Current overview on dental stem cells applications in regenerative dentistry.
Bansal, Ramta; Jain, Aditya
2015-01-01
Teeth are the most natural, noninvasive source of stem cells. Dental stem cells, which are easy, convenient, and affordable to collect, hold promise for a range of very potential therapeutic applications. We have reviewed the ever-growing literature on dental stem cells archived in Medline using the following key words: Regenerative dentistry, dental stem cells, dental stem cells banking, and stem cells from human exfoliated deciduous teeth. Relevant articles covering topics related to dental stem cells were shortlisted and the facts are compiled. The objective of this review article is to discuss the history of stem cells, different stem cells relevant for dentistry, their isolation approaches, collection, and preservation of dental stem cells along with the current status of dental and medical applications.
78 FR 14805 - Agency Information Collection Activities; Proposed Collection; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-07
... technology to minimize the information collection burden. Information Collection Request Title: The Stem Cell Therapeutic Outcomes Database (OMB No. 0915-0310)--[Revision] Abstract: The Stem Cell Therapeutic and Research Act of 2005, Public Law (Pub. L.) 109-129, as amended by the Stem Cell Therapeutic and Research...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-11
... Collection Request Title: Stem Cell Therapeutic Outcomes Database. OMB 0915-0310--Revision. Abstract: The Stem Cell Therapeutic and Research Act of 2005, Public Law (Pub. L.) 109-129, as amended by the Stem... the collection and maintenance of human blood stem cells for the treatment of patients and research...
Mark, Tomer; Stern, Jessica; Furst, Jessica R; Jayabalan, David; Zafar, Faiza; LaRow, April; Pearse, Roger N; Harpel, John; Shore, Tsiporah; Schuster, Michael W; Leonard, John P; Christos, Paul J; Coleman, Morton; Niesvizky, Ruben
2008-07-01
A total of 28 treatment-naïve patients with stage II or III multiple myeloma (MM) were treated with the combination of clarithromycin, lenalidomide, and dexamethasone (BiRD). Stem cells were collected following granulocyte-colony stimulating factor (G-CSF) or cyclophosphamide (Cy) plus G-CSF mobilization at maximum response. Sufficient stem cells for 2 autologous stem cell transplants were collected from all patients mobilized with Cy plus G-CSF, versus 33% mobilized with G-CSF alone (P < .0001). The duration of prior lenalidomide therapy did not correlate with success of stem cell harvests (P = .91). In conclusion, Cy can be added to G-CSF for stem cell mobilization to successfully overcome the suppressive effect of prior treatment with lenalidomide.
Mark, Tomer; Stern, Jessica; Furst, Jessica R.; Jayabalan, David; Zafar, Faiza; LaRow, April; Pearse, Roger N.; Harpel, John; Shore, Tsiporah; Schuster, Michael W.; Leonard, John P.; Christos, Paul J.; Coleman, Morton; Niesvizky, Ruben
2013-01-01
A total of 28 treatment-naïve patients with stage II or III multiple myeloma (MM) were treated with the combination of clarithromycin, lenalidomide, and dexamethasone (BiRD). Stem cells were collected following granulocyte- colony stimulating factor (G-CSF) or cyclophosphamide (Cy) plus G-CSF mobilization at maximum response. Sufficient stem cells for 2 autologous stem cell transplants were collected from all patients mobilized with Cy plus G-CSF, versus 33% mobilized with G-CSF alone (P<.0001). The duration of prior lenalidomide therapy did not correlate with success of stem cell harvests (P = .91). In conclusion, Cy can be added to G-CSF for stem cell mobilization to successfully overcome the suppressive effect of prior treatment with lenalidomide. PMID:18541199
'Agglutination and flocculation' of stem cells collected by apheresis due to cryofibrinogen.
Siegenthaler, M A; Vu, D-H; Ebnöther, M; Ketterer, N; Luthi, F; Schmid, P; Bargetzi, M; Gasparini, D; Tissot, J-D
2004-04-01
Collection of peripheral stem cells by apheresis is a well-described process. Here, investigations concerning 'agglutination and flocculation' of stem cells collected from two patients are described. In both cases, cryoproteins were observed and cryofibrinogen was identified using high-resolution two-dimensional electrophoresis. In one case, peripheral stem cells were collected after a second course of mobilization, and the cells were immediately washed at 37 degrees C before being frozen, allowing their use, despite the presence of cryofibrinogen. In the other case, 'agglutination' was reversed by warming the bag, and plasma was removed before freezing.
Tageja, Nishant; Korde, Neha; Kazandjian, Dickran; Panch, Sandhya; Manasanch, Elisabet; Bhutani, Manisha; Kwok, Mary; Mailankody, Sham; Yuan, Constance; Stetler-Stevenson, Maryalice; Leitman, Susan F; Sportes, Claude; Landgren, Ola
2018-05-04
Still, many physicians give 4 cycles of combination therapy to multiple myeloma patients prior to collection of stem cells for autologous bone marrow transplant. This tradition originates from older doxorubicin-containing regiments which limited the number of cycles due to cumulative cardiotoxicity. Using older regiments, most patients had residual myeloma cells in their autologous stem-cell grafts during collection. Emerging data show that newly diagnosed multiple myeloma patients treated with modern carfilzomib/lenalidomide/dexamethasone (KRd) therapy, on average, take 6 cycles until reaching minimal residual disease (MRD) negativity. We assessed newly diagnosed patients treated with KRd focusing MRD status both in the individual patient's bone marrow, and the corresponding autologous hematopoietic progenitor cell grafts during collection. Per protocol, stem-cell collection was allowed after 4 to 8 cycles of KRd. We found similar stem-cell yield independent of the number of cycles of KRd. At stem-cell collection, 11/30 patients (36.6%) were MRD negative in their bone marrow; all 11 patients had MRD negative hematopoietic progenitor cell grafts. Furthermore, 18/19 patients who were MRD positive in their bone marrows also had MRD negative hematopoietic progenitor cell grafts. These observations support 6 cycles of KRd as an efficacious and safe induction strategy prior to stem-cell collection.
Goren Sahin, Deniz; Arat, Mutlu
2017-12-01
Proper stem cell mobilization is one of the most important steps in hematopoietic stem cell transplantation (HSCT). The aim of this paper is to share our 6 years' experience and provide practical clinical approaches particularly for stem cell mobilization and collection within the series of more than 200 successive allogeneic HSCT at our transplant center. Two hundred and seven consecutive patients who underwent allogeneic peripheral blood stem cell transplantation were included in this study. Age, sex, weight, complete blood counts, CD34 + cell counts, total collected amount of CD34 + cells, CD34 + cells per 10l processed, mobilization failure and adverse events were reviewed. Median age was 40.2±12.9 (21-68) years and 46.4±13.4 (17-67) years for donors and patients, respectively. The number of donors who had undergone adequate CD34 + cell harvesting and completed the procedure on the fourth day was 67 (32.8% of all patients). Only 12 patients required cell apheresis both on day 5 and 6. Apheresis was completed on day 4 and/or day 5 in 94.2% of all our donors. There was no significant association between CD34 + stem cell volume and age, gender and weight values of donors. Mobilization failure was not seen in our series. G-CSF is highly effective in 1/3 of the donors on the 4th day in order to collect enough number of stem cells. We propose that peripheral stem cell collection might start on day 4th of G-CSF treatment for avoiding G-CSF related side effects and complications. Copyright © 2017 Elsevier Ltd. All rights reserved.
Dogu, Mehmet Hilmi; Kaya, Ali Hakan; Berber, Ilhami; Sari, İsmail; Tekgündüz, Emre; Erkurt, Mehmet Ali; Iskender, Dicle; Kayıkçı, Ömur; Kuku, Irfan; Kaya, Emin; Keskin, Ali; Altuntaş, Fevzi
2016-02-01
Central venous access is often used during apheresis procedure in stem cell collection. The aim of the present study was to evaluate whether central or peripheral venous access has an effect on stem cell yield and the kinetics of the procedure and the product in patients undergoing ASCT after high dose therapy. A total of 327 patients were retrospectively reviewed. The use of peripheral venous access for stem cell yield was significantly more frequent in males compared to females (p = 0.005). Total volume of the product was significantly lower in central venous access group (p = 0.046). As being a less invasive procedure, peripheral venous access can be used for stem cell yield in eligible selected patients. Copyright © 2016 Elsevier Ltd. All rights reserved.
75 FR 48692 - Agency Information Collection Activities: Submission for OMB Review; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-11
... Act of 1995: Proposed Project: The Stem Cell Therapeutic Outcomes Database (OMB No. 0915-0310)--Extension The Stem Cell Therapeutic and Research Act of 2005 provides for the collection and maintenance of human cord blood stem cells for the treatment of patients and research. The Health Resources and...
Galtseva, I V; Davydova, Yu O; Gaponova, T V; Kapranov, N M; Kuzmina, L A; Troitskaya, V V; Gribanova, E O; Kravchenko, S K; Mangasarova, Ya K; Zvonkov, E E; Parovichnikova, E N; Mendeleeva, L P; Savchenko, V G
To identify a parameter predicting a collection of at least 2·106 CD34+ hematopoietic stem cells (HSC)/kg body weight per leukapheresis (LA) procedure. The investigation included 189 patients with hematological malignancies and 3 HSC donors, who underwent mobilization of stem cells with their subsequent collection by LA. Absolute numbers of peripheral blood leukocytes and CD34+ cells before a LA procedure, as well as a number of CD34+ cells/kg body weight (BW) in the LA product stored on the same day were determined in each patient (donor). There was no correlation between the number of leukocytes and that of stored CD34+ cells/kg BW. There was a close correlation between the count of peripheral blood CD34+ cells prior to LA and that of collected CD34+ cells calculated with reference to kg BW. The optimal absolute blood CD34+ cell count was estimated to 20 per µl, at which a LA procedure makes it possible to collect 2·106 or more CD34+ cells/kg BW.
Adeno-Associated Virus Vectors and Stem Cells: Friends or Foes?
Brown, Nolan; Song, Liujiang; Kollu, Nageswara R; Hirsch, Matthew L
2017-06-01
The infusion of healthy stem cells into a patient-termed "stem-cell therapy"-has shown great promise for the treatment of genetic and non-genetic diseases, including mucopolysaccharidosis type 1, Parkinson's disease, multiple sclerosis, numerous immunodeficiency disorders, and aplastic anemia. Stem cells for cell therapy can be collected from the patient (autologous) or collected from another "healthy" individual (allogeneic). The use of allogenic stem cells is accompanied with the potentially fatal risk that the transplanted donor T cells will reject the patient's cells-a process termed "graft-versus-host disease." Therefore, the use of autologous stem cells is preferred, at least from the immunological perspective. However, an obvious drawback is that inherently as "self," they contain the disease mutation. As such, autologous cells for use in cell therapies often require genetic "correction" (i.e., gene addition or editing) prior to cell infusion and therefore the requirement for some form of nucleic acid delivery, which sets the stage for the AAV controversy discussed herein. Despite being the most clinically applied gene delivery context to date, unlike other more concerning integrating and non-integrating vectors such as retroviruses and adenovirus, those based on adeno-associated virus (AAV) have not been employed in the clinic. Furthermore, published data regarding AAV vector transduction of stem cells are inconsistent in regards to vector transduction efficiency, while the pendulum swings far in the other direction with demonstrations of AAV vector-induced toxicity in undifferentiated cells. The variation present in the literature examining the transduction efficiency of AAV vectors in stem cells may be due to numerous factors, including inconsistencies in stem-cell collection, cell culture, vector preparation, and/or transduction conditions. This review summarizes the controversy surrounding AAV vector transduction of stem cells, hopefully setting the stage for future elucidation and eventual therapeutic applications.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-11
... Collection Request Title: The Stem Cell Therapeutic Outcomes Database (OMB No. 0915-0310)--Revision. Abstract: The Stem Cell Therapeutic and Research Act of 2005, Public Law (Pub. L.) 109-129, as amended by the Stem Cell Therapeutic and Research Reauthorization Act of 2010, Public Law 111-264 (the Act), provides...
Berber, Ilhami; Erkurt, Mehmet Ali; Kuku, Irfan; Kaya, Emin; Bag, Harika Gozukara; Nizam, Ilknur; Koroglu, Mustafa; Ozgul, Mustafa
2016-02-01
This study aimed to evaluate the efficiency of DHAP regimen plus filgrastim for mobilization of stem cells in patients with recurrent and/or refractory lymphoma. Thirty-four patients who took DHAP as salvage therapy prior to autologous stem cell transplantation were included. After chemotherapies, 2 cycles of DHAP plus filgrastim were administered to the patients. Stem cells from 32 patients (94%) were collected on median 11th day (8-12), and the median collected CD34(+) cell dose was 9.7 × 10(6)/kg (range 3.8-41.6). DHAP plus filgrastim was found to be an effective chemotherapy regimen in mobilizing CD34(+) stem cells into the peripheral. Copyright © 2016 Elsevier Ltd. All rights reserved.
78 FR 59942 - Agency Information Collection Activities: Proposed Collection: Public Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-30
.... Information Collection Request Title: The Stem Cell Therapeutic Outcomes Database OMB No. 0915-0310--Revision Abstract: The Stem Cell Therapeutic and Research Act of 2005, Public Law (Pub. L.) 109-129, as amended by... for public comment on proposed data collection projects (Section 3506(c)(2)(A) of the Paperwork...
State performance in pluripotent and adult stem cell research, 2009-2016.
Surani, Sana H; Levine, Aaron D
2018-04-01
To examine how the geographic distribution of pluripotent and adult stem cell research publications within the USA differs from other areas of biomedical research. Publication count data for pluripotent stem cell research, adult stem cell research and a comparison group representative of biomedical research more broadly were collected and analyzed for each US state from 2009 to 2016. The distribution of pluripotent stem cell research differed from the other fields with overperformance in pluripotent stem cell research observed in California, as well as Wisconsin, Massachusetts, Maryland and Connecticut. Our analysis suggests that permissive state stem cell policy may be one of the several factors contributing to strong state performance in pluripotent stem cell research.
The Promising Applications of Stem Cells in the Oral Region: Literature Review
Silva, Luciano Barreto; Neto, Alexandrino Pereira Dos Santos; Pacheco, Rachel Gomes Pelozo; Júnior, Severino Alves; de Menezes, Rebeca Ferraz; Carneiro, Vanda Sanderana Macedo; Araújo, Natália Costa; da Silveira, Marcia Maria Fonseca; de Albuquerque, Diana Santana; Gerbi, Marleny Elizabeth Marquez de Martinez; Álvares, Pamella Recco; de Arruda, José Alcides Almeida; Sobral, Ana Paula Veras
2016-01-01
Introduction: For a long time researchers have tried to find out a way to grow tissues back to the human body in order to solve transplantation problems by offering the unique opportunity to have their organs back, working properly, in search of life dignity. Literature Review: Stem cells seem to be present in many other tissues than researchers had once thought; and in some specific sites they can be easily collected, without the need of expensive interventions. The oral cavity is one of these regions where their collection can be accomplished, with plenty of accessible sites enriched with these precious cells. Aim: The aim of this literature review is to research where in the mouth can scientists find stem cells to be used in the near future. Key-message: The aim of this literature review is to research where stem cells can be found and collected in the oral cavity. PMID:27386008
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-29
...; 30-Day Comment Request: Request for Human Embryonic Stem Cell Line To Be Approved for Use in NIH... Embryonic Stem Cell Line to be Approved for Use in NIH-Funded Research, 0925-0601, Expiration Date 04/30... Information Collection: The form is used by applicants to request that human embryonic stem cell lines be...
Parrotta, Elvira; De Angelis, Maria Teresa; Scalise, Stefania; Candeloro, Patrizio; Santamaria, Gianluca; Paonessa, Mariagrazia; Coluccio, Maria Laura; Perozziello, Gerardo; De Vitis, Stefania; Sgura, Antonella; Coluzzi, Elisa; Mollace, Vincenzo; Di Fabrizio, Enzo Mario; Cuda, Giovanni
2017-11-28
Human pluripotent stem cells, including embryonic stem cells and induced pluripotent stem cells, hold enormous promise for many biomedical applications, such as regenerative medicine, drug testing, and disease modeling. Although induced pluripotent stem cells resemble embryonic stem cells both morphologically and functionally, the extent to which these cell lines are truly equivalent, from a molecular point of view, remains controversial. Principal component analysis and K-means cluster analysis of collected Raman spectroscopy data were used for a comparative study of the biochemical fingerprint of human induced pluripotent stem cells and human embryonic stem cells. The Raman spectra analysis results were further validated by conventional biological assays. Raman spectra analysis revealed that the major difference between human embryonic stem cells and induced pluripotent stem cells is due to the nucleic acid content, as shown by the strong positive peaks at 785, 1098, 1334, 1371, 1484, and 1575 cm -1 , which is enriched in human induced pluripotent stem cells. Here, we report a nonbiological approach to discriminate human induced pluripotent stem cells from their native embryonic stem cell counterparts.
Stem Cell Banking for Regenerative and Personalized Medicine
Harris, David T.
2014-01-01
Regenerative medicine, tissue engineering and gene therapy offer the opportunity to treat and cure many of today’s intractable afflictions. These approaches to personalized medicine often utilize stem cells to accomplish these goals. However, stem cells can be negatively affected by donor variables such as age and health status at the time of collection, compromising their efficacy. Stem cell banking offers the opportunity to cryogenically preserve stem cells at their most potent state for later use in these applications. Practical stem cell sources include bone marrow, umbilical cord blood and tissue, and adipose tissue. Each of these sources contains stem cells that can be obtained from most individuals, without too much difficulty and in an economical fashion. This review will discuss the advantages and disadvantages of each stem cell source, factors to be considered when contemplating banking each stem cell source, the methodology required to bank each stem cell source, and finally, current and future clinical uses of each stem cell source. PMID:28548060
Kaingade, Pankaj; Somasundaram, Indumathi; Sharma, Akshita; Patel, Darshan; Marappagounder, Dhanasekaran
2017-09-01
Whether the preterm mothers' mature milk retains the same cellular components as those in colostrum including stem-like cell, cell adhesion molecules, and immune cells. A total of five preterm mothers were recruited for the study having an average age of 30.2 years and gestational age of 29.8 weeks from the Pristine Women's Hospital, Kolhapur. Colostrum milk was collected within 2-5 days and matured milk was collected 20-30 days after delivery from the same mothers. Integral cellular components of 22 markers including stem cells, immune cells, and cell adhesion molecules were measured using flowcytometry. Preterm mature milk was found to possess higher expressions of hematopoietic stem cells, mesenchymal stem-like cells, immune cells, few cell adhesion molecules, and side population cells than colostrum. The increased level of these different cell components in mature milk may be important in the long-term preterm baby's health growth. Further similar research in a larger population of various gestational ages and lactation stages of preterm mothers is warranted to support these pilot findings.
Hequet, O; Le, Q H; Rodriguez, J; Dubost, P; Revesz, D; Clerc, A; Rigal, D; Salles, G; Coiffier, B
2014-04-01
Hematopoietic stem cells (HSCs) required to perform peripheral hematopoietic autologous stem cell transplantation (APBSCT) can be collected by processing several blood volumes (BVs) in leukapheresis sessions. However, this may cause granulocyte harvest in graft and decrease in patient's platelet blood level. Both consequences may induce disturbances in patient. One apheresis team's current purpose is to improve HSC collection by increasing HSC collection and prevent increase in granulocyte and platelet harvests. Before improving HSC collection it seemed important to know more about the way to harvest these types of cells. The purpose of our study was to develop a simple model for analysing respective collections of intended CD34+ cells among HSC (designated here as HSC) and harvests of unintended platelets or granulocytes among mature cells (designated here as mature cells) considering the number of BVs processed and factors likely to influence cell collection or harvest. For this, we processed 1, 2 and 3 BVs in 59 leukapheresis sessions and analysed corresponding collections and harvests with a referent device (COBE Spectra). First we analysed the amounts of HSC collected and mature cells harvested and second the evolution of the respective shares of HSC and mature cells collected or harvested throughout the BV processes. HSC collections and mature cell harvests increased globally (p<0.0001) and their respective shares remained stable throughout the BV processes (p non-significant). We analysed the role of intrinsic (patient's features) and extrinsic (features before starting leukapheresis sessions) factors in collections and harvests, which showed that only pre-leukapheresis blood levels (CD34+cells and platelets) influenced both cell collections and harvests (CD34+cells and platelets) (p<0.001) and shares of HSC collections and mature unintended cells harvests (p<0.001) throughout the BV processes. Altogether, our results suggested that the main factors likely to influence intended HSC collections or unintended mature cell harvests were pre-leukapheresis blood cell levels. Our model was meant to assist apheresis teams in analysing shares of HSC collected and mature cells harvested with new devices or with new types of HSC mobilization. Copyright © 2014 Elsevier Ltd. All rights reserved.
Zhang, C; Chen, X-H; Zhang, X; Gao, L; Gao, L; Kong, P-Y; Peng, X-G; Sun, A-H; Gong, Y; Zeng, D-F; Wang, Q-Y
2010-06-01
Unmanipulated haploidentical/mismatched related transplantation with combined granulocyte-colony stimulating factor-mobilised peripheral blood stem cells (G-PBSCs) and granulocyte-colony stimulating factor-mobilised bone marrow (G-BM) has been developed as an alternative transplantation strategy for patients with haematologic malignancies. However, little information is available about the factors predicting the outcome of peripheral blood stem cell (PBSC) collection and bone marrow (BM) harvest in this transplantation. The effects of donor characteristics and procedure factors on CD34(+) cell yield were investigated. A total of 104 related healthy donors received granulocyte-colony stimulating factor (G-CSF) followed by PBSC collection and BM harvest. Male donors had significantly higher yields compared with female donors. In multiple regression analysis for peripheral blood collection, age and flow rate were negatively correlated with cell yield, whereas body mass index, pre-aphaeresis white blood cell (WBC) and circulating immature cell (CIC) counts were positively correlated with cell yields. For BM harvest, age was negatively correlated with cell yields, whereas pre-BM collection CIC counts were positively correlated with cell yield. All donors achieved the final product of >or=6 x10(6) kg(-1) recipient body weight. This transplantation strategy has been shown to be a feasible approach with acceptable outcomes in stem cell collection for patients who received HLA-haploidentical/mismatched transplantation with combined G-PBSCs and G-BM. In donors with multiple high-risk characteristics for poor aphaeresis CD34(+) cell yield, BM was an alternative source.
Cord Blood Stem Cell Procurement in Minority Donors
2007-03-01
finding a matched donor. The CBU allows for less stringent matching; thus CBU is a rapid solution to patients who are in urgent need of stem cell transplantation...purpose of clinical transplantation. The purpose of collection and procurement of cord blood is for public use and will be accessible to all stem ... cell transplantation centers worldwide. Cord blood is a readily available source of hematopoietic stem cells. It is more accessible than other sources
Cell motion predicts human epidermal stemness
Toki, Fujio; Tate, Sota; Imai, Matome; Matsushita, Natsuki; Shiraishi, Ken; Sayama, Koji; Toki, Hiroshi; Higashiyama, Shigeki
2015-01-01
Image-based identification of cultured stem cells and noninvasive evaluation of their proliferative capacity advance cell therapy and stem cell research. Here we demonstrate that human keratinocyte stem cells can be identified in situ by analyzing cell motion during their cultivation. Modeling experiments suggested that the clonal type of cultured human clonogenic keratinocytes can be efficiently determined by analysis of early cell movement. Image analysis experiments demonstrated that keratinocyte stem cells indeed display a unique rotational movement that can be identified as early as the two-cell stage colony. We also demonstrate that α6 integrin is required for both rotational and collective cell motion. Our experiments provide, for the first time, strong evidence that cell motion and epidermal stemness are linked. We conclude that early identification of human keratinocyte stem cells by image analysis of cell movement is a valid parameter for quality control of cultured keratinocytes for transplantation. PMID:25897083
Stem Cell Banking: A Global View.
Stacey, Glyn
2017-01-01
Stem cell banking has been a topic of discussion and debate for more than a decade since the first public services to supply human embryonic stem cells (hESCs) were established in the USA and the UK. This topic has received a recent revival with numerous ambitious programmes announced to deliver large collections of human induced pluripotency cell (hiPSC) lines. This chapter will provide a brief overview charting the development of stem cell banks, their value, and their likely role in the future.
Clonal analysis of stem cells in differentiation and disease.
Colom, Bartomeu; Jones, Philip H
2016-12-01
Tracking the fate of individual cells and their progeny by clonal analysis has redefined the concept of stem cells and their role in health and disease. The maintenance of cell turnover in adult tissues is achieved by the collective action of populations of stem cells with an equal likelihood of self-renewal or differentiation. Following injury stem cells exhibit striking plasticity, switching from homeostatic behavior in order to repair damaged tissues. The effects of disease states on stem cells are also being uncovered, with new insights into how somatic mutations trigger clonal expansion in early neoplasia. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.
van Oostrum, Anja; Zwaginga, Jaap Jan; Croockewit, Sandra; Overdevest, Jacqueline; Fechter, Mirjam; Ruiterkamp, Bart; Brand, Anneke; Netelenbos, Tanja
2017-12-01
Peripheral blood stem cells (PBSCs) used for allogeneic transplantation are collected by apheresis after pre-treatment of donors with G-CSF. Using modern apheresis devices stem cells can be collected more efficiently. It was studied whether collection on the 4th instead of the 5th day after initiation of G-CSF treatment might be feasible. Stem cell yields that could have been collected on day 4 were calculated in two cohorts treated with 10 µg/kg G-CSF once daily (n = 106, cohort I) or 5 µg/kg twice daily schedule (n = 85, cohort II). Harvests were predicted using the median collection efficiency (CE) of the apheresis machine and regarded successful when > 5.0 x10 6 CD34 +/ kg recipient body weight. Successful harvests at day 4 could have been obtained in only 22.6% and 41.2% of donors in cohort I and II respectively, while the expected successful collections on day 5 were 55.7% and 76.5%. Individual donor factors that correlated with a successful harvest on day 4 were weight, BMI, age, ratio donor/recipient weight and total G-CSF dose in cohort I, whereas ratio donor/recipient weight was the only significant predictor in cohort II. Donor weight, BMI and total G-CSF dose correlated positively with CD34 + values in the blood on day 4 in all donors. However, donor characteristics were not able to be used as strong predictors in daily practice. In conclusion, PBSC collection on day 4 will not result in a successful harvest in most stem cell donors, however using a twice daily G-CSF scheme increases the yield. © 2017 Wiley Periodicals, Inc.
Dental pulp stem cells in regenerative dentistry.
Casagrande, Luciano; Cordeiro, Mabel M; Nör, Silvia A; Nör, Jacques E
2011-01-01
Stem cells constitute the source of differentiated cells for the generation of tissues during development, and for regeneration of tissues that are diseased or injured postnatally. In recent years, stem cell research has grown exponentially owing to the recognition that stem cell-based therapies have the potential to improve the life of patients with conditions that span from Alzheimer's disease to cardiac ischemia to bone or tooth loss. Growing evidence demonstrates that stem cells are primarily found in niches and that certain tissues contain more stem cells than others. Among these tissues, the dental pulp is considered a rich source of mesenchymal stem cells that are suitable for tissue engineering applications. It is known that dental pulp stem cells have the potential to differentiate into several cell types, including odontoblasts, neural progenitors, osteoblasts, chondrocytes, and adipocytes. The dental pulp stem cells are highly proliferative. This characteristic facilitates ex vivo expansion and enhances the translational potential of these cells. Notably, the dental pulp is arguably the most accessible source of postnatal stem cells. Collectively, the multipotency, high proliferation rates, and accessibility make the dental pulp an attractive source of mesenchymal stem cells for tissue regeneration. This review discusses fundamental concepts of stem cell biology and tissue engineering within the context of regenerative dentistry.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-28
... Comment Request: Request for Human Embryonic Stem Cell Line To Be Approved for Use in NIH Funded Research... Embryonic Stem Cell Line to be Approved for Use in NIH Funded Research. OMB No. 0925-0601-- Expiration Date... cell lines be approved for use in NIH funded research. Applicants may submit applications at any time...
Dissecting the bulge in hair regeneration
Ito, Mayumi; Myung, Peggy
2012-01-01
The adult hair follicle houses stem cells that govern the cyclical growth and differentiation of multiple cell types that collectively produce a pigmented hair. Recent studies have revealed that hair follicle stem cells are heterogeneous and dynamic throughout the hair cycle. Moreover, interactions between heterologous stem cells, including both epithelial and melanocyte stem cells, within the hair follicle are just now being explored. This review will describe how recent findings have expanded our understanding of the development, organization, and regeneration of hair follicle stem cells. At a basic level, this review is intended to help construct a reference point to integrate the surge of studies on the molecular mechanisms that regulate these cells. PMID:22293183
The Role of Stem Cells in Aesthetic Surgery: Fact or Fiction?
McArdle, Adrian; Senarath-Yapa, Kshemendra; Walmsley, Graham G.; Hu, Michael; Atashroo, David A.; Tevlin, Ruth; Zielins, Elizabeth; Gurtner, Geoffrey C.; Wan, Derrick C.; Longaker, Michael T.
2014-01-01
Stem cells are attractive candidates for the development of novel therapies, targeting indications that involve functional restoration of defective tissue. Although most stem cell therapies are new and highly experimental, there are clinics around the world that exploit vulnerable patients with the hope of offering supposed stem cell therapies, many of which operate without credible scientific merit, oversight, or other patient protection. We review the potential, as well as drawbacks, for incorporation of stem cells in cosmetic procedures. A review of FDA-approved indications and ongoing clinical trials with adipose stem cells is provided. Furthermore, a “snapshot” analysis of websites using the search terms “stem cell therapy” or “stem cell treatment” or “stem cell facelift” was performed. Despite the protective net cast by regulatory agencies such as the FDA and professional societies such as the American Society of Plastic Surgeons, we are witnessing worrying advertisements for procedures such as stem cell facelifts, stem cell breast augmentations, and even stem cell vaginal rejuvenation. The marketing and promotion of stem cell procedures in aesthetic surgery is not adequately supported by clinical evidence in the majority of cases. Stem cells offer tremendous potential, but the marketplace is saturated with unsubstantiated and sometimes fraudulent claims that may place patients at risk. With plastic surgeons at the forefront of stem cell-based regenerative medicine, it is critically important that we provide an example of a rigorous approach to research, data collection, and advertising of stem cell therapies. PMID:24732654
Broxmeyer, Hal E; O'Leary, Heather A; Huang, Xinxin; Mantel, Charlie
2015-07-01
Hematopoietic stem (HSCs) and progenitor (HPCs) cells reside in a hypoxic (lowered oxygen tension) environment, in vivo. We review literature on growth of HSCs and HPCs under hypoxic and normoxic (ambient air) conditions with a focus on our recent work demonstrating the detrimental effects of collecting and processing cells in ambient air through a phenomenon termed extra physiologic oxygen shock/stress (EPHOSS), and we describe means to counteract EPHOSS for enhanced collection of HSCs. Collection and processing of bone marrow and cord blood cells in ambient air cause rapid differentiation and loss of HSCs, with increases in HPCs. This apparently irreversible EPHOSS phenomenon results from increased mitochondrial reactive oxygen species, mediated by a p53-cyclophilin D-mitochondrial permeability transition pore axis, and involves hypoxia inducing factor-1α and micro-RNA 210. EPHOSS can be mitigated by collecting and processing cells in lowered (3%) oxygen, or in ambient air in the presence of, cyclosporine A which effects the mitochondrial permeability transition pore, resulting in increased HSC collections. Our recent findings may be advantageous for HSC collection for hematopoietic cell transplantation, and likely for enhanced collection of other stem cell types. EPHOSS should be considered when ex-vivo cell analysis is utilized for personalized medicine, as metabolism of cells and their response to targeted drug treatment ex vivo may not mimic what occurs in vivo.
Łęczycka, A; Dudkiewicz, M; Czerwiński, J; Malanowski, P; Żalikowska-Hołoweńko, J; Danielewicz, R
2016-06-01
History of hematopoietic stem cell transplantations in Poland begins in early 1980s; the 1st bone marrow allotransplantation was performed in 1983 in the Central Clinical Hospital of the Military Medical Academy in Warsaw. Following years brought the 1st autologous stem cell transplantations. Ten years later, unrelated bone marrow transplantation was performed for the 1st time by the team of the Hematology and Blood and Marrow Transplantation Unit in Katowice. Since then, hematopoietic stem cell transplantation developed to be standard procedure and one of the most important therapies applied in leukemia treatment. The number of allotransplantations in Poland has grown significantly in the past 2 decades, which generated new needs and problems. In 2005, based on a new Transplant Law, a National Transplants Registry was created. Its main role is to collect data (registration of procedures and follow-up data) related to every transplantation case for stem cells and tissues as well as for organs. We present statistics concerning stem cell transplantations performed in Poland, as collected in the National Transplants Registry in the years 2006-2014. There are 18 centers transplanting hematopoietic stem cells in Poland. The total number of hematopoietic stem cell transplantations performed in 2006-2014 was 3,537, with allotransplantations from relatives accounted for 1,491 and from unrelated donors for 2,046. The main indication for allotransplantation in past years was acute leukemia. Copyright © 2016 Elsevier Inc. All rights reserved.
Weisdorf, D; Miller, J; Verfaillie, C; Burns, L; Wagner, J; Blazar, B; Davies, S; Miller, W; Hannan, P; Steinbuch, M; Ramsay, N; McGlave, P
1997-10-01
Autologous transplantation for non-Hodgkins lymphoma and Hodgkin's disease is widely used as standard therapy for those with high-risk or relapsed tumor. Peripheral blood stem cell (PBSC) collections have nearly completely replaced bone marrow stem cell (BMSC) harvests because of the perceived advantages of more rapid engraftment, less tumor contamination in the inoculum, and better survival after therapy. The advantage of PBSC, however, may derive from the hematopoietic stimulating cytokines used for PBSC mobilization. Therefore, we tested a randomized comparison of GM-CSF vs. G-CSF used to prime either BMSC or PBSC before collection for use in autologous transplantation. Sixty-two patients receiving transplants (31 PBSC; 31 BMSC) for non-Hodgkin's lymphoma (n = 51) or Hodgkin's disease (n = 11) were treated. All patients received 6 days of randomly assigned cytokine. Those with cellular marrow in morphologic remission underwent BMSC harvest, while those with hypocellular marrow or microscopic marrow tumor involvement had PBSC collected. Neutrophil recovery was similarly rapid in all groups (median 14 days; range 10-23 days), though two patients had delayed neutrophil recovery using GM-CSF primed PBSC (p = 0.01). Red cell and platelet recovery were significantly quicker after BMSC mobilized with GM-CSF or PBSC mobilized with G-CSF. This speedier hematologic recovery resulted in earlier hospital discharge as well. However, in multivariate analysis, neither the stem cell source nor randomly assigned G-CSF vs. GM-CSF was independently associated with earlier multilineage hematologic recovery or shorter hospital stay. Relapse-free survival was not independently affected by either the assigned stem cell source or the randomly assigned priming cytokine, though malignant relapse was more frequent in those assigned to PBSC (RR of relapse 3.15, p = 0.03). These data document that BMSC, when collected following cytokine priming, can yield a similarly rapid hematologic recovery and short hospital stay compared with cytokine-primed PBSC. Using primed BMSC, no difference in malignant relapse or relapse-free survival was observed. These findings suggest that despite widespread use of PBSC for transplantation, BMSC, when collected following hematopoietically stimulating cytokines, may remain a satisfactory source of stem cells for autologous transplantation. G-CSF and GM-CSF are both effective in priming autologous PBSC or BMSC for collection.
Blood and Bone Marrow Donation
... who's waiting for a stem cell transplant. Risks Bone marrow donation The most serious risk associated with ... or her health insurance. What you can expect Bone marrow donation Collecting stem cells from bone marrow ...
Menichella, G; Lai, M; Pierelli, L; Vittori, M; Serafini, R; Ciarli, M; Foddai, M L; Salerno, G; Sica, S; Scambia, G; Leone, G; Bizzi, B
1997-01-01
Reconstitution of hematopoiesis by means of peripheral blood stem cells is a valid alternative to autologous bone marrow transplantation. The aim of this investigation was to increase the efficiency of collection of circulating blood progenitor cells and to obtain a purer product for transplant. We carried out leukapheresis procedures with the Fresenius AS 104 blood cell separator, using two different protocols, the previously used PBSC-LYM and a new mononuclear cell collection program. Both programs were highly effective in collecting mononuclear cells (MNC) and CD34+ cells. Some differences were found, especially regarding MNC yield and efficiencies. There are remarkable differences in the efficiency of collection of CD34+ cells (62.38% with the new program as opposed to 31.69% with the older one). Linear regression analysis showed a negative correlation between blood volume processed and MNC efficiency only for the PBSC-LYM program. Differences were also observed in the degree of inverse correlation existing in both programs between patients' white blood cell precount and MNC collection efficiency. The inverse correlation was stronger for the PBSC-LYM program. Seven patients with solid tumors and hematologic malignancies received high dose chemotherapy and were subsequently transplanted with peripheral blood stem cells collected using the new protocol. All patients obtained a complete and stable engraftment with the reinfusion product collected with one or two leukapheresis procedures. High efficiencies and yields were observed in the new protocol for MNC and CD34+ cells. These were able to effect rapid and complete bone marrow recovery after myeloablative chemotherapy.
Wnt/β-Catenin Signaling Determines the Vasculogenic Fate of Postnatal Mesenchymal Stem Cells.
Zhang, Zhaocheng; Nör, Felipe; Oh, Min; Cucco, Carolina; Shi, Songtao; Nör, Jacques E
2016-06-01
Vasculogenesis is the process of de novo blood vessel formation observed primarily during embryonic development. Emerging evidence suggest that postnatal mesenchymal stem cells are capable of recapitulating vasculogenesis when these cells are engaged in tissue regeneration. However, the mechanisms underlining the vasculogenic differentiation of mesenchymal stem cells remain unclear. Here, we used stem cells from human permanent teeth (dental pulp stem cells [DPSC]) or deciduous teeth (stem cells from human exfoliated deciduous teeth [SHED]) as models of postnatal primary human mesenchymal stem cells to understand mechanisms regulating their vasculogenic fate. GFP-tagged mesenchymal stem cells seeded in human tooth slice/scaffolds and transplanted into immunodeficient mice differentiate into human blood vessels that anastomize with the mouse vasculature. In vitro, vascular endothelial growth factor (VEGF) induced the vasculogenic differentiation of DPSC and SHED via potent activation of Wnt/β-catenin signaling. Further, activation of Wnt signaling is sufficient to induce the vasculogenic differentiation of postnatal mesenchymal stem cells, while Wnt inhibition blocked this process. Notably, β-catenin-silenced DPSC no longer differentiate into endothelial cells in vitro, and showed impaired vasculogenesis in vivo. Collectively, these data demonstrate that VEGF signaling through the canonical Wnt/β-catenin pathway defines the vasculogenic fate of postnatal mesenchymal stem cells. Stem Cells 2016;34:1576-1587. © 2016 AlphaMed Press.
Nakahara, Taka
2011-07-01
Multipotent mesenchymal stem cells from bone marrow are expected to be a somatic stem cell source for the development of new cell-based therapy in regenerative medicine. However, dental clinicians are unlikely to carry out autologous cell/tissue collection from patients (i.e., marrow aspiration) as a routine procedure in their clinics; hence, the utilization of bone marrow stem cells seems impractical in the dental field. Dental tissues harvested from extracted human teeth are well known to contain highly proliferative and multipotent stem cell compartments and are considered to be an alternative autologous cell source in cell-based medicine. This article provides a short overview of the ongoing studies for the potential application of dental stem cells and suggests the utilization of 2 concepts in future regenerative medicine: (1) dental stem cell-based therapy for hepatic and other systemic diseases and (2) tooth replacement therapy using the bioengineered human whole tooth, called the "test-tube dental implant." Regenerative therapies will bring new insights and benefits to the fields of clinical medicine and dentistry.
Laser biomodulation on stem cells
NASA Astrophysics Data System (ADS)
Liu, Timon C.; Duan, Rui; Li, Yan; Li, Xue-Feng; Tan, Li-Ling; Liu, Songhao
2001-08-01
Stem cells are views from the perspectives of their function, evolution, development, and cause. Counterintuitively, most stem cells may arise late in development, to act principally in tissue renewal, thus ensuring an organisms long-term survival. Surprisingly, recent reports suggest that tissue-specific adult stem cells have the potential to contribute to replenishment of multiple adult tissues. Stem cells are currently in the news for two reasons: the successful cultivation of human embryonic stem cell lines and reports that adult stem cells can differentiate into developmentally unrelated cell types, such as nerve cells into blood cells. The spotlight on stem cells has revealed gaps in our knowledge that must be filled if we are to take advantage of their full potential for treating devastating degenerative diseases such as Parkinsons's disease and muscular dystrophy. We need to know more about the intrinsic controls that keep stem cells as stem cells or direct them along particular differentiation pathways. Such intrinsic regulators are, in turn, sensitive to the influences of the microenvironment, or niche, where stem cells normally reside. Both intrinsic and extrinsic signals regular stem cell fate and some of these signals have now been identified. Vacek et al and Wang et al have studied the effect of low intensity laser on the haemopoietic stem cells in vitro. There experiments show there is indeed the effect of low intensity laser on the haemopoietic stem cells in vitro, and the present effect is the promotion of haemopoietic stem cells proliferation. In other words, low intensity laser irradiation can act as an extrinsic signal regulating stem cell fate. In this paper, we study how low intensity laser can be used to regulate stem cell fate from the viewpoint of collective phototransduction.
Stochasticity and Spatial Interaction Govern Stem Cell Differentiation Dynamics
NASA Astrophysics Data System (ADS)
Smith, Quinton; Stukalin, Evgeny; Kusuma, Sravanti; Gerecht, Sharon; Sun, Sean X.
2015-07-01
Stem cell differentiation underlies many fundamental processes such as development, tissue growth and regeneration, as well as disease progression. Understanding how stem cell differentiation is controlled in mixed cell populations is an important step in developing quantitative models of cell population dynamics. Here we focus on quantifying the role of cell-cell interactions in determining stem cell fate. Toward this, we monitor stem cell differentiation in adherent cultures on micropatterns and collect statistical cell fate data. Results show high cell fate variability and a bimodal probability distribution of stem cell fraction on small (80-140 μm diameter) micropatterns. On larger (225-500 μm diameter) micropatterns, the variability is also high but the distribution of the stem cell fraction becomes unimodal. Using a stochastic model, we analyze the differentiation dynamics and quantitatively determine the differentiation probability as a function of stem cell fraction. Results indicate that stem cells can interact and sense cellular composition in their immediate neighborhood and adjust their differentiation probability accordingly. Blocking epithelial cadherin (E-cadherin) can diminish this cell-cell contact mediated sensing. For larger micropatterns, cell motility adds a spatial dimension to the picture. Taken together, we find stochasticity and cell-cell interactions are important factors in determining cell fate in mixed cell populations.
The role of stem cells in aesthetic surgery: fact or fiction?
McArdle, Adrian; Senarath-Yapa, Kshemendra; Walmsley, Graham G; Hu, Michael; Atashroo, David A; Tevlin, Ruth; Zielins, Elizabeth; Gurtner, Geoffrey C; Wan, Derrick C; Longaker, Michael T
2014-08-01
Stem cells are attractive candidates for the development of novel therapies, targeting indications that involve functional restoration of defective tissue. Although most stem cell therapies are new and highly experimental, there are clinics around the world that exploit vulnerable patients with the hope of offering supposed stem cell therapies, many of which operate without credible scientific merit, oversight, or other patient protection. The authors review the potential and the drawbacks of incorporation of stem cells in cosmetic procedures. A review of U.S. Food and Drug Administration-approved indications and ongoing clinical trials with adipose stem cells is provided. Furthermore, a "snapshot" analysis of Web sites using the search terms "stem cell therapy" or "stem cell treatment" or "stem cell facelift" was performed. Despite the protective net cast by regulatory agencies such as the U.S. Food and Drug Administration and professional societies such as the American Society of Plastic Surgeons, the authors are witnessing worrying advertisements for procedures such as stem cell face lifts, stem cell breast augmentations, and even stem cell vaginal rejuvenation. The marketing and promotion of stem cell procedures in aesthetic surgery is not adequately supported by clinical evidence in the majority of cases. Stem cells offer tremendous potential, but the marketplace is saturated with unsubstantiated and sometimes fraudulent claims that may place patients at risk. With plastic surgeons at the forefront of stem cell-based regenerative medicine, it is critically important that they provide an example of a rigorous approach to research, data collection, and advertising of stem cell therapies.
Reconstructing the in vivo dynamics of hematopoietic stem cells from telomere length distributions
Werner, Benjamin; Beier, Fabian; Hummel, Sebastian; Balabanov, Stefan; Lassay, Lisa; Orlikowsky, Thorsten; Dingli, David; Brümmendorf, Tim H; Traulsen, Arne
2015-01-01
We investigate the in vivo patterns of stem cell divisions in the human hematopoietic system throughout life. In particular, we analyze the shape of telomere length distributions underlying stem cell behavior within individuals. Our mathematical model shows that these distributions contain a fingerprint of the progressive telomere loss and the fraction of symmetric cell proliferations. Our predictions are tested against measured telomere length distributions in humans across all ages, collected from lymphocyte and granulocyte sorted telomere length data of 356 healthy individuals, including 47 cord blood and 28 bone marrow samples. We find an increasing stem cell pool during childhood and adolescence and an approximately maintained stem cell population in adults. Furthermore, our method is able to detect individual differences from a single tissue sample, i.e. a single snapshot. Prospectively, this allows us to compare cell proliferation between individuals and identify abnormal stem cell dynamics, which affects the risk of stem cell related diseases. DOI: http://dx.doi.org/10.7554/eLife.08687.001 PMID:26468615
Smith, Veronica R.; Popat, Uday; Ciurea, Stefan; Nieto, Yago; Anderlini, Paolo; Rondon, Gabriela; Alousi, Amin; Qazilbash, Muzaffar; Kebriaei, Partow; Khouri, Issa; de Lima, Marcos; Champlin, Richard; Hosing, Chitra
2014-01-01
Plerixafor, a recently approved peripheral blood progenitor cell mobilizing agent, is often added to granulocyte-colony stimulating factor (G-CSF) to mobilize peripheral blood progenitor cells in patients with lymphoma or myeloma who cannot mobilize enough CD34+ cells with G-CSF alone to undergo autologous stem cell transplantation. However, data are lacking regarding the feasibility and efficacy of just-in-time plerixafor in combination with chemotherapy and G-CSF. We reviewed the peripheral blood stem cell collection data of 38 consecutive patients with lymphoma (Hodgkin’s and non-Hodgkin’s) and multiple myeloma who underwent chemomobilization and high-dose G-CSF and just-in-time plerixafor to evaluate the efficacy of this treatment combination. All patients with multiple myeloma and all but 1 patient with lymphoma collected the minimum required number of CD34+ cells to proceed with autologous stem cell transplantation (>2 × 106/kilogram of body weight). The median CD34+ cell dose collected in patients with non-Hodgkin lymphoma was 4.93 × 106/kilogram of body weight. The median CD34+ cell dose collected for patients with multiple myeloma was 8.81 × 106/kilogram of body weight. Plerixafor was well tolerated; no grade 2 or higher non- hematologic toxic effects were observed. PMID:23749720
Komatsu, F; Ishida, Y
1997-04-01
For chronic myelocytic leukemia patients with very high numbers of platelets, we describe an efficient method for the collection of peripheral blood stem cells (PBSC) using the Fresenius AS104 cell separator. In these patients, it is difficult to collect a sufficient number of PBSC, due to the platelet band interfering with the machine's red cell interface sensor. We, therefore, tried a manual adjustment of the device. The collection phase was set automatically. When the whole blood began to separate into the red cell layer and plasma (plus mononuclear cell) layer, the red cell interface setting of "7:1" was changed to "OFF," and the plasma pump flow rate was controlled manually in order to locate the interface position 1 cm from the outside wall of the centrifuge chamber. After the collection phase, the procedure was returned to the automatic setting. By repeating this procedure, we were able to collect large numbers of PBSC.
Shoji, Masaki; Woo, So-Yeun; Masuda, Aki; Win, Nwet Nwet; Ngwe, Hla; Takahashi, Etsuhisa; Kido, Hiroshi; Morita, Hiroyuki; Ito, Takuya; Kuzuhara, Takashi
2017-02-07
To contribute to the development of novel anti-influenza drugs, we investigated the anti-influenza activity of crude extracts from 118 medicinal plants collected in Myanmar. We discovered that extract from the stems of Jatropha multifida Linn. showed anti-influenza activity. J. multifida has been used in traditional medicine for the treatment of various diseases, and the stem has been reported to possess antimicrobial, antimalarial, and antitumor activities. However, the anti-influenza activity of this extract has not yet been investigated. We prepared water (H 2 O), ethyl acetate (EtOAc), n-hexane (Hex), and chloroform (CHCl 3 ) extracts from the stems of J. multifida collected in Myanmar, and examined the survival of Madin-Darby canine kidney (MDCK) cells infected with the influenza A (H1N1) virus, and the inhibitory effects of these crude extracts on influenza A viral infection and growth in MDCK cells. The H 2 O extracts from the stems of J. multifida promoted the survival of MDCK cells infected with the influenza A H1N1 virus. The EtOAc and CHCl 3 extracts resulted in similar, but weaker, effects. The H 2 O, EtOAc, and CHCl 3 extracts from the stems of J. multifida inhibited influenza A virus H1N1 infection; the H 2 O extract possessed the strongest inhibitory effect on influenza infection in MDCK cells. The EtOAc, Hex, and CHCl 3 extracts all inhibited the growth of influenza A H1N1 virus, and the CHCl 3 extract demonstrated the strongest activity in MDCK cells. The H 2 O or CHCl 3 extracts from the stems of J. multifida collected in Myanmar demonstrated the strongest inhibition of influenza A H1N1 viral infection or growth in MDCK cells, respectively. These results indicated that the stems of J. multifida could be regarded as an anti-influenza herbal medicine as well as a potential crude drug source for the development of anti-influenza compounds.
Stem cell mobilization and collection from pediatric patients and healthy children.
Karakukcu, Musa; Unal, Ekrem
2015-08-01
Today, hematopoietic stem cell transplantation (HSCT) is a standard treatment for a variety of conditions in children, including certain malignancies, hemoglobinopathies, bone marrow failure syndromes, immunodeficiency and inborn metabolic disease. Two fundamentally different types of HSCT are categorized by the source of the stem cells. The first, autologous HSCT represents infusion of patient's own hematopoietic stem cells (HSCs) obtained from the patient; the second, allogeneic HSCT refers to the infusion of HSCs obtained from a donor via bone marrow harvest or apheresis. Bone marrow has been the typical source for HSCs for pediatric donors. Bone marrow harvest is a safe procedure mainly related to mild and transient side effects. Recently, a dramatically increased use of mobilized peripheral blood stem cells (PBSCs) in the autologous as well as allogeneic setting has been seen worldwide. There are limited data comparing mobilization regimens; also mobilization practices vary widely in children. The most commonly used approach includes granulocyte colony stimulating factor (G-CSF) at 10 mg/kg/day as a single daily dose for 4 days before the day of leukapheresis. G-CSF induced pain was less reported in children compared to adult donors. For the collection, there are several technical problems, derived from the size of the patient or donor, which must be considered before and during the apheresis. Vascular access, extracorporeal circuit volume, blood flow rates are the main limiting factors for PBSC collection in small children. Most children younger than 12 years require central vascular access for apheresis; line placement may require either general anesthesia or conscious sedation and many of the complications arise from the central venous catheter. In this review, we discuss that the ethical considerations and some principals regarding children serving as stem cell donors and the commonest sources of HSCs are presented in children, together with a discussion of how to collect and process these cells. Copyright © 2015 Elsevier Ltd. All rights reserved.
76 FR 19101 - Advisory Council on Blood Stem Cell Transplantation; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-06
... Groups: Cord Blood Bank Collections, Realizing the Potential of Cord Blood, Scientific Factors Necessary... Council on Blood Stem Cell Transplantation; Notice of Meeting In accordance with section 10(a)(2) of the... 19102
Tracking the rise of stem cell tourism.
Ryan, Kirsten A; Sanders, Amanda N; Wang, Dong D; Levine, Aaron D
2010-01-01
Driven by hype surrounding stem cell research, a number of clinics around the world currently offer 'stem cell therapies' to patients. These unproven interventions have attracted policy interest owing to the risks they may pose to patients and to the progress of legitimate translational stem cell research, yet remarkably little data exists about the patients who undergo these unproven therapies or their experiences. We sought to characterize this patient population. We developed a comprehensive data set of blogs written by patients (or their caretakers) about their experiences with unproven stem cell therapies. Analyzing these data suggests that unproven stem cell therapies are increasing rapidly in popularity and are attracting a wide range of patients--both young and old and with a diverse collection of medical conditions. These results should help clinicians advise individual patients and help policymakers devise strategies to mitigate the risks these treatments pose.
Gholizadeh-Ghaleh Aziz, Shiva; Fathi, Ezzatollah; Rahmati-Yamchi, Mohammad; Akbarzadeh, Abolfazl; Fardyazar, Zahra; Pashaiasl, Maryam
2017-06-01
Recent studies have elucidated that cell-based therapies are promising for cancer treatments. The human amniotic fluid stem (AFS) cells are advantageous cells for such therapeutic schemes that can be innately changed to express therapeutic proteins. HAFSCs display a natural tropism to cancer cells in vivo. They can be useful in cancer cells targeting. Moreover, they are easily available from surplus diagnostic samples during pregnancy and less ethical and legal concern are associated with the collection and application than other putative cells are subjected. This review will designate representatives of amniotic fluid and stem cell derived from amniotic fluid. For this propose, we collect state of human AFS cells data applicable in cancer therapy by dividing this approach into two main classes (nonengineered and engineered based approaches). Our study shows the advantage of AFS cells over other putative cells types in terms differentiation ability to a wide range of cells by potential and effective use in preclinical studies for a variety of diseases. This study has shown the elasticity of human AFS cells and their favorable potential as a multipotent cell source for regenerative stem cell therapy and capable of giving rise to multiple lineages including such as osteoblasts and adipocyte.
Abusin, Ghada A; Abu-Arja, Rolla F; Gingrich, Roger D; Silverman, Margarida D; Zamba, Gideon K D; Schlueter, Annette J
2013-08-01
Certain patients who receive granulocyte colony-stimulating factor (GCSF) for autologous hematopoietic stem cell (AHSC) collection fail to mobilize well enough to proceed with transplant. When plerixafor is used with GCSF, the likelihood of achieving the CD34⁺ stem cell target in fewer collections is higher; plerixafor use in all patients is unlikely to be cost-effective. This study retrospectively evaluated the effectiveness of utilizing a peripheral blood CD34⁺ stem cell count (PBCD34) ≤8/µL on day 4 of GCSF-based AHSC mobilization as a threshold for plerixafor administration, and compared the efficacy of collection and cost analysis using historical controls. All patients in the study cohort reached their CD34⁺ targets in ≤3 collections. Significantly more patients who received plerixafor + GCSF versus GCSF alone reached their CD34⁺ target in one collection (P = 0.045); however, there were no significant differences in the number of collections or in cumulative product yields. The historical cohort had 10.3% mobilization failures; the number of collections per patient needed to reach the target was significantly higher in the historical cohort versus study cohort (P = 0.001) as was the number of patients requiring more than one collection to reach their target (P = 0.023). However, the average cost per patient was also significantly higher in the study cohort (P = 0.025). Further refinement of the algorithm may reduce the difference in cost between the two mobilization strategies. Copyright © 2013 Wiley Periodicals, Inc.
Regenerative Endodontics in light of the stem cell paradigm
Rosa, Vinicius; Botero, Tatiana M.; Nör, Jacques E.
2013-01-01
Stem cells play a critical role in development and in tissue regeneration. The dental pulp contains a small sub-population of stem cells that are involved in the response of the pulp to caries progression. Specifically, stem cells replace odontoblasts that have undergone cell death as a consequence of the cariogenic challenge. Stem cells also secrete factors that have the potential to enhance pulp vascularization and provide the oxygen and nutrients required for the dentinogenic response that is typically observed in teeth with deep caries. However, the same angiogenic factors that are required for dentin regeneration may ultimately contribute to the demise of the pulp by enhancing vascular permeability and interstitial pressure. Recent studies focused on the biology of dental pulp stem cells revealed that the multipotency and angiogenic capacity of these cells could be exploited therapeutically in dental pulp tissue engineering. Collectively, these findings suggest new treatment paradigms in the field of Endodontics. The goal of this review is to discuss the potential impact of dental pulp stem cells to Regenerative Endodontics. PMID:21726222
Gamie, Zakareya; MacFarlane, Robert J; Tomkinson, Alicia; Moniakis, Alexandros; Tran, Gui Tong; Gamie, Yehya; Mantalaris, Athanasios; Tsiridis, Eleftherios
2014-11-01
Mesenchymal stem cells (MSCs) can be obtained from a wide variety of tissues for bone tissue engineering such as bone marrow, adipose, birth-associated, peripheral blood, periosteum, dental and muscle. MSCs from human fetal bone marrow and embryonic stem cells (ESCs) are also promising cell sources. In vitro, in vivo and clinical evidence was collected using MEDLINE® (1950 to January 2014), EMBASE (1980 to January 2014) and Google Scholar (1980 to January 2014) databases. Enhanced results have been found when combining bone marrow-derived mesenchymal stem cells (BMMSCs) with recently developed scaffolds such as glass ceramics and starch-based polymeric scaffolds. Preclinical studies investigating adipose tissue-derived stem cells and umbilical cord tissue-derived stem cells suggest that they are likely to become promising alternatives. Stem cells derived from periosteum and dental tissues such as the periodontal ligament have an osteogenic potential similar to BMMSCs. Stem cells from human fetal bone marrow have demonstrated superior proliferation and osteogenic differentiation than perinatal and postnatal tissues. Despite ethical concerns and potential for teratoma formation, developments have also been made for the use of ESCs in terms of culture and ideal scaffold.
Bhamidipati, Pavan Kumar; Fiala, Mark A; Grossman, Brenda J; DiPersio, John F; Stockerl-Goldstein, Keith; Gao, Feng; Uy, Geoffrey L; Westervelt, Peter; Schroeder, Mark A; Cashen, Amanda F; Abboud, Camille N; Vij, Ravi
2017-12-01
Autologous hematopoietic stem cell transplantation (auto-HSCT) improves survival in patients with multiple myeloma (MM) and non-Hodgkin lymphoma (NHL). Traditionally, filgrastim (Neupogen; recombinant G-CSF) has been used in as a single agent or in combination with plerixafor for stem cell mobilization for auto-HSCT. In Europe, a biosimilar recombinant G-CSF (Tevagrastim) has been approved for various indications similar to those of reference filgrastim, including stem cell mobilization for auto-HSCT; however, in the United States, tbo-filgrastim (Granix) is registered under the original biological application and is not approved for stem cell mobilization. In retrospective studies, stem cell mobilization with tbo-filgrastim has shown similar efficacy and toxicity as filgrastim, but no prospective studies have been published to date. We have conducted the first prospective randomized trial comparing the safety and efficacy of tbo-filgrastim in combination with plerixafor with that of filgrastim in combination with plerixafor for stem cell mobilization in patients with MM and NHL. This is a phase 2 prospective randomized (1:1) open-label single-institution noninferiority study of tbo-filgrastim and filgrastim with plerixafor in patients with MM or NHL undergoing auto-HSCT. Here 10 µg/kg/day of tbo-filgrastim/filgrastim was administered s.c. for 5 days (days 1 to 5). On day 4 at approximately 1800 hours, 0.24 mg/kg of plerixafor was administered s.c. Apheresis was performed on day 5 with a target cumulative collection goal of at least 5.0 × 10 6 CD34 + cells/kg. The primary objective was to compare day 5 CD34 + cells/kg collected. Secondary objectives included other mobilization endpoints, safety, engraftment outcomes, and hospital readmission rate. A total of 97 evaluable patients were enrolled (tbo-filgrastim, n = 46; filgrastim, n = 51). Tbo-filgrastim was not inferior to filgrastim in terms of day 5 CD34 + cell collection (mean, 11.6 ± 6.7 CD34 + cells/kg versus 10.0 ± 6.8 CD34 + cells/kg. Multivariate analysis revealed a trend toward increased mobilization in the tbo-filgrastim arm, but this was not statistically significant. The tbo-filgrastim and filgrastim arms were similar in all secondary endpoints. Tbo-filgrastim is not inferior in efficacy and has similar safety compared to reference filgrastim when used for stem cell mobilization in patients with MM and NHL. Granix can be safely used instead of Neupogen for stem cell collection in patients undergoing auto-HSCT for MM or NHL. The study is registered at https://clinicaltrials.gov/ct2/show/NCT02098109. Copyright © 2017 The American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.
Sun, Y P; Zheng, Y H; Zhang, Z G
2017-06-09
Objective: To analyze related factors on the number of mesenchymal stem cells in the synovial fluid of the temporomandibular joint (TMJ) and provide an research basis for understanding of the source and biological role of mesenchymal stem cells derived from synovial fluid in TMJ. Methods: One hundred and twenty-two synovial fluid samples from 91 temporomandibular disorders (TMD) patients who visited in Department of TMJ Center, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University from March 2013 to December 2013 were collected in this study, and 6 TMJ synovial fluid samples from 6 normal volunteers who were studying in the North Campus of Sun Yat-sen University were also collected, so did their clinical information. Then the relation between the number of mesenchymal stem cells derived from synovial fluid and the health status of the joints, age of donor, disc perforation, condylar bony destruction, blood containing and visual analogue scale score of pain were investigated using Mann-Whitney U test and Spearman rank correlation test. Results: The number of mesenchymal stem cells derived from synovial fluid had no significant relation with visual analogue scale score of pain ( r= 0.041, P= 0.672), blood containing ( P= 0.063), condylar bony destruction ( P= 0.371). Linear correlation between the number of mesenchymal stem cells derived from synovial fluid and age of donor was very week ( r= 0.186, P= 0.043). The number of mesenchymal stem cells up-regulated when the joint was in a disease state ( P= 0.001). The disc perforation group had more mesenchymal stem cells in synovial fluid than without disc perforation group ( P= 0.042). Conclusions: The number of mesenchymal stem cells derived from synovial fluid in TMJ has no correlation with peripheral blood circulation and condylar bony destruction, while has close relation with soft tissue structure damage of the joint.
Umbilical Cord Blood Banking for Transplantation in Morocco: Problems and opportunities
Mazini, Loubna; Matar, Nourredine; Bouhya, Said; Marzouk, Diaa; Anwar, Wagida; Khyatti, Meriem
2014-01-01
Since the success of the first umbilical cord blood (UCB) transplantation in a child with Fanconi anaemia in 1989, great interests have emerged for this source of stem cells. UCB provides an unlimited source of ethnically diverse stem cells and is an alternative for bone marrow (BM) and peripheral blood (PB) haematopoietic stem cell transplantation (HSCT). Thus, UCB and manipulated stem cells are now collected and banked according to international accreditation standards for listing on registries allowing rapid search and accessibility worldwide. This work aims to identify problems limiting the creation of a Moroccan cord blood bank and to highlight opportunities and issues of a new legislation promoting additional applications of cell therapy. PMID:25705096
Nowacki, Maciej; Kloskowski, Tomasz; Pietkun, Katarzyna; Zegarski, Maciej; Pokrywczyńska, Marta; Habib, Samy L.; Drewa, Tomasz
2017-01-01
The aim of this paper was to collect currently available data related to the use of stem cells in aesthetic dermatology and plastic surgery based on a systemic review of experimental and clinical applications. We found that the use of stem cells is very promising but the current state of art is still not effective. This situation is connected with not fully known mechanisms of cell interactions, possible risks and side effects. We think that there is a big need to create and conduct different studies which could resolve problems of stem cells use for implementation into aesthetic dermatology and plastic surgery. PMID:29422816
Nowacki, Maciej; Kloskowski, Tomasz; Pietkun, Katarzyna; Zegarski, Maciej; Pokrywczyńska, Marta; Habib, Samy L; Drewa, Tomasz; Zegarska, Barbara
2017-12-01
The aim of this paper was to collect currently available data related to the use of stem cells in aesthetic dermatology and plastic surgery based on a systemic review of experimental and clinical applications. We found that the use of stem cells is very promising but the current state of art is still not effective. This situation is connected with not fully known mechanisms of cell interactions, possible risks and side effects. We think that there is a big need to create and conduct different studies which could resolve problems of stem cells use for implementation into aesthetic dermatology and plastic surgery.
Lovelace, Tyler W; Henry, Michael A; Hargreaves, Kenneth M; Diogenes, Anibal
2011-02-01
Immature teeth with open apices treated with conventional nonsurgical root canal treatment often have a poor prognosis as a result of the increased risk of fracture and susceptibility to recontamination. Regenerative endodontics represents a new treatment modality that focuses on reestablishment of pulp vitality and continued root development. This clinical procedure relies on the intracanal delivery of a blood clot (scaffold), growth factors (possibly from platelets and dentin), and stem cells. However, to date, the clinical presence of stem cells in the canal space after this procedure has not been demonstrated. The purpose of this clinical study was to evaluate whether regenerative endodontic procedures are able to deliver stem cells into the canal space of immature teeth in young patients and to identify the possible tissue origin for these cells. After informed consent, the first appointment consisted of NaOCl irrigation and treatment with a triple antibiotic paste. One month later, the root canal space was irrigated with sterile saline, and bleeding was evoked with collection of samples on paper points. Real-time reverse-transcription polymerase chain reaction and immunocytochemistry were conducted to compare the gene transcripts and proteins found in the root canal sample with levels found in the systemic circulation. Molecular analyses of blood collected from the canal system indicated the significant accumulation of transcripts for the stem cell markers CD73 and CD105 (up to 600-fold), compared with levels found in the systemic blood. Furthermore, this effect was selective because there was no change in expression of the differentiation markers ALK-P, DSPP, ZBTB16, and CD14. Histologic analyses demonstrated that the delivered cells expressed both CD105 and STRO-1, markers for a subpopulation of mesenchymal stem cells. Collectively, these findings demonstrate that the evoked-bleeding step in regenerative procedures triggers the significant accumulation of undifferentiated stem cells into the canal space where these cells might contribute to the regeneration of pulpal tissues seen after antibiotic paste therapy of the immature tooth with pulpal necrosis. Copyright © 2011 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Smith, Veronica R; Popat, Uday; Ciurea, Stefan; Nieto, Yago; Anderlini, Paolo; Rondon, Gabriela; Alousi, Amin; Qazilbash, Muzaffar; Kebriaei, Partow; Khouri, Issa; de Lima, Marcos; Champlin, Richard; Hosing, Chitra
2013-09-01
Plerixafor, a recently approved peripheral blood progenitor cell mobilizing agent, is often added to granulocyte-colony stimulating factor (G-CSF) to mobilize peripheral blood progenitor cells in patients with lymphoma or myeloma who cannot mobilize enough CD34+ cells with G-CSF alone to undergo autologous stem cell transplantation. However, data are lacking regarding the feasibility and efficacy of just-in-time plerixafor in combination with chemotherapy and G-CSF. We reviewed the peripheral blood stem cell collection data of 38 consecutive patients with lymphoma (Hodgkin's and non-Hodgkin's) and multiple myeloma who underwent chemomobilization and high-dose G-CSF and just-in-time plerixafor to evaluate the efficacy of this treatment combination. All patients with multiple myeloma and all but one patient with lymphoma collected the minimum required number of CD34+ cells to proceed with autologous stem cell transplantation (>2 × 10(6) /kg of body weight). The median CD34+ cell dose collected in patients with non-Hodgkin lymphoma was 4.93 × 10(6) /kg of body weight. The median CD34+ cell dose collected for patients with multiple myeloma was 8.81 × 10(6) /kg of body weight. Plerixafor was well tolerated; no grade 2 or higher non-hematologic toxic effects were observed. Copyright © 2013 Wiley Periodicals, Inc.
Millane, R Cathriona; Kanska, Justyna; Duffy, David J; Seoighe, Cathal; Cunningham, Stephen; Plickert, Günter; Frank, Uri
2011-06-01
The evolutionary origin of stem cell pluripotency is an unresolved question. In mammals, pluripotency is limited to early embryos and is induced and maintained by a small number of key transcription factors, of which the POU domain protein Oct4 is considered central. Clonal invertebrates, by contrast, possess pluripotent stem cells throughout their life, but the molecular mechanisms that control their pluripotency are poorly defined. To address this problem, we analyzed the expression pattern and function of Polynem (Pln), a POU domain gene from the marine cnidarian Hydractinia echinata. We show that Pln is expressed in the embryo and adult stem cells of the animal and that ectopic expression in epithelial cells induces stem cell neoplasms and loss of epithelial tissue. Neoplasm cells downregulated the transgene but expressed the endogenous Pln gene and also Nanos, Vasa, Piwi and Myc, which are all known cnidarian stem cell markers. Retinoic acid treatment caused downregulation of Pln and the differentiation of neoplasm cells to neurosensory and epithelial cells. Pln downregulation by RNAi led to differentiation. Collectively, our results suggest an ancient role of POU proteins as key regulators of animal stem cells.
Representations of stem cell clinics on Twitter.
Kamenova, Kalina; Reshef, Amir; Caulfield, Timothy
2014-12-01
The practice of travelling abroad to receive unproven and unregulated stem cell treatments has become an increasingly problematic global phenomenon known as 'stem cell tourism'. In this paper, we examine representations of nine major clinics and providers of such treatments on the microblogging network Twitter. We collected and conducted a content analysis of Twitter posts (n = 363) by these establishments and by other users mentioning them, focusing specifically on marketing claims about treatment procedures and outcomes, discussions of safety and efficacy of stem cell transplants, and specific representations of patients' experiences. Our analysis has shown that there were explicit claims or suggestions of benefits associated with unproven stem cell treatments in approximately one third of the tweets and that patients' experiences, whenever referenced, were presented as invariably positive and as testimonials about the efficacy of stem cell transplants. Furthermore, the results indicated that the tone of most tweets (60.2 %) was overwhelmingly positive and there were rarely critical discussions about significant health risks associated with unproven stem cell therapies. When placed in the context of past research on the problems associated with the marketing of unproven stem cell therapies, this analysis of representations on Twitter suggests that discussions in social media have also remained largely uncritical of the stem cell tourism phenomenon, with inaccurate representations of risks and benefits for patients.
Advanced three-dimensional culture of equine intestinal epithelial stem cells.
Stewart, A Stieler; Freund, J M; Gonzalez, L M
2018-03-01
Intestinal epithelial stem cells are critical to epithelial repair following gastrointestinal injury. The culture of intestinal stem cells has quickly become a cornerstone of a vast number of new research endeavours that range from determining tissue viability to testing drug efficacy for humans. This study aims to describe the methods of equine stem cell culture and highlights the future benefits of these techniques for the advancement of equine medicine. To describe the isolation and culture of small intestinal stem cells into three-dimensional (3D) enteroids in horses without clinical gastrointestinal abnormalities. Descriptive study. Intestinal samples were collected by sharp dissection immediately after euthanasia. Intestinal crypts containing intestinal stem cells were dissociated from the underlying tissue layers, plated in a 3D matrix and supplemented with growth factors. After several days, resultant 3D enteroids were prepared for immunofluorescent imaging and polymerase chain reaction (PCR) analysis to detect and characterise specific cell types present. Intestinal crypts were cryopreserved immediately following collection and viability assessed. Intestinal crypts were successfully cultured and matured into 3D enteroids containing a lumen and budding structures. Immunofluorescence and PCR were used to confirm the existence of stem cells and all post mitotic, mature cell types, described to exist in the horse intestinal epithelium. Previously frozen crypts were successfully cultured following a freeze-thaw cycle. Tissues were all derived from normal horses. Application of this technique for the study of specific disease was not performed at this time. The successful culture of equine intestinal crypts into 3D "mini-guts" allows for in vitro studies of the equine intestine. Additionally, these results have relevance to future development of novel therapies that harness the regenerative potential of equine intestine in horses with gastrointestinal disease (colic). © 2017 EVJ Ltd.
Neirinckx, Virginie; Coste, Cécile; Rogister, Bernard
2013-01-01
Adult stem cells are endowed with in vitro multilineage differentiation abilities and constitute an attractive autologous source of material for cell therapy in neurological disorders. With regard to lately published results, the ability of adult mesenchymal stem cells (MSCs) and neural crest stem cells (NCSCs) to integrate and differentiate into neurons once inside the central nervous system (CNS) is currently questioned. For this review, we collected exhaustive data on MSC/NCSC neural differentiation in vitro. We then analyzed preclinical cell therapy experiments in different models for neurological diseases and concluded that neural differentiation is probably not the leading property of adult MSCs and NCSCs concerning neurological pathology management. A fine analysis of the molecules that are secreted by MSCs and NCSCs would definitely be of significant interest regarding their important contribution to the clinical and pathological recovery after CNS lesions. PMID:23486833
Attitude of A Sample of Iranian Researchers toward The Future of Stem Cell Research.
Lotfipanah, Mahdi; Azadeh, Fereydoon; Totonchi, Mehdi; Omani-Samani, Reza
2018-10-01
Stem cells that have unlimited proliferation potential as well as differentiation potency are considered to be a promising future treatment method for incurable diseases. The aim of the present study is to evaluate the future trend of stem cell researches from researchers' viewpoints. This was a cross-sectional descriptive study on researchers involved in stem cell research at Royan Institute. We designed a questionnaire using a qualitative study based on expert opinion and a literature review. Content validity was performed using three rounds of the Delphi method with experts. Face validity was undertaken by a Persian literature expert and a graphics designer. The questionnaire was distributed among 150 researchers involved in stem cell studies in Royan Institute biology laboratories. We collected 138 completed questionnaires. The mean age of participants was 31.13 ± 5.8 years; most (60.9%) were females. Participants (76.1%) considered the budget to be the most important issue in stem cell research, 79.7% needed financial support from the government, and 77.5% felt that charities could contribute substantially to stem cell research. A total of 90.6% of participants stated that stem cells should lead to commercial usage which could support future researches (86.2%). The aim of stem cell research was stipulated as increasing health status of the society according to 92.8% of the participants. At present, among cell types, importance was attached to cord blood and adult stem cells. Researchers emphasized the importance of mesenchymal stem cells (MSCs) rather than hematopoietic stem cells (HSCs, 57.73%). The prime priorities were given to cancer so that stem cell research could be directed to sphere stem cell research whereas the least preference was given to skin research. Regenerative medicine is considered the future of stem cell research with emphasis on application of these cells, especially in cancer treatment. Copyright© by Royan Institute. All rights reserved.
Bulge Region as a Putative Hair Follicle Stem Cells Niche: A Brief Review
JOULAI VEIJOUYE, Sanaz; YARI, Abazar; HEIDARI, Fatemeh; SAJEDI, Nayereh; GHOROGHI MOGHANI, Fatemeh; NOBAKHT, Maliheh
2017-01-01
Background: Hair follicle stem cells exist in different sites. Most of the hair follicle stem cells are reside in niche called bulge. Bulge region is located between the opening of sebaceous gland and the attachment site of the arrector pili muscle. Methods: Data were collected using databases and resources of PubMed, Web of Science, Science Direct, Scopus, MEDLINE and their references from the earliest available published to identify English observational studies on hair follicle bulge region. Results: Bulge stem cells are pluripotent with high proliferative capacity. Specific markers allow the bulge cells to be isolated from mouse or human hair follicle. Stem cells isolated from bulge region are label retaining and slow cycling hence these cells are defined as label-retaining cells. Bulge cell populations, due to their plasticity nature are able to differentiate into distinct linage and could contribute in tissue regeneration. Conclusion: The current review discuss about bulge stem cells characteristics and biology including their cycle, location, plasticity, specific markers and regenerative nature. Also the differences between mouse and human hair follicles are investigated. PMID:29026781
Macroenvironmental regulation of hair cycling and collective regenerative behavior.
Plikus, Maksim V; Chuong, Cheng-Ming
2014-01-01
The hair follicle (HF) regeneration paradigm provides a unique opportunity for studying the collective behavior of stem cells in living animals. Activation of HF stem cells depends on the core inhibitory BMP and activating WNT signals operating within the HF microenvironment. Additionally, HFs receive multilayered signaling inputs from the extrafollicular macroenvironment, which includes dermis, adipocytes, neighboring HFs, hormones, and external stimuli. These activators/inhibitors are integrated across multiple stem-cell niches to produce dynamic hair growth patterns. Because of their pigmentation, these patterns can be easily studied on live shaved animals. Comparing to autonomous regeneration of one HF, populations of HFs display coupled decision making, allowing for more robust and adaptable regenerative behavior to occur collectively. The generic cellular automata model used to simulate coordinated HF cycling here can be extended to study population-level behavior of other complex biological systems made of cycling elements.
Macroenvironmental Regulation of Hair Cycling and Collective Regenerative Behavior
Plikus, Maksim V.; Chuong, Cheng-Ming
2014-01-01
The hair follicle (HF) regeneration paradigm provides a unique opportunity for studying the collective behavior of stem cells in living animals. Activation of HF stem cells depends on the core inhibitory BMP and activating WNT signals operating within the HF microenvironment. Additionally, HFs receive multilayered signaling inputs from the extrafollicular macroenvironment, which includes dermis, adipocytes, neighboring HFs, hormones, and external stimuli. These activators/inhibitors are integrated across multiple stem-cell niches to produce dynamic hair growth patterns. Because of their pigmentation, these patterns can be easily studied on live shaved animals. Comparing to autonomous regeneration of one HF, populations of HFs display coupled decision making, allowing for more robust and adaptable regenerative behavior to occur collectively. The generic cellular automata model used to simulate coordinated HF cycling here can be extended to study population-level behavior of other complex biological systems made of cycling elements. PMID:24384813
Stover, Jessica T; Shaw, J Ryan; Kuchibhatla, Maragatha; Horwitz, Mitchell E; Engemann, Ashley M
2017-08-01
The addition of plerixafor to high-dose colony-stimulating growth factor has been shown to improve stem cell mobilization rates in autologous transplant patients with multiple myeloma and non-Hodgkin lymphoma. This study evaluates the change in administration time of plerixafor to determine if cell mobilization rates are similar between the US Food and Drug Administration-approved administration time of 11 hours before apheresis and an earlier administration time of 16 hours before apheresis. Medical records of patients age ≥ 18 years undergoing autologous stem cell transplantation requiring the use of plerixafor after at least 4 days of granulocyte colony-stimulating factor therapy to complete stem cell mobilization from January 1, 2010 through September 30, 2014 were retrospectively reviewed. The primary outcome was CD34 + cell mobilization success rates when plerixafor was administered 11 ± 2 hours (standard administration group) compared with 16 ± 2 hours before cell apheresis (early administration group), as defined as collection of ≥2 × 10 6 CD34 + cells/kg. Secondary outcomes included the number of plerixafor therapy days required to collect a total of ≥2 × 10 6 CD34 + cells/kg, the number of apheresis cycles required to achieve ≥2 × 10 6 CD34 + cells/kg, the median CD34 + cells/kg collected in each apheresis session, and the rates of reported adverse events that occurred in the standard administration time group compared with the early administration time group. Of the 197 patients included, 114 patients received plerixafor 11 ± 2 hours before apheresis and 83 patients received plerixafor 16 hours ± 2 hours before apheresis. Ninety-four percent of patients in the early administration group achieved successful stem cell mobilization compared with 81.6% in the standard administration group (P = .0111). The median number of plerixafor days to reach the collection goal of ≥2 × 10 6 CD34 + cells/kg was 1 day for each group (P = .323), and the median number of apheresis days to reach the collection goal was 2 days for the standard administration group compared with 1 day for the early administration group (P = .0156). Most adverse events were similar between the 2 groups except for fever, which occurred in 4.8% of the patients in the early administration group and none of the patients in the standard administration group. This study demonstrates plerixafor effectively mobilizes peripheral blood stem cells when given at an early administration time of 16 hours before apheresis compared with standard administration of 11 hours before apheresis. However, further prospective studies could strengthen these results. Copyright © 2017 The American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.
Designing the stem cell microenvironment for guided connective tissue regeneration.
Bogdanowicz, Danielle R; Lu, Helen H
2017-12-01
Adult mesenchymal stem cells (MSCs) are an attractive cell source for regenerative medicine because of their ability to self-renew and their capacity for multilineage differentiation and tissue regeneration. For connective tissues, such as ligaments or tendons, MSCs are vital to the modulation of the inflammatory response following acute injury while also interacting with resident fibroblasts to promote cell proliferation and matrix synthesis. To date, MSC injection for connective tissue repair has yielded mixed results in vivo, likely due to a lack of appropriate environmental cues to effectively control MSC response and promote tissue healing instead of scar formation. In healthy tissues, stem cells reside within a complex microenvironment comprising cellular, structural, and signaling cues that collectively maintain stemness and modulate tissue homeostasis. Changes to the microenvironment following injury regulate stem cell differentiation, trophic signaling, and tissue healing. Here, we focus on models of the stem cell microenvironment that are used to elucidate the mechanisms of stem cell regulation and inspire functional approaches to tissue regeneration. Recent studies in this frontier area are highlighted, focusing on how microenvironmental cues modulate MSC response following connective tissue injury and, more importantly, how this unique cell environment can be programmed for stem cell-guided tissue regeneration. © 2017 New York Academy of Sciences.
Cord Blood Stem Cell Procurement in Minority Donors
2009-03-01
stem cell transplantation. The educational process and expansion of collection sites has given us a steady supply of cord blood for clinical use; and now we have the operational nucleus of several collection sites that is self-perpetuating a continual drive to expand to affiliated institutions. The greatest benefit of this project is the demonstration of how we solved the problem of increasing the overall yield of the cord blood units. We convincingly demonstrate that putting resources into individual patient education and prenatal visits is not likely to increase the cell
The cellular basis for animal regeneration
Tanaka, Elly; Reddien, Peter W.
2011-01-01
The ability of animals to regenerate missing parts is a dramatic and poorly understood aspect of biology. The sources of new cells for these regenerative phenomena have been sought for decades. Recent advances involving cell fate tracking in complex tissues have shed new light on the cellular underpinnings of regeneration in Hydra, planarians, zebrafish, Xenopus, and Axolotl. Planarians accomplish regeneration with use of adult pluripotent stem cells, whereas several vertebrates utilize a collection of lineage-restricted progenitors from different tissues. Together, an array of cellular strategies—from pluripotent stem cells to tissue-specific stem cells and dedifferentiation—are utilized for regeneration. PMID:21763617
Cord blood stem cell banking: a snapshot of the Italian situation.
Capone, Francesca; Lombardini, Letizia; Pupella, Simonetta; Grazzini, Giuliano; Costa, Alessandro Nanni; Migliaccio, Giovanni
2011-09-01
In Italy, the law does not permit the setting up of private banks to preserve cord blood (CB) stem cells for personal use. However, since 2007 the right to export and preserve them in private laboratories located outside Italy has existed, and an increasing number of women are requesting this collection of umbilical CB at delivery to enable storage of stem cells for autologous use. Since private banks recruit clients mainly via the Internet, we examined the content of 24 Italian-language websites that offer stem cells storage (from CB or amniotic fluid), to assess what information is available. We found that the majority of private banks give no clear information about the procedures of collection, processing, and banking of CB units and that the standards offered by private CB banks strongly differ in terms of exclusion or acceptance criteria from the public banks. These factors may well influence the overall quality of the CB units stored in private CB banks. Of note, during the period 2007 to 2009, the number collected for autologous use did not create a downward trend on the number of units stored in public CB banks for allogeneic use. CB is a valuable community resource but expectant parents should be better informed as to the quality variables necessary for its storage, both by institutions and by professionals. Currently, most of the advertising is insufficient to justify the expense and the hopes pinned on autologous use of CB stem cells. © 2011 American Association of Blood Banks.
Cancer stem cells: A product of clonal evolution?
van Niekerk, Gustav; Davids, Lester M; Hattingh, Suzèl M; Engelbrecht, Anna-Mart
2017-03-01
The cancer stem cell (CSC) model has emerged as a prominent paradigm for explaining tumour heterogeneity. CSCs in tumour recurrence and drug resistance have also been implicated in a number of studies. In fact, CSCs are often identified by their expression of drug-efflux proteins which are also highly expressed in normal stem cells. Similarly, pro-survival or proliferation signalling often exhibited by stem cells is regularly reported as being upregulated by CSC. Here we review evidence suggesting that many aspects of CSCs are more readily described by clonal evolution. As an example, cancer cells often exhibit copy number gains of genes involved in drug-efflux proteins and pro-survival signalling. Consequently, clonal selection for stem cell traits may result in cancer cells developing "stemness" traits which impart a fitness advantage, without strictly following a CSC model. Finally, since symmetric cell division would give rise to more cells than asymmetric division, it is expected that more advanced tumours would depart from a CSC. Collectively, these observations suggest clonal evolution may explain many aspects of the CSC. © 2016 UICC.
The role of autologous blood stem cells in support of high-dose therapy for multiple myeloma.
Fermand, J P; Chevret, S; Levy, Y; Miclea, J M; Tsapis, A; Gerota, J; Benbunan, M; Brouet, J C
1992-04-01
During the last few years, high-dose therapy with hemopoietic stem cell support has become a well-admitted therapeutic option for young patients with MM. The role of allogeneic or autologous graft and of blood rather than bone marrow as the source of hemopoietic stem cells must be further investigated. Autologous PBSC transplantation has, however, both practical and theoretic advantages over allogeneic and autologous BMT: (1) It can be applied to most patients, especially if blood stem cells are collected early in the course of therapy. (2) It usually induces relatively rapid hematologic reconstitution. (3) In comparison with autologous BMT, it appears to minimize the hazard of the reinfusion of malignant cells.
Shi, Cheng; Shen, Huan; Jiang, Wei; Song, Zhi-Hua; Wang, Cheng-Yan; Wei, Li-Hui
2011-04-01
Human embryonic stem cells have prospective uses in regenerative medicine and drug screening. Every human embryonic stem cell line has its own genetic background, which determines its specific ability for differentiation as well as susceptibility to drugs. It is necessary to compile many human embryonic stem cell lines with various backgrounds for future clinical use, especially in China due to its large population. This study contributes to isolating new Chinese human embryonic stem cell lines with clarified directly differentiation ability. Donated embryos that exceeded clinical use in our in vitro fertilization-embryo transfer (IVF-ET) center were collected to establish human embryonic stem cells lines with informed consent. The classic growth factors of basic fibroblast growth factor (bFGF) and recombinant human leukaemia inhibitory factor (hLIF) for culturing embryonic stem cells were used to capture the stem cells from the plated embryos. Mechanical and enzymetic methods were used to propagate the newly established human embryonic stem cells line. The new cell line was checked for pluripotent characteristics with detecting the expression of stemness genes and observing spontaneous differentiation both in vitro and in vivo. Finally similar step-wise protocols from definitive endoderm to target specific cells were used to check the cell line's ability to directly differentiate into pancreatic and hepatic cells. We generated a new Chinese human embryonic stem cells line, CH1. This cell line showed the same characteristics as other reported Chinese human embryonic stem cells lines: normal morphology, karyotype and pluripotency in vitro and in vivo. The CH1 cells could be directly differentiated towards pancreatic and hepatic cells with equal efficiency compared to the H1 cell line. This newly established Chinese cell line, CH1, which is pluripotent and has high potential to differentiate into pancreatic and hepatic cells, will provide a useful tool for embryo development research, along with clinical treatments for diabetes and some hepatic diseases.
