Science.gov

Sample records for stem cell conditions

  1. Prospect of stem cell conditioned medium in regenerative medicine.

    PubMed

    Pawitan, Jeanne Adiwinata

    2014-01-01

    Stem cell-derived conditioned medium has a promising prospect to be produced as pharmaceuticals for regenerative medicine. To investigate various methods to obtain stem cell-derived conditioned medium (CM) to get an insight into their prospect of application in various diseases. Systematic review using keywords "stem cell" and "conditioned medium" or "secretome" and "therapy." Data concerning treated conditions/diseases, type of cell that was cultured, medium and supplements to culture the cells, culture condition, CM processing, growth factors and other secretions that were analyzed, method of application, and outcome were noted, grouped, tabulated, and analyzed. Most of CM using studies showed good results. However, the various CM, even when they were derived from the same kind of cells, were produced by different condition, that is, from different passage, culture medium, and culture condition. The growth factor yields of the various types of cells were available in some studies, and the cell number that was needed to produce CM for one application could be computed. Various stem cell-derived conditioned media were tested on various diseases and mostly showed good results. However, standardized methods of production and validations of their use need to be conducted.

  2. [CONDITIONS OF SYNOVIAL MESENCHYMAL STEM CELLS DIFFERENTIATING INTO FIBROCARTILAGE CELLS].

    PubMed

    Fu, Peiliang; Cong, Ruijun; Chen, Song; Zhang, Lei; Ding, Zheru; Zhou, Qi; Li, Lintao; Xu, Zhenyu; Wu, Yuli; Wu, Haishan

    2015-01-01

    To explore the conditions of synovial derived mesenchymal stem cells (SMSCs) differentiating into the fibrocartilage cells by using the orthogonal experiment. The synovium was harvested from 5 adult New Zealand white rabbits, and SMSCs were separated by adherence method. The flow cytometry and multi-directional differentiation method were used to identify the SMSCs. The conditions were found from the preliminary experiment and literature review. The missing test was carried out to screen the conditions and then 12 conditions were used for the orthogonal experiment, including transforming growth factor β1 (TGF-β1), bone morphogenic protein 2 (BMP-2), dexamethasone (DEX), proline, ascorbic acid (ASA), pyruvic acid, insulin + transferrin + selenious acid pre-mixed solution (ITS), bovin serum albumin (BSA), basic fibroblast growth factor (bFGF), intermittent hydraulic pressure (IHP), bone morphogenic protein 7 (BMP-7), and insulin-like growth factor (IGF). The L60 (212) orthogonal experiment was designed using the SPSS 18.0 with 2 level conditions and the cells were induced to differentiate on the small intestinal submucosa (SIS)-3D scaffold. The CD151+/CD44+ cells were detected with the flow cytometry and then the differentiation rate was recorded. The immumohistochemical staining, cellular morphology, toluidine blue staining, and semi-quantitative RT-PCR examination for the gene expressions of sex determining region Y (SRY)-box 9 gene (Sox9), aggrecan gene (AGN), collagen type I gene (Col I), collagen type II gene (Col II), collagen type IX gene (Col IX) were used for result confirmation. The differentiation rate was calculated as the product of CD151/CD44+ cells and cells with Col I high expression. The grow curve was detected with the DNA abundance using the PicoGreen Assay. The visual observation and the variances analysis among the variable were used to evaluate the result of the orthogonal experiment, 1 level interaction was considered. The q-test and the

  3. Stem Cells

    MedlinePlus

    Stem cells are cells with the potential to develop into many different types of cells in the body. They serve as a repair ... body. There are two main types of stem cells: embryonic stem cells and adult stem cells. Stem ...

  4. Conditioned Medium from Periodontal Ligament Stem Cells Enhances Periodontal Regeneration.

    PubMed

    Nagata, Mizuki; Iwasaki, Kengo; Akazawa, Keiko; Komaki, Motohiro; Yokoyama, Naoki; Izumi, Yuichi; Morita, Ikuo

    2017-05-01

    Periodontal disease is one of the most common infectious diseases in adults and is characterized by the destruction of tooth-supporting tissues. Mesenchymal stem cells (MSCs) comprise the mesoderm-originating stem cell population, which has been studied and used for cell therapy. However, because of the lower rate of cell survival after MSC transplantation in various disease models, paracrine functions of MSCs have been receiving increased attention as a regenerative mechanism. The aim of this study was to investigate the regenerative potential of transplanted conditioned medium (CM) obtained from cultured periodontal ligament stem cells (PDLSCs), the adult stem cell population in tooth-supporting tissues, using a rat periodontal defect model. Cell-free CM was collected from PDLSCs and fibroblasts, using ultrafiltration and transplanted into surgically created periodontal defects. Protein content of CM was examined by antibody arrays. Formation of new periodontal tissues was analyzed using microcomputed tomography and histological sections. PDLSC-CM transplantation enhanced periodontal tissue regeneration in a concentration-dependent manner, whereas fibroblast-CM did not show any regenerative function. Proteomic analysis revealed that extracellular matrix proteins, enzymes, angiogenic factors, growth factors and cytokines were contained in PDLSC-CM. Furthermore, PDLSC-CM transplantation resulted in the decreased mRNA level of tumor necrosis factor-α (TNF-α) in healing periodontal tissues. In addition, we found that PDLSC-CM suppressed the mRNA level of TNF-α in the monocyte/macrophage cell line, RAW cells, stimulated with IFN-γ. Our findings suggested that PDLSC-CM enhanced periodontal regeneration by suppressing the inflammatory response through TNF-α production, and transplantation of PDLSC-CM could be a novel approach for periodontal regenerative therapy.

  5. Conditioned Medium from Periodontal Ligament Stem Cells Enhances Periodontal Regeneration

    PubMed Central

    Nagata, Mizuki; Akazawa, Keiko; Komaki, Motohiro; Yokoyama, Naoki; Izumi, Yuichi; Morita, Ikuo

    2017-01-01

    Periodontal disease is one of the most common infectious diseases in adults and is characterized by the destruction of tooth-supporting tissues. Mesenchymal stem cells (MSCs) comprise the mesoderm-originating stem cell population, which has been studied and used for cell therapy. However, because of the lower rate of cell survival after MSC transplantation in various disease models, paracrine functions of MSCs have been receiving increased attention as a regenerative mechanism. The aim of this study was to investigate the regenerative potential of transplanted conditioned medium (CM) obtained from cultured periodontal ligament stem cells (PDLSCs), the adult stem cell population in tooth-supporting tissues, using a rat periodontal defect model. Cell-free CM was collected from PDLSCs and fibroblasts, using ultrafiltration and transplanted into surgically created periodontal defects. Protein content of CM was examined by antibody arrays. Formation of new periodontal tissues was analyzed using microcomputed tomography and histological sections. PDLSC-CM transplantation enhanced periodontal tissue regeneration in a concentration-dependent manner, whereas fibroblast-CM did not show any regenerative function. Proteomic analysis revealed that extracellular matrix proteins, enzymes, angiogenic factors, growth factors and cytokines were contained in PDLSC-CM. Furthermore, PDLSC-CM transplantation resulted in the decreased mRNA level of tumor necrosis factor-α (TNF-α) in healing periodontal tissues. In addition, we found that PDLSC-CM suppressed the mRNA level of TNF-α in the monocyte/macrophage cell line, RAW cells, stimulated with IFN-γ. Our findings suggested that PDLSC-CM enhanced periodontal regeneration by suppressing the inflammatory response through TNF-α production, and transplantation of PDLSC-CM could be a novel approach for periodontal regenerative therapy. PMID:28027709

  6. Gene targeting in embryonic stem cells, II: conditional technologies

    USDA-ARS?s Scientific Manuscript database

    Genome modification via transgenesis has allowed researchers to link genotype and phenotype as an alternative approach to the characterization of random mutations through evolution. The synergy of technologies from the fields of embryonic stem (ES) cells, gene knockouts, and protein-mediated recombi...

  7. Investigating Cell Surface Markers on Normal Hematopoietic Stem Cells in Three Different Niche Conditions

    PubMed Central

    Garg, Swati; Madkaikar, Manisha

    2013-01-01

    Hematopoietic stem cells are of therapeutic interest to the clinicians and researchers due to their promising assistance in management of malignant and inherited hematological conditions. Evaluation of cell surface markers using multiparametric flow cytometry is a well adapted qualitative measure of cells in question for many years. An artillery of these markers has been studied in hematological malignancies and related disorders. However, their role and differential expression on normal hematopoietic stem cells from clinically available sources is not always described carefully. In the present study, we attempted to evaluate expression of CD44, CD90, CD96 and CD123 in three clinically available sources of normal HSCs (Hematopoietic stem cells). Sources of HSCs in the present study involved umbilical cord blood (UCB), normal bone marrow (NBM) and bone marrow from idiopathic thrombocytopenic purpura (ITP) patients (IBM). CD44 is an important homing receptor while CD90 is involved in maintaining stem cell quiescent. CD96 is known to be leukemia specific marker and CD123 is involved in stem cell differentiation and survival. We observed a significant difference in expression CD44, CD90 and CD123 on normal HSCs derived from umbilical cord and ITP marrow. CD96 was highly expressed on HSCs obtained from ITP marrow. Investigating expression of these markers on normal HSCs in different niches will be helpful in correlating their function with niche condition and delineating their ‘abnormal’ expression from the normal. PMID:24386557

  8. Investigating cell surface markers on normal hematopoietic stem cells in three different niche conditions.

    PubMed

    Garg, Swati; Madkaikar, Manisha; Ghosh, Kanjaksha

    2013-11-01

    Hematopoietic stem cells are of therapeutic interest to the clinicians and researchers due to their promising assistance in management of malignant and inherited hematological conditions. Evaluation of cell surface markers using multiparametric flow cytometry is a well adapted qualitative measure of cells in question for many years. An artillery of these markers has been studied in hematological malignancies and related disorders. However, their role and differential expression on normal hematopoietic stem cells from clinically available sources is not always described carefully. In the present study, we attempted to evaluate expression of CD44, CD90, CD96 and CD123 in three clinically available sources of normal HSCs (Hematopoietic stem cells). Sources of HSCs in the present study involved umbilical cord blood (UCB), normal bone marrow (NBM) and bone marrow from idiopathic thrombocytopenic purpura (ITP) patients (IBM). CD44 is an important homing receptor while CD90 is involved in maintaining stem cell quiescent. CD96 is known to be leukemia specific marker and CD123 is involved in stem cell differentiation and survival. We observed a significant difference in expression CD44, CD90 and CD123 on normal HSCs derived from umbilical cord and ITP marrow. CD96 was highly expressed on HSCs obtained from ITP marrow. Investigating expression of these markers on normal HSCs in different niches will be helpful in correlating their function with niche condition and delineating their 'abnormal' expression from the normal.

  9. Stem Cell Sciences plc.

    PubMed

    Daniels, Sebnem

    2006-09-01

    Stem Cell Sciences' core objective is to develop safe and effective stem cell-based therapies for currently incurable diseases. In order to achieve this goal, Stem Cell Sciences recognizes the need for multiple technologies and a globally integrated stem cell initiative. The key challenges for the successful application of stem cells in the clinic is the need for a reproducible supply of pure, fully characterized stem cells that have been grown in suitable conditions for use in the clinic.

  10. Stem cells.

    PubMed

    Behr, Björn; Ko, Sae Hee; Wong, Victor W; Gurtner, Geoffrey C; Longaker, Michael T

    2010-10-01

    Stem cells are self-renewing cells capable of differentiating into multiple cell lines and are classified according to their origin and their ability to differentiate. Enormous potential exists in use of stem cells for regenerative medicine. To produce effective stem cell-based treatments for a range of diseases, an improved understanding of stem cell biology and better control over stem cell fate are necessary. In addition, the barriers to clinical translation, such as potential oncologic properties of stem cells, need to be addressed. With renewed government support and continued refinement of current stem cell methodologies, the future of stem cell research is exciting and promises to provide novel reconstructive options for patients and surgeons limited by traditional paradigms.

  11. Conditioned medium as a strategy for human stem cells chondrogenic differentiation.

    PubMed

    Alves da Silva, M L; Costa-Pinto, A R; Martins, A; Correlo, V M; Sol, P; Bhattacharya, M; Faria, S; Reis, R L; Neves, Nuno M

    2015-06-01

    Paracrine signalling from chondrocytes has been reported to increase the synthesis and expression of cartilage extracellular matrix (ECM) by stem cells. The use of conditioned medium obtained from chondrocytes for stimulating stem cells chondrogenic differentiation may be a very interesting alternative for moving into the clinical application of these cells, as chondrocytes could be partially replaced by stem cells for this type of application. In the present study we aimed to achieve chondrogenic differentiation of two different sources of stem cells using conditioned medium, without adding growth factors. We tested both human bone marrow-derived mesenchymal stem cells (hBSMCs) and human Wharton's jelly-derived stem cells (hWJSCs). Conditioned medium obtained from a culture of human articular chondrocytes was used to feed the cells during the experiment. Cultures were performed in previously produced three-dimensional (3D) scaffolds, composed of a blend of 50:50 chitosan:poly(butylene succinate). Both types of stem cells were able to undergo chondrogenic differentiation without the addition of growth factors. Cultures using hWJSCs showed significantly higher GAGs accumulation and expression of cartilage-related genes (aggrecan, Sox9 and collagen type II) when compared to hBMSCs cultures. Conditioned medium obtained from articular chondrocytes induced the chondrogenic differentiation of MSCs and ECM formation. Obtained results showed that this new strategy is very interesting and should be further explored for clinical applications. Copyright © 2013 John Wiley & Sons, Ltd.

  12. Human spermatogonial stem cells display limited proliferation in vitro under mouse spermatogonial stem cell culture conditions.

    PubMed

    Medrano, Jose V; Rombaut, Charlotte; Simon, Carlos; Pellicer, Antonio; Goossens, Ellen

    2016-11-01

    To study the ability of human spermatogonial stem cells (hSSCs) to proliferate in vitro under mouse spermatogonial stem cell (mSSC) culture conditions. Experimental basic science study. Reproductive biology laboratory. Cryopreserved testicular tissue with normal spermatogenesis obtained from three donors subjected to orchiectomy due to a prostate cancer treatment. Testicular cells used to create in vitro cell cultures corresponding to the following groups: [1] unsorted human testicular cells, [2] differentially plated human testicular cells, and [3] cells enriched with major histocompatibility complex class 1 (HLA - )/epithelial cell surface antigen (EPCAM + ) in coculture with inactivated testicular feeders from the same patient. Analyses and characterization including immunocytochemistry and quantitative reverse-transcription polymerase chain reaction for somatic and germ cell markers, testosterone and inhibin B quantification, and TUNEL assay. Putative hSSCs appeared in singlets, doublets, or small groups of up to four cells in vitro only when testicular cells were cultured in StemPro-34 medium supplemented with glial cell line-derived neurotrophic factor (GDNF), leukemia inhibitory factor (LIF), basic fibroblast growth factor (bFGF), and epidermal growth factor (EGF). Fluorescence-activated cell sorting with HLA - /EPCAM + resulted in an enrichment of 27% VASA + /UTF1 + hSSCs, compared to 13% in unsorted controls. Coculture of sorted cells with inactivated testicular feeders gave rise to an average density of 112 hSSCs/cm 2 after 2 weeks in vitro compared with unsorted cells (61 hSSCs/cm 2 ) and differentially plated cells (49 hSSCS/cm 2 ). However, putative hSSCs rarely stained positive for the proliferation marker Ki67, and their presence was reduced to the point of almost disappearing after 4 weeks in vitro. We found that hSSCs show limited proliferation in vitro under mSSC culture conditions. Coculture of HLA - /EPCAM + sorted cells with testicular

  13. Tissue Engineering Under Microgravity Conditions-Use of Stem Cells and Specialized Cells.

    PubMed

    Grimm, Daniela; Egli, Marcel; Krüger, Marcus; Riwaldt, Stefan; Corydon, Thomas J; Kopp, Sascha; Wehland, Markus; Wise, Petra; Infanger, Manfred; Mann, Vivek; Sundaresan, Alamelu

    2018-03-29

    Experimental cell research studying three-dimensional (3D) tissues in space and on Earth using new techniques to simulate microgravity is currently a hot topic in Gravitational Biology and Biomedicine. This review will focus on the current knowledge of the use of stem cells and specialized cells for tissue engineering under simulated microgravity conditions. We will report on recent advancements in the ability to construct 3D aggregates from various cell types using devices originally created to prepare for spaceflights such as the random positioning machine (RPM), the clinostat, or the NASA-developed rotating wall vessel (RWV) bioreactor, to engineer various tissues such as preliminary vessels, eye tissue, bone, cartilage, multicellular cancer spheroids, and others from different cells. In addition, stem cells had been investigated under microgravity for the purpose to engineer adipose tissue, cartilage, or bone. Recent publications have discussed different changes of stem cells when exposed to microgravity and the relevant pathways involved in these biological processes. Tissue engineering in microgravity is a new technique to produce organoids, spheroids, or tissues with and without scaffolds. These 3D aggregates can be used for drug testing studies or for coculture models. Multicellular tumor spheroids may be interesting for radiation experiments in the future and to reduce the need for in vivo experiments. Current achievements using cells from patients engineered on the RWV or on the RPM represent an important step in the advancement of techniques that may be applied in translational Regenerative Medicine.

  14. Properties of Dental Pulp-derived Mesenchymal Stem Cells and the Effects of Culture Conditions.

    PubMed

    Kawashima, Nobuyuki; Noda, Sonoko; Yamamoto, Mioko; Okiji, Takashi

    2017-09-01

    Dental pulp mesenchymal stem cells (DPMSCs) highly express mesenchymal stem cell markers and possess the potential to differentiate into neural cells, osteoblasts, adipocytes, and chondrocytes. Thus, DPMSCs are considered suitable for tissue regeneration. The colony isolation method has commonly been used to collect relatively large amounts of heterogeneous DPMSCs. Homogenous DPMSCs can be isolated by fluorescence-activated cell sorting using antibodies against mesenchymal stem cell markers, although this method yields a limited number of cells. Both quality and quantity of DPMSCs are critical to regenerative therapy, and cell culture methods need to be improved. We thus investigated the properties of DPMSCs cultured with different methods. DPMSCs in a three-dimensional spheroid culture system, which is similar to the hanging drop culture for differentiation of embryonic stem cells, showed upregulation of odonto-/osteoblastic markers and mineralized nodule formation. This suggests that this three-dimensional spheroid culturing system for DPMSCs may be suitable for inducing hard tissues. We further examined the effect of cell culture density on the properties of DPMSCs because the properties of stem cells can be altered depending on the cell density. DPMSCs cultured under the confluent cell density condition showed slight downregulation of some mesenchymal stem cell markers compared with those under the sparse condition. The ability of DPMSCs to differentiate into hard tissue-forming cells was found to be enhanced in the confluent condition, suggesting that the confluent culture condition may not be suitable for maintaining the stemness of DPMSCs. When DPMSCs are to be used for hard tissue regeneration, dense followed by sparse cell culture conditions may be a better alternative strategy. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  15. Multi-effects of Resveratrol on stem cell characteristics: Effective dose, time, cell culture conditions and cell type-specific responses of stem cells to Resveratrol.

    PubMed

    Safaeinejad, Zahra; Kazeminasab, Fatemeh; Kiani-Esfahani, Abbas; Ghaedi, Kamran; Nasr-Esfahani, Mohammad Hossein

    2018-06-18

    Stem cells which defined by dual features of self-renewal and differentiation potential provide a unique source for repairing damaged tissues to treat a wide spectrum of diseases and injuries. Several recent studies suggest that Resveratrol (RSV), a natural polyphenol component, possesses the ability to improve either culture conditions of stem cells or their target differentiation in culture. This review covers the literature that deals with the effects of RSV and its underlying mechanisms on survival, self-renewal and lineage commitment of various stem cells. Concentration of RSV and duration of treatment with this component could exert differential effects on cellular differentiation processes and cell fate. Therefore, RSV could be accounted as an effective small molecule for a variety of cell therapies which should be implemented by a special care considering, effective concentration and duration of exposure. Copyright © 2018. Published by Elsevier Masson SAS.

  16. Stem Cell Conditioned Culture Media Attenuated Albumin-Induced Epithelial– Mesenchymal Transition in Renal Tubular Cells

    PubMed Central

    Hu, Junping; Zhu, Qing; Li, Pin-Lan; Wang, Weili; Yi, Fan; Li, Ningjun

    2015-01-01

    Background Proteinuria-induced epithelial-mesenchymal transition (EMT) plays an important role in progressive renal tubulointerstitial fibrosis in chronic renal disease. Stem cell therapy has been used for different diseases. Stem cell conditioned culture media (SCM) exhibits similar beneficial effects as stem cell therapy. The present study tested the hypothesis that SCM inhibits albumin-induced EMT in cultured renal tubular cells. Methods Rat renal tubular cells were treated with/without albumin (20 μmg/ml) plus SCM or control cell media (CCM). EMT markers and inflammatory factors were measured by Western blot and fluorescent images. Results Albumin induced EMT as shown by significant decreases in levels of epithelial marker E-cadherin, increases in mesenchymal markers fibroblast-specific protein 1 and α-smooth muscle actin, and elevations in collagen I. SCM inhibited all these changes. Meanwhile, albumin induced NF-κB translocation from cytosol into nucleus and that SCM blocked the nuclear translocation of NF-κB. Albumin also increased the levels of pro-inflammatory factor monocyte chemoattractant protein-1 (MCP)-1 by nearly 30 fold compared with control. SCM almost abolished albumin-induced increase of MCP-1. Conclusion These results suggest that SCM attenuated albumin-induced EMT in renal tubular cells via inhibiting activation of inflammatory factors, which may serve as a new therapeutic approach for chronic kidney diseases. PMID:25832005

  17. Testicular cell conditioned medium supports differentiation of embryonic stem cells into ovarian structures containing oocytes.

    PubMed

    Lacham-Kaplan, Orly; Chy, Hun; Trounson, Alan

    2006-02-01

    Previous reports and the current study have found that germ cell precursor cells appear in embryoid bodies (EBs) formed from mouse embryonic stem cells as identified by positive expression of specific germ cell markers such as Oct-3/4, Mvh, c-kit, Stella, and DAZL. We hypothesized that if exposed to appropriate growth factors, the germ cell precursor cells within the EBs would differentiate into gametes. The source for growth factors used in the present study is conditioned medium collected from testicular cell cultures prepared from the testes of newborn males. Testes at this stage of development contain most growth factors required for the transformation of germ stem cells into differentiated gametes. When EBs were cultured in the conditioned medium, they developed into ovarian structures, which contained putative oocytes. The oocytes were surrounded by one to two layers of flattened cells and did not have a visible zona pellucida. However, oocyte-specific markers such as Fig-alpha and ZP3 were found expressed by the ovarian structures. The production of oocytes using this method is repeatable and reliable and may be applicable to other mammalian species, including the human.

  18. Defined culture medium for stem cell differentiation: applicability of serum-free conditions in the mouse embryonic stem cell test.

    PubMed

    Riebeling, Christian; Schlechter, Katharina; Buesen, Roland; Spielmann, Horst; Luch, Andreas; Seiler, Andrea

    2011-06-01

    The embryonic stem cell test (EST) is a validated method to assess the developmental toxicity potency of chemicals. It was developed to reduce animal use and allow faster testing for hazard assessment. The cells used in this method are maintained and differentiated in media containing foetal calf serum. This animal product is of considerable variation in quality, and individual batches require extensive testing for their applicability in the EST. Moreover, its production involves a large number of foetuses and possible animal suffering. We demonstrate the serum-free medium and feeder cell-free maintenance of the mouse embryonic stem cell line D3 and investigate the use of specific growth factors for induction of cardiac differentiation. Using a combination of bone morphogenetic protein-2, bone morphogenetic protein-4, activin A and ascorbic acid, embryoid bodies efficiently differentiated into contracting myocardium. Additionally, examining levels of intracellular marker proteins by flow cytometry not only confirmed differentiation into cardiomyocytes, but demonstrated significant differentiation into neuronal cells in the same time frame. Thus, this approach might allow for simultaneous detection of developmental effects on both early mesodermal and neuroectodermal differentiation. The serum-free conditions for maintenance and differentiation of D3 cells described here enhance the transferability and standardisation and hence the performance of the EST. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Notochordal cell conditioned medium stimulates mesenchymal stem cell differentiation toward a young nucleus pulposus phenotype

    PubMed Central

    2010-01-01

    Introduction Mesenchymal stem cells (MSCs) offer promise for intervertebral disc (IVD) repair and regeneration because they are easily isolated and expanded, and can differentiate into several mesenchymal tissues. Notochordal (NC) cells contribute to IVD development, incorporate into the nucleus pulposus (NP), and stimulate mature disc cells. However, there have been no studies investigating the effects of NC cells on adult stem cell differentiation. The premise of this study is that IVD regeneration is more similar to IVD development than to IVD maintenance, and we hypothesize that soluble factors from NC cells differentiate MSCs to a phenotype characteristic of nucleus pulposus (NP) cells during development. The eventual clinical goal would be to isolate or chemically/recombinantly produce the active agent to induce the therapeutic effects, and to use it as either an injectable therapy for early intervention on disc disease, or in developing appropriately pre-differentiated MSC cells in a tissue engineered NP construct. Methods Human MSCs from bone marrow were expanded and pelleted to form high-density cultures. MSC pellets were exposed to either control medium (CM), chondrogenic medium (CM with dexamethasone and transforming growth factor, (TGF)-β3) or notochordal cell conditioned medium (NCCM). NCCM was prepared from NC cells maintained in serum free medium for four days. After seven days culture, MSC pellets were analyzed for appearance, biochemical composition (glycosaminoglycans and DNA), and gene expression profile (sox-9, collagen types-II and III, laminin-β1 and TIMP1(tissue inhibitor of metalloproteinases-1)). Results Significantly higher glycosaminoglycan accumulation was seen in NCCM treated pellets than in CM or TGFβ groups. With NCCM treatment, increased gene expression of collagen III, and a trend of increasing expression of laminin-β1 and decreased expression of sox-9 and collagen II relative to the TGFβ group was observed. Conclusions

  20. Types of Stem Cells

    MedlinePlus

    ... Cell Glossary Search Toggle Nav Types of Stem Cells Stem cells are the foundation from which all ... About Stem Cells > Types of Stem Cells Stem cells Stem cells are the foundation for every organ ...

  1. Ebselen Preserves Tissue-Engineered Cell Sheets and their Stem Cells in Hypothermic Conditions.

    PubMed

    Katori, Ryosuke; Hayashi, Ryuhei; Kobayashi, Yuki; Kobayashi, Eiji; Nishida, Kohji

    2016-12-14

    Clinical trials have been performed using autologous tissue-engineered epithelial cell sheets for corneal regenerative medicine. To improve stem cell-based therapy for convenient clinical practice, new techniques are required for preserving reconstructed tissues and their stem/progenitor cells until they are ready for use. In the present study, we screened potential preservative agents and developed a novel medium for preserving the cell sheets and their stem/progenitor cells; the effects were evaluated with a luciferase-based viability assay. Nrf2 activators, specifically ebselen, could maintain high ATP levels during preservation. Ebselen also showed a strong influence on maintenance of the viability, morphology, and stem cell function of the cell sheets preserved under hypothermia by protecting them from reactive oxygen species-induced damage. Furthermore, ebselen drastically improved the preservation performance of human cornea tissues and their stem cells. Therefore, ebselen shows good potential as a useful preservation agent in regenerative medicine as well as in cornea transplantation.

  2. Conditional mutation of Smc5 in mouse embryonic stem cells perturbs condensin localization and mitotic progression.

    PubMed

    Pryzhkova, Marina V; Jordan, Philip W

    2016-04-15

    Correct duplication of stem cell genetic material and its appropriate segregation into daughter cells are requisites for tissue, organ and organism homeostasis. Disruption of stem cell genomic integrity can lead to developmental abnormalities and cancer. Roles of the Smc5/6 structural maintenance of chromosomes complex in pluripotent stem cell genome maintenance have not been investigated, despite its important roles in DNA synthesis, DNA repair and chromosome segregation as evaluated in other model systems. Using mouse embryonic stem cells (mESCs) with a conditional knockout allele of Smc5, we showed that Smc5 protein depletion resulted in destabilization of the Smc5/6 complex, accumulation of cells in G2 phase of the cell cycle and apoptosis. Detailed assessment of mitotic mESCs revealed abnormal condensin distribution and perturbed chromosome segregation, accompanied by irregular spindle morphology, lagging chromosomes and DNA bridges. Mutation of Smc5 resulted in retention of Aurora B kinase and enrichment of condensin on chromosome arms. Furthermore, we observed reduced levels of Polo-like kinase 1 at kinetochores during mitosis. Our study reveals crucial requirements of the Smc5/6 complex during cell cycle progression and for stem cell genome maintenance. © 2016. Published by The Company of Biologists Ltd.

  3. Lent-On-Plus Lentiviral vectors for conditional expression in human stem cells.

    PubMed

    Benabdellah, Karim; Muñoz, Pilar; Cobo, Marién; Gutierrez-Guerrero, Alejandra; Sánchez-Hernández, Sabina; Garcia-Perez, Angélica; Anderson, Per; Carrillo-Gálvez, Ana Belén; Toscano, Miguel G; Martin, Francisco

    2016-11-17

    Conditional transgene expression in human stem cells has been difficult to achieve due to the low efficiency of existing delivery methods, the strong silencing of the transgenes and the toxicity of the regulators. Most of the existing technologies are based on stem cells clones expressing appropriate levels of tTA or rtTA transactivators (based on the TetR-VP16 chimeras). In the present study, we aim the generation of Tet-On all-in-one lentiviral vectors (LVs) that tightly regulate transgene expression in human stem cells using the original TetR repressor. By using appropriate promoter combinations and shielding the LVs with the Is2 insulator, we have constructed the Lent-On-Plus Tet-On system that achieved efficient transgene regulation in human multipotent and pluripotent stem cells. The generation of inducible stem cell lines with the Lent-ON-Plus LVs did not require selection or cloning, and transgene regulation was maintained after long-term cultured and upon differentiation toward different lineages. To our knowledge, Lent-On-Plus is the first all-in-one vector system that tightly regulates transgene expression in bulk populations of human pluripotent stem cells and its progeny.

  4. Lent-On-Plus Lentiviral vectors for conditional expression in human stem cells

    PubMed Central

    Benabdellah, Karim; Muñoz, Pilar; Cobo, Marién; Gutierrez-Guerrero, Alejandra; Sánchez-Hernández, Sabina; Garcia-Perez, Angélica; Anderson, Per; Carrillo-Gálvez, Ana Belén; Toscano, Miguel G.; Martin, Francisco

    2016-01-01

    Conditional transgene expression in human stem cells has been difficult to achieve due to the low efficiency of existing delivery methods, the strong silencing of the transgenes and the toxicity of the regulators. Most of the existing technologies are based on stem cells clones expressing appropriate levels of tTA or rtTA transactivators (based on the TetR-VP16 chimeras). In the present study, we aim the generation of Tet-On all-in-one lentiviral vectors (LVs) that tightly regulate transgene expression in human stem cells using the original TetR repressor. By using appropriate promoter combinations and shielding the LVs with the Is2 insulator, we have constructed the Lent-On-Plus Tet-On system that achieved efficient transgene regulation in human multipotent and pluripotent stem cells. The generation of inducible stem cell lines with the Lent-ON-Plus LVs did not require selection or cloning, and transgene regulation was maintained after long-term cultured and upon differentiation toward different lineages. To our knowledge, Lent-On-Plus is the first all-in-one vector system that tightly regulates transgene expression in bulk populations of human pluripotent stem cells and its progeny. PMID:27853296

  5. Influence of Mesenchymal Stem Cells Conditioned Media on Proliferation of Urinary Tract Cancer Cell Lines and Their Sensitivity to Ciprofloxacin.

    PubMed

    Maj, Malgorzata; Bajek, Anna; Nalejska, Ewelina; Porowinska, Dorota; Kloskowski, Tomasz; Gackowska, Lidia; Drewa, Tomasz

    2017-06-01

    Mesenchymal stem cells (MSCs) are known to interact with cancer cells through direct cell-to-cell contact and secretion of paracrine factors, although their exact influence on tumor progression in vivo remains unclear. To better understand how fetal and adult stem cells affect tumors, we analyzed viability of human renal (786-0) and bladder (T24) carcinoma cell lines cultured in conditioned media harvested from amniotic fluid-derived stem cells (AFSCs) and adipose-derived stem cells (ASCs). Both media reduced metabolic activity of 786-0 cells, however, decreased viability of T24 cells was noted only after incubation with conditioned medium from ASCs. To test the hypothesis that MSCs-secreted factors might be involved in chemoresistance acquisition, we further analyzed influence of mesenchymal stem cell conditioned media (MSC-CM) on cancer cells sensitivity to ciprofloxacin, that is considered as potential candidate agent for urinary tract cancers treatment. Significantly increased resistance to tested drug indicates that MSCs may protect cancer cells from chemotherapy. J. Cell. Biochem. 118: 1361-1368, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  6. Myeloid Conditioning with c-kit-Targeted CAR-T Cells Enables Donor Stem Cell Engraftment.

    PubMed

    Arai, Yasuyuki; Choi, Uimook; Corsino, Cristina I; Koontz, Sherry M; Tajima, Masaki; Sweeney, Colin L; Black, Mary A; Feldman, Steven A; Dinauer, Mary C; Malech, Harry L

    2018-05-02

    We report a novel approach to bone marrow (BM) conditioning using c-kit-targeted chimeric antigen receptor T (c-kit CAR-T) cells in mice. Previous reports using anti-c-kit or anti-CD45 antibody linked to a toxin such as saporin have been promising. We developed a distinctly different approach using c-kit CAR-T cells. Initial studies demonstrated in vitro killing of hematopoietic stem cells by c-kit CAR-T cells but poor expansion in vivo and poor migration of CAR-T cells into BM. Pre-treatment of recipient mice with low-dose cyclophosphamide (125 mg/kg) together with CXCR4 transduction in the CAR-T cells enhanced trafficking to and expansion in BM (<1%-13.1%). This resulted in significant depletion of the BM c-kit + population (9.0%-0.1%). Because congenic Thy1.1 CAR-T cells were used in the Thy1.2-recipient mice, anti-Thy1.1 antibody could be used to deplete CAR-T cells in vivo before donor BM transplant. This achieved 20%-40% multilineage engraftment. We applied this conditioning to achieve an average of 28% correction of chronic granulomatous disease mice by wild-type BM transplant. Our findings provide a proof of concept that c-kit CAR-T cells can achieve effective BM conditioning without chemo-/radiotherapy. Our work also demonstrates that co-expression of a trafficking receptor can enhance targeting of CAR-T cells to a designated tissue. Published by Elsevier Inc.

  7. Learn About Stem Cells

    MedlinePlus

    ... Handbook Stem Cell Glossary Search Toggle Nav Stem Cell Basics Stem cells are the foundation from which ... Home > Learn About Stem Cells > Stem Cell Basics Cells in the human body The human body comprises ...

  8. Tissue Source and Cell Expansion Condition Influence Phenotypic Changes of Adipose-Derived Stem Cells

    PubMed Central

    Mangum, Lauren H.; Stone, Randolph; Wrice, Nicole L.; Larson, David A.; Florell, Kyle F.; Christy, Barbara A.; Herzig, Maryanne C.; Cap, Andrew P.

    2017-01-01

    Stem cells derived from the subcutaneous adipose tissue of debrided burned skin represent an appealing source of adipose-derived stem cells (ASCs) for regenerative medicine. Traditional tissue culture uses fetal bovine serum (FBS), which complicates utilization of ASCs in human medicine. Human platelet lysate (hPL) is one potential xeno-free, alternative supplement for use in ASC culture. In this study, adipogenic and osteogenic differentiation in media supplemented with 10% FBS or 10% hPL was compared in human ASCs derived from abdominoplasty (HAP) or from adipose associated with debrided burned skin (BH). Most (95–99%) cells cultured in FBS were stained positive for CD73, CD90, CD105, and CD142. FBS supplementation was associated with increased triglyceride content and expression of adipogenic genes. Culture in hPL significantly decreased surface staining of CD105 by 31% and 48% and CD142 by 27% and 35% in HAP and BH, respectively (p < 0.05). Culture of BH-ASCs in hPL also increased expression of markers of osteogenesis and increased ALP activity. These data indicate that application of ASCs for wound healing may be influenced by ASC source as well as culture conditions used to expand them. As such, these factors must be taken into consideration before ASCs are used for regenerative purposes. PMID:29138638

  9. Germ stem cells are active in postnatal mouse ovary under physiological conditions

    PubMed Central

    Guo, Kun; Li, Chao-hui; Wang, Xin-yi; He, Da-jian; Zheng, Ping

    2016-01-01

    STUDY HYPOTHESIS Are active ovarian germ stem cells present in postnatal mouse ovaries under physiological conditions? STUDY FINDING Active ovarian germ stem cells exist and function in adult mouse ovaries under physiological conditions. WHAT IS KNOWN ALREADY In vitro studies suggested the existence of germ stem cells in postnatal ovaries of mouse, pig and human. However, in vivo studies provided evidence against the existence of active germ stem cells in postnatal mouse ovaries. Thus, it remains controversial whether such germ stem cells really exist and function in vivo in postnatal mammalian ovaries. STUDY DESIGN, SAMPLES/MATERIALS, METHODS Octamer-binding transcription factor 4 (Oct4)-MerCreMer transgenic mice were crossed with R26R-enhanced yellow fluorescent protein (EYFP) mice to establish a tamoxifen-inducible tracing system so that Oct4-expressing potential ovarian germ stem cells in young adult mice (5–6 weeks old) can be labeled with EYFP. The germ cell activities of DNA replication, mitotic division, entry into meiosis and progression to primordial follicle stage were investigated by means of immunofluorescent staining of ovarian tissues collected at different time points post-tamoxifen injection (1 day, 3 days, 2 months and 4 months). Meiosis entry and primordial follicle formation were also measured by EYFP-labeled single-cell RT–PCR. Germ cell proliferation and mitotic division were examined through 5-bromodeoxyuridine triphosphate incorporation assay. At each time point, ovaries from two to three animals were used for each set of experiment. MAIN RESULTS AND THE ROLE OF CHANCE By labeling the Oct4-expressing small germ cells and tracing their fates for up to 4 months, we observed persistent meiosis entry and primordial follicle replenishment. Furthermore, we captured the transient processes of mitotic DNA replication as well as mitotic division of the marked germ cells at various time periods after tracing. These lines of evidence unambiguously

  10. Centrosome misorientation mediates slowing of the cell cycle under limited nutrient conditions in Drosophila male germline stem cells

    PubMed Central

    Roth, Therese M.; Chiang, C.-Y. Ason; Inaba, Mayu; Yuan, Hebao; Salzmann, Viktoria; Roth, Caitlin E.; Yamashita, Yukiko M.

    2012-01-01

    Drosophila male germline stem cells (GSCs) divide asymmetrically, balancing self-renewal and differentiation. Although asymmetric stem cell division balances between self-renewal and differentiation, it does not dictate how frequently differentiating cells must be produced. In male GSCs, asymmetric GSC division is achieved by stereotyped positioning of the centrosome with respect to the stem cell niche. Recently we showed that the centrosome orientation checkpoint monitors the correct centrosome orientation to ensure an asymmetric outcome of the GSC division. When GSC centrosomes are not correctly oriented with respect to the niche, GSC cell cycle is arrested/delayed until the correct centrosome orientation is reacquired. Here we show that induction of centrosome misorientation upon culture in poor nutrient conditions mediates slowing of GSC cell proliferation via activation of the centrosome orientation checkpoint. Consistently, inactivation of the centrosome orientation checkpoint leads to lack of cell cycle slowdown even under poor nutrient conditions. We propose that centrosome misorientation serves as a mediator that transduces nutrient information into stem cell proliferation, providing a previously unappreciated mechanism of stem cell regulation in response to nutrient conditions. PMID:22357619

  11. Ebselen Preserves Tissue-Engineered Cell Sheets and their Stem Cells in Hypothermic Conditions

    PubMed Central

    Katori, Ryosuke; Hayashi, Ryuhei; Kobayashi, Yuki; Kobayashi, Eiji; Nishida, Kohji

    2016-01-01

    Clinical trials have been performed using autologous tissue-engineered epithelial cell sheets for corneal regenerative medicine. To improve stem cell-based therapy for convenient clinical practice, new techniques are required for preserving reconstructed tissues and their stem/progenitor cells until they are ready for use. In the present study, we screened potential preservative agents and developed a novel medium for preserving the cell sheets and their stem/progenitor cells; the effects were evaluated with a luciferase-based viability assay. Nrf2 activators, specifically ebselen, could maintain high ATP levels during preservation. Ebselen also showed a strong influence on maintenance of the viability, morphology, and stem cell function of the cell sheets preserved under hypothermia by protecting them from reactive oxygen species-induced damage. Furthermore, ebselen drastically improved the preservation performance of human cornea tissues and their stem cells. Therefore, ebselen shows good potential as a useful preservation agent in regenerative medicine as well as in cornea transplantation. PMID:27966584

  12. EDTA conditioning of dentine promotes adhesion, migration and differentiation of dental pulp stem cells.

    PubMed

    Galler, K M; Widbiller, M; Buchalla, W; Eidt, A; Hiller, K-A; Hoffer, P C; Schmalz, G

    2016-06-01

    To evaluate the effect of dentine conditioning on migration, adhesion and differentiation of dental pulp stem cells. Dentine discs prepared from extracted human molars were pre-treated with EDTA (10%), NaOCl (5.25%) or H2 O. Migration of dental pulp stem cells towards pre-treated dentine after 24 and 48 h was assessed in a modified Boyden chamber assay. Cell adhesion was evaluated indirectly by measuring cell viability. Expression of mineralization-associated genes (COL1A1, ALP, BSP, DSPP, RUNX2) in cells cultured on pre-treated dentine for 7 days was determined by RT-qPCR. Nonparametric statistical analysis was performed for cell migration and cell viability data to compare different groups and time-points (Mann-Whitney U-test, α = 0.05). Treatment of dentine with H2 O or EDTA allowed for cell attachment, which was prohibited by NaOCl with statistical significance (P = 0.000). Furthermore, EDTA conditioning induced cell migration towards dentine. The expression of mineralization-associated genes was increased in dental pulp cells cultured on dentine after EDTA conditioning compared to H2 O-pre-treated dentine discs. EDTA conditioning of dentine promoted the adhesion, migration and differentiation of dental pulp stem cells towards or onto dentine. A pre-treatment with EDTA as the final step of an irrigation protocol for regenerative endodontic procedures has the potential to act favourably on new tissue formation within the root canal. © 2015 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  13. Comparative study of adipose-derived stem cells and bone marrow-derived stem cells in similar microenvironmental conditions

    SciTech Connect

    Guneta, Vipra; Tan, Nguan Soon; KK Research Centre, KK Women's and Children Hospital, 100 Bukit Timah Road, Singapore 229899

    Mesenchymal stem cells (MSCs), which were first isolated from the bone marrow, are now being extracted from various other tissues in the body, including the adipose tissue. The current study presents systematic evidence of how the adipose tissue-derived stem cells (ASCs) and bone marrow-derived mesenchymal stem cells (Bm-MSCs) behave when cultured in specific pro-adipogenic microenvironments. The cells were first characterized and identified as MSCs in terms of their morphology, phenotypic expression, self-renewal capabilities and multi-lineage potential. Subsequently, the proliferation and gene expression profiles of the cell populations cultured on two-dimensional (2D) adipose tissue extracellular matrix (ECM)-coated tissue culture plastic (TCP)more » and in three-dimensional (3D) AlgiMatrix® microenvironments were analyzed. Overall, it was found that adipogenesis was triggered in both cell populations due to the presence of adipose tissue ECM. However, in 3D microenvironments, ASCs and Bm-MSCs were predisposed to the adipogenic and osteogenic lineages respectively. Overall, findings from this study will contribute to ongoing efforts in adipose tissue engineering as well as provide new insights into the role of the ECM and cues provided by the immediate microenvironment for stem cell differentiation. - Highlights: • Native adipose tissue ECM coated on 2D TCP triggers adipogenesis in both ASCs and Bm-MSCs. • A 3D microenvironment with similar stiffness to adipose tissue induces adipogenic differentiation of ASCs. • ASCs cultured in 3D alginate scaffolds exhibit predisposition to adipogenesis. • Bm-MSCs cultured in 3D alginate scaffolds exhibit predisposition to osteogenesis. • The native microenvironment of the cells affects their differentiation behaviour in vitro.« less

  14. Optimization of culture conditions for stem cells derived from human anterior cruciate ligament and bone marrow.

    PubMed

    Cheng, Ming-Te; Liu, Chien-Lin; Chen, Tain-Hsiung; Lee, Oscar K

    2014-01-01

    Tissue engineering with stem cells is a fascinating approach for treating anterior cruciate ligament (ACL) injuries. In our previous study, stem cells isolated from the human anterior cruciate ligament were shown to possess extensive proliferation and differentiation capabilities when treated with specific growth factors. However, optimal culture conditions and the usefulness of fetal bovine serum (FBS) as a growth factor in in vitro culture systems are yet to be determined. In this study, we compared the effects of different culture media containing combinations of various concentrations of FBS and the growth factors basic fibroblastic growth factor (bFGF) and transforming growth factor-β1 (TGF-β1) on the proliferation and differentiation of ligament-derived stem cells (LSCs) and bone marrow mesenchymal stem cells (BMSCs). We found that α-MEM plus 10% FBS and bFGF was able to maintain both LSCs and BMSCs in a relatively undifferentiated state but with lower major extracellular matrix (ECM) component gene expression and protein production, which is beneficial for stem cell expansion. However, the differentiation and proliferation potentials of LSCs and BMSCs were increased when cultured in MesenPRO, a commercially available stem cell medium containing 2% FBS. MesenPRO in conjunction with TGF-β1 had the greatest ability to induce the differentiation of BMSCs and LSCs to ligament fibroblasts, which was evidenced by the highest ligamentous ECM gene expression and protein production. These results indicate that culture media and growth factors play a very important role in the success of tissue engineering. With α-MEM plus 10% FBS and bFGF, rapid proliferation of stem cells can be achieved. In this study, MesenPRO was able to promote differentiation of both LSCs and BMSCs to ligament fibroblasts. Differentiation was further increased by TGF-β1. With increasing understanding of the effects of different culture media and growth factors, manipulation of stem cells

  15. Stem cell conditioned medium improves acute lung injury in mice: in vivo evidence for stem cell paracrine action.

    PubMed

    Ionescu, Lavinia; Byrne, Roisin N; van Haaften, Tim; Vadivel, Arul; Alphonse, Rajesh S; Rey-Parra, Gloria J; Weissmann, Gaia; Hall, Adam; Eaton, Farah; Thébaud, Bernard

    2012-12-01

    Mortality and morbidity of acute lung injury and acute respiratory distress syndrome remain high because of the lack of pharmacological therapies to prevent injury or promote repair. Mesenchymal stem cells (MSCs) prevent lung injury in various experimental models, despite a low proportion of donor-derived cell engraftment, suggesting that MSCs exert their beneficial effects via paracrine mechanisms. We hypothesized that soluble factors secreted by MSCs promote the resolution of lung injury in part by modulating alveolar macrophage (AM) function. We tested the therapeutic effect of MSC-derived conditioned medium (CdM) compared with whole MSCs, lung fibroblasts, and fibroblast-CdM. Intratracheal MSCs and MSC-CdM significantly attenuated lipopolysaccharide (LPS)-induced lung neutrophil influx, lung edema, and lung injury as assessed by an established lung injury score. MSC-CdM increased arginase-1 activity and Ym1 expression in LPS-exposed AMs. In vivo, AMs from LPS-MSC and LPS-MSC CdM lungs had enhanced expression of Ym1 and decreased expression of inducible nitric oxide synthase compared with untreated LPS mice. This suggests that MSC-CdM promotes alternative macrophage activation to an M2 "healer" phenotype. Comparative multiplex analysis of MSC- and fibroblast-CdM demonstrated that MSC-CdM contained several factors that may confer therapeutic benefit, including insulin-like growth factor I (IGF-I). Recombinant IGF-I partially reproduced the lung protective effect of MSC-CdM. In summary, MSCs act through a paracrine activity. MSC-CdM promotes the resolution of LPS-induced lung injury by attenuating lung inflammation and promoting a wound healing/anti-inflammatory M2 macrophage phenotype in part via IGF-I.

  16. Stem cell conditioned medium improves acute lung injury in mice: in vivo evidence for stem cell paracrine action

    PubMed Central

    Ionescu, Lavinia; Byrne, Roisin N.; van Haaften, Tim; Vadivel, Arul; Alphonse, Rajesh S.; Rey-Parra, Gloria J.; Weissmann, Gaia; Hall, Adam; Eaton, Farah

    2012-01-01

    Mortality and morbidity of acute lung injury and acute respiratory distress syndrome remain high because of the lack of pharmacological therapies to prevent injury or promote repair. Mesenchymal stem cells (MSCs) prevent lung injury in various experimental models, despite a low proportion of donor-derived cell engraftment, suggesting that MSCs exert their beneficial effects via paracrine mechanisms. We hypothesized that soluble factors secreted by MSCs promote the resolution of lung injury in part by modulating alveolar macrophage (AM) function. We tested the therapeutic effect of MSC-derived conditioned medium (CdM) compared with whole MSCs, lung fibroblasts, and fibroblast-CdM. Intratracheal MSCs and MSC-CdM significantly attenuated lipopolysaccharide (LPS)-induced lung neutrophil influx, lung edema, and lung injury as assessed by an established lung injury score. MSC-CdM increased arginase-1 activity and Ym1 expression in LPS-exposed AMs. In vivo, AMs from LPS-MSC and LPS-MSC CdM lungs had enhanced expression of Ym1 and decreased expression of inducible nitric oxide synthase compared with untreated LPS mice. This suggests that MSC-CdM promotes alternative macrophage activation to an M2 “healer” phenotype. Comparative multiplex analysis of MSC- and fibroblast-CdM demonstrated that MSC-CdM contained several factors that may confer therapeutic benefit, including insulin-like growth factor I (IGF-I). Recombinant IGF-I partially reproduced the lung protective effect of MSC-CdM. In summary, MSCs act through a paracrine activity. MSC-CdM promotes the resolution of LPS-induced lung injury by attenuating lung inflammation and promoting a wound healing/anti-inflammatory M2 macrophage phenotype in part via IGF-I. PMID:23023971

  17. Stem Cell Basics

    MedlinePlus

    ... Tips Info Center Research Topics Federal Policy Glossary Stem Cell Information General Information Clinical Trials Funding Information Current ... Basics » Stem Cell Basics I. Back to top Stem Cell Basics I. Introduction: What are stem cells, and ...

  18. Electrical conditioning of adipose-derived stem cells in a multi-chamber culture platform.

    PubMed

    Pavesi, A; Soncini, M; Zamperone, A; Pietronave, S; Medico, E; Redaelli, A; Prat, M; Fiore, G B

    2014-07-01

    In tissue engineering, several factors play key roles in providing adequate stimuli for cells differentiation, in particular biochemical and physical stimuli, which try to mimic the physiological microenvironments. Since electrical stimuli are important in the developing heart, we have developed an easy-to-use, cost-effective cell culture platform, able to provide controlled electrical stimulation aimed at investigating the influence of the electric field in the stem cell differentiation process. This bioreactor consists of an electrical stimulator and 12 independent, petri-like culture chambers and a 3-D computational model was used to characterize the distribution and the intensity of the electric field generated in the cell culture volume. We explored the effects of monophasic and biphasic square wave pulse stimulation on a mouse adipose-derived stem cell line (m17.ASC) comparing cell viability, proliferation, protein, and gene expression. Both monophasic (8 V, 2 ms, 1 Hz) and biphasic (+4 V, 1 ms and -4 V, 1 ms; 1 Hz) stimulation were compatible with cell survival and proliferation. Biphasic stimulation induced the expression of Connexin 43, which was found to localize also at the cell membrane, which is its recognized functional mediating intercellular electrical coupling. Electrically stimulated cells showed an induced transcriptional profile more closely related to that of neonatal cadiomyocytes, particularly for biphasic stimulation. The developed platform thus allowed to set-up precise conditions to drive adult stem cells toward a myocardial phenotype solely by physical stimuli, in the absence of exogenously added expensive bioactive molecules, and can thus represent a valuable tool for translational applications for heart tissue engineering and regeneration. © 2014 Wiley Periodicals, Inc.

  19. Sensitivity of human embryonic stem cells to different conditions during cryopreservation.

    PubMed

    Xu, Yanqing; Zhang, Liang; Xu, Jiandong; Wei, Yuping; Xu, Xia

    2015-12-01

    Low cell recovery rate of human embryonic stem cells (hESCs) resulting from cryopreservation damages leads to the difficulty in their successful commercialization of clinical applications. Hence in this study, sensitivity of human embryonic stem cells (hESCs) to different cooling rates, ice seeding and cryoprotective agent (CPA) types was compared and cell viability and recovery after cryopreservation under different cooling conditions were assessed. Both extracellular and intracellular ice formation were observed. Reactive oxidative species (ROS) accumulation of hESCs was determined. Cryopreservation of hESCs at 1 °C/min with the ice seeding and at the theoretically predicted optimal cooling rate (TPOCR) led to lower level of intracellular ROS, and prevented irregular and big ice clump formation compared with cryopreservation at 1 °C/min. This strategy further resulted in a significant increase in the hESC recovery when glycerol and 1,2-propanediol were used as the CPAs, but no increase for Me2SO. hESCs after cryopreservation under all the tested conditions still maintained their pluripotency. Our results provide guidance for improving the hESC cryopreservation recovery through the combination of CPA type, cooling rate and ice seeding. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Mesenchymal Stem Cells Adopt Lung Cell Phenotype in Normal and Radiation-induced Lung Injury Conditions.

    PubMed

    Maria, Ola M; Maria, Ahmed M; Ybarra, Norma; Jeyaseelan, Krishinima; Lee, Sangkyu; Perez, Jessica; Shalaby, Mostafa Y; Lehnert, Shirley; Faria, Sergio; Serban, Monica; Seuntjens, Jan; El Naqa, Issam

    2016-04-01

    Lung tissue exposure to ionizing irradiation can invariably occur during the treatment of a variety of cancers leading to increased risk of radiation-induced lung disease (RILD). Mesenchymal stem cells (MSCs) possess the potential to differentiate into epithelial cells. However, cell culture methods of primary type II pneumocytes are slow and cannot provide a sufficient number of cells to regenerate damaged lungs. Moreover, effects of ablative radiation doses on the ability of MSCs to differentiate in vitro into lung cells have not been investigated yet. Therefore, an in vitro coculture system was used, where MSCs were physically separated from dissociated lung tissue obtained from either healthy or high ablative doses of 16 or 20 Gy whole thorax irradiated rats. Around 10±5% and 20±3% of cocultured MSCs demonstrated a change into lung-specific Clara and type II pneumocyte cells when MSCs were cocultured with healthy lung tissue. Interestingly, in cocultures with irradiated lung biopsies, the percentage of MSCs changed into Clara and type II pneumocytes cells increased to 40±7% and 50±6% at 16 Gy irradiation dose and 30±5% and 40±8% at 20 Gy irradiation dose, respectively. These data suggest that MSCs to lung cell differentiation is possible without cell fusion. In addition, 16 and 20 Gy whole thorax irradiation doses that can cause varying levels of RILD, induced different percentages of MSCs to adopt lung cell phenotype compared with healthy lung tissue, providing encouraging outlook for RILD therapeutic intervention for ablative radiotherapy prescriptions.

  1. Mesenchymal Stem Cell-Conditioned Medium Reduces Disease Severity and Immune Responses in Inflammatory Arthritis.

    PubMed

    Kay, Alasdair G; Long, Grace; Tyler, George; Stefan, Andrei; Broadfoot, Stephen J; Piccinini, Anna M; Middleton, Jim; Kehoe, Oksana

    2017-12-21

    We evaluated the therapeutic potential of mesenchymal stem cell-conditioned medium (CM-MSC) as an alternative to cell therapy in an antigen-induced model of arthritis (AIA). Disease severity and cartilage loss were evaluated by histopathological analysis of arthritic knee joints and immunostaining of aggrecan neoepitopes. Cell proliferation was assessed for activated and naïve CD4+ T cells from healthy mice following culture with CM-MSC or co-culture with MSCs. T cell polarization was analysed in CD4+ T cells isolated from spleens and lymph nodes of arthritic mice treated with CM-MSC or MSCs. CM-MSC treatment significantly reduced knee-joint swelling, histopathological signs of AIA, cartilage loss and suppressed TNFα induction. Proliferation of CD4+ cells from spleens of healthy mice was not affected by CM-MSC but reduced when cells were co-cultured with MSCs. In the presence of CM-MSC or MSCs, increases in IL-10 concentration were observed in culture medium. Finally, CD4+ T cells from arthritic mice treated with CM-MSC showed increases in FOXP3 and IL-4 expression and positively affected the Treg:Th17 balance in the tissue. CM-MSC treatment reduces cartilage damage and suppresses immune responses by reducing aggrecan cleavage, enhancing Treg function and adjusting the Treg:Th17 ratio. CM-MSC may provide an effective cell-free therapy for inflammatory arthritis.

  2. Adipose derived mesenchymal stem cells partially rescue mitomycin C treated ARPE19 cells from death in co-culture condition.

    PubMed

    Singh, Amar K; Srivastava, Girish K; García-Gutiérrez, María T; Pastor, J Carlos

    2013-12-01

    Age-related macular degeneration is a retinal disease with important damage at the RPE layer. This layer is considered a target for therapeutical approaches. Stem cell transplantation is a promising option for retinal diseases. Adipose derived mesenchymal stem cells secret growth factors which might play a significant role in RPE maintenance. This study aimed to evaluate human AD-MSCs ability to rescue mitomycin C treated dying ARPE19 cells in co-culture condition. ARPE19 cells were treated with MMC (50 μg/ml, 100 μg/ml and 200 μg/ml) for 2 hours to induce cell death. These treated cells were co-cultured with hAD-MSCs in indirect co-culture system for 3 days and 3 weeks. Then the viability, growth and proliferation of these ARPE19 cells were evaluated by a cell viability/cytotoxicity assay kit and Alamar Blue (AB) assay. Untreated ARPE19 cells and human skin fibroblasts (HSF) were used as controls. MMC blocked ARPE19 cell proliferation significantly in 3 days and cells were almost completely dead after 3 weeks. Cell toxicity of MMC increased significantly with concentration. When these cells were co-cultured with hAD-MSCs, a significant growth difference was observed in treated cells compared to untreated cells. hAD-MSCs rescue capacity was also significantly higher than HSF for treated ARPE19 cells. This study showed that hAD-MSCs rescued MMC treated ARPE19 cells from death. It probably occurred due to undefined growth factors secreted by hAD-MSCs in the medium, shared by treated ARPE19 cells in co-culture conditions. This study supports further evaluation of the effect of hAD-MSCs subretinal transplantation over the RPE degeneration process in AMD patients.

  3. Stem cell biobanks.

    PubMed

    Bardelli, Silvana

    2010-04-01

    Stem cells contribute to innate healing and harbor a promising role for regenerative medicine. Stem cell banking through long-term storage of different stem cell platforms represents a fundamental source to preserve original features of stem cells for patient-specific clinical applications. Stem cell research and clinical translation constitute fundamental and indivisible modules catalyzed through biobanking activity, generating a return of investment.

  4. Functional Comparison of Neuronal Cells Differentiated from Human Induced Pluripotent Stem Cell-Derived Neural Stem Cells under Different Oxygen and Medium Conditions.

    PubMed

    Yamazaki, Kazuto; Fukushima, Kazuyuki; Sugawara, Michiko; Tabata, Yoshikuni; Imaizumi, Yoichi; Ishihara, Yasuharu; Ito, Masashi; Tsukahara, Kappei; Kohyama, Jun; Okano, Hideyuki

    2016-12-01

    Because neurons are difficult to obtain from humans, generating functional neurons from human induced pluripotent stem cells (hiPSCs) is important for establishing physiological or disease-relevant screening systems for drug discovery. To examine the culture conditions leading to efficient differentiation of functional neural cells, we investigated the effects of oxygen stress (2% or 20% O 2 ) and differentiation medium (DMEM/F12:Neurobasal-based [DN] or commercial [PhoenixSongs Biologicals; PS]) on the expression of genes related to neural differentiation, glutamate receptor function, and the formation of networks of neurons differentiated from hiPSCs (201B7) via long-term self-renewing neuroepithelial-like stem (lt-NES) cells. Expression of genes related to neural differentiation occurred more quickly in PS and/or 2% O 2 than in DN and/or 20% O 2 , resulting in high responsiveness of neural cells to glutamate, N-methyl-d-aspartate (NMDA), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA), and ( S)-3,5-dihydroxyphenylglycine (an agonist for mGluR 1/5 ), as revealed by calcium imaging assays. NMDA receptors, AMPA receptors, mGluR 1 , and mGluR 5 were functionally validated by using the specific antagonists MK-801, NBQX, JNJ16259685, and 2-methyl-6-(phenylethynyl)-pyridine, respectively. Multielectrode array analysis showed that spontaneous firing occurred earlier in cells cultured in 2% O 2 than in 20% O 2 . Optimization of O 2 tension and culture medium for neural differentiation of hiPSCs can efficiently generate physiologically relevant cells for screening systems.

  5. Allogeneic stem cell transplantation using lymphoablative rather than myeloablative conditioning regimen for relapsed or refractory lymphomas.

    PubMed

    Yoon, Jae-Ho; Jeon, Young-Woo; Lee, Sung-Eun; Cho, Byung-Sik; Eom, Ki-Seong; Kim, Yoo-Jin; Lee, Seok; Kim, Hee-Je; Min, Chang-Ki; Lee, Jong-Wook; Min, Woo-Sung; Cho, Seok-Goo

    2017-03-01

    In relapsed or refractory non-Hodgkin lymphoma (NHL), allogeneic hematopoietic stem cell transplantation (allo-HSCT) provides graft-versus-lymphoma activity resulting in fewer incidences of relapse. However, therapy-related mortality (TRM) remains an important challenge. We attempted to introduce our reduced-intensity conditioning (RIC) regimen. From 2007 to 2013, we treated 28 relapsed or refractory NHLs with allo-HSCT. All were pre-conditioned with fludarabine [FLU, 180 mg/body surface area (BSA)/6 days] and melphalan (MEL, 70 mg/BSA/1 day); 25 (all but 3) were additionally treated with total body irradiation (TBI, 800 cGy/4Fx/2 days). Peripheral blood stem cells were collected from matched siblings (n = 10) or suitably matched unrelated (n = 18) donors. There were eight diffuse large B-cell lymphomas, seven peripheral T-cell lymphoma not otherwise specified, give lymphoblastic lymphomas, two mantle cell lymphomas, and six various other lymphomas. Of these patients, 10 relapsed after auto-HSCT, 5 relapsed after chemotherapy, and 13 were refractory lymphomas. After allo-HSCT, complete remission was achieved in 22 (78.5%) patients. After a median follow-up of 24.8 months, 3-year overall survival and disease-free survival were 62.4 and 59.2% and the 3-year TRM and relapse incidence were 14.9 and 28.6% respectively. Acute and chronic graft-versus-host diseases (GVHDs) were identified in 17 (≥Grade II in 12 patients) and 18 patients respectively, and the group with chronic GVHD showed favourable survival outcomes. In relapsed or refractory NHL, RIC-allo-HSCT using FLU + MEL + 800 cGy TBI showed favourable survival outcomes with acceptable TRM and relapse incidence. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  6. Efficient generation of functional Schwann cells from adipose-derived stem cells in defined conditions

    PubMed Central

    Xie, Songtao; Lu, Fan; Han, Juntao; Tao, Ke; Wang, Hongtao; Simental, Alfred; Hu, Dahai

    2017-01-01

    ABSTRACT Schwann cells (SCs) are hitherto regarded as the most promising candidates for viable cell-based therapy to peripheral nervous system (PNS) injuries or degenerative diseases. However, the extreme drawbacks of transplanting autologous SCs for clinical applications still represent a significant bottleneck in neural regenerative medicine, mainly owing to the need of sacrificing a functional nerve to generate autologous SCs and the nature of slow expansion of the SCs. Thus, it is of great importance to establish an alternative cell system for the generation of sufficient SCs. Here, we demonstrated that adipose-derived stem cells (ADSCs) of rat robustly give rise to morphological, phenotypic and functional SCs using an optimized protocol. After undergoing a 3-week in vitro differentiation, almost all of treated ADSCs exhibited spindle shaped morphology similar to genuine SCs and expressed SC markers GFAP and S100. Most importantly, apart from acquisition of SC antigenic and biochemical features, the ADSC-derived SCs were functionally identical to native SCs as they possess a potential ability to form myelin, and secret nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and glia-derived neurotrophic factor (GDNF). The current study may provide an ideal strategy for harvesting sufficient SCs for cell-based treatment of various peripheral nerve injuries or disorders. PMID:28296571

  7. Purified hematopoietic stem cell engraftment of rare niches corrects severe lymphoid deficiencies without host conditioning

    PubMed Central

    Bhattacharya, Deepta; Rossi, Derrick J.; Bryder, David; Weissman, Irving L.

    2006-01-01

    In the absence of irradiation or other cytoreductive conditioning, endogenous hematopoietic stem cells (HSCs) are thought to fill the unique niches within the bone marrow that allow maintenance of full hematopoietic potential and thus prevent productive engraftment of transplanted donor HSCs. By transplantation of purified exogenous HSCs into unconditioned congenic histocompatible strains of mice, we show that ∼0.1–1.0% of these HSC niches are available for engraftment at any given point and find no evidence that endogenous HSCs can be displaced from the niches they occupy. We demonstrate that productive engraftment of HSCs within these empty niches is inhibited by host CD4+ T cells that recognize very subtle minor histocompatibility differences. Strikingly, transplantation of purified HSCs into a panel of severe combined immunodeficient (SCID) mice leads to a rapid and complete rescue of lymphoid deficiencies through engraftment of these very rare niches and expansion of donor lymphoid progenitors. We further demonstrate that transient antibody-mediated depletion of CD4+ T cells allows short-term HSC engraftment and regeneration of B cells in a mouse model of B(-) non-SCID. These experiments provide a general mechanism by which transplanted HSCs can correct hematopoietic deficiencies without any host conditioning or with only highly specific and transient lymphoablation. PMID:16380511

  8. Effects of conditioned medium from LL-37 treated adipose stem cells on human fibroblast migration.

    PubMed

    Yang, Eun-Jung; Bang, Sa-Ik

    2017-07-01

    Adipose stem cell-conditioned medium may promote human dermal fibroblast (HDF) proliferation and migration by activating paracrine peptides during the re-epithelization phase of wound healing. Human antimicrobial peptide LL-37 is upregulated in the skin epithelium as part of the normal response to injury. The effects of conditioned medium (CM) from LL-37 treated adipose stem cells (ASCs) on cutaneous wound healing, including the mediation of fibroblast migration, remain to be elucidated, therefore the aim of the present study was to determine how ASCs would react to an LL-37-rich microenvironment and if CM from LL-37 treated ASCs may influence the migration of HDFs. The present study conducted migration assays with HDFs treated with CM from LL-37 treated ASCs. Expression of CXC chemokine receptor 4 (CXCR4), which controls the recruitment of HDFs, was analyzed at the mRNA and protein levels. To further characterize the stimulatory effects of LL-37 on ASCs, the expression of stromal cell-derived factor-1α (SDF-1α), a CXC chemokine, was investigated. CM from LL-37-treated ASCs induced migration of HDFs in a time- and dose-dependent manner, with a maximum difference in migration observed 24 h following stimulation with LL-37 at a concentration of 10 µg/ml. The HDF migration and the expression of CXCR4 in fibroblasts was markedly increased upon treatment with CM from LL-37-treated ASCs compared with CM from untreated ASCs. SDF-1α expression was markedly increased in CM from LL-37 treated ASCs. It was additionally observed that SDF-1α blockade significantly reduced HDF migration. These findings suggest the feasibility of CM from LL-37-treated ASCs as a potential therapeutic for human dermal fibroblast migration.

  9. Conditioned medium: a new alternative for cryopreservation of equine umbilical cord mesenchymal stem cells.

    PubMed

    Maia, Leandro; Dias, Marianne Camargos; de Moraes, Carolina Nogueira; de Paula Freitas-Dell'Aqua, Camila; da Mota, Ligia S L Silveira; Santiloni, Valquíria; da Cruz Landim-Alvarenga, Fernanda

    2017-03-01

    Cryopreservation is a feasible alternative to maintaining several cell lines, particularly for immediate therapeutic use, transportation of samples, and implementation of new in vitro studies. This work parts from the hypothesis that the medium of cryopreservation composed by 90% of conditioned medium (CM) supports cryopreservation of equine umbilical cord intervascular matrix mesenchymal stem cells (UCIM-MSCs), allowing the maintenance of the biological properties for the establishment of cell banks intended for therapeutic use and in vitro studies. Thus, we evaluated the viability, apoptosis/necrosis rates, immunophenotypic profile (IP), chromosomal stability, clonicity, and differentiation potential of UCIM-MSCs cryopreserved with four different mediums (with FBS: M1, M3, M4 and without FBS: M2). After 3 months of cryopreservation, samples were thawed and analyzed. The potential of differentiation in the mesodermal lineages, clonicity, and the chromosomal stability were maintained after cryopreservation of UCIM-MSCs with medium containing FBS. Changes (P < 0.05) at IP for some markers were observed at cells cryopreserved with medium M1-M3. Only the UCIM-MSCs cryopreserved with the CM (M4) had similar viability post-thaw (P = 0.23) when compared with fresh cells. We proved the hypothesis that the medium of cryopreservation containing CM supports the cryopreservation of UCIM-MSCs, at the experimental conditions, being the medium that better maintains the biological characteristics observed at fresh cells. Thus, future studies of UCIM-MSCs secretome should be conducted to better understand the beneficial and protective effects of the CM during the freezing process. © 2017 International Federation for Cell Biology.

