated in the ARIES/PULSAR project during the present contract period. Numerous presentations were made at PULSAR project meetings, major contributions were written for the ARIES-2/4 Final Report presentations, and papers were given at technical conferences. Additionally, contributions were written for the ARIES Lessons Learned report, and a very large number of electronic-mail and regular-mail communications were sent. The remaining sections of this progress report will summarize the work accomplished and in progress for the PULSAR project during the contract period. The main areas of effort are as follows: PULSAR Research; ARIES-2/4 Report Contributions; ARIES Lessons Learned Report Contributions; and Stellarator Study.

  20. Stellar Astrophysical Fluid Dynamics

    NASA Astrophysics Data System (ADS)

    Thompson, Michael J.; Christensen-Dalsgaard, Jørgen

    2008-02-01

    Preface; 1. A selective overview Jørgen Christensen-Dalsgaard and Michael J. Thompson; Part I. Stellar Convection and Oscillations: 2. On the diversity of stellar pulsations Wojciech A. Dziembowski; 3. Acoustic radiation and mode excitation by turbulent convection Günter Houdek; 4. Understanding roAp stars Margarida S. Cunha; 5. Waves in the magnetised solar atmosphere Colin S. Rosenthal; Part II. Stellar Rotation and Magnetic Fields: 6. Stellar rotation: a historical survey Leon Mestel; 7. The oscillations of rapidly rotating stars Michel Rieutord; 8. Solar tachocline dynamics: eddy viscosity, anti-friction, or something in between? Michael E. McIntyre; 9. Dynamics of the solar tachocline Pascale Garaud; 10. Dynamo processes: the interaction of turbulence and magnetic fields Michael Proctor; 11. Dynamos in planets Chris Jones; Part III. Physics and Structure of Stellar Interiors: 12. Solar constraints on the equation of state Werner Däppen; 13. 3He transport and the solar neutrino problem Chris Jordinson; 14. Mixing in stellar radiation zones Jean-Paul Zahn; 15. Element settling and rotation-induced mixing in slowly rotating stars Sylvie Vauclair; Part IV. Helio- and Asteroseismology: 16. Solar structure and the neutrino problem Hiromoto Shibahashi; 17. Helioseismic data analysis Jesper Schou; 18. Seismology of solar rotation Takashi Sekii; 19. Telechronohelioseismology Alexander Kosovichev; Part V. Large-Scale Numerical Experiments: 20. Bridges between helioseismology and models of convection zone dynamics Juri Toomre; 21. Numerical simulations of the solar convection zone Julian R. Elliott; 22. Modelling solar and stellar magnetoconvection Nigel Weiss; 23. Nonlinear magnetoconvection in the presence of a strong oblique field Keith Julien, Edgar Knobloch and Steven M. Tobias; 24. Simulations of astrophysical fluids Marcus Brüggen; Part VI. Dynamics: 25. A magic electromagnetic field Donald Lynden-Bell; 26. Continuum equations for stellar dynamics Edward A

  1. Stellar Astrophysical Fluid Dynamics

    NASA Astrophysics Data System (ADS)