Concepts, Utility and Limitations of Cord Blood Banking: What Clinicians Need to Know.
Narayanan, Dhanya Lakshmi; Phadke, Shubha R
2018-03-20
Stem cell transplantation and cord blood banking have received much popularity among general public and medical professionals in the recent past. But information about the scientific aspects, its utility and limitations is incomplete amongst laypersons as well as many medical practitioners. Stem cells differ from all other types of cells in the human body because of their ability to multiply in order to self perpetuate and differentiate into specialized cells. Stems cells could be totipotent, multipotent, pluripotent, oligopotent or unipotent depending on the type of cells that can arise or differentiate from them. Umbilical cord blood serves as a potent source of hematopoeitic stem cells and is being used to treat various disorders like blood cancers, hemoglobinopathies and immunodeficiency disorders for which hematological stem cell transplantation is the standard of care. Cord blood can be collected at ease, without any major complications and has a lower incidence of graft vs. host reaction compared to bone marrow cells or peripheral blood cells. Both public and private banks have been established for collection and storage of umbilical cord blood. However, false claims and misleading commercial advertisements about the use of umbilical cord blood stem cells for the treatment of a variety of conditions ranging from neuromuscular disorders to cosmetic benefits are widespread and create unrealistic expectations in laypersons and clinicians. Many clinicians and laypersons are unaware of the limitations of cord blood banking, as in treating a genetic disorder by autologous cord blood transplant. Knowledge and awareness about the scientific indications of cord blood stem cell transplantation and realistic expectations about the utility of cord blood among medical practitioners are essential for providing accurate information to laypersons before they decide to preserve umbilical cord blood in private banks and thus prevent malpractice.
Jin, Caixia; Tian, Haibin; Li, Jiao; Jia, Song; Li, Siguang; Xu, Guo-Tong; Xu, Lei; Lu, Lixia
2018-03-01
Stem cells are cells that can self-renew and differentiate into a variety of cell types under certain conditions. Stem cells have great potential in regenerative medicine and cell therapy for the treatment of certain diseases. To deliver knowledge about this frontier in science and technology to medical undergraduate students, we designed an innovative practical experiment for freshmen in their second semester. The lab exercise focused on rat bone marrow mesenchymal stem cell (BMSC) isolation, cell culture and differentiation, and it aimed to help students master the aseptic techniques for cell culture, the basic methods and procedures for the primary culture and passage of BMSCs, the basic procedure for the directional differentiation of BMSCs into adipocytes and their subsequent identification by oil-red-O staining. This lab exercise is a very meaningful and useful introduction to stem cell collection and manipulation and inspires medical students to deepen their understanding of translational medicine and regenerative medicine. © 2017 by The International Union of Biochemistry and Molecular Biology, 46(2):151-154, 2018. © 2017 The International Union of Biochemistry and Molecular Biology.
Son, Myung Jin; Kwon, Youjeong; Son, Taekwon; Cho, Yee Sook
2016-12-01
The fundamental tenet that aging is irreversible has been challenged by the development of reprogramming technology that can restore molecular and cellular age by reversing the progression of aging. The use of cells from aged individuals as sources for reprogramming or transplantation creates a major barrier in stem cell therapy with respect to cell quality and quantity. Here, we investigated the molecular features underlying senescence and rejuvenation during aged cell reprogramming and identified novel factors that can overcome age-associated barriers. Enzymes, such as nicotinamide nucleotide transhydrogenase (NNT) and nicotinamide mononucleotide adenylyltransferase 3 (NMNAT3), that control mitochondrial NAD + levels appear to be susceptible to aging. In aged cells, mitochondrial NAD + levels decrease, accompanied by reduced SIRT3 activity; these changes severely impede cell fate transition. However, in cells collected from aged p16 knockout mice, which exhibit delayed cellular senescence, no changes in NNT or NMNAT3 expression were found. Importantly, restoring mitochondrial NAD + levels by overexpressing NNT and NMNAT3 enhanced reprogramming efficiency of aged somatic cells and extended the lifespan of human mesenchymal stem cells by delaying replicative senescence. These results demonstrate that maintenance of mitochondrial NAD + levels is critical for reversing the mechanisms of aging and ensuring that cells collected from aged individuals are of high quality. Stem Cells 2016;34:2840-2851. © 2016 AlphaMed Press.
Kriegsmann, Katharina; Heilig, Christoph; Cremer, Martin; Novotny, Philipp; Kriegsmann, Mark; Bruckner, Thomas; Müller-Tidow, Carsten; Egerer, Gerlinde; Wuchter, Patrick
2017-11-01
In patients with Ewing sarcoma and some distinct subgroups of soft tissue sarcoma (STS), a quantitatively sufficient autologous peripheral blood stem cell (PBSC) collection for stem cell support might facilitate treatment continuation, dose-intensification, and high-dose chemotherapy. Here, we provide a detailed evaluation of PBSC collection upon vincristine, ifosfamide, doxorubicin, and etoposide (VIDE) chemomobilization. Mobilization and collection parameters of 42 sarcoma patients (Ewing sarcoma n = 35, other STS n = 7) were analyzed retrospectively. Data were evaluated with regard to the number of previous VIDE therapy cycles. All patients reached the collection goal of ≥2.0 × 10 6 CD34 + cells/kg body weight (bw) upon VIDE/G-CSF mobilization, in the majority of cases with one single leukapheresis (LP) session (n = 29, 69%). No significant differences were identified with regard to mobilization and collection variables or the number of previous induction VIDE therapy cycles. However, upon 5 cycles of VIDE, we found the highest relative proportion of patients who required two or three LP sessions. Our data demonstrate the feasibility of successful PBSC collection upon VIDE chemomobilization even after up to five cycles of induction therapy, while at the same time the increasing risk of bone marrow exhaustion with every consecutive cycle is outlined. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Guo, Zhi-Ping; Wang, Tao; Xu, Lan-Ping; Zhang, Xiao-Hui; Wang, Yu; Huang, Xiao-Jun; Chang, Ying-Jun
2016-12-01
A second allogeneic hematopoietic stem-cell transplantation and donor lymphocyte infusion using cells from the same donor is a therapeutic option in the case of stem-cell graft failure or disease relapse, but little is known about the factors associated with the CD34 + cell yields from second donations. One-hundred healthy donors who underwent a second mobilization treatment and peripheral blood stem-cell (PBSC) collection were studied. For both mobilization processes, 5 µg of granulocyte colony-stimulating factor per kg per day was administered. The blood counts of the donors were monitored during the processes. The second donations from the same donors provided lower apheresis yields than did the initial collections. The number of CD34 + cells collected from normal donors after a second cycle of PBSC mobilization was associated with their steady-state lymphocyte counts and the intertransplantation interval. Female sex negatively affected the CD34 + cell yields. The cutoff value for the steady-state absolute lymphocyte count was 2.055 × 10 9 /L. To harvest greater numbers of CD34 + cells from second collections, male donors and those with intervals of longer than 9 months between donations should be selected. The lymphocyte counts prior to the first donations may predict the content of CD34 + cells in the allografts prepared using the second donations. Copyright © 2016 Elsevier Ltd. All rights reserved.
Li, Jie; Hamilton, Ellie; Vaughn, Louette; Graiser, Michael; Renfroe, Heather; Lechowicz, Mary Jo; Langston, Amelia; Prichard, Jefferson Mark; Anderson, Darlene; Gleason, Charise; Lonial, Sagar; Flowers, Christopher R; Kaufman, Jonathan L; Waller, Edmund K
2011-10-01
Plerixafor is a recently Food and Drug Administration (FDA)-approved CXCR4 antagonist, which is combined with granulocyte-colony-stimulating factor (G-CSF) to facilitate stem cell mobilization of lymphoma and myeloma patients. To evaluate the effectiveness and the related costs of a "just-in-time" strategy of plerixafor administration, we performed a retrospective cohort study comparing 148 consecutive lymphoma and myeloma patients in whom mobilization was attempted during 2008 before the Food and Drug Administration (FDA) approval of plerixafor with 188 consecutive patients mobilized during 2009 after FDA approval. Plerixafor was administered to 64 of 188 patients considered to be at risk for mobilization failure due to either their medical history ("high risk," n = 23) or the occurrence of peripheral blood CD34+ count of fewer than 15 × 10(6) cells/L with a white blood cell count of greater than 10 × 10(9) cells/L after at least 5 days of G-CSF administration (just-in-time, n = 41). The success rates of collecting a minimum transplant CD34+ cell dose (≥2 × 10(6) cells/kg) or target cell dose (≥5 × 10(6) lymphoma or ≥10 × 10(6) CD34+ cells/kg myeloma) in the just-in-time patients compared favorably with the 36 poor mobilizers collected with G-CSF alone: 93% versus 72% and 42% versus 22%, respectively. The use of plerixafor in selected high-risk patients and poor mobilizers did not increase the total charges associated with stem cell collection when compared with poor mobilizers treated with G-CSF alone. The targeted use of plerixafor increased the overall success rate of mobilizing a minimum number of CD34+ cells from 93% to 98% in patients with hematologic malignancies scheduled for autotransplant and increased the overall charges associated with stem cell collection in all patients by an average of 17%. © 2011 American Association of Blood Banks.
XU, SHI-MIN; LIANG, TING
2016-01-01
The aim of the present study was to investigate the optimal mobilization plan in autologous peripheral blood stem cell transplantation for the treatment of diabetic foot and to observe its clinical curative effect. A total of 127 patients with diabetic foot were treated with different doses of granulocyte colony stimulating factor (G-CSF) to mobilize their hematopoietic stem cells. Subsequently, the extracted stem cell suspension was injected into the ischemic lower extremities along the blood vessels in the areas presenting with pathological changes. Following the treatment, the intermittent claudication distance, skin temperature, ankle brachial index and pain scores of the patients were evaluated. In addition, the associations among the mobilization time, doses and peripheral blood CD34+ level were analyzed. The collection efficiency of the stem cells was associated with the dose of G-CSF and the mobilization time. Following the injection of the autologous peripheral blood stem cell suspension, the ischemic area of the patients was improved significantly. In conclusion, autologous peripheral blood stem cell transplantation can promote the establishment of collateral circulation in patients with diabetic foot, and the optimal time for gathering stem cells is closely correlated with the peripheral blood CD34+ level. PMID:26889255
Abbruzzese, L; Agostini, F; Durante, C; Toffola, R T; Rupolo, M; Rossi, F M; Lleshi, A; Zanolin, S; Michieli, M; Mazzucato, M
2013-07-01
Peripheral blood stem cell cryopreservation is associated with cell damage and decreased viability. We evaluated the impact of up to 10 years of cryopreservation (5% DMSO) on viability of CD34(+) cells utilizing graft samples of consecutive patients (2002-2012) with different malignancies who underwent stem cell collection and transplantation. Viability of CD34(+) cells from oncohaematological patients measured after 5 weeks (97·2 ± 0·6%) or after 9-10 years of cryopreservation (95·9 ± 0·5%) was unaffected. Haemoglobin, granulocyte and platelet recovery after transplantation of long-term cryopreserved grafts occurred within 8-13 days. CD34(+) stem cells can be safely stored up to 9-10 years, without affecting cell viability and clinical effectiveness. © 2013 International Society of Blood Transfusion.
Cryopreservation Method for the Effective Collection of Dental Pulp Stem Cells.
Takebe, Yusuke; Tatehara, Seiko; Fukushima, Tatsuhiro; Tokuyama-Toda, Reiko; Yasuhara, Rika; Mishima, Kenji; Satomura, Kazuhito
2017-05-01
Dental pulp stem cells (DPSCs) are an attractive cell source for use in cell-based therapy, regenerative medicine, and tissue engineering because DPSCs have a high cell proliferation ability and multidifferentiation capacity. However, several problems are associated with the collection and preservation of DPSCs for use in future cell-based therapy. In particular, the isolation of DPSCs for cryopreservation is time consuming and expensive. In this study, we developed a novel cryopreservation method (NCM) for dental pulp tissues to isolate suitable DPSCs after thawing cryopreserved tissue. Using the NCM, dental pulp tissues were cultured on adhesion culture dishes for 5 days and then cryopreserved. After thawing, the cryopreserved dental pulp tissue fragments exhibited cell migration. We evaluated each property of DPSCs isolated using the NCM (DPSCs-NCM) and the explant method alone without cryopreservation (DPSCs-C). DPSCs-NCM had the same proliferation capacity as DPSCs-C. Flow cytometry (FACS) analysis indicated that both DPSCs-NCM and DPSCs-C were positive for mesenchymal stem cell markers at the same level but negative for hematopoietic cell markers. Moreover, both DPSCs-NCM and DPSCs-C could differentiate into osteogenic, chondrogenic, and adipogenic cells during culture in each induction medium. These results suggest that DPSCs-NCM may be mesenchymal stem cells. Therefore, our novel method might facilitate the less expensive cryopreservation of DPSCs, thereby providing suitable DPSCs for use in patients in future cell-based therapies.
STEM Tomography Imaging of Hypertrophied Golgi Stacks in Mucilage-Secreting Cells.
Kang, Byung-Ho
2016-01-01
Because of the weak penetrating power of electrons, the signal-to-noise ratio of a transmission electron micrograph (TEM) worsens as section thickness increases. This problem is alleviated by the use of the scanning transmission electron microscopy (STEM). Tomography analyses using STEM of thick sections from yeast and mammalian cells are of higher quality than are bright-field (BF) images. In this study, we compared regular BF tomograms and STEM tomograms from 500-nm thick sections from hypertrophied Golgi stacks of alfalfa root cap cells. Due to their thickness and intense heavy metal staining, BF tomograms of the thick sections suffer from poor contrast and high noise levels. We were able to mitigate these drawbacks by using STEM tomography. When we performed STEM tomography of densely stained chloroplasts of Arabidopsis cotyledon, we observed similar improvements relative to BF tomograms. A longer time is required to collect a STEM tilt series than similar BF TEM images, and dynamic autofocusing required for STEM imaging often fails at high tilt angles. Despite these limitations, STEM tomography is a powerful method for analyzing structures of large or dense organelles of plant cells.
Neural Stem Cells Derived Directly from Adipose Tissue.
Petersen, Eric D; Zenchak, Jessica R; Lossia, Olivia V; Hochgeschwender, Ute
2018-05-01
Neural stem cells (NSCs) are characterized as self-renewing cell populations with the ability to differentiate into the multiple tissue types of the central nervous system. These cells can differentiate into mature neurons, astrocytes, and oligodendrocytes. This category of stem cells has been shown to be a promisingly effective treatment for neurodegenerative diseases and neuronal injury. Most treatment studies with NSCs in animal models use embryonic brain-derived NSCs. This approach presents both ethical and feasibility issues for translation to human patients. Adult tissue is a more practical source of stem cells for transplantation therapies in humans. Some adult tissues such as adipose tissue and bone marrow contain a wide variety of stem cell populations, some of which have been shown to be similar to embryonic stem cells, possessing many pluripotent properties. Of these stem cell populations, some are able to respond to neuronal growth factors and can be expanded in vitro, forming neurospheres analogous to cells harvested from embryonic brain tissue. In this study, we describe a method for the collection and culture of cells from adipose tissue that directly, without going through intermediates such as mesenchymal stem cells, results in a population of NSCs that are able to be expanded in vitro and be differentiated into functional neuronal cells. These adipose-derived NSCs display a similar phenotype to those directly derived from embryonic brain. When differentiated into neurons, cells derived from adipose tissue have spontaneous spiking activity with network characteristics similar to that of neuronal cultures.
Mesenchymal stem cells use extracellular vesicles to outsource mitophagy and shuttle microRNAs
Phinney, Donald G.; Di Giuseppe, Michelangelo; Njah, Joel; Sala, Ernest; Shiva, Sruti; St Croix, Claudette M.; Stolz, Donna B.; Watkins, Simon C.; Di, Y. Peter; Leikauf, George D.; Kolls, Jay; Riches, David W. H.; Deiuliis, Giuseppe; Kaminski, Naftali; Boregowda, Siddaraju V.; McKenna, David H.; Ortiz, Luis A.
2015-01-01
Mesenchymal stem cells (MSCs) and macrophages are fundamental components of the stem cell niche and function coordinately to regulate haematopoietic stem cell self-renewal and mobilization. Recent studies indicate that mitophagy and healthy mitochondrial function are critical to the survival of stem cells, but how these processes are regulated in MSCs is unknown. Here we show that MSCs manage intracellular oxidative stress by targeting depolarized mitochondria to the plasma membrane via arrestin domain-containing protein 1-mediated microvesicles. The vesicles are then engulfed and re-utilized via a process involving fusion by macrophages, resulting in enhanced bioenergetics. Furthermore, we show that MSCs simultaneously shed micro RNA-containing exosomes that inhibit macrophage activation by suppressing Toll-like receptor signalling, thereby de-sensitizing macrophages to the ingested mitochondria. Collectively, these studies mechanistically link mitophagy and MSC survival with macrophage function, thereby providing a physiologically relevant context for the innate immunomodulatory activity of MSCs. PMID:26442449
Mesenchymal stem cells use extracellular vesicles to outsource mitophagy and shuttle microRNAs.
Phinney, Donald G; Di Giuseppe, Michelangelo; Njah, Joel; Sala, Ernest; Shiva, Sruti; St Croix, Claudette M; Stolz, Donna B; Watkins, Simon C; Di, Y Peter; Leikauf, George D; Kolls, Jay; Riches, David W H; Deiuliis, Giuseppe; Kaminski, Naftali; Boregowda, Siddaraju V; McKenna, David H; Ortiz, Luis A
2015-10-07
Mesenchymal stem cells (MSCs) and macrophages are fundamental components of the stem cell niche and function coordinately to regulate haematopoietic stem cell self-renewal and mobilization. Recent studies indicate that mitophagy and healthy mitochondrial function are critical to the survival of stem cells, but how these processes are regulated in MSCs is unknown. Here we show that MSCs manage intracellular oxidative stress by targeting depolarized mitochondria to the plasma membrane via arrestin domain-containing protein 1-mediated microvesicles. The vesicles are then engulfed and re-utilized via a process involving fusion by macrophages, resulting in enhanced bioenergetics. Furthermore, we show that MSCs simultaneously shed micro RNA-containing exosomes that inhibit macrophage activation by suppressing Toll-like receptor signalling, thereby de-sensitizing macrophages to the ingested mitochondria. Collectively, these studies mechanistically link mitophagy and MSC survival with macrophage function, thereby providing a physiologically relevant context for the innate immunomodulatory activity of MSCs.
Low, Karen; Wong, Lauren Y; Maldonado, Maricela; Manjunath, Chetas; Horner, Christopher B; Perez, Mark; Myung, Nosang V; Nam, Jin
2017-05-09
Monitoring pluripotent stem cell behaviors (self-renewal and differentiation to specific lineages/phenotypes) is critical for a fundamental understanding of stem cell biology and their translational applications. In this study, a multi-modal stem cell monitoring system was developed to quantitatively characterize physico-electrochemical changes of the cells in real time, in relation to cellular activities during self-renewal or lineage-specific differentiation, in a non-destructive, label-free manner. The system was validated by measuring physical (mass) and electrochemical (impedance) changes in human induced pluripotent stem cells undergoing self-renewal, or subjected to mesendodermal or ectodermal differentiation, and correlating them to morphological (size, shape) and biochemical changes (gene/protein expression). An equivalent circuit model was used to further dissect the electrochemical (resistive and capacitive) contributions of distinctive cellular features. Overall, the combination of the physico-electrochemical measurements and electrical circuit modeling collectively offers a means to longitudinally quantify the states of stem cell self-renewal and differentiation. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Management of patients with multiple myeloma: emphasizing the role of high-dose therapy.
Kyle, R A
2001-06-01
Treatment for multiple myeloma should not be given until the patient is symptomatic or at risk for the occurrence of complications of the disease. If the patient is younger than 70 years, the physician should seriously consider an autologous peripheral blood stem cell transplant. Most physicians initially administer vincristine/doxorubicin/dexamethasone (VAD) for 3 to 4 months and then collect the stem cells before exposure to alkylating agents. Following stem cell collection, one may proceed with high-dose chemotherapy and then infusion of the stem cells, or one can administer alkylating agents until a plateau is reached and delay transplantation until progressive disease occurs. There is no difference in overall survival between early and late transplantation, but the former avoids the cost and inconvenience of alkylating agent therapy. Double or tandem autologous stem cell transplants may produce better results, but the evidence is not strong. Almost all patients have a relapse after an autologous stem cell transplant, so efforts are being made to prolong the response with a2-interferon or dendritic cell therapy. Allogeneic bone marrow transplantation is feasible for only 5%-10% of patients, but the mortality is high and it is curative in only a small fraction of patients. Treatment with melphalan and prednisone results in an objective response in 50%-60% of patients. Combinations of alkylating agents produce a higher response rate, but there is no survival benefit. Thalidomide produces an objective response in about one third of patients with refractory disease. It currently is being studied in conjunction with dexamethasone for conventional initial therapy.
Schroeder, Mark A.; Rettig, Michael P.; Lopez, Sandra; Christ, Stephanie; Fiala, Mark; Eades, William; Mir, Fazia A.; Shao, Jin; McFarland, Kyle; Trinkaus, Kathryn; Shannon, William; Deych, Elena; Yu, Jinsheng; Vij, Ravi; Stockerl-Goldstein, Keith; Cashen, Amanda F.; Uy, Geoffrey L.; Abboud, Camille N.; Westervelt, Peter
2017-01-01
A single subcutaneous (SC) injection of plerixafor results in rapid mobilization of hematopoietic progenitors, but fails to mobilize 33% of normal allogeneic sibling donors in 1 apheresis. We hypothesized that changing the route of administration of plerixafor from SC to IV may overcome the low stem cell yields and allow collection in 1 day. A phase 1 trial followed by a phase 2 efficacy trial was conducted in allogeneic sibling donors. The optimal dose of IV plerixafor was determined to be 0.32 mg/kg. The primary outcome of reducing the failure to collect ≥2 × 106 CD34+/kg recipient weight in 1 apheresis collection to ≤10% was not reached. The failure rate was 34%. Studies evaluating the stem cell phenotype and gene expression revealed a novel plasmacytoid dendritic cell precursor preferentially mobilized by plerixafor with high interferon-α producing ability. The observed cytomegalovirus (CMV) viremia rate for patients at risk was low (15%), as were the rates of acute grade 2-4 graft-versus-host disease (GVHD) (21%). Day 100 treatment related mortality was low (3%). In conclusion, plerixafor results in rapid stem cell mobilization regardless of route of administration and resulted in novel cellular composition of the graft and favorable recipient outcomes. These trials were registered at clinicaltrials.gov as #NCT00241358 and #NCT00914849. PMID:28292947
Setia, Rasika Dhawan; Arora, Satyam; Handoo, Anil; Dadu, Tina; Choudhary, Dharma; Sharma, Sajeev Kumar; Kharya, Gaurav; Khandelwal, Vipin; Sachdeva, Prerna; Doval, Divya; Bakliwal, Anamika; Kapoor, Meenu; Bajaj, Shalu; Bachchas, Virendra; Singh, Praveen
2017-06-01
Most common source of stem cell graft for both autologous and allogenic haematopoietic transplants are peripheral blood haematopoietic progenitor stem cells. Adequate collection of the CD34+ cells and safety of the allogenic donor during the leukapheresis are of prime importance to an apheresis physician. Our retrospective analysis is a comparison between of two platforms namely, COBE Spectra and Amicus, for CD34+ mononuclear cell collection. The study included the data of GSCF (Granulocyte-Colony-Stimulating Factor) mobilized allogenic PBSC collections at our centre from January 2015 to June 2016. The apheresis platforms used were COBE Spectra and Amicus. Blood cell counts were done using LH750 Beckman Coulter (Florida, Miami, USA). CD45+ & CD34+ cell counts were done using BD FACS Canto-II Flow-Cytometer by ISHAGE guidelines. A total of 170 PBSC (100 COBE Spectra & 70 Amicus) harvests were done on 143 donors, of which 116 completed the collection in a single session and 27 required a second session. Demographic details and pre harvest peripheral blood counts for both the groups did not show any statistical differences. Amicus processed higher blood volume with higher ACD exposure and procedure time compared to COBE Spectra. Higher platelets loss was with COBE Spectra harvests with higher product volumes collection. Collection efficiency (CE2), collection ratio, CD34+ cells dose was similar on both the platforms. RBC contamination, absolute lymphocyte and monocytes counts were significantly higher with Amicus harvest product compared with COBE Spectra. A total of 14 (8.2%; citrate toxicity) adverse reactions were reported out of 170 allogenic PBSC collections. Our study suggests that both Amicus and COBE Spectra platforms offer comparable results for allogenic PBSC collections. Amicus offers a concentrated PBSC product with lesser volume and platelets loss but higher RBC contamination. Copyright © 2017 Elsevier Ltd. All rights reserved.
TAK1 modulates satellite stem cell homeostasis and skeletal muscle repair
Ogura, Yuji; Hindi, Sajedah M.; Sato, Shuichi; Xiong, Guangyan; Akira, Shizuo; Kumar, Ashok
2015-01-01
Satellite cells are resident adult stem cells that are required for regeneration of skeletal muscle. However, signalling mechanisms that regulate satellite cell function are less understood. Here we demonstrate that transforming growth factor-β-activated kinase 1 (TAK1) is important in satellite stem cell homeostasis and function. Inactivation of TAK1 in satellite cells inhibits muscle regeneration in adult mice. TAK1 is essential for satellite cell proliferation and its inactivation causes precocious differentiation. Moreover, TAK1-deficient satellite cells exhibit increased oxidative stress and undergo spontaneous cell death, primarily through necroptosis. TAK1 is required for the activation of NF-κB and JNK in satellite cells. Forced activation of NF-κB improves survival and proliferation of TAK1-deficient satellite cells. Furthermore, TAK1-mediated activation of JNK is essential to prevent oxidative stress and precocious differentiation of satellite cells. Collectively, our study suggests that TAK1 is required for maintaining the pool of satellite stem cells and for regenerative myogenesis. PMID:26648529
Dong, Li-Hua; Jiang, Yi-Yao; Liu, Yong-Jun; Cui, Shuang; Xia, Cheng-Cheng; Qu, Chao; Jiang, Xin; Qu, Ya-Qin; Chang, Peng-Yu; Liu, Feng
2015-01-01
Radiation-induced pulmonary fibrosis is a common disease and has a poor prognosis owing to the progressive breakdown of gas exchange regions in the lung. Recently, a novel strategy of administering mesenchymal stem cells for pulmonary fibrosis has achieved high therapeutic efficacy. In the present study, we attempted to use human adipose tissue-derived mesenchymal stem cells to prevent disease in Sprague-Dawley rats that received semi-thoracic irradiation (15 Gy). To investigate the specific roles of mesenchymal stem cells in ameliorating radiation-induced pulmonary fibrosis, we treated control groups of irradiated rats with human skin fibroblasts or phosphate-buffered saline. After mesenchymal stem cells were infused, host secretions of hepatocyte growth factor (HGF) and prostaglandin E2 (PGE2) were elevated compared with those of the controls. In contrast, tumour necrosis factor-alpha (TNF-α) and transforming growth factor-beta1 (TGF-β1) levels were decreased after infusion of mesenchymal stem cells. Consequently, the architecture of the irradiated lungs was preserved without marked activation of fibroblasts or collagen deposition within the injured sites. Moreover, mesenchymal stem cells were able to prevent the irradiated type II alveolar epithelial cells from undergoing epithelial-mesenchymal transition. Collectively, these data confirmed that mesenchymal stem cells have the potential to limit pulmonary fibrosis after exposure to ionising irradiation. PMID:25736907
Clinical grade adult stem cell banking
Thirumala, Sreedhar; Goebel, W Scott
2009-01-01
There has been a great deal of scientific interest recently generated by the potential therapeutic applications of adult stem cells in human care but there are several challenges regarding quality and safety in clinical applications and a number of these challenges relate to the processing and banking of these cells ex-vivo. As the number of clinical trials and the variety of adult cells used in regenerative therapy increases, safety remains a primary concern. This has inspired many nations to formulate guidelines and standards for the quality of stem cell collection, processing, testing, banking, packaging and distribution. Clinically applicable cryopreservation and banking of adult stem cells offers unique opportunities to advance the potential uses and widespread implementation of these cells in clinical applications. Most current cryopreservation protocols include animal serum proteins and potentially toxic cryoprotectant additives (CPAs) that prevent direct use of these cells in human therapeutic applications. Long term cryopreservation of adult stem cells under good manufacturing conditions using animal product free solutions is critical to the widespread clinical implementation of ex-vivo adult stem cell therapies. Furthermore, to avoid any potential cryoprotectant related complications, reduced CPA concentrations and efficient post-thaw washing to remove CPA are also desirable. The present review focuses on the current strategies and important aspects of adult stem cell banking for clinical applications. These include current good manufacturing practices (cGMPs), animal protein free freezing solutions, cryoprotectants, freezing & thawing protocols, viability assays, packaging and distribution. The importance and benefits of banking clinical grade adult stem cells are also discussed. PMID:20046678
An abnormal bone marrow microenvironment contributes to hematopoietic dysfunction in Fanconi anemia.
Zhou, Yuan; He, Yongzheng; Xing, Wen; Zhang, Peng; Shi, Hui; Chen, Shi; Shi, Jun; Bai, Jie; Rhodes, Steven D; Zhang, Fengqui; Yuan, Jin; Yang, Xianlin; Zhu, Xiaofan; Li, Yan; Hanenberg, Helmut; Xu, Mingjiang; Robertson, Kent A; Yuan, Weiping; Nalepa, Grzegorz; Cheng, Tao; Clapp, D Wade; Yang, Feng-Chun
2017-06-01
Fanconi anemia is a complex heterogeneous genetic disorder with a high incidence of bone marrow failure, clonal evolution to acute myeloid leukemia and mesenchymal-derived congenital anomalies. Increasing evidence in Fanconi anemia and other genetic disorders points towards an interdependence of skeletal and hematopoietic development, yet the impact of the marrow microenvironment in the pathogenesis of the bone marrow failure in Fanconi anemia remains unclear. Here we demonstrated that mice with double knockout of both Fancc and Fancg genes had decreased bone formation at least partially due to impaired osteoblast differentiation from mesenchymal stem/progenitor cells. Mesenchymal stem/progenitor cells from the double knockout mice showed impaired hematopoietic supportive activity. Mesenchymal stem/progenitor cells of patients with Fanconi anemia exhibited similar cellular deficits, including increased senescence, reduced proliferation, impaired osteoblast differentiation and defective hematopoietic stem/progenitor cell supportive activity. Collectively, these studies provide unique insights into the physiological significance of mesenchymal stem/progenitor cells in supporting the marrow microenvironment, which is potentially of broad relevance in hematopoietic stem cell transplantation. Copyright© Ferrata Storti Foundation.
An abnormal bone marrow microenvironment contributes to hematopoietic dysfunction in Fanconi anemia
Zhou, Yuan; He, Yongzheng; Xing, Wen; Zhang, Peng; Shi, Hui; Chen, Shi; Shi, Jun; Bai, Jie; Rhodes, Steven D.; Zhang, Fengqui; Yuan, Jin; Yang, Xianlin; Zhu, Xiaofan; Li, Yan; Hanenberg, Helmut; Xu, Mingjiang; Robertson, Kent A.; Yuan, Weiping; Nalepa, Grzegorz; Cheng, Tao; Clapp, D. Wade; Yang, Feng-Chun
2017-01-01
Fanconi anemia is a complex heterogeneous genetic disorder with a high incidence of bone marrow failure, clonal evolution to acute myeloid leukemia and mesenchymal-derived congenital anomalies. Increasing evidence in Fanconi anemia and other genetic disorders points towards an interdependence of skeletal and hematopoietic development, yet the impact of the marrow microenvironment in the pathogenesis of the bone marrow failure in Fanconi anemia remains unclear. Here we demonstrated that mice with double knockout of both Fancc and Fancg genes had decreased bone formation at least partially due to impaired osteoblast differentiation from mesenchymal stem/progenitor cells. Mesenchymal stem/progenitor cells from the double knockout mice showed impaired hematopoietic supportive activity. Mesenchymal stem/progenitor cells of patients with Fanconi anemia exhibited similar cellular deficits, including increased senescence, reduced proliferation, impaired osteoblast differentiation and defective hematopoietic stem/progenitor cell supportive activity. Collectively, these studies provide unique insights into the physiological significance of mesenchymal stem/progenitor cells in supporting the marrow microenvironment, which is potentially of broad relevance in hematopoietic stem cell transplantation. PMID:28341737
Kanda, Junya
2016-01-01
The Transplant Registry Unified Management Program (TRUMP) made it possible for members of the Japan Society for Hematopoietic Cell Transplantation (JSHCT) to analyze large sets of national registry data on autologous and allogeneic hematopoietic stem cell transplantation. However, as the processes used to collect transplantation information are complex and differed over time, the background of these processes should be understood when using TRUMP data. Previously, information on the HLA locus of patients and donors had been collected using a questionnaire-based free-description method, resulting in some input errors. To correct minor but significant errors and provide accurate HLA matching data, the use of a Stata or EZR/R script offered by the JSHCT is strongly recommended when analyzing HLA data in the TRUMP dataset. The HLA mismatch direction, mismatch counting method, and different impacts of HLA mismatches by stem cell source are other important factors in the analysis of HLA data. Additionally, researchers should understand the statistical analyses specific for hematopoietic stem cell transplantation, such as competing risk, landmark analysis, and time-dependent analysis, to correctly analyze transplant data. The data center of the JSHCT can be contacted if statistical assistance is required.
Randelli, Pietro; Conforti, Erika; Piccoli, Marco; Ragone, Vincenza; Creo, Pasquale; Cirillo, Federica; Masuzzo, Pamela; Tringali, Cristina; Cabitza, Paolo; Tettamanti, Guido; Gagliano, Nicoletta; Anastasia, Luigi
2013-07-01
Stem cell therapy is expected to offer new alternatives to the traditional therapies of rotator cuff tendon tears. In particular, resident, tissue-specific, adult stem cells seem to have a higher regenerative potential for the tissue where they reside. Rotator cuff tendon and long head of the biceps tendon possess a resident stem cell population that, when properly stimulated, may be induced to proliferate, thus being potentially usable for tendon regeneration. Controlled laboratory study. Human tendon samples from the supraspinatus and the long head of the biceps were collected during rotator cuff tendon surgeries from 26 patients, washed with phosphate-buffered saline, cut into small pieces, and digested with collagenase type I and dispase. After centrifugation, cell pellets were resuspended in appropriate culture medium and plated. Adherent cells were cultured, phenotypically characterized, and then compared with human bone marrow stromal cells (BMSCs), as an example of adult stem cells, and human dermal fibroblasts, as normal proliferating cells with no stem cell properties. Two new adult stem cell populations from the supraspinatus and long head of the biceps tendons were isolated, characterized, and cultured in vitro. Cells showed adult stem cell characteristics (ie, they were self-renewing in vitro, clonogenic, and multipotent), as they could be induced to differentiate into different cell types--namely, osteoblasts, adipocytes, and skeletal muscle cells. This work demonstrated that human rotator cuff tendon stem cells and human long head of the biceps tendon stem cells can be isolated and possess a high regenerative potential, which is comparable with that of BMSCs. Moreover, comparative analysis of the sphingolipid pattern of isolated cells with that of BMSCs and fibroblasts revealed the possibility of using this class of lipids as new possible markers of the cell differentiation status. Rotator cuff and long head of the biceps tendons contain a stem cell population that can proliferate in vitro and could constitute an easily accessible stem cell source to develop novel therapies for tendon regeneration.
De Rosa, Alfredo; De Francesco, Francesco; Tirino, Virginia; Ferraro, Giuseppe A; Desiderio, Vincenzo; Paino, Francesca; Pirozzi, Giuseppe; D'Andrea, Francesco; Papaccio, Gianpaolo
2009-12-01
Recent studies have shown potential ways for improving stem cell cryopreservation. The major need for autologous stem cell use is a long-term storage: this arises from the humans' hope of future use of their own cells. Therefore, it is important to evaluate the cell potential of vitality and differentiation before and after cryopreservation. Although several studies have shown a long-term preservation of adipose tissue, a few of them focused their attention to stem cells. The aim of this study was to evaluate the fate of cryopreserved stem cells collected from adipose tissue and stored at low a temperature in liquid nitrogen through an optimal cryopreservation solution (using slowly cooling in 6% threalose, 4% dimethyl sulfoxide, and 10% fetal bovine serum) and to develop a novel approach to efficiently preserve adipose-derived stem cells (ASCs) for future clinical applications. Results showed that stem cells, after being thawed, are still capable of differentiation and express all surface antigens detected before storage, confirming the integrity of their biology. In particular, ASCs differentiated into adipocytes, showed diffuse positivity for PPARgamma and adiponectin, and were also able to differentiate into endothelial cells without addition of angiogenic factors. Therefore, ASCs can be long-term cryopreserved, and this, due to their great numbers, is an attractive tool for clinical applications as well as of impact for the derived market.
Wang, Gongping; Zeng, Guangwei; Wang, Caie; Wang, Huasheng; Yang, Bo; Guan, Fangxia; Li, Dongpeng; Feng, Xiaoshan
2015-06-01
Amniotic membrane-derived mesenchymal stem cells (hAM-dMSCs) are a potential source of mesenchymal stem cells which could be used to repair skin damage. The use of mesenchymal stem cells to repair skin damage requires safe, effective and biocompatible agents to evaluate the effectiveness of the result. Quantum dots (QDs) composed of CdSe/ZnS are semiconductor nanocrystals with broad excitation and narrow emission spectra, which have been considered as a new chemical and fluorescent substance for non-invasively labeling different cells in vitro and in vivo. This study investigated the cytotoxic effects of QDs on hAM-dMSCs at different times following labeling. Using 0.75, 1.5 and 3.0 μL between quantum dots, labeled human amniotic mesenchymal stem cells were collected on days 1, 2 and 4 and observed morphological changes, performed an MTT cell growth assay and flow cytometry for mesenchymal stem cells molecular markers. Quantum dot concentration 0.75 μg/mL labeled under a fluorescence microscope, cell morphology was observed, The MTT assay showed cells in the proliferative phase. Flow cytometry expression CD29, CD31, CD34, CD44, CD90, CD105 and CD106. Within a certain range of concentrations between quantum dots labeled human amniotic mesenchymal stem cells has good biocompatibility.
Aly, H; Mohsen, L; Badrawi, N; Gabr, H; Ali, Z; Akmal, D
2012-09-01
Hypoxia-ischemia is the leading cause of neurological handicaps in newborns worldwide. Mesenchymal stem cells (MSCs) collected from fresh cord blood of asphyxiated newborns have the potential to regenerate damaged neural tissues. The aim of this study was to examine the capacity for MSCs to differentiate into neural tissue that could subsequently be used for autologous transplantation. We collected cord blood samples from full-term newborns with perinatal hypoxemia (n=27), healthy newborns (n=14) and non-hypoxic premature neonates (n=14). Mononuclear cells were separated, counted, and then analyzed by flow cytometry to assess various stem cell populations. MSCs were isolated by plastic adherence and characterized by morphology. Cells underwent immunophenotyping and trilineage differentiation potential. They were then cultured in conditions favoring neural differentiation. Neural lineage commitment was detected using immunohistochemical staining for glial fibrillary acidic protein, tubulin III and oligodendrocyte marker O4 antibodies. Mononuclear cell count and viability did not differ among the three groups of infants. Neural differentiation was best demonstrated in the cells derived from hypoxia-ischemia term neonates, of which 69% had complete and 31% had partial neural differentiation. Cells derived from preterm neonates had the least amount of neural differentiation, whereas partial differentiation was observed in only 12%. These findings support the potential utilization of umbilical cord stem cells as a source for autologous transplant in asphyxiated neonates.
Ghaneialvar, Hori; Soltani, Leila; Rahmani, Hamid Reza; Lotfi, Abbas Sahebghadam; Soleimani, Masoud
2018-01-01
Mesenchymal stem cells are multipotent cells capable of replicating as undifferentiated cells, and have the potential of differentiating into mesenchymal tissue lineages such as osteocytes, adipocytes and chondrocytes. Such lineages can then be used in cell therapy. The aim of present study was to characterize bone marrow derived mesenchymal stem cells in four different species, including: sheep, goat, human and mouse. Human bone-marrow mesenchymal stem cells were purchased, those of sheep and goat were isolated from fetal bone marrow, and those of mouse were collected by washing bone cavity of femur and tibia with DMEM/F12. Using flow-cytometry, they were characterized by CD surface antigens. Furthermore, cells of third passage were examined for their osteogenic and adipogenic differentiation potential by oil red and alizarin red staining respectively. According to the results, CD markers studied in the four groups of mesenchymal stem cells showed a different expression. Goat and sheep expressed CD44 and CD166, and weakly expressed CD34, CD45, CD105 and CD90. Similarly, human and mouse mesenchymal cells expressed CD44, CD166, CD105 and CD90 whereas the expression of CD34 and CD45 was negative. In conclusion, although all mesenchymal stem cells display plastic adherence and tri-lineage differentiation, not all express the same panel of surface antigens described for human mesenchymal stem cells. Additional panel of CD markers are necessary to characterize regenerative potential and possible application of these stem cells in regenerative medicine and implantology.
Deng, Peng; Zhou, Chenchen; Alvarez, Ruth; Hong, Christine; Wang, Cun-Yu
2016-04-12
Embryonic stem cell-derived mesenchymal stromal cells (MSCs; also known as mesenchymal stem cells) represent a promising source for bone regenerative medicine. Despite remarkable advances in stem cell biology, the molecular mechanism regulating differentiation of human embryonic stem cells (hESCs) into MSCs remains poorly understood. Here, we report that inhibition of IκB kinase (IKK)/nuclear factor kappa B (NF-κB) signaling enhances differentiation of hESCs into MSCs by expediting the loss of pluripotent markers and increasing the expression of MSC surface markers. In addition, a significantly higher quantity of MSCs was produced from hESCs with IKK/NF-κB suppression. These isolated MSCs displayed evident multipotency with capacity to terminally differentiate into osteoblasts, chondrocytes, and adipocytes in vitro and to form bone in vivo. Collectively, our data provide important insights into the role of NF-κB in mesenchymal lineage specification during hESC differentiation, suggesting that IKK inhibitors could be utilized as an adjuvant in generating MSCs for cell-mediated therapies. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Tatullo, Marco; Codispoti, Bruna; Pacifici, Andrea; Palmieri, Francesca; Marrelli, Massimo; Pacifici, Luciano; Paduano, Francesco
2017-01-01
Mesenchymal stem cells (MSCs) are attracting growing interest by the scientific community due to their huge regenerative potential. Thus, the plasticity of MSCs strongly suggests the utilization of these cells for regenerative medicine applications. The main issue about the clinical use of MSCs is related to the complex way to obtain them from healthy tissues; this topic has encouraged scientists to search for novel and more advantageous sources of these cells in easily accessible tissues. The oral cavity hosts several cell populations expressing mesenchymal stem cell like-features, furthermore, the access to oral and dental tissues is simple and isolation of cells is very efficient. Thus, oral-derived stem cells are highly attractive for clinical purposes. In this context, human periapical cyst mesenchymal stem cells (hPCy-MSCs) exhibit characteristics similar to other dental-derived MSCs, including their extensive proliferative potential, cell surface marker profile and the ability to differentiate into various cell types such as osteoblasts, adipocytes and neurons. Importantly, hPCy-MSCs are easily collected from the surgically removed periapical cysts; this reusing of biological waste guarantees a smart source of stem cells without any impact on the surrounding healthy tissues. In this review, we report the most interesting research topics related to hPCy-MSCs with a newsworthy discussion about the future insights. This newly discovered cell population exhibits interesting and valuable potentialities that could be of high impact in the future regenerative medicine applications. PMID:29259970
Tatullo, Marco; Codispoti, Bruna; Pacifici, Andrea; Palmieri, Francesca; Marrelli, Massimo; Pacifici, Luciano; Paduano, Francesco
2017-01-01
Mesenchymal stem cells (MSCs) are attracting growing interest by the scientific community due to their huge regenerative potential. Thus, the plasticity of MSCs strongly suggests the utilization of these cells for regenerative medicine applications. The main issue about the clinical use of MSCs is related to the complex way to obtain them from healthy tissues; this topic has encouraged scientists to search for novel and more advantageous sources of these cells in easily accessible tissues. The oral cavity hosts several cell populations expressing mesenchymal stem cell like-features, furthermore, the access to oral and dental tissues is simple and isolation of cells is very efficient. Thus, oral-derived stem cells are highly attractive for clinical purposes. In this context, human periapical cyst mesenchymal stem cells (hPCy-MSCs) exhibit characteristics similar to other dental-derived MSCs, including their extensive proliferative potential, cell surface marker profile and the ability to differentiate into various cell types such as osteoblasts, adipocytes and neurons. Importantly, hPCy-MSCs are easily collected from the surgically removed periapical cysts; this reusing of biological waste guarantees a smart source of stem cells without any impact on the surrounding healthy tissues. In this review, we report the most interesting research topics related to hPCy-MSCs with a newsworthy discussion about the future insights. This newly discovered cell population exhibits interesting and valuable potentialities that could be of high impact in the future regenerative medicine applications.
Porous microscaffolds for 3D culture of dental pulp mesenchymal stem cells.
Bhuptani, Ronak S; Patravale, Vandana B
2016-12-30
The collective power of stem cells due to their evident advantages is incessantly investigated in regenerative medicine to be the next generation exceptional remedy for tissue regeneration and treatment of diseases. Stem cells are highly sensitive and a 3D culture environment is a requisite for its successful transplantation and integration with tissues. Porous microscaffolds can create a 3D microenvironment for growing stems cells, controlling their fate both in vitro and in vivo. In the present study, interconnected porous PLGA microscaffolds were fabricated, characterized and employed to propagate human dental pulp mesenchymal stem cells (DPMSCs) in vitro. The porous topography was investigated by scanning electron microscopy and the pore size was controlled by fabrication conditions such as the concentration of porogen. DPMSCs were cultured on microscaffolds and were evaluated for their morphology, attachment, proliferation, cell viability via MTT and molecular expression (RT-PCR). DPMSCs were adequately proliferated and adhered over the microscaffolds forming a 3D cell-microscaffold construct. The average number of DPMSCs grown on PLGA microscaffolds was significantly higher than monolayer 2D culture during 5th and 7th day. Moreover, cell viability and gene expression results together corroborated that microscaffolds maintained the viability, stemness and plasticity of the cultured dental pulp mesenchymal stem cells. The novel porous microscaffold developed acts as promising scaffold for 3D culture and survival and transplantation of stem cells for tissue engineering. Copyright © 2016 Elsevier B.V. All rights reserved.
Allogeneic Peripheral Blood Stem Cell Collection as of 2008
Rhodes, Beverly; Anderlini, Paolo
2015-01-01
The rapid growth of the use of recombinant human granulocyte colony-stimulating factor (rhG-CSF) to mobilize and collect allogeneic peripheral blood stem cells (PBSCs) for transplantation has made it a new international standard. While the procedure remains safe, older donors, donors with significant comorbidities and pediatric donors are now often employed. This brings a new set of challenges in the donor evaluation, medical clearance, informed consent and collection process. Rare and unexpected severe adverse events related to rhG-CSF administration and PBSC apheresis have been described. Proper PBSC donor counseling, evaluation and care have become even more important. PMID:18501676
Senescence-associated reprogramming promotes cancer stemness.
Milanovic, Maja; Fan, Dorothy N Y; Belenki, Dimitri; Däbritz, J Henry M; Zhao, Zhen; Yu, Yong; Dörr, Jan R; Dimitrova, Lora; Lenze, Dido; Monteiro Barbosa, Ines A; Mendoza-Parra, Marco A; Kanashova, Tamara; Metzner, Marlen; Pardon, Katharina; Reimann, Maurice; Trumpp, Andreas; Dörken, Bernd; Zuber, Johannes; Gronemeyer, Hinrich; Hummel, Michael; Dittmar, Gunnar; Lee, Soyoung; Schmitt, Clemens A
2018-01-04
Cellular senescence is a stress-responsive cell-cycle arrest program that terminates the further expansion of (pre-)malignant cells. Key signalling components of the senescence machinery, such as p16 INK4a , p21 CIP1 and p53, as well as trimethylation of lysine 9 at histone H3 (H3K9me3), also operate as critical regulators of stem-cell functions (which are collectively termed 'stemness'). In cancer cells, a gain of stemness may have profound implications for tumour aggressiveness and clinical outcome. Here we investigated whether chemotherapy-induced senescence could change stem-cell-related properties of malignant cells. Gene expression and functional analyses comparing senescent and non-senescent B-cell lymphomas from Eμ-Myc transgenic mice revealed substantial upregulation of an adult tissue stem-cell signature, activated Wnt signalling, and distinct stem-cell markers in senescence. Using genetically switchable models of senescence targeting H3K9me3 or p53 to mimic spontaneous escape from the arrested condition, we found that cells released from senescence re-entered the cell cycle with strongly enhanced and Wnt-dependent clonogenic growth potential compared to virtually identical populations that had been equally exposed to chemotherapy but had never been senescent. In vivo, these previously senescent cells presented with a much higher tumour initiation potential. Notably, the temporary enforcement of senescence in p53-regulatable models of acute lymphoblastic leukaemia and acute myeloid leukaemia was found to reprogram non-stem bulk leukaemia cells into self-renewing, leukaemia-initiating stem cells. Our data, which are further supported by consistent results in human cancer cell lines and primary samples of human haematological malignancies, reveal that senescence-associated stemness is an unexpected, cell-autonomous feature that exerts its detrimental, highly aggressive growth potential upon escape from cell-cycle blockade, and is enriched in relapse tumours. These findings have profound implications for cancer therapy, and provide new mechanistic insights into the plasticity of cancer cells.
iPSC-derived cancer stem cells provide a model of tumor vasculature.
Prieto-Vila, Marta; Yan, Ting; Calle, Anna Sanchez; Nair, Neha; Hurley, Laura; Kasai, Tomonari; Kakuta, Hiroki; Masuda, Junko; Murakami, Hiroshi; Mizutani, Akifumi; Seno, Masaharu
2016-01-01
To grow beyond a size of approximately 1-2 mm 3 , tumor cells activate many processes to develop blood vasculature. Growing evidences indicate that the formation of the tumor vascular network is very complex, and is not restricted to angiogenesis. Cancer cell-derived tumor vasculatures have been recently described. Among them, endothelial differentiation of tumor cells have been directly related to cancer stem cells, which are cells within a tumor that possess the capacity to self-renew, and to exhibit multipotential heterogeneous lineages of cancer cells. Vasculogenic mimicry has been described to be formed by cancer cells expressing stemness markers. Thus, cancer stem cells have been proposed to contribute to vasculogenic mimicry, though its relation is yet to be clarified. Here, we analyzed the tumor vasculature by using a model of mouse cancer stem cells, miPS-LLCcm cells, which we have previously established from mouse induced pluripotent stem cells and we introduced the DsRed gene in miPS-LLCcm to trace them in vivo . Various features of vasculature were evaluated in ovo , in vitro , and in vivo . The tumors formed in allograft nude mice exhibited angiogenesis in chick chorioallantoic membrane assay. In those tumors, along with penetrated host endothelial vessels, we detected endothelial differentiation from cancer stem cells and formation of vasculogenic mimicry. The angiogenic factors such as VEGF-A and FGF2 were expressed predominantly in the cancer stem cells subpopulation of miPS-LLCcm cells. Our results suggested that cancer stem cells play key roles in not only the recruitment of host endothelial vessels into tumor, but also in maturation of endothelial linage of cancer stem cell's progenies. Furthermore, the undifferentiated subpopulation of the miPS-LLCcm participates directly in the vasculogenic mimicry formation. Collectively, we show that miPS-LLCcm cells have advantages to further study tumor vasculature and to develop novel targeting strategies in the future.
DU, Kan; Luan, Zuo; Qu, Su-Qing; Yang, Hui; Yang, Yin-Xiang; Wang, Zhao-Yan; Jin, Hui-Yu; Liu, Wei-Peng
2013-11-01
This study aimed to investigate the clinical effect of transplantation of CD133⁺ peripheral blood stem cells or umbilical cord mesenchymal stem cells via the hepatic artery in children with type II hyperammonemia and its possible action mechanism. Umbilical cord mesenchymal stem cells were obtained by collecting cord blood (100-150 mL) from healthy fetuses and separating stem cell suspension (5 mL) from the cord blood by hydroxyethyl starch sedimentation. CD133⁺ peripheral blood stem cells were obtained by mobilizing peripheral blood from the fathers of sick children using recombinant human granulocyte colony-stimulating factor for 5 days, collecting mononuclear cells (120 mL), and separating out CD133⁺ cells by sorting. With catheterization and percutaneous puncture, the obtained stem cells were slowly injected into the liver of sick children via the hepatic artery. The changes in clinical symptoms and laboratory indices such as blood ammonia, liver function, and arginine and citrulline concentrations were observed. After stem cell transplantation via the hepatic artery, the 6 children showed significantly decreased blood ammonia levels, and their blood ammonia levels slowly increased 1 to 2 weeks later, but remained below 100 μmol/L, and changes in glutamic-pyruvic transaminase levels were similar to blood ammonia. Plasma citrulline and arginine concentrations increased significantly after transplantation and the increase in citrulline level exceeded the increase in arginine level. An 8 months follow-up visit for one typical patient showed that the weight and height increased after transplantation and sleep was improved without night crying. The child could actively gaze at interesting objects instead of responding indifferently and started to say simple words. With regard to fine motor skills, the child could pinch things with the thumb and middle finger instead of displaying a lack of hand-eye coordination and progress was also made in gross motor skills. Gesell test showed that the child made progress for an average of 3.82 months in all areas. It was concluded that after stem cell transplantation, children with type II hyperammonemia have decreased blood ammonia levels, stable and improved liver function and steadily increased plasma citrulline and arginine concentrations. They display a progressive trend in such aspects as movement, language and environmental adaptability. It is hypothesized that stem cell transplantation via the hepatic artery partially or totally activates, or provides supplementary ornithine carbamoyl transferase, so that plasma citrulline and arginine concentrations increase and urea cycle disorder can be corrected to some extent.
Development of a novel method for amniotic fluid stem cell storage.
Zavatti, Manuela; Beretti, Francesca; Casciaro, Francesca; Comitini, Giuseppina; Franchi, Fabrizia; Barbieri, Veronica; Bertoni, Laura; De Pol, Anto; La Sala, Giovanni B; Maraldi, Tullia
2017-08-01
Current procedures for collection of human amniotic fluid stem cells (hAFSCs) indicate that cells cultured in a flask for 2 weeks can then be used for research. However, hAFSCs can be retrieved directly from a small amount of amniotic fluid that can be obtained at the time of diagnostic amniocentesis. The aim of this study was to determine whether direct freezing of amniotic fluid cells is able to maintain or improve the potential of a sub-population of stem cells. We compared the potential of the hAFSCs regarding timing of freezing, cells obtained directly from amniotic fluid aspiration (D samples) and cells cultured in a flask before freezing (C samples). Colony-forming-unit ability, proliferation, morphology, stemness-related marker expression, senescence, apoptosis and differentiation potential of C and D samples were compared. hAFSCs isolated from D samples expressed mesenchymal stem cells markers until later passages, had a good proliferation rate and exhibited differentiation capacity similar to hAFSCs of C samples. Interestingly, direct freezing induced a higher concentration of cells positive for pluripotency stem cell markers, without teratoma formation in vivo. This study suggests that minimal processing may be adequate for the banking of amniotic fluid cells, avoiding in vitro passages before the storage and exposure to high oxygen concentration, which affect stem cell properties. This technique might be a cost-effective and reasonable approach to the process of Good Manufacturing Process accreditation for stem-cell banks. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
Veron, Antoine D; Bienboire-Frosini, Cécile; Girard, Stéphane D; Sadelli, Kevin; Stamegna, Jean-Claude; Khrestchatisky, Michel; Alexis, Jennifer; Pageat, Patrick; Asproni, Pietro; Mengoli, Manuel; Roman, François S
2018-01-01
Stem cells are considered as promising tools to repair diverse tissue injuries. Among the different stem cell types, the "olfactory ectomesenchymal stem cells" (OE-MSCs) located in the adult olfactory mucosa stand as one of the best candidates. Here, we evaluated if OE-MSC grafts could decrease memory impairments due to ischemic injury. OE-MSCs were collected from syngeneic F344 rats. After a two-step global cerebral ischemia, inducing hippocampal lesions, learning abilities were evaluated using an olfactory associative discrimination task. Cells were grafted into the hippocampus 5 weeks after injury and animal's learning abilities reassessed. Rats were then sacrificed and the brains collected for immunohistochemical analyses. We observed significant impairments in learning and memory abilities following ischemia. However, 4 weeks after OE-MSC grafts, animals displayed learning and memory performances similar to those of controls, while sham rats did not improve them. Immunohistochemical analyses revealed that grafts promoted neuroblast and glial cell proliferation, which could permit to restore cognitive functions. These results demonstrated, for the first time, that syngeneic transplantations of OE-MSCs in rats can restore cognitive abilities impaired after brain injuries and provide support for the development of clinical studies based on grafts of OE-MSCs in amnesic patients following brain injuries.
iPSC-derived cancer stem cells provide a model of tumor vasculature
Prieto-Vila, Marta; Yan, Ting; Calle, Anna Sanchez; Nair, Neha; Hurley, Laura; Kasai, Tomonari; Kakuta, Hiroki; Masuda, Junko; Murakami, Hiroshi; Mizutani, Akifumi; Seno, Masaharu
2016-01-01
To grow beyond a size of approximately 1-2 mm3, tumor cells activate many processes to develop blood vasculature. Growing evidences indicate that the formation of the tumor vascular network is very complex, and is not restricted to angiogenesis. Cancer cell-derived tumor vasculatures have been recently described. Among them, endothelial differentiation of tumor cells have been directly related to cancer stem cells, which are cells within a tumor that possess the capacity to self-renew, and to exhibit multipotential heterogeneous lineages of cancer cells. Vasculogenic mimicry has been described to be formed by cancer cells expressing stemness markers. Thus, cancer stem cells have been proposed to contribute to vasculogenic mimicry, though its relation is yet to be clarified. Here, we analyzed the tumor vasculature by using a model of mouse cancer stem cells, miPS-LLCcm cells, which we have previously established from mouse induced pluripotent stem cells and we introduced the DsRed gene in miPS-LLCcm to trace them in vivo. Various features of vasculature were evaluated in ovo, in vitro, and in vivo. The tumors formed in allograft nude mice exhibited angiogenesis in chick chorioallantoic membrane assay. In those tumors, along with penetrated host endothelial vessels, we detected endothelial differentiation from cancer stem cells and formation of vasculogenic mimicry. The angiogenic factors such as VEGF-A and FGF2 were expressed predominantly in the cancer stem cells subpopulation of miPS-LLCcm cells. Our results suggested that cancer stem cells play key roles in not only the recruitment of host endothelial vessels into tumor, but also in maturation of endothelial linage of cancer stem cell’s progenies. Furthermore, the undifferentiated subpopulation of the miPS-LLCcm participates directly in the vasculogenic mimicry formation. Collectively, we show that miPS-LLCcm cells have advantages to further study tumor vasculature and to develop novel targeting strategies in the future. PMID:27725898
Barbieri, Federica; Wurth, Roberto; Ratto, Alessandra; Campanella, Chiara; Vito, Guendalina; Thellung, Stefano; Daga, Antonio; Cilli, Michele; Ferrari, Angelo; Florio, Tullio
2012-04-15
Current carcinogenesis theory states that only a small subset of tumor cells, the cancer stem cells or tumor initiating cells (TICs), are responsible for tumor formation and progression. Human breast cancer-initiating cells have been identified as CD44-expressing cells, which retain tumorigenic activity and display stem cell-like properties. Spontaneous feline mammary carcinoma (FMC) is an aggressive cancer, which shows biological similarities to the human tumor counterpart. We report the isolation and phenotypic characterization of FMC-derived stem/progenitor cells, showing in vitro self-renewal, long-lasting proliferation and in vivo tumorigenicity. Twenty-one FMC samples were collected, histologically classified and characterized for the expression of Ki67, EGFR, ER-α and CD44, by immunohistochemistry. By culture in stem cell permissive conditions, we isolated, from 13 FMCs, a CD44-positive subpopulation able to survive and proliferate in vitro as mammospheres of different sizes and morphologies. When injected in NOD/SCID mice, FMC stem-like cells initiate tumors, generating cell heterogeneity and recapitulating the original histotype. In serum-containing medium, spheroid cells showed differentiation properties as shown by morphological changes, the loss of CD44 expression and tumorigenic potential. These data show that stem-defined culture of FMC enriches for TICs and validate the use of these cells as a suitable model for comparative oncology studies of mammary biology and testing therapeutic strategies aimed at eradicating TICs. Copyright © 2012 Elsevier Inc. All rights reserved.
Donor lymphocyte apheresis for adoptive immunotherapy compared with blood stem cell apheresis.
Körbling, M; Giralt, S; Khouri, I; Mirza, N; Donato, M; Anderlini, P; Fischer, H; Andreeff, M; McMannis, J; Champlin, R
2001-01-01
Donor lymphocyte transfusion has gained considerable interest as adoptive cellular immunotherapy for prevention or treatment of relapse after allogeneic stem cell transplantation. This study was designed to compare the yield of CD3(+), CD3(+)4(+), CD3(+)8(+), CD19(+), CD3(-)56(+)16(+), and CD34(+) cells contained in apheresis products from 61 consecutive non-cytokine treated, human leukocyte antigen (HLA)-matched donors for lymphocyte collection with the corresponding apheresis-derived cell yield from 112 consecutive, HLA-matched donors for blood stem cell collection who received recombinant human granulocyte colony stimulating factor (rhG-CSF, filgrastim) 6 microg/kg every 12 hours until cell collection was completed. Apheresis was started on day 4 or 5 of rhG-CSF treatment. The yield of lymphoid subsets was significantly different in the two sample groups, rhG-CSF treated product yields exceeding untreated product yields by a median of 2.1-fold (range: 1.3-2.6). However, the CD34(+) cell yield in rhG-CSF-treated apheresis products exceeded untreated products by 26-fold. A single untreated apheresis procedure was usually sufficient to collect a target dose of 1 x 10(8)/kg CD3(+) cells. Untreated apheresis products contained a median of 0.2 x 10(6)/kg CD34(+) cells. A potential engraftment dose of > or =0.5 x 10(6) CD34(+) cells per kg of recipient body weight was contained in 16% of 57 untreated apheresis products. One single apheresis performed in a normal, untreated donor provides a sufficient amount of CD3(+) cells for adoptive immunotherapy. Compared with that of an rhG-CSF stimulated apheresis product, the CD34(+) cell count is usually, but not always, below the engraftment dose range. RhG-CSF treatment has little effect on the yield of lymphoid subsets collected by apheresis but is highly selective of the release of CD34(+) cells. This report provides baseline data for studies that will show whether other cytokines such as granulocyte macrophage colony stimulating factor (GM-CSF) and/or Flt-3 Ligand can immunomodulate allotransfusates in vivo to improve the graft-vs.-leukemia (GVL) effect after allogeneic stem cell transplantation, while lowering the incidence and severity of graft-vs.-host disease (GVHD). Copyright 2001 Wiley-Liss, Inc.
Characteristics of MIC-1 antlerogenic stem cells and their effect on hair growth in rabbits.
Cegielski, Marek; Izykowska, Ilona; Chmielewska, Magdalena; Dziewiszek, Wojciech; Bochnia, Marek; Calkosinski, Ireneusz; Dziegiel, Piotr
2013-01-01
We characterized growth factors produced by MIC-1 antlerogenic stem cells and attempted to apply those cells to stimulate hair growth in rabbits. We evaluated the gene and protein expression of growth factors by immunocytochemical and molecular biology techniques in MIC-1 cells. An animal model was used to assess the effects of xenogenous stem cells on hair growth. In the experimental group, rabbits were intradermally injected with MIC-1 stem cells, whereas the control group rabbits were given vehicle-only. After 1, 2 and 4 weeks, skin specimen were collected for histological and immunohistochemical tests. MIC-1 antlerogenic stem cells express growth factors, as confirmed at the mRNA and protein levels. Histological and immunohistochemical analysis demonstrated an increase in the number of hair follicles, as well as the amount of secondary hair in the follicles, without an immune response in animals injected intradermally with MIC-1 cells, compared to animals receiving vehicle-alone. MIC-1 cells accelerated hair growth in rabbits due to the activation of cells responsible for the regulation of the hair growth cycle through growth factors. Additionally, the xenogenous cell implant did not induce immune response.
Factors influencing platelet clumping during peripheral blood hematopoietic stem cell collection
Mathur, Gagan; Bell, Sarah L.; Collins, Laura; Nelson, Gail A.; Knudson, C. Michael; Schlueter, Annette J.
2018-01-01
BACKGROUND Platelet clumping is a common occurrence during peripheral blood hematopoietic stem cell (HSC) collection using the Spectra Optia mononuclear cell (MNC) protocol. If clumping persists, it may prevent continuation of the collection and interfere with proper MNC separation. This study is the first to report the incidence of clumping, identify precollection factors associated with platelet clumping, and describe the degree to which platelet clumping interferes with HSC product yield. STUDY DESIGN AND METHODS In total, 258 HSC collections performed on 116 patients using the Optia MNC protocol were reviewed. Collections utilized heparin in anticoagulant citrate dextrose to facilitate large-volume leukapheresis. Linear and logistic regression models were utilized to determine which precollection factors were predictive of platelet clumping and whether clumping was associated with product yield or collection efficiency. RESULTS Platelet clumping was observed in 63% of collections. Multivariable analysis revealed that a lower white blood cell count was an independent predictor of clumping occurrence. Chemotherapy mobilization and a lower peripheral blood CD34+ cell count were predictors of the degree of clumping. Procedures with clumping had higher collection efficiency but lower blood volume processed on average, resulting in no difference in collection yields. Citrate toxicity did not correlate with clumping. CONCLUSION Although platelet clumping is a common technical problem seen during HSC collection, the total CD34+ cell-collection yields were not affected by clumping. WBC count, mobilization approach, and peripheral blood CD34+ cell count can help predict clumping and potentially drive interventions to proactively manage clumping. PMID:28150319
A Case for Crowd Sourcing in Stem Cell Research
Mummery, Christine L.; Rabelink, Ton J.
2014-01-01
SUMMARY Thousands of patients and placebo-treated controls have been included in many clinical trials of stem cell therapy over the last decade or so, but often the study groups have been small. Their scientific value may therefore be limited and their ethical justification questionable. Would “crowd sourcing” for data sharing be a means of increasing the collective value of clinical trials? Here, we make a case for open access of all data emerging from stem cell studies (trials but also observational studies) independent of whether they are investigator-initiated or commercially driven. PMID:25232185
Dowell, Karen G.; Simons, Allen K.; Wang, Zack Z.; Yun, Kyuson; Hibbs, Matthew A.
2013-01-01
Self-renewal, the ability of a stem cell to divide repeatedly while maintaining an undifferentiated state, is a defining characteristic of all stem cells. Here, we clarify the molecular foundations of mouse embryonic stem cell (mESC) self-renewal by applying a proven Bayesian network machine learning approach to integrate high-throughput data for protein function discovery. By focusing on a single stem-cell system, at a specific developmental stage, within the context of well-defined biological processes known to be active in that cell type, we produce a consensus predictive network that reflects biological reality more closely than those made by prior efforts using more generalized, context-independent methods. In addition, we show how machine learning efforts may be misled if the tissue specific role of mammalian proteins is not defined in the training set and circumscribed in the evidential data. For this study, we assembled an extensive compendium of mESC data: ∼2.2 million data points, collected from 60 different studies, under 992 conditions. We then integrated these data into a consensus mESC functional relationship network focused on biological processes associated with embryonic stem cell self-renewal and cell fate determination. Computational evaluations, literature validation, and analyses of predicted functional linkages show that our results are highly accurate and biologically relevant. Our mESC network predicts many novel players involved in self-renewal and serves as the foundation for future pluripotent stem cell studies. This network can be used by stem cell researchers (at http://StemSight.org) to explore hypotheses about gene function in the context of self-renewal and to prioritize genes of interest for experimental validation. PMID:23468881
Collection and use of circulating hematopoietic progenitor cells.
Lee, J H; Klein, H G
1995-02-01
Although lymphocytes and monocytes are becoming increasingly important in transfusion therapy, peripheral stem cells have been responsible for the recent explosive interest in harvesting mononuclear cells from the peripheral circulation. Despite their low concentration in peripheral blood and the consequent difficulty in cell collection, circulating hematopoietic progenitor cells are collected and used almost routinely. These mononuclear cells, possessing the capacity for hematopoietic reconstitution and the potential for definitive therapy of a variety of disorders, have been the focus of recent intense interest in transfusion medicine.
Properties of Dental Pulp-derived Mesenchymal Stem Cells and the Effects of Culture Conditions.
Kawashima, Nobuyuki; Noda, Sonoko; Yamamoto, Mioko; Okiji, Takashi
2017-09-01
Dental pulp mesenchymal stem cells (DPMSCs) highly express mesenchymal stem cell markers and possess the potential to differentiate into neural cells, osteoblasts, adipocytes, and chondrocytes. Thus, DPMSCs are considered suitable for tissue regeneration. The colony isolation method has commonly been used to collect relatively large amounts of heterogeneous DPMSCs. Homogenous DPMSCs can be isolated by fluorescence-activated cell sorting using antibodies against mesenchymal stem cell markers, although this method yields a limited number of cells. Both quality and quantity of DPMSCs are critical to regenerative therapy, and cell culture methods need to be improved. We thus investigated the properties of DPMSCs cultured with different methods. DPMSCs in a three-dimensional spheroid culture system, which is similar to the hanging drop culture for differentiation of embryonic stem cells, showed upregulation of odonto-/osteoblastic markers and mineralized nodule formation. This suggests that this three-dimensional spheroid culturing system for DPMSCs may be suitable for inducing hard tissues. We further examined the effect of cell culture density on the properties of DPMSCs because the properties of stem cells can be altered depending on the cell density. DPMSCs cultured under the confluent cell density condition showed slight downregulation of some mesenchymal stem cell markers compared with those under the sparse condition. The ability of DPMSCs to differentiate into hard tissue-forming cells was found to be enhanced in the confluent condition, suggesting that the confluent culture condition may not be suitable for maintaining the stemness of DPMSCs. When DPMSCs are to be used for hard tissue regeneration, dense followed by sparse cell culture conditions may be a better alternative strategy. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Singbrant, Sofie; Wall, Meaghan; Moody, Jennifer; Karlsson, Göran; Chalk, Alistair M; Liddicoat, Brian; Russell, Megan R; Walkley, Carl R; Karlsson, Stefan
2014-04-01
The proto-oncogene SKI is highly expressed in human myeloid leukemia and also in murine hematopoietic stem cells. However, its operative relevance in these cells remains elusive. We have over-expressed SKI to define its intrinsic role in hematopoiesis and myeloid neoplasms, which resulted in a robust competitive advantage upon transplantation, a complete dominance of the stem and progenitor compartments, and a marked enhancement of myeloid differentiation at the expense of other lineages. Accordingly, enforced expression of SKI induced a gene signature associated with hematopoietic stem cells and myeloid differentiation, as well as hepatocyte growth factor signaling. Here we demonstrate that, in contrast to what has generally been assumed, the significant impact of SKI on hematopoiesis is independent of its ability to inhibit TGF-beta signaling. Instead, myeloid progenitors expressing SKI are partially dependent on functional hepatocyte growth factor signaling. Collectively our results demonstrate that SKI is an important regulator of hematopoietic stem cell activity and its overexpression leads to myeloproliferative disease.
Singbrant, Sofie; Wall, Meaghan; Moody, Jennifer; Karlsson, Göran; Chalk, Alistair M.; Liddicoat, Brian; Russell, Megan R.; Walkley, Carl R.; Karlsson, Stefan
2014-01-01
The proto-oncogene SKI is highly expressed in human myeloid leukemia and also in murine hematopoietic stem cells. However, its operative relevance in these cells remains elusive. We have over-expressed SKI to define its intrinsic role in hematopoiesis and myeloid neoplasms, which resulted in a robust competitive advantage upon transplantation, a complete dominance of the stem and progenitor compartments, and a marked enhancement of myeloid differentiation at the expense of other lineages. Accordingly, enforced expression of SKI induced a gene signature associated with hematopoietic stem cells and myeloid differentiation, as well as hepatocyte growth factor signaling. Here we demonstrate that, in contrast to what has generally been assumed, the significant impact of SKI on hematopoiesis is independent of its ability to inhibit TGF-beta signaling. Instead, myeloid progenitors expressing SKI are partially dependent on functional hepatocyte growth factor signaling. Collectively our results demonstrate that SKI is an important regulator of hematopoietic stem cell activity and its overexpression leads to myeloproliferative disease. PMID:24415629
Tao, Zhen-Yu; Gao, Peng; Yan, Yu-Hui; Li, Hong-Yan; Song, Jie; Yang, Jing-Xian
2017-01-01
Neuroendoscopy processes can cause severe traumatic brain injury. Existing therapeutic methods, such as neural stem cell transplantation and osthole have not been proven effective. Therefore, there is an emerging need on the development of new techniques for the treatment of brain injuries. In this study we propose to combine the above stem cell based methods and then evaluate the efficiency and accuracy of the new method. Mice were randomly divided into four groups: group 1 (brain injury alone); group 2 (osthole); group 3 (stem cell transplantation); and group 4 (osthole combined with stem cell transplantation). We carried out water maze task to exam spatial memory. Immunocytochemistry was used to test the inflammatory condition of each group, and the differentiation of stem cells. To evaluate the condition of the damaged blood brain barrier restore, we detect the Evans blue (EB) extravasation across the blood brain barrier. The result shows that osthole and stem cell transplantation combined therapeutic method has a potent effect on improving the spatial memory. This combined method was more effective on inhibiting inflammation and preventing neuronal degeneration than the single treated ones. In addition, there was a distinct decline of EB extravasation in the combined treatment groups, which was not observed in single treatment groups. Most importantly, the combined usage of osthole and stem cell transplantation provide a better treatment for the traumatic brain injury caused by neuroendoscopy. The collective evidence indicates osthole combined with neural stem cell transplantation is superior than either method alone for the treatment of traumatic brain injury caused by neuroendoscopy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barbieri, Federica; Wurth, Roberto; Ratto, Alessandra
Current carcinogenesis theory states that only a small subset of tumor cells, the cancer stem cells or tumor initiating cells (TICs), are responsible for tumor formation and progression. Human breast cancer-initiating cells have been identified as CD44-expressing cells, which retain tumorigenic activity and display stem cell-like properties. Spontaneous feline mammary carcinoma (FMC) is an aggressive cancer, which shows biological similarities to the human tumor counterpart. We report the isolation and phenotypic characterization of FMC-derived stem/progenitor cells, showing in vitro self-renewal, long-lasting proliferation and in vivo tumorigenicity. Twenty-one FMC samples were collected, histologically classified and characterized for the expression of Ki67,more » EGFR, ER-{alpha} and CD44, by immunohistochemistry. By culture in stem cell permissive conditions, we isolated, from 13 FMCs, a CD44-positive subpopulation able to survive and proliferate in vitro as mammospheres of different sizes and morphologies. When injected in NOD/SCID mice, FMC stem-like cells initiate tumors, generating cell heterogeneity and recapitulating the original histotype. In serum-containing medium, spheroid cells showed differentiation properties as shown by morphological changes, the loss of CD44 expression and tumorigenic potential. These data show that stem-defined culture of FMC enriches for TICs and validate the use of these cells as a suitable model for comparative oncology studies of mammary biology and testing therapeutic strategies aimed at eradicating TICs. -- Highlights: Black-Right-Pointing-Pointer Feline mammary carcinoma contain a sub-population of stem-like cells expressing CD44 Black-Right-Pointing-Pointer These grow as spheres in serum-free medium and self-renew Black-Right-Pointing-Pointer Isolated stem-like cancer cells initiate tumor in immunodeficient mice Black-Right-Pointing-Pointer Xenografted tumors are phenotypically similar to the original tumor Black-Right-Pointing-Pointer Upon differentiation, cells grow as monolayers, loosing the tumorigenic potential.« less
Sodium Caseinate (CasNa) Induces Mobilization of Hematopoietic Stem Cells in a BALB/c Mouse Model
Santiago-Osorio, Edelmiro; Ledesma-Martínez, Edgar; Aguiñiga-Sánchez, Itzen; Poblano-Pérez, Ignacio; Weiss-Steider, Benny; Montesinos-Montesinos, Juan José; de Lourdes Mora-García, María
2015-01-01
Background Hematopoietic stem cells transplantation has high clinical potential against a wide variety of hematologic, metabolic, and autoimmune diseases and solid tumors. Clinically, hematopoietic stem cells derived from peripheral blood are currently used more than those obtained from sources such as bone marrow. However, mobilizing agents used in the clinic tend to fail in high rates, making the number of mobilized cells insufficient for transplantation. We investigated whether sodium caseinate induces functional mobilization of hematopoietic stem cells into peripheral blood of Balb/c mice. Material/Methods Using a mouse model, we administrated sodium caseinate or Plerixafor, a commercial mobilizing agent, and analyzed counts of hematopoietic stem cells in peripheral blood, and then cells were transplanted into lethally irradiated mice to restore hematopoiesis. All assays were performed at least twice. Results We found that sodium caseinate increases the number of mononuclear cells in peripheral blood with the immunophenotype of hematopoietic stem cells (0.2 to 0.5% LSK cells), allowing them to form colonies of various cell lineages in semisolid medium (p<0.05). This effect is similar to that of Plerixafor, and cells transplanted into lethally irradiated mice can restore hematopoiesis at higher percentages than mononuclear cells mobilized by Plerixafor (40% vs. 20%, respectively). Further, a secondary transplant rescued a separate group of irradiated mice from death, proving definitive evidence of hematopoietic reconstitution after hematopoietic stem cells transplantation. Data are presented as mean ± standard deviation. To determine significant differences between the data, one-way ANOVA and the Tukey test were used. Conclusions Collectively these results show the utility of sodium caseinate as a mobilizer of hematopoietic stem cells and its potential clinical application in transplantation settings. PMID:26409928
Sodium Caseinate (CasNa) Induces Mobilization of Hematopoietic Stem Cells in a BALB/c Mouse Model.
Santiago-Osorio, Edelmiro; Ledesma-Martínez, Edgar; Aguiñiga-Sánchez, Itzen; Poblano-Pérez, Ignacio; Weiss-Steider, Benny; Montesinos-Montesinos, Juan José; Mora-García, María de Lourdes
2015-09-25
BACKGROUND Hematopoietic stem cells transplantation has high clinical potential against a wide variety of hematologic, metabolic, and autoimmune diseases and solid tumors. Clinically, hematopoietic stem cells derived from peripheral blood are currently used more than those obtained from sources such as bone marrow. However, mobilizing agents used in the clinic tend to fail in high rates, making the number of mobilized cells insufficient for transplantation. We investigated whether sodium caseinate induces functional mobilization of hematopoietic stem cells into peripheral blood of Balb/c mice. MATERIAL AND METHODS Using a mouse model, we administrated sodium caseinate or Plerixafor, a commercial mobilizing agent, and analyzed counts of hematopoietic stem cells in peripheral blood, and then cells were transplanted into lethally irradiated mice to restore hematopoiesis. All assays were performed at least twice. RESULTS We found that sodium caseinate increases the number of mononuclear cells in peripheral blood with the immunophenotype of hematopoietic stem cells (0.2 to 0.5% LSK cells), allowing them to form colonies of various cell lineages in semisolid medium (p<0.05). This effect is similar to that of Plerixafor, and cells transplanted into lethally irradiated mice can restore hematopoiesis at higher percentages than mononuclear cells mobilized by Plerixafor (40% vs. 20%, respectively). Further, a secondary transplant rescued a separate group of irradiated mice from death, proving definitive evidence of hematopoietic reconstitution after hematopoietic stem cells transplantation. Data are presented as mean ± standard deviation. To determine significant differences between the data, one-way ANOVA and the Tukey test were used. CONCLUSIONS Collectively these results show the utility of sodium caseinate as a mobilizer of hematopoietic stem cells and its potential clinical application in transplantation settings.
Collateral damage control in cancer therapy: defining the stem identity in gliomas.
Hsieh, David
2011-01-01
The discovery of discrete functional components in cancer systems advocates a paradigm shift in therapeutic design towards the targeted destruction of critical cellular constituents that fuel tumorigenic potential. In astrocytomas, malignant growth can be propagated and sustained by glioma stem cells (GSCs) endowed with highly efficient clonogenic and tumor initiation capacities. Given their disproportionate oncogenic contribution, GSCs are often considered the optimal targets for curative treatment because their eradication may subvert the refractory nature of GBMs. However, the close affinity of GSCs and normal neural stem cells (NSCs) is a cautionary note for off-target effects of GSC-based therapies. In fact, many parallels can be drawn between GSC and NSC functions, which ostensibly rely on a communal collection of stem cell-promoting transcription factors (TFs). Only through rigorous scrutiny of nuances in the stemness program of GSCs and NSCs may we clarify the pathogenic mechanisms of stemness factors and reveal processes exploited by cancer cells to co-opt stem cell traits. Importantly, discerning the specific requirements for GSC and NSC maintenance may be an essential requisite when assessing molecular targets for discriminatory targeting of GSCs with minimal sequelae.
Yuan, Shan; Nademanee, Auayporn; Kaniewski, Mark; Palmer, Joycelynne; Shayani, Sepideh; Wang, Shirong
2014-08-01
Plerixafor is a Food and Drug Administration-approved agent for improving peripheral blood stem cell (PBSC) mobilization in filgrastim (granulocyte-colony-stimulating factor [G-CSF])-stimulated patients with multiple myeloma and non-Hodgkin's lymphoma. Limited information is available on its use in Hodgkin's lymphoma (HL) patients. We describe our experience with plerixafor as an immediate rescue agent in HL patients with poor PBSC mobilization. We retrospectively reviewed the collection data of 27 consecutive HL patients at our center in whom plerixafor was added to rescue a failing PBSC collection after G-CSF and chemotherapy (26) or G-CSF alone (1). Plerixafor was added in 11 patients due to peripheral blood (PB) CD34+ counts that persisted below the threshold (>10 × 10(6) /L) to initiate collection (median, 1.47 × 10(6) ; range 0 × 10(6) -6.28 × 10(6) /L) and in 16 patients due to low collection yields, who had a median yield of 0.33 × 10(6) (0.14 × 10(6) -0.65 × 10(6) ) CD34+ cells/kg on the last collection before plerixafor administration. After a median of 2 (range, 2-4) collections with plerixafor, the patients collected a median of 1.82 × 10(6) (0.52 × 10(6) -11.14 × 10(6) ) CD34+ cells/kg. The addition of plerixafor enabled 20 patients (74.1%) to reach the 2.0 × 10(6) CD34+ cells/kg minimum required for autologous stem cell transplantation (ASCT) during the same collection cycle. Subsequent remobilization in three patients with plerixafor enabled all three to reach this goal. Plerixafor can be used in HL patients with poor mobilization as a rescue agent and boosts mobilization sufficiently in most patients in the same collection attempt, thus not only permitting ASCT, but also avoiding remobilization and the associated costs, treatment delays, and patient inconvenience. © 2014 AABB.
Lu, Ying; Wang, Zhuojun; Chen, Lu; Wang, Jia; Li, Shulin; Liu, Caixia; Sun, Dong
2018-05-01
Amniotic fluid is an alternative source of stem cells, and human amniotic fluid-derived stem cells (AFSCs) obtained from a small amount of amniotic fluid collected during the second trimester represent a novel source for use in regenerative medicine. These AFSCs are characterized by lower diversity, a higher proliferation rate, and a wider differentiation capability than adult mesenchymal stem cells. AFSCs are selected based on the cell surface marker c-kit receptor (CD117) using immunomagnetic sorting. Glial cell line-derived neurotrophic factor (GDNF) is expressed during early kidney development and regulates the proliferation and differentiation of stem cells in vitro. In this study, c-kit-sorted AFSCs were induced toward osteogenic or adipogenic differentiation. AFSCs engineered via the insertion of GDNF were cocultured with mouse renal tubular epithelial cells (mRTECs), which were preconditioned by hypoxia-reoxygenation in vitro. After coculture for 8 days, AFSCs differentiation into epithelial-like cells was evaluated by performing immunofluorescence, flow cytometry, and quantitative real-time polymerase chain reaction to identify cells expressing the renal epithelial markers, cytokeratin 18 (CK18), E-cadherin, aquaporin-1 (AQP1), and paired box 2 gene (Pax2). The GDNF gene enhanced AFSCs differentiation into RTECs. AFSCs possess self-renewal ability and multiple differentiation potential and thus represent a new source of stem cells.
Generation of Mesenchymal-Like Stem Cells From Urine in Pediatric Patients.
He, W; Zhu, W; Cao, Q; Shen, Y; Zhou, Q; Yu, P; Liu, X; Ma, J; Li, Y; Hong, K
2016-01-01
Mesenchymal stem cells (MSCs) have been widely used for regenerative medicine. Traditionally, the procedures of MSC isolation are usually invasive and time-consuming. Urine is merely a body waste, and recent studies have suggested that urine represents an alternative source of stem cells. We, therefore, determined whether the possibility of isolating mesenchymal-like stem cells was practical from human urine. A total of 16 urine samples were collected from pediatric patients. Urine-derived cells were isolated, expanded, and identified for specific cell surface markers using flow cytometry. Cell morphology was observed by microscopy. Osteogenic and adipogenic differentiation potential were determinded by culturing cells in specific induction medium, and assessed by alkaline phosphatase and oil red O stainings, respectively. Clones were established and passaged successfully from primary cultures of urine cells. Cultured urine-derived cells at passage 3 were fusiform and arranged with certain directionality. Urine-derived cells at passage 5 displayed expressions of cell surface markers (CD29, CD105, CD166, CD90, and CD13). There was no expression of the general hematopoietic cell markers (CD45, CD34, and HLA-DR). Under in vitro induction conditions, urine-derived cells at passage 5 were able to differentiate into osteoblasts, but not adipocytes. Urine may be a noninvasive source for mesenchymal-like stem cells. These cells could potentially provide a new source of autologous stem cells for regenerative medicine and cell therapy. Copyright © 2016 Elsevier Inc. All rights reserved.