  10. Generation of clinical-grade human induced pluripotent stem cells in Xeno-free conditions.

    PubMed

    Wang, Juan; Hao, Jie; Bai, Donghui; Gu, Qi; Han, Weifang; Wang, Lei; Tan, Yuanqing; Li, Xia; Xue, Ke; Han, Pencheng; Liu, Zhengxin; Jia, Yundan; Wu, Jun; Liu, Lei; Wang, Liu; Li, Wei; Liu, Zhonghua; Zhou, Qi

    2015-11-12

    Human induced pluripotent stem cells (hiPSCs) are considered as one of the most promising seed cell sources in regenerative medicine. Now hiPSC-based clinical trials are underway. To ensure clinical safety, cells used in clinical trials or therapies should be generated under GMP conditions, and with Xeno-free culture media to avoid possible side effects like immune rejection that induced by the Xeno reagents. However, up to now there are no reports for hiPSC lines developed completely under GMP conditions using Xeno-free reagents. Clinical-grade human foreskin fibroblast (HFF) cells used as feeder cells and parental cells of the clinical-grade hiPSCs were isolated from human foreskin tissues and cultured in Xeno-free media. Clinical-grade hiPSCs were derived by integration-free Sendai virus-based reprogramming kit in Xeno-free pluriton™ reprogramming medium or X medium. Neural cells and cardiomyocytes differentiation were conducted following a series of spatial and temporal specific signals induction according to the corresponding lineage development signals. Biological safety evaluation of the clinical-grade HFF cells and hiPSCs were conducted following the guidance of the "Pharmacopoeia of the People's Republic of China, Edition 2010, Volume III". We have successfully derived several integration-free clinical-grade hiPSC lines under GMP-controlled conditions and with Xeno-free reagents culture media in line with the current guidance of international and national evaluation criteria. As for the source of hiPSCs and feeder cells, biological safety evaluation of the HFF cells have been strictly reviewed by the National Institutes for Food and Drug Control (NIFDC). The hiPSC lines are pluripotent and have passed the safety evaluation. Moreover, one of the randomly selected hiPSC lines was capable of differentiating into functional neural cells and cardiomyocytes in Xeno-free culture media. The clinical-grade hiPSC lines therefore could be valuable sources for

  11. Adherent culture conditions enrich the side population obtained from the cochlear modiolus-derived stem/progenitor cells.

    PubMed

    Chao, Ting-Ting; Wang, Chih-Hung; Chen, Hsin-Chien; Shih, Cheng-Ping; Sytwu, Huey-Kang; Huang, Kun-Lun; Chen, Shao-Yuan

    2013-05-01

    Previously, our group reported that sphere-forming cells derived from the organ of Corti represent the stem/progenitor cells (SPCs) of the cochlea due to their properties of self-renewal and multipotency. However, long-term propagation of sphere-forming cells under suspension culture conditions may fail to maintain the characteristic stemness of these cells. Therefore, this study investigated whether an adherent culture system would be beneficial in terms of preserving more stem-like cells for long-term manipulations in vitro. Isolated modiolus-derived SPCs were placed on poly-d-lysine-coated petri dishes to form the so-called "adherent" culture system. Modiolus SPCs cultured under adherent conditions exhibited a significantly increased percentage of cells with the side population (SP) phenotype (18.6%) compared with cells cultured under conventional suspension culture conditions (0.8%). Even after repeated passages, modiolus SPCs cultured under adherent culture conditions preserved more SP phenotype cells. In comparison with the non-SP phenotype cells, the sorted SP cells exhibited more stem-like but less differentiated properties, with an upregulated expression of the ATP-binding cassette subfamily G member 2 (ABCG2), Nestin, Sox2, and Nanog proteins. Furthermore, Retinoic acid (RA) treatment confirmed the expression of the multipotent differentiation markers in the SP cells, including TUJ1, pancytokeratin, glial fibrillary acidic protein (GFAP), and p27(Kip1). Employment of an adherent culture system, instead of a suspension culture system, resulted in the enrichment of the SP cells from SPCs while retaining their stemness and multipotency. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  12. Culture conditions have an impact on the maturation of traceable, transplantable mouse embryonic stem cell-derived otic progenitor cells.

    PubMed

    Abboud, Nesrine; Fontbonne, Arnaud; Watabe, Isabelle; Tonetto, Alain; Brezun, Jean Michel; Feron, François; Zine, Azel

    2017-09-01

    The generation of replacement inner ear hair cells (HCs) remains a challenge and stem cell therapy holds the potential for developing therapeutic solutions to hearing and balance disorders. Recent developments have made significant strides in producing mouse otic progenitors using cell culture techniques to initiate HC differentiation. However, no consensus has been reached as to efficiency and therefore current methods remain unsatisfactory. In order to address these issues, we compare the generation of otic and HC progenitors from embryonic stem (ES) cells in two cell culture systems: suspension vs. adherent conditions. In the present study, an ES cell line derived from an Atoh1-green fluorescent protein (GFP) transgenic mouse was used to track the generation of otic progenitors, initial HCs and to compare these two differentiation systems. We used a two-step short-term differentiation method involving an induction period of 5 days during which ES cells were cultured in the presence of Wnt/transforming growth factor TGF-β inhibitors and insulin-like growth factor IGF-1 to suppress mesoderm and reinforce presumptive ectoderm and otic lineages. The generated embryoid bodies were then differentiated in medium containing basic fibroblast growth factor (bFGF) for an additional 5 days using either suspension or adherent culture methods. Upon completion of differentiation, quantitative polymerase chain reaction analysis and immunostaining monitored the expression of otic/HC progenitor lineage markers. The results indicate that cells differentiated in suspension cultures produced cells expressing otic progenitor/HC markers at a higher efficiency compared with the production of these cell types within adherent cultures. Furthermore, we demonstrated that a fraction of these cells can incorporate into ototoxin-injured mouse postnatal cochlea explants and express MYO7A after transplantation. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons

  13. Biochemistry of epidermal stem cells.

    PubMed

    Eckert, Richard L; Adhikary, Gautam; Balasubramanian, Sivaprakasam; Rorke, Ellen A; Vemuri, Mohan C; Boucher, Shayne E; Bickenbach, Jackie R; Kerr, Candace

    2013-02-01

    The epidermis is an important protective barrier that is essential for maintenance of life. Maintaining this barrier requires continuous cell proliferation and differentiation. Moreover, these processes must be balanced to produce a normal epidermis. The stem cells of the epidermis reside in specific locations in the basal epidermis, hair follicle and sebaceous glands and these cells are responsible for replenishment of this tissue. A great deal of effort has gone into identifying protein epitopes that mark stem cells, in identifying stem cell niche locations, and in understanding how stem cell populations are related. We discuss these studies as they apply to understanding normal epidermal homeostasis and skin cancer. An assortment of stem cell markers have been identified that permit assignment of stem cells to specific regions of the epidermis, and progress has been made in understanding the role of these cells in normal epidermal homeostasis and in conditions of tissue stress. A key finding is the multiple stem cell populations exist in epidermis that give rise to different structures, and that multiple stem cell types may contribute to repair in damaged epidermis. Understanding epidermal stem cell biology is likely to lead to important therapies for treating skin diseases and cancer, and will also contribute to our understanding of stem cells in other systems. This article is part of a Special Issue entitled Biochemistry of Stem Cells. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Derivation of Skeletal Myogenic Precursors from Human Pluripotent Stem Cells Using Conditional Expression of PAX7.

    PubMed

    Darabi, Radbod; Perlingeiro, Rita C R

    2016-01-01

    Cell-based therapies are considered as one of the most promising approaches for the treatment of degenerating pathologies including muscle disorders and dystrophies. Advances in the approach of reprogramming somatic cells into induced pluripotent stem (iPS) cells allow for the possibility of using the patient's own pluripotent cells to generate specific tissues for autologous transplantation. In addition, patient-specific tissue derivatives have been shown to represent valuable material for disease modeling and drug discovery. Nevertheless, directed differentiation of pluripotent stem cells into a specific lineage is not a trivial task especially in the case of skeletal myogenesis, which is generally poorly recapitulated during the in vitro differentiation of pluripotent stem cells.Here, we describe a practical and efficient method for the derivation of skeletal myogenic precursors from differentiating human pluripotent stem cells using controlled expression of PAX7. Flow cytometry (FACS) purified myogenic precursors can be expanded exponentially and differentiated in vitro into myotubes, enabling researchers to use these cells for disease modeling as well as therapeutic purposes.

  15. Optimization of Pre-transplantation Conditions to Enhance the Efficacy of Mesenchymal Stem Cells

    PubMed Central

    Haque, Nazmul; Kasim, Noor Hayaty Abu; Rahman, Mohammad Tariqur

    2015-01-01

    Mesenchymal stem cells (MSCs) are considered a potential tool for cell based regenerative therapy due to their immunomodulatory property, differentiation potentials, trophic activity as well as large donor pool. Poor engraftment and short term survival of transplanted MSCs are recognized as major limitations which were linked to early cellular ageing, loss of chemokine markers during ex vivo expansion, and hyper-immunogenicity to xeno-contaminated MSCs. These problems can be minimized by ex vivo expansion of MSCs in hypoxic culture condition using well defined or xeno-free media i.e., media supplemented with growth factors, human serum or platelet lysate. In addition to ex vivo expansion in hypoxic culture condition using well defined media, this review article describes the potentials of transient adaptation of expanded MSCs in autologous serum supplemented medium prior to transplantation for long term regenerative benefits. Such transient adaptation in autologous serum supplemented medium may help to increase chemokine receptor expression and tissue specific differentiation of ex vivo expanded MSCs, thus would provide long term regenerative benefits. PMID:25678851

  16. Otx2 is an intrinsic determinant of the embryonic stem cell state and is required for transition to a stable epiblast stem cell condition.

    PubMed

    Acampora, Dario; Di Giovannantonio, Luca G; Simeone, Antonio

    2013-01-01

    Mouse embryonic stem cells (ESCs) represent the naïve ground state of the preimplantation epiblast and epiblast stem cells (EpiSCs) represent the primed state of the postimplantation epiblast. Studies have revealed that the ESC state is maintained by a dynamic mechanism characterized by cell-to-cell spontaneous and reversible differences in sensitivity to self-renewal and susceptibility to differentiation. This metastable condition ensures indefinite self-renewal and, at the same time, predisposes ESCs for differentiation to EpiSCs. Despite considerable advances, the molecular mechanism controlling the ESC state and pluripotency transition from ESCs to EpiSCs have not been fully elucidated. Here we show that Otx2, a transcription factor essential for brain development, plays a crucial role in ESCs and EpiSCs. Otx2 is required to maintain the ESC metastable state by antagonizing ground state pluripotency and promoting commitment to differentiation. Furthermore, Otx2 is required for ESC transition into EpiSCs and, subsequently, to stabilize the EpiSC state by suppressing, in pluripotent cells, the mesendoderm-to-neural fate switch in cooperation with BMP4 and Fgf2. However, according to its central role in neural development and differentiation, Otx2 is crucially required for the specification of ESC-derived neural precursors fated to generate telencephalic and mesencephalic neurons. We propose that Otx2 is a novel intrinsic determinant controlling the functional integrity of ESCs and EpiSCs.

  17. Chemically defined serum-free conditions for cartilage regeneration from human embryonic stem cells.

    PubMed

    Yang, Dandan; Chen, Shubin; Gao, Changzhao; Liu, Xiaobo; Zhou, Yulai; Liu, Pengfei; Cai, Jinglei

    2016-11-01

    The aim of this study was to improve a method that induce cartilage differentiation of human embryoid stem cells (hESCs) in vitro, and test the effect of in vivo environments on the further maturation of hESCs derived cells. Embryoid bodies (EBs) formed from hESCs, with serum-free KSR-based medium and mesodermal specification related factors, CHIR, and Noggin for first 8days. Then cells were digested and cultured as micropellets in serum-free KSR-based chondrogenic medium that was supplemented with PDGF-BB, TGF β3, BMP4 in sequence for 24days. The morphology, FACS, histological staining as well as the expression of chondrogenic specific genes were detected in each stage, and further in vivo experiments, cell injections and tissue transplantations, further verified the formation of chondrocytes. We were able to obtain chondrocyte/cartilage from hESCs using serum-free KSR-based conditioned medium. qPCR analysis showed that expression of the chondroprogenitor genes and the chondrocyte/cartilage matrix genes. Morphology analysis demonstrated we got PG+COL2+COL1-particles. It indicated we obtained hyaline cartilage-like particles. 32-Day differential cells were injected subcutaneous. Staining results showed grafts developed further mature in vivo. But when transplanted in subrenal capsule, their effect was not good as in subcutaneous. Microenvironment might affect the cartilage formation. The results of this study provide an absolute serum-free and efficient approach for generation of hESC-derived chondrocytes, and cells will become further maturation in vivo. It provides evidence and technology for the hypothesis that hESCs may be a promising therapy for the treatment of cartilage disease. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Surface-engineered substrates for improved human pluripotent stem cell culture under fully defined conditions.

    PubMed

    Saha, Krishanu; Mei, Ying; Reisterer, Colin M; Pyzocha, Neena Kenton; Yang, Jing; Muffat, Julien; Davies, Martyn C; Alexander, Morgan R; Langer, Robert; Anderson, Daniel G; Jaenisch, Rudolf

    2011-11-15

    The current gold standard for the culture of human pluripotent stem cells requires the use of a feeder layer of cells. Here, we develop a spatially defined culture system based on UV/ozone radiation modification of typical cell culture plastics to define a favorable surface environment for human pluripotent stem cell culture. Chemical and geometrical optimization of the surfaces enables control of early cell aggregation from fully dissociated cells, as predicted from a numerical model of cell migration, and results in significant increases in cell growth of undifferentiated cells. These chemically defined xeno-free substrates generate more than three times the number of cells than feeder-containing substrates per surface area. Further, reprogramming and typical gene-targeting protocols can be readily performed on these engineered surfaces. These substrates provide an attractive cell culture platform for the production of clinically relevant factor-free reprogrammed cells from patient tissue samples and facilitate the definition of standardized scale-up friendly methods for disease modeling and cell therapeutic applications.

  19. Ovarian cancer stem cells.

    PubMed

    Zeimet, A G; Reimer, D; Sopper, S; Boesch, M; Martowicz, A; Roessler, J; Wiedemair, A M; Rumpold, H; Untergasser, G; Concin, N; Hofstetter, G; Muller-Holzner, E; Fiegl, H; Marth, C; Wolf, D; Pesta, M; Hatina, J

    2012-01-01

    Because of its semi-solid character in dissemination and growth, advanced ovarian cancer with its hundreds of peritoneal tumor nodules and plaques appears to be an excellent in vivo model for studying the cancer stem cell hypothesis. The most important obstacle, however, is to adequately define and isolate these tumor-initiating cells endowed with the properties of anoikis-resistance and unlimited self-renewal. Until now, no universal single marker or marker constellation has been found to faithfully isolate (ovarian) cancer stem cells. As these multipotent cells are known to possess highly elaborated efflux systems for cytotoxic agents, these pump systems have been exploited to outline putative stem cells as a side-population (SP) via dye exclusion analysis. Furthermore, the cells in question have been isolated via flow cytometry on the basis of cell surface markers thought to be characteristic for stem cells.In the Vienna variant of the ovarian cancer cell line A2780 a proof-of-principle model with both a stable SP and a stable ALDH1A1+ cell population was established. Double staining clearly revealed that both cell fractions were not identical. Of note, A2780V cells were negative for expression of surface markers CD44 and CD117 (c-kit). When cultured on monolayers of healthy human mesothelial cells, green-fluorescence-protein (GFP)-transfected SP of A2780V exhibited spheroid-formation, whereas non-side-population (NSP) developed a spare monolayer growing over the healthy mesothelium. Furthermore, A2780V SP was found to be partially resistant to platinum. However, this resistance could not be explained by over-expression of the "excision repair cross-complementation group 1" (ERCC1) gene, which is essentially involved in the repair of platinated DNA damage. ERCC1 was, nonetheless, over-expressed in A2780V cells grown as spheres under stem cell-selective conditions as compared to adherent monolayers cultured under differentiating conditions. The same was true for

  20. High oxygen condition facilitates the differentiation of mouse and human pluripotent stem cells into pancreatic progenitors and insulin-producing cells.

    PubMed

    Hakim, Farzana; Kaitsuka, Taku; Raeed, Jamiruddin Mohd; Wei, Fan-Yan; Shiraki, Nobuaki; Akagi, Tadayuki; Yokota, Takashi; Kume, Shoen; Tomizawa, Kazuhito

    2014-04-04

    Pluripotent stem cells have potential applications in regenerative medicine for diabetes. Differentiation of stem cells into insulin-producing cells has been achieved using various protocols. However, both the efficiency of the method and potency of differentiated cells are insufficient. Oxygen tension, the partial pressure of oxygen, has been shown to regulate the embryonic development of several organs, including pancreatic β-cells. In this study, we tried to establish an effective method for the differentiation of induced pluripotent stem cells (iPSCs) into insulin-producing cells by culturing under high oxygen (O2) conditions. Treatment with a high O2 condition in the early stage of differentiation increased insulin-positive cells at the terminus of differentiation. We found that a high O2 condition repressed Notch-dependent gene Hes1 expression and increased Ngn3 expression at the stage of pancreatic progenitors. This effect was caused by inhibition of hypoxia-inducible factor-1α protein level. Moreover, a high O2 condition activated Wnt signaling. Optimal stage-specific treatment with a high O2 condition resulted in a significant increase in insulin production in both mouse embryonic stem cells and human iPSCs and yielded populations containing up to 10% C-peptide-positive cells in human iPSCs. These results suggest that culturing in a high O2 condition at a specific stage is useful for the efficient generation of insulin-producing cells.

  1. Acceleration of diabetic wound healing with adipose-derived stem cells, endothelial-differentiated stem cells, and topical conditioned medium therapy in a swine model.

    PubMed

    Irons, Robin F; Cahill, Kevin W; Rattigan, Deviney A; Marcotte, Joseph H; Fromer, Marc W; Chang, Shaohua; Zhang, Ping; Behling, Eric M; Behling, Kathryn C; Caputo, Francis J

    2018-05-09

    The purpose of our study was to investigate the effect of adipose-derived stem cells (ASCs), endothelial-differentiated ASCs (EC/ASCs), and various conditioned media (CM) on wound healing in a diabetic swine model. We hypothesized that ASC-based therapies would accelerate wound healing. Diabetes was induced in four Yorkshire swine through intravenous injection of streptozotocin. ASCs were harvested from flank fat and cultured in either M199 or EGM-2 medium. A duplicate series of seven full-thickness dorsal wounds were surgically created on each swine. The wounds in the cellular treatment group underwent injection of low-dose or high-dose ASCs or EC/ASCs on day 0, with a repeat injection of one half of the initial dose on day 15. Wounds assigned to the topical CM therapy were covered with 2 mL of either serum-free M199 primed by ASCs or human umbilical vein endothelial cells every 3 days. Wounds were assessed at day 0, 10, 15, 20, and 28. The swine were sacrificed on day 28. ImageJ software was used to evaluate the percentage of wound healing. The wounded skin underwent histologic, reverse transcription polymerase chain reaction, and enzyme-linked immunosorbent assay examinations to evaluate markers of angiogenesis and inflammation. We found an increase in the percentage of wound closure rates in cell-based treatments and topical therapies at various points compared with the untreated control wounds (P < .05). The results from the histologic, messenger RNA, and protein analyses suggested the treated wounds displayed increased angiogenesis and a diminished inflammatory response. Cellular therapy with ASCs, EC/ASCs, and topical CM accelerated diabetic wound healing in the swine model. Enhanced angiogenesis and immunomodulation might be key contributors to this process. The purpose of the present study was to translate the known beneficial effects of adipose-derived stem cells and associated conditioned medium therapy on diabetic wound healing to a large animal

  2. Biomechanics of stem cells

    NASA Astrophysics Data System (ADS)

    Spector, A. A.; Yuan, D.; Somers, S.; Grayson, W. L.

    2018-04-01

    Stem cells play a key role in the healthy development and maintenance of organisms. They are also critically important in medical treatments of various diseases. It has been recently demonstrated that the mechanical factors such as forces, adhesion, stiffness, relaxation, etc. have significant effects on stem cell functions. Under physiological conditions, cells (stem cells) in muscles, heart, and blood vessels are under the action of externally applied strains. We consider the stem cell microenvironment and performance associated with their conversion (differentiation) into skeletal muscle cells. Two problems are studied by using mathematical models whose parameters are then optimized by fitting experiments. First, we present our analysis of the process of stem cell differentiation under the application of cyclic unidirectional strain. This process is interpreted as a transition through several (six) stages where each of them is defined in terms of expression of a set of factors typical to skeletal muscle cells. The stem cell evolution toward muscle cells is described by a system of nonlinear ODEs. The parameters of the model are determined by fitting the experimental data on the time course of expression of the factors under consideration. Second, we analyse the mechanical (relaxation) properties of a scaffold that serves as the microenvironment for stem cells differentiation into skeletal muscle cells. This scaffold (surrounded by a liquid solution) is composed of unidirectional fibers with pores between them. The relaxation properties of the scaffold are studied in an experiment where a long cylindrical specimen is loaded by the application of ramp displacement until the strain reaches a prescribed value. The magnitude of the corresponding load is recorded. The specimen is considered as transversely isotropic poroelastic cylinder whose force relaxation is associated with liquid diffusion through the pores. An analytical solution for the total force applied to

  3. Directing Adipose-Derived Stem Cells into Keratinocyte-Like Cells: Impact of Medium Composition and Culture Condition.

    PubMed

    Petry, L; Kippenberger, S; Meissner, M; Kleemann, J; Kaufmann, R; Rieger, U M; Wellenbrock, S; Reichenbach, G; Zöller, N; Valesky, E

    2018-04-28

    Adipose-derived stem cells (ASC) are known to transdifferentiate into a wide range of different cell species in vitro including along the epidermal lineage. This property makes them a promising tool for regenerative medicine in order to restore the epidermal barrier. The present study is dedicated to identify in vitro conditions enabling transdifferentiation to a keratinocyte-like phenotype. Especially, the impact of different culture conditions (media compositions, 2D-, 3D-cultures) and extracellular matrix (ECM) molecules was evaluated. ASC derived from subcutaneous abdominal fat were characterized by stemness associated markers and subjected to different media. Epithelial differentiation in 2D cultures was monitored by pan-cytokeratin expression using flow cytometry and immunocytochemistry. In order to evaluate the impact of different ECM molecules on epidermal stratification, 3D cultures were produced, lifted to the air-liquid-interface (ALI) and examined by histological analysis and quantitative real-time RT-PCR. We identified a medium composition containing retinoic acid, hydrocortisone, ascorbic acid and BMP-4 enabling maximum pan-cytokeratin expression in 2D cultures. Moreover, adhesion to type IV collagen further promotes the pan-cytokeratin expression. When cultures were lifted to the ALI, significant stratification was observed, particularly in supports coated with type IV collagen or fibronectin. Moreover, epidermal differentiation markers (involucrin, cytokeratin 1 and 14) become induced. Conditions with hampered wound healing such as non-healing ulcers demand new treatment regimes. The here introduced optimized protocols for transdifferentiation of ASC into keratinocyte-like cells may help to establish more effective treatment procedures. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  4. A Reduced-Intensity Conditioning Regimen for Patients with Dyskeratosis Congenita Undergoing Hematopoietic Stem Cell Transplantation.

    PubMed

    Nelson, Adam S; Marsh, Rebecca A; Myers, Kasiani C; Davies, Stella M; Jodele, Sonata; O'Brien, Tracey A; Mehta, Parinda A

    2016-05-01

    Allogeneic hematopoietic stem cell transplantation (HSCT) is the only curative option for progressive marrow failure, myelodysplastic syndrome, or leukemia associated with dyskeratosis congenita (DC). HSCT for DC is limited by a high incidence of treatment-related mortality, thought to be related to underlying chromosomal instability and sensitivity to chemotherapy and radiation. We report our experience in 7 patients with DC who underwent allogeneic transplantation using a reduced-intensity conditioning (RIC) preparative regimen that contained chemotherapy only (no radiation). This RIC regimen, designed specifically for patients with DC, contained alemtuzumab, fludarabine, and melphalan (with melphalan at 50% reduced dosing), with the goal of decreasing toxicity and improving outcome. All 7 patients engrafted, with none developing mixed chimerism or rejection. Two patients experienced acute graft-versus-host disease (GVHD) and 1 went on to develop limited chronic GVHD of the skin. Five patients remain alive and well at a median follow-up of 44 months (range, 14 to 57 months). We conclude that a radiation-free RIC regimen results in durable engraftment, acceptable toxicity, and improved overall survival in patients with DC undergoing allogeneic HSCT. Published by Elsevier Inc.

  5. In vitro cementoblast-like differentiation of postmigratory neural crest-derived p75{sup +} stem cells with dental follicle cell conditioned medium

    SciTech Connect

    Wen, Xiujie; Liu, Luchuan; Deng, Manjing

    Cranial neural crest-derived cells (CNCCs) play important role in epithelial–mesenchymal interactions during tooth morphogenesis. However, the heterogeneity of CNCCs and their tendency to spontaneously differentiate along smooth muscle or osteoblast lineages in vitro limit further understanding of their biological properties. We studied the differentiation properties of isolated rat embryonic postmigratory CNCCs, expressing p75 neurotrophin receptor (p75NTR). These p75NTR positive (p75{sup +}) CNCCs, isolated using fluorescence activated cell sorter, exhibited fibroblast-like morphology and characteristics of mesenchymal stem cells. Incubation of p75{sup +} CNCCs in dental follicle cell conditioned medium (DFCCM) combined with dentin non-collagenous proteins (dNCPs), altered their morphological features tomore » cementoblast-like appearance. These cells also showed low proliferative activity, high ALP activity and significantly increased calcified nodule formation. Markers related to mineralization or specific to cementoblast lineage were highly expressed in dNCPs/DFCCM-treated p75{sup +} cells, suggesting their differentiation along cementoblast-like lineage. p75{sup +} stem cells selected from postmigratory CNCCs represent a pure stem cell population and could be used as a stem cell model for in vitro studies due to their intrinsic ability to differentiate to neuronal cells and transform from neuroectoderm to ectomesenchyme. They can provide a potential stem cell resource for tooth engineering studies and help to further investigate mechanisms of epithelial–mesenchymal interactions in tooth morphogenesis. - Highlights: • Cranial neural crest-derived cells (CNCCs) take part in tooth morphogenesis. • positive (p75{sup +}) CNCCs are fibroblast-like and resemble mesenchymal stem cells. • p75{sup +} CNCCs in dental follicle cell medium (DFCCM/dNCP) appear like cementoblasts. • DFCCM/dNCP-treated p75{sup +} cells express cementoblast specific

  6. Plant stem cell niches.

    PubMed

    Stahl, Yvonne; Simon, Rüdiger

    2005-01-01

    Stem cells are required to support the indeterminate growth style of plants. Meristems are a plants stem cell niches that foster stem cell survival and the production of descendants destined for differentiation. In shoot meristems, stem cell fate is decided at the populational level. The size of the stem cell domain at the meristem tip depends on signals that are exchanged with cells of the organizing centre underneath. In root meristems, individual stem cells are controlled by direct interaction with cells of the quiescent centre that lie in the immediate neighbourhood. Analysis of the interactions and signaling processes in the stem cell niches has delivered some insights into the molecules that are involved and revealed that the two major niches for plant stem cells are more similar than anticipated.

  7. Regenerative and reparative effects of human chorion-derived stem cell conditioned medium on photo-aged epidermal cells

    PubMed Central

    Li, Qiankun; Chen, Yan; Ma, Kui; Zhao, Along; Zhang, Cuiping; Fu, Xiaobing

    2016-01-01

    ABSTRACT Epidermal cells are an important regenerative source for skin wound healing. Aged epidermal cells have a low ability to renew themselves and repair skin injury. Ultraviolet (UV) radiation, particularly UVB, can cause photo-aging of the skin by suppressing the viability of human epidermal cells. A chorion-derived stem cell conditioned medium (CDSC-CNM) is thought to have regenerative properties. This study aimed to determine the regenerative effects of CDSC-CNM on UVB-induced photo-aged epidermal cells. Epidermal cells were passaged four times and irradiated with quantitative UVB, and non-irradiated cells served as a control group. Cells were then treated with different concentrations of CDSC-CNM. Compared to the non-irradiated group, the proliferation rates and migration rates of UVB-induced photo-aged epidermal cells significantly decreased (p < 0.05) with increasing intracellular radical oxygen species (ROS) generation and DNA damage. After treatment with CDSC-CNM, photo-aged epidermal cells significantly improved their viability, and their ROS generation and DNA damage decreased. The secretory factors in CDSC-CNM, including epidermal growth factor (EGF), transforming growth factor-β (TGF-β), interleukin (IL)-6, and IL-8 and the related signaling pathway protein levels, increased compared to the control medium (CM). The potential regenerative and reparative effects of CDSC-CNM indicate that it may be a candidate material for the treatment of prematurely aged skin. The functions of the secretory factors and the mechanisms of CDSC-CNM therapy deserve further attention. PMID:27097375

  8. Anti-inflammatory effect of conditioned medium from human uterine cervical stem cells in uveitis.

    PubMed

    Bermudez, Maria A; Sendon-Lago, Juan; Seoane, Samuel; Eiro, Noemi; Gonzalez, Francisco; Saa, Jorge; Vizoso, Francisco; Perez-Fernandez, Roman

    2016-08-01

    The aim of the present study was to evaluate the effect of conditioned medium from human uterine cervical stem cells (CM-hUCESCs) in uveitis. To do that, uveitis was induced in rats after footpad injection of Escherichia coli lipopolysaccaride (LPS). Human retinal pigment epithelial (ARPE-19) cells after LPS challenge were used to test anti-inflammatory effect of CM-hUCESCs 'ìn vitro'. Real-time PCR was used to evaluate mRNA expression levels of the pro-inflammatory cytokines interkeukin-6, interkeukin-8, macrophage inflammatory protein-1 alpha, tumor necrosis factor alpha, and the anti-inflammatory interkeukin-10. Leucocytes from aqueous humor (AqH) were quantified in a Neubauer chamber, and eye histopathological analysis was done with hematoxylin-eosin staining. Additionally, using a human cytokine antibody array we evaluated CM-hUCESCs to determine mediating proteins. Results showed that administration of CM-hUCESCs significantly reduced LPS-induced pro-inflammatory cytokines both 'in vitro' and 'in vivo', and decreased leucocytes in AqH and ocular tissues. High levels of cytokines with anti-inflammatory effects were found in CM-hUCESCs, suggesting a possible role of these factors in reducing intraocular inflammation. In summary, treatment with CM-hUCESCs significantly reduces inflammation in uveitis. Our data indicate that CM-hUCESCs could be regarded as a potential therapeutic agent for patients suffering from ocular inflammation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Effect of berberine on the viability of adipose tissue-derived mesenchymal stem cells in nutrients deficient condition.

    PubMed

    Ghorbani, Ahmad; Baradaran Rahimi, Vafa; Sadeghnia, Hamid Reza; Hosseini, Azar

    2018-03-01

    This study was designed to examine whether berberine protects rat adipose tissue-derived stem cells (ASCs) against glucose and serum deprivation (GSD)-induced cell death. ASCs were cultured for 24 h in GSD condition in the presence of berberine and then cell viability, apoptosis and generation of reactive oxygen species (ROS) were evaluated. The GSD condition significantly decreased ASCs viability and increased ROS generation and apoptosis. Incubation with 0.75-3 μM berberine partially increased cell viability and decreased ROS generation and apoptosis in GSD condition. In conclusion, berberine partially protects ASCs in nutrients deficient condition and may help ASCs to preserve their survival during cell therapy of ischemia.

  10. Mesenchymal stem cells and their conditioned medium improve integration of purified induced pluripotent stem cell-derived cardiomyocyte clusters into myocardial tissue.

    PubMed

    Rubach, Martin; Adelmann, Roland; Haustein, Moritz; Drey, Florian; Pfannkuche, Kurt; Xiao, Bing; Koester, Annette; Udink ten Cate, Floris E A; Choi, Yeong-Hoon; Neef, Klaus; Fatima, Azra; Hannes, Tobias; Pillekamp, Frank; Hescheler, Juergen; Šarić, Tomo; Brockmeier, Konrad; Khalil, Markus

    2014-03-15

    Induced pluripotent stem cell-derived cardiomyocytes (iPS-CMs) might become therapeutically relevant to regenerate myocardial damage. Purified iPS-CMs exhibit poor functional integration into myocardial tissue. The aim of this study was to investigate whether murine mesenchymal stem cells (MSCs) or their conditioned medium (MScond) improves the integration of murine iPS-CMs into myocardial tissue. Vital or nonvital embryonic murine ventricular tissue slices were cocultured with purified clusters of iPS-CMs in combination with murine embryonic fibroblasts (MEFs), MSCs, or MScond. Morphological integration was assessed by visual scoring and functional integration by isometric force and field potential measurements. We observed a moderate morphological integration of iPS-CM clusters into vital, but a poor integration into nonvital, slices. MEFs and MSCs but not MScond improved morphological integration of CMs into nonvital slices and enabled purified iPS-CMs to confer force. Coculture of vital slices with iPS-CMs and MEFs or MSCs resulted in an improved electrical integration. A comparable improvement of electrical coupling was achieved with the cell-free MScond, indicating that soluble factors secreted by MSCs were involved in electrical coupling. We conclude that cells such as MSCs support the engraftment and adhesion of CMs, and confer force to noncontractile tissue. Furthermore, soluble factors secreted by MSCs mediate electrical coupling of purified iPS-CM clusters to myocardial tissue. These data suggest that MSCs may increase the functional engraftment and therapeutic efficacy of transplanted iPS-CMs into infarcted myocardium.

  11. Production of human pluripotent stem cell therapeutics under defined xeno-free conditions: progress and challenges.

    PubMed

    Fan, Yongjia; Wu, Jincheng; Ashok, Preeti; Hsiung, Michael; Tzanakakis, Emmanuel S

    2015-02-01

    Recent advances on human pluripotent stem cells (hPSCs), including human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) have brought us closer to the realization of their clinical potential. Nonetheless, tissue engineering and regenerative medicine applications will require the generation of hPSC products well beyond the laboratory scale. This also mandates the production of hPSC therapeutics in fully-defined, xeno-free systems and in a reproducible manner. Toward this goal, we summarize current developments in defined media free of animal-derived components for hPSC culture. Bioinspired and synthetic extracellular matrices for the attachment, growth and differentiation of hPSCs are also reviewed. Given that most progress in xeno-free medium and substrate development has been demonstrated in two-dimensional rather than three dimensional culture systems, translation from the former to the latter poses unique difficulties. These challenges are discussed in the context of cultivation platforms of hPSCs as aggregates, on microcarriers or after encapsulation in biocompatible scaffolds.

  12. Production of Human Pluripotent Stem Cell Therapeutics Under Defined Xeno-free Conditions: Progress and Challenges

    PubMed Central

    Fan, Yongjia; Wu, Jincheng; Ashok, Preeti; Hsiung, Michael; Tzanakakis, Emmanuel S.

    2014-01-01

    Recent advances on human pluripotent stem cells (hPSCs), including human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) have brought us closer to the realization of their clinical potential. Nonetheless, tissue engineering and regenerative medicine applications will require the generation of hPSC products well beyond the laboratory scale. This also mandates the production of hPSC therapeutics in fully-defined, xeno-free systems and in a reproducible manner. Toward this goal, we summarize current developments in defined media free of animal-derived components for hPSC culture. Bioinspired and synthetic extracellular matrices for the attachment growth and differentiation of hPSCs are also reviewed. Given that most progress in xeno-free medium and substrate development has been demonstrated in two-dimensional rather than three dimensional culture systems, translation from the former to the latter poses unique difficulties. These challenges are discussed in the context of cultivation platforms of hPSCs as aggregates, on microcarriers or after encapsulation in biocompatible scaffolds. PMID:25077810

  13. Defined Medium Conditions for the Induction and Expansion of Human Pluripotent Stem Cell-Derived Retinal Pigment Epithelium.

    PubMed

    Lidgerwood, Grace E; Lim, Shiang Y; Crombie, Duncan E; Ali, Ray; Gill, Katherine P; Hernández, Damián; Kie, Josh; Conquest, Alison; Waugh, Hayley S; Wong, Raymond C B; Liang, Helena H; Hewitt, Alex W; Davidson, Kathryn C; Pébay, Alice

    2016-04-01

    We demonstrate that a combination of Noggin, Dickkopf-1, Insulin Growth Factor 1 and basic Fibroblast Growth Factor, promotes the differentiation of human pluripotent stem cells into retinal pigment epithelium (RPE) cells. We describe an efficient one-step approach that allows the generation of RPE cells from both human embryonic stem cells and human induced pluripotent stem cells within 40-60 days without the need for manual excision, floating aggregates or imbedded cysts. Compared to methods that rely on spontaneous differentiation, our protocol results in faster differentiation into RPE cells. This pro-retinal culture medium promotes the growth of functional RPE cells that exhibit key characteristics of the RPE including pigmentation, polygonal morphology, expression of mature RPE markers, electrophysiological membrane potential and the ability to phagocytose photoreceptor outer segments. This protocol can be adapted for feeder, feeder-free and serum-free conditions. This method thereby provides a rapid and simplified production of RPE cells for downstream applications such as disease modelling and drug screening.

  14. Plant stem cell niches.

    PubMed

    Aichinger, Ernst; Kornet, Noortje; Friedrich, Thomas; Laux, Thomas

    2012-01-01

    Multicellular organisms possess pluripotent stem cells to form new organs, replenish the daily loss of cells, or regenerate organs after injury. Stem cells are maintained in specific environments, the stem cell niches, that provide signals to block differentiation. In plants, stem cell niches are situated in the shoot, root, and vascular meristems-self-perpetuating units of organ formation. Plants' lifelong activity-which, as in the case of trees, can extend over more than a thousand years-requires that a robust regulatory network keep the balance between pluripotent stem cells and differentiating descendants. In this review, we focus on current models in plant stem cell research elaborated during the past two decades, mainly in the model plant Arabidopsis thaliana. We address the roles of mobile signals on transcriptional modules involved in balancing cell fates. In addition, we discuss shared features of and differences between the distinct stem cell niches of Arabidopsis.

  15. Robust and Highly-Efficient Differentiation of Functional Monocytic Cells from Human Pluripotent Stem Cells under Serum- and Feeder Cell-Free Conditions

    PubMed Central

    Yanagimachi, Masakatsu D.; Niwa, Akira; Tanaka, Takayuki; Honda-Ozaki, Fumiko; Nishimoto, Seiko; Murata, Yuuki; Yasumi, Takahiro; Ito, Jun; Tomida, Shota; Oshima, Koichi; Asaka, Isao; Goto, Hiroaki; Heike, Toshio; Nakahata, Tatsutoshi; Saito, Megumu K.

    2013-01-01

    Monocytic lineage cells (monocytes, macrophages and dendritic cells) play important roles in immune responses and are involved in various pathological conditions. The development of monocytic cells from human embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) is of particular interest because it provides an unlimited cell source for clinical application and basic research on disease pathology. Although the methods for monocytic cell differentiation from ESCs/iPSCs using embryonic body or feeder co-culture systems have already been established, these methods depend on the use of xenogeneic materials and, therefore, have a relatively poor-reproducibility. Here, we established a robust and highly-efficient method to differentiate functional monocytic cells from ESCs/iPSCs under serum- and feeder cell-free conditions. This method produced 1.3×106±0.3×106 floating monocytes from approximately 30 clusters of ESCs/iPSCs 5–6 times per course of differentiation. Such monocytes could be differentiated into functional macrophages and dendritic cells. This method should be useful for regenerative medicine, disease-specific iPSC studies and drug discovery. PMID:23573196

  16. Non-integrating episomal plasmid-based reprogramming of human amniotic fluid stem cells into induced pluripotent stem cells in chemically defined conditions.

    PubMed

    Slamecka, Jaroslav; Salimova, Lilia; McClellan, Steven; van Kelle, Mathieu; Kehl, Debora; Laurini, Javier; Cinelli, Paolo; Owen, Laurie; Hoerstrup, Simon P; Weber, Benedikt

    2016-01-01

    Amniotic fluid stem cells (AFSC) represent an attractive potential cell source for fetal and pediatric cell-based therapies. However, upgrading them to pluripotency confers refractoriness toward senescence, higher proliferation rate and unlimited differentiation potential. AFSC were observed to rapidly and efficiently reacquire pluripotency which together with their easy recovery makes them an attractive cell source for reprogramming. The reprogramming process as well as the resulting iPSC epigenome could potentially benefit from the unspecialized nature of AFSC. iPSC derived from AFSC also have potential in disease modeling, such as Down syndrome or β-thalassemia. Previous experiments involving AFSC reprogramming have largely relied on integrative vector transgene delivery and undefined serum-containing, feeder-dependent culture. Here, we describe non-integrative oriP/EBNA-1 episomal plasmid-based reprogramming of AFSC into iPSC and culture in fully chemically defined xeno-free conditions represented by vitronectin coating and E8 medium, a system that we found uniquely suited for this purpose. The derived AF-iPSC lines uniformly expressed a set of pluripotency markers Oct3/4, Nanog, Sox2, SSEA-1, SSEA-4, TRA-1-60, TRA-1-81 in a pattern typical for human primed PSC. Additionally, the cells formed teratomas, and were deemed pluripotent by PluriTest, a global expression microarray-based in-silico pluripotency assay. However, we found that the PluriTest scores were borderline, indicating a unique pluripotent signature in the defined condition. In the light of potential future clinical translation of iPSC technology, non-integrating reprogramming and chemically defined culture are more acceptable.

  17. Human Umbilical Cord Wharton's Jelly Stem Cell Conditioned Medium Induces Tumoricidal Effects on Lymphoma Cells Through Hydrogen Peroxide Mediation.

    PubMed

    Lin, Hao Daniel; Fong, Chui-Yee; Biswas, Arijit; Choolani, Mahesh; Bongso, Ariff

    2016-09-01

    Several groups have reported that human umbilical cord Wharton's jelly stem cells (hWJSCs) possess unique tumoricidal properties against many cancers. However, the exact mechanisms as to how hWJSCs inhibit tumor growth are not known. Recent evidence suggests that exposure of cancer cells to high hydrogen peroxide (H2 O2 ) levels from H2 O2 -releasing drugs causes their death. We therefore explored whether the tumoricidal effect of hWJSCs on lymphoma cells was mediated via H2 O2 . We first exposed lymphoma cells to six different molecular weight cut-off (MWCO) concentrates of hWJSC-conditioned medium (hWJSC-CM) (3, 5, 10, 30, 50, 100 kDa) for 48 h. Since, the 3 kDa-MWCO concentrate showed the greatest cell inhibition we then investigated whether the tumoricidal effect of the specific 3 kDa-MWCO concentrate on two different lymphoma cell lines (Ramos and Toledo) was mediated via accumulation of H2 O2 . We used a battery of assays (MTT, propidium iodide, mitochondria membrane potential, apoptosis, cell cycle, oxidative stress enzymes, hydrogen peroxide, mitochondrial superoxide, hydroxyl radical, peroxynitrile anion, and lipid peroxidation) to test this mechanism. The hWJSC-CM-3 kDa MWCO concentrate significantly decreased cell viability and mitochondrial membrane potential and increased cell death and apoptosis in both lymphoma cell lines. There were significant increases in superoxide dismutase with concomitant decreases in glutathione peroxidase, catalase, and thioredoxin peroxidase activities. H2 O2 levels, mitochondrial superoxide, hydroxyl radical, peroxynitrile anion, and lipid peroxidation were also significantly increased in both lymphoma cell lines. The results suggested that the hWJSC-CM-3 kDa MWCO concentrate regulates cellular H2 O2 leading to a tumoricidal effect and may thus be a promising anti-lymphoma agent. J. Cell. Biochem. 117: 2045-2055, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  18. Do hypoxia/normoxia culturing conditions change the neuroregulatory profile of Wharton Jelly mesenchymal stem cell secretome?

    PubMed

    Teixeira, Fábio G; Panchalingam, Krishna M; Anjo, Sandra Isabel; Manadas, Bruno; Pereira, Ricardo; Sousa, Nuno; Salgado, António J; Behie, Leo A

    2015-07-24

    The use of human umbilical cord Wharton Jelly-derived mesenchymal stem cells (hWJ-MSCs) has been considered a new potential source for future safe applications in regenerative medicine. Indeed, the application of hWJ-MSCs into different animal models of disease, including those from the central nervous system, has shown remarkable therapeutic benefits mostly associated with their secretome. Conventionally, hWJ-MSCs are cultured and characterized under normoxic conditions (21 % oxygen tension), although the oxygen levels within tissues are typically much lower (hypoxic) than these standard culture conditions. Therefore, oxygen tension represents an important environmental factor that may affect the performance of mesenchymal stem cells in vivo. However, the impact of hypoxic conditions on distinct mesenchymal stem cell characteristics, such as the secretome, still remains unclear. In the present study, we have examined the effects of normoxic (21 % O2) and hypoxic (5 % O2) conditions on the hWJ-MSC secretome. Subsequently, we address the impact of the distinct secretome in the neuronal cell survival and differentiation of human neural progenitor cells. The present data indicate that the hWJ-MSC secretome collected from normoxic and hypoxic conditions displayed similar effects in supporting neuronal differentiation of human neural progenitor cells in vitro. However, proteomic analysis revealed that the use of hypoxic preconditioning led to the upregulation of several proteins within the hWJ-MSC secretome. Our results suggest that the optimization of parameters such as hypoxia may lead to the development of strategies that enhance the therapeutic effects of the secretome for future regenerative medicine studies and applications.

  19. Conditioned media from differentiating craniofacial bone marrow stromal cells influence mineralization and proliferation in periodontal ligament stem cells.

    PubMed

    Jin, Zhenyu; Feng, Yuan; Liu, Hongwei

    2016-10-01

    Previous reports have mainly focused on the behavioral responses of human periodontal ligament stem cells (hPDLSCs) in interaction with tibia bone marrow stromal cells (BMSCs). However, there is little study on the biologic features of hPDLSCs under the induction of maxilla BMSCs (M-BMSCs) at different phases of osteogenic differentiation. We hypothesized that M-BMSCs undergoing osteogenic differentiation acted on the proliferation, differentiation, and bone-forming capacity of hPDLSCs. In this paper, primary hPDLSCs and human M-BMSCs (hM-BMSCs) were expanded in vitro. After screening of surface markers for characterization, hPDLSCs were cocultured with different phases of differentiating hM-BMSCs. Cell proliferation and alkaline phosphatase activity were examined, and mineralization-associated markers such as osteocalcin and runt-related transcription factor 2 of hPDLSCs in coculture with uninduced/osteoinduced hM-BMSCs were evaluated. hPDLSCs in hM-BMSCs-conditioned medium (hM-BMSCs-CM) group showed a reduction in proliferation compared with untreated hPDLSCs, while osteoinduced hM-BMSCs for 10 day-conditioned medium (hM-BMSCs-CM-10ds) and osteoinduced hM-BMSCs for 15 day-conditioned medium (hM-BMSCs-CM-15ds) enhance the proliferation of hPDLSCs. hM-BMSCs of separate differentiation stages temporarily inhibited osteogenesis of hPDLSCs in the early days. Upon extending time periods, uninduced/osteoinduced hM-BMSCs markedly enhanced osteogenesis of hPDLSCs to different degrees. The transplantation results showed hM-BMSCs-CM-15ds treatment promoted tissue regeneration to generate cementum/periodontal ligament-like structure characterized by hard-tissue formation. This research supported the notion that hM-BMSCs triggered osteogenesis of hPDLSCs suggesting important implications for periodontal engineering.

  20. FGF1 and IGF1-conditioned 3D culture system promoted the amplification and cancer stemness of lung cancer cells.

    PubMed

    Liu, Pengpeng; Zhang, Rui; Yu, Wenwen; Ye, Yingnan; Cheng, Yanan; Han, Lei; Dong, Li; Chen, Yongzi; Wei, Xiyin; Yu, Jinpu

    2017-12-01

    Lung cancer stem cells (LCSCs) are considered as the cellular origins of metastasis and relapse of lung cancer. However, routine two-dimensional culture system (2D-culture) hardly mimics the growth and functions of LCSCs in vivo and therefore significantly decreases the stemness activity of LCSCs. In this study, we constructed a special BME-based three-dimensional culture system (3D-culture) to amplify LCSCs in human lung adenocarcinoma cell line A549 cells and found 3D-culture promoted the enrichment and amplification of LCSCs in A549 cells displaying higher proliferation potential and invasion activity, but lower apoptosis. The expression and secretion levels of FGF1 and IGF1 were dramatically elevated in 3D-culture compared to 2D-culture. After growing in FGF1 and IGF1-conditioned 3D-culture, the proportion of LCSCs with specific stemness phenotypes in A549 cells significantly increased compared to that in conventional 3D suspension culture system. Further results indicated that FGF1 and IGF1 promoted the amplification and cancer stemness of LCSCs dependent on MAPK signaling pathway. Our data firstly established a growth factors-conditioned 3D-culture for LCSCs and demonstrated the effects of FGF1 and IGF1 in promoting the enrichment and amplification of LCSCs which might provide a feasible cell model in vitro for both mechanism study and translational research on lung cancer. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Stem Cell Pathology.

    PubMed

    Fu, Dah-Jiun; Miller, Andrew D; Southard, Teresa L; Flesken-Nikitin, Andrea; Ellenson, Lora H; Nikitin, Alexander Yu

    2018-01-24

    Rapid advances in stem cell biology and regenerative medicine have opened new opportunities for better understanding disease pathogenesis and the development of new diagnostic, prognostic, and treatment approaches. Many stem cell niches are well defined anatomically, thereby allowing their routine pathological evaluation during disease initiation and progression. Evaluation of the consequences of genetic manipulations in stem cells and investigation of the roles of stem cells in regenerative medicine and pathogenesis of various diseases such as cancer require significant expertise in pathology for accurate interpretation of novel findings. Therefore, there is an urgent need for developing stem cell pathology as a discipline to facilitate stem cell research and regenerative medicine. This review provides examples of anatomically defined niches suitable for evaluation by diagnostic pathologists, describes neoplastic lesions associated with them, and discusses further directions of stem cell pathology.

  2. [Effects of different mechanical stretch conditions on differentiation of rat tendon stem cells].

    PubMed

    Li, Pao; Gao, Shang; Zhou, Mei; Tang, Hong; Mu, Miduo; Zhang, Jiqiang; Tang, Kanglai

    2017-04-01

    To investigate the effects of different mechanical stretch conditions on the differentiation of rat tendon stem cells (TSCs), to find the best uniaxial cyclic stretching for TSCs tenogenic differentiation, osteogenic differentiation, and adipogenic differentiation. TSCs were isolated from the Achilles tendons of 8-week-old male Sprague Dawley rats by enzymatic digestion method and cultured. The TSCs at passage 3 were randomly divided into 5 groups: group A (stretch strength of 4% and frequency of 1 Hz), group B (stretch strength of 4% and frequency of 2 Hz), group C (stretch strength of 8% and frequency of 1 Hz), group D (stretch strength of 8% and frequency of 2 Hz), and group E (static culture). At 12, 24, and 48 hours after mechanical stretch, the mRNA expressions of the tenogenic differentiation related genes [Scleraxis (SCX) and Tenascin C (TNC)], the osteogenic differentiation related genes [runt related transcription factor 2 (RUNX2) and distal-less homeobox 5 (DLX5)], and the adipogenic differentiation related genes [CCAAT-enhancer-binding protein-α (CEBPα) and lipoprteinlipase (LPL)] were detected by real-time fluorescent quantitative PCR and the protein expressions of TNC, CEBPα, and RUNX2 were detected by Western blot. The mRNA expressions of SCX and TNC in group B were significantly higher than those in groups A, C, D, and E at 24 hours after mechanical stretch ( P <0.05). The mRNA expressions of CEBPα and LPL in group D were significantly higher than those in groups A, B, C, and E at 48 hours after mechanical stretch ( P <0.05). The mRNA expressions of RUNX2 and DLX5 in group C were significantly higher than those in groups A, B, D, and E at 24 hours after mechanical stretch ( P <0.05). Western blot detection showed that higher protein expression of TNC in group B than group E at each time point after mechanical stretch ( P <0.05), and the protein expression of CEBPα was significantly inhibited when compared with group E at 24 hours after

  3. Influence of cell culture media conditions on the osteogenic differentiation of cord blood-derived mesenchymal stem cells.

    PubMed

    Hildebrandt, Cornelia; Büth, Heiko; Thielecke, Hagen

    2009-01-01

    In this study the critical parameters directing osteogenic differentiation of umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) were investigated, key factors and conditions identified and improved protocols for a more cell-type adapted differentiation developed. Today only little information about the specific conditions directing osteogenic development is available and current protocols for cultivation and differentiation of UCB-MSCs are based mainly on experience with bone marrow-derived MSCs (BM-MSCs) without further adaptation. Thus, protocols for improved osteoinduction are of particular interest. The goal of this study was to investigate the influence of three different culture media (A) alpha MEM, 15% FBS, (B) DMEM, 15% FBS and (C) MSCGM, 10% SingleQuot growth supplement on the osteogenic differentiation of UCB-MSCs. Moreover, a systematic analysis of two concentrations of dexamethasone (10(-8)M/10(-7)M) in combination with or without BMP-2 (10(-7)M) was carried out by detecting the expression of alkaline phosphatase (ALP), collagen-1 and the mineralization of ECM. We found that MSCGM, 10% SingleQuot had a supportive effect on the osteogenic differentiation of UCB-MSCs. In case of treatment with 10(-8)M dexamethasone, mineralization occurred in combination with BMP-2 exclusively, while a concentration of 10(-7)M dexamethasone led to a high amount of mineralized ECM and the expression of collagen-1 independent of BMP-2 addition. According to this data dexamethasone is the leading osteoinductive factor, but BMP-2 seems to have supportive properties in UCB-MSCs. In conclusion, MSCGM supplemented with 10% SingleQuot and 10(-7)M dexamethasone was the condition identified to be best for inducing the osteogenic differentiation of UCB-MSCs.

  4. Corneal epithelial wound healing and bactericidal effect of conditioned medium from human uterine cervical stem cells.

    PubMed

    Bermudez, Maria A; Sendon-Lago, Juan; Eiro, Noemi; Treviño, Mercedes; Gonzalez, Francisco; Yebra-Pimentel, Eva; Giraldez, Maria Jesus; Macia, Manuel; Lamelas, Maria Luz; Saa, Jorge; Vizoso, Francisco; Perez-Fernandez, Roman

    2015-01-22

    To evaluate the effect of conditioned medium from human uterine cervical stem cells (CM-hUCESCs) on corneal epithelial healing in a rat model of dry eye after alkaline corneal epithelial ulcer. We also tested the bactericidal effect of CM-hUCESCs. Dry eye was induced in rats by extraocular lacrimal gland excision, and corneal ulcers were produced using NaOH. Corneal histologic evaluation was made with hematoxylin-eosin (H&E) staining. Real-time PCR was used to evaluate mRNA expression levels of proinflammatory cytokines. We also studied the bactericidal effect of CM-hUCESCs in vitro and on infected corneal contact lenses (CLs) using Escherichia coli and Staphylococcus epidermidis bacteria. In addition, in order to investigate proteins from CM-hUCESCs that could mediate these effects, we carried out a human cytokine antibody array. After injury, dry eyes treated with CM-hUCESCs significantly improved epithelial regeneration and showed reduced corneal macrophage inflammatory protein-1 alpha (MIP-1α) and TNF-α mRNA expression as compared to untreated eyes and eyes treated with culture medium or sodium hyaluronate ophthalmic drops. In addition, we found in CM-hUCESCs high levels of proteins, such as tissue inhibitors of metalloproteinases 1 and 2, fibroblast growth factor 6 and 7, urokinase receptor, and hepatocyte growth factor, that could mediate these effects. In vitro, CM-hUCESCs showed a clear bactericidal effect on both E. coli and S. epidermidis and CLs infected with S. epidermidis. Analyses of CM-hUCESCs showed elevated levels of proteins that could be involved in the bactericidal effect, such as the chemokine (C-X-C motif) ligands 1, 6, 8, 10, and the chemokine (C-C motif) ligands 5 and 20. Treatment with CM-hUCESCs improved wound healing of alkali-injured corneas and showed a strong bactericidal effect on CLs. Patients using CLs and suffering from dry eye, allergies induced by commercial solutions, or small corneal injuries could benefit from this treatment

  5. Scalable Expansion of Human Pluripotent Stem Cell-Derived Neural Progenitors in Stirred Suspension Bioreactor Under Xeno-free Condition.

    PubMed

    Nemati, Shiva; Abbasalizadeh, Saeed; Baharvand, Hossein

    2016-01-01

    Recent advances in neural differentiation technology have paved the way to generate clinical grade neural progenitor populations from human pluripotent stem cells. These cells are an excellent source for the production of neural cell-based therapeutic products to treat incurable central nervous system disorders such as Parkinson's disease and spinal cord injuries. This progress can be complemented by the development of robust bioprocessing technologies for large scale expansion of clinical grade neural progenitors under GMP conditions for promising clinical use and drug discovery applications. Here, we describe a protocol for a robust, scalable expansion of human neural progenitor cells from pluripotent stem cells as 3D aggregates in a stirred suspension bioreactor. The use of this platform has resulted in easily expansion of neural progenitor cells for several passages with a fold increase of up to 4.2 over a period of 5 days compared to a maximum 1.5-2-fold increase in the adherent static culture over a 1 week period. In the bioreactor culture, these cells maintained self-renewal, karyotype stability, and cloning efficiency capabilities. This approach can be also used for human neural progenitor cells derived from other sources such as the human fetal brain.

  6. Methods for Stem Cell Production and Therapy

    NASA Technical Reports Server (NTRS)

    Valluri, Jagan V. (Inventor); Claudio, Pier Paolo (Inventor)

    2015-01-01

    The present invention relates to methods for rapidly expanding a stem cell population with or without culture supplements in simulated microgravity conditions. The present invention relates to methods for rapidly increasing the life span of stem cell populations without culture supplements in simulated microgravity conditions. The present invention also relates to methods for increasing the sensitivity of cancer stem cells to chemotherapeutic agents by culturing the cancer stem cells under microgravity conditions and in the presence of omega-3 fatty acids. The methods of the present invention can also be used to proliferate cancer cells by culturing them in the presence of omega-3 fatty acids. The present invention also relates to methods for testing the sensitivity of cancer cells and cancer stem cells to chemotherapeutic agents by culturing the cancer cells and cancer stem cells under microgravity conditions. The methods of the present invention can also be used to produce tissue for use in transplantation by culturing stem cells or cancer stem cells under microgravity conditions. The methods of the present invention can also be used to produce cellular factors and growth factors by culturing stem cells or cancer stem cells under microgravity conditions. The methods of the present invention can also be used to produce cellular factors and growth factors to promote differentiation of cancer stem cells under microgravity conditions.

  7. Stem Cells and Aging.

    PubMed

    Koliakos, George

    2017-02-01

    The article is a presentation at the 4th Conference of ESAAM, which took place on October 30-31, 2015, in Athens, Greece. Its purpose was not to cover all aspects of cellular aging but to share with the audience of the Conference, in a 15-minute presentation, current knowledge about the rejuvenating and repairing somatic stem cells that are distinct from other stem cell types (such as embryonic or induced pluripotent stem cells), emphasize that our body in old age cannot take advantage of these rejuvenating cells, and provide some examples of novel experimental stem cell applications in the field of rejuvenation and antiaging biomedical research.

  8. Stem cells and reproduction.

    PubMed

    Du, Hongling; Taylor, Hugh S

    2010-06-01

    To review the latest developments in reproductive tract stem cell biology. In 2004, two studies indicated that ovaries contain stem cells which form oocytes in adults and that can be cultured in vitro into mature oocytes. A live birth after orthotopic transplantation of cryopreserved ovarian tissue in a woman whose ovaries were damaged by chemotherapy demonstrates the clinical potential of these cells. In the same year, another study provided novel evidence of endometrial regeneration by stem cells in women who received bone marrow transplants. This finding has potential for the use in treatment of uterine disorders. It also supports a new theory for the cause of endometriosis, which may have its origin in ectopic transdifferentiation of stem cells. Several recent studies have demonstrated that fetal cells enter the maternal circulation and generate microchimerism in the mother. The uterus is a dynamic organ permeable to fetal stem cells, capable of transdifferentiation and an end organ in which bone marrow stem cells may differentiate. Finally stem cell transformation can be an underlying cause of ovarian cancer. Whereas we are just beginning to understand stem cells, the potential implications of stem cells to reproductive biology and medicine are apparent.

  9. Elimination of remaining undifferentiated induced pluripotent stem cells in the process of human cardiac cell sheet fabrication using a methionine-free culture condition.

    PubMed

    Matsuura, Katsuhisa; Kodama, Fumiko; Sugiyama, Kasumi; Shimizu, Tatsuya; Hagiwara, Nobuhisa; Okano, Teruo

    2015-03-01

    Cardiac tissue engineering is a promising method for regenerative medicine. Although we have developed human cardiac cell sheets by integration of cell sheet-based tissue engineering and scalable bioreactor culture, the risk of contamination by induced pluripotent stem (iPS) cells in cardiac cell sheets remains unresolved. In the present study, we established a novel culture method to fabricate human cardiac cell sheets with a decreased risk of iPS cell contamination while maintaining viabilities of iPS cell-derived cells, including cardiomyocytes and fibroblasts, using a methionine-free culture condition. When cultured in the methionine-free condition, human iPS cells did not survive without feeder cells and could not proliferate or form colonies on feeder cells or in coculture with cells for cardiac cell sheet fabrication. When iPS cell-derived cells after the cardiac differentiation were transiently cultured in the methionine-free condition, gene expression of OCT3/4 and NANOG was downregulated significantly compared with that in the standard culture condition. Furthermore, in fabricated cardiac cell sheets, spontaneous and synchronous beating was observed in the whole area while maintaining or upregulating the expression of various cardiac and extracellular matrix genes. These findings suggest that human iPS cells are methionine dependent and a methionine-free culture condition for cardiac cell sheet fabrication might reduce the risk of iPS cell contamination.

  10. Characterization of Phenotypic and Transcriptional Differences in Human Pluripotent Stem Cells under 2D and 3D Culture Conditions.

    PubMed

    Kamei, Ken-Ichiro; Koyama, Yoshie; Tokunaga, Yumie; Mashimo, Yasumasa; Yoshioka, Momoko; Fockenberg, Christopher; Mosbergen, Rowland; Korn, Othmar; Wells, Christine; Chen, Yong

    2016-11-01

    Human pluripotent stem cells hold great promise for applications in drug discovery and regenerative medicine. Microfluidic technology is a promising approach for creating artificial microenvironments; however, although a proper 3D microenvironment is required to achieve robust control of cellular phenotypes, most current microfluidic devices provide only 2D cell culture and do not allow tuning of physical and chemical environmental cues simultaneously. Here, the authors report a 3D cellular microenvironment plate (3D-CEP), which consists of a microfluidic device filled with thermoresponsive poly(N-isopropylacrylamide)-β-poly(ethylene glycol) hydrogel (HG), which enables systematic tuning of both chemical and physical environmental cues as well as in situ cell monitoring. The authors show that H9 human embryonic stem cells (hESCs) and 253G1 human induced pluripotent stem cells in the HG/3D-CEP system maintain their pluripotent marker expression under HG/3D-CEP self-renewing conditions. Additionally, global gene expression analyses are used to elucidate small variations among different test environments. Interestingly, the authors find that treatment of H9 hESCs under HG/3D-CEP self-renewing conditions results in initiation of entry into the neural differentiation process by induction of PAX3 and OTX1 expression. The authors believe that this HG/3D-CEP system will serve as a versatile platform for developing targeted functional cell lines and facilitate advances in drug screening and regenerative medicine. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Generation of enhanced definitive endoderm from human embryonic stem cells under an albumin/insulin-free and chemically defined condition.

    PubMed

    Qu, Su; Yan, Liang; Fang, Bo; Ye, Shoudong; Li, Ping; Ge, Shengyang; Wu, Jian; Qu, Di; Song, Houyan

    2017-04-15

    To enhance survival and generation of definitive endoderm cells from human embryonic stem cells in a simple and reproducible system. Definitive endoderm (DE) differentiation from human embryonic stem cells (hESCs) was induced under a chemical-defined condition withdrawn insulin supplement and serum albumin. We dissected influence of "alternative growth factors", WNT3A, BMP4 and bFGF in activin A-driven differentiation by detection of DE-associated genes expression and cell viability. Expression of DE-associated SOX17 and FOXA2 genes was analyzed by real time reverse transcription polymerase chain reaction (RT-PCR) and Western blot assays. Quantitative evaluation of DE efficiency was performed by flow cytometry analysis of CXCR4-expressed cell population. Cell viability during DE differentiation was analyzed by an Annexin V/PI double staining test. Supplementation with WNT3A, BMP4 or bFGF promoted DE generation in a dose- and time-dependent manner. Cell apoptosis elicited by activin A was significantly ameliorated by a cocktail with WNT3A, BMP4 and bFGF. This allowed for sustained cell viability without insulin-containing supplements, thereby indirectly improving the efficiency of DE generation. Therefore, the cocktail containing is optimal for efficient DE generation in the presence of activin A and an insulin/albumin-free condition. This optimal condition facilitates the balance between the productivity and the viability maintenance, and could be valuable for mass production of DE with minimal variation. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Differentiation of Mesenchymal Stem Cells from Human Umbilical Cord Tissue into Odontoblast-Like Cells Using the Conditioned Medium of Tooth Germ Cells In Vitro

    PubMed Central

    Li, Tian Xia; Yuan, Jie; Chen, Yan; Pan, Li Jie; Song, Chun; Bi, Liang Jia; Jiao, Xiao Hui

    2013-01-01

    The easily accessible mesenchymal stem cells in the Wharton's jelly of human umbilical cord tissue (hUCMSCs) have excellent proliferation and differentiation potential, but it remains unclear whether hUCMSCs can differentiate into odontoblasts. In this study, mesenchymal stem cells were isolated from the Wharton's jelly of human umbilical cord tissue using the simple method of tissue blocks culture attachment. UCMSC surface marker expression was then evaluated for the isolated cells using flow cytometry. The third-passage hUCMSCs induced by conditioned medium from developing tooth germ cells (TGC-CM) displayed high alkaline phosphatase (ALP) levels (P < 0.001), an enhanced ability to proliferate (P < 0.05), and the presence of mineralized nodules. These effects were not observed in cells treated with regular medium. After induction of hUCMSCs, the results of reverse transcriptional polymerase chain reaction (PCR) indicated that the dentin sialophosphoprotein (DSPP) and dentin matrix protein 1 (DMP1) genes were significantly tested. Additionally, dentin sialoprotein (DSP) and DMP1 demonstrated significant levels of staining in an immunofluorescence analysis. In contrast, the control cells failed to display the characteristics of odontoblasts. Taken together, these results suggest that hUCMSCs can be induced to differentiate into odontoblast-like cells with TGC-CM and provide a novel strategy for tooth regeneration research. PMID:23762828

  13. Reproductive capability in dogs with canine leukocyte adhesion deficiency treated with nonmyeloablative conditioning prior to allogeneic hematopoietic stem cell transplantation

    PubMed Central

    Burkholder, Tanya H.; Colenda, Lyn; Tuschong, Laura M.; Starost, Matthew F.; Bauer, Thomas R.; Hickstein, Dennis D.

    2006-01-01

    Nonmyeloablative conditioning regimens are increasingly replacing myeolablative conditioning prior to allogeneic hematopoietic stem cell transplantation (SCT). The recent advent of these conditioning regimens has limited the assessment of the long-term effects of this treatment, including analysis of reproductive function. To address the question of reproductive function after nonmyeloablative transplantation, we analyzed a cohort of young dogs with the genetic disease canine leukocyte adhesion deficiency that were treated with a nonmyeloablative dose of 200 cGy total body irradiation followed by matched-littermate SCT. Five males and 5 females entered puberty; all 5 males and 4 females subsequently sired or delivered litters following transplantation. We demonstrate that fertility is intact and dogs have uncomplicated parturitions following nonmyeloablative conditioning for SCT. These results are encouraging for children and adults of childbearing age who receive similar conditioning regimens prior to allogeneic transplantation. PMID:16645166

  14. Growth and cell wall changes in stem organs under microgravity and hypergravity conditions

    NASA Astrophysics Data System (ADS)

    Hoson, Takayuki; Soga, Kouichi; Wakabayashi, Kazuyuki; Kamisaka, Seiichiro

    Gravity strongly influences plant growth and development, which is fundamentally brought about by modifications to the properties of the cell wall. We have examined the changes in growth and cell wall properties in seedling organs under hypergravity conditions produced by centrifugation and under microgravity conditions in space. Hypergravity stimuli have been shown to decrease the growth rate of various seedling organs. When hypergravity suppressed elongation growth, a decrease in cell wall extensibility (an increase in cell wall rigidity) was induced. Hypergravity has also been shown to increase cell wall thickness in various mate-rials. In addition, a polymerization of certain matrix polysaccharides was brought about by hypergravity: in dicotyledons hypergravity increased the molecular size of xyloglucans, whereas hypergravity increased that of 1,3,1,4-β-glucans in monocotyledonous Gramineae. These mod-ifications to cell wall metabolism may be responsible for a decrease in cell wall extensibility, leading to growth suppression under hypergravity conditions. How then does microgravity in-fluence growth and cell wall properties? Here, there was a possibility that microgravity might induce changes similar to those by hypergravity, because plants have evolved and adapted to 1 g condition for more than 400 million years. However, the changes observed under microgravity conditions in space were just opposite to those induced by hypergravity: stimulation of elonga-tion growth, an increase in cell wall extensibility, and a decrease in cell wall thickness as well as depolymerization of cell wall polysaccharides were brought about in space. Furthermore, growth and cell wall properties varied in proportion to the logarithm of the magnitude of grav-ity in the range from microgravity to hypergravity, as shown in the dose-response relation in light and hormonal responses. Thus, microgravity may be a `stress-less' environment for plant seedlings to grow and develop

  15. Ultrastructural evaluation of mesenchymal stem cells from inflamed periodontium in different in vitro conditions.

    PubMed

    Zaganescu, Raluca; Barbu Tudoran, Lucian; Pall, Emoke; Florea, Adrian; Roman, Alexandra; Soanca, Andrada; Mihaela Mihu, Carmen

    2015-09-01

    This research aimed to observe the behavior of mesenchymal stem cells (MSCs) isolated from periodontal granulation tissue (gt) when manipulated ex vivo to induce three-dimensional (3D) spheroid (aggregates) formation as well as when seeded on two bone scaffolds of animal origin. Periodontal gt was chosen as a MSC source because of its availability, considering that it is eliminated as a waste material during conventional surgical therapies. 3D aggregates of cells were generated; they were grown for 3 and 7 days, respectively, and then prepared for transmission electron microscopic analysis. The two biomaterials were seeded for 72 h with gtMSCs and prepared for scanning electronic microscopic observation. The ultrastructural analysis of 3D spheroids remarked some differences between the inner and the outer cell layers, with a certain commitment observed at the inner cells. Both scaffolds showed a relatively smooth surface at low magnification. Macro- and micropores having a scarce distribution were observed on both bone substitutes. gtMSCs grew with relative difficulty on the biomaterials. After 72 h of proliferation, gtMSCs scarcely covered the surface of bovine bone scaffolds, demonstrating fibroblast-like or star-like shapes with elongated filiform extensions. Our results add other data on the possible usefulness of gtMSC and could question the current paradigm regarding the complete removal of chronically inflamed gts from the defects during periodontal surgeries. Until optimal protocols for ex vivo manipulation of MSCs are available for clinical settings, it is advisable to use biocompatible bone substitutes that allow the development of progenitor cells. © 2015 Wiley Periodicals, Inc.