    Thompson, Michael J.; Christensen-Dalsgaard, Jørgen

    2003-05-01

    Preface; 1. A selective overview Jørgen Christensen-Dalsgaard and Michael J. Thompson; Part I. Stellar Convection and Oscillations: 2. On the diversity of stellar pulsations Wojciech A. Dziembowski; 3. Acoustic radiation and mode excitation by turbulent convection Günter Houdek; 4. Understanding roAp stars Margarida S. Cunha; 5. Waves in the magnetised solar atmosphere Colin S. Rosenthal; Part II. Stellar Rotation and Magnetic Fields: 6. Stellar rotation: a historical survey Leon Mestel; 7. The oscillations of rapidly rotating stars Michel Rieutord; 8. Solar tachocline dynamics: eddy viscosity, anti-friction, or something in between? Michael E. McIntyre; 9. Dynamics of the solar tachocline Pascale Garaud; 10. Dynamo processes: the interaction of turbulence and magnetic fields Michael Proctor; 11. Dynamos in planets Chris Jones; Part III. Physics and Structure of Stellar Interiors: 12. Solar constraints on the equation of state Werner Däppen; 13. 3He transport and the solar neutrino problem Chris Jordinson; 14. Mixing in stellar radiation zones Jean-Paul Zahn; 15. Element settling and rotation-induced mixing in slowly rotating stars Sylvie Vauclair; Part IV. Helio- and Asteroseismology: 16. Solar structure and the neutrino problem Hiromoto Shibahashi; 17. Helioseismic data analysis Jesper Schou; 18. Seismology of solar rotation Takashi Sekii; 19. Telechronohelioseismology Alexander Kosovichev; Part V. Large-Scale Numerical Experiments: 20. Bridges between helioseismology and models of convection zone dynamics Juri Toomre; 21. Numerical simulations of the solar convection zone Julian R. Elliott; 22. Modelling solar and stellar magnetoconvection Nigel Weiss; 23. Nonlinear magnetoconvection in the presence of a strong oblique field Keith Julien, Edgar Knobloch and Steven M. Tobias; 24. Simulations of astrophysical fluids Marcus Brüggen; Part VI. Dynamics: 25. A magic electromagnetic field Donald Lynden-Bell; 26. Continuum equations for stellar dynamics Edward A

  2. Neutron Radiography

    NASA Astrophysics Data System (ADS)

    Heller, A. K.; Brenizer, J. S.

    Neutron radiography and its related two-dimensional (2D) neutron imaging techniques have been established as invaluable nondestructive inspection methods and quantitative measurement tools. They have been used in a wide variety of applications ranging from inspection of aircraft engine turbine blades to study of two-phase fluid flow in operating proton exchange membrane fuel cells. Neutron radiography is similar to X-ray radiography in that the method produces a 2D attenuation map of neutron radiation that has penetrated the object being examined. However, the images produced differ and are often complementary due to the differences between X-ray and neutron interaction mechanisms. The uses and types of 2D neutron imaging have expanded over the past 15 years as a result of advances in imaging technology and improvements in neutron generators/sources and computers. Still, high-intensity sources such as those from reactors and spallation neutron sources, together with conventional film radiography, remain the mainstay of high-resolution, large field-of-view neutron imaging. This chapter presents a summary of the history, methods, and related variations of neutron radiography techniques.

  3. (Meeting on fusion reactor materials)

    SciTech Connect

    Jones, R.H. ); Klueh, R.L.; Rowcliffe, A.F.; Wiffen, F.W. ); Loomis, B.A. )

    1990-11-01

    During his visit to the KfK, Karlsruhe, F. W. Wiffen attended the IEA 12th Working Group Meeting on Fusion Reactor Materials. Plans were made for a low-activation materials workshop at Culham, UK, for April 1991, a data base workshop in Europe for June 1991, and a molecular dynamics workshop in the United States in 1991. At the 11th IEA Executive Committee on Fusion Materials, discussions centered on the recent FPAC and Colombo panel review in the United States and EC, respectively. The Committee also reviewed recent progress toward a neutron source in the United States (CWDD) and in Japan (ESNIT). A meeting with D. R. Harries (consultant to J. Darvas) yielded a useful overview of the EC technology program for fusion. Of particular interest to the US program is a strong effort on a conventional ferritic/martensitic steel for fist wall/blanket operation beyond NET/ITER.

  4. Fusion Power.

    ERIC Educational Resources Information Center

    Dingee, David A.

    1979-01-01

    Discusses the extraordinary potential, the technical difficulties, and the financial problems that are associated with research and development of fusion power plants as a major source of energy. (GA)

  5. Fusion Power.

    ERIC Educational Resources Information Center

    Dingee, David A.