Tabata, Yoshikuni; Murai, Norio; Sasaki, Takeo; Taniguchi, Sachie; Suzuki, Shuichi; Yamazaki, Kazuto; Ito, Masashi
2015-10-01
Stem cell research has been progressing rapidly, contributing to regenerative biology and regenerative medicine. In this field, small-molecule compounds affecting stem cell proliferation/differentiation have been explored to understand stem cell biology and support regenerative medicine. In this study, we established a multiparametric screening system to detect bioactive compounds affecting the cell fate of human neural stem/progenitor cells (NSCs/NPCs), using human fetal hippocampal NSCs/NPCs, HIP-009 cells. We examined effects of 410 compounds, which were collected based on mechanisms of action (MOAs) and chemotypes, on HIP-009's cell fate (self-renewal, neuronal and astrocytic differentiation) and morphology by automated multiparametric assays and profiled induced cellular phenotypes. We found that this screening classified compounds with the same MOAs into subgroups according to additional pharmacological effects (e.g., mammalian target of rapamycin complex 1 [mTORC1] inhibitors and mTORC1/mTORC2 dual inhibitors among mTOR inhibitors). Moreover, it identified compounds that have off-target effects under matrix analyses of MOAs and structure similarities (e.g., neurotropic effects of amitriptyline among tri- and tetracyclic compounds). Therefore, this automated, medium-throughput and multiparametric screening system is useful for finding compounds that affect the cell fate of human NSCs/NPCs for supporting regenerative medicine and to fingerprint compounds based on human stem cells' multipotency, leading to understanding of stem cell biology. © 2015 Society for Laboratory Automation and Screening.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-10
...; Comment Request; Reinstatement of OMB No. 0925-0601/exp. 02/28/2010, Request for Human Embryonic Stem Cell... period seeking public comment for an information collection entitled ``Request for Human Embryonic Stem Cell Line to be Approved for Use in NIH Funded Research''. In the second paragraph of the notice...
Shofuda, Tomoko; Kanematsu, Daisuke; Fukusumi, Hayato; Yamamoto, Atsuyo; Bamba, Yohei; Yoshitatsu, Sumiko; Suemizu, Hiroshi; Nakamura, Masato; Sugimoto, Yoshikazu; Furue, Miho Kusuda; Kohara, Arihiro; Akamatsu, Wado; Okada, Yohei; Okano, Hideyuki; Yamasaki, Mami; Kanemura, Yonehiro
2013-01-01
Placental tissue is a biomaterial with remarkable potential for use in regenerative medicine. It has a three-layer structure derived from the fetus (amnion and chorion) and the mother (decidua), and it contains huge numbers of cells. Moreover, placental tissue can be collected without any physical danger to the donor and can be matched with a variety of HLA types. The decidua-derived mesenchymal cells (DMCs) are highly proliferative fibroblast-like cells that express a similar pattern of CD antigens as bone marrow-derived mesenchymal cells (BM-MSCs). Here we demonstrated that induced pluripotent stem (iPS) cells could be efficiently generated from DMCs by retroviral transfer of reprogramming factor genes. DMC-hiPS cells showed equivalent characteristics to human embryonic stem cells (hESCs) in colony morphology, global gene expression profile (including human pluripotent stem cell markers), DNA methylation status of the OCT3/4 and NANOG promoters, and ability to differentiate into components of the three germ layers in vitro and in vivo. The RNA expression of XIST and the methylation status of its promoter region suggested that DMC-iPSCs, when maintained undifferentiated and pluripotent, had three distinct states: (1) complete X-chromosome reactivation, (2) one inactive X-chromosome, or (3) an epigenetic aberration. Because DMCs are derived from the maternal portion of the placenta, they can be collected with the full consent of the adult donor and have considerable ethical advantages for cell banking and the subsequent generation of human iPS cells for regenerative applications. PMID:26858858
What is the role of biosimilar G-CSF agents in hematopoietic stem cell mobilization at present?
Korkmaz, Serdal; Altuntas, Fevzi
2017-12-01
Mobilization of hematopoietic stem cells, which has largely replaced bone marrow harvesting as a source of hematopoietic stem cells, using recombinant agents such as filgrastim or lenograstim has become a standard procedure in both patients and healthy donors prior to peripheral blood stem cell collection for autologous and allogeneic stem cell transplantation. Published literature data suggest that mobilization with recombinant granulocyte-colony stimulating factor (G-CSF) is safe and mobilization outcomes are satisfactory. In recent years, besides G-CSF originators, biosimilar G-CSF agents have been approved by the regulatory agencies for the same indications. Current data showed that by using the biosimilar G-CSF, similar results regarding safety and efficacy of hematopoietic stem cell mobilization may be achieved compared to the originator G-CSF. Although the issues such as the similarity to a licenced biological medicine, differences in manufacturing processes, the potential to cause immunogenicity, extrapolation and interchangeability of these biosimilar products are still being discussed by the scientific area, however, more experience with these agents now exists in approved endications and there seems to be no reason to expect significant differences between biosimilar G-CSF and originator G-CSF regarding their efficacy and safety in both patients and healthy donors. Also, the significant cost savings of biosimilars in real life setting may enhance the use of these agents in the future. Nonetheless, the collection of long-term follow-up data is mandatory for both patients and healthy donors, and multicentre randomized clinical trials that directly compare biosimilar G-CSF with the originator G-CSF are needed in order to allow the transplant community to make informed decisions regarding the choice of G-CSF. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Salehi, Hamideh; Collart-Dutilleul, Pierre-Yves; Gergely, Csilla; Cuisinier, Frédéric J. G.
2015-07-01
Regenerative medicine brings promising applications for mesenchymal stem cells, such as dental pulp stem cells (DPSCs). Confocal Raman microscopy, a noninvasive technique, is used to study osteogenic differentiation of DPSCs. Integrated Raman intensities in the 2800 to 3000 cm-1 region (C-H stretching) and the 960 cm-1 peak (ν1 PO43-) were collected (to image cells and phosphate, respectively), and the ratio of two peaks 1660 over 1690 cm-1 (amide I bands) to measure the collagen cross-linking has been calculated. Raman spectra of DPSCs after 21 days differentiation reveal several phosphate peaks: ν1 (first stretching mode) at 960 cm-1, ν2 at 430 cm-1, and ν4 at 585 cm-1 and collagen cross-linking can also be calculated. Confocal Raman microscopy enables monitoring osteogenic differentiation in vitro and can be a credible tool for clinical stem cell based research.
Private sector development of stem cell technology and therapeutic cloning.
Lysaght, Michael J; Hazlehurst, Anne L
2003-06-01
Based on data collected in June 2002, more than 30 biotechnology startup firms in 11 countries are pursuing commercial development of stem cell technology and therapeutic cloning. These firms employ 950-1000 scientists and support staff and spend just under $200 million on research and development each year. The field has the look and feel of a high-tech cottage industry, with about half the startups employing fewer than 15 FTEs (full time equivalents). Funding is mostly from venture capitalists and private investors. Participants are geographically dispersed, with about 40% of the activity outside the United States. Focus is equally split between embryonic and adult stem cells. Taken as a whole, both the structure and scope of the private sector in stem cell research seem appropriate to the promise and development time frames of this important new technology.
Modeling Inborn Errors of Hepatic Metabolism Using Induced Pluripotent Stem Cells.
Pournasr, Behshad; Duncan, Stephen A
2017-11-01
Inborn errors of hepatic metabolism are because of deficiencies commonly within a single enzyme as a consequence of heritable mutations in the genome. Individually such diseases are rare, but collectively they are common. Advances in genome-wide association studies and DNA sequencing have helped researchers identify the underlying genetic basis of such diseases. Unfortunately, cellular and animal models that accurately recapitulate these inborn errors of hepatic metabolism in the laboratory have been lacking. Recently, investigators have exploited molecular techniques to generate induced pluripotent stem cells from patients' somatic cells. Induced pluripotent stem cells can differentiate into a wide variety of cell types, including hepatocytes, thereby offering an innovative approach to unravel the mechanisms underlying inborn errors of hepatic metabolism. Moreover, such cell models could potentially provide a platform for the discovery of therapeutics. In this mini-review, we present a brief overview of the state-of-the-art in using pluripotent stem cells for such studies. © 2017 American Heart Association, Inc.
The case for intrauterine stem cell transplantation.
Mattar, Citra N; Biswas, Arijit; Choolani, Mahesh; Chan, Jerry K Y
2012-10-01
The clinical burden imposed by the collective group of monogenic disorders demands novel therapies that are effective at achieving phenotypic cure early in the disease process before the development of permanent organ damage. This is important for lethal diseases and also for non-perinatally lethal conditions that are characterised by severe disability with little prospect of postnatal cure. Where postnatal treatments are limited to palliative options, intrauterine stem-cell therapies may offer the potential to arrest pathogenesis in the early undamaged fetus. Intrauterine stem-cell transplantation has been attempted for a variety of diseases, but has only been successful in immune deficiency states in the presence of a competitive advantage for donor cells. This disappointing clinical record requires preclinical investigations into strategies that improve donor cell engraftment, including optimising the donor cell source and manipulating the microenvironment to facilitate homing. This chapter aims to outline the current challenges of intrauterine stem-cell therapy. Copyright © 2012 Elsevier Ltd. All rights reserved.
Shukla, Vivek; Rao, Mahadev; Zhang, Hongen; Beers, Jeanette; Wangsa, Darawalee; Wangsa, Danny; Buishand, Floryne O; Wang, Yonghong; Yu, Zhiya; Stevenson, Holly; Reardon, Emily; McLoughlin, Kaitlin C; Kaufman, Andrew; Payabyab, Eden; Hong, Julie A; Zhang, Mary; Davis, Sean R; Edelman, Daniel C; Chen, Guokai; Miettinen, Markku; Restifo, Nicholas; Ried, Thomas; Meltzer, Paul S; Schrump, David S
2018-04-01
Despite extensive studies, the genetic and epigenetic mechanisms that mediate initiation and progression of lung cancers have not been fully elucidated. Previously, we have demonstrated that via complementary mechanisms, including DNA methylation, polycomb repressive complexes, and noncoding RNAs, cigarette smoke induces stem-like phenotypes that coincide with progression to malignancy in normal respiratory epithelia as well as enhanced growth and metastatic potential of lung cancer cells. To further investigate epigenetic mechanisms contributing to stemness/pluripotency in lung cancers and potentially identify novel therapeutic targets in these malignancies, induced pluripotent stem cells were generated from normal human small airway epithelial cells. Lung induced pluripotent stem cells were generated by lentiviral transduction of small airway epithelial cells of OSKM (Yamanaka) factors (octamer-binding transcription factor 4 [Oct4], sex-determining region Y box 2 [SOX2], Kruppel-like factor 4 [KLF4], and MYC proto-oncogene, bHLH transcription factor [MYC]). Western blot, real-time polymerase chain reaction, and chromatin immunoprecipitation sequencing analysis were performed. The lung induced pluripotent stem cells exhibited hallmarks of pluripotency, including morphology, surface antigen and stem cell gene expression, in vitro proliferation, and teratoma formation. In addition, lung induced pluripotent stem cells exhibited no chromosomal aberrations, complete silencing of reprogramming transgenes, genomic hypermethylation, upregulation of genes encoding components of polycomb repressive complex 2, hypermethylation of stem cell polycomb targets, and modulation of more than 15,000 other genes relative to parental small airway epithelial cells. Additional sex combs like-3 (ASXL3), encoding a polycomb repressive complex 2-associated protein not previously described in reprogrammed cells, was markedly upregulated in lung induced pluripotent stem cell as well as human small cell lung cancer lines and specimens. Overexpression of the additional sex combs like-3 gene correlated with increased genomic copy number in small cell lung cancer lines. Knock-down of the additional sex combs like-3 gene inhibited proliferation, clonogenicity, and teratoma formation by lung induced pluripotent stem cells and significantly diminished in vitro clonogenicity and growth of small cell lung cancer cells in vivo. Collectively, these studies highlight the potential utility of this lung induced pluripotent stem cell model for elucidating epigenetic mechanisms contributing to pulmonary carcinogenesis and suggest that additional sex combs like-3 is a novel target for small cell lung cancer therapy.
Hayakawa-Yano, Yoshika; Suyama, Satoshi; Nogami, Masahiro; Yugami, Masato; Koya, Ikuko; Furukawa, Takako; Zhou, Li; Abe, Manabu; Sakimura, Kenji; Takebayashi, Hirohide; Nakanishi, Atsushi; Okano, Hideyuki; Yano, Masato
2017-09-15
Cell type-specific transcriptomes are enabled by the action of multiple regulators, which are frequently expressed within restricted tissue regions. In the present study, we identify one such regulator, Quaking 5 (Qki5), as an RNA-binding protein (RNABP) that is expressed in early embryonic neural stem cells and subsequently down-regulated during neurogenesis. mRNA sequencing analysis in neural stem cell culture indicates that Qki proteins play supporting roles in the neural stem cell transcriptome and various forms of mRNA processing that may result from regionally restricted expression and subcellular localization. Also, our in utero electroporation gain-of-function study suggests that the nuclear-type Qki isoform Qki5 supports the neural stem cell state. We next performed in vivo transcriptome-wide protein-RNA interaction mapping to search for direct targets of Qki5 and elucidate how Qki5 regulates neural stem cell function. Combined with our transcriptome analysis, this mapping analysis yielded a bona fide map of Qki5-RNA interaction at single-nucleotide resolution, the identification of 892 Qki5 direct target genes, and an accurate Qki5-dependent alternative splicing rule in the developing brain. Last, our target gene list provides the first compelling evidence that Qki5 is associated with specific biological events; namely, cell-cell adhesion. This prediction was confirmed by histological analysis of mice in which Qki proteins were genetically ablated, which revealed disruption of the apical surface of the lateral wall in the developing brain. These data collectively indicate that Qki5 regulates communication between neural stem cells by mediating numerous RNA processing events and suggest new links between splicing regulation and neural stem cell states. © 2017 Hayakawa-Yano et al.; Published by Cold Spring Harbor Laboratory Press.
Slow-Adhering Stem Cells Derived from Injured Skeletal Muscle Have Improved Regenerative Capacity
2011-08-01
images. Flow Cytometry Assay of Stem Cell Markers SASCs (1 105) isolated from noninjured or injured muscle were collected and washed twice with...muscle. Results of flow cytometry further verified Sca-1 and CD34 expression in isolated SASCs, and a greater percentage of cells were positive for Sca-1...from both injured and control noninjured muscle were analyzed using flow cytometry for the immunofluorescent signal of Sca-1 and CD34. Results
Hartmann, K; Raabe, O; Wenisch, S; Arnhold, S
2013-01-01
Amniotic fluid contains heterogeneous cell types and has become an interesting source for obtaining fetal stem cells. These stem cells have a high proliferative capacity and a good differentiation potential and may thus be suitable for regenerative medicine. As there is increasing evidence, that these stem cells are also able to be directed into the neural lineage, in our study we investigated the neuronal and glial differentiation potential of these cells, so that they may also be applied to cure degenerative diseases of the retina. Mesenchymal stem cells were isolated from routine prenatal amniocentesis at 15 to 18 weeks of pregnancy of human amniotic fluid and expanded in the cell culture. Cells were cultivated according to standard procedures for mesenchymal stem cells and were differentiated along the neural lineage using various protocols. Furthermore, it was also tried to direct them into cell types of the retina as well as into endothelial cells. Cells of more than 72 amniotic fluid samples were collected and characterized. While after induction neural-like phenotypes could actually be detected, which was confirmed using neural marker proteins such as GFAP and ßIII tubulina further differentiation into retinal like cells could not reliably be shown. These data suggest that amniotic fluid derived cells are an interesting cell source, which may also give rise to neural-like cells. However, a more specific differentiation into neuronal and glial cells could not unequivocally be shown, so that further investigations have to becarried out. PMID:23862099
Umbilical cord blood banking: implications for perinatal care providers.
Armson, B Anthony
2005-03-01
To evaluate the risks and benefits of umbilical cord blood banking for future stem cell transplantation and to provide guidelines for Canadian perinatal care providers regarding the counselling, procedural, and ethical implications of this potential therapeutic option. Selective or routine collection and storage of umbilical cord blood for future autologous (self) or allogenic (related or unrelated) transplantation of hematopoietic stem cells to treat malignant and nonmalignant disorders in children and adults. Maternal and perinatal morbidity, indications for umbilical cord blood transplantation, short- and long-term risks and benefits of umbilical cord blood transplantation, burden of umbilical cord blood collection on perinatal care providers, parental satisfaction, and health care costs. MEDLINE and PubMed searches were conducted from January 1970 to October 2003 for English-language articles related to umbilical cord blood collection, banking, and transplantation; the Cochrane library was searched; and committee opinions of the Royal College of Obstetricians and Gynaecologists, the American Academy of Pediatrics, and the American College of Obstetricians and Gynecologists were obtained. The evidence collected was reviewed and evaluated by the Maternal/Fetal Medicine Committee of the Society of Obstetricians and Gynaecologists of Canada (SOGC), and recommendations were made using the evaluation of evidence guidelines developed by the Canadian Task Force on the Periodic Health Exam. Umbilical cord blood is a readily available source of hematopoietic stem cells used with increasing frequency as an alternative to bone marrow or peripheral stem cells for transplantation in the treatment of malignant and nonmalignant conditions in children and adults. Umbilical cord blood transplantation provides a rich source of hematopoietic stem cells with several advantages, including prompt availability, decreased risk of transmissible viral infections and graft-versus-host disease (GVHD) in both human leukocyte antigen(HLA)-matched and HLA-mismatched stem cell transplants, and ease of collection with little risk to the mother or newborn. Potential limitations of umbilical cord blood transplantation include insufficient stem cell dose to reliably treat larger children and adult recipients, slower rate of engraftment, and the potential for transfer of genetically abnormal hematopoietic stem cells. The optimum method of umbilical cord blood transplantation is not yet clear, though available evidence would favour collection before delivery of the placenta. There are many unresolved ethical issues related to umbilical cord blood banking, particularly related to the rapid growth of private, for-profit, cord blood banks offering long-term storage for potential future autologous or related allogenic transplantation. The financial burden to the health care system for public cord blood banking and to families for private cord blood collection and storage is considerable. 1. Perinatal care providers should be informed about the promising clinical potential of hematopoietic stem cells in umbilical cord blood and about current indications for its collection, storage, and use, based on sound scientific evidence (II-3B). 2. Umbilical cord blood collection should be considered for a sibling or parent in need of stem cell transplantation when an HLA-identical bone marrow cell or peripheral stem cell donation from a sibling or parent is unavailable for transplantation (II-2B). 3. Umbilical cord blood should be considered when allogeneic transplantation is the treatment of choice for a child who does not have an HLA-identical sibling or a well-matched, unrelated adult bone marrow donor (II-2B). 4. Umbilical cord blood should be considered for allogeneic transplantation in adolescents and young adults with hematologic malignancies who have no suitable bone marrow donor and who require urgent transplantation (II-3B). 5. Altruistic donation of cord blood for public banking and subsequent allogeneic transplantation should be encouraged when umbilical cord blood banking is being considered by childbearing women, prenatal care providers, and(or) obstetric facilities (II-2B). 6. Collection and long-term storage of umbilical cord blood for autologous donation is not recommended because of the limited indications and lack of scientific evidence to support the practice (III-D). 7. Birth unit staff should receive training in standardized cord blood unit volume and reduce the rejection rate owing to labelling problems, bacterial contamination, and clotting (II-3B). 8. The safe management of obstetric delivery should never be compromised to facilitate cord blood collection. Manoeuvres to optimize cord blood unit volume, such as early clamping of the umbilical cord, may be employed at the discretion of the perinatal care team, provided the safety of the mother and newborn remains the major priority (III-A). 9. Collection of cord blood should be performed after the delivery of the infant but before delivery of the placenta, using a closed collection system and procedures that minimize risk of bacterial and maternal fluid contamination (see Figures 1a-1c) (I-B). 10. Public and private cord blood banks should strictly adhere to standardized policies and procedures for transportation, safety testing, HLA typing, cryopreservation, and long-term storage of umbilical cord blood units to prevent harm to the recipient, to eliminate the risk of transmitting communicable diseases, and thus to maximize the effectiveness of umbilical cord blood stem cell transplantation (II-1A). 11. Canada should establish registration, regulation, and accreditation of cord blood collection centres and banks (III-B). 12. Recruitment of cord blood donors should be fair and noncoercive. Criteria to ensure an equitable recruitment process include the following: (a) adequate supply to meet population transplantation needs; (b) fair distribution of the burdens and benefits of cord blood collection; (c) optimal timing of recruitment; (d) appropriately trained personnel; and (e) accurate recruitment message (III-A). 13. Informed consent for umbilical cord blood collection and banking should be obtained during prenatal care, before the onset of labour, with confirmation of consent after delivery (III-B). 14. Linkage of cord blood units and donors is recommended for public safety. Policies regarding the disclosure of abnormal test results to donor parents should be developed. Donor privacy and confidentiality of test results must be respected (III-C). 15. Commercial cord blood banks should be carefully regulated to ensure that promotion and pricing practices are fair, financial relationships are transparent, banked cord blood is stored and used according to approved standards, and parents and care providers understand the differences between autologous versus allogenic donations and private versus public banks (III-B). 16. Policies and procedures need to be developed by perinatal facilities and national health authorities to respond to prenatal requests for public and private cord blood banking (III-C).
McKinley, Brian; Rooney, William; Wilkerson, Curtis; Mullet, John
2016-11-01
Biomass accumulated preferentially in leaves of the sweet sorghum Della until floral initiation, then stems until anthesis, followed by panicles until grain maturity, and apical tillers. Sorghum stem RNA-seq transcriptome profiles and composition data were collected for approximately 100 days of development beginning at floral initiation. The analysis identified >200 differentially expressed genes involved in stem growth, cell wall biology, and sucrose accumulation. Genes encoding expansins and xyloglucan endotransglucosylase/hydrolases were differentially expressed in growing stem internodes. Genes encoding enzymes involved in the synthesis of cellulose, lignin, and glucuronoarabinoxylan were expressed at elevated levels in stems until approximately 7 days before anthesis and then down-regulated. CESA genes involved in primary and secondary cell wall synthesis showed different temporal patterns of expression. Following floral initiation, the level of sucrose and other non-structural carbohydrates increased to approximately 50% of the stem's dry weight. Stem sucrose accumulation was inversely correlated with >100-fold down-regulation of SbVIN1, a gene encoding a vacuolar invertase. Accumulation of stem sucrose was also correlated with cessation of leaf and stem growth at anthesis, decreased expression of genes involved in stem cell wall synthesis, and approximately 10-fold lower expression of SbSUS4, a gene encoding sucrose synthase that generates UDP-glucose from sucrose for cell wall biosynthesis. Genes for mixed linkage glucan synthesis (CSLF) and turnover were expressed at high levels in stems throughout development. Overall, the stem transcription profile resource and the genes and regulatory dynamics identified in this study will be useful for engineering sorghum stem composition for improved conversion to biofuels and bio-products. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.
Time related variations in stem cell harvesting of umbilical cord blood
NASA Astrophysics Data System (ADS)
Mazzoccoli, Gianluigi; Miscio, Giuseppe; Fontana, Andrea; Copetti, Massimiliano; Francavilla, Massimo; Bosi, Alberto; Perfetto, Federico; Valoriani, Alice; de Cata, Angelo; Santodirocco, Michele; Totaro, Angela; Rubino, Rosa; di Mauro, Lazzaro; Tarquini, Roberto
2016-02-01
Umbilical cord blood (UCB) contains hematopoietic stem cells and multipotent mesenchymal cells useful for treatment in malignant/nonmalignant hematologic-immunologic diseases and regenerative medicine. Transplantation outcome is correlated with cord blood volume (CBV), number of total nucleated cells (TNC), CD34+ progenitor cells and colony forming units in UCB donations. Several studies have addressed the role of maternal/neonatal factors associated with the hematopoietic reconstruction potential of UCB, including: gestational age, maternal parity, newborn sex and birth weight, placental weight, labor duration and mode of delivery. Few data exist regarding as to how time influences UCB collection and banking patterns. We retrospectively analyzed 17.936 cord blood donations collected from 1999 to 2011 from Tuscany and Apulia Cord Blood Banks. Results from generalized multivariable linear mixed models showed that CBV, TNC and CD34+ cell were associated with known obstetric and neonatal parameters and showed rhythmic patterns in different time domains and frequency ranges. The present findings confirm that volume, total nucleated cells and stem cells of the UCB donations are hallmarked by rhythmic patterns in different time domains and frequency ranges and suggest that temporal rhythms in addition to known obstetric and neonatal parameters influence CBV, TNC and CD34+ cell content in UBC units.
Conversion of adult endothelium to immunocompetent haematopoietic stem cells.
Lis, Raphael; Karrasch, Charles C; Poulos, Michael G; Kunar, Balvir; Redmond, David; Duran, Jose G Barcia; Badwe, Chaitanya R; Schachterle, William; Ginsberg, Michael; Xiang, Jenny; Tabrizi, Arash Rafii; Shido, Koji; Rosenwaks, Zev; Elemento, Olivier; Speck, Nancy A; Butler, Jason M; Scandura, Joseph M; Rafii, Shahin
2017-05-25
Developmental pathways that orchestrate the fleeting transition of endothelial cells into haematopoietic stem cells remain undefined. Here we demonstrate a tractable approach for fully reprogramming adult mouse endothelial cells to haematopoietic stem cells (rEC-HSCs) through transient expression of the transcription-factor-encoding genes Fosb, Gfi1, Runx1, and Spi1 (collectively denoted hereafter as FGRS) and vascular-niche-derived angiocrine factors. The induction phase (days 0-8) of conversion is initiated by expression of FGRS in mature endothelial cells, which results in endogenous Runx1 expression. During the specification phase (days 8-20), RUNX1 + FGRS-transduced endothelial cells commit to a haematopoietic fate, yielding rEC-HSCs that no longer require FGRS expression. The vascular niche drives a robust self-renewal and expansion phase of rEC-HSCs (days 20-28). rEC-HSCs have a transcriptome and long-term self-renewal capacity similar to those of adult haematopoietic stem cells, and can be used for clonal engraftment and serial primary and secondary multi-lineage reconstitution, including antigen-dependent adaptive immune function. Inhibition of TGFβ and CXCR7 or activation of BMP and CXCR4 signalling enhanced generation of rEC-HSCs. Pluripotency-independent conversion of endothelial cells into autologous authentic engraftable haematopoietic stem cells could aid treatment of haematological disorders.
Yang, Kuo-Liang; Chen, Mei-Fang; Liao, Chia-Hsin; Pang, Cheng-Yoong; Lin, Py-Yu
2009-01-01
We have isolated human neuronal stem cells from exfoliated third molars (wisdom teeth) using a simple and efficient method. The cultured neuronal stem cells (designated tNSC) expressed embryonic and adult stem cell markers, markers for chemotatic factor and its corresponding ligand, as well as neuron proteins. The tNSC expressed genes of Nurr1, NF-M and nestin. They were used to treat middle cerebral artery occlusion (MCAO) surgery-inflicted Sprague-Dawley (SD) rats to assess their therapeutic potential for stroke therapy. For each tNSC cell line, a normal human impacted wisdom tooth was collected from a donor with consent. The tooth was cleaned thoroughly with normal saline. The molar was vigorously shaken or vortexed for 30 min in a 50-mL conical tube with 15-20mL normal saline. The mixture of dental pulp was collected by centrifugation and cultured in a 25-cm(2) tissue culture flask with 4-5mL Medium 199 supplemented with 5-10% fetal calf serum. The tNSC harvested from tissue culture, at a concentration of 1-2x10(5), were suspended in 3 microL saline solution and injected into the right dorsolateral striatum of experimental animals inflicted with MCAO. Behavioral measurements of the tNSC-treated SD rats showed a significant recovery from neurologic dysfunction after MCAO treatment. In contrast, a sham group of SD rats failed to recover from the surgery. Immunohistochemistry analysis of brain sections of the tNSC-treated SD rats showed survival of the transplanted cells. These results suggest that adult neuronal stem cells may be procured from third molars, and tNSC thus cultivated have potential for treatment of stroke-inflicted rats.
Kuwatsuka, Yachiyo
2016-01-01
Observational studies from national and international registries with large volumes of patients are commonly performed to identify superior strategies for hematopoietic stem cell transplantation. Major international and national stem cell transplant registries collect outcome data using electronic data capture systems, and a systematic study support process has been developed. Statistical support for studies is available from some major international registries, and international and national registries also mutually collaborate to promote stem cell transplant outcome studies and transplant-related activities. Transplant registries additionally take measures to improve data quality to further improve the quality of outcome studies by utilizing data capture systems and manual data management. Data auditing can potentially even further improve data quality; however, human and budgetary resources can be limiting factors in system construction and audits of the Japanese transplant registry are not currently performed.
Translating Stem Cell Research to Cardiac Disease Therapies: Pitfalls and Prospects for Improvement
Rosen, Michael R.; Myerburg, Robert J.; Francis, Darrel P.; Cole, Graham D.; Marbán, Eduardo
2014-01-01
Over the past 2 decades, there have been numerous stem cell studies focused on cardiac diseases, ranging from proof-of-concept to phase 2 trials. This series of articles focuses on the legacy of these studies and the outlook for future treatment of cardiac diseases with stem cell therapies. The first section by Rosen and Myerburg is an independent review that analyzes the basic science and translational strategies supporting the rapid advance of stem cell technology to the clinic, the philosophies behind them, trial designs, and means for going forward that may impact favorably on progress. The second and third sections were collected in response to the initial section of this review. The commentary by Francis and Cole discusses the Rosen and Myerburg review and details how trial outcomes can be affected by noise, poor trial design (particularly the absence of blinding), and normal human tendencies toward optimism and denial. The final, independent article by Marbán takes a different perspective concerning the potential for positive impact of stem cell research applied to heart disease and future prospects for its clinical application. PMID:25169179
Li, Yanchun; Li, Jie; Reeves, Hollie M; Reyes, Ramil; Maitta, Robert W
2016-11-01
The Spectra Optia is a newer apheresis system developed based on the COBE Spectra platform. COBE Spectra requires more manual control, while Spectra Optia offers greater automation. The purpose of this study was to compare the two systems during hematopoietic progenitor stem cell (HPSC) collections. A retrospective review of 41 collections performed in 26 subjects at a tertiary medical center between June 1, 2013, and December 31, 2013, was conducted, 11 with the Spectra Optia and 30 with the COBE Spectra. Six patients underwent two consecutive daily collections, first on the Spectra Optia followed by the COBE Spectra. Procedure run time with the Spectra Optia was considerably longer than with the COBE Spectra (283 ± 11 min vs. 217 ± 2 min, respectively; p < 0.01). Mean CD34+ cell yields with the Spectra Optia were comparable with those of the COBE Spectra. Products collected with the Spectra Optia had less red blood cell contamination. However, platelet (PLT) attrition was greater with the Spectra Optia. Similar results were obtained in patients who were collected on consecutive days in both systems. Collections with the Spectra Optia take longer and lead to greater PLT losses during HPSC collections. © 2016 AABB.
Enabling Interactive Measurements from Large Coverage Microscopy
Bajcsy, Peter; Vandecreme, Antoine; Amelot, Julien; Chalfoun, Joe; Majurski, Michael; Brady, Mary
2017-01-01
Microscopy could be an important tool for characterizing stem cell products if quantitative measurements could be collected over multiple spatial and temporal scales. With the cells changing states over time and being several orders of magnitude smaller than cell products, modern microscopes are already capable of imaging large spatial areas, repeat imaging over time, and acquiring images over several spectra. However, characterizing stem cell products from such large image collections is challenging because of data size, required computations, and lack of interactive quantitative measurements needed to determine release criteria. We present a measurement web system consisting of available algorithms, extensions to a client-server framework using Deep Zoom, and the configuration know-how to provide the information needed for inspecting the quality of a cell product. The cell and other data sets are accessible via the prototype web-based system at http://isg.nist.gov/deepzoomweb. PMID:28663600
Bilgin, Yavuz M; Visser, Otto; Beckers, Erik A M; te Boome, Liane C J; Huisman, Cynthia; Ypma, Paula F; Croockewit, Alexandra J; Netelenbos, Tanja; Kramer, Ellen P A; de Greef, Georgine E
2015-05-01
Plerixafor in combination with granulocyte-colony-stimulating factor (G-CSF) is approved for the use of stem cell collection in patients who fail to mobilize on G-CSF. In 2009 the Stem Cell Working Party of the Dutch-Belgian Cooperative Trial group for Hematology Oncology (HOVON) composed a guideline for the use of plerixafor. According to this guideline it is recommended to add plerixafor to G-CSF in patients with circulating CD34+ cell counts of fewer than 20 × 10(6) /L on 2 consecutive days accompanied by increasing white blood cells. In this analysis we evaluated retrospectively the outcome of the use of this guideline in the Netherlands. In total 111 patients received plerixafor with a median one administration (range, one to four administrations). Of these patients 55.8% had non-Hodgkin lymphoma, 31.5% multiple myeloma, 8.1% Hodgkin lymphoma, and 4.5% nonhematologic malignancies. In 63.9% patients sufficient numbers of CD34+ cells were collected. In patients with multiple myeloma more successful mobilizations with plerixafor were observed compared to patients with non-Hodgkin lymphoma (71.4% vs. 61.3%). In patients with circulating CD34+ cell counts of at least 2.0 × 10(6) /L before administration of plerixafor a successful mobilization was achieved in 76.5%, and in the patients with very low (0-1 × 10(6) /L) circulating CD34+ cell counts the success rate was 44.2%. Application of the HOVON guideline on the just-in-time administration of plerixafor is effective for mobilization of hematopoietic stem cells in the majority of patients. Stem cell yield in patients with non-Hodgkin lymphoma was lower compared to patients with multiple myeloma. Also patients with very low circulating CD34+ cells before addition of plerixafor might benefit from this approach. © 2014 AABB.
Chang, Yuewen; Zhao, Yongfang; Zhan, Hongsheng; Wei, Xiaoen; Liu, Tianjin; Zheng, Bo
2014-02-01
Cancer stem cells (CSCs) play an important role in drug resistance of tumor and are responsible for high recurrence rates. Agents that can suppress the proliferation and differentiation of CSCs would provide new opportunity to fight against tumor recurrence. In this study, we developed a new strategy to enrich CSCs in human osteosarcoma cell line hMG63. Using these CSCs as model, we tested the effect of bufalin, a traditional Chinese medicine, on the proliferation and differentiation of CSCs. hMG63 cells were cultured in poly-HEMA-treated dish and cancer stem cell-specific medium. In this nonadhesive culture system, hMG63 formed spheres, which were then collected and injected into the immunodeficient mice. Cisplatin was administered every 3 days for five times. The enriched xenograft tumors were cultured in cancer stem cell-specific medium again to form tumor spheres. Expression of cancer stem cell markers of these cells was measured by flow cytometry. These cells were then treated with bufalin, and the proliferation and differentiation ability were indicated by the expression level of molecular markers and the formation of sphere again in vitro. We obtained a low CD133+/CD44 cell population with high-level stem cell marker. When treated with bufalin, the sphere could not get attached to the flask and failed to differentiate, which was indicated by the stable expression of stem cell marker CD133 and OCT-4 in the condition permissive to differentiation. Treatment of bufalin also suppressed the single cells isolated from the sphere to form sphere again in the nonadhesive culture system, and a decreased expression of proliferation marker Ki67 was also detected in these cells. Sphere-formed and chemoresistant colon xenograft tumors in immunodeficient mice could enrich cancer stem cell population. Bufalin could inhibit proliferation and differentiation of CSCs.
Marycz, Krzysztof; Krzak-Roś, Justyna; Donesz-Sikorska, Anna; Śmieszek, Agnieszka
2014-11-01
In recent years, much attention has been paid to the development of tissue engineering and regenerative medicine, especially when stem cells of various sources are concerned. In addition to the interest in mesenchymal stem cells isolated from bone marrow, recently more consideration has been given to stem cells isolated from adipose tissue (AdMSCs), due to their less invasive method of collection as well as their ease of isolation and culture. However, the development of regenerative medicine requires both the application of biocompatible material and the stem cells to accelerate the regeneration. In this study, we investigated the morphology, proliferation rate index (PRi), and population doubling time factor of adipose-derived mesenchymal stem cells cultured on non-aqueous sol-gel-derived SiO2, TiO2, and SiO2/TiO2 oxide coatings. The results indicated an increase in PRi of AdMSCs when cultured on to titanium dioxide, suggesting its high attractiveness for AdMSCs. In addition, the proper morphology and the shortest doubling time of AdMSCs were observed when cultured on titanium dioxide coating. © 2014 Wiley Periodicals, Inc.
Zhang, H; Wong, E A
2018-02-01
The chicken yolk sac (YS) and small intestine are essential for nutrient absorption during the pre-hatch and post-hatch periods, respectively. Absorptive enterocytes and secretory cells line the intestinal villi and originate from stem cells located in the intestinal crypts. Similarly, in the YS, there are absorptive and secretory cells that presumably originate from a stem cell population. Leucine-rich repeat containing G protein-coupled receptor 5 (Lgr5) and olfactomedin 4 (Olfm4) are 2 widely used markers for intestinal stem cells. The objective of this study was to map the distribution of putative stem cells expressing LGR5 and OLFM4 mRNA in the chicken small intestine from the late embryonic period to early post hatch and the YS during embryogenesis. At embryonic d 11, 13, 15, 17, and 19, the YS was collected (n = 3), and small intestine was collected at embryonic d 19, d of hatch (doh), and d 1, 4, and 7 post hatch (n = 3). Cells expressing OLFM4 and LGR5 mRNA were identified by in situ hybridization. In the YS, cells expressing only LGR5 and not OLFM4 mRNA were localized to the vascular endothelial cells lining the blood vessels. In the small intestine, cells in the intestinal crypt expressed both LGR5 and OLFM4 mRNA. Staining for OLFM4 mRNA was more intense than LGR5 mRNA, demonstrating that Olfm4 is a more robust marker for stem cells than Lgr5. At embryonic d 19 and doh, cells staining for OLFM4 mRNA were already present in the rudimentary crypts, with the greatest staining in the duodenal crypts. The intensity of OLFM4 mRNA staining increased from doh to d 7 post hatch. Dual label staining at doh for the peptide transporter PepT1 and Olfm4 revealed a population of cells above the crypts that did not express Olfm4 or PepT1 mRNA. These cells are likely progenitor transit amplifying cells. Thus, avians and mammals share similarity in the ontogeny of stem cells in the intestinal crypts. © 2017 Poultry Science Association Inc.
Ablett, Matthew P; O'Brien, Ciara S; Sims, Andrew H; Farnie, Gillian; Clarke, Robert B
2014-02-15
C-X-C chemokine receptor type 4 (CXCR4) is known to regulate lung, pancreatic and prostate cancer stem cells. In breast cancer, CXCR4 signalling has been reported to be a mediator of metastasis, and is linked to poor prognosis. However its role in normal and malignant breast stem cell function has not been investigated. Anoikis resistant (AR) cells were collected from immortalised (MCF10A, 226L) and malignant (MCF7, T47D, SKBR3) breast cell lines and assessed for stem cell enrichment versus unsorted cells. AR cells had significantly higher mammosphere forming efficiency (MFE) than unsorted cells. The AR normal cells demonstrated increased formation of 3D structures in Matrigel compared to unsorted cells. In vivo, SKBR3 and T47D AR cells had 7- and 130-fold enrichments for tumour formationrespectively, compared with unsorted cells. AR cells contained significantly elevated CXCR4 transcript and protein levels compared to unsorted cells. Importantly, CXCR4 mRNA was higher in stem cell-enriched CD44+/CD24- patient-derived breast cancer cells compared to non-enriched cells. CXCR4 stimulation by its ligand SDF-1 reduced MFE of the normal breast cells lines but increased the MFE in T47D and patient-derived breast cancer cells. CXCR4 inhibition by AMD3100 increased stem cell activity but reduced the self-renewal capacity of the malignant breast cell line T47D. CXCR4+ FACS sorted MCF7 cells demonstrated a significantly increased MFE compared with CXCR4- cells. This significant increase in MFE was further demonstrated in CXCR4 over-expressing MCF7 cells which also had an increase in self-renewal compared to parental cells. A greater reduction in self-renewal following CXCR4 inhibition in the CXCR4 over-expressing cells compared with parental cells was also observed. Our data establish for the first time that CXCR4 signalling has contrasting effects on normal and malignant breast stem cell activity. Here, we demonstrate that CXCR4 signalling specifically regulates breast cancer stem cell activities and may therefore be important in tumour formation at the sites of metastases.
Elayan, Mohammed M; Horowitz, Justin G; Magraner, Jose M; Shaughnessy, Paul J; Bachier, Carlos
2015-11-01
There are limited data available supporting the use of the recombinant granulocyte colony-stimulating factor (G-CSF), tbo-filgrastim, rather than traditionally used filgrastim to mobilize peripheral blood stem cells (PBSC) or to accelerate engraftment after autologous stem cell transplantation (ASCT). We sought to compare the efficacy and cost of tbo-filgrastim to filgrastim in these settings. Patients diagnosed with lymphoma or plasma cell disorders undergoing G-CSF mobilization, with or without plerixafor, were included in this retrospective analysis. The primary outcome was total collected CD34(+) cells/kg. Secondary mobilization endpoints included peripheral CD34(+) cells/μL on days 4 and 5 of mobilization, adjunctive use of plerixafor, CD34(+) cells/kg collected on day 5, number of collection days and volumes processed, number of collections reaching 5 million CD34(+) cells/kg, and percent reaching target collection goal in 1 day. Secondary engraftment endpoints included time to neutrophil and platelet engraftment, number of blood product transfusions required before engraftment, events of febrile neutropenia, and length of stay. A total of 185 patients were included in the final analysis. Patients receiving filgrastim (n = 86) collected a median of 5.56 × 10(6) CD34(+) cells/kg, compared with a median of 5.85 × 10(6) CD34(+) cells/kg in the tbo-filgrastim group (n = 99; P = .58). There were no statistically significant differences in all secondary endpoints with the exception of apheresis volumes processed (tbo-filgrastim, 17.0 liters versus filgrastim, 19.7 liters; P < .01) and mean platelet transfusions (tbo-filgrastim, 1.7 units versus filgrastim, 1.4 units; P = .04). In conclusion, tbo-filgrastim demonstrated similar CD34(+) yield compared with filgrastim in mobilization and post-transplantation settings, with no clinically meaningful differences in secondary efficacy and safety endpoints. Furthermore, tbo-filgrastim utilization was associated with cost savings of approximately $1406 per patient utilizing average wholesale price. Copyright © 2015 American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.
Shi, Yingai; Bharadwaj, Shantaram; Leng, Xiaoyan; Zhou, Xiaobo; Liu, Hong; Atala, Anthony; Zhang, Yuanyuan
2013-01-01
Despite successful approaches to preserve organs, tissues, and isolated cells, the maintenance of stem cell viability and function in body fluids during storage for cell distribution and transportation remains unexplored. The aim of this study was to characterize urine-derived stem cells (USCs) after optimal preservation of urine specimens for up to 24 hours. A total of 415 urine specimens were collected from 12 healthy men (age range 20–54 years old). About 6×104 cells shed off from the urinary tract system in 24 hours. At least 100 USC clones were obtained from the stored urine specimens after 24 hours and maintained similar biological features to fresh USCs. The stored USCs had a “rice grain” shape in primary culture, and expressed mesenchymal stem cell surface markers, high telomerase activity, and normal karyotypes. Importantly, the preserved cells retained bipotent differentiation capacity. Differentiated USCs expressed myogenic specific proteins and contractile function when exposed to myogenic differentiation medium, and they expressed urothelial cell-specific markers and barrier function when exposed to urothelial differentiation medium. These data demonstrated that up to 75% of fresh USCs can be safely persevered in urine for 24 hours and that these cells stored in urine retain their original stem cell properties, indicating that preserved USCs could be available for potential use in cell-based therapy or clinical diagnosis. PMID:23349776
Kreja, L; Greulich, K M; Fliedner, T M; Heinze, B
1999-10-01
The detection of long-term persistent chromosome aberrations in circulating haemopoietic stem cells after accidental radiation exposure. Peripheral blood samples from highly exposed persons were collected 7-25 years after the radiation accidents in Moscow (1971), Kazan (1975) and Chernobyl (1996). Haemopoietic blood stem cells were analysed when investigating individual colonies derived from haemopoietic progenitor cells: burst-forming units-erythroid (BFU-E), granulocyte-macrophage-colony-forming cells (GM-CFC) and multipotent granulocyte-erythrocyte-macrophage- megakaryocyte-colony-forming cells (GEMM-CFC). Colony formation was obtained in methylcellulose cultures. Chromosome preparations in single colonies were performed using a microtechnique. Nine patients were investigated at 1 to 4 follow-up time points after radiation exposure. Three hundred and thirty-four single colonies were analyzed resulting in 1375 mitoses. It was found that colonies showed chromosome aberrations (ChA) up to 25 years after radiation exposure by classical cytogenetics and by fluorescence in situ hybridization (FISH). Stable aberrations were detected in 21% of colonies. They were clonal in 19% of colonies, i.e. the same abnormality was found in all cells derived from a single colony. In 2% of colonies ChA were stable but non-clonal; unstable ChA were not observed. The results indicate that blood-derived haemopoietic stem cells may serve as a biological indicator to detect radiation-induced ChA. Since they are considered to be in dynamic and functional exchange with stem cells in the medullary sites of blood cell formation such as bone marrow, the use of blood stem cells as a marker of radiation effects should be explored to assess the repair status of the stem cell pool as such.
Microencapsulation of dopamine neurons derived from human induced pluripotent stem cells.
Konagaya, Shuhei; Iwata, Hiroo
2015-01-01
Dopamine neurons derived from induced pluripotent stem cells have been widely studied for the treatment of Parkinson's disease. However, various difficulties remain to be overcome, such as tumor formation, fragility of dopamine neurons, difficulty in handling large numbers of dopamine neurons, and immune reactions. In this study, human induced pluripotent stem cell-derived precursors of dopamine neurons were encapsulated in agarose microbeads. Dopamine neurons in microbeads could be handled without specific protocols, because the microbeads protected the fragile dopamine neurons from mechanical stress. hiPS cells were seeded on a Matrigel-coated dish and cultured to induce differentiation into a dopamine neuronal linage. On day 18 of culture, cells were collected from the culture dishes and seeded into U-bottom 96-well plates to induce cell aggregate formation. After 5 days, cell aggregates were collected from the plates and microencapsulated in agarose microbeads. The microencapsulated aggregates were cultured for an additional 45 days to induce maturation of dopamine neurons. Approximately 60% of all cells differentiated into tyrosine hydroxylase-positive neurons in agarose microbeads. The cells released dopamine for more than 40 days. In addition, microbeads containing cells could be cryopreserved. hiPS cells were successfully differentiated into dopamine neurons in agarose microbeads. Agarose microencapsulation provides a good supporting environment for the preparation and storage of dopamine neurons. Copyright © 2014 Elsevier B.V. All rights reserved.
Collecting and Storing Tissue and DNA Samples From Patients Undergoing a Donor Stem Cell Transplant
2012-11-04
Breast Cancer; Chronic Myeloproliferative Disorders; Gestational Trophoblastic Tumor; Graft Versus Host Disease; Leukemia; Lymphoma; Multiple Myeloma and Plasma Cell Neoplasm; Myelodysplastic Syndromes; Myelodysplastic/Myeloproliferative Neoplasms; Neuroblastoma; Ovarian Cancer; Testicular Germ Cell Tumor
Umbilical cord blood transplants: treatment for selected hematologic and oncologic diseases.
Stevens, K
1997-12-01
Umbilical cord blood transplantation is a rapidly growing form of treatment for many types of cancer and hematologic disorders. The concepts behind the use of umbilical cord blood transplantation are based on information gained from experience in bone marrow transplantation. Previously discarded as human waste, the blood in the umbilical cord remnant and the placenta has been observed to be rich in hematopoietic stem cells. Techniques for collecting these stem cells from the placenta may vary among the institutions, physicians, and other health care providers, including midwives and nurse practitioners, involved with this procedure. This source of hematopoietic stem cells in transplantation has many advantages, disadvantages, and controversies associated with its use.
The Core of Sibling Stem Cell Donation - A Grounded Theory Study.
Kisch, Annika M; Forsberg, Anna
2017-01-01
There is a lack of theoretical framework supporting stem cell transplant nurses in their assessment, judgment and caring interventions of sibling stem cell donors. The purpose of this study was to explore sibling stem cell donors' main concerns and how they deal with them before and after donation. Ten healthy sibling donors, 5 men and 5 women, with a median age of 54 years were included in this study when they were due to donate stem cells to a brother or sister. Data were collected prospectively on three occasions (before the donation and three and twelve months after it) through in-depth interviews, which were recorded and transcribed verbatim for analysis by the Grounded Theory method according to Charmaz. This study describes the efforts of the ten donors to fulfil their duty as a sibling by doing what they considered necessary in order to help. Their efforts were summarised in a process wherein the grounded theory generated three main categories; Prepare, Promote and Preserve. A clear path of transition leading to fulfilment is evident, starting before the donation and continuing for one year afterwards. Being a sibling stem cell donor means doing what you have to do to fulfil your duty and if possible, saving the life of a seriously ill brother or sister. The relationship between the siblings is strengthened by the donation process. Sibling stem cell donation appears to be about fulfilment and the theoretical framework may support clinicians in their evaluation and support of donors.
Thibeault-Martel, Maxime; Krause, Cornelia; Morin, Hubert; Rossi, Sergio
2008-01-01
Background and Aims Studies on xylogenesis focus essentially on the stem, whereas there is basically no information about the intra-annual growth of other parts of the tree. As roots strongly influence carbon allocation and tree development, knowledge of the dynamics of xylem production and maturation in roots at a short time scale is required for a better understanding of the phenomenon of tree growth. This study compared cambial activity and xylem formation in stem and roots in two conifers of the boreal forest in Canada. Methods Wood microcores were collected weekly in stem and roots of ten Abies balsamea and ten Picea mariana during the 2004–2006 growing seasons. Cross-sections were cut using a rotary microtome, stained with cresyl violet acetate and observed under visible and polarized light. The number of cells in the cambial zone and in differentiation, plus the number of mature cells, was counted along the developing xylem. Key Results Xylem formation lasted from the end of May to the end of September, with no difference between stem and roots in 2004–2005. On the contrary, in 2006 a 1-week earlier beginning of cell differentiation was observed in the stem, with cell wall thickening and lignification in roots ending up to 22 d later than in the stem. Cell production in the stem was concentrated early in the season, in June, while most cell divisions in roots occurred 1 month later. Conclusions The intra-annual dynamics of growth observed in stem and roots could be related to the different amount of cells produced by the cambium and the patterns of air and soil temperature occurring in spring. PMID:18708643
Endothelial induced EMT in breast epithelial cells with stem cell properties.
Sigurdsson, Valgardur; Hilmarsdottir, Bylgja; Sigmundsdottir, Hekla; Fridriksdottir, Agla J R; Ringnér, Markus; Villadsen, Rene; Borg, Ake; Agnarsson, Bjarni A; Petersen, Ole William; Magnusson, Magnus K; Gudjonsson, Thorarinn
2011-01-01
Epithelial to mesenchymal transition (EMT) is a critical event in cancer progression and is closely linked to the breast epithelial cancer stem cell phenotype. Given the close interaction between the vascular endothelium and cancer cells, especially at the invasive front, we asked whether endothelial cells might play a role in EMT. Using a 3D culture model we demonstrate that endothelial cells are potent inducers of EMT in D492 an immortalized breast epithelial cell line with stem cell properties. Endothelial induced mesenchymal-like cells (D492M) derived from D492, show reduced expression of keratins, a switch from E-Cadherin (E-Cad) to N-Cadherin (N-Cad) and enhanced migration. Acquisition of cancer stem cell associated characteristics like increased CD44(high)/CD24(low) ratio, resistance to apoptosis and anchorage independent growth was also seen in D492M cells. Endothelial induced EMT in D492 was partially blocked by inhibition of HGF signaling. Basal-like breast cancer, a vascular rich cancer with stem cell properties and adverse prognosis has been linked with EMT. We immunostained several basal-like breast cancer samples for endothelial and EMT markers. Cancer cells close to the vascular rich areas show no or decreased expression of E-Cad and increased N-Cad expression suggesting EMT. Collectively, we have shown in a 3D culture model that endothelial cells are potent inducers of EMT in breast epithelial cells with stem cell properties. Furthermore, we demonstrate that basal-like breast cancer contains cells with an EMT phenotype, most prominently close to vascular rich areas of these tumors. We conclude that endothelial cells are potent inducers of EMT and may play a role in progression of basal-like breast cancer.
Endothelial Induced EMT in Breast Epithelial Cells with Stem Cell Properties
Sigurdsson, Valgardur; Hilmarsdottir, Bylgja; Sigmundsdottir, Hekla; Fridriksdottir, Agla J. R.; Ringnér, Markus; Villadsen, Rene; Borg, Ake; Agnarsson, Bjarni A.; Petersen, Ole William; Magnusson, Magnus K.; Gudjonsson, Thorarinn
2011-01-01
Epithelial to mesenchymal transition (EMT) is a critical event in cancer progression and is closely linked to the breast epithelial cancer stem cell phenotype. Given the close interaction between the vascular endothelium and cancer cells, especially at the invasive front, we asked whether endothelial cells might play a role in EMT. Using a 3D culture model we demonstrate that endothelial cells are potent inducers of EMT in D492 an immortalized breast epithelial cell line with stem cell properties. Endothelial induced mesenchymal-like cells (D492M) derived from D492, show reduced expression of keratins, a switch from E-Cadherin (E-Cad) to N-Cadherin (N-Cad) and enhanced migration. Acquisition of cancer stem cell associated characteristics like increased CD44high/CD24low ratio, resistance to apoptosis and anchorage independent growth was also seen in D492M cells. Endothelial induced EMT in D492 was partially blocked by inhibition of HGF signaling. Basal-like breast cancer, a vascular rich cancer with stem cell properties and adverse prognosis has been linked with EMT. We immunostained several basal-like breast cancer samples for endothelial and EMT markers. Cancer cells close to the vascular rich areas show no or decreased expression of E-Cad and increased N-Cad expression suggesting EMT. Collectively, we have shown in a 3D culture model that endothelial cells are potent inducers of EMT in breast epithelial cells with stem cell properties. Furthermore, we demonstrate that basal-like breast cancer contains cells with an EMT phenotype, most prominently close to vascular rich areas of these tumors. We conclude that endothelial cells are potent inducers of EMT and may play a role in progression of basal-like breast cancer. PMID:21915264
Wada, Randal K; Bradford, Andrea; Moogk, Margery; Yim, Robyn; Strong, D Michael; Drachman, Jonathan; Reems, Jo Anna
2004-01-01
Umbilical cord blood is a useful source of hematopoietic stem cells, especially because compared to equivalent HLA-matched stem cells from unrelated adult donors. A network of community collection sites targeted at particular ethnic groups and serviced by a central processing and storage facility can maximize the genetic diversity of banked cord blood units (CBUs) in a cost-effective fashion. The present study compared CBUs collected near the Puget Sound Blood Center in Seattle, WA, with those collected in Honolulu, HI, and processed in Seattle. Evaluated variables include collection volume, total nucleated cell count, cellular viability, CD34+ cell count, clonogenic activity, and donor race for a total of 1646 CBUs received from July 1998 through November 2002. CBUs from the two sites did not differ with regard to volume or total nucleated cells. Those from Hawaii had significantly longer transit times (p < 0.001) and lower whole cord blood cell viability. However, the numbers of CFU and viable CD34+ cells were not affected by remote collection. CBUs screened from Seattle were largely from Caucasian donors, whereas over 85 percent of those from Honolulu were from donors of Asian-Pacific Islander or mixed ethnicity. These studies demonstrate the feasibility of long-distance umbilical cord blood banking. Arrangements such as those described here could be used to help target cost-effective collection from minority populations and increase the HLA and ethnic diversity for CBUs.
Spoerl, Silvia; Wäscher, Dagmar; Nagel, Stefanie; Peschel, Christian; Verbeek, Mareike; Götze, Katharina; Krackhardt, Angela M
2018-05-06
Cell separators are routinely used to collect CD34 + blood stem cells in the context of customized stem cell transplantation procedures. The Spectra Optia (Terumo BCT) is a novel development of the precursor instrument, the Cobe Spectra (Terumo BCT). In this report, 146 autologous and 42 allogeneic donors undergoing apheresis on the Cobe Spectra using the mononuclear cell (MNC) program 4.7 or on the Spectra Optia using the new continuous mononuclear cell (cMNC) program 11.2 are compared. Viability of cells and collection efficacy within the apheresis products was comparable for autologous and allogeneic products collected with the MNC or cMNC method. However, we found a reduced duration of the apheresis procedure and lower hematocrit within the apheresis products when using the cMNC in autologous and allogeneic donors. Moreover, allogeneic donors collected substantially more CD34 + cells per kilogram of body weight when using the cMNC method. Differences in platelets before and after apheresis were substantially smaller in this cohort when compared to the cohort collected with the MNC method. Neutrophil and platelet engraftment after autologous or allogeneic transplantation with a product collected with the MNC procedure was comparable to a transplantation with a product processed according to the cMNC method. Comparison of the MNC (Cobe Spectra) and the cMNC (Spectra Optia) methods demonstrated an equal performance and outcome. However, advantages were present using the cMNC method with respect to apheresis duration and hematocrit within the apheresis product (autologous/allogeneic donors) and numbers of CD34 + cells collected, especially in allogeneic donors. © 2018 AABB.
Stem Cell Trials for Cardiovascular Medicine: Ethical Rationale
Teraa, Martin; Hesam, Husna; van Delden, Johannes J.M.; Verhaar, Marianne C.; Bredenoord, Annelien L.
2014-01-01
Stem cell-based interventions provide new treatment prospects for many disease conditions, including cardiovascular disorders. Clinical trials are necessary to collect adequate evidence on (long-term) safety and efficacy of novel interventions such as stem cells, but the design and launch of clinical trials, from first-in-human studies to larger randomized controlled trials (RCTs), is scientifically and ethically challenging. Stem cells are different from traditional pharmaceuticals, surgical procedures, and medical devices in the following ways: the novelty and complexity of stem cells, the invasiveness of the procedures, and the novel aim of regeneration. These specifics, combined with the characteristics of the study population, will have an impact on the design and ethics of RCTs. The recently closed JUVENTAS trial will serve as an example to identify the (interwoven) scientific and ethical challenges in the design and launch of stem cell RCTs. The JUVENTAS trial has investigated the efficacy of autologous bone marrow cells in end-stage vascular patients, in a double-blind sham-controlled design. We first describe the choices, considerations, and experiences of the JUVENTAS team. Subsequently, we identify the main ethical and scientific challenges and discuss what is important to consider in the design of future stem cell RCTs: assessment of risks and benefits, the choice for outcome measures, the choice for the comparator, the appropriate selection of participants, and adequate informed consent. Additionally, the stem cell field is highly in the spotlight due to the (commercial) interests and expectations. This warrants a cautious pace of translation and scrupulous set up of clinical trials, as failures could put the field in a negative light. At the same time, knowledge from clinical trials is necessary for the field to progress. We conclude that in the scientifically and ethically challenging field of stem cell RCTs, researchers and clinicians have to maneuver between the Skylla of hyper accelerated translation without rigorously conducted RCTs and the Charybdis of the missed opportunity of valuable knowledge. PMID:24164351
Transient receptor potential vanilloid-type 2 targeting on stemness in liver cancer.
Hu, Zecheng; Cao, Xiaocheng; Fang, Yu; Liu, Guoxing; Xie, Chengzhi; Qian, Ke; Lei, Xiaohua; Cao, Zhenyu; Du, Huihui; Cheng, Xiangding; Xu, Xundi
2018-06-12
The malignant phenotype of the cells resulting from human liver cancer is driven by liver cancer stem-like cells (LCSLCs). Transient Receptor Potential Vanilloid-type 2 channel (TRPV2) contributes to the progression of different tumor types, including liver cancer. In the current study, the TRPV2 expression levels give rise to the effect on stemness in liver cancer cell lines. TRPV2 knockdown in HepG2 cells enhanced spheroid and colony formation, and expression levels of CD133, CD44 and ALDH1 whereas the opposite effects were observed in TRPV2 enforced expression in SMMC-7721 cells. Furthermore, TRPV2 overexpression restored inhibition of spheroid and colony formation, and stem cell markers expression in HepG2 cells with TRPV2 silencing. The addition of the TRPV2 agonist probenecid and the TRPV2 antagonist tranilast suppressed and/or increased in vitro spheroid and colony formation, and stem cell marker expression of LCSLCs and/or liver cancer cell lines, respectively. Notably, probenecid and tranilast significantly inhibited or promoted tumor growth of HepG2 xenografts in the severe combined immunodeficiency (SCID) mouse model, respectively. TRPV2 expression at protein levels revealed converse correlation with those of CD133 and CD44 in human hepatocellular carcinoma (HCC) tissue. Collectively, the data demonstrate that TRPV2 exert effects on stemness of liver cancer and is a potential target in the treatment of human liver cancer patients. Copyright © 2018. Published by Elsevier Masson SAS.
Comparison of tumor biology of two distinct cell sub-populations in lung cancer stem cells.
Wang, Jianyu; Sun, Zhiwei; Liu, Yongli; Kong, Liangsheng; Zhou, Shixia; Tang, Junlin; Xing, Hongmei Rosie
2017-11-14
Characterization of the stem-like properties of cancer stem cells (CSCs) remain indirect and qualitative, especially the ability of CSCs to undergo asymmetric cell division for self renewal and differentiation, a unique property of cells of stem origin. It is partly due to the lack of stable cellular models of CSCs. In this study, we developed a new approach for CSC isolation and purification to derive a CSC-enriched cell line (LLC-SE). By conducting five consecutive rounds of single cell cloning using the LLC-SE cell line, we obtained two distinct sub-population of cells within the Lewis lung cancer CSCs that employed largely symmetric division for self-renewal (LLC-SD) or underwent asymmetric division for differentiation (LLC-ASD). LLC-SD and LLC-ASD cell lines could be stably passaged in culture and be distinguished by cell morphology, stem cell marker, spheroid formation and subcutaneous tumor initiation efficiency, as well as orthotopic lung tumor growth, progression and survival. The ability LLC-ASD cells to undergo asymmetric division was visualized and quantified by the asymmetric segregation of labeled BrdU and NUMB to one of the two daughter cells in anaphase cell division. The more stem-like LLC-SD cells exhibited higher capacity for tumorigenesis and progression and shorter survival. As few as 10 LLC-SD could initiate subcutaneous tumor growth when transplanted to the athymic mice. Collectively, these observations suggest that the SD-type of cells appear to be on the top of the hierarchical order of the CSCs. Furthermore, they have lead to generated cellular models of CSC self-renewal for future mechanistic investigations.
Xiong, Jimin; Mrozik, Krzysztof; Gronthos, Stan
2012-01-01
The epithelial cell rests of Malassez (ERM) are odontogenic epithelial cells located within the periodontal ligament matrix. While their function is unknown, they may support tissue homeostasis and maintain periodontal ligament space or even contribute to periodontal regeneration. We investigated the notion that ERM contain a subpopulation of stem cells that could undergo epithelial–mesenchymal transition and differentiate into mesenchymal stem-like cells with multilineage potential. For this purpose, ERM collected from ovine incisors were subjected to different inductive conditions in vitro, previously developed for the characterization of bone marrow mesenchymal stromal/stem cells (BMSC). We found that ex vivo-expanded ERM expressed both epithelial (cytokeratin-8, E-cadherin, and epithelial membrane protein-1) and BMSC markers (CD44, CD29, and heat shock protein-90β). Integrin α6/CD49f could be used for the enrichment of clonogenic cell clusters [colony-forming units-epithelial cells (CFU-Epi)]. Integrin α6/CD49f-positive-selected epithelial cells demonstrated over 50- and 7-fold greater CFU-Epi than integrin α6/CD49f-negative cells and unfractionated cells, respectively. Importantly, ERM demonstrated stem cell-like properties in their differentiation capacity to form bone, fat, cartilage, and neural cells in vitro. When transplanted into immunocompromised mice, ERM generated bone, cementum-like and Sharpey's fiber-like structures. Additionally, gene expression studies showed that osteogenic induction of ERM triggered an epithelial–mesenchymal transition. In conclusion, ERM are unusual cells that display the morphological and phenotypic characteristics of ectoderm-derived epithelial cells; however, they also have the capacity to differentiate into a mesenchymal phenotype and thus represent a unique stem cell population within the periodontal ligament. PMID:22122577
Tao, Wensi; Ayala-Haedo, Juan A; Field, Matthew G; Pelaez, Daniel; Wester, Sara T
2017-12-01
The purpose of this study was to characterize the intrinsic cellular properties of orbital adipose-derived stem cells (OASC) from patients with thyroid-associated orbitopathy (TAO) and healthy controls. Orbital adipose tissue was collected from a total of nine patients: four controls and five patients with TAO. Isolated OASC were characterized with mesenchymal stem cell-specific markers. Orbital adipose-derived stem cells were differentiated into three lineages: chondrocytes, osteocytes, and adipocytes. Reverse transcription PCR of genes involved in the adipogenesis, chondrogenesis, and osteogenesis pathways were selected to assay the differentiation capacities. RNA sequencing analysis (RNA-seq) was performed and results were compared to assess for differences in gene expression between TAO and controls. Selected top-ranked results were confirmed by RT-PCR. Orbital adipose-derived stem cells isolated from orbital fat expressed high levels of mesenchymal stem cell markers, but low levels of the pluripotent stem cell markers. Orbital adipose-derived stem cells isolated from TAO patients exhibited an increase in adipogenesis, and a decrease in chondrogenesis and osteogenesis. RNA-seq disclosed 54 differentially expressed genes. In TAO OASC, expression of early neural crest progenitor marker (WNT signaling, ZIC genes and MSX2) was lost. Meanwhile, ectopic expression of HOXB2 and HOXB3 was found in the OASC from TAO. Our results suggest that there are intrinsic genetic and cellular differences in the OASC populations derived from TAO patients. The upregulation in adipogenesis in OASC of TAO may be is consistent with the clinical phenotype. Downregulation of early neural crest markers and ectopic expression of HOXB2 and HOXB3 in TAO OASC demonstrate dysregulation of developmental and tissue patterning pathways.
Lu, Jui-Hua; Wei, Hong-Jian; Peng, Bou-Yue; Chou, Hsin-Hua; Chen, Wei-Hong; Liu, Hen-Yu; Deng, Win-Ping
2016-12-01
Adipose-derived stem cells (ADSCs) are multipotent cells that have attracted much recent attention and emerged as therapeutic approaches in several medical fields. Although current knowledge of the biological impacts of ADSCs in cancer research is greatly improved, the underlying effects of ADSCs in tumor development remain controversial and cause the safety concerns in clinical utilization. Hence, we isolated primary ADSCs from the abdominal fat of mice and conducted interaction of ADSCs with Lewis lung carcinoma cells in culture and in mice to investigate the impacts of ADSCs on tumor development. Cytokine array and neutralizing antibody were further utilized to identify the key regulator and downstream signaling pathway. In this study, we demonstrated that ADSCs enhance the malignant characteristics of LLC1 cells, including cell growth ability and especially cancer stem cell property. ADSCs were then identified to promote tumor formation and growth in mice. We further determined that ADSC interaction with LLC1 cells stimulates increased secretion of interleukin-6 mainly from ADSCs, which then act in a paracrine manner on LLC1 cells to enhance their malignant characteristics. Interleukin-6 was also identified to regulate genes related to cell proliferation and cancer stem cell, as well as to activate JAK2/STAT3, a predominant interleukin-6-activated pathway, in LLC1 cells. Collectively, we demonstrated that ADSCs play a pro-malignant role in tumor development of Lewis lung carcinoma cells by particularly promoting cancer stem cell property through interleukin-6 paracrine circuit, which is important for safety considerations regarding the clinical application of ADSCs.
Irioda, Ana Carolina; Cassilha, Rafael; Zocche, Larissa; Francisco, Julio Cesar; Cunha, Ricardo Correa; Ferreira, Priscila Elias; Guarita-Souza, Luiz Cesar; Ferreira, Reginaldo Justino; Mogharbel, Bassam Felipe; Garikipati, Venkata Naga Srikanth; Souza, Daiany; Beltrame, Mirian Perlingeiro; de Carvalho, Katherine Athayde Teixeira
2016-01-01
Aim. The effects of cryopreservation on adipose tissue-derived mesenchymal stem cells are not clearly documented, as there is a growing body of evidence about the importance of adipose-derived mesenchymal stem cells for regenerative therapies. The aim of this study was to analyze human adipose tissue-derived mesenchymal stem cells phenotypic expression (CD34, CD45, CD73, CD90, CD105, and CD49d), colony forming unit ability, viability, and differentiation potential before and after cryopreservation. Materials and Methods. 12 samples of the adipose tissue were collected from a healthy donor using the liposuction technique. The cell isolation was performed by enzymatic digestion and then the cells were cultured up to passage 2. Before and after cryopreservation the immunophenotype, cellular viability analysis by flow cytometer, colony forming units ability, differentiation potential into adipocytes and osteoblasts as demonstrated by Oil Red O and Alizarin Red staining, respectively. Results. The immunophenotypic markers expression was largely preserved, and their multipotency was maintained. However, after cryopreservation, the cells decreased α4-integrin expression (CD49d), cell viability, and number of colony forming units. Conclusions. These findings suggest that ADMSC transplanted after cryopreservation might compromise the retention of transplanted cells in the host tissue. Therefore, further studies are warranted to standardize protocols related to cryopreservation to attain full benefits of stem cell therapy.
Mead, Ben; Logan, Ann; Berry, Martin
2014-01-01
We have investigated and compared the neurotrophic activity of human dental pulp stem cells (hDPSC), human bone marrow-derived mesenchymal stem cells (hBMSC) and human adipose-derived stem cells (hAMSC) on axotomised adult rat retinal ganglion cells (RGC) in vitro in order to evaluate their therapeutic potential for neurodegenerative conditions of RGC. Using the transwell system, RGC survival and length/number of neurites were quantified in coculture with stem cells in the presence or absence of specific Fc-receptor inhibitors to determine the role of NGF, BDNF, NT-3, VEGF, GDNF, PDGF-AA and PDGF-AB/BB in stem cell-mediated RGC neuroprotection and neuritogenesis. Conditioned media, collected from cultured hDPSC/hBMSC/hAMSC, were assayed for the secreted growth factors detailed above using ELISA. PCR array determined the hDPSC, hBMSC and hAMSC expression of genes encoding 84 growth factors and receptors. The results demonstrated that hDPSC promoted significantly more neuroprotection and neuritogenesis of axotomised RGC than either hBMSC or hAMSC, an effect that was neutralized after the addition of specific Fc-receptor inhibitors. hDPSC secreted greater levels of various growth factors including NGF, BDNF and VEGF compared with hBMSC/hAMSC. The PCR array confirmed these findings and identified VGF as a novel potentially therapeutic hDPSC-derived neurotrophic factor (NTF) with significant RGC neuroprotective properties after coculture with axotomised RGC. In conclusion, hDPSC promoted significant multi-factorial paracrine-mediated RGC survival and neurite outgrowth and may be considered a potent and advantageous cell therapy for retinal nerve repair. PMID:25290916
Amarachintha, Surya; Sertorio, Mathieu; Wilson, Andrew; Li, Xiaoli; Pang, Qishen
2015-11-01
Fanconi anemia (FA) patients develop bone marrow (BM) failure or leukemia. One standard care for these devastating complications is hematopoietic stem cell transplantation. We identified a group of mesenchymal stromal cells (MSCs)-derived metabolites, glycerophospholipids, and their endogenous inhibitor, 5-(tetradecyloxy)-2-furoic acid (TOFA), as regulators of donor hematopoietic stem and progenitor cells. We provided two pieces of evidence that TOFA could improve hematopoiesis-supporting function of FA MSCs: (a) limiting-dilution cobblestone area-forming cell assay revealed that TOFA significantly increased cobblestone colonies in Fanca-/- or Fancd2-/- cocultures compared to untreated cocultures. (b) Competitive repopulating assay using output cells collected from cocultures showed that TOFA greatly alleviated the abnormal expansion of the donor myeloid (CD45.2+Gr1+Mac1+) compartment in both peripheral blood and BM of recipient mice transplanted with cells from Fanca-/- or Fancd2-/- cocultures. Furthermore, mechanistic studies identified Tlr4 signaling as the responsible pathway mediating the effect of glycerophospholipids. Thus, targeting glycerophospholipid biosynthesis in FA MSCs could be a therapeutic strategy to improve hematopoiesis and stem cell transplantation. © 2015 AlphaMed Press.
Roy, Bibhas; Venkatachalapathy, Saradha; Ratna, Prasuna; Wang, Yejun; Jokhun, Doorgesh Sharma; Nagarajan, Mallika; Shivashankar, G V
2018-05-22
Cells in tissues undergo transdifferentiation programs when stimulated by specific mechanical and biochemical signals. While seminal studies have demonstrated that exogenous biochemical factors can reprogram somatic cells into pluripotent stem cells, the critical roles played by mechanical signals in such reprogramming process have not been well documented. In this paper, we show that laterally confined growth of fibroblasts on micropatterned substrates induces nuclear reprogramming with high efficiency in the absence of any exogenous reprogramming factors. We provide compelling evidence on the induction of stem cell-like properties using alkaline phosphatase assays and expression of pluripotent markers. Early onset of reprogramming was accompanied with enhanced nuclear dynamics and changes in chromosome intermingling degrees, potentially facilitating rewiring of the genome. Time-lapse analysis of promoter occupancy by immunoprecipitation of H3K9Ac chromatin fragments revealed that epithelial, proliferative, and reprogramming gene promoters were progressively acetylated, while mesenchymal promoters were deacetylated by 10 days. Consistently, RNA sequencing analysis showed a systematic progression from mesenchymal to stem cell transcriptome, highlighting pathways involving mechanisms underlying nuclear reprogramming. We then demonstrated that these mechanically reprogrammed cells could be maintained as stem cells and can be redifferentiated into multiple lineages with high efficiency. Importantly, we also demonstrate the induction of cancer stemness properties in MCF7 cells grown in such laterally confined conditions. Collectively, our results highlight an important generic property of somatic cells that, when grown in laterally confined conditions, acquire stemness. Such mechanical reprogramming of somatic cells demonstrated here has important implications in tissue regeneration and disease models. Copyright © 2018 the Author(s). Published by PNAS.
Generation of functional hepatocytes from human spermatogonial stem cells.
Chen, Zheng; Sun, Min; Yuan, Qingqing; Niu, Minghui; Yao, Chencheng; Hou, Jingmei; Wang, Hong; Wen, Liping; Liu, Yun; Li, Zheng; He, Zuping
2016-02-23
To generate functional human hepatocytes from stem cells and/or extra-hepatic tissues could provide an important source of cells for treating liver diseases. Spermatogonial stem cells (SSCs) have an unlimited plasticity since they can dedifferentiate and transdifferentiate to other cell lineages. However, generation of mature and functional hepatocytes from human SSCs has not yet been achieved. Here we have for the first time reported direct transdifferentiation of human SSCs to mature and functional hepatocytes by three-step induction using the defined condition medium. Human SSCs were first transdifferentiated to hepatic stem cells, as evidenced by their morphology and biopotential nature of co-expressing hepatocyte and cholangiocyte markers but not hallmarks for embryonic stem cells. Hepatic stem cells were further induced to differentiate into mature hepatocytes identified by their morphological traits and strong expression of CK8, CK18, ALB, AAT, TF, TAT, and cytochrome enzymes rather than CK7 or CK19. Significantly, mature hepatocytes derived from human SSCs assumed functional attributes of human hepatocytes, because they could produce albumin, remove ammonia, and uptake and release indocyanine green. Moreover, expression of β-CATENIN, HNF4A, FOXA1 and GATA4 was upregulated during the transdifferentiation of human SSCs to mature hepatocytes. Collectively, human SSCs could directly transdifferentiate to mature and functional hepatocytes. This study could offer an invaluable source of human hepatocytes for curing liver disorders and drug toxicology screening and provide novel insights into mechanisms underlying human liver regeneration.
Generation of functional hepatocytes from human spermatogonial stem cells
Chen, Zheng; Sun, Min; Yuan, Qingqing; Niu, Minghui; Yao, Chencheng; Hou, Jingmei; Wang, Hong; Wen, Liping; Liu, Yun; Li, Zheng; He, Zuping
2016-01-01
To generate functional human hepatocytes from stem cells and/or extra-hepatic tissues could provide an important source of cells for treating liver diseases. Spermatogonial stem cells (SSCs) have an unlimited plasticity since they can dedifferentiate and transdifferentiate to other cell lineages. However, generation of mature and functional hepatocytes from human SSCs has not yet been achieved. Here we have for the first time reported direct transdifferentiation of human SSCs to mature and functional hepatocytes by three-step induction using the defined condition medium. Human SSCs were first transdifferentiated to hepatic stem cells, as evidenced by their morphology and biopotential nature of co-expressing hepatocyte and cholangiocyte markers but not hallmarks for embryonic stem cells. Hepatic stem cells were further induced to differentiate into mature hepatocytes identified by their morphological traits and strong expression of CK8, CK18, ALB, AAT, TF, TAT, and cytochrome enzymes rather than CK7 or CK19. Significantly, mature hepatocytes derived from human SSCs assumed functional attributes of human hepatocytes, because they could produce albumin, remove ammonia, and uptake and release indocyanine green. Moreover, expression of β-CATENIN, HNF4A, FOXA1 and GATA4 was upregulated during the transdifferentiation of human SSCs to mature hepatocytes. Collectively, human SSCs could directly transdifferentiate to mature and functional hepatocytes. This study could offer an invaluable source of human hepatocytes for curing liver disorders and drug toxicology screening and provide novel insights into mechanisms underlying human liver regeneration. PMID:26840458
Stem/progenitor cells from inflamed human dental pulp retain tissue regeneration potential
Alongi, Dominick J; Yamaza, Takayoshi; Song, Yingjie; Fouad, Ashraf F; Romberg, Elaine E; Shi, Songtao; Tuan, Rocky S; Huang, George T-J
2011-01-01
Background Potent stem/progenitor cells have been isolated from normal human dental pulps termed dental pulp stem cells (DPSCs). However, it is unknown whether these cells exist in inflamed pulps (IPs). Aims To determine whether DPSCs can be identified and isolated from IPs; and if they can be successfully cultured, whether they retain tissue regeneration potential in vivo. Materials & methods DPSCs from freshly collected normal pulps (NPs) and IPs were characterized in vitro and their tissue regeneration potential tested using an in vivo study model. Results The immunohistochemical analysis showed that IPs expressed higher levels of mesenchymal stem cell markers STRO-1, CD90, CD105 and CD146 compared with NPs (p < 0.05). Flow cytometry analysis showed that DPSCs from both NPs and IPs expressed moderate to high levels of CD146, stage-specific embryonic antigen-4, CD73 and CD166. Total population doubling of DPSCs-IPs (44.6 ± 2.9) was lower than that of DPSCs-NPs (58.9 ± 2.5) (p < 0.05), and DPSCs-IPs appeared to have a decreased osteo/dentinogenic potential compared with DPSCs-NPs based on the mineral deposition in cultures. Nonetheless, DPSCs-IPs formed pulp/dentin complexes similar to DPSCs-NPs when transplanted into immunocompromised mice. Conclusion DPSCs-IPs can be isolated and their mesenchymal stem cell marker profiles are similar to those from NPs. Although some stem cell properties of DPSCs-IPs were altered, cells from some samples remained potent in tissue regeneration in vivo. PMID:20465527
Yoon, Young-sup; Wecker, Andrea; Heyd, Lindsay; Park, Jong-Seon; Tkebuchava, Tengiz; Kusano, Kengo; Hanley, Allison; Scadova, Heather; Qin, Gangjian; Cha, Dong-Hyun; Johnson, Kirby L.; Aikawa, Ryuichi; Asahara, Takayuki; Losordo, Douglas W.
2005-01-01
We have identified a subpopulation of stem cells within adult human BM, isolated at the single-cell level, that self-renew without loss of multipotency for more than 140 population doublings and exhibit the capacity for differentiation into cells of all 3 germ layers. Based on surface marker expression, these clonally expanded human BM-derived multipotent stem cells (hBMSCs) do not appear to belong to any previously described BM-derived stem cell population. Intramyocardial transplantation of hBMSCs after myocardial infarction resulted in robust engraftment of transplanted cells, which exhibited colocalization with markers of cardiomyocyte (CMC), EC, and smooth muscle cell (SMC) identity, consistent with differentiation of hBMSCs into multiple lineages in vivo. Furthermore, upregulation of paracrine factors including angiogenic cytokines and antiapoptotic factors, and proliferation of host ECs and CMCs, were observed in the hBMSC-transplanted hearts. Coculture of hBMSCs with CMCs, ECs, or SMCs revealed that phenotypic changes of hBMSCs result from both differentiation and fusion. Collectively, the favorable effect of hBMSC transplantation after myocardial infarction appears to be due to augmentation of proliferation and preservation of host myocardial tissues as well as differentiation of hBMSCs for tissue regeneration and repair. To our knowledge, this is the first demonstration that a specific population of multipotent human BM-derived stem cells can induce both therapeutic neovascularization and endogenous and exogenous cardiomyogenesis. PMID:15690083
Xu, Huilei; Baroukh, Caroline; Dannenfelser, Ruth; Chen, Edward Y; Tan, Christopher M; Kou, Yan; Kim, Yujin E; Lemischka, Ihor R; Ma'ayan, Avi
2013-01-01
High content studies that profile mouse and human embryonic stem cells (m/hESCs) using various genome-wide technologies such as transcriptomics and proteomics are constantly being published. However, efforts to integrate such data to obtain a global view of the molecular circuitry in m/hESCs are lagging behind. Here, we present an m/hESC-centered database called Embryonic Stem Cell Atlas from Pluripotency Evidence integrating data from many recent diverse high-throughput studies including chromatin immunoprecipitation followed by deep sequencing, genome-wide inhibitory RNA screens, gene expression microarrays or RNA-seq after knockdown (KD) or overexpression of critical factors, immunoprecipitation followed by mass spectrometry proteomics and phosphoproteomics. The database provides web-based interactive search and visualization tools that can be used to build subnetworks and to identify known and novel regulatory interactions across various regulatory layers. The web-interface also includes tools to predict the effects of combinatorial KDs by additive effects controlled by sliders, or through simulation software implemented in MATLAB. Overall, the Embryonic Stem Cell Atlas from Pluripotency Evidence database is a comprehensive resource for the stem cell systems biology community. Database URL: http://www.maayanlab.net/ESCAPE
Tao, Wensi; Ayala-Haedo, Juan A.; Field, Matthew G.; Pelaez, Daniel; Wester, Sara T.
2017-01-01
Purpose The purpose of this study was to characterize the intrinsic cellular properties of orbital adipose-derived stem cells (OASC) from patients with thyroid-associated orbitopathy (TAO) and healthy controls. Methods Orbital adipose tissue was collected from a total of nine patients: four controls and five patients with TAO. Isolated OASC were characterized with mesenchymal stem cell–specific markers. Orbital adipose-derived stem cells were differentiated into three lineages: chondrocytes, osteocytes, and adipocytes. Reverse transcription PCR of genes involved in the adipogenesis, chondrogenesis, and osteogenesis pathways were selected to assay the differentiation capacities. RNA sequencing analysis (RNA-seq) was performed and results were compared to assess for differences in gene expression between TAO and controls. Selected top-ranked results were confirmed by RT-PCR. Results Orbital adipose-derived stem cells isolated from orbital fat expressed high levels of mesenchymal stem cell markers, but low levels of the pluripotent stem cell markers. Orbital adipose-derived stem cells isolated from TAO patients exhibited an increase in adipogenesis, and a decrease in chondrogenesis and osteogenesis. RNA-seq disclosed 54 differentially expressed genes. In TAO OASC, expression of early neural crest progenitor marker (WNT signaling, ZIC genes and MSX2) was lost. Meanwhile, ectopic expression of HOXB2 and HOXB3 was found in the OASC from TAO. Conclusion Our results suggest that there are intrinsic genetic and cellular differences in the OASC populations derived from TAO patients. The upregulation in adipogenesis in OASC of TAO may be is consistent with the clinical phenotype. Downregulation of early neural crest markers and ectopic expression of HOXB2 and HOXB3 in TAO OASC demonstrate dysregulation of developmental and tissue patterning pathways. PMID:29214313
Amarachintha, Surya; Sertorio, Mathieu; Wilson, Andrew; Li, Xiaoli; Pang, Qishen
2015-01-01
Fanconi anemia (FA) patients develop bone marrow (BM) failure or leukemia. One standard care for these devastating complications is hematopoietic stem cell transplantation. We identified a group of mesenchymal stromal cells (MSCs)-derived metabolites, glycerophospholipids and their endogenous inhibitor, 5-(Tetradecyloxy)-2-furoic acid (TOFA), as regulators of donor hematopoietic stem and progenitor cells (HSPCs). We provided two pieces of evidence that TOFA could improve hematopoiesis-supporting function of FA MSCs: (1) limiting-dilution CAFC assay revealed that TOFA significantly increased cobblestone colonies in Fanca−/− or Fancd2−/− co-cultures compared to untreated co-cultures. (2) Competitive repopulating assay using output cells collected from co-cultures showed that TOFA greatly alleviated the abnormal expansion of the donor myeloid (CD45.2+Gr1+Mac1+) compartment in both peripheral blood and BM of recipient mice transplanted with cells from Fanca−/− or Fancd2−/− co-cultures. Further, mechanistic studies identified Tlr4 signaling as the responsible pathway mediating the effect of glycerophospholipids. Thus, targeting Glycerophospholipid biosynthesis in FA MSCs could be a therapeutic strategy to improve hematopoiesis and stem cell transplantation. PMID:26212365
Evaluation of the spectra Optia® mononuclear cell collection procedure in multiple myeloma patients.
Long, Gwynn; Waller, Edmund K; Gregurek, Steven; Tricot, Guido; Marschner, Susanne; Bill, Jerry
2015-02-01
Peripheral blood stem cell (PBSC) rescue following myeloablative therapy is a mainstay of cancer therapy. To evaluate the ability of the Spectra Optia Apheresis System (SO), a newly developed apheresis device, the device was studied in multiple myeloma patients undergoing a first autologous PBSC transplant. To demonstrate that neutrophil recovery was not inferior to historical controls when SO harvested PBSCs were reinfused following myeloablative therapy. Multiple myeloma patients were mobilized according to the standard practice at four clinical sites. Following mobilization, MNC collections were performed on the SO. The collected cells were cryopreserved and reinfused following myeloablative chemotherapy. Neutrophil recovery defined by an absolute neutrophil count exceeding 500/μL (ANC500) was compared to historical data for patients transplanted following apheresis using the COBE Spectra (CS) device. The median day to neutrophil recovery was 12 days (range 10-14 days), with no significant difference in engraftment comparing patients transplanted with stem cells collected using the SO versus historical cohort of patients collected with the CS. CD34+ cell and MNC collection efficiency (CE) were 69.3% and 65.0% for the SO and CS, respectively. Platelet CE, product hematocrit and product granulocytes (as % of WBCs) using the SO were 21%, 2.3% and 28%, respectively. There were no device-related severe adverse events. The study's results confirm that the Spectra Optia Apheresis System's MNC Collection Protocol is safe and effective for its intended use and that engraftment kinetics of cells collected by SO is not inferior to the CS System. © 2014 Wiley Periodicals, Inc.