  16. Mesenchymal stem cell-conditioned medium triggers neuroinflammation and reactive species generation in organotypic cultures of rat hippocampus.

    PubMed

    Horn, Ana Paula; Bernardi, Andressa; Luiz Frozza, Rudimar; Grudzinski, Patrícia Bencke; Hoppe, Juliana Bender; de Souza, Luiz Fernando; Chagastelles, Pedro; de Souza Wyse, Angela Terezinha; Bernard, Elena Aida; Battastini, Ana Maria Oliveira; Campos, Maria Martha; Lenz, Guido; Nardi, Nance Beyer; Salbego, Christianne

    2011-07-01

    Cell therapy using bone marrow-derived mesenchymal stem cells (MSCs) seems to be a new alternative for the treatment of neurodegenerative diseases. Despite several promising results with their use, possible side effects are still unknown. In a previous work, we have shown that MSC-conditioned medium is toxic to hippocampal slice cultures and aggravates cell death induced by oxygen and glucose deprivation. In this work, we investigated whether the inflammatory response and/or reactive species formation could be involved in that toxicity. Rat organotypic hippocampal cultures were exposed for 24 h to conditioned medium from MSCs isolated from rat bone marrow. A marked glial activation was observed after exposure of cultures to MSC-conditioned medium, as evidenced by glial fibrillary acid protein (GFAP) and isolectin B(4) increase. Tumor necrosis factor-α and interleukin-6 levels were increased in the culture medium, and 2,7-dihydrodichlorofluorescein diacetate oxidation (indicating reactive species generation) and inducible nitric oxide synthase (iNOS) immunocontent were also higher after exposure of cultures to MSC-conditioned medium. Antioxidants (ascorbic acid and TROLOX(®)), N(ω)-nitro-l-arginine methyl ester hydrochloride, and anti-inflammatory drugs (indomethacin and dexamethasone) reduced cell death in hippocampal organotypic cultures after their exposure to MSC-conditioned medium. The results obtained here suggest that MSC-secreted factors trigger reactive species generation and neuroinflammation in organotypic cultures of hippocampus, introducing a note of caution in the use of these cells for neurological application.

  17. BMP2 repression and optimized culture conditions promote human bone marrow-derived mesenchymal stem cell isolation.

    PubMed

    Kay, Alasdair Gawain; Dale, Tina Patricia; Akram, Khondoker Mehedi; Mohan, Param; Hampson, Karen; Maffulli, Nicola; Spiteri, Monica A; El Haj, Alicia Jennifer; Forsyth, Nicholas Robert

    2015-01-01

    Human mesenchymal stem cells (hMSC) are multipotent progenitor cells. We propose the optimization of hMSC isolation and recovery using the application of a controlled hypoxic environment. We evaluated oxygen, glucose and serum in the recovery of hMSC from bone marrow (BMhMSC). Colony forming units-fibroblastic, cell numbers, tri-lineage differentiation, immunofluorescence and microarray were used to confirm and characterize BMhMSC. In an optimized (2% O(2), 4.5 g/l glucose and 5% serum) environment both colony forming units-fibroblastic (p = 0.01) and cell numbers (p = 0.0001) were enhanced over standard conditions. Transcriptional analysis identified differential expression of bone morphogenetic protein 2 (BMP2) and, putatively, chemokine (C-X-C motif) receptor 2 (CXCR2) signaling pathways. We have detailed a potential milestone in the process of refinement of the BMhMSC isolation process.

  18. Regulation of HIF-1-Alpha, miR-200, and Markers of Cancer Stem Cells by CDF Under Hypoxic Condition

    DTIC Science & Technology

    2012-04-01

    tumors. It has been well recognized that cancer stem cells (CSCs) and epithelial-to- mesenchymal transition (EMT) phenotypic cells are associated with...epithelial-to- mesenchymal transition (EMT), cancer stem cell (CSC) functions, and inflammation, which contribute to radiation therapy and chemotherapy... Hypoxia induces the VEGF and IL-6 cytokine production in PCa cells and its CSC-like sphere forming cells . ● The CSC-like sphere forming

  19. The sensitivity of human mesenchymal stem cells to vibration and cold storage conditions representative of cold transportation

    PubMed Central

    Nikolaev, N. I.; Liu, Y.; Hussein, H.; Williams, D. J.

    2012-01-01

    In the current study, the mechanical and hypothermic damage induced by vibration and cold storage on human mesenchymal stem cells (hMSCs) stored at 2–8°C was quantified by measuring the total cell number and cell viability after exposure to vibration at 50 Hz (peak acceleration 140 m s−2 and peak displacement 1.4 mm), 25 Hz (peak acceleration 140 m s−2, peak displacement 5.7 mm), 10 Hz (peak acceleration 20 m s−2, peak displacement 5.1 mm) and cold storage for several durations. To quantify the viability of the cells, in addition to the trypan blue exclusion method, the combination of annexin V-FITC and propidium iodide was applied to understand the mode of cell death. Cell granularity and a panel of cell surface markers for stemness, including CD29, CD44, CD105 and CD166, were also evaluated for each condition. It was found that hMSCs were sensitive to vibration at 25 Hz, with moderate effects at 50 Hz and no effects at 10 Hz. Vibration at 25 Hz also increased CD29 and CD44 expression. The study further showed that cold storage alone caused a decrease in cell viability, especially after 48 h, and also increased CD29 and CD44 and attenuated CD105 expressions. Cell death would most likely be the consequence of membrane rupture, owing to necrosis induced by cold storage. The sensitivity of cells to different vibrations within the mechanical system is due to a combined effect of displacement and acceleration, and hMSCs with a longer cold storage duration were more susceptible to vibration damage, indicating a coupling between the effects of vibration and cold storage. PMID:22628214

  20. Regulatory role of hexosamine biosynthetic pathway on hepatic cancer stem cell marker CD133 under low glucose conditions

    NASA Astrophysics Data System (ADS)

    Lin, Shu-Hai; Liu, Tengfei; Ming, Xiaoyan; Tang, Zhi; Fu, Li; Schmitt-Kopplin, Philippe; Kanawati, Basem; Guan, Xin-Yuan; Cai, Zongwei

    2016-02-01

    Cancer was hypothesized to be driven by cancer stem cells (CSCs), but the metabolic determinants of CSC-like phenotype still remain elusive. Here, we present that hexosamine biosynthetic pathway (HBP) at least in part rescues cancer cell fate with inactivation of glycolysis. Firstly, metabolomic analysis profiled cellular metabolome in CSCs of hepatocellular carcinoma using CD133 cell-surface marker. The metabolic signatures of CD133-positive subpopulation compared to CD133-negative cells highlighted HBP as one of the distinct metabolic pathways, prompting us to uncover the role of HBP in maintenance of CSC-like phenotype. To address this, CSC-like phenotypes and cell survival were investigated in cancer cells under low glucose conditions. As a result, HBP inhibitor azaserine reduced CD133-positive subpopulation and CD133 expression under high glucose condition. Furthermore, treatment of N-Acetylglucosamine in part restores CD133-positive subpopulation when either 2.5 mM glucose in culture media or glycolytic inhibitor 2-deoxy-D-glucose in HCC cell lines was applied, enhancing CD133 expression as well as promoting cancer cell survival. Together, HBP might be a key metabolic determinant in the functions of hepatic CSC marker CD133.

  1. Fish stem cell cultures.

    PubMed

    Hong, Ni; Li, Zhendong; Hong, Yunhan

    2011-04-13

    Stem cells have the potential for self-renewal and differentiation. First stem cell cultures were derived 30 years ago from early developing mouse embryos. These are pluripotent embryonic stem (ES) cells. Efforts towards ES cell derivation have been attempted in other mammalian and non-mammalian species. Work with stem cell culture in fish started 20 years ago. Laboratory fish species, in particular zebrafish and medaka, have been the focus of research towards stem cell cultures. Medaka is the second organism that generated ES cells and the first that gave rise to a spermatogonial stem cell line capable of test-tube sperm production. Most recently, the first haploid stem cells capable of producing whole animals have also been generated from medaka. ES-like cells have been reported also in zebrafish and several marine species. Attempts for germline transmission of ES cell cultures and gene targeting have been reported in zebrafish. Recent years have witnessed the progress in markers and procedures for ES cell characterization. These include the identification of fish homologs/paralogs of mammalian pluripotency genes and parameters for optimal chimera formation. In addition, fish germ cell cultures and transplantation have attracted considerable interest for germline transmission and surrogate production. Haploid ES cell nuclear transfer has proven in medaka the feasibility of semi-cloning as a novel assisted reproductive technology. In this special issue on "Fish Stem Cells and Nuclear Transfer", we will focus our review on medaka to illustrate the current status and perspective of fish stem cells in research and application. We will also mention semi-cloning as a new development to conventional nuclear transfer.

  2. Fish Stem Cell Cultures

    PubMed Central

    Hong, Ni; Li, Zhendong; Hong, Yunhan

    2011-01-01

    Stem cells have the potential for self-renewal and differentiation. First stem cell cultures were derived 30 years ago from early developing mouse embryos. These are pluripotent embryonic stem (ES) cells. Efforts towards ES cell derivation have been attempted in other mammalian and non-mammalian species. Work with stem cell culture in fish started 20 years ago. Laboratory fish species, in particular zebrafish and medaka, have been the focus of research towards stem cell cultures. Medaka is the second organism that generated ES cells and the first that gave rise to a spermatogonial stem cell line capable of test-tube sperm production. Most recently, the first haploid stem cells capable of producing whole animals have also been generated from medaka. ES-like cells have been reported also in zebrafish and several marine species. Attempts for germline transmission of ES cell cultures and gene targeting have been reported in zebrafish. Recent years have witnessed the progress in markers and procedures for ES cell characterization. These include the identification of fish homologs/paralogs of mammalian pluripotency genes and parameters for optimal chimera formation. In addition, fish germ cell cultures and transplantation have attracted considerable interest for germline transmission and surrogate production. Haploid ES cell nuclear transfer has proven in medaka the feasibility of semi-cloning as a novel assisted reproductive technology. In this special issue on “Fish Stem Cells and Nuclear Transfer”, we will focus our review on medaka to illustrate the current status and perspective of fish stem cells in research and application. We will also mention semi-cloning as a new development to conventional nuclear transfer. PMID:21547056

  3. Hypoxic Conditioned Medium From Human Adipose-Derived Stem Cells Promotes Mouse Liver Regeneration Through JAK/STAT3 Signaling

    PubMed Central

    Lee, Sang Chul; Jeong, Hye Jin; Lee, Sang Kuon

    2016-01-01

    Adipose-derived stem cells (ASCs) mainly exert their function by secreting materials that are collectively termed the secretome. Despite recent attention to the secretome as an alternative to stem cell therapy, the culture conditions for generating optimal secretome contents have not been determined. Therefore, we investigated the role of hypoxic-conditioned media (HCM) from ASCs. Normoxic-conditioned media (NCM) and HCM were obtained after culturing ASCs in 20% O2 or 1% O2 for 24 hours, respectively. Subsequently, partially hepatectomized mice were infused with saline, control medium, NCM, or HCM, and then sera and liver specimens were obtained for analyses. Hypoxia (1% O2) significantly increased mRNA expression of mediators from ASCs, including interleukin-6 (IL-6), tumor necrosis factor α (TNF-α), hepatocyte growth factor (HGF), and vascular endothelial growth factor (VEGF). HCM infusion significantly increased the number of Ki67-positive cells in the liver (p < .05). HCM infusion significantly increased phospho-signal transducer and activator of transcription 3 (STAT3) and decreased suppressor of cytokine signaling 3 (SOCS3) expression in the liver (p < .05). To determine the role of IL-6 in liver regeneration, we then performed IL-6 RNA interference study. Conditioned media (CM) obtained from ASCs, which were transfected with either siIL-6 or siControl, were administered to partially hepatectomized mice. The siIL-6 CM groups exhibited lower liver proliferation (Ki67-positive cells) and markers of regeneration (protein expression of proliferating cell nuclear antigen, p-STAT3, HGF, and VEGF and liver weights) than the siControl CM groups (p < .05). Taken together, hypoxic preconditioning of ASCs increased expression of mediators promoting anti-inflammatory and regenerative responses. The liver regenerative effects of HCM appear to be mediated by persistent and uninhibited expression of STAT3 in the liver, which results from decreased expression of SOCS3

  4. Neurosphere and adherent culture conditions are equivalent for malignant glioma stem cell lines.

    PubMed

    Rahman, Maryam; Reyner, Karina; Deleyrolle, Loic; Millette, Sebastien; Azari, Hassan; Day, Bryan W; Stringer, Brett W; Boyd, Andrew W; Johns, Terrance G; Blot, Vincent; Duggal, Rohit; Reynolds, Brent A

    2015-03-01

    Certain limitations of the neurosphere assay (NSA) have resulted in a search for alternative culture techniques for brain tumor-initiating cells (TICs). Recently, reports have described growing glioblastoma (GBM) TICs as a monolayer using laminin. We performed a side-by-side analysis of the NSA and laminin (adherent) culture conditions to compare the growth and expansion of GBM TICs. GBM cells were grown using the NSA and adherent culture conditions. Comparisons were made using growth in culture, apoptosis assays, protein expression, limiting dilution clonal frequency assay, genetic affymetrix analysis, and tumorigenicity in vivo. In vitro expansion curves for the NSA and adherent culture conditions were virtually identical (P=0.24) and the clonogenic frequencies (5.2% for NSA vs. 5.0% for laminin, P=0.9) were similar as well. Likewise, markers of differentiation (glial fibrillary acidic protein and beta tubulin III) and proliferation (Ki67 and MCM2) revealed no statistical difference between the sphere and attachment methods. Several different methods were used to determine the numbers of dead or dying cells (trypan blue, DiIC, caspase-3, and annexin V) with none of the assays noting a meaningful variance between the two methods. In addition, genetic expression analysis with microarrays revealed no significant differences between the two groups. Finally, glioma cells derived from both methods of expansion formed large invasive tumors exhibiting GBM features when implanted in immune-compromised animals. A detailed functional, protein and genetic characterization of human GBM cells cultured in serum-free defined conditions demonstrated no statistically meaningful differences when grown using sphere (NSA) or adherent conditions. Hence, both methods are functionally equivalent and remain suitable options for expanding primary high-grade gliomas in tissue culture.

  5. Neurosphere and adherent culture conditions are equivalent for malignant glioma stem cell lines

    PubMed Central

    Reyner, Karina; Deleyrolle, Loic; Millette, Sebastien; Azari, Hassan; Day, Bryan W.; Stringer, Brett W.; Boyd, Andrew W.; Johns, Terrance G.; Blot, Vincent; Duggal, Rohit; Reynolds, Brent A.

    2015-01-01

    Certain limitations of the neurosphere assay (NSA) have resulted in a search for alternative culture techniques for brain tumor-initiating cells (TICs). Recently, reports have described growing glioblastoma (GBM) TICs as a monolayer using laminin. We performed a side-by-side analysis of the NSA and laminin (adherent) culture conditions to compare the growth and expansion of GBM TICs. GBM cells were grown using the NSA and adherent culture conditions. Comparisons were made using growth in culture, apoptosis assays, protein expression, limiting dilution clonal frequency assay, genetic affymetrix analysis, and tumorigenicity in vivo. In vitro expansion curves for the NSA and adherent culture conditions were virtually identical (P=0.24) and the clonogenic frequencies (5.2% for NSA vs. 5.0% for laminin, P=0.9) were similar as well. Likewise, markers of differentiation (glial fibrillary acidic protein and beta tubulin III) and proliferation (Ki67 and MCM2) revealed no statistical difference between the sphere and attachment methods. Several different methods were used to determine the numbers of dead or dying cells (trypan blue, DiIC, caspase-3, and annexin V) with none of the assays noting a meaningful variance between the two methods. In addition, genetic expression analysis with microarrays revealed no significant differences between the two groups. Finally, glioma cells derived from both methods of expansion formed large invasive tumors exhibiting GBM features when implanted in immune-compromised animals. A detailed functional, protein and genetic characterization of human GBM cells cultured in serum-free defined conditions demonstrated no statistically meaningful differences when grown using sphere (NSA) or adherent conditions. Hence, both methods are functionally equivalent and remain suitable options for expanding primary high-grade gliomas in tissue culture. PMID:25806119

  6. [Stem cells in adults].

    PubMed

    Borge, O J; Funderud, S

    2001-08-30

    We present a literature review of the plasticity observed by adult stem cells. We have reviewed the literature regarding stem cells from adults in order to summarise their ability to generate cells of other types than those of the tissue/organ from which they were isolated. Adult stem cells have recently been demonstrated to terminally differentiate into cells of other tissues than those from which they were originally isolated. For example, bone marrow cells have been shown to generate liver, nerve, heart and skeletal muscle cells in addition to their well-known ability to produce blood and mesenchymal cells. Most studies demonstrate a proof-of-principle in animal models; much more research is needed before adult stem cells can be utilised in human medicine. However, the published reports are encouraging and give reasons for a cautious optimism with regard to future clinical use.

  7. Mesenchymal stem cell-conditioned medium accelerates skin wound healing: an in vitro study of fibroblast and keratinocyte scratch assays.

    PubMed

    Walter, M N M; Wright, K T; Fuller, H R; MacNeil, S; Johnson, W E B

    2010-04-15

    We have used in vitro scratch assays to examine the relative contribution of dermal fibroblasts and keratinocytes in the wound repair process and to test the influence of mesenchymal stem cell (MSC) secreted factors on both skin cell types. Scratch assays were established using single cell and co-cultures of L929 fibroblasts and HaCaT keratinocytes, with wound closure monitored via time-lapse microscopy. Both in serum supplemented and serum free conditions, wound closure was faster in L929 fibroblast than HaCaT keratinocyte scratch assays, and in co-culture the L929 fibroblasts lead the way in closing the scratches. MSC-CM generated under serum free conditions significantly enhanced the wound closure rate of both skin cell types separately and in co-culture, whereas conditioned medium from L929 or HaCaT cultures had no significant effect. This enhancement of wound closure in the presence of MSC-CM was due to accelerated cell migration rather than increased cell proliferation. A number of wound healing mediators were identified in MSC-CM, including TGF-beta1, the chemokines IL-6, IL-8, MCP-1 and RANTES, and collagen type I, fibronectin, SPARC and IGFBP-7. This study suggests that the trophic activity of MSC may play a role in skin wound closure by affecting both dermal fibroblast and keratinocyte migration, along with a contribution to the formation of extracellular matrix. Copyright 2010 Elsevier Inc. All rights reserved.

  8. Pluripotent stem cells.

    PubMed

    Verfaillie, C

    2009-05-01

    The isolation of human embryonic stem cells (ESC) in 1998 has created the hope that stem cells will one day be used to regenerate tissues and organs, even though it is obvious that a number of hurdles will need to be overcome for such therapies to become reality. The cloning of "Dolly" in 1997, more than 40 years after the first frogs were cloned, combined with the very fast progress made in our understanding of the molecular processes that govern the pluripotency of ESC has lead to the ability of scientists to recreate a pluripotent state in fibroblasts and other cells from mouse, rat and man, named induced pluripotent stem cells (iPSC). This feat makes it theoretically possible to create patient specific pluripotent stem cells whose differentiated progeny could be used in an autologous manner obviating the need for immunosuppression that would be needed to use allogeneic ESC-derived differentiated cells. In addition, the ability to generate custom made pluripotent stem cells will no doubt lead to the development of protein or small molecule drugs that can induce differentiation not only of iPSC or ESC to mature tissue cells, but also endogenous tissue stem cells. Moreover, it allows scientists to create models of human diseases and may aid the pharmaceutical industry in testing more rigorously toxicity of drugs for human differentiated cells. Thus, there is little doubt that progress in stem cell biology will change many aspects of medicine as we know it in the next one to two decades.

  9. Coculture strategies in bone tissue engineering: the impact of culture conditions on pluripotent stem cell populations.

    PubMed

    Janardhanan, Sathyanarayana; Wang, Martha O; Fisher, John P

    2012-08-01

    The use of pluripotent stem cell populations for bone tissue regeneration provides many opportunities and challenges within the bone tissue engineering field. For example, coculture strategies have been utilized to mimic embryological development of bone tissue, and particularly the critical intercellular signaling pathways. While research in bone biology over the last 20 years has expanded our understanding of these intercellular signaling pathways, we still do not fully understand the impact of the system's physical characteristics (orientation, geometry, and morphology). This review of coculture literature delineates the various forms of coculture systems and their respective outcomes when applied to bone tissue engineering. To understand fully the key differences between the different coculture methods, we must appreciate the underlying paradigms of physiological interactions. Recent advances have enabled us to extrapolate these techniques to larger dimensions and higher geometric resolutions. Finally, the contributions of bioreactors, micropatterned biomaterials, and biomaterial interaction platforms are evaluated to give a sense of the sophistication established by a combination of these concepts with coculture systems.

  10. What is a stem cell?

    PubMed

    Slack, Jonathan M W

    2018-05-15

    The historical roots of the stem cell concept are traced with respect to its usage in embryology and in hematology. The modern consensus definition of stem cells, comprising both pluripotent stem cells in culture and tissue-specific stem cells in vivo, is explained and explored. Methods for identifying stem cells are discussed with respect to cell surface markers, telomerase, label retention and transplantability, and properties of the stem cell niche are explored. The CreER method for identifying stem cells in vivo is explained, as is evidence in favor of a stochastic rather than an obligate asymmetric form of cell division. In conclusion, it is found that stem cells do not possess any unique and specific molecular markers; and stem cell behavior depends on the environment of the cell as well as the stem cell's intrinsic qualities. Furthermore, the stochastic mode of division implies that stem cell behavior is a property of a cell population not of an individual cell. In this sense, stem cells do not exist in isolation but only as a part of multicellular system. This article is categorized under: Adult Stem Cells, Tissue Renewal, and Regeneration > Tissue Stem Cells and Niches Adult Stem Cells, Tissue Renewal, and Regeneration > Methods and Principles Adult Stem Cells, Tissue Renewal, and Regeneration > Environmental Control of Stem Cells. © 2018 Wiley Periodicals, Inc.

  11. Haemopoietic stem cells.

    PubMed

    Bellantuono, Ilaria

    2004-04-01

    Considerable effort has been made in recent years in understanding the mechanisms that govern stem cell generation, proliferation, self-renewal, commitment and lately plasticity. In the development of the haemopoietic system during embryonic and fetal life the notion of different pools of stem cells arising from the endothelium is gaining consensus. Gene expression profiling of populations of stem cells is bringing to light categories of genes important for self-renewal or commitment. Besides the role of transcription factors in lineage decision, the role of soluble factors and transmembrane proteins, very active at the time of embryo development, are taking central stage in the maintenance and in vitro expansion of haemopoietic stem cells (HSCs). The hierarchical model of haemopoietic development is being questioned with reports of lineage switching and plasticity of haemopoietic stem cells to non-haemopoietic cells. Yet the understanding of the overall process is still very fragmented and hypothetical. This is mainly due to the absence of appropriate markers to enable selection of homogeneous stem cell populations and the need to rely on retrospective functional assays, able only to determine the overall behaviour of a population of cells. This review is intended to be an overview of the haemopoietic system and a critical re-visitation of issues such as plasticity and self-renewal important for therapeutic applications of haemopoietic stem cells.

  12. Stem cell plasticity.

    PubMed

    Lakshmipathy, Uma; Verfaillie, Catherine

    2005-01-01

    The central dogma in stem cell biology has been that cells isolated from a particular tissue can renew and differentiate into lineages of the tissue it resides in. Several studies have challenged this idea by demonstrating that tissue specific cell have considerable plasticity and can cross-lineage restriction boundary and give rise to cell types of other lineages. However, the lack of a clear definition for plasticity has led to confusion with several reports failing to demonstrate that a single cell can indeed differentiate into multiple lineages at significant levels. Further, differences between results obtained in different labs has cast doubt on some results and several studies still await independent confirmation. In this review, we critically evaluate studies that report stem cell plasticity using three rigid criteria to define stem cell plasticity; differentiation of a single cell into multiple cell lineages, functionality of differentiated cells in vitro and in vivo, robust and persistent engraft of transplanted cells.

  13. Mesenchymal stem cell-conditioned medium accelerates skin wound healing: An in vitro study of fibroblast and keratinocyte scratch assays

    SciTech Connect

    Walter, M.N.M.; School of Life and Health Science, Aston University, Aston Triangle, Birmingham, B4 7EJ; Wright, K.T.

    2010-04-15

    We have used in vitro scratch assays to examine the relative contribution of dermal fibroblasts and keratinocytes in the wound repair process and to test the influence of mesenchymal stem cell (MSC) secreted factors on both skin cell types. Scratch assays were established using single cell and co-cultures of L929 fibroblasts and HaCaT keratinocytes, with wound closure monitored via time-lapse microscopy. Both in serum supplemented and serum free conditions, wound closure was faster in L929 fibroblast than HaCaT keratinocyte scratch assays, and in co-culture the L929 fibroblasts lead the way in closing the scratches. MSC-CM generated under serum free conditionsmore » significantly enhanced the wound closure rate of both skin cell types separately and in co-culture, whereas conditioned medium from L929 or HaCaT cultures had no significant effect. This enhancement of wound closure in the presence of MSC-CM was due to accelerated cell migration rather than increased cell proliferation. A number of wound healing mediators were identified in MSC-CM, including TGF-{beta}1, the chemokines IL-6, IL-8, MCP-1 and RANTES, and collagen type I, fibronectin, SPARC and IGFBP-7. This study suggests that the trophic activity of MSC may play a role in skin wound closure by affecting both dermal fibroblast and keratinocyte migration, along with a contribution to the formation of extracellular matrix.« less

  14. Autophagy in stem cells

    PubMed Central

    Guan, Jun-Lin; Simon, Anna Katharina; Prescott, Mark; Menendez, Javier A.; Liu, Fei; Wang, Fen; Wang, Chenran; Wolvetang, Ernst; Vazquez-Martin, Alejandro; Zhang, Jue

    2013-01-01

    Autophagy is a highly conserved cellular process by which cytoplasmic components are sequestered in autophagosomes and delivered to lysosomes for degradation. As a major intracellular degradation and recycling pathway, autophagy is crucial for maintaining cellular homeostasis as well as remodeling during normal development, and dysfunctions in autophagy have been associated with a variety of pathologies including cancer, inflammatory bowel disease and neurodegenerative disease. Stem cells are unique in their ability to self-renew and differentiate into various cells in the body, which are important in development, tissue renewal and a range of disease processes. Therefore, it is predicted that autophagy would be crucial for the quality control mechanisms and maintenance of cellular homeostasis in various stem cells given their relatively long life in the organisms. In contrast to the extensive body of knowledge available for somatic cells, the role of autophagy in the maintenance and function of stem cells is only beginning to be revealed as a result of recent studies. Here we provide a comprehensive review of the current understanding of the mechanisms and regulation of autophagy in embryonic stem cells, several tissue stem cells (particularly hematopoietic stem cells), as well as a number of cancer stem cells. We discuss how recent studies of different knockout mice models have defined the roles of various autophagy genes and related pathways in the regulation of the maintenance, expansion and differentiation of various stem cells. We also highlight the many unanswered questions that will help to drive further research at the intersection of autophagy and stem cell biology in the near future. PMID:23486312

  15. Enhanced Healing of Diabetic Wounds by Subcutaneous Administration of Human Umbilical Cord Derived Stem Cells and Their Conditioned Media

    PubMed Central

    Shrestha, Chandrama; Zhao, Liling; Chen, Ke; He, Honghui; Mo, Zhaohui

    2013-01-01

    Objective. Mesenchymal stem cells (MSCs) isolated from the umbilical cord and their conditioned media (CM) can be easily obtained and refined compared with stem cells from other sources. Here, we explore the possibility of the benefits of these cells in healing diabetic wounds. Methodology and Results. Delayed wound healing animal models were established by making a standard wound on the dorsum of eighteen db/db mice, which were divided into three groups with six mice in each: groups I, II, and III received PBS, UC-MSC, and CM, respectively. UC-MSC and their CM significantly accelerated wound closure compared to PBS-treated wounds, and it was most rapid in CM-injected wounds. In day-14 wounds, significant difference in capillary densities among the three groups was noted (n = 6; P < 0.05), and higher levels of VEGF, PDGF, and KGF expression in the CM- and UC-MSC-injected wounds compared to the PBS-treated wounds were seen. The expression levels of PDGF-β and KGF were higher in CM-treated wounds than those in UC-MSC-treated wounds. Conclusion. Both the transplantation of UC-MSC and their CM are beneficial to diabetic wound healing, and CM has been shown to be therapeutically better than UC-MSC, at least in the context of diabetic wound healing. PMID:24089612

  16. Pipette-based Method to Study Embryoid Body Formation Derived from Mouse and Human Pluripotent Stem Cells Partially Recapitulating Early Embryonic Development Under Simulated Microgravity Conditions

    NASA Astrophysics Data System (ADS)

    Shinde, Vaibhav; Brungs, Sonja; Hescheler, Jürgen; Hemmersbach, Ruth; Sachinidis, Agapios

    2016-06-01

    The in vitro differentiation of pluripotent stem cells partially recapitulates early in vivo embryonic development. More recently, embryonic development under the influence of microgravity has become a primary focus of space life sciences. In order to integrate the technique of pluripotent stem cell differentiation with simulated microgravity approaches, the 2-D clinostat compatible pipette-based method was experimentally investigated and adapted for investigating stem cell differentiation processes under simulated microgravity conditions. In order to keep residual accelerations as low as possible during clinorotation, while also guaranteeing enough material for further analysis, stem cells were exposed in 1-mL pipettes with a diameter of 3.5 mm. The differentiation of mouse and human pluripotent stem cells inside the pipettes resulted in the formation of embryoid bodies at normal gravity (1 g) after 24 h and 3 days. Differentiation of the mouse pluripotent stem cells on a 2-D pipette-clinostat for 3 days also resulted in the formation of embryoid bodies. Interestingly, the expression of myosin heavy chain was downregulated when cultivation was continued for an additional 7 days at normal gravity. This paper describes the techniques for culturing and differentiation of pluripotent stem cells and exposure to simulated microgravity during culturing or differentiation on a 2-D pipette clinostat. The implementation of these methodologies along with -omics technologies will contribute to understand the mechanisms regulating how microgravity influences early embryonic development.

  17. Isolation and expansion of human pluripotent stem cell-derived hepatic progenitor cells by growth factor defined serum-free culture conditions.

    PubMed

    Fukuda, Takayuki; Takayama, Kazuo; Hirata, Mitsuhi; Liu, Yu-Jung; Yanagihara, Kana; Suga, Mika; Mizuguchi, Hiroyuki; Furue, Miho K

    2017-03-15

    Limited growth potential, narrow ranges of sources, and difference in variability and functions from batch to batch of primary hepatocytes cause a problem for predicting drug-induced hepatotoxicity during drug development. Human pluripotent stem cell (hPSC)-derived hepatocyte-like cells in vitro are expected as a tool for predicting drug-induced hepatotoxicity. Several studies have already reported efficient methods for differentiating hPSCs into hepatocyte-like cells, however its differentiation process is time-consuming, labor-intensive, cost-intensive, and unstable. In order to solve this problem, expansion culture for hPSC-derived hepatic progenitor cells, including hepatic stem cells and hepatoblasts which can self-renewal and differentiate into hepatocytes should be valuable as a source of hepatocytes. However, the mechanisms of the expansion of hPSC-derived hepatic progenitor cells are not yet fully understood. In this study, to isolate hPSC-derived hepatic progenitor cells, we tried to develop serum-free growth factor defined culture conditions using defined components. Our culture conditions were able to isolate and grow hPSC-derived hepatic progenitor cells which could differentiate into hepatocyte-like cells through hepatoblast-like cells. We have confirmed that the hepatocyte-like cells prepared by our methods were able to increase gene expression of cytochrome P450 enzymes upon encountering rifampicin, phenobarbital, or omeprazole. The isolation and expansion of hPSC-derived hepatic progenitor cells in defined culture conditions should have advantages in terms of detecting accurate effects of exogenous factors on hepatic lineage differentiation, understanding mechanisms underlying self-renewal ability of hepatic progenitor cells, and stably supplying functional hepatic cells. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Conditioned medium from human amniotic epithelial cells may induce the differentiation of human umbilical cord blood mesenchymal stem cells into dopaminergic neuron-like cells.

    PubMed

    Yang, Shu; Sun, Hai-Mei; Yan, Ji-Hong; Xue, Hong; Wu, Bo; Dong, Fang; Li, Wen-Shuai; Ji, Feng-Qing; Zhou, De-Shan

    2013-07-01

    Dopaminergic (DA) neuron therapy has been established as a new clinical tool for treating Parkinson's disease (PD). Prior to cell transplantation, there are two primary issues that must be resolved: one is the appropriate seed cell origin, and the other is the efficient inducing technique. In the present study, human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) were used as the available seed cells, and conditioned medium from human amniotic epithelial cells (ACM) was used as the inducing reagent. Results showed that the proportion of DA neuron-like cells from hUCB-MSCs was significantly increased after cultured in ACM, suggested by the upregulation of DAT, TH, Nurr1, and Pitx3. To identify the process by which ACM induces DA neuron differentiation, we pretreated hUCB-MSCs with k252a, the Trk receptor inhibitor of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF), and found that the proportion of DA neuron-like cells was significantly decreased compared with ACM-treated hUCB-MSCs, suggesting that NGF and BDNF in ACM were involved in the differentiation process. However, we could not rule out the involvement of other unidentified factors in the ACM, because ACM + k252a treatment does not fully block DA neuron-like cell differentiation compared with control. The transplantation of ACM-induced hUCB-MSCs could ameliorate behavioral deficits in PD rats, which may be associated with the survival of engrafted DA neuron-like cells. In conclusion, we propose that hUCB-MSCs are a good source of DA neuron-like cells and that ACM is a potential inducer to obtain DA neuron-like cells from hUCB-MSCs in vitro for an ethical and legal cell therapy for PD. Copyright © 2013 Wiley Periodicals, Inc.

  19. Structural Complexity of Non-acid Glycosphingolipids in Human Embryonic Stem Cells Grown under Feeder-free Conditions*

    PubMed Central

    Barone, Angela; Benktander, John; Ångström, Jonas; Aspegren, Anders; Björquist, Petter; Teneberg, Susann; Breimer, Michael. E.

    2013-01-01

    Due to their pluripotency and growth capability, there are great expectations for human embryonic stem cells, both as a resource for functional studies of early human development and as a renewable source of cells for use in regenerative medicine and transplantation. However, to bring human embryonic stem cells into clinical applications, their cell surface antigen expression and its chemical structural complexity have to be defined. In the present study, total non-acid glycosphingolipid fractions were isolated from two human embryonic stem cell lines (SA121 and SA181) originating from leftover in vitro fertilized human embryos, using large amounts of starting material (1 × 109 cells/cell line). The total non-acid glycosphingolipid fractions were characterized by antibody and lectin binding, mass spectrometry, and proton NMR. In addition to the globo-series and type 1 core chain glycosphingolipids previously described in human embryonic stem cells, a number of type 2 core chain glycosphingolipids (neo-lactotetraosylceramide, the H type 2 pentaosylceramide, the Lex pentaosylceramide, and the Ley hexaosylceramide) were identified as well as the blood group A type 1 hexaosylceramide. Finally, the mono-, di-, and triglycosylceramides were characterized as galactosylceramide, glucosylceramide, lactosylceramide, galabiaosylceramide, globotriaosylceramide, and lactotriaosylceramide. Thus, the glycan diversity of human embryonic stem cells, including cell surface immune determinants, is more complex than previously appreciated. PMID:23404501

  20. [Embryonic stem cells and therapeutic cloning].

    PubMed

    Sunde, A; Eftedal, I

    2001-08-30

    Increased interest in the therapeutic use of human stem cells has emerged following significant progress in ongoing research. The cloning of a sheep, the isolation of human embryonic stem cells, and the discovery that adult stem cells may be reprogrammed taken together give substance to hopes that novel principles of treatment may be developed for a variety of serious conditions. Embryonic stem cells are derived from pre-embryos at the blastocyst stage and may give rise to all bodily tissues and cells. Animal models have demonstrated that embryonic stem cells when transplanted into adult hosts may differentiate and develop into cells and tissues applicable for treatment of a variety of conditions, including Parkinson's disease, multiple sclerosis, spinal injuries, cardiac stroke and cancer. Transplanted embryonic stem cells are exposed to immune reactions similar to those acting on organ transplants, hence immunosuppression of the recipient is generally required. It is, however, possible to obtain embryonic stem cells that are genetically identical to the patient's own cells by means of therapeutic cloning techniques. The nucleus from a somatic cell is transferred into an egg after removal of the egg's own genetic material. Under specific condition the egg will use genetic information from the somatic cell in organising the formation of a blastocyst which in turn generates embryonic stem cells. These cells have a genetic composition identical to that of the patient and are suitable for stem cell therapy.

  1. Mesenchymal Stem Cells and Their Conditioned Medium Improve Integration of Purified Induced Pluripotent Stem Cell–Derived Cardiomyocyte Clusters into Myocardial Tissue

    PubMed Central

    Rubach, Martin; Adelmann, Roland; Haustein, Moritz; Drey, Florian; Pfannkuche, Kurt; Xiao, Bing; Koester, Annette; Udink ten Cate, Floris E.A.; Choi, Yeong-Hoon; Neef, Klaus; Fatima, Azra; Hannes, Tobias; Pillekamp, Frank; Hescheler, Juergen; Šarić, Tomo; Brockmeier, Konrad

    2014-01-01

    Induced pluripotent stem cell–derived cardiomyocytes (iPS-CMs) might become therapeutically relevant to regenerate myocardial damage. Purified iPS-CMs exhibit poor functional integration into myocardial tissue. The aim of this study was to investigate whether murine mesenchymal stem cells (MSCs) or their conditioned medium (MScond) improves the integration of murine iPS-CMs into myocardial tissue. Vital or nonvital embryonic murine ventricular tissue slices were cocultured with purified clusters of iPS-CMs in combination with murine embryonic fibroblasts (MEFs), MSCs, or MScond. Morphological integration was assessed by visual scoring and functional integration by isometric force and field potential measurements. We observed a moderate morphological integration of iPS-CM clusters into vital, but a poor integration into nonvital, slices. MEFs and MSCs but not MScond improved morphological integration of CMs into nonvital slices and enabled purified iPS-CMs to confer force. Coculture of vital slices with iPS-CMs and MEFs or MSCs resulted in an improved electrical integration. A comparable improvement of electrical coupling was achieved with the cell-free MScond, indicating that soluble factors secreted by MSCs were involved in electrical coupling. We conclude that cells such as MSCs support the engraftment and adhesion of CMs, and confer force to noncontractile tissue. Furthermore, soluble factors secreted by MSCs mediate electrical coupling of purified iPS-CM clusters to myocardial tissue. These data suggest that MSCs may increase the functional engraftment and therapeutic efficacy of transplanted iPS-CMs into infarcted myocardium. PMID:24219308

  2. Dental pulp stem cells in regenerative dentistry.

    PubMed

    Casagrande, Luciano; Cordeiro, Mabel M; Nör, Silvia A; Nör, Jacques E

    2011-01-01

    Stem cells constitute the source of differentiated cells for the generation of tissues during development, and for regeneration of tissues that are diseased or injured postnatally. In recent years, stem cell research has grown exponentially owing to the recognition that stem cell-based therapies have the potential to improve the life of patients with conditions that span from Alzheimer's disease to cardiac ischemia to bone or tooth loss. Growing evidence demonstrates that stem cells are primarily found in niches and that certain tissues contain more stem cells than others. Among these tissues, the dental pulp is considered a rich source of mesenchymal stem cells that are suitable for tissue engineering applications. It is known that dental pulp stem cells have the potential to differentiate into several cell types, including odontoblasts, neural progenitors, osteoblasts, chondrocytes, and adipocytes. The dental pulp stem cells are highly proliferative. This characteristic facilitates ex vivo expansion and enhances the translational potential of these cells. Notably, the dental pulp is arguably the most accessible source of postnatal stem cells. Collectively, the multipotency, high proliferation rates, and accessibility make the dental pulp an attractive source of mesenchymal stem cells for tissue regeneration. This review discusses fundamental concepts of stem cell biology and tissue engineering within the context of regenerative dentistry.

  3. Increased Risk of Genetic and Epigenetic Instability in Human Embryonic Stem Cells Associated with Specific Culture Conditions

    PubMed Central

    Garitaonandia, Ibon; Amir, Hadar; Boscolo, Francesca Sesillo; Wambua, Gerald K.; Schultheisz, Heather L.; Sabatini, Karen; Morey, Robert; Waltz, Shannon; Wang, Yu-Chieh; Tran, Ha; Leonardo, Trevor R.; Nazor, Kristopher; Slavin, Ileana; Lynch, Candace; Li, Yingchun; Coleman, Ronald; Gallego Romero, Irene; Altun, Gulsah; Reynolds, David; Dalton, Stephen; Parast, Mana; Loring, Jeanne F.; Laurent, Louise C.

    2015-01-01

    The self-renewal and differentiation capacities of human pluripotent stem cells (hPSCs) make them a promising source of material for cell transplantation therapy, drug development, and studies of cellular differentiation and development. However, the large numbers of cells necessary for many of these applications require extensive expansion of hPSC cultures, a process that has been associated with genetic and epigenetic alterations. We have performed a combinatorial study on both hESCs and hiPSCs to compare the effects of enzymatic vs. mechanical passaging, and feeder-free vs. mouse embryonic fibroblast feeder substrate, on the genetic and epigenetic stability and the phenotypic characteristics of hPSCs. In extensive experiments involving over 100 continuous passages, we observed that both enzymatic passaging and feeder-free culture were associated with genetic instability, higher rates of cell proliferation, and persistence of OCT4/POU5F1-positive cells in teratomas, with enzymatic passaging having the stronger effect. In all combinations of culture conditions except for mechanical passaging on feeder layers, we noted recurrent deletions in the genomic region containing the tumor suppressor gene TP53, which was associated with decreased mRNA expression of TP53, as well as alterations in the expression of several downstream genes consistent with a decrease in the activity of the TP53 pathway. Among the hESC cultures, we also observed culture-associated variations in global gene expression and DNA methylation. The effects of enzymatic passaging and feeder-free conditions were also observed in hiPSC cultures. Our results highlight the need for careful assessment of the effects of culture conditions on cells intended for clinical therapies. PMID:25714340

  4. Complete human serum maintains viability and chondrogenic potential of human synovial stem cells: suitable conditions for transplantation.

    PubMed

    Mizuno, Mitsuru; Katano, Hisako; Otabe, Koji; Komori, Keiichiro; Kohno, Yuji; Fujii, Shizuka; Ozeki, Nobutake; Horie, Masafumi; Tsuji, Kunikazu; Koga, Hideyuki; Muneta, Takeshi; Sekiya, Ichiro

    2017-06-13

    In our clinical practice, we perform transplantations of autologous synovial mesenchymal stem cells (MSCs) for cartilage and meniscus regenerative medicine. One of the most important issues to ensuring clinical efficacy involves the transport of synovial MSCs from the processing facility to the clinic. Complete human serum (100% human serum) is an attractive candidate material in which to suspend synovial MSCs for their preservation during transport. The purpose of this study was to investigate whether complete human serum maintained MSC viability and chondrogenic potential and to examine the optimal temperature conditions for the preservation of human synovial MSCs. Human synovium was harvested from the knees of 14 donors with osteoarthritis during total knee arthroplasty. Passage 2 synovial MSCs were suspended at 2 million cells/100 μL in Ringer's solution or complete human serum at 4, 13, and 37 °C for 48 h. These cells were analyzed for live cell rates, cell surface marker expression, metabolic activity, proliferation, and adipogenic, calcification, and chondrogenic differentiation potentials before and after preservation. After preservation, synovial MSCs maintained higher live cell rates in human serum than in Ringer's solution at 4 and 13 °C. Synovial MSCs preserved in human serum at 4 and 13 °C also maintained high ratios of propidium iodide - and annexin V - cells. MSC surface marker expression was not altered in cells preserved at 4 and 13 °C. The metabolic activities of cells preserved in human serum at 4 and 13 °C was maintained, while significantly reduced in other conditions. Replated MSCs retained their proliferation ability when preserved in human serum at 4 and 13 °C. Adipogenesis and calcification potential could be observed in cells preserved in each condition, whereas chondrogenic potential was retained only in cells preserved in human serum at 4 and 13 °C. The viability and chondrogenic potential of synovial MSCs were

  5. Extinction models for cancer stem cell therapy.

    PubMed

    Sehl, Mary; Zhou, Hua; Sinsheimer, Janet S; Lange, Kenneth L

    2011-12-01

    Cells with stem cell-like properties are now viewed as initiating and sustaining many cancers. This suggests that cancer can be cured by driving these cancer stem cells to extinction. The problem with this strategy is that ordinary stem cells are apt to be killed in the process. This paper sets bounds on the killing differential (difference between death rates of cancer stem cells and normal stem cells) that must exist for the survival of an adequate number of normal stem cells. Our main tools are birth-death Markov chains in continuous time. In this framework, we investigate the extinction times of cancer stem cells and normal stem cells. Application of extreme value theory from mathematical statistics yields an accurate asymptotic distribution and corresponding moments for both extinction times. We compare these distributions for the two cell populations as a function of the killing rates. Perhaps a more telling comparison involves the number of normal stem cells NH at the extinction time of the cancer stem cells. Conditioning on the asymptotic time to extinction of the cancer stem cells allows us to calculate the asymptotic mean and variance of NH. The full distribution of NH can be retrieved by the finite Fourier transform and, in some parameter regimes, by an eigenfunction expansion. Finally, we discuss the impact of quiescence (the resting state) on stem cell dynamics. Quiescence can act as a sanctuary for cancer stem cells and imperils the proposed therapy. We approach the complication of quiescence via multitype branching process models and stochastic simulation. Improvements to the τ-leaping method of stochastic simulation make it a versatile tool in this context. We conclude that the proposed therapy must target quiescent cancer stem cells as well as actively dividing cancer stem cells. The current cancer models demonstrate the virtue of attacking the same quantitative questions from a variety of modeling, mathematical, and computational perspectives

  6. Extinction models for cancer stem cell therapy

    PubMed Central

    Sehl, Mary; Zhou, Hua; Sinsheimer, Janet S.; Lange, Kenneth L.

    2012-01-01

    Cells with stem cell-like properties are now viewed as initiating and sustaining many cancers. This suggests that cancer can be cured by driving these cancer stem cells to extinction. The problem with this strategy is that ordinary stem cells are apt to be killed in the process. This paper sets bounds on the killing differential (difference between death rates of cancer stem cells and normal stem cells) that must exist for the survival of an adequate number of normal stem cells. Our main tools are birth–death Markov chains in continuous time. In this framework, we investigate the extinction times of cancer stem cells and normal stem cells. Application of extreme value theory from mathematical statistics yields an accurate asymptotic distribution and corresponding moments for both extinction times. We compare these distributions for the two cell populations as a function of the killing rates. Perhaps a more telling comparison involves the number of normal stem cells NH at the extinction time of the cancer stem cells. Conditioning on the asymptotic time to extinction of the cancer stem cells allows us to calculate the asymptotic mean and variance of NH. The full distribution of NH can be retrieved by the finite Fourier transform and, in some parameter regimes, by an eigenfunction expansion. Finally, we discuss the impact of quiescence (the resting state) on stem cell dynamics. Quiescence can act as a sanctuary for cancer stem cells and imperils the proposed therapy. We approach the complication of quiescence via multitype branching process models and stochastic simulation. Improvements to the τ-leaping method of stochastic simulation make it a versatile tool in this context. We conclude that the proposed therapy must target quiescent cancer stem cells as well as actively dividing cancer stem cells. The current cancer models demonstrate the virtue of attacking the same quantitative questions from a variety of modeling, mathematical, and computational perspectives

  7. Germline Stem Cells

    PubMed Central

    Spradling, Allan; Fuller, Margaret T.; Braun, Robert E.; Yoshida, Shosei

    2011-01-01

    Sperm and egg production requires a robust stem cell system that balances self-renewal with differentiation. Self-renewal at the expense of differentiation can cause tumorigenesis, whereas differentiation at the expense of self-renewal can cause germ cell depletion and infertility. In most organisms, and sometimes in both sexes, germline stem cells (GSCs) often reside in a defined anatomical niche. Factors within the niche regulate a balance between GSC self-renewal and differentiation. Asymmetric division of the germline stem cell to form daughter cells with alternative fates is common. The exception to both these tendencies is the mammalian testis where there does not appear to be an obvious anatomical niche and where GSC homeostasis is likely accomplished by a stochastic balance of self-renewal and differentiation and not by regulated asymmetric cell division. Despite these apparent differences, GSCs in all organisms share many common mechanisms, although not necessarily molecules, to guarantee survival of the germline. PMID:21791699

  8. Effect of photobiomodulation on viability and proliferation of stem cells from exfoliated deciduous teeth under different nutritional conditions

    NASA Astrophysics Data System (ADS)

    Morato de Souza, Letícia; Guilherme Roque Rinco, Ugo; Aparecida Tavares Aguiar, Daniela; Aparecido de Almeida Junior, Luciano; Cosme-Silva, Leopoldo; Marchini Oliveira, Thais; Teixeira Marques, Nádia Carolina; Thiemy Sakai, Vivien

    2018-02-01

    This study aimed to evaluate the effect of different doses of low-level laser irradiation on the viability and proliferation of stem cells from exfoliated deciduous teeth (SHED) cultured under nutritional deficit (cellular stress) or regular nutritional conditions. SHED underwent irradiation by a red laser between 1.2 and 6.2 J cm-2. Prior to the irradiation, all groups received culture medium (MEMα, Eagle’s minimum essential medium alpha modification) supplemented with 1% of fetal bovine serum (FBS) for 1 h. After the irradiation, cells received MEMα supplemented with 10% of FBS (regular nutrition) or 1% of FBS (nutritional deficit). Cell viability and proliferation were respectively determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and crystal violet assays 6 and 24 h after irradiation (P  <  0.05). At 24 h, SHED under nutritional deficit showed lower viability and proliferation after 1.2 J cm-2 irradiation. All of the irradiated groups revealed significantly higher viability and proliferation in SHED maintained under nutritional deficit than in regular nutritional conditions, except in the 3.7 and 6.2 J cm-2 groups by MTT assay. In the crystal violet assay, SHED irradiated with 1.2 J cm-2 showed no difference between the different nutritional conditions. Decrease of FBS concentration in the culture medium seems to enhance the sensitivity of SHED to the effects of photobiomodulation therapy. Nutritional stress conditions improved cell viability and proliferation of SHED after laser irradiation, except for 1.2 J cm-2.

  9. Optimization of the conditions of isolation and culture of dairy goat male germline stem cells (mGSC).

    PubMed

    Zhu, Haijing; Liu, Chao; Li, Mingzhao; Sun, Junwei; Song, Wencong; Hua, Jinlian

    2013-02-01

    Male germline stem cells (mGSC) reside in the basement of seminiferous tubules of the testis and have the capacity of self-renewal and differentiation into sperm throughout the life of animals. Reports on mice and human mGSC have demonstrated that mGSC are an unlimited resource of pluripotent stem cells for sperm production. The conditions of isolation and culture of mouse and human mGSC are well developed; however, the systematic culture conditions of dairy goat mGSC are still deficient although there have been several reports of successful cultures. With the present research, several key elements of isolation and culture of dairy goat mGSC have been determined. Details for the conditions of isolation of dairy testicular spermatogonium cells were optimized, and effects of several extracellular matrix types, ages of dairy goat, and cytokines on enrichment and culture of mGSC were compared. Biological characteristics of the cells were also evaluated by RT-PCR and immunofluorescent staining. The results indicated there is one kind of enzyme cocktail (CTHD (1mg/ml collagenase, 10μg/ml DNase, 1mg/ml hyaluronidase and 1mg/ml trypsin) combined TD (0.25% trypsin and 10mg/ml DNaseI)) that can be used to successfully isolate dairy goat testicular spermatogonium cells efficiently; and fibronectin as well as laminin were efficient extracellular matrix to enrich mGSC among the extracellular matrix types evaluated. Age of dairy goat clearly influenced the cultures of dairy goat mGSC with the efficiency of establishment of an mGSC line being greater if the age of the dairy goat is younger. Some cytokines e.g. BIO (A GSK3 inhibitor, 6-bromoindirubin-3'-oxime) and basic fibroblast growth factor (bFGF) acted positively on the maintenance of proliferation and pluripotency of mGSC. Leukemia inhibitory factor (LIF) might, however, inhibit the proliferation of dairy goat mGSC. These cultured mGSC maintained similar characteristics as mouse and human mGSC. These results provide an

  10. Different culture conditions affect the growth of human tendon stem/progenitor cells (TSPCs) within a mixed tendon cells (TCs) population.

    PubMed

    Viganò, M; Perucca Orfei, C; Colombini, A; Stanco, D; Randelli, P; Sansone, V; de Girolamo, L

    2017-12-01

    Tendon resident cells (TCs) are a mixed population made of terminally differentiated tenocytes and tendon stem/progenitor cells (TSPCs). Since the enrichment of progenitors proportion could enhance the effectiveness of treatments based on these cell populations, the interest on the effect of culture conditions on the TSPCs is growing. In this study the clonal selection and the culture in presence or absence of basic fibroblast growth factor (bFGF) were used to assess their influences on the stemness properties and phenotype specific features of tendon cells. Cells cultured with the different methods were analyzed in terms of clonogenic and differentiation abilities, stem and tendon specific genes expression and immunophenotype at passage 2 and passage 4. The clonal selection allowed to isolate cells with a higher multi-differentiation potential, but at the same time a lower proliferation rate in comparison to the whole population. Moreover, the clones express a higher amounts of stemness marker OCT4 and tendon specific transcription factor Scleraxis (SCX) mRNA, but a lower level of decorin (DCN). On the other hand, the number of cells obtained by clonal selection was extremely low and most of the clones were unable to reach a high number of passages in cultures. The presence of bFGF influences TCs morphology, enhance their proliferation rate and reduce their clonogenic ability. Interestingly, the expression of CD54, a known mesenchymal stem cell marker, is reduced in presence of bFGF at early passages. Nevertheless, bFGF does not affect the chondrogenic and osteogenic potential of TCs and the expression of tendon specific markers, while it was able to downregulate the OCT4 expression. This study showed that clonal selection enhance progenitors content in TCs populations, but the extremely low number of cells produced with this method could represent an insurmountable obstacle to its application in clinical approaches. We observed that the addition of bFGF to the

  11. Delayed Administration of Bone Marrow Mesenchymal Stem Cell Conditioned Medium Significantly Improves Outcome After Retinal Ischemia in Rats

    PubMed Central

    Dreixler, John C.; Poston, Jacqueline N.; Balyasnikova, Irina; Shaikh, Afzhal R.; Tupper, Kelsey Y.; Conway, Sineadh; Boddapati, Venkat; Marcet, Marcus M.; Lesniak, Maciej S.; Roth, Steven

    2014-01-01

    Purpose. Delayed treatment after ischemia is often unsatisfactory. We hypothesized that injection of bone marrow stem cell (BMSC) conditioned medium after ischemia could rescue ischemic retina, and in this study we characterized the functional and histological outcomes and mechanisms of this neuroprotection. Methods. Retinal ischemia was produced in adult Wistar rats by increasing intraocular pressure for 55 minutes. Conditioned medium (CM) from rat BMSCs or unconditioned medium (uCM) was injected into the vitreous 24 hours after the end of ischemia. Recovery was assessed 7 days after ischemia using electroretinography, at which time we euthanized the animals and then prepared 4-μm-thick paraffin-embedded retinal sections. TUNEL and Western blot were used to identify apoptotic cells and apoptosis-related gene expression 24 hours after injections; that is, 48 hours after ischemia. Protein content in CM versus uCM was studied using tandem mass spectrometry, and bioinformatics methods were used to model protein interactions. Results. Intravitreal injection of CM 24 hours after ischemia significantly improved retinal function and attenuated cell loss in the retinal ganglion cell layer. CM attenuated postischemic apoptosis and apoptosis-related gene expression. By spectral counting, 19 proteins that met stringent identification criteria were increased in the CM compared to uCM; the majority were extracellular matrix proteins that mapped into an interactional network together with other proteins involved in cell growth and adhesion. Conclusions. By restoring retinal function, attenuating apoptosis, and preventing retinal cell loss after ischemia, CM is a robust means of delayed postischemic intervention. We identified some potential candidate proteins for this effect. PMID:24699381

  12. Influence of culture conditions and extracellular matrix alignment on human mesenchymal stem cells invasion into decellularized engineered tissues.

    PubMed

    Weidenhamer, Nathan K; Moore, Dusty L; Lobo, Fluvio L; Klair, Nathaniel T; Tranquillo, Robert T

    2015-05-01

    The variables that influence the in vitro recellularization potential of decellularized engineered tissues, such as cell culture conditions and scaffold alignment, have yet to be explored. The goal of this work was to explore the influence of insulin and ascorbic acid and extracellular matrix (ECM) alignment on the recellularization of decellularized engineered tissue by human mesenchymal stem cells (hMSCs). Aligned and non-aligned tissues were created by specifying the geometry and associated mechanical constraints to fibroblast-mediated fibrin gel contraction and remodelling using circular and C-shaped moulds. Decellularized tissues (matrices) of the same alignment were created by decellularization with detergents. Ascorbic acid promoted the invasion of hMSCs into the matrices due to a stimulated increase in motility and proliferation. Invasion correlated with hyaluronic acid secretion, α-smooth muscle actin expression and decreased matrix thickness. Furthermore, hMSCs invasion into aligned and non-aligned matrices was not different, although there was a difference in cell orientation. Finally, we show that hMSCs on the matrix surface appear to differentiate toward a smooth muscle cell or myofibroblast phenotype with ascorbic acid treatment. These results inform the strategy of recellularizing decellularized engineered tissue with hMSCs. Copyright © 2014 John Wiley & Sons, Ltd.

  13. Conditioned Media from Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells Inhibits Melanogenesis by Promoting Proteasomal Degradation of MITF.

    PubMed

    Kim, Eun Sung; Jeon, Hong Bae; Lim, Hoon; Shin, Ji Hyun; Park, So Jung; Jo, Yoon Kyung; Oh, Wonil; Yang, Yoon Sun; Cho, Dong-Hyung; Kim, Ju-Yeon

    2015-01-01

    Human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) secrete various beneficial molecules, which have anti-apoptotic activity and cell proliferation. However, the effect of hUCB-MSCs in melanogenesis is largely unclear. In this study, we show that conditioned media (CM) derived from hUCB-MSCs inhibit melanogenesis by regulating microphthalmia-associated transcription factor (MITF) expression via the ERK signalling pathway. Treatment of hUCB-MSC-CM strongly inhibited the alpha-melanocyte stimulating hormone-induced hyperpigmentation in melanoma cells as well as melanocytes. Treatment of hUCB-MSC-CM induced ERK1/2 activation in melanocytes. In addition, inhibition of ERK1/2 suppressed the anti-pigmentation activity of the hUCB-MSC-CM in melanocytes and in vitro artificial skin models. We also found that the expression of MITF was appreciably diminished while expression of phosphorylated MITF, which leads to its proteasomal degradation, was increased in cells treated with hUCB-MSC-CM. These results suggested that hUCB-MSC-CM significantly suppresses melanin synthesis via MITF degradation by the ERK pathway activation.

  14. Testicular cell-conditioned medium supports embryonic stem cell differentiation toward germ lineage and to spermatocyte- and oocyte-like cells.

    PubMed

    Shah, Syed M; Saini, Neha; Singh, Manoj K; Manik, Radheysham; Singla, Suresh K; Palta, Prabhat; Chauhan, Manmohan S

    2016-08-01

    Testicular cells are believed to secrete various growth factors that activate signaling pathways finally leading to gametogenesis. In vitro gametogenesis is an obscure but paramountly important task primarily because of paucity of the precursor cells and first trimester gonadal tissues. To overcome these limitations for development of in vitro gametes, the present study was designed to induce differentiation of buffalo embryonic stem (ES) cells into germ lineage cells on stimulation by testicular cell-conditioned medium (TCM), on the basis of the assumption that ES cells have the intrinsic property to differentiate into any cell type and TCM would provide the necessary growth factors for differentiation toward germ cell lineage. For this purpose, buffalo ES cells were differentiated as embryoid bodies (EB) in floating cultures and as monolayer adherent cultures in different doses (10%, 20%, and 40%) of TCM for different culture intervals (4, 8, and 14 days), to identify the optimum dose-and-time period. We observed that 40% TCM dose induces highest expression of primordial germ cell-specific (DAZL, VASA, and PLZF), meiotic (SYCP3, MLH1, TNP1/2, and PRM2), spermatocyte-specific (BOULE and TEKT1), and oocyte-specific genes (GDF9 and ZP2/3) for a culture period of 14 days under both floating and adherent differentiation. Immunocytochemical analysis of EBs and adherent cultures revealed presence of primordial germ cell markers (c-KIT, DAZL, and VASA), meiotic markers (SYCP3, MLH1 and PROTAMINE1), spermatocyte markers (ACROSIN and HAPRIN), and oocyte markers (GDF9 and ZP4), indicating progression into post-meiotic gametogenesis. The detection of germ cell-specific proteins in Day 14 EBs like VASA, GDF9, and ZP4 by Western blotting further confirmed germ lineage differentiation. The significantly lower (P < 0.05) concentration of 5-methyl-2-deoxycytidine in optimally differentiated EBs is suggestive of the process of methylation erasure. Oocyte-like structures

  15. Information on Stem Cell Research

    MedlinePlus

    ... of stem cells share similar properties there are differences as well. For example, ES cells and iPS cells are able to differentiate into any type of cell, whereas adult stem cells are more restricted in their potential. The promise of all stem cells for use ...

  16. [The opportunity to use combined stem cells transplantation for haemopoesis activation in the old and mature laboratory animals under the conditions of ionizing radiation].

    PubMed

    Grebnev, D Iu; Maklakova, I Iu; Iastrebov, A P

    2014-01-01

    The objective of this work was to study the influence of combined transplantation of stem cells (multypotent mesenchimal stromal and haemopoetic stem cells) on the haemopoesis of old and mature laboratory animals under the condition of ionizing radiation. The result of the experiment shows that under physiological conditions the combined transplantation brings the erithropoesis activation, under the ionizing radiation conditions it brings the erythroid and granulocytopoesis activation. Moreover the combined MMSC and HSC transplantation gives cytoprotective action on the myeloid tissue due to decrease of cyto genically changed cells in the mature animals under the condition of ionizing radiation, but in the old animals this effect can be seen even under physiological condition. Combined transplantation of MMSC and GSC can be used in the mature and old laboratory animals under the conditions of ionising radiation for the haemopoesis activation.

  17. Human embryonic stem cell-derived mesodermal progenitors display substantially increased tissue formation compared to human mesenchymal stem cells under dynamic culture conditions in a packed bed/column bioreactor.

    PubMed

    de Peppo, Giuseppe Maria; Sladkova, Martina; Sjövall, Peter; Palmquist, Anders; Oudina, Karim; Hyllner, Johan; Thomsen, Peter; Petite, Hervé; Karlsson, Camilla

    2013-01-01

    Bone tissue engineering represents a promising strategy to obviate bone deficiencies, allowing the ex vivo construction of bone substitutes with unprecedented potential in the clinical practice. Considering that in the human body cells are constantly stimulated by chemical and mechanical stimuli, the use of bioreactor is emerging as an essential factor for providing the proper environment for the reproducible and large-scale production of the engineered substitutes. Human mesenchymal stem cells (hMSCs) are experimentally relevant cells but, regardless the encouraging results reported after culture under dynamic conditions in bioreactors, show important limitations for tissue engineering applications, especially considering their limited proliferative potential, loss of functionality following protracted expansion, and decline in cellular fitness associated with aging. On the other hand, we previously demonstrated that human embryonic stem cell-derived mesodermal progenitors (hES-MPs) hold great potential to provide a homogenous and unlimited source of cells for bone engineering applications. Based on prior scientific evidence using different types of stem cells, in the present study we hypothesized that dynamic culture of hES-MPs in a packed bed/column bioreactor had the potential to affect proliferation, expression of genes involved in osteogenic differentiation, and matrix mineralization, therefore resulting in increased bone-like tissue formation. The reported findings suggest that hES-MPs constitute a suitable alternative cell source to hMSCs and hold great potential for the construction of bone substitutes for tissue engineering applications in clinical settings.

  18. Human Wharton's jelly stem cell conditioned medium and cell-free lysate inhibit human osteosarcoma and mammary carcinoma cell growth in vitro and in xenograft mice.

    PubMed

    Gauthaman, Kalamegam; Fong, Chui-Yee; Arularasu, Suganya; Subramanian, Arjunan; Biswas, Arijit; Choolani, Mahesh; Bongso, Ariff

    2013-02-01

    Human Wharton's jelly stem cells (hWJSCs) were shown to inhibit the growth of human mammary carcinomas. It is not known whether cell-free secretions or lysates of hWJSCs do the same on different cancers. They may be less controversial than cells to regulatory bodies for clinical application. We examined the influence of hWJSC conditioned medium (hWJSC-CM) and cell-free lysate (hWJSC-CL) on two osteosarcoma cell lines (MG-63, SKES-1) in vitro and on human mammary carcinomas in immunodeficient mice. When exposed to hWJSC-CL, increased vacuolations in MG-63 and increased membrane fragmentation in SKES-1 cells were observed, with greater cell death in SKES-1. Exposure of SKES-1 and MG-63 cells to hWJSC-CL showed significant decreases in cell proliferation of 46.48 ± 6.66% and 24.32 ± 5.67% respectively compared to controls. MG-63 and SKES-1 cells were annexin V-FITC positive and SKES-1 TUNEL positive following treatment with hWJSC-CM and hWJSC-CL. MG-63 cells were positive and SKES-1 cells negative for anti-BECLIN-1 and anti-LC3B following treatment with hWJSC-CM and hWJSC-CL. RT-PCR showed that the pro-apoptotic BAX gene and the autophagy-related ATG-5 and BECLIN-1 genes were up-regulated while the anti-apoptotic BCL2 and SURVIVIN genes were down-regulated in MG-63 and SKES-1 cells treated with hWJSC-CM and hWJSC-CL. Injections of hWJSCs and hWJSC-CM into mammary carcinomas in immunodeficient mice resulted in decreased tumor sizes and weights of 24.86 ± 6.05% to 37.03 ± 5.91% and 47.14 ± 7.36% to 55.09 ± 5.87% respectively at 6 weeks compared to controls. hWJSC-CM and hWJSC-CL inhibit mammary carcinoma and osteosarcoma cells via apoptosis and autophagy. Copyright © 2012 Wiley Periodicals, Inc.

  19. 3D Printed Structures Filled with Carbon Fibers and Functionalized with Mesenchymal Stem Cell Conditioned Media as In Vitro Cell Niches for Promoting Chondrogenesis.

    PubMed

    García-Ruíz, Josefa Predestinación; Díaz Lantada, Andrés

    2017-12-24

    In this study, we present a novel approach towards the straightforward, rapid, and low-cost development of biomimetic composite scaffolds for tissue engineering strategies. The system is based on the additive manufacture of a computer-designed lattice structure or framework, into which carbon fibers are subsequently knitted or incorporated. The 3D-printed lattice structure acts as support and the knitted carbon fibers perform as driving elements for promoting cell colonization of the three-dimensional construct. A human mesenchymal stem cell (h-MSC) conditioned medium (CM) is also used for improving the scaffold's response and promoting cell adhesion, proliferation, and viability. Cell culture results-in which scaffolds become buried in collagen type II-provide relevant information regarding the viability of the composite scaffolds used and the prospective applications of the proposed approach. In fact, the advanced composite scaffold developed, together with the conditioned medium functionalization, constitutes a biomimetic stem cell niche with clear potential, not just for tendon and ligament repair, but also for cartilage and endochondral bone formation and regeneration strategies.