    1979-01-01

    Discusses the extraordinary potential, the technical difficulties, and the financial problems that are associated with research and development of fusion power plants as a major source of energy. (GA)

  6. Comments on open-ended magnetic systems for fusion

    SciTech Connect

    Post, R.F.

    1990-09-24

    Differentiating characteristics of magnetic confinement systems having externally generated magnetic fields that are open'' are listed and discussed in the light of their several potential advantages for fusion power systems. It is pointed out that at this stage of fusion research high-Q'' (as deduced from long energy confinement times) is not necessarily the most relevant criterion by which to judge the potential of alternate fusion approaches for the economic generation of fusion power. An example is given of a hypothetical open-geometry fusion power system where low-Q operation is essential to meeting one of its main objectives (low neutron power flux).

  7. Calculation of the magnetic surface function gradient in stellarators with broken stellarator symmetry

    SciTech Connect

    Nemov, V. V.; Kasilov, S. V.; Kernbichler, W.; Seiwald, B.

    2010-05-15

    The computation of the gradient of the magnetic surface function, nablapsi, plays an essential role in plasma physics, e.g., for investigations of plasma equilibrium currents or transport fluxes in stellarators. The evaluation of nablapsi becomes more complicated if the magnetic field B does not exhibit stellarator symmetry. Here, a scheme for computation of nablapsi for magnetic configurations which do not show stellarator symmetry is presented. The proposed method is based on computations of gradients of integrals of magnetic field line equations. This new technique for nablapsi calculations is applied to Uragan-2M [O. S. Pavlichenko for the U-2M group, Plasma Phys. Controlled Fusion 35, B223 (1993)]. Taking into account the influence of current feeds and detachable joints of the helical winding the magnetic configuration does not exhibit stellarator symmetry. Computations of nablapsi, the effective ripple epsilon{sub eff}, and the geometrical factor lambda{sub b} for the bootstrap current in the 1/nu transport regime are performed.

  8. Compact ion source neutron generator

    SciTech Connect

    Schenkel, Thomas; Persaud, Arun; Kapadia, Rehan; Javey, Ali; Chang-Hasnain, Constance; Rangelow, Ivo; Kwan, Joe

    2015-10-13

    A neutron generator includes a conductive substrate comprising a plurality of conductive nanostructures with free-standing tips and a source of an atomic species to introduce the atomic species in proximity to the free-standing tips. A target placed apart from the substrate is voltage biased relative to the substrate to ionize and accelerate the ionized atomic species toward the target. The target includes an element capable of a nuclear fusion reaction with the ionized atomic species to produce a one or more neutrons as a reaction by-product.

  9. Microscopic observations of palladium used for cold fusion

    SciTech Connect

    Matsumoto, T. )

    1991-05-01

    This paper examines the microscopic structures of palladium metals used for cold fusion experiments. Tiny spot defects suggesting cold fusion have been observed in grain boundaries as the Nattoh model predicts. The relationship between these defects and a series of neutron busts and an indirect loop of hydrogen chain reactions are discussed.

  10. NUMO: A new (D,T) fusion diagnostic technique

    SciTech Connect

    Moran, M.J.

    1989-02-06

    A NeUtron MOnochromator, NUMO, for (D,T) fusion diagnostics is described. The monochromator consists of CH/sub 2/ (n,p) converter foil, a sector-magnet monochromator and Faraday cup detector. This system can be used to study some details of (D,T) fusion reaction history. 6 refs., 5 figs.