The Core of Sibling Stem Cell Donation – A Grounded Theory Study
Kisch, Annika M; Forsberg, Anna
2017-01-01
Background: There is a lack of theoretical framework supporting stem cell transplant nurses in their assessment, judgment and caring interventions of sibling stem cell donors. Objective: The purpose of this study was to explore sibling stem cell donors’ main concerns and how they deal with them before and after donation. Method: Ten healthy sibling donors, 5 men and 5 women, with a median age of 54 years were included in this study when they were due to donate stem cells to a brother or sister. Data were collected prospectively on three occasions (before the donation and three and twelve months after it) through in-depth interviews, which were recorded and transcribed verbatim for analysis by the Grounded Theory method according to Charmaz. Results: This study describes the efforts of the ten donors to fulfil their duty as a sibling by doing what they considered necessary in order to help. Their efforts were summarised in a process wherein the grounded theory generated three main categories; Prepare, Promote and Preserve. A clear path of transition leading to fulfilment is evident, starting before the donation and continuing for one year afterwards. Conclusions: Being a sibling stem cell donor means doing what you have to do to fulfil your duty and if possible, saving the life of a seriously ill brother or sister. The relationship between the siblings is strengthened by the donation process. Sibling stem cell donation appears to be about fulfilment and the theoretical framework may support clinicians in their evaluation and support of donors. PMID:28839511
Nam, Eunryel; Fujita, Naoki; Morita, Maresuke; Tsuzuki, Keiko; Lin, Hsing Yi; Chung, Cheng Shu; Nakagawa, Takayuki; Nishimura, Ryohei
2015-07-01
The current study compared canine corneal epithelial cell sheets cultivated from limbal stem cells on amniotic membrane, atelocollagen gel, and temperature-responsive culture dish. We collected limbal epithelial cells from the intact eyes of beagles and cultivated the cells on denuded canine amniotic membranes, temperature-responsive cell culture labware, and collagen gel with 3T3 feeder cells. Immunofluorescence staining for Ki-67 was used to analyze the capacity of cell proliferation in the sheets. Immunofluorescence staining was also performed for the corneal epithelium-specific marker cytokeratin 3 and putative stem cell markers ABCG2 and p63. Reverse-transcription polymerase chain reaction (RT-PCR) was performed to detect ABCG2 and p63. The growth rates of the cultivated cells, or the times it took them to reach confluency, were different for the three scaffolds. The cultivated sheet on the temperature-responsive dish consisted of 2-3 layers, while those on the collagen gel and on the amniotic membrane consisted of 5-8 layers. The basal layer cells grown on all three scaffolds expressed putative stem cell markers. In real-time RT-PCR analysis, the highest level of p63 was observed in the sheets grown on collagen gel. In this study, the cells cultured on the collagen gel demonstrated a capacity for cell proliferation, and the expressions of stem cells in the sheets suggested that collagen gel is the most suitable carrier for clinical use. © 2014 American College of Veterinary Ophthalmologists.
Advanced feeder-free generation of induced pluripotent stem cells directly from blood cells.
Trokovic, Ras; Weltner, Jere; Nishimura, Ken; Ohtaka, Manami; Nakanishi, Mahito; Salomaa, Veikko; Jalanko, Anu; Otonkoski, Timo; Kyttälä, Aija
2014-12-01
Generation of validated human induced pluripotent stem cells (iPSCs) for biobanking is essential for exploring the full potential of iPSCs in disease modeling and drug discovery. Peripheral blood mononuclear cells (PBMCs) are attractive targets for reprogramming, because blood is collected by a routine clinical procedure and is a commonly stored material in biobanks. Generation of iPSCs from blood cells has previously been reported using integrative retroviruses, episomal Sendai viruses, and DNA plasmids. However, most of the published protocols require expansion and/or activation of a specific cell population from PBMCs. We have recently collected a PBMC cohort from the Finnish population containing more than 2,000 subjects. Here we report efficient generation of iPSCs directly from PBMCs in feeder-free conditions in approximately 2 weeks. The produced iPSC clones are pluripotent and transgene-free. Together, these properties make this novel method a powerful tool for large-scale reprogramming of PBMCs and for iPSC biobanking. ©AlphaMed Press.
Mobilizing stem cells from normal donors: is it possible to improve upon G-CSF?
Cashen, A F; Lazarus, H M; Devine, S M
2007-05-01
Currently, granulocyte colony stimulating factor (G-CSF) remains the standard mobilizing agent for peripheral blood stem cell (PBSC) donors, allowing the safe collection of adequate PBSCs from the vast majority of donors. However, G-CSF mobilization can be associated with some significant side effects and requires a multi-day dosing regimen. The other cytokine approved for stem cell mobilization, granulocyte-macrophage colony stimulating factor (GM-CSF), alters graft composition and may reduce the development of graft-versus-host disease, but a significant minority of donors fails to provide sufficient CD34+ cells with GM-CSF and some experience unacceptable toxicity. AMD3100 is a promising new mobilizing agent, which may have several advantages over G-CSF for donor mobilization. As it is a direct antagonist of the interaction between the chemokine stromal-derived factor-1 and its receptor CXCR4, AMD3100 mobilizes PBSCs within hours rather than days. It is also well tolerated, with no significant side effects reported in any of the clinical trials to date. Studies of autologous and allogeneic transplantation of AMD3100 mobilized grafts have demonstrated prompt and stable engraftment. Here, we review the current state of stem cell mobilization in normal donors and discuss novel strategies for donor stem cell mobilization.
Generation of cloned mice and nuclear transfer embryonic stem cell lines from urine-derived cells.
Mizutani, Eiji; Torikai, Kohei; Wakayama, Sayaka; Nagatomo, Hiroaki; Ohinata, Yasuhide; Kishigami, Satoshi; Wakayama, Teruhiko
2016-04-01
Cloning animals by nuclear transfer provides the opportunity to preserve endangered mammalian species. However, there are risks associated with the collection of donor cells from the body such as accidental injury to or death of the animal. Here, we report the production of cloned mice from urine-derived cells collected noninvasively. Most of the urine-derived cells survived and were available as donors for nuclear transfer without any pretreatment. After nuclear transfer, 38-77% of the reconstructed embryos developed to the morula/blastocyst, in which the cell numbers in the inner cell mass and trophectoderm were similar to those of controls. Male and female cloned mice were delivered from cloned embryos transferred to recipient females, and these cloned animals grew to adulthood and delivered pups naturally when mated with each other. The results suggest that these cloned mice had normal fertility. In additional experiments, 26 nuclear transfer embryonic stem cell lines were established from 108 cloned blastocysts derived from four mouse strains including inbreds and F1 hybrids with relatively high success rates. Thus, cells derived from urine, which can be collected noninvasively, may be used in the rescue of endangered mammalian species by using nuclear transfer without causing injury to the animal.
Generation of cloned mice and nuclear transfer embryonic stem cell lines from urine-derived cells
Mizutani, Eiji; Torikai, Kohei; Wakayama, Sayaka; Nagatomo, Hiroaki; Ohinata, Yasuhide; Kishigami, Satoshi; Wakayama, Teruhiko
2016-01-01
Cloning animals by nuclear transfer provides the opportunity to preserve endangered mammalian species. However, there are risks associated with the collection of donor cells from the body such as accidental injury to or death of the animal. Here, we report the production of cloned mice from urine-derived cells collected noninvasively. Most of the urine-derived cells survived and were available as donors for nuclear transfer without any pretreatment. After nuclear transfer, 38–77% of the reconstructed embryos developed to the morula/blastocyst, in which the cell numbers in the inner cell mass and trophectoderm were similar to those of controls. Male and female cloned mice were delivered from cloned embryos transferred to recipient females, and these cloned animals grew to adulthood and delivered pups naturally when mated with each other. The results suggest that these cloned mice had normal fertility. In additional experiments, 26 nuclear transfer embryonic stem cell lines were established from 108 cloned blastocysts derived from four mouse strains including inbreds and F1 hybrids with relatively high success rates. Thus, cells derived from urine, which can be collected noninvasively, may be used in the rescue of endangered mammalian species by using nuclear transfer without causing injury to the animal. PMID:27033801
Human Finger-Prick Induced Pluripotent Stem Cells Facilitate the Development of Stem Cell Banking
Tan, Hong-Kee; Toh, Cheng-Xu Delon; Ma, Dongrui; Yang, Binxia; Liu, Tong Ming; Lu, Jun; Wong, Chee-Wai; Tan, Tze-Kai; Li, Hu; Syn, Christopher; Tan, Eng-Lee; Lim, Bing; Lim, Yoon-Pin; Cook, Stuart A.
2014-01-01
Induced pluripotent stem cells (iPSCs) derived from somatic cells of patients can be a good model for studying human diseases and for future therapeutic regenerative medicine. Current initiatives to establish human iPSC (hiPSC) banking face challenges in recruiting large numbers of donors with diverse diseased, genetic, and phenotypic representations. In this study, we describe the efficient derivation of transgene-free hiPSCs from human finger-prick blood. Finger-prick sample collection can be performed on a “do-it-yourself” basis by donors and sent to the hiPSC facility for reprogramming. We show that single-drop volumes of finger-prick samples are sufficient for performing cellular reprogramming, DNA sequencing, and blood serotyping in parallel. Our novel strategy has the potential to facilitate the development of large-scale hiPSC banking worldwide. PMID:24646489
Niche-induced cell death and epithelial phagocytosis regulate hair follicle stem cell pool.
Mesa, Kailin R; Rompolas, Panteleimon; Zito, Giovanni; Myung, Peggy; Sun, Thomas Y; Brown, Samara; Gonzalez, David G; Blagoev, Krastan B; Haberman, Ann M; Greco, Valentina
2015-06-04
Tissue homeostasis is achieved through a balance of cell production (growth) and elimination (regression). In contrast to tissue growth, the cells and molecular signals required for tissue regression remain unknown. To investigate physiological tissue regression, we use the mouse hair follicle, which cycles stereotypically between phases of growth and regression while maintaining a pool of stem cells to perpetuate tissue regeneration. Here we show by intravital microscopy in live mice that the regression phase eliminates the majority of the epithelial cells by two distinct mechanisms: terminal differentiation of suprabasal cells and a spatial gradient of apoptosis of basal cells. Furthermore, we demonstrate that basal epithelial cells collectively act as phagocytes to clear dying epithelial neighbours. Through cellular and genetic ablation we show that epithelial cell death is extrinsically induced through transforming growth factor (TGF)-β activation and mesenchymal crosstalk. Strikingly, our data show that regression acts to reduce the stem cell pool, as inhibition of regression results in excess basal epithelial cells with regenerative abilities. This study identifies the cellular behaviours and molecular mechanisms of regression that counterbalance growth to maintain tissue homeostasis.
Multipotent progenitor cells are present in human peripheral blood.
Cesselli, Daniela; Beltrami, Antonio Paolo; Rigo, Silvia; Bergamin, Natascha; D'Aurizio, Federica; Verardo, Roberto; Piazza, Silvano; Klaric, Enio; Fanin, Renato; Toffoletto, Barbara; Marzinotto, Stefania; Mariuzzi, Laura; Finato, Nicoletta; Pandolfi, Maura; Leri, Annarosa; Schneider, Claudio; Beltrami, Carlo Alberto; Anversa, Piero
2009-05-22
To determine whether the peripheral blood in humans contains a population of multipotent progenitor cells (MPCs), products of leukapheresis were obtained from healthy donor volunteers following the administration of granulocyte colony-stimulating factor. Small clusters of adherent proliferating cells were collected, and these cells continued to divide up to 40 population doublings without reaching replicative senescence and growth arrest. MPCs were positive for the transcription factors Nanog, Oct3/4, Sox2, c-Myc, and Klf4 and expressed several antigens characteristic of mesenchymal stem cells. However, they were negative for markers of hematopoietic stem/progenitor cells and bone marrow cell lineages. MPCs had a cloning efficiency of approximately 3%, and following their expansion, retained a highly immature phenotype. Under permissive culture conditions, MPCs differentiated into neurons, glial cells, hepatocytes, cardiomyocytes, endothelial cells, and osteoblasts. Moreover, the gene expression profile of MPCs partially overlapped with that of neural and embryonic stem cells, further demonstrating their primitive, uncommitted phenotype. Following subcutaneous transplantation in nonimmunosuppressed mice, MPCs migrated to distant organs and integrated structurally and functionally within the new tissue, acquiring the identity of resident parenchymal cells. In conclusion, undifferentiated cells with properties of embryonic stem cells can be isolated and expanded from human peripheral blood after granulocyte colony-stimulating factor administration. This cell pool may constitute a unique source of autologous cells with critical clinical import.
Lefrère, F; Bernard, M; Audat, F; Cavazzana-Calvo, M; Belanger, C; Hermine, O; Arnulf, B; Buzyn, A; Varet, B
1999-11-01
Mobilization techniques for peripheral blood stem cell (PBSC) collection include the administration of chemotherapy followed by hematopoietic growth factors or growth factors alone. Two forms of recombinant human granulocyte colony-stimulating factor (rhG-CSF) are available for PBSC mobilization: lenograstim and filgrastim which are the glycosylated and non-glycosylated forms respectively. In order to determine the influence of the two forms of G-CSF following chemotherapy on PBSC collection, we conducted a retrospective study in 126 patients with various hematological malignancies: 65 and 61 for the lenograstim and filgrastim groups respectively. No significant differences between the two groups were observed in terms of sex, age and diagnosis. Prior therapies and PBSC mobilization regimen were also equivalent. No significant difference was observed between the groups for the median CD34+ cells harvested. The number of leukapheresis necessary to obtain a minimal number of 3 x 10(6) CD34+ cells/kg was equivalent for the two groups. The proportion of patients affected by a failure in PBSC collection was similar in the two groups. Our data suggest that lenograstim and filgrastim are equivalent for PBSC mobilization after chemotherapy.
Stromal vascular cells and adipogenesis: Cells within adipose depots regulate adipogenesis
USDA-ARS?s Scientific Manuscript database
A collection of investigations indicate the importance of adipose tissue stromal/stem cells to vasculogenesis and angiogenesis during adipogenesis. Early in development the stromal-vascular (S-V) elements control and dictate the extent of adipogenesis in a depot dependent manner. For instance, the...
Perucca, Simone; Di Palma, Andrea; Piccaluga, Pier Paolo; Gemelli, Claudia; Zoratti, Elisa; Bassi, Giulio; Giacopuzzi, Edoardo; Lojacono, Andrea; Borsani, Giuseppe; Tagliafico, Enrico; Scupoli, Maria Teresa; Bernardi, Simona; Zanaglio, Camilla; Cattina, Federica; Cancelli, Valeria; Malagola, Michele; Krampera, Mauro; Marini, Mirella; Almici, Camillo; Ferrari, Sergio; Russo, Domenico
2017-01-01
A human bone marrow-derived mesenchymal stromal cell (MSCs) and cord blood-derived CD34+ stem cell co-culture system was set up in order to evaluate the proliferative and differentiative effects induced by MSCs on CD34+ stem cells, and the reciprocal influences on gene expression profiles. After 10 days of co-culture, non-adherent (SN-fraction) and adherent (AD-fraction) CD34+ stem cells were collected and analysed separately. In the presence of MSCs, a significant increase in CD34+ cell number was observed (fold increase = 14.68), mostly in the SN-fraction (fold increase = 13.20). This was combined with a significant increase in CD34+ cell differentiation towards the BFU-E colonies and with a decrease in the CFU-GM. These observations were confirmed by microarray analysis. Through gene set enrichment analysis (GSEA), we noted a significant enrichment in genes involved in heme metabolism (e.g. LAMP2, CLCN3, BMP2K), mitotic spindle formation and proliferation (e.g. PALLD, SOS1, CCNA1) and TGF-beta signalling (e.g. ID1) and a down-modulation of genes participating in myeloid and lymphoid differentiation (e.g. PCGF2) in the co-cultured CD34+ stem cells. On the other hand, a significant enrichment in genes involved in oxygen-level response (e.g. TNFAIP3, SLC2A3, KLF6) and angiogenesis (e.g. VEGFA, IGF1, ID1) was found in the co-cultured MSCs. Taken together, our results suggest that MSCs can exert a priming effect on CD34+ stem cells, regulating their proliferation and erythroid differentiation. In turn, CD34+ stem cells seem to be able to polarise the BM-niche towards the vascular compartment by modulating molecular pathways related to hypoxia and angiogenesis. PMID:28231331
Current role of radiation therapy for multiple myeloma.
Talamo, Giampaolo; Dimaio, Christopher; Abbi, Kamal K S; Pandey, Manoj K; Malysz, Jozef; Creer, Michael H; Zhu, Junjia; Mir, Muhammad A; Varlotto, John M
2015-01-01
Radiation therapy (RT) is a treatment modality traditionally used in patients with multiple myeloma (MM), but little is known regarding the role and effectiveness of RT in the era of novel agents, i.e., immunomodulatory drugs and proteasome inhibitors. We retrospectively reviewed data from 449 consecutive MM patients seen at our institute in 2010-2012 to assess indications for RT as well as its effectiveness. Pain response was scored similarly to RTOG 0631 and used the Numerical Rating Pain Scale. Among 442 evaluable patients, 149 (34%) patients and 262 sites received RT. The most common indication for RT was palliation of bone pain (n = 109, 42%), followed by prevention/treatment of pathological fractures (n = 73, 28%), spinal cord compression (n = 26, 10%), and involvement of vital organs/extramedullary disease (n = 25, 10%). Of the 55 patients evaluable for pain relief, complete and partial responses were obtained in 76.4 and 7.2%, respectively. Prior RT did not significantly decrease the median number of peripheral blood stem cells collected for autologous transplant, even when prior RT was given to both the spine and pelvis. Inadequacy of stem cell collection for autologous stem cell transplant (ASCT) was not significantly different and it occurred in 9 and 15% of patients receiving no RT and spine/pelvic RT, respectively. None of the three cases of therapy-induced acute myelogenous leukemia/MDS occurred in the RT group. Despite the introduction of novel effective agents in the treatment of MM, RT remains a major therapeutic component for the management in 34% of patients, and it effectively provides pain relief while not interfering with successful peripheral blood stem cell collection for ASCT.
Current Role of Radiation Therapy for Multiple Myeloma
Talamo, Giampaolo; Dimaio, Christopher; Abbi, Kamal K. S.; Pandey, Manoj K.; Malysz, Jozef; Creer, Michael H.; Zhu, Junjia; Mir, Muhammad A.; Varlotto, John M.
2015-01-01
Background: Radiation therapy (RT) is a treatment modality traditionally used in patients with multiple myeloma (MM), but little is known regarding the role and effectiveness of RT in the era of novel agents, i.e., immunomodulatory drugs and proteasome inhibitors. Methods: We retrospectively reviewed data from 449 consecutive MM patients seen at our institute in 2010–2012 to assess indications for RT as well as its effectiveness. Pain response was scored similarly to RTOG 0631 and used the Numerical Rating Pain Scale. Results: Among 442 evaluable patients, 149 (34%) patients and 262 sites received RT. The most common indication for RT was palliation of bone pain (n = 109, 42%), followed by prevention/treatment of pathological fractures (n = 73, 28%), spinal cord compression (n = 26, 10%), and involvement of vital organs/extramedullary disease (n = 25, 10%). Of the 55 patients evaluable for pain relief, complete and partial responses were obtained in 76.4 and 7.2%, respectively. Prior RT did not significantly decrease the median number of peripheral blood stem cells collected for autologous transplant, even when prior RT was given to both the spine and pelvis. Inadequacy of stem cell collection for autologous stem cell transplant (ASCT) was not significantly different and it occurred in 9 and 15% of patients receiving no RT and spine/pelvic RT, respectively. None of the three cases of therapy-induced acute myelogenous leukemia/MDS occurred in the RT group. Conclusion: Despite the introduction of novel effective agents in the treatment of MM, RT remains a major therapeutic component for the management in 34% of patients, and it effectively provides pain relief while not interfering with successful peripheral blood stem cell collection for ASCT. PMID:25741475
Fresenius AS.TEC204 blood cell separator.
Sugai, Mikiya
2003-02-01
Fresenius AS.TEC204 is a third-generation blood cell separator that incorporates the continuous centrifugal separation method and automatic control of the cell separation process. Continuous centrifugation separates cell components according to their specific gravity, and different cell components are either harvested or eliminated as needed. The interface between the red blood cell and plasma is optically detected, and the Interface Control (IFC) cooperates with different pumps, monitors and detectors to harvest required components automatically. The system is composed of three major sections; the Front Panel Unit; the Pump Unit, and the Centrifuge Unit. This unit can be used for a wide variety of clinical applications including collection of platelets, peripheral blood stem cells, bone marrow stem cells, granulocytes, mononuclear cells, and exchange of plasma or red cells, and for plasma treatment.
2018-04-26
Acute Myelogenous Leukemia; Acute Lymphocytic Leukemia; Chronic Myelogenous Leukemia; Non-Hodgkin's Lymphoma; Hodgkin's Disease; Multiple Myeloma; Germ Cell Neoplasms; Myelodysplastic Syndromes; Chronic Lymphocytic Leukemia; Immunodeficiency Diseases
Xavier, Joana M; Morgado, Ana L; Rodrigues, Cecília MP; Solá, Susana
2014-01-01
The low survival and differentiation rates of stem cells after either transplantation or neural injury have been a major concern of stem cell-based therapy. Thus, further understanding long-term survival and differentiation of stem cells may uncover new targets for discovery and development of novel therapeutic approaches. We have previously described the impact of mitochondrial apoptosis-related events in modulating neural stem cell (NSC) fate. In addition, the endogenous bile acid, tauroursodeoxycholic acid (TUDCA) was shown to be neuroprotective in several animal models of neurodegenerative disorders by acting as an anti-apoptotic and anti-oxidant molecule at the mitochondrial level. Here, we hypothesize that TUDCA might also play a role on NSC fate decision. We found that TUDCA prevents mitochondrial apoptotic events typical of early-stage mouse NSC differentiation, preserves mitochondrial integrity and function, while enhancing self-renewal potential and accelerating cell cycle exit of NSCs. Interestingly, TUDCA prevention of mitochondrial alterations interfered with NSC differentiation potential by favoring neuronal rather than astroglial conversion. Finally, inhibition of mitochondrial reactive oxygen species (mtROS) scavenger and adenosine triphosphate (ATP) synthase revealed that the effect of TUDCA is dependent on mtROS and ATP regulation levels. Collectively, these data underline the importance of mitochondrial stress control of NSC fate decision and support a new role for TUDCA in this process. PMID:25483094
Mobilization of peripheral blood stem cells in CLL patients after front-line fludarabine treatment.
Lysak, D; Koza, V; Steinerova, K; Jindra, P; Vozobulova, V; Schutzova, M
2005-07-01
Autologous peripheral blood stem cell transplantation is performed in an increasing number of chronic lymphocytic leukaemia (CLL) patients who are in the first remission following fludarabine treatment. There are contradictory data about the adverse impact of fludarabine on stem cell harvest. We analysed retrospectively mobilization results in 56 poor-risk CLL patients (median age: 56 years) who underwent first-line treatment with fludarabine and cyclophosphamide. The mobilization, consisting of cyclophosphamide 3 g/m(2) and granulocyte colony-stimulating factor (G-CSF) 10 microg/kg per day, was performed with a median of 77 days following the last fludarabine course. The target yield was >or=2.0x10(6) CD34+ cells/kg. The procedure was successful in 23 (41%) patients. A median of 3.3x10(6) CD34+ cells/kg was collected per patient. The successful mobilization was associated with a longer interval from the last chemotherapy (>2 months). The mobilization result was not influenced by the number of fludarabine cycles. No correlation was found in other parameters such as disease stage at diagnosis, disease status at stimulation or age. The poorly mobilized patients had significantly lower prestimulation blood counts (platelets, WBC and haemoglobin). Our data show that fludarabine does not generally prevent the stem cell mobilization; nevertheless, mechanisms related to the impact of fludarabine on stem cell harvest must be further investigated.
Tsuji, Kunikazu; Ojima, Miyoko; Otabe, Koji; Horie, Masafumi; Koga, Hideyuki; Sekiya, Ichiro; Muneta, Takeshi
2017-06-09
Flow cytometric analysis of cell surface antigens is a powerful tool for the isolation and characterization of stem cells residing in adult tissues. In contrast to the collection of hematopoietic stem cells, the process of enzymatic digestion is usually necessary to prepare mesenchymal stem cells (MSCs) suspensions, which can influence the expression of cell surface markers. In this study, we examined the effects of various cell-detaching reagents and digestion times on the expression of stem cell-related surface antigens and MSC functions. Human MSCs were detached from dishes using four different reagents: trypsin, TrypLE, collagenase, and a nonenzymatic cell dissociation reagent (C5789; Sigma-Aldrich). Following dissociation reagent incubations ranging from 5 to 120 min, cell surface markers were analyzed by flow cytometry. Trypsin and TrypLE quickly dissociated the cells within 5 min, while collagenase and C5789 required 60 min to obtain maximum cell yields. C5789 significantly decreased cell viability at 120 min. Trypsin treatment significantly reduced CD44+, CD55+, CD73+, CD105+, CD140a+, CD140b+, and CD201+ cell numbers within 30 min. Collagenase treatment reduced CD140a expression by 30 min. In contrast, TrypLE treatment did not affect the expression of any cell surface antigens tested by 30 min. Despite the significant loss of surface antigen expression after 60 min of treatment with trypsin, adverse effects of enzymatic digestion on multipotency of MSCs were limited. Overall, our data indicated that TrypLE is advantageous over other cell dissociation reagents tested for the rapid preparation of viable MSC suspensions.
Nutraceutical intervention reverses the negative effects of blood from aged rats on stem cells.
Bickford, Paula C; Kaneko, Yuji; Grimmig, Bethany; Pappas, Colleen; Small, Brent; Sanberg, Cyndy D; Sanberg, Paul R; Tan, Jun; Douglas Shytle, R
2015-10-01
Aging is associated with a decline in function in many of the stem cell niches of the body. An emerging body of literature suggests that one of the reasons for this decline in function is due to cell non-autonomous influences on the niche from the body. For example, studies using the technique of parabiosis have demonstrated a negative influence of blood from aged mice on muscle satellite cells and neurogenesis in young mice. We examined if we could reverse this effect of aged serum on stem cell proliferation by treating aged rats with NT-020, a dietary supplement containing blueberry, green tea, vitamin D3, and carnosine that has been shown to increase neurogenesis in aged rats. Young and aged rats were administered either control NIH-31 diet or one supplemented with NT-020 for 28 days, and serum was collected upon euthanasia. The serum was used in cultures of both rat hippocampal neural progenitor cells (NPCs) and rat bone marrow-derived mesenchymal stem cells (MSCs). Serum from aged rats significantly reduced cell proliferation as measured by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and 5-bromo-2'-deoxyuridine (BrdU) assays in both NPCs and MSCs. Serum from aged rats treated with NT-020 was not different from serum from young rats. Therefore, NT-020 rescued the effect of serum from aged rats to reduce stem cell proliferation.
Pregnant women's knowledge and attitudes about stem cells and cord blood banking.
Dinç, H; Sahin, N H
2009-06-01
This study was to determine pregnant women's knowledge and attitudes towards stem cells and cord blood banking in Istanbul, Turkey. Stem cell research is one of the most important and, at the same time, the most controversial topics of science and technology today. Nurses need to understand stem cell research so they can enter the debate on this issue. They can become important sources of information in order to help parents understand the issues. This exploratory descriptive study was conducted in two antenatal outpatient clinics in Istanbul. The sample consisted of 334 pregnant women during routine prenatal visits. Data were collected in interviews by using an interview form developed by the researchers according to the literature. The form included demographic characteristics of participants and 20 questions about stem cells, storing cord blood and banking and 10 independent attitude statements. The majority of the participants had a lack of knowledge about stem cells and cord blood banking and wanted more information. Before pregnancy, they received some information through the media (newspaper, Internet, television, etc.), but unintentionally. It was determined that they wanted information before becoming pregnant, more from their obstetrician but also from nurses and midwives. The majority also wanted to store their infants' cord blood and stated that they would be more likely to choose a public cord blood bank. Those giving ante- and perinatal care need to offer accurate and scientific counselling services on this subject to parents who need to be informed.
Generation of Distal Airway Epithelium from Multipotent Human Foregut Stem Cells.
Hannan, Nicholas R F; Sampaziotis, Fotios; Segeritz, Charis-Patricia; Hanley, Neil A; Vallier, Ludovic
2015-07-15
Collectively, lung diseases are one of the largest causes of premature death worldwide and represent a major focus in the field of regenerative medicine. Despite significant progress, only few stem cell platforms are currently available for cell-based therapy, disease modeling, and drug screening in the context of pulmonary disorders. Human foregut stem cells (hFSCs) represent an advantageous progenitor cell type that can be used to amplify large quantities of cells for regenerative medicine applications and can be derived from any human pluripotent stem cell line. Here, we further demonstrate the application of hFSCs by generating a near homogeneous population of early pulmonary endoderm cells coexpressing NKX2.1 and FOXP2. These progenitors are then able to form cells that are representative of distal airway epithelium that express NKX2.1, GATA6, and cystic fibrosis transmembrane conductance regulator (CFTR) and secrete SFTPC. This culture system can be applied to hFSCs carrying the CFTR mutation Δf508, enabling the development of an in vitro model for cystic fibrosis. This platform is compatible with drug screening and functional validations of small molecules, which can reverse the phenotype associated with CFTR mutation. This is the first demonstration that multipotent endoderm stem cells can differentiate not only into both liver and pancreatic cells but also into lung endoderm. Furthermore, our study establishes a new approach for the generation of functional lung cells that can be used for disease modeling as well as for drug screening and the study of lung development.
Schmidt, Manfred; Derby, Charles D.
2013-01-01
New interneurons are continuously generated in small proliferation zones within neuronal somata clusters in the olfactory deutocerebrum of adult decapod crustaceans. Each proliferation zone is connected to a clump of cells containing one neural stem cell (i.e., adult neuroblast), thus forming a “neurogenic complex.” Here we provide a detailed analysis of the cytoarchitecture of neurogenic complexes in adult spiny lobsters, Panulirus argus, based on transmission electron microscopy and labeling with cell-type-selective markers. The clump of cells is composed of unique bipolar clump-forming cells that collectively completely envelop the adult neuroblast and are themselves ensheathed by a layer of processes of multipolar cell body glia. An arteriole is attached to the clump of cells, but dye perfusion experiments show that hemolymph has no access to the interior of the clump of cells. Thus, the clump of cells fulfills morphological criteria of a protective stem cell niche, with clump-forming cells constituting the adult neuroblast’s microenvironment together with the cell body glia processes separating it from other tissue components. Bromodeoxyuridine pulse-chase experiments with short survival times suggest that adult neuroblasts are not quiescent but rather cycle actively during daytime. We propose a cell lineage model in which an asymmetrically dividing adult neuroblast repopulates the pool of neuronal progenitor cells in the associated proliferation zone. In conclusion, as in mammalian brains, adult neurogenesis in crustacean brains is fueled by neural stem cells that are maintained by stem cell niches that preserve elements of the embryonic microenvironment and contain glial and vascular elements. PMID:21523781
Schmidt, Manfred; Derby, Charles D
2011-08-15
New interneurons are continuously generated in small proliferation zones within neuronal somata clusters in the olfactory deutocerebrum of adult decapod crustaceans. Each proliferation zone is connected to a clump of cells containing one neural stem cell (i.e., adult neuroblast), thus forming a "neurogenic complex." Here we provide a detailed analysis of the cytoarchitecture of neurogenic complexes in adult spiny lobsters, Panulirus argus, based on transmission electron microscopy and labeling with cell-type-selective markers. The clump of cells is composed of unique bipolar clump-forming cells that collectively completely envelop the adult neuroblast and are themselves ensheathed by a layer of processes of multipolar cell body glia. An arteriole is attached to the clump of cells, but dye perfusion experiments show that hemolymph has no access to the interior of the clump of cells. Thus, the clump of cells fulfills morphological criteria of a protective stem cell niche, with clump-forming cells constituting the adult neuroblast's microenvironment together with the cell body glia processes separating it from other tissue components. Bromodeoxyuridine pulse-chase experiments with short survival times suggest that adult neuroblasts are not quiescent but rather cycle actively during daytime. We propose a cell lineage model in which an asymmetrically dividing adult neuroblast repopulates the pool of neuronal progenitor cells in the associated proliferation zone. In conclusion, as in mammalian brains, adult neurogenesis in crustacean brains is fueled by neural stem cells that are maintained by stem cell niches that preserve elements of the embryonic microenvironment and contain glial and vascular elements. Copyright © 2011 Wiley-Liss, Inc.
Wood reinforcement of poplar by rice NAC transcription factor
Sakamoto, Shingo; Takata, Naoki; Oshima, Yoshimi; Yoshida, Kouki; Taniguchi, Toru; Mitsuda, Nobutaka
2016-01-01
Lignocellulose, composed of cellulose, hemicellulose, and lignin, in the secondary cell wall constitutes wood and is the most abundant form of biomass on Earth. Enhancement of wood accumulation may be an effective strategy to increase biomass as well as wood strength, but currently only limited research has been undertaken. Here, we demonstrated that OsSWN1, the orthologue of the rice NAC Secondary-wall Thickening factor (NST) transcription factor, effectively enhanced secondary cell wall formation in the Arabidopsis inflorescence stem and poplar (Populus tremula×Populus tremuloides) stem when expressed by the Arabidopsis NST3 promoter. Interestingly, in transgenic Arabidopsis and poplar, ectopic secondary cell wall deposition in the pith area was observed in addition to densification of the secondary cell wall in fiber cells. The cell wall content or density of the stem increased on average by up to 38% and 39% in Arabidopsis and poplar, respectively, without causing growth inhibition. As a result, physical strength of the stem increased by up to 57% in poplar. Collectively, these data suggest that the reinforcement of wood by NST3pro:OsSWN1 is a promising strategy to enhance wood-biomass production in dicotyledonous plant species. PMID:26812961
Reddy, Jay P; Atkinson, Rachel L; Larson, Richard; Burks, Jared K; Smith, Daniel; Debeb, Bisrat G; Ruffell, Brian; Creighton, Chad J; Bambhroliya, Arvind; Reuben, James M; Van Laere, Steven J; Krishnamurthy, Savitri; Symmans, William F; Brewster, Abenaa M; Woodward, Wendy A
2018-06-01
We hypothesized that breast tissue not involved by tumor in inflammatory breast cancer (IBC) patients contains intrinsic differences, including increased mammary stem cells and macrophage infiltration, which may promote the IBC phenotype. Normal breast parenchyma ≥ 5 cm away from primary tumors was obtained from mastectomy specimens. This included an initial cohort of 8 IBC patients and 60 non-IBC patients followed by a validation cohort of 19 IBC patients and 25 non-IBC patients. Samples were immunostained for either CD44 + CD49f + CD133/2 + mammary stem cell markers or the CD68 macrophage marker and correlated with IBC status. Quantitation of positive cells was determined using inForm software from PerkinElmer. We also examined the association between IBC status and previously published tumorigenic stem cell and IBC tumor signatures in the validation cohort samples. 8 of 8 IBC samples expressed isolated CD44 + CD49f + CD133/2 + stem cell marked cells in the initial cohort as opposed to 0/60 non-IBC samples (p = 0.001). Similarly, the median number of CD44 + CD49f + CD133/2 + cells was significantly higher in the IBC validation cohort as opposed to the non-IBC validation cohort (25.7 vs. 14.2, p = 0.007). 7 of 8 IBC samples expressed CD68 + histologically confirmed macrophages in initial cohort as opposed to 12/48 non-IBC samples (p = 0.001). In the validation cohort, the median number of CD68 + cells in IBC was 3.7 versus 1.0 in the non-IBC cohort (p = 0.06). IBC normal tissue was positively associated with a tumorigenic stem cell signature (p = 0.02) and with a 79-gene IBC signature (p < 0.001). Normal tissue from IBC patients is enriched for both mammary stem cells and macrophages and has higher association with both a tumorigenic stem cell signature and IBC-specific tumor signature. Collectively, these data suggest that IBC normal tissue differs from non-IBC tissue. Whether these changes occur before the tumor develops or is induced by tumor warrants further investigation.
Mattis, Virginia B; Svendsen, Soshana P; Ebert, Allison; Svendsen, Clive N; King, Alvin R; Casale, Malcolm; Winokur, Sara T; Batugedara, Gayani; Vawter, Marquis; Donovan, Peter J; Lock, Leslie F; Thompson, Leslie M; Zhu, Yu; Fossale, Elisa; Singh Atwal, Ranjit; Gillis, Tammy; Mysore, Jayalakshmi; Li, Jian-hong; Seong, IhnSik; Shen, Yiping; Chen, Xiaoli; Wheeler, Vanessa C; MacDonald, Marcy E; Gusella, James F; Akimov, Sergey; Arbez, Nicolas; Juopperi, Tarja; Ratovitski, Tamara; Chiang, Jason H; Kim, Woon Roung; Chighladze, Eka; Watkin, Erin; Zhong, Chun; Makri, Georgia; Cole, Robert N; Margolis, Russell L; Song, Hongjun; Ming, Guoli; Ross, Christopher A; Kaye, Julia A; Daub, Aaron; Sharma, Punita; Mason, Amanda R; Finkbeiner, Steven; Yu, Junying; Thomson, James A; Rushton, David; Brazier, Stephen P; Battersby, Alysia A; Redfern, Amanda; Tseng, Hsui-Er; Harrison, Alexander W; Kemp, Paul J; Allen, Nicholas D; Onorati, Marco; Castiglioni, Valentina; Cattaneo, Elena; Arjomand, Jamshid
2013-01-01
Huntington's disease (HD) is an inherited neurodegenerative disorder caused by an expanded stretch of CAG trinucleotide repeats that results in neuronal dysfunction and death. Here, the HD consortium reports the generation and characterization of 14 induced pluripotent stem cell (iPSC) lines from HD patients and controls. Microarray profiling revealed CAG expansion-associated gene expression patterns that distinguish patient lines from controls, and early onset versus late onset HD. Differentiated HD neural cells showed disease associated changes in electrophysiology, metabolism, cell adhesion, and ultimately cell death for lines with both medium and longer CAG repeat expansions. The longer repeat lines were however the most vulnerable to cellular stressors and BDNF withdrawal using a range of assays across consortium laboratories. The HD iPSC collection represents a unique and well-characterized resource to elucidate disease mechanisms in HD and provides a novel human stem cell platform for screening new candidate therapeutics. PMID:22748968
Sivgin, Serdar; Karakus, Esen; Keklik, Muzaffer; Zararsiz, Gokmen; Solmaz, Musa; Kaynar, Leylagul; Eser, Bulent; Cetin, Mustafa; Unal, Ali
2016-06-01
In this study, we aimed to compare the potency of different G-CSF agents including original filgrastim (Neupogen®), biosimilar filgrastim (Leucostim®) and Lenograstim (Granocyte®) on CD34(+) cell mobilization in patients that underwent allogeneic hematopoietic stem cell transplantation (alloHSCT). The data of 243 donors for alloHSCT recipients diagnosed with mostly acute leukemia and myelodsyplastic syndromes (MDS) were analyzed, retrospectively. Data for stem cell mobilization have been recorded from patients' files. Donors who received Filgrastim (Neupogen®, Group I), biosimilar Filgrastim (Leucostim®, Group II) and Lenograstim (Granocyte®, Group III) were analyzed for total CD34(+) cell count at the end of mobilization procedures. A total of 243 donors and patients for alloHSCT were analyzed retrospectively. The diagnosis of the patients were; acute myeloid leukemia (AML) (110 patients, 45.2%), acute lymphoid leukemia (ALL) (61 patients, 25.1%), aplastic anemia (AA) (38 patients, 15.6%), lymphomas (14 patients, 5.7%) and others (20 patients, 8.4%). The median number of total collected PB CD34(+) cells (×10(6)/kg) was 7.12 (min-max: 5.38-7.90) in the Neupogen® group, 7.27 (min-max: 6.79-7.55) in the Leucostim® group and 7.15 (min-max: 5.34-7.58) in the Granocyte® group. There was no statistically significant difference among groups in terms of total collected PB CD34(+) cells (p = 0.919). The median doses of G-CSF agents (µg/kg/day) in PBSC collection in Neupogen® group was; 11.00 (10.00-12.00) in Leucostim® group10.35 (min-max: 10.00-11.10) and in Granocyte® group11.00 (min-max: 10.00-11.00). There was no statistical significance among groups (p = 0.215). Biosimilar filgrastim (Leucostim®) was found comparable to original Filgrastim (Neupogen®) and Lenograstim (Granocyte®) for PBSC mobilization in donors of the patients that underwent alloHSCT. Copyright © 2016 Elsevier Ltd. All rights reserved.
Human embryonic stem cells express a unique set of microRNAs.
Suh, Mi-Ra; Lee, Yoontae; Kim, Jung Yeon; Kim, Soo-Kyoung; Moon, Sung-Hwan; Lee, Ji Yeon; Cha, Kwang-Yul; Chung, Hyung Min; Yoon, Hyun Soo; Moon, Shin Yong; Kim, V Narry; Kim, Kye-Seong
2004-06-15
Human embryonic stem (hES) cells are pluripotent cell lines established from the explanted inner cell mass of human blastocysts. Despite their importance for human embryology and regenerative medicine, studies on hES cells, unlike those on mouse ES (mES) cells, have been hampered by difficulties in culture and by scant knowledge concerning the regulatory mechanism. Recent evidence from plants and animals indicates small RNAs of approximately 22 nucleotides (nt), collectively named microRNAs, play important roles in developmental regulation. Here we describe 36 miRNAs (from 32 stem-loops) identified by cDNA cloning in hES cells. Importantly, most of the newly cloned miRNAs are specifically expressed in hES cells and downregulated during development into embryoid bodies (EBs), while miRNAs previously reported from other human cell types are poorly expressed in hES cells. We further show that some of the ES-specific miRNA genes are highly related to each other, organized as clusters, and transcribed as polycistronic primary transcripts. These miRNA gene families have murine homologues that have similar genomic organizations and expression patterns, suggesting that they may operate key regulatory networks conserved in mammalian pluripotent stem cells. The newly identified hES-specific miRNAs may also serve as molecular markers for the early embryonic stage and for undifferentiated hES cells.
Topological defects control collective dynamics in neural progenitor cell cultures
NASA Astrophysics Data System (ADS)
Kawaguchi, Kyogo; Kageyama, Ryoichiro; Sano, Masaki
2017-04-01
Cultured stem cells have become a standard platform not only for regenerative medicine and developmental biology but also for biophysical studies. Yet, the characterization of cultured stem cells at the level of morphology and of the macroscopic patterns resulting from cell-to-cell interactions remains largely qualitative. Here we report on the collective dynamics of cultured murine neural progenitor cells (NPCs), which are multipotent stem cells that give rise to cells in the central nervous system. At low densities, NPCs moved randomly in an amoeba-like fashion. However, NPCs at high density elongated and aligned their shapes with one another, gliding at relatively high velocities. Although the direction of motion of individual cells reversed stochastically along the axes of alignment, the cells were capable of forming an aligned pattern up to length scales similar to that of the migratory stream observed in the adult brain. The two-dimensional order of alignment within the culture showed a liquid-crystalline pattern containing interspersed topological defects with winding numbers of +1/2 and -1/2 (half-integer due to the nematic feature that arises from the head-tail symmetry of cell-to-cell interaction). We identified rapid cell accumulation at +1/2 defects and the formation of three-dimensional mounds. Imaging at the single-cell level around the defects allowed us to quantify the velocity field and the evolving cell density; cells not only concentrate at +1/2 defects, but also escape from -1/2 defects. We propose a generic mechanism for the instability in cell density around the defects that arises from the interplay between the anisotropic friction and the active force field.
Waller, Edmund K.; Logan, Brent R.; Harris, Wayne A.C.; Devine, Steven M.; Porter, David L.; Mineishi, Shin; McCarty, John M.; Gonzalez, Corina E.; Spitzer, Thomas R.; Krijanovski, Oleg I.; Linenberger, Michael L.; Woolfrey, Ann; Howard, Alan; Wu, Juan; Confer, Dennis L.; Anasetti, Claudio
2014-01-01
Purpose To characterize relationships between specific immune cell subsets in bone marrow (BM) or granulocyte colony-stimulating factor–mobilized peripheral blood (PB) stem cells collected from unrelated donors and clinical outcomes of patients undergoing transplantation in BMTCTN 0201. Patients and Methods Fresh aliquots of 161 BM and 147 PB stem-cell allografts from North American donors randomly assigned to donate BM or PB stem cells and numbers of transplanted cells were correlated with overall survival (OS), relapse, and graft-versus-host disease (GvHD). Results Patients with evaluable grafts were similar to all BMTCTN 0201 patients. The numbers of plasmacytoid dendritic cells (pDCs) and naïve T cells (Tns) in BM allografts were independently associated with OS in multivariable analyses including recipient and donor characteristics, such as human leukocyte antigen mismatch, age, and use of antithymocyte globulin. BM recipients of > median number of pDCs, naïve CD8+ T cells (CD8Tns), or naïve CD4+ T cells (CD4Tns) had better 3-year OS (pDCs, 56% v 35%; P = .025; CD8Tns, 56% v 37%; P = .012; CD4Tns, 55% v 37%; P = .009). Transplantation of more BM Tns was associated with less grade 3 to 4 acute GvHD but similar rates of relapse. Transplantation of more BM pDCs was associated with fewer deaths resulting from GvHD or from graft rejection. Analysis of PB grafts did not identify a donor cell subset significantly associated with OS, relapse, or GvHD. Conclusion Donor immune cells in BM but not PB stem-cell grafts were associated with survival after unrelated-donor allogeneic hematopoietic stem-cell transplantation. The biologic activity of donor immune cells in allogeneic transplantation varied between graft sources. Donor grafts with more BM-derived Tns and pDCs favorably regulated post-transplantation immunity in allogeneic hematopoietic stem-cell transplantation. PMID:24982459
Waller, Edmund K; Logan, Brent R; Harris, Wayne A C; Devine, Steven M; Porter, David L; Mineishi, Shin; McCarty, John M; Gonzalez, Corina E; Spitzer, Thomas R; Krijanovski, Oleg I; Linenberger, Michael L; Woolfrey, Ann; Howard, Alan; Wu, Juan; Confer, Dennis L; Anasetti, Claudio
2014-08-01
To characterize relationships between specific immune cell subsets in bone marrow (BM) or granulocyte colony-stimulating factor-mobilized peripheral blood (PB) stem cells collected from unrelated donors and clinical outcomes of patients undergoing transplantation in BMTCTN 0201. Fresh aliquots of 161 BM and 147 PB stem-cell allografts from North American donors randomly assigned to donate BM or PB stem cells and numbers of transplanted cells were correlated with overall survival (OS), relapse, and graft-versus-host disease (GvHD). Patients with evaluable grafts were similar to all BMTCTN 0201 patients. The numbers of plasmacytoid dendritic cells (pDCs) and naïve T cells (Tns) in BM allografts were independently associated with OS in multivariable analyses including recipient and donor characteristics, such as human leukocyte antigen mismatch, age, and use of antithymocyte globulin. BM recipients of > median number of pDCs, naïve CD8(+) T cells (CD8Tns), or naïve CD4(+) T cells (CD4Tns) had better 3-year OS (pDCs, 56% v 35%; P = .025; CD8Tns, 56% v 37%; P = .012; CD4Tns, 55% v 37%; P = .009). Transplantation of more BM Tns was associated with less grade 3 to 4 acute GvHD but similar rates of relapse. Transplantation of more BM pDCs was associated with fewer deaths resulting from GvHD or from graft rejection. Analysis of PB grafts did not identify a donor cell subset significantly associated with OS, relapse, or GvHD. Donor immune cells in BM but not PB stem-cell grafts were associated with survival after unrelated-donor allogeneic hematopoietic stem-cell transplantation. The biologic activity of donor immune cells in allogeneic transplantation varied between graft sources. Donor grafts with more BM-derived Tns and pDCs favorably regulated post-transplantation immunity in allogeneic hematopoietic stem-cell transplantation. © 2014 by American Society of Clinical Oncology.
Mende, Nicole; Kuchen, Erika E.; Lesche, Mathias; Grinenko, Tatyana; Kokkaliaris, Konstantinos D.; Hanenberg, Helmut; Lindemann, Dirk; Dahl, Andreas; Platz, Alexander; Höfer, Thomas; Calegari, Federico
2015-01-01
Maintenance of stem cell properties is associated with reduced proliferation. However, in mouse hematopoietic stem cells (HSCs), loss of quiescence results in a wide range of phenotypes, ranging from functional failure to extensive self-renewal. It remains unknown whether the function of human HSCs is controlled by the kinetics of cell cycle progression. Using human HSCs and human progenitor cells (HSPCs), we report here that elevated levels of CCND1–CDK4 complexes promoted the transit from G0 to G1 and shortened the G1 cell cycle phase, resulting in protection from differentiation-inducing signals in vitro and increasing human leukocyte engraftment in vivo. Further, CCND1–CDK4 overexpression conferred a competitive advantage without impacting HSPC numbers. In contrast, accelerated cell cycle progression mediated by elevated levels of CCNE1–CDK2 led to the loss of functional HSPCs in vivo. Collectively, these data suggest that the transition kinetics through the early cell cycle phases are key regulators of human HSPC function and important for lifelong hematopoiesis. PMID:26150472
Mende, Nicole; Kuchen, Erika E; Lesche, Mathias; Grinenko, Tatyana; Kokkaliaris, Konstantinos D; Hanenberg, Helmut; Lindemann, Dirk; Dahl, Andreas; Platz, Alexander; Höfer, Thomas; Calegari, Federico; Waskow, Claudia
2015-07-27
Maintenance of stem cell properties is associated with reduced proliferation. However, in mouse hematopoietic stem cells (HSCs), loss of quiescence results in a wide range of phenotypes, ranging from functional failure to extensive self-renewal. It remains unknown whether the function of human HSCs is controlled by the kinetics of cell cycle progression. Using human HSCs and human progenitor cells (HSPCs), we report here that elevated levels of CCND1-CDK4 complexes promoted the transit from G0 to G1 and shortened the G1 cell cycle phase, resulting in protection from differentiation-inducing signals in vitro and increasing human leukocyte engraftment in vivo. Further, CCND1-CDK4 overexpression conferred a competitive advantage without impacting HSPC numbers. In contrast, accelerated cell cycle progression mediated by elevated levels of CCNE1-CDK2 led to the loss of functional HSPCs in vivo. Collectively, these data suggest that the transition kinetics through the early cell cycle phases are key regulators of human HSPC function and important for lifelong hematopoiesis. © 2015 Mende et al.
Qamar, Hina; Lee, Adrienne; Valentine, Karen; Skeith, Leslie; Jimenez-Zepeda, Victor H
2017-01-01
Acquired von Willebrand syndrome (AVWS) is a rare hemorrhagic disorder that occurs in patients with no prior personal or family history of bleeding. Here, we describe a case of AVWS occurring after autologous stem cell transplantation (ASCT). Interestingly, AVWS developed after bortezomib-based induction and conditioning regimens. Recent evidence suggests that the proximity of the bortezomib therapy to the collection of stem cells with consequent depletion of regulatory T cells after the conditioning regimen could explain some of the unusual autoimmune complications reported in patients receiving bortezomib prior to ASCT. In addition, this patient developed a secondary MGUS post-ASCT, which may have also contributed to the AVWS. To the best of our knowledge, this is the first case of post-ASCT AVWS reported. Prospective data is needed to better elucidate the mechanisms by which these unusual complications occur in patients receiving bortezomib prior to ASCT. PMID:28512563
Qamar, Hina; Lee, Adrienne; Valentine, Karen; Skeith, Leslie; Jimenez-Zepeda, Victor H
2017-01-01
Acquired von Willebrand syndrome (AVWS) is a rare hemorrhagic disorder that occurs in patients with no prior personal or family history of bleeding. Here, we describe a case of AVWS occurring after autologous stem cell transplantation (ASCT). Interestingly, AVWS developed after bortezomib-based induction and conditioning regimens. Recent evidence suggests that the proximity of the bortezomib therapy to the collection of stem cells with consequent depletion of regulatory T cells after the conditioning regimen could explain some of the unusual autoimmune complications reported in patients receiving bortezomib prior to ASCT. In addition, this patient developed a secondary MGUS post-ASCT, which may have also contributed to the AVWS. To the best of our knowledge, this is the first case of post-ASCT AVWS reported. Prospective data is needed to better elucidate the mechanisms by which these unusual complications occur in patients receiving bortezomib prior to ASCT.
HORSE SPECIES SYMPOSIUM: Use of mesenchymal stem cells in fracture repair in horses.
Govoni, K E
2015-03-01
Equine bone fractures are often catastrophic, potentially fatal, and costly to repair. Traditional methods of healing fractures have limited success, long recovery periods, and a high rate of reinjury. Current research in the equine industry has demonstrated that stem cell therapy is a promising novel therapy to improve fracture healing and reduce the incidence of reinjury; however, reports of success in horses have been variable and limited. Stem cells can be derived from embryonic, fetal, and adult tissue. Based on the ease of collection, opportunity for autologous cells, and proven success in other models, adipose- or bone marrow-derived mesenchymal stem cells (MSC) are often used in equine therapies. Methods for isolation, proliferation, and differentiation of MSC are well established in rodent and human models but are not well characterized in horses. There is recent evidence that equine bone marrow MSC are able to proliferate in culture for several passages in the presence of autologous and fetal bovine serum, which is important for expansion of cells. Mesenchymal stem cells have the capacity to differentiate into osteoblasts, the bone forming cells, and this complex process is regulated by a number of transcription factors including runt-related transcription factor 2 (Runx2) and osterix (Osx). However, it has not been well established if equine MSC are regulated in a similar manner. The data presented in this review support the view that equine bone marrow MSC are regulated by the same transcription factors that control the differentiation of rodent and human MSC into osteoblasts. Although stem cell therapy is promising in equine bone repair, additional research is needed to identify optimal methods for reintroduction and potential manipulations to improve their ability to form new bone.
Hedgehog-GLI signaling drives self-renewal and tumorigenicity of human melanoma-initiating cells.
Santini, Roberta; Vinci, Maria C; Pandolfi, Silvia; Penachioni, Junia Y; Montagnani, Valentina; Olivito, Biagio; Gattai, Riccardo; Pimpinelli, Nicola; Gerlini, Gianni; Borgognoni, Lorenzo; Stecca, Barbara
2012-09-01
The question of whether cancer stem/tumor-initiating cells (CSC/TIC) exist in human melanomas has arisen in the last few years. Here, we have used nonadherent spheres and the aldehyde dehydrogenase (ALDH) enzymatic activity to enrich for CSC/TIC in a collection of human melanomas obtained from a broad spectrum of sites and stages. We find that melanomaspheres display extensive in vitro self-renewal ability and sustain tumor growth in vivo, generating human melanoma xenografts that recapitulate the phenotypic composition of the parental tumor. Melanomaspheres express high levels of Hedgehog (HH) pathway components and of embryonic pluripotent stem cell factors SOX2, NANOG, OCT4, and KLF4. We show that human melanomas contain a subset of cells expressing high ALDH activity (ALDH(high)), which is endowed with higher self-renewal and tumorigenic abilities than the ALDH(low) population. A good correlation between the number of ALDH(high) cells and sphere formation efficiency was observed. Notably, both pharmacological inhibition of HH signaling by the SMOOTHENED (SMO) antagonist cyclopamine and GLI antagonist GANT61 and stable expression of shRNA targeting either SMO or GLI1 result in a significant decrease in melanoma stem cell self-renewal in vitro and a reduction in the number of ALDH(high) melanoma stem cells. Finally, we show that interference with the HH-GLI pathway through lentiviral-mediated silencing of SMO and GLI1 drastically diminishes tumor initiation of ALDH(high) melanoma stem cells. In conclusion, our data indicate an essential role of the HH-GLI1 signaling in controlling self-renewal and tumor initiation of melanoma CSC/TIC. Targeting HH-GLI1 is thus predicted to reduce the melanoma stem cell compartment. Copyright © 2012 AlphaMed Press.
Abdyazdani, Nima; Nourazarian, Alireza; Nozad Charoudeh, Hojjatollah; Kazemi, Masoumeh; Feizy, Navid; Akbarzade, Maryam; Mehdizadeh, Amir; Rezaie, Jafar; Rahbarghazi, Reza
2017-01-01
A lack of comprehensive data exists on the effect of morphine on neural stem cell neuro-steroidogenesis and neuro-angiogenesis properties. We, herein, investigated the effects of morphine (100μM), naloxone (100μM) and their combination on rat neural stem cells viability, clonogenicity and Ki-67 expression over a period of 72h. Any alterations in the total fatty acids profile under treatment protocols were elucidated by direct transesterification method. We also monitored the expression of p53, aromatase and 5-alpha reductase by real-time PCR assay. To examine angiogenic capacity, in vitro tubulogenesis and the level of VE-cadherin transcript were investigated during neural to endothelial differentiation under the experimental procedure. Cells supplemented with morphine displayed reduced survival (p<0.01) and clonogenicity (p<0.001). Flow cytometric analysis showed a decrease in Ki-67 during 72h. Naloxone potentially blunted morphine-induced all effects. The normal levels of fatty acids, including saturated and unsaturated were altered by naloxone and morphine supplements. Following 48h, the up-regulation of p53, aromatase and 5-alpha reductase genes occurred in morphine-primed cells. Using three-dimensional culture models of angiogenesis and real time PCR assay, we showed morphine impaired the tubulogenesis properties of neural stem cells (p<0.001) by the inhibition of trans-differentiation into vascular cells and led to decrease of in VE-cadherin expression. Collectively, morphine strongly impaired the healthy status of neural stem cells by inducing p53 and concurrent elevation of aromatase and 5-alpha reductase activities especially during early 48h. Also, neural stem cells-being exposed to morphine lost their potency to elicit angiogenesis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Alnasser, Qasem; Abu Kharmah, Salahel Deen; Attia, Manal; Aljafari, Akram; Agyekum, Felicia; Ahmed, Falak Aftab
2018-04-01
To explore the lived experience of the patients post-haematopoietic stem cell transplantation and specifically after engraftment and before discharge. Patients post-stem cell transplantation experience significant changes in all life aspects. Previous studies carried out by other researchers focused mainly on the postdischarge experience, where patients reported their perceptions that have always been affected by the life post-transplantation and influenced by their surroundings. The lived experience of patients, specifically after engraftment and prior to discharge (the "transition" phase), has not been adequately explored in the literature. Doing so might provide greater insight into the cause of change post-haematopoietic stem cell transplantation. This study is a phenomenological description of the participants' perception about their lived experience post-haematopoietic stem cell transplantation. The study used Giorgi's method of analysis. Through purposive sampling, 15 post-haematopoietic stem cell transplantation patients were recruited. Data were collected by individual interviews. Data were then analysed based on Giorgi's method of analysis to reveal the meaning of a phenomenon as experienced through the identification of essential themes. The analysis process revealed 12 core themes covered by four categories that detailed patients lived experience post-haematopoietic stem cell transplantation. The four categories were general transplant experience, effects of transplantation, factors of stress alleviation and finally life post-transplantation. This study showed how the haematopoietic stem cell transplantation affected the patients' physical, psychological and spiritual well-being. Transplantation also impacted on the patients' way of thinking and perception of life. Attending to patients' needs during transplantation might help to alleviate the severity of the effects and therefore improve experience. Comprehensive information about transplantation needs to be provided over different intervals and at different occasions. The role of the haematopoietic stem cell transplantation coordinators is important, and their communication skills and knowledge were found to be significant in patients' preparation and decision-making. As healthcare providers usually attend to only the patients' physical and psychological needs, spirituality was found to play an important role in maintaining morale and making sense of the meaning of life. © 2018 John Wiley & Sons Ltd.
Olivier, Emmanuel; Qiu, Caihong; Bouhassira, Eric E
2012-08-01
The current supply of red blood cells expressing rare blood groups is not sufficient to cover all the existing transfusion needs for chronically transfused patients, such as sickle cell disease homozygous carriers, because of alloimmunization. In vitro production of cultured red blood cells is slowly emerging as a possible complement to the existing collection-based red blood cell procurement system. The yield of cultured red blood cells can theoretically be maximized by amplifying the stem, progenitor, or precursor compartment. Here, we combined methods designed to expand these three compartments to optimize the yield of cultured red blood cells and found that exposing CD34(+) cells to a short pulse of cytokines favorable for erythroid differentiation prior to stem cell expansion followed by progenitor expansion produced the highest yield of erythroid cells. This novel serum-free red blood cell production protocol was efficient on CD34(+) cells derived from human embryonic stem cells, 6-8-week yolk sacs, 16-18-week fetal livers, cord blood, and peripheral blood. The yields of cells obtained with these new protocols were larger by an order of magnitude than the yields observed previously. Globin expression analysis by high-performance liquid chromatography revealed that these expansion protocols generally yielded red blood cells that expressed a globin profile similar to that expected for the developmental age of the CD34(+) cells.
Embryo futures and stem cell research: the management of informed uncertainty
Ehrich, Kathryn; Williams, Clare; Farsides, Bobbie; Scott, Rosamund
2012-01-01
In the social worlds of assisted conception and stem cell science, uncertainties proliferate and particular framings of the future may be highly strategic. In this article we explore meanings and articulations of the future using data from our study of ethical and social issues implicated by the donation of embryos to human embryonic stem cell research in three linked assisted conception units and stem cell laboratories in the UK. Framings of the future in this field inform the professional management of uncertainty and we explore some of the tensions this involves in practice. The bifurcation of choices for donating embryos into accepting informed uncertainty or not donating at all was identified through the research process of interviews and ethics discussion groups. Professional staff accounts in this study contained moral orientations that valued ideas such as engendering patient trust by offering full information, the sense of collective ownership of the National Heath Service and publicly funded science and ideas for how donors might be able to give restricted consent as a third option. PMID:21812792
Winkler, Ingrid G; Wiercinska, Eliza; Barbier, Valerie; Nowlan, Bianca; Bonig, Halvard; Levesque, Jean-Pierre
2016-04-01
Harvest of granulocyte colony-stimulating factor (G-CSF)-mobilized hematopoietic stem cells (HSCs) begins at day 5 of G-CSF administration, when most donors have achieved maximal mobilization. This is based on surrogate markers for HSC mobilization, such as CD34(+) cells and colony-forming activity in blood. However, CD34(+) cells or colony-forming units in culture (CFU-C) are heterogeneous cell populations with hugely divergent long-term repopulation potential on transplantation. HSC behavior is influenced by the vascular bed in the vicinity of which they reside. We hypothesized that G-CSF may mobilize sequentially cells proximal and more distal to bone marrow venous sinuses where HSCs enter the blood. We addressed this question with functional serial transplantation assays using blood and bone marrow after specific time points of G-CSF treatment in mice. We found that in mice, blood collected after only 48 hours of G-CSF administration was as enriched in serially reconstituting HSCs as blood collected at 5 days of G-CSF treatment. Similarly, mobilized Lin(-)CD34(+) cells were relatively enriched in more primitive Lin(-)CD34(+)CD38(-) cells at day 2 of G-CSF treatment compared with later points in half of human donors tested (n = 6). This suggests that in both humans and mice, hematopoietic progenitor and stem cells do not mobilize uniformly according to their maturation stage, with most potent HSCs mobilizing as early as day 2 of G-CSF. Copyright © 2016 ISEH - International Society for Experimental Hematology. Published by Elsevier Inc. All rights reserved.
Mattias, Leino; Haque, Amranul; Adnan, Nihad; Akaike, Toshihiro
2014-02-01
Mechanical forces have been shown to affect stem cell behavior in a large array of ways. However, our understanding of how these mechanical cues may regulate the behavior of embryonic stem cells (ESCs) remains in its infancy. Here, we aim to clarify the effect of cell scattering on the regulation of Rho family GTPases Rac1 and RhoA as well as paxillin. Allowing ESCs to spread and scatter on a synthetically designed E-cadherin substratum causes phosphorylation of paxillin on consensus phosphorylation sites leading to activation of Rac1 and inactivation of RhoA. By culturing cells in presence of RhoA activator or growing cells to a highly confluent state reverses the effect of cell scattering phenotype. Knockdown of E-cadherin-adapter protein α-catenin revealed that it negatively affects paxillin phosphorylation and up-regulates RhoA activity in compact cellular aggregates. Collectively these results indicate that cell scattering might cause a conformational change of α-catenin limiting its capacity to inhibit paxillin phosphorylation that causes an increase in Rac1 activation and RhoA deactivation. Understanding how synthetically designed extracellular matrix affect ESC signaling through mechanical cues brings a new aspect for stem cell engineers to develop technologies for controlling cell function. Copyright © 2013 Elsevier Ltd. All rights reserved.
Zhong, Yali; Li, Xiaoli; Ji, Yasai; Li, Xiaoran; Li, Yaqing; Yu, Dandan; Yuan, Yuan; Liu, Jian; Li, Huixiang; Zhang, Mingzhi; Ji, Zhenyu; Fan, Dandan; Wen, Jianguo; Goscinski, Mariusz Adam; Yuan, Long; Hao, Bin; Nesland, Jahn M; Suo, Zhenhe
2017-01-01
Cells generate adenosine-5′-triphosphate (ATP), the major currency for energy-consuming reactions, through mitochondrial oxidative phosphorylation (OXPHOS) and glycolysis. One of the remarkable features of cancer cells is aerobic glycolysis, also known as the “Warburg Effect”, in which cancer cells rely preferentially on glycolysis instead of mitochondrial OXPHOS as the main energy source even in the presence of high oxygen tension. One of the main players in controlling OXPHOS is the mitochondrial gatekeeperpyruvate dehydrogenase complex (PDHc) and its major subunit is E1α (PDHA1). To further analyze the function of PDHA1 in cancer cells, it was knock out (KO) in the human prostate cancer cell line LnCap and a stable KO cell line was established. We demonstrated that PDHA1 gene KO significantly decreased mitochondrial OXPHOS and promoted anaerobic glycolysis, accompanied with higher stemness phenotype including resistance to chemotherapy, enhanced migration ability and increased expression of cancer stem cell markers. We also examined PDHA1 protein expression in prostate cancer tissues by immunohistochemistry and observed that reduced PDHA1 protein expression in clinical prostate carcinomas was significantly correlated with poor prognosis. Collectively, our results show that negative PDHA1 gene expressionis associated with significantly higher cell stemness in prostate cancer cells and reduced protein expression of this gene is associated with shorter clinical outcome in prostate cancers. PMID:28076853
Hassane, Duane C.; Guzman, Monica L.; Corbett, Cheryl; Li, Xiaojie; Abboud, Ramzi; Young, Fay; Liesveld, Jane L.; Carroll, Martin
2008-01-01
Increasing evidence indicates that malignant stem cells are important for the pathogenesis of acute myelogenous leukemia (AML) and represent a reservoir of cells that drive the development of AML and relapse. Therefore, new treatment regimens are necessary to prevent relapse and improve therapeutic outcomes. Previous studies have shown that the sesquiterpene lactone, parthenolide (PTL), ablates bulk, progenitor, and stem AML cells while causing no appreciable toxicity to normal hematopoietic cells. Thus, PTL must evoke cellular responses capable of mediating AML selective cell death. Given recent advances in chemical genomics such as gene expression-based high-throughput screening (GE-HTS) and the Connectivity Map, we hypothesized that the gene expression signature resulting from treatment of primary AML with PTL could be used to search for similar signatures in publicly available gene expression profiles deposited into the Gene Expression Omnibus (GEO). We therefore devised a broad in silico screen of the GEO database using the PTL gene expression signature as a template and discovered 2 new agents, celastrol and 4-hydroxy-2-nonenal, that effectively eradicate AML at the bulk, progenitor, and stem cell level. These findings suggest the use of multicenter collections of high-throughput data to facilitate discovery of leukemia drugs and drug targets. PMID:18305216
Toraih, Eman A; Fawzy, Manal S; El-Falouji, Abdullah I; Hamed, Elham O; Nemr, Nader A; Hussein, Mohammad H; Fadeal, Noha M Abd El
2016-01-01
Stem cell transcriptional signature activation is an essential event in the development of cancer. This study aimed to investigate the differential expression profiles of three pluripotency-associated genes, OCT4, NANOG and SOX2, G-protein-coupled chemokine receptor 4 (CXCR4) and the ligand CXCL2, and alpha-fetoprotein (AFP) in hepatogenic differentiated stem cells and in sera of hepatitis C virus (HCV) and HCV-induced hepatocellular carcinoma (HCC) patients. Mesenchymal stem cells derived from umbilical cord blood were differentiated using hepatogenic differentiation media. Serum specimens were collected from 96 patients (32 cirrhotic HCV, 32 early HCC and 32 late HCC) and 96 controls. Real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) was performed for relative quantification of the six target genes using the Livak method. In silico network analysis was also executed to explore the pluripotency and tumorigenetic regulatory circuits in liver cancer. The expression levels of all genes declined gradually during the stages of stem cell differentiation. On univariate and multivariate analyses, NANOG, CXCR4 and AFP were significantly upregulated in late clinical stage HCC patients. In contrast, SOX2 and CXCL2 were markedly overexpressed in cirrhotic patients and could be used for clear demarcation between cirrhotic and HCC patients in our cases. In conclusion, our data highlight the potential role of the SOX2 stem cell marker and CXCL2 chemokine in liver cell degeneration and fibrogenesis in HCV-induced hepatic cirrhosis in our sample of the Egyptian population. In addition, the significant association of NANOG and CXCR4 high expression with late HCC could contribute to the acquisition of stem cell–like properties in hepatic cancer and dissemination in late stages, respectively. Taken together, our results could have potential application in HCC prognosis and treatment. PMID:27623812
Niche induced cell death and epithelial phagocytosis regulate hair follicle stem cell pool
Mesa, Kailin R.; Rompolas, Panteleimon; Zito, Giovanni; Myung, Peggy; Sun, Thomas Yang; Brown, Samara; Gonzalez, David; Blagoev, Krastan B.; Haberman, Ann M.; Greco, Valentina
2015-01-01
Summary Tissue homeostasis is achieved through a balance of cell production (growth) and elimination (regression)1,2. Contrary to tissue growth, the cells and molecular signals required for tissue regression remain unknown. To investigate physiological tissue regression, we use the mouse hair follicle, which cycles stereotypically between phases of growth and regression while maintaining a pool of stem cells to perpetuate tissue regeneration3. Here we show by intravital microscopy in live mice4–6 that the regression phase eliminates the majority of the epithelial cells by two distinct mechanisms: terminal differentiation of suprabasal cells and a spatial gradient of apoptosis of basal cells. Furthermore, we demonstrate that basal epithelial cells collectively act as phagocytes to clear dying epithelial neighbors. Through cellular and genetic ablation we show that epithelial cell death is extrinsically induced through TGFβ activation and mesenchymal crosstalk. Strikingly, our data show that regression acts to reduce the stem cell pool as inhibition of regression results in excess basal epithelial cells with regenerative abilities. This study identifies the cellular behaviors and molecular mechanisms of regression that counterbalance growth to maintain tissue homeostasis. PMID:25849774
Donot, Pierre Emmanuel
2009-01-01
JACIE, a European certification program for stem cell transplantation, has now been recognized by the French Health Authorities. It can be considered as an evaluation of professional practice, an activity that can be promoted by health centres. The present article has two aims: firstly, it describes the structure of the certification standard based on the relative structure of each of its components; secondly, it reports on the experience acquired by the Léon-Bérard cancer centre (Lyon-France) during the certification of its own stem cell transplantation program. The JACIE manual written in English is divided into three parts corresponding to the three processes identified. Part B describes the clinical haematopoietic stem cell transplantation program. Part C is dedicated to the collection of haematopoietic stem cells from blood and marrow. Finally, part D applies to the cell therapy laboratory in charge of cell preservation and the preparation of grafts for re-infusion. After the application has been submitted to the JACIE board, a date is set for an inspection visit. The cell therapy laboratory at Léon-Bérard cancer centre has already participated to a certified transplantation project of the Edouard-Herriot Hospital (Lyon public hospitals) [parts C and D of the certification]. The executive board proposed that the clinical haematology unit of the cancer centre also applied for JACIE certification. A multidisciplinary work group-combining document writing skills and a real capacity to convince and motivate clinical staff was formed. Secondly, a comprehensive collection of existing documents was issued and the clinical pathway of the patients was formalized so that no step of the graft process would be omitted. A physician from another hospital also tested the evaluation process with the organisation of a mock visit. He confirmed that everything was in good way and provided recommendations to improve the program. This huge preparation provided invaluable learning opportunities to the participants. After the final visit by JACIE inspectors, the cancer centre received four-year certification. The challenge is now to maintain this momentum for the next certifications and to better take into account the ethical and juridical constraints of haematopoietic stem cell transplantation.
Stem cell transplantation (cord blood transplants).
Chao, Nelson J; Emerson, Stephen G; Weinberg, Kenneth I
2004-01-01
Allogeneic stem cell transplantation is an accepted treatment modality for selected malignant and non-malignant diseases. However, the ability to identify suitably matched related or unrelated donors can be difficult in some patients. Alternative sources of stem cells such as cord blood provide a readily available graft for such patients. Data accumulated over the past several years have demonstrated that the use of cord blood is an accepted source of stem cells for pediatric patients. Since the cell numbers of hematopoietic progenitors in cord blood is limited and the collection can occur only in a single occasion, its use in adult patients can be more problematic. Here, new developments in the use of cord blood for adults and studies aimed at expansion of cord blood cells and immune reconstitution are described. In Section I, Dr. Nelson Chao describes the early data in cord blood transplantation in adult patients. The patient outcomes are reviewed and analyzed for various factors such as cell dose, HLA typing, and patient selection that could have contributed to the final outcome of these adult patients. Myeloablative as well as nonmyeloablative approaches are presented. Discussion of the various benefits and risks are presented. More recent data from multiple single institutions as well as larger registry data comparisons are also provided. Analyses of these studies suggest methods to improve on the outcome. These newer data should lead to a logical progression in the use of cord blood cells in adult patients. In Section II, Dr. Stephen Emerson describes the historical efforts associated with expansion of hematopoietic stem cells, specifically with cord blood cells. These efforts to expand cord blood cells continue with novel methods. Moreover, a better understanding of stem cell biology and signaling is critical if we are to be able to effectively expand these cells for clinical use. An alternative, more direct, approach to expanding stem cells could be achieved by specific genetic pathways known or believed to support primitive HSC proliferation such as Notch-1 receptor activation, Wnt/LEF-1 pathway induction, telomerase or the Homeobox (Hox) gene products. The clinical experience with the use of expanded cord blood cells is also discussed. In Section III, Dr. Kenneth Weinberg describes immune reconstitution or lack thereof following cord blood transplantation. One of the hallmarks of successful hematopoietic stem cell transplantation is the ability to fully reconstitute the immune system of the recipient. Thus, the relationship between stem cell source and the development of T lymphocyte functions required for protection of the recipient from infection will be described, and cord blood recipients will be compared with those receiving other sources of stem cells. T cell development is described in detail, tracking from prethymic to postthymic lymphocytes with specific attention to umbilical cord blood as the source of stem cells. Moreover, a discussion of the placenta as a special microenvironment for umbilical cord blood is presented. Strategies to overcome the immunological defects are presented to improve the outcome of these recipients.
PAF-Myc-Controlled Cell Stemness Is Required for Intestinal Regeneration and Tumorigenesis.
Kim, Moon Jong; Xia, Bo; Suh, Han Na; Lee, Sung Ho; Jun, Sohee; Lien, Esther M; Zhang, Jie; Chen, Kaifu; Park, Jae-Il
2018-03-12
The underlying mechanisms of how self-renewing cells are controlled in regenerating tissues and cancer remain ambiguous. PCNA-associated factor (PAF) modulates DNA repair via PCNA. Also, PAF hyperactivates Wnt/β-catenin signaling independently of PCNA interaction. We found that PAF is expressed in intestinal stem and progenitor cells (ISCs and IPCs) and markedly upregulated during intestinal regeneration and tumorigenesis. Whereas PAF is dispensable for intestinal homeostasis, upon radiation injury, genetic ablation of PAF impairs intestinal regeneration along with the severe loss of ISCs and Myc expression. Mechanistically, PAF conditionally occupies and transactivates the c-Myc promoter, which induces the expansion of ISCs/IPCs during intestinal regeneration. In mouse models, PAF knockout inhibits Apc inactivation-driven intestinal tumorigenesis with reduced tumor cell stemness and suppressed Wnt/β-catenin signaling activity, supported by transcriptome profiling. Collectively, our results unveil that the PAF-Myc signaling axis is indispensable for intestinal regeneration and tumorigenesis by positively regulating self-renewing cells. Copyright © 2018 Elsevier Inc. All rights reserved.
Zhu, Guidong; Su, Wei; Jin, Guishan; Xu, Fujian; Hao, Shuyu; Guan, Fangxia; Jia, William; Liu, Fusheng
2011-05-16
The development of the cancer stem cell (CSCs) niche theory has provided a new target for the treatment of gliomas. Gene therapy using oncolytic viral vectors has shown great potential for the therapeutic targeting of CSCs. To explore whether a viral vector carrying an exogenous Endo-Angio fusion gene (VAE) can infect and kill glioma stem cells (GSCs), as well as inhibit their vascular niche in vitro, we have collected surgical specimens of human high-grade glioma (world health organization, WHO Classes III-VI) from which we isolated and cultured GSCs under conditions originally designed for the selective expansion of neural stem cells. Our results demonstrate the following: (1) Four lines of GSCs (isolated from 20 surgical specimens) could grow in suspension, were multipotent, had the ability to self-renew and expressed the neural stem cell markers, CD133 and nestin. (2) VAE could infect GSCs and significantly inhibit their viability. (3) The Endo-Angio fusion gene was expressed in GSCs 48 h after VAE infection and could inhibit the proliferation of human brain microvascular endothelial cells (HBMEC). (4) Residual viable cells lose the ability of self-renewal and adherent differentiation. In conclusion, VAE can significantly inhibit the activity of GSCs in vitro and the expression of exogenous Endo-Angio fusion gene can inhibit HBMEC proliferation. VAE can be used as a novel virus-gene therapy strategy for glioma. Copyright © 2011 Elsevier B.V. All rights reserved.
Prasad, Madu Ghana Shyam; Ramakrishna, Juvva; Babu, Duvvi Naveen
2017-01-01
Stem cells are the pluripotent cells that have the capacity to differentiate into other specialized cells. Recently, many experiments have been conducted to study the potentiality of stem cells in the tissue regeneration. We report two cases treated utilizing stem cells from human exfoliated deciduous teeth (SHED) in the management of periapical lesions in permanent teeth. Two normal human deciduous teeth from children, 7‒8 years of age, were collected to isolate stem cells. Two patients, one with periapical pathology alone and the other with periapical lesion along with an open apex in young permanent teeth, were selected for the study. After initial debridement of the root canals, homing of SHED was carried out and the access cavity was sealed using glass-ionomer cement. Clinical examination after 7 days, 30 days, 90 days, 180 days and 365 days revealed no symptoms. Closure of open apex and periapical tissue healing were observed radiographically at one-month review and maintained until 365-day review. Positive response to electric pulp testing was recorded for the treated teeth from the 3- to 12-month follow-ups. The treated cases demonstrated complete resolution of periapical radiolucency in a span of 30 days, which was faster than the conventional methods. SHED could be considred effective in treating the periapical lesions and open apex in permanent teeth. PMID:28748053
Sato, Emiko; Ohga, Shouichi; Kuroda, Hiroshi; Yoshiba, Fumiaki; Nishimura, Miki; Nagasawa, Masayuki; Inoue, Masami; Kawa, Keisei
2008-09-01
Epstein-Barr virus (EBV)-associated T/NK-cell lymphoproliferative disease (LPD) has been linked to several different disorders. Its prognosis is generally poor and a treatment strategy has yet to be established. There are reports, however, that hematopoietic stem cell transplantation (HSCT) can cure this disease. To clarify the current situation regarding allogeneic hematopoietic stem cell transplantation (allo-HSCT) for EBV-associated T/NK-LPD, a nationwide survey was performed in Japan. Data for 74 patients were collected. There were 42 cases of chronic active EBV infection (CAEBV), 10 cases of EBV-associated hemophagocytic lymphohistiocytosis (EBV-HLH), and 22 cases of EBV-associated lymphoma/leukemia (EBV-lymphoma/leukemia). Of those with CAEBV, 54% had the EBV-infected T-cell type and 59% with EBV-lymphoma/leukemia had the EBV-infected NK-cell type. Most patients with EBV-HLH and EBV-lymphoma/leukemia received allo-HSCT within 1 year after onset compared to only 14% of patients with CAEBV. The event-free survival (EFS) rate following allo-HSCT was 0.561 +/- 0.086 for CAEBV, 0.614 +/- 0.186 for EBV-HLH, and 0.309 +/- 0.107 for EBV-lymphoma/leukemia. The EFS of allo-HSCT with conventional conditioning was 0.488 +/- 0.074 and with reduced-intensity conditioning was 0.563 +/- 0.124. Thus, in a substantial number of cases, EBV-associated T/NK-LPD can be cured by either allogeneic conventional stem cell transplantation or reduced-intensity stem cell transplantation. Copyright 2008 Wiley-Liss, Inc.
Experiences of the Dresdner Cord Blood Bank, supported by the Deutsche Knochenmarkspenderdatei.
Ordemann, R; Petzold, K; Hölig, K; Schaffer, B; Mauersberger, S; Ehninger, G; Ehminger, G
1999-01-01
Allogeneic bone marrow and peripheral blood stem cell transplantation is the treatment of choice for some malignant hematologic diseases, marrow failure syndromes, and severe congenital immunodeficiency states. Since Gluckman et al reported in 1988 the first successful human leukocyte antigen (HLA)-matched sibling umbilical cord blood stem cell transplantation, it has been known that cord blood is a valuable source of hematopoietic stem cells. The Cord Blood Bank at the University Hospital of Dresden was founded in 1997 and started collecting, processing, and cryoconserving umbilical cord blood in August 1997. The cord blood bank is supported by the largest German donor registry: Deutsche Knochenmarkspenderdatei (DKMS) in Tubingen, Germany. With the informed consent of the mothers, the collection is performed in collaboration with six hospitals in Dresden, Berlin, and Bautzen. We routinely perform a volume reduction by centrifuging the blood bag and expressing the leukocyte-rich supernatant. Routinely, sterility, total nucleated cells (TNC), CD34+ cell count, HLA class I and II, ABO/Rh blood group, and colony-forming units are evaluated. The maternal blood is screened for anti-immunodeficiency virus (anti-HIV), anti-hepatitis C virus (anti-HCV), anti-hepatitis B surface antigen (HBsAg), anti-hepatitis B surface (anti-HBs), anti-hepatitis B core (anti-HBc), anticytomegalovirus (anti-CMV), and toxoplasmosis and with Treponema pallidum hemagglutination assay (TPHA). More than 1,000 cord blood units could be collected. Because of the required volume and cell count and because of sterility, 50% of the collected units had to be discharged. Our results are comparable with data of other cord blood banks: mean volume 79 mL; cell count after volume reduction-TNC, 7.16 x 10(8); mononucleated cells (MNC), 3.75 x 10(8); CD34+ cells, 1.95 x 10(6); colony-forming units (CFU), 67.1 x 10(4). To increase the pool of potential umbilical cord blood units and in order to evaluate the possibility for unrelated transplants, cryopreservation and banking of large numbers of cord bloods are necessary.
Lacham-Kaplan, Orly; Chy, Hun; Trounson, Alan
2006-02-01
Previous reports and the current study have found that germ cell precursor cells appear in embryoid bodies (EBs) formed from mouse embryonic stem cells as identified by positive expression of specific germ cell markers such as Oct-3/4, Mvh, c-kit, Stella, and DAZL. We hypothesized that if exposed to appropriate growth factors, the germ cell precursor cells within the EBs would differentiate into gametes. The source for growth factors used in the present study is conditioned medium collected from testicular cell cultures prepared from the testes of newborn males. Testes at this stage of development contain most growth factors required for the transformation of germ stem cells into differentiated gametes. When EBs were cultured in the conditioned medium, they developed into ovarian structures, which contained putative oocytes. The oocytes were surrounded by one to two layers of flattened cells and did not have a visible zona pellucida. However, oocyte-specific markers such as Fig-alpha and ZP3 were found expressed by the ovarian structures. The production of oocytes using this method is repeatable and reliable and may be applicable to other mammalian species, including the human.
Song, Wenqiang; Ma, Yufang; Wang, Jialiang; Brantley-Sieders, Dana; Chen, Jin
2014-01-01
Recent genome-wide analyses in human lung cancer revealed that EPHA2 receptor tyrosine kinase is overexpressed in non-small cell lung cancer (NSCLC), and high levels of EPHA2 correlate with poor clinical outcome. However, the mechanistic basis for EPHA2-mediated tumor promotion in lung cancer remains poorly understood. Here we show that the JNK/c-JUN signaling mediates EPHA2-dependent tumor cell proliferation and motility. A screen of phospho-kinase arrays revealed a decrease in phospho-c-JUN levels in EPHA2 knockdown cells. Knockdown of EPHA2 inhibited p-JNK and p-c-JUN levels in approximately 50% of NSCLC lines tested. Treatment of parental cells with SP600125, a JNK inhibitor, recapitulated defects in EPHA2-deficient tumor cells; whereas constitutively activated JNK mutants were sufficient to rescue phenotypes. Knockdown of EPHA2 also inhibited tumor formation and progression in xenograft animal models in vivo. Furthermore, we investigated the role of EPHA2 in cancer stem-like cells. RNAi-mediated depletion of EPHA2 in multiple NSCLC lines decreased the ALDH positive cancer stem-like population and tumor spheroid formation in suspension. Depletion of EPHA2 in sorted ALDH positive populations markedly inhibited tumorigenicity in nude mice. Furthermore, analysis of a human lung cancer tissue microarray revealed a significant, positive association between EPHA2 and ALDH expression, indicating an important role for EPHA2 in human lung cancer stem-like cells. Collectively, these studies revealed a critical role of JNK signaling in EPHA2-dependent lung cancer cell proliferation and motility and a role for EPHA2 in cancer stem-like cell function, providing evidence for EPHA2 as a potential therapeutic target in NSCLC. PMID:24607842
Constantinou, Varnavas C; Bouinta, Asimina; Karponi, Garyfalia; Zervou, Fani; Papayanni, Penelope-Georgia; Stamatoyannopoulos, George; Anagnostopoulos, Achilles; Yannaki, Evangelia
2017-04-01
Hematopoietic stem cell mobilization and leukapheresis in adult patients with β-thalassemia have recently been optimized in the context of clinical trials for obtaining hematopoietic stem cells for thalassemia gene therapy. In some patients, however, the yield of cluster of differentiation 34-positive (CD34+) cells was poor despite successful mobilization, and a modification of apheresis settings was mandatory for harvest rescue. Data were analyzed from 20 adult patients with β-thalassemia who were enrolled in a clinical trial of optimizing mobilization strategies for stem cell gene therapy. The aim of this post-hoc analysis was to assess how certain hematological and/or clinical parameters may correlate with low collection efficiency in the presence of adequate numbers of circulating stem cells after pharmacological mobilization and standard leukapheresis procedures. Among 19 patients who achieved optimal mobilization with Plerixafor, four who underwent splenectomy demonstrated disproportionately poor CD34+ cell harvests, as determined by their circulating CD34+ cell counts after mobilization. All four patients who underwent splenectomy presented at baseline and before first apheresis with lymphocytosis resulting in lymphocyte/neutrophil ratios well above 1 and marked reticulocytosis compared with patients who achieved optimal mobilization/CD34+ cell harvest. Such unexpected expansion of specific cell populations disrupted the normal cell layer separation and necessitated modification of the apheresis settings to rescue the harvests. By close examination of certain hematological and/or clinical parameters before leukapheresis, patients who, despite adequate mobilization, are at risk for poor CD34+ cell harvests may be identified, and harvest failure can be prevented by adjusting the apheresis settings. © 2016 AABB.