  20. Characteristics of Human Turbinate-Derived Mesenchymal Stem Cells Are Not Affected by Allergic Condition of Donor

    PubMed Central

    Hwang, Se Hwan; Cho, Hye Kyung; Park, Sang Hi; Lee, WeonSun; Lee, Hee Jin; Lee, Dong Chang; Park, Sun Hwa; Lim, Mi Hyun; Back, Sang A; Yun, Byeong Gon; Sun, Dong Il

    2015-01-01

    The characteristics of mesenchymal stem cells (MSCs) derived from human turbinates (hTMSCs) have not been investigated in allergic rhinitis. We evaluated the influence of allergic state of the donor on the characteristics, proliferation, and differentiation potential of hTMSCs, compared with hTMSCs derived from non-allergic patients. hTMSCs were isolated from five non-allergic and five allergic patients. The expression of toll-like receptors (TLRs) in hTMSCs was measured by FACS, and cell proliferation was measured using a cell counting kit. Cytokine secretion was analyzed using multiplex immunoassays. The osteogenic, chondrogenic, and adipogenic differentiation potentials of hTMSCs were evaluated by histology and gene expression analysis. In allergic patients, FACS analysis showed that TLR3 and TLR4 were more highly expressed on the surface of hTMSCs than TLR2 and TLR5. The proliferation of hTMSCs was not influenced by the presence of TLR priming. The expression of IL-6, IL-8, IL-12, IP-10, and RANTES was upregulated after the TLR4 priming. The differentiation potential of hTMSCs was not influenced by TLR priming. These characteristics of hTMSCs were similar to those of hTMSCs from non-allergic patients. We conclude that the allergic condition of the donor does not influence TLR expression, proliferation, or immunomodulatory potential of hTMSCs. PMID:26376485

  1. Multipotent Stem Cell and Reproduction.

    PubMed

    Khanlarkhani, Neda; Baazm, Maryam; Mohammadzadeh, Farzaneh; Najafi, Atefeh; Mehdinejadiani, Shayesteh; Sobhani, Aligholi

    Stem cells are self-renewing and undifferentiated cell types that can be differentiate into functional cells. Stem cells can be classified into two main types based on their source of origin: Embryonic and Adult stem cells. Stem cells also classified based on the range of differentiation potentials into Totipotent, Pluripotent, Multipotent, and Unipotent. Multipotent stem cells have the ability to differentiate into all cell types within one particular lineage. There are plentiful advantages and usages for multipotent stem cells. Multipotent Stem cells act as a significant key in procedure of development, tissue repair, and protection. The accessibility and adaptability of these amazing cells create them a great therapeutic choice for different part of medical approaches, and it becomes interesting topic in the scientific researches to found obvious method for the most advantageous use of MSC-based therapies. Recent studies in the field of stem cell biology have provided new perspectives and opportunities for the treatment of infertility disorders.

  2. Genetics of Gonadal Stem Cell Renewal

    PubMed Central

    Greenspan, Leah Joy; de Cuevas, Margaret

    2015-01-01

    Stem cells are necessary for the maintenance of many adult tissues. Signals within the stem cell microenvironment, or niche, regulate the self-renewal and differentiation capability of these cells. Misregulation of these signals through mutation or damage can lead to overgrowth or depletion of different stem cell pools. In this review, we focus on the Drosophila testis and ovary, both of which contain well-defined niches, as well as the mouse testis, which has become a more approachable stem cell system with recent technical advances. We discuss the signals that regulate gonadal stem cells in their niches, how these signals mediate self-renewal and differentiation under homeostatic conditions, and how stress, whether from mutations or damage, can cause changes in cell fate and drive stem cell competition. PMID:26355592

  3. Thrombotic microangiopathy after allogeneic stem cell transplantation in the era of reduced-intensity conditioning: The incidence is not reduced.

    PubMed

    Shimoni, Avichai; Yeshurun, Moshe; Hardan, Izhar; Avigdor, Abraham; Ben-Bassat, Isaac; Nagler, Arnon

    2004-07-01

    Thrombotic microangiopathy (TMA) is one of the most severe complications of stem cell transplantation (SCT). Endothelial cell injury caused by the toxic effects of high-dose chemoradiotherapy is likely the primary event in pathogenesis. The incidence, clinical settings, and risk factors for TMA in the era of nonmyeloablative conditioning have not been well defined. The data on 147 consecutive SCTs in a single center were collected, and patients with TMA were identified. Patient characteristics, response to therapy, and outcome were recorded, and risk factors were determined. TMA occurred in 22 of 147 transplantations, with a projected incidence of 20% +/- 4%. TMA occurred in 3 clinical settings: classic multifactorial TMA, TMA associated with severe hepatic graft-versus-host disease (GVHD), and TMA associated with second SCT, with a projected incidence of 8% +/- 3%, 73% +/- 14%, and 70% +/- 16% of patients at risk, respectively. TMA occurred after 23% +/- 6% of nonmyeloablative and 16% +/- 5% of myeloablative conditioning regimens (not significant). Univariate analysis determined SCT from unrelated donors, SCT during advanced or active disease, second SCT within 6 months of a prior SCT, and acute GVHD as risk factors for TMA. The last 2 factors remained significant in a multivariate model. Thirty-two percent of patients responded to therapy. The peri-TMA mortality rate was 68% +/- 10%. Six patients had diffuse alveolar hemorrhage complicating TMA. SCT-associated TMA is a relatively common complication with unsatisfactory therapy and grim prognosis. Fludarabine-based nonmyeloablative conditioning does not confer a lesser risk for TMA. This observation may relate to the selective use of these regimens in elderly and heavily pretreated patients or to the lack of reduction of GVHD with these regimens, and fludarabine itself may be involved in causing endothelial damage. Further exploration of novel preventive and therapeutic measurements is required in high

  4. Stem cells in kidney regeneration.

    PubMed

    Yokote, Shinya; Yokoo, Takashi

    2012-01-01

    Currently many efforts are being made to apply regenerative medicine to kidney diseases using several types of stem/progenitor cells, such as mesenchymal stem cells, renal stem/progenitor cells, embryonic stem cells and induced pluripotent stem cells. Stem cells have the ability to repair injured organs and ameliorate damaged function. The strategy for kidney tissue repair is the recruitment of stem cells and soluble reparative factors to the kidney to elicit tissue repair and the induction of dedifferentiation of resident renal cells. On the other hand, where renal structure is totally disrupted, absolute kidney organ regeneration is needed to rebuild a whole functional kidney. In this review, we describe current advances in stem cell research for kidney tissue repair and de novo organ regeneration.

  5. Laser biomodulation on stem cells

    NASA Astrophysics Data System (ADS)

    Liu, Timon C.; Duan, Rui; Li, Yan; Li, Xue-Feng; Tan, Li-Ling; Liu, Songhao

    2001-08-01

    Stem cells are views from the perspectives of their function, evolution, development, and cause. Counterintuitively, most stem cells may arise late in development, to act principally in tissue renewal, thus ensuring an organisms long-term survival. Surprisingly, recent reports suggest that tissue-specific adult stem cells have the potential to contribute to replenishment of multiple adult tissues. Stem cells are currently in the news for two reasons: the successful cultivation of human embryonic stem cell lines and reports that adult stem cells can differentiate into developmentally unrelated cell types, such as nerve cells into blood cells. The spotlight on stem cells has revealed gaps in our knowledge that must be filled if we are to take advantage of their full potential for treating devastating degenerative diseases such as Parkinsons's disease and muscular dystrophy. We need to know more about the intrinsic controls that keep stem cells as stem cells or direct them along particular differentiation pathways. Such intrinsic regulators are, in turn, sensitive to the influences of the microenvironment, or niche, where stem cells normally reside. Both intrinsic and extrinsic signals regular stem cell fate and some of these signals have now been identified. Vacek et al and Wang et al have studied the effect of low intensity laser on the haemopoietic stem cells in vitro. There experiments show there is indeed the effect of low intensity laser on the haemopoietic stem cells in vitro, and the present effect is the promotion of haemopoietic stem cells proliferation. In other words, low intensity laser irradiation can act as an extrinsic signal regulating stem cell fate. In this paper, we study how low intensity laser can be used to regulate stem cell fate from the viewpoint of collective phototransduction.

  6. Fake news portrayals of stem cells and stem cell research.

    PubMed

    Marcon, Alessandro R; Murdoch, Blake; Caulfield, Timothy

    2017-10-01

    This study examines how stem cells and stem cell research are portrayed on websites deemed to be purveyors of distorted and dubious information. Content analysis was conducted on 224 articles from 2015 to 2016, compiled by searching with the keywords 'stem cell(s)' on a list of websites flagged for containing either 'fake' or 'junk science' news. Articles contained various exaggerated positive and negative claims about stem cells and stem cell science, health and science related conspiracy theories, and statements promoting fear and mistrust of conventional medicine. Findings demonstrate the existence of organized misinformation networks, which may lead the public away from accurate information and facilitate a polarization of public discourse.

  7. A Facile Method to Establish Human Induced Pluripotent Stem Cells From Adult Blood Cells Under Feeder-Free and Xeno-Free Culture Conditions: A Clinically Compliant Approach

    PubMed Central

    Chou, Bin-Kuan; Gu, Haihui; Gao, Yongxing; Dowey, Sarah N.; Wang, Ying; Shi, Jun; Li, Yanxin; Ye, Zhaohui; Cheng, Tao

    2015-01-01

    Reprogramming human adult blood mononuclear cells (MNCs) cells by transient plasmid expression is becoming increasingly popular as an attractive method for generating induced pluripotent stem (iPS) cells without the genomic alteration caused by genome-inserting vectors. However, its efficiency is relatively low with adult MNCs compared with cord blood MNCs and other fetal cells and is highly variable among different adult individuals. We report highly efficient iPS cell derivation under clinically compliant conditions via three major improvements. First, we revised a combination of three EBNA1/OriP episomal vectors expressing five transgenes, which increased reprogramming efficiency by ≥10–50-fold from our previous vectors. Second, human recombinant vitronectin proteins were used as cell culture substrates, alleviating the need for feeder cells or animal-sourced proteins. Finally, we eliminated the previously critical step of manually picking individual iPS cell clones by pooling newly emerged iPS cell colonies. Pooled cultures were then purified based on the presence of the TRA-1-60 pluripotency surface antigen, resulting in the ability to rapidly expand iPS cells for subsequent applications. These new improvements permit a consistent and reliable method to generate human iPS cells with minimal clonal variations from blood MNCs, including previously difficult samples such as those from patients with paroxysmal nocturnal hemoglobinuria. In addition, this method of efficiently generating iPS cells under feeder-free and xeno-free conditions allows for the establishment of clinically compliant iPS cell lines for future therapeutic applications. PMID:25742692

  8. Reduced-intensity conditioning for alternative donor hematopoietic stem cell transplantation in patients with dyskeratosis congenita.

    PubMed

    Nishio, Nobuhiro; Takahashi, Yoshiyuki; Ohashi, Haruhiko; Doisaki, Sayoko; Muramatsu, Hideki; Hama, Asahito; Shimada, Akira; Yagasaki, Hiroshi; Kojima, Seiji

    2011-03-01

    DC is an inherited bone marrow failure syndrome mainly characterized by nail dystrophy, abnormal skin pigmentation, and oral leukoplakia. Bone marrow failure is the most common cause of death in patients with DC. Because previous results of HSCT with a myeloablative regimen were disappointing, we used a reduced-intensity conditioning regimen for two patients with classic DC, and one patient with cryptic DC who harbored the TERT mutation. Graft sources included two mismatched-related bone marrow (BM) donors and one unrelated BM donor. Successful engraftment was achieved with few regimen-related toxicities in all patients. They were alive 10, 66, and 72 months after transplantation, respectively. Long-term follow-up is crucial to determine the late effects of our conditioning regimen. © 2010 John Wiley & Sons A/S.

  9. Stem cells and female reproduction.

    PubMed

    Du, Hongling; Taylor, Hugh S

    2009-02-01

    Several recent findings in stem cell biology have resulted in new opportunities for the treatment of reproductive disease. Endometrial regeneration can be driven by bone marrow derived stem cells. This finding has potential implications for the treatment of uterine disorders. It also supports a new theory for the etiology of endometriosis. The ovaries have been shown to contain stem cells that form oocytes in adults and can be cultured in vitro to develop mature oocytes. Stem cells from the fetus have been demonstrated to lead to microchimerism in the mother and implicated in several maternal diseases. Additionally the placenta may be another source of hematopoietic stem cell. Finally endometrial derived stem cells have been demonstrated to differentiate into non-reproductive tissues. While we are just beginning to understand stem cells and many key questions remain, the potential advantages of stem cells in reproductive biology and medicine are apparent.

  10. [Progress in epidermal stem cells].

    PubMed

    Wang, Li-Juan; Wang, You-Liang; Yang, Xiao

    2010-03-01

    Mammalian skin epidermis contains different epidermal stem cell pools which contribute to the homeostasis and repair of skin epithelium. Epidermal stem cells possess two essential features common to all stem cells: self-renewal and differentiation. Disturbing the balance between self-renewal and differentiation of epidermal stem cell often causes tumors or other skin diseases. Epidermal stem cell niches provide a special microenvironment that maintains a balance of stem cell quiescence and activity. This review primarily concentrates on the following points of the epidermal stem cells: the existing evidences, the self-renewal and differentiation, the division pattern, the signal pathways regulating self-renewal and differentiation, and the microenvironment (niche) and macroenvironment maintaining the homeostasis of stem cells.

  11. Stem Cells in Mammalian Gonads.

    PubMed

    Wu, Ji; Ding, Xinbao; Wang, Jian

    Stem cells have great value in clinical application because of their ability to self-renew and their potential to differentiate into many different cell types. Mammalian gonads, including testes for males and ovaries for females, are composed of germline and somatic cells. In male mammals, spermatogonial stem cells maintain spermatogenesis which occurs continuously in adult testis. Likewise, a growing body of evidence demonstrated that female germline stem cells could be found in mammalian ovaries. Meanwhile, prior studies have shown that somatic stem cells exist in both testes and ovaries. In this chapter, we focus on mammalian gonad stem cells and discuss their characteristics as well as differentiation potentials.

  12. Characterization of Amniotic Stem Cells

    PubMed Central

    Koike, Chika; Zhou, Kaixuan; Takeda, Yuji; Fathy, Moustafa; Okabe, Motonori; Yoshida, Toshiko; Nakamura, Yukio; Kato, Yukio

    2014-01-01

    Abstract The amnion membrane is developed from embryo-derived cells, and amniotic cells have been shown to exhibit multidifferentiation potential. These cells represent a desirable source for stem cells for a variety of reasons. However, to date very few molecular analyses of amnion-derived cells have been reported, and efficient markers for isolating the stem cells remain unclear. This paper assesses the characterization of amnion-derived cells as stem cells by examining stemness marker expressions for amnion-derived epithelial cells and mesenchymal cells by flow cytometry, immunocytochemistry, and quantitative PCR. Flow cytometry revealed that amnion epithelial cells expressed CD133, CD 271, and TRA-1-60, whereas mecenchymal cells expressed CD44, CD73, CD90, and CD105. Immunohistochemistry showed that both cells expressed the stemness markers Oct3/4, Sox2, Klf4, and SSEA4. Stemness genes' expression in amnion epithelial cells, mesenchymal cells, fibroblast, bone marrow–derived mesenchymal stem cells (MSCs), and induced pluripotent stem cells (iPSCs) was compared by quantitative reverse-transcription polymerase chain reaction (RT-PCR). Amnion-derived epithelial cells and mesenchymal cells expressed Oct3/4, Nanog, and Klf4 more than bone marrow–derived MSCs. The sorted TRA1-60–positive cells expressed Oct3/4, Nanog, and Klf4 more than unsorted cells or TRA1-60–negative cells. TRA1-60 can be a marker for isolating amnion epithelial stem cells. PMID:25068631

  13. Optimization of culture conditions to support long-term self-renewal of buffalo (Bubalus bubalis) embryonic stem cell-like cells.

    PubMed

    Sharma, Ruchi; George, Aman; Kamble, Nitin Manchindra; Singh, Karn Pratap; Chauhan, Manmohan Singh; Singla, Suresh Kumar; Manik, Radhey Sham; Palta, Prabhat

    2011-12-01

    A culture system capable of sustaining self-renewal of buffalo embryonic stem (ES) cell-like cells in an undifferentiated state over a long period of time was developed. Inner cell masses were seeded on KO-DMEM+15% KO-serum replacer on buffalo fetal fibroblast feeder layer. Supplementation of culture medium with 5 ng/mL FGF-2 and 1000 IU/mL mLIF gave the highest (p<0.05) rate of primary colony formation. The ES cell-like cells' colony survival rate and increase in colony size were highest (p<0.05) following supplementation with FGF-2 and LIF compared to other groups examined. FGF-2 supplementation affected the quantitative expression of NANOG, SOX-2, ACTIVIN A, BMP 4, and TGFβ1, but not OCT4 and GREMLIN. Supplementation with SU5402, an FGFR inhibitor (≥20 μM) increased (p<0.05) the percentage of colonies that differentiated. FGFR1-3 and ERK1, K-RAS, E-RAS, and SHP-2, key signaling intermediates of FGF signaling, were detected in ES cell-like cells. Under culture conditions described, three ES cell lines were derived that, to date, have been maintained for 135, 95, and 85 passages for over 27, 19, and 17 months, respectively, whereas under other conditions examined, ES cell-like cells did not survive beyond passage 10. The ES cell-like cells were regularly monitored for expression of pluripotency markers and their potency to form embryoid bodies.

  14. Materials as stem cell regulators

    PubMed Central

    Murphy, William L.; McDevitt, Todd C.; Engler, Adam J.

    2014-01-01

    The stem cell/material interface is a complex, dynamic microenvironment in which the cell and the material cooperatively dictate one another's fate: the cell by remodelling its surroundings, and the material through its inherent properties (such as adhesivity, stiffness, nanostructure or degradability). Stem cells in contact with materials are able to sense their properties, integrate cues via signal propagation and ultimately translate parallel signalling information into cell fate decisions. However, discovering the mechanisms by which stem cells respond to inherent material characteristics is challenging because of the highly complex, multicomponent signalling milieu present in the stem cell environment. In this Review, we discuss recent evidence that shows that inherent material properties may be engineered to dictate stem cell fate decisions, and overview a subset of the operative signal transduction mechanisms that have begun to emerge. Further developments in stem cell engineering and mechanotransduction are poised to have substantial implications for stem cell biology and regenerative medicine. PMID:24845994

  15. Defined xenogeneic-free and hypoxic environment provides superior conditions for long-term expansion of human adipose-derived stem cells.

    PubMed

    Yang, Sufang; Pilgaard, Linda; Chase, Lucas G; Boucher, Shayne; Vemuri, Mohan C; Fink, Trine; Zachar, Vladimir

    2012-08-01

    Development and implementation of therapeutic protocols based on stem cells or tissue-engineered products relies on methods that enable the production of substantial numbers of cells while complying with stringent quality and safety demands. In the current study, we aimed to assess the benefits of maintaining cultures of adipose-derived stem cells (ASCs) in a defined culture system devoid of xenogeneic components (xeno-free) and hypoxia over a 49-day growth period. Our data provide evidence that conditions involving StemPro mesenchymal stem cells serum-free medium (SFM) Xeno-Free and hypoxia (5% oxygen concentration) in the culture atmosphere provide a superior proliferation rate compared to a standard growth environment comprised of alpha-modified Eagle medium (A-MEM) supplemented with fetal calf serum (FCS) and ambient air (20% oxygen concentration) or that of A-MEM supplemented with FCS and hypoxia. Furthermore, a flow cytometric analysis and in vitro differentiation assays confirmed the immunophenotype stability and maintained multipotency of ASCs when expanded under xeno-free conditions and hypoxia. In conclusion, our data demonstrate that growth conditions utilizing a xeno-free and hypoxic environment not only provide an improved environment for the expansion of ASCs, but also set the stage as a culture system with the potential broad spectrum utility for regenerative medicine and tissue engineering applications.

  16. Efficient, Long Term Production of Monocyte-Derived Macrophages from Human Pluripotent Stem Cells under Partly-Defined and Fully-Defined Conditions

    PubMed Central

    van Wilgenburg, Bonnie; Browne, Cathy; Vowles, Jane; Cowley, Sally A.

    2013-01-01

    Human macrophages are specialised hosts for HIV-1, dengue virus, Leishmania and Mycobacterium tuberculosis. Yet macrophage research is hampered by lack of appropriate cell models for modelling infection by these human pathogens, because available myeloid cell lines are, by definition, not terminally differentiated like tissue macrophages. We describe here a method for deriving monocytes and macrophages from human Pluripotent Stem Cells which improves on previously published protocols in that it uses entirely defined, feeder- and serum-free culture conditions and produces very consistent, pure, high yields across both human Embryonic Stem Cell (hESC) and multiple human induced Pluripotent Stem Cell (hiPSC) lines over time periods of up to one year. Cumulatively, up to ∼3×107 monocytes can be harvested per 6-well plate. The monocytes produced are most closely similar to the major blood monocyte (CD14+, CD16low, CD163+). Differentiation with M-CSF produces macrophages that are highly phagocytic, HIV-1-infectable, and upon activation produce a pro-inflammatory cytokine profile similar to blood monocyte-derived macrophages. Macrophages are notoriously hard to genetically manipulate, as they recognise foreign nucleic acids; the lentivector system described here overcomes this, as pluripotent stem cells can be relatively simply genetically manipulated for efficient transgene expression in the differentiated cells, surmounting issues of transgene silencing. Overall, the method we describe here is an efficient, effective, scalable system for the reproducible production and genetic modification of human macrophages, facilitating the interrogation of human macrophage biology. PMID:23951090

  17. Stem cells in psoriasis.

    PubMed

    Hou, Ruixia; Li, Junqin; Niu, Xuping; Liu, Ruifeng; Chang, Wenjuan; Zhao, Xincheng; Wang, Qiang; Li, Xinhua; Yin, Guohua; Zhang, Kaiming

    2017-06-01

    Psoriasis is a complex chronic relapsing inflammatory disease. Although the exact mechanism remains unknown, it is commonly accepted that the development of psoriasis is a result of multi-system interactions among the epidermis, dermis, blood vessels, immune system, neuroendocrine system, metabolic system, and hematopoietic system. Many cell types have been confirmed to participate in the pathogenesis of psoriasis. Here, we review the stem cell abnormalities related to psoriasis that have been investigated recently. Copyright © 2016. Published by Elsevier B.V.

  18. Conditional expression of the type 2 angiotensin II receptor in mesenchymal stem cells inhibits neointimal formation after arterial injury.

    PubMed

    Feng, Jian; Liu, Jian-Ping; Miao, Li; He, Guo-Xiang; Li, De; Wang, Hai-Dong; Jing, Tao

    2014-10-01

    Percutaneous coronary interventions (PCIs) are an effective treatment for obstructive coronary artery diseases. However, the procedure's success is limited by remodeling and formation of neointima. In the present study, we engineered rat mesenchymal stem cells (MSCs) to express type 2 angiotensin II receptor (AT2R) using a tetracycline-regulated system that can strictly regulate AT2R expression. We tested the ability of the modified MSCs to reduce neointima formation following arterial injury. We subjected rats to balloon injury, and reverse transcriptase polymerase chain reaction (RT-PCR) indicated no significant AT2R expression in normal rat arteries. Low expression of AT2R was observed at 28 days after balloon-induced injury. Interestingly, MSCs alone were unable to reduce neointimal hyperplasia after balloon-induced injury; after transplantation of modified MSCs, doxycycline treatment significantly upregulated neointimal AT2R expression and inhibited osteopontin mRNA expression, as well as neointimal formation. Taken together, these results suggest that transplantation of MSCs conditionally expressing AT2R could effectively suppress neointimal hyperplasia following balloon-induced injury. Therefore, MSCs with a doxycycline-controlled gene induction system may be useful for the management of arterial injury after PCI.

  19. Conditioned medium from the stem cells of human dental pulp improves cognitive function in a mouse model of Alzheimer's disease.

    PubMed

    Mita, Tsuneyuki; Furukawa-Hibi, Yoko; Takeuchi, Hideyuki; Hattori, Hisashi; Yamada, Kiyofumi; Hibi, Hideharu; Ueda, Minoru; Yamamoto, Akihito

    2015-10-15

    Alzheimer's disease (AD) is a progressive, neurodegenerative disease characterized by a decline in cognitive abilities and the appearance of β-amyloid plaques in the brain. Although the pathogenic mechanisms associated with AD are not fully understood, activated microglia releasing various neurotoxic factors, including pro-inflammatory cytokines and oxidative stress mediators, appear to play major roles. Here, we investigated the therapeutic benefits of a serum-free conditioned medium (CM) derived from the stem cells of human exfoliated deciduous teeth (SHEDs) in a mouse model of AD. The intranasal administration of SHEDs in these mice resulted in substantially improved cognitive function. SHED-CM contained factors involved in multiple neuroregenerative mechanisms, such as neuroprotection, axonal elongation, neurotransmission, the suppression of inflammation, and microglial regulation. Notably, SHED-CM attenuated the pro-inflammatory responses induced by β-amyloid plaques, and generated an anti-inflammatory/tissue-regenerating environment, which was accompanied by the induction of anti-inflammatory M2-like microglia. Our data suggest that SHED-CM may provide significant therapeutic benefits for AD. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Stromal cell derived factor-1alpha protects stem cell derived insulin-producing cells from glucotoxicity under high glucose conditions in-vitro and ameliorates drug induced diabetes in rats

    PubMed Central

    2013-01-01

    Background Diabetes mellitus is affecting more than 300 million people worldwide. Current treatment strategies cannot prevent secondary complications. Stem cells due to their regenerative power have long been the attractive target for the cell-based therapies. Mesenchymal stem cells (MSCs) possess the ability to differentiate into several cell types and to escape immune recognition in vitro. MSCs can be differentiated into insulin-producing cells (IPCs) and could be an exciting therapy for diabetes but problems like poor engraftment and survivability need to be confronted. It was hypothesized that stromal cell derived factor- 1alpha (SDF-1alpha) will enhance therapeutic potential of stem cell derived IPCs by increasing their survival and proliferation rate. Methods Novel culture conditions were developed to differentiate bone marrow derived mesenchymal stem cells (BMSCs) into IPCs by using endocrine differentiation inducers and growth factors via a three stage protocol. In order to enhance their therapeutic potential, we preconditioned IPCs with SDF-1alpha. Results Our results showed that SDF-1alpha increases survival and proliferation of IPCs and protects them from glucotoxicity under high glucose conditions in vitro. SDF-1alpha also enhances the glucose responsive insulin secretion in IPCs in vitro. SDF-1alpha preconditioning reverses hyperglycemia and increase serum insulin in drug induced diabetic rats. Conclusions The differentiation of BMSCs into IPCs and enhancement of their therapeutic potential by SDF-1alpha preconditioning may contribute to cell based therapies for diabetes. PMID:23648189

  1. Comparative study of hematopoietic stem and progenitor cells between sexes in mice under physiological conditions along time.

    PubMed

    Gasco, Samanta; Rando, Amaya; Zaragoza, Pilar; García-Redondo, Alberto; Calvo, Ana Cristina; Osta, Rosario

    2017-12-01

    Hematopoietic stem and progenitor cells (HSPCs) are attractive targets in regenerative medicine, although the differences in their homeostatic maintenance between sexes along time are still under debate. We accurately monitored hematopoietic stem cells (HSCs), common lymphoid progenitors (CLPs), and common myeloid progenitors (CMPs) frequencies by flow cytometry, by performing serial peripheral blood extractions from male and female B6SJL wild-type mice and found no significant differences. Only modest differences were found in the gene expression profile of Slamf1 and Gata2. Our findings suggest that both sexes could be used indistinctly to perform descriptive studies in the murine hematopoietic system, especially for flow cytometry studies in peripheral blood. This would allow diminishing the number of animals needed for the experimental procedures. In addition, the use of serial extractions in the same animals drastically decreases the number of animals needed. © 2017 International Federation for Cell Biology.

  2. Conditioned Medium from Placental Mesenchymal Stem Cells Reduces Oxidative Stress during the Cryopreservation of Ex Vivo Expanded Umbilical Cord Blood Cells.

    PubMed

    Kadekar, Darshana; Rangole, Sonal; Kale, Vaijayanti; Limaye, Lalita

    2016-01-01

    The limited cell dose in umbilical cord blood (UCB) necessitates ex vivo expansion of UCB. Further, the effective cryopreservation of these expanded cells is important in widening their use in the clinics. During cryopreservation, cells experience oxidative stress due to the generation of reactive oxygen species (ROS). Conditioned medium from mesenchymal stem cells (MSCs-CM) has been shown to alleviate the oxidative stress during wound healing, Alzheimer's disease and ischemic disease. This premise prompted us to investigate the influence of MSCs-CM during cryopreservation of expanded UCB cells. CM-was collected from cord/placental MSCs(C-MSCs-CM, P-MSC-CM). UCB CD34+cells were expanded as suspension cultures in serum free medium containing cytokines for 10 days. Cells were frozen with/without C-MSCs-CM and or P-MSCs-CM in the conventional freezing medium containing 20%FCS +10%DMSO using a programmable freezer and stored in liquid nitrogen. Upon revival, cells frozen with MSCs-CM were found to be superior to cells frozen in conventional medium in terms of viability, CD34+content and clonogenecity. Priming of revived cells for 48 hrs with MSCs-CM further improved their transplantation ability, as compared to those cultured without MSCs-CM. P-MSCs-CM radically reduced the oxidative stress in cryopreserved cells, resulting in better post thaw functionality of CD34+ cells than with C-MSCs-CM. The observed cryoprotective effect of MSCs-CM was primarily due to anti-oxidative and anti-apoptotic properties of the MSCs-CM and not because of the exosomes secreted by them. Our data suggest that MSCs-CM can serve as a valuable additive to the freezing or the priming medium for expanded UCB cells, which would increase their clinical applicability.

  3. Conditioned Medium from Placental Mesenchymal Stem Cells Reduces Oxidative Stress during the Cryopreservation of Ex Vivo Expanded Umbilical Cord Blood Cells

    PubMed Central

    Kadekar, Darshana; Rangole, Sonal; Kale, Vaijayanti; Limaye, Lalita

    2016-01-01

    Background The limited cell dose in umbilical cord blood (UCB) necessitates ex vivo expansion of UCB. Further, the effective cryopreservation of these expanded cells is important in widening their use in the clinics. During cryopreservation, cells experience oxidative stress due to the generation of reactive oxygen species (ROS). Conditioned medium from mesenchymal stem cells (MSCs-CM) has been shown to alleviate the oxidative stress during wound healing, Alzheimer’s disease and ischemic disease. This premise prompted us to investigate the influence of MSCs-CM during cryopreservation of expanded UCB cells. Methodology/Principle findings CM-was collected from cord/placental MSCs(C-MSCs-CM, P-MSC-CM). UCB CD34+cells were expanded as suspension cultures in serum free medium containing cytokines for 10 days. Cells were frozen with/without C-MSCs-CM and or P-MSCs-CM in the conventional freezing medium containing 20%FCS +10%DMSO using a programmable freezer and stored in liquid nitrogen. Upon revival, cells frozen with MSCs-CM were found to be superior to cells frozen in conventional medium in terms of viability, CD34+content and clonogenecity. Priming of revived cells for 48 hrs with MSCs-CM further improved their transplantation ability, as compared to those cultured without MSCs-CM. P-MSCs-CM radically reduced the oxidative stress in cryopreserved cells, resulting in better post thaw functionality of CD34+ cells than with C-MSCs-CM. The observed cryoprotective effect of MSCs-CM was primarily due to anti-oxidative and anti-apoptotic properties of the MSCs-CM and not because of the exosomes secreted by them. Conclusions/Significance Our data suggest that MSCs-CM can serve as a valuable additive to the freezing or the priming medium for expanded UCB cells, which would increase their clinical applicability. PMID:27780236

  4. Incidence and Outcomes of Central Nervous System Hemophagocytic Lymphohistiocytosis Relapse after Reduced-Intensity Conditioning Hematopoietic Stem Cell Transplantation.

    PubMed

    Lounder, Dana T; Khandelwal, Pooja; Chandra, Sharat; Jordan, Michael B; Kumar, Ashish R; Grimley, Michael S; Davies, Stella M; Bleesing, Jack J; Marsh, Rebecca A

    2017-05-01

    Hemophagocytic lymphohistiocytosis (HLH) is an immune regulatory disorder that commonly presents with central nervous system (CNS) involvement. The only cure for genetic HLH is hematopoietic stem cell transplantation (HSCT), typically treated with reduced-intensity conditioning (RIC) regimens. We sought to estimate the incidence of CNS relapse after RIC HSCT, determine risk factors, and evaluate outcomes. We performed a retrospective chart review of 94 consecutive children and young adults with primary HLH who received RIC HSCT. CNS relapse within 1 year after transplantation was diagnosed by review of clinical symptoms, cerebral spinal fluid (CSF), and radiologic findings. Four (4.25%) patients developed symptoms of possible CNS HLH after HSCT and 3 patients were diagnosed. Eight patients underwent screening lumbar puncture because of history of active CNS disease at the onset of the conditioning regimen and 4 had evidence of continued disease. The overall incidence of CNS relapse and continued CNS disease after RIC HSCT was 8%. All patients with CNS disease after HSCT responded to CNS-directed therapy. Whole blood donor chimerism at the time of CNS relapse was low at 1% to 34%, but it remained high at 88% to 100% for patients with continued CNS disease. Overall survival for patients with CNS relapse was 50%, compared with 75% for patients without CNS disease (P = .079). Our data suggest that a low level of donor chimerism or active CNS disease at the time of transplantation increase the risk of CNS HLH after HSCT. Surveillance CSF evaluation after allogeneic RIC HSCT should be considered in patients with risk factors and CNS-directed treatment should be initiated if appropriate. Copyright © 2017 The American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  5. Stem Cells for Skeletal Muscle Tissue Engineering.

    PubMed

    Pantelic, Molly N; Larkin, Lisa M

    2018-04-19

    Volumetric muscle loss (VML) is a debilitating condition wherein muscle loss overwhelms the body's normal physiological repair mechanism. VML is particularly common among military service members who have sustained war injuries. Because of the high social and medical cost associated with VML and suboptimal current surgical treatments, there is great interest in developing better VML therapies. Skeletal muscle tissue engineering (SMTE) is a promising alternative to traditional VML surgical treatments that use autogenic tissue grafts, and rather uses isolated stem cells with myogenic potential to generate de novo skeletal muscle tissues to treat VML. Satellite cells are the native precursors to skeletal muscle tissue, and are thus the most commonly studied starting source for SMTE. However, satellite cells are difficult to isolate and purify, and it is presently unknown whether they would be a practical source in clinical SMTE applications. Alternative myogenic stem cells, including adipose-derived stem cells, bone marrow-derived mesenchymal stem cells, perivascular stem cells, umbilical cord mesenchymal stem cells, induced pluripotent stem cells, and embryonic stem cells, each have myogenic potential and have been identified as possible starting sources for SMTE, although they have yet to be studied in detail for this purpose. These alternative stem cell varieties offer unique advantages and disadvantages that are worth exploring further to advance the SMTE field toward highly functional, safe, and practical VML treatments. The following review summarizes the current state of satellite cell-based SMTE, details the properties and practical advantages of alternative myogenic stem cells, and offers guidance to tissue engineers on how alternative myogenic stem cells can be incorporated into SMTE research.

  6. Co-precipitation of DEAE-dextran coated SPIONs: how synthesis conditions affect particle properties, stem cell labelling and MR contrast.

    PubMed

    Barrow, Michael; Taylor, Arthur; García Carrión, Jaime; Mandal, Pranab; Park, B Kevin; Poptani, Harish; Murray, Patricia; Rosseinsky, Matthew J; Adams, Dave J

    2016-09-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) are widely used as contrast agents for stem cell tracking using magnetic resonance imaging (MRI). The total mass of iron oxide that can be internalised into cells without altering their viability or phenotype is an important criterion for the generation of contrast, with SPIONs designed for efficient labelling of stem cells allowing for an increased sensitivity of detection. Although changes in the ratio of polymer and iron salts in co-precipitation reactions are known to affect the physicochemical properties of SPIONs, particularly core size, the effects of these synthesis conditions on stem cell labelling and magnetic resonance (MR) contrast have not been established. Here, we synthesised a series of cationic SPIONs with very similar hydrodynamic diameters and surface charges, but different polymer content. We have investigated how the amount of polymer in the co-precipitation reaction affects core size and modulates not only the magnetic properties of the SPIONs but also their uptake into stem cells. SPIONs with the largest core size and lowest polymer content presented the highest magnetisation and relaxivity. These particles also had the greatest uptake efficiency without any deleterious effect on either the viability or function of the stem cells. However, for all particles internalised in cells, the T 2 and T 2 * relaxivity was independent of the SPION's core size. Our results indicate that the relative mass of iron taken up by cells is the major determinant of MR contrast generation and suggest that the extent of SPION uptake can be regulated by the amount of polymer used in co-precipitation reactions. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  7. Embryonic stem cells: testing the germ-cell theory.

    PubMed

    Hochedlinger, Konrad

    2011-10-25

    The exact cellular origin of embryonic stem cells remains elusive. Now a new study provides compelling evidence that embryonic stem cells, established under conventional culture conditions, originate from a transient germ-cell state. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Thiotepa 10 mg/kg Treatment Regimen Is Superior to Thiotepa 5 mg/kg in TBF Conditioning in Patients Undergoing Allogeneic Stem-Cell Transplantation.

    PubMed

    El-Cheikh, Jean; Massoud, Radwan; Moukalled, Nour; Haffar, Basel; Assi, Hazem; Zahreddine, Ammar; Mahfouz, Rami; Bazarbachi, Ali

    2018-05-01

    The optimal intensity of myeloablation with a reduced-toxicity conditioning regimen to decrease relapse rate after allogeneic stem-cell transplantation without increasing transplant-related mortality (TRM) has not been well established. We compared outcomes between 5 mg/kg (T5) and 10 mg/kg (T10) thiotepa-based conditioning regimens in 29 adults who underwent allogeneic stem-cell transplantation for hematologic malignancies. After a median follow-up of 11 months, TRM was 0% and 14% at 100 days and 1 year, respectively, with TRM observed only in the T5 group (P = .016). The relapse incidence at 1 year was 20%. No patient had disease in first complete remission at the time of transplantation. At 1 year, progression-free and overall survival were 30% versus 87% (P = .012) and 46% versus 87% (P = .008) in the T5 and T10 groups, respectively. In univariate and multivariate analysis, only age at transplantation and total dose of thiotepa had a significant impact on TRM, overall, and progression-free survival. Patients deemed fit to receive T10-based conditioning for allogeneic stem-cell transplantation to treat high-risk hematologic malignancies had better overall and progression-free survival than those who received T5 with no additional toxicities. Patients should be stratified before conditioning, and those judged fit should receive T10, while the others should consider alternative reduced-intensity conditioning regimens. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Conditionally immortalized stem cell lines from human spinal cord retain regional identity and generate functional V2a interneurons and motorneurons.

    PubMed

    Cocks, Graham; Romanyuk, Nataliya; Amemori, Takashi; Jendelova, Pavla; Forostyak, Oksana; Jeffries, Aaron R; Perfect, Leo; Thuret, Sandrine; Dayanithi, Govindan; Sykova, Eva; Price, Jack

    2013-06-07

    The use of immortalized neural stem cells either as models of neural development in vitro or as cellular therapies in central nervous system (CNS) disorders has been controversial. This controversy has centered on the capacity of immortalized cells to retain characteristic features of the progenitor cells resident in the tissue of origin from which they were derived, and the potential for tumorogenicity as a result of immortalization. Here, we report the generation of conditionally immortalized neural stem cell lines from human fetal spinal cord tissue, which addresses these issues. Clonal neural stem cell lines were derived from 10-week-old human fetal spinal cord and conditionally immortalized with an inducible form of cMyc. The derived lines were karyotyped, transcriptionally profiled by microarray, and assessed against a panel of spinal cord progenitor markers with immunocytochemistry. In addition, the lines were differentiated and assessed for the presence of neuronal fate markers and functional calcium channels. Finally, a clonal line expressing eGFP was grafted into lesioned rat spinal cord and assessed for survival, differentiation characteristics, and tumorogenicity. We demonstrate that these clonal lines (a) retain a clear transcriptional signature of ventral spinal cord progenitors and a normal karyotype after extensive propagation in vitro, (b) differentiate into relevant ventral neuronal subtypes with functional T-, L-, N-, and P/Q-type Ca(2+) channels and spontaneous calcium oscillations, and (c) stably engraft into lesioned rat spinal cord without tumorogenicity. We propose that these cells represent a useful tool both for the in vitro study of differentiation into ventral spinal cord neuronal subtypes, and for examining the potential of conditionally immortalized neural stem cells to facilitate functional recovery after spinal cord injury or disease.

  10. Adipose tissue-deprived stem cells acquire cementoblast features treated with dental follicle cell conditioned medium containing dentin non-collagenous proteins in vitro

    SciTech Connect

    Wen, Xiujie; Nie, Xin; Zhang, Li

    Highlights: {yields} In this study we examine the effects of dental follicle cell conditioned medium (DFCCM) containing dentin non-collagenous proteins (dNCPs) on differentiation of ADSCs. {yields} We examined that ADSCs treated with dNCPs/DFCCM underwent morphological changes and significantly lost their proliferative capacity. {yields} dNCPs/DFCCM enhanced the mineralization behaviour and mineralization-related marker expression of ADSCs. {yields} ADSCs acquired cementoblast features in vitro with dNCPs/DFCCM treatment. -- Abstract: Adipose tissue-derived stem cells (ADSCs), which are easily harvested and show excellent pluripotency potential, have generated considerable interest in regenerative medicine. In this study, the differentiation of ADSCs was assessed after treatment with dentalmore » follicle cell conditioned medium (DFCCM) containing dentin non-collagenous proteins (dNCPs). ADSCs exhibited a fibroblast-like morphology and high proliferative capacity. However, after treatment with dNCPs/DFCCM, ADSCs changed from a fibroblast-like to cementoblast-like morphology and significantly lost their proliferative capacity. Alkaline phosphatase activity and in vitro mineralization behaviour of ADSCs were significantly enhanced. Mineralization-related markers including cementum attachment protein, bone sialoprotein, osteocalcin, osteopontin and osteonectin were detected at mRNA or protein levels, whereas dentin sialophosphoprotein and dentin sialoprotein were not detected, implying a cementoblast-like phenotype. These results demonstrate that ADSCs acquired cementoblast features in vitro with dNCPs/DFCCM treatment and could be a potential source of cementogenic cells for periodontal regeneration.« less

  11. Derivation of vascular endothelial cells from human embryonic stem cells under GMP-compliant conditions: towards clinical studies in ischaemic disease.

    PubMed

    Kaupisch, A; Kennedy, L; Stelmanis, V; Tye, B; Kane, N M; Mountford, J C; Courtney, A; Baker, A H

    2012-10-01

    Revascularisation of ischaemic tissue remains an area of substantial unmet clinical need in cardiovascular disease. Strategies to induce therapeutic angiogenesis are therefore attractive. Our recent focus has been on human embryonic stem cell (hESC) strategies since hESC can be maintained in a pluripotent state or differentiated into any desired cell type, including endothelial cells (EC), under defined differentiation culture conditions. We recently published a protocol for non-good manufacturing practice (GMP) feeder- and serum-free hESC-EC-directed monolayer differentiation to vascular EC demonstrating the potential to generate hESC-derived EC in a GMP-compliant manner suitable for use in clinical trials. In this study we modified that laboratory protocol to GMP compliance. EC production was confirmed by flow cytometry, qRT-PCR and production of vascular structures in Matrigel®, yielding approximately 30 % mature VE-cadherin(+)/PECAM-1(+) cells using the GMP-compliant hESC line RC13. In conclusion, we have successfully demonstrated the production of vascular EC under GMP-compliant conditions suitable for clinical evaluation.

  12. Monolayer culturing and cloning of human pluripotent stem cells on laminin-521-based matrices under xeno-free and chemically defined conditions.

    PubMed

    Rodin, Sergey; Antonsson, Liselotte; Hovatta, Outi; Tryggvason, Karl

    2014-10-01

    A robust method for culturing human pluripotent stem (hPS) cells under chemically defined and xeno-free conditions is an important tool for stem cell research and for the development of regenerative medicine. Here, we describe a protocol for monolayer culturing of Oct-4-positive hPS cells on a specific laminin-521 (LN-521) isoform, under xeno-free and chemically defined conditions. The cells are dispersed into single-cell suspension and then plated on LN-521 isoform at densities higher than 5,000 cells per cm², where they attach, migrate and survive by forming small monolayer cell groups. The cells avidly divide and expand horizontally until the entire dish is covered by a confluent monolayer. LN-521, in combination with E-cadherin, allows cloning of individual hPS cells in separate wells of 96-well plates without the presence of rho-associated protein kinase (ROCK) inhibitors or any other inhibitors of anoikis. Characterization of cells maintained for several months in culture reveals pluripotency with a minimal degree of genetic abnormalities.

  13. Feeder & basic fibroblast growth factor-free culture of human embryonic stem cells: Role of conditioned medium from immortalized human feeders.

    PubMed

    Teotia, Pooja; Sharma, Shilpa; Airan, Balram; Mohanty, Sujata

    2016-12-01

    Human embryonic stem cell (hESC) lines are commonly maintained on inactivated feeder cells, in the medium supplemented with basic fibroblast growth factor (bFGF). However, limited availability of feeder cells in culture, and the high cost of growth factors limit their use in scalable expansion of hESC cultures for clinical application. Here, we describe an efficient and cost-effective feeder and bFGF-free culture of hESCs using conditioned medium (CM) from immortalized feeder cells. KIND-1 hESC cell line was cultured in CM, collected from primary mouse embryonic fibroblast, human foreskin fibroblast (HFF) and immortalized HFF (I-HFF). Pluripotency of KIND-1 hESC cell line was confirmed by expression of genes, proteins and cell surface markers. In culture, these cells retained normal morphology, expressed all cell surface markers, could differentiate to embryoid bodies upon culture in vitro. Furthermore, I-HFF feeder cells without supplementation of bFGF released ample amount of endogenous bFGF to maintain stemness of hESC cells. The study results described the use of CM from immortalized feeder cells as a consistent source and an efficient, inexpensive feeder-free culture system for the maintenance of hESCs. Moreover, it was possible to maintain hESCs without exogenous supplementation of bFGF. Thus, the study could be extended to scalable expansion of hESC cultures for therapeutic purposes.

  14. Limbal Stem Cell Deficiency and Treatment with Stem Cell Transplantation.

    PubMed

    Barut Selver, Özlem; Yağcı, Ayşe; Eğrilmez, Sait; Gürdal, Mehmet; Palamar, Melis; Çavuşoğlu, Türker; Ateş, Utku; Veral, Ali; Güven, Çağrı; Wolosin, Jose Mario

    2017-10-01

    The cornea is the outermost tissue of the eye and it must be transparent for the maintenance of good visual function. The superficial epithelium of the cornea, which is renewed continuously by corneal stem cells, plays a critical role in the permanence of this transparency. These stem cells are localized at the cornea-conjunctival transition zone, referred to as the limbus. When this zone is affected/destroyed, limbal stem cell deficiency ensues. Loss of limbal stem cell function allows colonization of the corneal surface by conjunctival epithelium. Over 6 million people worldwide are affected by corneal blindness, and limbal stem cell deficiency is one of the main causes. Fortunately, it is becoming possible to recover vision by autologous transplantation of limbal cells obtained from the contralateral eye in unilateral cases. Due to the potential risks to the donor eye, only a small amount of tissue can be obtained, in which only 1-2% of the limbal epithelial cells are actually limbal stem cells. Vigorous attempts are being made to expand limbal stem cells in culture to preserve or even enrich the stem cell population. Ex vivo expanded limbal stem cell treatment in limbal stem cell deficiency was first reported in 1997. In the 20 years since, various protocols have been developed for the cultivation of limbal epithelial cells. It is still not clear which method promotes effective stem cell viability and this remains a subject of ongoing research. The most preferred technique for limbal cell culture is the explant culture model. In this approach, a small donor eye limbal biopsy is placed as an explant onto a biocompatible substrate (preferably human amniotic membrane) for expansion. The outgrowth (cultivated limbal epithelial cells) is then surgically transferred to the recipient eye. Due to changing regulations concerning cell-based therapy, the implementation of cultivated limbal epithelial transplantation in accordance with Good Laboratory Practice using

  15. Stem cells in dentistry--part I: stem cell sources.

    PubMed

    Egusa, Hiroshi; Sonoyama, Wataru; Nishimura, Masahiro; Atsuta, Ikiru; Akiyama, Kentaro

    2012-07-01

    Stem cells can self-renew and produce different cell types, thus providing new strategies to regenerate missing tissues and treat diseases. In the field of dentistry, adult mesenchymal stem/stromal cells (MSCs) have been identified in several oral and maxillofacial tissues, which suggests that the oral tissues are a rich source of stem cells, and oral stem and mucosal cells are expected to provide an ideal source for genetically reprogrammed cells such as induced pluripotent stem (iPS) cells. Furthermore, oral tissues are expected to be not only a source but also a therapeutic target for stem cells, as stem cell and tissue engineering therapies in dentistry continue to attract increasing clinical interest. Part I of this review outlines various types of intra- and extra-oral tissue-derived stem cells with regard to clinical availability and applications in dentistry. Additionally, appropriate sources of stem cells for regenerative dentistry are discussed with regard to differentiation capacity, accessibility and possible immunomodulatory properties. Copyright © 2012 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  16. Effects of Macromolecular Crowding on Human Adipose Stem Cell Culture in Fetal Bovine Serum, Human Serum, and Defined Xeno-Free/Serum-Free Conditions

    PubMed Central

    Lee, Michelle Hui Ching; Mäkinen, Laura; Ang, Xiu Min; Mannerström, Bettina; Raghunath, Michael; Miettinen, Susanna

    2017-01-01

    Microenvironment plays an important role for stem cell proliferation and differentiation. Macromolecular crowding (MMC) was recently shown to assist stem cells in forming their own matrix microenvironment in vitro. The ability of MMC to support adipose stem cell (ASC) proliferation, metabolism, and multilineage differentiation was studied under different conditions: fetal bovine serum- (FBS-) and human serum- (HS-) based media and xeno- and serum-free (XF/SF) media. Furthermore, the immunophenotype of ASCs under MMC was evaluated. The proliferative capacity of ASCs under MMC was attenuated in each condition. However, osteogenic differentiation was enhanced under MMC, shown by increased deposition of mineralized matrix in FBS and HS cultures. Likewise, significantly greater lipid droplet accumulation and increased collagen IV deposition indicated enhanced adipogenesis under MMC in FBS and HS cultures. In contrast, chondrogenic differentiation was attenuated in ASCs expanded under MMC. The ASC immunophenotype was maintained under MMC with significantly higher expression of CD54. However, MMC impaired metabolic activity and differentiation capacity of ASCs in XF/SF conditions. Both the supportive and inhibitory effects of MMC on ASC are culture condition dependent. In the presence of serum, MMC maintains ASC immunophenotype and enhances adipogenic and osteogenic differentiation at the cost of reduced proliferation. PMID:28465691

  17. Effects of Macromolecular Crowding on Human Adipose Stem Cell Culture in Fetal Bovine Serum, Human Serum, and Defined Xeno-Free/Serum-Free Conditions.

    PubMed

    Patrikoski, Mimmi; Lee, Michelle Hui Ching; Mäkinen, Laura; Ang, Xiu Min; Mannerström, Bettina; Raghunath, Michael; Miettinen, Susanna

    2017-01-01

    Microenvironment plays an important role for stem cell proliferation and differentiation. Macromolecular crowding (MMC) was recently shown to assist stem cells in forming their own matrix microenvironment in vitro. The ability of MMC to support adipose stem cell (ASC) proliferation, metabolism, and multilineage differentiation was studied under different conditions: fetal bovine serum- (FBS-) and human serum- (HS-) based media and xeno- and serum-free (XF/SF) media. Furthermore, the immunophenotype of ASCs under MMC was evaluated. The proliferative capacity of ASCs under MMC was attenuated in each condition. However, osteogenic differentiation was enhanced under MMC, shown by increased deposition of mineralized matrix in FBS and HS cultures. Likewise, significantly greater lipid droplet accumulation and increased collagen IV deposition indicated enhanced adipogenesis under MMC in FBS and HS cultures. In contrast, chondrogenic differentiation was attenuated in ASCs expanded under MMC. The ASC immunophenotype was maintained under MMC with significantly higher expression of CD54. However, MMC impaired metabolic activity and differentiation capacity of ASCs in XF/SF conditions. Both the supportive and inhibitory effects of MMC on ASC are culture condition dependent. In the presence of serum, MMC maintains ASC immunophenotype and enhances adipogenic and osteogenic differentiation at the cost of reduced proliferation.

  18. Allogeneic hematopoietic stem cell transplant with reduced-intensity conditioning for chronic lymphocytic leukemia in Sweden: does donor T-cell engraftment 3 months after transplant predict survival?

    PubMed

    Machaczka, Maciej; Johansson, Jan-Erik; Remberger, Mats; Hallböök, Helene; Malm, Claes; Lazarevic, Vladimir Lj; Wahlin, Anders; Omar, Hamdy; Juliusson, Gunnar; Kimby, Eva; Hägglund, Hans

    2012-09-01

    Thirty-eight adult patients with chronic lymphocytic leukemia (CLL) underwent reduced-intensity conditioning (RIC) allogeneic stem cell transplant (allo-SCT) in Sweden between 1999 and 2007. The cumulative incidences of acute graft-versus-host disease (GVHD) grades II-IV and chronic GVHD were 29% and 47%, respectively. Rates of non-relapse mortality, progression-free survival (PFS) and overall survival (OS) were 18%, 47% and 74% at 1 year, and 21%, 25% and 45% at 5 years, respectively. T-cell chimerism after transplant was measured in 31 out of 34 patients (91%) surviving beyond day +100. Seventeen patients achieved >90% donor T-cell engraftment at 3 months after allo-SCT and, compared with the 12 patients with ≤90% donor T-cell engraftment, they showed favorable PFS at 1 year (82% vs. 33%, p =0.002) and better long-term PFS and OS (p =0.002 and 0.046, respectively). Donor T-cell engraftment of >90% at 3 months after RIC allo-SCT for CLL seems to predict favorable short-term and long-term outcome.

  19. Wnt/β-Catenin Pathway Regulates Cementogenic Differentiation of Adipose Tissue-Deprived Stem Cells in Dental Follicle Cell-Conditioned Medium

    PubMed Central

    Nie, Xin; Zhang, Bo; Zhou, Xia; Deng, Manjing

    2014-01-01

    The formation and attachment of new cementum is crucial for periodontium regeneration. Tissue engineering is currently explored to achieve complete, reliable and reproducible regeneration of the periodontium. The capacity of multipotency and self-renewal makes adipose tissue-deprived stem cells (ADSCs) an excellent cell source for tissue regeneration and repair. After rat ADSCs were cultured in dental follicle cell-conditioned medium (DFC-CM) supplemented with DKK-1, an inhibitor of the Wnt pathway, followed by 7 days of induction, they exhibited several phenotypic characteristics of cementoblast lineages, as indicated by upregulated expression levels of CAP, ALP, BSP and OPN mRNA, and accelerated expression of BSP and CAP proteins. The Wnt/β-catenin signaling pathway controls differentiation of stem cells by regulating the expression of target genes. Cementoblasts share phenotypical features with osteoblasts. In this study, we demonstrated that culturing ADSCs in DFC-CM supplemented with DKK-1 results in inhibition of β-catenin nuclear translocation and down-regulates TCF-4 and LEF-1 mRNA expression levels. We also found that DKK-1 could promote cementogenic differentiation of ADSCs, which was evident by the up-regulation of CAP, ALP, BSP and OPN gene expressions. On the other hand, culturing ADSCs in DFC-CM supplemented with 100 ng/mL Wnt3a, which activates the Wnt/β-catenin pathway, abrogated this effect. Taken together, our study indicates that the Wnt/β-catenin signaling pathway plays an important role in regulating cementogenic differentiation of ADSCs cultured in DFC-CM. These results raise the possibility of using ADSCs for periodontal regeneration by modifying the Wnt/β-catenin pathway. PMID:24806734

  20. Rho kinase inhibitor Y-27632 promotes the differentiation of human bone marrow mesenchymal stem cells into keratinocyte-like cells in xeno-free conditioned medium.

    PubMed

    Li, Zhenzhen; Han, Shichao; Wang, Xingqin; Han, Fu; Zhu, Xiongxiang; Zheng, Zhao; Wang, Hongtao; Zhou, Qin; Wang, Yunchuan; Su, Linlin; Shi, Jihong; Tang, Chaowu; Hu, Dahai

    2015-03-11

    Bone marrow mesenchymal stem cells (BMSCs), which have the ability to self-renew and to differentiate into multiple cell types, have recently become a novel strategy for cell-based therapies. The differentiation of BMSCs into keratinocytes may be beneficial for patients with burns, disease, or trauma. However, the currently available cells are exposed to animal materials during their cultivation and induction. These xeno-contaminations severely limit their clinical outcomes. Previous studies have shown that the Rho kinase (ROCK) inhibitor Y-27632 can promote induction efficiency and regulate the self-renewal and differentiation of stem cells. In the present study, we attempted to establish a xeno-free system for the differentiation of BMSCs into keratinocytes and to investigate whether Y-27632 can facilitate this differentiation. BMSCs isolated from patients were cultured by using a xeno-free system and characterised by using flow cytometric analysis and adipogenic and osteogenic differentiation assays. Human primary keratinocytes were also isolated from patients. Then, the morphology, population doubling time, and β-galactosidase staining level of these cells were evaluated in the presence or absence of Y-27632 to determine the effects of Y-27632 on the state of the keratinocytes. Keratinocyte-like cells (KLCs) were detected at different time points by immunocytofluorescence analysis. Moreover, the efficiency of BMSC differentiation under different conditions was measured by quantitative real-time-polymerase chain reaction (RT-PCR) and Western blot analyses. The ROCK inhibitor Y-27632 promoted the proliferation and lifespan of human primary keratinocytes. In addition, we showed that keratinocyte-specific markers could be detected in BMSCs cultured in a xeno-free system using keratinocyte-conditioned medium (KCM) independent of the presence of Y-27632. However, the efficiency of the differentiation of BMSCs into KLCs was significantly higher in the presence of Y

  1. Tracking the rise of stem cell tourism.

    PubMed

    Ryan, Kirsten A; Sanders, Amanda N; Wang, Dong D; Levine, Aaron D

    2010-01-01

    Driven by hype surrounding stem cell research, a number of clinics around the world currently offer 'stem cell therapies' to patients. These unproven interventions have attracted policy interest owing to the risks they may pose to patients and to the progress of legitimate translational stem cell research, yet remarkably little data exists about the patients who undergo these unproven therapies or their experiences. We sought to characterize this patient population. We developed a comprehensive data set of blogs written by patients (or their caretakers) about their experiences with unproven stem cell therapies. Analyzing these data suggests that unproven stem cell therapies are increasing rapidly in popularity and are attracting a wide range of patients--both young and old and with a diverse collection of medical conditions. These results should help clinicians advise individual patients and help policymakers devise strategies to mitigate the risks these treatments pose.

  2. Stem Cell Therapy for Autism

    PubMed Central

    Ichim, Thomas E; Solano, Fabio; Glenn, Eduardo; Morales, Frank; Smith, Leonard; Zabrecky, George; Riordan, Neil H

    2007-01-01

    Autism spectrum disorders (ASD) are a group of neurodevelopmental conditions whose incidence is reaching epidemic proportions, afflicting approximately 1 in 166 children. Autistic disorder, or autism is the most common form of ASD. Although several neurophysiological alterations have been associated with autism, immune abnormalities and neural hypoperfusion appear to be broadly consistent. These appear to be causative since correlation of altered inflammatory responses, and hypoperfusion with symptology is reported. Mesenchymal stem cells (MSC) are in late phases of clinical development for treatment of graft versus host disease and Crohn's Disease, two conditions of immune dysregulation. Cord blood CD34+ cells are known to be potent angiogenic stimulators, having demonstrated positive effects in not only peripheral ischemia, but also in models of cerebral ischemia. Additionally, anecdotal clinical cases have reported responses in autistic children receiving cord blood CD34+ cells. We propose the combined use of MSC and cord blood CD34+cells may be useful in the treatment of autism. PMID:17597540

  3. Nonpermissiveness for mouse embryonic stem (ES) cell derivation circumvented by a single backcross to 129/Sv strain: establishment of ES cell lines bearing the Omd conditional lethal mutation.

    PubMed

    Kress, C; Vandormael-Pournin, S; Baldacci, P; Cohen-Tannoudji, M; Babinet, C

    1998-12-01

    The inbred mouse strain DDK carries a conditional early embryonic lethal mutation that is manifested when DDK females are crossed to males of other inbred strains but not in the corresponding reciprocal crosses. It has been shown that embryonic lethality could be assigned to a single genetic locus called Ovum mutant (Om), on Chromosome (Chr) 11 near Syca 1. In the course of our study of the molecular mechanisms underlying the embryonic lethality, we were interested in deriving an embryonic stem cell bearing the Om mutation in the homozygous state (Omd/Omd). However, it turned out that DDK is nonpermissive for ES cell establishment, with a standard protocol. Here we show that permissiveness could be obtained using Omd/Omd blastocysts with a 75% 129/Sv and 25% DDK genetic background. Several germline-competent Omd/Omd ES cell lines have been derived from blastocysts of this genotype. Such a scenario could be extended to the generation of ES cell lines bearing any mutation present in an otherwise nonpermissive mouse strain.

  4. Brain stem slice conditioned medium contains endogenous BDNF and GDNF that affect neural crest boundary cap cells in co-culture.

    PubMed

    Kaiser, Andreas; Kale, Ajay; Novozhilova, Ekaterina; Siratirakun, Piyaporn; Aquino, Jorge B; Thonabulsombat, Charoensri; Ernfors, Patrik; Olivius, Petri

    2014-05-30

    Conditioned medium (CM), made by collecting medium after a few days in cell culture and then re-using it to further stimulate other cells, is a known experimental concept since the 1950s. Our group has explored this technique to stimulate the performance of cells in culture in general, and to evaluate stem- and progenitor cell aptitude for auditory nerve repair enhancement in particular. As compared to other mediums, all primary endpoints in our published experimental settings have weighed in favor of conditioned culture medium, where we have shown that conditioned culture medium has a stimulatory effect on cell survival. In order to explore the reasons for this improved survival we set out to analyze the conditioned culture medium. We utilized ELISA kits to investigate whether brain stem (BS) slice CM contains any significant amounts of brain-derived neurotrophic factor (BDNF) and glial cell derived neurotrophic factor (GDNF). We further looked for a donor cell with progenitor characteristics that would be receptive to BDNF and GDNF. We chose the well-documented boundary cap (BC) progenitor cells to be tested in our in vitro co-culture setting together with cochlear nucleus (CN) of the BS. The results show that BS CM contains BDNF and GDNF and that survival of BC cells, as well as BC cell differentiation into neurons, were enhanced when BS CM were used. Altogether, we conclude that BC cells transplanted into a BDNF and GDNF rich environment could be suitable for treatment of a traumatized or degenerated auditory nerve. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Review article: stem cells in human reproduction.

    PubMed

    Gargett, Caroline E

    2007-07-01

    The derivation of human embryonic stem (hES) cells heralds a new era in stem cell research, generating excitement for their therapeutic potential in regenerative medicine. Pioneering work of embryologists, developmental biologists, and reproductive medicine practitioners in in vitro fertilization clinics has facilitated hES cell research. This review summarizes current research focused on optimizing hES cell culture conditions for good manufacturing practice, directing hES cell differentiation toward trophectoderm and germ cells, and approaches used to reprogram cells for pluripotent cell derivation. The identification of germ stem cells in the testis and the recent controversy over their existence in the ovary raise the possibility of harnessing them for treating young cancer survivors. There is also the potential to harvest fetal stem cells with pluripotent cell-like properties from discarded placental tissues. The recent identification of adult stem/progenitor cell activity in the human endometrium offers a new understanding of common gynecological diseases. Discoveries resulting from research into embryonic, germ, fetal, and adult stem cells are highly relevant to human reproduction.

  6. Bone marrow (stem cell) donation

    MedlinePlus

    ... medlineplus.gov/ency/patientinstructions/000839.htm Bone marrow (stem cell) donation To use the sharing features on this page, please enable ... cells are more likely to help patients than stem cells from older people. People who register must either: Use a cotton swab to take a sample of ...

  7. International Society for Stem Cell Research

    MedlinePlus

    ... cell and regenerative medicine community. More stem cell research Take a closer look Recent Blogs View All ... nonprofit organization & the voice of the stem cell research community The International Society for Stem Cell Research ( ...

  8. Aging, metabolism and stem cells: Spotlight on muscle stem cells.

    PubMed

    García-Prat, Laura; Muñoz-Cánoves, Pura

    2017-04-15

    All tissues and organs undergo a progressive regenerative decline as they age. This decline has been mainly attributed to loss of stem cell number and/or function, and both stem cell-intrinsic changes and alterations in local niches and/or systemic environment over time are known to contribute to the stem cell aging phenotype. Advancing in the molecular understanding of the deterioration of stem cell cells with aging is key for targeting the specific causes of tissue regenerative dysfunction at advanced stages of life. Here, we revise exciting recent findings on why stem cells age and the consequences on tissue regeneration, with a special focus on regeneration of skeletal muscle. We also highlight newly identified common molecular pathways affecting diverse types of aging stem cells, such as altered proteostasis, metabolism, or senescence entry, and discuss the questions raised by these findings. Finally, we comment on emerging stem cell rejuvenation strategies, principally emanating from studies on muscle stem cells, which will surely burst tissue regeneration research for future benefit of the increasing human aging population. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Supplementation with IL-6 and Muscle Cell Culture Conditioned Media Enhances Myogenic Differentiation of Adipose Tissue-Derived Stem Cells through STAT3 Activation.

    PubMed

    Seo, Eunhui; Kang, Hwansu; Lim, Oh-Kyung; Jun, Hee-Sook

    2018-05-24

    Mature skeletal muscle cells cannot be expanded in culture systems. Therefore, it is difficult to construct an in vitro model for muscle diseases. To establish an efficient protocol for myogenic differentiation of human adipose tissue-derived stem cells (hADSCs), we investigated whether addition of IL-6 and/or myocyte-conditioned media (CM) to conventional differentiation media can shorten the differentiation period. hADSCs were differentiated to myocytes using the conventional protocol or modified with the addition of 25 pg/mL IL-6 and/or C2C12 CM (25% v / v ). The expression of MyoD and myogenine mRNA was significantly higher at 5⁻6 days after differentiation using the modified protocol than with the conventional protocol. mRNA and protein expression of myosin heavy chain, a marker of myotubes, was significantly upregulated at 28 and 42 days of differentiation using the modified protocol, and the level achieved after a 4-week differentiation period was similar to that achieved at 6 weeks using the conventional protocol. The expression of p-STAT3 was significantly increased when the modified protocol was used. Similarly, addition of colivelin, a STAT3 activator, instead of IL-6 and C2C12 CM, promoted the myogenic differentiation of ADSCs. The modified protocol improved differentiation efficiency and reduced the time required for differentiation of myocytes. It might be helpful to save cost and time when preparing myocytes for cell therapies and drug discovery.

  10. Seeing Stem Cells at Work In Vivo

    PubMed Central

    Srivastava, Amit K.; Bulte, Jeff W. M.

    2013-01-01

    Stem cell based-therapies are novel therapeutic strategies that hold key for developing new treatments for diseases conditions with very few or no cures. Although there has been an increase in the number of clinical trials involving stem cell-based therapies in the last few years, the long-term risks and benefits of these therapies are still unknown. Detailed in vivo studies are needed to monitor the fate of transplanted cells, including their distribution, differentiation, and longevity over time. Advancements in non-invasive cellular imaging techniques to track engrafted cells in real-time present a powerful tool for determining the efficacy of stem cell-based therapies. In this review, we describe the latest approaches to stem cell labeling and tracking using different imaging modalities. PMID:23975604

  11. Treatment with adipose derived mesenchymal stem cells and their conditioned media reverse carrageenan induced paw oedema in db/db mice.

    PubMed

    Shree, Nitya; Venkategowda, Sunil; Venkatranganna, M V; Bhonde, Ramesh R

    2017-06-01

    Mesenchymal stem cells are known for anti inflammatory and immunomodulatory activities. The aim of our study was to evaluate the effect of human adipose derived mesenchymal stem cells (hADMSCs) and its conditioned media (CM) on carrageenan induced acute inflammation in db/db mice. We injected 5×10 5 ADMSCs or the CM in the inflamed paw. We assessed the paw volume, serum IL6 levels and histopathology of the paw to reveal the anti inflammatory effect. We observed a single injection of hADMSCs or CM could reverse the inflammation within 24h as evidenced by reduction in paw volume, IL6 levels and histological examination. Our result equivocally demonstrates the role of CM in normalising the inflammation better than hADMSCs. This study will pave way for an alternative to anti inflammatory drugs. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  12. Gemcitabine, Fludarabine, and Melphalan for Reduced-Intensity Conditioning and Allogeneic Stem Cell Transplantation for Relapsed and Refractory Hodgkin Lymphoma.

    PubMed

    Anderlini, Paolo; Saliba, Rima M; Ledesma, Celina; Plair, Tamera; Alousi, Amin M; Hosing, Chitra M; Khouri, Issa F; Nieto, Yago; Popat, Uday R; Shpall, Elizabeth J; Fanale, Michelle A; Hagemeister, Frederick B; Oki, Yasuhiro; Neelapu, Saatva; Romaguera, Jorge E; Younes, Anas; Champlin, Richard E

    2016-07-01

    Forty patients (median age, 31 years; range, 20 to 63) with Hodgkin lymphoma underwent an allogeneic stem cell transplant with the gemcitabine-fludarabine-melphalan reduced-intensity conditioning regimen. Thirty-one patients (77%) had undergone a prior autologous stem cell transplant, with a median time to progression after transplant of 6 months (range, 1 to 68). Disease status at transplant was complete remission/complete remission, undetermined (n = 23; 57%), partial remission (n = 14; 35%), and other (n = 3; 8%). Twenty-six patients (65%) received brentuximab vedotin before allotransplant. The overall complete response rate before allotransplant was 65% in brentuximab-treated patients versus 42% in brentuximab-naive patients (P = .15). At the latest follow-up (October 2015) 31 patients were alive. The median follow-up was 41 months (range, 5 to 87). Transplant-related mortality rate at 3 years was 17%. Pulmonary, skin toxicities, and nausea were seen in 13 (33%), 11 (28%), and 37 (93%) patients, respectively. At 3 years, estimates for overall and progression-free survival were 75% (95% CI, 57% to 86%) and 54% (95% CI, 36% to 70%). Overall incidence for disease progression was 28% (95% CI, 16% to 50%). We believe the gemcitabine-fludarabine-melphalan regimen allows moderate dose intensification with acceptable morbidity and mortality. The inclusion of gemcitabine affected nausea, pulmonary, and likely skin toxicity. Exposure to brentuximab vedotin allowed more patients to reach allogeneic stem cell transplantation in complete remission. With over 50% of patients progression-free at 3 years, allogeneic stem cell transplantation with reduced-intensity conditioning remains an effective and relevant treatment option for Hodgkin lymphoma in the brentuximab vedotin era. Copyright © 2016 American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  13. Stepwise differentiation of pluripotent stem cells into osteoblasts using four small molecules under serum-free and feeder-free conditions.