  11. Neutron Spectroscopy on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Knauer, J. P.

    2012-10-01

    The performance of cryogenic fuel implosion experiments in progress at the National Ignition Facility (NIF) is measured by an experimental threshold factorfootnotetextM. J. Edwards et al., Phys. Plasmas 18, 051003 (2011). (ITFX) and a generalized Lawson Criterion.footnotetextC. D. Zhou and R. Betti, Phys. Plasmas 15, 102707 (2008); P. Y. Chang et al., Phys. Rev. Lett. 104, 135002 (2010); and R. Betti et al., Phys. Plasmas 17, 058102 (2010). The ITFX metric is determined by the fusion yield and the areal density of an assembled deuterium-tritium (DT) fuel mass. Typical neutron yields from NIF implosions are greater than 10^14 allowing the neutron energy spectrum to be measured with unprecedented precision. A NIF spectrum is composed of neutrons created by fusion (DT, DD, and TT reactions) and neutrons scattered by the dense, cold fuel layer. Neutron scattering is used to determine the areal density of a NIF implosion and is measured along four lines of sight by two neutron time-of-flight detectors, a neutron imaging system, and the magnetic recoil spectrometer. An accurate measurement of the instrument response function for these detectors allows for the routine production of neutron spectra showing DT fuel areal densities up to 1.3 g/cm^2. Spectra over neutron energies of 10 to 17 MeV show areal-density asymmetries of 20% that are inconsistent with simulations. New calibrations and analyses have expended the spectral coverage down to energies less than the deuterium backscatter edge (1.5 MeV for 14 MeV neutrons). These data and analyses are presented along with a compilation of other nuclear diagnostic data that show a larger-than-expected variation in the areal density over the cold fuel mass. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No DE-FC52-08NA28302. In collaboration with NIC.

  12. Sub-Barrier Fusion with Exotic Nuclei

    NASA Astrophysics Data System (ADS)

    Alamanos, N.; Auger, F.; Keeley, N.; Lapoux, V.; Rusek, K.; Pakou, A.

    2005-09-01

    Interest in the mechanism of near- and sub-barrier fusion has been renewed, with the advent of radioactive beam facilities, due to the specific properties of unbound and weakly bound beams, such as extended neutron densities, low-lying continuum, and very low energy break-up thresholds. It is expected that these properties will appreciably affect fusion, as well as other reaction channels like breakup. We discuss the role played by these properties in barrier and sub-barrier fusion of weakly bound and unstable nuclei. The data are compared to calculations performed within the coupled channels and continuum discretized coupled channels schemes.

  13. Neutron detector

    DOEpatents

    Stephan, Andrew C.; Jardret; Vincent D.

    2011-04-05

    A neutron detector has a volume of neutron moderating material and a plurality of individual neutron sensing elements dispersed at selected locations throughout the moderator, and particularly arranged so that some of the detecting elements are closer to the surface of the moderator assembly and others are more deeply embedded. The arrangement captures some thermalized neutrons that might otherwise be scattered away from a single, centrally located detector element. Different geometrical arrangements may be used while preserving its fundamental characteristics. Different types of neutron sensing elements may be used, which may operate on any of a number of physical principles to perform the function of sensing a neutron, either by a capture or a scattering reaction, and converting that reaction to a detectable signal. High detection efficiency, an ability to acquire spectral information, and directional sensitivity may be obtained.

  14. Ultrahigh energy neutrinos from galactic neutron stars

    NASA Technical Reports Server (NTRS)

    Helfand, D. J.

    1979-01-01

    An attempt is made to estimate the production rate of ultrahigh energy (UHE) neutrinos from galactic neutron stars. The statistics of various stellar populations are reviewed as well as an evolutionary scheme linking several neutron star environments. An observational test for predicting stellar evolution is made using two mass ratio intervals of less than 0.3 and greater than or approximately equal to 0.3, which is supported by kinematical evidence. Attention is given to the problem of the target material that is required by UHE protons accelerated from the pulsar's surface to their rotational kinetic energy, and to the detectability of neutron stars in the UHE neutrinos by employing the deep underwater muon and neutrino detector (DUMAND) array.

  15. Ultrahigh energy neutrinos from galactic neutron stars

    NASA Technical Reports Server (NTRS)

    Helfand, D. J.