Goussetis, Evgenios; Peristeri, Ioulia; Kitra, Vasiliki; Papassavas, Andreas C; Theodosaki, Maria; Petrakou, Eftichia; Spiropoulos, Antonia; Paisiou, Anna; Soldatou, Alexandra; Stavropoulos-Giokas, Catherine; Graphakos, Stelios
2011-02-15
Directed sibling cord blood banking is indicated in women delivering healthy babies who already have a sibling with a disease that is potentially treatable with an allogeneic cord blood transplant. We evaluated the effectiveness of a national directed cord blood banking program in sibling HLA-identical stem cell transplantation for hematological malignancies and the factors influencing the usage rate of the stored cord blood units. Fifty families were enrolled from which, 48 cord blood units were successfully collected and 2 collections failed due to damaged cord/placenta at delivery. Among enrolled families 4 children needed transplantation; however, only one was successfully transplanted using the collected cord blood unit containing 2×10(7) nucleated cells/kg in conjunction with a small volume of bone marrow from the same HLA-identical donor. Two children received grafts from matched unrelated donors because their sibling cord blood was HLA-haploidentical, while the fourth one received bone marrow from his HLA-identical brother, since cord blood could not be collected due to damaged cord/placenta at delivery. With a median follow-up of 6 years (range, 2-12) for the 9 remaining HLA-matched cord blood units, none from the prospective recipients needed transplantation. The low utilization rate of sibling cord blood in the setting of hematopoietic stem cell transplantation for pediatric hematological malignant diseases necessitates the development of directed cord blood banking programs that limit long-term storage for banked cord blood units with low probability of usage such as non-HLA-identical or identical to patients who are in long-term complete remission. Copyright © 2010 Elsevier Inc. All rights reserved.
Li, Chao; Ruan, Jing; Yang, Meng; Pan, Fei; Gao, Guo; Qu, Su; Shen, You-Lan; Dang, Yong-Jun; Wang, Kan; Jin, Wei-Lin; Cui, Da-Xiang
2015-09-01
Human induced pluripotent stem (iPS) cells exhibit great potential for generating functional human cells for medical therapies. In this paper, we report for use of human iPS cells labeled with fluorescent magnetic nanoparticles (FMNPs) for targeted imaging and synergistic therapy of gastric cancer cells in vivo. Human iPS cells were prepared and cultured for 72 h. The culture medium was collected, and then was co-incubated with MGC803 cells. Cell viability was analyzed by the MTT method. FMNP-labeled human iPS cells were prepared and injected into gastric cancer-bearing nude mice. The mouse model was observed using a small-animal imaging system. The nude mice were irradiated under an external alternating magnetic field and evaluated using an infrared thermal mapping instrument. Tumor sizes were measured weekly. iPS cells and the collected culture medium inhibited the growth of MGC803 cells. FMNP-labeled human iPS cells targeted and imaged gastric cancer cells in vivo, as well as inhibited cancer growth in vivo through the external magnetic field. FMNP-labeled human iPS cells exhibit considerable potential in applications such as targeted dual-mode imaging and synergistic therapy for early gastric cancer.
Rao, Krishna S; Chakraharti, Swarup K; Dongare, Vaishali S; Chetana, K; Ramirez, Christina M; Koka, Prasad S; Deb, Kaushik D
2015-01-01
Key modalities of integrative medicine known to rejuvenate the mind and body are meditation, yoga, and controlled diet. It has been shown previously that intensive or prolonged mind and body therapies (MBT) may have beneficial effects on the well-being of healthy people and in patients. Telomerase activity and levels of peripheral blood adult pluripotent stem cells (PB-APSC) are reliable markers of long-term well-being that are known to decrease with age. The objective of this study is to understand the effect of our MBT program on telomerase activity and stem cells in blood collected from the participants. Here, we have investigated the effects of an intensive three weeks MBT retreat on telomerase activity and the peripheral blood stem cells in participants before and after the MBT. A total of 108 people were enrolled in the study; 38 men and 70 women (aged 18-90) randomly assigned for the study. Telomerase activity was greater in retreat participants at the end of the MBT retreat. About 45% of people showed more than one-fold increase of telomerase activity after our MBT program. Furthermore, about 27% of people showed more pronounced fold increase (2-fold) in telomerase activity after the MBT. In addition, a substantial percentage of people (about 90%) exhibited increased stem cell counts after the MBT. The data suggest increased telomerase activity and stem cells count in peripheral blood from MBT retreat participants that may lead to increased longevity and better quality of life at latter age.
The Stem Cell Marker Lgr5 Defines a Subset of Postmitotic Neurons in the Olfactory Bulb.
Yu, Yiqun; Moberly, Andrew H; Bhattarai, Janardhan P; Duan, Chen; Zheng, Qian; Li, Fangqi; Huang, Hugh; Olson, William; Luo, Wenqin; Wen, Tieqiao; Yu, Hongmeng; Ma, Minghong
2017-09-27
Lgr5, leucine-rich repeat-containing G-protein coupled receptor 5, is a bona fide biomarker for stem cells in multiple tissues. Lgr5 is also expressed in the brain, but the identities and properties of these Lgr5 + cells are still elusive. Using an Lgr5-EGFP reporter mouse line, we found that, from early development to adulthood, Lgr5 is highly expressed in the olfactory bulb (OB), an area with ongoing neurogenesis. Immunostaining with stem cell, glial, and neuronal markers reveals that Lgr5 does not label stem cells in the OB but instead labels a heterogeneous population of neurons with preference in certain subtypes. Patch-clamp recordings in OB slices reveal that Lgr5-EGFP + cells fire action potentials and display spontaneous excitatory postsynaptic events, indicating that these neurons are integrated into OB circuits. Interestingly, R-spondin 3, a potential ligand of Lgr5, is also expressed in the adult OB. Collectively, our data indicate that Lgr5-expressing cells in the OB are fully differentiated neurons and imply distinct roles of Lgr5 and its ligand in postmitotic cells. SIGNIFICANCE STATEMENT Lgr5 (leucine-rich repeat-containing G-protein coupled receptor 5) is a bona fide stem cell marker in many body organs. Here we report that Lgr5 is also highly expressed in the olfactory bulb (OB), the first relay station in the brain for processing odor information and one of the few neural structures that undergo continuous neurogenesis. Surprisingly, Lgr5 is not expressed in the OB stem cells, but instead in a few subtypes of terminally differentiated neurons, which are incorporated into the OB circuit. This study reveals that Lgr5 + cells in the brain represent a nonstem cell lineage, implying distinct roles of Lgr5 in postmitotic neurons. Copyright © 2017 the authors 0270-6474/17/379403-12$15.00/0.
Identification of a selective small molecule inhibitor of breast cancer stem cells.
Germain, Andrew R; Carmody, Leigh C; Morgan, Barbara; Fernandez, Cristina; Forbeck, Erin; Lewis, Timothy A; Nag, Partha P; Ting, Amal; VerPlank, Lynn; Feng, Yuxiong; Perez, Jose R; Dandapani, Sivaraman; Palmer, Michelle; Lander, Eric S; Gupta, Piyush B; Schreiber, Stuart L; Munoz, Benito
2012-05-15
A high-throughput screen (HTS) with the National Institute of Health-Molecular Libraries Small Molecule Repository (NIH-MLSMR) compound collection identified a class of acyl hydrazones to be selectively lethal to breast cancer stem cell (CSC) enriched populations. Medicinal chemistry efforts were undertaken to optimize potency and selectivity of this class of compounds. The optimized compound was declared as a probe (ML239) with the NIH Molecular Libraries Program and displayed greater than 20-fold selective inhibition of the breast CSC-like cell line (HMLE_sh_Ecad) over the isogenic control line (HMLE_sh_GFP). Copyright © 2012 Elsevier Ltd. All rights reserved.
Shaikh, Ambreen; Anand, Sandhya; Kapoor, Sona; Ganguly, Ranita; Bhartiya, Deepa
2017-04-01
Very small embryonic-like stem cells (VSELs) have been reported in various adult tissues, express pluripotent and primordial germ cells (PGCs) specific markers, are mobilized under stress/disease conditions, give rise to tissue committed progenitors and thus help regenerate and maintain homeostasis. The aim of the present study was to evaluate in vitro differentiation potential of VSELs using a quantitative approach. VSELs were collected from mouse bone marrow after 4 days of 5-fluorouracil (5-FU, 150 mg/Kg) treatment, further enriched by size based filtration and cultured on a feeder support in the presence of specific differentiation media. Cultured VSELs were found to differentiate into all three embryonic germ cell lineages, germ and hematopoietic cells after 14 days in culture. This was confirmed by studying Nestin, PDX-1, NKX2.5, DAZL, CD45 and other markers expression by various approaches. Very small, CD45 negative cells collected and enriched from GFP positive 5-FU treated mice bone marrow transitioned into CD45 positive cells in vitro thus demonstrating that VSELs can give rise to hematopoietic stem cells (HSCs). We envision that VSELs may be responsible for plasticity and ability of bone marrow cells to give rise to non-hematopoietic tissue progenitors of all 3 germ layers. Moreover the ability of VSELs to differentiate into germ cells as well as all the three lineages provides further evidence to support their pluripotent state and confirms developmental link between bone marrow VSELs and PGCs. The property of quiescence, no risk of teratoma formation and autologus source, make pluripotent VSELs a potential candidate to facilitate endogenous regeneration compared to cell replacement strategy envisioned using embryonic and induced pluripotent stem cells.
De Sousa, Paul A; Steeg, Rachel; Wachter, Elisabeth; Bruce, Kevin; King, Jason; Hoeve, Marieke; Khadun, Shalinee; McConnachie, George; Holder, Julie; Kurtz, Andreas; Seltmann, Stefanie; Dewender, Johannes; Reimann, Sascha; Stacey, Glyn; O'Shea, Orla; Chapman, Charlotte; Healy, Lyn; Zimmermann, Heiko; Bolton, Bryan; Rawat, Trisha; Atkin, Isobel; Veiga, Anna; Kuebler, Bernd; Serano, Blanca Miranda; Saric, Tomo; Hescheler, Jürgen; Brüstle, Oliver; Peitz, Michael; Thiele, Cornelia; Geijsen, Niels; Holst, Bjørn; Clausen, Christian; Lako, Majlinda; Armstrong, Lyle; Gupta, Shailesh K; Kvist, Alexander J; Hicks, Ryan; Jonebring, Anna; Brolén, Gabriella; Ebneth, Andreas; Cabrera-Socorro, Alfredo; Foerch, Patrik; Geraerts, Martine; Stummann, Tina C; Harmon, Shawn; George, Carol; Streeter, Ian; Clarke, Laura; Parkinson, Helen; Harrison, Peter W; Faulconbridge, Adam; Cherubin, Luca; Burdett, Tony; Trigueros, Cesar; Patel, Minal J; Lucas, Christa; Hardy, Barry; Predan, Rok; Dokler, Joh; Brajnik, Maja; Keminer, Oliver; Pless, Ole; Gribbon, Philip; Claussen, Carsten; Ringwald, Annette; Kreisel, Beate; Courtney, Aidan; Allsopp, Timothy E
2017-04-01
A fast track "Hot Start" process was implemented to launch the European Bank for Induced Pluripotent Stem Cells (EBiSC) to provide early release of a range of established control and disease linked human induced pluripotent stem cell (hiPSC) lines. Established practice amongst consortium members was surveyed to arrive at harmonised and publically accessible Standard Operations Procedures (SOPs) for tissue procurement, bio-sample tracking, iPSC expansion, cryopreservation, qualification and distribution to the research community. These were implemented to create a quality managed foundational collection of lines and associated data made available for distribution. Here we report on the successful outcome of this experience and work flow for banking and facilitating access to an otherwise disparate European resource, with lessons to benefit the international research community. ETOC: The report focuses on the EBiSC experience of rapidly establishing an operational capacity to procure, bank and distribute a foundational collection of established hiPSC lines. It validates the feasibility and defines the challenges of harnessing and integrating the capability and productivity of centres across Europe using commonly available resources currently in the field. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
El-Readi, Mahmoud Z; Eid, Hanaa H; Ashour, Mohamed L; Eid, Safaa Y; Labib, Rola M; Sporer, Frank; Wink, Michael
2013-11-01
This study aimed to evaluate the variations of the chemical composition and bioactivity of essential oils of Liquidambar styraciflua L. (Altingiaceae) collected in different seasons. The oils were analysed by GLC/FID and GLC/MS. The antioxidant activity was investigated by diphenylpicrylhydrazyl (DPPH) and superoxide anion radical scavenging assays and the deoxyribose degradation assay. Inhibition of both 5-lipoxygenase (5-LOX) and prostaglandin E2 (PGE2) production in hepatic cancer (HepG-2) cells were used to assess the anti-inflammatory activity. The cytotoxic activity was investigated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Altogether, 64 volatile secondary metabolites were identified. The major components of the leaf oil were d-limonene, α-pinene and β-pinene, and of the stem oil were germacrine D, α-cadinol, d-limonene, α-pinene, and β-pinene. Leaf and stem oils collected in spring could reduce DPPH● (IC50 = 3.17 and 2.19 mg/ml) and prevent the degradation of the deoxyribose sugar (IC50 = 17.55 and 14.29 μg/ml). The stem oil exhibited a higher inhibition of both 5-LOX and PGE2 than the leaf oil. The cytotoxic activity of leaf and stem oils was low in cancer cell lines (IC50 = 136.27 and 119.78 μg/ml in cervical cancer (HeLa) cells). Essential oils of L. styraciflua exhibited an interesting anti-inflammatory activity with low cytotoxicity, supporting its traditional use to treat inflammation. © 2013 Royal Pharmaceutical Society.
Vapniarsky, Natalia; Arzi, Boaz; Hu, Jerry C; Nolta, Jan A; Athanasiou, Kyriacos A
2015-10-01
The exciting potential for regenerating organs from autologous stem cells is on the near horizon, and adult dermis stem cells (DSCs) are particularly appealing because of the ease and relative minimal invasiveness of skin collection. A substantial number of reports have described DSCs and their potential for regenerating tissues from mesenchymal, ectodermal, and endodermal lineages; however, the exact niches of these stem cells in various skin types and their antigenic surface makeup are not yet clearly defined. The multilineage potential of DSCs appears to be similar, despite great variability in isolation and in vitro propagation methods. Despite this great potential, only limited amounts of tissues and clinical applications for organ regeneration have been developed from DSCs. This review summarizes the literature on DSCs regarding their niches and the specific markers they express. The concept of the niches and the differentiation capacity of cells residing in them along particular lineages is discussed. Furthermore, the advantages and disadvantages of widely used methods to demonstrate lineage differentiation are considered. In addition, safety considerations and the most recent advancements in the field of tissue engineering and regeneration using DSCs are discussed. This review concludes with thoughts on how to prospectively approach engineering of tissues and organ regeneration using DSCs. Our expectation is that implementation of the major points highlighted in this review will lead to major advancements in the fields of regenerative medicine and tissue engineering. Autologous dermis-derived stem cells are generating great excitement and efforts in the field of regenerative medicine and tissue engineering. The substantial impact of this review lies in its critical coverage of the available literature and in providing insight regarding niches, characteristics, and isolation methods of stem cells derived from the human dermis. Furthermore, it provides analysis of the current state-of-the-art regenerative approaches using human-derived dermal stem cells, with consideration of current guidelines, to assist translation toward therapeutic use. ©AlphaMed Press.
Vapniarsky, Natalia; Arzi, Boaz; Hu, Jerry C.; Nolta, Jan A.
2015-01-01
The exciting potential for regenerating organs from autologous stem cells is on the near horizon, and adult dermis stem cells (DSCs) are particularly appealing because of the ease and relative minimal invasiveness of skin collection. A substantial number of reports have described DSCs and their potential for regenerating tissues from mesenchymal, ectodermal, and endodermal lineages; however, the exact niches of these stem cells in various skin types and their antigenic surface makeup are not yet clearly defined. The multilineage potential of DSCs appears to be similar, despite great variability in isolation and in vitro propagation methods. Despite this great potential, only limited amounts of tissues and clinical applications for organ regeneration have been developed from DSCs. This review summarizes the literature on DSCs regarding their niches and the specific markers they express. The concept of the niches and the differentiation capacity of cells residing in them along particular lineages is discussed. Furthermore, the advantages and disadvantages of widely used methods to demonstrate lineage differentiation are considered. In addition, safety considerations and the most recent advancements in the field of tissue engineering and regeneration using DSCs are discussed. This review concludes with thoughts on how to prospectively approach engineering of tissues and organ regeneration using DSCs. Our expectation is that implementation of the major points highlighted in this review will lead to major advancements in the fields of regenerative medicine and tissue engineering. Significance Autologous dermis-derived stem cells are generating great excitement and efforts in the field of regenerative medicine and tissue engineering. The substantial impact of this review lies in its critical coverage of the available literature and in providing insight regarding niches, characteristics, and isolation methods of stem cells derived from the human dermis. Furthermore, it provides analysis of the current state-of-the-art regenerative approaches using human-derived dermal stem cells, with consideration of current guidelines, to assist translation toward therapeutic use. PMID:26253713
Anfodillo, Tommaso; Deslauriers, Annie; Menardi, Roberto; Tedoldi, Laura; Petit, Giai; Rossi, Sergio
2012-01-01
The diameter of vascular conduits increases towards the stem base. It has been suggested that this profile is an efficient anatomical feature for reducing the hydraulic resistance when trees grow taller. However, the mechanism that controls the cell diameter along the plant is not fully understood. The timing of cell differentiation along the stem was investigated. Cambial activity and cell differentiation were investigated in a Picea abies tree (11.5 m in height) collecting microsamples at nine different heights (from 1 to 9 m) along the stem with a 4 d time interval. Wood sections (8–12 μm thick) were stained and observed under a light microscope with polarized light to differentiate the developing xylem cells. Cell wall lignification was detected using cresyl violet acetate. The first enlarging cells appeared almost simultaneously along the tree axis indicating that cambium activation is not height-dependent. A significant increase in the duration of the cell expansion phase was observed towards the tree base: at 9 m from the ground, xylem cells expanded for 7 d, at 6 m for 14 d, and at 3 m for 19 d. The duration of the expansion phase is positively correlated with the lumen area of the tracheids (r2=0.68, P < 0.01) at the same height. By contrast, thickness of the cell wall of the earlywood did not show any trend with height. The lumen area of the conduits down the stem appeared linearly dependent on time during which differentiating cells remained in the expansion phase. However, the inductive signal of such long-distance patterned differentiation remains to be identified. PMID:22016427
Anfodillo, Tommaso; Deslauriers, Annie; Menardi, Roberto; Tedoldi, Laura; Petit, Giai; Rossi, Sergio
2012-01-01
The diameter of vascular conduits increases towards the stem base. It has been suggested that this profile is an efficient anatomical feature for reducing the hydraulic resistance when trees grow taller. However, the mechanism that controls the cell diameter along the plant is not fully understood. The timing of cell differentiation along the stem was investigated. Cambial activity and cell differentiation were investigated in a Picea abies tree (11.5 m in height) collecting microsamples at nine different heights (from 1 to 9 m) along the stem with a 4 d time interval. Wood sections (8-12 μm thick) were stained and observed under a light microscope with polarized light to differentiate the developing xylem cells. Cell wall lignification was detected using cresyl violet acetate. The first enlarging cells appeared almost simultaneously along the tree axis indicating that cambium activation is not height-dependent. A significant increase in the duration of the cell expansion phase was observed towards the tree base: at 9 m from the ground, xylem cells expanded for 7 d, at 6 m for 14 d, and at 3 m for 19 d. The duration of the expansion phase is positively correlated with the lumen area of the tracheids (r(2)=0.68, P < 0.01) at the same height. By contrast, thickness of the cell wall of the earlywood did not show any trend with height. The lumen area of the conduits down the stem appeared linearly dependent on time during which differentiating cells remained in the expansion phase. However, the inductive signal of such long-distance patterned differentiation remains to be identified.
Cigarette Smoke Induces Stem Cell Features of Pancreatic Cancer Cells via PAF1.
Nimmakayala, Rama Krishna; Seshacharyulu, Parthasarathy; Lakshmanan, Imayavaramban; Rachagani, Satyanarayana; Chugh, Seema; Karmakar, Saswati; Rauth, Sanchita; Vengoji, Raghupathy; Atri, Pranita; Talmon, Geoffrey A; Lele, Subodh M; Smith, Lynette M; Thapa, Ishwor; Bastola, Dhundy; Ouellette, Michel M; Batra, Surinder K; Ponnusamy, Moorthy P
2018-06-01
Cigarette smoking is a major risk factor for pancreatic cancer. Aggressive pancreatic tumors contain cancer cells with stem cell features. We investigated whether cigarette smoke induces stem cell features in pancreatic cancer cells. Kras G12D ; Pdx1-Cre (KC) mice were exposed to cigarette smoke or clean air (controls) for up to 20 weeks; pancreata were collected and analyzed by histology, quantitative reverse transcription PCR, and confocal immunofluorescence microscopy. HPNE and Capan1 cells were exposed to cigarette smoke extract (CSE), nicotine and nicotine-derived carcinogens (NNN or NNK), or clean air (controls) for 80 days and evaluated for stem cell markers and features using flow cytometry-based autofluorescence, sphere formation, and immunoblot assays. Proteins were knocked down in cells with small interfering RNAs. We performed RNA sequencing analyses of CSE-exposed cells. We used chromatin immunoprecipitation assays to confirm the binding of FOS like 1, AP-1 transcription factor subunit (FOSL1) to RNA polymerase II-associated factor (PAF1) promoter. We obtained pancreatic ductal adenocarcinoma (PDAC) and matched non-tumor tissues (n=15) and performed immunohistochemical analyses. Chronic exposure of HPNE and Capan1 cells to CSE caused them to increase markers of stem cells, including autofluorescence and sphere formation, compared to control cells. These cells increased expression of ABCG2, SOX9 and PAF1, via cholinergic receptor nicotinic alpha 7 subunit (CHRNA7) signaling to mitogen-activated protein kinase 1 and FOSL1. Pancreatic cell lines with knockdown of PAF1 did not develop features of stem cells upon exposure to CSE. Exposure of cells to NNN and NNK led to increased expression of CHRNA7, FOSL1, and PAF1 along with stem cell features. Pancreata from KC mice exposed to cigarette smoke had increased levels of PAF1 mRNA and protein, compared with control mice, as well as increased expression of SOX9. Levels of PAF1 and FOSL1 were increased in PDAC tissues, especially those from smokers, compared with non-tumor pancreatic tissue. CSE exposure increased expression of PHD finger protein 5A, a pluripotent transcription factor and its interaction with PAF1. Exposure to cigarette smoke activates stem cell features of pancreatic cells, via CHRNA7 signaling and FOSL1 activation of PAF1 expression. Levels of PAF1 are increased in pancreatic tumors of humans and mice with chronic cigarette smoke exposure. Copyright © 2018 AGA Institute. Published by Elsevier Inc. All rights reserved.
Investigation for the differentiation process of mouse ES cells by Raman spectroscopy
NASA Astrophysics Data System (ADS)
Yamaguchi, Yoshinori; El-Hagrasy, Maha A.; Shimizu, Eiichi; Saito, Masato; Tamiya, Eiichi
2012-03-01
The arrangement of differentiated pluripotent embryonic stem cells into three-dimensional aggregates, which are known as embryonic bodies, is a main step for progressing the embryonic stem cells differentiation. In this work, embryonic stem cells that were directly produced from the hanging drop step as a three-dimensional structure with no further twodimensional differentiation were diagnosed with Raman spectroscopy as a non-invasive and label-free technique. Raman spectroscopy was employed to discriminate between mouse embryonic bodies of different degrees of maturation. EBs were prepared applying the hanging drop method. The Raman scattering measurements were obtained in vitro with a Nanophoton RAMAN-11 micro-spectrometer (Japan: URL: www.nanophoton.jp equipped with an Olympus XLUM Plan FLN 20X/NA= 1.0 objective lens. Spectral data were smoothed, baseline corrected and normalized to the a welldefined intense 1003 cm-1 band (phenylalanine) which is insensitive to changes in conformation or environment. The differentiation process of embryonic stem cells is initiated by the removal of LIF from culture medium. 1, 7 and 17-dayold embryonic stem cells were collected and investigated by Raman spectroscopy. The main differences involve bands which decreased with maturation such as: 784 cm-1 (U, T, C ring br DNA/RNA, O-P-O str); 1177 cm-1 (cytosine, guanine) and 1578 cm-1 (G, A). It was found that with the progress of differentiation the protein content was amplified. The increase of protein to nucleic acid ratio was also previously observed with the progress of the differentiation process. Raman spectroscopy has the potential to distinguish between the Raman signatures of live embryonic stem cells with different degrees of maturation.
Barnawi, Rayanah; Al-Khaldi, Samiyah; Majed Sleiman, Ghida; Sarkar, Abdullah; Al-Dhfyan, Abdullah; Al-Mohanna, Falah; Ghebeh, Hazem; Al-Alwan, Monther
2016-12-01
An emerging dogma shows that tumors are initiated and maintained by a subpopulation of cancer cells that hijack some stem cell features and thus referred to as "cancer stem cells" (CSCs). The exact mechanism that regulates the maintenance of CSC pool remains largely unknown. Fascin is an actin-bundling protein that we have previously demonstrated to be a major regulator of breast cancer chemoresistance and metastasis, two cardinal features of CSCs. Here, we manipulated fascin expression in breast cancer cell lines and used several in vitro and in vivo approaches to examine the relationship between fascin expression and breast CSCs. Fascin knockdown significantly reduced stem cell-like phenotype (CD44 hi /CD24 lo and ALDH + ) and reversal of epithelial to mesenchymal transition. Interestingly, expression of the embryonic stem cell transcriptional factors (Oct4, Nanog, Sox2, and Klf4) was significantly reduced when fascin expression was down-regulated. Functionally, fascin-knockdown cells were less competent in forming colonies and tumorspheres, consistent with lower basal self-renewal activity and higher susceptibility to chemotherapy. Fascin effect on CSC chemoresistance and self-renewability was associated with Notch signaling. Activation of Notch induced the relevant downstream targets predominantly in the fascin-positive cells. Limiting-dilution xenotransplantation assay showed higher frequency of tumor-initiating cells in the fascin-positive group. Collectively, our data demonstrated fascin as a critical regulator of breast CSC pool at least partially via activation of the Notch self-renewal signaling pathway and modification of the expression embryonic transcriptional factors. Targeting fascin may halt CSCs and thus presents a novel therapeutic approach for effective treatment of breast cancer. Stem Cells 2016;34:2799-2813 Video Highlight: https://youtu.be/GxS4fJ_Ow-o. © 2016 AlphaMed Press.
Atractylenolide I-mediated Notch pathway inhibition attenuates gastric cancer stem cell traits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Li; Mao, Rurong; Shen, Ke
Highlights: • This paper supports the anti-tumor effects of AT-I on gastric cancer in vitro. • AT-I attenuates gastric cancer stem cell traits. • It is the systematic study regarding AT-I suppression of Notch pathway in GC and GCSLCs. - Abstract: Atractylenolide I (AT-I), one of the main naturally occurring compounds of Rhizoma Atractylodis Macrocephalae, has remarkable anti-cancer effects on various cancers. However, its effects on the treatment of gastric cancer remain unclear. Via multiple cellular and molecular approaches, we demonstrated that AT-I could potently inhibit cancer cell proliferation and induce apoptosis through inactivating Notch pathway. AT-I treatment led tomore » the reduction of expressions of Notch1, Jagged1, and its downstream Hes1/ Hey1. Our results showed that AT-I inhibited the self-renewal capacity of gastric stem-like cells (GCSLCs) by suppression of their sphere formation capacity and cell viability. AT-I attenuated gastric cancer stem cell (GCSC) traits partly through inactivating Notch1, leading to reducing the expressions of its downstream target Hes1, Hey1 and CD44 in vitro. Collectively, our results suggest that AT-I might develop as a potential therapeutic drug for the treatment of gastric cancer.« less
Gelsomino, L; Panza, S; Giordano, C; Barone, I; Gu, G; Spina, E; Catalano, S; Fuqua, S; Andò, S
2018-04-24
The detection of recurrent mutations affecting the hormone binding domain (HBD) of estrogen receptor alpha (ERα/ESR1) in endocrine therapy-resistant and metastatic breast cancers has prompted interest in functional characterization of these genetic alterations. Here, we explored the role of HBD-ESR1 mutations in influencing the behavior of breast cancer stem cells (BCSCs), using various BC cell lines stably expressing wild-type or mutant (Y537 N, Y537S, D538G) ERα. Compared to WT-ERα clones, mutant cells showed increased CD44 + /CD24 - ratio, mRNA levels of stemness genes, Mammosphere Forming Efficiency (MFE), Self-Renewal and migratory capabilities. Mutant clones exhibited high expression of NOTCH receptors/ligands/target genes and blockade of NOTCH signaling reduced MFE and migratory potential. Mutant BCSC activity was dependent on ERα phosphorylation at serine 118, since its inhibition decreased MFE and NOTCH4 activation only in mutant cells. Collectively, we demonstrate that the expression of HBD-ESR1 mutations may drive BC cells to acquire stem cell traits through ER/NOTCH4 interplay. We propose the early detection of HBD-ESR1 mutations as a challenge in precision medicine strategy, suggesting the development of tailored-approaches (i.e. NOTCH inhibitors) to prevent disease development and metastatic spread in BC mutant-positive patients. Copyright © 2018 Elsevier B.V. All rights reserved.
Reduced Erg Dosage Impairs Survival of Hematopoietic Stem and Progenitor Cells.
Xie, Ying; Koch, Mia Lee; Zhang, Xin; Hamblen, Melanie J; Godinho, Frank J; Fujiwara, Yuko; Xie, Huafeng; Klusmann, Jan-Henning; Orkin, Stuart H; Li, Zhe
2017-07-01
ERG, an ETS family transcription factor frequently overexpressed in human leukemia, has been implicated as a key regulator of hematopoietic stem cells. However, how ERG controls normal hematopoiesis, particularly at the stem and progenitor cell level, and how it contributes to leukemogenesis remain incompletely understood. Using homologous recombination, we generated an Erg knockdown allele (Erg kd ) in which Erg expression can be conditionally restored by Cre recombinase. Erg kd/kd animals die at E10.5-E11.5 due to defects in endothelial and hematopoietic cells, but can be completely rescued by Tie2-Cre-mediated restoration of Erg in these cells. In Erg kd/+ mice, ∼40% reduction in Erg dosage perturbs both fetal liver and bone marrow hematopoiesis by reducing the numbers of Lin - Sca-1 + c-Kit + (LSK) hematopoietic stem and progenitor cells (HSPCs) and megakaryocytic progenitors. By genetic mosaic analysis, we find that Erg-restored HSPCs outcompete Erg kd/+ HSPCs for contribution to adult hematopoiesis in vivo. This defect is in part due to increased apoptosis of HSPCs with reduced Erg dosage, a phenotype that becomes more drastic during 5-FU-induced stress hematopoiesis. Expression analysis reveals that reduced Erg expression leads to changes in expression of a subset of ERG target genes involved in regulating survival of HSPCs, including increased expression of a pro-apoptotic regulator Bcl2l11 (Bim) and reduced expression of Jun. Collectively, our data demonstrate that ERG controls survival of HSPCs, a property that may be used by leukemic cells. Stem Cells 2017;35:1773-1785. © 2017 AlphaMed Press.
Germ stem cells are active in postnatal mouse ovary under physiological conditions
Guo, Kun; Li, Chao-hui; Wang, Xin-yi; He, Da-jian; Zheng, Ping
2016-01-01
STUDY HYPOTHESIS Are active ovarian germ stem cells present in postnatal mouse ovaries under physiological conditions? STUDY FINDING Active ovarian germ stem cells exist and function in adult mouse ovaries under physiological conditions. WHAT IS KNOWN ALREADY In vitro studies suggested the existence of germ stem cells in postnatal ovaries of mouse, pig and human. However, in vivo studies provided evidence against the existence of active germ stem cells in postnatal mouse ovaries. Thus, it remains controversial whether such germ stem cells really exist and function in vivo in postnatal mammalian ovaries. STUDY DESIGN, SAMPLES/MATERIALS, METHODS Octamer-binding transcription factor 4 (Oct4)-MerCreMer transgenic mice were crossed with R26R-enhanced yellow fluorescent protein (EYFP) mice to establish a tamoxifen-inducible tracing system so that Oct4-expressing potential ovarian germ stem cells in young adult mice (5–6 weeks old) can be labeled with EYFP. The germ cell activities of DNA replication, mitotic division, entry into meiosis and progression to primordial follicle stage were investigated by means of immunofluorescent staining of ovarian tissues collected at different time points post-tamoxifen injection (1 day, 3 days, 2 months and 4 months). Meiosis entry and primordial follicle formation were also measured by EYFP-labeled single-cell RT–PCR. Germ cell proliferation and mitotic division were examined through 5-bromodeoxyuridine triphosphate incorporation assay. At each time point, ovaries from two to three animals were used for each set of experiment. MAIN RESULTS AND THE ROLE OF CHANCE By labeling the Oct4-expressing small germ cells and tracing their fates for up to 4 months, we observed persistent meiosis entry and primordial follicle replenishment. Furthermore, we captured the transient processes of mitotic DNA replication as well as mitotic division of the marked germ cells at various time periods after tracing. These lines of evidence unambiguously support the presence of active germ stem cells in postnatal ovaries and their function in replenishing primordial follicle pool under physiological conditions. Moreover, we pointed out that Oct4+ deleted in azoospermia-like (Dazl)− but not Oct4+Dazl+ or Oct4+ DEAD (Asp–Glu–Ala–Asp) Box Polypeptide 4 (Ddx4)+ cells contain a population of germ stem cells in mouse ovary. LIMITATIONS, REASONS FOR CAUTION This study was conducted in mice. Whether or not the results are applicable to human remain unclear. The future work should aim at identifying the specific ovarian germ stem cell marker and evaluating the significance of these stem cells to normal ovarian function. WIDER IMPLICATIONS OF THE FINDINGS Clarifying the existence of active germ stem cells and their functional significance in postnatal mammalian ovaries could provide new insights in understanding the mechanism of ovarian aging and failure. LARGE SCALE DATA Not applicable. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the National Key Basic Research Program of China (grant number 2012CBA01300) and the National Natural Science Foundation of China to P.Z. (31571484). No competing interests are reported. PMID:26916381
Characteristics of mesenchymal stem cells isolated from bone marrow of giant panda.
Liu, Yuliang; Liu, Yang; Yie, Shangmian; Lan, Jingchao; Pi, Jinkui; Zhang, Zhihe; Huang, He; Cai, Zhigang; Zhang, Ming; Cai, Kailai; Wang, Hairui; Hou, Rong
2013-09-01
In present study, we report on bone marrow (BM) mesenchymal stem cells (MSCs) that are isolated from giant pandas. Cells were collected from the BM of two stillborn giant pandas. The cells were cultured and expanded in 10% fetal bovine serum medium. Cell morphology was observed under an inverted microscopy, and the proliferation potential of the cells was evaluated by counting cell numbers for eight consecutive days. Differentiation potentials of the cells were determined by using a variety of differentiation protocols for osteocytes, adipocytes, neuron cells, and cardiomyocytes. Meanwhile, the specific gene expressions for MSCs or differentiated cells were analyzed by RT-PCR. The isolated cells exhibited a fibroblast-like morphology; expressed mesenchymal specific markers such as cluster of differentiation 73 (CD73), SRY (sex determining region Y)-box 2 (SOX-2), guanine nucleotide-binding protein-like 3 (GNL3), and stem cell factor receptor (SCFR); and could be differentiated into osteocytes and adipocytes that were characterized by Alizarin Red and Oil Red O staining. Under appropriate induction conditions, these cells were also able to differentiate into neuroglial-like or myocardial-like cells that expressed specific myocardial markers such as GATA transcription factors 4 (GATA-4), cardiac troponin T (cTnT), and myosin heavy chain 7B (MYH7B), or neural specific markers such as Nestin and glial fibrillary acidic protein (GFAP). This study demonstrated stem cells recovery and growth from giant pandas. The findings suggest that cells isolated from the BM of giant pandas have a high proliferative capacity and multiple differentiation potential in vitro which might aid conservation efforts.
Mesenchymal Stem Cells Modulate Differentiation of Myeloid Progenitor Cells During Inflammation.
Amouzegar, Afsaneh; Mittal, Sharad K; Sahu, Anuradha; Sahu, Srikant K; Chauhan, Sunil K
2017-06-01
Mesenchymal stem cells (MSCs) possess distinct immunomodulatory properties and have tremendous potential for use in therapeutic applications in various inflammatory diseases. MSCs have been shown to regulate pathogenic functions of mature myeloid inflammatory cells, such as macrophages and neutrophils. Intriguingly, the capacity of MSCs to modulate differentiation of myeloid progenitors (MPs) to mature inflammatory cells remains unknown to date. Here, we report the novel finding that MSCs inhibit the expression of differentiation markers on MPs under inflammatory conditions. We demonstrate that the inhibitory effect of MSCs is dependent on direct cell-cell contact and that this intercellular contact is mediated through interaction of CD200 expressed by MSCs and CD200R1 expressed by MPs. Furthermore, using an injury model of sterile inflammation, we show that MSCs promote MP frequencies and suppress infiltration of inflammatory cells in the inflamed tissue. We also find that downregulation of CD200 in MSCs correlates with abrogation of their immunoregulatory function. Collectively, our study provides unequivocal evidence that MSCs inhibit differentiation of MPs in the inflammatory environment via CD200-CD200R1 interaction. Stem Cells 2017;35:1532-1541. © 2017 AlphaMed Press.
Brick, David J.; Nethercott, Hubert E.; Montesano, Samantha; Banuelos, Maria G.; Stover, Alexander E.; Schutte, Soleil Sun; O’Dowd, Diane K.; Hagerman, Randi J.; Ono, Michele; Hessl, David R.; Tassone, Flora
2014-01-01
The autism spectrum disorders (ASDs) comprise a set of neurodevelopmental disorders that are, at best, poorly understood but are the fastest growing developmental disorders in the United States. Because animal models of polygenic disorders such as the ASDs are difficult to validate, the derivation of induced pluripotent stem cells (iPSCs) by somatic cell reprogramming offers an alternative strategy for identifying the cellular mechanisms contributing to ASDs and the development of new treatment options. Access to statistically relevant numbers of ASD patient cell lines, however, is still a limiting factor for the field. We describe a new resource with more than 200 cell lines (fibroblasts, iPSC clones, neural stem cells, glia) from unaffected volunteers and patients with a wide range of clinical ASD diagnoses, including fragile X syndrome. We have shown that both normal and ASD-specific iPSCs can be differentiated toward a neural stem cell phenotype and terminally differentiated into action-potential firing neurons and glia. The ability to evaluate and compare data from a number of different cell lines will facilitate greater insight into the cause or causes and biology of the ASDs and will be extremely useful for uncovering new therapeutic and diagnostic targets. Some drug treatments have already shown promise in reversing the neurobiological abnormalities in iPSC-based models of ASD-associated diseases. The ASD Stem Cell Resource at the Children’s Hospital of Orange County will continue expanding its collection and make all lines available on request with the goal of advancing the use of ASD patient cells as disease models by the scientific community. PMID:25273538
Conditioned Medium from Periodontal Ligament Stem Cells Enhances Periodontal Regeneration.
Nagata, Mizuki; Iwasaki, Kengo; Akazawa, Keiko; Komaki, Motohiro; Yokoyama, Naoki; Izumi, Yuichi; Morita, Ikuo
2017-05-01
Periodontal disease is one of the most common infectious diseases in adults and is characterized by the destruction of tooth-supporting tissues. Mesenchymal stem cells (MSCs) comprise the mesoderm-originating stem cell population, which has been studied and used for cell therapy. However, because of the lower rate of cell survival after MSC transplantation in various disease models, paracrine functions of MSCs have been receiving increased attention as a regenerative mechanism. The aim of this study was to investigate the regenerative potential of transplanted conditioned medium (CM) obtained from cultured periodontal ligament stem cells (PDLSCs), the adult stem cell population in tooth-supporting tissues, using a rat periodontal defect model. Cell-free CM was collected from PDLSCs and fibroblasts, using ultrafiltration and transplanted into surgically created periodontal defects. Protein content of CM was examined by antibody arrays. Formation of new periodontal tissues was analyzed using microcomputed tomography and histological sections. PDLSC-CM transplantation enhanced periodontal tissue regeneration in a concentration-dependent manner, whereas fibroblast-CM did not show any regenerative function. Proteomic analysis revealed that extracellular matrix proteins, enzymes, angiogenic factors, growth factors and cytokines were contained in PDLSC-CM. Furthermore, PDLSC-CM transplantation resulted in the decreased mRNA level of tumor necrosis factor-α (TNF-α) in healing periodontal tissues. In addition, we found that PDLSC-CM suppressed the mRNA level of TNF-α in the monocyte/macrophage cell line, RAW cells, stimulated with IFN-γ. Our findings suggested that PDLSC-CM enhanced periodontal regeneration by suppressing the inflammatory response through TNF-α production, and transplantation of PDLSC-CM could be a novel approach for periodontal regenerative therapy.
Conditioned Medium from Periodontal Ligament Stem Cells Enhances Periodontal Regeneration
Nagata, Mizuki; Akazawa, Keiko; Komaki, Motohiro; Yokoyama, Naoki; Izumi, Yuichi; Morita, Ikuo
2017-01-01
Periodontal disease is one of the most common infectious diseases in adults and is characterized by the destruction of tooth-supporting tissues. Mesenchymal stem cells (MSCs) comprise the mesoderm-originating stem cell population, which has been studied and used for cell therapy. However, because of the lower rate of cell survival after MSC transplantation in various disease models, paracrine functions of MSCs have been receiving increased attention as a regenerative mechanism. The aim of this study was to investigate the regenerative potential of transplanted conditioned medium (CM) obtained from cultured periodontal ligament stem cells (PDLSCs), the adult stem cell population in tooth-supporting tissues, using a rat periodontal defect model. Cell-free CM was collected from PDLSCs and fibroblasts, using ultrafiltration and transplanted into surgically created periodontal defects. Protein content of CM was examined by antibody arrays. Formation of new periodontal tissues was analyzed using microcomputed tomography and histological sections. PDLSC-CM transplantation enhanced periodontal tissue regeneration in a concentration-dependent manner, whereas fibroblast-CM did not show any regenerative function. Proteomic analysis revealed that extracellular matrix proteins, enzymes, angiogenic factors, growth factors and cytokines were contained in PDLSC-CM. Furthermore, PDLSC-CM transplantation resulted in the decreased mRNA level of tumor necrosis factor-α (TNF-α) in healing periodontal tissues. In addition, we found that PDLSC-CM suppressed the mRNA level of TNF-α in the monocyte/macrophage cell line, RAW cells, stimulated with IFN-γ. Our findings suggested that PDLSC-CM enhanced periodontal regeneration by suppressing the inflammatory response through TNF-α production, and transplantation of PDLSC-CM could be a novel approach for periodontal regenerative therapy. PMID:28027709
Brick, David J; Nethercott, Hubert E; Montesano, Samantha; Banuelos, Maria G; Stover, Alexander E; Schutte, Soleil Sun; O'Dowd, Diane K; Hagerman, Randi J; Ono, Michele; Hessl, David R; Tassone, Flora; Schwartz, Philip H
2014-11-01
The autism spectrum disorders (ASDs) comprise a set of neurodevelopmental disorders that are, at best, poorly understood but are the fastest growing developmental disorders in the United States. Because animal models of polygenic disorders such as the ASDs are difficult to validate, the derivation of induced pluripotent stem cells (iPSCs) by somatic cell reprogramming offers an alternative strategy for identifying the cellular mechanisms contributing to ASDs and the development of new treatment options. Access to statistically relevant numbers of ASD patient cell lines, however, is still a limiting factor for the field. We describe a new resource with more than 200 cell lines (fibroblasts, iPSC clones, neural stem cells, glia) from unaffected volunteers and patients with a wide range of clinical ASD diagnoses, including fragile X syndrome. We have shown that both normal and ASD-specific iPSCs can be differentiated toward a neural stem cell phenotype and terminally differentiated into action-potential firing neurons and glia. The ability to evaluate and compare data from a number of different cell lines will facilitate greater insight into the cause or causes and biology of the ASDs and will be extremely useful for uncovering new therapeutic and diagnostic targets. Some drug treatments have already shown promise in reversing the neurobiological abnormalities in iPSC-based models of ASD-associated diseases. The ASD Stem Cell Resource at the Children's Hospital of Orange County will continue expanding its collection and make all lines available on request with the goal of advancing the use of ASD patient cells as disease models by the scientific community. ©AlphaMed Press.
Revealing 3D Ultrastructure and Morphology of Stem Cell Spheroids by Electron Microscopy.
Jaros, Josef; Petrov, Michal; Tesarova, Marketa; Hampl, Ales
2017-01-01
Cell culture methods have been developed in efforts to produce biologically relevant systems for developmental and disease modeling, and appropriate analytical tools are essential. Knowledge of ultrastructural characteristics represents the basis to reveal in situ the cellular morphology, cell-cell interactions, organelle distribution, niches in which cells reside, and many more. The traditional method for 3D visualization of ultrastructural components, serial sectioning using transmission electron microscopy (TEM), is very labor-intensive due to contentious TEM slice preparation and subsequent image processing of the whole collection. In this chapter, we present serial block-face scanning electron microscopy, together with complex methodology for spheroid formation, contrasting of cellular compartments, image processing, and 3D visualization. The described technique is effective for detailed morphological analysis of stem cell spheroids, organoids, as well as organotypic cell cultures.
Zambetti, Noemi A; Ping, Zhen; Chen, Si; Kenswil, Keane J G; Mylona, Maria A; Sanders, Mathijs A; Hoogenboezem, Remco M; Bindels, Eric M J; Adisty, Maria N; Van Strien, Paulina M H; van der Leije, Cindy S; Westers, Theresia M; Cremers, Eline M P; Milanese, Chiara; Mastroberardino, Pier G; van Leeuwen, Johannes P T M; van der Eerden, Bram C J; Touw, Ivo P; Kuijpers, Taco W; Kanaar, Roland; van de Loosdrecht, Arjan A; Vogl, Thomas; Raaijmakers, Marc H G P
2016-11-03
Mesenchymal niche cells may drive tissue failure and malignant transformation in the hematopoietic system, but the underlying molecular mechanisms and relevance to human disease remain poorly defined. Here, we show that perturbation of mesenchymal cells in a mouse model of the pre-leukemic disorder Shwachman-Diamond syndrome (SDS) induces mitochondrial dysfunction, oxidative stress, and activation of DNA damage responses in hematopoietic stem and progenitor cells. Massive parallel RNA sequencing of highly purified mesenchymal cells in the SDS mouse model and a range of human pre-leukemic syndromes identified p53-S100A8/9-TLR inflammatory signaling as a common driving mechanism of genotoxic stress. Transcriptional activation of this signaling axis in the mesenchymal niche predicted leukemic evolution and progression-free survival in myelodysplastic syndrome (MDS), the principal leukemia predisposition syndrome. Collectively, our findings identify mesenchymal niche-induced genotoxic stress in heterotypic stem and progenitor cells through inflammatory signaling as a targetable determinant of disease outcome in human pre-leukemia. Copyright © 2016 Elsevier Inc. All rights reserved.
Yang, Yuanyuan; Zhang, Xiaobai; Yi, Li; Hou, Zhenzhen; Chen, Jiayu; Kou, Xiaochen; Zhao, Yanhong; Wang, Hong; Sun, Xiao-Fang; Jiang, Cizhong; Wang, Yixuan; Gao, Shaorong
2016-01-01
Conventional primed human embryonic stem cells and induced pluripotent stem cells (iPSCs) exhibit molecular and biological characteristics distinct from pluripotent stem cells in the naïve state. Although naïve pluripotent stem cells show much higher levels of self-renewal ability and multidifferentiation capacity, it is unknown whether naïve iPSCs can be generated directly from patient somatic cells and will be superior to primed iPSCs. In the present study, we used an established 5i/L/FA system to directly reprogram fibroblasts of a patient with β-thalassemia into transgene-free naïve iPSCs with molecular signatures of ground-state pluripotency. Furthermore, these naïve iPSCs can efficiently produce cross-species chimeras. Importantly, using the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 nuclease genome editing system, these naïve iPSCs exhibit significantly improved gene-correction efficiencies compared with the corresponding primed iPSCs. Furthermore, human naïve iPSCs could be directly generated from noninvasively collected urinary cells, which are easily acquired and thus represent an excellent cell resource for further clinical trials. Therefore, our findings demonstrate the feasibility and superiority of using patient-specific iPSCs in the naïve state for disease modeling, gene editing, and future clinical therapy. In the present study, transgene-free naïve induced pluripotent stem cells (iPSCs) directly converted from the fibroblasts of a patient with β-thalassemia in a defined culture system were generated. These naïve iPSCs, which show ground-state pluripotency, exhibited significantly improved single-cell cloning ability, recovery capacity, and gene-targeting efficiency compared with conventional primed iPSCs. These results provide an improved strategy for personalized treatment of genetic diseases such as β-thalassemia. ©AlphaMed Press.
Yang, Yuanyuan; Zhang, Xiaobai; Yi, Li; Hou, Zhenzhen; Chen, Jiayu; Kou, Xiaochen; Zhao, Yanhong; Wang, Hong; Sun, Xiao-Fang; Jiang, Cizhong
2016-01-01
Conventional primed human embryonic stem cells and induced pluripotent stem cells (iPSCs) exhibit molecular and biological characteristics distinct from pluripotent stem cells in the naïve state. Although naïve pluripotent stem cells show much higher levels of self-renewal ability and multidifferentiation capacity, it is unknown whether naïve iPSCs can be generated directly from patient somatic cells and will be superior to primed iPSCs. In the present study, we used an established 5i/L/FA system to directly reprogram fibroblasts of a patient with β-thalassemia into transgene-free naïve iPSCs with molecular signatures of ground-state pluripotency. Furthermore, these naïve iPSCs can efficiently produce cross-species chimeras. Importantly, using the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 nuclease genome editing system, these naïve iPSCs exhibit significantly improved gene-correction efficiencies compared with the corresponding primed iPSCs. Furthermore, human naïve iPSCs could be directly generated from noninvasively collected urinary cells, which are easily acquired and thus represent an excellent cell resource for further clinical trials. Therefore, our findings demonstrate the feasibility and superiority of using patient-specific iPSCs in the naïve state for disease modeling, gene editing, and future clinical therapy. Significance In the present study, transgene-free naïve induced pluripotent stem cells (iPSCs) directly converted from the fibroblasts of a patient with β-thalassemia in a defined culture system were generated. These naïve iPSCs, which show ground-state pluripotency, exhibited significantly improved single-cell cloning ability, recovery capacity, and gene-targeting efficiency compared with conventional primed iPSCs. These results provide an improved strategy for personalized treatment of genetic diseases such as β-thalassemia. PMID:26676643
Substantial contribution of extrinsic risk factors to cancer development
Wu, Song; Powers, Scott; Zhu, Wei; Hannun, Yusuf A
2015-01-01
Summary Recent research has highlighted a strong correlation between tissue-specific cancer risk and the lifetime number of tissue-specific stem cell divisions. Whether such correlation implies a high unavoidable intrinsic cancer risk has become a key public health debate with dissemination of the ‘bad luck’ hypothesis. Here we provide evidence that intrinsic risk factors contribute only modestly (<10~30%) to cancer development. First, we demonstrate that the correlation between stem-cell division and cancer risk does not distinguish between the effects of intrinsic and extrinsic factors. Next, we show that intrinsic risk is better estimated by the lower bound risk controlling for total stem cell divisions. Finally, we show that the rates of endogenous mutation accumulation by intrinsic processes are not sufficient to account for the observed cancer risks. Collectively, we conclude that cancer risk is heavily influenced by extrinsic factors. These results carry immense consequences for strategizing cancer prevention, research, and public health. PMID:26675728
Su, Yan; Andrews, James; Huang, Hong; Wang, Yue; Kong, Liangliang; Cannon, Peter; Xu, Ping
2016-05-23
PubMed is a widely used database for scientists to find biomedical-related literature. Due to the complexity of the selected research subject and its interdisciplinary nature, as well as the exponential growth in the number of disparate pieces of biomedical literature, it is an overwhelming challenge for scientists to define the right search strategies and quickly locate all related information. Specialized subsets and groupings of controlled vocabularies, such as Medical Subject Headings (MeSH), can enhance information retrieval in specialized domains, such as stem cell research. There is a need to develop effective search strategies and convenient solutions for knowledge organization in stem cell research. The understanding of the interrelationships between these MeSH terms also facilitates the building of knowledge organization systems in related subject fields. This study collected empirical data for MeSH-related terms from stem cell literature and developed a novel approach that uses both automation and expert-selection to create a set of terms that supports enhanced retrieval. The selected MeSH terms were reconstructed into a classified thesaurus that can guide researchers towards a successful search and knowledge organization of stem cell literature. First, 4253 MeSH terms were harvested from a sample of 5527 stem cell related research papers from the PubMed database. Next, unrelated terms were filtered out based on term frequency and specificity. Precision and recall measures were used to help identify additional valuable terms, which were mostly non-MeSH terms. The study identified 15 terms that specifically referred to stem cell research for information retrieval, which would yield a higher precision (97.7 %) and recall (94.4 %) rates in comparison to other approaches. In addition, 128 root MeSH terms were selected to conduct knowledge organization of stem cell research in categories of anatomy, disease, and others. This study presented a novel strategy and procedure to reengineer term selections of the MeSH thesaurus for literature retrieval and knowledge organization using stem cell research as a case. It could help scientists to select their own search terms and build up a thesaurus-based knowledge organization system in interested and interdisciplinary research subject areas.
Cryopreservation of putative pre-pubertal bovine spermatogonial stem cells by slow freezing.
Kim, Ki-Jung; Lee, Yong-An; Kim, Bang-Jin; Kim, Yong-Hee; Kim, Byung-Gak; Kang, Hyun-Gu; Jung, Sang-Eun; Choi, Sun-Ho; Schmidt, Jonathan A; Ryu, Buom-Yong
2015-04-01
Development of techniques for the preservation of mammalian spermatogonial stem cells (SSCs) is a critical step in commercial application of SSC based technologies, including species preservation, amplification of agriculturally valuable germ lines, and human fertility preservations. The objective of this study was to develop an efficient cryopreservation protocol for preservation of bovine SSCs using a slow freezing technique. To maximize the efficiency of SSC cryopreservation, the effects of various methods (tissue vs. cell freezing) and cryoprotective agents (trehalose, sucrose, and polyethylene glycol [PEG]) were tested. Following thawing, cells were enriched for undifferentiated spermatogonia by differential plating and evaluated for recovery rate, proliferation capacity, and apoptosis. Additionally, putative stem cell activity was assessed using SSC xenotransplantation. The recovery rate, and proliferation capacity of undifferentiated spermatogonia were significantly greater for germ cells frozen using tissue freezing methods compared to cell freezing methods. Cryopreservation in the presence of 200 mM trehalose resulted in significantly greater recovery rate, proliferation capacity, and apoptosis of germ cells compared to control. Furthermore, cryopreservation using the tissue freezing method in the presence of 200 mM trehalose resulted in the production of colonies of donor-derived germ cells after xenotransplantation into recipient mouse testes, indicating putative stem cell function. Collectively, these data indicate that cryopreservation using tissue freezing methods in the presence of 200 mM trehalose is an efficient cryopreservation protocol for bovine SSCs. Copyright © 2015 Elsevier Inc. All rights reserved.
Melanoma induced immunosuppression is mediated by hematopoietic dysregulation.
Kamran, Neha; Li, Youping; Sierra, Maria; Alghamri, Mahmoud S; Kadiyala, Padma; Appelman, Henry D; Edwards, Marta; Lowenstein, Pedro R; Castro, Maria G
2018-01-01
Tumors are associated with expansion of immunosuppressive cells such as tumor associated macrophages (TAMs), regulatory T cells (Tregs) and myeloid derived suppressor cells (MDSCs). These cells promote tumor growth, angiogenesis, metastasis and immune escape. Cancer patients frequently present symptoms such as anemia, leukocytosis and/or cytopenia; associated with poor prognosis. To uncover tumor-mediated hematopoietic abnormalities and identify novel targets that can be harnessed to improve tumor-specific immune responses, we investigated the hematopoietic stem and progenitor cell compartment in melanoma bearing mice. We show that melanoma growth results in expansion of myeloid lineages such as MDSCs, macrophages and DCs along with a reduction in mature RBCs and platelets. Mature B lymphocytes in the blood and BM of melanoma mice were also reduced. Mice bearing melanoma showed extramedullary hematopoiesis in the spleen. Increased expansion of myeloid lineages occurred directly at the level of stem and progenitor cells. The reduction in mature B lymphocytes resulted from a block at the Pro-B cell stage in the bone marrow. Addition of recombinant IL-3 to bone marrow cells resulted in the expansion of committed myeloid progenitors including common myeloid precursors, granulocyte-monocyte precursors and megakaryocyte-erythrocyte precursors. In vivo , IL-3 receptor stimulation in melanoma bearing mice using an IL-3 antibody also resulted in a robust expansion of committed myeloid progenitors and hematopoietic stem cells. Collectively our findings demonstrate that tumor growth plays a pivotal role in reprogramming the host immune system by impacting hematopoiesis directly at the level of stem cell compartment.
Insights into female germ cell biology: from in vivo development to in vitro derivations.
Jung, Dajung; Kee, Kehkooi
2015-01-01
Understanding the mechanisms of human germ cell biology is important for developing infertility treatments. However, little is known about the mechanisms that regulate human gametogenesis due to the difficulties in collecting samples, especially germ cells during fetal development. In contrast to the mitotic arrest of spermatogonia stem cells in the fetal testis, female germ cells proceed into meiosis and began folliculogenesis in fetal ovaries. Regulations of these developmental events, including the initiation of meiosis and the endowment of primordial follicles, remain an enigma. Studying the molecular mechanisms of female germ cell biology in the human ovary has been mostly limited to spatiotemporal characterizations of genes or proteins. Recent efforts in utilizing in vitro differentiation system of stem cells to derive germ cells have allowed researchers to begin studying molecular mechanisms during human germ cell development. Meanwhile, the possibility of isolating female germline stem cells in adult ovaries also excites researchers and generates many debates. This review will mainly focus on presenting and discussing recent in vivo and in vitro studies on female germ cell biology in human. The topics will highlight the progress made in understanding the three main stages of germ cell developments: namely, primordial germ cell formation, meiotic initiation, and folliculogenesis.
... Cell Glossary Search Toggle Nav Types of Stem Cells Stem cells are the foundation from which all ... About Stem Cells > Types of Stem Cells Stem cells Stem cells are the foundation for every organ ...
Parte, Seema; Bhartiya, Deepa; Manjramkar, Dhananjay D; Chauhan, Anahita; Joshi, Amita
2013-04-01
Cryopreserved ovarian cortical tissue acts as a source of primordial follicles (PF) which can either be auto-transplanted or cultured in vitro to obtain mature oocytes. This offers a good opportunity to attain biological parenthood to individuals with gonadal insufficiency including cancer survivors. However, role of various intra- and extra-ovarian factors during PF growth initiation still remain poorly understood. Ovarian biology has assumed a different dimension due to emerging data on presence of pluripotent very small embryonic-like stem cells (VSELs) and ovarian germ stem cells (OGSCs) in ovary surface epithelium (OSE) and the concept of postnatal oogenesis. The present study was undertaken to decipher effect of follicle stimulating hormone (FSH) and basic fibroblast growth factor (bFGF) on the growth initiation of PF during organ culture with a focus on ovarian stem cells. Serum-free cultures of marmoset (n=3) and human (young and peri-menopausal) ovarian cortical tissue pieces were established. Cortical tissue pieces stimulated with FSH (0.5 IU/ml) or bFGF (100 ng/ml) were collected on Day 3 for histological and molecular studies. Gene transcripts specific for pluripotency (Oct-4A, Nanog), early germ cells (Oct-4, c-Kit, Vasa) and to reflect PF growth initiation (oocyte-specific Gdf-9 and Lhx8, and granulosa cells specific Amh) were studied by q-RTPCR. A prominent proliferation of OSE (which harbors stem cells) and transition of PF to primary follicles was observed after FSH and bFGF treatment. Ovarian stem cells were found to be released on the culture inserts and retained the potential to spontaneously differentiate into oocyte-like structures in extended cultures. q-RTPCR analysis revealed an increased expression of gene transcripts specific for VSELs, OGSCs and early germ cells suggestive of follicular transition. The present study shows that both FSH and bFGF stimulate stem cells present in OSE and also lead to PF growth initiation. Thus besides being a source of PF, cryopreserved ovarian cortical tissue could also be a source of stem cells which retain the ability to spontaneously differentiate into oocyte-like structures in vitro. Results provide a paradigm shift in the basic understanding of FSH action and also offer a new perspective to the field of oncofertility research.
Wu, Feng-Hua; Mu, Lei; Li, Xiao-Lan; Hu, Yi-Bing; Liu, Hui; Han, Lin-Tao; Gong, Jian-Ping
2017-10-03
The concept of cancer stem cells has been proposed in various malignancies including colorectal cancer. Recent studies show direct evidence for quiescence slow-cycling cells playing a role in cancer stem cells. There exists an urgent need to isolate and better characterize these slow-cycling cells. In this study, we developed a new model to enrich slow-cycling tumor cells using cell-cycle inducer combined with cell cycle-dependent chemotherapy in vitro and in vivo . Our results show that Short-term exposure of colorectal cancer cells to chemotherapy combined with cell-cycle inducer enriches for a cell-cycle quiescent tumor cell population. Specifically, these slow-cycling tumor cells exhibit increased chemotherapy resistance in vitro and tumorigenicity in vivo . Notably, these cells are stem-cell like and participate in metastatic dormancy. Further exploration indicates that slow-cycling colorectal cancer cells in our model are less sensitive to cytokine-induced-killer cell mediated cytotoxic killing in vivo and in vitro . Collectively, our cell cycle inducer combined chemotherapy exposure model enriches for a slow-cycling, dormant, chemo-resistant tumor cell sub-population that are resistant to cytokine induced killer cell based immunotherapy. Studying unique signaling pathways in dormant tumor cells enriched by cell cycle inducer combined chemotherapy treatment is expected to identify novel therapeutic targets for preventing tumor recurrence.
Wu, Feng-Hua; Mu, Lei; Li, Xiao-Lan; Hu, Yi-Bing; Liu, Hui; Han, Lin-Tao; Gong, Jian-Ping
2017-01-01
The concept of cancer stem cells has been proposed in various malignancies including colorectal cancer. Recent studies show direct evidence for quiescence slow-cycling cells playing a role in cancer stem cells. There exists an urgent need to isolate and better characterize these slow-cycling cells. In this study, we developed a new model to enrich slow-cycling tumor cells using cell-cycle inducer combined with cell cycle-dependent chemotherapy in vitro and in vivo. Our results show that Short-term exposure of colorectal cancer cells to chemotherapy combined with cell-cycle inducer enriches for a cell-cycle quiescent tumor cell population. Specifically, these slow-cycling tumor cells exhibit increased chemotherapy resistance in vitro and tumorigenicity in vivo. Notably, these cells are stem-cell like and participate in metastatic dormancy. Further exploration indicates that slow-cycling colorectal cancer cells in our model are less sensitive to cytokine-induced-killer cell mediated cytotoxic killing in vivo and in vitro. Collectively, our cell cycle inducer combined chemotherapy exposure model enriches for a slow-cycling, dormant, chemo-resistant tumor cell sub-population that are resistant to cytokine induced killer cell based immunotherapy. Studying unique signaling pathways in dormant tumor cells enriched by cell cycle inducer combined chemotherapy treatment is expected to identify novel therapeutic targets for preventing tumor recurrence. PMID:29108242
Lei, Xiao-hua; Ning, Li-na; Cao, Yu-jing; Liu, Shuang; Zhang, Shou-bing; Qiu, Zhi-fang; Hu, Hui-min; Zhang, Hui-shan; Liu, Shu; Duan, En-kui
2011-01-01
The skin is susceptible to different injuries and diseases. One major obstacle in skin tissue engineering is how to develop functional three-dimensional (3D) substitute for damaged skin. Previous studies have proved a 3D dynamic simulated microgravity (SMG) culture system as a "stimulatory" environment for the proliferation and differentiation of stem cells. Here, we employed the NASA-approved rotary bioreactor to investigate the proliferation and differentiation of human epidermal stem cells (hEpSCs). hEpSCs were isolated from children foreskins and enriched by collecting epidermal stem cell colonies. Cytodex-3 micro-carriers and hEpSCs were co-cultured in the rotary bioreactor and 6-well dish for 15 days. The result showed that hEpSCs cultured in rotary bioreactor exhibited enhanced proliferation and viability surpassing those cultured in static conditions. Additionally, immunostaining analysis confirmed higher percentage of ki67 positive cells in rotary bioreactor compared with the static culture. In contrast, comparing with static culture, cells in the rotary bioreactor displayed a low expression of involucrin at day 10. Histological analysis revealed that cells cultured in rotary bioreactor aggregated on the micro-carriers and formed multilayer 3D epidermis structures. In conclusion, our research suggests that NASA-approved rotary bioreactor can support the proliferation of hEpSCs and provide a strategy to form multilayer epidermis structure.
Chakraborty, Chiranjib; Chin, Kok-Yong; Das, Srijit
2016-10-01
Over the last few years, microRNAs (miRNA)-controlled cancer stem cells have drawn enormous attention. Cancer stem cells are a small population of tumor cells that possess the stem cell property of self-renewal. Recent data shows that miRNA regulates this small population of stem cells. In the present review, we explained different characteristics of cancer stem cells as well as miRNA regulation of self-renewal and differentiation in cancer stem cells. We also described the migration and tumor formation. Finally, we described the different miRNAs that regulate various types of cancer stem cells, such as prostate cancer stem cells, head and neck cancer stem cells, breast cancer stem cells, colorectal cancer stem cells, lung cancer stem cells, gastric cancer stem cells, pancreatic cancer stem cells, etc. Extensive research is needed in order to employ miRNA-based therapeutics to control cancer stem cell population in various cancers in the future.
Introduction to regenerative medicine and tissue engineering.
Stoltz, J-F; Decot, V; Huseltein, C; He, X; Zhang, L; Magdalou, J; Li, Y P; Menu, P; Li, N; Wang, Y Y; de Isla, N; Bensoussan, D
2012-01-01
Human tissues don't regenerate spontaneously, explaining why regenerative medicine and cell therapy represent a promising alternative treatment (autologous cells or stem cells of different origins). The principle is simple: cells are collected, expanded and introduced with or without modification into injured tissues or organs. Among middle-term therapeutic applications, cartilage defects, bone repair, cardiac insufficiency, burns, liver or bladder, neurodegenerative disorders could be considered.
GBM secretome induces transient transformation of human neural precursor cells.
Venugopal, Chitra; Wang, X Simon; Manoranjan, Branavan; McFarlane, Nicole; Nolte, Sara; Li, Meredith; Murty, Naresh; Siu, K W Michael; Singh, Sheila K
2012-09-01
Glioblastoma (GBM) is the most aggressive primary brain tumor in humans, with a uniformly poor prognosis. The tumor microenvironment is composed of both supportive cellular substrates and exogenous factors. We hypothesize that exogenous factors secreted by brain tumor initiating cells (BTICs) could predispose normal neural precursor cells (NPCs) to transformation. When NPCs are grown in GBM-conditioned media, and designated as "tumor-conditioned NPCs" (tcNPCs), they become highly proliferative and exhibit increased stem cell self-renewal, or the unique ability of stem cells to asymmetrically generate another stem cell and a daughter cell. tcNPCs also show an increased transcript level of stem cell markers such as CD133 and ALDH and growth factor receptors such as VEGFR1, VEGFR2, EGFR and PDGFRα. Media analysis by ELISA of GBM-conditioned media reveals an elevated secretion of growth factors such as EGF, VEGF and PDGF-AA when compared to normal neural stem cell-conditioned media. We also demonstrate that tcNPCs require prolonged or continuous exposure to the GBM secretome in vitro to retain GBM BTIC characteristics. Our in vivo studies reveal that tcNPCs are unable to form tumors, confirming that irreversible transformation events may require sustained or prolonged presence of the GBM secretome. Analysis of GBM-conditioned media by mass spectrometry reveals the presence of secreted proteins Chitinase-3-like 1 (CHI3L1) and H2A histone family member H2AX. Collectively, our data suggest that GBM-secreted factors are capable of transiently altering normal NPCs, although for retention of the transformed phenotype, sustained or prolonged secretome exposure or additional transformation events are likely necessary.
Application of a novel sorting system for equine mesenchymal stem cells (MSCs)
Radtke, Catherine L.; Nino-Fong, Rodolfo; Esparza Gonzalez, Blanca P.; McDuffee, Laurie A.
2014-01-01
The objective of this study was to validate non-equilibrium gravitational field-flow fractionation (GrFFF), an immunotag-less method of sorting mesenchymal stem cells (MSCs) into subpopulations, for use with MSCs derived from equine muscle tissue, periosteal tissue, bone marrow, and adipose tissue. Cells were collected from 6 young, adult horses, postmortem. Cells were isolated from left semitendinosus muscle tissue, periosteal tissue from the distomedial aspect of the right tibia, bone marrow aspirates from the fourth and fifth sternebrae, and left supragluteal subcutaneous adipose tissue. Aliquots of 800 × 103 MSCs from each tissue source were separated and injected into a ribbon-like capillary device by continuous flow (GrFFF proprietary system). Cells were sorted into 6 fractions and absorbencies [optical density (OD)] were read. Six fractions from each of the 6 aliquots were then combined to provide pooled fractions that had adequate cell numbers to seed at equal concentrations into assays. Equine muscle tissue-derived, periosteal tissue-derived, bone marrow-derived, and adipose tissue-derived mesenchymal stem cells were consistently sorted into 6 fractions that remained viable for use in further assays. Fraction 1 had more cuboidal morphology in culture when compared to the other fractions. Statistical analysis of the fraction absorbencies (OD) revealed a P-value of < 0.05 when fractions 2 and 3 were compared to fractions 1, 4, 5, and 6. It was concluded that non-equilibrium GrFFF is a valid method for sorting equine muscle tissue-derived, periosteal tissue-derived, bone marrow-derived, and adipose tissue-derived mesenchymal stem cells into subpopulations that remain viable, thus securing its potential for use in equine stem cell applications and veterinary medicine. PMID:25355998
Slack, Jonathan M W
2018-05-15
The historical roots of the stem cell concept are traced with respect to its usage in embryology and in hematology. The modern consensus definition of stem cells, comprising both pluripotent stem cells in culture and tissue-specific stem cells in vivo, is explained and explored. Methods for identifying stem cells are discussed with respect to cell surface markers, telomerase, label retention and transplantability, and properties of the stem cell niche are explored. The CreER method for identifying stem cells in vivo is explained, as is evidence in favor of a stochastic rather than an obligate asymmetric form of cell division. In conclusion, it is found that stem cells do not possess any unique and specific molecular markers; and stem cell behavior depends on the environment of the cell as well as the stem cell's intrinsic qualities. Furthermore, the stochastic mode of division implies that stem cell behavior is a property of a cell population not of an individual cell. In this sense, stem cells do not exist in isolation but only as a part of multicellular system. This article is categorized under: Adult Stem Cells, Tissue Renewal, and Regeneration > Tissue Stem Cells and Niches Adult Stem Cells, Tissue Renewal, and Regeneration > Methods and Principles Adult Stem Cells, Tissue Renewal, and Regeneration > Environmental Control of Stem Cells. © 2018 Wiley Periodicals, Inc.
Comparison of Different Stem Cell Mobilization Regimens in AL Amyloidosis Patients.
Lisenko, Katharina; Wuchter, Patrick; Hansberg, Marion; Mangatter, Anja; Benner, Axel; Ho, Anthony D; Goldschmidt, Hartmut; Hegenbart, Ute; Schönland, Stefan
2017-11-01
High-dose melphalan (HDM) and autologous blood stem cell transplantation (ABSCT) is an effective treatment for transplantation-eligible patients with systemic light chain (AL) amyloidosis. Whereas most centers use granulocyte colony-stimulating factor (G-CSF) alone for mobilization of peripheral blood stem cells (PBSC), the application of mobilization chemotherapy might offer specific advantages. We retrospectively analyzed 110 patients with AL amyloidosis who underwent PBSC collection. Major eligibility criteria included age <70 years and cardiac insufficiency New York Heart Association ≤III°. Before mobilization, 67 patients (61%) had been pretreated with induction therapy, including 17 (15%) patients who had received melphalan. Chemo-mobilization was performed with either cyclophosphamide, doxorubicin, dexamethasone (CAD)/G-CSF (n = 78, 71%); ifosfamide/G-CSF (n = 14, 13%); or other regimens (n = 8, 7%). AL amyloidosis patients with predominant heart involvement and/or status post heart transplantation were mobilized with G-CSF only (n = 10, 9%). PBSC collection was successful in 101 patients (92%) at first attempt. The median number of CD34 + cells was 8.7 (range, 2.1 to 45.5) × 10 6 CD34 + /kg collected in a median of 1 leukapheresis (LP) session. Compared with G-CSF-only mobilization, a chemo-mobilization with CAD/G-CSF or ifosfamide/G-CSF had a positive impact on the number of collected CD34 + cell number/kg per LP (P <.001, multivariate). Melphalan-containing previous therapy and higher age had a significant negative impact on quantity of collected CD34 + cells. Median common toxicity criteria (CTC) grade of nonhematologic toxicity was II (range, 0 to IV). Life-threatening CTC grade IV adverse events were observed in 3 patients with no fatalities. Cardiovascular events were observed in 17 patients (22%) upon CAD/G-CSF mobilization (median CTC: grade 3; range, 1 to 4). Toxicity in patients undergoing ifosfamide/G-CSF mobilization was higher than in with those who received G-CSF-only mobilization. HDM and ABSCT were performed in 100 patients. Compared with >6.5 × 10 6 transplanted CD34 + cells/kg, an ABSCT with <3 × 10 6 CD34 + cells/kg was associated with a longer duration to leukocyte reconstitution >1 × 10 9 /L and a reduced platelet count <150 × 10 9 /L 1 year after ASCT. Our results show that CAD chemotherapy is very effective in PBSC mobilization and has a tolerable toxicity profile in AL amyloidosis patients. A further toxicity reduction by omission of doxorubicin might be considered. Because of advanced nonhematologic toxicity, ifosfamide administration cannot be recommended. However, G-CSF mobilization alone is also safe and effective. Considering the hematopoietic reconstitution and long-term stem cell function, our results provide a rationale to collect and transplant as many as >6.5 × 10 6 CD34 + cells/kg, if feasible with reasonable effort. Copyright © 2017 The American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.
Carr, Michael J; McCormack, Grace P; Mutton, Ken J; Crowley, Brendan
2006-04-01
Hematopoietic stem cell transplant recipients frequently develop BK virus (BKV)-associated hemorrhagic cystitis, which coincides with BK viruria. However, the precise role of BKV in the etiology of hemorrhagic cystitis in hematopoietic stem cell transplant recipients remains unclear, since approximately 50% of all such adult transplant recipients excrete BKV, yet do not develop this clinical condition. In the present study, BKV were analyzed to determine if mutations in the non-coding control region (NCCR), and specific BKV sub-types defined by sequence analysis of major capsid protein VP1, were associated with development of hemorrhagic cystitis in hematopoietic stem cell transplant recipients. The regions encoding VP1 and NCCRs of BKV in urine samples collected from 15 hematopoietic stem cell transplant recipients with hemorrhagic cystitis and 20 without this illness were amplified and sequenced. Sequence variations in the NCCRs of BKV were identified in urine samples from those with and without hemorrhagic cystitis. Furthermore, five unique sequence variations within transcription factor binding sites in the canonical NCCR, O-P-Q-R-S, were identified, representing new BKV variants from a population of cloned quasi-species obtained from patients with and without hemorrhagic cystitis. Thirty-five BKV VP1 sequences were analyzed by phylogenetic analysis but no specific BKV sub-type was associated with hemorrhagic cystitis. Five previously unrecognized naturally occurring variants of the BKV are described which involve amplifications, deletions, and rearrangements of the archetypal BKV NCCRs in individuals with and without hemorrhagic cystitis. Architectural rearrangements in the NCCRs of BKV did not appear to be a prerequisite for development of hemorrhagic cystitis in hematopoietic stem cell transplant recipients. Copyright 2006 Wiley-Liss, Inc.
Markel, Troy A.; Crisostomo, Paul R.; Wang, Meijing; Wang, Yue; Lahm, Tim; Novotny, Nathan M.; Tan, Jiangning; Meldrum, Daniel R.
2008-01-01
End-organ ischemia is a common source of patient morbidity and mortality. Stem cell therapy represents a novel treatment modality for ischemic diseases and may aid injured tissues through the release of beneficial paracrine mediators. Female bone marrow mesenchymal stem cells (MSCs) have demonstrated a relative resistance to detrimental TNF receptor 1 (TNFR1) signaling and are thought to be superior to male stem cells in limiting inflammation. However, it is not known whether sex differences exist in TNF receptor 2 (TNFR2)-ablated MSCs. Therefore, we hypothesized that 1) sex differences would be observed in wild-type (WT) and TNFR2-ablated MSC cytokine signaling, and 2) the production of IL-6, VEGF, and IGF-1 in males, but not females, would be mediated through TNFR2. MSCs were harvested from male and female WT and TNFR2 knockout (TNFR2KO) mice and were subsequently exposed to TNF (50 ng/ml) or LPS (100 ng/ml). After 24 h, supernatants were collected and measured for cytokines. TNF and LPS stimulated WT stem cells to produce cytokines, but sex differences were only seen in IL-6 and IGF-1 after TNF stimulation. Ablation of TNFR2 increased VEGF and IGF-1 production in males compared with wild-type, but no difference was observed in females. Female MSCs from TNFR2KOs produced significantly lower levels of VEGF and IGF-1 compared with male TNFR2KOs. The absence of TNFR2 signaling appears to play a greater role in male MSC cytokine production. As a result, male, but not female stem cell cytokine production may be mediated through TNFR2 signaling cascades. PMID:18685063
Evodiamine selectively targets cancer stem-like cells through the p53-p21-Rb pathway
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Seula; Woo, Jong Kyu; Jung, Yuchae
In spite of the recent improvements, the resistance to chemotherapy/radiotherapy followed by relapse is the main hurdle for the successful treatment of breast cancer, a leading cause of death in women. A small population of breast cancer cells that have stem-like characteristics (cancer stem-like cells; CSLC) may contribute to this resistance and relapse. Here, we report on a component of a traditional Chinese medicine, evodiamine, which selectively targets CSLC of breast cancer cell lines MCF7 and MDAMB 231 at a concentration that does show a little or no cytotoxic effect on bulk cancer cells. While evodiamine caused the accumulation of bulkmore » cancer cells at the G2/M phase, it did not hold CSLC in a specific cell cycle phase but instead, selectively killed CSLC. This was not due to the culture of CSLC in suspension or without FBS. A proteomic analysis and western blotting revealed that evodiamine changed the expression of cell cycle regulating molecules more efficiently in CSLC cells than in bulk cancer cells. Surprisingly, evodiamine selectively activated p53 and p21 and decreased inactive Rb, the master molecules in G1/S checkpoint. These data collectively suggest a novel mechanism involving CSLC-specific targeting by evodiamine and its possible use to the therapy of breast cancer. - Highlights: • Evodiamine selectively kills breast cancer stem like cells at G1 phase. • Evodiamine utilizes different mechanism of cell cycle modulation in CSLC and in bulk cancer cells. • Evodiamine activate the p53, p21 and Rb pathway.« less
Han, Sungwon; Auger, Christopher; Thomas, Sean C; Beites, Crestina L; Appanna, Vasu D
2014-02-01
The significance of metabolic networks in guiding the fate of the stem cell differentiation is only beginning to emerge. Oxidative metabolism has been suggested to play a major role during this process. Therefore, it is critical to understand the underlying mechanisms of metabolic alterations occurring in stem cells to manipulate the ultimate outcome of these pluripotent cells. Here, using P19 murine embryonal carcinoma cells as a model system, the role of mitochondrial biogenesis and the modulation of metabolic networks during dimethyl sulfoxide (DMSO)-induced differentiation are revealed. Blue native polyacrylamide gel electrophoresis (BN-PAGE) technology aided in profiling key enzymes, such as hexokinase (HK) [EC 2.7.1.1], glucose-6-phosphate isomerase (GPI) [EC 5.3.1.9], pyruvate kinase (PK) [EC 2.7.1.40], Complex I [EC 1.6.5.3], and Complex IV [EC 1.9.3.1], that are involved in the energy budget of the differentiated cells. Mitochondrial adenosine triphosphate (ATP) production was shown to be increased in DMSO-treated cells upon exposure to the tricarboxylic acid (TCA) cycle substrates, such as succinate and malate. The increased mitochondrial activity and biogenesis were further confirmed by immunofluorescence microscopy. Collectively, the results indicate that oxidative energy metabolism and mitochondrial biogenesis were sharply upregulated in DMSO-differentiated P19 cells. This functional metabolic and proteomic study provides further evidence that modulation of mitochondrial energy metabolism is a pivotal component of the cellular differentiation process and may dictate the final destiny of stem cells.
Paul, Arghya; Shao, Wei; Abbasi, Sana; Shum-Tim, Dominique; Prakash, Satya
2012-09-04
The present study aims to develop a new stem cell based gene delivery system consisting of human adipose tissue derived stem cells (hASCs) genetically modified with self-assembled nanocomplex of recombinant baculovirus and PAMAM dendrimer (Bac-PAMAM) to overexpress the vascular endothelial growth factor (VEGF). Cells were enveloped into branched PEG surface functionalized polymeric microcapsules for efficient transplantation. In vitro analysis confirmed efficient transduction of hASCs expressing 7.65 ± 0.86 ng functionally active VEGF per 10(6) microencapsulated hASCs (ASC-VEGF). To determine the potential of the developed system, chronically infarcted rat hearts were treated with either empty microcapsules (MC), microencapsulated hASCs expressing MGFP reporter protein (MC+ASC-MGFP), or MC+ASC-VEGF, and analyzed for 10 weeks. Post-transplantation data confirmed higher myocardial VEGF expressions with significantly enhanced neovasculature in the MC+ASC-VEGF group. In addition, the cardiac performance, as measured by percentage ejection fraction, also improved significantly in the MC+ASC-VEGF group (48.6 ± 6.1%) compared to that in MC+ASC-MGFP (38.8 ± 5.3%) and MC groups (31.5 ± 3.3%). Collectively, these data demonstrate the feasibility of this system for improved stem cell therapy applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fermand, J.P.; Levy, Y.; Gerota, J.
1989-01-01
Eight patients with stage III aggressive multiple myeloma, refractory to current chemotherapy in six cases, were treated by high-dose chemotherapy (nitrosourea, etoposide, and melphalan) (HDC) and total body irradiation (TBI), followed by autografting with blood stem cells. These cells were previously collected by leukapheresis performed during hematologic recovery following cytotoxic drug-induced bone marrow aplasia. Seven patients were alive 9 to 17 months after HDC-TBI and graft. One died at day 40 from cerebral bleeding. All living patients achieved a 90% or greater reduction in tumor mass. In two cases, a complete remission (CR) has persisted at a follow-up of 15more » and 16 months. Three patients have been well and off therapy with stable minimal residual disease (RD) since 10, 11, and 17 months, respectively. A patient in apparent CR and another with RD have relapsed 9 to 12 months posttreatment. Autologous blood-derived hematopoietic stem cells induced successful and sustained engraftment in all living patients. These results, although still preliminary, indicate that HDC and TBI, followed by blood stem cells autograft, which has both practical and theoretical interest over allogeneic or autologous bone marrow transplantation, deserve consideration in selected patients with multiple myeloma.« less
Mostafavi-Pour, Zohreh; Ashrafi, Mohammad Reza; Talaei-Khozani, Tahereh
2018-06-01
Human Wharton's jelly mesenchymal stem cells (hWJSCs) are multipotent stem cells that could be aggregated into 3D spherules. ITGA4 and ITGA5 genes encode α4 and α5 subunits of integrins, respectively. In this study, we analyzed expression levels of ITGA4 and ITGA5 gene mRNAs in undifferentiated and 3D spherules forming hWJSCs in order to determine their expression pattern for possible future treatment of cancer cells in a co-culture fashion. For the purpose of obtaining hWJSCs, umbilical cords were collected from patients with caesarian section at full term delivery. The cells were then characterized according to cell surface markers using flow cytometry. Furthermore pluripotency of the obtained cells was verified. Subsequently the cells were aggregated in 3D spherules using hanging drop cultures. Expression levels of ITGA4 and ITGA5 gene mRNAs were determined by RT-PCR and Real time PCR, both in the initial undifferentiated cells and those aggregated in the spherules. The obtained hWJSCs demonstrated pluripotency, differentiating to adipogenic and osteogenic cells. They also expressed mesenchymal stem cell surface markers. Following the aggregation of these cells and formation of 3D spherules, mRNA expression levels of both genes were significantly reduced (P < 0.05) compared with the initial undifferentiated state. The results of this study demonstrated that aggregation of hWJSCs into spherules alters their expression of ITGA4 and ITGA5. The implications of such an alteration would require further research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pattathil, Sivakumar; Ingwers, Miles W.; Victoriano, Olivia L.
The composition, integrity, and architecture of the macromolecular matrix of cell walls, collectively referred to as cell wall ultrastructure, exhibits variation across species and organs and among cell types within organs. Indirect approaches have suggested that modifications to cell wall ultrastructure occur in response to abiotic stress; however, modifications have not been directly observed. Glycome profiling was used to study cell wall ultrastructure by examining variation in composition and extractability of non-cellulosic glycans in cell walls of stem wood, roots, and needles of loblolly pine saplings exposed to high and low soil moisture. Soil moisture influenced physiological processes and themore » overall composition and extractability of cell wall components differed as a function of soil moisture treatments. The strongest response of cell wall ultrastructure to soil moisture was increased extractability of pectic backbone epitopes in the low soil moisture treatment. The higher abundance of these pectic backbone epitopes in the oxalate extract indicate that the loosening of cell wall pectic components could be associated with the release of pectic signals as a stress response. The increased extractability of pectic backbone epitopes in response to low soil moisture availability was more pronounced in stem wood than in roots or needles. Additional responses to low soil moisture availability were observed in lignin associated carbohydrates released in chlorite extracts of stem wood, including an increased abundance of pectic arabinogalactan epitopes. Overall, these results indicate that cell walls of loblolly pine organs undergo changes in their ultrastructural composition and extractability as a response to soil moisture availability and that cell walls of the stem wood are more responsive to low soil moisture availability compared to cell walls of roots and needles. In conclusion, to our knowledge, this is the first direct evidence, delineated by glycomic analyses, that abiotic stress affects cell wall ultrastructure. This study is also unique in that glycome profiling of pine needles has never before been reported.« less
Pattathil, Sivakumar; Ingwers, Miles W; Victoriano, Olivia L; Kandemkavil, Sindhu; McGuire, Mary Anne; Teskey, Robert O; Aubrey, Doug P
2016-01-01
The composition, integrity, and architecture of the macromolecular matrix of cell walls, collectively referred to as cell wall ultrastructure, exhibits variation across species and organs and among cell types within organs. Indirect approaches have suggested that modifications to cell wall ultrastructure occur in response to abiotic stress; however, modifications have not been directly observed. Glycome profiling was used to study cell wall ultrastructure by examining variation in composition and extractability of non-cellulosic glycans in cell walls of stem wood, roots, and needles of loblolly pine saplings exposed to high and low soil moisture. Soil moisture influenced physiological processes and the overall composition and extractability of cell wall components differed as a function of soil moisture treatments. The strongest response of cell wall ultrastructure to soil moisture was increased extractability of pectic backbone epitopes in the low soil moisture treatment. The higher abundance of these pectic backbone epitopes in the oxalate extract indicate that the loosening of cell wall pectic components could be associated with the release of pectic signals as a stress response. The increased extractability of pectic backbone epitopes in response to low soil moisture availability was more pronounced in stem wood than in roots or needles. Additional responses to low soil moisture availability were observed in lignin-associated carbohydrates released in chlorite extracts of stem wood, including an increased abundance of pectic arabinogalactan epitopes. Overall, these results indicate that cell walls of loblolly pine organs undergo changes in their ultrastructural composition and extractability as a response to soil moisture availability and that cell walls of the stem wood are more responsive to low soil moisture availability compared to cell walls of roots and needles. To our knowledge, this is the first direct evidence, delineated by glycomic analyses, that abiotic stress affects cell wall ultrastructure. This study is also unique in that glycome profiling of pine needles has never before been reported.