    PubMed

    Kanke, Kosuke; Masaki, Hideki; Saito, Taku; Komiyama, Yuske; Hojo, Hironori; Nakauchi, Hiromitsu; Lichtler, Alexander C; Takato, Tsuyoshi; Chung, Ung-Il; Ohba, Shinsuke

    2014-06-03

    Pluripotent stem cells are a promising tool for mechanistic studies of tissue development, drug screening, and cell-based therapies. Here, we report an effective and mass-producing strategy for the stepwise differentiation of mouse embryonic stem cells (mESCs) and mouse and human induced pluripotent stem cells (miPSCs and hiPSCs, respectively) into osteoblasts using four small molecules (CHIR99021 [CHIR], cyclopamine [Cyc], smoothened agonist [SAG], and a helioxanthin-derivative 4-(4-methoxyphenyl)pyrido[4',3':4,5]thieno[2,3-b]pyridine-2-carboxamide [TH]) under serum-free and feeder-free conditions. The strategy, which consists of mesoderm induction, osteoblast induction, and osteoblast maturation phases, significantly induced expressions of osteoblast-related genes and proteins in mESCs, miPSCs, and hiPSCs. In addition, when mESCs defective in runt-related transcription factor 2 (Runx2), a master regulator of osteogenesis, were cultured by the strategy, they molecularly recapitulated osteoblast phenotypes of Runx2 null mice. The present strategy will be a platform for biological and pathological studies of osteoblast development, screening of bone-augmentation drugs, and skeletal regeneration.

  14. Stem cell factor supports migration in canine mesenchymal stem cells.

    PubMed

    Enciso, Nathaly; Ostronoff, Luciana L K; Mejías, Guillermo; León, Leticia G; Fermín, María Luisa; Merino, Elena; Fragio, Cristina; Avedillo, Luis; Tejero, Concepción

    2018-03-01

    Adult Mesenchymal Stem Cells (MSC) are cells that can be defined as multipotent cells able to differentiate into diverse lineages, under appropriate conditions. These cells have been widely used in regenerative medicine, both in preclinical and clinical settings. Initially discovered in bone marrow, MSC can now be isolated from a wide spectrum of adult and foetal tissues. Studies to evaluate the therapeutic potential of these cells are based on their ability to arrive to damaged tissues. In this paper we have done a comparative study analyzing proliferation, surface markers and OCT4, SOX9, RUNX2, PPARG genes expression in MSC cells from Bone marrow (BMMSC) and Adipose tissue (ASC). We also analyzed the role of Stem Cell Factor (SCF) on MSC proliferation and on ASCs metalloproteinases MMP-2, MMP-9 secretion. Healthy dogs were used as BMMSC donors, and ASC were collected from omentum during elective ovariohysterectomy surgery. Both cell types were cultured in IMDM medium with or without SCF, 10% Dog Serum (DS), and incubated at 38 °C with 5% CO2. Growth of BMMSCs and ASCs was exponential until 25-30 days. Flow citometry of MSCs revealed positive results for CD90 and negative for CD34, CD45 and MCH-II. Genes were evaluated by RT-PCR and metalloproteinases by zymografy. Our findings indicate morphological and immunological similarities as well as expression of genes from both origins on analyzed cells. Furthermore, SCF did not affect proliferation of MSCs, however it up-regulated MMP-2 and MMP-9 secretion in ASCs. These results suggest that metalloproteinases are possibly essential molecules pivoting migration.

  15. Practical methods for handling human periodontal ligament stem cells in serum-free and serum-containing culture conditions under hypoxia: implications for regenerative medicine.

    PubMed

    Murabayashi, Dai; Mochizuki, Mai; Tamaki, Yuichi; Nakahara, Taka

    2017-07-01

    Stem cell-based therapies depend on the reliable expansion of patient-derived mesenchymal stem cells (MSCs) in vitro. The supplementation of cell culture media with serum is associated with several risks; accordingly, serum-free media are commercially available for cell culture. Furthermore, hypoxia is known to accelerate the expansion of MSCs. The present study aimed to characterize the properties of periodontal ligament-derived MSCs (PDLSCs) cultivated in serum-free and serum-containing media, under hypoxic and normoxic conditions. Cell growth, gene and protein expression, cytodifferentiation potential, genomic stability, cytotoxic response, and in vivo hard tissue generation of PDLSCs were examined. Our findings indicated that cultivation in serum-free medium does not affect the MSC phenotype or chromosomal stability of PDLSCs. PDLSCs expanded in serum-free medium exhibited more active growth than in fetal bovine serum-containing medium. We found that hypoxia does not alter the cell growth of PDLSCs under serum-free conditions, but inhibits their osteogenic and adipogenic cytodifferentiation while enabling maintenance of their multidifferentiation potential regardless of the presence of serum. PDLSCs expanded in serum-free medium were found to retain common MSC characteristics, including the capacity for hard tissue formation in vivo. However, PDLSCs cultured in serum-free culture conditions were more susceptible to damage following exposure to extrinsic cytotoxic stimuli than those cultured in medium supplemented with serum, suggesting that serum-free culture conditions do not exert protective effects against cytotoxicity on PDLSC cultures. The present work provides a comparative evaluation of cell culture in serum-free and serum-containing media, under hypoxic and normoxic conditions, for applications in regenerative medicine.

  16. Haematopoietic stem and progenitor cells from human pluripotent stem cells

    PubMed Central

    Sugimura, Ryohichi; Jha, Deepak Kumar; Han, Areum; Soria-Valles, Clara; da Rocha, Edroaldo Lummertz; Lu, Yi-Fen; Goettel, Jeremy A.; Serrao, Erik; Rowe, R. Grant; Malleshaiah, Mohan; Wong, Irene; Sousa, Patricia; Zhu, Ted N.; Ditadi, Andrea; Keller, Gordon; Engelman, Alan N.; Snapper, Scott B.; Doulatov, Sergei; Daley, George Q.

    2018-01-01

    A variety of tissue lineages can be differentiated from pluripotent stem cells by mimicking embryonic development through stepwise exposure to morphogens, or by conversion of one differentiated cell type into another by enforced expression of master transcription factors. Here, to yield functional human haematopoietic stem cells, we perform morphogen-directed differentiation of human pluripotent stem cells into haemogenic endothelium followed by screening of 26 candidate haematopoietic stem-cell-specifying transcription factors for their capacity to promote multi-lineage haematopoietic engraftment in mouse hosts. We recover seven transcription factors (ERG, HOXA5, HOXA9, HOXA10, LCOR, RUNX1 and SPI1) that are sufficient to convert haemogenic endothelium into haematopoietic stem and progenitor cells that engraft myeloid, B and T cells in primary and secondary mouse recipients. Our combined approach of morphogen-driven differentiation and transcription-factor-mediated cell fate conversion produces haematopoietic stem and progenitor cells from pluripotent stem cells and holds promise for modelling haematopoietic disease in humanized mice and for therapeutic strategies in genetic blood disorders. PMID:28514439

  17. Stem cells in pharmaceutical biotechnology.

    PubMed

    Zuba-Surma, Ewa K; Józkowicz, Alicja; Dulak, Józef

    2011-11-01

    Multiple populations of stem cells have been indicated to potentially participate in regeneration of injured organs. Especially, embryonic stem cells (ESC) and recently inducible pluripotent stem cells (iPS) receive a marked attention from scientists and clinicians for regenerative medicine because of their high proliferative and differentiation capacities. Despite that ESC and iPS cells are expected to give rise into multiple regenerative applications when their side effects are overcame during appropriate preparation procedures, in fact their most recent application of human ESC may, however, reside in their use as a tool in drug development and disease modeling. This review focuses on the applications of stem cells in pharmaceutical biotechnology. We discuss possible relevance of pluripotent cell stem populations in developing physiological models for any human tissue cell type useful for pharmacological, metabolic and toxicity evaluation necessary in the earliest steps of drug development. The present models applied for preclinical drug testing consist of primary cells or immortalized cell lines that show limitations in terms of accessibility or relevance to their in vivo counterparts. The availability of renewable human cells with functional similarities to their in vivo counterparts is the first landmark for a new generation of cell-based assays. We discuss the approaches for using stem cells as valuable physiological targets of drug activity which may increase the strength of target validation and efficacy potentially resulting in introducing new safer remedies into clinical trials and the marketplace. Moreover, we discuss the possible applications of stem cells for elucidating mechanisms of disease pathogenesis. The knowledge about the mechanisms governing the development and progression of multitude disorders which would come from the cellular models established based on stem cells, may give rise to new therapeutical strategies for such diseases. All

  18. Bioprinting for stem cell research

    PubMed Central

    Tasoglu, Savas; Demirci, Utkan

    2012-01-01

    Recently, there has been a growing interest to apply bioprinting techniques to stem cell research. Several bioprinting methods have been developed utilizing acoustics, piezoelectricity, and lasers to deposit living cells onto receiving substrates. Using these technologies, spatially defined gradients of immobilized proteins can be engineered to direct stem cell differentiation into multiple subpopulations of different lineages. Stem cells can also be patterned in a high-throughput manner onto flexible implementation patches for tissue regeneration or onto substrates with the goal of accessing encapsulated stem cell of interest for genomic analysis. Here, we review recent achievements with bioprinting technologies in stem cell research, and identify future challenges and potential applications including tissue engineering and regenerative medicine, wound healing, and genomics. PMID:23260439

  19. In vitro cartilage construct generation from silk fibroin- chitosan porous scaffold and umbilical cord blood derived human mesenchymal stem cells in dynamic culture condition.

    PubMed

    Agrawal, Parinita; Pramanik, Krishna; Biswas, Amit; Ku Patra, Ranjan

    2018-02-01

    Cartilage construct generation includes a scaffold with appropriate composition to mimic matrix of the damaged tissue on which the stem cells grow and differentiate. In this study, umbilical cord blood (UCB) derived human mesenchymal stem cells (hMSCs) were seeded on freeze dried porous silk-fibroin (SF)/chitosan (CS) scaffolds. Influence of static and dynamic (spinner flask bioreactor) culture conditions on the developing cartilage construct were studied by in-vitro characterization for viability, proliferation, distribution, and chondrogenic differentiation of hMSCs over the scaffold. Constructs developed in spinner flask consisted of 62% live cells, and exhibited 543% more cell density at the core than constructs cultured in static system. Quantification of DNA and glycosaminoglycans accumulation after 21 days showed the progression of chondrogenic differentiation of hMSCs was higher in dynamic culture compared to static one. In constructs generated under dynamic condition, histology staining for proteoglycan matrix, and fluorescence staining for collagen-II and aggrecan showed positive correlation between early and late stage chondrogenic markers, which was further confirmed by quantitative PCR analysis, showing low collagen-I expression and highly expressed Sox9, collagen-II and aggrecan. The present study demonstrated that construct generated by combining 3D SF/CS scaffold with UCB-hMSCs under dynamic condition using spinner flask bioreactor can be used for cartilage tissue regeneration for future medical treatments. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 397-407, 2018. © 2017 Wiley Periodicals, Inc.

  20. Somatic stem cell heterogeneity: diversity in the blood, skin and intestinal stem cell compartments

    PubMed Central

    Goodell, Margaret A.; Nguyen, Hoang; Shroyer, Noah

    2017-01-01

    Somatic stem cells replenish many tissues throughout life to repair damage and to maintain tissue homeostasis. Stem cell function is frequently described as following a hierarchical model in which a single master cell undergoes self-renewal and differentiation into multiple cell types and is responsible for most regenerative activity. However, recent data from studies on blood, skin and intestinal epithelium all point to the concomitant action of multiple types of stem cells with distinct everyday roles. Under stress conditions such as acute injury, the surprising developmental flexibility of these stem cells enables them to adapt to diverse roles and to acquire different regeneration capabilities. This paradigm shift raises many new questions about the developmental origins, inter-relationships and molecular regulation of these multiple stem cell types. PMID:25907613

  1. The potential of induced pluripotent stem cells as a tool to study skeletal dysplasias and cartilage-related pathologic conditions.

    PubMed

    Liu, H; Yang, L; Yu, F F; Wang, S; Wu, C; Qu, C; Lammi, M J; Guo, X

    2017-05-01

    The development of induced pluripotent stem cells (iPSCs) technology has opened up new horizons for development of new research tools especially for skeletal dysplasias, which often lack human disease models. Regenerative medicine and tissue engineering could be the next areas to benefit from refinement of iPSC methods to repair focal cartilage defects, while applications for osteoarthritis (OA) and drug screening have evolved rather slowly. Although the advances in iPSC research of skeletal dysplasias and repair of focal cartilage lesions are not directly relevant to OA, they can be considered to pave the way to future prospects and solutions to OA research, too. The same problems which face the present cell-based treatments of cartilage injuries concern also the iPSC-based ones. However, established iPSC lines, which have no genomic aberrations and which efficiently differentiate into extracellular matrix secreting chondrocytes, could be an invaluable cell source for cell transplantations in the future. The safety issues concerning the recipient risks of teratoma formation and immune response still have to be solved before the potential use of iPSCs in cartilage repair of focal cartilage defects and OA. Copyright © 2016 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  2. Comparative analysis of cardiomyocyte differentiation from human embryonic stem cells under 3-D and 2-D culture conditions.

    PubMed

    Pal, Rajarshi; Mamidi, Murali Krishna; Das, Anjan Kumar; Bhonde, Ramesh

    2013-02-01

    Post-myocardial infarction cardiomyocytes are the most important target cell types for cardiac repair. Many of the applications envisaged for human embryonic stem cells (hESC)-derived cardiomyocytes demand that the differentiation procedure be robust, cost effective and high yielding. Various lines of evidence including our earlier study suggest that hESCs have distinct preferences to become heart cells. However, a direct comparison between different protocols has not yet been reported to date. Here, we performed a logical and systematic comparison of cardiomyocytes obtained from hESCs via embryoid bodies (EBs) in suspension versus adherent static cultures of feeder-free hES colonies representing three-dimensional (3-D) and two-dimensional (2-D) culture systems, respectively. An in-depth characterization of the beating cells revealed appropriate cardiac marker expression both at gene and protein levels. Despite using similar media, 3-D and 2-D cultures showed significant variation in growth and ability to form beating areas. While the expression of pre-cardiac mesoderm markers like GATA-4, HAND1, Myf5, Msx1, and BMP-IIR remained unaltered; levels of functional heart-specific markers such as MLC-2A/2V, cTnT, ANP, Phospholamban, α-MHC and KV4.3 were substantially up-regulated in 3-D compared to 2-D cultures. Concurrently we observed a sharp decline in the expression of ESC, ectoderm and endoderm markers including Oct-4, Sox-2, NFH, Sox-1, Sox-17 and AFP. Further immunocytochemistry and flow cytometry demonstrated a higher percentage of cells positive for Brachyury, desmin and cardiac troponin in 3-D cultures. Our results underscore the higher efficiency of cardiomyocytes derived via 3-D cultures. This finding enriches our basic understanding of the differentiation pattern in hESC-derived cardiomyocytes. Copyright © 2012 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  3. [The opportunity to use combined stem cells transplantation for haemopoesis activation in the old and mature laboratory animals under the conditions of ionizing radiation].

    PubMed

    Grebnev, D U

    2014-01-01

    The objective of this work was to study the influence of combined transplantation of stem cells (multypotent mesenchimal stromal and hem poetic stem cells) on the haemopoesis of old and mature laboratory animals under the condition of ionizing radiation. The experiments were conducted on 48 white male mice with the body weight of 30 g, age of 3-4 months, and 48 male mice of 3 years of age and body mass of 50 g. The experiments for obtaining the MMSC and HSC cultures were conducted on 16 laboratory animals: female mice of 3-4 months of age and body mass of 30 g., 18 days gestation period. The control group was formed by the animals not under the ionizing radiation. The experimental group animals got the dose of 4 Gr. These animals also got MMSC and HSC mixture intravenously in the doses of 6 mln. c/kg. and 330 thousand cell/kg prospectively. The control group animals got the 0.9% NaCl - 0.2 ml. intravenously. The infusions were made 1 hour after radiation once. As the result of the experiment it was shown that under physiological conditions combined transplantation brings the erithropoesis activation, under the ionizing radiation conditions it brings the erythroid and granulocytopoesis activation. More over the combined MMSC and HSC transplantation gives cytoprotective action on the myeloid tissue due to decrease of cyto genically changed cells in the mature animals under the condition of ionizing radiation, but in the old animals this effect can be seen even under physiological condition. Conclusions: Combined transplantation of MMSC and GSC can be used in the mature and old laboratory animals under the conditions of ionising radiation for the haemopoesis activation.

  4. Stem cells: sources and applications.

    PubMed

    Vats, A; Tolley, N S; Polak, J M; Buttery, L D K

    2002-08-01

    Tissue engineering is a multidisciplinary area of research aimed at regeneration of tissues and restoration of function of organs through implantation of cells/tissues grown outside the body, or stimulating cells to grow into implanted matrix. In this short review, some of the most recent developments in the use of stem cells for tissue repair and regeneration will be discussed. There is no doubt that stem cells derived from adult and embryonic sources hold great therapeutic potential but it is clear that there is still much research required before their use is commonplace. There is much debate over adult versus embryonic stem cells and whether both are required. It is probably too early to disregard one or other of these cell sources. With regard to embryonic stem cells, the major concern relates to the ethics of their creation and the proposed practice of therapeutic cloning.

  5. Stomach development, stem cells and disease.

    PubMed

    Kim, Tae-Hee; Shivdasani, Ramesh A

    2016-02-15

    The stomach, an organ derived from foregut endoderm, secretes acid and enzymes and plays a key role in digestion. During development, mesenchymal-epithelial interactions drive stomach specification, patterning, differentiation and growth through selected signaling pathways and transcription factors. After birth, the gastric epithelium is maintained by the activity of stem cells. Developmental signals are aberrantly activated and stem cell functions are disrupted in gastric cancer and other disorders. Therefore, a better understanding of stomach development and stem cells can inform approaches to treating these conditions. This Review highlights the molecular mechanisms of stomach development and discusses recent findings regarding stomach stem cells and organoid cultures, and their roles in investigating disease mechanisms. © 2016. Published by The Company of Biologists Ltd.

  6. Stomach development, stem cells and disease

    PubMed Central

    Kim, Tae-Hee; Shivdasani, Ramesh A.

    2016-01-01

    The stomach, an organ derived from foregut endoderm, secretes acid and enzymes and plays a key role in digestion. During development, mesenchymal-epithelial interactions drive stomach specification, patterning, differentiation and growth through selected signaling pathways and transcription factors. After birth, the gastric epithelium is maintained by the activity of stem cells. Developmental signals are aberrantly activated and stem cell functions are disrupted in gastric cancer and other disorders. Therefore, a better understanding of stomach development and stem cells can inform approaches to treating these conditions. This Review highlights the molecular mechanisms of stomach development and discusses recent findings regarding stomach stem cells and organoid cultures, and their roles in investigating disease mechanisms. PMID:26884394

  7. Quality Assurance in Stem Cell Banking: Emphasis on Embryonic and Induced Pluripotent Stem Cell Banking.

    PubMed

    Kallur, Therése; Blomberg, Pontus; Stenfelt, Sonya; Tryggvason, Kristian; Hovatta, Outi

    2017-01-01

    For quality assurance (QA) in stem cell banking, a planned system is needed to ensure that the banked products, stem cells, meet the standards required for research, clinical use, and commercial biotechnological applications. QA is process oriented, avoids, or minimizes unacceptable product defects, and particularly encompasses the management and operational systems of the bank, as well as the ethical and legal frameworks. Quality control (QC ) is product oriented and therefore ensures the stem cells of a bank are what they are expected to be. Testing is for controlling, not assuring, product quality, and is therefore a part of QC , not QA. Like QA, QC is essential for banking cells for quality research and translational application (Schwartz et al., Lancet 379:713-720, 2012). Human embryonic stem cells (hESCs), as cells derived from donated supernumerary embryos from in vitro fertilization (IVF) therapy, are different from other stem cell types in resulting from an embryo that has had two donors . This imposes important ethical and legal constraints on the utility of the cells, which, together with quite specific culture conditions, require special attention in the QA system. Importantly, although the origin and derivation of induced pluripotent stem cells (iPSCs ) differ from that of hESCs, many of the principles of QA for hESC banking are applicable to iPSC banking (Stacey et al., Cell Stem Cell 13:385-388, 2013). Furthermore, despite differences between the legal and regulatory frameworks for hESC and iPSC banking between different countries, the requirements for QA are being harmonized (Stacey et al., Cell Stem Cell 13:385-388, 2013; International Stem Cell Banking Initiative, Stem Cell Rev 5:301-314, 2009).

  8. Bone regeneration and stem cells

    PubMed Central

    Arvidson, K; Abdallah, B M; Applegate, L A; Baldini, N; Cenni, E; Gomez-Barrena, E; Granchi, D; Kassem, M; Konttinen, Y T; Mustafa, K; Pioletti, D P; Sillat, T; Finne-Wistrand, A

    2011-01-01

    Abstract This invited review covers research areas of central importance for orthopaedic and maxillofacial bone tissue repair, including normal fracture healing and healing problems, biomaterial scaffolds for tissue engineering, mesenchymal and foetal stem cells, effects of sex steroids on mesenchymal stem cells, use of platelet-rich plasma for tissue repair, osteogenesis and its molecular markers. A variety of cells in addition to stem cells, as well as advances in materials science to meet specific requirements for bone and soft tissue regeneration by addition of bioactive molecules, are discussed. PMID:21129153

  9. Unresolved issues in hematopoietic stem cell transplantation for severe combined immunodeficiency: Need for safer conditioning and reduced late effects

    PubMed Central

    Horn, Biljana; Cowan, Morton J.

    2017-01-01

    In this review we discuss recent outcomes of hematopoietic cell transplantation (HCT) for patients with severe combined immunodeficiency (SCID), including survival, T- and B-cell reconstitution, and late effects, particularly those related to genotype, use of conditioning regimen, and use of alternative donors. We identify the following issues that require additional data, which can be obtained through cooperative studies: outcomes of patients with SCID who did not receive conditioning before alternative donor HCT; outcomes of patients with SCID who did not receive graft-versus-host disease prophylaxis after T cell–replete HCT; late effects of HCT for patients with SCID, including neurocognitive outcomes, growth, and development; and their relationship to genotype and use of alkylating agents for conditioning. Careful follow-up of outcomes of all newborns receiving diagnoses based on newborn screening programs for SCID is essential because data are scarce on the effects of conditioning regimens in very young patients. A consensus on the definition of T- and B-cell recovery, criteria for additional “boosts,” pharmacokinetic data of chemotherapy agents used in young children, and uniformity of the use of various chemotherapy agents are needed to compare results among institutions. Finally, development of new nontoxic conditioning regimens for HCT that can be safely used in very young children is required. PMID:23622119

  10. Concise Review: Stem Cells in Osteoimmunology.

    PubMed

    Fierro, Fernando A; Nolta, Jan A; Adamopoulos, Iannis E

    2017-06-01

    Bone remodeling is a lifelong process in which mature bone tissue is removed from the skeleton by bone resorption and is replenished by new during ossification or bone formation. The remodeling cycle requires both the differentiation and activation of two cell types with opposing functions; the osteoclast, which orchestrates bone resorption, and the osteoblast, which orchestrates bone formation. The differentiation of these cells from their respective precursors is a process which has been overshadowed by enigma, particularly because the precise osteoclast precursor has not been identified and because the identification of skeletal stem cells, which give rise to osteoblasts, is very recent. Latest advances in the area of stem cell biology have enabled us to gain a better understanding of how these differentiation processes occur in physiological and pathological conditions. In this review we postulate that modulation of stem cells during inflammatory conditions is a necessary prerequisite of bone remodeling and therefore an essential new component to the field of osteoimmunology. In this context, we highlight the role of transcription factor nuclear factor of activated T cells cytoplasmic 1 (NFATc1), because it directly links inflammation with differentiation of osteoclasts and osteoblasts. Stem Cells 2017;35:1461-1467. © 2017 The Authors Stem Cells published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  11. Optimizing autologous cell grafts to improve stem cell gene therapy.

    PubMed

    Psatha, Nikoletta; Karponi, Garyfalia; Yannaki, Evangelia

    2016-07-01

    Over the past decade, stem cell gene therapy has achieved unprecedented curative outcomes for several genetic disorders. Despite the unequivocal success, clinical gene therapy still faces challenges. Genetically engineered hematopoietic stem cells are particularly vulnerable to attenuation of their repopulating capacity once exposed to culture conditions, ultimately leading to low engraftment levels posttransplant. This becomes of particular importance when transduction rates are low or/and competitive transplant conditions are generated by reduced-intensity conditioning in the absence of a selective advantage of the transduced over the unmodified cells. These limitations could partially be overcome by introducing megadoses of genetically modified CD34(+) cells into conditioned patients or by transplanting hematopoietic stem cells hematopoietic stem cells with high engrafting and repopulating potential. On the basis of the lessons gained from cord blood transplantation, we summarize the most promising approaches to date of increasing either the numbers of hematopoietic stem cells for transplantation or/and their engraftability, as a platform toward the optimization of engineered stem cell grafts. Copyright © 2016 ISEH - International Society for Experimental Hematology. Published by Elsevier Inc. All rights reserved.

  12. Nanotechniques Inactivate Cancer Stem Cells

    NASA Astrophysics Data System (ADS)

    Goltsev, Anatoliy N.; Babenko, Natalya N.; Gaevskaya, Yulia A.; Bondarovich, Nikolay A.; Dubrava, Tatiana G.; Ostankov, Maksim V.; Chelombitko, Olga V.; Malyukin, Yuriy V.; Klochkov, Vladimir K.; Kavok, Nataliya S.

    2017-06-01

    One of the tasks of current oncology is identification of cancer stem cells and search of therapeutic means capable of their specific inhibition. The paper presents the data on phenotype characteristics of Ehrlich carcinoma cells as convenient and easy-to-follow model of tumor growth. The evidence of cancer stem cells as a part of Ehrlich carcinoma and significance of CD44+ and CD44- subpopulations in maintaining the growth of this type of tumor were demonstrated. A high (tenfold) tumorigenic activity of the Ehrlich carcinoma CD44+ cells if compared to CD44- cells was proven. In this pair of comparison, the CD44+ cells had a higher potential of generating in peritoneal cavity of CD44high, CD44+CD24-, CD44+CD24+ cell subpopulations, highlighting the presence of cancer stem cells in a pool of CD44+ cells.

  13. Effects of total body irradiation-based conditioning on allogeneic stem cell transplantation for pediatric acute leukemia: a single-institution study

    PubMed Central

    Park, Jongmoo; Choi, Eun Kyung; Kim, Jong Hoon; Lee, Sang-wook; Song, Si Yeol; Yoon, Sang Min; Kim, Young Seok; Kim, Su Ssan; Park, Jin-hong; Park, Jaehyeon

    2014-01-01

    Purpose To evaluate the effects of total body irradiation (TBI), as a conditioning regimen prior to allogeneic stem cell transplantation (allo-SCT), in pediatric acute leukemia patients. Materials and Methods From January 2001 to December 2011, 28 patients, aged less than 18 years, were treated with TBI-based conditioning for allo-SCT in our institution. Of the 28 patients, 21 patients were diagnosed with acute lymphoblastic leukemia (ALL, 75%) and 7 were diagnosed with acute myeloid leukemia (AML, 25%). TBI was completed 4 days or 1 day before stem cell infusion. Patients underwent radiation therapy with bilateral parallel opposing fields and 6-MV X-rays. The Kaplan-Meier method was used to calculate survival outcomes. Results The 2-year event-free survival and overall survival rates were 66% and 56%, respectively (71.4% and 60.0% in AML patients vs. 64.3% and 52.4% in ALL patients, respectively). Treatment related mortality rate were 25%. Acute and chronic graft-versus-host disease was a major complication; other complications included endocrine dysfunction and pulmonary complications. Common complications from TBI were nausea (89%) and cataracts (7.1%). Conclusion The efficacy and toxicity data in this study of TBI-based conditioning to pediatric acute leukemia patients were comparable with previous studies. However, clinicians need to focus on the acute and chronic complications related to allo-SCT. PMID:25324992

  14. Five year follow-up after autologous peripheral blood hematopoietic stem cell transplantation for refractory, chronic, corticosteroid-dependent systemic lupus erythematosus: effect of conditioning regimen on outcome.

    PubMed

    Burt, Richard K; Han, Xiaoqiang; Gozdziak, Paula; Yaung, Kim; Morgan, Amy; Clendenan, Allison M; Henry, Jacquelyn; Calvario, Michelle A; Datta, Syamal K; Helenowski, Irene; Schroeder, James

    2018-05-31

    Some patients with systemic lupus erythematosus (SLE) are refractory to traditional therapies, dependent on chronic corticosteroids, have organ damage, and are at high risk of mortality. In this group of patients, we report outcome at a median of five years after autologous hematopoietic stem cell transplant (HSCT) using two different non-myeloablative regimens. Four patients received a conditioning regimen of cyclophosphamide (200 mg/kg) and alemtuzumab (60 mg), while 26 patients underwent conditioning with cyclophosphamide (200 mg/kg), rATG (Thymoglobulin) (5.5 mg/kg), and rituximab 1000 mg. Unselected peripheral blood stem cells were infused on day 0. There were no treatment related deaths. Of the four patients treated with cyclophosphamide and alemtuzumab, none entered remission. For the 26 patients treated with cyclophosphamide, rATG, and rituximab, disease remission defined as no immune suppressive drugs except hydroxychloroquine and/or 10 mg or less of prednisone a day was 92% at 6 months, 92% at one year, 81% at 2 years, 71% at 3 years, and 62% at 4 and 5 years post-HSCT. Autologous HSCT outcome is dependent on the conditioning regimen but prior organ damage may cause lingering symptoms.

  15. Progress in myeloma stem cells

    PubMed Central

    Cruz, Richard Dela; Tricot, Guido; Zangari, Maurizio; Zhan, Fenghuang

    2011-01-01

    Multiple myeloma (MM) is the second most common hematologic malignancy in the United States and affects about 4 in 100,000 Americans. Even though much progress has been made in MM therapy, MM remains an incurable disease for the vast majority of patients. The existence of MM stem cell is considered one of the major causes of MM drug-resistance, leading to relapse. This highlights the importance and urgency of developing approaches to target MM stem cells. However, very little is known about the molecular characteristics of the MM stem cells, which makes it difficult to target MM stem cells therapeutically. Evidence of the existence of a myeloma stem cell has been provided by Matsui et al. showing that the CD138- and CD20+ fraction, which is a minor population of the MM cells, has a greater clonogenic potential and has the phenotype of a memory B-cell (CD19+, CD27+). In this review, we report recent progress of cell surface markers in cancer stem cells, especially in myeloma and the molecular mechanisms related to drug resistance and myeloma disease progression. PMID:22432075

  16. Transportation Conditions for Prompt Use of Ex Vivo Expanded and Freshly Harvested Clinical-Grade Bone Marrow Mesenchymal Stromal/Stem Cells for Bone Regeneration

    PubMed Central

    Veronesi, Elena; Murgia, Alba; Caselli, Anna; Grisendi, Giulia; Piccinno, Maria Serena; Rasini, Valeria; Giordano, Rosaria; Montemurro, Tiziana; Bourin, Philippe; Sensebé, Luc; Rojewski, Markus T.; Schrezenmeier, Hubert; Layrolle, Pierre; Ginebra, Maria Pau; Panaitescu, Carmen Bunu; Gómez-Barrena, Enrique; Catani, Fabio; Paolucci, Paolo; Burns, Jorge S.

    2014-01-01

    Successful preliminary studies have encouraged a more translational phase for stem cell research. Nevertheless, advances in the culture of human bone marrow-derived mesenchymal stromal/stem cells (hBM-MSC) and osteoconductive qualities of combined biomaterials can be undermined if necessary cell transportation procedures prove unviable. We aimed at evaluating the effect of transportation conditions on cell function, including the ability to form bone in vivo, using procedures suited to clinical application. hBM-MSC expanded in current Good Manufacturing Practice (cGMP) facilities (cGMP-hBM-MSC) to numbers suitable for therapy were transported overnight within syringes and subsequently tested for viability. Scaled-down experiments mimicking shipment for 18 h at 4°C tested the influence of three different clinical-grade transportation buffers (0.9% saline alone or with 4% human serum albumin [HSA] from two independent sources) compared with cell maintenance medium. Cell viability after shipment was >80% in all cases, enabling evaluation of (1) adhesion to plastic flasks and hydroxyapatite tricalcium phosphate osteoconductive biomaterial (HA/β-TCP 3D scaffold); (2) proliferation rate; (3) ex vivo osteogenic differentiation in contexts of 2D monolayers on plastic and 3D HA/β-TCP scaffolds; and (4) in vivo ectopic bone formation after subcutaneous implantation of cells with HA/β-TCP scaffold into NOD/SCID mice. Von Kossa staining was used to assess ex vivo osteogenic differentiation in 3D cultures, providing a quantifiable test of 3D biomineralization ex vivo as a rapid, cost-effective potency assay. Near-equivalent capacities for cell survival, proliferation, and osteogenic differentiation were found for all transportation buffers. Moreover, cGMP-hBM-MSC transported from a production facility under clinical-grade conditions of 4% HSA in 0.9% saline to a destination 18 h away showed prompt adhesion to HA/β-TCP 3D scaffold and subsequent in vivo bone formation

  17. Drosophila's contribution to stem cell research.

    PubMed

    Singh, Gyanesh

    2015-01-01

    The discovery of Drosophila stem cells with striking similarities to mammalian stem cells has brought new hope for stem cell research. Recent developments in Drosophila stem cell research is bringing wider opportunities for contemporary stem cell biologists. In this regard, Drosophila germ cells are becoming a popular model of stem cell research. In several cases, genes that controlled Drosophila stem cells were later discovered to have functional homologs in mammalian stem cells. Like mammals, Drosophila germline stem cells (GSCs) are controlled by both intrinsic as well as external signals. Inside the Drosophila testes, germline and somatic stem cells form a cluster of cells (the hub). Hub cells depend on JAK-STAT signaling, and, in absence of this signal, they do not self-renew. In Drosophila, significant changes occur within the stem cell niche that contributes to a decline in stem cell number over time. In case of aging Drosophila, somatic niche cells show reduced DE-cadherin and unpaired (Upd) proteins. Unpaired proteins are known to directly decrease stem cell number within the niches, and, overexpression of upd within niche cells restored GSCs in older males also . Stem cells in the midgut of Drosophila are also very promising. Reduced Notch signaling was found to increase the number of midgut progenitor cells. On the other hand, activation of the Notch pathway decreased proliferation of these cells. Further research in this area should lead to the discovery of additional factors that regulate stem and progenitor cells in Drosophila.

  18. Drosophila's contribution to stem cell research

    PubMed Central

    Singh, Gyanesh

    2016-01-01

    The discovery of Drosophila stem cells with striking similarities to mammalian stem cells has brought new hope for stem cell research. Recent developments in Drosophila stem cell research is bringing wider opportunities for contemporary stem cell biologists. In this regard, Drosophila germ cells are becoming a popular model of stem cell research. In several cases, genes that controlled Drosophila stem cells were later discovered to have functional homologs in mammalian stem cells. Like mammals, Drosophila germline stem cells (GSCs) are controlled by both intrinsic as well as external signals. Inside the Drosophila testes, germline and somatic stem cells form a cluster of cells (the hub). Hub cells depend on JAK-STAT signaling, and, in absence of this signal, they do not self-renew. In Drosophila, significant changes occur within the stem cell niche that contributes to a decline in stem cell number over time. In case of aging Drosophila, somatic niche cells show reduced DE-cadherin and unpaired (Upd) proteins. Unpaired proteins are known to directly decrease stem cell number within the niches, and, overexpression of upd within niche cells restored GSCs in older males also . Stem cells in the midgut of Drosophila are also very promising. Reduced Notch signaling was found to increase the number of midgut progenitor cells. On the other hand, activation of the Notch pathway decreased proliferation of these cells. Further research in this area should lead to the discovery of additional factors that regulate stem and progenitor cells in Drosophila. PMID:26180635

  19. Cell Cycle Regulation of Stem Cells by MicroRNAs.

    PubMed

    Mens, Michelle M J; Ghanbari, Mohsen

    2018-06-01

    MicroRNAs (miRNAs) are a class of small non-coding RNA molecules involved in the regulation of gene expression. They are involved in the fine-tuning of fundamental biological processes such as proliferation, differentiation, survival and apoptosis in many cell types. Emerging evidence suggests that miRNAs regulate critical pathways involved in stem cell function. Several miRNAs have been suggested to target transcripts that directly or indirectly coordinate the cell cycle progression of stem cells. Moreover, previous studies have shown that altered expression levels of miRNAs can contribute to pathological conditions, such as cancer, due to the loss of cell cycle regulation. However, the precise mechanism underlying miRNA-mediated regulation of cell cycle in stem cells is still incompletely understood. In this review, we discuss current knowledge of miRNAs regulatory role in cell cycle progression of stem cells. We describe how specific miRNAs may control cell cycle associated molecules and checkpoints in embryonic, somatic and cancer stem cells. We further outline how these miRNAs could be regulated to influence cell cycle progression in stem cells as a potential clinical application.

  20. Diabetes and Stem Cell Function

    PubMed Central

    Fujimaki, Shin; Wakabayashi, Tamami; Takemasa, Tohru; Asashima, Makoto; Kuwabara, Tomoko

    2015-01-01

    Diabetes mellitus is one of the most common serious metabolic diseases that results in hyperglycemia due to defects of insulin secretion or insulin action or both. The present review focuses on the alterations to the diabetic neuronal tissues and skeletal muscle, including stem cells in both tissues, and the preventive effects of physical activity on diabetes. Diabetes is associated with various nervous disorders, such as cognitive deficits, depression, and Alzheimer's disease, and that may be caused by neural stem cell dysfunction. Additionally, diabetes induces skeletal muscle atrophy, the impairment of energy metabolism, and muscle weakness. Similar to neural stem cells, the proliferation and differentiation are attenuated in skeletal muscle stem cells, termed satellite cells. However, physical activity is very useful for preventing the diabetic alteration to the neuronal tissues and skeletal muscle. Physical activity improves neurogenic capacity of neural stem cells and the proliferative and differentiative abilities of satellite cells. The present review proposes physical activity as a useful measure for the patients in diabetes to improve the physiological functions and to maintain their quality of life. It further discusses the use of stem cell-based approaches in the context of diabetes treatment. PMID:26075247

  1. Clinical grade adult stem cell banking

    PubMed Central

    Thirumala, Sreedhar; Goebel, W Scott

    2009-01-01

    There has been a great deal of scientific interest recently generated by the potential therapeutic applications of adult stem cells in human care but there are several challenges regarding quality and safety in clinical applications and a number of these challenges relate to the processing and banking of these cells ex-vivo. As the number of clinical trials and the variety of adult cells used in regenerative therapy increases, safety remains a primary concern. This has inspired many nations to formulate guidelines and standards for the quality of stem cell collection, processing, testing, banking, packaging and distribution. Clinically applicable cryopreservation and banking of adult stem cells offers unique opportunities to advance the potential uses and widespread implementation of these cells in clinical applications. Most current cryopreservation protocols include animal serum proteins and potentially toxic cryoprotectant additives (CPAs) that prevent direct use of these cells in human therapeutic applications. Long term cryopreservation of adult stem cells under good manufacturing conditions using animal product free solutions is critical to the widespread clinical implementation of ex-vivo adult stem cell therapies. Furthermore, to avoid any potential cryoprotectant related complications, reduced CPA concentrations and efficient post-thaw washing to remove CPA are also desirable. The present review focuses on the current strategies and important aspects of adult stem cell banking for clinical applications. These include current good manufacturing practices (cGMPs), animal protein free freezing solutions, cryoprotectants, freezing & thawing protocols, viability assays, packaging and distribution. The importance and benefits of banking clinical grade adult stem cells are also discussed. PMID:20046678

  2. Stem cells in cardiac repair.

    PubMed

    Henning, Robert J

    2011-01-01

    Myocardial infarction is the leading cause of death among people in industrialized nations. Although the heart has some ability to regenerate after infarction, myocardial restoration is inadequate. Consequently, investigators are currently exploring the use of human embryonic stem cells (hESCs), skeletal myoblasts and adult bone marrow stem cells to limit infarct size. hESCs are pluripotent cells that can regenerate myocardium in infarcted hearts, attenuate heart remodeling and contribute to left ventricle (LV) systolic force development. Since hESCs can form heart teratomas, investigators are differentiating hESCs toward cardiac progenitor cells prior to transplantation into hearts. Large quantities of hESCs cardiac progenitor cells, however, must be generated, immune rejection must be prevented and grafts must survive over the long term to significantly improve myocardial performance. Transplanted autologous skeletal myoblasts can survive in infarcted myocardium in small numbers, proliferate, differentiate into skeletal myofibers and increase the LV ejection fraction. These cells, however, do not form electromechanical connections with host cardiomyocytes. Consequently, electrical re-entry can occur and cause cardiac arrhythmias. Autologous bone marrow mononuclear cells contain hematopoietic and mesenchymal stem cells. In several meta-analyses, patients with coronary disease who received autologous bone marrow cells by intracoronary injection show significant 3.7% (range: 1.9-5.4%) increases in LV ejection fraction, decreases in LV end-systolic volume of -4.8 ml (range: -1.4 to -8.2 ml) and reductions in infarct size of 5.5% (-1.9 to -9.1%), without experiencing arrhythmias. Bone marrow cells appear to release biologically active factors that limit myocardial damage. Unfortunately, bone marrow cells from patients with chronic diseases propagate poorly and can die prematurely. Substantial challenges must be addressed and resolved to advance the use of stem cells

  3. Megakaryocytopoiesis in Stem Cell Transplantation

    DTIC Science & Technology

    1997-10-01

    megakaryocyte production by at least 3-fold by a still unknown mechanism. We were able to rule out any role of stromal concentrations of thrombopoietin, interleukins 3 and 6, stem cell factor and heparan sulfates on this enhancing effect.

  4. Kidney regeneration and stem cells.

    PubMed

    Takaori, Koji; Yanagita, Motoko

    2014-01-01

    The kidney has the capacity to recover from ischemic and toxic insults. Although there has been debate about the origin of cells that replace injured epithelial cells, it is now widely recognized that intrinsic surviving tubular cells are responsible for the repair. On the other hand, the cells, which have stem cell-like characteristics, have been isolated in the kidney using various methods, but it remains unknown if these stem cells actually exist in the adult kidney and if they are involved in kidney regeneration. This review will focus on the pathophysiology of kidney regeneration and the contribution of renal stem cells. We also discuss possible therapeutic applications to kidney disease. Copyright © 2013 Wiley Periodicals, Inc.

  5. [Progress in stem cells and regenerative medicine].

    PubMed

    Wang, Libin; Zhu, He; Hao, Jie; Zhou, Qi

    2015-06-01

    Stem cells have the ability to differentiate into all types of cells in the body and therefore have great application potential in regenerative medicine, in vitro disease modelling and drug screening. In recent years, stem cell technology has made great progress, and induced pluripotent stem cell technology revolutionizes the whole stem cell field. At the same time, stem cell research in our country has also achieved great progress and becomes an indispensable power in the worldwide stem cell research field. This review mainly focuses on the research progress in stem cells and regenerative medicine in our country since the advent of induced pluripotent stem cell technology, including induced pluripotent stem cells, transdifferentiation, haploid stem cells, and new gene editing tools.

  6. Stem Cell Therapies in Retinal Disorders.

    PubMed

    Garg, Aakriti; Yang, Jin; Lee, Winston; Tsang, Stephen H

    2017-02-02

    Stem cell therapy has long been considered a promising mode of treatment for retinal conditions. While human embryonic stem cells (ESCs) have provided the precedent for regenerative medicine, the development of induced pluripotent stem cells (iPSCs) revolutionized this field. iPSCs allow for the development of many types of retinal cells, including those of the retinal pigment epithelium, photoreceptors, and ganglion cells, and can model polygenic diseases such as age-related macular degeneration. Cellular programming and reprogramming technology is especially useful in retinal diseases, as it allows for the study of living cells that have genetic variants that are specific to patients' diseases. Since iPSCs are a self-renewing resource, scientists can experiment with an unlimited number of pluripotent cells to perfect the process of targeted differentiation, transplantation, and more, for personalized medicine. Challenges in the use of stem cells are present from the scientific, ethical, and political realms. These include transplant complications leading to anatomically incorrect placement, concern for tumorigenesis, and incomplete targeting of differentiation leading to contamination by different types of cells. Despite these limitations, human ESCs and iPSCs specific to individual patients can revolutionize the study of retinal disease and may be effective therapies for conditions currently considered incurable.

  7. The Emerging Cell Biology of Thyroid Stem Cells

    PubMed Central

    Latif, Rauf; Minsky, Noga C.; Ma, Risheng

    2011-01-01

    Context: Stem cells are undifferentiated cells with the property of self-renewal and give rise to highly specialized cells under appropriate local conditions. The use of stem cells in regenerative medicine holds great promise for the treatment of many diseases, including those of the thyroid gland. Evidence Acquisition: This review focuses on the progress that has been made in thyroid stem cell research including an overview of cellular and molecular events (most of which were drawn from the period 1990–2011) and discusses the remaining problems encountered in their differentiation. Evidence Synthesis: Protocols for the in vitro differentiation of embryonic stem cells, based on normal developmental processes, have generated thyroid-like cells but without full thyrocyte function. However, agents have been identified, including activin A, insulin, and IGF-I, which are able to stimulate the generation of thyroid-like cells in vitro. In addition, thyroid stem/progenitor cells have been identified within the normal thyroid gland and within thyroid cancers. Conclusions: Advances in thyroid stem cell biology are providing not only insight into thyroid development but may offer therapeutic potential in thyroid cancer and future thyroid cell replacement therapy. PMID:21778219

  8. Adipose-derived stem cells cultivated on electrospun l-lactide/glycolide copolymer fleece and gelatin hydrogels under flow conditions - aiming physiological reality in hypodermis tissue engineering.

    PubMed

    Gugerell, Alfred; Neumann, Anne; Kober, Johanna; Tammaro, Loredana; Hoch, Eva; Schnabelrauch, Matthias; Kamolz, Lars; Kasper, Cornelia; Keck, Maike

    2015-02-01

    Generation of adipose tissue for burn patients that suffer from an irreversible loss of the hypodermis is still one of the most complex challenges in tissue engineering. Electrospun materials with their micro- and nanostructures are already well established for their use as extracellular matrix substitutes. Gelatin is widely used in tissue engineering to gain thickness and volume. Under conventional static cultivation methods the supply of nutrients and transport of toxic metabolites is controlled by diffusion and therefore highly dependent on size and porosity of the biomaterial. A widely used method in order to overcome these limitations is the medium perfusion of 3D biomaterial-cell-constructs. In this study we combined perfusion bioreactor cultivation techniques with electrospun poly(l-lactide-co-glycolide) (P(LLG)) and gelatin hydrogels together with adipose-derived stem cells (ASCs) for a new approach in soft tissue engineering. ASCs were seeded on P(LLG) scaffolds and in gelatin hydrogels and cultivated for 24 hours under static conditions. Thereafter, biomaterials were cultivated under static conditions or in a bioreactor system for three, nine or twelve days with a medium flow of 0.3ml/min. Viability, morphology and differentiation of cells was monitored. ASCs seeded on P(LLG) scaffolds had a physiological morphology and good viability and were able to migrate from one electrospun scaffold to another under flow conditions but not migrate through the mesh. Differentiated ASCs showed lipid droplet formations after 21 days. Cells in hydrogels were viable but showed rounded morphology. Under flow conditions, morphology of cells was more diffuse. ASCs could be cultivated on P(LLG) scaffolds and in gelatin hydrogels under flow conditions and showed good cell viability as well as the potential to differentiate. These results should be a next step to a physiological three-dimensional construct for soft tissue engineering and regeneration. Copyright © 2014

  9. What's missing? Discussing stem cell translational research in educational information on stem cell "tourism".

    PubMed

    Master, Zubin; Zarzeczny, Amy; Rachul, Christen; Caulfield, Timothy

    2013-01-01

    Stem cell tourism is a growing industry in which patients pursue unproven stem cell therapies for a wide variety of illnesses and conditions. It is a challenging market to regulate due to a number of factors including its international, online, direct-to-consumer approach. Calls to provide education and information to patients, their families, physicians, and the general public about the risks associated with stem cell tourism are mounting. Initial studies examining the perceptions of patients who have pursued stem cell tourism indicate many are highly critical of the research and regulatory systems in their home countries and believe them to be stagnant and unresponsive to patient needs. We suggest that educational material should include an explanation of the translational research process, in addition to other aspects of stem cell tourism, as one means to help promote greater understanding and, ideally, curb patient demand for unproven stem cell interventions. The material provided must stress that strong scientific research is required in order for therapies to be safe and have a greater chance at being effective. Through an analysis of educational material on stem cell tourism and translational stem cell research from patient groups and scientific societies, we describe essential elements that should be conveyed in educational material provided to patients. Although we support the broad dissemination of educational material on stem cell translational research, we also acknowledge that education may simply not be enough to engender patient and public trust in domestic research and regulatory systems. However, promoting patient autonomy by providing good quality information to patients so they can make better informed decisions is valuable in itself, irrespective of whether it serves as an effective deterrent of stem cell tourism. © 2013 American Society of Law, Medicine & Ethics, Inc.

  10. Stem Cell Therapy to Treat Diabetes Mellitus

    PubMed Central

    Liew, Chee Gee; Andrews, Peter W.

    2008-01-01

    Transplantation of pancreatic islets offers a direct treatment for type 1 diabetes and in some cases, insulin-dependent type 2 diabetes. However, its widespread use is hampered by a shortage of donor organs. Many extant studies have focused on deriving β-cell progenitors from pancreas and pluripotent stem cells. Efforts to generate β-cells in vitro will help elucidate the mechanisms of β-cell formation and thus provide a versatile in vivo system to evaluate the therapeutic potential of these cells to treat diabetes. Various successful experiments using β-cells in animal models have generated extensive interest in using human embryonic stem cells to restore normoglycemia in diabetic patients. While new techniques are continually unveiled, the success of β-cell generation rests upon successful manipulation of culture conditions and the induction of key regulatory genes implicated in pancreas development. In this review, we compare successfully conducted protocols, highlight essential steps and identify some of the remarkable shortfalls common to these methods. In addition, we discuss recent advancements in the derivation of patient-specific pluripotent stem cells that may facilitate the use of autologous β-cells in stem cell therapy. PMID:19290381

  11. Induced pluripotent stem (iPS) cells from human fetal stem cells.

    PubMed

    Guillot, Pascale V

    2016-02-01

    Pluripotency defines the ability of stem cells to differentiate into all the lineages of the three germ layers and self-renew indefinitely. Somatic cells can regain the developmental potential of embryonic stem cells following ectopic expression of a set of transcription factors or, in certain circumstances, via modulation of culture conditions and supplementation with small molecule, that is, induced pluripotent stem (iPS) cells. Here, we discuss the use of fetal tissues for reprogramming, focusing in particular on stem cells derived from human amniotic fluid, and the development of chemical reprogramming. We next address the advantages and disadvantages of deriving pluripotent cells from fetal tissues and the potential clinical applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Stem Cells and Calcium Signaling

    PubMed Central

    Tonelli, Fernanda M.P.; Santos, Anderson K.; Gomes, Dawidson A.; da Silva, Saulo L.; Gomes, Katia N.; Ladeira, Luiz O.

    2014-01-01

    The increasing interest in stem cell research is linked to the promise of developing treatments for many lifethreatening, debilitating diseases, and for cell replacement therapies. However, performing these therapeutic innovations with safety will only be possible when an accurate knowledge about the molecular signals that promote the desired cell fate is reached. Among these signals are transient changes in intracellular Ca2+ concentration [Ca2+]i. Acting as an intracellular messenger, Ca2+ has a key role in cell signaling pathways in various differentiation stages of stem cells. The aim of this chapter is to present a broad overview of various moments in which Ca2+-mediated signaling is essential for the maintenance of stem cells and for promoting their development and differentiation, also focusing on their therapeutic potential. PMID:22453975

  13. Stem cells and calcium signaling.

    PubMed

    Tonelli, Fernanda M P; Santos, Anderson K; Gomes, Dawidson A; da Silva, Saulo L; Gomes, Katia N; Ladeira, Luiz O; Resende, Rodrigo R

    2012-01-01

    The increasing interest in stem cell research is linked to the promise of developing treatments for many lifethreatening, debilitating diseases, and for cell replacement therapies. However, performing these therapeutic innovations with safety will only be possible when an accurate knowledge about the molecular signals that promote the desired cell fate is reached. Among these signals are transient changes in intracellular Ca(2+) concentration [Ca(2+)](i). Acting as an intracellular messenger, Ca(2+) has a key role in cell signaling pathways in various differentiation stages of stem cells. The aim of this chapter is to present a broad overview of various moments in which Ca(2+)-mediated signaling is essential for the maintenance of stem cells and for promoting their development and differentiation, also focusing on their therapeutic potential.

  14. Comparison of fibroblast cell regeneration in three different concentrations of Wharton’s Jelly mesenchymal stem cells conditioned medium (WJMSCs-CM)

    NASA Astrophysics Data System (ADS)

    Untoro, E. G.; Asrianti, D.; Usman, M.; Meidyawati, R.; Margono, A.

    2017-08-01

    Wharton’s Jelly-derived mesenchymal stem cells (WJMSCs) have gained interest as an alternative source of stem cells for regenerative medicine. Although many studies have characterized Wharton’s Jelly biologically, the effects of different concentrations in a cultured medium have not yet been compared. Damaged fibroblasts, the primary components of irreversible dental pulpitis, irreversibly impair the ability to regenerate and lead to the disruption of extracellular matrix. This study was performed to evaluate the potency of three WJMSCs-CM concentrations in improving serum-starved fibroblasts. Fibroblasts were cultivated in five passages, and divided into four groups. The first group (the control group) consisted of fibroblast cells that had been treated using starvation methods. The other groups (the treatment groups) were treated with various concentration of WJMSCs-CM (50%, 25% and 12.5%). Proliferative ability was evaluated using a cell count method and analyzed with a one-way ANOVA. Cultivation of serum-starved fibroblasts produced significantly higher cell counts in 12.5% WJMSCs-CM compared to the 50% group. It can be concluded that 12.5% WJMSCs-CM is the most efficient concentration for fibroblast proliferation.

  15. Nanotechnology in stem cells research: advances and applications.

    PubMed

    Deb, Kaushik Dilip; Griffith, May; Muinck, Ebo De; Rafat, Mehrdad

    2012-01-01

    Human beings suffer from a myriad of disorders caused by biochemical or biophysical alteration of physiological systems leading to organ failure. For a number of these conditions, stem cells and their enormous reparative potential may be the last hope for restoring function to these failing organ or tissue systems. To harness the potential of stem cells for biotherapeutic applications, we need to work at the size scale of molecules and processes that govern stem cells fate. Nanotechnology provides us with such capacity. Therefore, effective amalgamation of nanotechnology and stem cells - medical nanoscience or nanomedicine - offers immense benefits to the human race. The aim of this paper is to discuss the role and importance of nanotechnology in stem cell research by focusing on several important areas such as stem cell visualization and imaging, genetic modifications and reprogramming by gene delivery systems, creating stem cell niche, and similar therapeutic applications.

  16. Stem cells in clinical practice: applications and warnings.

    PubMed

    Lodi, Daniele; Iannitti, Tommaso; Palmieri, Beniamino

    2011-01-17

    Stem cells are a relevant source of information about cellular differentiation, molecular processes and tissue homeostasis, but also one of the most putative biological tools to treat degenerative diseases. This review focuses on human stem cells clinical and experimental applications. Our aim is to take a correct view of the available stem cell subtypes and their rational use in the medical area, with a specific focus on their therapeutic benefits and side effects. We have reviewed the main clinical trials dividing them basing on their clinical applications, and taking into account the ethical issue associated with the stem cell therapy. We have searched Pubmed/Medline for clinical trials, involving the use of human stem cells, using the key words "stem cells" combined with the key words "transplantation", "pathology", "guidelines", "properties" and "risks". All the relevant clinical trials have been included. The results have been divided into different categories, basing on the way stem cells have been employed in different pathological conditions.

  17. Induced pluripotent stem cells: advances to applications

    PubMed Central

    Nelson, Timothy J; Martinez-Fernandez, Almudena; Yamada, Satsuki; Ikeda, Yasuhiro; Perez-Terzic, Carmen; Terzic, Andre

    2010-01-01

    Induced pluripotent stem cell (iPS) technology has enriched the armamentarium of regenerative medicine by introducing autologous pluripotent progenitor pools bioengineered from ordinary somatic tissue. Through nuclear reprogramming, patient-specific iPS cells have been derived and validated. Optimizing iPS-based methodology will ensure robust applications across discovery science, offering opportunities for the development of personalized diagnostics and targeted therapeutics. Here, we highlight the process of nuclear reprogramming of somatic tissues that, when forced to ectopically express stemness factors, are converted into bona fide pluripotent stem cells. Bioengineered stem cells acquire the genuine ability to generate replacement tissues for a wide-spectrum of diseased conditions, and have so far demonstrated therapeutic benefit upon transplantation in model systems of sickle cell anemia, Parkinson’s disease, hemophilia A, and ischemic heart disease. The field of regenerative medicine is therefore primed to adopt and incorporate iPS cell-based advancements as a next generation stem cell platforms. PMID:21165156

  18. Genetic Modification of Stem Cells for Transplantation

    PubMed Central

    Phillips, M. Ian; Tang, Yao Liang

    2009-01-01

    Gene modification of cells for prior to their transplantation, especially stem cells, enhances their survival and increases their function in cell therapy. Like the Trojan horse, the gene modified cell has to gain entrance inside the host’s walls and survive and deliver its transgene products Using cellular, molecular and gene manipulation techniques the transplanted cell can be protected in a hostile environment from immune rejection, inflammation, hypoxia and apoptosis. Genetic engineering to modify cells involves constructing modules of functional gene sequences. They can be simple reporter genes or complex cassettes with gene switches, cell specific promoters and multiple transgenes. We discuss methods to deliver and construct gene cassettes with viral and non viral delivery, siRNA, and conditional Cre/Lox P. We review the current uses of gene modified stem cells in cardiovascular disease, diabetes, neurological diseases,( including Parkinson’s, Alzheimer’s and spinal cord injury repair), bone defects, hemophilia, and cancer. PMID:18031863

  19. Genetic modification of stem cells for transplantation.

    PubMed

    Phillips, M Ian; Tang, Yao Liang

    2008-01-14

    Gene modification of cells prior to their transplantation, especially stem cells, enhances their survival and increases their function in cell therapy. Like the Trojan horse, the gene-modified cell has to gain entrance inside the host's walls and survive and deliver its transgene products. Using cellular, molecular and gene manipulation techniques the transplanted cell can be protected in a hostile environment from immune rejection, inflammation, hypoxia and apoptosis. Genetic engineering to modify cells involves constructing modules of functional gene sequences. They can be simple reporter genes or complex cassettes with gene switches, cell specific promoters and multiple transgenes. We discuss methods to deliver and construct gene cassettes with viral and non-viral delivery, siRNA, and conditional Cre/Lox P. We review the current uses of gene-modified stem cells in cardiovascular disease, diabetes, neurological diseases, (including Parkinson's, Alzheimer's and spinal cord injury repair), bone defects, hemophilia, and cancer.

  20. The evolution of chicken stem cell culture methods.

    PubMed

    Farzaneh, M; Attari, F; Mozdziak, P E; Khoshnam, S E

    2017-12-01

    1. The avian embryo is an excellent model for studying embryology and the production of pharmaceutical proteins in transgenic chickens. Furthermore, chicken stem cells have the potential for proliferation and differentiation and emerged as an attractive tool for various cell-based technologies. 2. The objective of these studies is the derivation and culture of these stem cells is the production of transgenic birds for recombinant biomaterials and vaccine manufacture, drug and cytotoxicity testing, as well as to gain insight into basic science, including cell tracking. 3. Despite similarities among the established chicken stem cell lines, fundamental differences have been reported between their culture conditions and applications. Recent conventional protocols used for expansion and culture of chicken stem cells mostly depend on feeder cells, serum-containing media and static culture. 4. Utilising chicken stem cells for generation of cell-based transgenic birds and a variety of vaccines requires large-scale cell production. However, scaling up the conventional adherent chicken stem cells is challenging and labour intensive. Development of a suspension cell culture process for chicken embryonic stem cells (cESCs), chicken primordial germ cells (PGCs) and chicken induced pluripotent stem cells (ciPSCs) will be an important advance for increasing the growth kinetics of these cells. 6. This review describes various approaches and suggestions to achieve optimal cell growth for defined chicken stem cells cultures and use in future manufacturing applications.

  1. Study of the stability of packaging and storage conditions of human mesenchymal stem cell for intra-arterial clinical application in patient with critical limb ischemia.

    PubMed

    Gálvez-Martín, Patricia; Hmadcha, Abdelkrim; Soria, Bernat; Calpena-Campmany, Ana C; Clares-Naveros, Beatriz

    2014-04-01

    Critical limb ischemia (CLI) is associated with significant morbidity and mortality. In this study, we developed and characterized an intra-arterial cell suspension containing human mesenchymal stem cells (hMSCs) for the treatment of CLI. Equally, the stability of cells was studied in order to evaluate the optimal conditions of storage that guarantee the viability from cell processing to the administration phase. Effects of various factors, including excipients, storage temperature and time were evaluated to analyze the survival of hMSCs in the finished medicinal product. The viability of hMSCs in different packaging media was studied for 60 h at 4 °C. The best medium to maintain hMSCs viability was then selected to test storage conditions (4, 8, 25 and 37 °C; 60 h). The results showed that at 4 °C the viability was maintained above 80% for 48 h, at 8 °C decreased slightly, whereas at room temperature and 37 °C decreased drastically. Its biocompatibility was assessed by cell morphology and cell viability assays. During stability study, the stored cells did not show any change in their phenotypic or genotypic characteristics and physicochemical properties remained constant, the ability to differentiate into adipocytes and osteocytes and sterility requirements were also unaltered. Finally, our paper proposes a packing media composed of albumin 20%, glucose 5% and Ringer's lactate at a concentration of 1×10(6) cells/mL, which must be stored at 4 °C as the most suitable to maintain cell viability (>80%) and without altering their characteristics for more than 48 h. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Stem cells therapy for ALS.

    PubMed

    Mazzini, Letizia; Vescovi, Angelo; Cantello, Roberto; Gelati, Maurizio; Vercelli, Alessandro

    2016-01-01

    Despite knowledge on the molecular basis of amyotrophic lateral sclerosis (ALS) having quickly progressed over the last few years, such discoveries have not yet translated into new therapeutics. With the advancement of stem cell technologies there is hope for stem cell therapeutics as novel treatments for ALS. We discuss in detail the therapeutic potential of different types of stem cells in preclinical and clinical works. Moreover, we address many open questions in clinical translation. SC therapy is a potentially promising new treatment for ALS and the need to better understand how to develop cell-based experimental treatments, and how to implement them in clinical trials, becomes more pressing. Mesenchymal stem cells and neural fetal stem cells have emerged as safe and potentially effective cell types, but there is a need to carry out appropriately designed experimental studies to verify their long-term safety and possibly efficacy. Moreover, the cost-benefit analysis of the results must take into account the quality of life of the patients as a major end point. It is our opinion that a multicenter international clinical program aime d at fine-tuning and coordinating transplantation procedures and protocols is mandatory.

  3. Advances in Bone Marrow Stem Cell Therapy for Retinal Dysfunction

    PubMed Central

    Park, Susanna S.; Moisseiev, Elad; Bauer, Gerhard; Anderson, Johnathon D.; Grant, Maria B.; Zam, Azhar; Zawadzki, Robert J.; Werner, John S.; Nolta, Jan A.

    2016-01-01

    The most common cause of untreatable vision loss is dysfunction of the retina. Conditions, such as age-related macular degeneration, diabetic retinopathy and glaucoma remain leading causes of untreatable blindness worldwide. Various stem cell approaches are being explored for treatment of retinal regeneration. The rationale for using bone marrow stem cells to treat retinal dysfunction is based on preclinical evidence showing that bone marrow stem cells can rescue degenerating and ischemic retina. These stem cells have primarily paracrine trophic effects although some cells can directly incorporate into damaged tissue. Since the paracrine trophic effects can have regenerative effects on multiple cells in the retina, the use of this cell therapy is not limited to a particular retinal condition. Autologous bone marrow-derived stem cells are being explored in early clinical trials as therapy for various retinal conditions. These bone marrow stem cells include mesenchymal stem cells, mononuclear cells and CD34+ cells. Autologous therapy requires no systemic immunosuppression or donor matching. Intravitreal delivery of CD34+ cells and mononuclear cells appears to be tolerated and is being explored since some of these cells can home into the damaged retina after intravitreal administration. The safety of intravitreal delivery of mesenchymal stem cells has not been well established. This review provides an update of the current evidence in support of the use of bone marrow stem cells as treatment for retinal dysfunction. The potential limitations and complications of using certain forms of bone marrow stem cells as therapy are discussed. Future directions of research include methods to optimize the therapeutic potential of these stem cells, non-cellular alternatives using extracellular vesicles, and in vivo high-resolution retinal imaging to detect cellular changes in the retina following cell therapy. PMID:27784628

  4. [MMC conditioning regimen (Melphalan, MeCCNU and cyclophosphamide) followed by allogeneic peripheral blood stem cells transplantation for chronic myeloid leukemia].

    PubMed

    Liu, T; Jia, Y; Wang, H; Lu, Z; Meng, W; Yang, Y; Wu, J; Deng, C

    1998-12-01

    This paper reports 3 cases of allogeneic peripheral blood stem cell transplantation (Allo-PBSCT) for the patients with chronic myeloid leukemia (CML). The patients received MMC preparative regimen with high dose chemotherapy (Melphalan 170 mg/m2, p.o. on Day-5, MeCCNU 400 mg/m2, p.o. on Day-4, and Cyclophosphomide 60 mg/kg/day, i.v. on Days-3 and -2). The HLA-identical sibling donors received filgrastim (rhG-CSF) for mobilization at a dose of 300 micrograms/day for 6 days. Leukaphereses were done at the 6th day of mobilization. A median of 8000 ml (2 times total blood volume) of blood was processed the collecting: 2.5-4.5 x 10(8)/kg MNC, 12.8-20.0 x 10(6)/kg CD34+ cells (including 4.8-7.5 x 10(6)/kg CD34+CD33-, 8.0-13.0 x 10(6)/kg CD34+CD33+), and 3.5-4.3 x 10(5)/kg CFU-GM. Cyclosporin A and methotrexate were used for GVHD prophylaxis. Hematopoitic function recovered as for 14-20 days to > 0.5 x 10(9)/L of neutrophil count, and for 16-34 days to > 20 x 10(9)/L of platelet count. At day + 100, chromosome analysis of bone marrow cells showed that complete chimera without ph1 positive chromosome in Cases 1 and 3, and a partial chimera with 73% donor karyotype in Case 2. All patients now are in disease free survival. No episode of acute graft versus host disease (GVHD) developed. It was concluded that HLA matched sibling allogeneic PBSCT result in rapid hematopoitic reconstitution and the MMC conditioning regimen is effective both in leukemic cells eradication and in immunosuppression for stem cells engraftment, and the drug related toxicity could be tolerated by patients.

  5. Therapeutic strategies involving uterine stem cells in reproductive medicine.

    PubMed

    Simoni, Michael; Taylor, Hugh S

    2018-06-01

    The current review provides an update on recent advances in stem cell biology relevant to female reproduction. Stem cells are undifferentiated cells that often serve as a reservoir of cells to regenerate tissue in settings or injury or cell loss. The endometrium has progenitor stem cells that can replace all of the endometrium during each menstrual cycle. In addition, multipotent endometrial cells replace these progenitor cells when depleted. Recruitment of stem cells from outside of the uterus occurs in setting of increased demand such as ischemia or injury. Bone marrow-derived multipotent stem cells are recruited to the uterus by estrogen or injury-induced expression of the chemokine CXCL12. In the setting of overwhelming injury, especially in the setting of low estrogen levels, there may be insufficient stem cell recruitment to adequately repair the uterus resulting in conditions such as Asherman syndrome or other endometrial defects. In contrast, excessive recruitment of stem cells underlies endometriosis. Enhanced understanding of stem-cell mobilization, recruitment, and engraftment has created the possibility of improved therapy for endometrial defects and endometriosis through enhanced manipulation of stem-cell trafficking. Further, the normal endometrium is a rich source of multipotent stem cells that can be used for numerous applications in regenerative medicine beyond reproduction. A better understanding of reproductive stem-cell biology may allow improved treatment of endometrial disease such as Asherman syndrome and other endometrial receptivity defects. Inhibiting stem-cell mobilization may also be helpful in endometriosis therapy. Finally, endometrial derived multipotent stem cells may play a crucial role in cell therapy for regenerative medicine.