    1979-01-01

    An attempt is made to estimate the production rate of ultrahigh energy (UHE) neutrinos from galactic neutron stars. The statistics of various stellar populations are reviewed as well as an evolutionary scheme linking several neutron star environments. An observational test for predicting stellar evolution is made using two mass ratio intervals of less than 0.3 and greater than or approximately equal to 0.3, which is supported by kinematical evidence. Attention is given to the problem of the target material that is required by UHE protons accelerated from the pulsar's surface to their rotational kinetic energy, and to the detectability of neutron stars in the UHE neutrinos by employing the deep underwater muon and neutrino detector (DUMAND) array.

  16. Progress Toward Attractive Stellarators

    SciTech Connect

    Neilson, G H; Brown, T G; Gates, D A; Lu, K P; Zarnstorff, M C; Boozer, A H; Harris, J H; Meneghini, O; Mynick, H E; Pomphrey, N; Reiman, A H; Xanthopoulos, P

    2011-01-05

    The quasi-axisymmetric stellarator (QAS) concept offers a promising path to a more compact stellarator reactor, closer in linear dimensions to tokamak reactors than previous stellarator designs. Concept improvements are needed, however, to make it more maintainable and more compatible with high plant availability. Using the ARIES-CS design as a starting point, compact stellarator designs with improved maintenance characteristics have been developed. While the ARIES-CS features a through-the-port maintenance scheme, we have investigated configuration changes to enable a sector-maintenance approach, as envisioned for example in ARIES AT. Three approaches are reported. The first is to make tradeoffs within the QAS design space, giving greater emphasis to maintainability criteria. The second approach is to improve the optimization tools to more accurately and efficiently target the physics properties of importance. The third is to employ a hybrid coil topology, so that the plasma shaping functions of the main coils are shared more optimally, either with passive conductors made of high-temperature superconductor or with local compensation coils, allowing the main coils to become simpler. Optimization tools are being improved to test these approaches.

  17. Stellar Ontogeny: From Dust...

    ERIC Educational Resources Information Center

    MOSAIC, 1978

    1978-01-01

    Discusses the process of star formation. Infrared and radio astronomy, particularly microwave astronomy is used to provide information on different stages of stellar formation. The role of dust and gas which swirl through the interstellar regions of a galaxy and the collapse of a cloud in star formation are also presented. (HM)

  18. Stellar Ontogeny: From Dust...

    ERIC Educational Resources Information Center

    MOSAIC, 1978

    1978-01-01

    Discusses the process of star formation. Infrared and radio astronomy, particularly microwave astronomy is used to provide information on different stages of stellar formation. The role of dust and gas which swirl through the interstellar regions of a galaxy and the collapse of a cloud in star formation are also presented. (HM)

  19. A Stellar Demonstrator

    ERIC Educational Resources Information Center

    Ros, Rosa M.

    2009-01-01

    The main purpose of the stellar demonstrator is to help explain the movement of stars. In particular, students have difficulties understanding why, if they are living in the Northern Hemisphere, they may observe starts in the Southern Hemisphere, or why circumpolar stars are not the same in different parts of Europe. Using the demonstrator, these…

  20. Introduction to Stellar Astrophysics

    NASA Astrophysics Data System (ADS)

    Böhm-Vitense, Erika

    1992-01-01

    This book is the final one in a series of three texts which together provide a modern, complete and authoritative account of our present knowledge of the stars. It discusses the internal structure and the evolution of stars, and is completely self-contained. There is an emphasis on the basic physics governing stellar structure and the basic ideas on which our understanding of stellar structure is based. The book also provides a comprehensive discussion of stellar evolution. Careful comparison is made between theory and observation, and the author has thus provided a lucid and balanced introductory text for the student. As for volumes 1 and 2, volume 3 is self-contained and can be used as an independent textbook. The author has not only taught but has also published many original papers in this subject. Her clear and readable style should make this text a first choice for undergraduate and beginning graduate students taking courses in astronomy and particularly in stellar astrophysics.