Pattathil, Sivakumar; Ingwers, Miles W.; Victoriano, Olivia L.; ...
2016-06-24
The composition, integrity, and architecture of the macromolecular matrix of cell walls, collectively referred to as cell wall ultrastructure, exhibits variation across species and organs and among cell types within organs. Indirect approaches have suggested that modifications to cell wall ultrastructure occur in response to abiotic stress; however, modifications have not been directly observed. Glycome profiling was used to study cell wall ultrastructure by examining variation in composition and extractability of non-cellulosic glycans in cell walls of stem wood, roots, and needles of loblolly pine saplings exposed to high and low soil moisture. Soil moisture influenced physiological processes and themore » overall composition and extractability of cell wall components differed as a function of soil moisture treatments. The strongest response of cell wall ultrastructure to soil moisture was increased extractability of pectic backbone epitopes in the low soil moisture treatment. The higher abundance of these pectic backbone epitopes in the oxalate extract indicate that the loosening of cell wall pectic components could be associated with the release of pectic signals as a stress response. The increased extractability of pectic backbone epitopes in response to low soil moisture availability was more pronounced in stem wood than in roots or needles. Additional responses to low soil moisture availability were observed in lignin associated carbohydrates released in chlorite extracts of stem wood, including an increased abundance of pectic arabinogalactan epitopes. Overall, these results indicate that cell walls of loblolly pine organs undergo changes in their ultrastructural composition and extractability as a response to soil moisture availability and that cell walls of the stem wood are more responsive to low soil moisture availability compared to cell walls of roots and needles. In conclusion, to our knowledge, this is the first direct evidence, delineated by glycomic analyses, that abiotic stress affects cell wall ultrastructure. This study is also unique in that glycome profiling of pine needles has never before been reported.« less
Heterogeneous Structure of Stem Cells Dynamics: Statistical Models and Quantitative Predictions
Bogdan, Paul; Deasy, Bridget M.; Gharaibeh, Burhan; Roehrs, Timo; Marculescu, Radu
2014-01-01
Understanding stem cell (SC) population dynamics is essential for developing models that can be used in basic science and medicine, to aid in predicting cells fate. These models can be used as tools e.g. in studying patho-physiological events at the cellular and tissue level, predicting (mal)functions along the developmental course, and personalized regenerative medicine. Using time-lapsed imaging and statistical tools, we show that the dynamics of SC populations involve a heterogeneous structure consisting of multiple sub-population behaviors. Using non-Gaussian statistical approaches, we identify the co-existence of fast and slow dividing subpopulations, and quiescent cells, in stem cells from three species. The mathematical analysis also shows that, instead of developing independently, SCs exhibit a time-dependent fractal behavior as they interact with each other through molecular and tactile signals. These findings suggest that more sophisticated models of SC dynamics should view SC populations as a collective and avoid the simplifying homogeneity assumption by accounting for the presence of more than one dividing sub-population, and their multi-fractal characteristics. PMID:24769917
Zhang, Xuemei; Zhou, Yinglian; Li, Hulun; Wang, Rui; Yang, Dan; Li, Bing; Cao, Xiaofang; Fu, Jin
2018-01-01
Ischemic stroke is a major cause of disability and mortality worldwide, while effective restorative treatments are limited at present. Stem cell transplantation holds therapeutic potential for ischemic vascular diseases and may provide an opportunity for neural regeneration. Dental pulp stem cells (DPSCs) origin from neural crest and have neuro-ectodermal features including proliferation and multilineage differentiation potentials. The rat model of middle cerebral artery occlusion (MCAO) was used to evaluate whether intravenous administration of DPSCs can reduce infarct size and to estimate the migration and trans-differentiation into neuron-like cells in focal cerebral ischemia models. Brain tissues were collected at 4 weeks following cell transplantation and analyzed with immunofluorescence, immunohistochemistry and real-time polymerase chain reaction (RT-PCR) methods. Intravenously administration of rat-derived DPSCs were found to migrate into the boundary of ischemic areas and expressed neural specific markers, reducing infarct volume and cerebral edema. These results suggest that DPSCs treatment may serve as a potential therapy for clinical stroke patients in the future. © 2018 The Author(s). Published by S. Karger AG, Basel.
RBPJ maintains brain tumor–initiating cells through CDK9-mediated transcriptional elongation
Xie, Qi; Wu, Qiulian; Kim, Leo; Miller, Tyler E.; Liau, Brian B.; Mack, Stephen C.; Yang, Kailin; Factor, Daniel C.; Fang, Xiaoguang; Huang, Zhi; Zhou, Wenchao; Alazem, Kareem; Wang, Xiuxing; Bernstein, Bradley E.; Bao, Shideng; Rich, Jeremy N.
2016-01-01
Glioblastomas co-opt stem cell regulatory pathways to maintain brain tumor–initiating cells (BTICs), also known as cancer stem cells. NOTCH signaling has been a molecular target in BTICs, but NOTCH antagonists have demonstrated limited efficacy in clinical trials. Recombining binding protein suppressor of hairless (RBPJ) is considered a central transcriptional mediator of NOTCH activity. Here, we report that pharmacologic NOTCH inhibitors were less effective than targeting RBPJ in suppressing tumor growth. While NOTCH inhibitors decreased canonical NOTCH gene expression, RBPJ regulated a distinct profile of genes critical to BTIC stemness and cell cycle progression. RBPJ was preferentially expressed by BTICs and required for BTIC self-renewal and tumor growth. MYC, a key BTIC regulator, bound the RBPJ promoter and treatment with a bromodomain and extraterminal domain (BET) family bromodomain inhibitor decreased MYC and RBPJ expression. Proteomic studies demonstrated that RBPJ binds CDK9, a component of positive transcription elongation factor b (P-TEFb), to target gene promoters, enhancing transcriptional elongation. Collectively, RBPJ links MYC and transcriptional control through CDK9, providing potential nodes of fragility for therapeutic intervention, potentially distinct from NOTCH. PMID:27322055
Casado, María; de Lecuona, Itziar
2013-01-01
This paper identifies problems and analyzes those conflicts posed by the evaluation of research projects involving the collection and use of human induced pluripotent stem cells (iPS) in Spain. Current legislation is causing problems of interpretation, circular and unnecessary referrals, legal uncertainty and undue delays. Actually, this situation may cause a lack of control and monitoring, and even some paralysis in regenerative medicine and cell therapy research, that is a priority nowadays. The analysis of the current legislation and its bioethical implications, led us to conclude that the review of iPS research projects cannot be assimilated to the evaluation of research projects that involve human embryonic stem cell (hESC). In this context, our proposal is based on the review by the Research Ethics Committees and the checkout by the Spanish Comission of Guarantees for Donation and Use of Human Cells and Tissues (CGDUCTH) of human iPS cells research projects. Moreover, this article claims for a more transparent research system, by effectively articulating the Registry on Research Projects. Finally, a model of verification protocol (checklist) for checking out biomedical research projects involving human iPS cells is suggested.
Clay, MR.; Tabor, M.; Owen, J.; Carey, TE.; Bradford, CR.; Wolf, GT.; Wicha, MS.; Prince, ME.
2010-01-01
Background According to the cancer stem cell (CSC) theory only a small subset of cancer cells are capable of forming tumors. We previously reported that CD44 isolates tumorigenic cells from HNSCC. Recent studies indicate that aldehyde dehydrogenase (ALDH) activity may represent a more specific marker of CSCs. Methods Six primary HNSCC were collected. Cells with high and low ALDH activity (ALDHhigh/ALDHlow) were isolated. ALDHhigh and ALDHlow populations were implanted into NOD/SCID mice and monitored for tumor development. Results ALDHhigh cells represented a small percentage of the tumor cells (1-7.8%). ALDHhigh cells formed tumors from as few as 500 cells in 24/45 implantations while only 3/37 implantations of ALDHlow cells formed tumors. Conclusions ALDHhigh cells comprise a subpopulation cells in HNSCC that are tumorigenic and capable of producing tumors at very low numbers. This finding indicates that ALDH activity on its own is a highly selective marker for CSCs in HNSCC. PMID:20073073
Ivanovska, Ana; Grolli, Stefano; Borghetti, Paolo; Ravanetti, Francesca; Conti, Virna; De Angelis, Elena; Macchi, Francesca; Ramoni, Roberto; Martelli, Paolo; Gazza, Ferdinando; Cacchioli, Antonio
2017-10-01
Immunophenotypical characterization of mesenchymal stem cells is fundamental for the design and execution of sound experimental and clinical studies. The scarce availability of species-specific antibodies for canine antigens has hampered the immunophenotypical characterization of canine mesenchymal stem cells (MSC). The aim of this study was to select a panel of species-specific direct antibodies readily useful for canine mesenchymal stem cells characterization. They were isolated from perivisceral and subcutaneous adipose tissue samples collected during regular surgeries from 8 dogs. Single color flow cytometric analysis of mesenchymal stem cells (P3) deriving from subcutaneous and perivisceral adipose tissue with a panel of 7 direct anti-canine antibodies revealed two largely homogenous cell populations with a similar pattern: CD29 + , CD44 + , CD73 + , CD90 + , CD34 - , CD45 - and MHC-II - with no statistically significant differences among them. Antibody reactivity was demonstrated on canine peripheral blood mononuclear cells. The similarities are reinforced by their in vitro cell morphology, trilineage differentiation ability and RT-PCR analysis (CD90 + , CD73 + , CD105 + , CD44 + , CD13 + , CD29 + , Oct-4 + gene and CD31 - and CD45 - expression). Our results report for the first time a comparison between the immunophenotypic profile of canine MSC deriving from perivisceral and subcutaneous adipose tissue. The substantial equivalence between the two populations has practical implication on clinical applications, giving the opportunity to choose the source depending on the patient needs. The results contribute to routine characterization of MSC populations grown in vitro, a mandatory process for the definition of solid and reproducible laboratory and therapeutic procedures. Copyright © 2017 Elsevier Ltd. All rights reserved.
Differential marker expression by cultures rich in mesenchymal stem cells
2013-01-01
Background Mesenchymal stem cells have properties that make them amenable to therapeutic use. However, the acceptance of mesenchymal stem cells in clinical practice requires standardized techniques for their specific isolation. To date, there are no conclusive marker (s) for the exclusive isolation of mesenchymal stem cells. Our aim was to identify markers differentially expressed between mesenchymal stem cell and non-stem cell mesenchymal cell cultures. We compared and contrasted the phenotype of tissue cultures in which mesenchymal stem cells are rich and rare. By initially assessing mesenchymal stem cell differentiation, we established that bone marrow and breast adipose cultures are rich in mesenchymal stem cells while, in our hands, foreskin fibroblast and olfactory tissue cultures contain rare mesenchymal stem cells. In particular, olfactory tissue cells represent non-stem cell mesenchymal cells. Subsequently, the phenotype of the tissue cultures were thoroughly assessed using immuno-fluorescence, flow-cytometry, proteomics, antibody arrays and qPCR. Results Our analysis revealed that all tissue cultures, regardless of differentiation potential, demonstrated remarkably similar phenotypes. Importantly, it was also observed that common mesenchymal stem cell markers, and fibroblast-associated markers, do not discriminate between mesenchymal stem cell and non-stem cell mesenchymal cell cultures. Examination and comparison of the phenotypes of mesenchymal stem cell and non-stem cell mesenchymal cell cultures revealed three differentially expressed markers – CD24, CD108 and CD40. Conclusion We indicate the importance of establishing differential marker expression between mesenchymal stem cells and non-stem cell mesenchymal cells in order to determine stem cell specific markers. PMID:24304471
New use of an old drug: inhibition of breast cancer stem cells by benztropine mesylate.
Cui, Jihong; Hollmén, Maija; Li, Lina; Chen, Yong; Proulx, Steven T; Reker, Daniel; Schneider, Gisbert; Detmar, Michael
2017-01-03
Cancer stem cells (CSCs) play major roles in cancer initiation, metastasis, recurrence and therapeutic resistance. Targeting CSCs represents a promising strategy for cancer treatment. The purpose of this study was to identify selective inhibitors of breast CSCs (BCSCs). We carried out a cell-based phenotypic screening with cell viability as a primary endpoint, using a collection of 2,546 FDA-approved drugs and drug-like molecules in spheres formed by malignant human breast gland-derived cells (HMLER-shEcad cells, representing BCSCs) and control immortalized non-tumorigenic human mammary cells (HMLE cells, representing normal stem cells). 19 compounds were identified from screening. The chemically related molecules benztropine mesylate and deptropine citrate were selected for further validation and both potently inhibited sphere formation and self-renewal of BCSCs in vitro. Benztropine mesylate treatment decreased cell subpopulations with high ALDH activity and with a CD44+/CD24- phenotype. In vivo, benztropine mesylate inhibited tumor-initiating potential in a 4T1 mouse model. Functional studies indicated that benztropine mesylate inhibits functions of CSCs via the acetylcholine receptors, dopamine transporters/receptors, and/or histamine receptors. In summary, our findings identify benztropine mesylate as an inhibitor of BCSCs in vitro and in vivo. This study also provides a screening platform for identification of additional anti-CSC agents.
Stem cell factor supports migration in canine mesenchymal stem cells.
Enciso, Nathaly; Ostronoff, Luciana L K; Mejías, Guillermo; León, Leticia G; Fermín, María Luisa; Merino, Elena; Fragio, Cristina; Avedillo, Luis; Tejero, Concepción
2018-03-01
Adult Mesenchymal Stem Cells (MSC) are cells that can be defined as multipotent cells able to differentiate into diverse lineages, under appropriate conditions. These cells have been widely used in regenerative medicine, both in preclinical and clinical settings. Initially discovered in bone marrow, MSC can now be isolated from a wide spectrum of adult and foetal tissues. Studies to evaluate the therapeutic potential of these cells are based on their ability to arrive to damaged tissues. In this paper we have done a comparative study analyzing proliferation, surface markers and OCT4, SOX9, RUNX2, PPARG genes expression in MSC cells from Bone marrow (BMMSC) and Adipose tissue (ASC). We also analyzed the role of Stem Cell Factor (SCF) on MSC proliferation and on ASCs metalloproteinases MMP-2, MMP-9 secretion. Healthy dogs were used as BMMSC donors, and ASC were collected from omentum during elective ovariohysterectomy surgery. Both cell types were cultured in IMDM medium with or without SCF, 10% Dog Serum (DS), and incubated at 38 °C with 5% CO2. Growth of BMMSCs and ASCs was exponential until 25-30 days. Flow citometry of MSCs revealed positive results for CD90 and negative for CD34, CD45 and MCH-II. Genes were evaluated by RT-PCR and metalloproteinases by zymografy. Our findings indicate morphological and immunological similarities as well as expression of genes from both origins on analyzed cells. Furthermore, SCF did not affect proliferation of MSCs, however it up-regulated MMP-2 and MMP-9 secretion in ASCs. These results suggest that metalloproteinases are possibly essential molecules pivoting migration.
Method of isolation and characterization of Girardia tigrina stem cells
LOPES, K.A.R.; DE CAMPOS VELHO, N.M.R.; PACHECO-SOARES, C.
2015-01-01
Tissue regeneration is widely studied due to its importance for understanding the biology of stem cells, aiming at their application in medicine for therapeutic and various other purposes. The establishment of experimental models is necessary, as certain invertebrates and vertebrates have different regeneration abilities depending on their taxon position on the evolutionary scale. Planarians are an efficacious in vivo model for stem cell biology, but the correlation between planarian cellular and molecular neoblast pluripotency mechanisms and those of mammalian stem cells is unknown. The present study had the following objectives: i) Establish Girardia tigrina cell culture, ii) determine the time required for complete cell disintegration and iii) obtain neoblasts by cell subdivision. Twenty-four specimens were deprived of food for seven days. After this time, disintegration was performed by incubation protected at three temperatures for 48 h in an antibiotic, antimycotic and trypsin solution, after which the suspension was homogenized and centrifuged. Histopaque® 1077 was used for cell separation and interphases were collected and monitored by optical and fluorescence microscopy. Optical microscopy analysis informed the nucleus-to-cytoplasm ratio, cell morphology and cell size. Under fluorescence microscopy, interphase 1 (I1) was subdivided into two groups and neoblasts were marked for characterization; one group was stained with 4′,6-diamidino-2-phenylindole and the other was immunolabeled with octamer-binding transcription factor 4 (OCT4) and isolated and observed after 10 days of cultivation. Neoblasts predominated in I1 with a small amount of other cell types. In conclusion, sample disintegration with a trypsin and antibiotic solution was effective at 18˚C and Iscove's modified Dulbecco's medium supplemented with fetal bovine serum was adequate for the establishment of primary cell cultures after 48-h incubation and centrifugation. Antibody anti-OCT4 was used for the characterization of stem cells and was successfully labeled with concentrated neoblasts on interphase 1. PMID:25798241
Kadam, Sachin; Govindasamy, Vijayendran; Bhonde, Ramesh
2012-01-01
Bone marrow-derived mesenchymal stem cells (BM-MSCs) have been used for allogeneic application in tissue engineering but have certain drawbacks. Therefore, mesenchymal stem cells (MSCs) derived from other adult tissue sources have been considered as an alternative. The human umbilical cord and placenta are easily available noncontroversial sources of human tissue, which are often discarded as biological waste, and their collection is noninvasive. These sources of MSCs are not subjected to ethical constraints, as in the case of embryonic stem cells. MSCs derived from umbilical cord and placenta are multipotent and have the ability to differentiate into various cell types crossing the lineage boundary towards endodermal lineage. The aim of this chapter is to provide a detailed reproducible cookbook protocol for the isolation, propagation, characterization, and differentiation of MSCs derived from human umbilical cord and placenta with special reference to harnessing their potential towards pancreatic/islet lineage for utilization as a cell therapy product. We show here that mesenchymal stromal cells can be extensively expanded from umbilical cord and placenta of human origin retaining their multilineage differentiation potential in vitro. Our report indicates that postnatal tissues obtained as delivery waste represent a rich source of mesenchymal stromal cells, which can be differentiated into functional islets employing three-stage protocol developed by our group. These islets could be used as novel in vitro model for screening hypoglycemics/insulin secretagogues, thus reducing animal experimentation for this purpose and for the future human islet transplantation programs to treat diabetes.
... Handbook Stem Cell Glossary Search Toggle Nav Stem Cell Basics Stem cells are the foundation from which ... Home > Learn About Stem Cells > Stem Cell Basics Cells in the human body The human body comprises ...
Kumari, Daman; Swaroop, Manju; Southall, Noel; Huang, Wenwei; Zheng, Wei; Usdin, Karen
2015-07-01
: Fragile X syndrome (FXS), the most common form of inherited cognitive disability, is caused by a deficiency of the fragile X mental retardation protein (FMRP). In most patients, the absence of FMRP is due to an aberrant transcriptional silencing of the fragile X mental retardation 1 (FMR1) gene. FXS has no cure, and the available treatments only provide symptomatic relief. Given that FMR1 gene silencing in FXS patient cells can be partially reversed by treatment with compounds that target repressive epigenetic marks, restoring FMRP expression could be one approach for the treatment of FXS. We describe a homogeneous and highly sensitive time-resolved fluorescence resonance energy transfer assay for FMRP detection in a 1,536-well plate format. Using neural stem cells differentiated from an FXS patient-derived induced pluripotent stem cell (iPSC) line that does not express any FMRP, we screened a collection of approximately 5,000 known tool compounds and approved drugs using this FMRP assay and identified 6 compounds that modestly increase FMR1 gene expression in FXS patient cells. Although none of these compounds resulted in clinically relevant levels of FMR1 mRNA, our data provide proof of principle that this assay combined with FXS patient-derived neural stem cells can be used in a high-throughput format to identify better lead compounds for FXS drug development. In this study, a specific and sensitive fluorescence resonance energy transfer-based assay for fragile X mental retardation protein detection was developed and optimized for high-throughput screening (HTS) of compound libraries using fragile X syndrome (FXS) patient-derived neural stem cells. The data suggest that this HTS format will be useful for the identification of better lead compounds for developing new therapeutics for FXS. This assay can also be adapted for FMRP detection in clinical and research settings. ©AlphaMed Press.
Yamaguchi, Masahiro; Seki, Tatsunori; Imayoshi, Itaru; Tamamaki, Nobuaki; Hayashi, Yoshitaka; Tatebayashi, Yoshitaka; Hitoshi, Seiji
2016-05-01
Neurons and glia in the central nervous system (CNS) originate from neural stem cells (NSCs). Knowledge of the mechanisms of neuro/gliogenesis from NSCs is fundamental to our understanding of how complex brain architecture and function develop. NSCs are present not only in the developing brain but also in the mature brain in adults. Adult neurogenesis likely provides remarkable plasticity to the mature brain. In addition, recent progress in basic research in mental disorders suggests an etiological link with impaired neuro/gliogenesis in particular brain regions. Here, we review the recent progress and discuss future directions in stem cell and neuro/gliogenesis biology by introducing several topics presented at a joint meeting of the Japanese Association of Anatomists and the Physiological Society of Japan in 2015. Collectively, these topics indicated that neuro/gliogenesis from NSCs is a common event occurring in many brain regions at various ages in animals. Given that significant structural and functional changes in cells and neural networks are accompanied by neuro/gliogenesis from NSCs and the integration of newly generated cells into the network, stem cell and neuro/gliogenesis biology provides a good platform from which to develop an integrated understanding of the structural and functional plasticity that underlies the development of the CNS, its remodeling in adulthood, and the recovery from diseases that affect it.
Dorn, Isabel; Klich, Katharina; Arauzo-Bravo, Marcos J; Radstaak, Martina; Santourlidis, Simeon; Ghanjati, Foued; Radke, Teja F; Psathaki, Olympia E; Hargus, Gunnar; Kramer, Jan; Einhaus, Martin; Kim, Jeong Beom; Kögler, Gesine; Wernet, Peter; Schöler, Hans R; Schlenke, Peter; Zaehres, Holm
2015-01-01
Epigenetic memory in induced pluripotent stem cells, which is related to the somatic cell type of origin of the stem cells, might lead to variations in the differentiation capacities of the pluripotent stem cells. In this context, induced pluripotent stem cells from human CD34(+) hematopoietic stem cells might be more suitable for hematopoietic differentiation than the commonly used fibroblast-derived induced pluripotent stem cells. To investigate the influence of an epigenetic memory on the ex vivo expansion of induced pluripotent stem cells into erythroid cells, we compared induced pluripotent stem cells from human neural stem cells and human cord blood-derived CD34(+) hematopoietic stem cells and evaluated their potential for differentiation into hematopoietic progenitor and mature red blood cells. Although genome-wide DNA methylation profiling at all promoter regions demonstrates that the epigenetic memory of induced pluripotent stem cells is influenced by the somatic cell type of origin of the stem cells, we found a similar hematopoietic induction potential and erythroid differentiation pattern of induced pluripotent stem cells of different somatic cell origin. All human induced pluripotent stem cell lines showed terminal maturation into normoblasts and enucleated reticulocytes, producing predominantly fetal hemoglobin. Differences were only observed in the growth rate of erythroid cells, which was slightly higher in the induced pluripotent stem cells derived from CD34(+) hematopoietic stem cells. More detailed methylation analysis of the hematopoietic and erythroid promoters identified similar CpG methylation levels in the induced pluripotent stem cell lines derived from CD34(+) cells and those derived from neural stem cells, which confirms their comparable erythroid differentiation potential. Copyright© Ferrata Storti Foundation.
[Progress in stem cells and regenerative medicine].
Wang, Libin; Zhu, He; Hao, Jie; Zhou, Qi
2015-06-01
Stem cells have the ability to differentiate into all types of cells in the body and therefore have great application potential in regenerative medicine, in vitro disease modelling and drug screening. In recent years, stem cell technology has made great progress, and induced pluripotent stem cell technology revolutionizes the whole stem cell field. At the same time, stem cell research in our country has also achieved great progress and becomes an indispensable power in the worldwide stem cell research field. This review mainly focuses on the research progress in stem cells and regenerative medicine in our country since the advent of induced pluripotent stem cell technology, including induced pluripotent stem cells, transdifferentiation, haploid stem cells, and new gene editing tools.
Application of Graphene Based Nanotechnology in Stem Cells Research.
Hu, Shanshan; Zeng, Yongxiang; Yang, Shuying; Qin, Han; Cai, He; Wang, Jian
2015-09-01
The past several years have witnessed significant advances in stem cell therapy, tissue engineering and regenerative medicine. Graphene, with its unique properties such as high electrical conductivity, elasticity and good molecule absorption, have potential for creating the next generation of biomaterials. This review summarizes the interrelationship between graphene and stem cells. The analysis of graphene when applied on mesenchymal stem cells, neural stem cells, induced pluripotent stem cells, embryonic stem cells, periodontal ligament stem cells, human adipose-derived stem cells and cancer stem cells, and how graphene influences cell behavior and differentiation are discussed in details.
A revisionist history of adult marrow stem cell biology or 'they forgot about the discard'.
Quesenberry, P; Goldberg, L
2017-08-01
The adult marrow hematopoietic stem cell biology has largely been based on studies of highly purified stem cells. This is unfortunate because during the stem cell purification the great bulk of stem cells are discarded. These cells are actively proliferating. The final purified stem cell is dormant and not representative of the whole stem cell compartment. Thus, a large number of studies on the cellular characteristics, regulators and molecular details of stem cells have been carried on out of non-represented cells. Niche studies have largely pursued using these purified stem cells and these are largely un-interpretable. Other considerations include the distinction between baseline and transplant stem cells and the modulation of stem cell phenotype by extracellular vesicles, to cite a non-inclusive list. Work needs to proceed on characterizing the true stem cell population.
Koyama, Daisuke; Nishiwaki, Satoshi; Harada, Yasuhiko; Yamamoto, Satomi; Kurahashi, Shingo; Sugimoto, Takumi; Iwasaki, Toshihiro; Sugiura, Isamu
2017-09-01
Autologous stem cell transplantation is an important strategy for patients with relapsed or refractory lymphoma. Although various regimens for peripheral blood stem cell collection have been used, the optimal regimen has not yet been established. We aimed to evaluate the mobilization efficacy and safety of the regimen consisted of etoposide and cytarabine (EC regimen). We retrospectively analyzed the clinical data of 46 lymphoma patients who received peripheral blood stem cell mobilization with the EC regimen [etoposide (100 mg/m2/day, days 1-4) and cytarabine (100 mg/m2/day, days 1-4)] at Toyohashi municipal hospital from 2004 to 2013. The median age of the patients was 55 years. The most common underlying diseases were diffuse large B-cell lymphoma (46%) and follicular lymphoma (26%). Three-quarters of patients were in their second complete or partial remission. The median total number of collected CD34+ cells was 10.6 × 106 kg-1. Forty-two patients (91%) yielded at least 2 × 106 kg-1 CD34+ cells within a median of 2 apheresis days, and 33 patients (72%) achieved it with only one apheresis. Successful mobilization was observed in five of six patients who failed to mobilize previously. Although febrile neutropenia occurred in 22 patients (48%), no fatal infection was observed. The EC regimen was highly effective in lymphoma patients, including patients who mobilized poorly with other regimens. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Dowell, Karen G; Simons, Allen K; Bai, Hao; Kell, Braden; Wang, Zack Z; Yun, Kyuson; Hibbs, Matthew A
2014-05-01
Embryonic stem cells (ESCs), characterized by their ability to both self-renew and differentiate into multiple cell lineages, are a powerful model for biomedical research and developmental biology. Human and mouse ESCs share many features, yet have distinctive aspects, including fundamental differences in the signaling pathways and cell cycle controls that support self-renewal. Here, we explore the molecular basis of human ESC self-renewal using Bayesian network machine learning to integrate cell-type-specific, high-throughput data for gene function discovery. We integrated high-throughput ESC data from 83 human studies (~1.8 million data points collected under 1,100 conditions) and 62 mouse studies (~2.4 million data points collected under 1,085 conditions) into separate human and mouse predictive networks focused on ESC self-renewal to analyze shared and distinct functional relationships among protein-coding gene orthologs. Computational evaluations show that these networks are highly accurate, literature validation confirms their biological relevance, and reverse transcriptase polymerase chain reaction (RT-PCR) validation supports our predictions. Our results reflect the importance of key regulatory genes known to be strongly associated with self-renewal and pluripotency in both species (e.g., POU5F1, SOX2, and NANOG), identify metabolic differences between species (e.g., threonine metabolism), clarify differences between human and mouse ESC developmental signaling pathways (e.g., leukemia inhibitory factor (LIF)-activated JAK/STAT in mouse; NODAL/ACTIVIN-A-activated fibroblast growth factor in human), and reveal many novel genes and pathways predicted to be functionally associated with self-renewal in each species. These interactive networks are available online at www.StemSight.org for stem cell researchers to develop new hypotheses, discover potential mechanisms involving sparsely annotated genes, and prioritize genes of interest for experimental validation. © 2013 AlphaMed Press.
Perspectives on stem cell therapy for cardiac regeneration. Advances and challenges.
Choi, Sung Hyun; Jung, Seok Yun; Kwon, Sang-Mo; Baek, Sang Hong
2012-01-01
Ischemic heart disease (IHD) accelerates cardiomyocyte loss, but the developing stem cell research could be useful for regenerating a variety of tissue cells, including cardiomyocytes. Diverse sources of stem cells for IHD have been reported, including embryonic stem cells, induced pluripotent stem cells, skeletal myoblasts, bone marrow-derived stem cells, mesenchymal stem cells, and cardiac stem cells. However, stem cells have unique advantages and disadvantages for cardiac tissue regeneration, which are important considerations in determining the specific cells for improving cell survival and long-term engraftment after transplantation. Additionally, the dosage and administration method of stem cells need to be standardized to increase stability and efficacy for clinical applications. Accordingly, this review presents a summary of the stem cell therapies that have been studied for cardiac regeneration thus far, and discusses the direction of future cardiac regeneration research for stem cells.
Stem cells are cells with the potential to develop into many different types of cells in the body. They serve as a repair ... body. There are two main types of stem cells: embryonic stem cells and adult stem cells. Stem ...
The Role of Integrin α6 (CD49f) in Stem Cells: More than a Conserved Biomarker.
Krebsbach, Paul H; Villa-Diaz, Luis G
2017-08-01
Stem cells have the capacity for self-renewal and differentiation into specialized cells that form and repopulated all tissues and organs, from conception to adult life. Depending on their capacity for differentiation, stem cells are classified as totipotent (ie, zygote), pluripotent (ie, embryonic stem cells), multipotent (ie, neuronal stem cells, hematopoietic stem cells, epithelial stem cells, etc.), and unipotent (ie, spermatogonial stem cells). Adult or tissue-specific stem cells reside in specific niches located in, or nearby, their organ or tissue of origin. There, they have microenvironmental support to remain quiescent, to proliferate as undifferentiated cells (self-renewal), and to differentiate into progenitors or terminally differentiated cells that migrate from the niche to perform specialized functions. The presence of proteins at the cell surface is often used to identify, classify, and isolate stem cells. Among the diverse groups of cell surface proteins used for these purposes, integrin α6, also known as CD49f, may be the only biomarker commonly found in more than 30 different populations of stem cells, including some cancer stem cells. This broad expression among stem cell populations indicates that integrin α6 may play an important and conserved role in stem cell biology, which is reaffirmed by recent demonstrations of its role maintaining self-renewal of pluripotent stem cells and breast and glioblastoma cancer stem cells. Therefore, this review intends to highlight and synthesize new findings on the importance of integrin α6 in stem cell biology.
Wang, Chao-Qun; Sun, Hao-Ting; Gao, Xiao-Mei; Ren, Ning; Sheng, Yuan-Yuan; Wang, Zheng; Zheng, Yan; Wei, Jin-Wang; Zhang, Kai-Li; Yu, Xin-Xin; Zhu, Yin; Luo, Qin; Yang, Lu-Yu; Dong, Qiong-Zhu; Qin, Lun-Xiu
2016-01-01
Interleukin-6 (IL-6), one of the most important inflammatory cytokines, plays a pivotal role in metastasis and stemness of solid tumors. However, the underlying mechanisms of IL-6 in HCC metastasis remain unclear. In the present study, we demonstrated that stemness and metastatic potential of HCC cells were significantly enhanced after IL-6 stimulation. IL-6 could induce expression of osteopontin (OPN), along with other stemness-related genes, including HIF1α, BMI1, and HEY1. Block of OPN induction could significantly abrogate the effect of IL-6 on stemness and metastasis of HCC cells. Furthermore, IL-6 level was positively correlated with OPN in HCC. Patients with high plasma IL-6 or OPN level had poorer prognosis. In multivariate analysis, IL-6 and OPN were demonstrated to be independent prognostic indicators for HCC patients, and their combination had a better prognostic performance than IL-6 or OPN alone. Collectively, our findings indicate that IL-6 could enhance stemness and promote metastasis of HCC via up-regulating OPN expression, which can be a potential therapeutic target for combating HCC metastasis, and the combination of IL-6 and OPN serves as a promising prognostic predictor for HCC.
Haverkos, Bradley M.; Huang, Ying; Elder, Patrick; O’Donnell, Lynn; Scholl, Diane; Whittaker, Becky; Vasu, Sumi; Penza, Sam; Andritsos, Leslie A.; Devine, Steven M.; Jaglowski, Samantha M.
2016-01-01
In an otherwise eligible patient with relapsed lymphoma, inadequate mobilization of peripheral blood stem cells is a limiting factor to proceeding with an autologous hematopoietic cell transplantation (auto-HCT). Multiple strategies have been used to mobilize an adequate number of hematopoietic stem cells (HSCs) with no obvious front-line strategy. We report a single institutional experience mobilizing HSCs using four different approaches in lymphoma patients. We prospectively collected mobilization outcomes on patients planning to undergo auto-HCT at Ohio State University. We report results of first mobilization attempt for all relapsed or refractory lymphoma patients between 2008–2014. We identified 255 lymphoma patients who underwent mobilization for planned auto-HCT. The 255 lymphoma patients underwent the following front line mobilization strategies: 95 (37%) GCSF alone, 38 (15%) chemomobilization (GCSF+chemotherapy), 97 (38%) preemptive day 4 plerixafor, and 25 (10%) rescue day 5 plerixafor. As expected, there were significant differences between cohorts including age, comorbid indices, histology, and amount of prior chemotherapy. After controlling for differences between groups, the odds of collecting 2×106/kg HSCs on the first day of collection and 5×106/kg HSCs in total was highest in the cohort undergoing chemomobilization. In conclusion, our experience highlights the effectiveness of chemomobilization. PMID:28067870
Abdellatif, Hussein; Shiha, Gamal; Saleh, Dalia M; Eltahry, Huda; Botros, Kamal G
2017-01-01
Oval cells, specific liver progenitors, are activated in response to injury. The human umbilical cord blood (hUCB) is a possible source of transplantable hepatic progenitors and can be used in cases of severe liver injury. We detected the effect of hUCB stem cell transplantation on natural response of oval cells to injury. Twenty-four female albino rats were randomly divided into three groups: (A) control, (B) liver injury with hepatocyte block, and (C) hUCB transplanted group. Hepatocyte block was performed by administration of 2-acetylaminofluorene (2-AAF) for 12 days. CCL4 was administrated at day 5 from experiment start. Animals were sacrificed at 9 days post CCL4 administration, and samples were collected for biochemical and histopathological analysis. Oval cell response to injury was evaluated by the percentage of oval cells in the liver tissue and frequency of cells incorporated into new ducts. Immunohistochemical analysis of oval cell response to injury was performed. There was significant deviation in the hUCB-transplanted (4.9 ± 1.4) and liver injury groups (2.4 ± 0.9) as compared to control (0.89 ± 0.4) 9 days post injury. Detection of oval cell response was dependant on OV-6 immunoreactivity. For mere localization of cells with human origin, CD34 antihuman immunoreactivity was performed. There was no significant difference in endogenous OV-6 immunoreactivity following stem cell transplantation as compared to the liver injury group. In vivo transplantation of cord blood stem cells (hUCB) does not interfere with natural oval cell response to liver injury.
Beloki, Lorea; Ciaurriz, Miriam; Mansilla, Cristina; Zabalza, Amaya; Perez-Valderrama, Estela; Samuel, Edward R; Lowdell, Mark W; Ramirez, Natalia; Olavarria, Eduardo
2014-11-19
Cytomegalovirus (CMV)-specific T cell infusion to immunocompromised patients following allogeneic Hematopoietic Stem Cell Transplantation (allo-HSCT) is able to induce a successful anti-viral response. These cells have classically been manufactured from steady-state apheresis samples collected from the donor in an additional harvest prior to G-CSF mobilization, treatment that induces hematopoietic stem cell (HSC) mobilization to the periphery. However, two closely-timed cellular collections are not usually available in the unrelated donor setting, which limits the accessibility of anti-viral cells for adoptive immunotherapy. CMV-specific cytotoxic T cell (CTL) manufacture from the same G-CSF mobilized donor stem cell harvest offers great regulatory advantages, but the isolation using MHC-multimers is hampered by the high non-specific binding to myeloid progenitors, which reduces the purity of the cellular product. In the present study we describe an easy and fast method based on plastic adherence to remove myeloid cell subsets from 11 G-CSF mobilized donor samples. CMV-specific CTLs were isolated from the non-adherent fraction using pentamers and purity and yield of the process were compared to products obtained from unmanipulated samples. After the elimination of unwanted cell subtypes, non-specific binding of pentamers was notably reduced. Accordingly, following the isolation process the purity of the obtained cellular product was significantly improved. G-CSF mobilized leukapheresis samples can successfully be used to isolate antigen-specific T cells with MHC-multimers to be adoptively transferred following allo-HSCT, widening the accessibility of this therapy in the unrelated donor setting. The combination of the clinically translatable plastic adherence process to the antigen-specific cell isolation using MHC-multimers improves the quality of the therapeutic cellular product, thereby reducing the clinical negative effects associated with undesired alloreactive cell infusion.
Ethnically diverse pluripotent stem cells for drug development.
Fakunle, Eyitayo S; Loring, Jeanne F
2012-12-01
Genetic variation is an identified factor underlying drug efficacy and toxicity, and adverse drug reactions, such as liver toxicity, are the primary reasons for post-marketing drug failure. Genetic predisposition to toxicity might be detected early in the drug development pipeline by introducing cell-based assays that reflect the genetic and ethnic variation of the expected treatment population. One challenge for this approach is obtaining a collection of suitable cell lines derived from ethnically diverse populations. Induced pluripotent stem cells (iPSCs) seem ideal for this purpose. They can be obtained from any individual, can be differentiated into multiple relevant cell types, and their self-renewal capability makes it possible to generate large quantities of quality-controlled cell types. Here, we discuss the benefits and challenges of using iPSCs to introduce genetic diversity into the drug development process. Copyright © 2012 Elsevier Ltd. All rights reserved.
Drosophila's contribution to stem cell research.
Singh, Gyanesh
2015-01-01
The discovery of Drosophila stem cells with striking similarities to mammalian stem cells has brought new hope for stem cell research. Recent developments in Drosophila stem cell research is bringing wider opportunities for contemporary stem cell biologists. In this regard, Drosophila germ cells are becoming a popular model of stem cell research. In several cases, genes that controlled Drosophila stem cells were later discovered to have functional homologs in mammalian stem cells. Like mammals, Drosophila germline stem cells (GSCs) are controlled by both intrinsic as well as external signals. Inside the Drosophila testes, germline and somatic stem cells form a cluster of cells (the hub). Hub cells depend on JAK-STAT signaling, and, in absence of this signal, they do not self-renew. In Drosophila, significant changes occur within the stem cell niche that contributes to a decline in stem cell number over time. In case of aging Drosophila, somatic niche cells show reduced DE-cadherin and unpaired (Upd) proteins. Unpaired proteins are known to directly decrease stem cell number within the niches, and, overexpression of upd within niche cells restored GSCs in older males also . Stem cells in the midgut of Drosophila are also very promising. Reduced Notch signaling was found to increase the number of midgut progenitor cells. On the other hand, activation of the Notch pathway decreased proliferation of these cells. Further research in this area should lead to the discovery of additional factors that regulate stem and progenitor cells in Drosophila.
Drosophila's contribution to stem cell research
Singh, Gyanesh
2016-01-01
The discovery of Drosophila stem cells with striking similarities to mammalian stem cells has brought new hope for stem cell research. Recent developments in Drosophila stem cell research is bringing wider opportunities for contemporary stem cell biologists. In this regard, Drosophila germ cells are becoming a popular model of stem cell research. In several cases, genes that controlled Drosophila stem cells were later discovered to have functional homologs in mammalian stem cells. Like mammals, Drosophila germline stem cells (GSCs) are controlled by both intrinsic as well as external signals. Inside the Drosophila testes, germline and somatic stem cells form a cluster of cells (the hub). Hub cells depend on JAK-STAT signaling, and, in absence of this signal, they do not self-renew. In Drosophila, significant changes occur within the stem cell niche that contributes to a decline in stem cell number over time. In case of aging Drosophila, somatic niche cells show reduced DE-cadherin and unpaired (Upd) proteins. Unpaired proteins are known to directly decrease stem cell number within the niches, and, overexpression of upd within niche cells restored GSCs in older males also . Stem cells in the midgut of Drosophila are also very promising. Reduced Notch signaling was found to increase the number of midgut progenitor cells. On the other hand, activation of the Notch pathway decreased proliferation of these cells. Further research in this area should lead to the discovery of additional factors that regulate stem and progenitor cells in Drosophila. PMID:26180635
Towards Standardized Stem Cell Therapy in Type 2 Diabetes Mellitus: A Systematic Review.
Pawitan, Jeanne Adiwinata; Yang, Zheng; Wu, Ying Nan; Leed, Eng Hin
2018-05-02
To compile and analyze the published studies on cell therapy for type 2 diabetes mellitus (T2DM) to obtain a better insight into management of T2DM that involved stem cell therapy. We searched all published studies in Pubmed/Medline, and Cochrane library, using keywords: 'stem cell' AND 'therapy' AND 'diabetes type 2'. original articles on the use of stem cells in humans with T2DM. articles in the non-English literature, studies on T2DM complications that did not assess both adverse events and any of the common diabetes study outcomes. type of study, number of cases, and all data that were related to outcome and adverse events. Data were analyzed descriptively to conclude the possible cause of adverse reactions, and which protocols gave a satisfactory outcome. We collected 26 original articles, out of which 17 studies did not have controls and were classified as case reports, while there were 8 studies that were controlled clinical trials. Most studies used autologous bone marrow mononuclear cells (BM-MNCs) or autologous or allogeneic mesenchymal stem cells (MSCs) from various sources. Adverse events were mild and mostly intervention related. Efficacy of autologous BM-MNCs that were given via interventional route was comparable to Wharton jelly or umbilical cord MSCs that were given via intravenous (IV), Intra muscular (IM), or subcutaneous (SC) route. Further controlled studies that compare BM-MNCs to BM-MSCs or WJ-MSCs or UCSCs are recommended to prove their comparable efficacy. In addition, studies that compare various routes of administration (IV, IM or SC) versus the more invasive interventional routes are needed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Teotia, Pooja; Sharma, Shilpa; Airan, Balram; Mohanty, Sujata
2016-12-01
Human embryonic stem cell (hESC) lines are commonly maintained on inactivated feeder cells, in the medium supplemented with basic fibroblast growth factor (bFGF). However, limited availability of feeder cells in culture, and the high cost of growth factors limit their use in scalable expansion of hESC cultures for clinical application. Here, we describe an efficient and cost-effective feeder and bFGF-free culture of hESCs using conditioned medium (CM) from immortalized feeder cells. KIND-1 hESC cell line was cultured in CM, collected from primary mouse embryonic fibroblast, human foreskin fibroblast (HFF) and immortalized HFF (I-HFF). Pluripotency of KIND-1 hESC cell line was confirmed by expression of genes, proteins and cell surface markers. In culture, these cells retained normal morphology, expressed all cell surface markers, could differentiate to embryoid bodies upon culture in vitro. Furthermore, I-HFF feeder cells without supplementation of bFGF released ample amount of endogenous bFGF to maintain stemness of hESC cells. The study results described the use of CM from immortalized feeder cells as a consistent source and an efficient, inexpensive feeder-free culture system for the maintenance of hESCs. Moreover, it was possible to maintain hESCs without exogenous supplementation of bFGF. Thus, the study could be extended to scalable expansion of hESC cultures for therapeutic purposes.
Gimeno, María L; Fuertes, Florencia; Barcala Tabarrozzi, Andres E; Attorressi, Alejandra I; Cucchiani, Rodolfo; Corrales, Luis; Oliveira, Talita C; Sogayar, Mari C; Labriola, Leticia; Dewey, Ricardo A; Perone, Marcelo J
2017-01-01
Adult mesenchymal stromal cell-based interventions have shown promising results in a broad range of diseases. However, their use has faced limited effectiveness owing to the low survival rates and susceptibility to environmental stress on transplantation. We describe the cellular and molecular characteristics of multilineage-differentiating stress-enduring (Muse) cells derived from adipose tissue (AT), a subpopulation of pluripotent stem cells isolated from human lipoaspirates. Muse-AT cells were efficiently obtained using a simple, fast, and affordable procedure, avoiding cell sorting and genetic manipulation methods. Muse-AT cells isolated under severe cellular stress, expressed pluripotency stem cell markers and spontaneously differentiated into the three germ lineages. Muse-AT cells grown as spheroids have a limited proliferation rate, a diameter of ∼15 µm, and ultrastructural organization similar to that of embryonic stem cells. Muse-AT cells evidenced high stage-specific embryonic antigen-3 (SSEA-3) expression (∼60% of cells) after 7-10 days growing in suspension and did not form teratomas when injected into immunodeficient mice. SSEA-3 + -Muse-AT cells expressed CD105, CD29, CD73, human leukocyte antigen (HLA) class I, CD44, and CD90 and low levels of HLA class II, CD45, and CD34. Using lipopolysaccharide-stimulated macrophages and antigen-challenged T-cell assays, we have shown that Muse-AT cells have anti-inflammatory activities downregulating the secretion of proinflammatory cytokines, such as interferon-γ and tumor necrosis factor-α. Muse-AT cells spontaneously gained transforming growth factor-β1 expression that, in a phosphorylated SMAD2-dependent manner, might prove pivotal in their observed immunoregulatory activity through decreased expression of T-box transcription factor in T cells. Collectively, the present study has demonstrated the feasibility and efficiency of obtaining Muse-AT cells that can potentially be harnessed as immunoregulators to treat immune-related disorders. Stem Cells Translational Medicine 2017;6:161-173. © 2016 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.
The longest telomeres: a general signature of adult stem cell compartments
Flores, Ignacio; Canela, Andres; Vera, Elsa; Tejera, Agueda; Cotsarelis, George; Blasco, María A.
2008-01-01
Identification of adult stem cells and their location (niches) is of great relevance for regenerative medicine. However, stem cell niches are still poorly defined in most adult tissues. Here, we show that the longest telomeres are a general feature of adult stem cell compartments. Using confocal telomere quantitative fluorescence in situ hybridization (telomapping), we find gradients of telomere length within tissues, with the longest telomeres mapping to the known stem cell compartments. In mouse hair follicles, we show that cells with the longest telomeres map to the known stem cell compartments, colocalize with stem cell markers, and behave as stem cells upon treatment with mitogenic stimuli. Using K15-EGFP reporter mice, which mark hair follicle stem cells, we show that GFP-positive cells have the longest telomeres. The stem cell compartments in small intestine, testis, cornea, and brain of the mouse are also enriched in cells with the longest telomeres. This constitutes the description of a novel general property of adult stem cell compartments. Finally, we make the novel finding that telomeres shorten with age in different mouse stem cell compartments, which parallels a decline in stem cell functionality, suggesting that telomere loss may contribute to stem cell dysfunction with age. PMID:18283121
Di Germanio, Clara; Bernier, Michel; Petr, Michael; Mattioli, Mauro; Barboni, Barbara; de Cabo, Rafael
2016-06-28
Amniotic epithelial cells (AECs) are a class of fetal stem cells that derives from the epiblast and resides in the amnion until birth. AECs are suitable candidates for regenerative medicine because of the ease of collection, their low immunogenicity and inability to form tumors after transplantation. Even though human AECs have been widely investigated, the fact remains that very little is known about AECs isolated from rat, one of the most common animal models in medical testing. In this study, we showed that rat AECs retained stemness properties and plasticity, expressed the pluripotency markers Sox2, Nanog, and Oct4 and were able to differentiate toward the osteogenic lineage. The addition of conditioned medium collected from rat AECs to lipopolysaccharide-activated macrophages elicited anti-inflammatory properties through a decrease of Tnfa expression and slowed tumor cell proliferation in vitro and in vivo. The senescence-associated secretory phenotype was also significantly lower upon incubation of senescent human IMR-90 fibroblast cells with conditioned medium from rat AECs. These results confirm the potential of AECs in the modulation of inflammatory mechanisms and open new therapeutic possibilities for regenerative medicine and anti-aging therapies as well.
Derivation of novel human ground state naive pluripotent stem cells.
Gafni, Ohad; Weinberger, Leehee; Mansour, Abed AlFatah; Manor, Yair S; Chomsky, Elad; Ben-Yosef, Dalit; Kalma, Yael; Viukov, Sergey; Maza, Itay; Zviran, Asaf; Rais, Yoach; Shipony, Zohar; Mukamel, Zohar; Krupalnik, Vladislav; Zerbib, Mirie; Geula, Shay; Caspi, Inbal; Schneir, Dan; Shwartz, Tamar; Gilad, Shlomit; Amann-Zalcenstein, Daniela; Benjamin, Sima; Amit, Ido; Tanay, Amos; Massarwa, Rada; Novershtern, Noa; Hanna, Jacob H
2013-12-12
Mouse embryonic stem (ES) cells are isolated from the inner cell mass of blastocysts, and can be preserved in vitro in a naive inner-cell-mass-like configuration by providing exogenous stimulation with leukaemia inhibitory factor (LIF) and small molecule inhibition of ERK1/ERK2 and GSK3β signalling (termed 2i/LIF conditions). Hallmarks of naive pluripotency include driving Oct4 (also known as Pou5f1) transcription by its distal enhancer, retaining a pre-inactivation X chromosome state, and global reduction in DNA methylation and in H3K27me3 repressive chromatin mark deposition on developmental regulatory gene promoters. Upon withdrawal of 2i/LIF, naive mouse ES cells can drift towards a primed pluripotent state resembling that of the post-implantation epiblast. Although human ES cells share several molecular features with naive mouse ES cells, they also share a variety of epigenetic properties with primed murine epiblast stem cells (EpiSCs). These include predominant use of the proximal enhancer element to maintain OCT4 expression, pronounced tendency for X chromosome inactivation in most female human ES cells, increase in DNA methylation and prominent deposition of H3K27me3 and bivalent domain acquisition on lineage regulatory genes. The feasibility of establishing human ground state naive pluripotency in vitro with equivalent molecular and functional features to those characterized in mouse ES cells remains to be defined. Here we establish defined conditions that facilitate the derivation of genetically unmodified human naive pluripotent stem cells from already established primed human ES cells, from somatic cells through induced pluripotent stem (iPS) cell reprogramming or directly from blastocysts. The novel naive pluripotent cells validated herein retain molecular characteristics and functional properties that are highly similar to mouse naive ES cells, and distinct from conventional primed human pluripotent cells. This includes competence in the generation of cross-species chimaeric mouse embryos that underwent organogenesis following microinjection of human naive iPS cells into mouse morulas. Collectively, our findings establish new avenues for regenerative medicine, patient-specific iPS cell disease modelling and the study of early human development in vitro and in vivo.
Context clues: the importance of stem cell-material interactions
Murphy, William L.
2014-01-01
Understanding the processes by which stem cells give rise to de novo tissues is an active focus of stem cell biology and bioengineering disciplines. Instructive morphogenic cues surrounding the stem cell during morphogenesis create what is referred to as the stem cell microenvironment. An emerging paradigm in stem cell bioengineering involves “biologically driven assembly,” in which stem cells are encouraged to largely define their own morphogenesis processes. However, even in the case of biologically driven assembly, stem cells do not act alone. The properties of the surrounding microenvironment can be critical regulators of cell fate. Stem cell-material interactions are among the most well-characterized microenvironmental effectors of stem cell fate, and they establish a signaling “context” that can define the mode of influence for morphogenic cues. Here we describe illustrative examples of cell-material interactions that occur during in vitro stem cell studies, with an emphasis on how cell-material interactions create instructive contexts for stem cell differentiation and morphogenesis. PMID:24369691
Cancer stem cells and differentiation therapy.
Jin, Xiong; Jin, Xun; Kim, Hyunggee
2017-10-01
Cancer stem cells can generate tumors from only a small number of cells, whereas differentiated cancer cells cannot. The prominent feature of cancer stem cells is its ability to self-renew and differentiate into multiple types of cancer cells. Cancer stem cells have several distinct tumorigenic abilities, including stem cell signal transduction, tumorigenicity, metastasis, and resistance to anticancer drugs, which are regulated by genetic or epigenetic changes. Like normal adult stem cells involved in various developmental processes and tissue homeostasis, cancer stem cells maintain their self-renewal capacity by activating multiple stem cell signaling pathways and inhibiting differentiation signaling pathways during cancer initiation and progression. Recently, many studies have focused on targeting cancer stem cells to eradicate malignancies by regulating stem cell signaling pathways, and products of some of these strategies are in preclinical and clinical trials. In this review, we describe the crucial features of cancer stem cells related to tumor relapse and drug resistance, as well as the new therapeutic strategy to target cancer stem cells named "differentiation therapy."
Barriga, Gonzalo P; Villalón-Letelier, Fernando; Márquez, Chantal L; Bignon, Eduardo A; Acuña, Rodrigo; Ross, Breyan H; Monasterio, Octavio; Mardones, Gonzalo A; Vidal, Simon E; Tischler, Nicole D
2016-07-01
Hantaviruses can cause hantavirus pulmonary syndrome or hemorrhagic fever with renal syndrome in humans. To enter cells, hantaviruses fuse their envelope membrane with host cell membranes. Previously, we have shown that the Gc envelope glycoprotein is the viral fusion protein sharing characteristics with class II fusion proteins. The ectodomain of class II fusion proteins is composed of three domains connected by a stem region to a transmembrane anchor in the viral envelope. These fusion proteins can be inhibited through exogenous fusion protein fragments spanning domain III (DIII) and the stem region. Such fragments are thought to interact with the core of the fusion protein trimer during the transition from its pre-fusion to its post-fusion conformation. Based on our previous homology model structure for Gc from Andes hantavirus (ANDV), here we predicted and generated recombinant DIII and stem peptides to test whether these fragments inhibit hantavirus membrane fusion and cell entry. Recombinant ANDV DIII was soluble, presented disulfide bridges and beta-sheet secondary structure, supporting the in silico model. Using DIII and the C-terminal part of the stem region, the infection of cells by ANDV was blocked up to 60% when fusion of ANDV occurred within the endosomal route, and up to 95% when fusion occurred with the plasma membrane. Furthermore, the fragments impaired ANDV glycoprotein-mediated cell-cell fusion, and cross-inhibited the fusion mediated by the glycoproteins from Puumala virus (PUUV). The Gc fragments interfered in ANDV cell entry by preventing membrane hemifusion and pore formation, retaining Gc in a non-resistant homotrimer stage, as described for DIII and stem peptide inhibitors of class II fusion proteins. Collectively, our results demonstrate that hantavirus Gc shares not only structural, but also mechanistic similarity with class II viral fusion proteins, and will hopefully help in developing novel therapeutic strategies against hantaviruses.
Clinical trials for stem cell transplantation: when are they needed?
Van Pham, Phuc
2016-04-27
In recent years, both stem cell research and the clinical application of these promising cells have increased rapidly. About 1000 clinical trials using stem cells have to date been performed globally. More importantly, more than 10 stem cell-based products have been approved in some countries. With the rapid growth of stem cell applications, some countries have used clinical trials as a tool to diminish the rate of clinical stem cell applications. However, the point at which stem cell clinical trials are essential remains unclear. This commentary discusses when stem cell clinical trials are essential for stem cell transplantation therapies.
Clinical Use and Patentability of Cord Blood
Cavusoglu, Turker; Kilic, Kubilay Dogan; Yigitturk, Gurkan; Tomruk, Canberk; Turgut, Mehmet; Uyanikgil, Yigit
2018-03-14
The blood in the umbilical cord that provides the connection between mother and fetus during pregnancy is called cord blood. The blood of umbilical cord which is usually got rid of following birth, is a very rich stem cell source. Cord blood collection gives no harm to the mother and baby. Besides, its allogeneic and au-tologous usage, the most important disadvantage is that the number of cells is insufficient in adults. Today, it is predominantly used for therapeutic purposes for many diseases. The aim of this review is giving a detailed information about groups of stem cells in cord blood and determining the point of clinical use. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Lee, Jae Geun; Bak, Seon Young; Nahm, Ji Hae; Lee, Sang Woo; Min, Seon Ok; Kim, Kyung Sik
2015-05-01
Stem cell therapies for liver disease are being studied by many researchers worldwide, but scientific evidence to demonstrate the endocrinologic effects of implanted cells is insufficient, and it is unknown whether implanted cells can function as liver cells. Achieving angiogenesis, arguably the most important characteristic of the liver, is known to be quite difficult, and no practical attempts have been made to achieve this outcome. We carried out this study to observe the possibility of angiogenesis of implanted bio-artificial liver using scaffolds. This study used adipose tissue-derived stem cells that were collected from adult patients with liver diseases with conditions similar to the liver parenchyma. Specifically, microfilaments were used to create an artificial membrane and maintain the structure of an artificial organ. After scratching the stomach surface of severe combined immunocompromised (SCID) mice (n=4), artificial scaffolds with adipose tissue-derived stem cells and type I collagen were implanted. Expression levels of angiogenesis markers including vascular endothelial growth factor (VEGF), CD34, and CD105 were immunohistochemically assessed after 30 days. Grossly, the artificial scaffolds showed adhesion to the stomach and surrounding organs; however, there was no evidence of angiogenesis within the scaffolds; and VEGF, CD34, and CD105 expressions were not detected after 30 days. Although implantation of cells into artificial scaffolds did not facilitate angiogenesis, the artificial scaffolds made with type I collagen helped maintain implanted cells, and surrounding tissue reactions were rare. Our findings indicate that type I collagen artificial scaffolds can be considered as a possible implantable biomaterial.
Stem cells - biological update and cell therapy progress
GIRLOVANU, MIHAI; SUSMAN, SERGIU; SORITAU, OLGA; RUS-CIUCA, DAN; MELINCOVICI, CARMEN; CONSTANTIN, ANNE-MARIE; MIHU, CARMEN MIHAELA
2015-01-01
In recent years, the advances in stem cell research have suggested that the human body may have a higher plasticity than it was originally expected. Until now, four categories of stem cells were isolated and cultured in vivo: embryonic stem cells, fetal stem cells, adult stem cells and induced pluripotent stem cells (hiPSCs). Although multiple studies were published, several issues concerning the stem cells are still debated, such as: the molecular mechanisms of differentiation, the methods to prevent teratoma formation or the ethical and religious issues regarding especially the embryonic stem cell research. The direct differentiation of stem cells into specialized cells: cardiac myocytes, neural cells, pancreatic islets cells, may represent an option in treating incurable diseases such as: neurodegenerative diseases, type I diabetes, hematologic or cardiac diseases. Nevertheless, stem cell-based therapies, based on stem cell transplantation, remain mainly at the experimental stages and their major limitation is the development of teratoma and cancer after transplantation. The induced pluripotent stem cells (hiPSCs) represent a prime candidate for future cell therapy research because of their significant self-renewal and differentiation potential and the lack of ethical issues. This article presents an overview of the biological advances in the study of stem cells and the current progress made in the field of regenerative medicine. PMID:26609255
Establishment of mouse expanded potential stem cells
Gao, Xuefei; Antunes, Liliana; Yu, Yong; Zhu, Zhexin; Wang, Juexuan; Kolodziejczyk, Aleksandra A.; Campos, Lia S.; Wang, Cui; Yang, Fengtang; Zhong, Zhen; Fu, Beiyuan; Eckersley-Maslin, Melanie A.; Woods, Michael; Tanaka, Yosuke; Chen, Xi; Wilkinson, Adam C.; Bussell, James; White, Jacqui; Ramirez-Solis, Ramiro; Reik, Wolf; Göttgens, Berthold; Teichmann, Sarah A.; Tam, Patrick P. L.; Nakauchi, Hiromitsu; Zou, Xiangang; Lu, Liming; Liu, Pentao
2018-01-01
Mouse embryonic stem cells derived from the epiblast1 contribute to the somatic lineages and the germline but are excluded from the extra-embryonic tissues that are derived from the trophectoderm and the primitive endoderm2 upon reintroduction to the blastocyst. Here we report that cultures of expanded potential stem cells can be established from individual eight-cell blastomeres, and by direct conversion of mouse embryonic stem cells and induced pluripotent stem cells. Remarkably, a single expanded potential stem cell can contribute both to the embryo proper and to the trophectoderm lineages in a chimaera assay. Bona fide trophoblast stem cell lines and extra-embryonic endoderm stem cells can be directly derived from expanded potential stem cells in vitro. Molecular analyses of the epigenome and single-cell transcriptome reveal enrichment for blastomere-specific signature and a dynamic DNA methylome in expanded potential stem cells. The generation of mouse expanded potential stem cells highlights the feasibility of establishing expanded potential stem cells for other mammalian species. PMID:29019987
NASA Astrophysics Data System (ADS)
Rustaman, N. Y.; Afianti, E.; Maryati, S.
2018-05-01
A study using one group pre-post-test experimental design on Life organization system topic was carried out to investigate student’s tendency in learning abstract concept, their creativity and collaboration in designing and producing cell models through STEM-based learning. A number of seventh grade students in Cianjur district were involved as research subjects (n=34). Data were collected using two tier test for tracing changes in student conception before and after the application of STEM-based learning, and rubrics in creativity design (adopted from Torrance) and product on cell models (individually, in group), and rubric for self-assessment and observed skills on collaboration adapted from Marzano’s for life-long learning. Later the data obtained were analyzed qualitatively by interpreting the tendency of data presented in matrix sorted by gender. Research findings showed that the percentage of student’s scientific concept mastery is moderate in general. Their creativity in making a cell model design varied in category (expressing, emergent, excellent, not yet evident). Student’s collaboration varied from excellent, fair, good, less once, to less category in designing cell model. It was found that STEM based learning can facilitate students conceptual change, creativity and collaboration.
Bahadur, G; Morrison, M; Machin, L
2010-12-01
Discussion about the ethics of human embryonic stem cell (ESC) research in the UK tends to be dominated by the divisive and potentially intractable issue of the moral status of the embryo. This can have the effect of silencing or marginalizing other concerns, especially in the context of public engagement with science in this field. One such area of potential public concern is the donation of oocytes and embryos to stem cell research. Contemporary research on the views of donors and potential donors about a wide range of biomaterials, from solid organs to gametes and bone marrow, is reviewed and used to illustrate the range and types of ethical concerns articulated by this important group of stakeholders. Attitudes to donation are found to vary according to the type of tissue being donated or collected, the purpose for which donation is being sought and the nature of the recipient of the donation. Pertinently, attitudes towards donating oocytes are found to differ in some respects from donation of embryos or fetal tissue. The implications of these findings for ensuring ethically robust informed consent and publicly acceptable sourcing of human biomaterials for stem cell research are then considered. Copyright © 2010 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.
The clinician-scientist: professional dynamics in clinical stem cell research.
Wilson-Kovacs, Dana M; Hauskeller, Christine
2012-05-01
Clinical applications of biomedical research rely on specialist knowledge provided by professionals who straddle research and therapy, and possess both medical and scientific expertise. To date, this professional group remains under-explored in sociology. Our article presents a case study of clinician-scientists working in stem cell research for heart repair in the UK and Germany who are engaged in double-blind randomised clinical trials using patients' own stem cells. The analysis draws on sociological and medical literature, interviews and ethnographic fieldwork to analyse the experiences and self-rationalisations of a small number of clinician-scientists and the ways in which these professionals portray, explain and justify their role in the wider clinical research environment. We examine our participants' views on the clinical trials they conduct, the challenges they encounter and the ways through which they negotiate a complex disciplinary terrain, and argue that the recent clinical implementation of stem cell research brings clinician-scientists to the fore and provides a renewed platform for their professional legitimisation. The article helps increase our understanding of how randomised clinical trials are involved in consolidating the individual status of actors and the collective standing of clinician-scientists as leaders of change in translational medicine. © 2011 The Authors. Sociology of Health & Illness © 2011 Foundation for the Sociology of Health & Illness/Blackwell Publishing Ltd.
Moraghebi, Roksana; Kirkeby, Agnete; Chaves, Patricia; Rönn, Roger E; Sitnicka, Ewa; Parmar, Malin; Larsson, Marcus; Herbst, Andreas; Woods, Niels-Bjarne
2017-08-25
Mesenchymal stromal cells (MSCs) are currently being evaluated in numerous pre-clinical and clinical cell-based therapy studies. Furthermore, there is an increasing interest in exploring alternative uses of these cells in disease modelling, pharmaceutical screening, and regenerative medicine by applying reprogramming technologies. However, the limited availability of MSCs from various sources restricts their use. Term amniotic fluid has been proposed as an alternative source of MSCs. Previously, only low volumes of term fluid and its cellular constituents have been collected, and current knowledge of the MSCs derived from this fluid is limited. In this study, we collected amniotic fluid at term using a novel collection system and evaluated amniotic fluid MSC content and their characteristics, including their feasibility to undergo cellular reprogramming. Amniotic fluid was collected at term caesarean section deliveries using a closed catheter-based system. Following fluid processing, amniotic fluid was assessed for cellularity, MSC frequency, in-vitro proliferation, surface phenotype, differentiation, and gene expression characteristics. Cells were also reprogrammed to the pluripotent stem cell state and differentiated towards neural and haematopoietic lineages. The average volume of term amniotic fluid collected was approximately 0.4 litres per donor, containing an average of 7 million viable mononuclear cells per litre, and a CFU-F content of 15 per 100,000 MNCs. Expanded CFU-F cultures showed similar surface phenotype, differentiation potential, and gene expression characteristics to MSCs isolated from traditional sources, and showed extensive expansion potential and rapid doubling times. Given the high proliferation rates of these neonatal source cells, we assessed them in a reprogramming application, where the derived induced pluripotent stem cells showed multigerm layer lineage differentiation potential. The potentially large donor base from caesarean section deliveries, the high yield of term amniotic fluid MSCs obtainable, the properties of the MSCs identified, and the suitability of the cells to be reprogrammed into the pluripotent state demonstrated these cells to be a promising and plentiful resource for further evaluation in bio-banking, cell therapy, disease modelling, and regenerative medicine applications.
Adult Stem Cell Therapy for Stroke: Challenges and Progress
Bang, Oh Young; Kim, Eun Hee; Cha, Jae Min; Moon, Gyeong Joon
2016-01-01
Stroke is one of the leading causes of death and physical disability among adults. It has been 15 years since clinical trials of stem cell therapy in patients with stroke have been conducted using adult stem cells like mesenchymal stem cells and bone marrow mononuclear cells. Results of randomized controlled trials showed that adult stem cell therapy was safe but its efficacy was modest, underscoring the need for new stem cell therapy strategies. The primary limitations of current stem cell therapies include (a) the limited source of engraftable stem cells, (b) the presence of optimal time window for stem cell therapies, (c) inherited limitation of stem cells in terms of growth, trophic support, and differentiation potential, and (d) possible transplanted cell-mediated adverse effects, such as tumor formation. Here, we discuss recent advances that overcome these hurdles in adult stem cell therapy for stroke. PMID:27733032
[Correlation between load of polyomavirus and hemorrhagic cystitis].
Tong, Chun-Rong; Teng, Zhi-Ping; Liu, Hong-Xing; Cai, Peng; Ma, Si-Kun; Zhen, Cheng-Liang; Zeng, Yi; Lu, Dao-Pei
2007-09-01
To study the correlation between polyoma virus load and hemorrhagic cystitis after allogeneic stem cells transplantation for prevention of hemorrhagic cystitis. Blood and urine specimens were collected from 40 healthy persons, 40 patient with stem cells transplantation and 20 cases complicated with hemorrhagic cystitis for determination of VP1 gene of polyomaviruses BK virus (BKV)/Jamestown Canyon virus (JCV) and simian virus 40 (SV40) by polymerase chain reaction (PCR) and EvaGreen stain fluorescence quantitative assay. In the peripheral blood, all genes of BKV/JCV and SV40 were negative, while BKV gene in urine and blood from healthy persons and patient with stem cells transplantation was 15% (6/40) and 100% (40/40), respectively. The gene of JCV was positive in 10% (4/40) and 12% (5/40), the gene of SV40 was negative. Genes of BKV and JCV was detectable in urine specimens of healthy persons and there was a correlation between the load of polyomavirus and incidence of hemorrhagic cystitis.
Cao, Lei; Tan, Lan; Jiang, Teng; Zhu, Xi-Chen; Yu, Jin-Tai
2015-08-01
Although most neurodegenerative diseases have been closely related to aberrant accumulation of aggregation-prone proteins in neurons, understanding their pathogenesis remains incomplete, and there is no treatment to delay the onset or slow the progression of many neurodegenerative diseases. The availability of induced pluripotent stem cells (iPSCs) in recapitulating the phenotypes of several late-onset neurodegenerative diseases marks the new era in in vitro modeling. The iPSC collection represents a unique and well-characterized resource to elucidate disease mechanisms in these diseases and provides a novel human stem cell platform for screening new candidate therapeutics. Modeling human diseases using iPSCs has created novel opportunities for both mechanistic studies as well as for the discovery of new disease therapies. In this review, we introduce iPSC-based disease modeling in neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. In addition, we discuss the implementation of iPSCs in drug discovery associated with some new techniques.
Ussowicz, Marek; Rybka, Blanka; Wendycz-Domalewska, Danuta; Ryczan, Renata; Gorczyńska, Ewa; Kałwak, Krzysztof; Woźniak, Mieczysław
2010-01-01
After stem cell transplantation, human patients are prone to life-threatening opportunistic infections with a plethora of microorganisms. We report a retrospective study on 116 patients (98 children, 18 adults) who were transplanted in a pediatric bone marrow transplantation unit. Blood, urine and stool samples were collected and monitored for adenovirus (AdV) DNA using polymerase chain reaction (PCR) and real-time PCR (RT-PCR) on a regular basis. AdV DNA was detected in 52 (44.8%) patients, with mortality reaching 19% in this subgroup. Variables associated with adenovirus infection were transplantations from matched unrelated donors and older age of the recipient. An increased seasonal occurrence of adenoviral infections was observed in autumn and winter. Analysis of immune reconstitution showed a higher incidence of AdV infections during periods of low T-lymphocyte count. This study also showed a strong interaction between co-infections of AdV and BK polyomavirus in patients undergoing hematopoietic stem cell transplantations. PMID:20848295
EMP2 is a novel therapeutic target for endometrial cancer stem cells
Kiyohara, Meagan H.; Dillard, Christen; Tsui, Jessica; Kim, Sara Ruth; Lu, Jianyi; Sachdev, Divya; Goodglick, Lee; Tong, Maomeng; Torous, Vanda Farahmand; Aryasomayajula, Chinmayi; Wang, Wei; Najafzadeh, Parisa; Gordon, Lynn K.; Braun, Jonathan; McDermott, Sean; Wicha, Max S.; Wadehra, Madhuri
2017-01-01
Previous studies have suggested that overexpression of the oncogenic protein epithelial membrane protein-2 (EMP2) correlates with endometrial carcinoma progression and ultimately poor survival from disease. To understand the role of EMP2 in the etiology of disease, gene analysis was performed to show transcripts that are reciprocally regulated by EMP2 levels. In particular, EMP2 expression correlates with and helps regulate the expression of several cancer stem cell associated markers including aldehyde dehydrogenase 1 (ALDH1). ALDH expression significantly promotes tumor initiation and correlates with the levels of EMP2 expression in both patient samples and tumor cell lines. As therapy against CSCs in endometrial cancer is lacking, the ability of anti-EMP2 IgG1 therapy to reduce primary and secondary tumor formation using xenograft HEC1A models was determined. Anti-EMP2 IgG1 reduced the expression and activity of ALDH and correspondingly reduced both primary and secondary tumor load. Our results collectively suggest that anti-EMP2 therapy may be a novel method of reducing endometrial cancer stem cells. PMID:28604744
Klimmeck, Daniel; Hansson, Jenny; Raffel, Simon; Vakhrushev, Sergey Y.; Trumpp, Andreas; Krijgsveld, Jeroen
2012-01-01
Regenerative tissues such as the skin epidermis, the intestinal mucosa or the hematopoietic system are organized in a hierarchical manner with stem cells building the top of this hierarchy. Somatic stem cells harbor the highest self-renewal activity and generate a series of multipotent progenitors which differentiate into lineage committed progenitors and subsequently mature cells. In this report, we applied an in-depth quantitative proteomic approach to analyze and compare the full proteomes of ex vivo isolated and FACS-sorted populations highly enriched for either multipotent hematopoietic stem/progenitor cells (HSPCs, LinnegSca-1+c-Kit+) or myeloid committed precursors (LinnegSca-1−c-Kit+). By employing stable isotope dimethyl labeling and high-resolution mass spectrometry, more than 5000 proteins were quantified. From biological triplicate experiments subjected to rigorous statistical evaluation, 893 proteins were found differentially expressed between multipotent and myeloid committed cells. The differential protein content in these cell populations points to a distinct structural organization of the cytoskeleton including remodeling activity. In addition, we found a marked difference in the expression of metabolic enzymes, including a clear shift of specific protein isoforms of the glycolytic pathway. Proteins involved in translation showed a collective higher expression in myeloid progenitors, indicating an increased translational activity. Strikingly, the data uncover a unique signature related to immune defense mechanisms, centering on the RIG-I and type-1 interferon response systems, which are installed in multipotent progenitors but not evident in myeloid committed cells. This suggests that specific, and so far unrecognized, mechanisms protect these immature cells before they mature. In conclusion, this study indicates that the transition of hematopoietic stem/progenitors toward myeloid commitment is accompanied by a profound change in processing of cellular resources, adding novel insights into the molecular mechanisms at the interface between multipotency and lineage commitment. PMID:22454540
[Post-transplantation lymphoproliferative disorder in childhood].
Stréhn, Anita; Szőnyi, László; Kriván, Gergely; Kovács, Lajos; Reusz, György; Szabó, Attila; Rényi, Imre; Kovács, Gábor; Dezsőfi, Antal
2014-02-23
Among possible complications of transplantation the post-transplant lymphoproliferative disease due to immunosuppressive therapy is of paramount importance. In most cases the direct modulating effect of Epstein-Barr virus on immune cells can be documented. The aim of the authors was to evaluate the incidence os post-transplant lymphoproliferative diseases in pediatric transplant patients in Hungary. The study group included kidney, liver and lung transplant children followed up at the 1st Department of Pediatrics, Semmelweis University, Budapest and stem cell transplant children at Szent László Hospital, Budapest. Data were collected from 78 kidney, 109 liver and 17 lung transplant children as well as from 243 children who underwent allogenic stem cell transplantation. Between 1998 and 2012, 13 children developed post-transplant lymphoproliferative disorder (8 solid organ transplanted and 5 stem cell transplanted children). The diagnosis was based on histological findings in all cases. Mortality was 3 out of the 8 solid organ transplant children and 4 out of the 5 stem cell transplant children. The highest incidence was observed among lung transplant children (17.6%). These data indicate that post-transplant lymphoproliferative disease is a rare but devastating complication of transplantation in children. The most important therapeutic approaches are reduction of immunosuppressive therapy, chemotherapy and rituximab. Early diagnosis may improve clinical outcome and, therefore, routine polymerase chain reaction screening for Epstein-Barr virus of high risk patients is recommended.
Ma, Yuanyuan; Liang, Dongming; Liu, Jian; Wen, Jian-Guo; Servoll, Einar; Waaler, Gudmund; Sæter, Thorstein; Axcrona, Karol; Vlatkovic, Ljiljana; Axcrona, Ulrika; Paus, Elisabeth; Yang, Yue; Zhang, Zhiqian; Kvalheim, Gunnar; Nesland, Jahn M.; Suo, Zhenhe
2013-01-01
Androgen plays a vital role in prostate cancer development. However, it is not clear whether androgens influence stem-like properties of prostate cancer, a feature important for prostate cancer progression. In this study, we show that upon DHT treatment in vitro, prostate cancer cell lines LNCaP and PC-3 were revealed with higher clonogenic potential and higher expression levels of stemness related factors CD44, CD90, Oct3/4 and Nanog. Moreover, sex hormone binding globulin (SHBG) was also simultaneously upregulated in these cells. When the SHBG gene was blocked by SHBG siRNA knock-down, the induction of Oct3/4, Nanog, CD44 and CD90 by DHT was also correspondingly blocked in these cells. Immunohistochemical evaluation of clinical samples disclosed weakly positive, and areas negative for SHBG expression in the benign prostate tissues, while most of the prostate carcinomas were strongly positive for SHBG. In addition, higher levels of SHBG expression were significantly associated with higher Gleason score, more seminal vesicle invasions and lymph node metastases. Collectively, our results show a role of SHBG in upregulating stemness of prostate cancer cells upon DHT exposure in vitro, and SHBG expression in prostate cancer samples is significantly associated with poor clinicopathological features, indicating a role of SHBG in prostate cancer progression. PMID:23936228
Yang, Chih-Yu; Chang, Zee-Fen; Chau, Yat-Pang; Chen, Ann; Lee, Oscar Kuang-Sheng; Yang, An-Hang
2015-11-01
Uremic patients are predisposed to atrophy of the alveolar bone and narrowing of the dental pulp chamber. Such pulp chamber changes have only been diagnosed radiologically; however, this has not been supported by any pathological evidence. We used a uremic rat model with secondary hyperparathyroidism induced by 5/6 nephrectomy surgery and high-phosphate diet to examine the dental pulp and adjacent alveolar bone pathology. In addition, we collected pulp tissues for real-time PCR. We found an opposite histopathological presentation of the ossified dental pulp and the osteomalacic adjacent alveolar bone. Furthermore, pulp cells with positive staining for Thy-1, a surrogate stem cell marker, were significantly reduced in the pulp of uremic rats compared to the controls, indicating a paucity of stem cells. This was further evidenced by the reduced pulp expression of dickkopf-1 (Dkk-1), a Wnt/β-catenin signaling inhibitor produced by mesenchymal stem cells. In contrast, expressions of receptor activator of nuclear factor κB ligand (RANKL) and RANK in uremic pulp were up-regulated, probably to counteract the ossifying process of uremic pulp. In conclusion, uremic pulp ossifications were associated with a paucity of stem cells and dysregulated Dkk-1 and RANKL signaling systems, further shifting the imbalance toward osteogenesis. Strategies to counteract such an imbalance may offer a potential therapeutic target to improve dental health in uremic patients, which warrants further interventional studies.
A family business: stem cell progeny join the niche to regulate homeostasis.
Hsu, Ya-Chieh; Fuchs, Elaine
2012-01-23
Stem cell niches, the discrete microenvironments in which the stem cells reside, play a dominant part in regulating stem cell activity and behaviours. Recent studies suggest that committed stem cell progeny become indispensable components of the niche in a wide range of stem cell systems. These unexpected niche inhabitants provide versatile feedback signals to their stem cell parents. Together with other heterologous cell types that constitute the niche, they contribute to the dynamics of the microenvironment. As progeny are often located in close proximity to stem cell niches, similar feedback regulations may be the underlying principles shared by different stem cell systems.
A family business: stem cell progeny join the niche to regulate homeostasis
Hsu, Ya-Chieh; Fuchs, Elaine
2012-01-01
Stem cell niches, the discrete microenvironments in which the stem cells reside, play a dominant part in regulating stem cell activity and behaviours. Recent studies suggest that committed stem cell progeny become indispensable components of the niche in a wide range of stem cell systems. These unexpected niche inhabitants provide versatile feedback signals to their stem cell parents. Together with other heterologous cell types that constitute the niche, they contribute to the dynamics of the microenvironment. As progeny are often located in close proximity to stem cell niches, similar feedback regulations may be the underlying principles shared by different stem cell systems. PMID:22266760
Stem Cell Therapy for Erectile Dysfunction.
Matz, Ethan L; Terlecki, Ryan; Zhang, Yuanyuan; Jackson, John; Atala, Anthony
2018-04-06
The prevalence of erectile dysfunction (ED) is substantial and continues to rise. Current therapeutics for ED consist of oral medications, intracavernosal injections, vacuum erection devices, and penile implants. While such options may manage the disease state, none of these modalities, however, restore function. Stem cell therapy has been evaluated for erectile restoration in animal models. These cells have been derived from multiple tissues, have varied potential, and may function via local engraftment or paracrine signaling. Bone marrow-derived stem cells (BMSC) and adipose-derived stem cells (ASC) have both been used in these models with noteworthy effects. Herein, we will review the pathophysiology of ED, animal models, current and novel stem-cell based therapeutics, clinical trials and areas for future research. The relevant literature and contemporary data using keywords, "stem cells and erectile dysfunction" was reviewed. Examination of evidence supporting the association between erectile dysfunction and adipose derived stem cells, bone marrow derived stem cells, placental stem cells, urine stem cells and stem cell therapy respectively. Placental-derived stem cells and urine-derived stem cells possess many similar properties as BMSC and ASC, but the methods of acquisition are favorable. Human clinical trials have already demonstrated successful use of stem cells for improvement of erectile function. The future of stem cell research is constantly being evaluated, although, the evidence suggests a place for stem cells in erectile dysfunction therapeutics. Matz EL, Terlecki R, Zhang Y, et al. Stem Cell Therapy for Erectile Dysfunction. Sex Med Rev 2018;XX:XXX-XXX. Copyright © 2018 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.
Neuron-like differentiation of mesenchymal stem cells on silicon nanowires
NASA Astrophysics Data System (ADS)
Kim, Hyunju; Kim, Ilsoo; Choi, Heon-Jin; Kim, So Yeon; Yang, Eun Gyeong
2015-10-01
The behavior of mammalian cells on vertical nanowire (NW) arrays, including cell spreading and the dynamic distribution of focal adhesions and cytoskeletal proteins, has been intensively studied to extend the implications for cellular manipulations in vitro. Prompted by the result that cells on silicon (Si) NWs showed morphological changes and reduced migration rates, we have explored the transition of mesenchymal stem cells into a neuronal lineage by using SiNWs with varying lengths. When human mesenchymal stem cells (hMSCs) were cultured on the longest SiNWs for 3 days, most of the cells exhibited elongated shapes with neurite-like extensions and dot-like focal adhesions that were prominently observed along with actin filaments. Under these circumstances, the cell motility analyzed by live cell imaging was found to decrease due to the presence of SiNWs. In addition, the slowed growth rate, as well as the reduced population of S phase cells, suggested that the cell cycle was likely arrested in response to the differentiation process. Furthermore, we measured the mRNA levels of several lineage-specific markers to confirm that the SiNWs actually induced neuron-like differentiation of the hMSCs while hampering their osteogenic differentiation. Taken together, our results implied that SiNWs were capable of inducing active reorganization of cellular behaviors, collectively guiding the fate of hMSCs into the neural lineage even in the absence of any inducing reagent.The behavior of mammalian cells on vertical nanowire (NW) arrays, including cell spreading and the dynamic distribution of focal adhesions and cytoskeletal proteins, has been intensively studied to extend the implications for cellular manipulations in vitro. Prompted by the result that cells on silicon (Si) NWs showed morphological changes and reduced migration rates, we have explored the transition of mesenchymal stem cells into a neuronal lineage by using SiNWs with varying lengths. When human mesenchymal stem cells (hMSCs) were cultured on the longest SiNWs for 3 days, most of the cells exhibited elongated shapes with neurite-like extensions and dot-like focal adhesions that were prominently observed along with actin filaments. Under these circumstances, the cell motility analyzed by live cell imaging was found to decrease due to the presence of SiNWs. In addition, the slowed growth rate, as well as the reduced population of S phase cells, suggested that the cell cycle was likely arrested in response to the differentiation process. Furthermore, we measured the mRNA levels of several lineage-specific markers to confirm that the SiNWs actually induced neuron-like differentiation of the hMSCs while hampering their osteogenic differentiation. Taken together, our results implied that SiNWs were capable of inducing active reorganization of cellular behaviors, collectively guiding the fate of hMSCs into the neural lineage even in the absence of any inducing reagent. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr05787f
A new prospect in cancer therapy: targeting cancer stem cells to eradicate cancer.
Chen, Li-Sha; Wang, An-Xin; Dong, Bing; Pu, Ke-Feng; Yuan, Li-Hua; Zhu, Yi-Min
2012-12-01
According to the cancer stem cell theory, cancers can be initiated by cancer stem cells. This makes cancer stem cells prime targets for therapeutic intervention. Eradicating cancer stem cells by efficient targeting agents may have the potential to cure cancer. In this review, we summarize recent breakthroughs that have improved our understanding of cancer stem cells, and we discuss the therapeutic strategy of targeting cancer stem cells, a promising future direction for cancer stem cell research.
Adult bone marrow-derived stem cells for organ regeneration and repair.