  6. Identification of Metastatic Tumor Stem Cell

    DTIC Science & Technology

    2010-09-01

    addition to a tumor stem cell , an existence of a metastatic stem cell is predicted. Despite the critical importance of the concept, this idea has not been...isolating stem cell population from a unique set of breast tumor cell lines and by examining their metastatic behavior in an animal model. The overall...will (i) isolate stem - cell population from non-metastatic and metastatic cells of a pair of syngenic breast tumor cell lines, and test their metastatic

  7. Stem Cells for Osteochondral Regeneration.

    PubMed

    Canadas, Raphaël F; Pirraco, Rogério P; Oliveira, J Miguel; Reis, Rui L; Marques, Alexandra P

    2018-01-01

    Stem cell research plays a central role in the future of medicine, which is mainly dependent on the advances on regenerative medicine (RM), specifically in the disciplines of tissue engineering (TE) and cellular therapeutics. All RM strategies depend upon the harnessing, stimulation, or guidance of endogenous developmental or repair processes in which cells have an important role. Among the most clinically challenging disorders, cartilage degeneration, which also affects subchondral bone becoming an osteochondral (OC) defect, is one of the most demanding. Although primary cells have been clinically applied, stem cells are currently seen as the promising tool of RM-related research because of its availability, in vitro proliferation ability, pluri- or multipotency, and immunosuppressive features. Being the OC unit, a transition from the bone to cartilage, mesenchymal stem cells (MSCs) are the main focus for OC regeneration. Promising alternatives, which can also be obtained from the patient or at banks and have great differentiation potential toward a wide range of specific cell types, have been reported. Still, ethical concerns and tumorigenic risk are currently under discussion and assessment. In this book chapter, we revise the existing stem cell-based approaches for engineering bone and cartilage, focusing on cell therapy and TE. Furthermore, 3D OC composites based on cell co-cultures are described. Finally, future directions and challenges still to be faced are critically discussed.

  8. [Hematopoietic Reconstitution and Prognosis of HLA Matched and Haploidentical Hematopoietic Stem Cell Transplantation Using Modified FC/ATG Conditioning for Treatment of Severe Aplastic Anemia].

    PubMed

    Wang, Li; Wu, Ya-Mei; Cao, Yong-Bin; Li, Xiao-Hong; Xu, Li-Xin; Wang, Hai-Tao; Gao, Ya-Hui; Wu, Xiao-Xiong

    2016-12-01

    To analyse the feasibility and compare differences between hematopoietic reconstitution and prognosis of patients with severe aplastic anemia(SAA) after matched sibling donor (MSD) or haploidentical family donor (HFD) hematopoietic stem cell transplantation (HSCT) using the modified FC/ATG conditioning. The clinical data of 56 patients with SAA who received HSCT in First Affiliated Hospital of Chinese PLA General Hospital from January 2011 to June 2016 were analyzed retrospectively. The hematopoietic reconstitution, graft verus host disease (GVHD), transplantation related toxicity (TRT) and prognosis after transplantation were compared. Furthermore, the modifed conditioning FC/ATG included low-dose cyclophosphamide (total dose 100 mg/kg), infustion of third-party donor-derived mesenchymal stem cells. All 56 patients with MSD-HSCT or HFD-HSCT achieved hematopoietic reconstitution. Among them, not only the recovery of neutrophils and platelets, but also the incidences of III-IV aGVHD, extensive cGVHD and TRT were not significantly different (the P value were 0.58, 0.61, 0.73, 0.73 and 0.67, respectively). After following-up for 32(2-66) months, 48 patients alive well, the 1-year overall survival rates were 86% in HFD-HSCT group and 89% in MSD-HSCT group, respectively (P=0.58). After HSCT using the modifed FC/ATG conditioning, patients with SAA achieved stable engraftment, low toxicity, mild GVHD and excellent outcomes. Furthermore, the HFD-HSCT achieved comparable outcomes to MSD-HSCT and may be served as an alternate therapy for patients with SAA.

  9. Epigenetics in cancer stem cells.

    PubMed

    Toh, Tan Boon; Lim, Jhin Jieh; Chow, Edward Kai-Hua

    2017-02-01

    Compelling evidence have demonstrated that bulk tumors can arise from a unique subset of cells commonly termed "cancer stem cells" that has been proposed to be a strong driving force of tumorigenesis and a key mechanism of therapeutic resistance. Recent advances in epigenomics have illuminated key mechanisms by which epigenetic regulation contribute to cancer progression. In this review, we present a discussion of how deregulation of various epigenetic pathways can contribute to cancer initiation and tumorigenesis, particularly with respect to maintenance and survival of cancer stem cells. This information, together with several promising clinical and preclinical trials of epigenetic modulating drugs, offer new possibilities for targeting cancer stem cells as well as improving cancer therapy overall.

  10. Medical innovation versus stem cell tourism.

    PubMed

    Lindvall, Olle; Hyun, Insoo

    2009-06-26

    Stem cell tourism is criticized on grounds of consumer fraud, blatant lack of scientific justification, and patient safety. However, the issues are complex because they invoke questions concerning the limits of acceptable medical innovation and medical travel. Here we discuss these issues and articulate conditions under which "unproven" therapies may be offered to patients outside of regular clinical trials.

  11. Mismatch repair deficient hematopoietic stem cells are preleukemic stem cells

    PubMed Central

    Gerson, Stanton L.

    2017-01-01

    Whereas transformation events in hematopoietic malignancies may occur at different developmental stages, the initial mutation originates in hematopoietic stem cells (HSCs), creating a preleukemic stem cell (PLSC). Subsequent mutations at either stem cell or progenitor cell levels transform the PLSC into lymphoma/leukemia initiating cells (LIC). Thymic lymphomas have been thought to develop from developing thymocytes. T cell progenitors are generated from HSCs in the bone marrow (BM), but maturation and proliferation of T cells as well as T-lymphomagenesis depends on both regulatory mechanisms and microenvironment within the thymus. We studied PLSC linked to thymic lymphomas. In this study, we use MSH2-/- mice as a model to investigate the existence of PLSC and the evolution of PLSC to LIC. Following BM transplantation, we found that MSH2-/- BM cells from young mice are able to fully reconstitute multiple hematopoietic lineages of lethally irradiated wild-type recipients. However, all recipients developed thymic lymphomas within three and four months post transplantation. Transplantation of different fractions of BM cells or thymocytes from young health MSH2-/- mice showed that an HSC enriched fraction always reconstituted hematopoiesis followed by lymphoma development. In addition, lymphomas did not occur in thymectomized recipients of MSH2-/- BM. These results suggest that HSCs with DNA repair defects such as MSH2-/- are PLSCs because they retain hematopoietic function, but also carry an obligate lymphomagenic potential within their T-cell progeny that is dependent on the thymic microenvironment. PMID:28767666

  12. Stem cells in reproductive medicine: ready for the patient?

    PubMed

    Vassena, R; Eguizabal, C; Heindryckx, B; Sermon, K; Simon, C; van Pelt, A M M; Veiga, A; Zambelli, F

    2015-09-01

    Are there effective and clinically validated stem cell-based therapies for reproductive diseases? At the moment, clinically validated stem cell treatments for reproductive diseases and alterations are not available. Research in stem cells and regenerative medicine is growing in scope, and its translation to the clinic is heralded by the recent initiation of controlled clinical trials with pluripotent derived cells. Unfortunately, stem cell 'treatments' are currently offered to patients outside of the controlled framework of scientifically sound research and regulated clinical trials. Both physicians and patients in reproductive medicine are often unsure about stem cells therapeutic options. An international working group was assembled to review critically the available scientific literature in both the human species and animal models. This review includes work published in English until December 2014, and available through Pubmed. A few areas of research in stem cell and reproductive medicine were identified: in vitro gamete production, endometrial regeneration, erectile dysfunction amelioration, vaginal reconstruction. The stem cells studied range from pluripotent (embryonic stem cells and induced pluripotent stem cells) to monopotent stem cells, such as spermatogonial stem cells or mesenchymal stem cells. The vast majority of studies have been carried out in animal models, with data that are preliminary at best. This review was not conducted in a systematic fashion, and reports in publications not indexed in Pubmed were not analyzed. A much broader clinical knowledge will have to be acquired before translation to the clinic of stem cell therapies in reproductive medicine; patients and physicians should be wary of unfounded claims of improvement of existing medical conditions; at the moment, effective stem cell treatment for reproductive diseases and alterations is not available. None. NA. © The Author 2015. Published by Oxford University Press on behalf of the

  13. Monitoring Autophagy in Muscle Stem Cells.

    PubMed

    García-Prat, Laura; Muñoz-Cánoves, Pura; Martínez-Vicente, Marta

    2017-01-01

    Autophagy is critical not only for the cell's adaptive response to starvation but also for cellular homeostasis, by acting as quality-control machinery for cytoplasmic components. This basal autophagic activity is particularly needed in postmitotic cells for survival maintenance. Recently, basal autophagic activity was reported in skeletal muscle stem cells (satellite cells) in their dormant quiescent state. Satellite cells are responsible for growth as well as for regeneration of muscle in response to stresses such as injury or disease. In the absence of stress, quiescence is the stem cell state of these cells throughout life, although which mechanisms maintain long-life quiescence remains largely unknown. Our recent findings showed that autophagy is necessary for quiescence maintenance in satellite cells and for retention of their regenerative functions. Importantly, damaged organelles and proteins accumulated in these cells with aging and this was connected to age-associated defective autophagy. Refueling of autophagy through genetic and pharmacological strategies restored aged satellite cell functions, and these finding have biomedical implications. In this chapter, we describe different experimental strategies to evaluate autophagic activity in satellite cells in resting muscle of mice. They should facilitate our competence to investigate stem cell functions both during tissue homeostasis as in pathological conditions.

  14. Stem cell stratagems in alternative medicine.

    PubMed

    Sipp, Douglas

    2011-05-01

    Stem cell research has attracted an extraordinary amount of attention and expectation due to its potential for applications in the treatment of numerous medical conditions. These exciting clinical prospects have generated widespread support from both the public and private sectors, and numerous preclinical studies and rigorous clinical trials have already been initiated. Recent years, however, have also seen alarming growth in the number and variety of claims of clinical uses of notional 'stem cells' that have not been adequately tested for safety and/or efficacy. In this article, I will survey the contours of the stem cell industry as practiced by alternative medicine providers, and highlight points of commonality in their strategies for marketing.

  15. Stem Cells in Spinal Fusion

    PubMed Central

    Haudenschild, Dominik R.; Wegner, Adam M.; Klineberg, Eric O.

    2017-01-01

    Study Design: Review of literature. Objectives: This review of literature investigates the application of mesenchymal stem cells (MSCs) in spinal fusion, highlights potential uses in the development of bone grafts, and discusses limitations based on both preclinical and clinical models. Methods: A review of literature was conducted looking at current studies using stem cells for augmentation of spinal fusion in both animal and human models. Results: Eleven preclinical studies were found that used various animal models. Average fusion rates across studies were 59.8% for autograft and 73.7% for stem cell–based grafts. Outcomes included manual palpation and stressing of the fusion, radiography, micro–computed tomography (μCT), and histological analysis. Fifteen clinical studies, 7 prospective and 8 retrospective, were found. Fusion rates ranged from 60% to 100%, averaging 87.1% in experimental groups and 87.2% in autograft control groups. Conclusions: It appears that there is minimal clinical difference between commercially available stem cells and bone marrow aspirates indicating that MSCs may be a good choice in a patient with poor marrow quality. Overcoming morbidity and limitations of autograft for spinal fusion, remains a significant problem for spinal surgeons and further studies are needed to determine the efficacy of stem cells in augmenting spinal fusion. PMID:29238646

  16. Stem cell plasticity enables hair regeneration following Lgr5+ cell loss.

    PubMed

    Hoeck, Joerg D; Biehs, Brian; Kurtova, Antonina V; Kljavin, Noelyn M; de Sousa E Melo, Felipe; Alicke, Bruno; Koeppen, Hartmut; Modrusan, Zora; Piskol, Robert; de Sauvage, Frederic J

    2017-06-01

    Under injury conditions, dedicated stem cell populations govern tissue regeneration. However, the molecular mechanisms that induce stem cell regeneration and enable plasticity are poorly understood. Here, we investigate stem cell recovery in the context of the hair follicle to understand how two molecularly distinct stem cell populations are integrated. Utilizing diphtheria-toxin-mediated cell ablation of Lgr5 + (leucine-rich repeat-containing G-protein-coupled receptor 5) stem cells, we show that killing of Lgr5 + cells in mice abrogates hair regeneration but this is reversible. During recovery, CD34 + (CD34 antigen) stem cells activate inflammatory response programs and start dividing. Pharmacological attenuation of inflammation inhibits CD34 + cell proliferation. Subsequently, the Wnt pathway controls the recovery of Lgr5 + cells and inhibition of Wnt signalling prevents Lgr5 + cell and hair germ recovery. Thus, our study uncovers a compensatory relationship between two stem cell populations and the underlying molecular mechanisms that enable hair follicle regeneration.

  17. Cancer stem cells, cancer cell plasticity and radiation therapy.

    PubMed

    Vlashi, Erina; Pajonk, Frank

    2015-04-01

    Since the first prospective identification of cancer stem cells in solid cancers the cancer stem cell hypothesis has reemerged as a research topic of increasing interest. It postulates that solid cancers are organized hierarchically with a small number of cancer stem cells driving tumor growth, repopulation after injury and metastasis. They give rise to differentiated progeny, which lack these features. The model predicts that for any therapy to provide cure, all cancer stem cells have to be eliminated while the survival of differentiated progeny is less critical. In this review we discuss recent reports challenging the idea of a unidirectional differentiation of cancer cells. These reports provide evidence supporting the idea that non-stem cancer cells exhibit a remarkable degree of plasticity that allows them to re-acquire cancer stem cell traits, especially in the context of radiation therapy. We summarize conditions under which differentiation is reversed and discuss the current knowledge of the underlying mechanisms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Reactive Oxygen Species in Normal and Tumor Stem Cells

    PubMed Central

    Zhou, Daohong; Shao, Lijian; Spitz, Douglas R.

    2014-01-01

    Reactive oxygen species (ROS) play an important role in determining the fate of normal stem cells. Low levels of ROS are required for stem cells to maintain quiescence and self-renewal. Increases in ROS production cause stem cell proliferation/differentiation, senescence, and apoptosis in a dose-dependent manner, leading to their exhaustion. Therefore, the production of ROS in stem cells is tightly regulated to ensure that they have the ability to maintain tissue homeostasis and repair damaged tissues for the life span of an organism. In this chapter, we discuss how the production of ROS in normal stem cells is regulated by various intrinsic and extrinsic factors and how the fate of these cells is altered by the dysregulation of ROS production under various pathological conditions. In addition, the implications of the aberrant production of ROS by tumor stem cells for tumor progression and treatment are also discussed. PMID:24974178

  19. New perspectives in human stem cell therapeutic research.

    PubMed

    Trounson, Alan

    2009-06-11

    Human stem cells are in evaluation in clinical stem cell trials, primarily as autologous bone marrow studies, autologous and allogenic mesenchymal stem cell trials, and some allogenic neural stem cell transplantation projects. Safety and efficacy are being addressed for a number of disease state applications. There is considerable data supporting safety of bone marrow and mesenchymal stem cell transplants but the efficacy data are variable and of mixed benefit. Mechanisms of action of many of these cells are unknown and this raises the concern of unpredictable results in the future. Nevertheless there is considerable optimism that immune suppression and anti-inflammatory properties of mesenchymal stem cells will be of benefit for many conditions such as graft versus host disease, solid organ transplants and pulmonary fibrosis. Where bone marrow and mesenchymal stem cells are being studied for heart disease, stroke and other neurodegenerative disorders, again progress is mixed and mostly without significant benefit. However, correction of multiple sclerosis, at least in the short term is encouraging. Clinical trials on the use of embryonic stem cell derivatives for spinal injury and macular degeneration are beginning and a raft of other clinical trials can be expected soon, for example, the use of neural stem cells for killing inoperable glioma and embryonic stem cells for regenerating beta islet cells for diabetes. The change in attitude to embryonic stem cell research with the incoming Obama administration heralds a new co-operative environment for study and evaluation of stem cell therapies. The Californian stem cell initiative (California Institute for Regenerative Medicine) has engendered global collaboration for this new medicine that will now also be supported by the US Federal Government. The active participation of governments, academia, biotechnology, pharmaceutical companies, and private investment is a powerful consortium for advances in health.

  20. Periostin promotes migration and osteogenic differentiation of human periodontal ligament mesenchymal stem cells via the Jun amino-terminal kinases (JNK) pathway under inflammatory conditions.

    PubMed

    Tang, Yi; Liu, Lin; Wang, Pei; Chen, Donglei; Wu, Ziqiang; Tang, Chunbo

    2017-12-01

    Mesenchymal stem cell (MSC)-mediated periodontal tissue regeneration is considered to be a promising method for periodontitis treatment. The molecular mechanism of functional regulation by MSCs remains unclear, thus limiting their application. Our previous study discovered that Periostin (POSTN) promoted the migration and osteogenic differentiation of periodontal ligament mesenchymal stem cells (PDLSCs), but it is still unclear whether POSTN is able to restore the regenerative potential of PDLSCs under inflammatory conditions. In this study, we investigated the effect of POSTN on PDLSCs under inflammatory conditions and its mechanism. PDLSCs were isolated from periodontal ligament tissue. TNF-α was used at 10 ng/mL to mimic inflammatory conditions. Lentivirus POSTN shRNA was used to knock down POSTN. Recombinant human POSTN (rhPOSTN) was used to stimulate PDLSCs. A scratch assay was used to analyse cell migration. Alkaline phosphatase (ALP) activity, Alizarin Red staining and expression of osteogenesis-related genes were used to investigate the osteogenic differentiation potential. Western blot analysis was used to detect the mitogen-activated protein kinases (MAPK) and AKT signalling pathways. After a 10 ng/mL TNF-α treatment, knockdown of POSTN impeded scratch closure, inhibited ALP activity and mineralization in vitro, and decreased expression of RUNX2, OSX, OPN and OCN in PDLSCs, while 75 ng/mL rhPOSTN significantly accelerated scratch closure, enhanced ALP activity and mineralization in vitro, and increased expression of RUNX2, OSX, OPN and OCN. In addition, knockdown of POSTN inhibited expression of phosphorylated c-Jun N-terminal kinase (p-JNK), while 75 ng/mL rhPOSTN increased expression of p-JNK in PDLSCs with TNF-α treatment. Furthermore, inhibition of JNK by its inhibitor SP600125 dramatically blocked POSTN-enhanced scratch closure, ALP activity and mineralization in PDLSCs. Our results revealed that POSTN might promote the migration and

  1. The neural stem cell fate determinant TLX promotes tumorigenesis and genesis of cells resembling glioma stem cells.

    PubMed

    Park, Hyo-Jung; Kim, Jun-Kyum; Jeon, Hye-Min; Oh, Se-Yeong; Kim, Sung-Hak; Nam, Do-Hyun; Kim, Hyunggee

    2010-11-01

    A growing body of evidence indicates that deregulation of stem cell fate determinants is a hallmark of many types of malignancies. The neural stem cell fate determinant TLX plays a pivotal role in neurogenesis in the adult brain by maintaining neural stem cells. Here, we report a tumorigenic role of TLX in brain tumor initiation and progression. Increased TLX expression was observed in a number of glioma cells and glioma stem cells, and correlated with poor survival of patients with gliomas. Ectopic expression of TLX in the U87MG glioma cell line and Ink4a/Arf-deficient mouse astrocytes (Ink4a/Arf(-/-) astrocytes) induced cell proliferation with a concomitant increase in cyclin D expression, and accelerated foci formation in soft agar and tumor formation in in vivo transplantation assays. Furthermore, overexpression of TLX in Ink4a/Arf(-/-) astrocytes inhibited cell migration and invasion and promoted neurosphere formation and Nestin expression, which are hallmark characteristics of glioma stem cells, under stem cell culture conditions. Our results indicate that TLX is involved in glioma stem cell genesis and represents a potential therapeutic target for this type of malignancy.

  2. Reduced-Intensity Conditioning Before Donor Stem Cell Transplant in Treating Patients With High-Risk Hematologic Malignancies

    ClinicalTrials.gov

    2018-03-02

    Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Blastic Phase Chronic Myelogenous Leukemia; Childhood Acute Lymphoblastic Leukemia in Remission; Childhood Burkitt Lymphoma; Childhood Chronic Myelogenous Leukemia; Childhood Diffuse Large Cell Lymphoma; Childhood Immunoblastic Large Cell Lymphoma; Childhood Myelodysplastic Syndromes; Childhood Nasal Type Extranodal NK/T-cell Lymphoma; Chronic Myelomonocytic Leukemia; Chronic Phase Chronic Myelogenous Leukemia; Cutaneous B-cell Non-Hodgkin Lymphoma; de Novo Myelodysplastic Syndromes; Essential Thrombocythemia; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hepatosplenic T-cell Lymphoma; Intraocular Lymphoma; Juvenile Myelomonocytic Leukemia; Nodal Marginal Zone B-cell Lymphoma; Noncutaneous Extranodal Lymphoma; Peripheral T-cell Lymphoma; Polycythemia Vera; Post-transplant Lymphoproliferative Disorder; Previously Treated Myelodysplastic Syndromes; Primary Myelofibrosis; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Childhood Acute Myeloid Leukemia; Recurrent Childhood Anaplastic Large Cell Lymphoma; Recurrent Childhood Grade III Lymphomatoid Granulomatosis; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Small Noncleaved Cell Lymphoma; Recurrent Cutaneous T-cell Non

  3. Canonical Wnt signaling differently modulates osteogenic differentiation of mesenchymal stem cells derived from bone marrow and from periodontal ligament under inflammatory conditions.

    PubMed

    Liu, Wenjia; Konermann, Anna; Guo, Tao; Jäger, Andreas; Zhang, Liqiang; Jin, Yan

    2014-03-01

    Cellular plasticity and complex functional requirements of the periodontal ligament (PDL) assume a local stem cell (SC) niche to maintain tissue homeostasis and repair. Here, pathological alterations caused by inflammatory insults might impact the regenerative capacities of these cells. As bone homeostasis is fundamentally controlled by Wnt-mediated signals, it was the aim of this study to characterize the SC-like capacities of cells derived from PDL and to investigate their involvement in bone pathophysiology especially regarding the canonical Wnt pathway. PDLSCs were investigated for their SC characteristics via analysis of cell surface marker expression, colony forming unit efficiency, proliferation, osteogenic differentiation and adipogenic differentiation, and compared to bone marrow derived mesenchymal SCs (BMMSCs). To determine the impact of both inflammation and the canonical Wnt pathway on osteogenic differentiation, cells were challenged with TNF-α, maintained with or without Wnt3a or DKK-1 under osteogenic induction conditions and investigated for p-IκBα, p-NF-κB, p-Akt, β-catenin, p-GSK-3β, ALP and Runx2. PDLSCs exhibit weaker adipogenic and osteogenic differentiation capacities compared to BMMSCs. TNF-α inhibited osteogenic differentiation of PDLSCs more than BMMSCs mainly through regulating canonical Wnt pathway. Blocking the canonical Wnt pathway by DKK-1 reconstituted osteogenic differentiation of PDLSCs under inflammatory conditions, whereas activation by Wnt3a increased osteogenic differentiation of BMMSCs. Our results suggest a diverse regulation of the inhibitory effect of TNF-α in BMMSCs and PDLSCs via canonical Wnt pathway modulation. These findings provide novel insights on PDLSC SC-like capacities and their involvement in bone pathophysiology under the impact of the canonical Wnt pathway. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. The neuroprotective effect of rat adipose tissue-derived mesenchymal stem cell-conditioned medium on cortical neurons using an in vitro model of SCI inflammation.

    PubMed

    Szekiova, Eva; Slovinska, Lucia; Blasko, Juraj; Plsikova, Jana; Cizkova, Dasa

    2018-04-01

    Objectives In this study, a new approach was used with an in vitro model in which neural cells were exposed to conditioned media from the injured spinal cord (SCI-CM) mimicking a local inflammatory microenvironment . Subsequently, the neuroprotective effect of rat adipose tissue-derived msesenchymal stem cell-conditioned media (ATMSC-CM) was investigated through a cell-free based therapy, which was used to treat cortical neurons and astrocytes under inflammation. Methods Primary cell cultures isolated from postnatal day (P6) Wistar rat brain cortex were exposed to SCI-CM derived from the central lesion, rostral and caudal segments of injured spinal cord. After 48 h incubation, the SCI-CM was replaced and primary cultures were cultivated either in DMEM media alone or in ATMSC-CM for 72 h. The impact of ATMSC-CM on the viability of neurons and astrocytes was assessed using a CyQUANT® Direct Cell Proliferation Assay Kit as well as immunocytochemistry analysis. Results Immunocytochemical analysis revealed significant decrease in the number of MAP2 positive neurons exposed to SCI-CM compared to Control. Protection by ATMSC-CM was associated with increased survival of neurons compared to primary culture cultivated in DMEM media alone. The ATMSC-CM effect on astrocytes was more variable and without any significant impact. Conclusion The results demonstrate that SCI-CM mimicking inflammation can reduce cortical neuron survival, and subsequent exposure to ATMSC-CM can stabilize the neuronal population most likely via released neuroprotective and trophic factors. In addition, astrogliosis was not affected by ATMSC-CM.

  5. Lgr proteins in epithelial stem cell biology.

    PubMed

    Barker, Nick; Tan, Shawna; Clevers, Hans

    2013-06-01

    The ultimate success of global efforts to exploit adult stem cells for regenerative medicine will depend heavily on the availability of robust, highly selective stem cell surface markers that facilitate the isolation of stem cells from human tissues. Any subsequent expansion or manipulation of isolated stem cells will also require an intimate knowledge of the mechanisms that regulate these cells, to ensure maintenance of their regenerative capacities and to minimize the risk of introducing undesirable growth traits that could pose health risks for patients. A subclass of leucine-rich repeat-containing G-protein-coupled receptor (Lgr) proteins has recently gained prominence as adult stem cell markers with crucial roles in maintaining stem cell functions. Here, we discuss the major impact that their discovery has had on our understanding of adult stem cell biology in various self-renewing tissues and in accelerating progress towards the development of effective stem cell therapies.

  6. Fetal stem cell transplantation: Past, present, and future

    PubMed Central

    Ishii, Tetsuya; Eto, Koji

    2014-01-01

    Since 1928, human fetal tissues and stem cells have been used worldwide to treat various conditions. Although the transplantation of the fetal midbrain substantia nigra and dopaminergic neurons in patients suffering from Parkinson’s disease is particularly noteworthy, the history of other types of grafts, such as those of the fetal liver, thymus, and pancreas, should be addressed as there are many lessons to be learnt for future stem cell transplantation. This report describes previous practices and complications that led to current clinical trials of isolated fetal stem cells and embryonic stem (ES) cells. Moreover, strategies for transplantation are considered, with a particular focus on donor cells, cell processing, and the therapeutic cell niche, in addition to ethical issues associated with fetal origin. With the advent of autologous induced pluripotent stem cells and ES cells, clinical dependence on fetal transplantation is expected to gradually decline due to lasting ethical controversies, despite landmark achievements. PMID:25258662

  7. Stem Cell Information: Glossary

    MedlinePlus

    ... germ cells (those that would become sperm and eggs). Embryonic germ cells are thought to have properties ... the male gamete (sperm) and the female gamete (egg). Fetus - In humans, the developing human from approximately ...

  8. Transplantation of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells or Their Conditioned Medium Prevents Bone Loss in Ovariectomized Nude Mice

    PubMed Central

    An, Jee Hyun; Park, Hyojung; Song, Jung Ah; Ki, Kyung Ho; Yang, Jae-Yeon; Choi, Hyung Jin; Cho, Sun Wook; Kim, Sang Wan; Kim, Seong Yeon; Yoo, Jeong Joon; Baek, Wook-Young; Kim, Jung-Eun; Choi, Soo Jin; Oh, Wonil

    2013-01-01

    Umbilical cord blood (UCB) has recently been recognized as a new source of mesenchymal stem cells (MSCs) for use in stem cell therapy. We studied the effects of systemic injection of human UCB-MSCs and their conditioned medium (CM) on ovariectomy (OVX)-induced bone loss in nude mice. Ten-week-old female nude mice were divided into six groups: Sham-operated mice treated with vehicle (Sham-Vehicle), OVX mice subjected to UCB-MSCs (OVX-MSC), or human dermal fibroblast (OVX-DFB) transplantation, OVX mice treated with UCB-MSC CM (OVX-CM), zoledronate (OVX-Zol), or vehicle (OVX-Vehicle). Although the OVX-Vehicle group exhibited significantly less bone mineral density (BMD) gain compared with the Sham-Vehicle group, transplantation of hUCB-MSCs (OVX-MSC group) has effectively prevented OVX-induced bone mass attenuation. Notably, the OVX-CM group also showed BMD preservation comparable to the OVX-MSC group. In addition, microcomputed tomography analysis demonstrated improved trabecular parameters in both the OVX-MSC and OVX-CM groups compared to the OVX-Vehicle or OVX-DFB group. Histomorphometric analysis showed increased bone formation parameters, accompanied by increased serum procollagen type-I N-telopeptide levels in OVX-MSC and OVX-CM mice. However, cell-trafficking analysis failed to demonstrate engraftment of MSCs in bone tissue 48 h after cell infusion. In vitro, hUCB-MSC CM increased alkaline phosphatase (ALP) activity in human bone marrow-derived MSCs and mRNA expression of collagen type 1, Runx2, osterix, and ALP in C3H10T1/2 cells. Furthermore, hUCB-MSC CM significantly increased survival of osteocyte-like MLO-Y4 cells, while it inhibited osteoclastic differentiation. To summarize, transplantation of hUCB-MSCs could effectively prevent OVX-mediated bone loss in nude mice, which appears to be mediated by a paracrine mechanism rather than direct engraftment of the MSCs. PMID:23215868

  9. Stem cells in bone diseases: current clinical practice.

    PubMed

    Beyth, Shaul; Schroeder, Josh; Liebergall, Meir

    2011-01-01

    Bone is an obvious candidate tissue for stem cell therapy. This review provides an update of existing stem cell-based clinical treatments for bone pathologies. A systematic computerized literature search was conducted. The following databases were accessed on 10 February 2011: NIH clinical trials database, PubMed, Ovid and Cochrane Reviews. Stem cell therapy offers new options for bone conditions, both acquired and inherited. There is still no agreement on the exact definition of 'mesenchymal stem cells'. Consequently, it is difficult to appreciate the effect of culture expansion and the feasibility of allogeneic transplantation. Based on the sound foundations of pre-clinical research, stem cell-based treatments and protocols have recently emerged. Well-designed prospective clinical trials are needed in order to establish and develop stem cell therapy for bone diseases.

  10. Stem Cell Education for Medical Students at Tongji University: Primary Cell Culture and Directional Differentiation of Rat Bone Marrow Mesenchymal Stem Cells

    ERIC Educational Resources Information Center

    Jin, Caixia; Tian, Haibin; Li, Jiao; Jia, Song; Li, Siguang; Xu, Guo-Tong; Xu, Lei; Lu, Lixia

    2018-01-01

    Stem cells are cells that can self-renew and differentiate into a variety of cell types under certain conditions. Stem cells have great potential in regenerative medicine and cell therapy for the treatment of certain diseases. To deliver knowledge about this frontier in science and technology to medical undergraduate students, we designed an…

  11. Conditioned medium from human bone marrow-derived mesenchymal stem cells promotes skin moisturization and effacement of wrinkles in UVB-irradiated SKH-1 hairless mice.

    PubMed

    Kwon, Tae-Rin; Oh, Chang Taek; Choi, Eun Ja; Kim, Soon Re; Jang, Yu-Jin; Ko, Eun Jung; Yoo, Kwang Ho; Kim, Beom Joon

    2016-05-01

    Mesenchymal stem cells (MSCs) are promising therapeutic agents for various diseases. To investigate the effects of conditioned medium from human bone marrow-derived mesenchymal stem cells (MSC-CdM) on pro-collagen production and wrinkle formation, we performed in vitro and in vivo experiments. We assessed the effects of MSC-CdM on proliferation and photo-aging in human dermal fibroblasts after UVB exposure using enzyme activity assays for collagen type I secretion and MMP-1. To determine the effect of topically applied MSC-CdM on wrinkle formation, MSC-CdM (1% and 10%) and vehicle (propylene glycol: ethanol, 7 : 3) were applied to the dorsal skin of UVB-irradiated hairless mice for 8 weeks. We examined the effects on wrinkle formation by assessing visual skin grading, replica, tape stripping, transepidermal water loss (TEWL), and skin hydration measurement. We also examined histology of the lesions using hematoxylin-eosin, Masson's trichrome, and immunohistochemical staining. MSC-CdM markedly reduced UV-induced matrix metalloproteinase-1 expression and increased pro-collagen synthesis in a dose-dependent manner. Our findings suggest that MSC-CdM induces repair of dermal damage and effacement of wrinkles on UVB-irradiated hairless mice through protective effect of hydration. These results support an anti-wrinkle effect of MSC-CdM that involves increased collagen synthesis and suggest that MSC-CdM might be a potential candidate for preventing UV-induced skin damage. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Blood-Forming Stem Cell Transplants

    MedlinePlus

    ... to Ask about Your Treatment Research Blood-Forming Stem Cell Transplants On This Page What are bone marrow ... Considering becoming a bone marrow or a blood stem cell donor? View this video on YouTube. Follow a ...

  13. FDA Warns About Stem Cell Therapies

    MedlinePlus

    ... For Consumers Consumer Updates FDA Warns About Stem Cell Therapies Share Tweet Linkedin Pin it More sharing ... the boxed section below for more advice. Stem Cell Uses and FDA Regulation The FDA has the ...

  14. Stem Cell Therapy for Erectile Dysfunction.

    PubMed

    Matz, Ethan L; Terlecki, Ryan; Zhang, Yuanyuan; Jackson, John; Atala, Anthony

    2018-04-06

    The prevalence of erectile dysfunction (ED) is substantial and continues to rise. Current therapeutics for ED consist of oral medications, intracavernosal injections, vacuum erection devices, and penile implants. While such options may manage the disease state, none of these modalities, however, restore function. Stem cell therapy has been evaluated for erectile restoration in animal models. These cells have been derived from multiple tissues, have varied potential, and may function via local engraftment or paracrine signaling. Bone marrow-derived stem cells (BMSC) and adipose-derived stem cells (ASC) have both been used in these models with noteworthy effects. Herein, we will review the pathophysiology of ED, animal models, current and novel stem-cell based therapeutics, clinical trials and areas for future research. The relevant literature and contemporary data using keywords, "stem cells and erectile dysfunction" was reviewed. Examination of evidence supporting the association between erectile dysfunction and adipose derived stem cells, bone marrow derived stem cells, placental stem cells, urine stem cells and stem cell therapy respectively. Placental-derived stem cells and urine-derived stem cells possess many similar properties as BMSC and ASC, but the methods of acquisition are favorable. Human clinical trials have already demonstrated successful use of stem cells for improvement of erectile function. The future of stem cell research is constantly being evaluated, although, the evidence suggests a place for stem cells in erectile dysfunction therapeutics. Matz EL, Terlecki R, Zhang Y, et al. Stem Cell Therapy for Erectile Dysfunction. Sex Med Rev 2018;XX:XXX-XXX. Copyright © 2018 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.

  15. A Model of Cancer Stem Cells Derived from Mouse Induced Pluripotent Stem Cells

    PubMed Central

    Chen, Ling; Kasai, Tomonari; Li, Yueguang; Sugii, Yuh; Jin, Guoliang; Okada, Masashi; Vaidyanath, Arun; Mizutani, Akifumi; Satoh, Ayano; Kudoh, Takayuki; Hendrix, Mary J. C.; Salomon, David S.; Fu, Li; Seno, Masaharu

    2012-01-01

    Cancer stem cells (CSCs) are capable of continuous proliferation and self-renewal and are proposed to play significant roles in oncogenesis, tumor growth, metastasis and cancer recurrence. CSCs are considered derived from normal stem cells affected by the tumor microenvironment although the mechanism of development is not clear yet. In 2007, Yamanaka's group succeeded in generating Nanog mouse induced pluripotent stem (miPS) cells, in which green fluorescent protein (GFP) has been inserted into the 5′-untranslated region of the Nanog gene. Usually, iPS cells, just like embryonic stem cells, are considered to be induced into progenitor cells, which differentiate into various normal phenotypes depending on the normal niche. We hypothesized that CSCs could be derived from Nanog miPS cells in the conditioned culture medium of cancer cell lines, which is a mimic of carcinoma microenvironment. As a result, the Nanog miPS cells treated with the conditioned medium of mouse Lewis lung carcinoma acquired characteristics of CSCs, in that they formed spheroids expressing GFP in suspension culture, and had a high tumorigenicity in Balb/c nude mice exhibiting angiogenesis in vivo. In addition, these iPS-derived CSCs had a capacity of self-renewal and expressed the marker genes, Nanog, Rex1, Eras, Esg1 and Cripto, associated with stem cell properties and an undifferentiated state. Thus we concluded that a model of CSCs was originally developed from miPS cells and proposed the conditioned culture medium of cancer cell lines might perform as niche for producing CSCs. The model of CSCs and the procedure of their establishment will help study the genetic alterations and the secreted factors in the tumor microenvironment which convert miPS cells to CSCs. Furthermore, the identification of potentially bona fide markers of CSCs, which will help the development of novel anti-cancer therapies, might be possible though the CSC model. PMID:22511923

  16. Isolation and characterisation of cancer stem cells from canine osteosarcoma.

    PubMed

    Wilson, H; Huelsmeyer, M; Chun, R; Young, K M; Friedrichs, K; Argyle, D J

    2008-01-01

    There is increasing evidence that cancer is a stem cell disease. This study sought to isolate and characterise cancer stem cells from canine osteosarcoma. One human and three canine cell lines were cultured in non-adherent culture conditions using serum-starved, semi-solid media. Primitive sarcosphere colonies from all cell lines were identified under these conditions and were characterised using molecular and cytochemical techniques for embryonic stem cell markers. Expression of the embryonic stem cell-associated genes Nanog, Oct4 and STAT3 indicated a primitive phenotype. Sarcospheres could be reproduced consistently when passaged multiple times and produced adherent cell cultures when returned to normal growth conditions. Similarities between human and canine osteosarcoma cell lines add credence to the potential of the dog as a model for human disease.

  17. A Comprehensive Assessment of Toxicities in Patients with Central Nervous System Lymphoma Undergoing Autologous Stem Cell Transplantation Using Thiotepa, Busulfan, and Cyclophosphamide Conditioning.

    PubMed

    Scordo, Michael; Bhatt, Valkal; Hsu, Meier; Omuro, Antonio M; Matasar, Matthew J; DeAngelis, Lisa M; Dahi, Parastoo B; Moskowitz, Craig H; Giralt, Sergio A; Sauter, Craig S

    2017-01-01

    High-dose therapy and autologous stem cell transplantation (ASCT) with thiotepa, busulfan, and cyclophosphamide (TBC) conditioning has emerged as an effective postinduction treatment strategy for patients with primary central nervous system lymphoma (PCNSL) or secondary central nervous system lymphoma (SCNSL), but it is associated with considerable toxicity and transplantation-related mortality (TRM) in the modern era. Forty-three adult patients with chemosensitive PCNSL or SCNSL underwent TBC-conditioned ASCT between 2006 and 2015. Twenty-eight of these patients received pharmacokinetically (PK)-targeted busulfan dosing. The median number of clinically relevant individual grade ≥3 nonhematologic toxicities per patient was 5. We found no association between pretransplantation patient characteristics and the presence of more than 5 grade ≥3 nonhematologic toxicities. Patients with elevated first-dose busulfan area under the curve values did not experience more toxicity. Paradoxically, patients treated with more than 2 regimens before undergoing ASCT had lower first-dose busulfan AUC values. With a median follow-up among survivors of 20 months, 1-year progression-free survival (PFS) and overall survival (OS) from the time of ASCT were 83% and 87%, respectively. Although this study reaffirms the favorable PFS and OS associated with TBC-conditioned ASCT for PCNSL or SCNSL, this treatment strategy carries a large toxicity burden. Copyright © 2017 The American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  18. [Genetic regulation of plant shoot stem cells].

    PubMed

    Al'bert, E V; Ezhova, T A

    2013-02-01

    This article describes the main features of plant stem cells and summarizes the results of studies of the genetic control of stem cell maintenance in the apical meristem of the shoot. It is demonstrated that the WUS-CLV gene system plays a key role in the maintenance of shoot apical stem cells and the formation of adventitious buds and somatic embryos. Unconventional concepts of plant stem cells are considered.

  19. College Students' Conceptions of Stem Cells, Stem Cell Research, and Cloning

    ERIC Educational Resources Information Center

    Concannon, James P.; Siegel, Marcelle A.; Halverson, Kristy; Freyermuth, Sharyn

    2010-01-01

    In this study, we examined 96 undergraduate non-science majors' conceptions of stem cells, stem cell research, and cloning. This study was performed at a large, Midwest, research extensive university. Participants in the study were asked to answer 23 questions relating to stem cells, stem cell research, and cloning in an on-line assessment before…

  20. Nine Things to Know About Stem Cell Treatments

    MedlinePlus

    ... Toggle Nav Nine Things To Know About Stem Cell Treatments Home > Stem Cells and Medicine > Nine Things ... About Stem Cell Treatments Many clinics offering stem cell treatments make claims that are not supported by ...

  1. Setting FIRES to Stem Cell Research

    ERIC Educational Resources Information Center

    Miller, Roxanne Grietz

    2005-01-01

    The goal of this lesson is to present the basic scientific knowledge about stem cells, the promise of stem cell research to medicine, and the ethical considerations and arguments involved. One of the challenges of discussing stem cell research is that the field is constantly evolving and the most current information changes almost daily. Few…

  2. Induced Pluripotent Stem Cells from Nonhuman Primates.

    PubMed

    Mishra, Anuja; Qiu, Zhifang; Farnsworth, Steven L; Hemmi, Jacob J; Li, Miao; Pickering, Alexander V; Hornsby, Peter J

    2016-01-01

    Induced pluripotent stem cells from nonhuman primates (NHPs) have unique roles in cell biology and regenerative medicine. Because of the relatedness of NHPs to humans, NHP iPS cells can serve as a source of differentiated derivatives that can be used to address important questions in the comparative biology of primates. Additionally, when used as a source of cells for regenerative medicine, NHP iPS cells serve an invaluable role in translational experiments in cell therapy. Reprogramming of NHP somatic cells requires the same conditions as previously established for human cells. However, throughout the process, a variety of modifications to the human cell protocols must be made to accommodate significant species differences.

  3. Cancer stem cells and differentiation therapy.

    PubMed

    Jin, Xiong; Jin, Xun; Kim, Hyunggee

    2017-10-01

    Cancer stem cells can generate tumors from only a small number of cells, whereas differentiated cancer cells cannot. The prominent feature of cancer stem cells is its ability to self-renew and differentiate into multiple types of cancer cells. Cancer stem cells have several distinct tumorigenic abilities, including stem cell signal transduction, tumorigenicity, metastasis, and resistance to anticancer drugs, which are regulated by genetic or epigenetic changes. Like normal adult stem cells involved in various developmental processes and tissue homeostasis, cancer stem cells maintain their self-renewal capacity by activating multiple stem cell signaling pathways and inhibiting differentiation signaling pathways during cancer initiation and progression. Recently, many studies have focused on targeting cancer stem cells to eradicate malignancies by regulating stem cell signaling pathways, and products of some of these strategies are in preclinical and clinical trials. In this review, we describe the crucial features of cancer stem cells related to tumor relapse and drug resistance, as well as the new therapeutic strategy to target cancer stem cells named "differentiation therapy."

  4. [Embryonic stem cells. Future perspectives].

    PubMed

    Groebner, M; David, R; Franz, W M

    2006-05-01

    Embryonic stem cells (ES cells) are able to differentiate into any cell type, and therefore represent an excellent source for cellular replacement therapies in the case of widespread diseases, for example heart failure, diabetes, Parkinson's disease and spinal cord injury. A major prerequisite for their efficient and safe clinical application is the availability of pure populations for direct cell transplantation or tissue engineering as well as the immunological compatibility of the transplanted cells. The expression of human surface markers under the control of cell type specific promoters represents a promising approach for the selection of cardiomyocytes and other cell types for therapeutic applications. The first human clinical trial using ES cells will start in the United States this year.

  5. Defined three-dimensional culture conditions mediate efficient induction of definitive endoderm lineage from human umbilical cord Wharton's jelly mesenchymal stem cells.

    PubMed

    Al Madhoun, Ashraf; Ali, Hamad; AlKandari, Sarah; Atizado, Valerie Lopez; Akhter, Nadeem; Al-Mulla, Fahd; Atari, Maher

    2016-11-16

    Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) are gaining increasing interest as an alternative source of stem cells for regenerative medicine applications. Definitive endoderm (DE) specification is a prerequisite for the development of vital organs such as liver and pancreas. Hence, efficient induction of the DE lineage from stem cells is crucial for subsequent generation of clinically relevant cell types. Here we present a defined 3D differentiation protocol of WJ-MSCs into DE cells. WJ-MSCs were cultured in suspension to generate spheroids, about 1500 cells each, for 7 days. The serum-free differentiation media contained specific growth factors, cytokines, and small molecules that specifically regulate signaling pathways including sonic hedgehog, bone morphogenetic protein, Activin/Wnt, and Notch. We obtained more than 85 % DE cells as shown with FACS analysis using antibodies directed against the DE marker CXCR4. In addition, biochemical and molecular analysis of bona-fide DE markers revealed a time-course induction of Sox17, CXCR4, and FoxA2. Focused PCR-based array also indicated a specific induction into the DE lineage. In this study, we report an efficient serum-free protocol to differentiate WJ-MSCs into DE cells utilizing 3D spheroid formation. Our approach might aid in the development of new protocols to obtain DE-derivative lineages including liver-like and pancreatic insulin-producing cells.

  6. Development of bioengineering system for stem cell proliferation

    NASA Astrophysics Data System (ADS)

    Park, H. S.; Shah, R.; Shah, C.

    2016-08-01

    From last decades, intensive research in the field of stem cells proliferation had been promoted due to the unique property of stem cells to self-renew themselves into multiples and has potential to replicate into an organ or tissues and so it's highly demanding though challenging. Bioreactor, a mechanical device, works as a womb for stem cell proliferation by providing nutritious environment for the proper growth of stem cells. Various factors affecting stem cells growth are the bioreactor mechanism, feeding of continuous nutrients, healthy environment, etc., but it always remains a challenge for controlling biological parameters. The present paper unveils the design of mechanical device commonly known as bioreactor in tissues engineering and biotech field, use for proliferation of stem cells and imparts the proper growing condition for stem cells. This high functional bioreactor provides automation mixing of cell culture and stem cells. This design operates in conjunction with mechanism of reciprocating motion. Compare to commercial bioreactors, this proposed design is more convenient, easy to operate and less maintenance is required as bioreactor culture bag is made of polyethylene which is single use purpose. Development of this bioengineering system will be beneficial for better growth and expansion of stem cell

  7. Nuclear Mechanics and Stem Cell Differentiation.

    PubMed

    Mao, Xinjian; Gavara, Nuria; Song, Guanbin

    2015-12-01

    Stem cells are characterized by their self-renewal and multi-lineage differentiation potential. Stem cell differentiation is a prerequisite for the application of stem cells in regenerative medicine and clinical therapy. In addition to chemical stimulation, mechanical cues play a significant role in regulating stem cell differentiation. The integrity of mechanical sensors is necessary for the ability of cells to respond to mechanical signals. The nucleus, the largest and stiffest cellular organelle, interacts with the cytoskeleton as a key mediator of cell mechanics. Nuclear mechanics are involved in the complicated interactions of lamins, chromatin and nucleoskeleton-related proteins. Thus, stem cell differentiation is intimately associated with nuclear mechanics due to its indispensable role in mechanotransduction and mechanical response. This paper reviews several main contributions of nuclear mechanics, highlights the hallmarks of the nuclear mechanics of stem cells, and provides insight into the relationship between nuclear mechanics and stem cell differentiation, which may guide clinical applications in the future.

  8. Stem cells: science, policy, and ethics

    PubMed Central

    Fischbach, Gerald D.; Fischbach, Ruth L.

    2004-01-01

    Human embryonic stem cells offer the promise of a new regenerative medicine in which damaged adult cells can be replaced with new cells. Research is needed to determine the most viable stem cell lines and reliable ways to promote the differentiation of pluripotent stem cells into specific cell types (neurons, muscle cells, etc.). To create new cell lines, it is necessary to destroy preimplantation blastocysts. This has led to an intense debate that threatens to limit embryonic stem cell research. The profound ethical issues raised call for informed, dispassionate debate. PMID:15545983

  9. Cell motion predicts human epidermal stemness

    PubMed Central

    Toki, Fujio; Tate, Sota; Imai, Matome; Matsushita, Natsuki; Shiraishi, Ken; Sayama, Koji; Toki, Hiroshi; Higashiyama, Shigeki

    2015-01-01

    Image-based identification of cultured stem cells and noninvasive evaluation of their proliferative capacity advance cell therapy and stem cell research. Here we demonstrate that human keratinocyte stem cells can be identified in situ by analyzing cell motion during their cultivation. Modeling experiments suggested that the clonal type of cultured human clonogenic keratinocytes can be efficiently determined by analysis of early cell movement. Image analysis experiments demonstrated that keratinocyte stem cells indeed display a unique rotational movement that can be identified as early as the two-cell stage colony. We also demonstrate that α6 integrin is required for both rotational and collective cell motion. Our experiments provide, for the first time, strong evidence that cell motion and epidermal stemness are linked. We conclude that early identification of human keratinocyte stem cells by image analysis of cell movement is a valid parameter for quality control of cultured keratinocytes for transplantation. PMID:25897083

  10. Retrospective evaluation of the MEAM regimen as a conditioning regimen before autologous peripheral blood stem cell transplantation for lymphoma in two centers with different dosing schedules of melphalan.

    PubMed

    Sugimoto, Miyuki; Ito, Shoko; Mashima, Kiyomi; Umino, Kento; Minakata, Daisuke; Nakano, Hirofumi; Yamasaki, Ryoko; Kawasaki, Yasufumi; Ashizawa, Masahiro; Yamamoto, Chihiro; Fujiwara, Shin-Ichiro; Okazuka, Kiyoshi; Hatano, Kaoru; Sato, Kazuya; Oh, Iekuni; Ohmine, Ken; Suzuki, Takahiro; Muroi, Kazuo; Kako, Shinichi; Kanda, Yoshinobu

    2016-09-01

    The BEAM regimen consisting of carmustine (BCNU), etoposide, cytarabine, and melphalan (MEL) is widely used before autologous hematopoietic stem cell transplantation (auto-HSCT) for lymphoma. However, intravenous BCNU is not available in Japan, and therefore, ranimustine (MCNU) has been used instead of BCNU (the MEAM regimen). We retrospectively analyzed the outcome of 79 adult patients who underwent auto-HSCT for lymphoma using this regimen in two centers, with 1- and 2-day dosing of MEL, respectively. Three-year overall survival (OS) and progression-free survival (PFS) probabilities were 77.3 and 56.5 % in the entire population and 71.7 and 58.0 % in patients with diffuse large B cell lymphoma. These outcomes were at least equivalent to those with the BEAM regimen. There was no regimen-related pulmonary toxicity. In a multivariate analysis, older age was the only factor that was significantly associated with for OS. In a comparison of the two MEL dosing schedules, while there was no significant differences in either OS or PFS, diarrhea was observed more frequently with 1-day dosing of MEL. In conclusion, the MEAM regimen appeared to be a promising conditioning regimen in auto-HSCT for lymphoma. A large prospective study is warranted to confirm the current findings.

  11. Effects of Human Mesenchymal Stem Cells Isolated from Wharton's Jelly of the Umbilical Cord and Conditioned Media on Skeletal Muscle Regeneration Using a Myectomy Model.

    PubMed

    Pereira, T; Armada-da Silva, P A S; Amorim, I; Rêma, A; Caseiro, A R; Gärtner, A; Rodrigues, M; Lopes, M A; Bártolo, P J; Santos, J D; Luís, A L; Maurício, A C

    2014-01-01

    Skeletal muscle has good regenerative capacity, but the extent of muscle injury and the developed fibrosis might prevent complete regeneration. The in vivo application of human mesenchymal stem cells (HMSCs) of the umbilical cord and the conditioned media (CM) where the HMSCs were cultured and expanded, associated with different vehicles to induce muscle regeneration, was evaluated in a rat myectomy model. Two commercially available vehicles and a spherical hydrogel developed by our research group were used. The treated groups obtained interesting results in terms of muscle regeneration, both in the histological and in the functional assessments. A less evident scar tissue, demonstrated by collagen type I quantification, was present in the muscles treated with HMSCs or their CM. In terms of the histological evaluation performed by ISO 10993-6 scoring, it was observed that HMSCs apparently have a long-term negative effect, since the groups treated with CM presented better scores. CM could be considered an alternative to the in vivo transplantation of these cells, as it can benefit from the local tissue response to secreted molecules with similar results in terms of muscular regeneration. Searching for an optimal vehicle might be the key point in the future of skeletal muscle tissue engineering.

  12. Effects of Human Mesenchymal Stem Cells Isolated from Wharton's Jelly of the Umbilical Cord and Conditioned Media on Skeletal Muscle Regeneration Using a Myectomy Model

    PubMed Central

    Pereira, T.; Armada-da Silva, P. A. S.; Amorim, I.; Rêma, A.; Caseiro, A. R.; Gärtner, A.; Rodrigues, M.; Lopes, M. A.; Bártolo, P. J.; Santos, J. D.; Luís, A. L.; Maurício, A. C.

    2014-01-01

    Skeletal muscle has good regenerative capacity, but the extent of muscle injury and the developed fibrosis might prevent complete regeneration. The in vivo application of human mesenchymal stem cells (HMSCs) of the umbilical cord and the conditioned media (CM) where the HMSCs were cultured and expanded, associated with different vehicles to induce muscle regeneration, was evaluated in a rat myectomy model. Two commercially available vehicles and a spherical hydrogel developed by our research group were used. The treated groups obtained interesting results in terms of muscle regeneration, both in the histological and in the functional assessments. A less evident scar tissue, demonstrated by collagen type I quantification, was present in the muscles treated with HMSCs or their CM. In terms of the histological evaluation performed by ISO 10993-6 scoring, it was observed that HMSCs apparently have a long-term negative effect, since the groups treated with CM presented better scores. CM could be considered an alternative to the in vivo transplantation of these cells, as it can benefit from the local tissue response to secreted molecules with similar results in terms of muscular regeneration. Searching for an optimal vehicle might be the key point in the future of skeletal muscle tissue engineering. PMID:25379040

  13. The Healing Effect of Conditioned Media and Bone Marrow-Derived Stem Cells in Laryngotracheal Stenosis: A Comparison in Experimental Dog Model

    PubMed Central

    Iravani, Kamyar; Sobhanmanesh, Arash; Ashraf, Mohammad Javad; Hashemi, Seyed Basir; Mehrabani, Davood; Zare, Shahrokh

    2017-01-01

    BACKGROUND Differences in causes, severities, areas of stenosis, and the association with swallowing and phonation of larynx and trachea can result into Laryngotracheal stenosis (LTS).This study evaluated the healing effect of bone marrow stem cells (BMSCs) in experimentally induced LTS dog model. METHODS Seven dogs were enrolled. BMSCs were isolated from proximal humerus and shoulder of a dog and cultured in media containing alpha minimal essential medium, fetal bovine serum, penicillin and streptomycin, and L-glutamine. BMSCs were characterized morphologically, by RT-PCR, and osteogenic induction. Karyotyping was undertaken for chromosomal stability. Mechanical trauma to laryngeal mucosa was identically conducted by Tru-cut punch forceps in right and left vocal folds. Two milliliter of conditioned media or BMSCs (2×106) were injected in the right site of the tissue and the left side was considered as control after LTS induction. The larynx was visualized 2, 4 and 6 weeks after treatment. Six weeks post-treatment, the larynges were evaluated histologically. RESULTS BMSCs were adhered to culture flasks, spindle shape and positive for mesenchymal marker and negative for hematopoietic markers. Osteogenic induction was verified by Alizarin red staining. Karyotype was normal. A complete epithelialization and minimal chronic inflammatory cell infiltration were noted in submucosa of both left (control) and right (cases) vocal folds. The healing effect of conditioned media and BMSCs in comparison to the control group was more prominent. CONCLUSION As thickness of fibrosis in cases were less than control group, conditioned media and BMSCs were shown to be good choices in healing of LTS. PMID:28713710

  14. The Healing Effect of Conditioned Media and Bone Marrow-Derived Stem Cells in Laryngotracheal Stenosis: A Comparison in Experimental Dog Model.

    PubMed

    Iravani, Kamyar; Sobhanmanesh, Arash; Ashraf, Mohammad Javad; Hashemi, Seyed Basir; Mehrabani, Davood; Zare, Shahrokh

    2017-05-01

    Differences in causes, severities, areas of stenosis, and the association with swallowing and phonation of larynx and trachea can result into Laryngotracheal stenosis (LTS).This study evaluated the healing effect of bone marrow stem cells (BMSCs) in experimentally induced LTS dog model. Seven dogs were enrolled. BMSCs were isolated from proximal humerus and shoulder of a dog and cultured in media containing alpha minimal essential medium, fetal bovine serum, penicillin and streptomycin, and L-glutamine. BMSCs were characterized morphologically, by RT-PCR, and osteogenic induction. Karyotyping was undertaken for chromosomal stability. Mechanical trauma to laryngeal mucosa was identically conducted by Tru-cut punch forceps in right and left vocal folds. Two milliliter of conditioned media or BMSCs (2×10 6 ) were injected in the right site of the tissue and the left side was considered as control after LTS induction. The larynx was visualized 2, 4 and 6 weeks after treatment. Six weeks post-treatment, the larynges were evaluated histologically. BMSCs were adhered to culture flasks, spindle shape and positive for mesenchymal marker and negative for hematopoietic markers. Osteogenic induction was verified by Alizarin red staining. Karyotype was normal. A complete epithelialization and minimal chronic inflammatory cell infiltration were noted in submucosa of both left (control) and right (cases) vocal folds. The healing effect of conditioned media and BMSCs in comparison to the control group was more prominent. As thickness of fibrosis in cases were less than control group, conditioned media and BMSCs were shown to be good choices in healing of LTS.

  15. Establishment of mouse expanded potential stem cells

    PubMed Central

    Gao, Xuefei; Antunes, Liliana; Yu, Yong; Zhu, Zhexin; Wang, Juexuan; Kolodziejczyk, Aleksandra A.; Campos, Lia S.; Wang, Cui; Yang, Fengtang; Zhong, Zhen; Fu, Beiyuan; Eckersley-Maslin, Melanie A.; Woods, Michael; Tanaka, Yosuke; Chen, Xi; Wilkinson, Adam C.; Bussell, James; White, Jacqui; Ramirez-Solis, Ramiro; Reik, Wolf; Göttgens, Berthold; Teichmann, Sarah A.; Tam, Patrick P. L.; Nakauchi, Hiromitsu; Zou, Xiangang; Lu, Liming; Liu, Pentao

    2018-01-01

    Mouse embryonic stem cells derived from the epiblast1 contribute to the somatic lineages and the germline but are excluded from the extra-embryonic tissues that are derived from the trophectoderm and the primitive endoderm2 upon reintroduction to the blastocyst. Here we report that cultures of expanded potential stem cells can be established from individual eight-cell blastomeres, and by direct conversion of mouse embryonic stem cells and induced pluripotent stem cells. Remarkably, a single expanded potential stem cell can contribute both to the embryo proper and to the trophectoderm lineages in a chimaera assay. Bona fide trophoblast stem cell lines and extra-embryonic endoderm stem cells can be directly derived from expanded potential stem cells in vitro. Molecular analyses of the epigenome and single-cell transcriptome reveal enrichment for blastomere-specific signature and a dynamic DNA methylome in expanded potential stem cells. The generation of mouse expanded potential stem cells highlights the feasibility of establishing expanded potential stem cells for other mammalian species. PMID:29019987

  16. Arrhythmia in Stem Cell Transplantation

    PubMed Central

    Almeida, Shone O.; Skelton, Rhys J.; Adigopula, Sasikanth; Ardehali, Reza

    2015-01-01

    Synopsis Stem cell regenerative therapies hold promise for treating diseases across the spectrum of medicine. Recent clinical trials have confirmed the safety of stem cell delivery to the heart with promising but variable results. While significant progress has been made in the preclinical stages, the clinical application of cardiac cell therapy is limited by technical challenges, including inability to isolate a pure population of cardiac-specific progenitors capable of robust engraftment and regeneration, lack of appropriate pre-clinical animal models, uncertainty about the best mode of delivery, paucity of adequate imaging modalities, and lack of knowledge about the fate of transplanted cells. The inability of transplanted cells to structurally and functionally integrate into the host myocardium may pose arrhythmogenic risk to patients. This is in part dependent on the type of cell transplanted, where the expression of gap junctions such as connexin-43 is essential not only for electromechanical integration, but has also been found to be protective against electrical instability post-transplant. Additionally, certain methods of cell delivery, such as intramyocardial injection, carry a higher rate of arrhythmias. Other potential contributors to the arrhythmogenicity of cell transplantation include re-entrant pathways due to heterogeneity in conduction velocities between graft and host as well as graft automaticity. In this paper, we discuss the arrhythmogenic potential of cell delivery to the heart. PMID:26002399

  17. Full myeloablative conditioning and an unrelated HLA mismatched donor increase the risk for BK virus-positive hemorrhagic cystitis in allogeneic hematopoetic stem cell transplanted patients.

    PubMed

    Dalianis, Tina; Ljungman, Per

    2011-03-01

    BK virus (BKV)-associated hemorrhagic cystitis (HC), varying from mild hematuria with or without dysuria to life-threating bleeding and clots that may cause urinary obstruction and renal failure, causes significant morbidity and mortality in haematopoetic stem cell transplanted (HSCT) patients. Unfortunately, its development is difficult to predict since BK viruria is very common after HSCT and can be present in patients with and without HC. There is therefore the need to identify risk factors that may increase the risk of developing HC after HSCT. The viral load of BK-viruria, as well as BK viremia, has been monitored for this purpose. Moreover, having full myeoblative conditioning (MC) versus reduced intensity conditioning (RIC) prior to HSCT and an HLA-matched or -mismatched graft from an unrelated donor in contrast to an HLA-matched graft from a related donor have been studied as risk factors for HC. In addition, graft versus host disease has been examined, but has not been defined as a definite risk factor for HC. We conclude that the present evidence suggests that HSCT patients with BK viruria, receiving MC and an unrelated donor graft that is HLA-mismatched have an increased risk for developing HC in comparison to patients receiving RIC and an HLA-matched related donor graft.

  18. Polymer microarray technology for stem cell engineering

    PubMed Central

    Coyle, Robert; Jia, Jia; Mei, Ying

    2015-01-01

    Stem cells hold remarkable promise for applications in tissue engineering and disease modeling. During the past decade, significant progress has been made in developing soluble factors (e.g., small molecules and growth factors) to direct stem cells into a desired phenotype. However, the current lack of suitable synthetic materials to regulate stem cell activity has limited the realization of the enormous potential of stem cells. This can be attributed to a large number of materials properties (e.g., chemical structures and physical properties of materials) that can affect stem cell fate. This makes it challenging to design biomaterials to direct stem cell behavior. To address this, polymer microarray technology has been developed to rapidly identify materials for a variety of stem cell applications. In this article, we summarize recent developments in polymer array technology and their applications in stem cell engineering. Statement of significance Stem cells hold remarkable promise for applications in tissue engineering and disease modeling. In the last decade, significant progress has been made in developing chemically defined media to direct stem cells into a desired phenotype. However, the current lack of the suitable synthetic materials to regulate stem cell activities has been limiting the realization of the potential of stem cells. This can be attributed to the number of variables in material properties (e.g., chemical structures and physical properties) that can affect stem cells. Polymer microarray technology has shown to be a powerful tool to rapidly identify materials for a variety of stem cell applications. Here we summarize recent developments in polymer array technology and their applications in stem cell engineering. PMID:26497624

  19. Optimization of culture conditions for osteogenically-induced mesenchymal stem cells in β-tricalcium phosphate ceramics with large interconnected channels.

    PubMed

    Bernhardt, Anne; Lode, Anja; Peters, Fabian; Gelinsky, Michael

    2011-06-01

    The aim of this study was to optimize culture conditions for human mesenchymal stem cells (hMSCs) in β-tricalcium phosphate ceramics with large interconnected channels. Fully interconnected macrochannels comprising pore diameters of 750 µm and 1400 µm were inserted into microporous β-tricalcium phosphate (β-TCP) scaffolds by milling. Human bone marrow-derived MSCs were seeded into the scaffolds and cultivated for up to 3 weeks in both static and perfusion culture in the presence of osteogenic supplements (dexamethasone, β-glycerophosphate, ascorbate). It was confirmed by scanning electron microscopic investigations and histological staining that the perfusion culture resulted in uniform distribution of cells inside the whole channel network, whereas the statically cultivated cells were primarily found at the surface of the ceramic samples. It was also determined that perfusion with standard medium containing 10% fetal calf serum (FCS) led to a strong increase (seven-fold) of cell numbers compared with static cultivation observed after 3 weeks. Perfusion with low-serum medium (2% FCS) resulted in moderate proliferation rates which were comparable to those achieved in static culture, although the specific alkaline phosphatase (ALP) activity increased by a factor of more than 3 compared to static cultivation. Gene expression analysis of the ALP gene also revealed higher levels of ALP mRNA in low-serum perfused samples compared to statically cultivated constructs. In contrast, gene expression of the late osteogenic marker bone sialoprotein II (BSPII) was decreased for perfused samples compared to statically cultivated samples. Copyright © 2010 John Wiley & Sons, Ltd.

  20. Stem cells in the Drosophila digestive system.

    PubMed

    Zeng, Xiankun; Chauhan, Chhavi; Hou, Steven X

    2013-01-01

    Adult stem cells maintain tissue homeostasis by continuously replenishing damaged, aged and dead cells in any organism. Five types of region and organ-specific multipotent adult stem cells have been identified in the Drosophila digestive system: intestinal stem cells (ISCs) in the posterior midgut; hindgut intestinal stem cells (HISCs) at the midgut/hindgut junction; renal and nephric stem cells (RNSCs) in the Malpighian Tubules; type I gastric stem cells (GaSCs) at foregut/midgut junction; and type II gastric stem cells (GSSCs) at the middle of the midgut. Despite the fact that each type of stem cell is unique to a particular organ, they share common molecular markers and some regulatory signaling pathways. Due to the simpler tissue structure, ease of performing genetic analysis, and availability of abundant mutants, Drosophila serves as an elegant and powerful model system to study complex stem cell biology. The recent discoveries, particularly in the Drosophila ISC system, have greatly advanced our understanding of stem cell self-renewal, differentiation, and the role of stem cells play in tissue homeostasis/regeneration and adaptive tissue growth.

  1. Stem cells in gastroenterology and hepatology

    PubMed Central

    Quante, Michael; Wang, Timothy C.

    2010-01-01

    Cellular and tissue regeneration in the gastrointestinal tract and liver depends on stem cells with properties of longevity, self-renewal and multipotency. Progress in stem cell research and the identification of potential esophageal, gastric, intestinal, colonic, hepatic and pancreatic stem cells provides hope for the use of stem cells in regenerative medicine and treatments for disease. Embryonic stem cells and induced pluripotent stem cells have the potential to give rise to any cell type in the human body, but their therapeutic application remains challenging. The use of adult or tissue-restricted stem cells is emerging as another possible approach for the treatment of gastrointestinal diseases. The same self-renewal properties that allow stem cells to remain immortal and generate any tissue can occasionally make their proliferation difficult to control and make them susceptible to malignant transformation. This Review provides an overview of the different types of stem cell, focusing on tissue-restricted adult stem cells in the fields of gastroenterology and hepatology and summarizing the potential benefits and risks of using stems cells to treat gastroenterological and liver disorders. PMID:19884893

  2. Embryonic Stem Cell Patents and Human Dignity

    PubMed Central

    Resnik, David B.

    2009-01-01

    This article examines the assertion that human embryonic stem cells patents are immoral because they violate human dignity. After analyzing the concept of human dignity and its role in bioethics debates, this article argues that patents on human embryos or totipotent embryonic stem cells violate human dignity, but that patents on pluripotent or multipotent stem cells do not. Since patents on pluripotent or multipotent stem cells may still threaten human dignity by encouraging people to treat embryos as property, patent agencies should carefully monitor and control these patents to ensure that patents are not inadvertently awarded on embryos or totipotent stem cells. PMID:17922198

  3. Gonadal function and fertility after stem cell transplantation in childhood: comparison of a reduced intensity conditioning regimen containing melphalan with a myeloablative regimen containing busulfan.

    PubMed

    Panasiuk, Anna; Nussey, Stephen; Veys, Paul; Amrolia, Persis; Rao, Kanchan; Krawczuk-Rybak, Maryna; Leiper, Alison

    2015-09-01

    The occurrence of late sequelae after myeloablative conditioning regimens for stem-cell transplantation (SCT) has prompted the introduction of reduced-intensity chemotherapy (RIC) regimens in an attempt to reduce toxicity and spare fertility. We retrospectively evaluated gonadal function in survivors of SCT in childhood by comparing patients conditioned with a myeloablative regimen containing busulfan and cyclophosphamide (BuCy, N = 51, 28 boys) and a RIC regimen containing fludarabine and melphalan (FluMel, N = 40, 19 boys). Spontaneous puberty occurred in 56% of girls and 89% of boys after BuCy, whereas 90% of females and all males in the FluMel group entered puberty spontaneously (P = 0·012). Significantly more females (61%) conditioned with BuCy required hormone replacement compared with the FluMel group (10·5%, P = 0·012). Females in the FluMel group took significantly longer to develop elevation of serum follicle-stimulating hormone (FSH) concentrations (>10 iu/l) from the onset of puberty than females in the BuCy group (median 5·2 years vs. 2·7 years respectively, P = 0·0135). In males no difference was noted between the two conditioning groups in time to FSH elevation (median 4 years in FluMel versus 6 years in BuCy). Whilst the two regimens have similar effects on the testis, ovarian function seems to be better preserved in females undergoing SCT with RIC. © 2015 John Wiley & Sons Ltd.

  4. Combination cell therapy with mesenchymal stem cells and neural stem cells for brain stroke in rats.

    PubMed

    Hosseini, Seyed Mojtaba; Farahmandnia, Mohammad; Razi, Zahra; Delavari, Somayeh; Shakibajahromi, Benafsheh; Sarvestani, Fatemeh Sabet; Kazemi, Sepehr; Semsar, Maryam

    2015-05-01

    Brain stroke is the second most important events that lead to disability and morbidity these days. Although, stroke is important, there is no treatment for curing this problem. Nowadays, cell therapy has opened a new window for treating central nervous system disease. In some previous studies the Mesenchymal stem cells and neural stem cells. In this study, we have designed an experiment to assess the combination cell therapy (Mesenchymal and Neural stem cells) effects on brain stroke. The Mesenchymal stem cells were isolated from adult rat bone marrow and the neural stem cells were isolated from ganglion eminence of rat embryo 14 days. The Mesenchymal stem cells were injected 1 day after middle cerebral artery occlusion (MCAO) and the neural stem cells transplanted 7 day after MCAO. After 28 days, the neurological outcomes and brain lesion volumes were evaluated. Also, the activity of Caspase 3 was assessed in different groups. The group which received combination cell therapy had better neurological examination and less brain lesion. Also the combination cell therapy group had the least Caspase 3 activity among the groups. The combination cell therapy is more effective than Mesenchymal stem cell therapy and neural stem cell therapy separately in treating the brain stroke in rats.

  5. Microgravity-Enhanced Stem Cell Selection

    NASA Technical Reports Server (NTRS)

    Claudio, Pier Paolo; Valluri, Jagan

    2011-01-01

    Stem cells, both embryonic and adult, promise to revolutionize the practice of medicine in the future. In order to realize this potential, a number of hurdles must be overcome. Most importantly, the signaling mechanisms necessary to control the differentiation of stem cells into tissues of interest remain to be elucidated, and much of the present research on stem cells is focused on this goal. Nevertheless, it will also be essential to achieve large-scale expansion and, in many cases, assemble cells in 3D as transplantable tissues. To this end, microgravity analog bioreactors can play a significant role. Microgravity bioreactors were originally conceived as a tool to study the cellular responses to microgravity. However, the technology can address some of the shortcomings of conventional cell culture systems; namely, the deficiency of mass transport in static culture and high mechanical shear forces in stirred systems. Unexpectedly, the conditions created in the vessel were ideal for 3D cell culture. Recently, investigators have demonstrated the capability of the microgravity bioreactors to expand hematopoietic stem cells compared to static culture, and facilitate the differentiation of umbilical cord stem cells into 3D liver aggregates. Stem cells are capable of differentiating into functional cells. However, there are no reliable methods to induce the stem cells to form specific cells or to gain enough cells for transplantation, which limits their application in clinical therapy. The aim of this study is to select the best experimental setup to reach high proliferation levels by culturing these cells in a microgravity-based bioreactor. In typical cell culture, the cells sediment to the bottom surface of their container and propagate as a one-cell-layer sheet. Prevention of such sedimentation affords the freedom for self-assembly and the propagation of 3D tissue arrays. Suspension of cells is easily achievable using stirred technologies. Unfortunately, in

  6. Klotho, stem cells, and aging.

    PubMed

    Bian, Ao; Neyra, Javier A; Zhan, Ming; Hu, Ming Chang

    2015-01-01

    Aging is an inevitable and progressive biological process involving dysfunction and eventually destruction of every tissue and organ. This process is driven by a tightly regulated and complex interplay between genetic and acquired factors. Klotho is an antiaging gene encoding a single-pass transmembrane protein, klotho, which serves as an aging suppressor through a wide variety of mechanisms, such as antioxidation, antisenescence, antiautophagy, and modulation of many signaling pathways, including insulin-like growth factor and Wnt. Klotho deficiency activates Wnt expression and activity contributing to senescence and depletion of stem cells, which consequently triggers tissue atrophy and fibrosis. In contrast, the klotho protein was shown to suppress Wnt-signaling transduction, and inhibit cell senescence and preserve stem cells. A better understanding of the potential effects of klotho on stem cells could offer novel insights into the cellular and molecular mechanisms of klotho deficiency-related aging and disease. The klotho protein may be a promising therapeutic agent for aging and aging-related disorders.

  7. Retinoic acid stability in stem cell cultures.

    PubMed

    Sharow, Kyle A; Temkin, Boris; Asson-Batres, Mary Ann

    2012-01-01

    It has been reported that retinoids, such as retinoic acid (RA) and retinol (ROL), dissolved in aqueous solutions are susceptible to oxidative damage when exposed to light, air, and relatively high temperatures, conditions that are normal for culturing stem cells. Thus, questions arise regarding the interpretation of results obtained from studies of mouse embryonic stem cells exposed to retinoids because their isomerization state, their stability in culture conditions, and their interactions with other potential differentiation factors in growth media could influence developmental processes under study. Media samples were supplemented with retinoids and exposed to cell culture conditions with and without mouse embryonic stem cells (mESC), and retinoids were extracted and analyzed using HPLC. To determine whether retinoids are stable in media supplemented with fetal bovine serum (FBS) or in chemically-defined, serum-free media, mESC adapted to each type of growth media were investigated. Studies reported here indicate there was little loss or isomerization of at-RA, 9-cis-RA, 13-cis-RA, or ROL in cell cultures grown in serum-supplemented media when cell cultures were maintained in the dark and manipulated and observed under yellow light. In contrast, the stability of both at-RA and ROL were determined to be greatly reduced in serum-free media as compared with serum-supplemented media. Addition of 6 mg/ml bovine serum albumin was found to stabilize retinoids in serum-free media. It was also determined that ROL is less stable than RA in cell culture conditions.

  8. Stem cells news update: a personal perspective.

    PubMed

    Wong, Sc

    2013-12-01

    This article is a follow-up to a previous Commentary published in 2011. It updates some of the events mentioned in that Commentary and continues with more interesting and exciting news on stem cell research and the emerging field of Regenerative Medicine. Some of the news includes: 1) the 2012 Nobel Prize for Medicine awarded to John B. Gurdon and Shinya Yamanaka; 2) the cloning of human embryonic stem cells; 3) the continued search for truly pluripotent adult stem cells via in vitro and in vivo protocols; 4) the breakthrough in organ replacements; 5) the global stem cell race; 6) the global stem cell cryo-preservation business; 7) the worldwide stem cell donor registries, and 8) the issue of government regulation on stem cell therapy.

  9. Stem Cells News Update: A Personal Perspective

    PubMed Central

    Wong, SC

    2013-01-01

    This article is a follow-up to a previous Commentary published in 2011. It updates some of the events mentioned in that Commentary and continues with more interesting and exciting news on stem cell research and the emerging field of Regenerative Medicine. Some of the news includes: 1) the 2012 Nobel Prize for Medicine awarded to John B. Gurdon and Shinya Yamanaka; 2) the cloning of human embryonic stem cells; 3) the continued search for truly pluripotent adult stem cells via in vitro and in vivo protocols; 4) the breakthrough in organ replacements; 5) the global stem cell race; 6) the global stem cell cryo-preservation business; 7) the worldwide stem cell donor registries, and 8) the issue of government regulation on stem cell therapy. PMID:24778557

  10. Stem cell facelift: between reality and fiction.

    PubMed

    Atiyeh, Bishara S; Ibrahim, Amir E; Saad, Dibo A

    2013-03-01

    Stem cells are "big business" throughout medical technology, and their potential application in cosmetic procedures is no exception. One of the latest nonsurgical facial treatments (and new catchphrases) in plastic surgery is the "stem cell facelift." It is evident from the currently available scientific literature that the use of stem cell therapy for facial rejuvenation is limited to the theoretical induction of skin tightening and can in no way be equated to a facelift. In fact, what is advertised and promoted as a new and original technique of stem cell facelifting is mostly stem cell-enriched lipofilling. Despite encouraging data suggesting that adult stem cells hold promise for future applications, the data from clinical evidence available today do not substantiate the marketing and promotional claims being made to patients. To claim that the "stem cell facelift" is a complete facial rejuvenation procedure surgery is unethical.

  11. Stem Cells, Science, and Public Reasoning

    ERIC Educational Resources Information Center

    Hurlbut, J. Benjamin; Robert, Jason Scott

    2012-01-01

    These are interesting days in the scientific, social, and political debates about human embryonic stem cell research. Pluripotent stem cells--cells that can, in principle, give rise to the body's full range of cell types--were previously derivable only from human embryos that were destroyed in the process. Now, a variety of somatic cell types can…

  12. The case for intrauterine stem cell transplantation.

    PubMed

    Mattar, Citra N; Biswas, Arijit; Choolani, Mahesh; Chan, Jerry K Y

    2012-10-01

    The clinical burden imposed by the collective group of monogenic disorders demands novel therapies that are effective at achieving phenotypic cure early in the disease process before the development of permanent organ damage. This is important for lethal diseases and also for non-perinatally lethal conditions that are characterised by severe disability with little prospect of postnatal cure. Where postnatal treatments are limited to palliative options, intrauterine stem-cell therapies may offer the potential to arrest pathogenesis in the early undamaged fetus. Intrauterine stem-cell transplantation has been attempted for a variety of diseases, but has only been successful in immune deficiency states in the presence of a competitive advantage for donor cells. This disappointing clinical record requires preclinical investigations into strategies that improve donor cell engraftment, including optimising the donor cell source and manipulating the microenvironment to facilitate homing. This chapter aims to outline the current challenges of intrauterine stem-cell therapy. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Impact of cyclophosphamide dose of conditioning on the outcome of allogeneic hematopoietic stem cell transplantation for aplastic anemia from human leukocyte antigen-identical sibling.

    PubMed

    Mori, Takehiko; Koh, Hideo; Onishi, Yasushi; Kako, Shinichi; Onizuka, Makoto; Kanamori, Heiwa; Ozawa, Yukiyasu; Kato, Chiaki; Iida, Hiroatsu; Suzuki, Ritsuro; Ichinohe, Tatsuo; Kanda, Yoshinobu; Maeda, Tetsuo; Nakao, Shinji; Yamazaki, Hirohito

    2016-04-01

    The standard conditioning regimen in allogeneic hematopoietic stem cell transplantation (HSCT) for aplastic anemia from a human leukocyte antigen (HLA)-identical sibling has been high-dose cyclophosphamide (CY 200 mg/kg). In the present study, results for 203 patients with aplastic anemia aged 16 years or older who underwent allogeneic HSCT from HLA-identical siblings were retrospectively analyzed using the registry database of Japan Society for Hematopoietic Cell Transplantation. Conditioning regimens were defined as a (1) high-dose CY (200 mg/kg or greater)-based (n = 117); (2) reduced-dose CY (100 mg/kg or greater, but less than 200 mg/kg)-based (n = 38); and (3) low-dose CY (less than 100 mg/kg)-based (n = 48) regimen. Patient age and the proportion of patients receiving fludarabine were significantly higher in the reduced- and low-dose CY groups than the high-dose CY group. Engraftment was comparable among the groups. Five-year overall survival (OS) tended to be higher in the low-dose CY group [93.0 % (95 % CI 85.1-100.0 %)] than the high-dose CY [84.2 % (95 % CI 77.1-91.3 %)] or reduced-dose CY groups [83.8 % (95 % CI 71.8-95.8 %); P = 0.214]. Age-adjusted OS was higher in the low-dose CY group than the high- and reduced-dose CY groups with borderline significance (P = 0.067). These results suggest that CY dose can safely be reduced without increasing graft rejection by adding fludarabine in allogeneic HSCT for aplastic anemia from an HLA-identical sibling.

  14. Mitophagy in hematopoietic stem cells

    PubMed Central

    Joshi, Aashish; Kundu, Mondira

    2013-01-01

    Hematopoietic stem cells (HSCs) are inherently quiescent and self-renewing, yet can differentiate and commit to multiple blood cell types. Intracellular mitochondrial content is dynamic, and there is an increase in mitochondrial content during differentiation and lineage commitment in HSCs. HSCs reside in a hypoxic niche within the bone marrow and rely heavily on glycolysis, while differentiated and committed progenitors rely on oxidative phosphorylation. Increased oxidative phosphorylation during differentiation and commitment is not only due to increased mitochondrial content but also due to changes in mitochondrial cytosolic distribution and efficiency. These changes in the intracellular mitochondrial landscape contribute signals toward regulating differentiation and commitment. Thus, a functional relationship exists between the mitochondria in HSCs and the state of the HSCs (i.e., stemness vs. differentiated). This review focuses on how autophagy-mediated mitochondrial clearance (i.e., mitophagy) may affect HSC mitochondrial content, thereby influencing the fate of HSCs and maintenance of hematopoietic homeostasis. PMID:24135495

  15. Cell of Origin and Cancer Stem Cell Phenotype in Medulloblastomas

    DTIC Science & Technology

    2015-07-01

    dominant role over some oncogene function.In addition, we recently reported that cancer stem cells (CSCs)- stem cell like cells in tumors that have stem ... cell properties and tumor initiating ability- retain epigenetic memories of their cells of origin (Chow et al., 2014). We showed that CSCs derived from

  16. Stem cells - biological update and cell therapy progress

    PubMed Central

    GIRLOVANU, MIHAI; SUSMAN, SERGIU; SORITAU, OLGA; RUS-CIUCA, DAN; MELINCOVICI, CARMEN; CONSTANTIN, ANNE-MARIE; MIHU, CARMEN MIHAELA

    2015-01-01

    In recent years, the advances in stem cell research have suggested that the human body may have a higher plasticity than it was originally expected. Until now, four categories of stem cells were isolated and cultured in vivo: embryonic stem cells, fetal stem cells, adult stem cells and induced pluripotent stem cells (hiPSCs). Although multiple studies were published, several issues concerning the stem cells are still debated, such as: the molecular mechanisms of differentiation, the methods to prevent teratoma formation or the ethical and religious issues regarding especially the embryonic stem cell research. The direct differentiation of stem cells into specialized cells: cardiac myocytes, neural cells, pancreatic islets cells, may represent an option in treating incurable diseases such as: neurodegenerative diseases, type I diabetes, hematologic or cardiac diseases. Nevertheless, stem cell-based therapies, based on stem cell transplantation, remain mainly at the experimental stages and their major limitation is the development of teratoma and cancer after transplantation. The induced pluripotent stem cells (hiPSCs) represent a prime candidate for future cell therapy research because of their significant self-renewal and differentiation potential and the lack of ethical issues. This article presents an overview of the biological advances in the study of stem cells and the current progress made in the field of regenerative medicine. PMID:26609255

  17. Effects of nanotopography on stem cell phenotypes.

    PubMed

    Ravichandran, Rajeswari; Liao, Susan; Ng, Clarisse Ch; Chan, Casey K; Raghunath, Michael; Ramakrishna, Seeram

    2009-12-31

    Stem cells are unspecialized cells that can self renew indefinitely and differentiate into several somatic cells given the correct environmental cues. In the stem cell niche, stem cell-extracellular matrix (ECM) interactions are crucial for different cellular functions, such as adhesion, proliferation, and differentiation. Recently, in addition to chemical surface modifications, the importance of nanometric scale surface topography and roughness of biomaterials has increasingly becoming recognized as a crucial factor for cell survival and host tissue acceptance in synthetic ECMs. This review describes the influence of nanotopography on stem cell phenotypes.

  18. Engineering Replacement Tissues with Amniotic Stem Cells

    DTIC Science & Technology

    2012-10-01

    compression. J Biomech, 2010. 43(13): p. 2516-23. 17. Gadjanski, I., K. Spiller, and G. Vunjak- Novakovic , Time-dependent processes in stem cell-based...16. Gadjanski, I., K. Spiller, and G. Vunjak- Novakovic , Time-dependent processes in stem cell-based tissue engineering of articular cartilage. Stem

  19. Current status of stem cells in cardiac repair.

    PubMed

    Henning, Robert J

    2018-03-01

    One out of every two men and one out of every three women greater than the age of 40 will experience an acute myocardial infarction (AMI) at some time during their lifetime. As more patients survive their AMIs, the incidence of congestive heart failure (CHF) is increasing. 6 million people in the USA have ischemic cardiomyopathies and CHF. The search for new and innovative treatments for patients with AMI and CHF has led to investigations and use of human embryonic stem cells, cardiac stem/progenitor cells, bone marrow-derived mononuclear cells and mesenchymal stem cells for treatment of these heart conditions. This paper reviews current investigations with human embryonic, cardiac, bone marrow and mesenchymal stem cells, and also stem cell paracrine factors and exosomes.

  20. Conditional induction of Math1 specifies embryonic stem cells to cerebellar granule neuron lineage and promotes differentiation into mature granule neurons.

    PubMed

    Srivastava, Rupali; Kumar, Manoj; Peineau, Stéphane; Csaba, Zsolt; Mani, Shyamala; Gressens, Pierre; El Ghouzzi, Vincent

    2013-04-01

    Directing differentiation of embryonic stem cells (ESCs) to specific neuronal subtype is critical for modeling disease pathology in vitro. An attractive means of action would be to combine regulatory differentiation factors and extrinsic inductive signals added to the culture medium. In this study, we have generated mature cerebellar granule neurons by combining a temporally controlled transient expression of Math1, a master gene in granule neuron differentiation, with inductive extrinsic factors involved in cerebellar development. Using a Tetracyclin-On transactivation system, we overexpressed Math1 at various stages of ESCs differentiation and found that the yield of progenitors was considerably increased when Math1 was induced during embryonic body stage. Math1 triggered expression of Mbh1 and Mbh2, two target genes directly involved in granule neuron precursor formation and strong expression of early cerebellar territory markers En1 and NeuroD1. Three weeks after induction, we observed a decrease in the number of glial cells and an increase in that of neurons albeit still immature. Combining Math1 induction with extrinsic factors specifically increased the number of neurons that expressed Pde1c, Zic1, and GABAα6R characteristic of mature granule neurons, formed "T-shaped" axons typical of granule neurons, and generated synaptic contacts and action potentials in vitro. Finally, in vivo implantation of Math1-induced progenitors into young adult mice resulted in cell migration and settling of newly generated neurons in the cerebellum. These results show that conditional induction of Math1 drives ESCs toward the cerebellar fate and indicate that acting on both intrinsic and extrinsic factors is a powerful means to modulate ESCs differentiation and maturation into a specific neuronal lineage. Copyright © 2012 AlphaMed Press.

  1. Redox regulation of plant stem cell fate.

    PubMed

    Zeng, Jian; Dong, Zhicheng; Wu, Haijun; Tian, Zhaoxia; Zhao, Zhong

    2017-10-02

    Despite the importance of stem cells in plant and animal development, the common mechanisms of stem cell maintenance in both systems have remained elusive. Recently, the importance of hydrogen peroxide (H 2 O 2 ) signaling in priming stem cell differentiation has been extensively studied in animals. Here, we show that different forms of reactive oxygen species (ROS) have antagonistic roles in plant stem cell regulation, which were established by distinct spatiotemporal patterns of ROS-metabolizing enzymes. The superoxide anion (O2·-) is markedly enriched in stem cells to activate WUSCHEL and maintain stemness, whereas H 2 O 2 is more abundant in the differentiating peripheral zone to promote stem cell differentiation. Moreover, H 2 O 2 negatively regulates O2·- biosynthesis in stem cells, and increasing H 2 O 2 levels or scavenging O2·- leads to the termination of stem cells. Our results provide a mechanistic framework for ROS-mediated control of plant stem cell fate and demonstrate that the balance between O2·- and H 2 O 2 is key to stem cell maintenance and differentiation. © 2017 The Authors.

  2. Intestinal stem cells and their defining niche.

    PubMed

    Tan, David Wei-Min; Barker, Nick

    2014-01-01

    The intestinal epithelium is a classic example of a rapidly self-renewing tissue fueled by dedicated resident stem cells. These stem cells reside at the crypt base, generating committed progeny that mature into the various functional epithelial lineages while following a rapid migratory path toward the villi. Two models of intestinal stem cell location were proposed half a century ago and data have been presented in support of both models, dividing the scientific community. Molecular markers have been identified and validated using new techniques such as in vivo lineage tracing and ex vivo organoid culture. The intestinal stem cell niche comprises both epithelial cells, in particular the Paneth cell, and the stromal compartment, where cell-associated ligands and soluble factors regulate stem cell behavior. This review highlights the recent advances in identifying and characterizing the intestinal stem cells and their defining niche. © 2014 Elsevier Inc. All rights reserved.

  3. Stem cells--clinical application and perspectives.

    PubMed

    Brehm, Michael; Zeus, Tobias; Strauer, Bodo Eckehard

    2002-11-01

    Augmentation of myocardial performance in experimental models of therapeutic infarction and heart failure has been achieved by transplantation of exogenous cells into damaged myocardium. The quest for suitable donor cells has prompted research into the use of both embryonic stem cells and adult somatic stem cells. Recently, there has been a growing body of evidence that multipotent somatic stem cells in adult bone marrow exhibit tremendous functional plasticity and can reprogram in a new environmental tissue niche to give rise to cell lineages specific for new organ site. This phenomenon has made huge impact on myocardial biology, while multipotent adult bone marrow hematopoeitic stem cells and mesechymal stem cells can repopulate infarcted rodent myocardium and differentiate into both cardiomyocytes and new blood vessels. These data, coupled with the identification of a putative primitive cardiac stem cell population in the adult human heart, may open the way for novel therapeutic modalities for enhancing myocardial performance and treating heart failure.

  4. Allogenic banking of dental pulp stem cells for innovative therapeutics.

    PubMed

    Collart-Dutilleul, Pierre-Yves; Chaubron, Franck; De Vos, John; Cuisinier, Frédéric J

    2015-08-26

    Medical research in regenerative medicine and cell-based therapy has brought encouraging perspectives for the use of stem cells in clinical trials. Multiple types of stem cells, from progenitors to pluripotent stem cells, have been investigated. Among these, dental pulp stem cells (DPSCs) are mesenchymal multipotent cells coming from the dental pulp, which is the soft tissue within teeth. They represent an interesting adult stem cell source because they are recovered in large amount in dental pulps with non-invasive techniques compared to other adult stem cell sources. DPSCs can be obtained from discarded teeth, especially wisdom teeth extracted for orthodontic reasons. To shift from promising preclinical results to therapeutic applications to human, DPSCs must be prepared in clinical grade lots and transformed into advanced therapy medicinal products (ATMP). As the production of patient-specific stem cells is costly and time-consuming, allogenic biobanking of clinical grade human leukocyte antigen (HLA)-typed DPSC lines provides efficient innovative therapeutic products. DPSC biobanks represent industrial and therapeutic innovations by using discarded biological tissues (dental pulps) as a source of mesenchymal stem cells to produce and store, in good manufacturing practice (GMP) conditions, DPSC therapeutic batches. In this review, we discuss about the challenges to transfer biological samples from a donor to HLA-typed DPSC therapeutic lots, following regulations, GMP guidelines and ethical principles. We also present some clinical applications, for which there is no efficient therapeutics so far, but that DPSCs-based ATMP could potentially treat.

  5. Allogenic banking of dental pulp stem cells for innovative therapeutics

    PubMed Central

    Collart-Dutilleul, Pierre-Yves; Chaubron, Franck; De Vos, John; Cuisinier, Frédéric J

    2015-01-01

    Medical research in regenerative medicine and cell-based therapy has brought encouraging perspectives for the use of stem cells in clinical trials. Multiple types of stem cells, from progenitors to pluripotent stem cells, have been investigated. Among these, dental pulp stem cells (DPSCs) are mesenchymal multipotent cells coming from the dental pulp, which is the soft tissue within teeth. They represent an interesting adult stem cell source because they are recovered in large amount in dental pulps with non-invasive techniques compared to other adult stem cell sources. DPSCs can be obtained from discarded teeth, especially wisdom teeth extracted for orthodontic reasons. To shift from promising preclinical results to therapeutic applications to human, DPSCs must be prepared in clinical grade lots and transformed into advanced therapy medicinal products (ATMP). As the production of patient-specific stem cells is costly and time-consuming, allogenic biobanking of clinical grade human leukocyte antigen (HLA)-typed DPSC lines provides efficient innovative therapeutic products. DPSC biobanks represent industrial and therapeutic innovations by using discarded biological tissues (dental pulps) as a source of mesenchymal stem cells to produce and store, in good manufacturing practice (GMP) conditions, DPSC therapeutic batches. In this review, we discuss about the challenges to transfer biological samples from a donor to HLA-typed DPSC therapeutic lots, following regulations, GMP guidelines and ethical principles. We also present some clinical applications, for which there is no efficient therapeutics so far, but that DPSCs-based ATMP could potentially treat. PMID:26328017

  6. Mesenchymal stem cell like (MSCl) cells generated from human embryonic stem cells support pluripotent cell growth

    SciTech Connect

    Varga, Nora; Vereb, Zoltan; Rajnavoelgyi, Eva

    2011-10-28

    Highlights: Black-Right-Pointing-Pointer MSC like cells were derived from hESC by a simple and reproducible method. Black-Right-Pointing-Pointer Differentiation and immunosuppressive features of MSCl cells were similar to bmMSC. Black-Right-Pointing-Pointer MSCl cells as feeder cells support the undifferentiated growth of hESC. -- Abstract: Mesenchymal stem cell like (MSCl) cells were generated from human embryonic stem cells (hESC) through embryoid body formation, and isolated by adherence to plastic surface. MSCl cell lines could be propagated without changes in morphological or functional characteristics for more than 15 passages. These cells, as well as their fluorescent protein expressing stable derivatives, efficiently supported the growth ofmore » undifferentiated human embryonic stem cells as feeder cells. The MSCl cells did not express the embryonic (Oct4, Nanog, ABCG2, PODXL, or SSEA4), or hematopoietic (CD34, CD45, CD14, CD133, HLA-DR) stem cell markers, while were positive for the characteristic cell surface markers of MSCs (CD44, CD73, CD90, CD105). MSCl cells could be differentiated toward osteogenic, chondrogenic or adipogenic directions and exhibited significant inhibition of mitogen-activated lymphocyte proliferation, and thus presented immunosuppressive features. We suggest that cultured MSCl cells can properly model human MSCs and be applied as efficient feeders in hESC cultures.« less

  7. A Phase I Trial of High-Dose Lenalidomide and Melphalan as Conditioning for Autologous Stem Cell Transplantation in Relapsed or Refractory Multiple Myeloma.

    PubMed

    Mark, Tomer M; Guarneri, Danielle; Forsberg, Peter; Rossi, Adriana; Pearse, Roger; Perry, Arthur; Pekle, Karen; Tegnestam, Linda; Greenberg, June; Shore, Tsiporah; Gergis, Usama; Mayer, Sebastian; Van Besien, Koen; Ely, Scott; Jayabalan, David; Sherbenou, Daniel; Coleman, Morton; Niesvizky, Ruben

    2017-06-01

    Autologous stem cell transplantation (ASCT) conditioned with high-dose chemotherapy has long been established as the standard of care for eligible patients with newly diagnosed multiple myeloma. Despite recent therapeutic advances, high-dose melphalan (HDM) remains the chemotherapy regimen of choice in this setting. Lenalidomide (LEN) in combination with low-dose dexamethasone is recognized as a standard of care for patients with relapsed or refractory multiple myeloma (RRMM), and there is growing support for the administration of LEN as maintenance therapy post-ASCT. In view of the above, the present phase I clinical trial was designed to evaluate the safety and tolerability of high-dose LEN (HDLEN) in patients with RRMM, and to determine the maximum tolerated dose of HDLEN when added to HDM before ASCT. Despite administering HDLEN at doses of up to 350 mg/day, the maximum tolerated dose could not be determined, owing to an insufficient number of dose-limiting toxicities in the 21 patients enrolled in the trial. Conditioning with HDLEN plus HDM was associated with a favorable tolerability profile. Adverse events following ASCT were as expected with HDM. Median progression-free and overall survival were 10 months and 22 months, respectively, in this population of heavily pretreated patients. Our findings suggest that HDLEN in combination with HDM may offer significant potential as a conditioning regimen before ASCT in patients with RRMM. These preliminary findings are now being evaluated further in an ongoing phase II clinical trial. Copyright © 2017 The American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  8. Morphological and Functional Attenuation of Degeneration of Peripheral Neurons by Mesenchymal Stem Cell-Conditioned Medium in Spinocerebellar Ataxia Type 1-Knock-in Mice.

    PubMed

    Suto, Nana; Mieda, Tokue; Iizuka, Akira; Nakamura, Kazuhiro; Hirai, Hirokazu

    2016-08-01

    Spinocerebellar ataxia type 1 (SCA1) is caused by the ataxin-1 protein (ATXN1) with an abnormally expanded polyglutamine tract and is characterized by progressive neurodegeneration. We previously showed that intrathecal injection of mesenchymal stem cells (MSCs) during the nonsymptomatic stage mitigates the degeneration of the peripheral nervous system (PNS) neurons in SCA1-knock-in (SCA1-KI) mice. We tested in this study whether the therapeutic effects of MSCs in SCA1-KI mice could be reproduced with MSC-releasing factor(s). To test the effects of MSC-releasing factor(s), we used MSC-conditioned medium (MSC-CM). MSC-CM was intrathecally and/or intravenously injected into young SCA1-KI mice, and the therapeutic effects were assessed in the PNS at later ages using immunostaining, electrophysiology, and behavioral tests. MSC-CM attenuated the degeneration of axons and myelin of spinal motor neurons. Consequently, the injected SCA1-KI mice exhibited smaller reductions in nerve conduction velocity in spinal motor neurons and reduced motor incoordination than the untreated mice. These results suggest that factors released from MSC mitigate the morphological and functional abnormalities in the PNS that are observed in SCA1-KI mice in a paracrine manner. © 2016 John Wiley & Sons Ltd.

  9. Short-term preconditioning enhances the therapeutic potential of adipose-derived stromal/stem cell-conditioned medium in cisplatin-induced acute kidney injury.

    PubMed

    Overath, Jürgen M; Gauer, Stefan; Obermüller, Nicholas; Schubert, Ralf; Schäfer, Richard; Geiger, Helmut; Baer, Patrick C

    2016-03-15

    The development of new strategies to preserve renal function after acute kidney injury (AKI) is necessary due to limited clinical intervention options. The organ-protective effects of mesenchymal stromal/stem cells (MSCs) and their conditioned medium (CM) have been investigated demonstrating that both separately promoted tubular recovery and ameliorated the outcome of AKI. Nevertheless, strategies to optimise the regenerative potential of both are highly needed. Here we investigated the effects of CM from adipose-derived MSCs (ASCs) preincubated in a hypoxic environment (Hyp). Protective factors were investigated by PCR analysis and a protein array in vitro. The expression of 64 of the 308 proteins assayed was found to be more than two-fold increased after Hyp. CM of Hyp-pretreated ASCs (pCM) was used to enhance regeneration in a mouse model of cisplatin-induced AKI (cisAKI). Renal function was assessed by measurements of markers for AKI and serum cytokine levels. The pCM significantly ameliorated serum creatinine and neutrophil gelatinase-associated lipocalin values, and also the levels of inflammatory cytokines IL-1β and IL-6 in the serum of mice with AKI. Our work clearly showed that a Hyp preconditioning significantly increases the release of protective factors in ASCs and enhances the therapeutic effects of CM in cisAKI in mice. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. [Allogeneic hematopoietic stem cell transplantation using myeloablative conditioning including total body irradiation for pediatric acute lymphoblastic leukemia: a single-center retrospective analysis].

    PubMed

    Honda, Mamoru; Arakawa, Yuki; Kawakami, Ryota; Itabashi, Toshikazu; Yanagi, Masato; Sasaki, Koji; Watanabe, Kentaro; Isobe, Kiyotaka; Mori, Makiko; Hanada, Ryoji; Koh, Katsuyoshi

    2018-01-01

    This study aimed to investigate the clinical outcomes of hematopoietic stem cell transplantation (HSCT) with total body irradiation-based myeloablative conditioning (TBI-MAC) in pediatric patients with acute lymphoblastic leukemia (ALL). We retrospectively examined patients with ALL who underwent HSCT with TBI-MAC from January 2000 to August 2016 at our institute. We enrolled 67 patients with a median follow-up period of 8 years. The 5-year event-free survival (EFS) and overall survival (OS) were 51.2% and 59.6%, respectively. At the first complete remission, HSCT exhibited significantly superior EFS and OS in our patients than that in patients with other diseases. We encountered 57.9% of patients with at least one late complication. Major late complications were short stature (26.3%) and hypogonadism (18.4%). While late complications were observed in several recipients of HSCT, late complication-related deaths occurred in three patients. The TBI-MAC regimen led to favorable clinical outcomes in pediatric patients with ALL who underwent HSCT. Thus, proper evaluation and management of late complications are mandatory.

  11. The Effect of Bone Marrow-Derived Mesenchymal Stem Cells and Their Conditioned Media Topically Delivered in Fibrin Glue on Chronic Wound Healing in Rats

    PubMed Central

    Mehanna, Radwa A.; Nabil, Iman; Attia, Noha; Bary, Amany A.; Razek, Khalid A.; Ahmed, Tamer A. E.; Elsayed, Fatma

    2015-01-01

    Bone marrow-derived mesenchymal stem cells (BM-MSCs) represent a modern approach for management of chronic skin injuries. In this work, we describe BM-MSCs application versus their conditioned media (CM) when delivered topically admixed with fibrin glue to enhance the healing of chronic excisional wounds in rats. Fifty-two adult male rats were classified into four groups after induction of large-sized full-thickness skin wound: control group (CG), fibrin only group (FG), fibrin + MSCs group (FG + SCs), and fibrin + CM group (FG + CM). Healing wounds were evaluated functionally and microscopically. Eight days after injury, number of CD68+ macrophages infiltrating granulation tissue was considerably higher in the latter two groups. Although—later—none of the groups depicted a substantially different healing rate, the quality of regenerated skin was significantly boosted by the application of either BM-MSCs or their CM both (1) structurally as demonstrated by the obviously increased mean area percent of collagen fibers in Masson's trichrome-stained skin biopsies and (2) functionally as supported by the interestingly improved epidermal barrier as well as dermal tensile strength. Thus, we conclude that topically applied BM-MSCs and their CM—via fibrin vehicle—could effectively improve the quality of healed skin in chronic excisional wounds in rats, albeit without true acceleration of wound closure. PMID:26236740

  12. The Effect of Conditioned Media of Adipose-Derived Stem Cells on Wound Healing after Ablative Fractional Carbon Dioxide Laser Resurfacing

    PubMed Central

    Zhou, Bing-Rong; Xu, Yang; Guo, Shi-Lei; Xu, Yan; Wang, Ying; Zhu, Fen; Wu, Di; Yin, Zhi-Qiang; Luo, Dan

    2013-01-01

    Objective. To evaluate the benefits of conditioned medium of Adipose-derived stem cells (ADSC-CM) on wound healing after fractional carbon dioxide laser resurfacing (FxCR) on human skin. Materials and Methods. Nineteen subjects were treated with FxCR on the bilateral inner arms. ADSC-CM was applied on FxCR site of one randomly selected arm. Transepidermal water loss (TEWL), skin color, and gross-elasticity of FxCR site on both arms were measured. Skin samples were taken by biopsy from three subjects 3 weeks after treatment for histopathological manifestations and mRNA expressions of procollagen types I and III, elastin genes were noted. Results. The index of erythema, melanin, and TEWL of the ADSC-CM-treated skin were significantly lower than those of the control side. The mRNA expression of type III procollagen in ADSC-CM-treated group at 3 weeks posttreatment was 2.6 times of that of the control group. Conclusion. Application of allograft ADSC-CM is an effective method for enhancing wound healing after FxCR, by reducing transient adverse effects such as erythema, hyperpigmentation, and increased TEWL. PMID:24381938

  13. The efficacy of conditioned media of adipose-derived stem cells combined with ablative carbon dioxide fractional resurfacing for atrophic acne scars and skin rejuvenation.

    PubMed

    Zhou, Bing-Rong; Zhang, Ting; Bin Jameel, Afzaal Ahmed; Xu, Yang; Xu, Yan; Guo, Shi-Lei; Wang, Ying; Permatasari, Felicia; Luo, Dan

    2016-06-01

    To evaluate the effects of conditioned medium of adipose-derived stem cells (ADSC-CM) on efficacy and side effects after fractional carbon dioxide laser resurfacing (FxCR) when treating subjects with facial atrophic acne scars or with skin rejuvenation needs. Twenty-two subjects were enrolled in the study and divided into two groups. Nine subjects were included in skin rejuvenation group and thirteen subjects were included in acne scar group, and all subjects underwent three sessions of FxCR. ADSC-CM was applied on FxCR site of one randomly selected face side. Evaluations were done at baseline, 1 week after first treatment, and 1 month after each treatment. The outcome assessments included subjective satisfaction scale; blinded clinical assessment; and the biophysical parameters of roughness, elasticity, skin hydration, transepidermal water loss (TEWL), and the erythema and melanin index. Biopsies taken from one subject in skin rejuvenation group were analyzed using hematoxylin and eosin, Masson's Trichrome, and Gomori's aldehyde fuchsin staining. ADSC-CM combined with FxCR increased subject satisfaction, elasticity, skin hydration, and skin elasticity and decreased TEWL, roughness, and the melanin index in both acne scars and skin rejuvenation groups. Histologic analysis showed that ADSC-CM increased dermal collagen density, elastin density, and arranged them in order. ADSC-CM with FxCR is a good combination therapy for treating atrophic acne scars and skin rejuvenation. JSPH2012-082 - Registered 14 Feb 2012.

  14. In search of adult renal stem cells.

    PubMed

    Anglani, F; Forino, M; Del Prete, D; Tosetto, E; Torregrossa, R; D'Angelo, A

    2004-01-01

    The therapeutic potential of adult stem cells in the treatment of chronic degenerative diseases has becoming increasingly evident over the last few years. Significant attention is currently being paid to the development of novel treatments for acute and chronic kidney diseases too. To date, promising sources of stem cells for renal therapies include adult bone marrow stem cells and the kidney precursors present in the early embryo. Both cells have clearly demonstrated their ability to differentiate into the kidney's specialized structures. Adult renal stem cells have yet to be identified, but the papilla is where the stem cell niche is probably located. Now we need to isolate and characterize the fraction of papillary cells that constitute the putative renal stem cells. Our growing understanding of the cellular and molecular mechanisms behind kidney regeneration and repair processes - together with a knowledge of the embryonic origin of renal cells - should induce us, however, to bear in mind that in the kidney, as in other mesenchymal tissues, the need for a real stem cell compartment might be less important than the phenotypic flexibility of tubular cells. Thus, by displaying their plasticity during kidney maintenance and repair, terminally differentiated cells may well function as multipotent stem cells despite being at a later stage of maturation than adult stem cells. One of the major tasks of Regenerative Medicine will be to disclose the molecular mechanisms underlying renal tubular plasticity and to exploit its biological and therapeutic potential.

  15. Engineering Stem Cells for Biomedical Applications.

    PubMed

    Yin, Perry T; Han, Edward; Lee, Ki-Bum

    2016-01-07

    Stem cells are characterized by a number of useful properties, including their ability to migrate, differentiate, and secrete a variety of therapeutic molecules such as immunomodulatory factors. As such, numerous pre-clinical and clinical studies have utilized stem cell-based therapies and demonstrated their tremendous potential for the treatment of various human diseases and disorders. Recently, efforts have focused on engineering stem cells in order to further enhance their innate abilities as well as to confer them with new functionalities, which can then be used in various biomedical applications. These engineered stem cells can take on a number of forms. For instance, engineered stem cells encompass the genetic modification of stem cells as well as the use of stem cells for gene delivery, nanoparticle loading and delivery, and even small molecule drug delivery. The present Review gives an in-depth account of the current status of engineered stem cells, including potential cell sources, the most common methods used to engineer stem cells, and the utilization of engineered stem cells in various biomedical applications, with a particular focus on tissue regeneration, the treatment of immunodeficiency diseases, and cancer. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Engineering Stem Cells for Biomedical Applications

    PubMed Central

    Yin, Perry T.; Han, Edward

    2018-01-01

    Stem cells are characterized by a number of useful properties, including their ability to migrate, differentiate, and secrete a variety of therapeutic molecules such as immunomodulatory factors. As such, numerous pre-clinical and clinical studies have utilized stem cell-based therapies and demonstrated their tremendous potential for the treatment of various human diseases and disorders. Recently, efforts have focused on engineering stem cells in order to further enhance their innate abilities as well as to confer them with new functionalities, which can then be used in various biomedical applications. These engineered stem cells can take on a number of forms. For instance, engineered stem cells encompass the genetic modification of stem cells as well as the use of stem cells for gene delivery, nanoparticle loading and delivery, and even small molecule drug delivery. The present Review gives an in-depth account of the current status of engineered stem cells, including potential cell sources, the most common methods used to engineer stem cells, and the utilization of engineered stem cells in various biomedical applications, with a particular focus on tissue regeneration, the treatment of immunodeficiency diseases, and cancer. PMID:25772134

  17. Therapeutic potential of dental stem cells

    PubMed Central

    Chalisserry, Elna Paul; Nam, Seung Yun; Park, Sang Hyug; Anil, Sukumaran

    2017-01-01

    Stem cell biology has become an important field in regenerative medicine and tissue engineering therapy since the discovery and characterization of mesenchymal stem cells. Stem cell populations have also been isolated from human dental tissues, including dental pulp stem cells, stem cells from human exfoliated deciduous teeth, stem cells from apical papilla, dental follicle progenitor cells, and periodontal ligament stem cells. Dental stem cells are relatively easily obtainable and exhibit high plasticity and multipotential capabilities. The dental stem cells represent a gold standard for neural-crest-derived bone reconstruction in humans and can be used for the repair of body defects in low-risk autologous therapeutic strategies. The bioengineering technologies developed for tooth regeneration will make substantial contributions to understand the developmental process and will encourage future organ replacement by regenerative therapies in a wide variety of organs such as the liver, kidney, and heart. The concept of developing tooth banking and preservation of dental stem cells is promising. Further research in the area has the potential to herald a new dawn in effective treatment of notoriously difficult diseases which could prove highly beneficial to mankind in the long run. PMID:28616151

  18. Cell culture density affects the stemness gene expression of adipose tissue-derived mesenchymal stem cells.

    PubMed

    Kim, Dae Seong; Lee, Myoung Woo; Lee, Tae-Hee; Sung, Ki Woong; Koo, Hong Hoe; Yoo, Keon Hee

    2017-03-01

    The results of clinical trials using mesenchymal stem cells (MSCs) are controversial due to the heterogeneity of human MSCs and differences in culture conditions. In this regard, it is important to identify gene expression patterns according to culture conditions, and to determine how the cells are expanded and when they should be clinically used. In the current study, stemness gene expression was investigated in adipose tissue-derived MSCs (AT-MSCs) harvested following culture at different densities. AT-MSCs were plated at a density of 200 or 5,000 cells/cm 2 . After 7 days of culture, stemness gene expression was examined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis. The proliferation rate of AT-MSCs harvested at a low density (~50% confluent) was higher than that of AT-MSCs harvested at a high density (~90% confluent). Although there were differences in the expression levels of stemness gene, such as octamer-binding transcription factor 4, nanog homeobox ( Nanog ), SRY-box 2, Kruppel like factor 4, v-myc avian myelocytomatosis viral oncogene homolog ( c-Myc ), and lin-28 homolog A, in the AT-MSCs obtained from different donors, RT-qPCR analysis demonstrated differential gene expression patterns according to the cell culture density. Expression levels of stemness genes, particularly Nanog and c-Myc , were upregulated in AT-MSCs harvested at a low density (~50% confluent) in comparison to AT-MSCs from the same donor harvested at a high density (~90% confluent). These results imply that culture conditions, such as the cell density at harvesting, modulate the stemness gene expression and proliferation of MSCs.

  19. Clinical potentials of human pluripotent stem cells.

    PubMed

    Mora, Cristina; Serzanti, Marialaura; Consiglio, Antonella; Memo, Maurizio; Dell'Era, Patrizia

    2017-08-01

    Aging, injuries, and diseases can be considered as the result of malfunctioning or damaged cells. Regenerative medicine aims to restore tissue homeostasis by repairing or replacing cells, tissues, or damaged organs, by linking and combining different disciplines including engineering, technology, biology, and medicine. To pursue these goals, the discipline is taking advantage of pluripotent stem cells (PSCs), a peculiar type of cell possessing the ability to differentiate into every cell type of the body. Human PSCs can be isolated from the blastocysts and maintained in culture indefinitely, giving rise to the so-called embryonic stem cells (ESCs). However, since 2006, it is possible to restore in an adult cell a pluripotent ESC-like condition by forcing the expression of four transcription factors with the rejuvenating reprogramming technology invented by Yamanaka. Then the two types of PSC can be differentiated, using standardized protocols, towards the cell type necessary for the regeneration. Although the use of these derivatives for therapeutic transplantation is still in the preliminary phase of safety and efficacy studies, a lot of efforts are presently taking place to discover the biological mechanisms underlying genetic pathologies, by differentiating induced PSCs derived from patients, and new therapies by challenging PSC-derived cells in drug screening.

  20. Cellular Mechanisms of Somatic Stem Cell Aging

    PubMed Central

    Jung, Yunjoon

    2014-01-01

    Tissue homeostasis and regenerative capacity rely on rare populations of somatic stem cells endowed with the potential to self-renew and differentiate. During aging, many tissues show a decline in regenerative potential coupled with a loss of stem cell function. Cells including somatic stem cells have evolved a series of checks and balances to sense and repair cellular damage to maximize tissue function. However, during aging the mechanisms that protect normal cell function begin to fail. In this review, we will discuss how common cellular mechanisms that maintain tissue fidelity and organismal lifespan impact somatic stem cell function. We will highlight context-dependent changes and commonalities that define aging, by focusing on three age-sensitive stem cell compartments: blood, neural, and muscle. Understanding the interaction between extrinsic regulators and intrinsic effectors that operate within different stem cell compartments is likely to have important implications for identifying strategies to improve health span and treat age-related degenerative diseases. PMID:24439814

  1. The continuum of stem cell transdifferentiation: possibility of hematopoietic stem cell plasticity with concurrent CD45 expression.

    PubMed

    Udani, V M

    2006-02-01

    Recent years have seen a surge of scientific research examining adult stem cell plasticity. For example, the hematopoietic stem cell has been shown to give rise to skin, respiratory epithelium, intestinal epithelium, renal epithelium, liver parenchyma, pancreas, skeletal muscle, vascular endothelium, myocardium, and central nervous system (CNS) neurons. The potential for such stem cell plasticity seems to be enhanced by stressors such as injury and neoplasia. Interestingly, recent studies have demonstrated that hematopoietic stem cells may be able to adopt certain nonhematopoietic phenotypes, such as endothelial, neural, or skeletal muscle phenotypes, without entirely losing their initial hematopoietic identity. We propose that transdifferentiation can, in certain conditions, be a partial rather than a complete event, and we encourage further investigation into the phenomenon of a stem cell simultaneously expressing phenotypic features of two distinct cell fates.

  2. Mammary stem cells have myoepithelial cell properties

    PubMed Central

    Prater, Michael D.; Petit, Valérie; Russell, I. Alasdair; Giraddi, Rajshekhar; Shehata, Mona; Menon, Suraj; Schulte, Reiner; Kalajzic, Ivo; Rath, Nicola; Olson, Michael F.; Metzger, Daniel; Faraldo, Marisa M.; Deugnier, Marie-Ange; Glukhova, Marina A.; Stingl, John

    2014-01-01

    Contractile myoepithelial cells dominate the basal layer of the mammary epithelium and are considered to be differentiated cells. However, we observe that up to 54% of single basal cells can form colonies when seeded into adherent culture in the presence of agents that disrupt acin-myosin interactions, and on average, 65% of the single-cell-derived basal colonies can repopulate a mammary gland when transplanted in vivo. This indicates that a high proportion of basal myoepithelial cells can give rise to a mammary repopulating unit (MRU). We demonstrate that myoepithelial cells, flow-sorted using 2 independent myoepithelial-specific reporter strategies, have MRU capacity. Using an inducible lineage tracing approach we follow the progeny of α-smooth muscle actin-expressing myoepithelial cells and show that they function as long-lived lineage-restricted stem cells in the virgin state and during pregnancy. PMID:25173976

  3. Spermatogonial stem cell regulation and spermatogenesis

    PubMed Central

    Phillips, Bart T.; Gassei, Kathrin; Orwig, Kyle E.

    2010-01-01

    This article will provide an updated review of spermatogonial stem cells and their role in maintaining the spermatogenic lineage. Experimental tools used to study spermatogonial stem cells (SSCs) will be described, along with research using these tools to enhance our understanding of stem cell biology and spermatogenesis. Increased knowledge about the biology of SSCs improves our capacity to manipulate these cells for practical application. The chapter concludes with a discussion of future directions for fundamental investigation and practical applications of SSCs. PMID:20403877

  4. Heterogeneous Human Periodontal Ligament-Committed Progenitor and Stem Cell Populations Exhibit a Unique Cementogenic Property Under In Vitro and In Vivo Conditions.

    PubMed

    Shinagawa-Ohama, Rei; Mochizuki, Mai; Tamaki, Yuichi; Suda, Naoto; Nakahara, Taka

    2017-05-01

    An undesirable complication that arises during dental treatments is external apical-root resorption, which causes root-cementum and root-dentin loss. To induce de novo cementogenesis, stem cell therapy is required. Cementum-forming cells (cementoblasts) are known to be differentiated from periodontal-lineage mesenchymal stem cells (MSCs), which are derived from the dental follicle (DF) in developing tissues and the periodontal ligament (PDL) in adult tissues, but the periodontal-lineage MSC type that is optimal for inducing de novo cementogenesis remains unidentified, as does the method to isolate these cells from harvested tissues. Thus, we investigated the cementogenic potential of DF- and PDL-derived MSCs that were isolated by using two widely used cell-isolation methods: enzymatic digestion and outgrowth (OG) methods. DF- and PDL-derived cells isolated by using both methods proliferated actively, and all four isolated cell types showed MSC gene/protein expression phenotype and ability to differentiate into adipogenic and chondrogenic lineages. Furthermore, cementogenic-potential analysis revealed that all cell types produced alizarin red S-positive mineralized materials in in vitro cultures. However, PDL-OG cells presented unique cementogenic features, such as nodular formation of mineralized deposits displaying a cellular intrinsic fiber cementum-like structure, as well as a higher expression of cementoblast-specific genes than in the other cell types. Moreover, in in vivo transplantation experiments, PDL-OG cells formed cellular cementum-like hard tissue containing embedded osteocalcin-positive cells, whereas the other cells formed acellular cementum-like materials. Given that the root-cementum defect is likely regenerated through cellular cementum deposition, PDL-OG cell-based therapies might potentially facilitate the de novo cellular cementogenesis required for regenerating the root defect.

  5. Wnt Pathway Regulation of Embryonic Stem Cell Self-Renewal

    PubMed Central

    Merrill, Bradley J.

    2012-01-01

    Embryonic stem cells (ESCs) can generate all of the cell types found in the adult organism. Remarkably, they retain this ability even after many cell divisions in vitro, as long as the culture conditions prevent differentiation of the cells. Wnt signaling and β-catenin have been shown to cause strong effects on ESCs both in terms of stimulating the expansion of stem cells and stimulating differentiation toward lineage committed cell types. The varied effects of Wnt signaling in ESCs, alongside the sometimes unconventional mechanisms underlying the effects, have generated a fair amount of controversy and intrigue regarding the role of Wnt signaling in pluripotent stem cells. Insights into the mechanisms of Wnt function in stem cells can be gained by examination of the causes for seemingly opposing effects of Wnt signaling on self-renewal versus differentiation. PMID:22952393

  6. Stem cell therapy for retinal diseases

    PubMed Central

    Garcia, José Mauricio; Mendonça, Luisa; Brant, Rodrigo; Abud, Murilo; Regatieri, Caio; Diniz, Bruno

    2015-01-01

    In this review, we discuss about current knowledge about stem cell (SC) therapy in the treatment of retinal degeneration. Both human embryonic stem cell and induced pluripotent stem cell has been growth in culture for a long time, and started to be explored in the treatment of blinding conditions. The Food and Drug Administration, recently, has granted clinical trials using SC retinal therapy to treat complex disorders, as Stargardt’s dystrophy, and patients with geographic atrophy, providing good outcomes. This study’s intent is to overview the critical regeneration of the subretinal anatomy through retinal pigment epithelium transplantation, with the goal of reestablish important pathways from the retina to the occipital cortex of the brain, as well as the differentiation from pluripotent quiescent SC to adult retina, and its relationship with a primary retinal injury, different techniques of transplantation, management of immune rejection and tumorigenicity, its potential application in improving patients’ vision, and, finally, approaching future directions and challenges for the treatment of several conditions. PMID:25621115

  7. A multi-center analysis of adverse events among two thousand, three hundred and seventy two adult patients undergoing adult autologous stem cell therapy for orthopaedic conditions.

    PubMed

    Centeno, Christopher J; Al-Sayegh, Hasan; Freeman, Michael D; Smith, Jay; Murrell, William D; Bubnov, Rostyslav

    2016-08-01

    The purpose of the present investigation is to report on detailed complications among a much larger group of 2372 orthopaedic patients treated with stem cell injections who were followed in a treatment registry for up to nine years. All patients underwent an MSC-based, percutaneous injection treatment of an orthopaedic condition between December 2005 and September 2014 at one of 18 clinical facilities. Treated areas of the body included the knee, hip, ankle/foot, hand/wrist, elbow, shoulder, and spine. The patients were followed prospectively via enrollment in a treatment registry. Patients were followed prospectively at one, three, six and 12 months, and annually thereafter, using an electronic system, ClinCapture software. A total of 3012 procedures were performed on 2372 patients with follow-up period of 2.2 years. A total of 325 adverse events were reported. The majority were pain post-procedure (n = 93, 3.9 % of the study population) and pain due to progressive degenerative joint disease (n = 90, 3.8 % of the study population). Seven cases reported neoplasms, a lower rate than in the general population. The lowest rate of adverse events was observed among patients injected with BMC alone. Lowest rate of adverse events was among those patients receiving BMC injections alone, but the higher rate of AEs for BMC plus adipose and cultured cells was readily explained by the nature of the therapy or the longer follow-up. There was no clinical evidence to suggest that treatment with MSCs of any type in this study increased the risk of neoplasm.

  8. [Pyoderma gangrenosum following hematopoietic stem cell transplantation].

    PubMed

    Eddou, H; Ennouhi, A; Sina, M; Zinebi, A; El Benaye, J; Moudden, M K; Doghmi, K; Malfuson, J-V; Mikdame, M; El Baaj, M

    2018-05-07

    Pyoderma gangrenosum (PG) is a rare form of neutrophilic dermatosis and is a potential complication in a number of systemic diseases. These include blood diseases, which represent 3.5% of cases, with the main forms being monoclonal gammopathy and acute myeloid leukemia. Herein we report a case of pyoderma gangrenosum in a female patient who had undergone haematopoietic stem cell allograft six months earlier as part of her treatment for acute T-cell leukemia. This condition forms one of the general disorders potentially associated with PG and is a dermatological disorder that can occur in marrow graft patients. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  9. Mesenchymal Stem Cells in Cardiology

    PubMed Central

    White, Ian A.; Sanina, Cristina; Balkan, Wayne; Hare, Joshua M.

    2017-01-01

    Cardiovascular disease (CVD) accounts for more deaths globally than any other single disease. There are on average 1.5 million episodes of myocardial infarction (heart attack) each year in the United States alone with roughly one third resulting in death. There is therefore a major need for developing new and effective strategies to promote cardiac repair. Intramyocardial transplantation of mesenchymal stem cells (MSCs) has emerged as a leading contender in the pursuit of clinical intervention and therapy. MSCs are potent mediators of cardiac repair and are therefore an attractive tool in the development of pre-clinical and clinical trials. MSCs are capable of secreting a large array of soluble factors, which have had demonstrated effects on pathogenic cardiac remolding, fibrosis, immune activation and cardiac stem cell proliferation within the damaged heart. MSCs are also capable of differentiation into cardiomyocytes, endothelial cells and vascular smooth muscle cells, although the relative contribution of trilineage differentiation and paracrine effectors on cardiac repair remains the subject of active investigation. PMID:27236666

  10. Distinct metabolic responses of an ovarian cancer stem cell line.

    PubMed

    Vermeersch, Kathleen A; Wang, Lijuan; McDonald, John F; Styczynski, Mark P

    2014-12-18

    Cancer metabolism is emerging as an important focus area in cancer research. However, the in vitro cell culture conditions under which much cellular metabolism research is performed differ drastically from in vivo tumor conditions, which are characterized by variations in the levels of oxygen, nutrients like glucose, and other molecules like chemotherapeutics. Moreover, it is important to know how the diverse cell types in a tumor, including cancer stem cells that are believed to be a major cause of cancer recurrence, respond to these variations. Here, in vitro environmental perturbations designed to mimic different aspects of the in vivo environment were used to characterize how an ovarian cancer cell line and its derived, isogenic cancer stem cells metabolically respond to environmental cues. Mass spectrometry was used to profile metabolite levels in response to in vitro environmental perturbations. Docetaxel, the chemotherapeutic used for this experiment, caused significant metabolic changes in amino acid and carbohydrate metabolism in ovarian cancer cells, but had virtually no metabolic effect on isogenic ovarian cancer stem cells. Glucose deprivation, hypoxia, and the combination thereof altered ovarian cancer cell and cancer stem cell metabolism to varying extents for the two cell types. Hypoxia had a much larger effect on ovarian cancer cell metabolism, while glucose deprivation had a greater effect on ovarian cancer stem cell metabolism. Core metabolites and pathways affected by these perturbations were identified, along with pathways that were unique to cell types or perturbations. The metabolic responses of an ovarian cancer cell line and its derived isogenic cancer stem cells differ greatly under most conditions, suggesting that these two cell types may behave quite differently in an in vivo tumor microenvironment. While cancer metabolism and cancer stem cells are each promising potential therapeutic targets, such varied behaviors in vivo would need to

  11. Hepatic differentiation of pluripotent stem cells.

    PubMed

    Loya, Komal; Eggenschwiler, Reto; Ko, Kinarm; Sgodda, Malte; André, Francoise; Bleidissel, Martina; Schöler, Hans R; Cantz, Tobias

    2009-10-01

    In regenerative medicine pluripotent stem cells are considered to be a valuable self-renewing source for therapeutic cell transplantations, given that a functional organ-specific phenotype can be acquired by in vitro differentiation protocols. Furthermore, derivatives of pluripotent stem cells that mimic fetal progenitor stages could serve as an important tool to analyze organ development with in vitro approaches. Because of ethical issues regarding the generation of human embryonic stem (ES) cells, other sources for pluripotent stem cells are intensively studied. Like in less developed vertebrates, pluripotent stem cells can be generated from the female germline even in mammals, via parthenogenetic activation of oocytes. Recently, testis-derived pluripotent stem cells were derived from the male germline. Therefore, we compared two different hepatic differentiation approaches and analyzed the generation of definitive endoderm progenitor cells and their further maturation into a hepatic phenotype using murine parthenogenetic ES cells, germline-derived pluripotent stem cells, and ES cells. Applying quantitative RT-PCR, both germline-derived pluripotent cell lines show similar differentiation capabilities as normal murine ES cells and can be considered an alternative source for pluripotent stem cells in regenerative medicine.

  12. Addition of High-Dose Cytarabine to Fludarabine-Based Conditioning for Hematopoietic Stem Cell Transplantation for Treating Fanconi Anemia Patients with Advanced Myeloid Malignancy: A Single-Center Experience and Literature Review.

    PubMed

    Aoki, Takahiro; Koh, Katsuyoshi; Ikeda, Yuhachi; Sekinaka, Yujin; Akiyama, Kosuke; Mori, Makiko; Arakawa, Yuki; Hanada, Ryoji

    2016-09-01

    The complication of Fanconi anemia (FA) with acute leukemia is rare and challenging to treat because of high relapse rates, despite the improved outcome of hematopoietic stem cell transplantation with fludarabine-based conditioning for treating FA patients with hematological abnormalities. We added high-dose cytarabine to fludarabine-based conditioning to promote an enhanced antitumor effect and successfully subjected 4 patients with FA, including 3 with acute leukemia, to hematopoietic stem cell transplantation. All patients remain alive without treatment-related mortality or evidence of disease. Adding high-dose cytarabine to fludarabine-based conditioning may be tolerable and effective for treating FA patients with acute leukemia. Copyright © 2016 American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  13. Effect of aging on stem cells

    PubMed Central

    Ahmed, Abu Shufian Ishtiaq; Sheng, Matilda HC; Wasnik, Samiksha; Baylink, David J; Lau, Kin-Hing William

    2017-01-01

    Pluripotent stem cells have the remarkable self-renewal ability and are capable of differentiating into multiple diverse cells. There is increasing evidence that the aging process can have adverse effects on stem cells. As stem cells age, their renewal ability deteriorates and their ability to differentiate into the various cell types is altered. Accordingly, it is suggested aging-induced deterioration of stem cell functions may play a key role in the pathophysiology of the various aging-associated disorders. Understanding the role of the aging process in deterioration of stem cell function is crucial, not only in understanding the pathophysiology of aging-associated disorders, but also in future development of novel effective stem cell-based therapies to treat aging-associated diseases. This review article first focuses on the basis of the various aging disease-related stem cell dysfunction. It then addresses the several concepts on the potential mechanism that causes aging-related stem cell dysfunction. It also briefly discusses the current potential therapies under development for aging-associated stem cell defects. PMID:28261550

  14. Reduced-intensity conditioning and HLA-matched haemopoietic stem-cell transplantation in patients with chronic granulomatous disease: a prospective multicentre study.

    PubMed

    Güngör, Tayfun; Teira, Pierre; Slatter, Mary; Stussi, Georg; Stepensky, Polina; Moshous, Despina; Vermont, Clementien; Ahmad, Imran; Shaw, Peter J; Telles da Cunha, José Marcos; Schlegel, Paul G; Hough, Rachel; Fasth, Anders; Kentouche, Karim; Gruhn, Bernd; Fernandes, Juliana F; Lachance, Silvy; Bredius, Robbert; Resnick, Igor B; Belohradsky, Bernd H; Gennery, Andrew; Fischer, Alain; Gaspar, H Bobby; Schanz, Urs; Seger, Reinhard; Rentsch, Katharina; Veys, Paul; Haddad, Elie; Albert, Michael H; Hassan, Moustapha

    2014-02-01

    In chronic granulomatous disease allogeneic haemopoietic stem-cell transplantation (HSCT) in adolescents and young adults and patients with high-risk disease is complicated by graft-failure, graft-versus-host disease (GVHD), and transplant-related mortality. We examined the effect of a reduced-intensity conditioning regimen designed to enhance myeloid engraftment and reduce organ toxicity in these patients. This prospective study was done at 16 centres in ten countries worldwide. Patients aged 0-40 years with chronic granulomatous disease were assessed and enrolled at the discretion of individual centres. Reduced-intensity conditioning consisted of high-dose fludarabine (30 mg/m(2) [infants <9 kg 1·2 mg/kg]; one dose per day on days -8 to -3), serotherapy (anti-thymocyte globulin [10 mg/kg, one dose per day on days -4 to -1; or thymoglobuline 2·5 mg/kg, one dose per day on days -5 to -3]; or low-dose alemtuzumab [<1 mg/kg on days -8 to -6]), and low-dose (50-72% of myeloablative dose) or targeted busulfan administration (recommended cumulative area under the curve: 45-65 mg/L × h). Busulfan was administered mainly intravenously and exceptionally orally from days -5 to -3. Intravenous busulfan was dosed according to weight-based recommendations and was administered in most centres (ten) twice daily over 4 h. Unmanipulated bone marrow or peripheral blood stem cells from HLA-matched related-donors or HLA-9/10 or HLA-10/10 matched unrelated-donors were infused. The primary endpoints were overall survival and event-free survival (EFS), probabilities of overall survival and EFS at 2 years, incidence of acute and chronic GVHD, achievement of at least 90% myeloid donor chimerism, and incidence of graft failure after at least 6 months of follow-up. 56 patients (median age 12·7 years; IQR 6·8-17·3) with chronic granulomatous disease were enrolled from June 15, 2003, to Dec 15, 2012. 42 patients (75%) had high-risk features (ie, intractable infections and

  15. Derivation of Multipotent Mesenchymal Precursors from Human Embryonic Stem Cells

    PubMed Central

    Barberi, Tiziano; Willis, Lucy M; Socci, Nicholas D; Studer, Lorenz

    2005-01-01

    Background Human embryonic stem cells provide access to the earliest stages of human development and may serve as a source of specialized cells for regenerative medicine. Thus, it becomes crucial to develop protocols for the directed differentiation of embryonic stem cells into tissue-restricted precursors. Methods and Findings Here, we present culture conditions for the derivation of unlimited numbers of pure mesenchymal precursors from human embryonic stem cells and demonstrate multilineage differentiation into fat, cartilage, bone, and skeletal muscle cells. Conclusion Our findings will help to elucidate the mechanism of mesoderm specification during embryonic stem cell differentiation and provide a platform to efficiently generate specialized human mesenchymal cell types for future clinical applications. PMID:15971941

  16. Progeroid syndromes: models for stem cell aging?

    PubMed

    Bellantuono, I; Sanguinetti, G; Keith, W N

    2012-02-01

    Stem cells are responsible for tissue repair and maintenance and it is assumed that changes observed in the stem cell compartment with age underlie the concomitant decline in tissue function. Studies in murine models have highlighted the importance of intrinsic changes occurring in stem cells with age. They have also drawn the attention to other factors, such as changes in the local or systemic environment as the primary cause of stem cell dysfunction. Whilst knowledge in murine models has been advancing rapidly there has been little translation of these data to human aging. This is most likely due to the difficulties of testing the regenerative capacity of human stem cells in vivo and to substantial differences in the aging phenotype within humans. Here we summarize evidence to show how progeroid syndromes, integrated with other models, can be valuable tools in addressing questions about the role of stem cell aging in human degenerative diseases of older age and the molecular pathways involved.

  17. Deubiquitylating enzymes as cancer stem cell therapeutics.

    PubMed

    Haq, Saba; Suresh, Bharathi; Ramakrishna, Suresh

    2018-01-01

    The focus of basic and applied research on core stem cell transcription factors has paved the way to initial delineation of their characteristics, their regulatory mechanisms, and the applicability of their regulatory proteins for protein-induced pluripotent stem cells (protein-IPSC) generation and in further clinical settings. Striking parallels have been observed between cancer stem cells (CSCs) and stem cells. For the maintenance of stem cells and CSC pluripotency and differentiation, post translational modifications (i.e., ubiquitylation and deubiquitylation) are tightly regulated, as these modifications result in a variety of stem cell fates. The identification of deubiquitylating enzymes (DUBs) involved in the regulation of core stem cell transcription factors and CSC-related proteins might contribute to providing novel insights into the implications of DUB regulatory mechanisms for governing cellular reprogramming and carcinogenesis. Moreover, we propose the novel possibility of applying DUBs coupled with core transcription factors to improve protein-iPSC generation efficiency. Additionally, this review article further illustrates the potential of applying DUB inhibitors as a novel therapeutic intervention for targeting CSCs. Thus, defining DUBs as core pharmacological targets implies that future endeavors to develop their inhibitors may revolutionize our ability to regulate stem cell maintenance and differentiation, somatic cell reprogramming, and cancer stem cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Stem-Cell Therapy Advances in China.

    PubMed

    Hu, Lei; Zhao, Bin; Wang, Songlin

    2018-02-01

    Stem-cell therapy is a promising method for treating patients with a wide range of diseases and injuries. Increasing government funding of scientific research has promoted rapid developments in stem-cell research in China, as evidenced by the substantial increase in the number and quality of publications in the past 5 years. Multiple high-quality studies have been performed in China that concern cell reprogramming, stem-cell homeostasis, gene modifications, and immunomodulation. The number of translation studies, including basic and preclinical investigations, has also increased. Around 100 stem-cell banks have been established in China, 10 stem-cell drugs are currently in the approval process, and >400 stem cell-based clinical trials are currently registered in China. With continued state funding, advanced biotechnical support, and the development of regulatory standards for the clinical application of stem cells, further innovations are expected that will lead to a boom in stem-cell therapies. This review highlights recent achievements in stem-cell research in China and discusses future prospects.

  19. [Bioethical challenges of stem cell tourism].

    PubMed

    Ventura-Juncá, Patricio; Erices, Alejandro; Santos, Manuel J

    2013-08-01

    Stem cells have drawn extraordinary attention from scientists and the general public due to their potential to generate effective therapies for incurable diseases. At the same time, the production of embryonic stem cells involves a serious ethical issue concerning the destruction of human embryos. Although adult stem cells and induced pluripotential cells do not pose this ethical objection, there are other bioethical challenges common to all types of stem cells related particularly to the clinical use of stem cells. Their clinical use should be based on clinical trials, and in special situations, medical innovation, both of which have particular ethical dimensions. The media has raised unfounded expectations in patients and the public about the real clinical benefits of stem cells. At the same time, the number of unregulated clinics is increasing around the world, making direct offers through Internet of unproven stem cell therapies that attract desperate patients that have not found solutions in standard medicine. This is what is called stem cells tourism. This article reviews this situation, its consequences and the need for international cooperation to establish effective regulations to prevent the exploitation of patients and to endanger the prestige of legitimate stem cell research.

  20. Application of Graphene Based Nanotechnology in Stem Cells Research.

    PubMed

    Hu, Shanshan; Zeng, Yongxiang; Yang, Shuying; Qin, Han; Cai, He; Wang, Jian

    2015-09-01

    The past several years have witnessed significant advances in stem cell therapy, tissue engineering and regenerative medicine. Graphene, with its unique properties such as high electrical conductivity, elasticity and good molecule absorption, have potential for creating the next generation of biomaterials. This review summarizes the interrelationship between graphene and stem cells. The analysis of graphene when applied on mesenchymal stem cells, neural stem cells, induced pluripotent stem cells, embryonic stem cells, periodontal ligament stem cells, human adipose-derived stem cells and cancer stem cells, and how graphene influences cell behavior and differentiation are discussed in details.