Tögel, Florian; Westenfelder, Christof
2007-12-01
Stem cells have been recognized as a potential tool for the development of innovative therapeutic strategies. There are in general two types of stem cells, embryonic and adult stem cells. While embryonic stem cell therapy has been riddled with problems of allogeneic rejection and ethical concerns, adult stem cells have long been used in the treatment of hematological malignancies. With the recognition of additional, potentially therapeutic characteristics, bone marrow-derived stem cells have become a tool in regenerative medicine. The bone marrow is an ideal source of stem cells because it is easily accessible and harbors two types of stem cells. Hematopoietic stem cells give rise to all blood cell types and have been shown to exhibit plasticity, while multipotent marrow stromal cells are the source of osteocytes, chondrocytes, and fat cells and have been shown to support and generate a large number of different cell types. This review describes the general characteristics of these stem cell populations and their current and potential future applications in regenerative medicine. 2007 Wiley-Liss, Inc
Behr, Björn; Ko, Sae Hee; Wong, Victor W; Gurtner, Geoffrey C; Longaker, Michael T
2010-10-01
Stem cells are self-renewing cells capable of differentiating into multiple cell lines and are classified according to their origin and their ability to differentiate. Enormous potential exists in use of stem cells for regenerative medicine. To produce effective stem cell-based treatments for a range of diseases, an improved understanding of stem cell biology and better control over stem cell fate are necessary. In addition, the barriers to clinical translation, such as potential oncologic properties of stem cells, need to be addressed. With renewed government support and continued refinement of current stem cell methodologies, the future of stem cell research is exciting and promises to provide novel reconstructive options for patients and surgeons limited by traditional paradigms.
Some Ethical Concerns About Human Induced Pluripotent Stem Cells.
Zheng, Yue Liang
2016-10-01
Human induced pluripotent stem cells can be obtained from somatic cells, and their derivation does not require destruction of embryos, thus avoiding ethical problems arising from the destruction of human embryos. This type of stem cell may provide an important tool for stem cell therapy, but it also results in some ethical concerns. It is likely that abnormal reprogramming occurs in the induction of human induced pluripotent stem cells, and that the stem cells generate tumors in the process of stem cell therapy. Human induced pluripotent stem cells should not be used to clone human beings, to produce human germ cells, nor to make human embryos. Informed consent should be obtained from patients in stem cell therapy.
Petersen, Alan; Tanner, Claire; Munsie, Megan
2015-03-01
Stem cell science provides an exemplary study of the 'management of hope'. On the one hand, raising 'hopes' and expectations is a seen as a necessary aspect of securing investment in promising innovative research. On the other, such hyperbole risks raising hopes to a level that may lead people to undertake undue risks, which may ultimately undermine confidence in medical research. In this context, the 'management of hope' thus involves the negotiation of competing claims of truth about the value and safety of particular treatments and about the trustworthiness of providers. Using Gieryn's concept of boundary-work, this article examines the means by which this work of 'managing hope' is undertaken. Drawing on data collected as part of our study that investigated the perspectives of those who are consulted by patients and their carers about stem cell treatments, we explore how these community advisors – both scientists and clinicians with a stake in stem cell research and representatives from patient advocacy groups – demarcate the boundary between legitimate and illegitimate treatments. In particular, we examine how these actors rhetorically use 'evidence' to achieve this demarcation. We argue that analysing accounts of how advisors respond to patient enquiries about stem cell treatments offers a window for examining the workings of the politics of hope within contemporary bioscience and biomedicine. In conclusion, we emphasize the need to re-conceptualize the boundary between science and non-science so as to allow a better appreciation of the realities of health care in the age of medical travel. © The Author(s) 2014.
Thakor, Devang K.; Obata, Hideaki; Nagane, Kentaro; Saito, Shigeru
2011-01-01
Genetic modification of stem cells could be applied to initiate/enhance their secretion of therapeutic molecules, alter their biological properties, or label them for in vivo tracking. We recently developed a negatively charged gene carrier (“anioplex”) based on pullulan-spermine, a conjugate prepared from a natural polysaccharide and polyamine. In rat mesenchymal stem cells (MSCs), anioplex-derived reporter gene activity was comparable to or exceeded that obtained using a commercial cationic lipid reagent. Transfection in the growth medium with 15% serum and antibiotics was approximately sevenfold more effective than in serum-free conditions. Cytotoxicity was essentially indiscernible after 24 h of anioplex transfection with 20 μg/mL DNA, in contrast to cationic lipid transfection that resulted in 40%–60% death of target MSCs. Anioplex-derived reporter gene activity persisted throughout the entire 3-week study, with post-transfection MSCs appearing to maintain osteogenic, adipogenic, and chondrogenic multipotency. In particular, chondrogenic pellet formation of differentiating human MSCs was significantly inhibited after lipofection but not after aniofection, which further indicates the biological inertness of pullulan-spermine/DNA anioplexes. Collectively, these data introduce a straightforward technology for genetic engineering of adult stem/progenitor cells under physiological niche-like conditions. Moreover, reporter gene activity was observed in rat spinal cords after minimally invasive intrathecal implantation, suggesting effective engraftment of donor MSCs. It is therefore plausible that anioplex-transfected MSCs or other stem/progenitor cells with autologous potential could be applied to disorders such as neurotrauma or neuropathic pain that involve the spinal cord and brain. PMID:20698746
Kang, N-H; Hwang, K-A; Kim, S U; Kim, Y-B; Hyun, S-H; Jeung, E-B; Choi, K-C
2012-08-01
As stem cells are capable of self-renewal and can generate differentiated progenies for organ development, they are considered as potential source for regenerative medicine and tissue replacement after injury or disease. Along with this capacity, stem cells have the therapeutic potential for treating human diseases including cancers. According to the origins, stem cells are broadly classified into two types: embryonic stem cells (ESCs) and adult stem cells. In terms of differentiation potential, ESCs are pluripotent and adult stem cells are multipotent. Amnion, which is a membranous sac that contains the fetus and amniotic fluid and functions in protecting the developing embryo during gestation, is another stem cell source. Amnion-derived stem cells are classified as human amniotic membrane-derived epithelial stem cells, human amniotic membrane-derived mesenchymal stem cells and human amniotic fluid-derived stem cells. They are in an intermediate stage between pluripotent ESCs and lineage-restricted adult stem cells, non-tumorigenic, and contribute to low immunogenicity and anti-inflammation. Furthermore, they are easily available and do not cause any controversial issues in their recovery and applications. Not only are amnion-derived stem cells applicable in regenerative medicine, they have anticancer capacity. In non-engineered stem cells transplantation strategies, amnion-derived stem cells effectively target the tumor and suppressed the tumor growth by expressing cytotoxic cytokines. Additionally, they also have a potential as novel delivery vehicles transferring therapeutic genes to the cancer formation sites in gene-directed enzyme/prodrug combination therapy. Owing to their own advantageous properties, amnion-derived stem cells are emerging as a new candidate in anticancer therapy.
In vitro differentiation of primordial germ cells and oocyte-like cells from stem cells.
Costa, José J N; Souza, Glaucinete B; Soares, Maria A A; Ribeiro, Regislane P; van den Hurk, Robert; Silva, José R V
2018-02-01
Infertility is the result of failure due to an organic disorder of the reproductive organs, especially their gametes. Recently, much progress has been made on generating germ cells, including oocytes, from various types of stem cells. This review focuses on advances in female germ cell differentiation from different kinds of stem cells, with emphasis on embryonic stem cells, adult stem cells, and induced pluripotent stem cells. The advantages and disadvantages of the derivation of female germ cells from several types of stem cells are also highlighted, as well as the ability of stem cells to generate mature and functional female gametes. This review shows that stem cell therapies have opened new frontiers in medicine, especially in the reproductive area, with the possibility of regenerating fertility.
Reduced hematopoietic stem cell frequency predicts outcome in acute myeloid leukemia.
Wang, Wenwen; Stiehl, Thomas; Raffel, Simon; Hoang, Van T; Hoffmann, Isabel; Poisa-Beiro, Laura; Saeed, Borhan R; Blume, Rachel; Manta, Linda; Eckstein, Volker; Bochtler, Tilmann; Wuchter, Patrick; Essers, Marieke; Jauch, Anna; Trumpp, Andreas; Marciniak-Czochra, Anna; Ho, Anthony D; Lutz, Christoph
2017-09-01
In patients with acute myeloid leukemia and low percentages of aldehyde-dehydrogenase-positive cells, non-leukemic hematopoietic stem cells can be separated from leukemic cells. By relating hematopoietic stem cell frequencies to outcome we detected poor overall- and disease-free survival of patients with low hematopoietic stem cell frequencies. Serial analysis of matched diagnostic and follow-up samples further demonstrated that hematopoietic stem cells increased after chemotherapy in patients who achieved durable remissions. However, in patients who eventually relapsed, hematopoietic stem cell numbers decreased dramatically at the time of molecular relapse demonstrating that hematopoietic stem cell levels represent an indirect marker of minimal residual disease, which heralds leukemic relapse. Upon transplantation in immune-deficient mice cases with low percentages of hematopoietic stem cells of our cohort gave rise to leukemic or no engraftment, whereas cases with normal hematopoietic stem cell levels mostly resulted in multi-lineage engraftment. Based on our experimental data, we propose that leukemic stem cells have increased niche affinity in cases with low percentages of hematopoietic stem cells. To validate this hypothesis, we developed new mathematical models describing the dynamics of healthy and leukemic cells under different regulatory scenarios. These models suggest that the mechanism leading to decreases in hematopoietic stem cell frequencies before leukemic relapse must be based on expansion of leukemic stem cells with high niche affinity and the ability to dislodge hematopoietic stem cells. Thus, our data suggest that decreasing numbers of hematopoietic stem cells indicate leukemic stem cell persistence and the emergence of leukemic relapse. Copyright© 2017 Ferrata Storti Foundation.
Lee, Hyunjin; Lee, Sung-Il; Ko, Youngkyung; Park, Jun-Beom
2018-05-18
Co-culture has been applied in cell therapy, including stem cells, and has been reported to give enhanced functionality. In this study, stem-cell spheroids were formed in concave micromolds at different ratios of stem cells to osteoprecursor cells, and the amount of secretion of vascular endothelial growth factor (VEGF) was evaluated. Gingiva-derived stem cells and osteoprecursor cells in the amount of 6 × 105 were seeded on a 24-well culture plate or concave micromolds. The ratios of stem cells to osteoprecursor cells included: 0:4 (group 1), 1:3 (group 2), 2:2 (group 3), 3:1 (group 4), and 4:0 (group 5). The morphology of cells in a 2-dimensional culture (groups 1-5) showed a fibroblast-like appearance. The secretion of VEGF increased with the increase in stem cells, and a statistically significant increase was noted in groups 3, 4 and 5 when compared with the media-only group (p < 0.05). Osteoprecursor cells formed spheroids in concave microwells, and no noticeable change in the morphology was noted with the increase in stem cells. Spheroids containing stem cells were positive for the stem-cell markers SSEA-4. The secretion of VEGF from cell spheroids increased with the increase in stem cells. This study showed that cell spheroids formed with stem cells and osteoprecursor cells with different ratios, using microwells, had paracrine effects on the stem cells. The secretion of VEGF increased with the increase in stem cells. This stem-cell spheroid may be applied for tissue-engineering purposes.
Spatially patterned matrix elasticity directs stem cell fate
NASA Astrophysics Data System (ADS)
Yang, Chun; DelRio, Frank W.; Ma, Hao; Killaars, Anouk R.; Basta, Lena P.; Kyburz, Kyle A.; Anseth, Kristi S.
2016-08-01
There is a growing appreciation for the functional role of matrix mechanics in regulating stem cell self-renewal and differentiation processes. However, it is largely unknown how subcellular, spatial mechanical variations in the local extracellular environment mediate intracellular signal transduction and direct cell fate. Here, the effect of spatial distribution, magnitude, and organization of subcellular matrix mechanical properties on human mesenchymal stem cell (hMSCs) function was investigated. Exploiting a photodegradation reaction, a hydrogel cell culture substrate was fabricated with regions of spatially varied and distinct mechanical properties, which were subsequently mapped and quantified by atomic force microscopy (AFM). The variations in the underlying matrix mechanics were found to regulate cellular adhesion and transcriptional events. Highly spread, elongated morphologies and higher Yes-associated protein (YAP) activation were observed in hMSCs seeded on hydrogels with higher concentrations of stiff regions in a dose-dependent manner. However, when the spatial organization of the mechanically stiff regions was altered from a regular to randomized pattern, lower levels of YAP activation with smaller and more rounded cell morphologies were induced in hMSCs. We infer from these results that irregular, disorganized variations in matrix mechanics, compared with regular patterns, appear to disrupt actin organization, and lead to different cell fates; this was verified by observations of lower alkaline phosphatase (ALP) activity and higher expression of CD105, a stem cell marker, in hMSCs in random versus regular patterns of mechanical properties. Collectively, this material platform has allowed innovative experiments to elucidate a novel spatial mechanical dosing mechanism that correlates to both the magnitude and organization of spatial stiffness.
Purine synthesis promotes maintenance of brain tumor initiating cells in glioma.
Wang, Xiuxing; Yang, Kailin; Xie, Qi; Wu, Qiulian; Mack, Stephen C; Shi, Yu; Kim, Leo J Y; Prager, Briana C; Flavahan, William A; Liu, Xiaojing; Singer, Meromit; Hubert, Christopher G; Miller, Tyler E; Zhou, Wenchao; Huang, Zhi; Fang, Xiaoguang; Regev, Aviv; Suvà, Mario L; Hwang, Tae Hyun; Locasale, Jason W; Bao, Shideng; Rich, Jeremy N
2017-05-01
Brain tumor initiating cells (BTICs), also known as cancer stem cells, hijack high-affinity glucose uptake active normally in neurons to maintain energy demands. Here we link metabolic dysregulation in human BTICs to a nexus between MYC and de novo purine synthesis, mediating glucose-sustained anabolic metabolism. Inhibiting purine synthesis abrogated BTIC growth, self-renewal and in vivo tumor formation by depleting intracellular pools of purine nucleotides, supporting purine synthesis as a potential therapeutic point of fragility. In contrast, differentiated glioma cells were unaffected by the targeting of purine biosynthetic enzymes, suggesting selective dependence of BTICs. MYC coordinated the control of purine synthetic enzymes, supporting its role in metabolic reprogramming. Elevated expression of purine synthetic enzymes correlated with poor prognosis in glioblastoma patients. Collectively, our results suggest that stem-like glioma cells reprogram their metabolism to self-renew and fuel the tumor hierarchy, revealing potential BTIC cancer dependencies amenable to targeted therapy.
Lee, Chunghee; Clark, Steven E
2015-01-01
The homeostatic maintenance of stem cells that carry out continuous organogenesis at the shoot meristem is crucial for plant development. Key known factors act to signal between the stem cells and an underlying group of cells thought to act as the stem cell niche. In Arabidopsis thaliana the homeodomain transcription factor WUSCHEL (WUS) is essential for stem cell initiation and maintenance at shoot and flower meristems. Recent data suggest that the WUS protein may move from the niche cells directly into the stem cells to maintain stem cell identity. Here we provide evidence for a second, previously unknown, pathway for stem cell specification at shoot and flower meristems that bypasses the requirement for WUS. We demonstrate that this novel stem cell specification pathway is normally repressed by the activity of the HD-zip III transcription factors PHABULOSA (PHB), PHAVOLUTA (PHV) and CORONA (CNA). When de-repressed, this second stem cell pathway leads to an accumulation of stem cells and an enlargement of the stem cell niche. When de-repressed in a wus mutant background, this second stem cell pathway leads to functional meristems with largely normal cell layering and meristem morphology, activation of WUS cis regulatory elements, and extensive, but not indeterminate, organogenesis. Thus, WUS is largely dispensable for stem cell specification and meristem function, suggesting a set of key stem cell specification factors, competitively regulated by WUS and PHB/PHV/CNA, remain unidentified.
Lee, Chunghee; Clark, Steven E.
2015-01-01
The homeostatic maintenance of stem cells that carry out continuous organogenesis at the shoot meristem is crucial for plant development. Key known factors act to signal between the stem cells and an underlying group of cells thought to act as the stem cell niche. In Arabidopsis thaliana the homeodomain transcription factor WUSCHEL (WUS) is essential for stem cell initiation and maintenance at shoot and flower meristems. Recent data suggest that the WUS protein may move from the niche cells directly into the stem cells to maintain stem cell identity. Here we provide evidence for a second, previously unknown, pathway for stem cell specification at shoot and flower meristems that bypasses the requirement for WUS. We demonstrate that this novel stem cell specification pathway is normally repressed by the activity of the HD-zip III transcription factors PHABULOSA (PHB), PHAVOLUTA (PHV) and CORONA (CNA). When de-repressed, this second stem cell pathway leads to an accumulation of stem cells and an enlargement of the stem cell niche. When de-repressed in a wus mutant background, this second stem cell pathway leads to functional meristems with largely normal cell layering and meristem morphology, activation of WUS cis regulatory elements, and extensive, but not indeterminate, organogenesis. Thus, WUS is largely dispensable for stem cell specification and meristem function, suggesting a set of key stem cell specification factors, competitively regulated by WUS and PHB/PHV/CNA, remain unidentified. PMID:26011610
Zhang, Zhenzhen; Liu, Jianfang; Liu, Yang; Li, Zheng; Gao, Wei-Qiang; He, Zuping
2013-02-01
Liver cancer is the sixth most common tumor in the world and the majority of patients with this disease usually die within 1 year. The effective treatment for end-stage liver disease (also known as liver failure), including liver cancer or cirrhosis, is liver transplantation. However, there is a severe shortage of liver donors worldwide, which is the major handicap for the treatment of patients with liver failure. Scarcity of liver donors underscores the urgent need of using stem cell therapy to the end-stage liver disease. Notably, hepatocytes have recently been generated from hepatic and extra-hepatic stem cells. We have obtained mature and functional hepatocytes from rat hepatic stem cells. Here, we review the advancements on hepatic differentiation from various stem cells, including hepatic stem cells, embryonic stem cells, the induced pluripotent stem cells, hematopoietic stem cells, mesenchymal stem cells, and probably spermatogonial stem cells. The advantages, disadvantages, and concerns on differentiation of these stem cells into hepatic cells are highlighted. We further address the methodologies, phenotypes, and functional characterization on the differentiation of numerous stem cells into hepatic cells. Differentiation of stem cells into mature and functional hepatocytes, especially from an extra-hepatic stem cell source, would circumvent the scarcity of liver donors and human hepatocytes, and most importantly it would offer an ideal and promising source of hepatocytes for cell therapy and tissue engineering in treating liver disease. Copyright © 2012 Wiley Periodicals, Inc.
CD44v6 Regulates Growth of Brain Tumor Stem Cells Partially through the AKT-Mediated Pathway
Jijiwa, Mayumi; Demir, Habibe; Gupta, Snehalata; Leung, Crystal; Joshi, Kaushal; Orozco, Nicholas; Huang, Tiffany; Yildiz, Vedat O.; Shibahara, Ichiyo; de Jesus, Jason A.; Yong, William H.; Mischel, Paul S.; Fernandez, Soledad; Kornblum, Harley I.; Nakano, Ichiro
2011-01-01
Identification of stem cell-like brain tumor cells (brain tumor stem-like cells; BTSC) has gained substantial attention by scientists and physicians. However, the mechanism of tumor initiation and proliferation is still poorly understood. CD44 is a cell surface protein linked to tumorigenesis in various cancers. In particular, one of its variant isoforms, CD44v6, is associated with several cancer types. To date its expression and function in BTSC is yet to be identified. Here, we demonstrate the presence and function of the variant form 6 of CD44 (CD44v6) in BTSC of a subset of glioblastoma multiforme (GBM). Patients with CD44high GBM exhibited significantly poorer prognoses. Among various variant forms, CD44v6 was the only isoform that was detected in BTSC and its knockdown inhibited in vitro growth of BTSC from CD44high GBM but not from CD44low GBM. In contrast, this siRNA-mediated growth inhibition was not apparent in the matched GBM sample that does not possess stem-like properties. Stimulation with a CD44v6 ligand, osteopontin (OPN), increased expression of phosphorylated AKT in CD44high GBM, but not in CD44low GBM. Lastly, in a mouse spontaneous intracranial tumor model, CD44v6 was abundantly expressed by tumor precursors, in contrast to no detectable CD44v6 expression in normal neural precursors. Furthermore, overexpression of mouse CD44v6 or OPN, but not its dominant negative form, resulted in enhanced growth of the mouse tumor stem-like cells in vitro. Collectively, these data indicate that a subset of GBM expresses high CD44 in BTSC, and its growth may depend on CD44v6/AKTpathway. PMID:21915300
Inazawa, Natsuko; Hori, Tsukasa; Hatakeyama, Naoki; Yamamoto, Masaki; Yoto, Yuko; Nojima, Masanori; Suzuki, Nobuhiro; Shimizu, Norio; Tsutsumi, Hiroyuki
2015-08-01
Viral reactivations following hematopoietic stem cell transplantation are thought to result from the breakdown of both cell-mediated and humoral immunity. As a result, many viruses could be reactivated individually or simultaneously. Using a multiplex polymerase chain reaction (PCR), we prospectively examined many kinds of viral DNAs at a time in 105 patients who underwent allogeneic hematopoietic stem cell transplantation. In total, 591 whole blood samples were collected weekly from pre- to 42 days post-transplantation and the following 13 viruses were tested; herpes simplex virus 1 (HSV-1), HSV-2, varicella-zoster virus (VZV), Epstein-Barr virus (EBV), cytomegalovirus (CMV), human herpes virus 6 (HHV-6), HHV-7, HHV-8, adenovirus, BK virus (BKV), JC virus (JCV), parvovirus B19, and hepatitis B virus (HBV). Several viral DNAs were detected in 12 patients before hematopoietic stem cell transplantation. The detection rate gradually increased after transplantation and peaked at 21 days. The most frequently detected virus was HHV-6 (n = 63; 60.0%), followed by EBV (n = 11; 10.5%), CMV (n = 11; 10.5%), and HHV-7 (n = 9; 8.6%). Adenovirus and HBV were each detected in one patient (1.0%). Detection of HHV-6 DNA was significantly more common among patients undergoing cord blood transplantation or with steroid treatment. EBV DNA tended to be more common in patients treated with anti-thymocyte globulin. Multiplex PCR was useful for detecting many viral reactivations after hematopoietic stem cell transplantation, simultaneously. Cord blood transplantation, steroid treatment, or anti-thymocyte globulin use was confirmed to be risk factors after transplantation. © 2015 Wiley Periodicals, Inc.
New use of an old drug: inhibition of breast cancer stem cells by benztropine mesylate
Cui, Jihong; Hollmén, Maija; Li, Lina; Chen, Yong; Proulx, Steven T.; Reker, Daniel; Schneider, Gisbert; Detmar, Michael
2017-01-01
Cancer stem cells (CSCs) play major roles in cancer initiation, metastasis, recurrence and therapeutic resistance. Targeting CSCs represents a promising strategy for cancer treatment. The purpose of this study was to identify selective inhibitors of breast CSCs (BCSCs). We carried out a cell-based phenotypic screening with cell viability as a primary endpoint, using a collection of 2,546 FDA-approved drugs and drug-like molecules in spheres formed by malignant human breast gland-derived cells (HMLER-shEcad cells, representing BCSCs) and control immortalized non-tumorigenic human mammary cells (HMLE cells, representing normal stem cells). 19 compounds were identified from screening. The chemically related molecules benztropine mesylate and deptropine citrate were selected for further validation and both potently inhibited sphere formation and self-renewal of BCSCs in vitro. Benztropine mesylate treatment decreased cell subpopulations with high ALDH activity and with a CD44+/CD24− phenotype. In vivo, benztropine mesylate inhibited tumor-initiating potential in a 4T1 mouse model. Functional studies indicated that benztropine mesylate inhibits functions of CSCs via the acetylcholine receptors, dopamine transporters/receptors, and/or histamine receptors. In summary, our findings identify benztropine mesylate as an inhibitor of BCSCs in vitro and in vivo. This study also provides a screening platform for identification of additional anti-CSC agents. PMID:27894093
Finkel, Kelsey A; Warner, Kristy A; Kerk, Samuel; Bradford, Carol R; McLean, Scott A; Prince, Mark E; Zhong, Haihong; Hurt, Elaine M; Hollingsworth, Robert E; Wicha, Max S; Tice, David A; Nör, Jacques E
2016-05-01
Head and neck squamous cell carcinomas (HNSCC) exhibit a small population of uniquely tumorigenic cancer stem cells (CSC) endowed with self-renewal and multipotency. We have recently shown that IL-6 enhances the survival and tumorigenic potential of head and neck cancer stem cells (i.e. ALDH(high)CD44(high) cells). Here, we characterized the effect of therapeutic inhibition of IL-6 with a novel humanized anti-IL-6 antibody (MEDI5117) using three low-passage patient-derived xenograft (PDX) models of HNSCC. We observed that single agent MEDI5117 inhibited the growth of PDX-SCC-M1 tumors (P < .05). This PDX model was generated from a previously untreated HNSCC. In contrast, MEDI5117 was not effective at reducing overall tumor volume for PDX models representing resistant disease (PDX-SCC-M0, PDX-SCC-M11). Low dose MEDI5117 (3 mg/kg) consistently decreased the fraction of cancer stem cells in PDX models of HNSCC when compared to IgG-treated controls, as follows: PDX-SCC-M0 (P < .001), PDX-SCC-M1 (P < .001), PDX-SCC-M11 (P = .04). Interestingly, high dose MEDI5117 (30 mg/kg) decreased the CSC fraction in the PDX-SCC-M11 model (P = .002), but not in PDX-SCC-M0 and PDX-SCC-M1. MEDI5117 mediated a dose-dependent decrease in the number of orospheres generated by ALDH(high)CD44(high) cells cultured in ultra-low attachment plates (P < .05), supporting an inhibitory effect on head and neck cancer stem cells. Notably, single agent MEDI5117 reduced the overall recurrence rate of PDX-SCC-M0, a PDX generated from the local recurrence of human HNSCC. Collectively, these data demonstrate that therapeutic inhibition of IL-6 with low-dose MEDI5117 decreases the fraction of cancer stem cells, and that adjuvant MEDI5117 inhibits recurrence in preclinical models of HNSCC. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Stem cells in dentistry--part I: stem cell sources.
Egusa, Hiroshi; Sonoyama, Wataru; Nishimura, Masahiro; Atsuta, Ikiru; Akiyama, Kentaro
2012-07-01
Stem cells can self-renew and produce different cell types, thus providing new strategies to regenerate missing tissues and treat diseases. In the field of dentistry, adult mesenchymal stem/stromal cells (MSCs) have been identified in several oral and maxillofacial tissues, which suggests that the oral tissues are a rich source of stem cells, and oral stem and mucosal cells are expected to provide an ideal source for genetically reprogrammed cells such as induced pluripotent stem (iPS) cells. Furthermore, oral tissues are expected to be not only a source but also a therapeutic target for stem cells, as stem cell and tissue engineering therapies in dentistry continue to attract increasing clinical interest. Part I of this review outlines various types of intra- and extra-oral tissue-derived stem cells with regard to clinical availability and applications in dentistry. Additionally, appropriate sources of stem cells for regenerative dentistry are discussed with regard to differentiation capacity, accessibility and possible immunomodulatory properties. Copyright © 2012 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.
Xiao, Feng; Liao, Bing; Hu, Jing; Li, Shuang; Zhao, Haixin; Sun, Ming; Gu, Junjie; Jin, Ying
2017-09-12
The roles of histone demethylases (HDMs) for the establishment and maintenance of pluripotency are incompletely characterized. Here, we show that JmjC-domain-containing protein 1c (JMJD1C), an H3K9 demethylase, is required for mouse embryonic stem cell (ESC) self-renewal. Depletion of Jmjd1c leads to the activation of ERK/MAPK signaling and epithelial-to-mesenchymal transition (EMT) to induce differentiation of ESCs. Inhibition of ERK/MAPK signaling rescues the differentiation phenotype caused by Jmjd1c depletion. Mechanistically, JMJD1C, with the help of pluripotency factor KLF4, maintains ESC identity at least in part by regulating the expression of the miR-200 family and miR-290/295 cluster to suppress the ERK/MAPK signaling and EMT. Additionally, we uncover that JMJD1C ensures efficient generation and maintenance of induced pluripotent stem cells, at least partially through controlling the expression of microRNAs. Collectively, we propose an integrated model of epigenetic and transcriptional control mediated by the H3K9 demethylase for ESC self-renewal and somatic cell reprogramming. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Camorani, Simona; Hill, Billy Samuel; Fontanella, Raffaela; Greco, Adelaide; Gramanzini, Matteo; Auletta, Luigi; Gargiulo, Sara; Albanese, Sandra; Lucarelli, Enrico; Cerchia, Laura; Zannetti, Antonella
2017-01-01
Bone marrow-derived mesenchymal stem cells (BM-MSCs) are shown to participate in tumor progression by establishing a favorable tumor microenvironment (TME) that promote metastasis through a cytokine networks. However, the mechanism of homing and recruitment of BM-MSCs into tumors and their potential role in malignant tissue progression is poorly understood and controversial. Here we show that BM-MSCs increase aggressiveness of triple-negative breast cancer (TNBC) cell lines evaluated as capability to migrate, invade and acquire stemness markers. Importantly, we demonstrate that the treatment of BM-MSCs with a nuclease-resistant RNA aptamer against platelet-derived growth factor receptor β (PDGFRβ) causes the inhibition of receptor-dependent signaling pathways thus drastically hampering BM-MSC recruitment towards TNBC cell lines and BM-MSCs trans-differentiation into carcinoma-associated fibroblast (CAF)-like cells. Moreover, in vivo molecular imaging analysis demonstrated the aptamer ability to prevent BM-MSCs homing to TNBC xenografts. Collectively, our results indicate the anti-PDGFRβ aptamer as a novel therapeutic tool to interfere with BM-MSCs attraction to TNBC providing the rationale to further explore the aptamer in more complex pre-clinical settings. PMID:28912898
Stahl, Yvonne; Simon, Rüdiger
2005-01-01
Stem cells are required to support the indeterminate growth style of plants. Meristems are a plants stem cell niches that foster stem cell survival and the production of descendants destined for differentiation. In shoot meristems, stem cell fate is decided at the populational level. The size of the stem cell domain at the meristem tip depends on signals that are exchanged with cells of the organizing centre underneath. In root meristems, individual stem cells are controlled by direct interaction with cells of the quiescent centre that lie in the immediate neighbourhood. Analysis of the interactions and signaling processes in the stem cell niches has delivered some insights into the molecules that are involved and revealed that the two major niches for plant stem cells are more similar than anticipated.
Sisakhtnezhad, Sajjad; Heshmati, Parvin
2018-07-01
Identifying effective internal factors for regulating germline commitment during development and for maintaining spermatogonial stem cells (SSCs) self-renewal is important to understand the molecular basis of spermatogenesis process, and to develop new protocols for the production of the germline cells from other cell sources. Therefore, this study was designed to investigate single-cell RNA-sequencing data for identification of differentially expressed genes (DEGs) in 12 mouse-derived single SSCs (mSSCs) in compare with 16 mouse-derived single mesenchymal stem cells. We also aimed to find transcriptional regulators of DEGs. Collectively, 1,584 up-regulated DEGs were identified that are associated with 32 biological processes. Moreover, investigation of the expression profiles of genes including in spermatogenesis process revealed that Dazl, Ddx4, Sall4, Fkbp6, Tex15, Tex19.1, Rnf17, Piwil2, Taf7l, Zbtb16, and Cadm1 are presented in the first 30 up-regulated DEGs. We also found 12 basal transcription factors (TFs) and three sequence-specific TFs that control the expression of DEGs. Our findings also indicated that MEIS1, SMC3, TAF1, KAT2A, STAT3, GTF3C2, SIN3A, BDP1, PHC1, and EGR1 are the main central regulators of DEGs in mSSCs. In addition, we collectively detected two significant protein complexes in the protein-protein interactions network for DEGs regulators. Finally, this study introduces the major upstream kinases for the main central regulators of DEGs and the components of core protein complexes. In conclusion, this study provides a molecular blueprint to uncover the molecular mechanisms behind the biology of SSCs and offers a list of candidate factors for cell type conversion approaches and production of germ cells. © 2017 Wiley Periodicals, Inc.
Human dental pulp stem cells cultured in serum-free supplemented medium
Bonnamain, Virginie; Thinard, Reynald; Sergent-Tanguy, Solène; Huet, Pascal; Bienvenu, Géraldine; Naveilhan, Philippe; Farges, Jean-Christophe; Alliot-Licht, Brigitte
2013-01-01
Growing evidence show that human dental pulp stem cells (DPSCs) could provide a source of adult stem cells for the treatment of neurodegenerative pathologies. In this study, DPSCs were expanded and cultured with a protocol generally used for the culture of neural stem/progenitor cells. Methodology: DPSC cultures were established from third molars. The pulp tissue was enzymatically digested and cultured in serum-supplemented basal medium for 12 h. Adherent (ADH) and non-adherent (non-ADH) cell populations were separated according to their differential adhesion to plastic and then cultured in serum-free defined N2 medium with epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF). Both ADH and non-ADH populations were analyzed by FACS and/or PCR. Results: FACS analysis of ADH-DPSCs revealed the expression of the mesenchymal cell marker CD90, the neuronal marker CD56, the transferrin receptor CD71, and the chemokine receptor CXCR3, whereas hematopoietic stem cells markers CD45, CD133, and CD34 were not expressed. ADH-DPSCs expressed transcripts coding for the Nestin gene, whereas expression levels of genes coding for the neuronal markers β-III tubulin and NF-M, and the oligodendrocyte marker PLP-1 were donor dependent. ADH-DPSCs did not express the transcripts for GFAP, an astrocyte marker. Cells of the non-ADH population that grew as spheroids expressed Nestin, β-III tubulin, NF-M and PLP-1 transcripts. DPSCs that migrated out of the spheroids exhibited an odontoblast-like morphology and expressed a higher level of DSPP and osteocalcin transcripts than ADH-DPSCs. Conclusion: Collectively, these data indicate that human DPSCs can be expanded and cultured in serum-free supplemented medium with EGF and bFGF. ADH-DPSCs and non-ADH populations contained neuronal and/or oligodendrocyte progenitors at different stages of commitment and, interestingly, cells from spheroid structures seem to be more engaged into the odontoblastic lineage than the ADH-DPSCs. PMID:24376422
Guess, Adam J; Daneault, Beth; Wang, Rongzhang; Bradbury, Hillary; La Perle, Krista M D; Fitch, James; Hedrick, Sheri L; Hamelberg, Elizabeth; Astbury, Caroline; White, Peter; Overolt, Kathleen; Rangarajan, Hemalatha; Abu-Arja, Rolla; Devine, Steven M; Otsuru, Satoru; Dominici, Massimo; O'Donnell, Lynn; Horwitz, Edwin M
2017-10-01
Mesenchymal stem/stromal cells (MSCs) are widely studied by both academia and industry for a broad array of clinical indications. The collective body of data provides compelling evidence of the clinical safety of MSC therapy. However, generally accepted proof of therapeutic efficacy has not yet been reported. In an effort to generate a more effective therapeutic cell product, investigators are focused on modifying MSC processing protocols to enhance the intrinsic biologic activity. Here, we report a Good Manufacturing Practice-compliant two-step MSC manufacturing protocol to generate MSCs or interferon γ (IFNγ) primed MSCs which allows freshly expanded cells to be infused in patients on a predetermined schedule. This protocol eliminates the need to infuse cryopreserved, just thawed cells which may reduce the immune modulatory activity. Moreover, using (IFNγ) as a prototypic cytokine, we demonstrate the feasibility of priming the cells with any biologic agent. We then characterized MSCs and IFNγ primed MSCs prepared with our protocol, by karyotype, in vitro potential for malignant transformation, biodistribution, effect on engraftment of transplanted hematopoietic cells, and in vivo toxicity in immune deficient mice including a complete post-mortem examination. We found no evidence of toxicity attributable to the MSC or IFNγ primed MSCs. Our data suggest that the clinical risk of infusing MSCs or IFNγ primed MSCs produced by our two-step protocol is not greater than MSCs currently in practice. While actual proof of safety requires phase I clinical trials, our data support the use of either cell product in new clinical studies. Stem Cells Translational Medicine 2017;6:1868-1879. © 2017 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.
Stem cells in the Drosophila digestive system.
Zeng, Xiankun; Chauhan, Chhavi; Hou, Steven X
2013-01-01
Adult stem cells maintain tissue homeostasis by continuously replenishing damaged, aged and dead cells in any organism. Five types of region and organ-specific multipotent adult stem cells have been identified in the Drosophila digestive system: intestinal stem cells (ISCs) in the posterior midgut; hindgut intestinal stem cells (HISCs) at the midgut/hindgut junction; renal and nephric stem cells (RNSCs) in the Malpighian Tubules; type I gastric stem cells (GaSCs) at foregut/midgut junction; and type II gastric stem cells (GSSCs) at the middle of the midgut. Despite the fact that each type of stem cell is unique to a particular organ, they share common molecular markers and some regulatory signaling pathways. Due to the simpler tissue structure, ease of performing genetic analysis, and availability of abundant mutants, Drosophila serves as an elegant and powerful model system to study complex stem cell biology. The recent discoveries, particularly in the Drosophila ISC system, have greatly advanced our understanding of stem cell self-renewal, differentiation, and the role of stem cells play in tissue homeostasis/regeneration and adaptive tissue growth.
Induced cancer stem cells generated by radiochemotherapy and their therapeutic implications.
Chen, Xiewan; Liao, Rongxia; Li, Dezhi; Sun, Jianguo
2017-03-07
Local and distant recurrence of malignant tumors following radio- and/or chemotherapy correlates with poor prognosis of patients. Among the reasons for cancer recurrence, preexisting cancer stem cells (CSCs) are considered the most likely cause due to their properties of self-renewal, pluripotency, plasticity and tumorigenicity. It has been demonstrated that preexisting cancer stem cells derive from normal stem cells and differentiated somatic cells that undergo transformation and dedifferentiation respectively under certain conditions. However, recent studies have revealed that cancer stem cells can also be induced from non-stem cancer cells by radiochemotherapy, constituting the subpopulation of induced cancer stem cells (iCSCs). These findings suggest that radiochemotherapy has the side effect of directly transforming non-stem cancer cells into induced cancer stem cells, possibly contributing to tumor recurrence and metastasis. Therefore, drugs targeting cancer stem cells or preventing dedifferentiation of non-stem cancer cells can be combined with radiochemotherapy to improve its antitumor efficacy. The current review is to investigate the mechanisms by which induced cancer stem cells are generated by radiochemotherapy and hence provide new strategies for cancer treatment.
Stem cells in gastroenterology and hepatology
Quante, Michael; Wang, Timothy C.
2010-01-01
Cellular and tissue regeneration in the gastrointestinal tract and liver depends on stem cells with properties of longevity, self-renewal and multipotency. Progress in stem cell research and the identification of potential esophageal, gastric, intestinal, colonic, hepatic and pancreatic stem cells provides hope for the use of stem cells in regenerative medicine and treatments for disease. Embryonic stem cells and induced pluripotent stem cells have the potential to give rise to any cell type in the human body, but their therapeutic application remains challenging. The use of adult or tissue-restricted stem cells is emerging as another possible approach for the treatment of gastrointestinal diseases. The same self-renewal properties that allow stem cells to remain immortal and generate any tissue can occasionally make their proliferation difficult to control and make them susceptible to malignant transformation. This Review provides an overview of the different types of stem cell, focusing on tissue-restricted adult stem cells in the fields of gastroenterology and hepatology and summarizing the potential benefits and risks of using stems cells to treat gastroenterological and liver disorders. PMID:19884893
A Review of Factors Influencing the Banking of Collected Umbilical Cord Blood Units
Allan, David; Petraszko, Tanya; Elmoazzen, Heidi; Smith, Susan
2013-01-01
Umbilical cord blood banking efforts have increased dramatically in the past two decades in response to increasing demand for alternative sources of blood stem cells to support patients requiring hematopoietic stem cell transplantation. Transplant centres have accumulated increasing expertise in their understanding of umbilical cord blood characteristics that are associated with improved outcome following transplantation. These characteristics and factors can assist transplant centres in selecting cord blood units from the worldwide inventory of banked units. Umbilical cord blood banks, therefore, need to remain agile in adjusting the inventory of the banks to address shifts or changes in the needs of transplant centres. Public umbilical cord blood banks face the challenge of building inventory while managing limited resources and are faced with decisions regarding which units can be stored and which units that have been collected should be discarded or used for other endeavours such as research. To this end, we sought to review parameters influencing the decision to bank a collected cord blood unit. In this paper, we will address parameters associated with graft potency and address other factors that guide the decision to bank collected units. PMID:23533442
Foroutan, T.; Najmi, M.; Kazemi, N.; Hasanlou, M.; Pedram, A.
2015-01-01
Background: In regenerative medicine, use of each of the mesenchymal stem cells derived from bone marrow, cord blood, and adipose tissue, has several cons and pros. Mesenchymal stem cells derived from cord blood have been considered the best source for precursor transplantation. Direct reprogramming of a somatic cell into induced pluripotent stem cells by over-expression of 6 transcription factors Oct4, Sox2, Klf4, lin28, Nanog, and c-Myc has great potential for regenerative medicine, eliminating the ethical issues of embryonic stem cells and the rejection problems of using non-autologous cells. Objective: To compare reprogramming and pluripotent markers OCT4, Sox-2, c-Myc, Klf4, Nanog, and lin28 in mesenchymal stem cells derived from cord blood and induced pluripotent stem cells. Methods: We analyzed the expression level of OCT4, Sox-2, c-Myc, Klf4, Nanog and lin28 genes in human mesenchymal stem cells derived from cord blood and induced pluripotent stem cells by cell culture and RT-PCR. Results: The expression level of pluripotent genes OCT4 and Sox-2, Nanog and lin28 in mesenchymal stem cells derived from cord blood were significantly higher than those in induced pluripotent stem cells. In contrast to OCT-4A and Sox-2, Nanog and lin28, the expression level of oncogenic factors c-Myc and Klf4 were significantly higher in induced pluripotent stem cells than in mesenchymal stem cells derived from cord blood. Conclusion: It could be concluded that mesenchymal stem cells derived from human cord blood have lower oncogenic potential compared to induced pluripotent stem cells. PMID:26306155
Eckol suppresses maintenance of stemness and malignancies in glioma stem-like cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hyun, Kyung-Hwan; Yoon, Chang-Hwan; Kim, Rae-Kwon
A subpopulation of cancer cells with stem cell properties is responsible for tumor maintenance and progression, and may contribute to resistance to anticancer treatments. Thus, compounds that target cancer stem-like cells could be usefully applied to destroy cancer. In this study, we investigated the effect of Eckol, a phlorotannin compound, on stemness and malignancies in glioma stem-like cells. To determine whether Eckol targets glioma stem-like cells, we examined whether Eckol treatment could change the expression levels of glioma stem-like cell markers and self-renewal-related proteins as well as the sphere forming ability, and the sensitivity to anticancer treatments. Alterations in themore » malignant properties of sphere-derived cells by Eckol were also investigated by soft-agar colony forming assay, by xenograft assay in nude mice, and by cell invasion assay. Treatment of sphere-forming glioma cells with Eckol effectively decreased the sphere formation as well as the CD133{sup +} cell population. Eckol treatment suppressed expression of the glioma stem-like cell markers and the self-renewal-related proteins without cell death. Moreover, treatment of glioma stem-like cells with Eckol significantly attenuated anchorage-independent growth on soft agar and tumor formation in xenograft mice. Importantly, Eckol treatment effectively reduced the resistance of glioma stem-like cells to ionizing radiation and temozolomide. Treatment of glioma stem-like cells with Eckol markedly blocked both phosphoinositide 3-kinase-Akt and Ras-Raf-1-Erk signaling pathways. These results indicate that the natural phlorotannin Eckol suppresses stemness and malignancies in glioma stem-like cells, and thereby makes glioma stem-like cells more sensitive to anticancer treatments, providing novel therapeutic strategies targeting specifically cancer stem-like cells.« less
Majolino, Ignazio; Mohammed, Dereen; Hassan, Dastan; Ipsevich, Francesco; Abdullah, Chra; Mohammed, Rebar; Palmas, Angelo; Possenti, Marco; Noori, Diana; Ali, Dlir; Karem, Harem; Salih, Salah; Vacca, Michele; Del Fante, Claudia; Ostuni, Angelo; Frigato, Andrea; Massei, Maria Speranza; Manna, Annunziata; Vasta, Stefania; Gabriel, Marcela; Verna, Marta; Rovelli, Attilio; Conter, Valentino; Ali, Kosar; Othman, Dosti
2017-12-15
Introduction At Hiwa Cancer Hospital (Sulaymaniyah, Iraqi Kurdistan) after the center was started by a cooperative project in June 2016, autologous transplantation was developed. Patients and Methods To develop the project, the capacity-building approach was adopted, with on-site training and coaching of personnel, educational meetings, lectures, on-the-job training, and the implementation of quality management planning. Results Here, we report initial results of peripheral-blood stem-cell mobilization and collection of the first 27 patients (age 12 to 61 years; 19 males and 8 females; multiple myeloma, n = 10; plasma cell leukemia, n = 1; Hodgkin lymphoma, n = 12; non-Hodgkin lymphoma, n = 3; and acute myeloid leukemia, n = 1). Only three (11.5%) of 26 patients experienced a failure of mobilization. A median of 6.1 × 10 6 /kg CD34-positive cells per patient were collected (range, 2.4 to 20.8), with two apheretic runs. Twenty-four patients underwent autologous transplantation. All but one transplantation engrafted fully and steadily, with 0.5 and 1.0 × 10 9 /L polymorphonucleates on day 10.5 (range, 8 to 12) and day 11 (range, 9 to 15), respectively, and with 20 and 50 × 10 9 /L platelets on day 13 (range, 10 to 17) and day 17 (range, 2 to 44), respectively. More than 95% of patients are projected to survive 1 year after autograft. Conclusion These data are the result of an Italian effort to establish in Iraqi Kurdistan a leading center for hemopoietic stem-cell transplantation. The capacity building approach was used, with on-site training and coaching as instruments for the development of provider ability and problem solving. With future limitations for immigration, this method will be helpful, especially in the field of high-technology medicine.
Linard, Christine; Strup-Perrot, Carine; Lacave-Lapalun, Jean-Victor; Benderitter, Marc
2016-09-01
The success of mesenchymal stem cell transplantation for proctitis depends not only on cell donors but also on host microenvironmental factors, which play a major role in conditioning mesenchymal stem cell immunosuppressive action and repair. This study sought to determine if flagellin, a TLR5 ligand, can enhance the mesenchymal stem cell treatment efficacy in radiation-induced proctitis. With the use of a colorectal model of 27 Gy irradiation in rats, we investigated and compared the effects on immune capacity and remodeling at 28 d after irradiation of the following: 1) systemic mesenchymal stem cell (5 × 10(6)) administration at d 7 after irradiation, 2) administration of flagellin at d 3 and systemic mesenchymal stem cell administration at d 7, and 3) in vitro preconditioning of mesenchymal stem cells with flagellin, 24 h before their administration on d 7. The mucosal CD8(+) T cell population was normalized after treatment with flagellin-preconditioned mesenchymal stem cells or flagellin plus mesenchymal stem cells, whereas mesenchymal stem cells alone did not alter the radiation-induced elevation of CD8(+) T cell frequency. Mesenchymal stem cell treatment returned the irradiation-elevated frequency of CD25(+) cells in the mucosa-to-control levels, whereas both flagellin-preconditioned mesenchymal stem cell and flagellin-plus-mesenchymal stem cell treatment each significantly increased not only CD25(+) cell frequency but also forkhead box p3 and IL-2Rα expression. Specifically, IL-10 was overexpressed after flagellin-preconditioned mesenchymal stem cell treatment. Analysis of collagen expression showed that the collagen type 1/collagen type 3 ratio, an indicator of wound-healing maturation, was low in the irradiated and mesenchymal stem cell-treated groups and returned to the normal level only after the flagellin-preconditioned mesenchymal stem cell treatment. This was associated with a reduction in myofibroblast accumulation. In a proctitis model, flagellin-preconditioned mesenchymal stem cells improved colonic immune capacity and enhanced tissue remodeling. © Society for Leukocyte Biology.
Bassiouny, M R; El-Chennawi, F; Mansour, A K; Yahia, S; Darwish, A
2015-06-01
Umbilical cord blood (UCB) contains stem cells and can be used as an alternative to bone marrow transplantation. Engraftment is dependent on the total nucleated cell (TNC) and CD34+ cell counts of the cord blood units. This study was designed to evaluate the effect of the method of collection of the UCB on the yield of the cord blood units. Informed consent was obtained from 100 eligible mothers for donation of cord blood. Both in utero and ex utero methods were used for collection. The cord blood volume was measured. The TNC and the CD34+ cell counts were enumerated. We have found that in utero collection gave significantly larger volumes of cord blood and higher TNC counts than ex utero collection. There was no significant difference between both methods regarding the CD34+ cell counts. This study revealed a significant correlation between the volume of the collected cord blood and both TNC and CD34+ cell counts. It is better to collect cord blood in utero before placental delivery to optimize the quality of the cord blood unit. © 2015 AABB.
Epidermal stem cells: location, potential and contribution to cancer.
Ambler, C A; Määttä, A
2009-01-01
Epidermal stem cells have been classically characterized as slow-cycling, long-lived cells that reside in discrete niches in the skin. Gene expression studies of niche-resident cells have revealed a number of stem cell markers and regulators, including the Wnt/beta-catenin, Notch, p63, c-Myc and Hedgehog pathways. A new study challenges the traditional developmental paradigm of slow-cycling stem cells and rapid-cycling transit amplifying cells in some epidermal regions, and there is mounting evidence to suggest that multi-lineage epidermal progenitors can be isolated from highly proliferative, non-niche regions. Whether there is a unique microenvironment surrounding these progenitors remains to be determined. Interestingly, cancer stem cells derived from epidermal tumours exist independent of the classic skin stem cell niche, yet also have stem cell properties, including multi-lineage differentiation. This review summarizes recent studies identifying the location and regulators of mouse and human epidermal stem cells and highlights the strategies used to identify cancer stem cells, including expression of normal epidermal stem cell markers, expression of cancer stem cell markers identified in other epidermal tumours and characterization of side-population tumour cells.
VanMeter-Adams, Amy; Frankenfeld, Cara L; Bases, Jessica; Espina, Virginia; Liotta, Lance A
2014-01-01
What early experiences attract students to pursue an education and career in science, technology, engineering, and mathematics (STEM)? Does hands-on research influence them to persevere and complete a major course of academic study in STEM? We evaluated survey responses from 149 high school and undergraduate students who gained hands-on research experience in the 2007-2013 Aspiring Scientists Summer Internship Programs (ASSIP) at George Mason University. Participants demonstrated their strong interest in STEM by volunteering to participate in ASSIP and completing 300 h of summer research. The survey queried extracurricular experiences, classroom factors, and hands-on projects that first cultivated students' interest in the STEM fields, and separately evaluated experiences that sustained their interest in pursuing a STEM degree. The majority of students (65.5%, p < 0.0001) reported extracurricular encounters, such as the influence of a relative or family member and childhood experiences, as the most significant factors that initially ignited their interest in STEM, while hands-on lab work was stated as sustaining their interest in STEM (92.6%). Based on these findings collected from a cohort of students who demonstrated a strong talent and interest in STEM, community-based programs that create awareness about STEM for both children and their family members may be key components for igniting long-term academic interest in STEM. © 2014 A. VanMeter-Adams et al. CBE—Life Sciences Education © 2014 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
The human-induced pluripotent stem cell initiative—data resources for cellular genetics
Streeter, Ian; Harrison, Peter W.; Faulconbridge, Adam; Flicek, Paul; Parkinson, Helen; Clarke, Laura
2017-01-01
The Human Induced Pluripotent Stem Cell Initiative (HipSci) isf establishing a large catalogue of human iPSC lines, arguably the most well characterized collection to date. The HipSci portal enables researchers to choose the right cell line for their experiment, and makes HipSci's rich catalogue of assay data easy to discover and reuse. Each cell line has genomic, transcriptomic, proteomic and cellular phenotyping data. Data are deposited in the appropriate EMBL-EBI archives, including the European Nucleotide Archive (ENA), European Genome-phenome Archive (EGA), ArrayExpress and PRoteomics IDEntifications (PRIDE) databases. The project will make 500 cell lines from healthy individuals, and from 150 patients with rare genetic diseases; these will be available through the European Collection of Authenticated Cell Cultures (ECACC). As of August 2016, 238 cell lines are available for purchase. Project data is presented through the HipSci data portal (http://www.hipsci.org/lines) and is downloadable from the associated FTP site (ftp://ftp.hipsci.ebi.ac.uk/vol1/ftp). The data portal presents a summary matrix of the HipSci cell lines, showing available data types. Each line has its own page containing descriptive metadata, quality information, and links to archived assay data. Analysis results are also available in a Track Hub, allowing visualization in the context of public genomic annotations (http://www.hipsci.org/data/trackhubs). PMID:27733501
MicroRNAs: key regulators of stem cells.
Gangaraju, Vamsi K; Lin, Haifan
2009-02-01
The hallmark of a stem cell is its ability to self-renew and to produce numerous differentiated cells. This unique property is controlled by dynamic interplays between extrinsic signalling, epigenetic, transcriptional and post-transcriptional regulations. Recent research indicates that microRNAs (miRNAs) have an important role in regulating stem cell self-renewal and differentiation by repressing the translation of selected mRNAs in stem cells and differentiating daughter cells. Such a role has been shown in embryonic stem cells, germline stem cells and various somatic tissue stem cells. These findings reveal a new dimension of gene regulation in controlling stem cell fate and behaviour.
Niederwieser, D; Baldomero, H; Szer, J; Gratwohl, M; Aljurf, M; Atsuta, Y; Bouzas, L F; Confer, D; Greinix, H; Horowitz, M; Iida, M; Lipton, J; Mohty, M; Novitzky, N; Nunez, J; Passweg, J; Pasquini, M C; Kodera, Y; Apperley, J; Seber, A; Gratwohl, A
2016-06-01
Data on 68 146 hematopoietic stem cell transplants (HSCTs) (53% autologous and 47% allogeneic) gathered by 1566 teams from 77 countries and reported through their regional transplant organizations were analyzed by main indication, donor type and stem cell source for the year 2012. With transplant rates ranging from 0.1 to 1001 per 10 million inhabitants, more HSCTs were registered from unrelated 16 433 donors than related 15 493 donors. Grafts were collected from peripheral blood (66%), bone marrow (24%; mainly non-malignant disorders) and cord blood (10%). Compared with 2006, an increase of 46% total (57% allogeneic and 38% autologous) was observed. Growth was due to an increase in reporting teams (18%) and median transplant activity/team (from 38 to 48 HSCTs/team). An increase of 167% was noted in mismatched/haploidentical family HSCT. A Strengths, Weaknesses, Opportunities, Threats (SWOT) analysis revealed the global perspective of WBMT to be its major strength and identified potential to be the key professional body for patients and authorities. The limited data collection remains its major weakness and threat. In conclusion, global HSCT grows over the years without plateauing (allogeneic>autologous) and at different rates in the four World Health Organization regions. Major increases were observed in allogeneic, haploidentical HSCT and, to a lesser extent, in cord blood transplantation.
Niederwieser, Dietger; Baldomero, Helen; Szer, Jeff; Gratwohl, Michael; Aljurf, Mahmoud; Atsuta, Yoshiko; Bouzas, Luis Fernando; Confer, Dennis; Greinix, Hildegard; Horowitz, Mary; Iida, Minako; Lipton, Jeff; Mohty, Mohamad; Novitzky, Nicolas; Nunez, José; Passweg, Jakob; Pasquini, Marcelo C.; Kodera, Yoshihisa; Apperley, Jane; Seber, Adriana; Gratwohl, Alois
2016-01-01
Data on 68,146 hematopoietic stem cell transplants (HSCT) (53% autologous and 47% allogeneic) gathered by 1566 teams from 77 countries and reported through their regional transplant organizations were analyzed by main indication, donor type and stem cell source for the year 2012. With transplant rates ranging from 0.1 to 1001 per 10 million inhabitants, more HSCT were registered from unrelated 16,433 than related 15,493 donors. Grafts were collected from peripheral blood (66%), bone marrow (24%; mainly non-malignant disorders) and cord blood (10%). Compared to 2006, an increase of 46% total (57% allogeneic and 38% autologous) was observed. Growth was due to an increase in reporting teams (18%) and median transplant activity/team (from 38 to 48 HSCT/team). An increase of 67% was noted in mismatched/haploidentical family HSCT. A SWOT analysis revealed the global perspective of WBMT to be its major strength and identified potential to be the key professional body for patients and authorities. The limited data collection remains its major weakness and threat. In conclusion, global HSCT grows over the years without plateauing (allogeneic>autologous) and at different rates in the four WHO regions. Major increases were observed in allogeneic, haploidentical HSCT and, to a lesser extent, in cord blood. PMID:26901703
Sundew-Inspired Adhesive Hydrogels Combined with Adipose-Derived Stem Cells for Wound Healing
Sun, Leming; Huang, Yujian; Bian, Zehua; Petrosino, Jennifer; Fan, Zhen; Wang, Yongzhong; Park, Ki Ho; Yue, Tao; Schmidt, Michael; Galster, Scott; Ma, Jianjie; Zhu, Hua; Zhang, Mingjun
2016-01-01
The potential to harness the unique physical, chemical, and biological properties of the sundew (Drosera) plant’s adhesive hydrogels has long intrigued researchers searching for novel wound-healing applications. However, the ability to collect sufficient quantities of the sundew plant’s adhesive hydrogels is problematic and has eclipsed their therapeutic promise. Inspired by these natural hydrogels, we asked if sundew-inspired adhesive hydrogels could overcome the drawbacks associated with natural sundew hydrogels and be used in combination with stem-cell-based therapy to enhance wound-healing therapeutics. Using a bioinspired approach, we synthesized adhesive hydrogels comprised of sodium alginate, gum arabic, and calcium ions to mimic the properties of the natural sundew-derived adhesive hydrogels. We then characterized and showed that these sundew-inspired hydrogels promote wound healing through their superior adhesive strength, nanostructure, and resistance to shearing when compared to other hydrogels in vitro. In vivo, sundew-inspired hydrogels promoted a “suturing” effect to wound sites, which was demonstrated by enhanced wound closure following topical application of the hydrogels. In combination with mouse adipose-derived stem cells (ADSCs) and compared to other therapeutic biomaterials, the sundew-inspired hydrogels demonstrated superior wound-healing capabilities. Collectively, our studies show that sundew-inspired hydrogels contain ideal properties that promote wound healing and suggest that sundew-inspired-ADSCs combination therapy is an efficacious approach for treating wounds without eliciting noticeable toxicity or inflammation. PMID:26731614
Sundew-Inspired Adhesive Hydrogels Combined with Adipose-Derived Stem Cells for Wound Healing.
Sun, Leming; Huang, Yujian; Bian, Zehua; Petrosino, Jennifer; Fan, Zhen; Wang, Yongzhong; Park, Ki Ho; Yue, Tao; Schmidt, Michael; Galster, Scott; Ma, Jianjie; Zhu, Hua; Zhang, Mingjun
2016-01-27
The potential to harness the unique physical, chemical, and biological properties of the sundew (Drosera) plant's adhesive hydrogels has long intrigued researchers searching for novel wound-healing applications. However, the ability to collect sufficient quantities of the sundew plant's adhesive hydrogels is problematic and has eclipsed their therapeutic promise. Inspired by these natural hydrogels, we asked if sundew-inspired adhesive hydrogels could overcome the drawbacks associated with natural sundew hydrogels and be used in combination with stem-cell-based therapy to enhance wound-healing therapeutics. Using a bioinspired approach, we synthesized adhesive hydrogels comprised of sodium alginate, gum arabic, and calcium ions to mimic the properties of the natural sundew-derived adhesive hydrogels. We then characterized and showed that these sundew-inspired hydrogels promote wound healing through their superior adhesive strength, nanostructure, and resistance to shearing when compared to other hydrogels in vitro. In vivo, sundew-inspired hydrogels promoted a "suturing" effect to wound sites, which was demonstrated by enhanced wound closure following topical application of the hydrogels. In combination with mouse adipose-derived stem cells (ADSCs) and compared to other therapeutic biomaterials, the sundew-inspired hydrogels demonstrated superior wound-healing capabilities. Collectively, our studies show that sundew-inspired hydrogels contain ideal properties that promote wound healing and suggest that sundew-inspired-ADSCs combination therapy is an efficacious approach for treating wounds without eliciting noticeable toxicity or inflammation.
[Progress in epidermal stem cells].
Wang, Li-Juan; Wang, You-Liang; Yang, Xiao
2010-03-01
Mammalian skin epidermis contains different epidermal stem cell pools which contribute to the homeostasis and repair of skin epithelium. Epidermal stem cells possess two essential features common to all stem cells: self-renewal and differentiation. Disturbing the balance between self-renewal and differentiation of epidermal stem cell often causes tumors or other skin diseases. Epidermal stem cell niches provide a special microenvironment that maintains a balance of stem cell quiescence and activity. This review primarily concentrates on the following points of the epidermal stem cells: the existing evidences, the self-renewal and differentiation, the division pattern, the signal pathways regulating self-renewal and differentiation, and the microenvironment (niche) and macroenvironment maintaining the homeostasis of stem cells.
Liang, Hang; Deng, Xiangyu; Shao, Zengwu
2017-10-01
To summarize the research progress of intervertebral disc endogenous stem cells for intervertebral disc regeneration and deduce the therapeutic potential of endogenous repair for intervertebral disc degeneration. The original articles about intervertebral disc endogenous stem cells for intervertebral disc regeneration were extensively reviewed; the reparative potential in vivo and the extraction and identification in vitro of intervertebral disc endogenous stem cells were analyzed; the prospect of endogenous stem cells for intervertebral disc regeneration was predicted. Stem cell niche present in the intervertebral discs, from which stem cells migrate to injured tissues and contribute to tissues regeneration under certain specific microenvironment. Moreover, the migration of stem cells is regulated by chemokines system. Tissue specific progenitor cells have been identified and successfully extracted and isolated. The findings provide the basis for biological therapy of intervertebral disc endogenous stem cells. Intervertebral disc endogenous stem cells play a crucial role in intervertebral disc regeneration. Therapeutic strategy of intervertebral disc endogenous stem cells is proven to be a promising biological approach for intervertebral disc regeneration.
Amnion-derived stem cells: in quest of clinical applications
2011-01-01
In the promising field of regenerative medicine, human perinatal stem cells are of great interest as potential stem cells with clinical applications. Perinatal stem cells could be isolated from normally discarded human placentae, which are an ideal cell source in terms of availability, the fewer number of ethical concerns, less DNA damage, and so on. Numerous studies have demonstrated that some of the placenta-derived cells possess stem cell characteristics like pluripotent differentiation ability, particularly in amniotic epithelial (AE) cells. Term human amniotic epithelium contains a relatively large number of stem cell marker-positive cells as an adult stem cell source. In this review, we introduce a model theory of why so many AE cells possess stem cell characteristics. We also describe previous work concerning the therapeutic applications and discuss the pluripotency of the AE cells and potential pitfalls for amnion-derived stem cell research. PMID:21596003
Polymer microarray technology for stem cell engineering
Coyle, Robert; Jia, Jia; Mei, Ying
2015-01-01
Stem cells hold remarkable promise for applications in tissue engineering and disease modeling. During the past decade, significant progress has been made in developing soluble factors (e.g., small molecules and growth factors) to direct stem cells into a desired phenotype. However, the current lack of suitable synthetic materials to regulate stem cell activity has limited the realization of the enormous potential of stem cells. This can be attributed to a large number of materials properties (e.g., chemical structures and physical properties of materials) that can affect stem cell fate. This makes it challenging to design biomaterials to direct stem cell behavior. To address this, polymer microarray technology has been developed to rapidly identify materials for a variety of stem cell applications. In this article, we summarize recent developments in polymer array technology and their applications in stem cell engineering. Statement of significance Stem cells hold remarkable promise for applications in tissue engineering and disease modeling. In the last decade, significant progress has been made in developing chemically defined media to direct stem cells into a desired phenotype. However, the current lack of the suitable synthetic materials to regulate stem cell activities has been limiting the realization of the potential of stem cells. This can be attributed to the number of variables in material properties (e.g., chemical structures and physical properties) that can affect stem cells. Polymer microarray technology has shown to be a powerful tool to rapidly identify materials for a variety of stem cell applications. Here we summarize recent developments in polymer array technology and their applications in stem cell engineering. PMID:26497624
Stem cells in kidney regeneration.
Yokote, Shinya; Yokoo, Takashi
2012-01-01
Currently many efforts are being made to apply regenerative medicine to kidney diseases using several types of stem/progenitor cells, such as mesenchymal stem cells, renal stem/progenitor cells, embryonic stem cells and induced pluripotent stem cells. Stem cells have the ability to repair injured organs and ameliorate damaged function. The strategy for kidney tissue repair is the recruitment of stem cells and soluble reparative factors to the kidney to elicit tissue repair and the induction of dedifferentiation of resident renal cells. On the other hand, where renal structure is totally disrupted, absolute kidney organ regeneration is needed to rebuild a whole functional kidney. In this review, we describe current advances in stem cell research for kidney tissue repair and de novo organ regeneration.
Daniels, Sebnem
2006-09-01
Stem Cell Sciences' core objective is to develop safe and effective stem cell-based therapies for currently incurable diseases. In order to achieve this goal, Stem Cell Sciences recognizes the need for multiple technologies and a globally integrated stem cell initiative. The key challenges for the successful application of stem cells in the clinic is the need for a reproducible supply of pure, fully characterized stem cells that have been grown in suitable conditions for use in the clinic.
Gimeno, María L.; Fuertes, Florencia; Barcala Tabarrozzi, Andres E.; Attorressi, Alejandra I.; Cucchiani, Rodolfo; Corrales, Luis; Oliveira, Talita C.; Sogayar, Mari C.; Labriola, Leticia; Dewey, Ricardo A.
2016-01-01
Abstract Adult mesenchymal stromal cell‐based interventions have shown promising results in a broad range of diseases. However, their use has faced limited effectiveness owing to the low survival rates and susceptibility to environmental stress on transplantation. We describe the cellular and molecular characteristics of multilineage‐differentiating stress‐enduring (Muse) cells derived from adipose tissue (AT), a subpopulation of pluripotent stem cells isolated from human lipoaspirates. Muse‐AT cells were efficiently obtained using a simple, fast, and affordable procedure, avoiding cell sorting and genetic manipulation methods. Muse‐AT cells isolated under severe cellular stress, expressed pluripotency stem cell markers and spontaneously differentiated into the three germ lineages. Muse‐AT cells grown as spheroids have a limited proliferation rate, a diameter of ∼15 µm, and ultrastructural organization similar to that of embryonic stem cells. Muse‐AT cells evidenced high stage‐specific embryonic antigen‐3 (SSEA‐3) expression (∼60% of cells) after 7–10 days growing in suspension and did not form teratomas when injected into immunodeficient mice. SSEA‐3+‐Muse‐AT cells expressed CD105, CD29, CD73, human leukocyte antigen (HLA) class I, CD44, and CD90 and low levels of HLA class II, CD45, and CD34. Using lipopolysaccharide‐stimulated macrophages and antigen‐challenged T‐cell assays, we have shown that Muse‐AT cells have anti‐inflammatory activities downregulating the secretion of proinflammatory cytokines, such as interferon‐γ and tumor necrosis factor‐α. Muse‐AT cells spontaneously gained transforming growth factor‐β1 expression that, in a phosphorylated SMAD2‐dependent manner, might prove pivotal in their observed immunoregulatory activity through decreased expression of T‐box transcription factor in T cells. Collectively, the present study has demonstrated the feasibility and efficiency of obtaining Muse‐AT cells that can potentially be harnessed as immunoregulators to treat immune‐related disorders. Stem Cells Translational Medicine 2017;6:161–173 PMID:28170177
Begum, Shahanara; Kudo, Kayo; Matsuoka, Yugo; Nakaba, Satoshi; Yamagishi, Yusuke; Nabeshima, Eri; Rahman, Md Hasnat; Nugroho, Widyanto Dwi; Oribe, Yuichiro; Jin, Hyun-O; Funada, Ryo
2016-01-01
Background and Aims In temperate regions, trees undergo annual cycles of cambial growth, with periods of cambial activity and dormancy. Environmental factors might regulate the cambial growth, as well as the development of cambial derivatives. We investigated the effects of low temperature by localized cooling on cambial activity and latewood formation in two conifers, Chamaecyparis obtusa and Cryptomeria japonica. Methods A plastic rubber tube that contained cooled water was wrapped around a 30-cm-wide portion of the main stem of Chamaecyparis obtusa and Cryptomeria japonica trees during seasons of active cambium. Small blocks were collected from both cooled and non-cooled control portions of the stems for sequential observations of cambial activity and for anatomical measurements of cell morphology by light microscopy and image analysis. Key Results The effect of localized cooling was first observed on differentiating tracheids. Tracheids narrow in diameter and with significantly decreased cambial activity were evident 5 weeks after the start of cooling in these stems. Eight weeks after the start of cooling, tracheids with clearly diminished diameters and thickened cell walls were observed in these stems. Thus, localized low temperature induced narrow diameters and obvious thickening of secondary cell walls of tracheids, which were identified as latewood tracheids. Two months after the cessation of cooling, a false annual ring was observed and cambium became active again and produced new tracheids. In Cryptomeria japonica, cambial activity ceased earlier in locally cooled portions of stems than in non-cooled stems, indicating that the cambium had entered dormancy sooner in the cooled stems. Conclusions Artificial cooling of stems induced latewood formation and cessation of cambial activity, indicating that cambium and its derivatives can respond directly to changes in temperature. A decrease in the temperature of the stem is a critical factor in the control of cambial activity and xylem differentiation in trees. PMID:26703452
Begum, Shahanara; Kudo, Kayo; Matsuoka, Yugo; Nakaba, Satoshi; Yamagishi, Yusuke; Nabeshima, Eri; Rahman, Md Hasnat; Nugroho, Widyanto Dwi; Oribe, Yuichiro; Jin, Hyun-O; Funada, Ryo
2016-03-01
In temperate regions, trees undergo annual cycles of cambial growth, with periods of cambial activity and dormancy. Environmental factors might regulate the cambial growth, as well as the development of cambial derivatives. We investigated the effects of low temperature by localized cooling on cambial activity and latewood formation in two conifers, Chamaecyparis obtusa and Cryptomeria japonica. A plastic rubber tube that contained cooled water was wrapped around a 30-cm-wide portion of the main stem of Chamaecyparis obtusa and Cryptomeria japonica trees during seasons of active cambium. Small blocks were collected from both cooled and non-cooled control portions of the stems for sequential observations of cambial activity and for anatomical measurements of cell morphology by light microscopy and image analysis. The effect of localized cooling was first observed on differentiating tracheids. Tracheids narrow in diameter and with significantly decreased cambial activity were evident 5 weeks after the start of cooling in these stems. Eight weeks after the start of cooling, tracheids with clearly diminished diameters and thickened cell walls were observed in these stems. Thus, localized low temperature induced narrow diameters and obvious thickening of secondary cell walls of tracheids, which were identified as latewood tracheids. Two months after the cessation of cooling, a false annual ring was observed and cambium became active again and produced new tracheids. In Cryptomeria japonica, cambial activity ceased earlier in locally cooled portions of stems than in non-cooled stems, indicating that the cambium had entered dormancy sooner in the cooled stems. Artificial cooling of stems induced latewood formation and cessation of cambial activity, indicating that cambium and its derivatives can respond directly to changes in temperature. A decrease in the temperature of the stem is a critical factor in the control of cambial activity and xylem differentiation in trees. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Wang, Ran; Chen, Shuxun; Li, Changxian; Ng, Kevin Tak Pan; Kong, Chi-wing; Cheng, Jinping; Cheng, Shuk Han; Li, Ronald A; Lo, Chung Mau; Man, Kwan; Sun, Dong
2016-02-04
Cell fusion is a fast and highly efficient technique for cells to acquire new properties. The fusion of somatic cells with stem cells can reprogram somatic cells to a pluripotent state. Our research on the fusion of stem cells and cancer cells demonstrates that the fused cells can exhibit stemness and cancer cell-like characteristics. Thus, tumor-initiating cell-like cells are generated. We employed laser-induced single-cell fusion technique to fuse the hepatocellular carcinoma cells and human embryonic stem cells (hESC). Real-time RT-PCR, flow cytometry and in vivo tumorigenicity assay were adopted to identify the gene expression difference. We successfully produced a fused cell line that coalesces the gene expression information of hepatocellular carcinoma cells and stem cells. Experimental results showed that the fused cells expressed cancer and stemness markers as well as exhibited increased resistance to drug treatment and enhanced tumorigenesis. Fusion with stem cells transforms liver cancer cells into tumor initiating-like cells. Results indicate that fusion between cancer cell and stem cell may generate tumor initiating-like cells.
USDA-ARS?s Scientific Manuscript database
Although a 'vascular stem cell' population has not been identified or generated, vascular endothelial and mural cells (smooth muscle cells and pericytes) can be derived from currently known pluripotent stem cell sources, including human embryonic stem cells and induced pluripotent stem cells. We rev...
Hematopoietic cell differentiation from embryonic and induced pluripotent stem cells
2013-01-01
Pluripotent stem cells, both embryonic stem cells and induced pluripotent stem cells, are undifferentiated cells that can self-renew and potentially differentiate into all hematopoietic lineages, such as hematopoietic stem cells (HSCs), hematopoietic progenitor cells and mature hematopoietic cells in the presence of a suitable culture system. Establishment of pluripotent stem cells provides a comprehensive model to study early hematopoietic development and has emerged as a powerful research tool to explore regenerative medicine. Nowadays, HSC transplantation and hematopoietic cell transfusion have successfully cured some patients, especially in malignant hematological diseases. Owing to a shortage of donors and a limited number of the cells, hematopoietic cell induction from pluripotent stem cells has been regarded as an alternative source of HSCs and mature hematopoietic cells for intended therapeutic purposes. Pluripotent stem cells are therefore extensively utilized to facilitate better understanding in hematopoietic development by recapitulating embryonic development in vivo, in which efficient strategies can be easily designed and deployed for the generation of hematopoietic lineages in vitro. We hereby review the current progress of hematopoietic cell induction from embryonic stem/induced pluripotent stem cells. PMID:23796405
Xue, Xiaolei; Han, Xiaodan; Li, Yuan; Lu, Lu; Li, Deguan
2017-01-01
We examined whether consumption of hydrogen-rich water (HW) could ameliorate hematopoietic stem cell (HSC) injury in mice with total body irradiation (TBI). The results indicated that HW alleviated TBI-induced HSC injury with respect to cell number alteration and to the self-renewal and differentiation of HSCs. HW specifically decreased hydroxyl radical (∙OH) levels in the c-kit+ cells of 4 Gy irradiated mice. Proliferative bone marrow cells (BMCs) increased and apoptotic c-kit+ cells decreased in irradiated mice uptaken with HW. In addition, the mean fluorescence intensity (MFI) of γ-H2AX and percentage of 8-oxoguanine positive cells significantly decreased in HW-treated c-kit+ cells, indicating that HW can alleviate TBI-induced DNA damage and oxidative DNA damage in c-kit+ cells. Finally, the cell cycle (P21), cell apoptosis (BCL-XL and BAK), and oxidative stress (NRF2, HO-1, NQO1, SOD, and GPX1) proteins were significantly altered by HW in irradiated mouse c-kit+ cells. Collectively, the present results suggest that HW protects against TBI-induced HSC injury. PMID:28243358
Zhang, Junling; Xue, Xiaolei; Han, Xiaodan; Li, Yuan; Lu, Lu; Li, Deguan; Fan, Saijun
2017-01-01
We examined whether consumption of hydrogen-rich water (HW) could ameliorate hematopoietic stem cell (HSC) injury in mice with total body irradiation (TBI). The results indicated that HW alleviated TBI-induced HSC injury with respect to cell number alteration and to the self-renewal and differentiation of HSCs. HW specifically decreased hydroxyl radical ( ∙ OH) levels in the c-kit + cells of 4 Gy irradiated mice. Proliferative bone marrow cells (BMCs) increased and apoptotic c-kit + cells decreased in irradiated mice uptaken with HW. In addition, the mean fluorescence intensity (MFI) of γ -H2AX and percentage of 8-oxoguanine positive cells significantly decreased in HW-treated c-kit + cells, indicating that HW can alleviate TBI-induced DNA damage and oxidative DNA damage in c-kit + cells. Finally, the cell cycle (P21), cell apoptosis (BCL-XL and BAK), and oxidative stress (NRF2, HO-1, NQO1, SOD, and GPX1) proteins were significantly altered by HW in irradiated mouse c-kit + cells. Collectively, the present results suggest that HW protects against TBI-induced HSC injury.
Wang, Yu-Chieh; Stein, Jason W.; Lynch, Candace L.; Tran, Ha T.; Lee, Chia-Yao; Coleman, Ronald; Hatch, Adam; Antontsev, Victor G.; Chy, Hun S.; O’Brien, Carmel M.; Murthy, Shashi K.; Laslett, Andrew L.; Peterson, Suzanne E.; Loring, Jeanne F.
2015-01-01
Many studies have suggested the significance of glycosyltransferase-mediated macromolecule glycosylation in the regulation of pluripotent states in human pluripotent stem cells (hPSCs). Here, we observed that the sialyltransferase ST6GAL1 was preferentially expressed in undifferentiated hPSCs compared to non-pluripotent cells. A lectin which preferentially recognizes α-2,6 sialylated galactosides showed strong binding reactivity with undifferentiated hPSCs and their glycoproteins, and did so to a much lesser extent with differentiated cells. In addition, downregulation of ST6GAL1 in undifferentiated hPSCs led to a decrease in POU5F1 (also known as OCT4) protein and significantly altered the expression of many genes that orchestrate cell morphogenesis during differentiation. The induction of cellular pluripotency in somatic cells was substantially impeded by the shRNA-mediated suppression of ST6GAL1, partially through interference with the expression of endogenous POU5F1 and SOX2. Targeting ST6GAL1 activity with a sialyltransferase inhibitor during cell reprogramming resulted in a dose-dependent reduction in the generation of human induced pluripotent stem cells (hiPSCs). Collectively, our data indicate that ST6GAL1 plays an important role in the regulation of pluripotency and differentiation in hPSCs, and the pluripotent state in human cells can be modulated using pharmacological tools to target sialyltransferase activity. PMID:26304831
... Tips Info Center Research Topics Federal Policy Glossary Stem Cell Information General Information Clinical Trials Funding Information Current ... Basics » Stem Cell Basics I. Back to top Stem Cell Basics I. Introduction: What are stem cells, and ...
TOPICAL REVIEW: Stem cells engineering for cell-based therapy
NASA Astrophysics Data System (ADS)
Taupin, Philippe
2007-09-01
Stem cells carry the promise to cure a broad range of diseases and injuries, from diabetes, heart and muscular diseases, to neurological diseases, disorders and injuries. Significant progresses have been made in stem cell research over the past decade; the derivation of embryonic stem cells (ESCs) from human tissues, the development of cloning technology by somatic cell nuclear transfer (SCNT) and the confirmation that neurogenesis occurs in the adult mammalian brain and that neural stem cells (NSCs) reside in the adult central nervous system (CNS), including that of humans. Despite these advances, there may be decades before stem cell research will translate into therapy. Stem cell research is also subject to ethical and political debates, controversies and legislation, which slow its progress. Cell engineering has proven successful in bringing genetic research to therapy. In this review, I will review, in two examples, how investigators are applying cell engineering to stem cell biology to circumvent stem cells' ethical and political constraints and bolster stem cell research and therapy.
From Banking to International Governance: Fostering Innovation in Stem Cell Research
Isasi, Rosario; Knoppers, Bartha M.
2011-01-01
Stem cell banks are increasingly recognized as an essential resource of biological materials for both basic and translational stem cell research. By providing transnational access to quality controlled and ethically sourced stem cell lines, stem cell banks seek to foster international collaboration and innovation. However, given that national stem cell banks operate under different policy, regulatory and commercial frameworks, the transnational sharing of stem cell materials and data can be complicating. This paper will provide an overview of the most pressing challenges regarding the governance of stem cell banks, and the difficulties in designing regulatory and commercial frameworks that foster stem cell research. Moreover, the paper will shed light on the numerous international initiatives that have arisen to help harmonize and standardize stem cell banking and research processes to overcome such challenges. PMID:21904557
A Drosophila LexA Enhancer-Trap Resource for Developmental Biology and Neuroendocrine Research
Kockel, Lutz; Huq, Lutfi M.; Ayyar, Anika; Herold, Emma; MacAlpine, Elle; Logan, Madeline; Savvides, Christina; Kim, Grace E. S.; Chen, Jiapei; Clark, Theresa; Duong, Trang; Fazel-Rezai, Vahid; Havey, Deanna; Han, Samuel; Jagadeesan, Ravi; Kim, Eun Soo Jackie; Lee, Diane; Lombardo, Kaelina; Piyale, Ida; Shi, Hansen; Stahr, Lydia; Tung, Dana; Tayvah, Uriel; Wang, Flora; Wang, Ja-Hon; Xiao, Sarah; Topper, Sydni M.; Park, Sangbin; Rotondo, Cheryl; Rankin, Anne E.; Chisholm, Townley W.; Kim, Seung K.
2016-01-01
Novel binary gene expression tools like the LexA-LexAop system could powerfully enhance studies of metabolism, development, and neurobiology in Drosophila. However, specific LexA drivers for neuroendocrine cells and many other developmentally relevant systems remain limited. In a unique high school biology course, we generated a LexA-based enhancer trap collection by transposon mobilization. The initial collection provides a source of novel LexA-based elements that permit targeted gene expression in the corpora cardiaca, cells central for metabolic homeostasis, and other neuroendocrine cell types. The collection further contains specific LexA drivers for stem cells and other enteric cells in the gut, and other developmentally relevant tissue types. We provide detailed analysis of nearly 100 new LexA lines, including molecular mapping of insertions, description of enhancer-driven reporter expression in larval tissues, and adult neuroendocrine cells, comparison with established enhancer trap collections and tissue specific RNAseq. Generation of this open-resource LexA collection facilitates neuroendocrine and developmental biology investigations, and shows how empowering secondary school science can achieve research and educational goals. PMID:27527793
A Drosophila LexA Enhancer-Trap Resource for Developmental Biology and Neuroendocrine Research.
Kockel, Lutz; Huq, Lutfi M; Ayyar, Anika; Herold, Emma; MacAlpine, Elle; Logan, Madeline; Savvides, Christina; Kim, Grace E S; Chen, Jiapei; Clark, Theresa; Duong, Trang; Fazel-Rezai, Vahid; Havey, Deanna; Han, Samuel; Jagadeesan, Ravi; Kim, Eun Soo Jackie; Lee, Diane; Lombardo, Kaelina; Piyale, Ida; Shi, Hansen; Stahr, Lydia; Tung, Dana; Tayvah, Uriel; Wang, Flora; Wang, Ja-Hon; Xiao, Sarah; Topper, Sydni M; Park, Sangbin; Rotondo, Cheryl; Rankin, Anne E; Chisholm, Townley W; Kim, Seung K
2016-10-13
Novel binary gene expression tools like the LexA-LexAop system could powerfully enhance studies of metabolism, development, and neurobiology in Drosophila However, specific LexA drivers for neuroendocrine cells and many other developmentally relevant systems remain limited. In a unique high school biology course, we generated a LexA-based enhancer trap collection by transposon mobilization. The initial collection provides a source of novel LexA-based elements that permit targeted gene expression in the corpora cardiaca, cells central for metabolic homeostasis, and other neuroendocrine cell types. The collection further contains specific LexA drivers for stem cells and other enteric cells in the gut, and other developmentally relevant tissue types. We provide detailed analysis of nearly 100 new LexA lines, including molecular mapping of insertions, description of enhancer-driven reporter expression in larval tissues, and adult neuroendocrine cells, comparison with established enhancer trap collections and tissue specific RNAseq. Generation of this open-resource LexA collection facilitates neuroendocrine and developmental biology investigations, and shows how empowering secondary school science can achieve research and educational goals. Copyright © 2016 Kockel et al.
Stem Cells Transplantation in the Treatment of Patients with Liver Failure.
Tao, Ya-Chao; Wang, Meng-Lan; Chen, En-Qiang; Tang, Hong
2018-02-23
Liver failure is a life-threatening liver disease encompassing severe acute deterioration of liver function. Emergency liver transplantation is the only curative treatment for liver failure, but is restricted by the severe shortage of organ donors. Stem cell, including embroyonic stem cells, induced pluripotent stem cells, mesenchymal stem cells, hematopoietic stem cells and hepatic progenitor cells, have capacity to proliferate and differentiate and could be used in a variety of liver diseases including hereditary liver diseases, cirrhosis and liver failure. We summarized the basic experimental and clinical advances of stem cell transplantation in liver failure treatment, and also discussed the advantages and disadvantage of different stem cells subtype in this field, aiming to provide a perspective on the stem cell-based therapy for liver failure. Stem cells, especially mesenchymal stem cells (mainly low immunogenicity and paracrine characteristics) and induced pluripotent stem cells (generation of desired cell type from somatic cell), are feasible candidates for cell therapy in the treatment of liver failure, but there are some drawbacks remaining to be resolved, such as low engraftment, cryotpreservation methods and tumorigenesis. Stem cell transplantation is a promising but challenging strategy and paves a new way for curing liver failure. But more efforts need to be made to overcome problems before this new strategy could be safely and effectively applied to humans. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Recent Progress in Stem Cell Modification for Cardiac Regeneration
Voronina, Natalia; Steinhoff, Gustav
2018-01-01
During the past decades, stem cell-based therapy has acquired a promising role in regenerative medicine. The application of novel cell therapeutics for the treatment of cardiovascular diseases could potentially achieve the ambitious aim of effective cardiac regeneration. Despite the highly positive results from preclinical studies, data from phase I/II clinical trials are inconsistent and the improvement of cardiac remodeling and heart performance was found to be quite limited. The major issues which cardiac stem cell therapy is facing include inefficient cell delivery to the site of injury, accompanied by low cell retention and weak effectiveness of remaining stem cells in tissue regeneration. According to preclinical and clinical studies, various stem cells (adult stem cells, embryonic stem cells, and induced pluripotent stem cells) represent the most promising cell types so far. Beside the selection of the appropriate cell type, researchers have developed several strategies to produce “second-generation” stem cell products with improved regenerative capacity. Genetic and nongenetic modifications, chemical and physical preconditioning, and the application of biomaterials were found to significantly enhance the regenerative capacity of transplanted stem cells. In this review, we will give an overview of the recent developments in stem cell engineering with the goal to facilitate stem cell delivery and to promote their cardiac regenerative activity. PMID:29535769
Eat, breathe, ROS: controlling stem cell fate through metabolism.
Kubli, Dieter A; Sussman, Mark A
2017-05-01
Research reveals cardiac regeneration exists at levels previously deemed unattainable. Clinical trials using stem cells demonstrate promising cardiomyogenic and regenerative potential but insufficient contractile recovery. Incomplete understanding of the biology of administered cells likely contributes to inconsistent patient outcomes. Metabolism is a core component of many well-characterized stem cell types, and metabolic changes fundamentally alter stem cell fate from self-renewal to lineage commitment, and vice versa. However, the metabolism of stem cells currently studied for cardiac regeneration remains incompletely understood. Areas covered: Key metabolic features of stem cells are reviewed and unique stem cell metabolic characteristics are discussed. Metabolic changes altering stem cell fate are considered from quiescence and self-renewal to lineage commitment. Key metabolic concepts are applied toward examining cardiac regeneration through stem cell-based approaches, and clinical implications of current cell therapies are evaluated to identify potential areas of improvement. Expert commentary: The metabolism and biology of stem cells used for cardiac therapy remain poorly characterized. A growing appreciation for the fundamental relationship between stem cell functionality and metabolic phenotype is developing. Future studies unraveling links between cardiac stem cell metabolism and regenerative potential may considerably improve treatment strategies and therapeutic outcomes.