  1. Extracellular matrix components direct porcine muscle stem cell behavior

    SciTech Connect

    Wilschut, Karlijn J.; Haagsman, Henk P.; Roelen, Bernard A.J., E-mail: b.a.j.roelen@uu.nl

    2010-02-01

    In muscle tissue, extracellular matrix proteins, together with the vasculature system, muscle-residence cells and muscle fibers, create the niche for muscle stem cells. The niche is important in controlling proliferation and directing differentiation of muscle stem cells to sustain muscle tissue. Mimicking the extracellular muscle environment improves tools exploring the behavior of primary muscle cells. Optimizing cell culture conditions to maintain muscle commitment is important in stem cell-based studies concerning toxicology screening, ex vivo skeletal muscle tissue engineering and in the enhancement of clinical efficiency. We used the muscle extracellular matrix proteins collagen type I, fibronectin, laminin, and also gelatinmore » and Matrigel as surface coatings of tissue culture plastic to resemble the muscle extracellular matrix. Several important factors that determine myogenic commitment of the primary muscle cells were characterized by quantitative real-time RT-PCR and immunofluorescence. Adhesion of high PAX7 expressing satellite cells was improved if the cells were cultured on fibronectin or laminin coatings. Cells cultured on Matrigel and laminin coatings showed dominant integrin expression levels and exhibited an activated Wnt pathway. Under these conditions both stem cell proliferation and myogenic differentiation capacity were superior if compared to cells cultured on collagen type I, fibronectin and gelatin. In conclusion, Matrigel and laminin are the preferred coatings to sustain the proliferation and myogenic differentiation capacity of the primary porcine muscle stem cells, when cells are removed from their natural environment for in vitro culture.« less

  2. Oocyte stem cells: fact or fantasy?

    PubMed

    Horan, Corrina J; Williams, Suzannah A

    2017-07-01

    For many decades, the dogma prevailed that female mammals had a finite pool of oocytes at birth and this was gradually exhausted during a lifetime of reproductive function. However, in 2004, a new era began in the field of female oogenesis. A study was published that appeared to detect oocyte-stem cells capable of generating new eggs within mouse ovaries. This study was highly controversial and the years since this initial finding have produced extensive research and even more extensive debate into their possibility. Unequivocal evidence testifying to the existence of oocyte-stem cells (OSCs) has yet to be produced, meanwhile the spectrum of views from both sides of the debate are wide-ranging and surprisingly passionate. Although recent studies have presented some convincing results that germ cells exist and are capable of creating new oocytes, many questions remain. Are these cells present in humans? Do they exist in physiological conditions in a dormant state? This comprehensive review first examines where and how the dogma of a finite pool was established, how this has been challenged over the years and addresses the most pertinent questions as to the current status of their existence, their role in female fertility, and perhaps most importantly, if they do exist, how can we harness these cells to improve a woman's oocyte reserve and treat conditions such as premature ovarian insufficiency (POI: also known as premature ovarian failure, POF). © 2017 Society for Reproduction and Fertility.

  3. Stem cell sources for regenerative medicine.

    PubMed

    Riazi, Ali M; Kwon, Sarah Y; Stanford, William L

    2009-01-01

    Tissue-resident stem cells or primitive progenitors play an integral role in homeostasis of most organ systems. Recent developments in methodologies to isolate and culture embryonic and somatic stem cells have many new applications poised for clinical and preclinical trials, which will enable the potential of regenerative medicine to be realized. Here, we overview the current progress in therapeutic applications of various stem cells and discuss technical and social hurdles that must be overcome for their potential to be realized.

  4. Programming Retinal Stem Cells into Cone Photoreceptors

    DTIC Science & Technology

    2015-12-01

    AWARD NUMBER: W81XWH-14-1-0566 TITLE: Programming Retinal Stem Cells into Cone Photoreceptors PRINCIPAL INVESTIGATOR: Joseph A. Brzezinski IV...SUBTITLE 5a. CONTRACT NUMBER Programming Retinal Stem Cells into Cone Photoreceptors 5b. GRANT NUMBER W81XWH-14-1-0566 5c. PROGRAM ELEMENT NUMBER 6...to program human stem cells directly into cones. Using RNA-seq, we identified several genes that are upregulated in advance of the earliest

  5. Strategies to improve homing of mesenchymal stem cells for greater efficacy in stem cell therapy.

    PubMed

    Naderi-Meshkin, Hojjat; Bahrami, Ahmad Reza; Bidkhori, Hamid Reza; Mirahmadi, Mahdi; Ahmadiankia, Naghmeh

    2015-01-01

    Stem/progenitor cell-based therapeutic approach in clinical practice has been an elusive dream in medical sciences, and improvement of stem cell homing is one of major challenges in cell therapy programs. Stem/progenitor cells have a homing response to injured tissues/organs, mediated by interactions of chemokine receptors expressed on the cells and chemokines secreted by the injured tissue. For improvement of directed homing of the cells, many techniques have been developed either to engineer stem/progenitor cells with higher amount of chemokine receptors (stem cell-based strategies) or to modulate the target tissues to release higher level of the corresponding chemokines (target tissue-based strategies). This review discusses both of these strategies involved in the improvement of stem cell homing focusing on mesenchymal stem cells as most frequent studied model in cellular therapies. © 2014 International Federation for Cell Biology.

  6. Characterization of Human Mammary Epithelial Stem Cells

    DTIC Science & Technology

    2010-10-01

    This term reflects the method used to detect murine mammary stem cells which is based on their individual ability to regenerate an entire mammary tree......mammary stem cells. We now describe a method for detecting an analogous subpopulation in normal human mammary tissue. Dissociated cells are suspended

  7. Plant stem cells as innovation in cosmetics.

    PubMed

    Moruś, Martyna; Baran, Monika; Rost-Roszkowska, Magdalena; Skotnicka-Graca, Urszula

    2014-01-01

    The stem cells thanks to their ability of unlimited division number or transformation into different cell types creating organs, are responsible for regeneration processes. Depending on the organism in which the stem cells exists, they divide to the plant or animal ones. The later group includes the stem cells existing in both embryo's and adult human's organs. It includes, among others, epidermal stem cells, located in the hair follicle relieves and also in its basal layers, and responsible for permanent regeneration of the epidermis. Temporary science looks for method suitable for stimulation of the epidermis stem cells, amongst the other by delivery of e.g., growth factors for proliferation that decrease with the age. One of the methods is the use of the plant cell culture technology, including a number of methods that should ensure growth of plant cells, issues or organs in the environment with the microorganism-free medium. It uses abilities of the different plant cells to dedifferentiation into stem cells and coming back to the pluripotent status. The extracts obtained this way from the plant stem cells are currently used for production of both common or professional care cosmetics. This work describes exactly impact of the plant stem cell extract, coming from one type of the common apple tree (Uttwiler Spätlauber) to human skin as one of the first plant sorts, which are used in cosmetology and esthetic dermatology.

  8. Dicer in Mammary Tumor Stem Cell Maintenance

    DTIC Science & Technology

    2006-03-01

    we are cloning small RNAs from mammary stem cells in order to determine the regulatory niches that miRNAs may fill in this cell type. Our ultimate goal is to assess the role of Dicer in mammary tumor stem cell maintenance.

  9. Stem cell treatment of degenerative eye disease.

    PubMed

    Mead, Ben; Berry, Martin; Logan, Ann; Scott, Robert A H; Leadbeater, Wendy; Scheven, Ben A

    2015-05-01

    Stem cell therapies are being explored extensively as treatments for degenerative eye disease, either for replacing lost neurons, restoring neural circuits or, based on more recent evidence, as paracrine-mediated therapies in which stem cell-derived trophic factors protect compromised endogenous retinal neurons from death and induce the growth of new connections. Retinal progenitor phenotypes induced from embryonic stem cells/induced pluripotent stem cells (ESCs/iPSCs) and endogenous retinal stem cells may replace lost photoreceptors and retinal pigment epithelial (RPE) cells and restore vision in the diseased eye, whereas treatment of injured retinal ganglion cells (RGCs) has so far been reliant on mesenchymal stem cells (MSC). Here, we review the properties of non-retinal-derived adult stem cells, in particular neural stem cells (NSCs), MSC derived from bone marrow (BMSC), adipose tissues (ADSC) and dental pulp (DPSC), together with ESC/iPSC and discuss and compare their potential advantages as therapies designed to provide trophic support, repair and replacement of retinal neurons, RPE and glia in degenerative retinal diseases. We conclude that ESCs/iPSCs have the potential to replace lost retinal cells, whereas MSC may be a useful source of paracrine factors that protect RGC and stimulate regeneration of their axons in the optic nerve in degenerate eye disease. NSC may have potential as both a source of replacement cells and also as mediators of paracrine treatment. Copyright © 2015. Published by Elsevier B.V.

  10. Single-cell sequencing in stem cell biology.

    PubMed

    Wen, Lu; Tang, Fuchou

    2016-04-15

    Cell-to-cell variation and heterogeneity are fundamental and intrinsic characteristics of stem cell populations, but these differences are masked when bulk cells are used for omic analysis. Single-cell sequencing technologies serve as powerful tools to dissect cellular heterogeneity comprehensively and to identify distinct phenotypic cell types, even within a 'homogeneous' stem cell population. These technologies, including single-cell genome, epigenome, and transcriptome sequencing technologies, have been developing rapidly in recent years. The application of these methods to different types of stem cells, including pluripotent stem cells and tissue-specific stem cells, has led to exciting new findings in the stem cell field. In this review, we discuss the recent progress as well as future perspectives in the methodologies and applications of single-cell omic sequencing technologies.

  11. Ocular stem cells: a status update!

    PubMed Central

    2014-01-01

    Stem cells are unspecialized cells that have been a major focus of the field of regenerative medicine, opening new frontiers and regarded as the future of medicine. The ophthalmology branch of the medical sciences was the first to directly benefit from stem cells for regenerative treatment. The success stories of regenerative medicine in ophthalmology can be attributed to its accessibility, ease of follow-up and the eye being an immune-privileged organ. Cell-based therapies using stem cells from the ciliary body, iris and sclera are still in animal experimental stages but show potential for replacing degenerated photoreceptors. Limbal, corneal and conjunctival stem cells are still limited for use only for surface reconstruction, although they might have potential beyond this. Iris pigment epithelial, ciliary body epithelial and choroidal epithelial stem cells in laboratory studies have shown some promise for retinal or neural tissue replacement. Trabecular meshwork, orbital and sclera stem cells have properties identical to cells of mesenchymal origin but their potential has yet to be experimentally determined and validated. Retinal and retinal pigment epithelium stem cells remain the most sought out stem cells for curing retinal degenerative disorders, although treatments using them have resulted in variable outcomes. The functional aspects of the therapeutic application of lenticular stem cells are not known and need further attention. Recently, embryonic stem cell-derived retinal pigment epithelium has been used for treating patients with Stargardts disease and age-related macular degeneration. Overall, the different stem cells residing in different components of the eye have shown some success in clinical and animal studies in the field of regenerative medicine. PMID:25158127

  12. Nanomaterials for Engineering Stem Cell Responses.

    PubMed

    Kerativitayanan, Punyavee; Carrow, James K; Gaharwar, Akhilesh K

    2015-08-05

    Recent progress in nanotechnology has stimulated the development of multifunctional biomaterials for tissue engineering applications. Synergistic interactions between nanomaterials and stem cell engineering offer numerous possibilities to address some of the daunting challenges in regenerative medicine, such as controlling trigger differentiation, immune reactions, limited supply of stem cells, and engineering complex tissue structures. Specifically, the interactions between stem cells and their microenvironment play key roles in controlling stem cell fate, which underlines therapeutic success. However, the interactions between nanomaterials and stem cells are not well understood, and the effects of the nanomaterials shape, surface morphology, and chemical functionality on cellular processes need critical evaluation. In this Review, focus is put on recent development in nanomaterial-stem cell interactions, with specific emphasis on their application in regenerative medicine. Further, the emerging technologies based on nanomaterials developed over the past decade for stem cell engineering are reviewed, as well as the potential applications of these nanomaterials in tissue regeneration, stem cell isolation, and drug/gene delivery. It is anticipated that the enhanced understanding of nanomaterial-stem cell interactions will facilitate improved biomaterial design for a range of biomedical and biotechnological applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Genetic and epigenetic instability of stem cells.

    PubMed

    Rajamani, Karthyayani; Li, Yuan-Sheng; Hsieh, Dean-Kuo; Lin, Shinn-Zong; Harn, Horng-Jyh; Chiou, Tzyy-Wen

    2014-01-01

    Recently, research on stem cells has been receiving an increasing amount of attention, both for its advantages and disadvantages. Genetic and epigenetic instabilities among stem cells have been a recurring obstacle to progress in regenerative medicine using stem cells. Various reports have stated that these instabilities can transform stem cells when transferred in vivo and thus have the potential to develop tumors. Previous research has shown that various extrinsic and intrinsic factors can contribute to the stability of stem cells. The extrinsic factors include growth supplements, growth factors, oxygen tension, passage technique, and cryopreservation. Controlling these factors based on previous reports may assist researchers in developing strategies for the production and clinical application of "safe" stem cells. On the other hand, the intrinsic factors can be unpredictable and uncontrollable; therefore, to ensure the successful use of stem cells in regenerative medicine, it is imperative to develop and implement appropriate strategies and technique for culturing stem cells and to confirm the genetic and epigenetic safety of these stem cells before employing them in clinical trials.

  14. Hardwiring stem cell communication through tissue structure

    PubMed Central

    Xin, Tianchi; Greco, Valentina; Myung, Peggy

    2016-01-01

    Adult stem cells across diverse organs self-renew and differentiate to maintain tissue homeostasis. How stem cells receive input to preserve tissue structure and function largely relies on their communication with surrounding cellular and non-cellular elements. As such, how tissues are organized and patterned not only reflects organ function but also inherently hardwires networks of communication between stem cells and their environment to direct tissue homeostasis and injury repair. This review highlights how different methods of stem cell communication reflect the unique organization and function of diverse tissues. PMID:26967287

  15. [Reduced intensity conditioning allogeneic hematopoietic stem cell transplantation in chronic lymphocytic leukemia (CLL) patients with the aberration of p53 gene].

    PubMed

    Wang, Li; Miao, Kourong; Fan, Lei; Xu, Ji; Wu, Hanxin; Li, Jianyong; Xu, Wei

    2016-04-01

    To investigate the effectiveness and safety of reduced intensity conditioning allogeneic hematopoietic stem cell transplantation (RIC allo-HSCT) in ultra high risk chronic lymphocytic leukemia (CLL) patients with the deletion of p53 to deepen the understanding of allo-HSCT in the treatment of CLL. In this retrospective study, a total of 4 ultra high risk CLL patients with the deletion of p53 in our center between July 2012 and Jan 2014 were enrolled. The RIC regimen was administered and the hematopoietic reconstitution, transplantation related mortality (TRM), overall survival (OS), progress free survival (PFS) were evaluated. We registered 4 patients with the median age of 56 years (49-61 years), including 3 males and 1 female. The median mononuclear cells (MNC) and CD34(+) cells were 6.54 (2.85-14.7) × 10(8)/kg (recipient body weight) and 5.81 (2.85-7.79) × 10(6)/kg (recipient body weight), respectively. The median time of the neutrophil recovery was 11 days (range of 9-12 days), and the median time of the platelet recovery 5.5 days (range of 0-11 days). Three patients (75%) attained a full donor chimerism at day 28 after transplantation and one (25%) got a mixed chimerism of donor and recipient. During the follow-up at a median time of 26.5 months (range of 21-39 months), 2 (50%) patients developed acute graft versus host disease (aGVHD) grade I and 2 (50%) patients got CMV infection. One patient got herpes zoster virus and EB virus infections. No transplantation related mortality was found in the 4 patients. One patient who was in partial response status progressed 5 months after transplantation, and the other 3 patients remained in durable remission after allo-HSCT. These results suggested that RIC allo-HSCT showed durable remission, good tolerance and acceptable toxicity, which could be a better option for the treatment of ultra high risk CLL patients with the deletion of p53 and was worth to be investigated and applied widely in future.

  16. Cancer stem cells: impact, heterogeneity, and uncertainty

    PubMed Central

    Magee, Jeffrey A.; Piskounova, Elena; Morrison, Sean J.

    2015-01-01

    The differentiation of tumorigenic cancer stem cells into non-tumorigenic cancer cells confers heterogeneity to some cancers beyond that explained by clonal evolution or environmental differences. In such cancers, functional differences between tumorigenic and non-tumorigenic cells influence response to therapy and prognosis. However, it remains uncertain whether the model applies to many, or few, cancers due to questions about the robustness of cancer stem cell markers and the extent to which existing assays underestimate the frequency of tumorigenic cells. In cancers with rapid genetic change, reversible changes in cell states, or biological variability among patients the stem cell model may not be readily testable. PMID:22439924

  17. Purification and growth of melanocortin 1 receptor (Mc1r)-defective primary murine melanocytes is dependent on stem cell factor from keratinocyte-conditioned media

    PubMed Central

    Scott, Timothy L.; Wakamatsu, Kazumasa; Ito, Shosuke; D’Orazio, John A.

    2015-01-01

    Summary The melanocortin 1 receptor (MC1R) is a transmembrane Gs-coupled surface protein found on melanocytes that binds melanocyte stimulating hormone (MSH) and mediates activation of adenylyl cyclase and generation of the second messenger cAMP. MC1R regulates growth and differentiation of melanocytes and protects against carcinogenesis. Persons with loss-of-function polymorphisms of MC1R tend to be UV-sensitive (fair-skinned and with a poor tanning response) and are at high risk for melanoma. Mechanistic studies of the role of MC1R in melanocytic UV responses, however, have been hindered in part because Mc1r-defective primary murine melanocytes have been difficult to culture in vitro. Until now, effective growth of murine melanocytes has depended on cAMP stimulation with adenylyl cyclase activating or phosphodiesterase inhibiting agents. However, rescuing cAMP in the setting of defective MC1R signaling would be expected to confound experiments directly testing MC1R function on melanocytic UV responses. Here we report a novel method of culturing primary murine melanocytes in the absence of pharmacologic cAMP stimulation by incorporating conditioned supernatants containing stem cell factor (SCF) derived from primary keratinocytes. Importantly, this method seems to permit similar pigment expression by cultured melanocytes as that found in the skin of their parental murine strains. This novel approach will allow mechanistic investigation into MC1R’s role in protection against UV-mediated carcinogenesis and determination of the role of melanin pigment subtypes on UV-mediated melanocyte responses. PMID:19633898

  18. Effects of intensified conditioning on Epstein-Barr virus and cytomegalovirus infections in allogeneic hematopoietic stem cell transplantation for hematological malignancies

    PubMed Central

    2012-01-01

    Background Intensified conditioning regimens (increasing the intensity of standard myeloablative conditioning) for hematological malignancies in allogeneic hematopoietic stem cell transplantation (allo-HSCT) could reduce the relapse rate of the underlying disease, but it might simultaneously increase the transplant-related mortality including the mortality of infections. To explore whether intensified conditioning affected Epstein-Barr virus (EBV) and cytomegalovirus (CMV) infections, 185 patients undergoing allo-HSCT were enrolled. Methods A total of 104 cases received standard and 81 intensified conditioning. Cyclosporine A (CsA) withdrawal and/or donor lymphocyte infusion (DLI) were conducted in high-risk patients. The EBV-DNA and CMV-DNA levels of blood were monitored regularly by quantitative real-time polymerase chain reaction (RQ-PCR) and immune reconstitution of recipients were analyzed by flow cytometry. Results The 3-year cumulative incidence of EBV viremia, EBV-associated diseases and mortality of EBV-associated diseases were 25.3% ± 4.6%, 10.5% ± 3.4% and 0.0% ± 0.0% in the standard group, compared with 45.6% ± 6.5%, 26.0% ±5.3% and 7.3% ± 3.1% in the intensified group (P = 0.002, P = 0.002, P = 0.008). The 3-year cumulative incidence of CMV viremia and CMV-associated diseases, mortality of CMV-associated diseases and incidence of bacterial and fungal infections were similar between the two groups (P = 0.855, P = 0.581, P = 0.933, P = 0.142, P = 0.182, respectively). Multivariate analysis showed that intensified conditioning was one of the risk factors for EBV viremia and EBV-associated diseases (P = 0.037, P = 0.037), but it had no effects on CMV infections. The percentage of CD4+ T cells and CD4+/CD8+ ratio at 3 months post-transplantation were lower in the intensified group (P = 0.032, P = 0.022). The 3-year OS and DFS in the standard group were 62.2% ± 5.8% and 60.6%

  19. Mesenchymal Stem Cell Therapy for Nonhealing Cutaneous Wounds

    PubMed Central

    Hanson, Summer E.; Bentz, Michael L.; Hematti, Peiman

    2014-01-01

    Summary Chronic wounds remain a major challenge in modern medicine and represent a significant burden, affecting not only physical and mental health, but also productivity, health care expenditure, and long-term morbidity. Even under optimal conditions, the healing process leads to fibrosis or scar. One promising solution, cell therapy, involves the transplantation of progenitor/stem cells to patients through local or systemic delivery, and offers a novel approach to many chronic diseases, including nonhealing wounds. Mesenchymal stem cells are multipotent, adult progenitor cells of great interest because of their unique immunologic properties and regenerative potential. A variety of preclinical and clinical studies have shown that mesenchymal stem cells may have a useful role in wound-healing and tissue-engineering strategies and both aesthetic and reconstructive surgery. Recent advances in stem cell immunobiology can offer insight into the multiple mechanisms through which mesenchymal stem cells could affect underlying pathophysiologic processes associated with nonhealing mesenchymal stem cells. Critical evaluation of the current literature is necessary for understanding how mesenchymal stem cells could potentially revolutionize our approach to skin and soft-tissue defects and designing clinical trials to address their role in wound repair and regeneration. PMID:20124836

  20. A Comparison of the Conditioning Regimens BEAM and FEAM for Autologous Hematopoietic Stem Cell Transplantation in Lymphoma: an Observational Study on Patients From Fondazione Italiana Linfomi (Fil).

    PubMed

    Olivieri, Jacopo; Mosna, Federico; Pelosini, Matteo; Fama, Angelo; Rattotti, Sara; Giannoccaro, Margherita; Carli, Giuseppe; Tisi, Maria Chiara; Ferrero, Simone; Sgherza, Nicola; Mazzone, Anna Maria; Marino, Dario; Calimeri, Teresa; Loseto, Giacomo; Saraceni, Francesco; Tomei, Gabriella; Sica, Simona; Perali, Giulia; Codeluppi, Katia; Billio, Atto; Olivieri, Attilio; Orciuolo, Enrico; Matera, Rossella; Stefani, Piero Maria; Borghero, Carlo; Ghione, Paola; Cascavilla, Nicola; Lanza, Francesco; Chiusolo, Patrizia; Finotto, Silvia; Federici, Irene; Gherlinzoni, Filippo; Centurioni, Riccardo; Fanin, Renato; Zaja, Francesco

    2018-05-29

    Carmustine (BCNU)-Etoposide-Citarabine-Melphalan (BEAM) chemotherapy is the standard conditioning regimen for autologous stem cell transplantation (ASCT) in lymphomas. Owing to BCNU shortages, many centers switched to Fotemustine-substituted BEAM (FEAM), lacking proof of equivalence. We conducted a retrospective cohort study in 18 Italian centers to compare safety and efficacy of BEAM and FEAM regimens for ASCT in lymphomas performed from 2008 to 2015. We enrolled 1038 patients (BEAM n=607, FEAM n=431), of which 27% had Hodgkin's lymphoma (HL), 14% indolent Non-Hodgkin's lymphoma (iNHL) and 59% aggressive NHL (aNHL). Baseline characteristics including age, sex, stage, B-symptoms, extranodal involvement, previous treatments, response before ASCT, overall conditioning intensity, were well balanced between BEAM and FEAM; notable exceptions were: ASCT year (median: BEAM=2011 vs FEAM=2013, p<0.001), Sorror score (≥3: BEAM=15% vs FEAM=10%, p=0.017), radiotherapy use (BEAM=18% vs FEAM=10%, p<0.001). FEAM conditioning resulted in higher rates of gastrointestinal and infectious toxicities, including severe oral mucositis (grade ≥3: BEAM=31% vs FEAM=44%, p<0.001), and sepsis from Gram-negative bacteria (mean isolates/patient: BEAM=0.1 vs FEAM=0.19, p<0.001). Response status at day 100 post-ASCT (overall response: BEAM=91% vs FEAM=88%, p=0.42), 2-years Overall Survival (83.9%, 95%CI:81.5%-86.1%) and Progression-free Survival (70.3%, 95%CI:67.4%-73.1%) were not different in the two groups. Mortality from infection was higher in the FEAM group (SHR 1.99; 95%CI:1.02-3.88, p=0.04). BEAM and FEAM do not appear different in terms of survival and disease control. However, due to concerns of higher toxicity, Fotemustine substitution in BEAM does not seem justified, if not for easier supply. Copyright © 2018. Published by Elsevier Inc.

  1. Droplet Microarray Based on Patterned Superhydrophobic Surfaces Prevents Stem Cell Differentiation and Enables High-Throughput Stem Cell Screening.

    PubMed

    Tronser, Tina; Popova, Anna A; Jaggy, Mona; Bastmeyer, Martin; Levkin, Pavel A

    2017-12-01

    Over the past decades, stem cells have attracted growing interest in fundamental biological and biomedical research as well as in regenerative medicine, due to their unique ability to self-renew and differentiate into various cell types. Long-term maintenance of the self-renewal ability and inhibition of spontaneous differentiation, however, still remain challenging and are not fully understood. Uncontrolled spontaneous differentiation of stem cells makes high-throughput screening of stem cells also difficult. This further hinders investigation of the underlying mechanisms of stem cell differentiation and the factors that might affect it. In this work, a dual functionality of nanoporous superhydrophobic-hydrophilic micropatterns is demonstrated in their ability to inhibit differentiation of mouse embryonic stem cells (mESCs) and at the same time enable formation of arrays of microdroplets (droplet microarray) via the effect of discontinuous dewetting. Such combination makes high-throughput screening of undifferentiated mouse embryonic stem cells possible. The droplet microarray is used to investigate the development, differentiation, and maintenance of stemness of mESC, revealing the dependence of stem cell behavior on droplet volume in nano- and microliter scale. The inhibition of spontaneous differentiation of mESCs cultured on the droplet microarray for up to 72 h is observed. In addition, up to fourfold increased cell growth rate of mESCs cultured on our platform has been observed. The difference in the behavior of mESCs is attributed to the porosity and roughness of the polymer surface. This work demonstrates that the droplet microarray possesses the potential for the screening of mESCs under conditions of prolonged inhibition of stem cells' spontaneous differentiation. Such a platform can be useful for applications in the field of stem cell research, pharmacological testing of drug efficacy and toxicity, biomedical research as well as in the field of

  2. Recent Advances towards the Clinical Application of Stem Cells for Retinal Regeneration

    PubMed Central

    Becker, Silke; Jayaram, Hari; Limb, G. Astrid

    2012-01-01

    Retinal degenerative diseases constitute a major cause of irreversible blindness in the world. Stem cell-based therapies offer hope for these patients at risk of or suffering from blindness due to the deterioration of the neural retina. Various sources of stem cells are currently being investigated, ranging from human embryonic stem cells to adult-derived induced pluripotent stem cells as well as human Müller stem cells, with the first clinical trials to investigate the safety and tolerability of human embryonic stem cell-derived retinal pigment epithelium cells having recently commenced. This review aims to summarize the latest advances in the development of stem cell strategies for the replacement of retinal neurons and their supportive cells, the retinal pigment epithelium (RPE) affected by retinal degenerative conditions. Particular emphasis will be given to the advances in stem cell transplantation and the challenges associated with their translation into clinical practice. PMID:24710533

  3. Cell of Origin and Cancer Stem Cell Phenotype in Medulloblastomas

    DTIC Science & Technology

    2017-09-01

    AWARD NUMBER: W81XWH-14-1-0115 TITLE: Cell of Origin and Cancer Stem Cell Phenotype in Medulloblastomas PRINCIPAL INVESTIGATOR: Kyuson Yun...CA130273 - Cell of Origin and Cancer Stem Cell Phenotype in Medulloblastomas 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-14-1-0115 5c. PROGRAM...hypothesis, we originally proposed to transform neural stem cells (NSCs) and neural progenitor cells (NPCs) in vivo by expressing an activated form

  4. Plasticity of the Muscle Stem Cell Microenvironment.

    PubMed

    Dinulovic, Ivana; Furrer, Regula; Handschin, Christoph

    2017-01-01

    Satellite cells (SCs) are adult muscle stem cells capable of repairing damaged and creating new muscle tissue throughout life. Their functionality is tightly controlled by a microenvironment composed of a wide variety of factors, such as numerous secreted molecules and different cell types, including blood vessels, oxygen, hormones, motor neurons, immune cells, cytokines, fibroblasts, growth factors, myofibers, myofiber metabolism, the extracellular matrix and tissue stiffness. This complex niche controls SC biology-quiescence, activation, proliferation, differentiation or renewal and return to quiescence. In this review, we attempt to give a brief overview of the most important players in the niche and their mutual interaction with SCs. We address the importance of the niche to SC behavior under physiological and pathological conditions, and finally survey the significance of an artificial niche both for basic and translational research purposes.

  5. Plasticity of the Muscle Stem Cell Microenvironment

    PubMed Central

    Dinulovic, Ivana; Furrer, Regula; Handschin, Christoph

    2018-01-01

    Satellite cells (SCs) are adult muscle stem cells capable of repairing damaged and creating new muscle tissue throughout life. Their functionality is tightly controlled by a microenvironment composed of a wide variety of factors, such as numerous secreted molecules and different cell types, including blood vessels, oxygen, hormones, motor neurons, immune cells, cytokines, fibroblasts, growth factors, myofibers, myofiber metabolism, the extracellular matrix and tissue stiffness. This complex niche controls SC biology – quiescence, activation, proliferation, differentiation or renewal and return to quiescence. In this review, we attempt to give a brief overview of the most important players in the niche and their mutual interaction with SCs. We address the importance of the niche to SC behavior under physiological and pathological conditions, and finally survey the significance of an artificial niche both for basic and translational research purposes. PMID:29204832

  6. Conditioned medium from bone marrow-derived mesenchymal stem cells inhibits vascular calcification through blockade of the BMP2-Smad1/5/8 signaling pathway.

    PubMed

    Wang, Shuangshuang; Hu, Siwang; Wang, Jian; Liu, Yahui; Zhao, Ruochi; Tong, Maoqing; Cui, Hanbin; Wu, Nan; Chen, Xiaomin

    2018-06-13

    Arterial calcification is associated with cardiovascular disease as a complication of advanced atherosclerosis and is a significant contributor to cardiovascular morbidity and mortality. Osteoblastic differentiation of vascular smooth muscle cells (VSMCs) plays an important role in arterial calcification and is characterized by cellular necrosis, inflammation, and lipoprotein and phospholipid complexes, especially in atherosclerotic calcification. The conditioned medium from bone marrow-derived mesenchymal stem cells (MSC-CM) is well known as a rich source of autologous cytokines and is universally used for tissue regeneration in current clinical medicine. Here, we demonstrate that MSC-CM inhibits beta-glycerophosphate (β-GP)-induced vascular calcification through blockade of the bone morphogenetic protein-2 (BMP2)-Smad1/5/8 signaling pathway. VSMC calcification was induced by β-GP followed by treatment with MSC-CM. Mineral deposition was assessed by Alizarin Red S staining. Intracellular calcium content was determined colorimetrically by the o-cresolphthalein complexone method and alkaline phosphatase (ALP) activity was measured by the para-nitrophenyl phosphate method. Expression of BMP2, BMPR1A, BMPR1B, BMPR2, msh homeobox 2 (Msx2), Runt-related transcription factor 2 (Runx2), and osteocalcin (OC), representative osteoblastic markers, was assessed using real-time polymerase chain reaction analysis while the protein expression of BMP2, Runx2, and phosphorylated Smad1/5/8 was detected by western blot analysis. Our data demonstrated that MSC-CM inhibits osteoblastic differentiation and mineralization of VSMCs as evidenced by decreased calcium content, ALP activity, and decreased expression of BMP-2, Runx2, Msx2, and OC. MSC-CM suppressed the expression of phosphorylated Smad1/5/8 and the β-GP-induced translocation from the cytoplasm to the nucleus. Further study demonstrated that human recombinant BMP-2 overcame the suppression of VSMC calcification by MSC

  7. Midbody Accumulation in Breast Cancer Stem Cells

    DTIC Science & Technology

    2011-08-01

    transit amplifying or differentiating cells. These results suggest that MBds are in almost exclusively in stem cells and putative breast cancer stem...confer tumor-like properties to these cells. We were unable to establish GFP-MKLP1 breast cancer cell lines for this analysis for some reason that we...and nonpolarized cells (Fig. 1c, d). Immuno- electron microscopy confirmed this localization and revealed ultrastructural features characteristic of

  8. Mesenchymal stem cell characteristics of dental pulp and periodontal ligament stem cells after in vivo transplantation.

    PubMed

    Lei, Ming; Li, Kun; Li, Bei; Gao, Li-Na; Chen, Fa-Ming; Jin, Yan

    2014-08-01

    Mesenchymal stem cells (MSCs) isolated from human postnatal dental pulp and periodontal ligament (PDL) tissues can give rise to multilineage differentiation in vitro and generate related dental tissues in vivo. However, the cell properties of human dental pulp stem cells (DPSCs) and PDL stem cells (PDLSCs) after in vivo implantation remain largely unidentified. In this study, cells were re-isolated from in vivo-generated dental pulp-like and PDL-like tissues (termed re-DPCs and re-PDLCs, respectively) as a result of ectopic transplantation of human DPSC and PDLSC sheets. The cell characteristics in terms of colony-forming ability, cell surface antigens and multi-differentiation potentials were all evaluated before and after implantation. It was found that re-DPCs and re-PDLCs were of human and mesenchymal origin and positive for MSC markers such as STRO-1, CD146, CD29, CD90 and CD105; and, to some extent, re-DPCs could maintain their colony forming abilities. Moreover, both cell types were able to form mineral deposits and differentiate into adipocytes and chondrocytes; however, quantitative analysis and related gene expression determination showed that the osteo-/chondro-differentiation capabilities of re-DPCs and re-PDLCs were significantly reduced compared to those of DPSCs and PDLSCs, respectively (P < 0.05); re-PDLCs showed a greater reduction potential than re-DPCs. We conclude that DPSCs and PDLSCs may maintain their MSC characteristics after in vivo implantation and, compared to PDLSCs, DPSCs appear much more stable under in vivo conditions. These findings provide additional cellular and molecular evidence that supports expanding the use of dental tissue-derived stem cells in cell therapy and tissue engineering. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. [Stem cell therapy in cardiovascular diseases].

    PubMed

    Vértesaljai, Márton; Piróth, Zsolt; Fontos, Géza; Andréka, Gyórgy; Font, Gusztáv; Szánthó, Gergely; Réti, Marienn; Masszi, Tamás; Andréka, Peter

    2005-11-20

    Myocardial infarction is the leading cause of congestive heart failure in the industrialized world. Current treatments fail to address the underlying scarring and cell loss, which are the causes of ischaemic heart failure. Recent interest has focused on stem cells, which are undifferentiated and pluripotent cells that can proliferate, potentially self-renew, and differentiate into cardiomyocytes and endothelial cells. Myocardial regeneration is the most widely studied and debated example of stem cell plasticity. Early reports from animal and clinical investigations disagree on the extent of myocardial renewal in adults, but evidence indicates that cardiomyocytes were generated in what was previously considered a postmitotic organ. So far, candidates for cardiac stem cell therapy have been limited to patients with acute myocardial infarction and chronic ischaemic heart failure. Currently, bone marrow stem cells seem to be the most attractive cell type for these patients. The cells may be delivered by means of direct surgical injection, intracoronary infusion, retrograde venous infusion, and transendocardial infusion. Stem cells may directly increase cardiac contractility or passively limit infarct expansion and remodeling. Early phase I clinical studies indicate that stem cell transplantation is feasible and may have beneficial effects on ventricular remodeling after myocardial infarction. Future randomized clinical trials will establish the magnitude of benefit and the effect on mortality after stem cell therapy.

  10. Factors Influencing Pulmonary Toxicity in Children Undergoing Allogeneic Hematopoietic Stem Cell Transplantation in the Setting of Total Body Irradiation-Based Myeloablative Conditioning.

    PubMed

    Abugideiri, Mustafa; Nanda, Ronica H; Butker, Charlotte; Zhang, Chao; Kim, Sungjin; Chiang, Kuang-Yueh; Butker, Elizabeth; Khan, Mohammad K; Haight, Ann E; Chen, Zhengjia; Esiashvili, Natia

    2016-02-01

    This study evaluated factors associated with increased risk of pulmonary toxicity (PT) from any cause in pediatric patients after myeloablative conditioning, using total body irradiation (TBI), followed by allogeneic hematopoietic stem cell transplantation (HSCT). The records of 129 consecutive pediatric patients (range: 1-21 years of age) who underwent TBI-based myeloablative conditioning for hematologic malignancies at our institution between January 2003 and May 2014 were reviewed. Although total TBI doses ranged from 10.5 to 14 Gy, lung doses were limited to 10 Gy with partial transmission blocks. TBI dose rates ranged from 5.6 cGy/min to 20.9 cGy/min. PT was classified using clinical symptoms, radiographic evidence, and ventilatory defects on pulmonary function tests. Noninfectious (idiopathic) pneumonia syndrome (IPS) was characterized by patients exhibiting PT while demonstrating no signs of infection throughout the follow-up period. PT from any cause developed in 70.5% of patients and was significantly associated with increased transplantation-related mortality (TRM) (P=.03) and decreased overall survival (OS) (P=.02). IPS developed in 23.3% of patients but was not associated with increased TRM (P=.6) or decreased OS (P=.5). Acute graft-versus-host disease (GVHD) significantly affected PT (P=.001) but did not significantly influence the development of IPS (P=.4). Infection was a leading cause of PT (75.8%). TBI dose rate significantly affected development of overall PT (P=.02) and was the sole factor to significantly influence the incidence of IPS (P=.002). TBI total dose, dose per fraction, disease type, transplantation chemotherapy, age of patient, sex, and donor type did not significantly impact overall PT or IPS. A high incidence of PT was noted in this large series of homogeneously treated pediatric patients undergoing TBI for allogeneic HSCT. TBI dose rates affected overall PT and strongly influenced IPS. TBI dose rate is a contributing factor

  11. Pituitary stem cells drop their mask.

    PubMed

    Vankelecom, Hugo

    2012-01-01

    The pituitary gland represents the organism's endocrine hub, integrating central and peripheral inputs to generate the appropriate hormonal signals that govern key physiological processes. To meet the changing endocrine demands, the gland has to flexibly remodel its hormone-producing cell compartment. Mechanisms underlying pituitary cellular plasticity, as well as homeostatic turnover, are poorly understood. Similar to other tissues, resident stem cells may participate in the generation of newborn cells. Although in the past recurrently postulated to exist, pituitary stem cells remained obscure until the quest recently regained momentum, resulting in a surge of studies that designated very strong candidates for the stem/progenitor cell position. The cells identified express stem cell-associated markers and signaling factors, as well as transcriptional regulators that play essential roles during pituitary embryogenesis. They exhibit the stem cell properties of multilineage differentiation and prominent efflux capacity ("side population" phenotype), and display a topographical pattern reminiscent of niche-like configurations. Yet, the stem cell tenet of long-term self-renewal remains to be unequivocally demonstrated. Taken together, pituitary stem cells commence to drop their mask. While their "face gradually becomes visible, the "character" they play in the pituitary awaits further disclosure. The aim of this review is to highlight the recent progress in pituitary stem/progenitor cell identification by sketching the historical context, describing the new findings with inclusion of critical and cautionary reflections, proposing a tentative stem/progenitor cell model, and pointing out remaining gaps and challenges. The recent acceleration in pituitary stem cell research may announce an exciting era in this endocrine field.

  12. Engineering Concepts in Stem Cell Research.

    PubMed

    Narayanan, Karthikeyan; Mishra, Sachin; Singh, Satnam; Pei, Ming; Gulyas, Balazs; Padmanabhan, Parasuraman

    2017-12-01

    The field of regenerative medicine integrates advancements made in stem cells, molecular biology, engineering, and clinical methodologies. Stem cells serve as a fundamental ingredient for therapeutic application in regenerative medicine. Apart from stem cells, engineering concepts have equally contributed to the success of stem cell based applications in improving human health. The purpose of various engineering methodologies is to develop regenerative and preventive medicine to combat various diseases and deformities. Explosion of stem cell discoveries and their implementation in clinical setting warrants new engineering concepts and new biomaterials. Biomaterials, microfluidics, and nanotechnology are the major engineering concepts used for the implementation of stem cells in regenerative medicine. Many of these engineering technologies target the specific niche of the cell for better functional capability. Controlling the niche is the key for various developmental activities leading to organogenesis and tissue homeostasis. Biomimetic understanding not only helped to improve the design of the matrices or scaffolds by incorporating suitable biological and physical components, but also ultimately aided adoption of designs that helped these materials/devices have better function. Adoption of engineering concepts in stem cell research improved overall achievement, however, several important issues such as long-term effects with respect to systems biology needs to be addressed. Here, in this review the authors will highlight some interesting breakthroughs in stem cell biology that use engineering methodologies. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Cancer stem cells of the digestive system.

    PubMed

    Colvin, Hugh S; Nishida, Naohiro; Koseki, Jun; Konno, Masamitsu; Kawamoto, Koichi; Tsunekuni, Kenta; Doki, Yuichiro; Mori, Masaki; Ishii, Hideshi

    2014-12-01

    Stem cells of the digestive system are ideal in many ways for research, given they are abundant, highly proliferative and have a uniform structural arrangement. This in turn has enormously aided the research of cancer stem cells of the digestive system, which is now shaping our understanding of cancer stem cells. In this review, the recent advances in the understanding of cancer stem cells of the digestive system have been summarized, including aspects such as their identification, origin, cell-cycle dormancy, relationship with epithelial-mesenchymal transition, cellular metabolism and the underlying molecular mechanisms. Newly acquired knowledge concerning cancer stem cells have led to the development of novel cancer therapeutics with provisional yet encouraging results. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Proinflammatory Stem Cell Signaling in Cardiac Ischemia

    PubMed Central

    Herrmann, Jeremy L.; Markel, Troy A.; Abarbanell, Aaron M.; Weil, Brent R.; Wang, Meijing; Wang, Yue; Tan, Jiangning

    2009-01-01

    Abstract Cardiovascular disease remains a leading cause of mortality in developed nations, despite continued advancement in modern therapy. Progenitor and stem cell–based therapy is a novel treatment for cardiovascular disease, and modest benefits in cardiac recovery have been achieved in small clinical trials. This therapeutic modality remains challenged by limitations of low donor-cell survival rates, transient recovery of cardiac function, and the technical difficulty of applying directed cell therapy. Understanding the signaling mechanisms involved in the stem cell response to ischemia has revealed opportunities to modify directly aspects of these pathways to improve their cardioprotective abilities. This review highlights general considerations of stem cell therapy for cardiac disease, reviews the major proinflammatory signaling pathways of mesenchymal stem cells, and reviews ex vivo modifications of stem cells based on these pathways. Antioxid. Redox Signal. 11, 1883–1896. PMID:19187005

  15. Generation of eggs from mouse embryonic stem cells and induced pluripotent stem cells.

    PubMed

    Hayashi, Katsuhiko; Saitou, Mitinori

    2013-08-01

    Oogenesis is an integrated process through which an egg acquires the potential for totipotency, a fundamental condition for creating new individuals. Reconstitution of oogenesis in a culture that generates eggs with proper function from pluripotent stem cells (PSCs) is therefore one of the key goals in basic biology as well as in reproductive medicine. Here we describe a stepwise protocol for the generation of eggs from mouse PSCs, such as embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). ESCs and iPSCs are first induced into primordial germ cell-like cells (PGCLCs) that are in turn aggregated with somatic cells of female embryonic gonads, the precursors for adult ovaries. Induction of PGCLCs followed by aggregation with the somatic cells takes up to 8 d. The aggregations are then transplanted under the ovarian bursa, in which PGCLCs grow into germinal vesicle (GV) oocytes in ∼1 month. The PGCLC-derived GV oocytes can be matured into eggs in 1 d by in vitro maturation (IVM), and they can be fertilized with spermatozoa by in vitro fertilization (IVF) to obtain healthy and fertile offspring. This method provides an initial step toward reconstitution of the entire process of oogenesis in vitro.

  16. Hematopoietic Stem Cell Transplantation in Thalassemia and Sickle Cell Anemia

    PubMed Central

    Lucarelli, Guido; Isgrò, Antonella; Sodani, Pietro; Gaziev, Javid

    2012-01-01

    The globally widespread single-gene disorders β-thalassemia and sickle cell anemia (SCA) can only be cured by allogeneic hematopoietic stem cell transplantation (HSCT). HSCT treatment of thalassemia has substantially improved over the last two decades, with advancements in preventive strategies, control of transplant-related complications, and preparative regimens. A risk class–based transplantation approach results in disease-free survival probabilities of 90%, 84%, and 78% for class 1, 2, and 3 thalassemia patients, respectively. Because of disease advancement, adult thalassemia patients have a higher risk for transplant-related toxicity and a 65% cure rate. Patients without matched donors could benefit from haploidentical mother-to-child transplantation. There is a high cure rate for children with SCA who receive HSCT following myeloablative conditioning protocols. Novel non-myeloablative transplantation protocols could make HSCT available to adult SCA patients who were previously excluded from allogeneic stem cell transplantation. PMID:22553502

  17. Towards a global human embryonic stem cell bank.

    PubMed

    Lott, Jason P; Savulescu, Julian

    2007-08-01

    An increasingly unbridgeable gap exists between the supply and demand of transplantable organs. Human embryonic stem cell technology could solve the organ shortage problem by restoring diseased or damaged tissue across a range of common conditions. However, such technology faces several largely ignored immunological challenges in delivering cell lines to large populations. We address some of these challenges and argue in favor of encouraging contribution or intentional creation of embryos from which widely immunocompatible stem cell lines could be derived. Further, we argue that current immunological constraints in tissue transplantation demand the creation of a global stem cell bank, which may hold particular promise for minority populations and other sub-groups currently marginalized from organ procurement and allocation systems. Finally, we conclude by offering a number of practical and ethically oriented recommendations for constructing a human embryonic stem cell bank that we hope will help solve the ongoing organ shortage problem.

  18. Our Fat Future: Translating Adipose Stem Cell Therapy.

    PubMed

    Nordberg, Rachel C; Loboa, Elizabeth G

    2015-09-01

    Human adipose stem cells (hASCs) have the potential to treat patients with a variety of clinical conditions. Recent advancements in translational research, regulatory policy, and industry have positioned hASCs on the threshold of clinical translation. We discuss the progress and challenges of bringing adipose stem cell therapy into mainstream clinical use. This article details the advances made in recent years that have helped move human adipose stem cell therapy toward mainstream clinical use from a translational research, regulatory policy, and industrial standpoint. Four recurrent themes in translational technology as they pertain to human adipose stem cells are discussed: automated closed-system operations, biosensors and real-time monitoring, biomimetics, and rapid manufacturing. In light of recent FDA guidance documents, regulatory concerns about adipose stem cell therapy are discussed. Finally, an update is provided on the current state of clinical trials and the emerging industry that uses human adipose stem cells. This article is expected to stimulate future studies in translational adipose stem cell research. ©AlphaMed Press.

  19. Stem cells for brain repair in neonatal hypoxia-ischemia.

    PubMed

    Chicha, L; Smith, T; Guzman, R

    2014-01-01

    Neonatal hypoxic-ischemic insults are a significant cause of pediatric encephalopathy, developmental delays, and spastic cerebral palsy. Although the developing brain's plasticity allows for remarkable self-repair, severe disruption of normal myelination and cortical development upon neonatal brain injury are likely to generate life-persisting sensory-motor and cognitive deficits in the growing child. Currently, no treatments are available that can address the long-term consequences. Thus, regenerative medicine appears as a promising avenue to help restore normal developmental processes in affected infants. Stem cell therapy has proven effective in promoting functional recovery in animal models of neonatal hypoxic-ischemic injury and therefore represents a hopeful therapy for this unmet medical condition. Neural stem cells derived from pluripotent stem cells or fetal tissues as well as umbilical cord blood and mesenchymal stem cells have all shown initial success in improving functional outcomes. However, much still remains to be understood about how those stem cells can safely be administered to infants and what their repair mechanisms in the brain are. In this review, we discuss updated research into pathophysiological mechanisms of neonatal brain injury, the types of stem cell therapies currently being tested in this context, and the potential mechanisms through which exogenous stem cells might interact with and influence the developing brain.

  20. SIRT1 synchs satellite cell metabolism with stem cell fate.

    PubMed

    Diaz-Ruiz, Alberto; Gonzalez-Freire, Marta; Ferrucci, Luigi; Bernier, Michel; de Cabo, Rafael

    2015-02-05

    Metabolic reprogramming of muscle stem cells modulates myogenic cell fate. In this issue of Cell Stem Cell, Ryall et al. (2015) show that SIRT1, a NAD(+)-dependent histone deacetylase, acts as an epigenetic regulator that connects changes in satellite cell metabolism with changes in the transcriptional machinery toward myogenic commitment. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Stem cell banking: between traceability and identifiability

    PubMed Central

    2010-01-01

    Stem cell banks are increasingly seen as an essential resource of biological materials for both basic and translational research. Stem cell banks support transnational access to quality-controlled and ethically sourced stem cell lines from different origins and of varying grades. According to the Organisation for Economic Co-operation and Development, advances in regenerative medicine are leading to the development of a bioeconomy, 'a world where biotechnology contributes to a significant share of economic output'. Consequently, stem cell banks are destined to constitute a pillar of the bioeconomy in many countries. While certain ethical and legal concerns are specific to the nature of stem cells, stem cell banking could do well to examine the approaches fostered by tissue banking generally. Indeed, the past decade has seen a move to simplify and harmonize biological tissue and data banking so as to foster international interoperability. In particular, the issues of consent and of traceability illustrate not only commonalities but the opportunity for stem cell banking to appreciate the lessons learned in biobanking generally. This paper analyzes convergence and divergence in issues surrounding policy harmonization, transnational sharing, informed consent, traceability and return of results in the context of stem cell banks. PMID:20923580

  2. Pathological modifications of plant stem cell destiny

    USDA-ARS?s Scientific Manuscript database

    In higher plants, the shoot apex contains undifferentiated stem cells that give rise to various tissues and organs. The fate of these stem cells determines the pattern of plant growth as well as reproduction; and such fate is genetically preprogrammed. We found that a bacterial infection can derai...

  3. Stem Cell Research and Health Education

    ERIC Educational Resources Information Center

    Eve, David J.; Marty, Phillip J.; McDermott, Robert J.; Klasko, Stephen K.; Sanberg, Paul R.

    2008-01-01

    Stem cells are being touted as the greatest discovery for the potential treatment of a myriad of diseases in the new millennium, but there is still much research to be done before it will be known whether they can live up to this description. There is also an ethical debate over the production of one of the most valuable types of stem cell: the…

  4. Sex hormone drives blood stem cell reproduction.

    PubMed

    Calvanese, Vincenzo; Lee, Lydia K; Mikkola, Hanna K A

    2014-03-18

    Stem cells ensure the maintenance of tissue homeostasis throughout life by tightly regulating their self-renewal and differentiation. In a recent study published in Nature, Nakada et al, 2014 unveil an unexpected endocrine mechanism that regulates hematopoietic stem cell (HSC) self-renewal.

  5. Engineering stem cells for future medicine.

    PubMed

    Ricotti, Leonardo; Menciassi, Arianna

    2013-03-01

    Despite their great potential in regenerative medicine applications, stem cells (especially pluripotent ones) currently show a limited clinical success, partly due to a lack of biological knowledge, but also due to a lack of specific and advanced technological instruments able to overcome the current boundaries of stem cell functional maturation and safe/effective therapeutic delivery. This paper aims at describing recent insights, current limitations, and future horizons related to therapeutic stem cells, by analyzing the potential of different bioengineering disciplines in bringing stem cells toward a safe clinical use. First, we clarify how and why stem cells should be properly engineered and which could be in a near future the challenges and the benefits connected with this process. Second, we identify different routes toward stem cell differentiation and functional maturation, relying on chemical, mechanical, topographical, and direct/indirect physical stimulation. Third, we highlight how multiscale modeling could strongly support and optimize stem cell engineering. Finally, we focus on future robotic tools that could provide an added value to the extent of translating basic biological knowledge into clinical applications, by developing ad hoc enabling technologies for stem cell delivery and control.

  6. A MODEL FOR POSTRADIATION STEM CELL KINETICS,

    DTIC Science & Technology

    In polycythemic rats observed for 17 days postradiation (300 R, 250 KVP X-rays) it was noted that stem cell release diminished to 8 percent of the...correlate these findings with a kinetic model of erythropoiesis. It was suggested that the initial depression in stem cell release might be due to cellular

  7. Stem Cell Transplants in Cancer Treatment

    Cancer.gov

    Stem cell transplants are procedures that restore blood-forming stem cells in cancer patients who have had theirs destroyed by very high doses of chemotherapy or radiation therapy. Learn about the types of transplants and side effects that may occur.

  8. Representations of stem cell clinics on Twitter.

    PubMed

    Kamenova, Kalina; Reshef, Amir; Caulfield, Timothy

    2014-12-01

    The practice of travelling abroad to receive unproven and unregulated stem cell treatments has become an increasingly problematic global phenomenon known as 'stem cell tourism'. In this paper, we examine representations of nine major clinics and providers of such treatments on the microblogging network Twitter. We collected and conducted a content analysis of Twitter posts (n = 363) by these establishments and by other users mentioning them, focusing specifically on marketing claims about treatment procedures and outcomes, discussions of safety and efficacy of stem cell transplants, and specific representations of patients' experiences. Our analysis has shown that there were explicit claims or suggestions of benefits associated with unproven stem cell treatments in approximately one third of the tweets and that patients' experiences, whenever referenced, were presented as invariably positive and as testimonials about the efficacy of stem cell transplants. Furthermore, the results indicated that the tone of most tweets (60.2 %) was overwhelmingly positive and there were rarely critical discussions about significant health risks associated with unproven stem cell therapies. When placed in the context of past research on the problems associated with the marketing of unproven stem cell therapies, this analysis of representations on Twitter suggests that discussions in social media have also remained largely uncritical of the stem cell tourism phenomenon, with inaccurate representations of risks and benefits for patients.

  9. WNT signaling in stem cell biology and regenerative medicine.

    PubMed

    Katoh, Masaru

    2008-07-01

    WNT family members are secreted-type glycoproteins to orchestrate embryogenesis, to maintain homeostasis, and to induce pathological conditions. FZD1, FZD2, FZD3, FZD4, FZD5, FZD6, FZD7, FZD8, FZD9, FZD10, LRP5, LRP6, and ROR2 are transmembrane receptors transducing WNT signals based on ligand-dependent preferentiality for caveolin- or clathrin-mediated endocytosis. WNT signals are transduced to canonical pathway for cell fate determination, and to non-canonical pathways for regulation of planar cell polarity, cell adhesion, and motility. MYC, CCND1, AXIN2, FGF20, WISP1, JAG1, DKK1 and Glucagon are target genes of canonical WNT signaling cascade, while CD44, Vimentin and STX5 are target genes of non-canonical WNT signaling cascades. However, target genes of WNT signaling cascades are determined in a context-dependent manner due to expression profile of transcription factors and epigenetic status. WNT signaling cascades network with Notch, FGF, BMP and Hedgehog signaling cascades to regulate the balance of stem cells and progenitor cells. Here WNT signaling in embryonic stem cells, neural stem cells, mesenchymal stem cells, hematopoietic stem cells, and intestinal stem cells will be reviewed. WNT3, WNT5A and WNT10B are expressed in undifferentiated human embryonic stem cells, while WNT6, WNT8B and WNT10B in endoderm precursor cells. Wnt6 is expressed in intestinal crypt region for stem or progenitor cells. TNF/alpha-WNT10B signaling is a negative feedback loop to maintain homeostasis of adipose tissue and gastrointestinal mucosa with chronic inflammation. Recombinant WNT protein or WNT mimetic (circular peptide, small molecule compound, or RNA aptamer) in combination with Notch mimetic, FGF protein, and BMP protein opens a new window to tissue engineering for regenerative medicine.

  10. Hematopoietic cell differentiation from embryonic and induced pluripotent stem cells

    PubMed Central

    2013-01-01

    Pluripotent stem cells, both embryonic stem cells and induced pluripotent stem cells, are undifferentiated cells that can self-renew and potentially differentiate into all hematopoietic lineages, such as hematopoietic stem cells (HSCs), hematopoietic progenitor cells and mature hematopoietic cells in the presence of a suitable culture system. Establishment of pluripotent stem cells provides a comprehensive model to study early hematopoietic development and has emerged as a powerful research tool to explore regenerative medicine. Nowadays, HSC transplantation and hematopoietic cell transfusion have successfully cured some patients, especially in malignant hematological diseases. Owing to a shortage of donors and a limited number of the cells, hematopoietic cell induction from pluripotent stem cells has been regarded as an alternative source of HSCs and mature hematopoietic cells for intended therapeutic purposes. Pluripotent stem cells are therefore extensively utilized to facilitate better understanding in hematopoietic development by recapitulating embryonic development in vivo, in which efficient strategies can be easily designed and deployed for the generation of hematopoietic lineages in vitro. We hereby review the current progress of hematopoietic cell induction from embryonic stem/induced pluripotent stem cells. PMID:23796405

  11. Directed Differentiation of Human-Induced Pluripotent Stem Cells to Mesenchymal Stem Cells.

    PubMed

    Lian, Qizhou; Zhang, Yuelin; Liang, Xiaoting; Gao, Fei; Tse, Hung-Fat

    2016-01-01

    Multipotent stromal cells, also known as mesenchymal stem cells (MSCs), possess great potential to generate a wide range of cell types including endothelial cells, smooth muscle cells, bone, cartilage, and lipid cells. This protocol describes in detail how to perform highly efficient, lineage-specific differentiation of human-induced pluripotent stem cells (iPSCs) with an MSCs fate. The approach uses a clinically compliant protocol with chemically defined media, feeder-free conditions, and a CD105 positive and CD24 negative selection to achieve a single cell-based MSCs derivation from differentiating human pluripotent cells in approximately 20 days. Cells generated with this protocol express typical MSCs surface markers and undergo adipogenesis, osteogenesis, and chondrogenesis similar to adult bone marrow-derived MSCs (BM-MSCs). Nonetheless, compared with adult BM-MSCs, iPSC-MSCs display a higher proliferative capacity, up to 120 passages, without obvious loss of self-renewal potential and constitutively express MSCs surface antigens. MSCs generated with this protocol have numerous applications, including expansion to large scale cell numbers for tissue engineering and the development of cellular therapeutics. This approach has been used to rescue limb ischemia, allergic disorders, and cigarette smoke-induced lung damage and to model mesenchymal and vascular disorders of Hutchinson-Gilford progeria syndrome (HGPS).

  12. Impact of retrotransposons in pluripotent stem cells.

    PubMed

    Tanaka, Yoshiaki; Chung, Leeyup; Park, In-Hyun

    2012-12-01

    Retrotransposons, which constitute approximately 40% of the human genome, have the capacity to 'jump' across the genome. Their mobility contributes to oncogenesis, evolution, and genomic plasticity of the host genome. Induced pluripotent stem cells as well as embryonic stem cells are more susceptible than differentiated cells to genomic aberrations including insertion, deletion and duplication. Recent studies have revealed specific behaviors of retrotransposons in pluripotent cells. Here, we review recent progress in understanding retrotransposons and provide a perspective on the relationship between retrotransposons and genomic variation in pluripotent stem cells.

  13. Clinical uses of liver stem cells.

    PubMed

    Dan, Yock Young

    2012-01-01

    Liver transplantation offers a definitive cure for many liver and metabolic diseases. However, the complex invasive procedure and paucity of donor liver graft organs limit its clinical applicability. Liver stem cells provide a potentially limitless source of cells that would be useful for a variety of clinical applications. These stem cells or hepatocytes generated from them can be used in cellular transplantation, bioartificial liver devices and drug testing in the development of new drugs. In this chapter, we review the technical aspects of clinical applications of liver stem cells and the progress made to date in the clinical setting. The difficulties and challenges of realizing the potential of these cells are discussed.

  14. Stem cells: The Next Therapeutic Frontier

    PubMed Central

    Humes, H. David

    2005-01-01

    Cell therapy is one of the most exciting fields in translational medicine. It stands at the intersection of a variety of rapidly developing scientific disciplines: stem cell biology, immunology, tissue engineering, molecular biology, biomaterials, transplantation biology, regenerative medicine, and clinical research. Cell-based therapy may develop into a new therapeutic platform to treat a vast array of clinical disorders. Blood transfusions and bone marrow transplantation are prime examples of the successful application of cell-based therapeutics; but recent advances in cellular and molecular biology have expanded the potential applications of this approach. Although recombinant genetic engineering to produce a variety of therapeutics such as human erythropoietin and insulin has proven successful, these treatments are unable to completely correct or reverse disease states, because most common disease processes are not due to the deficiency of a single protein but develop due to alterations in the complex interactions of a variety of cell components. In these complex situations, cell-based therapy may be a more successful strategy by providing a dynamic, interactive, and individualized therapeutic approach that responds to the pathophysiological condition of the patient. In this regard, cells may provide innovative methods for drug delivery of biologics, immunotherapy, and tissue regenerative or replacement engineering (1,2). The translation of this discipline to medical practice has tremendous potential, but in many applications technological issues need to be overcome. Since many cell-based indications are already being evaluated in the clinic, the field appears to be on the threshold of a number of successes. This review will focus on our group's use of human stem/progenitor cells in the treatment of acute and chronic renal failure as extensions to the current successful renal substitution processes of hemodialysis and hemofiltration. PMID:16555613

  15. Stem Cell Research: Unlocking the Mystery of Disease

    MedlinePlus

    ... Issue Past Issues From the Director: Stem Cell Research: Unlocking the Mystery of Disease Past Issues / Summer ... Director, described the need for expanding stem cell research. Recently, he spoke about stem cell research with ...

  16. Stem Cells: What They Are and What They Do

    MedlinePlus

    Stem cells: What they are and what they do Stem cells and derived products offer great promise for new medical treatments. Learn about stem cell types, current and possible uses, ethical issues, and ...

  17. Pluripotent Stem Cells and Gene Therapy

    PubMed Central

    Simara, Pavel; Motl, Jason A.; Kaufman, Dan S.

    2013-01-01

    Human pluripotent stem cells represent an accessible cell source for novel cell-based clinical research and therapies. With the realization of induced pluripotent stem cells (iPSCs), it is possible to produce almost any desired cell type from any patient's cells. Current developments in gene modification methods have opened the possibility for creating genetically corrected human iPSCs for certain genetic diseases that could be used later in autologous transplantation. Promising preclinical studies have demonstrated correction of disease-causing mutations in a number of hematological, neuronal and muscular disorders. This review aims to summarize these recent advances with a focus on iPSC generation techniques, as well as gene modification methods. We will then further discuss some of the main obstacles remaining to be overcome before successful application of human pluripotent stem cell-based therapy arrives in the clinic and what the future of stem cell research may look like. PMID:23353080

  18. The Drosophila ovarian and testis stem cell niches: similar somatic stem cells and signals.

    PubMed

    Decotto, Eva; Spradling, Allan C

    2005-10-01

    The stem cell niches at the apex of Drosophila ovaries and testes have been viewed as distinct in two major respects. While both contain germline stem cells, the testis niche also contains "cyst progenitor" stem cells, which divide to produce somatic cells that encase developing germ cells. Moreover, while both niches utilize BMP signaling, the testis niche requires a key JAK/STAT signal. We now show, by lineage marking, that the ovarian niche also contains a second type of stem cell. These "escort stem cells" morphologically resemble testis cyst progenitor cells and their daughters encase developing cysts before undergoing apoptosis at the time of follicle formation. In addition, we show that JAK/STAT signaling also plays a critical role in ovarian niche function, and acts within escort cells. These observations reveal striking similarities in the stem cell niches of male and female gonads, and suggest that they are largely governed by common mechanisms.

  19. Stem cell function during plant vascular development

    PubMed Central

    Miyashima, Shunsuke; Sebastian, Jose; Lee, Ji-Young; Helariutta, Yka

    2013-01-01

    The plant vascular system, composed of xylem and phloem, evolved to connect plant organs and transport various molecules between them. During the post-embryonic growth, these conductive tissues constitutively form from cells that are derived from a lateral meristem, commonly called procambium and cambium. Procambium/cambium contains pluripotent stem cells and provides a microenvironment that maintains the stem cell population. Because vascular plants continue to form new tissues and organs throughout their life cycle, the formation and maintenance of stem cells are crucial for plant growth and development. In this decade, there has been considerable progress in understanding the molecular control of the organization and maintenance of stem cells in vascular plants. Noticeable advance has been made in elucidating the role of transcription factors and major plant hormones in stem cell maintenance and vascular tissue differentiation. These studies suggest the shared regulatory mechanisms among various types of plant stem cell pools. In this review, we focus on two aspects of stem cell function in the vascular cambium, cell proliferation and cell differentiation. PMID:23169537

  20. Progress and Prospects for Stem Cell Engineering

    PubMed Central

    Ashton, Randolph S.; Keung, Albert J.; Peltier, Joseph; Schaffer, David V.

    2018-01-01

    Stem cells offer tremendous biomedical potential owing to their abilities to self-renew and differentiate into cell types of multiple adult tissues. Researchers and engineers have increasingly developed novel discovery technologies, theoretical approaches, and cell culture systems to investigate microenvironmental cues and cellular signaling events that control stem cell fate. Many of these technologies facilitate high-throughput investigation of microenvironmental signals and the intracellular signaling networks and machinery processing those signals into cell fate decisions. As our aggregate empirical knowledge of stem cell regulation grows, theoretical modeling with systems and computational biology methods has and will continue to be important for developing our ability to analyze and extract important conceptual features of stem cell regulation from complex data. Based on this body of knowledge, stem cell engineers will continue to develop technologies that predictably control stem cell fate with the ultimate goal of being able to accurately and economically scale up these systems for clinical-grade production of stem cell therapeutics. PMID:22432628

  1. Manifestations and mechanisms of stem cell aging

    PubMed Central

    Liu, Ling

    2011-01-01

    Adult stem cells exist in most mammalian organs and tissues and are indispensable for normal tissue homeostasis and repair. In most tissues, there is an age-related decline in stem cell functionality but not a depletion of stem cells. Such functional changes reflect deleterious effects of age on the genome, epigenome, and proteome, some of which arise cell autonomously and others of which are imposed by an age-related change in the local milieu or systemic environment. Notably, some of the changes, particularly epigenomic and proteomic, are potentially reversible, and both environmental and genetic interventions can result in the rejuvenation of aged stem cells. Such findings have profound implications for the stem cell–based therapy of age-related diseases. PMID:21502357

  2. [Stem cells--cloning, plasticity, bioethic].

    PubMed

    Pflegerl, Pamina; Keller, Thomas; Hantusch, Brigitte; Hoffmann, Thomas Sören; Kenner, Lukas

    2008-01-01

    Stem cells with certain characteristics have become promising tools for molecular medicine. They have the potential to self-regenerate and to differentiate into specific tissues. Besides their great potential, embryonic stem cells (ESC) run the risk of enhanced tumorigenesis. The use of human embryonic stem cells (hESC) is ethically problematic because their isolation involves the destruction of human embryos. Recently developed methods generate are able to pluripotent stem cells from fibroblasts. Alternatives for ESC are adult stem cells (ASC) derived from bone marrow, cord blood, amniotic fluid and other tissues. The following article is on the basis of testimony of Lukas Kenner for the German Bundestag about the use of ESC for research, therapy and drug development. Ethical aspects are taken into consideration.

  3. Biophysical regulation of stem cell differentiation.

    PubMed

    Govey, Peter M; Loiselle, Alayna E; Donahue, Henry J

    2013-06-01

    Bone adaptation to its mechanical environment, from embryonic through adult life, is thought to be the product of increased osteoblastic differentiation from mesenchymal stem cells. In parallel with tissue-scale loading, these heterogeneous populations of multipotent stem cells are subject to a variety of biophysical cues within their native microenvironments. Bone marrow-derived mesenchymal stem cells-the most broadly studied source of osteoblastic progenitors-undergo osteoblastic differentiation in vitro in response to biophysical signals, including hydrostatic pressure, fluid flow and accompanying shear stress, substrate strain and stiffness, substrate topography, and electromagnetic fields. Furthermore, stem cells may be subject to indirect regulation by mechano-sensing osteocytes positioned to more readily detect these same loading-induced signals within the bone matrix. Such paracrine and juxtacrine regulation of differentiation by osteocytes occurs in vitro. Further studies are needed to confirm both direct and indirect mechanisms of biophysical regulation within the in vivo stem cell niche.

  4. Clinical trials for stem cell transplantation: when are they needed?

    PubMed

    Van Pham, Phuc

    2016-04-27

    In recent years, both stem cell research and the clinical application of these promising cells have increased rapidly. About 1000 clinical trials using stem cells have to date been performed globally. More importantly, more than 10 stem cell-based products have been approved in some countries. With the rapid growth of stem cell applications, some countries have used clinical trials as a tool to diminish the rate of clinical stem cell applications. However, the point at which stem cell clinical trials are essential remains unclear. This commentary discusses when stem cell clinical trials are essential for stem cell transplantation therapies.

  5. Expansion of mesenchymal stem cells under atmospheric carbon dioxide.

    PubMed

    Brodsky, Arthur Nathan; Zhang, Jing; Visconti, Richar