Eat, breathe, ROS: controlling stem cell fate through metabolism
Kubli, Dieter A.; Sussman, Mark A.
2017-01-01
Introduction Research reveals cardiac regeneration exists at levels previously deemed unattainable. Clinical trials using stem cells demonstrate promising cardiomyogenic and regenerative potential but insufficient contractile recovery. Incomplete understanding of the biology of administered cells likely contributes to inconsistent patient outcomes. Metabolism is a core component of many well-characterized stem cell types, and metabolic changes fundamentally alter stem cell fate from self-renewal to lineage commitment, and vice versa. However, the metabolism of stem cells currently studied for cardiac regeneration remains incompletely understood. Areas covered Key metabolic features of stem cells are reviewed and unique stem cell metabolic characteristics are discussed. Metabolic changes altering stem cell fate are considered from quiescence and self-renewal to lineage commitment. Key metabolic concepts are applied toward examining cardiac regeneration through stem cell-based approaches, and clinical implications of current cell therapies are evaluated to identify potential areas of improvement. Expert commentary The metabolism and biology of stem cells used for cardiac therapy remain poorly characterized. A growing appreciation for the fundamental relationship between stem cell functionality and metabolic phenotype is developing. Future studies unraveling links between cardiac stem cell metabolism and regenerative potential may considerably improve treatment strategies and therapeutic outcomes. PMID:28406333
Therapeutic strategies involving uterine stem cells in reproductive medicine.
Simoni, Michael; Taylor, Hugh S
2018-06-01
The current review provides an update on recent advances in stem cell biology relevant to female reproduction. Stem cells are undifferentiated cells that often serve as a reservoir of cells to regenerate tissue in settings or injury or cell loss. The endometrium has progenitor stem cells that can replace all of the endometrium during each menstrual cycle. In addition, multipotent endometrial cells replace these progenitor cells when depleted. Recruitment of stem cells from outside of the uterus occurs in setting of increased demand such as ischemia or injury. Bone marrow-derived multipotent stem cells are recruited to the uterus by estrogen or injury-induced expression of the chemokine CXCL12. In the setting of overwhelming injury, especially in the setting of low estrogen levels, there may be insufficient stem cell recruitment to adequately repair the uterus resulting in conditions such as Asherman syndrome or other endometrial defects. In contrast, excessive recruitment of stem cells underlies endometriosis. Enhanced understanding of stem-cell mobilization, recruitment, and engraftment has created the possibility of improved therapy for endometrial defects and endometriosis through enhanced manipulation of stem-cell trafficking. Further, the normal endometrium is a rich source of multipotent stem cells that can be used for numerous applications in regenerative medicine beyond reproduction. A better understanding of reproductive stem-cell biology may allow improved treatment of endometrial disease such as Asherman syndrome and other endometrial receptivity defects. Inhibiting stem-cell mobilization may also be helpful in endometriosis therapy. Finally, endometrial derived multipotent stem cells may play a crucial role in cell therapy for regenerative medicine.
Gene screening of Wharton's jelly derived stem cells.
Mechiche Alami, S; Velard, F; Draux, F; Siu Paredes, F; Josse, J; Lemaire, F; Gangloff, S C; Graesslin, O; Laurent-Maquin, D; Kerdjoudj, H
2014-01-01
Stem cells are the most powerful candidate for the treatment of various diseases. Suitable stem cell source should be harvested with minimal invasive procedure, found in great quantity, and transplanted with no risk of immune response and tumor formation. Fetal derived stem cells have been introduced as an excellent alternative to adult and embryonic stem cells use, but unfortunately, their degree of "stemness" and molecular characterization is still unclear. Several studies have been performed deciphering whether fetal stem cells meet the needs of regenerative medicine. We believe that a transcriptomic screening of Wharton's jelly stem cells will bring insights on cell population features.
Bandgap profiling in CIGS solar cells via valence electron energy-loss spectroscopy
NASA Astrophysics Data System (ADS)
Deitz, Julia I.; Karki, Shankar; Marsillac, Sylvain X.; Grassman, Tyler J.; McComb, David W.
2018-03-01
A robust, reproducible method for the extraction of relative bandgap trends from scanning transmission electron microscopy (STEM) based electron energy-loss spectroscopy (EELS) is described. The effectiveness of the approach is demonstrated by profiling the bandgap through a CuIn1-xGaxSe2 solar cell that possesses intentional Ga/(In + Ga) composition variation. The EELS-determined bandgap profile is compared to the nominal profile calculated from compositional data collected via STEM-based energy dispersive X-ray spectroscopy. The EELS based profile is found to closely track the calculated bandgap trends, with only a small, fixed offset difference. This method, which is particularly advantageous for relatively narrow bandgap materials and/or STEM systems with modest resolution capabilities (i.e., >100 meV), compromises absolute accuracy to provide a straightforward route for the correlation of local electronic structure trends with nanoscale chemical and physical structure/microstructure within semiconductor materials and devices.
Gao, Hongjuan; Wu, Xiaorong; Fossett, Nancy
2013-01-01
A fundamental question in stem cell biology concerns the regulatory strategies that control the choice between multipotency and differentiation. Drosophila blood progenitors or prohemocytes exhibit key stem cell characteristics, including multipotency, quiescence, and niche dependence. As a result, studies of Drosophila hematopoiesis have provided important insights into the molecular mechanisms that control these processes. Here, we show that E-cadherin is an important regulator of prohemocyte fate choice, maintaining prohemocyte multipotency and blocking differentiation. These functions are reminiscent of the role of E-cadherin in mammalian embryonic stem cells. We also show that mis-expression of E-cadherin in differentiating hemocytes disrupts the boundary between these cells and undifferentiated prohemocytes. Additionally, upregulation of E-cadherin in differentiating hemocytes increases the number of intermediate cell types expressing the prohemocyte marker, Patched. Furthermore, our studies indicate that the Drosophila GATA transcriptional co-factor, U-shaped, is required for E-cadherin expression. Consequently, E-cadherin is a downstream target of U-shaped in the maintenance of prohemocyte multipotency. In contrast, we showed that forced expression of the U-shaped GATA-binding partner, Serpent, repressed E-cadherin expression and promoted lamellocyte differentiation. Thus, U-shaped may maintain E-cadherin expression by blocking the inhibitory activity of Serpent. Collectively, these observations suggest that GATA:FOG complex formation regulates E-cadherin levels and, thereby, the choice between multipotency and differentiation. The work presented in this report further defines the molecular basis of prohemocyte cell fate choice, which will provide important insights into the mechanisms that govern stem cell biology. PMID:24040319
Teixeira, Fábio G; Panchalingam, Krishna M; Anjo, Sandra Isabel; Manadas, Bruno; Pereira, Ricardo; Sousa, Nuno; Salgado, António J; Behie, Leo A
2015-07-24
The use of human umbilical cord Wharton Jelly-derived mesenchymal stem cells (hWJ-MSCs) has been considered a new potential source for future safe applications in regenerative medicine. Indeed, the application of hWJ-MSCs into different animal models of disease, including those from the central nervous system, has shown remarkable therapeutic benefits mostly associated with their secretome. Conventionally, hWJ-MSCs are cultured and characterized under normoxic conditions (21 % oxygen tension), although the oxygen levels within tissues are typically much lower (hypoxic) than these standard culture conditions. Therefore, oxygen tension represents an important environmental factor that may affect the performance of mesenchymal stem cells in vivo. However, the impact of hypoxic conditions on distinct mesenchymal stem cell characteristics, such as the secretome, still remains unclear. In the present study, we have examined the effects of normoxic (21 % O2) and hypoxic (5 % O2) conditions on the hWJ-MSC secretome. Subsequently, we address the impact of the distinct secretome in the neuronal cell survival and differentiation of human neural progenitor cells. The present data indicate that the hWJ-MSC secretome collected from normoxic and hypoxic conditions displayed similar effects in supporting neuronal differentiation of human neural progenitor cells in vitro. However, proteomic analysis revealed that the use of hypoxic preconditioning led to the upregulation of several proteins within the hWJ-MSC secretome. Our results suggest that the optimization of parameters such as hypoxia may lead to the development of strategies that enhance the therapeutic effects of the secretome for future regenerative medicine studies and applications.
Chan, Wen-Hsiung
2007-01-01
The mycotoxin CTN (citrinin), a natural contaminant in foodstuffs and animal feeds, has cytotoxic and genotoxic effects on various mammalian cells. CTN is known to cause cell injury, including apoptosis, but the precise regulatory mechanisms of CTN action, particularly in stem cells and embryos, are currently unclear. In the present paper, I report that CTN has cytotoxic effects on mouse embryonic stem cells and blastocysts, and is associated with defects in their subsequent development, both in vitro and in vivo. Experiments in embryonic stem cells (ESC-B5) showed that CTN induces apoptosis via ROS (reactive oxygen species) generation, increased Bax/Bcl-2 ratio, loss of MMP (mitochondrial membrane potential), induction of cytochrome c release, and activation of caspase 3. In this model, CTN triggers cell death via inactivation of the HSP90 [a 90 kDa isoform of the HSP (heat-shock protein) family proteins]/multichaperone complex and subsequent degradation of Ras and Raf-1, further inhibiting anti-apoptotic processes, such as the Ras→ERK (extracellular-signal-regulated kinase) signal transduction pathway. In addition, CTN causes early developmental injury in mouse ESCs and blastocysts in vitro. Lastly, using an in vivo mouse model, I show that consumption of drinking water containing 10 μM CTN results in blastocyst apoptosis and early embryonic developmental injury. Collectively, these findings show for the first time that CTN induces ROS and mitochondria-dependent apoptotic processes, inhibits Ras→ERK survival signalling via inactivation of the HSP90/multichaperone complex, and causes developmental injury in vivo. PMID:17331071
Nine Things to Know About Stem Cell Treatments
... Toggle Nav Nine Things To Know About Stem Cell Treatments Home > Stem Cells and Medicine > Nine Things ... About Stem Cell Treatments Many clinics offering stem cell treatments make claims that are not supported by ...
Cancer (stem) cell differentiation: An inherent or acquired property?
Mohr, Marieke; Zänker, Kurt S; Dittmar, Thomas
2015-12-01
There is a growing list of data indicating that cancer (stem) cells could functionally adapt foreign tissue features, such as endothelial-like cells or neuroendocrine cells, express lineage markers or could differentiate into various lineages in response to appropriate differentiation criteria. The finding that cancer (stem) cells may possess some kind of differentiation capacity poses the question whether this might be an inherent or acquired property. Cancer stem cells share stem cell characteristics and may thus possess an inherent differentiation capacity enabling the cells to respond to various differentiation stimuli. Considering the plasticity of cancer (stem) cells, even non-tumorigenic (and putatively non-differentiable) tumor cells could give rise to tumorigenic tumor stem cells, exhibiting stem cell characteristics including an inherent differentiation capacity. On the contrary, cancer (stem) cells may have acquired differentiation capacity as a consequence of a previous cell fusion event with cell types exhibiting differentiation potential and being fusogenic, such as macrophages or stem cells. Of pivotal interest in a tumor context are macrophages, which chiefly foster the chronically inflamed tumor microenvironment. Because chronically inflamed tissue is a well-known trigger for cell fusion and both macrophages and stem cells are highly fusogenic we conclude that cell fusion events between these cell types and cancer (stem) cells should frequently occur, thereby giving rise to hybrid cells exhibiting not only novel properties, like an enhanced metastatogenic phenotype, but also parental characteristics, such as differentiation capacity. Conceivably, the combination of both properties might be advantageous for metastasizing cancer (stem) cells to adapt better and faster to a foreign organ tissue environment. Copyright © 2015 Elsevier Ltd. All rights reserved.
Sox10+ adult stem cells contribute to biomaterial encapsulation and microvascularization
Wang, Dong; Wang, Aijun; Wu, Fan; Qiu, Xuefeng; Li, Ye; Chu, Julia; Huang, Wen-Chin; Xu, Kang; Gong, Xiaohua; Li, Song
2017-01-01
Implanted biomaterials and biomedical devices generally induce foreign body reaction and end up with encapsulation by a dense avascular fibrous layer enriched in extracellular matrix. Fibroblasts/myofibroblasts are thought to be the major cell type involved in encapsulation, but it is unclear whether and how stem cells contribute to this process. Here we show, for the first time, that Sox10+ adult stem cells contribute to both encapsulation and microvessel formation. Sox10+ adult stem cells were found sparsely in the stroma of subcutaneous loose connective tissues. Upon subcutaneous biomaterial implantation, Sox10+ stem cells were activated and recruited to the biomaterial scaffold, and differentiated into fibroblasts and then myofibroblasts. This differentiation process from Sox10+ stem cells to myofibroblasts could be recapitulated in vitro. On the other hand, Sox10+ stem cells could differentiate into perivascular cells to stabilize newly formed microvessels. Sox10+ stem cells and endothelial cells in three-dimensional co-culture self-assembled into microvessels, and platelet-derived growth factor had chemotactic effect on Sox10+ stem cells. Transplanted Sox10+ stem cells differentiated into smooth muscle cells to stabilize functional microvessels. These findings demonstrate the critical role of adult stem cells in tissue remodeling and unravel the complexity of stem cell fate determination. PMID:28071739
Zeng, Xiankun; Singh, Shree Ram; Hou, David; Hou, Steven X.
2012-01-01
An increasing body of evidence suggests that tumors might originate from a few transformed cells that share many properties with normal stem cells. However, it remains unclear how normal stem cells are transformed into cancer stem cells. Here, we demonstrated that mutations causing the loss of tumor suppressor Sav or Scrib or activation of the oncogene Ras transform normal stem cells into cancer stem cells through a multistep process in the adult Drosophila Malpighian Tubules (MTs). In wild-type MTs, each stem cell generates one self-renewing and one differentiating daughter cell. However, in flies with loss-of-function sav or scrib or gain-of-function Ras mutations, both daughter cells grew and behaved like stem cells, leading to the formation of tumors in MTs. Ras functioned downstream of Sav and Scrib in regulating the stem cell transformation. The Ras-transformed stem cells exhibited many of the hallmarks of cancer, such as increased proliferation, reduced cell death, and failure to differentiate. We further demonstrated that several signal transduction pathways (including MEK/MAPK, RhoA, PKA, and TOR) mediate Rasṕ function in the stem cell transformation. Therefore, we have identified a molecular mechanism that regulates stem cell transformation, and this finding may lead to strategies for preventing tumor formation in certain organs. PMID:20432470
Ichim, Thomas; Riordan, Neil H; Stroncek, David F
2011-12-20
In mid November the biopharma industry was shocked by the announcement from Geron that they were ending work on embryonic stem cell research and therapy. For more than 10 years the public image of all stem cell research has been equated with embryonic stem cells. Unfortunately, a fundamentally important medical and financial fact was being ignored: embryonic stem cell therapy is extremely immature. In parallel to efforts in embryonic stem cell research and development, scientists and physicians in the field of adult stem cells realized that the natural role of adult stem cells in the body is to promote healing and to act like endogenous "repair cells" and, as a result, numerous companies have entered the field of adult stem cell therapy with the goal of expanding numbers of adult stem cells for administration to patients with various conditions. In contrast to embryonic stem cells, which are extremely expensive and potentially dangerous, adult cell cells are inexpensive and have an excellent safety record when used in humans. Many studies are now showing that adult stem cells are practical, patient-applicable, therapeutics that are very close to being available for incorporation into the practice of medicine. These events signal the entrance of the field of stem cells into a new era: an era where hype and misinformation no longer triumph over economic and medical realities.
Development and Application of STEM for the Biological Sciences
Sousa, Alioscka A.; Leapman, Richard D.
2012-01-01
The design of the scanning transmission electron microscope (STEM), as conceived originally by Crewe and coworkers, enables the highly efficient and flexible collection of different elastic and inelastic signals resulting from the interaction of a focused probe of incident electrons with a specimen. In the present paper we provide a brief review for how the STEM today can be applied towards a range of different problems in the biological sciences, emphasizing four main areas of application. (1) For three decades, the most widely used STEM technique has been the mass determination of proteins and other macromolecular assemblies. Such measurements can be performed at low electron dose by collecting the high-angle dark-field signal using an annular detector. STEM mass mapping has proven valuable for characterizing large protein assemblies such as filamentous proteins with a well-defined mass per length. (2) The annular dark-field signal can also be used to image ultrasmall, functionalized nanoparticles of heavy atoms for labeling specific aminoacid sequences in protein assemblies. (3) By acquiring electron energy loss spectra (EELS) at each pixel in a hyperspectral image, it is possible to map the distributions of specific bound elements like phosphorus, calcium and iron in isolated macromolecular assemblies or in compartments within sectioned cells. Near single atom sensitivity is feasible provided that the specimen can tolerate a very high incident electron dose. (4) Electron tomography is a new application of STEM that enables three-dimensional reconstruction of micrometer-thick sections of cells. In this technique a probe of small convergence angle gives a large depth of field throughout the thickness of the specimen while maintaining a probe diameter of < 2 nm; and the use of an on-axis bright-field detector reduces the effects of beam broadening and thus improves the spatial resolution compared to that attainable by STEM dark-field tomography. PMID:22749213
Lee, Jae Geun; Bak, Seon Young; Nahm, Ji Hae; Lee, Sang Woo; Min, Seon Ok
2015-01-01
Backgrounds/Aims Stem cell therapies for liver disease are being studied by many researchers worldwide, but scientific evidence to demonstrate the endocrinologic effects of implanted cells is insufficient, and it is unknown whether implanted cells can function as liver cells. Achieving angiogenesis, arguably the most important characteristic of the liver, is known to be quite difficult, and no practical attempts have been made to achieve this outcome. We carried out this study to observe the possibility of angiogenesis of implanted bio-artificial liver using scaffolds. Methods This study used adipose tissue-derived stem cells that were collected from adult patients with liver diseases with conditions similar to the liver parenchyma. Specifically, microfilaments were used to create an artificial membrane and maintain the structure of an artificial organ. After scratching the stomach surface of severe combined immunocompromised (SCID) mice (n=4), artificial scaffolds with adipose tissue-derived stem cells and type I collagen were implanted. Expression levels of angiogenesis markers including vascular endothelial growth factor (VEGF), CD34, and CD105 were immunohistochemically assessed after 30 days. Results Grossly, the artificial scaffolds showed adhesion to the stomach and surrounding organs; however, there was no evidence of angiogenesis within the scaffolds; and VEGF, CD34, and CD105 expressions were not detected after 30 days. Conclusions Although implantation of cells into artificial scaffolds did not facilitate angiogenesis, the artificial scaffolds made with type I collagen helped maintain implanted cells, and surrounding tissue reactions were rare. Our findings indicate that type I collagen artificial scaffolds can be considered as a possible implantable biomaterial. PMID:26155277
Directing adult human periodontal ligament-derived stem cells to retinal fate.
Huang, Li; Liang, Jiajian; Geng, Yiqun; Tsang, Wai-Ming; Yao, Xiaowu; Jhanji, Vishal; Zhang, Mingzhi; Cheung, Herman S; Pang, Chi Pui; Yam, Gary Hin-Fai
2013-06-06
To investigate the retinal fate competence of human postnatal periodontal ligament (PDL)-derived stem cells (PDLSC) through a directed differentiation mimicking mammalian retinogenesis. Human teeth were collected from healthy subjects younger than 35 years old. Primary PDLSC were isolated by collagenase digestion and cultivated. PDLSC at passage 3 were cultured in the induction media containing Noggin (antagonist of bone morphogenic protein) and Dkk-1 (antagonist of Wnt/β-catenin signaling). Gene expression of neural crest cells, retinal progenitors, and retinal neurons, including photoreceptors, was revealed by RNA analyses, immunofluorescence, and flow cytometry. The neuronal-like property of differentiated cells in response to excitatory glutamate was examined by fluo-4-acetoxymethyl calcium imaging assay. Primary human PDLSC stably expressed marker genes for neural crest (Notch1, BMP2, Slug, Snail, nestin, and Tuj1), mesenchymal stem cell (CD44, CD90, and vimentin), and embryonic stem cell (c-Myc, Klf4, Nanog, and SSEA4). Under low attachment culture, PDLSC generated neurospheres expressing nestin, p75/NGFR, Pax6, and Tuj1 (markers of neural progenitors). When neurospheres were plated on Matrigel-coated surface, they exhibited rosette-like outgrowth. They expressed eye field transcription factors (Pax6, Rx, Lhx, Otx2). By flow cytometry, 94% of cells were Pax6(nuclear)Rx(+), indicative of retinal progenitors. At prolonged induction, they expressed photoreceptor markers (Nrl, rhodopsin and its kinase) and showed significant responsiveness to excitatory glutamate. Primary human PDLSC could be directed to retinal progenitors with competence for photoreceptor differentiation. Human neural crest-derived PDL is readily accessible and can be an ample autologous source of undifferentiated cells for retinal cell regeneration.
Control of stem cell fate by engineering their micro and nanoenvironment
Griffin, Michelle F; Butler, Peter E; Seifalian, Alexander M; Kalaskar, Deepak M
2015-01-01
Stem cells are capable of long-term self-renewal and differentiation into specialised cell types, making them an ideal candidate for a cell source for regenerative medicine. The control of stem cell fate has become a major area of interest in the field of regenerative medicine and therapeutic intervention. Conventional methods of chemically inducing stem cells into specific lineages is being challenged by the advances in biomaterial technology, with evidence highlighting that material properties are capable of driving stem cell fate. Materials are being designed to mimic the clues stem cells receive in their in vivo stem cell niche including topographical and chemical instructions. Nanotopographical clues that mimic the extracellular matrix (ECM) in vivo have shown to regulate stem cell differentiation. The delivery of ECM components on biomaterials in the form of short peptides sequences has also proved successful in directing stem cell lineage. Growth factors responsible for controlling stem cell fate in vivo have also been delivered via biomaterials to provide clues to determine stem cell differentiation. An alternative approach to guide stem cells fate is to provide genetic clues including delivering DNA plasmids and small interfering RNAs via scaffolds. This review, aims to provide an overview of the topographical, chemical and molecular clues that biomaterials can provide to guide stem cell fate. The promising features and challenges of such approaches will be highlighted, to provide directions for future advancements in this exciting area of stem cell translation for regenerative medicine. PMID:25621104
The Neurovascular Properties of Dental Stem Cells and Their Importance in Dental Tissue Engineering
Ratajczak, Jessica; Bronckaers, Annelies; Dillen, Yörg; Gervois, Pascal; Vangansewinkel, Tim; Driesen, Ronald B.; Wolfs, Esther; Lambrichts, Ivo
2016-01-01
Within the field of tissue engineering, natural tissues are reconstructed by combining growth factors, stem cells, and different biomaterials to serve as a scaffold for novel tissue growth. As adequate vascularization and innervation are essential components for the viability of regenerated tissues, there is a high need for easily accessible stem cells that are capable of supporting these functions. Within the human tooth and its surrounding tissues, different stem cell populations can be distinguished, such as dental pulp stem cells, stem cells from human deciduous teeth, stem cells from the apical papilla, dental follicle stem cells, and periodontal ligament stem cells. Given their straightforward and relatively easy isolation from extracted third molars, dental stem cells (DSCs) have become an attractive source of mesenchymal-like stem cells. Over the past decade, there have been numerous studies supporting the angiogenic, neuroprotective, and neurotrophic effects of the DSC secretome. Together with their ability to differentiate into endothelial cells and neural cell types, this makes DSCs suitable candidates for dental tissue engineering and nerve injury repair. PMID:27688777
Multipotent Stem Cell and Reproduction.
Khanlarkhani, Neda; Baazm, Maryam; Mohammadzadeh, Farzaneh; Najafi, Atefeh; Mehdinejadiani, Shayesteh; Sobhani, Aligholi
Stem cells are self-renewing and undifferentiated cell types that can be differentiate into functional cells. Stem cells can be classified into two main types based on their source of origin: Embryonic and Adult stem cells. Stem cells also classified based on the range of differentiation potentials into Totipotent, Pluripotent, Multipotent, and Unipotent. Multipotent stem cells have the ability to differentiate into all cell types within one particular lineage. There are plentiful advantages and usages for multipotent stem cells. Multipotent Stem cells act as a significant key in procedure of development, tissue repair, and protection. The accessibility and adaptability of these amazing cells create them a great therapeutic choice for different part of medical approaches, and it becomes interesting topic in the scientific researches to found obvious method for the most advantageous use of MSC-based therapies. Recent studies in the field of stem cell biology have provided new perspectives and opportunities for the treatment of infertility disorders.
Strategies to improve homing of mesenchymal stem cells for greater efficacy in stem cell therapy.
Naderi-Meshkin, Hojjat; Bahrami, Ahmad Reza; Bidkhori, Hamid Reza; Mirahmadi, Mahdi; Ahmadiankia, Naghmeh
2015-01-01
Stem/progenitor cell-based therapeutic approach in clinical practice has been an elusive dream in medical sciences, and improvement of stem cell homing is one of major challenges in cell therapy programs. Stem/progenitor cells have a homing response to injured tissues/organs, mediated by interactions of chemokine receptors expressed on the cells and chemokines secreted by the injured tissue. For improvement of directed homing of the cells, many techniques have been developed either to engineer stem/progenitor cells with higher amount of chemokine receptors (stem cell-based strategies) or to modulate the target tissues to release higher level of the corresponding chemokines (target tissue-based strategies). This review discusses both of these strategies involved in the improvement of stem cell homing focusing on mesenchymal stem cells as most frequent studied model in cellular therapies. © 2014 International Federation for Cell Biology.
College Students' Conceptions of Stem Cells, Stem Cell Research, and Cloning
ERIC Educational Resources Information Center
Concannon, James P.; Siegel, Marcelle A.; Halverson, Kristy; Freyermuth, Sharyn
2010-01-01
In this study, we examined 96 undergraduate non-science majors' conceptions of stem cells, stem cell research, and cloning. This study was performed at a large, Midwest, research extensive university. Participants in the study were asked to answer 23 questions relating to stem cells, stem cell research, and cloning in an on-line assessment before…
Bardelli, Silvana
2010-04-01
Stem cells contribute to innate healing and harbor a promising role for regenerative medicine. Stem cell banking through long-term storage of different stem cell platforms represents a fundamental source to preserve original features of stem cells for patient-specific clinical applications. Stem cell research and clinical translation constitute fundamental and indivisible modules catalyzed through biobanking activity, generating a return of investment.
Muscle Stem Cells: A Model System for Adult Stem Cell Biology.
Cornelison, Ddw; Perdiguero, Eusebio
2017-01-01
Skeletal muscle stem cells, originally termed satellite cells for their position adjacent to differentiated muscle fibers, are absolutely required for the process of skeletal muscle repair and regeneration. In the last decade, satellite cells have become one of the most studied adult stem cell systems and have emerged as a standard model not only in the field of stem cell-driven tissue regeneration but also in stem cell dysfunction and aging. Here, we provide background in the field and discuss recent advances in our understanding of muscle stem cell function and dysfunction, particularly in the case of aging, and the potential involvement of muscle stem cells in genetic diseases such as the muscular dystrophies.
Redox regulation of plant stem cell fate.
Zeng, Jian; Dong, Zhicheng; Wu, Haijun; Tian, Zhaoxia; Zhao, Zhong
2017-10-02
Despite the importance of stem cells in plant and animal development, the common mechanisms of stem cell maintenance in both systems have remained elusive. Recently, the importance of hydrogen peroxide (H 2 O 2 ) signaling in priming stem cell differentiation has been extensively studied in animals. Here, we show that different forms of reactive oxygen species (ROS) have antagonistic roles in plant stem cell regulation, which were established by distinct spatiotemporal patterns of ROS-metabolizing enzymes. The superoxide anion (O2·-) is markedly enriched in stem cells to activate WUSCHEL and maintain stemness, whereas H 2 O 2 is more abundant in the differentiating peripheral zone to promote stem cell differentiation. Moreover, H 2 O 2 negatively regulates O2·- biosynthesis in stem cells, and increasing H 2 O 2 levels or scavenging O2·- leads to the termination of stem cells. Our results provide a mechanistic framework for ROS-mediated control of plant stem cell fate and demonstrate that the balance between O2·- and H 2 O 2 is key to stem cell maintenance and differentiation. © 2017 The Authors.
Ouyang, Hong; Goldberg, Jeffrey L.; Chen, Shuyi; Li, Wei; Xu, Guo-Tong; Li, Wei; Zhang, Kang; Nussenblatt, Robert B.; Liu, Yizhi; Xie, Ting; Chan, Chi-Chao; Zack, Donald J.
2016-01-01
Stem cells hold promise for treating a wide variety of diseases, including degenerative disorders of the eye. The eye is an ideal organ for stem cell therapy because of its relative immunological privilege, surgical accessibility, and its being a self-contained system. The eye also has many potential target diseases amenable to stem cell-based treatment, such as corneal limbal stem cell deficiency, glaucoma, age-related macular degeneration (AMD), and retinitis pigmentosa (RP). Among them, AMD and glaucoma are the two most common diseases, affecting over 200 million people worldwide. Recent results on the clinical trial of retinal pigment epithelial (RPE) cells from human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) in treating dry AMD and Stargardt’s disease in the US, Japan, England, and China have generated great excitement and hope. This marks the beginning of the ocular stem cell therapy era. The recent Zhongshan Ophthalmic Center Ocular Stem Cell Symposium discussed the potential applications of various stem cell types in stem cell-based therapies, drug discoveries and tissue engineering for treating ocular diseases. PMID:27102165
Human Stem Cell-like Memory T Cells Are Maintained in a State of Dynamic Flux.
Ahmed, Raya; Roger, Laureline; Costa Del Amo, Pedro; Miners, Kelly L; Jones, Rhiannon E; Boelen, Lies; Fali, Tinhinane; Elemans, Marjet; Zhang, Yan; Appay, Victor; Baird, Duncan M; Asquith, Becca; Price, David A; Macallan, Derek C; Ladell, Kristin
2016-12-13
Adaptive immunity requires the generation of memory T cells from naive precursors selected in the thymus. The key intermediaries in this process are stem cell-like memory T (T SCM ) cells, multipotent progenitors that can both self-renew and replenish more differentiated subsets of memory T cells. In theory, antigen specificity within the T SCM pool may be imprinted statically as a function of largely dormant cells and/or retained dynamically by more transitory subpopulations. To explore the origins of immunological memory, we measured the turnover of T SCM cells in vivo using stable isotope labeling with heavy water. The data indicate that T SCM cells in both young and elderly subjects are maintained by ongoing proliferation. In line with this finding, T SCM cells displayed limited telomere length erosion coupled with high expression levels of active telomerase and Ki67. Collectively, these observations show that T SCM cells exist in a state of perpetual flux throughout the human lifespan. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
StemTextSearch: Stem cell gene database with evidence from abstracts.
Chen, Chou-Cheng; Ho, Chung-Liang
2017-05-01
Previous studies have used many methods to find biomarkers in stem cells, including text mining, experimental data and image storage. However, no text-mining methods have yet been developed which can identify whether a gene plays a positive or negative role in stem cells. StemTextSearch identifies the role of a gene in stem cells by using a text-mining method to find combinations of gene regulation, stem-cell regulation and cell processes in the same sentences of biomedical abstracts. The dataset includes 5797 genes, with 1534 genes having positive roles in stem cells, 1335 genes having negative roles, 1654 genes with both positive and negative roles, and 1274 with an uncertain role. The precision of gene role in StemTextSearch is 0.66, and the recall is 0.78. StemTextSearch is a web-based engine with queries that specify (i) gene, (ii) category of stem cell, (iii) gene role, (iv) gene regulation, (v) cell process, (vi) stem-cell regulation, and (vii) species. StemTextSearch is available through http://bio.yungyun.com.tw/StemTextSearch.aspx. Copyright © 2017. Published by Elsevier Inc.
Gastens, Martin H; Goltry, Kristin; Prohaska, Wolfgang; Tschöpe, Diethelm; Stratmann, Bernd; Lammers, Dirk; Kirana, Stanley; Götting, Christian; Kleesiek, Knut
2007-01-01
Ex vivo expansion is being used to increase the number of stem and progenitor cells for autologous cell therapy. Initiation of pivotal clinical trials testing the efficacy of these cells for tissue repair has been hampered by the challenge of assuring safe and high-quality cell production. A strategy is described here for clinical-scale expansion of bone marrow (BM)-derived stem cells within a mixed cell population in a completely closed process from cell collection through postculture processing using sterile connectable devices. Human BM mononuclear cells (BMMNC) were isolated, cultured for 12 days, and washed postharvest using either standard open procedures in laminar flow hoods or using automated closed systems. Conditions for these studies were similar to long-term BM cultures in which hematopoietic and stromal components are cultured together. Expansion of marrow-derived stem and progenitor cells was then assessed. Cell yield, number of colony forming units (CFU), phenotype, stability, and multilineage differentiation capacity were compared from the single pass perfusion bioreactor and standard flask cultures. Purification of BMMNC using a closed Ficoll gradient process led to depletion of 98% erythrocytes and 87% granulocytes, compared to 100% and 70%, respectively, for manual processing. After closed system culture, mesenchymal progenitors, measured as CD105+CD166+CD14-CD45- and fibroblastic CFU, expanded 317- and 364-fold, respectively, while CD34+ hematopoietic progenitors were depleted 10-fold compared to starting BMMNC. Cultured cells exhibited multilineage differentiation by displaying adipogenic, osteogenic, and endothelial characteristics in vitro. No significant difference was observed between manual and bioreactor cultures. Automated culture and washing of the cell product resulted in 181 x 10(6) total cells that were viable and contained fibroblastic CFU for at least 24 h of storage. A combination of closed, automated technologies enabled production of good manufacturing practice (GMP)-compliant cell therapeutics, ready for use within a clinical setting, with minimal risk of microbial contamination.
Application of Stem Cell Technology in Dental Regenerative Medicine.
Feng, Ruoxue; Lengner, Chistopher
2013-07-01
In this review, we summarize the current literature regarding the isolation and characterization of dental tissue-derived stem cells and address the potential of these cell types for use in regenerative cell transplantation therapy. Looking forward, platforms for the delivery of stem cells via scaffolds and the use of growth factors and cytokines for enhancing dental stem cell self-renewal and differentiation are discussed. We aim to understand the developmental origins of dental tissues in an effort to elucidate the molecular pathways governing the genesis of somatic dental stem cells. The advantages and disadvantages of several dental stem cells are discussed, including the developmental stage and specific locations from which these cells can be purified. In particular, stem cells from human exfoliated deciduous teeth may act as a very practical and easily accessibly reservoir for autologous stem cells and hold the most value in stem cell therapy. Dental pulp stem cells and periodontal ligament stem cells should also be considered for their triple lineage differentiation ability and relative ease of isolation. Further, we address the potentials and limitations of induced pluripotent stem cells as a cell source in dental regenerative. From an economical and a practical standpoint, dental stem cell therapy would be most easily applied in the prevention of periodontal ligament detachment and bone atrophy, as well as in the regeneration of dentin-pulp complex. In contrast, cell-based tooth replacement due to decay or other oral pathology seems, at the current time, an untenable approach.
The UK Stem Cell Bank: a UK government-funded, international resource center for stem cell research.
Stacey, Glyn; Hunt, Charles J
2006-01-01
The UK Stem Cell Bank is a UK Research Council-funded initiative that aims to provide ethically sourced and quality controlled stocks of cells for researchers and also establish seed stocks of cell lines for clinical trials. Whilst the Bank is prohibited from carrying out basic stem cell research (to avoid conflicts of interest) it is working to improve stem cell banking procedures including cryopreservation, characterization and quality control. The Bank also supports training activities and has provided the hub for the International Stem Cell Initiative, which includes 17 expert stem cell centers aiming to characterize a large number of human embryonic stem cell lines in a standardized way to improve our understanding of the characteristics of these cells.
Methods for Stem Cell Production and Therapy
NASA Technical Reports Server (NTRS)
Valluri, Jagan V. (Inventor); Claudio, Pier Paolo (Inventor)
2015-01-01
The present invention relates to methods for rapidly expanding a stem cell population with or without culture supplements in simulated microgravity conditions. The present invention relates to methods for rapidly increasing the life span of stem cell populations without culture supplements in simulated microgravity conditions. The present invention also relates to methods for increasing the sensitivity of cancer stem cells to chemotherapeutic agents by culturing the cancer stem cells under microgravity conditions and in the presence of omega-3 fatty acids. The methods of the present invention can also be used to proliferate cancer cells by culturing them in the presence of omega-3 fatty acids. The present invention also relates to methods for testing the sensitivity of cancer cells and cancer stem cells to chemotherapeutic agents by culturing the cancer cells and cancer stem cells under microgravity conditions. The methods of the present invention can also be used to produce tissue for use in transplantation by culturing stem cells or cancer stem cells under microgravity conditions. The methods of the present invention can also be used to produce cellular factors and growth factors by culturing stem cells or cancer stem cells under microgravity conditions. The methods of the present invention can also be used to produce cellular factors and growth factors to promote differentiation of cancer stem cells under microgravity conditions.
Translating stem cell therapies: the role of companion animals in regenerative medicine
Volk, Susan W.; Theoret, Christine
2013-01-01
Veterinarians and veterinary medicine have been integral to the development of stem cell therapies. The contributions of large animal experimental models to the development and refinement of modern hematopoietic stem cell transplantation were noted nearly five decades ago. More recent advances in adult stem cell/regenerative cell therapies continue to expand knowledge of the basic biology and clinical applications of stem cells. A relatively liberal legal and ethical regulation of stem cell research in veterinary medicine has facilitated the development and in some instances clinical translation of a variety of cell-based therapies involving hematopoietic (HSC) and mesenchymal stem cells (MSC) as well as other adult regenerative cells and recently embryonic stem cells (ESC) and induced pluripotent stem cells (iPSC). In fact, many of the pioneering developments in these fields of stem cell research have been achieved through collaborations of veterinary and human scientists. This review aims to provide an overview of the contribution of large animal veterinary models in advancing stem cell therapies for both human and clinical veterinary applications. Moreover, in the context of the “One Health Initiative”, the role veterinary patients may play in the future evolution of stem cell therapies for both human and animal patients will be explored. PMID:23627495
Mack, David L; Guan, Xuan; Wagoner, Ashley; Walker, Stephen J; Childers, Martin K
2014-11-01
Advances in regenerative medicine technologies will lead to dramatic changes in how patients in rehabilitation medicine clinics are treated in the upcoming decades. The multidisciplinary field of regenerative medicine is developing new tools for disease modeling and drug discovery based on induced pluripotent stem cells. This approach capitalizes on the idea of personalized medicine by using the patient's own cells to discover new drugs, increasing the likelihood of a favorable outcome. The search for compounds that can correct disease defects in the culture dish is a conceptual departure from how drug screens were done in the past. This system proposes a closed loop from sample collection from the diseased patient, to in vitro disease model, to drug discovery and Food and Drug Administration approval, to delivering that drug back to the same patient. Here, recent progress in patient-specific induced pluripotent stem cell derivation, directed differentiation toward diseased cell types, and how those cells can be used for high-throughput drug screens are reviewed. Given that restoration of normal function is a driving force in rehabilitation medicine, the authors believe that this drug discovery platform focusing on phenotypic rescue will become a key contributor to therapeutic compounds in regenerative rehabilitation.
Wnt6 maintains anterior escort cells as an integral component of the germline stem cell niche
2018-01-01
ABSTRACT Stem cells reside in a niche, a local environment whose cellular and molecular complexity is still being elucidated. In Drosophila ovaries, germline stem cells depend on cap cells for self-renewing signals and physical attachment. Germline stem cells also contact the anterior escort cells, and here we report that anterior escort cells are absolutely required for germline stem cell maintenance. When escort cells die from impaired Wnt signaling or hid expression, the loss of anterior escort cells causes loss of germline stem cells. Anterior escort cells function as an integral niche component by promoting DE-cadherin anchorage and by transiently expressing the Dpp ligand to promote full-strength BMP signaling in germline stem cells. Anterior escort cells are maintained by Wnt6 ligands produced by cap cells; without Wnt6 signaling, anterior escort cells die leaving vacancies in the niche, leading to loss of germline stem cells. Our data identify anterior escort cells as constituents of the germline stem cell niche, maintained by a cap cell-produced Wnt6 survival signal. PMID:29361569
Wnt6 maintains anterior escort cells as an integral component of the germline stem cell niche.
Wang, Xiaoxi; Page-McCaw, Andrea
2018-02-07
Stem cells reside in a niche, a local environment whose cellular and molecular complexity is still being elucidated. In Drosophila ovaries, germline stem cells depend on cap cells for self-renewing signals and physical attachment. Germline stem cells also contact the anterior escort cells, and here we report that anterior escort cells are absolutely required for germline stem cell maintenance. When escort cells die from impaired Wnt signaling or hid expression, the loss of anterior escort cells causes loss of germline stem cells. Anterior escort cells function as an integral niche component by promoting DE-cadherin anchorage and by transiently expressing the Dpp ligand to promote full-strength BMP signaling in germline stem cells. Anterior escort cells are maintained by Wnt6 ligands produced by cap cells; without Wnt6 signaling, anterior escort cells die leaving vacancies in the niche, leading to loss of germline stem cells. Our data identify anterior escort cells as constituents of the germline stem cell niche, maintained by a cap cell-produced Wnt6 survival signal. © 2018. Published by The Company of Biologists Ltd.
21st Nantes Actualités Transplantation: "When Stem Cells Meet Immunology".
Anegon, Ignacio; Nguyen, Tuan Huy
2017-01-01
"When Stem Cells Meet Immunology" has been the topic of the 21st annual "Nantes Actualités en Transplantation" meeting (June 9-10, 2016, Nantes, France). This meeting brought together pioneers and leading experts in the fields of stem cells, biomaterials and immunoregulation. Presentations covered multipotent (mesenchymal and hematopoietic) and pluripotent stem cells (embryonic and induced) for regenerative medicine of incurable diseases, immunotherapy and blood transfusions. An additional focus had been immune rejections and responses of allogeneic or autologous stem cells. Conversely, stem cells are also able to directly modulate the immune response through the production of immunoregulatory molecules. Moreover, stem cells may also provide an unlimited source of immune cells (DCs, NK cells, B cells, and T cells) that can operate as "super" immune cells, for example, through genetic engineering with chimeric antigen receptors.This meeting report puts presentations into an overall context highlighting new potential biomarkers for potency prediction of mesenchymal stem cell-derived and pluripotent stem cell-derived multicellular organoids. Finally, we propose future directions arising from the flourishing encounter of stem cell and immune biology.
Mannino, Mariella; Gomez-Roman, Natividad; Hochegger, Helfrid; Chalmers, Anthony J
2014-07-01
Glioma stem-cell-like cells are considered to be responsible for treatment resistance and tumour recurrence following chemo-radiation in glioblastoma patients, but specific targets by which to kill the cancer stem cell population remain elusive. A characteristic feature of stem cells is their ability to undergo both symmetric and asymmetric cell divisions. In this study we have analysed specific features of glioma stem cell mitosis. We found that glioma stem cells appear to be highly prone to undergo aberrant cell division and polyploidization. Moreover, we discovered a pronounced change in the dynamic of mitotic centrosome maturation in these cells. Accordingly, glioma stem cell survival appeared to be strongly dependent on Aurora A activity. Unlike differentiated cells, glioma stem cells responded to moderate Aurora A inhibition with spindle defects, polyploidization and a dramatic increase in cellular senescence, and were selectively sensitive to Aurora A and Plk1 inhibitor treatment. Our study proposes inhibition of centrosomal kinases as a novel strategy to selectively target glioma stem cells. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
Ahmed, Abu Shufian Ishtiaq; Sheng, Matilda HC; Wasnik, Samiksha; Baylink, David J; Lau, Kin-Hing William
2017-01-01
Pluripotent stem cells have the remarkable self-renewal ability and are capable of differentiating into multiple diverse cells. There is increasing evidence that the aging process can have adverse effects on stem cells. As stem cells age, their renewal ability deteriorates and their ability to differentiate into the various cell types is altered. Accordingly, it is suggested aging-induced deterioration of stem cell functions may play a key role in the pathophysiology of the various aging-associated disorders. Understanding the role of the aging process in deterioration of stem cell function is crucial, not only in understanding the pathophysiology of aging-associated disorders, but also in future development of novel effective stem cell-based therapies to treat aging-associated diseases. This review article first focuses on the basis of the various aging disease-related stem cell dysfunction. It then addresses the several concepts on the potential mechanism that causes aging-related stem cell dysfunction. It also briefly discusses the current potential therapies under development for aging-associated stem cell defects. PMID:28261550
Engineering Stem Cells for Biomedical Applications
Yin, Perry T.; Han, Edward
2018-01-01
Stem cells are characterized by a number of useful properties, including their ability to migrate, differentiate, and secrete a variety of therapeutic molecules such as immunomodulatory factors. As such, numerous pre-clinical and clinical studies have utilized stem cell-based therapies and demonstrated their tremendous potential for the treatment of various human diseases and disorders. Recently, efforts have focused on engineering stem cells in order to further enhance their innate abilities as well as to confer them with new functionalities, which can then be used in various biomedical applications. These engineered stem cells can take on a number of forms. For instance, engineered stem cells encompass the genetic modification of stem cells as well as the use of stem cells for gene delivery, nanoparticle loading and delivery, and even small molecule drug delivery. The present Review gives an in-depth account of the current status of engineered stem cells, including potential cell sources, the most common methods used to engineer stem cells, and the utilization of engineered stem cells in various biomedical applications, with a particular focus on tissue regeneration, the treatment of immunodeficiency diseases, and cancer. PMID:25772134
Therapeutic potential of dental stem cells
Chalisserry, Elna Paul; Nam, Seung Yun; Park, Sang Hyug; Anil, Sukumaran
2017-01-01
Stem cell biology has become an important field in regenerative medicine and tissue engineering therapy since the discovery and characterization of mesenchymal stem cells. Stem cell populations have also been isolated from human dental tissues, including dental pulp stem cells, stem cells from human exfoliated deciduous teeth, stem cells from apical papilla, dental follicle progenitor cells, and periodontal ligament stem cells. Dental stem cells are relatively easily obtainable and exhibit high plasticity and multipotential capabilities. The dental stem cells represent a gold standard for neural-crest-derived bone reconstruction in humans and can be used for the repair of body defects in low-risk autologous therapeutic strategies. The bioengineering technologies developed for tooth regeneration will make substantial contributions to understand the developmental process and will encourage future organ replacement by regenerative therapies in a wide variety of organs such as the liver, kidney, and heart. The concept of developing tooth banking and preservation of dental stem cells is promising. Further research in the area has the potential to herald a new dawn in effective treatment of notoriously difficult diseases which could prove highly beneficial to mankind in the long run. PMID:28616151
Therapeutic Role of Bmi-1 Inhibitors in Eliminating Prostate Tumor Stem Cells
2015-10-01
209 induced cell senescence, G1 cell cycle arrest, and reduced intratumor BMI-1 levels, while displaying antitumor activity in mouse xenografts did...achieved from mouse xenograft studies (Bertino Lab), therefore suggesting that this compound may be further pursued for PCa therapy. We have published...confirmed the activity of C-209 in zebrafish and mouse xenografts . We will continue to collect more primary PCa tissues to study oncogenic addiction of
Single-cell sequencing in stem cell biology.
Wen, Lu; Tang, Fuchou
2016-04-15
Cell-to-cell variation and heterogeneity are fundamental and intrinsic characteristics of stem cell populations, but these differences are masked when bulk cells are used for omic analysis. Single-cell sequencing technologies serve as powerful tools to dissect cellular heterogeneity comprehensively and to identify distinct phenotypic cell types, even within a 'homogeneous' stem cell population. These technologies, including single-cell genome, epigenome, and transcriptome sequencing technologies, have been developing rapidly in recent years. The application of these methods to different types of stem cells, including pluripotent stem cells and tissue-specific stem cells, has led to exciting new findings in the stem cell field. In this review, we discuss the recent progress as well as future perspectives in the methodologies and applications of single-cell omic sequencing technologies.
The Implications of the Cancer Stem Cell Hypothesis for Neuro-Oncology and Neurology.
Rich, Jeremy N
2008-05-01
The cancer stem cell hypothesis posits that cancers contain a subset of neoplastic cells that propagate and maintain tumors through sustained self-renewal and potent tumorigenecity. Recent excitement has been generated by a number of reports that have demonstrated the existence of cancer stem cells in several types of brain tumors. Brain cancer stem cells - also called tumor initiating cells or tumor propagating cells - share features with normal neural stem cells but do not necessarily originate from stem cells. Although most cancers have only a small fraction of cancer stem cells, these tumor cells have been shown in laboratory studies to contribute to therapeutic resistance, formation of new blood vessels to supply the tumor, and tumor spread. As malignant brain tumors rank among the deadliest of all neurologic diseases, the identification of new cellular targets may have profound implications in neuro-oncology. Novel drugs that target stem cell pathways active in brain tumors have been efficacious against cancer stem cells suggesting that anti-cancer stem cell therapies may advance brain tumor therapy. The cancer stem cell hypothesis may have several implications for other neurologic diseases as caution must be exercised in activating stem cell maintenance pathways in cellular therapies for neurodegenerative diseases. The ability for a small fraction of cells to determine the overall course of a disease may also inform new paradigms of disease that may translate into improved patient outcomes.
Aliborzi, Ghaem; Vahdati, Akbar; Mehrabani, Davood; Hosseini, Seyed Ebrahim; Tamadon, Amin
2016-05-30
Mesenchymal stem cells (MSCs) from different sources have different characteristics. Moreover, MSCs are not isolated and characterized in Guinea pig for animal model of cell therapy. was the isolating of bone marrow MSCs (BM-MSCs) and adipose tissue MSCs (AT-MSCs) from Guinea pig and assessing their characteristics. In this study, bone marrow and adipose tissue were collected from three Guinea pigs and cultured and expanded through eight passages. BM-MSCs and AT-MSCs at passages 2, 5 and 8 were seeded in 24-well plates in triplicate. Cells were counted from each well 1~7 days after seeding to determine population doubling time (PDT) and cell growth curves. Cells of passage 3 were cultured in osteogenic and adipogenic differentiation media. BM-MSCs and AT-MSCs attached to the culture flask and displayed spindle-shaped morphology. Proliferation rate of AT-MSCs in the analyzed passages was more than BM-MSCs. The increase in the PDT of MSCs occurs with the increase in the number of passages. Moreover, after culture of BM-MSCs and AT-MSCs in differentiation media, the cells differentiated toward osteoblasts and adipocytes as verified by Alizarin Red staining and Oil Red O staining, respectively. BM-MSCs and AT-MSCs of Guinea pig could be valuable source of multipotent stem cells for use in experimental and preclinical studies in animal models.
Can bone marrow differentiate into renal cells?
Imai, Enyu; Ito, Takahito
2002-10-01
A considerable plasticity of adult stem cells has been confirmed in a wide variety of tissues. In particular, the pluripotency of bone marrow-derived stem cells may influence the regeneration of injured tissues and may provide novel avenues in regenerative medicine. Bone marrow contains at least hematopoietic and mesenchymal stem cells, and both can differentiate into a wide range of differentiated cells. Side population (SP) cells, which are originally defined in bone marrow cells by high efflux of DNA-binding dye, seem to be a new class of multipotent stem cells. Irrespective of the approach used to obtain stem cells, the fates of marrow-derived cells following bone marrow transplantation can be traced by labeling donor cells with green fluorescence protein or by identifying donor Y chromosome in female recipients. So far, bone marrow-derived cells have been reported to differentiate into renal cells, including mesangial cells, endothelial cells, podocytes, and tubular cells in the kidney, although controversy exists. Further studies are required to address this issue. Cell therapy will be promising when we learn to control stem cells such as bone marrow-derived stem cells, embryonic stem cells, and resident stem cells in the kidney. Identification of factors that support stem cells or promote their differentiation should provide a relevant step towards cell therapy.
[The emerging technology of tissue engineering : Focus on stem cell niche].
Schlötzer-Schrehardt, U; Freudenberg, U; Kruse, F E
2017-04-01
Limbal stem cells reside in a highly specialized complex microenvironment that is known as the stem cell niche, an anatomically protected region at the bottom of the Palisades of Vogt, where the stem cells are located and where their quiescence, proliferation and differentiation are maintained in balance. Besides the epithelial stem and progenitor cell clusters, the limbal niche comprises several types of supporting niche cells and a specific extracellular matrix mediating biochemical and biophysical signals. Stem cell-based tissue engineering aims to mimic the native stem cell niche and to present appropriate microenvironmental cues in a controlled and reproducible fashion in order to maintain stem cell function within the graft. Current therapeutic approaches for ex vivo expansion of limbal stem cells only take advantage of surrogate niches. However, new insights into the molecular composition of the limbal niche and innovative biosynthetic scaffolds have stimulated novel strategies for niche-driven stem cell cultivation. Promising experimental approaches include collagen-based organotypic coculture systems of limbal epithelial stem cells with their niche cells and biomimetic hydrogel platforms prefunctionalized with appropriate biomolecular and biophysical signals. Future translation of these novel regenerative strategies into clinical application is expected to improve long-term outcomes of limbal stem cell transplantation for ocular surface reconstruction.
Combination cell therapy with mesenchymal stem cells and neural stem cells for brain stroke in rats.
Hosseini, Seyed Mojtaba; Farahmandnia, Mohammad; Razi, Zahra; Delavari, Somayeh; Shakibajahromi, Benafsheh; Sarvestani, Fatemeh Sabet; Kazemi, Sepehr; Semsar, Maryam
2015-05-01
Brain stroke is the second most important events that lead to disability and morbidity these days. Although, stroke is important, there is no treatment for curing this problem. Nowadays, cell therapy has opened a new window for treating central nervous system disease. In some previous studies the Mesenchymal stem cells and neural stem cells. In this study, we have designed an experiment to assess the combination cell therapy (Mesenchymal and Neural stem cells) effects on brain stroke. The Mesenchymal stem cells were isolated from adult rat bone marrow and the neural stem cells were isolated from ganglion eminence of rat embryo 14 days. The Mesenchymal stem cells were injected 1 day after middle cerebral artery occlusion (MCAO) and the neural stem cells transplanted 7 day after MCAO. After 28 days, the neurological outcomes and brain lesion volumes were evaluated. Also, the activity of Caspase 3 was assessed in different groups. The group which received combination cell therapy had better neurological examination and less brain lesion. Also the combination cell therapy group had the least Caspase 3 activity among the groups. The combination cell therapy is more effective than Mesenchymal stem cell therapy and neural stem cell therapy separately in treating the brain stroke in rats.
2010-01-01
Background Cell scattering is a physiological process executed by stem and progenitor cells during embryonic liver development and postnatal organ regeneration. Here, we investigated the genomic events occurring during this process induced by functional blockade of α5β1 integrin in liver progenitor cells. Results Cells treated with a specific antibody against α5β1 integrin exhibited cell spreading and scattering, over-expression of liver stem/progenitor cell markers and activation of the ERK1/2 and p38 MAPKs signaling cascades, in a similar manner to the process triggered by HGF/SF1 stimulation. Gene expression profiling revealed marked transcriptional changes of genes involved in cell adhesion and migration, as well as genes encoding chromatin remodeling factors. These responses were accompanied by conspicuous spatial reorganization of centromeres, while integrin genes conserved their spatial positioning in the interphase nucleus. Conclusion Collectively, our results demonstrate that α5β1 integrin functional blockade induces cell migration of hepatic progenitor cells, and that this involves a dramatic remodeling of the nuclear landscape. PMID:20958983
Application of Stem Cells in Oral Disease Therapy: Progresses and Perspectives
Yang, Bo; Qiu, Yi; Zhou, Niu; Ouyang, Hong; Ding, Junjun; Cheng, Bin; Sun, Jianbo
2017-01-01
Stem cells are undifferentiated and pluripotent cells that can differentiate into specialized cells with a more specific function. Stem cell therapies become preferred methods for the treatment of multiple diseases. Oral and maxillofacial defect is one kind of the diseases that could be most possibly cured by stem cell therapies. Here we discussed oral diseases, oral adult stem cells, iPS cells, and the progresses/challenges/perspectives of application of stem cells for oral disease treatment. PMID:28421002
Parental desire and acceptability of spermatogonial stem cell cryopreservation in boys with cancer.
van den Berg, H; Repping, S; van der Veen, F
2007-02-01
In the near future, a substantial proportion of adults will be childhood cancer survivors. The cryopreservation and transplantation of spermatogonial stem cells (SSCs) is currently successful in animals; application in humans seems likely in the near future. Cryopreserving SSCs might become an important issue in childhood cancer. Because this might require testicular biopsies or hemicastration, parental desire/acceptability for SSC collection was enquired for. Three hundred eighteen parents of boys surviving at least 2 years after the diagnosis of cancer were asked about collecting SSCs by biopsy or hemicastration and collecting sperm by masturbation or electrostimulation. Opinions were assessed as if at the time of diagnosis and at the present time. Sixty-three per cent of parents responded. At diagnosis, SSC collection by means of biopsy was approved by 61%, hemicastration by 33% and collecting sperm by 70% (P < 0.013). The acceptability of performing hemicastration was significantly lower than all other forms of SSC/sperm collection. No differences were observed between parents' present opinion and opinion at diagnosis. No differences related to treatment intensity, presumed negative fertility effects and pubertal state were found. Infertility is a major topic for parents. For prepubertal boys, the collection of SSCs might be a great relief in respect of the fertility issue. Collecting SSCs by biopsy is desired and accepted by the majority of parents; hemicastration is accepted by one-third of parents. The translation of SSC cryopreservation and transplantation from animal models to humans is eagerly awaited.
Fan, Yong; Li, Rong; Huang, Jin; Yu, Yang; Qiao, Jie
2013-01-01
Human embryonic stem cells have shown tremendous potential in regenerative medicine, and the recent progress in haploid embryonic stem cells provides new insights for future applications of embryonic stem cells. Disruption of normal fertilized embryos remains controversial; thus, the development of a new source for human embryonic stem cells is important for their usefulness. Here, we investigated the feasibility of haploid and diploid embryo reconstruction and embryonic stem cell derivation using microsurgically repaired tripronuclear human zygotes. Diploid and haploid zygotes were successfully reconstructed, but a large proportion of them still had a tripolar spindle assembly. The reconstructed embryos developed to the blastocyst stage, although the loss of chromosomes was observed in these zygotes. Finally, triploid and diploid human embryonic stem cells were derived from tripronuclear and reconstructed zygotes (from which only one pronucleus was removed), but haploid human embryonic stem cells were not successfully derived from the reconstructed zygotes when two pronuclei were removed. Both triploid and diploid human embryonic stem cells showed the general characteristics of human embryonic stem cells. These results indicate that the lower embryo quality resulting from abnormal spindle assembly contributed to the failure of the haploid embryonic stem cell derivation. However, the successful derivation of diploid embryonic stem cells demonstrated that microsurgical tripronuclear zygotes are an alternative source of human embryonic stem cells. In the future, improving spindle assembly will facilitate the application of triploid zygotes to the field of haploid embryonic stem cells. PMID:23255130
Takahashi, Y; Fukui, T; Kishimoto, M; Suzuki, R; Mitsuyama, T; Sumimoto, K; Okazaki, T; Sakao, M; Sakaguchi, Y; Yoshida, K; Uchida, K; Nishio, A; Matsuzaki, K; Okazaki, K
2016-01-01
The stem cell compartment in the esophageal epithelium is possibly located in the basal layer. We have identified significant expression of Smad2/3, phosphorylated at specific linker threonine residues (pSmad2/3L-Thr), in the epithelial cells of murine stomach and intestine, and have suggested that these cells are epithelial stem cells. In this study, we explore whether pSmad2/3L-Thr could serve as a biomarker for esophageal stem cells. We examined esophageal tissues from normal C57BL/6 mice and those with esophagitis. Double immunofluorescent staining of pSmad2/3L-Thr with Ki67, CDK4, p63, or CK14 was performed. After immunofluorescent staining, we stained the same sections with hematoxylin-eosin and observed these cells under a light microscope. We used the 5-bromo-2-deoxyuridine (BrdU) labeling assay to examine label retention of pSmad2/3L-Thr immunostaining-positive cells. We collected specimens 5, 10, 15 and 20 days after repeated BrdU administrations and observed double immunofluorescent staining of pSmad2/3L-Thr with BrdU. In the esophagus, pSmad2/3L-Thr immunostaining-positive cells were detected in the basal layer. These cells were detected between Ki67 immunostaining-positive cells, but they were not co-localized with Ki67. pSmad2/3L-Thr immunostaining-positive cells showed co-localization with CDK4, p63, and CK14. Under a light microscope, pSmad2/3L-Thr immunostaining-positive cells indicated undifferentiated morphological features. Until 20 days follow-up period, pSmad2/3L-Thr immunostaining-positive cells were co-localized with BrdU. pSmad2/3L-Thr immunostaining-positive cells significantly increased in the regeneration phase of esophagitis mucosae, as compared with control mice (esophagitis vs. 6.889 ± 0.676/cm vs. 4.293 ± 0.659/cm; P < 0.001). We have identified significant expression of pSmad2/3L-Thr in the specific epithelial cells of murine esophagi. We suggest that these cells are slow-cycling epithelial stem-like cells before re-entry to the cell cycle. © 2016 International Society for Diseases of the Esophagus.
Nano scaffolds and stem cell therapy in liver tissue engineering
NASA Astrophysics Data System (ADS)
Montaser, Laila M.; Fawzy, Sherin M.
2015-08-01
Tissue engineering and regenerative medicine have been constantly developing of late due to the major progress in cell and organ transplantation, as well as advances in materials science and engineering. Although stem cells hold great potential for the treatment of many injuries and degenerative diseases, several obstacles must be overcome before their therapeutic application can be realized. These include the development of advanced techniques to understand and control functions of micro environmental signals and novel methods to track and guide transplanted stem cells. A major complication encountered with stem cell therapies has been the failure of injected cells to engraft to target tissues. The application of nanotechnology to stem cell biology would be able to address those challenges. Combinations of stem cell therapy and nanotechnology in tissue engineering and regenerative medicine have achieved significant advances. These combinations allow nanotechnology to engineer scaffolds with various features to control stem cell fate decisions. Fabrication of Nano fiber cell scaffolds onto which stem cells can adhere and spread, forming a niche-like microenvironment which can guide stem cells to proceed to heal damaged tissues. In this paper, current and emergent approach based on stem cells in the field of liver tissue engineering is presented for specific application. The combination of stem cells and tissue engineering opens new perspectives in tissue regeneration for stem cell therapy because of the potential to control stem cell behavior with the physical and chemical characteristics of the engineered scaffold environment.
Stem-Cell-Based Tumorigenesis in Adult Drosophila.
Hou, S X; Singh, S R
2017-01-01
Recent studies suggest that a small subset of cells within a tumor, the so-called cancer stem cells (CSCs), are responsible for tumor propagation, relapse, and the eventual death of most cancer patients. CSCs may derive from a few tumor-initiating cells, which are either transformed normal stem cells or reprogrammed differentiated cells after acquiring initial cancer-causing mutations. CSCs and normal stem cells share some properties, but CSCs differ from normal stem cells in their tumorigenic ability. Notably, CSCs are usually resistant to chemo- and radiation therapies. Despite the apparent roles of CSCs in human cancers, the biology underlying their behaviors remains poorly understood. Over the past few years, studies in Drosophila have significantly contributed to this new frontier of cancer research. Here, we first review how stem-cell tumors are initiated and propagated in Drosophila, through niche appropriation in the posterior midgut and through stem-cell competition for niche occupancy in the testis. We then discuss the differences between normal and tumorigenic stem cells, revealed by studying Ras V12 -transformed stem-cell tumors in the Drosophila kidney. Finally, we review the biology behind therapy resistance, which has been elucidated through studies of stem-cell resistance and sensitivity to death inducers using female germline stem cells and intestinal stem cells of the posterior midgut. We expect that screens using adult Drosophila neoplastic stem-cell tumor models will be valuable for identifying novel and effective compounds for treating human cancers. © 2017 Elsevier Inc. All rights reserved.
Stem cells with potential to generate insulin producing cells in man.
Zulewski, Henryk
2006-10-14
Replacement of insulin-producing cells represents an almost ideal treatment for patients with diabetes mellitus type 1. Transplantation of pancreatic islets of Langerhans--although successful in experienced centres--is limited by the lack of donor organs. Generation of insulin-producing cells from stem cells represents an attractive alternative. Stem cells with the potential to differentiate into insulin-producing cells include embryonic stem cells (ESC) as well as adult stem cells from various tissues including the pancreas, liver, central nervous system, bone marrow and adipose tissue. The use of human ESC is hampered by ethical concerns and the inability to create patient specific ESC with therapeutic cloning. Among adult stem cells mesenchymal stem cells appear to have a particular developmental plasticity ex vivo that include their ability to adopt a pancreatic endocrine phenotype. The present review summarises the current knowledge on the development of insulin-producing cells from stem cells with special emphasis on human mesenchymal stem cells isolated from the pancreas and adipose tissue.
Stem cells with potential to generate insulin-producing cells in man.
Zulewski, Henryk
2007-03-02
Replacement of insulin-producing cells represents an almost ideal treatment for patients with diabetes mellitus type 1. Transplantation of pancreatic islets of Langerhans--although successful in experienced centres--is limited by the lack of donor organs. Generation of insulin-producing cells from stem cells represents an attractive alternative. Stem cells with the potential to differentiate into insulin-producing cells include embryonic stem cells (ESC) as well as adult stem cells from various tissues including the pancreas, liver, central nervous system, bone marrow and adipose tissue. The use of human ESC is hampered by ethical concerns and the inability to create patient specific ESC with therapeutic cloning. Among adult stem cells mesenchymal stem cells appear to have a particular developmental plasticity ex vivo that include their ability to adopt a pancreatic endocrine phenotype. The present review summarises the current knowledge on the development of insulin-producing cells from stem cells with special emphasis on human mesenchymal stem cells isolated from the pancreas and adipose tissue.
Mechanical forces direct stem cell behaviour in development and regeneration
Vining, Kyle H.; Mooney, David J.
2018-01-01
Stem cells and their local microenvironment, or niche, communicate through mechanical, cues to regulate cell fate and cell behaviour, and to guide developmental processes. During embryonic development, mechanical forces are involved in patterning and organogenesis. The physical environment of pluripotent stem cells regulates their differentiation and self-renewal. Mechanical and physical cues are also important in adult tissues, where adult stem cells require physical interactions with the extracellular matrix to maintain their potency. In vitro, synthetic models of the stem cell niche can be used to precisely control and manipulate the biophysical and biochemical properties of the stem cell microenvironment and examine how the mode and magnitude of mechanical cues, such as matrix stiffness or applied forces, direct stem cell differentiation and function. Fundamental insights on the mechanobiology of stem cells also inform the design of artificial niches to support stem cells for regenerative therapies. PMID:29115301
Recent Advances towards the Clinical Application of Stem Cells for Retinal Regeneration
Becker, Silke; Jayaram, Hari; Limb, G. Astrid
2012-01-01
Retinal degenerative diseases constitute a major cause of irreversible blindness in the world. Stem cell-based therapies offer hope for these patients at risk of or suffering from blindness due to the deterioration of the neural retina. Various sources of stem cells are currently being investigated, ranging from human embryonic stem cells to adult-derived induced pluripotent stem cells as well as human Müller stem cells, with the first clinical trials to investigate the safety and tolerability of human embryonic stem cell-derived retinal pigment epithelium cells having recently commenced. This review aims to summarize the latest advances in the development of stem cell strategies for the replacement of retinal neurons and their supportive cells, the retinal pigment epithelium (RPE) affected by retinal degenerative conditions. Particular emphasis will be given to the advances in stem cell transplantation and the challenges associated with their translation into clinical practice. PMID:24710533
Stem-Cell Therapy Advances in China.
Hu, Lei; Zhao, Bin; Wang, Songlin
2018-02-01
Stem-cell therapy is a promising method for treating patients with a wide range of diseases and injuries. Increasing government funding of scientific research has promoted rapid developments in stem-cell research in China, as evidenced by the substantial increase in the number and quality of publications in the past 5 years. Multiple high-quality studies have been performed in China that concern cell reprogramming, stem-cell homeostasis, gene modifications, and immunomodulation. The number of translation studies, including basic and preclinical investigations, has also increased. Around 100 stem-cell banks have been established in China, 10 stem-cell drugs are currently in the approval process, and >400 stem cell-based clinical trials are currently registered in China. With continued state funding, advanced biotechnical support, and the development of regulatory standards for the clinical application of stem cells, further innovations are expected that will lead to a boom in stem-cell therapies. This review highlights recent achievements in stem-cell research in China and discusses future prospects.
New insights into mechanisms of stem cell daughter fate determination in regenerative tissues.
Sada, Aiko; Tumbar, Tudorita
2013-01-01
Stem cells can self-renew and differentiate over extended periods of time. Understanding how stem cells acquire their fates is a central question in stem cell biology. Early work in Drosophila germ line and neuroblast showed that fate choice is achieved by strict asymmetric divisions that can generate each time one stem and one differentiated cell. More recent work suggests that during homeostasis, some stem cells can divide symmetrically to generate two differentiated cells or two identical stem cells to compensate for stem cell loss that occurred by direct differentiation or apoptosis. The interplay of all these factors ensures constant tissue regeneration and the maintenance of stem cell pool size. This interplay can be modeled as a population-deterministic dynamics that, at least in some systems, may be described as stochastic behavior. Here, we overview recent progress made on the characterization of stem cell dynamics in regenerative tissues. Copyright © 2013 Elsevier Inc. All rights reserved.
Zhang, Xiaoli; Shi, Kun; Li, Yi; Zhang, Haiyu; Hao, Jing
2014-06-01
Lipopolysaccharide (LPS) can reduce sperm count and sperm quality. The molecular mechanisms underlying this process are not fully understood. In this report, we investigated the effects of LPS-treated Sertoli cells on self-renewal and differentiation of spermatogoinial stem cells (SSCs). Sertoli cell cultures were established and incubated with LPS (10μg/ml) for 1, 2 or 3 days, respectively. The culture media were collected and used as conditioned media (CM) to culture SSCs. The expression of glial cell-derived neurotrophic factor (GDNF), stem cell factor (SCF) and bone morphogenetic protein 4 (BMP4) in Sertoli cells treated with LPS was analyzed by RT-PCR and Western blotting. The results showed that the expression of SSC differentiation markers, c-kit and Sohlh2, was increased, while the expression of SSC self-renewal markers, plzf, oct4, and PCNA, was repressed when cultured in CM from LPS-treated Sertoli cells. GDNF levels in Sertoli cells and CM reduced dramatically after LPS treatments, while SCF and BMP4 levels did not show any significant changes. Moreover, correlated with the GDNF levels in CM, GDNF target genes, Bcl6b and Etv5, were reduced markedly in SSCs. Our results suggest that LPS inhibits the expression of GDNF in Sertoli cells, and might prevent the SSC self-renewal via down-regulation of GDNF target genes. Copyright © 2014 Elsevier Inc. All rights reserved.
Hussein, A A; Hamidieh, A A; Elhaddad, A; Ramzi, M; Othman, T B; Hussain, F; Dennison, D; Ahmed, P; Abboud, M; Al-Ahmari, A; Wahadneh, A; Fathy, J; Bekadja, M-A; Al-Kindi, S; Benchekroun, S; Ibrahim, A; Behfar, M; Samra, M; Ladeb, S; Adil, S; El-Solh, H; Ayas, M; Aljurf, M; Ghavamzadeh, A; Al-Seraihy, A
2017-01-01
To describe the hematopoietic stem cell transplantation (HSCT) activities for children in the Eastern Mediterranean (EM) region, data on transplants performed for children less than 18 years of age between 1984 and 2011 in eight EM countries (Egypt, Iran, Jordan, Lebanon, Oman, Pakistan, Saudi Arabia and Tunisia) were collected. A total of 5187 transplants were performed, of which 4513 (87%) were allogeneic and 674 (13%) were autologous. Overall, the indications for transplantation were malignant diseases in 1736 (38.5%) and non-malignant in 2777 (61.5%) patients. A myeloablative conditioning regimen was used in 88% of the allografts. Bone marrow (BM) was the most frequent source of stem cells (56.2%), although an increasing use of PBSC was observed in the last decade. The stem cell source of autologous HSCT has shifted over time from BM to PBSC, and 80.9% of autologous HSCTs were from PBSCs. The donors for allogeneic transplants were matched-related in 94.5% of the cases, and unrelated transplants, mainly cord blood (99%) in 239 (5.5%) cases. This is the first report to describe the pediatric HSCT activities in EM countries. Non-malignant disorders are the main indication for allogeneic transplantation. Frequency of alternate donor transplantation is low.
Zhao, Yong Mei; Golden, Aaron; Mar, Jessica C.; Einstein, Francine H.; Greally, John M.
2014-01-01
The mechanism and significance of epigenetic variability in the same cell type between healthy individuals are not clear. Here, we purify human CD34+ hematopoietic stem and progenitor cells (HSPCs) from different individuals and find that there is increased variability of DNA methylation at loci with properties of promoters and enhancers. The variability is especially enriched at candidate enhancers near genes transitioning between silent and expressed states, and encoding proteins with leukocyte differentiation properties. Our findings of increased variability at loci with intermediate DNA methylation values, at candidate “poised” enhancers, and at genes involved in HSPC lineage commitment suggest that CD34+ cell subtype heterogeneity between individuals is a major mechanism for the variability observed. Epigenomic studies performed on cell populations, even when purified, are testing collections of epigenomes, or meta-epigenomes. Our findings show that meta-epigenomic approaches to data analysis can provide insights into cell subpopulation structure. PMID:25327398
MAPK signaling is required for LPS-induced VEGF in pulp stem cells.
Botero, T M; Son, J S; Vodopyanov, D; Hasegawa, M; Shelburne, C E; Nör, J E
2010-03-01
Caries-induced pulpitis is typically accompanied by an increase in dental pulp microvascular density. However, the mechanisms by which dental pulp cells recognize lipopolysaccharides (LPSs) remain unclear. We hypothesized that Porphyromonas endodontalis and Escherichia coli LPSs induce vascular endothelial growth factor (VEGF) expression in dental pulp stem cells (DPSC) and human dental pulp fibroblasts (HDPF) through mitogen-activated protein kinase (MAPK) signaling. ELISA, semi-quantitative RT-PCR, immunofluorescence, and Western blots were used. Here, we observed that LPSs induced VEGF expression in DPSC and HDPF cells, and both cell types express Toll-like receptor 4 (TLR- 4). Notably, LPS-induced VEGF is associated with phosphorylation of protein kinase C (PKC zeta) and extracellular signal-regulator kinase (ERK1/2) and is dependent upon MAPK activation. Analysis of these data, collectively, unveils a signaling pathway responsible for synthesis of VEGF by pulp cells and suggests a novel therapeutic target for the management of vascular responses in teeth with pulpitis.
In vivo sensitivity of the embryonic and adult neural stem cell compartments to low-dose radiation.
Barazzuol, Lara; Jeggo, Penny A
2016-08-01
The embryonic brain is radiation-sensitive, with cognitive deficits being observed after exposure to low radiation doses. Exposure of neonates to radiation can cause intracranial carcinogenesis. To gain insight into the basis underlying these outcomes, we examined the response of the embryonic, neonatal and adult brain to low-dose radiation, focusing on the neural stem cell compartments. This review summarizes our recent findings. At E13.5-14.5 the embryonic neocortex encompasses rapidly proliferating stem and progenitor cells. Exploiting mice with a hypomorphic mutation in DNA ligase IV (Lig4(Y288C) ), we found a high level of DNA double-strand breaks (DSBs) at E14.5, which we attribute to the rapid proliferation. We observed endogenous apoptosis in Lig4(Y288C) embryos and in WT embryos following exposure to low radiation doses. An examination of DSB levels and apoptosis in adult neural stem cell compartments, the subventricular zone (SVZ) and the subgranular zone (SGZ) revealed low DSB levels in Lig4(Y288C) mice, comparable with the levels in differentiated neuronal tissues. We conclude that the adult SVZ does not incur high levels of DNA breakage, but sensitively activates apoptosis; apoptosis was less sensitively activated in the SGZ, and differentiated neuronal tissues did not activate apoptosis. P5/P15 mice showed intermediate DSB levels, suggesting that DSBs generated in the embryo can be transmitted to neonates and undergo slow repair. Interestingly, this analysis revealed a stage of high endogenous apoptosis in the neonatal SVZ. Collectively, these studies reveal that the adult neural stem cell compartment, like the embryonic counterpart, can sensitively activate apoptosis. © The Author 2016. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.
Bignone, Paola A; Krupa, Rachel A; West, Michael D; Larocca, David
2016-01-01
The ability of human pluripotent stem cells (hPS) to both self-renew and differentiate into virtually any cell type makes them a promising source of cells for cell-based regenerative therapies. However, stem cell identity, purity, and scalability remain formidable challenges that need to be overcome for translation of pluripotent stem cell research into clinical applications. Directed differentiation from hPS cells is inefficient and residual contamination with pluripotent cells that have the potential to form tumors remains problematic. The derivation of scalable (self-renewing) embryonic progenitor stem cell lines offers a solution because they are well defined and clonally pure. Clonally pure progenitor stem cell lines also provide a means for identifying cell surface targeting reagents that are useful for identification, tracking, and repeated derivation of the corresponding progenitor stem cell types from additional hPS cell sources. Such stem cell targeting reagents can then be applied to the manufacture of genetically diverse banks of human embryonic progenitor cell lines for drug screening, disease modeling, and cell therapy. Here we present methods to identify human embryonic progenitor stem cell targeting peptides by selection of phage display libraries on clonal embryonic progenitor cell lines and demonstrate their use for targeting quantum dots (Qdots) for stem cell labeling.
Extinction models for cancer stem cell therapy
Sehl, Mary; Zhou, Hua; Sinsheimer, Janet S.; Lange, Kenneth L.
2012-01-01
Cells with stem cell-like properties are now viewed as initiating and sustaining many cancers. This suggests that cancer can be cured by driving these cancer stem cells to extinction. The problem with this strategy is that ordinary stem cells are apt to be killed in the process. This paper sets bounds on the killing differential (difference between death rates of cancer stem cells and normal stem cells) that must exist for the survival of an adequate number of normal stem cells. Our main tools are birth–death Markov chains in continuous time. In this framework, we investigate the extinction times of cancer stem cells and normal stem cells. Application of extreme value theory from mathematical statistics yields an accurate asymptotic distribution and corresponding moments for both extinction times. We compare these distributions for the two cell populations as a function of the killing rates. Perhaps a more telling comparison involves the number of normal stem cells NH at the extinction time of the cancer stem cells. Conditioning on the asymptotic time to extinction of the cancer stem cells allows us to calculate the asymptotic mean and variance of NH. The full distribution of NH can be retrieved by the finite Fourier transform and, in some parameter regimes, by an eigenfunction expansion. Finally, we discuss the impact of quiescence (the resting state) on stem cell dynamics. Quiescence can act as a sanctuary for cancer stem cells and imperils the proposed therapy. We approach the complication of quiescence via multitype branching process models and stochastic simulation. Improvements to the τ-leaping method of stochastic simulation make it a versatile tool in this context. We conclude that the proposed therapy must target quiescent cancer stem cells as well as actively dividing cancer stem cells. The current cancer models demonstrate the virtue of attacking the same quantitative questions from a variety of modeling, mathematical, and computational perspectives. PMID:22001354
Extinction models for cancer stem cell therapy.
Sehl, Mary; Zhou, Hua; Sinsheimer, Janet S; Lange, Kenneth L
2011-12-01
Cells with stem cell-like properties are now viewed as initiating and sustaining many cancers. This suggests that cancer can be cured by driving these cancer stem cells to extinction. The problem with this strategy is that ordinary stem cells are apt to be killed in the process. This paper sets bounds on the killing differential (difference between death rates of cancer stem cells and normal stem cells) that must exist for the survival of an adequate number of normal stem cells. Our main tools are birth-death Markov chains in continuous time. In this framework, we investigate the extinction times of cancer stem cells and normal stem cells. Application of extreme value theory from mathematical statistics yields an accurate asymptotic distribution and corresponding moments for both extinction times. We compare these distributions for the two cell populations as a function of the killing rates. Perhaps a more telling comparison involves the number of normal stem cells NH at the extinction time of the cancer stem cells. Conditioning on the asymptotic time to extinction of the cancer stem cells allows us to calculate the asymptotic mean and variance of NH. The full distribution of NH can be retrieved by the finite Fourier transform and, in some parameter regimes, by an eigenfunction expansion. Finally, we discuss the impact of quiescence (the resting state) on stem cell dynamics. Quiescence can act as a sanctuary for cancer stem cells and imperils the proposed therapy. We approach the complication of quiescence via multitype branching process models and stochastic simulation. Improvements to the τ-leaping method of stochastic simulation make it a versatile tool in this context. We conclude that the proposed therapy must target quiescent cancer stem cells as well as actively dividing cancer stem cells. The current cancer models demonstrate the virtue of attacking the same quantitative questions from a variety of modeling, mathematical, and computational perspectives. Copyright © 2011 Elsevier Inc. All rights reserved.
Khorraminejad-Shirazi, Mohammadhossein; Farahmandnia, Mohammad; Kardeh, Bahareh; Estedlal, Alireza; Kardeh, Sina; Monabati, Ahmad
2017-10-19
In recent years, tissue regeneration has become a promising field for developing stem cell-based transplantation therapies for human patients. Adult stem cells are affected by the same aging mechanisms that involve somatic cells. One of the mechanisms involved in cellular aging is hyperactivation of mechanistic target of rapamycin complex 1 (mTORC1) and disruption of 5' adenosine monophosphate-activated protein kinase (AMPK). Aging of stem cells results in their impaired regenerative capacity and depletion of stem cell pools in adult tissue, which results in lower efficacy of stem cell therapy. By utilizing an effective therapeutic intervention for aged stem cells, stem cell therapy can become more promising for future application. mTORC1 inhibition is a practical approach to preserve the stem cell pool. In this article, we review the dynamic interaction between sirtuin (silent mating type information regulation 2 homolog) 1, AMPK, and mTORC1. We propose that using AMPK activators such as 5-aminoimidazole-4-carboxamide ribonucleotide, A769662, metformin, and oxidized nicotinamide adenine dinucleotide (NAD + ) are practical ways to be employed for achieving better optimized results in stem cell-based transplantation therapies. Copyright © 2017 King Faisal Specialist Hospital & Research Centre. Published by Elsevier B.V. All rights reserved.
Stemness of spermatogonial stem cells encapsulated in alginate hydrogel during cryopreservation.
Pirnia, A; Parivar, K; Hemadi, M; Yaghmaei, P; Gholami, M
2017-06-01
This study investigated the effect of spermatogonial stem cell encapsulated in alginate hydrogel during cryopreservation, as cells were protected against damage during cryopreservation within the hydrogel. Spermatogonial stem cells were isolated from the testes of Balb/c mice pups (6 days old), purified in laminin-coated dishes and CD90.1 microbeads, encapsulated in alginate hydrogel and then cryopreserved. After thawing, cell viability and Spermatogonial stem cell (SSC) colony diameter were evaluated. After RNA was isolated and cDNA was synthesised, the expression of stemness genes was considered using RT real-time PCR. Finally, spermatogonial stem cells labelled with BrdU were transplanted to busulfan azoospermic mouse models. Lin28a and Sall4 genes were significantly upregulated after cryopreservation in alginate hydrogel. However, cell viability was significantly decreased. The diameter of colonies consisting of spermatogonial stem cells freeze-thawed in alginate microbeads showed no significant difference with fresh spermatogonial stem cells and the control group. The injection of freeze-thawed spermatogonial stem cells encapsulated in alginate hydrogel resulted in spermatogenesis recovery. Alginate mimics the extracellular matrices (ECM) for spermatogonial stem cells; therefore, it can support stemness potential during the cell cryopreservation process and restart spermatogenesis after transplantation. © 2016 Blackwell Verlag GmbH.
Celià-Terrassa, Toni; Liu, Daniel; Choudhury, Abrar; Hang, Xiang; Wei, Yong; Zamalloa, Jose; Alfaro-Aco, Raymundo; Chakrabarti, Rumela; Jiang, Yi-Zhou; Koh, Bong Ihn; Smith, Heath; DeCoste, Christina; Li, Jun-Jing; Shao, Zhi-Ming; Kang, Yibin
2017-01-01
Tumor-initiating cells (TICs), or cancer stem cells (CSC), possess stem cell-like properties observed in normal adult tissue stem cells. Normal and cancerous stem cells may therefore share regulatory mechanisms for maintaining self-renewing capacity and resisting differentiation elicited by cell-intrinsic or microenvironmental cues. Here, we show that miR-199a promotes stem cell properties in mammary stem cells (MaSCs) and breast CSCs by directly repressing nuclear receptor corepressor LCOR, which primes interferon (IFN) responses. Elevated miR-199a expression in stem cell-enriched populations protects normal and malignant stem-like cells from differentiation and senescence induced by IFNs that are produced by epithelial and immune cells in the mammary gland. Importantly, the miR-199a-LCOR-IFN axis is activated in poorly differentiated ER− breast tumors, functionally promotes tumor initiation and metastasis, and is associated with poor clinical outcome. Our study therefore reveals a common mechanism shared by normal and malignant stem cells to protect them from suppressive immune cytokine signaling. PMID:28530657
Cell and tissue engineering and clinical applications: an overview.
Stoltz, J F; Bensoussan, D; Decot, V; Ciree, A; Netter, P; Gillet, P
2006-01-01
Most human tissues do not regenerate spontaneously; this is why cell therapies and tissue engineering are promising alternatives. The principle is simple: cells are collected in a patient and introduced in the damaged tissue or in a tridimentional porous support and harvested in a bioreactor in which the physico-chemical and mechanical parameters are controlled. Once the tissues (or the cells) are mature they may be implanted. In parallel, the development of biotherapies with stem cells is a field of research in turmoil given the hopes for clinical applications that it brings up. Embryonic stem cells are potentially more interesting since they are totipotent, but they can only be obtained at the very early stages of the embryo. The potential of adult stem cells is limited but isolating them induces no ethical problem and it has been known for more than 40 years that bone marrow does possess the regenerating functions of blood cells. Finally, the properties of foetal stem cells (blood cells from the umbilical cord) are forerunners of the haematopoietic system but the ability of these cells to participate to the formation of other tissues is more problematic. Another field for therapeutic research is that of dendritic cells, antigen presenting cells. Their efficiency in cell therapy relies on the initiation of specific immune responses. They represent a promising tool in the development of a protective immune response against antigens which the host is usually unable to generate an efficient response (melanomas, breast against cancer, prostate cancer, ..). Finally, gene therapy, has been nourishing high hopes but few clinical applications can be envisaged in the short term, although potential applications are multiple (haemophilia, myopathies, ..). A large number of clinical areas stand as candidates for clinical applications: leukaemia and cancers, cardiac insufficiency and vascular diseases, cartilage and bone repair, ligaments and tendons, liver diseases, ophthalmology, diabetes, neurological diseases (Parkinson, Huntington disease, ..), .. Various aspects of this new regenerative therapeutic medicine are developed in this work.